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Abstract

Network security is of vital importance in our world dominated by internet systems.

These systems are vulnerable to large-scale rapidly evolving attacks by sophisticated

cyber attackers who can have an upper edge over the defensive systems. Artificial

Intelligence (AI) based intrusion detection systems provide effective defense mecha-

nisms against cyber attacks. However, these techniques often rely on the same dataset

for training and validation as well as evaluation of AI models. Current research [1]

also confirms that such trained models can accurately identify known/typical net-

work attacks but perform poorly when faced with continuously evolving atypical/

polymorphic cyberattacks. Therefore, it is crucial to develop and train an AI-based

Intrusion Detection System (IDS) that proactively learns to resist infiltration by such

dynamically changing attacks.

For this purpose, in this research work, we propose an AI-based IDS system that

can monitor and detect polymorphic network attacks with high confidence levels. We

propose a novel hybrid adversarial model that leverages the best characteristics of

a Conditional Variational Autoencoder (CVAE) and a Generative Adversarial Net-

work (GAN). Our system generates adversarial polymorphic attacks against the IDS

to examine its performance and incrementally retrains it to strengthen its detec-

tion of new attacks, specifically for minority attack samples in the input data. The

employed attack quality analysis ensures that the adversarial atypical/polymorphic
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attacks generated through our system resemble realistic network attacks. Our ex-

periments showcase the exceptional performance of the proposed IDS by training it

using the CICIDS2017 and CICIoT2023 benchmark datasets and evaluating its per-

formance against several atypical/polymorphic attack flows. The results indicate that

the proposed technique, through adaptive training, learns the pattern of dynamically

changing atypical/polymorphic attacks and identifies such attacks with high IDS pro-

ficiency. Additionally, our IDS surpasses various state-of-the-art anomaly detection

and class balancing techniques.

Keywords: Attack quality; Atypical/Polymorphic attacks; Deep learning; Fea-

ture Profile; Intrusion Detection System
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Chapter 1

Introduction

1.1 Motivation

In recent years, the use of network communication, web-based services, technologies

such as voice and video over the internet, Internet of Things (IoT), cloud services, and

personal computing has massively increased. Cybersecurity analysts have predicted

that by the year 2025, the amount of data generated worldwide will reach around 200

zettabytes [10]. Half of this data worldwide will be stored on cloud infrastructures

[10]. The availability of this information on private or public cloud infrastructure

has increased the likelihood of attackers gaining illegitimate access by finding out

loopholes and stealing the data. Advanced attackers can employ AI-based attack tools

such as Shortly, to independently adjust and refine their attack tactics [11]. These

advanced attacks pose a significant threat to the current network security landscape.

According to the report published by cybersecurity ventures [10], the losses inflicted

by cybercriminals worldwide will increase to an annual of 10.5 trillion US dollars by

the year 2025. With this growth in the digital surface and increased sophistication

of cyberattacks, improving the security of networks has become the focus of research
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efforts.

Network specialists employ several tools to provide security to networks and con-

nected devices such as antivirus software, firewalls, and Intrusion Detection System

(IDS) [12]. An IDS is used to monitor the network for any illegal and unauthorized

access which compromises the security of the network. With immense technological

advancements and extensions in network sizes, the security of networks and devices

has become a challenging task for traditional intrusion detection systems. To improve

the network attack detection rates, researchers have investigated the use of Artifi-

cial Intelligence (AI) techniques such as Machine Learning (ML) and Deep Learning

(DL) for intrusion detection. These techniques provide powerful solutions for im-

proving cybersecurity in general and intrusion detection systems in particular due to

improvement in attack detection rates as well as the reduction in false positives and

negatives [13], [14]. The main advantage of these models is their ability to learn the

features associated with an input and, with that prior knowledge, create a generic

view of the target output for future predictions.

In the case of cyber attack identification, the pre-trained AI model inspects the

input network traffic to detect any abnormal patterns by examining the changes in

features such as data rate, incomplete requests, or inter-arrival times from a source

under observation. A significant amount of research on intrusion detection using ML

models over the past decade [15–22] has demonstrated the efficiency of such techniques

in identifying known attacks with remarkable success, however, it has also been shown

that the ability of ML models in detecting new, atypical and polymorphic attacks is

rather limited and inefficient [1, 2, 23, 24].

One solution for this problem is to develop a practical AI-based IDS that can

identify rapidly evolving atypical/ polymorphic network attacks. With the recent

advances in adversarial learning based approaches especially in the field of image
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processing [25–30] improvement in the results of the AI-based IDS models can be

expected if similar approaches are applied to cybersecurity.

1.2 Problem Description

Most of the ML and DL-based techniques used so far for intrusion detection are based

on supervised learning of their models on benchmark data with splits for training,

validation, and testing phases to detect similar future attack patterns. For example,

a dataset is divided into three parts- 70% for training, 20% for validation, and 10%

for model evaluation. Such models are not generalized on any external test data that

may contain unknown or new attacks [31–33].

Since the AI models are trained only with a specific benchmark attack dataset

and network parameters, training, and testing data may share similar tool-dependent

characteristics such as packet size distributions, port numbers, bandwidth, and data

rates. For these systems, it is assumed that the future data has the same probability

distribution as training data. These models are still limited in their abilities to secure

the network against attacks because they search for specific details (like the annotated

training data) that they have seen before. The main problem with such models

is that they produce biased results when classifying atypical/polymorphic network

attacks. This is because polymorphic attackers can use sophisticated tools to mutate

attack patterns dynamically by changing multiple features such as data rates and

port numbers. These sophisticated attacks are designed to use benign features that

are not yet identified by the IDS, and would continuously change their features to

evade detection [34].

Class imbalance in the training datasets is another main problem that impedes

the performance of the current IDS [35]. It occurs when the distribution of samples of
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several classes in the dataset is skewed. For example, in a network security dataset,

there are only hundreds of samples for the minority attack class and millions of

samples for the majority normal class. Most of the DL models are designed based on

the assumption of giving equal importance to each class in the dataset. If there is an

abundance of samples of one class, it becomes considerably challenging for the DL

model to learn the characteristics of the minority class. It can even skew the decision

of the classifier leading to overfitting. This issue makes it difficult for the DL-based

IDS to analyze the attack traits effectively leading to an overall unsatisfactory attack

detection performance.

Several class balancing techniques such as Random Over Sampling (ROS), Ran-

dom Under Sampling (RUS), Synthetic Minority Oversampling Technique (SMOTE)

[36], and Adaptive Synthetic Sampling (ADASYN) [37] have been adopted by cy-

bersecurity researchers to resolve this problem. Abdulhammed et al. [38] compare

undersampling and oversampling-based approaches for IDS to handle the class im-

balance issue. However, RUS can result in the deficiency of conceivably important

information about the input benign observations. ROS raises the quantity of minor-

ity/undersampled attack observations which can cause overfitting. Other researchers

have reported an improved detection performance of AI-based IDS against undersam-

pled attacks using SMOTE [39–41] as well as ADASYN [42, 43]. However, SMOTE

depends upon interpolation to conduct oversampling which may cause the new attack

samples to be less representative [44]. ADASYN, on the other hand, can synthesize

minority attack instances that look like benign instances which results in high false

alarms.

The evaluation metrics employed should be able to give an effective measure of

model performance by classifying both normal and anomalous behavior [45]. The

standard evaluation metrics used for intrusion detection systems include Accuracy,
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Precision, Recall, F1 score, and Receiver Operating Characteristic (ROC) curve. Em-

ploying only a single metric such as accuracy to measure the IDS performance is not

ideal and can give biased results especially when the classes in the dataset are imbal-

anced [46]. For example, if our binary dataset consists of 99% normal instances and

only 1% network anomalies, and the IDS cannot identify any anomalies, the overall

classification accuracy of the system is 99% even though no network anomalies are

recognized. While recall measures the ability of a classifier to detect attacks, precision

measures the trustworthiness of attack classification [47]. True Positive Rate (Recall),

Precision, and F1 score can effectively measure the IDS performance on attack traffic

but do not completely reflect its performance on normal traffic [48]. This can add bias

to the overall classification ability of the system against typical, as well as unknown,

atypical, and polymorphic network attacks [4]. Therefore, finding an appropriate set

of evaluation metrics for measuring IDS performance is crucial.

Some prior work has been done in unsupervised anomaly-based IDS using DL

techniques [49–55]. Such methods do not require annotated datasets for training. The

models are trained only using normal network traffic and any other traffic is identified

as an anomaly. Researchers have applied this technique for unknown network attack

identification. The problem with this method is that it still has many unresolved

issues such as high false positives [5]. Current researchers in other research areas

such as text classification [56] have reported an increase in the classification accuracy

of their models when using semi-supervised learning based approaches.

The network security research community has shown considerable interest in syn-

thesizing adversarial attacks against AI-based IDS [7, 44, 57–68]. Multiple defense

strategies are employed to enhance the robustness of a model. Adversarial training,

for instance, is employed to improve the performance of AI-based IDS against ad-

versarial attacks. However, in the cybersecurity domain, the generated adversarial
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attacks must resemble realistic network attack traffic. The quality of adversarial at-

tacks is determined by their ability to emulate the pattern of values of features for

original data while preserving the functional network attack traits. If adversarial

perturbations are added to alter the feature values without maintaining the network

constraints, the adversarial attack becomes insignificant from a cybersecurity domain

viewpoint. For instance, changing the value of packet mean interarrival time to gen-

erate a new attack without changing the packet transmission rate is not feasible, as

the two features are correlated. Similarly, changing the features representing the sta-

tistical characteristics of network traffic is not always possible without considering

their correlations.

Attack functionality is also another important factor. For example, a Denial-

of-Service (DoS) attack must include a sufficiently high volume to cause resource

exhaustion at the target. An AI-generated attack that does not take this fact into

account, may generate an attack that is insufficiently impactful to cause any substan-

tial consequence. The synthesized adversarial attack must be significant enough to

evade a trained IDS, yet statistically close to the original attack to maintain attack

feasibility and functionality. Training a DL model with impractical adversarial data

can compromise the model since it learns invalid characteristics and can eventually

degrade its robustness and generalization capability for real network scenarios [69].

To address the challenges in the current research, we employ a new and highly

effective IDS training framework. This framework mimics an adversarial environ-

ment where an AI-based attacker is competing against an AI-based IDS using our

hybrid model, Conditional Variational Autoencoder Adversarial Network (CVAE-

AN) [3]. It is crucial to note that our primary objective is not to develop a toolbox

for the attackers. Instead, our focus is on training an IDS to effectively identify any

atypical/polymorphic attacks. Furthermore, this work delves into the investigation
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and exploration of several criteria for ensuring the quality of synthesized adversar-

ial attacks. While our primary research emphasis revolves around network intrusion

detection, our scope can encompass other related areas as well.

1.3 Objectives and Contribution

In this thesis, we present an improved DL-based IDS for identifying dynamically

changing attacks such as atypical/polymorphic network attacks. In this context,

the term feature profile for an attack is defined as the range of values of features

that constitute an attack [1]. For example, the feature profile for a TCP SYN DoS

attack may include certain port numbers, a certain number of half-open connections,

a certain number of set SYN flags, and a specific data rate. Attacks of different

feature profiles can be generated by tweaking the feature range values randomly to

perform a successful attack.

1.3.1 Atypical and polymorphic attacks

We introduce the concepts of typical and atypical network attacks in [2, 3, 70]. A

typical attack is a predefined network attack known to the IDS from previous training

iterations. Consequently, an atypical attack is a network attack with a different feature

profile as compared to a typical/known attack. We define a polymorphic network

attack [70,71] as an atypical attack that mutates its characteristics or feature profile

continuously to generate different variants of the same attack to bypass a network’s

detection systems while maintaining the functional nature of the attack.

Figure 1.1 represents an atypical/ polymorphic network attack scenario. As seen in

the figure, the attacker launches an attack on the target network using sophisticated

attack tools. The target network is equipped with a Network Intrusion Detection
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Figure 1.1: An atypical/polymorphic attack scenario. An attack with a mutated
feature profile than a previously known attack represents an atypical attack. When
an attacker changes the feature profile of an atypical attack continuously to evade
detection by the IDS, such an attack represents a polymorphic network attack [2, 3].

System (NIDS) to identify the attack. If the attack is identified, the attacker is

blocked by the target network. To validate the attack, the attacker may send a ping

request to the target and observe its response. Since the attacker is blocked by the

target network, this attacker mutates the feature profile to create a new atypical

attack for the polymorphic attack chain. For example, F1 is changed to F1′ and F3

is changed to F3′ as shown in the figure. The goal of this attacker is to attack the

network in such a way that it can evade detection from the NIDS by launching attack

flows as close to benign data flows as possible. The attacker will keep on launching

atypical attacks until it is successful in evading detection by the target network or

until it exhausts all the input features.

Detection of such atypical and polymorphic attacks is a challenging task for an

IDS. These network attacks keep on changing their patterns to enhance novelty and

are hence difficult to catch by the IDS. Therefore, an improved security system to

combat such attacks is the need of the hour.

We provide a thorough assessment and analysis of the proposed technique over
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multiple network attack classes. We also include elaborate results using multiple

applied metrics. Further, to assess the capability of the attacker, a new applied

metric is employed. The IDS is examined against each class of polymorphic attacks

one by one. When the IDS detects an attack, the attacker can not only change the

feature profile but can also switch to a different class of attack to evade detection.

The main contributions of this research include:

• Evaluate the efficiency of existing supervised ML/DL models in identifying atyp-

ical/polymorphic cyberattacks.

• Introduce a novel CVAE-AN hybrid model designed for training the attacker

and generating adversarial polymorphic attack flows. This is achieved by con-

tinuously mutating the feature profile and evading detection by the IDS.

• Implement an incremental adversarial learning-based approach for training the

IDS, aimed at reducing misclassification rates for synthesized polymorphic at-

tacks. This strengthens the performance of the IDS against such dynamically

evolving atypical/polymorphic attack flows, especially those related to under-

sampled attacks in the training data.

• Effectively examine the performance of the IDS through the use of various ap-

plied performance metrics, including IDS Proficiency, Balanced Accuracy, and

Overall Error Rate. These metrics provide a thorough evaluation by consider-

ing both attack and benign classifications, providing more detailed insights in

contrast to other generic metrics such as F1-Score and Precision. Moreover,

evaluating the attacker’s effectiveness through Evasion Success Rate metric,

which measures the success of an attack on the target IDS.

• Evaluate the performances of multiple AI models on polymorphic attack flows.

Our experimental outcomes demonstrate that the proposed IDS outperforms

other present-day AI models in addition to different class balancing strategies.
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• Present a methodology to analyze the quality of the synthesized adversarial

polymorphic attacks by comparing them with real attack data. This quality

assessment ensures that attack data synthesized by our system closely resembles

realistic network attacks. Additionally, it provides a comparative analysis of the

quality of adversarial attacks synthesized by several state-of-the-art generative

DL models.

1.4 Research Impact

Several traditional Machine Learning (ML) techniques are applied for detecting net-

work attacks. However, increasing the accuracy of such systems against sophisticated

attacks such as atypical and polymorphic attacks still needs further investigation.

Some researchers [72, 73] have reported that the attack detection rate of traditional

supervised AI-based IDS can be easily hampered by adversaries. Such attackers can

successfully mutate the attack features to deceive the IDS which misclassifies attack

data as normal. Presently, Deep Learning (DL) is gaining increasing popularity for

network intrusion detection since it can handle large-scale data and identify the com-

plex relationships among several attributes in the input data.

This work proposes an adaptive generative algorithm that can synthesize dynamic

network attacks to build and train an intelligent DL-based IDS against typical and

atypical/polymorphic attacks. The conditional aspect of the model provides control

over the generated samples, allowing precise customization based on specific attack

classes. Our technique shows significant improvements in IDS proficiency and a re-

duction in evasion success rates compared to other network anomaly detection tech-

niques for multiple attack classes. The introduced attack quality metrics provide a

comprehensive evaluation of the realism and effectiveness of the synthesized adversar-
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ial attacks, ensuring high quality in the generated samples. Based on the improved

IDS results, we expect that our algorithm can aid other cybersecurity researchers in

improving the detection capability of present IDS against atypical/polymorphic net-

work attacks. Beyond network security, the framework, coupled with generated data

quality analysis, finds applications in non-security domains as well.

To the best of our knowledge, the proposed IDS is the first one of its kind, espe-

cially in the field of cybersecurity where attackers launch sophisticated attacks most

of the time to surpass the current intrusion detection systems.

The subsequent sections of this thesis are structured as follows. Chapter 2 offers

a foundational overview covering Intrusion Detection Systems (IDS), encompassing

their taxonomy, feature engineering, and the optimization of hyperparameters to en-

hance AI-based IDS. Additionally, it delves into adversarial learning and explores

various Deep Generative AI Models utilized in this study. Chapter 3 presents an

extensive review of existing literature in the cybersecurity domain. In Chapter 4,

the problem setup and underlying assumptions are thoroughly examined. Chapter 5

outlines a comprehensive framework utilizing supervised AI-based IDS against atypi-

cal/polymorphic attacks, providing insights into experimental details and evaluation

outcomes. Chapter 6 describes the primary methodology developed to address poly-

morphic network attacks in the context of this research. The experimental design is

discussed in Chapter 7, while Chapter 8 provides a detailed analysis of results for our

model. Finally, Chapter 9 encapsulates the conclusion, advantages, limitations, and

outlines directions for future research.
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Chapter 2

Background

In the past couple of years, there have been numerous breakthroughs in intrusion

detection systems (IDS). As the amount of information continues to expand expo-

nentially and so do network attacks, advanced intrusion detection systems with ML

and DL capabilities have become crucial to detect several network attacks. In this

chapter, we discuss the relevant background knowledge for current IDS. We start

with a typical background for IDS and discuss its taxonomy. We further discuss the

importance of feature engineering and types of feature selection and hyperparameter

optimization techniques employed for AI research in intrusion detection. In the end,

we discuss the background for several DL models employed in this research.

2.1 IDS Background and taxonomy

An Intrusion Detection System (IDS) is a security tool that helps to analyze and

identify unauthorized network or host access and any changes such as counterfeiting

or destruction of data in network information systems [74]. If any abnormal activity

is detected, the IDS triggers an alert to the network or host administrators.
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Figure 2.1: Classification of Intrusion Detection Systems based on several criteria.

An IDS can be classified based on several criteria such as deployment, detection

methodology, response, and architecture. Figure 2.1 depicts the classification taxon-

omy of an IDS based on the above-mentioned criteria.

2.1.1 Classification based on deployment

An Intrusion Detection System (IDS) is classified into Host-based IDS (HIDS) and

Network-based IDS (NIDS) based on where it is deployed.

A Network-based Intrusion Detection System (NIDS) is installed on the internal

network to protect from unauthorized access and detect any attacks on the network

hosts. A NIDS can be installed on a centralized switch or subnet to analyze the

network traffic for any suspicious activity such as Denial of Service (DoS) Attacks.

A Host-based Intrusion Detection System (HIDS), on the other hand, is installed on

the host machine to monitor the traffic originating and coming into the specific host.

HIDS cannot identify suspicious behavior on other hosts in the network. It is highly

effective in identifying any insider threats to the host such as unusual client-server

communication through certain ports, file manipulation, overwriting, or deletion. It

is more challenging to install a HIDS on multiple devices since it requires extra com-

putational overhead. For enhanced security of a network, both NIDS and HIDS need

to be deployed. The NIDS can detect large-scale attacks with a very fast response

time while the HIDS is capable of identifying attacks that originate from within the
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network.

2.1.2 Classification based on detection method

An IDS is further classified into three major categories based on the detection tech-

nique: Signature based IDS (SIDS), Anomaly-based IDS (AIDS), and Hybrid IDS.

The SIDS is also known as knowledge-based IDS or misuse-based IDS. It compares

the intrusions or attacks to the known attack patterns in its database [75]. This type of

intrusion detection technique has a high true positive rate for known attack patterns

due to the availability of such patterns in its database. However, it is difficult to

identify unknown/atypical attacks or polymorphic attacks using this technique due

to the unavailability of such attack patterns in the database. Additionally, for SIDS,

it is a challenging and time-consuming task to update attack patterns for every new

attack [76].

AIDS is also known as behavior-based IDS. AIDS is used to identify abnormal

behavior by comparing it with baseline behavior and then taking action accordingly.

Although this type of intrusion detection technique can detect unknown or new at-

tacks, it has a high false positive rate when classifying normal and anomalous pat-

terns [75]. Hybrid IDS combines the best features of both SIDS and AIDS. The main

aim of employing a hybrid IDS is to reduce the misclassifications of unknown and

polymorphic attacks, extract useful patterns from these attacks, and improve the

true positive rates for these attacks [70].

2.1.3 Classification based on response

An IDS can be classified into active and passive IDS based on its response mechanism

when an attack is detected.
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An active IDS also known as an Intrusion Prevention System (IPS) is configured

in such a way that as soon as an attack is detected, the system automatically blocks

these attacks without even consulting the security analyst. Such an IDS provides a

real-time response by triggering an alarm when the attack is detected, blocking the

attack, generating a report, creating a backup, and logging all the information [77].

Sometimes an IPS may be susceptible to attacks such as Denial of Service (DoS). For

example, if false positives and normal traffic have not properly been identified, it may

lead to denial of essential services to legitimate clients because of high false positives.

A passive IDS on the other hand is configured to scan and analyze network traffic

and alert the network analyst to take further action such as blocking IP addresses,

termination of the connection/process, and locking the user account [77]. A passive

IDS is easier to configure and install and is less susceptible to attacks as compared

to an active IDS [77].

2.1.4 Classification based on architecture

Based on the infrastructure requirements, an IDS can be classified as centralized and

distributed [77].

In a centralized IDS, as the name suggests, IDS is installed on a central device

that is responsible for analyzing network traffic and generating an alarm if any ab-

normal patterns are detected. This information is sent to the central device by other

devices in the network. The biggest disadvantage of this system is that if the central

device is hacked or is non-functioning, the entire network is susceptible to further

attacks. Additionally, with the increase in network logs, the central device may get

overwhelmed due to excessive overhead [77]. This centralized IDS makes independent

decisions about intrusions in the network, hence may also be known as an independent

IDS.

15



On the contrary, in the case of a distributed IDS, each device in the network

can detect and respond to intrusions. Such an IDS follows a hierarchical tree-like

architecture where each node communicates with other nodes in a bottom-up ap-

proach [77]. The distributed IDS makes collaborative decisions regarding a detected

attack in the network, hence is also known as collaborative IDS. Some challenges faced

by a distributed IDS are balancing the load, fault tolerance, and detection of insider

threats [77].

In this thesis, we mainly focus on the current literature for DL algorithms em-

ployed in network intrusion detection. This is discussed in more detail in chapter

3.

2.2 Feature Engineering

Feature engineering is a process of transforming data into a format that is easily

interpretable by the AI model. The data quality and features are directly proportional

to the detection ability of such models. In AI research, the feature engineering phase is

still an overlooked subject and needs careful examination and research [78]. Training

data with a relevant feature subset requires a less complex AI model which provides

better classification results.

Unsupervised AI models, on the other hand, do not require the feature selection

process. They are based on the concept of dimensionality reduction which reduces

the features to dimensions that explain most of the input data. The complete feature

engineering workflow is depicted in Figure. 2.2. For unsupervised AI, the feature

selection phase is omitted after dimension reduction.

Raw input data goes through various phases of feature engineering before it fi-

nally becomes available for AI training. The data is cleaned by removing ‘nans’ and
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Figure 2.2: Feature Engineering Workflow

infinite values, converting negative values to null values, and conversion of categorical

features like port numbers into numerical categories (say 0,1,2 and so on). Clean data

distribution is inspected for normality for example using Quantile-Quantile plots (QQ

plots) [79].

This plot compares the plot generated for the given dataset with the ideal Gaus-

sian (Normal) distribution. If the data follows this bell-shaped curve, the points from

both the generated and standard plots should overlap on the standardized line. Nor-

malization of data leads to faster convergence of an AI model and avoids conditions

where gradients take a long time and keep on switching back and forth before reaching

global or local minimum. If the input clean data does not follow a normal distribu-

tion, it may be normalized using for example Z-Score normalization technique which

changes the data distribution such that it has a mean of zero and a standard deviation

of one. Normalized data is then subjected to dimensionality reduction using Principal

Component Analysis (PCA) [80] or other unsupervised techniques such as Autoen-

coders. These techniques are useful for visualization of the high dimensional data

into a lower-dimensional space for a better understanding of data distribution. The

final step is selecting the best feature subset based on various techniques discussed in

the following sections.

Figure. 2.3 represents the QQ plot for clean CICIDS2017 before normalization [1].

The input data distribution is inspected for normality using QQ-plots which compares

different data points from given data to Gaussian distribution. The graph indicates

that theoretical quantiles tend to have lower values than sample quantiles. The data
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Figure 2.3: QQ Plot for Clean Data Before Normalization for CICIDS2017

Figure 2.4: Cumulative Explained Variance Ratio for CICIDS2017 using PCA

does not follow Gaussian distribution because most of the data points or quantiles

deviate from the standardized reference line. Therefore, it needs to be normalized

before feeding into the AI model.

After normalization, Principal Component Analysis (PCA) can be applied to the

data for visualization and a better understanding of data distribution [1]. PCA re-

duces the larger dataset to a smaller one following the Gaussian distribution. Figure.

2.4, represents the cumulative explained variance ratio using PCA which measures
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the number of important components in the dataset. In our case [1], the first 25

principal components explain 98.20% of the total variance available in the data. In

other words, only the first 25 components for input CICIDS2017 data are the most

significant for AI training.

2.2.1 Feature Extraction and Dimension Reduction

Feature extraction consists of using an algorithm to choose the best-suited subset

of features for a specific DL model based on intuition from the input data. It is

a vital constituent of the ML/DL models employed in intrusion detection. Feature

or attribute extraction allows for the reduction of biased results by removing the

less relevant/noisy features that do not help in improving classification results. For

example, the feature packets per second may be less significant in case of a low-rate

Denial of Service attack such as Slowloris which mainly depends on the number of

half-open connection requests rather than the amount of data sent. Feature selection

also helps in reducing the training complexity and overfitting by decreasing the error

on validation and test data [81]. In Figure 2.5, we provide the taxonomy of several

supervised and unsupervised attribute selection techniques in intrusion detection.

Supervised feature extraction methods are further classified as filter method, wrap-

per method, and embedded/intrinsic method.

Filter Method

The filter method applies a statistical algorithm to determine the correlation of a

feature with a specific target variable. Several examples of such techniques are Pear-

son’s correlation [82], Analysis of Variance (ANOVA) [83], Chi-Square [84], and Linear

Discriminant Analysis (LDA) [85]. Pearson’s correlation measures the dependence be-

tween a continuous feature and a continuous target variable. ANOVA is a statistical
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Figure 2.5: A classification of supervised and unsupervised attribute selection meth-
ods in intrusion detection

test that measures the correlation between a categorical feature and a continuous

target variable. The Chi-Square method measures the dependence between a cate-

gorical feature and a categorical target variable. LDA finds the linear combination

of continuous features to classify two or more classes or target variables. In [86], the

authors apply an ensemble of filter feature selection techniques such as Chi-Square,

Pearson’s correlation, and Mutual Information to reduce the complexity of training

an IDS and maintaining the performance of the system. Other intrusion detection

research works employ LDA [87] and ANOVA [88] for feature selection to decrease
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the complexity of the IDS model and achieve faster responses.

Wrapper Method

The wrapper method selects the most suitable features that improve the classification

results of a machine learning algorithm. Forward Selection (FS) is a wrapper method

that commences with a set of null features and keeps on adding the best-suited feature

after every iteration. Backward Elimination (BE), on the other hand, starts with a

full set of features and after every iteration removes the worst-suited feature from the

remaining set of features. Recursive feature elimination (RFE) is another wrapper

method that employs the greedy algorithm to identify the best-suited feature subset.

At each iteration, the best or worst-suited features are identified which are then

organized based on the order of elimination. In [89], the researchers propose a Meta-

Heuristic-based Sequential Forward Selection (MH SFS) feature selection algorithm

to reduce the high dimensionality problem in the training dataset and improve the

results of anomaly detection models. Al-Jarrah et al. [90] apply both FS and BE to

select features for training an IDS model and effectively improve the detection rate

using the KDD ’99 dataset. The authors in [91] employ RFE to identify the most

effective features for attack classification using their Deep Neural Network (DNN).

Embedded Method

The embedded method combines the best characteristics of both filter and wrapper

methods. These are applied in certain machine learning algorithms that have built-

in or intrinsic feature selection. In this case, during each training iteration, the

best-suited features are extracted. Examples of embedded feature selection methods

include certain regularization algorithms that shrink the data values such as Lasso

Regression [92], Ridge Regression [93], and tree-based algorithms such as Decision
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Tree (DT) and Random Forest (RF). In [94], the authors apply undersampling and

embedded feature selection based on Light Gradient Boosting Machine (LightGBM)

for multi-classification of attack classes and normal traffic in the network. Linear

models such as Logistic Regression (LR) and Linear Support Vector Classifier (L-

SVC) select features by using regularization for overfitting. This causes features

that have a weak association with the target class to shrink to zero and therefore

eliminated. The equation for regularization in LR is represented in eq.(2.1).

S(w) = argmin
n∑

i=1

log(1 + ea) + λ||w|| (2.1)

Here the value of S(w) should be minimized (almost zero) and therefore, w will be

equal to infinity. Therefore, L1 regularization is added which is represented by the

second right term in eq.(2.1). If λ increases, regularization increases which in turn

decreases overfitting in LR. w represents the vector perpendicular to the hyperplane

separating attack and normal classes. If xi is the training data and yi is the target

label, then a is represented by −yiw
Txi.

The regularization equation in L-SVC is represented in eq.(2.2). Here ||.||1 rep-

resents 1-norm and C is the regularization parameter whose value should always be

greater than zero. If C value is smaller, the number of features selected is less, and

vice versa.

S(w) = min||w||1 + C

n∑
i=1

(max(0, 1− yiw
Txi))

2 (2.2)

Tree-based models such as Random Forest Classifier (RFC) and Extra Tree Clas-

sifier (ETC) select features based on the mean decrease in impurity known as Gini

index [95]. The features with the least impurity are used for splitting the nodes. The

importance score of a feature xi over all the m trees in random forest is given in
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eq.(2.3). Here Sm(Xi) is the importance score of the feature xi for one Decision Tree

Tm.

ST (Xi) = 1/m
m∑

m=1

Sm(Xi) (2.3)

Ensemble Gradient Boosting models such as the Light Gradient Boosting Model

(L-GBM) find the most relevant feature based on some threshold from a local set

of features in each tree. The selected feature with the highest score indicates its

usefulness in the construction of the tree. This process is repeated until we get the

final feature subset [96]. The final loss minimization equation for L-GBM is given in

eq.(2.4).

Lmin = mintϵT

n∑
i=1

hi/2 (t(xi) + gi/hi)
2 (2.4)

Here t(x) is a tree in the ensemble, xi are the training samples, t(xi) = yi is the target

class, hi is the hessian of the loss on sample i, gi is the gradient of the loss on sample

i.

Table 2.1 provides a comparative analysis of current supervised feature extraction

techniques in intrusion detection based on several criteria.

Dimension reduction employs an unsupervised learning technique to reduce the

number of features while maintaining as much variance in the input data as possible.

Working with high-dimensional data is not always desirable for many reasons such as

computational complexity and slow convergence time. Therefore, dimension reduc-

tion is applied by researchers to reduce the number of attributes in the input data in

multiple research areas such as image processing [97], speech recognition [97], bioin-

formatics [97], and cybersecurity [98–100]. In this work, we identify several popular

unsupervised dimension reduction techniques for intrusion detection into 3 classes:

Linear, Non-Linear, and Generative. Some examples are Principal Component Anal-
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Table 2.1: Comparison of Supervised Feature Extraction Techniques in Intrusion
Detection

Criterion Filter Method Wrapper Method Embedded Method

Main idea Applies a statistical algo-
rithm to determine the cor-
relation of a feature with a
specific target variable.

Selects the most suitable
features which improve the
classification results of ma-
chine learning algorithm
under evaluation.

Applied during training in
certain machine learning
algorithms that have built-
in or intrinsic feature selec-
tion.

Computational time Faster Slower Medium
Scalability to high di-
mensions

Yes No Yes

Overfitting No High Low
Generalization Good Better than Filter Better than Filter
Classifier Dependence No Yes Yes
Modeling Feature de-
pendencies

No (in case of univariate) Yes Yes

Feature selection per-
formance

Best features are not al-
ways selected

Better Good

Examples Pearson’s correlation
ANOVA
Chi-Square
LDA

Forward Selection
Backward Elimination
Recursive Feature Elimina-
tion

Lasso Regression
Ridge Regression
Tree-based models

References Karna et al. [86]: Chi-
Square, Pearson’s cor-
relation, and Mutual
Information
Attia et al. [87]: LDA
Shakeela et al. [88]:
ANOVA

Liu et al. [89]: Forward Se-
lection
Al-Jarrah et al. [90]: Back-
ward Elimination
Ustebay et al. [91]: Recur-
sive Feature Elimination

Hua et al. [94]: LightGBM

ysis (PCA), Factor Analysis (FA), Locally Linear Embedding (LLE), t-Distributed

Stochastic Neighbor Embedding (t-SNE), Restricted Boltzmann Machine (RBM),

Deep Belief Network (DBN), Deep Autoencoder (DAE) and its variants.

Linear dimension reduction

PCA is a linear unsupervised dimension reduction technique in which features from a

high-dimensional space can be projected to a lower-dimensional space while preserving

as much variance as possible [80]. This makes it easier to explore and analyze a

dataset with lower dimensions and reduces the overall computational complexity of

the DL model. FA is a linear unsupervised dimension reduction statistical technique

employed to reduce the number of features in the original dataset into a reduced

feature set known as factors. Each factor has an influence on the variance, but some

24



factors influence variance more than others [101]. Several cybersecurity researchers

employ PCA [1, 102, 103] and FA [104] for dimension reduction and improving the

classification results for their AI-based IDS.

Non-linear dimension reduction

LLE is a non-linear unsupervised dimension reduction technique that converts high-

dimensional data to a low-dimensional representation by preserving the local distances

among data points. The local projections are then globally compared to identify the

finest non-linear embedding [105]. Researchers in [106,107] apply LLE to reduce the

dimensions of input data before training the AI algorithm for intrusion detection.

Their results confirm improvement in detection rates and reduction of false positive

rates. t-SNE is a non-linear unsupervised dimension reduction technique that is used

for visualizing high-dimensional data into a lower-dimensional space. Similar data

points are assigned joint probabilities on a higher-dimensional space. t-SNE assigns

a similar probability distribution over the data points in a lower-dimensional space

and tries to minimize the distance between the two probability distributions [108].

In [109, 110], the authors apply t-SNE dimension reduction to improve the attack

classification accuracy using an AI-based IDS.

Generative dimension reduction

RBM is a generative unsupervised neural network that reduces the dimensions of the

input feature vector by learning the probability distribution of the input data and re-

taining the most relevant information [111]. A DBN [112] is created by stacking multi-

ple RBMs to create a deeper neural network. It is applied for unsupervised dimension

reduction and works similarly to RBM. DAE is a generative unsupervised deep neu-

ral network that learns the most important variables in the dataset by condensing
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Table 2.2: Comparison of Unsupervised Dimension Reduction Techniques in Intrusion
Detection

Criterion Linear Method Non Linear Method Generative Method

Main idea Generate a linear map-
ping of data in a lower
dimensional plane from a
higher dimensional plane
while preserving important
information in the data.

Generate a non-linear
manifold by preserving
local distances between
training instances in the
original space.

Generate a latent represen-
tation from a higher di-
mensional space by em-
ploying joint probability
distribution.

Computational time Low High High
Complexity Low High High
Noise sensitivity Low High High
Large training dataset No No Yes
Linear relationships be-
tween variables

Yes No No

Preserves local relation-
ships

No Yes No

Overfitting No Yes Yes
Hyperparameter opti-
mization

No Yes Yes

Examples PCA
FA

LLE
t-SNE

RBM
DBN
DAE and its variants

References Sabeel et al. [1]: PCA
Meng et al. [102]: PCA
Zhao et al. [103]: PCA
Wu et al. [104]: FA

Zheng et al. [106]: LLE
Hou et al. [107]: LLE
Hamid et al. [109]: t-SNE
Yao et al. [110]: t-SNE

Seo et al. [100]: RBM
Alom et al. [114]: RBM
Elsaeidy et al. [115]: RBM
Alrawashdeh et al. [98]:
DBN
Zhao et al. [116]: DBN
Li et al. [99]: DAE
Qureshi et al. [49]: DAE

the information in the input data into a low-dimensional space or latent space in

the hidden layer [113]. Several cybersecurity researchers employ RBM [100,114,115],

DBN [98, 116], and DAE [49, 99] for dimension reduction of an input dataset com-

bined with other classifiers for intrusion detection. Table 2.2 provides a comparative

analysis of unsupervised dimension reduction techniques in intrusion detection based

on several criteria.

2.3 Hyperparameter Optimization (HPO)

A hyperparameter (HP) unlike a regular model parameter for a DL model is a crite-

rion that cannot be learned during the training process but has to be tuned before
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training. Some common examples of hyperparameters are learning rate, batch size,

number of hidden layers for a DL model, number of neurons for each layer, and type

of regularization. HPO refers to the process of building an efficient DL model after

applying an algorithm to attain an optimal model structure by modulating its hyper-

parameters [117]. HPO is an important component for building a model with multiple

hyperparameters such as a Deep Neural Network (DNN) [118]. Tuning the right set

of hyperparameter combinations allows for minimizing the cost or error function of

the model on validation and test data. Finding the most appropriate set of hyperpa-

rameters for a DL model is an intensive task since the performance of the model is

sensitive to even small variations in the hyperparameters and may lead to overfitting

or underfitting problems. The general equation for HPO [119] is given in eq. (2.5).

x
′
= argmin

xϵX
f(x) (2.5)

Where f(x) is the objective function (loss or error function) that needs to be min-

imized, x
′
is the selected set of hyperparameter combinations that help to minimize

the error function, and x is any hyperparameter combination that belongs to a list of

X hyperparameters.

The commonly employed hyperparameter optimization techniques for improving

a DL model include Manual Search, Grid Search, Bayesian Optimization, and Evolu-

tionary Optimization.

2.3.1 Manual Search

The Manual Search method is a traditional trial-and-error method for hyperparameter

tuning. A set of hyperparameters is selected by the DL engineers, the model is trained

with these hyperparameters, and the performance is measured in terms of the loss
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function. The hyperparameters are then adjusted and the process is repeated until

the loss or error of the model is minimized. This is a complex technique especially if

there are a large number of hyperparameters to choose from. In cybersecurity, manual

hyperparameter optimization to select the best hyperparameters for IDS models is

the most commonly used technique [2, 120–124].

2.3.2 Grid Search

In the Grid Search method, a list of possible hyperparameter values is created. Sepa-

rate DL models are built for every possible combination of the hyperparameters from

the list provided. Each model is then evaluated and the architecture that provides the

best results is selected. The Grid Search method is highly computationally expensive

due to the high dimensions of the hyperparameters involved just like the traditional

Manual Search technique. Some cybersecurity researchers apply Grid Search Hyper-

parameter optimization to select the best set of hyperparameters for training their

specific IDS models [125–130].

2.3.3 Random Search

Just like Grid Search, in the Random Search method, initially, a list of possible

hyperparameter values is created. During each iteration, a random combination of

hyperparameters is selected from the list. A DL model is built based on this ran-

domly selected hyperparameter combination and its performance is recorded. In the

end, the hyperparameter combination that provides the best model performance is

selected. Although Random Search provides better performance as compared to Grid

Search, it is still computationally expensive. In Figure 2.6, we provide a comparison

of the Grid Search and Random Search Optimization techniques. Several DL models
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Figure 2.6: An illustration of Grid Search (a), Random Search (b). The grid search
algorithm employs an exhaustive search for every possible hyperparameter combina-
tion. For Random search, the parameters to train a DL model are sampled randomly.

such as DNN [131,132], DAE-DNN [133], Convolutional Neural Network (CNN) [134],

Convolutional Long Short-Term Memory (Conv-LSTM) [135,136], and Gated Recur-

rent Unit (GRU) [137] employed by network security researchers use Random Search

to select the best hyperparameters and provide better classification results for attack

detection.

2.3.4 Bayesian Optimization

Bayesian Optimization is a type of Sequential Model-Based Optimization (SMBO)

algorithm [138] which allows the information of one iteration to be used in the next

for improving the overall results. It reduces the number of iterations of model training

and evaluation since it only employs the hyperparameters that are expected to give

better evaluation results. This is unlike the computationally expensive Grid Search

and Random Search techniques where at each iteration, individual models are built

using a different set of hyperparameters and the result of each iteration cannot be

used for the next. Bayesian optimization is based on the Gaussian process that

constructs the posterior probability distribution for optimization [139]. Initially, the
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model is built, trained, and evaluated with a certain set of hyperparameters. In the

next iteration, the hyperparameters from the previous phase are used to compute the

posterior distribution for building the model in this phase. This process is repeated

iteratively to achieve the optimum. Many research works in network security [140–

144] employ Bayesian Optimization to select the best hyperparameter set for their

DL-based IDS models. This ensures that these models are well trained and do not

overfit or underfit the evaluation data.

2.3.5 Evolutionary Optimization

Evolutionary optimization employs the concept of natural evolution to solve an opti-

mization problem, especially in the case of dynamically changing environments [145].

It employs selection, crossover, and mutation phases for hyperparameter selection.

In the first phase, an initial population of hyperparameters is randomly chosen and

organized based on their objective function (fitness function) which is designed to

achieve the desired outcome. The poorly performing hyperparameters from the first

phase are then replaced with new hyperparameters created during the crossover and

mutation phases between the hyperparameters selected in the first phase. These new

hyperparameters then advance to the next generation. This process is repeated iter-

atively until the desired approximation is reached. Evolutionary optimization does

not make assumptions about the underlying relationships between different variables

in the observed data. Hence, such techniques are free of human biases and produce

varying results.

Figure 2.7 depicts the comparison of Bayesian and Evolutionary algorithms for

HPO. Bayesian optimization constructs a distribution of functions named Gaussian

Process which describes the optimization (Acquisition) function at every step. The

process is repeated iteratively and is refined by sampling more interesting regions in
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Figure 2.7: (a) Bayesian HPO (b) Evolutionary algorithm for HPO.

the hyperparameter space. Evolutionary optimization starts with an initial set of

hyperparameters which are then replaced by a new set after crossover and mutation

phases. This process iteratively repeats itself until the desired optimum is reached.

Schubert et al. [142] adopt automated machine learning techniques such as Tree-

Based Pipeline Optimization Tool (TPOT) for intrusion detection. This technique

employs Evolutionary hyperparameter optimization to identify the best hyperparam-

eter set for training. Other researchers also apply Evolutionary optimization to train

their IDS models such as DNN [141, 146], CNN [147], Long Short-Term Memory

(LSTM) [146], CNN+BiLSTM hybrid [148], GRU [146], and DBN [146] effectively.

We have provided a comparative analysis of several state-of-the-art hyperparam-

eter optimization techniques based on certain criteria in Table 2.3. The table also

includes a comparison of multiple DL algorithms in intrusion detection for each type

of hyperparameter optimization technique employed in these research works.
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Table 2.3: Comparison of Several State-of-the-art Hyperparameter Optimization
Techniques in Intrusion Detection

Criterion Manual
Search

Grid Search Random
Search

Bayesian Op-
timization

Evolutionary
Optimization

Open-source li-
braries

N/A Scikit-learn
[149]
Talos [150]
Katib [151]
H2O Au-
toML [152]
Determined
[153]
Tune [154]

Scikit-learn
[149]
Talos [150]
Katib [151]
Hyperopt [155]
Determined
[153]
Tune [154]

Scikit-optimize
[138]
Auto-sklearn
[156]
Katib [151]
Optuna [157]
SMAC [158]
Ax [159]
tuneRanger
[160]

DEvol [161]
Deap [162]
Nevergrad [163]
Determined
[153]
Tune [154]
TPOT [164,165]

Computational
Complexity

High High High Low (if dimen-
sion is low)

Low (due to ap-
proximation)

Parallel training Yes Yes Yes No Yes
Knowledge of
previous itera-
tions

No No No Yes Yes

Works well in a
dynamic environ-
ment

No No No No Yes

DL Algorithm in
intrusion detec-
tion

DNN [2,120]
CNN [121–123]
LSTM
[122,124]

DNN [125,126]
CNN [127]
LSTM [128,129]
ICVAE-
DNN [130]

DNN [131,132]
DAE +
DNN [133]
CNN [134]
Conv-LSTM
[135,136]
GRU [137]

DNN [140,141]
AutoML
[142,143]
AE, DAE [144]

TPOT [2,142]
DNN [141,146]
CNN [147]
LSTM [146]
CNN + BiL-
STM [148]
GRU [146]
DBN [146]

2.4 Adversarial Machine/Deep Learning

Adversarial machine learning is an emerging area of research that aims to assess and

enhance the resilience of ML/DL models against deceptive behaviors [166]. Adver-

sarial attack examples are intentionally crafted inputs designed to evade detection

by an AI-based IDS. As shown in Fig. 2.8, an adversarial attack example a
′
can be

generated using a legitimate input a by adding a small and precise perturbation λ

to it. The value of λ should be significant enough to cause the IDS to misclassify a

legitimate attack as normal while maintaining the functional nature of the attack.

Most ML/DL algorithms are designed on the assumption that train and test data

come from the same source and hence share the same statistical characteristics [1–

3, 70]. This assumption creates a vulnerability for such systems as attackers might
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Figure 2.8: Adversarial Machine/Deep Learning in cybersecurity.

deliberately provide falsified data that deviates from the statistical distribution to gain

access to the system. Adversarial attacks have been categorized into the following

categories [167]:

• Poisoning attack : This type of attack is implemented on the training data of an

ML/DL model. This attack intends to impair the model’s ability to precisely

identify accurate labels. For example, an attacker can change attack labels to

normal labels to evade detection when the model is trained on the perturbed

data.

• Evasion attack : This attack mainly targets the model itself by exploiting its

vulnerabilities after training. By making small perturbations in the input data,

the model is manipulated to make incorrect predictions. For example, an attack

data sample can be perturbed to look like normal data by hiding the IP address

that was previously blocked or changing the range of any other network attack

feature to look like a normal data feature.

• Model extraction attack : This attack mainly focuses on stealing model infor-

mation such as its structure, parameters, or training data. The attacker may

reproduce the same model for its benefit to facilitate the execution of subse-

quent attacks. For example, an attacker can steal data and model parameters

for a spam filtering ML/DL model. Using this information, the attacker may

identify spam keywords and could manipulate a spam email to guarantee its
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successful delivery to the recipient’s inbox.

• Inversion attack : This attack centers on obtaining sensitive information about

training data by analyzing the predictions of an ML/DL model. For example, an

attacker can examine the predictions of an AI-based IDS to infer if a particular

data flow belongs to the training data for that model [168].

The main focus of this research is on evasion attacks that are synthesized using

generative DL models.

2.4.1 Insights of Generative DL Models

This section provides a general description of different generative deep learning com-

ponents such as Generative Adversarial Network (GAN), Variational Autoencoder

(VAE), Conditional Variational Autoencoder (CVAE), and Semi-supervised GAN

(SGAN) employed for this work.

Generative Adversarial Network (GAN)

GAN is a generative deep learning method consisting of two sub-models: Generator

(G) and Discriminator (D) in competition with one another [169]. The generator is

trained to gain useful insights from input data patterns and later synthesize similar

plausible output samples. The discriminator classifies samples from real data dis-

tribution (input data) and synthesized data (from the generator). The role of the

generator is to generate data samples similar to input data to elude discovery by

the discriminator. Conversely, the role of the discriminator is the binary classifica-

tion of real input data from synthesized data. Training of both the discriminator

and the generator continues until Nash equilibrium is achieved. Fig. 2.9 shows the

architecture of a basic GAN model.
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Figure 2.9: Architecture of a basic Generative Adversarial Network (GAN)

The loss function for the Discriminator in the GAN model is given in eq.(2.6).

LD = max
D

[Ex∼p(x)[log (D(x))] + Ez∼p(z)[log(1−D(G(z)))]] (2.6)

Here, x represents real data samples, p(x) represents real input data distribution

for training the discriminator D, Ex is the expected value over all real data samples.

z represents the Gaussian noise vector, p(z) is the input Gaussian distribution for

training the generator G which synthesizes samples G(z), Ez is the expected value

over all synthesized data samples. D(x) represents the probability estimate of the

discriminator that a real data sample is real and D(G(z)) represents the probability

estimate of the discriminator that a synthesized data sample is real.

The training of generator G is dependent on the discriminator D making a mistake

by classifying synthesized data as real [169]. Therefore, the generator tries to minimize

1 − D(G(z)) which represents the probability estimate of the discriminator that a

synthesized data sample is fake. Eq.(2.7) represents the loss function for the generator.

LG = min
G

[Ez∼p(z)[log(1−D(G(z)))]] (2.7)

During the training, the Discriminator tries to learn its best whereas the Generator
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tries to evade this best Discriminator. The overall loss function for a GAN model is

given in eq.(2.8).

LGAN = min
G

max
D

[Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]] (2.8)

The main aim of the discriminator is to increase the distance between D(x) and

D(G(z)) to the maximum for identifying real and synthesized data. On the other

hand, the main aim of the generator is to decrease the distance between D(G(z)) and

D(x) to the minimum for generating plausible samples similar to input data.

Variational Autoencoder (VAE)

A traditional Deep Autoencoder (DAE) is a Deep Neural Network (DNN) model

mostly used by researchers for unsupervised dimension reduction and feature selection

[99]. The main objective of this model is to extract important features from input

data and reconstruct the lower-dimensional data again at the output layer under

some constraints. The model consists of two components namely Encoder (E) and

Decoder (D). The role of the encoder is to take the input data and transform it into

a lower-dimensional latent representation. The decoder on the other hand uses the

latent representation from the encoder to reconstruct the input. The reconstruction

loss between the actual input and the low dimensional output generated by the DAE

gives the measure of how far or different the generated output data is from the actual

input data. Figure. 2.10 shows the basic architecture of a DAE.

The encoder function is represented as z = f(x) and the decoder function as

x′ = g(z). Here, x represents the input, z represents the internal latent representation

and x′ represents the output. The role of the encoder is to map the input x to the

output x′ through the latent code z.
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Figure 2.10: Basic Architecture of a DAE

Since a simple DAE does not have generative properties, it cannot generate data

that it has never seen before. To solve this problem, the VAE was introduced by

Kingma et al. [170]. Unlike a vanilla DAE which generates the latent representation

from the previous hidden layer, a VAE uses the mean and standard deviation from

all the previous hidden layers to create the latent distribution like a Gaussian distri-

bution. The decoder helps to synthesize the input data from the latent variable. This

model learns to synthesize new data as well as learn from the latent vector. Train-

ing is done using the Stochastic Gradient Variational Bayes estimator [170] which

helps the encoder to learn the approximation of posterior distribution. Figure. 2.11

represents the basic architecture of the VAE model.

The main objective, in this case, is to minimize both the reconstruction loss as

well as latent loss. The loss function for a VAE is represented in eq.(2.9) where θ and
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Figure 2.11: Architecture of VAE

ϕ represent the parameters for the encoder and decoder, respectively.

L(ϕ, θ) = E [log pθ(x|z)]−DKL[qϕ(z|x) || p(z)] (2.9)

Here, x represents input, z represents the internal latent representation and x′

represents the reconstructed output. qϕ(z|x) and pθ(x|z) represent the encoder and

decoder’s probability distribution, respectively. The term towards the first right rep-

resents the reconstruction error for the model while the second term towards the right

is known as Kullback-Leibler (KL) divergence. KL divergence fits the latent distribu-

tion to a standard normal distribution with a mean µ of 0 and a standard deviation

σ of 1.

Conditional Variational Autoencoder (CVAE)

Conditional Variational Autoencoder (CVAE) is an enhancement of the Variational

Autoencoder (VAE) model discussed in the previous section. It was first introduced

by Sohn et al. [171]. While the VAE model is a generative model that can generate

all the classes from input training data, it cannot produce an output for a particular

class present in training data in all its variances. This drawback is removed in the

CVAE model. CVAE is a generative DL model consisting of two sub-models: Encoder

(E) and Decoder (D). The encoder uses the mean and standard deviation from all the

previous hidden layers to create a latent distribution such as a Gaussian distribution.
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Figure 2.12: Architecture of Conditional Variational Autoencoder (CVAE)

The decoder helps to synthesize the input data from the latent variable. This model

learns to generate new data as well as learn from the latent vector. Training is

done using the Stochastic Gradient Variational Bayes estimator [170] which helps the

encoder to learn the approximation of posterior distribution.

During training, CVAE needs a piece of extra input information in the form of a

one-hot vector or conditioned vector for both the encoder and decoder for a specific

input class. The encoder synthesizes latent data for a particular class by taking a

random input and a one-hot vector representing that class. The one-hot vector in this

case is the class label that aids in the regularization of the output from the decoder

which can synthesize diverse varieties of the specific input class from the encoder’s

latent data. This model makes the latent space more robust to noise and dependent

on the input labels. By doing this, the model can learn to group similar objects in

latent space. The architecture of CVAE is similar to VAE with an additional input

that represents the one-hot vector y along with the input features x for both the

encoder and decoder. Fig. 2.12 shows the standard architecture of a CVAE model.

The ultimate goal of the CVAE model is to optimize the log-likelihood of the data

p(x) subject to an encoding error in the presence of a conditional (one-hot) variable

c. The overall loss function for a CVAE is represented in eq.(2.10). A CVAE model

is trained to minimize this loss.
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L(ϕ, θ) = E [log pθ(x|z, c)]−DKL[qϕ(z|x, c) || p(z|c)] (2.10)

Here, x represents input data, z represents the encoder’s latent representation.

qϕ(z|x, c) represents the probability of the encoder for synthesizing latent data based

on an input x and a conditioned variable c. pθ(x|z, c) represents the probability of

the decoder for synthesizing output data based on the encoder’s latent data and con-

ditioned variable. p(z|c) represents the conditional probability of the encoder’s latent

representation. E [log pθ(x|z, c)] represents the reconstruction error of the CVAE and

the termDKL[qϕ(z|x, c)||p(z|c)] represents the regularization term or Kullback-Leibler

divergence (KL divergence) between qϕ(z|x, c) and p(z|c). KL divergence measures

the distance between the encoder’s output distribution and a standard Gaussian dis-

tribution [172].

Semi-supervised Generative Adversarial Network (SGAN)

The Semi-supervised Generative Adversarial Network or SGAN is an enhancement

of a vanilla GAN model [28]. This architecture consists of simultaneous training

of a generator model and two discriminator models (one supervised and another

unsupervised). The supervised classification model provides better generalization on

unseen or unlabeled samples and the generator model synthesizes plausible samples

from its input domain. Fig. 2.13 represents the standard architecture of the SGAN

model.

For semi-supervised learning, the samples synthesized by the generator model are

added to the input data with N classes to create a new class for synthesized data

which is represented by the (N + 1)th output. The discriminator, in this case, works

in both supervised as well as unsupervised modes. During unsupervised training, the

40



Random
Gaussian
Noise (z)

Generator (G) Synthesized
data

(x_fake)

Real data
(x_real)

Discriminator
(D)

Learns data distribution

Feedback

Class 1

Class 2

Class 3

Class N

Fake class
(N+1)

Real classes

Figure 2.13: Architecture of Semi-supervised GAN (SGAN) model

discriminator is trained similar to a simple GAN model to segregate real data samples

from synthesized ones. The supervised discriminator is trained to classify the labels

for N classes from real data. The loss function for the SGAN generator model is

given in eq.(2.7). The total loss Ltot for the SGAN discriminator [28] is measured as

given in eq.(2.11).

Ltot = Lsuper + Lunsuper (2.11)

Here, the loss of the unsupervised discriminator model Lunsuper is given in eq.(2.6).

The supervised discriminator is trained to reduce the error between the actual class

labels and the predicted class labels to the minimum. The loss equation for the

supervised discriminator model is given in eq.(2.12). Here, x is the input data with an

N-dimensional output vector, y represents the class labels and pmodel(y|x) represents

the predicted probability distribution.

Lsuper = Ex,y∼p(x,y) [log pmodel(y|x, y < N + 1)] (2.12)
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Chapter 3

Literature Survey

In this chapter, we provide a comprehensive summary of current literature for known/-

typical, unknown, atypical, and polymorphic network attack detection using DL. For

this research, the DL-based NIDS are classified as misuse-based, anomaly-based, hy-

brid, adversarial generation-based, and other paradigms. Furthermore, we offer an

overview of ongoing research focusing on the analysis of the quality of synthetic ad-

versarial attacks.

3.1 Misuse-based NIDS

A misuse-based NIDS, as explained earlier in Chapter 2, can observe the network for

normal and abnormal traffic and match those patterns with a known set of patterns

from its database. A DL model, trained using supervised learning, employs the

concept of misuse-based attack detection by utilizing the existing knowledge of attacks

to analyze and identify similar attack traffic [6]. DL models such as Deep Neural

Network (DNN) [2,120,173–175], Convolutional Neural Network (CNN) [123,127,134,

147,176], Long Short Term Memory (LSTM) [124,129,177–179], and Gated Recurrent
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Figure 3.1: A generic workflow for misuse-based known (typical) and unknown net-
work attack detection using DL based on current literature [4].

Unit (GRU) [14,180,181] have been applied to identify known/typical, unknown and

atypical network attacks. In figure 3.1, we represent a general workflow for misuse-

based known (typical) and unknown network attack detection using DL based on the

current literature. The typical attacks are a subset of input data that the DL model

has seen before. The unknown attacks are a hold-out attack traffic subset that the DL

model is not exposed to during training and is kept aside for model evaluation. The

DL-based NIDS applies pattern matching based on previous knowledge to identify

network intrusions.

Vinayakumar et al. [120] employ DNN for building an efficient and intelligent

intrusion detection system that can identify known attacks. Their study uses manual

hyperparameter optimization to identify the best structure for DNN which is later

evaluated using several benchmark datasets such as KDDCup 99, NSL-KDD, UNSW-

NB15, Kyoto, WSN-DS, and CICIDS2017. The experimental results reveal that the

proposed model can effectively identify host and network-based events as compared
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to other machine learning classifiers. Khare et al. [173] employ the Spider Monkey

Optimization (SMO) technique for reducing the input dimensions before training a

DNN model for intrusion detection using KDD Cup99 and NSL-KDD datasets. Their

proposed model is compared with a vanilla DNN and Principal Component Analysis-

based DNN (PCA-DNN) and results on known attacks signify that it performs better

in terms of several commonly used evaluation metrics.

Bedi et al. [174] propose a 2-layered ensemble approach for improved intrusion de-

tection. The first layer consists of three models, binary eXtreme Gradient Boosting

(b-XGBoost), Siamese Neural Network, and DNN that classify attacks from benign

samples. The second layer is a multi-class eXtreme Gradient Boosting that iden-

tifies multiple attack classes. The main aim of using the ensemble is to lower the

misclassifications due to the class imbalance for the minority attack classes and im-

prove the detection rate of such attacks. The evaluation is performed only for known

attacks using NSL-KDD and CIDDS-001 datasets and after comparison with other

classifiers, their model gives better results. Lei et al. [175] introduce a pruning based

DNN model for attack identification. Pruning is employed on the DNN structure to

reserve only important information about the attacks and reduce model complexity.

The KDD Cup 99 dataset is used to evaluate the model performance in identifying

attacks. Although the authors employ their technique for detecting both known and

unknown attacks, their model only identifies known attacks with high detection rates

as compared to unknown attacks. Additionally, the dataset employed is very old and

therefore, does not represent current real-world attacks.

In [1], we focus on the detection of known and unknown DoS and DDoS attacks

using deep learning-based algorithms such as DNN and LSTM. The models are trained

using a more recent benchmark, the CICIDS2017 dataset. Further evaluation of these

models is conducted using a synthesized dataset of unknown attacks, ANTS2019. The
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model performance is then evaluated for different scenarios by training on one dataset

and testing on another. It is observed that initially, the models fail to detect unknown

attacks but after retraining at regular intervals, the performance gradually improves.

The authors in [123, 127, 134] analyze the performance of a Deep Convolutional

Neural Network for intrusion detection using NSL-KDD, KDD99, and UNSW-NB15

datasets respectively. The proposed model is compared with several state-of-the-

art models and shows higher classification accuracy against known/typical attacks.

Zhang et al. [176], introduce a new Parallel Cross CNN (PCNN) model for improving

the feature extraction and detection of minority attack flows. PCNN employs a feature

fusion technique to automatically learn features from attack samples with fewer flows.

The performance evaluation and comparison of PCNN show that it is successful in

improving the classification of minority attacks. The evaluation of novel or unknown

attack flows is left for future work. Chen et al. [147] propose an Evolutionary CNN

(ECNN) model to classify attacks. Their technique uses the multi-objective immune

algorithm for the optimization of the model. The training, evaluation, and comparison

of the ECNN model are done using NSL-KDD and UNSW-NB15 datasets, and high

classification accuracy on known attacks is achieved.

Xu et al. [182] propose a meta-learning framework based on the CNN model called

as FC-Net. Their framework consists of two important building blocks for feature

extraction and comparison. The model learns feature maps from input traffic and then

compares these feature maps for classification into different categories. Two different

datasets, ISCX2012 and CICIDS2017 are employed for this research. Training is done

using one dataset and evaluation using another. Results indicate that the proposed

technique achieves better detection rates on known attack samples as well as unknown

samples from the untrained dataset. Ho et al. [183] propose an IDS based on a CNN

model. Their IDS is trained and evaluated for known and unknown attacks using
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the CICIDS2017 dataset. To evaluate the model on unknown attacks, the authors

trained four different versions of the same model with four different combinations

of DoS attacks. The model versions are trained using one class of DoS attacks and

evaluated on other classes. Experimental results show that the proposed model when

trained on one attack class has the potential to identify other attack classes (unknown

samples) too.

Althubiti et al. [124] employ LSTM for intrusion detection using the benchmark

CIDDS-001 dataset. After comparative analysis with other ML models, the au-

thors attained a reasonable classification accuracy on known network attacks. Lee

et al. [129] combine an LSTM model and Random Forest (RF) model for detecting

known attacks using the UNSW-NB15 dataset. The LSTM captures the sequen-

tial characteristics from input data which are then fed into the RF classifier. The

model performance is compared with traditional classifiers and based on the results,

the proposed model achieves the highest accuracy. Yang et al. [177] introduce an

Attention-based LSTM for known intrusion detection using the KDD-Cup99 dataset.

The Attention method allows the model to extract critical information or features

from input data that are fed into the LSTM classifier. The classification accuracy

of the proposed technique is improved as compared to traditional classifiers. Imrana

et al. [178] employ a Bidirectional LSTM (BiDLSTM) for classifying known attacks

using the NSL-KDD dataset. A BiDLSTM consists of two LSTMs; the first one is

trained on input data while the second LSTM is trained using a reversed copy of input

data to reduce the vanishing gradient problem. The proposed model improves the

overall detection rate against known attacks. Kanna et al. [179] introduce a spatial

and temporal-based integrated IDS approach to improve the classification of known

attacks using multiple datasets such as NSL-KDD, ISCX-IDS2012, and UNSW-NB15.

The spatial aspects of input data are learned using an Optimized CNN model, the
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Hierarchical Multi-scale LSTM (HMLSTM) learns hierarchical relationships of the

input data and obtains time features. The proposed model provides better accuracy

and a lower false alarm rate as compared to traditional IDS.

Manavi et al. [180] employ a GRU to identify known attacks using KDD cup99

data by analyzing their characteristics. Furthermore, they use a Genetic algorithm

(GA)-based IDS to identify any abnormalities in normal observations based on prior

knowledge of attacks. Once the attacks are identified, the IDS is retrained to improve

its accuracy and reduce the false alarm rate as compared to traditional ML/DL classi-

fiers. Liu et al. [14] propose a bidirectional GRU classifier based on a hierarchical at-

tention mechanism. The attention method is employed to identify feature importance

using the UNSW-NB15 dataset. High classification accuracy and low false alarm rate

indicate the superior performance of this model in identifying known attacks. Assis et

al. [181] employ a GRU-based IDS for Software Defined Networks. Evaluation of their

model is done using newer benchmark datasets such as CICIDS2018 and CICDDoS

2019. Further testing of the IDS is done using real network flows and high detection

rates make GRU a feasible solution in their case. A mitigation approach is employed

to identify and block the attacker in the network.

Although several research works have highlighted the effectiveness of a Feed-

Forward DNN model in identifying network intrusions, it has a high computational

cost as compared to traditional ML models. These costs can reduce the training

speed and potentially result in suboptimal solutions [184]. A CNN model can au-

tomatically learn multiple characteristics from input data and therefore requires the

least pre-processing time as compared to other classifiers. Although CNN requires

fewer parameters and provides better performance as compared to a Feed-Forward

DNN, the training time required for this model is even higher than a standard DNN.

CNN can efficiently analyze spatial data but when used to analyze nonspatial data,
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its performance degrades [185]. Although a CNN can identify whether a network flow

is normal or malicious, it is not effective when analyzing the trajectory of the attack

based on previous information. Since LSTM can handle long-term dependencies, it is

widely adopted to analyze sequential network patterns. In cybersecurity, these mod-

els can predict the next state of the attack based on the previous state. This ability

makes LSTM the most effective model for time series analysis [185]. However, due to

the complex nature of this model, it requires more training parameters as compared

to CNN, hence taking the longest time to train.

In summary, although some initial research has been done for unknown, and atypi-

cal network attack detection using misuse-based DL models, the identification of such

attacks is still a challenging task since these models assume that the attacker usually

launches similar types of attacks on different networks. The detection rates reported

for unknown and atypical attacks are significantly low as compared to known attacks.

Moreover, exhaustive training with a huge, labeled dataset, and consequent retraining

with new attacks and normal traffic is needed for misuse-based DL models to identify

unknown and atypical/polymorphic attacks.

In Table 3.1 and Table 3.2 we present a comparative summary of DL research in

misuse-based NIDS for known, unknown, and atypical attacks.

3.2 Anomaly-based

An anomaly-based NIDS can observe the regular network traffic and any deviation

from its typical behavioral pattern is marked as anomalous. When DL is applied in

anomaly detection, the model is trained in an unsupervised mode only using normal

network traffic since labeled attack traffic is not always available [6]. The learned DL

model is then deployed to analyze and identify network anomalies. DL models such as
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Table 3.1: Summary of DL research in Misuse-based NIDS for Known/ Typical At-
tacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic At-
tacks (PA). Feature selection: FS, Hyperparameter optimization: HPO, Not Avail-
able: N/A.

Ref. Model Dataset FS HPO Results: TA Results: UA Results:
AA/PA

[120]
DNN KDD’99

NSL-KDD
UNSWNB15
Kyoto
WSN-DS
CICIDS2017

Yes Manual Accuracy:
KDD’99: 92.7%
NSL-KDD: 78.9%
UNSW-NB15:
76.1%
Kyoto: 88.5%
WSN-DS: 98.2%
CICIDS2017:
93.1%

N/A N/A

[173]
DNN KDD’99

NSL-KDD
Yes
(SMO)

Manual Accuracy:
KDD’99: 92.8%
NSL-KDD:99.4%

N/A N/A

[174]
b-XGBoost
Siamese
Neural
Network
DNN

NSL-KDD
CIDDS-001

N/A Manual Accuracy:
NSL-KDD: 80%
CIDDS-001: 89%

N/A N/A

[175]
Prunning
DNN

KDD’99 Yes Manual Accuracy: 99.04% Accuracy: 10.5% N/A

[1] DNN
LSTM

CICIDS2017
ANTS2019

Yes
(PCA)

Manual Accuracy:
DNN: 95.44%
LSTM: 95.53%

Accuracy:
DNN: 98.72%
LSTM: 96.15%

N/A

[134]
Deep CNN NSL-KDD Yes Random

Search
AUC: 0.926 N/A N/A

[123]
CNN KDD’99 N/A Manual Accuracy: 98.25% N/A N/A

[127]
CNN UNSW-

NB15
N/A Grid

Search
Accuracy: 94.4% N/A N/A

[176]
PCNN CICIDS2017 Yes Manual Accuracy: 98.21% N/A N/A

[147]
ECNN NSL-KDD

UNSW-
NB15

N/A Evolutionary Accuracy:
NSL-KDD:
99.70%
UNSW-NB:
89.01%

N/A N/A

[182]
FC-net ISCX2012

CICIDS2017
Yes Manual ISCX2012:

Accuracy: 97.87%
DR: 98.88%
CICIDS2017:
Accuracy: 95.39%
DR: 98.19%

ISCX2012:
Accuracy:
93.73%
DR: 95.47%
CICIDS2017:
Accuracy:
94.64%
DR: 99.62%

N/A

[183]
CNN CICIDS2017 Yes Manual Accuracy: 99.64%

DR: 99.29%
DR:
Hulk: 87.29%
Goldeneye:
57.8%
Slowloris:
38.94%
Slowhttp:
85.73%

N/A
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Table 3.2: Summary of DL research in Misuse-based NIDS for Known/ Typical At-
tacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic At-
tacks (PA) (contd.)

Ref. Model Dataset FS HPO Results: TA Results:
UA

Results:
AA/PA

[124]
LSTM CIDDS-001 Manual Manual Accuracy: 84.83% N/A N/A

[129]
LSTM, RF UNSW-NB15 Yes Grid Search Accuracy: 99.37% N/A N/A

[177]
Attention-
LSTM

KDD’99 Yes Manual Accuracy: 94.3% N/A N/A

[178]
BiDLSTM NSL-KDD N/A Manual Accuracy: 82.05% N/A N/A

[179]
Opt. CNN,
Hierarchical
Multi-scale
LSTM

NSL-KDD
ISCX-IDS
UNSW-NB15

Yes Lion Swarm
Optimiza-
tion

Accuracy:
NSL-KDD: 90.67%
ISCX-IDS: 95.33%
UNSW-NB15: 96.33%

N/A N/A

[180]
GRU,
GA

KDD’99 N/A Manual Accuracy: 99.91% N/A N/A

[14]
GRU UNSW-NB15 Yes Manual Accuracy: 98.76% N/A N/A

[181]
GRU CICDDoS2019

CICIDS2018
N/A Manual CICDDoS2019:

Recall: 99.9%
CICIDS2018:
Recall: 93%

N/A N/A
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(Only Normal
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Preprocessing
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Evaluation
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network
datasets)
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Figure 3.2: A general workflow for unknown network anomaly detection using DL [5].

Deep Belief Network (DBN), Deep Autoencoder (DAE), and Variational Autoencoder

(VAE), Conditional Variational Autoencoder (CVAE) have been applied by some

researchers to identify unknown network attacks or anomalies [5, 49–55, 186–190]. In

figure 3.2, we represent a general workflow for unknown network anomaly detection

using DL.
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Zhang et al. [186] employ DBN in an IoT environment for intrusion detection.

A Genetic Algorithm (GA) is used to find the optimal structure for a DBN which

improves the generalization and reduces the complexity of the model. The evaluation

of the NSL-KDD dataset signifies that the proposed GA-DBN model has a better

classification accuracy as compared to other traditional models. Manimurugan et

al. [187] propose a DBN algorithm for intrusion detection in a smart medical IoT

environment. For analyzing the performance of this IDS, the CICIDS2017 dataset is

used. DBN-based IDS is compared with other traditional models based on several

performance metrics such as accuracy, precision, recall, F1 score, and detection rate.

Evaluation of other IoT attack datasets is left for future work. Wang et al. [188]

propose an enhanced hybrid model based on DBN, Enhanced Grey Wolf Optimizer

(EGWO), and Kernel-based Extreme Learning Machine (KELM) for intrusion de-

tection. EGWO is employed to improve the dimension reduction capability of DBN

and to provide better classification results using KELM. Several benchmark datasets

such as KDD ’99, NSL-KDD, UNSW-NB15, and CICIDS2017 are employed for per-

formance evaluation. The proposed algorithm has a better performance in terms of

accuracy, precision, recall, true positive rate, and false positive rate as compared to

existing methods.

Qureshi et al. [49] use a combination of a deep sparse autoencoder and self-taught

learning for attack identification. The proposed system extracts features from an

input dataset such as NSL-KDD. It then uses the knowledge of extracted features

by merging them with actual features used for training a sparse autoencoder. When

comparing their model with a Multi-Layer Perceptron (MLP) and a Deep Belief

Network (DBN), their results in terms of different DL metrics show improvements

in attack detection. Elsayed et al. [50] introduce a hybrid attack detection approach

based on LSTM-Autoencoder and One-class Support Vector Machine (OC-SVM).

51



The LSTM-Autoencoder is trained only with normal data from the InSDN dataset

and learns the latent representation of normal features. This latent information is

then fed to the OC-SVM for further classification. Experimental results show that the

hybrid model can identify anomalies in the network traffic effectively. Xu et al. [51]

propose a DAE model to identify anomalies in network traffic based on the NSL-KDD

dataset. Their approach utilizes an outlier analysis algorithm to identify the outliers

in the training data to reduce the detection bias. Experimental results confirm the

superior performance of this model as compared to other state-of-the-art in terms of

accuracy, precision, recall, and F1 score.

An et al. [52] employ a VAE for anomaly detection based on reconstruction prob-

ability as the anomaly score. Their idea assumes that anomalous data shows a higher

variance and lower reconstruction probability. Performance evaluation is done using

KDD’99 and MNIST datasets. The proposed model shows better ROC-AUC values

as compared to a simple Autoencoder (AE), Principal Component Analysis (PCA),

and Kernel PCA. Choi et al. [53] compare the performances of different variations of

DAE for attack identification. DAEs are trained using normal data in an unsupervised

manner. Attacks are detected by measuring the anomaly score using reconstruction

error at a specific threshold. Stacked AE and VAE models performed the best in

their case. Nguyen et al. [189] propose a hybrid network attack identification ap-

proach based on an unsupervised VAE for anomaly detection and a gradient-based

fingerprinting technique for explaining and verifying the identified anomalies. The

evaluation is done using the UGR dataset which demonstrates the superior perfor-

mance of this proposed model as compared to other models such as DAE, VAE, and

Gaussian Based Thresholding (GBT) in terms of Receiver Operating Characteristic

(ROC) curves. Zavrak et al. [5] compare the performance of classifiers such as DAE,

VAE, and One-Class SVM (OCSVM) to identify unknown attacks or anomalies from
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network flow features. The experimental analysis is carried out using the CICIDS2017

dataset and it is observed that the attack detection rate of VAE is better as compared

to the other observed models.

Lopez-Martin et al. [54] introduce a framework ID-CVAE for intrusion detection

systems in an IoT network. The proposed technique can reconstruct and restore miss-

ing features for training datasets to improve classification accuracy. The unsupervised

classification of attacks is done by measuring the distance between the target label

and prediction using reconstruction error. Experimental results demonstrate that the

proposed technique gives better classification results by training on the NSL-KDD

dataset as compared to other well-known ML models. Hannan et al. [55] propose an

anomaly detection system based on a CVAE model. Their technique employs the la-

tent representation from the encoder to differentiate between anomalous and normal

traffic using bimodal distribution. The technique is studied using NSL-KDD and CI-

CIDS2017 datasets and provides better F1 scores as compared to other classification

methods such as Support Vector Machine (SVM), Decision Tree (DT), DAE, and

VAE. Although the paper states that the proposed model can improve the detection

of unknown attacks, the experiments are not detailed, and no information is provided

about the number of false alarms generated.

Yang et al. [190] propose a hybrid two-stage learning technique for the detec-

tion of known and unknown attacks using CVAE and Extreme Value Theory (EVT).

The first stage of the proposed technique aims to investigate a measure to minimize

the misclassification of known anomalies whereas the second stage aims to explore a

measure to minimize the misclassification risk of inferring unknown anomalies. EVT

examines the high reconstruction errors for identifying unknown attacks in the second

phase. A clustering technique is further employed to examine normal traffic. Experi-

mental evaluation is done using NSL-KDD and CICIDS2017 datasets. Although the
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results show that the CVAE-EVT technique has a better performance as compared

to other algorithms, the TPRs for unknown attacks are still low and need further

improvements.

In summary, these research works demonstrate that DBM, DAE, VAE, and CVAE

can be successfully used for network anomaly detection. However, since these mod-

els employ unsupervised learning, their performance is affected by high false alarm

rates [5]. Most notably and given the typically large variation in network traffic, the

possibility that unsupervised models may discard legitimate benign traffic as suspect

or potentially malicious is high, leading to a negative impact on the Quality of Ser-

vice. In a real network, the number of anomalous data observations is much smaller

than normal data observations which makes this network traffic highly imbalanced.

It is further difficult to set a generic threshold function to define the boundary be-

tween normal and anomalous observations for identifying unknown, and dynamically

changing atypical/polymorphic attacks. If the threshold function for the normal class

is set too wide, the accuracy of detection is reduced. On the contrary, if the threshold

function for the normal class is set too narrow, the false positive rate will increase [6].

Additionally, the training for DAE and its variants is based on gradient-based opti-

mization and approximation which can introduce some loss for these models [191].

Table 3.3 and Table 3.4 present a comparative summary of DL research in anomaly-

based NIDS for unknown and polymorphic attacks.

3.3 Hybrid

A hybrid NIDS combines the best characteristics of misuse-based and anomaly-based

NIDS. DL models are trained using hybrid techniques to classify known/typical at-

tacks and to analyze and identify unknown attacks. In this section, we discuss several
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Table 3.3: Summary of DL research in Anomaly-based NIDS for Known/ Typical
Attacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic
Attacks (PA).

Ref. Model Dataset FS HPO Results: TA Results: UA Results:
AA/PA

[186]
GA, DBN NSL-KDD N/A Yes

(GA)
Accuracy:
DoS: 99.45%
R2L: 97.78%
Probe: 99.37%
U2R: 98.68%

N/A N/A

[187]
DBN CICIDS2017 Yes (in-

built)
N/A Accuracy:

Normal: 99.37%
Botnet: 97.93%
Brute Force: 97.71%
DoS/DDoS: 96.67%
Infiltration: 96.37%
Port scan: 97.71%
Web attack: 98.37%

N/A N/A

[188]
DBN, EGWO,
KELM

KDD’99
NSL-KDD
UNSW-
NB15
CICIDS2017

Yes
(DBN)

EGWO Accuracy:
KDD’99: 98.6%
NSL-KDD: 98.6%
UNSW-NB15:
93.42%
CICIDS2017:
97.15%

N/A N/A

[49]
DAE NSL-KDD Yes (in-

built)
Manual N/A Accuracy:

84.60%
N/A

[50]
LSTM-AE,
OC-SVM

InSDN Yes
(DAE)

Manual N/A Accuracy: 90.5% N/A

[51]
DAE NSL-KDD Yes (in-

built)
Manual N/A Accuracy:

90.61%
N/A

[52]
VAE KDD’99 Yes (in-

built)
Manual N/A AUC ROC:

DoS: 0.795
R2L: 0.777
U2R: 0.782
Probe: 0.944

N/A

[53]
AE
Denoising AE
Stacked AE
VAE

NSL-KDD Yes (in-
built)

Manual N/A Accuracy:
AE: 91.7%
Denoising AE:
88.02%
Stacked AE:
87.82%
VAE: 87.66%

N/A

[189]
VAE,
Gradient-
based finger-
printing

UGR Yes (in-
built)

Manual N/A AUC ROC:
0.947

N/A

[5] VAE CICDS2017 Yes (in-
built)

Manual N/A AUC ROC:
0.7596

N/A

[54]
CVAE NSL-KDD Yes (in-

built)
Manual N/A Accuracy:

80.10%
N/A

hybrid DL-based research works employed in known and unknown network intrusion

detection [192–198].

Papamartzivanos et al. [192] introduce an autonomous NIDS based on DL. The
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Table 3.4: Summary of DL research in Anomaly-based NIDS for Known/ Typical
Attacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic
Attacks (PA) (contd.)

Ref. Model Dataset FS HPO Results: TA Results: UA Results:
AA/PA

[55]
CVAE NSL-KDD

CICIDS2017
Yes (in-
built)

Manual N/A F1 score:
NSL-KDD:
88.44%
CICIDS2017:
88.89%

N/A

[190]
CVAE,
EVT

NSL-KDD
CICIDS2017

Yes (in-
built)

Manual N/A NSLKDD1:
Recall: 54.17%
NSLKDD2:
Recall: 51.03%

CICIDS1:
Recall:49.12%
CICIDS2:
Recall: 59.83%

N/A

authors claim that their technique is adaptive and can achieve high attack detection

in dynamic environments using Self-Taught Learning (STL) and MAPE-K (Monitor-

Analyze-Plan-Execute over a shared Knowledge) methodology. This is achieved using

sensors/monitors that continuously sense the network activity and actuators that take

actions. The authors employ network sniffers to capture network traffic and then use

the network analyzer to transform raw traffic into network flows which are then fed

into the supervised IDS for attack detection. The unlabeled network flows are fed

into the adaptive STL module to update the IDS. The supervised IDS is trained

using KDDCUP’99 and NSL-KDD datasets. An unsupervised Sparse AE is utilized

to extract information from unlabeled data which is further sent to the supervised

FeedFoward AE for multi-class attack detection. The authors have further compared

the performances of static and adaptive IDS and confirmed that their technique can

improve the detection rates of the IDS in a dynamic environment. However, in real-

world networks, the incoming data can belong to different probability distributions

which pose a challenge to the IDS assuming similar probability distribution for known

and unknown attacks.
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Zhang et al. [193] propose a NIDS based on Open-set Classification Network

(OCN) to identify unknown attacks. OCN can classify an observed sample into a

known attack/normal class or a sole unknown class. Their hybrid NIDS constitutes a

CNN-based classifier and a semantic embedding clustering method. The supervised

CNN classifier identifies known attacks by training on KDDCUP’99 and CICIDS2017

datasets. Unknown attacks are detected using the OCN. Further classification of

unknown attacks is done using an unsupervised semantic embedding clustering tech-

nique which consists of Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) and K-means algorithms. While DBSCAN can identify several hidden

unknown attacks, the K-means algorithm is employed to cluster semantic embeddings

of multiple instances of unknown attacks identified by the OCN. The CNN classifier

is then incrementally updated using centroids of clusters of unknown attacks identi-

fied in the previous step. Several attack classes from the benchmark datasets are set

aside to act as unknown attack classes during the test phase. Extensive experiments

are conducted using a single class of unknown attack as well as multiple classes of

unknown attacks from the datasets. The results from these experiments indicate the

effectiveness of this approach against state-of-the-art techniques. However, when us-

ing OCN, an identified unknown class can have both normal and attack traffic, and

classifying these observations needs manual intervention.

Ahmad et al. [194] introduce a DL-based ensemble technique for identifying un-

known network attacks. Their proposed ensemble consists of three DL models:

AE, CNN, and LSTM. Four different benchmark datasets BoT-IoT, N BaIoT, CI-

CIDS2017, and NSL-KDD are employed for different scenarios of model training.

This work uses dimension reduction techniques Principal Component Analysis (PCA),

and Independent Component Analysis (ICA) to reduce the dimensions of the training

datasets to conserve the correlation between features to the maximum. The authors
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set aside some attack instances from the datasets for testing such that there is no

overlap of these attacks in the training and test datasets. This ensures that the test

attacks remain unknown to the hybrid DL model. Although the experimental results

show that the hybrid model has a reasonable performance in identifying known and

unknown attacks; the model can classify an attack of a specific category as an attack

but cannot define the exact attack class. Additionally, dimension reduction tech-

niques such as PCA and ICA can change the meaning and ranges of network features

and make them difficult to interpret.

Shieh et al. [195] introduce an IDS that can detect unknown DDoS attacks using a

hybrid framework consisting of a Bi-Directional Long Short-TermMemory (BiLSTM),

a Gaussian Mixture Model (GMM), and incremental learning approach. The BiLSTM

model employs supervised learning to identify normal and DDoS attack traffic. The

unsupervised GMM model is used to analyze new attacks or new normal traffic that

the BiLSTM classifier has not seen before. GMM employs the Gaussian probability

density function to model data into clusters using a threshold value. The data marked

as unknown by the GMM model is sent for labeling to the network engineer. This

labeled data is then fed incrementally to both BiLSTM and GMM models for further

training. The authors employ CIC-IDS2017 and CIC-DDoS2019 datasets for the

training and evaluation phases. The results indicate a satisfactory performance in

identifying unknown attacks. However, several problems need attention first. For

example, more datasets should be employed to analyze model performance for better

understanding. Manual labeling of new observations adds extra overhead to this

system.

Du et al. [196] propose a framework named XFinder to identify unknown network

anomalies. The authors follow a distributed ML approach wherein each node in

the network has a DL-based IDS named XFinder which is connected to a central
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server responsible for aggregating information from all the nodes and making global

updates while training individual localized DL models. Each hybrid DL-based IDS

(constituting a CNN and LSTM) goes through an initial training phase to learn the

known normal and attack network traffic and provide classification results. During the

unknown traffic detection, a distance distribution matrix consisting of features and

class prototypes is created. A threshold value is configured based on the mean distance

distribution. This threshold value is then applied to any unknown traffic to identify

known and unknown classes. If unknown traffic is identified, it is then classified and

automatically labeled using the K-means clustering algorithm. The authors employ a

buffer that stores a labeled unknown class and any new classes detected are compared

against the classes stored in the buffer. A network updater incrementally updates

the IDS with labeled unknown traffic to improve its classification. Three different

benchmark datasets namely KDD Cup’99, UNSW-NB15, and CICIDS2017 are used

for their experiments. Some classes of attacks are set aside as unknown attacks to

evaluate the model against anomalies. While the average accuracy of the model for

unknown anomalies increased using this technique, the inclusion of a buffer to store

network anomalies adds additional overhead to the system. Moreover, this paper

does not provide any comparative analysis with other state-of-the-art techniques for

anomaly detection.

Hu et al. [197] propose an Open-Set Recognition based IDS scheme for classifying

known and unknown network attacks. Their hybrid model consists of a pretraining

module which is a combination of a CNN model and a transformer encoder model.

The pretraining module uses the common DL approach for examining the input data

to learn the underlying characteristics of the unlabeled network traffic. The closed-

set training using the benchmark dataset ISCXVPN2016 is done by employing an

individual model as well as an ensemble of models. Each model consists of a CNN
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module, a transformer encoder, and a Dense classifier module. The authors select 5

input classes as unknown classes of data, and 8 classes of data are selected as known

classes such that there is no overlap between known and unknown classes of network

traffic. During closed-set training, the traffic from the pre-trained module is fed into

the classifier module for the detection of results on known classes. During the open-

set test phase, the model is subjected to unknown class detection. Experimental

results indicate that their approach outperforms other state-of-the-art. However,

their method can only identify unknown traffic but is not able to indicate if it is an

attack and further classifies that attack based on its characteristics. The ensemble of

encoders in their model may improve model performance but will also add extra time

overhead which is not suitable for dynamic networks.

Shieh et al. [198] employ a hybrid IDS based on a One-dimensional Deep Hierar-

chical Reconstruction Network (DHRNet) and One-Class SVM (OCSVM) to identify

unknown attacks using CICIDS2017 and CICDDoS2019 datasets. The 1D-DHRNet

comprises a CNN-based encoder and decoder network used for feature learning and

identification of DDoS attacks from normal traffic. A Spatial Location Constraint

Prototype Loss (SLCPL) loss function is employed which calculates the intra-class

distance for the classification of known and unknown traffic. Further, OCSVM is

employed with a certain threshold value to improve the identification of unknown

and known traffic. One subset of the benchmark datasets is used for training while

the other subset is kept aside to mimic unknown attacks. Evaluation results show

that the proposed framework is successful in identifying unknown attacks after in-

cremental learning. However, due to the complex structure of this IDS model, the

time complexity is high which requires intervention when such a model is subjected

to rapidly changing attacks.

In a nutshell, DL models using misuse-based intrusion detection match the ab-
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normal events in the network with known attack patterns that they are exposed to

during training. Such systems have higher detection rates and lower false positive

rates for known attacks, yet detection of unknown and atypical/polymorphic attacks

is possible to some extent with rigorous training iterations. On the other hand, DL

models using anomaly-based intrusion detection are trained using only normal data,

and anything other than normal is considered an anomaly. Such systems can de-

tect unknown, atypical/polymorphic attacks, but suffer from increased false alarms

which affect the detection rate significantly. The hybrid DL models are designed to

combine the unknown, atypical/polymorphic attack detection capability of anomaly-

based NIDS and the higher detection rate and trustworthiness of misuse-based NIDS.

However, designing an efficient hybrid DL-based NIDS is based on the proper selection

and integration of misuse-based and anomaly-based NIDS based on the application.

It also depends on maintaining a balance between an increased detection rate and

reduced false positives to improve the identification of unknown, atypical/polymor-

phic attacks [6]. Additionally, the DL-based hybrid NIDS has a complex architecture

due to the addition of multiple components which add extra overhead during training

and deployment. Figure 3.3 shows different categories of DL-based hybrid NIDS. The

misuse-based and anomaly-based IDS are integrated in different sequences to create

a hybrid system for attack detection [6].

Table 3.5 and Table 3.6 present a comparative summary of DL research in hybrid

NIDS for unknown, atypical, and polymorphic attacks.

3.4 Adversarial Generation-based

Several adversarial generation-based DL models such as Generative Adversarial Net-

work (GAN), Adversarial Autoencoder (AAE), Conditional Variational Autoencoder
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Table 3.5: Summary of DL research in Hybrid NIDS for Known/ Typical Attacks
(TA), Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic Attacks
(PA).

Ref. Model Dataset FS HPO Results: TA Results: UA Results:
AA/PA

[192]
Sparse AE,
Feed Forward
AE

KDDCup’99
NSL-KDD

Yes (in-
built)

Manual N/A DR: 73.37% N/A

[193]
CNN,
DBSCAN
and
K-means

KDDCup’99
CICIDS2017

Yes (in-
built)

Manual KDDCup’99
(Acc):
UA=2, 86.7%
UA=3, 86.7%
UA=4, 86.7%
CICIDS2017
(Acc):
UA=2, 92.1%
UA=3, 90.9%
UA=4, 90.8%

KDDCup’99
(Acc):
UA=2, 90.6%
UA=3, 91.8%
UA=4, 91.8%
CICIDS2017
(Acc):
UA=2, 97.5%
UA=3, 92.9%
UA=4, 92.7%

N/A

[194]
AE, CNN
and LSTM
Ensemble

BoT-IoT
N BaIoT
CICIDS2017
NSL-KDD

Yes
(PCA,
ICA,
in-
built)

Manual N/A BoT-IoT (Acc):
PCA: 0.66%
ICA: 22.24%
Full dataset:
0.41%
N BaIoT (Acc):
PCA: 99.9%
ICA: 99.9%
Full dataset:
99.9%
CICIDS2017
(Acc):
PCA: 0%
ICA: 0%
Full dataset: 0%
NSL-KDD
(Acc):
PCA: 31.31%
ICA: 50.31%
Full dataset:
23.21%

N/A

[195]
BiLSTM,
GMM

CICIDS2017
CICDDoS2019

Yes (in-
built)

Manual CICIDS2017
(Acc):
Wednesday:
94.2%

CICIDS2017
(Acc):
Friday: 98.2%
CICDDoS2019
(Acc):
NetBIOS: 98%
NTP: 92.3%
LDAP: 95.3%

N/A

[196]
CNN, LSTM,
K-means

KDD Cup’99
UNSW-NB15
CICIDS2017

Yes (in-
built)

Manual Accuracy:
KDD Cup’99:
99%
UNSW-NB15:
99%
CICIDS2017: 99%

Accuracy:
DoS Hulk
72.67%
Exploits:
78.65%
Reconnaissance:
79.14%
DoS: 83.61%
Fuzzers: 66.50%

N/A

(CVAE), and their variants are applied in cybersecurity research for launching known

attacks and unknown adversarial network attacks against the IDS [7,44,57–68]. Addi-
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Table 3.6: Summary of DL research in Hybrid NIDS for Known/ Typical Attacks
(TA), Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic Attacks
(PA) (contd.)

Ref. Model Dataset FS HPO Results: TA Results: UA Results:
AA/PA

[197]
CNN, En-
coder, and
FC-Classifier

ISCXVPN2016 Yes (in-
built)

Manual N/A 2-class Acc: 79% N/A

[198]
DHRNet
OCSVM

CICIDS2017
CICDDoS2019

Yes (in-
built)

Manual CICIDS2017
Wednesday:
Accuracy: 99.99%

CICIDS2017
Friday:
Accuracy:
99.86%
CICDDoS2019
(Acc):
LDAP: 99.94%
MSSQL: 99.90%
DNS: 99.9%
NetBIOS:
99.84%
NTP: 99.36%
UDP: 99.92%
SNMP: 99.90%
SSDP: 93.47%
SYN: 99.89%

N/A

DL-based IDS
(Anomaly detection

system)
Preprocessing

Normal 

AlarmEvaluationInput network
traffic

Suspicious patterns DL-based IDS
(Misuse detection

system)

Unknown attack 

Preprocessing Unknown attacksEvaluationInput network
traffic

Uncertain patternsDL-based IDS
(Misuse detection

system)

DL-based IDS
(Anomaly detection

system)

Preprocessing AlarmsEvaluationInput network
traffic

Suspicious patternsDL-based IDS
(Misuse detection

system)

DL-based IDS
(Anomaly detection

system)

Correlation System

Suspicious patterns

(a)

(b)

(c)

Figure 3.3: Different categories of DL-based hybrid NIDS. (a) Anomaly-misuse sys-
tem, (b) Misuse-anomaly system, and (c) Parallel system [6].
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Noise

Classification
results

Normal traffic
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Figure 3.4: The general idea behind adversarial learning for DL-based NIDS using a
generative model such as GAN [7].

tionally, a few research works also focus on using adversarial DL models for generating

polymorphic network attacks against NIDS [71,199]. Figure 3.4 represents the general

idea behind adversarial learning for DL-based NIDS using GAN.

Usama et al. [7] employ a GAN-based attacker to generate adversarial attacks that

can successively evade detection by the IDS. Training of the GAN model and other

IDS models such as DNN, Logistic regression (LR), Support vector machine (SVM),

k-nearest neighbor (KNN), Naive Bayes (NB), Random Forest (RF), Decision Tree

(DT), and Gradient Boosting (GB) techniques is done using the KDD’99 dataset.

The authors show improvements in IDS performances in terms of accuracy, precision,

recall, and F1 score after the adversarial training phase.

Wu et al. [57] employ a hybrid Deep Convolutional Generative Adversarial Net-

work (DCGAN) to build an intelligent IDS that can identify a wide variety of at-

tacks including adversarial attacks for an IoT network. Two new benchmark datasets

named CSE-CIC-IDS2018 and CIC-DDOS2019 are employed for performance eval-

uation with the Fuzzy Rough Set feature selection technique which analyzes and

removes redundant features. Although compared with other IDS techniques, DC-

GAN provides the highest overall accuracy, for edge IoT networks a lightweight and
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precise IDS needs to be investigated further.

Chauhan et al. [71, 199] employ a GAN model to synthesize adversarial poly-

morphic DDoS attacks which can bypass a NIDS. To update the feature profile for

launching new polymorphic attacks, the authors employ manual feature updating

by changing the number of features for training and swapping unused features with

used features during each new attack phase. Training is done using the CICIDS2017

dataset and experiments show a high success rate of the attack against the ML-based

IDS during the initial polymorphic attack phase, improvement in detection rate dur-

ing the adversarial training phase, and a significant reduction in the detection rate

after another polymorphic attack phase. Although the adversarial learning phase

shows improvement in the attack detection rates, the manual updating of feature

profiles to launch polymorphic attacks is not always a feasible approach and needs

improvements using automated techniques.

Liu et al. [58] propose a method to detect unknown adversarial attacks by using a

Generative Adversarial Cooperative Network (GACN). The proposed approach em-

ploys GACN for synthesizing unknown adversarial network attacks to deal with data

insufficiency issues during training. The attacks are synthesized based on intra cat-

egories in the embedding space. This ensures that the attacks generated are unique

as compared to the attacks seen during training. The authors through this research

intend to improve the IDS detection capability against unknown adversarial attacks

in real-world scenarios when attack data is rare. The k-means clustering method is

used to cluster unlabeled attack samples synthesized by GACN. The clustered data

is then augmented with the training data and identified using the deep neural net-

work IDS. For experimental evaluation, datasets such as CICIDS2017, CICIDS2018,

and Fashion-MNIST are employed. Although experiments show improved TPRs and

reduced FNRs for unknown adversarial attacks, the complexity of training and hyper-

65



parameter optimization is not considered by the authors. There is also a need to make

the IDS more scalable in terms of attack scenarios, different network environments,

and the identification of multiple classes of attacks.

Zhou et al. [59] introduce an IDS based on GAN and Genetic Algorithm (GA)

against unknown network attack detection. This research aims to generate attack

patterns from known attacks by mutating certain features to evaluate against un-

known attacks and reduce the class imbalance in the training data. For classifying

attacks, the predefined DL-based ResNet algorithm is applied. For generating new

attacks, the authors propose a Generating Evolution Algorithm (GEA) which consists

of a GAN model and a Genetic Algorithm (GA). The authors employ a BiGAN to

generate adversarial data which is then fed into the GA to synthesize new adversarial

attack data which acts as unknown attacks. Extensive experiments are carried out

using the CICIDS2018 dataset. Samples of the Hulk DoS attack and SlowHttpTest

attack are selected for training data, and samples of the GoldenEye DoS attack and

Slowloris DoS attack are selected as unknown attacks for test data. The IDS is trained

after class balancing using GAN and GA. Although the accuracy of unknown attacks

improves with their technique, the authors have not discussed the problem of how

mutating attack features can create a realistic network attack.

Although the GAN model is quite popular in cybersecurity research for adversarial

training and handling class imbalance by generating better quality attack samples, it

suffers from complex training convergence and mode collapse problems [200]. In mode

collapse, the generator cannot fully capture the diversity in the real data distribution

and cannot produce varied data samples [200].

Martin et al. [60] apply VAE for synthesizing data of different classes that resemble

input data using the labels of the target classes. The paper aims to reduce the poor

performance of other machine learning classifiers such as RF, LR, Linear SVM, and
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Multi-Layer Perceptron (MLP) caused by class imbalance in the training data. After

comparison, results indicate that the classifiers trained with their synthesized data

perform better than the ones trained with data generated by other oversampling

algorithms. Vu et al. [61] introduce a Multi-distributed VAE (MVAE) for improving

network attack detection. In MVAE, the class label information is added to the loss

term which allows the segregating of the latent space regions for different classes

making them easily detectable. The MVAE synthesized samples are used to improve

the classification accuracy of several ML classifiers such as Gaussian Naive Bayes

(GNB), SVM, DT, and RF. The performance evaluation is done using NSL-KDD

and UNSW-NB15 datasets. Experimental results indicate that the proposed MVAE

model significantly improves the detection rate of other classifiers as compared to the

original algorithms.

Yang et al. [62] introduce a hybrid model for network intrusion detection based

on Supervised Adversarial Variational Autoencoder with Regularization (SAVAER)

and DNN. The SAVAER is based on an enhancement of a vanilla GAN model named

Wasserstein GAN with Gradient Penalty (WGAN-GP). WGAN-GP was introduced

to reduce the shortcomings of a traditional GAN such as difficulty in training con-

vergence and mode collapse problem by penalizing the norm of the gradients of the

discriminator network [201]. The SAVAER model is employed to synthesize minority

attack samples to balance the classes in the training dataset. The synthesized attacks

are then augmented to the original training data to train a DNN classifier for identify-

ing less frequent and unknown attacks. Based on the experiments, the proposed model

outperforms other well-known class balancing techniques and classification models in

terms of detection rate, F1 score, accuracy, and FPR.

VAE is employed for analyzing network flows, understanding the underlying fea-

ture relationships, and synthesizing adversarial data to improve the performance of
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other classifiers against minority attacks [60–62]. However, because of the noisy inputs

and improper reconstruction, the samples generated by VAE are not of high quality

as compared to CVAE and GAN [202]. Therefore, it is more popularly employed for

feature pre-training and dimension reduction phases for other AI classifiers [191].

Hara et al. [63] employ a semi-supervised AAE model that combines a VAE and

a GAN model for intrusion detection using the NSL-KDD dataset. A comparison of

accuracy for a semi-supervised AAE-based IDS is done against a supervised DNN-

based IDS at different labeling rates. Results indicate that at a labeling rate of 0.1%

or higher, the accuracy of AAE is better as compared to DNN and the misdetection

rate of DNN is higher. Comparison with other state-of-the-art techniques indicates

that the proposed method has better detection accuracy using only 1% and 10%

labeled data instances. Aloul et al. [64] employ a hybrid IDS model based on AAE

and KNN for improving intrusion detection on the IoT edge routers using the NSL-

KDD benchmark dataset. Initially, the Synthetic Minority Over-sampling Technique

(SMOTE) is used to remove any class balancing issues in the training data. AAE

is used to reduce the size of the input dimensions from 41 to 16. The latent space

information from the encoder in AAE is then fed into the classifier KNN for attack

detection. The proposed technique surpasses other state-of-the-art models in the

literature in terms of accuracy, precision, recall, and F1 score.

Abdalgawad et al. [65], use deep generative models such as AAE and Bidirectional

Generative Adversarial Networks (BiGAN) for improving the performance of an IDS

against known and unknown network attacks using IoT-23 dataset. The correlation

coefficient is employed for feature selection. SMOTE and Random Undersampling

techniques are explored to remove the class imbalance in the input dataset. Attacks

are detected by encoding the input data to a reduced latent representation using

AAE or BiGAN and feeding this information to a classifier such as KNN for attack
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identification. After training, the hybrid models AAE-KNN and BiGAN-KNN pro-

vide better performance on multiple attack classes as compared to standalone models

such as KNN and RF. To evaluate the performance of BiGAN on unknown attacks,

synthetic attacks are created by randomly selecting a feature subset and randomly

changing the values of these features. Although F1 score results indicate that BiGAN

is effective in identifying unknown attack patterns even when the feature mutations

are increased, performing manual changes in feature values is not always a feasible

approach and some automatic techniques need to be investigated.

AAE was introduced to overcome the drawbacks of standalone GAN and VAE

models [26]. Cybersecurity researchers have employed AAE for adversarial training

with other classifiers to improve attack detection performance. Although AAE is a

flexible model, certain training issues such as the balance between the training of

the discriminator and generator which causes the gradients to explode unpredictably

need further investigation.

Yang et al. [66] propose a hybrid IDS based on improved CVAE and DNN models.

CVAE is employed to learn the sparse representations among the feature variables

and target variables to synthesize new attack samples for improving the diversity in

the training data. CVAE also helps in fine-tuning during the training of the DNN

classifier to achieve better optimization. The datasets NSL-KDD and UNSW-NB15

are used for training and evaluation. The hybrid model is compared with several

oversampling methods such as Random Oversampling (ROS), Synthetic Minority

Oversampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN)

and shows better detection results on minority attacks as well as unknown attacks.

When compared against several state-of-the-art techniques, the proposed model shows

a better detection rate, accuracy, and lower false positives.

Azmin et al. [67] propose a NIDS based on a combination of two models includ-
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ing Conditional Variational Laplace Autoencoder (CVLAE) and DNN. The CVLAE

is a variant of a VAE model that utilizes Laplace Approximation on the posterior

distribution to enhance its expressive power by reducing errors. CVLAE model is

employed to learn the latent representations from the input data and generate new

data with similar characteristics. The DNN model is trained in a supervised mode

using the NSL-KDD benchmark and CVLAE generated data to classify attacks from

normal observations. Through experimentation, the authors show that the proposed

technique shows better precision results, especially on minority attack samples when

compared with other commonly used DL models.

Xu et al. [68] introduce a hybrid method for intrusion detection consisting of a Log-

cosh Conditional Variational Autoencoder (LCVAE) and a CNN classifier. LCVAE

model is an enhancement of a simple CVAE model in terms of the loss function which

is improved by proposing a log hyperbolic cosine function. The new loss function is

more effective in the reconstruction of input data and in diversifying minority attack

samples in the training dataset. A CNN classifier is employed for feature extraction

and identification of attack and normal samples. Extensive experimental results using

NSL-KDD show the superior detection capability of the proposed model against other

state-of-the-art techniques.

As compared to a standard VAE, CVAE is more powerful for improving the per-

formance of other DL classifiers against zero-day attacks since it provides better

regeneration results using the conditioned attribute [67]. However, CVAE is not as

popular as GAN for adversarial training in network security, since GAN generates

better quality samples as compared to CVAE [203]. On the other hand, CVAE is

much easier to train and does not suffer from the problem of mode collapse when

compared to GAN.

Adversarial generation-based DL models have been used to overcome the limi-
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tations of DL-based attacks in detecting atypical and polymorphic network attacks.

Although these adversarial generation-based NIDS show promising results, they ex-

perience some limitations such as the selection of an application-specific adversarial

generation model, enhanced computational needs for training the model, the num-

ber and magnitude of adversarial perturbations, consistency of adversarial network

attacks, and identifying formal network constraints for these attacks [204,205].

Table 3.7, Table 3.8, and Table 3.9 provide a comparative analysis of NIDS re-

search in Adversarial Deep Learning for unknown and polymorphic attacks.

3.5 Other Paradigms

3.5.1 Transfer Learning (TL)

Transfer learning is an ML/DL technique that focuses on improving the performance

of a target ML/DL model in a target domain based on the knowledge transferred from

a related source domain [206]. For example, in cybersecurity, the knowledge gained

during training of a model on a huge dataset consisting of multiple DoS/DDoS attacks

excluding Goldeneye DoS can be applied to identify Goldeneye DoS as a new DoS

attack. Figure 3.5 represents a general idea behind the concept of transfer learning

in network attack detection. Transferring knowledge from a pre-trained model for

identifying a new task can considerably improve the performance of a model [207].

TL is used in many cybersecurity research works for improving intrusion detection

for known and unknown network attacks [69,208–211].

Zhao et al. [208] propose a TL-based technique for identifying unknown attacks. A

heterogeneous transfer learning approach is employed to extract optimized attributes

from the input training and evaluation data. The spectral transformation technique
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Table 3.7: Summary of NIDS Research in Adversarial Deep Learning for Known/
Typical Attacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Poly-
morphic Attacks (PA).

Ref. Model Dataset FS HPO Results: TA Results: UA Results:
AA/PA

[7] GAN, DNN,
LR, SVM,
KNN, NB,
RF, DT, GB

KDD’99 N/A Manual Accuracy:
DNN: 89.12%
LR: 87.6%
SVM: 88.49%
KNN: 85.37%
NB: 69.64%
RF: 86.12%
DT: 84.86%
GB: 87.6%

Accuracy:
DNN: 84.31%
LR: 86.64%
SVM: 84.31%
KNN: 79.31%
NB: 82.83%
RF: 81.31%
DT: 83.22%
GB: 82.97%

N/A

[44]
GAN, DNN NSL-KDD

UNSW-NB15
CICIDS2017

Yes
(CNN)

Manual Accuracy:
NSL-KDD:
84.45%
UNSW-NB15:
82.53%
CICIDS2017:
99.79%

N/A N/A

[57]
DCGAN CICIDS2018

CICDDOS2019
Yes
(Fuzzy
ap-
proach)

Manual Accuracy:
CICIDS2018:
95.22%
CICDDOS2019:
98.62%

Accuracy:
CICIDS2018:
FTP Brute:
99.99%
SSH brute:
99.94%
XSS: 5.87%
Slowloris:
38.85%
SQL Injection:
10.34%
Brute-Web:
23.22%

CICDDOS2019:
DDoS-NTP:
92.60%
DDoS-DNS:
97.99%
DDoS-SSDP:
99.03%
TFTP: 99.86%
WebDDoS:
24.24%
DDoS-SNMP:
99.99%

N/A

[199]
GAN, RF CICIDS2017 Yes

(SHAP)
Manual Accuracy:

94.33%
N/A DR:

79.86%

[71]
WGAN, RF CICIDS2017 Yes

(SHAP)
Manual N/A N/A TPR:

100%
TNR:
98.6%
FScore:
99.3%

is used to project the features on a shared latent space which reduces the difference

between the distributions of train and test data to understand optimized feature
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Table 3.8: Summary of NIDS Research in Adversarial Deep Learning for Known/
Typical Attacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Poly-
morphic Attacks (PA) (contd.)

Ref. Model Dataset FS HPO Results: TA Results:
UA

Results:
AA/PA

[58]
GACN, K-
means

CICIDS2017
CICIDS2018
Fashion
MNIST

Yes (in-
built)

Manual N/A CICIDS2018:
TPR:
93.13%
FPR: 2.34%
Fashion-
MNIST:
F1 Score:
99.09%

N/A

[59]
BiGAN
GA
ResNet

CICIDS2018 Yes (in-
built)

Manual Precision:
98.49%
Recall: 96.29%
F1 score:
97.37%

Precision:
90.05%
Recall:
92.31%
F1 score:
91.17%

N/A

[60]
VAE, RF,
LR, Linear
SVM, MLP

NSL-KDD Yes (in-
built)

Manual Accuracy:
RF: 73.61%
LR: 77.29%
Linear SVM:
77.23%
MLP: 79.26%

N/A N/A

[61]
MVAE,
GNB, SVM,
DT, RF

NSL-KDD
UNSW-NB15

Yes
(MVAE)

MVAE:
Manual
ML models:
Grid Search

AUC:
NSL-KDD:
GNB: 0.924
SVM: 0.945
DT: 0.962
RF 0.943
UNSW-NB15:
GNB: 0.928
SVM: 0.945
DT: 0.954
RF: 0.961

N/A N/A

[62]
SAVAER,
DNN

NSL-KDD
UNSW-NB15

Yes Grid search Accuracy:
NSL-KDD:
89.36%
UNSW-NB15:
93.01%

N/A N/A

[63]
AAE NSL-KDD Yes (in-

built)
Manual N/A Accuracy:

82.78%
FNR: 20%
FPR: 13.5%

N/A

[64]
AAE, KNN NSL-KDD Yes

(AAE)
Manual Accuracy:

99.91%
N/A N/A

[65]
AAE, Bi-
GAN, KNN

IoT-23 Yes
(Pear-
son’s
Correla-
tion)

Manual F1 Score:
AAE+KNN
97.43%
BiGAN+KNN
97.41%

F1 Score:
BiGAN 85%

N/A

[66]
CVAE, DNN NSL-KDD

UNSW-NB15
Yes (in-
built)

Manual Accuracy:
NSL-KDD:
85.97%
UNSW-NB15:
89.08%

N/A N/A
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Table 3.9: Summary of NIDS Research in Adversarial Deep Learning for Known/
Typical Attacks (TA), Unknown Attacks (UA), Atypical Attacks (AA), and Poly-
morphic Attacks (PA) (contd.)

Ref. Model Dataset FS HPO Results: TA Results:
UA

Results:
AA/PA

[67]
CVLAE,
DNN

NSL-KDD Yes (in-built) Manual Accuracy: 76% N/A N/A

[68]
LCVAE,
CNN

NSL-KDD Yes (CNN) Manual Accuracy: 85.51% N/A N/A

Large amount of labeled data

Detection
Results

Source model

Detection
Results

Target model

Source data
(Multiple DoS/DDoS

attacks)  

Unlabeled/ Small amount of labeled data

Knowledge Transfer

Target data
(Goldeneye DoS

attack)  

Figure 3.5: The general idea behind Transfer Learning in NIDS domain

representations. The optimized attributes from the TL module are then fed into

several classifiers such as DT, NB, KNN, and SVM for performance comparison using

the NSL-KDD dataset. After empirical analysis, it is concluded that the proposed

classifiers trained using one attack class can effectively identify a new attack class

from the same dataset as compared to the baseline classifiers.

Zhao et al. [209] extend their initial work [208] by finding a relationship between

a known and unknown/unseen attack using a transfer learning approach based on

clustering. In the proposed approach, the samples in the target domain are clustered

based on clusters in the source domain. The similarity in the source and target do-

main clusters is identified using Euclidean distance and then the clusters in the target

domain are mapped to the source domain using the K-Means clustering technique.
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Experimental results using the NSL-KDD dataset show improvements in the perfor-

mance of several classifiers based on this technique in detecting unknown network

attacks. For [208, 209], evaluation on an unknown network attack from a different

dataset, atypical and polymorphic attacks need to be explored further.

Vu et al. [210] introduce a TL approach based on two DAE models for intrusion

detection in an IoT network. The first DAE is trained using supervised learning based

on the source dataset. While the second DAE is trained using unsupervised learn-

ing on the target dataset. The knowledge from the latent representation of the first

DAE is transferred to the second DAE which is then employed to identify unknown

attacks in the target domain. Performance evaluation using multiple datasets gener-

ated from several IoT devices demonstrates that the proposed TL-based IDS improves

the detection accuracy of unknown attacks as compared to traditional DL-based IDS.

However, the training time for this IDS is higher compared to other baseline IDS.

He et al. [211] propose a deep TL-based intrusion detection technique for detecting

minority DDoS attacks in the network. The authors employ multiple DNNs for iden-

tifying one class of DDoS attacks (SYN-DDoS) in the source domain. The best DNN

model is selected based on the transferability metric to identify another class of DDoS

attacks (LDAP-DDoS) in the target domain. Experimental results indicate that their

approach is effective in reducing the detection performance degradation of minority

DDoS attacks.

Zhang et al. [69] propose a framework named Transferred Generating Adversarial

Network-Intrusion Detection System (TGAN-IDS) to identify unknown ransomware

attacks. The authors employ a dual GAN architecture with Deep Convolutional Gen-

erative Adversarial Network (DCGAN) for generating adversarial samples and TGAN

for identifying between a real and synthesized sample. The generator in DCGAN is

trained using only normal samples from the input dataset while the discriminator
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is trained using normal and attack samples. The knowledge, structure, and initial

parameters of the generator in DCGAN are transferred to TGAN to create an ini-

tial generator. The structure and parameters of the pre-trained discriminator (PreD)

which is trained using normal and attack samples are transferred to the TGAN’s

discriminator. TGAN is trained further using unsupervised learning on normal sam-

ples. During the evaluation, TGAN is exposed to both attack and normal samples

to test on unknown attacks. The discriminator of TGAN acts as an attack detector

and identifies unknown attacks based on the predefined threshold value. Extensive

experiments are conducted based on several data subsets for performance evaluation

on unknown attacks. The ransomware attack traffic is collected from several sources

while normal traffic is taken randomly from a subset of CICIDS2017 data. Further

experiments are conducted with other datasets such as KDD’99, SWAT, and WADI.

To represent unknown attacks, some attack samples from these datasets are set aside

for evaluation and not used in training. Although results indicate the effectiveness of

TGAN to identify unknown attacks, the structure of this framework is quite complex

and a lightweight and less complex IDS still needs investigation.

To provide a concise overview, TL in cybersecurity is employed to improve the

performance of a DL model in the target domain when there is an insufficient amount

of labeled data. Until now most cyber research works based on transfer learning

employ smaller datasets for training, which does not fully establish the possible ad-

vantages of TL-based ML/DL algorithms since TL requires a huge generic training

dataset [212]. Although TL can speed up the process of training a model on a new

task and improving its accuracy by employing pre-trained models, there are other

limitations of TL such as negative transfer and overfitting [213]. A negative transfer

problem can happen when the initial round of training data is way off the mark as

compared to previous training data which causes the DL model performance to de-
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Table 3.10: Summary of NIDS Research in TL for Known/ Typical Attacks (TA),
Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic Attacks (PA).

Ref. Model Dataset FS HPO Results:
TA

Results: UA Results:
AA/PA

[208]
DT
RF
NB
KNN
SVM

NSL-KDD Yes Manual N/A Accuracy:
DT: 81%
RF: 78%
NB: 72%
KNN: 78%
SVM: 81%

N/A

[209]
DT
RF
NB
KNN
SVM

NSL-KDD Yes (In-
formation
Gain)

Manual N/A Accuracy:
DT: 87%
RF: 68%
NB: 87%
KNN: 81%
SVM: 84%

N/A

[210]
DAE IoT-1

IoT-2
IoT-3
IoT-4
IoT-5
IoT-6
IoT-7
IoT-8
IoT-9

Yes
(DAE)

Manual N/A AUC Score:
IoT-2: 0.888
IoT-3: 0.796
IoT-4: 0.885
IoT-5: 0.943
IoT-6: 0.833
IoT-7: 0.892
IoT-8: 0.775
IoT-9: 0.743

N/A

[211]
DNN DDoS dataset N/A Manual N/A Detection Rate: 99.28% N/A

[69]
TGAN
DCGAN

CICIDS2017
KDD’99
WADI
SWAT

Yes (in-
built)

Manual N/A CICIDS2017 and Ransome-
ware:
Average DR: 76.18%
KDD’99:
Precision: 98.10%
Recall: 99.28%
F1 Score: 98.70%
WADI:
AUC: 0.98
SWAT:
AUC: 0.86

N/A

grade [213]. Another major problem with TL is overfitting which can happen if the

new DL model learns noise patterns from input data which can affect its classifica-

tion performance [213]. Once these disadvantages of TL have been overcome, it is

expected to rapidly improve the development of DL models in the future.

We provide a summary of NIDS research in TL for unknown, atypical, and poly-

morphic network attacks in Table 3.10.
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3.5.2 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) is a subdivision of ML that combines the best

capabilities of DL and Reinforcement Learning (RL) [214]. RL is the task of learning

through trial and error with a final goal to take action. DRL adds the advantages of

DL to RL which allows the agent to better understand the unstructured environment

by employing larger datasets and discovering useful patterns, then taking actions to

maximize the overall reward. In the DRL framework, the DNN model acts as the

agent or learning system that observes the environment and performs an action based

on the best learning policy. The environment then observes the state of the agent

and provides feedback in the form of a reward for success and a penalty for failure

based on the agent’s actions.

DRL is broadly divided into two categories: Deep Q-Learning (Deep Q-Network)

and Policy Learning (Policy Gradients) [215]. Deep Q-learning or Deep Quality learn-

ing is based on assessing the quality or usefulness of action in gaining a future reward.

Figure 3.6 depicts a generic framework for a Deep Q-Network (DQN). DQNs employ

Q-learning, also known as Value learning, which depends on selecting an action that

maximizes the Q-function to infer the optimal policy. Deep Q learning only provides

a discrete action space. It is represented in eq.(3.1) as given.

a = argmax
a

Q(s, a) (3.1)

Where a represents the action, s represents the state, and Q(.) represents the

Q-function.

Policy Learning or Policy Gradients (PG) directly optimize the policy π(s) that

determines what action a should be taken to maximize the reward. It provides a

continuous action space, for example, represented as a Gaussian distribution with an
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State

DNN

Take action
Policy Environment

Observe the state

Reward

Agent

Figure 3.6: A generic framework representing Deep Q-Network (DQN)

infinite number of actions. Policy Learning is represented in eq.(3.2) as given.

Sample a ∼ π(s) (3.2)

DRL is employed in multiple security research works for building an adaptive IDS

that can effectively identify known attacks, advanced network attacks, and zero-day

attacks [216–220].

Kim et al. [216] employ DRL to build an online IDS based on a DAE Q-network

(DAEQ-N). This research aims to achieve a maximum detection rate when identifying

attacks in a real-time IDS. The authors use the OpenAI Gym framework to emulate a

network environment and learn continuous network sequences for improving detection

accuracy based on the actions taken and rewards received. The DAEQ-N acts as a Q-

learning agent to classify attacks from normal instances. Rewards are received for each

correct action such as identifying an attack as an attack while penalties are received

when an attack is misclassified. Each action followed by a positive or a negative reward

helps the system to learn the network better and improve the detection rates for the

next iteration. However, the comparison of the proposed DAE-based Q-network with

a simple DNN-based Q-network demonstrates that the proposed technique shows
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more stability and improved detection results. The proposed IDS is not evaluated

using any benchmark or real network datasets.

Lopez-Martin et al. [217] apply DRL to train their supervised intrusion detection

systems for classifying network attacks and normal events using benchmark datasets

such as NSL-KDD and AWID. The regular live environment of the DRL system is

replaced with a pseudo-environment using a sampling function for attacks. Rewards

are generated based on the classification mistakes made during the training phase.

The results of several DRL algorithms such as Deep Q- Network (DQN), Double Deep

Q-Network (DDQN), Policy Gradient (PG), and Actor-Critic (AC) are analyzed and

compared for intrusion detection. The empirical analysis indicates that the DDQN

model is the best performing model for attack detection with a lower time complexity

among the other observed models as well as state-of-the-art in terms of precision,

recall, F1 score, and accuracy.

Phan et al. [218] propose a hybrid framework to reduce the problem of dataset

deficiency based on TL and Q-learning, especially for network security applications.

The main aim of the proposed TL-based framework is to maximize the reward by im-

proving the performance of the future network in the target domain. The framework

is evaluated by transferring the knowledge for DDoS attack identification in a Soft-

ware Defined Network (SDN) domain from a legacy network domain. The authors

employ a Multilayer Perceptron (MLP) model for attack detection in both legacy

and SDN networks. Several datasets such as NSL-KDD, UNSW-NB15, CICIDS2017,

and CIC-DDoS2019 are employed for training the MLP IDS in the legacy network

domain. The DoSinSDN dataset is used for evaluation in the SDN domain. Results

indicate that by applying the proposed framework the detection rate of DDoS attacks

is improved as compared to other traditional intrusion detection techniques.

Venturi et al. [219] employ a DRL framework to synthesize adversarial botnet at-
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tacks against the current intrusion detection systems. The adversarial dataset named

DReLAB is generated using two DRL models: Double Deep Q-Network (DDQN)

and Deep State-action-reward-state-action (Deep Sarsa). DDQN and Deep Sarsa are

trained using several botnet benchmark datasets such as CTU-13, CSE-CIC-IDS2018,

and Botnet2014. The main aim of this work is to synthesize adversarial attack sam-

ples that resemble real-world attacks to assess the detection capability of current IDS

against such novel attacks and apply explainability to these systems. The authors

evaluate the performance of two classifiers: RF and Wide and Deep (WnD) using

the DReLAB adversarial dataset. WnD is a DL framework proposed by Google for

classification [221]. The experimental results determine that the adversarial attacks

in the synthesized DReLAB dataset can effectively evade detection by both RF and

WnD classifiers.

Sethi et al. [220] apply DRL for building a distributed multi-agent IDS based on

DAEQ-N. Their system employs Attention mechanism to identify evolved network

attacks. The encoder of the DAE uses the Attention mechanism to select the most

important feature vectors with higher weights for improving the performance of the

model. Empirical analysis determines that the proposed IDS is effective against sev-

eral attacks from NSL-KDD and CICIDS2017 datasets as well as other adversarial and

zero-day attacks as compared to other state-of-the-art techniques. The high compu-

tational resource requirement is one of the limitations of this research work. Another

limitation is that it is based on the assumption that network attackers will not launch

an attack on the subnetworks and gateways. In the future, these limitations need to

be addressed to build an improved IDS.

Table 3.11 provides a summary of NIDS research in DRL for known, unknown,

atypical, and polymorphic attacks.

To sum up, DRL-based algorithms are employed in network security to improve
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Table 3.11: Summary of NIDS Research in DRL for Known/ Typical Attacks (TA),
Unknown Attacks (UA), Atypical Attacks (AA), and Polymorphic Attacks (PA).

Ref. Model Dataset FS HPO Results: TA Results:
UA

Results:
AA/PA

[216]
DAEQ-N N/A N/A Manual Stability: 80% N/A N/A

[217]
DQN
DDQN
PG
AC

NSL-KDD
AWID

N/A N/A Accuracy NSL-
KDD:
DQN: 87.87%
DDQN: 89.78%
PG: 78.73%
AC: 80.78%
Accuracy AWID:
DQN: 95.41%
DDQN: 95.70%
PG: 92.21%
AC: 92.21%

N/A N/A

[218]
MLP NSL-KDD

UNSW-NB15
CICIDS2017
CIC-
DDoS2019
DoSinSDN

N/A Manual Detection Rate:
99%

Detection
Rate: 99%

N/A

[219]
Adversarial:
DDQN
Deep Sarsa

IDS models:
RF
WnD

CTU-13
CSE-CIC-
IDS2018
Botnet2014

Yes Manual F1 score: 99% Detection
Rate: 88%

N/A

[220]
DAE-DQN NSL-KDD

CICIDS2017
N/A N/A NSL-KDD:

Accuracy: 97.4%
FPR: 1.24%

CICIDS2017:
Accuracy: 98.7%
FPR: 0.82%

NSL-KDD:
Accuracy:
96.2%
FPR: 1.42%

CICIDS2017:
Accuracy:
96.5%
FPR: 1.26%

N/A

defense strategies by building an autonomous IDS that uses learning strategies that

are comparable to human learning [222]. Yet it has several limitations such as a need

for huge training data and high computational requirements. For example, when

solving real-world problems with high dimensions, as the number of inputs increases,

so does the number of calculations which increases the overall complexity of DRL

algorithms [223]. Training an interactive DRL agent for IDS needs a simulated or real

environment [222]. Since training in a real environment is costly, most of the DRL-

based intrusion detection research so far employs simulated training environments
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which may not provide the same efficiency as real environments. Building more

realistic environments that can fully exploit the potential of DRL for effective network

intrusion detection needs further investigation.

3.6 Adversarial Attack Realism

Over the past few years, adversarial attack generation has emerged as a highly cap-

tivating research area for cybersecurity experts. Several works emphasize enhancing

the detection capability of IDS by employing adversarial training, class balancing,

and data augmentation techniques [7, 57,58,66], it is important to note that most of

them are not suitable for real network scenarios where the validity of network data

is crucial. Additionally, they have not focused on synthetic attack quality analysis to

check for the effectiveness of adversarial attacks.

Some recent cybersecurity research works focus on the investigation of the validity

of adversarial cyberattacks. Merzouk et al. [205,224] investigate the application of ad-

versarial attacks in real network scenarios. Based on multiple invalidation criteria, a

comprehensive analysis of adversarial attacks synthesized using various methods such

as the Fast Gradient Sign Method (FGSM), Basic Iterative Method (BIM), DeepFool,

Jacobian-based Saliency Map Attack (JSMA) and Carlini&Wagner’s attack (C&W)

is provided. The authors identify certain invalidation criteria such as invalid value

ranges, invalid binary values, invalid category memberships, and invalid semantic re-

lations to examine the validity of the synthesized adversarial attacks. The results

indicate that the majority of attacks generated using such adversarial sample gener-

ation techniques are likely unrealistic since they do not follow the necessary network

constraints.

Vitorino et al. [69] introduces an Adaptative Perturbation Pattern Method (A2PM)
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to generate realistic adversarial attacks based on several network domain and class-

specific constraints. To keep the functionality of an attack, certain encoded features

such as protocol are kept constant while class-specific constraints are modified. The

synthesized adversarial attacks are examined in an enterprise network and an IoT

network and compared against the corresponding original flows. Multilayer Percep-

tron (MLP) and Random Forest (RF) models are employed and their performance

is compared with and without adversarial training. The detection rate for MLP and

RF dropped significantly with adversarial attacks. The augmentation of adversarial

synthetic attacks to the training data for MLP and RF improves their performance

against such attacks. Although the results show that A2PM produces valid adver-

sarial attacks, the manual selection of features and perturbation of feature values is

costly in terms of complexity.

Apruzzese et al. [185] provide an elaborate survey for the analysis of state-of-the-

art research using adversarial attacks against ML-based IDS. The authors observe

that current threat models are invalid for real network scenarios since the attacker

has full access and knowledge of target systems. For generating realistic adversarial

attacks, similar to real-world attacks, the attacker has minimum or no knowledge

of the target systems. The authors highlight three criteria for realistic generation

and evaluation of adversarial attacks such as maintaining the nature of the attack,

analyzing the interdependency among multiple features, and having legitimate and

in-range feature values.

Mozo et al. [191] argue that current solutions using GAN to synthesize adver-

sarial data cannot generate better quality attacks due to the convergence issue in

GAN training. To handle this issue, their work employs two Wasserstein GANs for

synthesizing both normal and attack traffic. Best attack and benign generators are

selected by measuring the F1 score of the Random Forest-based IDS on synthetic
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data. Here the F1 score obtained by evaluation of the IDS on adversarial data acts

as the stopping criteria for GAN training. To measure the similarity between real

and synthetic data, two statistical metrics, L1 distance, and Jaccard Coefficient are

employed. However, the performance of WGAN dropped when using L1 distance and

Jaccard Coefficient indicating that these coefficients are not suitable for adversarial

attack quality analysis.

Although some initial work has been done for examining and comparing the quality

of synthesized adversarial attacks generated using techniques such as FGSM, BIM,

DeepFool, JSMA, and C&W. Nevertheless, the main focus of these research works is to

identify adversarial attacks that are challenging to implement for practical scenarios.

In contrast, a significant aim of our research is to introduce a framework to synthesize,

detect, and analyze the quality of polymorphic adversarial attacks through several

validation techniques.
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Chapter 4

Problem setup and Assumptions

In this chapter, we outline the fundamental assumptions guiding this research work.

We assume that the distribution of normal network data remains relatively constant

and consistent across different networks. The problem setup and associated assump-

tions lay the foundation for exploring the effectiveness of our methodology in counter-

ing atypical/polymorphic attacks within network security. Given below, we discuss

the threat model and the defense model separately.

4.1 Threat model

The threat model revolves around an adaptive and intelligent attacker aiming to

evade detection by dynamically changing the characteristics of network attacks. The

attacker leverages AI-based and non-AI techniques to craft polymorphic attacks, chal-

lenging the IDS’s ability to identify and classify adversarial instances.
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4.1.1 Attacker’s objective

• Evade the IDS: The primary goal of the attacker is to evade detection by the

IDS, aiming to disrupt the target. This is achieved by rapidly altering the

feature profile and generating atypical/polymorphic attacks.

4.1.2 Attacker’s knowledge

• Test Data Distribution: The attacker is presumed to know the test data distri-

bution used for training the IDS model.

• Limited Knowledge of IDS: The AI-based attacker does not have complete

knowledge of the inner workings and decision-making processes of the IDS.

• Feedback Access: The attacker has access to feedback from the IDS in the form

of a loss function, indicating its effectiveness in synthesizing realistic attacks.

4.1.3 Attacker’s capability

• Computational Capacity: The attacker is assumed to have the computational

capacity to produce atypical/polymorphic attacks.

• Realistic Attacks: Starting from a known/original attack, the AI-based attacker

can produce adversarial examples that are statistically close to the original

attacks and are misclassified by the IDS.

• Non-AI Attack Tools: For non-AI attacks, the attacker may employ common

attack tools, such as Slowloris DoS, to launch atypical/polymorphic attacks.

• Source Ambiguity: When launching non-AI polymorphic attacks, the target is

assumed to be unaware of the exact source, as the attacker uses spoofed IDs.
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Even if the IDS identifies an attack and blocks a specific IP address, the attacker

can relaunch a new attack with a different spoofed IP address.

• Attack Class Switching: The polymorphic attacker can not only change the

feature profile but can also switch to different classes of attacks, enhancing

evasion strategies. For instance, the attacker can initiate the first attack using

the Slow Httptest DoS attack tool in Slowloris mode. The subsequent attack

using the same tool may be launched in Slow body mode, followed by slow read

mode, and so forth.

4.2 Defense model

The defense model, embodied by the IDS, focuses on objectives, knowledge, and

capabilities to effectively identify and counteract atypical/polymorphic attacks.

4.2.1 Defense’s objective

• Identify Rapidly-evolving Attacks: The main objective of the defender (IDS) is

to correctly identify and classify the attacks launched by the attacker, particu-

larly those that undergo rapid evolution.

4.2.2 Defense’s knowledge

• Access to Data: The AI-based IDS has unrestricted access to both training and

evaluation data obtained from the benchmark dataset. Moreover, it acquires ad-

versarial data after each adversarial training phase through incremental cycles.

Utilizing system logs and information from the target system, the IDS identifies

undetected attacks, incorporating this knowledge for subsequent training.

88



4.2.3 Defense’s capability

• Identify Attacks: Leveraging the availability of adversarial data for incremen-

tal training, the IDS demonstrates the ability to differentiate between realistic

synthesized attacks and benign samples in the subsequent attack cycles.

In summary, the threat model outlines potential challenges and goals for the at-

tacker, while the defense model defines the objectives and capabilities of the IDS in

countering atypical/polymorphic attacks generated by the adversary in the context

of network security.
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Chapter 5

Supervised AI Against

Atypical/Polymorphic Attacks

The first phase of this thesis presents an assessment of supervised learning-based ap-

proaches in detecting atypical/polymorphic cyberattacks. The key goal of this phase

is to investigate how the changes in the attack feature profile or an atypical attack

influences the performance of the supervised IDS. Previous researchers have deduced

that their supervised solutions are effective in the detection of anomalous behavior

in networks. However, they have not comprehensively illustrated the effectiveness of

their IDS models on attacks with rapidly evolving feature profiles. Given the increased

sophistication of cyber attackers today, it is imperative to examine the performance of

AI-based IDS for such cases. This will help us understand the classification capability

of the supervised IDS on atypical attacks.

Figure 5.1 depicts the working of a generic AI-enabled Network Intrusion Detection

System (NIDS). In this scenario, the IDS is assumed to be installed on the network

switch, responsible for analyzing incoming or outgoing network traffic to identify

potential attacks. An attacker launches a network attack on a target server within the
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Figure 5.1: Working of an Intrusion Detection System in the network.

internal network. This malicious data is sent to the perimeter router which forwards

it to the firewall and ultimately reaches the network switch (if it goes undetected

by the firewall). The network switch, equipped with the AI-based IDS capability,

assesses the incoming data to determine if it constitutes an attack. Subsequently, it

generates an intrusion report and transmits it to the internal network. The network

administrator can then take action by blocking this attack and providing guidance

for its further mitigation.

5.1 A Generic AI Framework for Supervised IDS

In this work, a generic AI framework for supervised IDS [2] based on the twofold

ensemble feature selection technique, and hyperparameter optimization is employed

for defense against atypical attacks. The framework consists of four important phases

namely, feature preprocessing and selection, training and validation, evaluation and

generalization, and hyperparameter optimization (HPO). Figure 5.2 represents a

generic framework for a supervised AI-based IDS. This approach can be applied by

other researchers to any AI model specific to their problems.
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Figure 5.2: A generic supervised AI framework for detecting typical, unknown, atyp-
ical, and polymorphic network attacks [2].

5.1.1 Preprocessing and feature selection

As a standard AI practice for intrusion detection, raw network traffic is first converted

to traffic flows using a flow analyzer. The synthesized data is then assessed for its

quality and cleaned. This phase includes observation and removal of any irrelevant

bits, mismatched data types/values, missing data, and outliers. Other major steps

for preprocessing include feature extraction/dimension reduction and data transfor-

mation.

Offline Feature Selection Technique

In this phase, the clean benchmark data undergoes the feature selection process which

consists of two main phases: feature pre-screening and Heterogeneous Feature Selec-

tion Ensemble (HFSE). The features in this case represent flow-based information

about the entire network such as IP addresses, network ports, protocols, connection
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Figure 5.3: Offline Heterogeneous Feature Selection Ensemble (HFSE) [2]

time duration, arrival times, data/packet size, and some other miscellaneous flags.

Figure 5.3 represents the feature selection technique applied. A detailed description

of the two phases involved in the feature engineering technique is given in the following

sections.

Feature Pre-screening

Most AI systems are black boxes providing limited intuition as to why certain predic-

tions were made. Some explainable algorithms like LIME [225] can be used to resolve

this issue by explaining the AI predictions based on the selected features, but they do

not work efficiently for all types of AI models [226]. When the training data does not

fairly reflect important features, the AI algorithm will learn insignificant patterns that
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do not aid in improving the detection rates, leading to AI bias [226]. Also, AI-based

models may pick up a feature that is insignificant from the point of view of a network

attack because such models are trained on currently available public datasets that

are often created by standard attack generator tools that have a configured range for

various feature values. As such, these AI models may pick up a contributing feature

simply because the attack generator was configured to use a fixed feature profile. In

such cases, an initial manual feature pre-screening identifies the priority features that

reflect the vulnerabilities of the target system.

While we do not know the feature profile of the attack in advance, we do have

some information on how an attack could potentially affect the target. Manual pre-

screening is performed based on the vulnerabilities of the target. For example, the

packet size might not be a determining factor in a SYN DoS attack on a web server, so

it may be eliminated in the pre-screening process. However, the same factor could be

important in a DDoS attack on a networking device, thus it could be included in the

features that the defensive AI considers. In other words, pre-screening focuses on the

target vulnerabilities that can be determined offline. While in our process the manual

pre-screening is done at the start, it can also be revisited over time when the system

states change. However, it remains offline and not part of the dynamic real-time AI

response. The refined feature set is then passed through the Heterogeneous Feature

Selection Ensemble for further filtering. The main advantage of using this approach

is to ensure that the AI selects the most significant features that make the results

more accurate, reduce AI bias, and improve performance against atypical attacks.

Heterogeneous Feature Selection Ensemble (HFSE)

Ensemble Feature selection combines the results of multiple models strategically to

find the best feature subset. The feature subset selected manually further under-
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goes filtering using the Heterogeneous Feature Selection Ensemble in an offline mode.

Multiple feature selectors as described above are chosen to be a part of this ensemble

as the name implies. The feature selectors in this ensemble vote for the best features

using a ranking score. The feature that receives the highest votes is considered the

best while the feature with the lowest votes is the least significant. Fig. 5.3 represents

our proposed offline feature selection ensemble technique. The main advantage of this

approach is to build a hypothesis using multiple models [227] and then combine their

results to achieve a better outcome. Using a variety of models for selecting features

is advantageous because it controls the variance, and reduces the likelihood of poor

feature selection [228].

Data Standardization Process

The selected feature subset is inspected again using a Quantile-Quantile plot (QQ

Plot) to check for normality [79]. We apply the z-score normalization on the data to

create a Gaussian Distribution with a zero mean and a standard deviation of one [229].

In this case, the feature values are not bound to a specific limit. It is also known as

Z-score scaling. The equation for Z-score normalization with yi as the feature vector,

y
′
as the mean of the feature vector, and σi as standard deviation is given in eq.(5.1).

Z − score =
yi − y

′

σi

(5.1)

Data standardization is an important step for most AI algorithms, especially gra-

dient descent-based, such as neural networks, logistic regression, and distance-based

algorithms like SVM, KNN, and K-means [230]. These models may not behave as

expected [231] if data is not standardized. For gradient descent-based models, feature

values affect the step size of the gradient descent [230]. If the features have different
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ranges, this might cause variations in the step sizes of each feature. The gradient

descent will converge smoothly towards the minima when the features have the same

scale [230]. Distance-based algorithms use distances between different observations to

classify them into different categories. If some features have different ranges, chances

are that they will have a higher impact on the AI results, therefore leading to AI

bias. By introducing scaling, all features will contribute equally to generate the re-

sults [230]. Moreover, standardization is robust to outliers and new data since it does

not have a limited range and can aid in faster convergence of loss functions for some

algorithms.

5.1.2 Synthesizing Non-AI Atypical/Polymorphic Attacks

For this research, we assume that the attacker may employ sophisticated publicly

available attack tools with the ability to change attack parameters to launch an atyp-

ical attack. To simulate this scenario, we have created a virtual network environment.

Within this setup, an attacker, represented by a Kali Linux virtual machine, initiates

genuine attacks on a target Apache server (deployed on a virtual machine running

a Windows operating system). The attacks are conducted using commonly available

DoS tools such as Slowloris and Slow Httptest. These slow-rate attacks exploit the

HTTP vulnerability and send incomplete requests to the target server to open as

many connections as possible. The target’s resources and connections are kept en-

gaged while denying access to legitimate users thus leading to a Denial of Service

attack [232]. While Slowloris is a slow HTTP header attack, the Slow Httptest at-

tack can be launched in different modes such as slow header, slow body, and slow

read [232]. Figure 5.4 depicts a low bandwidth HTTP DoS Attack. Such attacks

may be difficult to trace since the attacker may not send any malicious content when

sending multiple requests to overwhelm the target server.
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Figure 5.4: Low Bandwidth HTTP DoS Attack

The atypical/polymorphic attacks are synthesized after running Denial of Service

(DoS) attack traffic on a target server. All the attacks are separately launched suc-

cessfully from the attacker to the Apache Server installed on the target machine by

sending incomplete GET/POST requests to the target server. The feature profile

of the attack is changed by mutating the tool-based parameters from their default

values to randomized values to launch a new attack. Packets are captured using the

Wireshark tool running in the background on the target machine. The captured data

is then analyzed offline and converted into different features using the network flow

analyzer CICflowmeter [233,234].

We validate the success of these attacks on the target server by checking its status

for the duration of the attack to confirm access disruption. Fig. 5.5 depicts the

success of the Slow Httptest DoS attack on the target server. The target’s services are

successfully disrupted by the attacker after requesting 5000 simultaneous connections.

The figure shows service unavailable and target unreachable for the duration of the

attack.
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Figure 5.5: A Successful Slow Httptest DoS Attack (Slow Header Mode) on the Target
Apache Server.

5.1.3 Training and Validation

The next step for the AI framework in intrusion detection is the training of the

AI classifier with the preprocessed benchmark dataset. As a standard practice, the

dataset is divided into 3 parts: training, validation, and evaluation. After the model

is trained on the training dataset, its performance is observed on the validation data

by employing several validation techniques such as simple cross-validation or K-fold

cross-validation. In the latter, for each iteration, the data is divided into K-partitions

of equal size, one part kept for validation and the rest for training. The validation

loss value of each iteration is calculated and then averaged to find the final loss for

measuring the model performance.

5.1.4 Evaluation or Generalization

Generalization is an important phase for an AI model in intrusion detection. It

essentially signifies how good our classifier is at learning normal observations and
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typical attack observations from the benchmark dataset and applying this knowledge

to detect atypical attacks that it has never seen before. Mostly, the evaluation of the

trained AI classifier is done using the test data subset kept aside before training. This

dataset contains normal observations and typical attack observations. To fully capture

the classifier’s performance or generalization capability, it is essential to evaluate the

classifier on a real data subset that is not a part of the original benchmark dataset.

This dataset may contain typical and atypical attack observations as well as normal

observations. This step is essential to make certain that the observed classifier is not

overfitting, provides unbiased results, and will be successful when launched in a real

network environment [2].

5.1.5 Hyperparameter Optimization (HPO)

In real-world scenarios, attackers can mutate the attack feature profile quite often

thus making it difficult for the AI-based IDS to identify such newly evolved attacks.

These systems need continuous or dynamic updating of their models for performance

improvement on such newly evolved attacks. Figure. 5.6 depicts the continuous

training process with hyperparameter optimization for supervised learning.

We employ HPO for supervised AI models to optimize their training process. This

module is designed to generate multiple hyperparameter pipelines and select the best

pipeline that results in a robust high-quality AI model for detecting atypical attacks.

This technique generates models that are already optimized and ready to be deployed

for the classification of newly evolved attacks. The main goal is to optimize the system

by improving the AI model building process until the performance of such models on

newly synthesized atypical attacks is improved. The performance is measured based

on the True Positive Rate (TPR) for attack flows and the True Negative Rate (TNR)

for normal flows. The optimization process is done when the models do not generalize
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Figure 5.6: Continuous Training with Hyperparameter Optimization

well on atypical attacks with TPR less than a predefined threshold value. The model

is then retrained again offline until the TPR no longer improves.

The workflow representing the employed supervised approach to deal with atyp-

ical attacks is shown in Figure. 5.7. The generic workflow can be applied to any

supervised AI model for training, generalization, and optimization. Algorithm 5.1

represents a generic overview of the methodology for synthesizing and identifying

atypical attacks. The algorithm begins by initializing the TPR (Recall) threshold

value to T . This is followed by our offline feature selection and training steps. The

trained AI model is then applied to synthesized atypical attack flows for testing and

performance evaluation. The performance metrics used are accuracy, precision, re-

call, and F1-score. For hyperparameter optimization, the recall value is compared

with the predefined threshold (T) set initially. If the value is less than T , the model

continues retraining repeatedly until the optimal performance is achieved.
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Figure 5.7: Workflow for Atypical Attack Detection using Supervised Learning [2]

5.2 Experiments and Evaluation of Supervised AI

This section explains in detail the training and validation of supervised ML/DL clas-

sifiers using CICIDS2017 data and their performance measurement. The machine

used for this research to conduct the experiments consists of the following configura-

tions: Intel Xenon CPU E5-2630 v3@ 2.40GHz, 480GB SSD, 64-bit Windows 10 Pro,

and NVIDIA Quadro K2200. The Hyperparameter optimization step for various AI

models was implemented on a server installed with 4 GPUs (GeForce GTX 1080 Ti

with a compute capability of 6.1).
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Algorithm 5.1: Atypical Attack Generation & Identification using supervised AI [2]

Input:
IDS input- Original training data dtr
Test data dts with typical attacks dta and benign flows dbe
Number of iterations for atypical attack generation - n

Output:
Atypical Attacks daa
Trained IDS

initialize TPR threshold as T;

/∗ Attack Generation ∗/
for i = 1 to n do

Attacker A synthesizes atypical attacks daa by randomly changing attack parameters
end for

while true do

/∗ Training the IDS ∗/
Train and validate IDS using dtr and dts
Generalize IDS results using atypical attacks daa and benign flows dbe

/∗ Examine TPR on daa ∗/
if TPR < T then

Hyperparameter Optimization();
else

Break;
end if

end while

5.2.1 CICIDS2017 Dataset Details

CICIDS2017 benchmark dataset [233,234] is used only for training and validation of

the AI models against typical attacks and benign observations. It consists of several

attack classes and benign flows. More details are given in subsection 7.1.1. Table

5.1 shows the best 20 features selected using the proposed feature selection technique

based on their respective rank in the voting score.

5.2.2 Atypical Data Details

We synthesized 8 atypical attacks, 4 each for two low-rate DoS attack classes, Slowloris

and Slow Httptest DoS. These attacks have similar features as that of training data,
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Table 5.1: Best feature subset selected using HFSE Technique [2]

S.No. Feature name Chi2 RFE LR RFC L-GBM ETC L-SVC votes

1 pkt len var ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
2 pkt len std ✓ ✓ ✓ ✓ ✓ ✓ ✗ 6
3 max pkt len ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
4 fwd pkts/s ✓ ✓ ✓ ✗ ✓ ✓ ✓ 6
5 fwd IAT max ✓ ✓ ✓ ✗ ✓ ✓ ✓ 6
6 flow IAT max ✓ ✓ ✓ ✓ ✓ ✓ ✗ 6
7 init win bytes fwd ✓ ✗ ✗ ✓ ✓ ✓ ✓ 5
8 fwd pkt len mean ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5
9 fwd IAT std ✓ ✓ ✗ ✓ ✗ ✓ ✓ 5
10 fwd IAT mean ✓ ✓ ✓ ✗ ✓ ✗ ✓ 5
11 flow IAT std ✓ ✓ ✓ ✗ ✓ ✗ ✓ 5
12 pkt len mean ✓ ✗ ✗ ✓ ✗ ✓ ✓ 4
13 min pkt len ✓ ✓ ✓ ✗ ✗ ✗ ✓ 4
14 flow IAT mean ✓ ✓ ✗ ✗ ✓ ✗ ✓ 4
15 flow duration ✓ ✗ ✓ ✗ ✓ ✓ ✗ 4
16 avg pkt size ✓ ✗ ✓ ✓ ✗ ✓ ✗ 4
17 fwd pkt len std ✗ ✓ ✓ ✗ ✗ ✗ ✓ 3
18 fwd pkt len min ✓ ✓ ✗ ✗ ✗ ✗ ✓ 3
19 fwd pkt len max ✗ ✓ ✗ ✓ ✗ ✓ ✗ 3
20 fwd IAT tot ✓ ✗ ✗ ✗ ✓ ✓ ✗ 3

Table 5.2: Features for Synthesizing Slow Httptest DoS Attacks

Feature Description

c number of target connections
i followup data interval in seconds
r number of connections per second
l length of attack in seconds
t request verb (GET/POST)
x maximum length of followup data per tick
p timeout to wait for http response in seconds
s size of content length header in bytes
w start range of advertised window in bytes
y end range of advertised window in bytes
n interval between read operations in recv buffer in seconds
z bytes to slow read from recv buffer with single read call
k number of times to repeat the same request in the connection

but have a different range of values of features and are synthesized in different network

settings as compared to training data.

Slow Httptest attack is launched in 3 different modes namely Slow Header (H),

Slow Body (B), and Slow Read (X) to create different feature profiles for the attack.

The features used for synthesizing Slow Httptest atypical attacks are explained in

detail in Table 5.2. We mutate these tool-based features from their default values

to random values to generate new feature profiles. The synthesized atypical attacks

with different feature profiles are represented in Table 5.3. The CICflowmeter (flow
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(a) Slow Httptest Atypical Data

(b) Slowloris Atypical Data

Figure 5.8: Atypical Attack and Benign Flows. AA is used to depict feature profiles
for Atypical Attack (1-4) both for Slow Httptest and Slowloris Attack classes.

analyzer) is used to generate flows from raw attack packet captures. The number of

attack flows generated depends on the time duration of the attack. If the attack time

duration is higher, a greater number of attack flows will be generated.

As shown in Fig. 5.8a, the number of attack flows for Slow Httptest atypical

attack-1, attack-2, attack-3, and attack-4 are 1473, 8550, 17185 and 9205 respectively.

We would like to indicate that in our case, the number of atypical attack flows is

expected to be small since our intention is precisely to examine how a supervised AI-

based IDS can deal with mutated attacks that are not present in the training data.

We have selected benign flows randomly from CICIDS2017 test (hold-out) data to

match the number of attack flows for analyzing AI models using different performance

metrics. The total number of random benign flows for Slow Httptest DoS atypical

attack-1, 2, 3, and 4 are 244, 10000, 20000, and 10000 respectively.

For Slowloris DoS, we use target port number (p), number of sockets (s), and ran-

dom user agents (ua) features to generate atypical attacks. The random user agents
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Table 5.3: Different Feature Profiles for Slow Httptest DoS Attack. AA represents
an atypical attack.

AA Mode Duration # Flows c i r l t x p s w y n z k

AA1 H 240 sec 1473 1000 10 300 240 GET 24 3 - - - - - -
AA2 H 2475 sec 8550 5000 25 500 10800 GET 24 10 - - - - - -
AA3 B 7200 sec 17185 5000 120 500 7200 POST 10 10 4096 - - - - -
AA4 X 1800 sec 9205 10000 10 450 1800 GET 32 5 - 512 1024 5 32 3

Table 5.4: Different Feature Profiles for Slowloris DoS Attack

Atypical Attack Duration # Flows p s ua

AA1 900 sec 268 80 265 No
AA2 3600 sec 10165 80 500 No
AA3 10800 sec 33406 80 1000 No
AA4 7200 sec 20536 80 5000 Yes

feature is used to randomize user agents for each request. The details of atypical

slowloris attacks with different feature profiles are given in Table 5.4. As shown in

Fig. 5.8b, Slowloris atypical attack-1 consists of 268 flows while atypical attack-2

consists of 10165 attack flows, attack-3 and attack-4 consist of 33406 flows and 20536

flows respectively. For Slowloris DoS atypical attack-1, 2, 3, and 4, the number of

randomly selected benign flows are 244, 9000, 20000, and 20000 respectively.

5.2.3 Training and Validation Phases

After the feature selection phase, we train and validate different ML/DL classifiers

such as Deep Neural Network (DNN), Multi-Layer Perceptron (MLP), K-Nearest

Neighbor (KNN), Bernoulli Näıve Bayes (BNB), Gaussian Näıve Bayes (GNB), Lo-

gistic Regression (LR), Linear Support Vector Classifier (L-SVC), Linear Discrimi-

nant Analysis (LDA), Decision Tree Classifier (DTC) and Random Forest Classifier

(RFC) on the CICIDS2017 data. All ML classifiers are trained with their default

hyperparameter configurations on 75% train data.

To train a DNN model, 20 input dimensions are used (equal to the number of

selected features). The model has 3 Dense layers with Rectified Linear Unit (ReLU)
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Figure 5.9: ROC Comparison of AI models on CICIDS2017 Test Data (Typical Attack
and Benign Flows)

activation functions, each has 60 neurons. Each Dense layer is followed by Dropout

with a value of 0.2 to avoid overfitting. The last Fully Connected (FC) layer along

with Sigmoid activation provides output probabilities for attack or benign traffic. The

model is trained for 200 epochs, but early stopping is applied to reduce overfitting.

The batch size is set to 1024 and the learning rate is 0.0001.

Fig. 5.9 shows a comparison between various ML/DL models based on their AUC

values on CICIDS2017 test data which consists of typical/known attacks. This hold-

out data consists of 262143 flows (both attack and benign) and constitutes 25% of the

total CICIDS2017 data flows. AUC measures the ability of a classifier to distinguish

between classes by calculating the area under the Receiver Operating Characteristic

(ROC) graph. The ROC graph represents the plot between TPR and FPR at various

threshold values. AUC values lie in the range from 0 to 1. The higher the AUC value,

the better the model performance. Fig. 5.9 shows that the best AUC is achieved by

models such as DNN, MLP, KNN, DTC, and RFC. Other models such as LR and

L-SVC also achieve AUC values as high as 0.98. Models such as BNB, GNB, and

LDA also show similar improvements.
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Table 5.5: Performance of AI Models on Atypical Attack-1 & Benign Flows

Atypical Attack-1 (AA1)
Model TNR TPR (Slow Httptest) TPR (Slowloris)

DNN 93.44% 8.35% 0%
MLP 95.08% 59.88% 1.12%
KNN 100% 0% 0%
BNB 43.85% 0% 0%
GNB 40.98% 0% 0%
LR 91.80% 6.31% 98.88%
L-SVC 89.34% 5.97% 98.88%
LDA 45.49% 5.70% 0%
DTC 100% 0% 98.88%
RFC 100% 0% 98.88%

5.2.4 Model Generalization and Evaluation

The pre-trained ML/DL models are evaluated against synthesized atypical attacks

to improve model generalization. We conduct this evaluation before HPO to analyze

which AI model can identify these attacks with higher detection rates. We com-

pare the performances of these models using one atypical attack (atypical attack-1)

from both the attack classes namely, Slow Httptest and Slowloris. Other synthesized

atypical attacks are used to evaluate multiple AI models after the hyperparameter

optimization phase. The TNR for benign flows and TPR for attack flows are sepa-

rately measured as shown in Table 5.5. Although most models provide high TNR on

CICIDS2017 test data, they generally have poor performance on the atypical attack-

1 from both Slow Httptest and Slowloris attack classes. LR, L-SVC, and DTC can

detect only Slowloris atypical attack-1 with 98.88% TPR and benign data with TNR

of 91.80%, 89.34%, and 100% respectively. All other models perform poorly on both

attacks.

Fig. 5.10 provides a comparative analysis of different AI models using multiple

performance metrics including precision, recall, F1 score, FAR, and accuracy. The

figure shows that LR, L-SVC, and DTC have a better performance on Slowloris

atypical attack-1 while MLP performs better on Slow Httptest atypical attack-1 only.
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(a) Slow Httptest Atypical Attack-1 (b) Slowloris Atypical Attack-1

Figure 5.10: Evaluation of AI Models on Atypical Attack and Benign Flows

This signifies that the studied AI models are unable to perform well in identifying

both classes of atypical attacks. The reason for this poor performance on atypical

attacks is due to the overfitting problem of these models. Therefore, we subject the AI

classifiers to further optimization of hyperparameters to improve their generalization

on atypical attacks.

5.2.5 Hyperparameter Optimization

Since the TPR of the AI models employed for evaluation on atypical attack-1 is less

than the predefined threshold value (in our case, 80%), these models need HPO to

further improve their performance. For simplicity, we selected the models that could

identify at least one of the synthetic atypical attack classes during evaluation to

undergo further optimization. These models are L-SVC, DNN, and DTC. Other AI

models discussed in this thesis can also be optimized using this technique but they

are not examined further. We also point out that our approach is generic and can be

applied to any AI-specific model.

For the hyperparameter optimization phase, AI models are trained with the CI-

CIDS2017 train data using multiple hyperparameter (HP) settings. Then, their

performances are evaluated against atypical attack-1 data (both Slowloris and Slow
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Httptest DoS) to select the best set of hyperparameters. Further evaluation of these

optimized AI models is done using multiple atypical attacks as discussed in this sec-

tion.

HPO and Generalization for DNN

We apply Manual Search Hyperparameter Optimization (MS-HPO) on the DNN

model to improve the TPR and TNR for attack and benign flows, respectively. The

input dimensions for model architecture are 20 since our feature selection technique

uses 20 features. The model has 3 Dense layers with Rectified Linear Unit (ReLU)

activation functions. The first two layers have 1024 neurons while the third dense

layer has 512 neurons. Each Dense layer is followed by Dropout with a value of 0.3

to avoid overfitting. The last Fully Connected (FC) layer along with Sigmoid activa-

tion provides output probabilities of synthesized test data being ‘attack’ or ‘benign’.

These parameters are kept constant during the MS-HPO process. We have only uti-

lized batch size (bs), number of epochs, and learning rate (lr) for HPO purposes. We

conducted the MS-HPO for the DNN model with different batch sizes, number of

epochs, and learning rates for a total of 10 iterations out of which only the best 5 are

discussed further in this paper.

Table 5.6 shows the results of hyperparameter tuning on the DNN model. We

observe that the last two hyperparameter configurations provide better results than

others. We select the last configuration with a learning rate of 0.0005, batch size of

16, and 25 epochs. Our goal is to improve the TPR of attack flows as well as TNR for

benign flows, thereby reducing both FNR and FPR. After employing our proposed

HPO technique for the DNN model, the TNR for Slow Httptest atypical attack-1

improves by 51.26% and by 100% for Slowloris atypical attack-1 as compared to the

DNN model discussed in Table 5.5.
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Table 5.6: Effect of MS-HPO on DNN model

Atypical Attack-1
HP TNR TPR (Slow Httptest) TPR (Slowloris)

lr-0.001
bs-1

Epochs-12
76.23% 0.00% 0.00%

lr-0.001
bs-6

Epochs-15
97.95% 6.31% 0.00%

lr-0.0008
bs-8

Epochs-10
97.95% 58.04% 1.11%

lr-0.001
bs-8

Epochs-15
32.79% 69.93% 100%

lr-0.0005
bs-16

Epochs-25
93.85% 59.61% 100%

Table 5.7: Hyperparameter Optimization for Linear Classifiers

Model HP Description Values

L-SVC
C Regularization [0.8,1.0,1.5,2.0]
tol Tolerance for stop-

ping
[0.001,0.01,0.1,1]

HPO and Generalization for Linear-SVC

Since L-SVC is the best performing model among linear classifiers after the feature

engineering phase, we select it for further performance improvement using GS-HPO.

The CICIDS2017 data is divided into two datasets, 70% for training and 30% for

validation. The model is evaluated on Slow Httptest Atypical Attack-1 and Slowloris

Atypical Attack-1. Table 5.7 discusses the hyperparameters (HP) used in GS-HPO

for the L-SVC model.

The L-SVC model is retrained based on the best hyperparameters selected by Grid

Search Hyperparameter Optimization (GS-HPO) which are C=1.5 and tolerance=1.

Here C represents the regularization parameter while tolerance represents the toler-

ance for stopping criteria [235]. It is observed from Fig. 5.11 that after the HPO

phase, the performance of L-SVC for benign flows improves by 1.64% whereas, for

Slow Httptest Atypical Attack-1, TPR improves by 67.01% and for Slowloris Atypical
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(a) Slow Httptest Atypical Attack-1 (b) Slowloris Atypical Attack-1

Figure 5.11: Evaluation of AI models after HPO on Atypical Attack-1 and Benign
Flows

Attack-1, it improves by only 1.12% as compared to the L-SVC results depicted in

Table 5.5.

HPO and Generalization for Tree-Based Models

We employ the Tree-Based Optimization Tool (TPOT) [236], which is based on Evolu-

tionary Search Hyperparameter Optimization (ES-HPO) explained in the background

section of this paper, to find the right set of hyperparameters for building the AI

model. This optimization process took 48 hours with a population size of 50 and 5

generations to find the right hyperparameter set for Stacked Decision Tree Classifier

(S-DTC). The population size in this case is a positive integer that depicts the num-

ber of individuals in a population. Generations is also a positive integer representing

the number of iterations to run the pipeline optimization process [236]. The resultant

S-DTC combines the power of two DTCs stacked together in the ensemble. The first

classifier has a maximum depth of 10, minimum leaf samples of 4, and minimum

split samples of 20. The second classifier has a maximum depth of 10, minimum leaf

samples of 10, and minimum split samples of 16.

Fig. 5.11 represents the performance evaluation of DNN, L-SVC, and S-DTC
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Table 5.8: A Comparison Between Our Approach and Current Research for Typical,
Atypical Attacks and Benign Flows. Here, Typical Attack Represents the Hold-out
Attack from CICIDS2017. ShttpAA1 Represents Slow Httptest Atypical Attack-1
and SlowAA1 Represents Slowloris Atypical Attack-1.

Model TNR TPR TNR TPR TPR
Benign Typical Benign ShttpAA1 SlowAA1

L-SVC [our approach] 98.69% 75.70% 90.98% 72.98% 100%
DNN [our approach] 96.25% 96.07% 93.85% 59.67% 100%
S-DTC [our approach] 99.92% 99.90% 100% 64.02% 100%
L-SVC [237] 98.66% 77.93% 92.62% 5.70% 98.88%
DNN [120] 98.57% 80.75% 94.67% 57.50% 1.11%
CNN [238] 99.76% 97.11% 100% 0% 0%
LSTM [239] 98.64% 98.57% 97.13% 18.67% 0%

models after HPO in terms of multiple performance metrics such as precision, recall,

F1 score, and FAR. The results show an improvement in the performance metrics

for these models as compared to Fig. 5.10. For example, the recall value for L-SVC

on Slow Httptest is improved from 5.97% (before HPO) to 72.98% (after HPO). For

DNN, the recall value has improved from 8.35% (before HPO) to 60% (after HPO).

As seen in the figure, the AI models perform well when evaluated on Slowloris atypical

attack-1 with all the performance metric values equal to or above 92%. It is observed

that L-SVC has a better performance in terms of TPR, and F1 Score as compared

to DNN, and S-DTC. However, the S-DTC gives the lowest FAR of almost 0% as

compared to other AI models.

Table 5.8 shows a comparison of L-SVC, DNN, and S-DTC models trained using

our approach with current research for both typical and atypical data based on TPR

and TNR values. We train the models presented in [237], [120], [238], and [239] with

their default hyperparameters and evaluate their performance using typical attacks,

atypical attack-1, and benign flows. Stable results of the AI models trained using our

approach on both typical as well as atypical attacks compared to other state-of-the-art

models indicate the first-rate performance of our approach.
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(a) Atypical Attack-2 (b) Atypical Attack-3 (c) Atypical Attack-4

Figure 5.12: Comparison of AI Models on Slow Httptest Atypical Attack and Benign
Flows after HPO

5.2.6 Evaluation and Comparison of AI Models on Atypical

Attacks

This section provides an evaluation of the performance of AI models namely DNN,

L-SVC, and S-DTC against atypical attacks. The atypical attack and benign flows

(2 to 4) shown in Fig. 5.8b and Fig. 5.8a are used for further comparison of the AI

models’ detection capability.

The performance comparison of DNN, L-SVC, and S-DTC on different atypical

attacks belonging to the Slow Httptest DoS attack class is shown in Fig. 5.12. All 3 AI

models achieve high precision, high TNR, and very low FAR scores indicating their

superior performance on benign flows. Yet their performance (Recall) on atypical

attack flows is lower and lies in the range from 36% to 95%. For atypical attack-2, L-

SVC gives the best performance with 62% recall. The DNN recall value for atypical

attack-3 is 75% which is the highest among all the models. For atypical attack-4,

DNN and S-DTC have high recall values of 94% and 95% respectively whereas L-

SVC was not successful in identifying this attack. The Precision and F1 score values

for all these models also vary according to their performances in identifying attack
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(a) Atypical Attack-2 (b) Atypical Attack-3 (c) Atypical Attack-4

Figure 5.13: Comparison of AI Models on Slowloris Atypical Attack and Benign Flows
after HPO

and benign flows. We observe that none of the models can identify all 3 attacks with

high recall values. DNN and S-DTC achieve higher recall rates as compared to L-SVC

which performs poorly on atypical attack-3 and 4.

Fig. 5.13 compares the performances of DNN, L-SVC, and S-DTC on Slowloris

atypical attacks-2, 3, and 4. The results depict a similar performance on all three

attacks since all the attacks are launched in a slow header mode. These attacks have

similar features to the typical attacks in the training dataset but have a mutated

feature profile. In comparison, Slow Httptest DoS atypical attacks in Fig. 5.12,

depict different results. One of the reasons is that these atypical attacks are launched

in three different modes namely, Slow header, Slow body, and Slow read. Therefore,

they belong to three different categories of slow-rate DoS Attacks launched using the

same attack tool.

For Slowloris DoS Atypical attacks in Fig. 5.13, DNN, L-SVC, and S-DTC achieve

high TNR and a very low FAR for all the cases which implies that benign flows can

be accurately identified. From the results on atypical attack-2, 3, and 4, DNN is

the worst performing model for the identification of these attacks with recall values

of 4%, 4%, and 3% respectively. Whereas L-SVC and S-DTC achieve higher recall
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(a) Slow Httptest Atypical Data (b) Slowloris Atypical Data

Figure 5.14: Accuracy Comparison of AI models after HPO on Typical and Atypical
Data. Note that Typical Attacks (TA) Represent the Attacks in the Hold-out CI-
CIDS2017 Data and AA represents an Atypical Attack.

values on all three attacks indicating that for these cases, they provide better atypical

attack identification as compared to DNN. For L-SVC, the recall values for atypical

attack-2, 3, and 4 are 81%, 78%, and 80% respectively. Results on atypical attack-2,

3, and 4 indicate that for the Slowloris attack class, S-DTC is the best performing

model with recall values of 86%, 84%, and 86% respectively.

We provide an analysis of the overall accuracy of the AI models on typical attacks,

multiple atypical attacks from Slow Httptest DoS and Slowloris DoS attack classes as

well as benign flows in Fig. 5.14a and Fig. 5.14b respectively. All the models, DNN,

L-SVC, and S-DTC achieve higher accuracy on typical attack data as compared to

atypical attack data. For Slow Httptest DoS, the overall accuracy is lower as compared

to Slowloris DoS attacks. The accuracy for L-SVC on Slow Httptest Atypical attack-

4 is the lowest around 50% approximately. For DNN and S-DTC, the accuracy is

equal to or greater than 65%. For Slowloris DoS, L-SVC, and S-DTC in general

have a higher accuracy on atypical attack data as compared to DNN which is the

worst-performing model on most of the atypical attacks.

Although we observe some enhancement of model performances against atypical
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(a) Total Run Time for HPO Techniques (b) Total Train Time for AI Models after HPO

Figure 5.15: Time Complexity Analysis for Hyperparameter Optimization (HPO)
Techniques and Selected AI Classifiers after HPO. DNN(1-5) Represent Different
Hyperparameter Configurations for DNN Model (Discussed in Table 5.6). Here, MS-
HPO Represents Manual Search HPO, GS-HPO Represents Grid Search HPO, and
ES-HPO Represents Evolutionary Search HPO.

attacks after the HPO phase, further optimization and retraining are needed to meet

the pre-defined threshold values for recall. Overall results indicate that S-DTC per-

forms relatively better than all the models in comparison except on Slow Httptest

atypical attack-2 where its recall value is only 36%. The other two models in compar-

ison, DNN, and L-SVC also have lower recall values (36% and 62% respectively) on

this attack. We believe that the higher misclassification rate for atypical attacks may

be due to the under-representation of this attack feature profile in the training data.

We plan to investigate this poor performance issue, re-optimization of AI models, and

retraining phases in our future work using an incremental learning approach.

We follow the approach in [240] to provide a complexity analysis for the hyperpa-

rameter techniques employed in this research as well as for training the AI models in

Fig. 5.15. As shown in Fig. 5.15a, we compare the total run time required to train

a DNN model with different sets of hyperparameters for identifying atypical attacks

(MS-HPO) with GS-HPO for L-SVC, and ES-HPO for S-DTC. After analysis, the

results indicate that ES-HPO for the S-DTC takes the longest time (2880 minutes) to
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identify the hyperparameters for atypical attack detection. We train the AI models

DNN, L-SVC, and S-DTC with the set of hyperparameters selected during the HPO

process for each model. Our results highlight that after the HPO phase, the train-

ing complexity for DNN, L-SVC, and S-DTC is reduced as indicated in Fig. 5.15b.

S-DTC takes the least time to train among all the models whereas DNN takes the

longest time of 54.98 minutes owing to the complex deep learning model structure.

Our main motivation for undertaking this research stems from the lack of an ex-

tensive analysis of the effectiveness of supervised IDS models against atypical attacks.

To enhance the current knowledge of dynamically changing attacks, we introduce the

defensive AI engine to build and analyze IDS models against such attacks. Some

important factors to consider while building an AI model for IDS are the size of

available training data, the number of features, and the training time required. The

first important step for our methodology is selecting the most relevant features to

minimize training loss and to make AI interpretations easier.

From our investigation through this research, we deduce that the selection of

optimal hyperparameters is a very important step in building enhanced IDS models

that can face evolving attack strategies. However, this process can be very intensive,

time-consuming, and complex. Although we see improvements in the performances

of our selected AI models over multiple atypical attacks, they need more optimization

of hyperparameters and further retraining to meet predefined TPR thresholds.

We employed only two classes of slow-rate DoS attacks, Slowloris and Slow Httptest

to synthesize atypical attacks for IDS evaluation. Such attacks may be difficult to

trace since the attacker may not send any malicious content when sending multiple

requests to overwhelm the target server.

Extensive improvements in the results may be expected especially with the re-

cent advances in adversarial learning and other semi-supervised approaches. These
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techniques use adaptive algorithms to generate network behavior that has never been

seen before. This newly synthesized network data can be employed to improve the

performance of the IDS against dynamically changing attacks. Henceforth, for the

next part of our research, we explored adversarial semi-supervised methods to defend

against atypical/polymorphic attacks.

118



Chapter 6

Polymorphic Attack Generation

and Detection using CVAE-AN

Today’s networked systems face significant security challenges with the increased

sophistication of rapidly changing (polymorphic) attacks. Especially with the emer-

gence of adversarial attacks, the attackers can evade detection by the AI-enabled

intrusion detection system (IDS). Small alterations are added to the network attack

traffic to create adversarial attacks that can impact the decisions of the AI-based IDS.

The goal of such sophisticated attacks is to manipulate an attack instance in such

a way that it is deceptively classified as benign. In this thesis, we focus on improv-

ing the performance of IDS against such polymorphic attacks (both adversarial and

non-AI) using our proposed CVAE-AN model.

A generic framework representing our methodology is depicted in Fig. 6.1. This

framework serves as the architectural backbone, providing structure and organization

to the concepts and solutions we have introduced through this research. This frame-

work consists of five important phases namely, data collection and preprocessing,

feature engineering and SHAP analysis, adversarial attack generation and detection
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Figure 6.1: A generic framework for realistic polymorphic attack generation and
detection.

using CVAE-AN, synthesized attack quality analysis, and data annotation and aug-

mentation.

6.1 Network data collection and preprocessing

Network packets are captured and passed through a flow analyzer to extract data

flows. These network flows undergo preprocessing which includes cleaning and feature

extraction following a standard ML practice. We adopt the data preprocessing phase

discussed previously in subsection 5.1.1.

6.2 Feature engineering and SHAP analysis

6.2.1 Feature selection

In this work, the best training feature subset is identified by employing the Het-

erogeneous Feature Selection Ensemble (HFSE) [2] as discussed in subsection 5.1.1.
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HFSE is a voting ensemble of AI-based feature selector methods such as Chi-square,

Recursive Feature Elimination, Logistic Regression, Linear Support Vector Classifier,

Random Forest, Extra Tree Classifier, and Light Gradient Boosting Machine. The

votes from each method for a feature under observation are counted to select the best

feature. Features with the largest number of votes are chosen to be a part of the final

feature subset.

6.2.2 Preserving Functional Attack Features (SHAP Analy-

sis)

To preserve the functionality of the attack, we apply SHapley Additive exPlanations

(SHAP) [241] Explainable AI (XAI) method to CICIDS2017 and CICIoT2023 binary

class data. SHAP selects the best features that determine the functional attack

behavior. These functional features have a favorable effect when identifying each

attack. SHAP employs the concepts of coalitional game theory and Shapley values

to explain each prediction. In this case, every feature is considered a ‘player’ in

the game, and Shapley values give an average estimate of each feature towards a

prediction. SHAP is explained in eq.(6.1).

m(k′) = ϕ0 +
N∑
i=1

ϕik
′
i (6.1)

Here, m(k′) is the prediction or output for the instance k′, ϕ0 is the base value

representing the average or expected output, ϕi ∈ R is the contribution for feature i in

the prediction or Shapley value for feature i, k′
i represents the value of the ith feature

for the instance k′, k′ ∈ {0, 1}N represents the feature vector, and N represents the

maximum coalition size or total number of features.

This process is advantageous since it gives us valuable insight into each feature’s
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(a) Slow Httptest DoS Attack

(b) Slowloris DoS Attack

Figure 6.2: Explaining an accurately identified attack within the Slow Httptest DoS
and Slowloris DoS category by utilizing SHAP

contribution towards attack identification for a data flow under observation.

Fig. 6.2 explains the detection results for Slow Httptest DoS and Slowloris DoS

attack classes using SHAP. In Fig. 6.2a for the Slow Httptest DoS attack class, the

base value of 0.34 represents the average of all predictions made by the IDS model

on training data. f(x) represents the output value or prediction of the model which

equals 0.64. The features in pink influence positively and drag the prediction closer to

1 whereas the features in green influence negatively and drag the prediction towards

0. In Fig. 6.2a, the major positive contribution is from features 8, 18, 7, and 10 and

the major negative contribution is from features 1, 12, 9, and 6. Similar behavior is

seen in Fig. 6.2b when detecting a Slowloris DoS attack. From both the figures, a

greater number of features exert influence on the prediction pushing it towards the

right, as opposed to those that are pushing the prediction towards the left. This

results in prediction values of 0.64 and 0.99 for Slow Httptest DoS and Slowloris DoS

respectively. This proximity to 1 signifies that the observation has been correctly

classified as an attack. This pattern is also observed in other attack classes, hence

those instances are not detailed in this discussion. When this analysis is extended to

the entire dataset, the major features that positively impact an attack are identified
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(a) CICIDS2017 DDoS/DoS dataset (b) CICIoT2023 dataset

Figure 6.3: SHAP summary plot for CICIDS2017 and CICIoT2023 datasets respec-
tively.

as functional or attack features. These features are further employed to preserve the

functional nature of an attack when synthesizing an adversarial attack.

Fig. 6.3 illustrates SHAP summary plots for the CICIDS2017 and CICIoT2023

datasets, respectively. Each point on the graph corresponds to a flow (row) from

the input dataset. The color of each point represents the impact of a feature value

on attack detection output, with red indicating high values and blue indicating low

values. For instance, in Fig. 6.3a, the feature ‘Bwd Packet Length Std’ exhibits a high

impact on the model’s ability to detect attacks as indicated by the red color. Similarly,

in Fig. 6.3b, the feature ‘syn flag number’ demonstrates a significant impact on the

model’s ability to identify attacks, indicated by the red color. This pattern is observed

for other features as well, showcasing their impact on attack detection.
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6.3 Adversarial attack generation and detection

6.3.1 Model design and adversarial training

The preprocessed network attack flows along with random Gaussian noise are fed as

inputs to a trained generative DL model. For this purpose, we introduce Conditional

Variational Autoencoder Adversarial Network (CVAE-AN) [3, 70], an enhancement

of a Semi-supervised Generative Adversarial Network (SGAN) model [28–30]. In a

simple SGAN model, the standard generator suffers from the mode collapse problem

and therefore cannot synthesize diverse data samples [200]. While WGAN is less prone

to mode collapse and provides a more stable training process than a standard GAN,

it cannot synthesize multiple variations of a given input class. For this objective,

we employ a CVAE-based generator instead of a standard generator in the SGAN

model. A CVAE is better suited since it can synthesize data with specific conditions

and has full control over the generated results [171]. For our research, the main goal

is to synthesize multiple variations of atypical attacks, each with a different feature

profile, a CVAE-based attack generator is the most appropriate model for this task.

We built the CVAE-AN model for training the CVAE-based attack generator and

the discriminator in an adversarial environment. The discriminator model has an

unsupervised and a supervised component. The unsupervised discriminator discovers

hidden patterns in the input unlabeled data and identifies real from synthesized data

similar to a standard GAN discriminator. The supervised discriminator acts as a

binary classifier (IDS) to identify attacks from benign observations based on the

patterns learned by the unsupervised discriminator. Fig. 6.4 depicts our novel unified

CVAE-AN model for polymorphic attack generation and detection.

The general objective of the attacker is to synthesize dynamically changing atypi-
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Figure 6.4: Polymorphic attack generation and detection using CVAE-AN.

cal attacks/polymorphic attacks and elude discovery by the IDS. On the other hand,

the general objective of the IDS is to continuously improve the attack detection rate

against polymorphic attacks.

The initial stage of adversarial learning involves training the CVAE attack gener-

ator using input attack data and Gaussian noise tailored for each attack class. The

Gaussian noise is added as a source of randomness and helps to create diversity in the

input data. The attacker learns input attack patterns and synthesizes new variations

of an attack from the underlying data distribution and categorical one-hot vector

information (class label). The discriminators are initially trained using benign and

typical attack samples from the benchmark datasets. The supervised discriminator

(IDS) identifies typical/polymorphic attacks from benign samples. The unsupervised

discriminator recognizes generated polymorphic attacks from real input data sam-

ples. Annotated polymorphic attack samples are then added to the input data in the

subsequent training cycle to enhance the overall attack detection rate for the IDS.
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Optimization procedure for the attacker and the IDS

The detailed optimization procedure for CVAE-AN involves training the model com-

ponents to minimize the defined objective functions. Here are the main steps:

Forward pass: For training the CVAE generator G, Gaussian noise with specific

mean and standard deviation values and input attack dataX along with the condition

variable (one-hot vector) y is fed into the encoder of the CVAE which produces

latent representation z. This latent information is used by the decoder to generate

the reconstructed sample X ′. The unsupervised discriminator Dunsup and the IDS

(supervised discriminator) DIDS are trained with the benchmark dataset (consisting

of real attacks and real benign data). The adversarial attack samples synthesized by

the generator X ′ are also passed through Dunsup and DIDS for discrimination.

Loss computation: In this phase, two losses are computed for the CVAE-AN

model consisting of adversarial loss and CVAE loss. The discriminators provide the

adversarial loss indicating how well they distinguish between real and generated sam-

ples for Dunsup and between attack and benign samples for the DIDS. CVAE loss is

a combination of reconstruction loss between X and X ′ and KL divergence between

the learned variational distribution from the latent and a chosen prior distribution

(multivariate Gaussian).

The discriminatorDunsup maximizes the probability of assigning high scores to real

samples log (Dunsup(x)) and low scores to generated samples log(1 − Dunsup(G(z))).

The adversarial loss for Dunsup is denoted in eq.(6.2).

Ladv,Dunsup = −Ex∼p(x)[log (Dunsup(x))]− Ez∼p(z)[log(1−Dunsup(G(z)))] (6.2)

The DIDS maximizes the probability of identifying attacks from benign samples.
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The adversarial loss for DIDS is denoted in eq.(6.3).

Ladv,DIDS
= −Ex∼p(x)[log (DIDS(x))]− Ez∼p(z)[log(1−DIDS(G(z)))] (6.3)

The generator G aims to minimize the combined adversarial loss for both Dunsup and

DIDS. The total adversarial loss for G is denoted in eq.(6.4).

Ladv,G = −Ez∼p(z)[log(Dunsup(G(z)))]− Ez∼p(z)[log(DIDS(G(z)))] (6.4)

In addition to the adversarial loss, the CVAE generator is trained using a combi-

nation of reconstruction loss Lrecon and conditional prior LKL represented in eq.(6.5).

Lcvae = Lrecon + LKL (6.5)

The overall loss for the CVAE-AN model is represented in eq.(6.6).

Ltotal = (Ladv,Dunsup + Ladv,DIDS
+ Ladv,G + Lcvae) (6.6)

Backward pass: During backward pass or backpropagation, the generator or

CVAE gradients are computed for CVAE loss and adversarial loss with respect to

the generator’s parameters. They guide the updates to the generator to enhance its

ability to synthesize realistic and diverse adversarial attack samples. Gradients are

computed for adversarial losses from Dunsup and DIDS which guide updates to the

discriminator Dunsup to enhance its ability to identify real samples from synthesized

samples and to IDS DIDS in classifying attacks from benign.

Parameter updates: The gradients obtained from backward pass are used to

update the parameters of the generator and the discriminator using an optimization
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algorithm such as Adam. This involves adjusting weights and biases in the direction

that minimizes the combined adversarial and CVAE losses. This process is repeated

for multiple data batches until convergence.

Information sharing between the generator, unsupervised discriminator,

and the IDS

Typically the generator G, unsupervised discriminator Dunsup, and the IDS DIDS op-

erate independently during training. G does not have complete knowledge of inner

workings and decision making of Dunsup and DIDS and vice versa. They adapt iter-

atively based on the feedback loop. The key information shared during training is

related to generated samples and their quality. Dunsup and DIDS share feedback with

G in the form of a loss function indicating how well the generator is performing in

synthesizing realistic network attacks and in evading detection by the IDS. G uses this

feedback to adapt its parameters, improving the quality of generated samples making

them look like realistic attacks and maximizing the probability of evading detection

by the IDS. On the other hand, the discriminator Dunsup adjusts its parameters to

identify real from synthesized and the DIDS adjusts its parameters to identify attack

from benign. Dunsup and DIDS serve as critical components in the adversarial train-

ing process providing feedback to guide the improvement of G′s performance and vice

versa.

6.3.2 Hyperparameter Optimization and retraining

The hyperparameters for the CVAE-AN model are chosen randomly by conducting

multiple trial runs and experiments until appropriate values are identified. For each

run, we evaluate the Evasion Success Rate (ESR) of the synthesized polymorphic

attack on the IDS (supervised discriminator). We aim to select the set of hyperpa-
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rameters that result in the highest ESR since we want the polymorphic attacker to

evade detection by the IDS. Once the best set of hyperparameters is determined, we

implement those settings to conduct further training of the CVAE-AN model.

6.3.3 Synthesizing Dynamically Changing Atypical Attacks/

Polymorphic Attacks

The techniques given below are applied to generate dynamically changing atypical

attacks/polymorphic attacks:

Adversarial Atypical/ Polymorphic Attacks

Dynamic atypical attacks are synthesized by the polymorphic CVAE attack generator

by adding random Gaussian noise with distinct values for mean and standard devi-

ation to the training attack data for each cycle. When the IDS detects the attack,

the polymorphic attacker modifies the feature profile again in the next cycle. During

each attack cycle, the values for mean and standard deviation for Gaussian noise are

altered by smaller amounts, for example, unit increments to synthesize newer noise

values while training the attacker which generates another polymorphic attack. This

process of polymorphic attack chain continues until the IDS can detect any previously

unseen attacks initiated by the attacker or until the attacker has exhausted all the

features used to launch a new attack.

Algorithm 6.1 provides a generic outline for generation and detection of an ad-

versarial polymorphic attack using CVAE-AN. The Big O complexity of this model

depends upon several factors such as the size of the dataset, the architecture of the

generator and the discriminator, and the number of training iterations. For the gener-

ator G, if O(g) is the complexity of a single forward pass, then the overall complexity
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Algorithm 6.1: Adversarial Polymorphic Attack Generation & Identification based
on CVAE-AN [3,70]

Input:
Noise N with a mean of µ and standard deviation of σ
Generator input - Noise N plus train attack data Xattk

Discriminator/IDS input - original training data Xreal with typical attacks Xta and benign flows
Xb

Number of training iterations - n steps

Output:
Trained Generator G, Trained Discriminator D, Trained IDS C

for i = 0 to n steps do
µ = i ;
σ = i+ 1;

/∗ Training the Generator G ∗/

G synthesizes adversarial polymorphic attacks Xpa: G(N(µ, σ) +Xattk)
Adjust the gradients of G through back propagation

/∗ Training the Discriminator D ∗/

D identifies Xreal, Xpa

C identifies typical attacks Xta, polymorphic attacks Xpa and benign flows Xb

Adjust the gradients of D, C through backpropagation
end for

for the generator training step is O(n∗g). Similarly, O(d) is the complexity of a single

forward pass for the Discriminator (consisting of D and C). The overall complexity

for the discriminator training step is O(n ∗ d). The total complexity of Algorithm 6.1

in Big O notation is O(n ∗ (g + d)), where n is the number of training iterations.

Non-AI Synthesized Polymorphic Attacks

For synthesizing non-AI polymorphic attacks, we follow the methodology given in

chapter 5 section 5.1.2. Within a virtual network, we employ publicly acquired attack

tools to conduct a series of diverse attacks on the target server sequentially. During

this process, we introduce random modifications to the parameters of attack tools

aiming to synthesize attacks with different feature profiles. These non-AI polymorphic

attacks are employed offline to assess the detection ability of the trained IDS on
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Figure 6.5: Polymorphic attack generation and detection in a virtual network.

realistic network attacks. Figure. 6.5 represents polymorphic attack generation and

detection in a virtual network.

6.3.4 Evaluation and testing

The evaluation phase involves validation of our IDS model’s performance for each

polymorphic attack and retrain cycle using several applied performance metrics such

as Balanced Accuracy (BA), IDS proficiency (pID), and Overall Error Rate (OER).

We employ the Evasion Success Rate (ESR) metric to measure the performance of the

CVAE polymorphic attacker for each cycle. The results are analyzed to understand

how well the model is performing.
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6.4 Polymorphic Adversarial Attack Quality Anal-

ysis

To fully investigate the quality of polymorphic adversarial attacks generated by our

system, we first employ syntactic validation of the data. This step involves examin-

ing the consistency of the generated attacks with network constraints. Subsequently,

we apply several statistical validation techniques, including hypothesis testing, sta-

tistical distance-based analysis, and correlation analysis to compare real attack data

and adversarial polymorphic attacks. The combination of these statistical metrics

provides a comprehensive analysis of the quality of generated attacks in different as-

pects, including shape, location, overlap, divergence, and correlation. These metrics

collectively offer insights into how well the adversarial synthesized attacks align with

the characteristics of the original attacks. This aids in assessing effectiveness of the

CVAE-AN attack generator in capturing the desired properties of attack data.

The following provides a detailed overview of the syntactic and statistical valida-

tion techniques employed for the analysis of the quality of synthesized attacks.

6.4.1 Syntactic validation of adversarial attacks

The quality of adversarial network attacks is studied using several syntactic validation

criteria such as range coverage for feature values, the validity of binary values, and

valid category membership [205]. Our adversarial synthesized datasets discussed in

subsection 6.3.3 are first validated using the following syntactic constraints:
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Range coverage for feature values

To maintain the validity of an adversarial attack, the attributes of network data

should have an acceptable range of values that follow network constraints. If these

values do not lie within the range, the synthesized adversarial data is considered in-

consistent. Therefore, when generating adversarial data, it is important to follow

the interval range for each feature similar to realistic network attacks. For example,

when comparing the range of values for the feature Average Packet Size in the syn-

thesized attack data to the original data, it is observed that in our case this value lies

within similar ranges for both datasets. Similarly, other synthesized features are also

examined for range coverage and compared to the original data.

Validity of binary feature values

The validity of binary feature values is also an important constraint that needs to be

maintained in adversarial attacks. Binary features for a network dataset are features

that can only have two values, commonly represented as 0 and 1. 0 represents a

certain category or non-existence of a specific trait while 1 represents the presence of

the trait. The validity of binary values for features such as flags, for example, Fwd

PSH Flags and other flags in the synthesized dataset is also assessed to make sure

that non-binary values are not assigned to binary values.

Validity of category membership

Furthermore, the categorical features that are one-hot encoded (one instance has a

value set to 1, and the rest of the instances have a value set to 0) are examined to

check that non-zero values should not be assigned to multiple categories at a time

for a given instance. For example, the protocol cannot be set to 1 for both TCP and
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UDP at the same time.

6.4.2 Statistical validation of adversarial attacks

Kolmogorov-Smirnov hypothesis test

Inspired by research in the image processing field [242], we employ Kolmogorov-

Smirnov hypothesis testing (KS test) to verify if the adversarially synthesized atypi-

cal/polymorphic attacks and original network attacks belong to the same probability

distribution.

A two-sample Kolmogorov-Smirnov test [243] is a nonparametric statistical test

that compares the similarity of distributions for a sample from two different datasets.

It measures the maximum difference between the cumulative distribution functions

of the two distributions. Two hypotheses are considered for this test. The null hy-

pothesis H0 states that the two samples from the two datasets belong to the same

distribution. The alternate hypothesis H1 states that the two samples belong to dif-

ferent distributions. First, the KS statistic, which measures the distance between

the two empirical distributions for all the values of x, is calculated. Then, the cor-

responding critical value (p-value) for the calculated distance is determined. The

p-value indicates the strength of evidence for accepting or rejecting the null hypoth-

esis H0 based on the observed data [244]. When the p-value is small, it indicates

strong proof against the null hypothesis. The p-value is compared with the statistical

significance level α which is normally set to 0.05. If the p-value is equal to or larger

than the significance level, then the null hypothesis H0 is accepted and if it is lower

than the significance level, then the alternative hypothesis is accepted. The KS-test

statistic Dks is explained in eq.(6.7).
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Dks = max
x

(|F1(x)− F2(x)|) (6.7)

Here, F1(x) and F2(x) are the cumulative distribution functions (CDFs) for the

two data samples respectively.

Hellinger Distance

Hellinger distance measures the distance between the two probability distributions

and its value lies in the range of 0 to 1 [245]. It access the similarity and overlap

between original and synthesized datasets. If the distance between the two probability

distributions is closer to 1, then the observed distributions are dissimilar whereas if

the distance is closer to 0, the distributions resemble each other very closely.

The Hellinger distance Dh is defined in eq.(6.8).

Dh =
1√
2
||
√
P1−

√
P2||2 (6.8)

Here, P1 and P2 are the probability distributions for the two data samples re-

spectively.

Kullback-Leibler Divergence (KLD)

Kullback-Leibler Divergence (KLD) measures the score of how one probability distri-

bution diverges from another probability distribution [246]. This metric measures the

information lost when one probability distribution is used to approximate another. It

is also referred to as relative entropy. Although this metric is a distance based metric,

it is not symmetric. It calculates the closeness of the two distributions to one another.

The value for KLD ranges from 0 to positive infinity. A value of 0 indicates that the

two distributions are identical, while a larger value indicates greater dissimilarity.
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Given two probability distributionsX and Y , the KL Divergence can be calculated

as DKL(X||Y ) defined in eq.(6.9).

DKL(X||Y ) =
∑
i

X(i) log (
X(i)

Y (i)
) (6.9)

X(i) is the probability of the i-th event according to distribution X, Y (i) is the

probability of the i-th event according to distribution Y . The sum is taken over all

possible events in the sample space. The value of KL Divergence DKL(X||Y ) ≥ 0

and is not symmetric which means DKL(X||Y ) ̸= DKL(Y ||X).

Jensen-Shannon Divergence (JSD)

Jensen-Shannon Divergence (JSD) measures the average dissimilarity between the two

probability distributions [247]. This metric is a more smoothed/ normalized version

of KLD since it is symmetric. The value of JSD ranges from 0 to 1. A value of 0

indicates that the two distributions are similar while a value of 1 indicates that the

two distributions are dissimilar.

The JS Divergence for two probability distributions X and Y is measured using

JSD(X||Y ). JSD is calculated by computing KLD for both X and Y relative to M

and then taking their average. This is defined in eq.(6.10).

JSD(X||Y ) =
1

2
(DKL(X||M) +DKL(Y ||M)) (6.10)

Where M represents the midpoint distribution which is calculated as the average

of X and Y : M = 1
2
(X + Y ). DKL(X||M) is the KL Divergence between X and the

average distribution M . DKL(Y ||M) is the KL Divergence between Y and M . Since

JSD employs normalized KLD, the divergence of X from Y is the same as Y from X.

This is denoted as: JSD(X||Y ) == JSD(Y ||X).
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Correlation Analysis

Pearson’s correlation-based similarity metric [248] is used to measure the pairwise

feature correlation between two data distributions and analyze their semantic resem-

blance. The range of this metric lies between 0 to 1. A similarity score of 1 indicates

that the pairwise correlations between two data distributions are the same and vice

versa for a score of 0. The similarity between the two correlations is calculated using

the eq.(6.11).

Similarity = 1− |Ap,q −Rp,q|
2

(6.11)

Here, Ap,q and Rp,q represent the correlation value for the first and second data

distribution respectively for a pair of features p and q. The Pearson’s correlation

value [82] for each data distribution is represented by eq. (6.12).

corr =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(6.12)

In this context, corr is the correlation coefficient, which lies between -1 and 1 and

measures the strength of linear correlation between two variables. xi represents all

the values of a feature x in a sample, x̄ represents the mean of all values of feature

x, yi represents all the values of a feature y in a sample and ȳ represents the mean of

all values of feature y.

6.5 Attack annotation and augmentation

After analyzing synthesized adversarial attack quality, the attacks that follow all

the syntactic data constraints and are closer in distance to real network attacks are

selected for further annotation and are incrementally augmented to input training

137



Start

Data collection and pre-processing

Best feature subset

Feature engineering using HFSE

SHAP Analysis

Functional (attack) and 
non-functional features

Model design and training (attack and
defense)

Is ESR >= max(ESR)

Hyperparameter optimization & retraining

No Yes

IDS model evaluation

Attack quality analysis

Attack annotation and augmentation

End

End

Training
dataset

Validation
dataset

Polymorphic
attacks &

benign flows

Figure 6.6: Workflow for Polymorphic Attack Generation and Detection

data for class balancing and improving the performance of our IDS against adversarial

attacks.

The overall workflow for polymorphic attack generation and detection using our

methodology is given in Fig. 6.6.
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Chapter 7

Experimental Design

7.1 Dataset Description

7.1.1 CICIDS2017 Dataset Details

CICIDS2017 benchmark dataset composed of real network attacks [233, 234] is em-

ployed for this research to train the IDS with typical attacks and benign observa-

tions. Fig. 7.1a depicts the proportion of each DoS/DDoS attack class and benign

class in the dataset. The total percentages of DoS Hulk, DDoS, DoS GoldenEye,

DoS Slowloris, and DoS SlowHttptest attack flows are 22.04%, 12.21%, 0.98%, 0.55%

and 0.52% respectively. While the total percentage of benign flows in this dataset is

63.70%.

The dataset consists of 75 features. These features are generated by feeding the

packet captures that resemble real-world data into the CICFlowmeter. A detailed

explanation of all the features can be found in [8]. The IDS (Discriminator in our

CVAE-AN model) is trained using CICIDS2017 data, with 75% randomly selected

flows for training, and the remaining 25% randomly selected flows for testing against
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(a) CICIDS2017 DDoS/DoS dataset details (b) CICIoT2023 dataset details

Figure 7.1: The number of benign and attack observations for CICIDS2017 and
CICIoT2023 datasets respectively.

Table 7.1: Best feature subset selected using HFSE Technique for CICIDS2017 dataset

S.No Feature name Chi2 RFE LR RFC L-GBM ETC L-SVC votes

1 Average packet size ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
2 Idle Mean ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
3 Packet Length Variance ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
4 Max Packet Length ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
5 Flow IAT Max ✓ ✓ ✓ ✓ ✓ ✓ ✗ 6
6 Bwd Packet Length Std ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
7 Bwd Packet Length Mean ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
8 Avg Bwd Segment Size ✓ ✓ ✓ ✓ ✗ ✓ ✓ 6
9 Init Win bytes forward ✓ ✗ ✗ ✓ ✓ ✓ ✓ 5
10 Packet Length Std ✓ ✓ ✗ ✓ ✓ ✓ ✗ 5
11 Packet Length Mean ✓ ✓ ✗ ✓ ✓ ✓ ✗ 5
12 Init Win bytes backward ✓ ✗ ✓ ✓ ✓ ✗ ✓ 5
13 Idle Max ✓ ✓ ✓ ✗ ✗ ✓ ✓ 5
14 Fwd Packet Length Max ✗ ✓ ✓ ✓ ✓ ✗ ✓ 5
15 Flow IAT Std ✓ ✓ ✓ ✗ ✓ ✗ ✓ 5
16 Flow IAT Mean ✓ ✓ ✓ ✗ ✓ ✗ ✓ 5
17 Bwd Packet Length Min ✓ ✓ ✓ ✓ ✗ ✗ ✓ 5
18 Fwd IAT Total ✓ ✗ ✗ ✗ ✓ ✓ ✓ 4
19 Bwd Packet Length Max ✓ ✓ ✗ ✓ ✗ ✓ ✗ 4
20 Fwd Packet Length Mean ✗ ✓ ✓ ✓ ✓ ✗ ✗ 4
21 Fwd IAT Std ✓ ✗ ✗ ✓ ✓ ✓ ✗ 4
22 Fwd IAT Mean ✓ ✗ ✓ ✗ ✓ ✗ ✓ 4
23 Fwd IAT Max ✓ ✗ ✗ ✓ ✓ ✓ ✗ 4
24 Bwd Packets per second ✗ ✓ ✓ ✗ ✓ ✗ ✓ 4

typical attacks as a conventional ML practice. Table 7.1 displays the feature subset

chosen through the suggested HFSE technique for the CICIDS2017 dataset. The

features are sorted according to their rank based on the number of votes by different

feature selectors in the ensemble.
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Table 7.2: Best feature subset selected using HFSE Technique for CICIoT2023 dataset

S.No Feature name Chi2 RFE LR RFC L-GBM ETC L-SVC votes

1 urg count ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
2 rst count ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
3 Header Length ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
4 Magnitude ✓ ✓ ✓ ✗ ✓ ✓ ✓ 6
5 Duration (TTL) ✓ ✓ ✗ ✓ ✓ ✓ ✓ 6
6 Flow duration ✗ ✓ ✓ ✓ ✓ ✗ ✓ 5
7 Variance ✓ ✓ ✗ ✓ ✗ ✓ ✓ 5
8 Std ✓ ✓ ✓ ✓ ✗ ✗ ✓ 5
9 Radius ✓ ✓ ✓ ✗ ✓ ✗ ✓ 5
10 Max pkt length ✓ ✓ ✓ ✗ ✓ ✗ ✓ 5
11 syn flag number ✓ ✓ ✓ ✗ ✗ ✗ ✓ 4
12 rst flag number ✓ ✓ ✓ ✗ ✗ ✗ ✓ 4
13 ack flag number ✓ ✓ ✗ ✗ ✗ ✓ ✓ 4
14 ICMP ✓ ✓ ✓ ✗ ✗ ✗ ✓ 4
15 syn count ✗ ✓ ✗ ✗ ✓ ✗ ✓ 3
16 ack count ✗ ✓ ✓ ✗ ✗ ✗ ✓ 3
17 Number ✗ ✗ ✗ ✓ ✗ ✓ ✓ 3
18 IAT ✗ ✗ ✗ ✓ ✓ ✓ ✗ 3
19 HTTPS ✓ ✗ ✗ ✓ ✗ ✓ ✗ 3
20 fin flag number ✓ ✓ ✗ ✗ ✗ ✗ ✗ 2

7.1.2 CICIoT2023 Dataset Details

To substantiate our findings, we also incorporate the most up-to-date attack dataset,

namely, CICIoT2023 [9] for this research. This dataset consists of real-time data

captured in an IoT environment with 105 devices. It comprises benign data and

seven categories of attacks such as DDoS, DoS, Mirai, Spoofing, Reconnaissance,

Web, and BruteForce. Fig. 7.1b shows the number of flows for different classes of

attacks and benign data for the CICIoT2023 dataset. Since this dataset encompasses

approximately 548GB of traffic information [9], we employ a smaller dataset (first

17 subsets of CICIoT2023) for training our model. The rest of the data subsets are

used randomly for training the polymorphic attacker class-wise for each attack and

evaluating the IDS against non-AI attacks. Table 7.2 displays the feature subset

chosen through the suggested HFSE technique for the CICIoT2023 dataset.

The functional (red) and non-functional (green) feature subsets selected using

SHAP for CICIDS2017 and CICIoT2023 datasets respectively are displayed in Fig.

7.2. The functional features are kept unmutated while synthesizing polymorphic
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Figure 7.2: Feature subsets selected from CICIDS2017 and CICIoT2023 datasets by
employing HFSE voting ensemble. Attack (functional) features identified using SHAP
XAI are displayed in red color.

Figure 7.3: Preserving functional attack features when generating dynamically chang-
ing atypical/polymorphic attacks. Only the first 12 features are depicted here out
of 24 selected features in total for CICIDS2017 data. Features depicted in red are
functional attack features identified using SHAP. Notice that these features are kept
constant when polymorphic attacks are generated to preserve the attack characteris-
tics.

attacks to preserve the nature of the attack such that it resembles a real network

attack. Fig. 7.3 depicts the process of preserving the functional attack characteristics

while generating polymorphic attacks for the CICIDS2017 dataset.
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Table 7.3: Polymorphic attacks (non-AI) for Slowloris DoS class. PA represents a
polymorphic attack.

Polymorphic Attack Duration Number of Flows p s ua

PA1 (non-AI) 3600 sec 10165 80 500 No
PA2 (non-AI) 10800 sec 33406 80 1000 No
PA3 (non-AI) 7200 sec 20536 80 5000 Yes

Table 7.4: Polymorphic attacks (non-AI) for Slow Httptest DoS class.

PA Mode Duration # Flows c i r l t x p s w y n z k

PA1
(non-
AI)

H 2475 sec 8550 5000 25 500 10800 GET 24 10 - - - - - -

PA2
(non-
AI)

B 7200 sec 17185 5000 120 500 7200 POST 10 10 4096 - - - - -

PA3
(non-
AI)

X 1800 sec 9205 10000 10 450 1800 GET 32 5 - 512 1024 5 32 3

7.2 Non-AI Polymorphic Attack Details

We employ several commonly available attack tools in a virtual network to generate

non-AI polymorphic attacks. We alter these tool-based characteristics from their

original settings to random values to create new feature profiles. For each attack

class in the CICIDS2017 dataset, we synthesize three non-AI polymorphic attacks.

For launching the Slowloris DoS attack using Slowloris attack tool [249], we use

target port number (p), number of sockets (s), and random user agents (ua) attributes

to generate different feature profiles for each polymorphic attack. The details of

polymorphic slowloris attacks with different feature profiles are given in Table 7.3.

To create different feature profiles for a Slow Httptest DoS attack, it is launched

in 3 modes such as Slow Header (H), Slow Body (B), and Slow Read (X) using the

commonly available DoS stress testing tool [232]. The attributes used for synthesizing

different Slow Httptest DoS attacks are explained in detail in Table 5.2. Table 7.4

presents the details of polymorphic Slow Httptest DoS attack with different feature

profiles.
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Table 7.5: Polymorphic attacks (non-AI) for GoldenEye DoS class.

PA Duration # Flows Useragents (u) w s m n d

PA1 (non-AI) 600 sec 18996 randomly generated 10 500 GET True False
PA2 (non-AI) 600 sec 12084 randomly generated 50 1000 GET True False
PA3 (non-AI) 900 sec 13307 randomly generated 100 2000 GET True True

GoldenEye DoS attack is launched by utilizing the open source GoldenEye DoS

testing tool [250]. The attributes for generating different feature profiles are user

agents (u), number of concurrent workers (w), number of concurrent sockets (s),

HTTP method (’get’, ’post’ or ’random’) used (m), no SSL certificate verification

(n), debug mode enabled (d). Table 7.5 provides the details of different feature

profiles for polymorphic GoldenEye DoS attacks.

Hulk DoS attack is launched using the open source Hulk DoS tool [251]. The

flooding attack is targeted at the web server in the virtual network to disrupt its

normal functioning by prolonging its unavailability to legitimate users. The attack

is launched for 3600 seconds with tool-based default attack parameters. During the

attack, 5374897 requests are automatically sent from the attacker to the target server

to overwhelm it. A substantial volume of packets is collected and data flows are

isolated from it using the flow analyzer to synthesize three non-AI attack datasets.

To carry out non-AI synthesized DDoS attacks, we employ the open-source known

as High Orbit Ion Cannon (HOIC) attack tool [252]. This tool is used to initiate

numerous HTTP requests on the target web server within the virtual network, aiming

to overwhelm the server and induce service disruption. The attack is launched for

3600 seconds with 20 threads and 5 simultaneous attacks. Three distinct non-AI

attack datasets are extracted from the collected data packets, following a process

similar to the extraction of Hulk DoS attacks.
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7.3 Evaluation Metrics

The performance of IDS can be effectively measured if it can distinctly identify both

attack and benign observations [45]. For example, when examining the results of an

IDS if we focus on improving only attack detection performance and ignore benign

detection, it could increase the number of false alarms for the NIDS. This flood of

false triggers for a non-malicious activity within the network can deplete network

resources such as memory, time, and processing power. As a result, genuine users

experience delayed responses to real network incidents.

Given below are the standard and applied evaluation metrics used for the analysis

of the IDS. These metrics reflect the performance of the IDS against both attack and

benign traffic.

• True Positive Rate (TPR): It is the rate of correctly identified attack ob-

servations with respect to all the attack observations in the data. It is also

commonly known as recall or sensitivity.

TPR =
TP

(TP + FN)
(7.1)

• True Negative Rate (TNR): It is the rate of correctly identified benign

observations with respect to all the benign observations in the data. It is also

commonly known as specificity or selectivity.

TNR =
TN

(TN + FP )
(7.2)

• Balanced Accuracy (BA): This metric is especially beneficial when the

classes in the input data are imbalanced. BA takes into account both attack
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and benign samples identified. It is measured by the mean of TPR and TNR

for a binary IDS.

BA =
(TPR + TNR)

2
(7.3)

• IDS Proficiency (pID): This metric computes the efficiency of an IDS for the

detection of both attack and benign observations. pID considers both TPR and

TNR values for an IDS and the range for this metric is from -1 to +1. Here,

-1 signifies that the IDS cannot identify any attack or benign samples and vice

versa for +1.

pID = TPR + TNR− 1 (7.4)

• Overall Error Rate (OER): This measures the total erroneous benign or

attack classifications done by the IDS model.

OER = 1−BA (7.5)

To assess the success of the attacker in eluding IDS, the following metric is intro-

duced:

• Evasion Success Rate (ESR): This measures the rate of increase of unde-

tected atypical attack observations by the IDS. It is also known as the miss

rate.

ESR =
FN

(FN + TP )
= 1− TPR (7.6)

Here, TP , TN , FP , and FN represent True Positives, True Negatives, False

Positives, and False Negatives respectively.

146



Chapter 8

Performance Evaluation

In this chapter, we explain and analyze the results obtained from various experiments

against typical and dynamically changing atypical/polymorphic attacks using our

technique.

8.1 Model Structure

For this research, we adopt the Keras library and Tensorflow platform to build the

CVAE-AN model. The attack generator is a CVAE model consisting of encoder

and decoder networks. The stacked discriminator network with independent logical

supervised and unsupervised models having shared weights is based on the design in

[29]. The supervised discriminator acts as an IDS classifier with a softmax activation.

The unsupervised discriminator distinguishes real input data from synthesized attack

data with a binary activation.

The summary of configuration parameters of CVAE-AN for the CICIDS2017

dataset is obtained from [3] through multiple training iterations and refinement.

Table 8.1 summarizes the hyperparameter optimization and best configuration pa-
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Table 8.1: Hyperparameter Optimization and best configuration parameters for
CVAE-AN with CICIDS2017 dataset.

Hyperparameter Search Space Best value Results on
TA

Results on
Adv Shttp
PA1

Number of neurons in input
layer of the encoder

[20, 24, 76] 24

Number of layers in the en-
coder, decoder, and discrimi-
nator

[2-4] 2

Number of neurons in en-
coder’s hidden layers

[76-76-76, 128-128-128, 128-
128]

128-128

Number of neurons in latent
layer

[30, 5] 5

Number of neurons in de-
coder’s hidden layers

[76-76-76, 128-128-128, 128-
128]

128-128 BA= 93.04%
pID = +0.86
OER= 6.96%
ESR= 1.58%

BA= 43.49%
pID = -0.13
OER=56.51%
ESR= 99.96%

Number of neurons in output
layer of the decoder

[20, 24, 76] 24

Number of neurons in Dis-
criminator’s hidden layers

[128-128-128, 128-128] 128-128

Activation function in Dis-
criminator’s hidden layers

LeakyRelu (alpha=0.2) LeakyRelu (al-
pha=0.2)

Dropout 0.4 0.4
Optimizer Adam (beta1=0.5) Adam

(beta1=0.5)
Learning rate [0.0001-0.0004] 0.0002

rameters employed for the CVAE-AN model with the CICIDS2017 dataset. Table

8.2 provides the specifics of hyperparameter optimization and identification of best

IDS configuration values for the CICIoT2023 dataset. The initial goal is to have

polymorphic/atypical attacks to evade detection by the IDS. Therefore, we choose

the set of hyperparameters that lead to the highest Evasion Success Rate (ESR) for a

polymorphic/atypical attack. Afterward, we employ these selected hyperparameters

to build our IDS for subsequent training against other polymorphic/ atypical attack

classes.

8.2 Result Analysis

Multiple performance metrics are used to evaluate the results of the IDS on typical

attacks and dynamically changing atypical/polymorphic attacks. We represent at-
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Table 8.2: Hyperparameter Optimization and best configuration parameters for
CVAE-AN with CICIoT2023 dataset.

Hyperparameter Search Space Best value Results on
TA

Results on
Adv Recon
PA1

Number of neurons in input
layer

20 20

Number of layers in the en-
coder, decoder, and discrimi-
nator

[2-4] 3

Number of neurons in en-
coder’s hidden layers

[1024-512-256-128, 512-256-
128, 256-128-128, 128-128-
64, 128-128]

128-128-64

Number of neurons in latent
layer

10 10

Number of neurons in de-
coder’s hidden layers

[128-256-512-1024, 128-256-
512, 128-128-256, 64-128-
128, 128-128]

64-128-128 BA= 98.87%
pID = +0.98
OER= 1.13%
ESR= 0.02%

BA= 57.31%
pID = +0.15
OER= 42.69%
ESR= 85.27%

Number of neurons in output
layer

20 20

Number of neurons in Dis-
criminator’s hidden layers

[1024-512-256-128, 512-256-
128, 256-128-128, 128-128-
64, 128-128]

128-128-64

Activation function in Dis-
criminator’s hidden layers

LeakyRelu (alpha=0.2) LeakyRelu (al-
pha=0.2)

Dropout 0.4 0.4
Optimizer Adam (beta1=0.5) Adam

(beta1=0.5)
Learning rate [0.0001-0.0007, 0.001] 0.0005
Batch size [32, 64] 32
Number of epochs 500 500

tacks in the hold-out CICIDS2017 and CICIoT2023 data as typical attacks because

these attacks are known to the IDS. Our CVAE attacker can only synthesize polymor-

phic attacks for a single class at a time. We assume that the polymorphic attacker

modifies the feature profile to launch atypical attacks each time the IDS can success-

fully identify the attack. The polymorphic attack cycles are followed by incremental

adversarial training of the IDS to improve its performance.

Fig. 8.1 depicts the changes in TPR of our IDS when a Slow Httptest DoS attack

profile is mutated by the polymorphic CVAE attacker for each polymorphic attack

cycle. From Fig. 8.1a, during the first polymorphic attack cycle, the IDS can’t

identify any attacks, therefore the TPR is reduced to almost zero. An improvement

in the TPR results is depicted after the first adversarial retraining phase in Fig.
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(a) Polymorphic Attack cycle 1 (b) Retraining cycle 1

(c) Polymorphic Attack cycle 2 (d) Retraining cycle 2

(e) Polymorphic Attack cycle 3 (f) Retraining cycle 3

Figure 8.1: Effect on TPR of the IDS when a Slow Httptest DoS attack profile (from
CICIDS2017 dataset) is mutated by the polymorphic attack generator.

8.1b. During the second polymorphic attack cycle, the polymorphic attack generator

changes the feature profile again intending to evade detection by the IDS. As seen
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(a) CICIDS2017 dataset (Slow Httptest DoS attack) (b) CICIoT2023 dataset (Recon attack)

Figure 8.2: Comparative analysis of Evasion Success Rate for Slow Httptest DoS
attack from CICIDS2017 dataset and Recon attack from CICIoT2023 dataset. Here
TA represents typical attacks, Adv-PA symbolizes adversarial polymorphic attacks
and PA (non-AI) symbolizes non-AI polymorphic attacks.

in Fig. 8.1c, the TPR results are reduced again to approximately 75% which means

that the IDS is misclassifying 25% polymorphic attacks. To enhance the overall

effectiveness of the IDS, we again perform adversarial retraining. The polymorphic

attacker keeps on launching atypical attacks on the victim IDS until it exhausts all

of its features or until it is capable of recognizing all the new attacks. In this case, as

seen in Fig. 8.1e, initially during the training process, the TPR for IDS is reduced,

but it gradually learns the pattern of polymorphic attacks after multiple retraining

sessions and thus can identify the attack with approximately 90% TPR both during

the attack phase as well as retraining phase.

To evaluate the success of the polymorphic attacker, we employ the Evasion Suc-

cess Rate (ESR) metric. Fig. 8.2a and Fig. 8.2b compare ESRs for Slow Httptest

DoS attack and Recon attack from CICIDS2017 and CICIoT2023 datasets respec-

tively. As shown in the figure, the ESR metric value for typical attacks is very low as

compared to other polymorphic attacks. Each polymorphic attack cycle represents a

successful evasion of IDS by the polymorphic attacker. After incremental retraining,
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the ESR reduces to very low values in most of the cases indicating that the IDS can

identify the attack. Although for non-AI synthesized polymorphic attacks, the ESR

is higher (even after adversarial training), it gradually reduces to a lower value after

the third retraining cycle. We randomly selected one attack from each dataset for

this analysis. Similar results are obtained using other attack classes and as such have

not been discussed here.

We employ the balanced accuracy metric to offer a comprehensive assessment

of the IDS model’s effectiveness in detecting both attack and benign observations.

This metric considers both true positive rate (TPR) and true negative rate (TNR),

which is particularly crucial when dealing with an imbalanced dataset with minority

attack samples. We believe that this metric provides a fairer representation of the

performance of our IDS model across different classes in the input data. Fig. 8.3

displays the balanced accuracy values obtained by the CVAE-AN IDS model for

different classes of polymorphic attack scenarios and subsequent retraining cycles.

Each point on the plot corresponds to the balanced accuracy value of our IDS for

each attack cycle in the polymorphic attack chain.

As shown in Fig. 8.3a, the balanced accuracy for typical attacks is high for all

the attack classes. But during the first polymorphic attack (PA1) cycle against the

IDS, the balanced accuracy is reduced to 40% for the Slow Httptest DoS attack

in the CICIDS2017 dataset. This is because the TPR or the number of correctly

identified attacks by the IDS is reduced during the polymorphic attack cycle. Similar

performance can be seen in Fig. 8.3c for the CICIoT2023 dataset. However, the

IDS shows improvement in its results after the first incremental adversarial training

cycle as shown in Fig. 8.3b and Fig. 8.3d. While the polymorphic attacker keeps on

launching atypical attacks to evade detection in the subsequent attack cycles. The

IDS continuously keeps on updating itself through incremental training cycles until
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(a) Polymorphic Attack cycles (CICIDS2017 data) (b) Retraining cycles (CICIDS2017 data)

(c) Polymorphic Attack cycles (CICIoT2023 data) (d) Retraining cycles (CICIoT2023 data)

Figure 8.3: Comparison of Balanced Accuracy for the CVAE-AN IDS (polymorphic
attack and retraining cycles). Here TA symbolizes typical attacks from the set-aside
CICIDS2017 and CICIoT2023 data, Adv-PA symbolizes Adversarial polymorphic at-
tacks and PA (non-AI) symbolizes non-AI polymorphic attacks.

the polymorphic attacker runs out of features and can no longer evade detection.

Here, we employ one attack class for generating polymorphic attacks, followed by

another attack class, and so on until all the attacks can be identified by the IDS.

8.3 Comparison with State-of-the-Art Techniques

To emphasize the effectiveness of our CVAE-AN IDS, its performance is compared

with other anomaly detection techniques such as Autoencoder (AE) [5], Variational
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(a) CICIDS2017 data (b) CICIoT2023 data

Figure 8.4: Analysis of Overall Error Rate (OER) for polymorphic attack-1 (PA1)
across multiple attack classes within the CICIDS2017 and CICIoT2023 datasets.

Autoencoder (VAE) [5], and Conditional Variational Autoencoder IDS (ID-CVAE)

[253]. In this research context, the OER metric provides the total error in misclassifi-

cation for both attack and benign instances. By using this metric, our goal is to assess

the overall performance of our IDS in identifying both attack and benign observations,

considering the misclassification made by the system. We aim to demonstrate that

our IDS outperforms other state-of-the-art anomaly detection techniques by making

fewer misclassifications.

In Fig. 8.4, a comparison of the Overall Error Rate (OER) in identifying poly-

morphic attacks is presented, showcasing the performance of CVAE-AN IDS against

various state-of-the-art anomaly detection models. The results presented are specific

to one polymorphic attack, and it is important to note that similar performances are

observed across other cycles of polymorphic attacks. The noteworthy aspect is the

consistent performance of the proposed IDS across multiple cycles of polymorphic

attacks, demonstrating stable outcomes. Significantly lower OER values achieved by

the CVAE-AN IDS in comparison to other anomaly detection models indicate its
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Table 8.3: Comparing the performance of the CVAE-AN IDS with current network
anomaly detection techniques for the CICIDS2017 dataset. Here Adv-PA symbol-
izes Adversarial polymorphic attacks, PA (non-AI) symbolizes non-AI polymorphic
attacks, pID symbolizes IDS Proficiency, and ESR symbolizes Evasion Success Rate.

Attack Class Attack
Type

CVAE-AN AE [5] VAE [5] ID-CVAE [253]

pID ESR pID ESR pID ESR pID ESR

CICIDS2017 test TA +0.84 1.43% +0.54 33.89% +0.52 32.93% +0.52 32.92%
Slowloris DoS Adv-PA1

Adv-PA2
Adv-PA3
PA1 (non-AI)
PA2 (non-AI)
PA3 (non-AI)

+0.86
+0.90
+0.76
+0.79
+0.70
+0.75

0.35%
0.35%
0.35%
7.87%
7.51%
5.28%

-0.12
-0.08
-0.29
-0.11
-0.39
-0.40

99.47%
99.48%
99.48%
98.46%
98.62%
99.53%

-0.15
-0.10
-0.28
-0.14
-0.37
-0.39

99.38%
99.37%
99.38%
98.33%
98.16%
99.43%

-0.15
-0.10
-0.29
-0.14
-0.38
-0.40

99.37%
99.37%
99.37%
98.33%
98.13%
99.42%

Slow Httptest DoS Adv-PA1
Adv-PA2
Adv-PA3
PA1 (non-AI)
PA2 (non-AI)
PA3 (non-AI)

+0.89
+0.84
+0.85
+0.84
+0.67
+0.79

0.37%
0.02%
0.08%
4.94%
17.48%
5.99%

-0.13
+0.67
-0.24
-0.12
+0.33
-0.24

99.77%
5.16%
99.80%
98.71%
39.37%
99.34%

+0.43
+0.34
-0.24
+0.44
+0.34
-0.24

40.71%
39.48%
99.78%
40.35%
39.30%
99.45%

+0.43
+0.33
-0.24
+0.43
+0.34
-0.24

40.56%
39.45%
99.77%
40.39%
39.30%
99.42%

GoldenEye DoS Adv-PA1
Adv-PA2
Adv-PA3
PA1 (non-AI)
PA2 (non-AI)
PA3 (non-AI)

+0.87
+0.82
+0.85
+0.77
+0.70
+0.60

0.37%
0.34%
0.25%
10.58%
17.64%
20.70%

+0.68
+0.47
+0.33
+0.68
+0.67
+0.44

21.73%
22.15%
22.08%
21.62%
19.73%
21.06%

+0.65
+0.48
+0.35
+0.65
+0.66
+0.49

21.76%
21.95%
21.88%
21.77%
19.02%
17.94%

+0.65
+0.48
+0.35
+0.65
+0.66
+0.48

21.63%
21.82%
21.74%
21.83%
19.01%
17.94%

Hulk DoS Adv-PA1
Adv-PA2
Adv-PA3
PA1 (non-AI)
PA2 (non-AI)
PA3 (non-AI)

+0.79
+0.84
+0.84
+0.74
+0.82
+0.81

0.09%
0.10%
0.10%
4.92%
1.69%
2.97%

-0.25
-0.11
-0.09
-0.25
-0.07
-0.02

95.60%
95.92%
95.92%
95.17%
92.29%
88.49%

-0.20
-0.10
-0.11
-0.21
-0.09
-0.03

91.10%
91.52%
91.55%
91.44%
90.10%
84.11%

-0.21
-0.10
-0.11
-0.21
-0.09
-0.04

90.76%
91.15%
91.12%
91.28%
90.10%
84.02%

DDoS Adv-PA1
Adv-PA2
Adv-PA3
PA1 (non-AI)
PA2 (non-AI)
PA3 (non-AI)

+0.83
+0.75
+0.82
+0.83
+0.75
+0.82

0.01%
0.01%
0.01%
0.01%
0.04%
0.06%

+0.82
+0.60
+0.84
+0.32
+0.10
+0.34

0.00%
0.00%
0.00%
50.00%
50.02%
50.00%

+0.80
+0.59
+0.81
+0.30
+0.09
+0.31

0.00%
0.00%
0.00%
50.00%
50.00%
50.00%

+0.81
+0.61
+0.83
+0.31
+0.11
+0.33

0.00%
0.00%
0.00%
50.00%
50.00%
50.00%

remarkable performance in minimizing misclassifications. This effectiveness extends

to detecting both atypical/polymorphic attacks and benign samples, distinguishing

it from other anomaly detection models.

Table 8.3 and Table 8.4 provide a comparison of our network intrusion detec-

tion technique against state-of-the-art network anomaly detection techniques using

CICIDS2017 and CICIoT2023 datasets respectively. We aim to demonstrate the

robustness of our model in detecting dynamically evolving atypical/polymorphic at-

tacks, as compared to the current anomaly detection methods used for recognizing
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Table 8.4: Comparing the performance of the CVAE-AN IDS with current network
anomaly detection techniques for the CICIoT2023 dataset. Here Adv-PA symbolizes
Adversarial polymorphic attacks, pID symbolizes IDS Proficiency, and ESR symbol-
izes Evasion Success Rate.

Attack Class Attack
Type

CVAE-AN AE [5] VAE [5] ID-CVAE [253]

pID ESR pID ESR pID ESR pID ESR

CICIoT2023 test TA +0.96 1.85% +0.80 9.21% +0.81 6.32% +0.78 9.91%
Brute Force Adv-PA1

Adv-PA2
Adv-PA3

+0.67
+0.98
+0.71

31.29%
0.00%
27.34%

-0.03
+0.30
-0.02

91.21%
59.13%
91.73%

-0.01
+0.35
+0.02

89.24%
52.94%
86.24%

-0.04
+0.28
-0.04

91.02%
61.83%
91.28%

Web Adv-PA1
Adv-PA2
Adv-PA3

+0.72
+0.73
+0.72

27.32%
26.54%
28.02%

+0.39
+0.37
+0.38

49.80%
51.76%
51.84%

+0.43
+0.42
+0.40

43.87%
46.16%
46.31%

+0.35
+0.33
+0.32

52.89%
54.47%
55.35%

Reconnaissance Adv-PA1
Adv-PA2
Adv-PA3

+0.95
+0.95
+1.00

4.90%
4.91%
0.00%

+0.50
+0.23
+0.24

39.01%
65.76%
65.18%

+0.53
+0.24
+0.26

34.26%
63.63%
61.70%

+0.47
+0.23
+0.23

41.12%
65.52%
65.05%

Spoofing Adv-PA1
Adv-PA2
Adv-PA3

+0.69
+0.83
+0.99

30.79%
16.20%
1.20%

-0.08
-0.08
+0.23

97.22%
97.32%
66.21%

-0.05
-0.05
+0.29

92.65%
92.54%
58.95%

-0.09
-0.09
+0.20

96.76%
96.98%
68.62%

Mirai Adv-PA1
Adv-PA2
Adv-PA3

+0.99
+1.00
+0.99

0.75%
0.28%
0.85%

-0.11
-0.10
-0.11

99.89%
98.76%
99.92%

+0.03
+0.68
-0.06

84.85%
19.15%
93.99%

-0.11
+0.39
-0.13

98.56%
49.16%
99.77%

DoS Adv-PA1
Adv-PA2
Adv-PA3

+1.00
+1.00
+1.00

0.01%
0.00%
0.00%

+0.43
+0.42
+0.43

45.88%
47.12%
46.76%

+0.46
+0.46
+0.46

41.14%
42.21%
42.08%

+0.42
+0.41
+0.42

45.53%
46.74%
46.16%

DDoS Adv-PA1
Adv-PA2
Adv-PA3

+0.91
+0.99
+0.99

8.77%
0.96%
0.65%

+0.34
+0.34
+0.30

55.09%
55.06%
58.52%

+0.34
+0.35
+0.27

52.19%
52.87%
59.45%

+0.32
+0.32
+0.26

55.48%
55.95%
61.15%

previously unseen attacks. Our IDS is trained for three incremental learning iterations

against three adversarial polymorphic attacks and three non-AI polymorphic attacks

for each attack class. The results specify that the proposed IDS can identify both

typical/polymorphic attacks and benign observations which can be determined by ob-

serving the pID metric values when comparing other anomaly detection techniques.

While lower pID values for AE, VAE, and ID-CVAE indicate their performances de-

grade when exposed to dynamically changing atypical attacks/polymorphic attacks.

Higher ESR values suggest that the polymorphic attacker is successful in eluding

detection by the IDS.

156



(a) Slowloris DoS poly attacks (b) Slow Httptest DoS poly attacks

(c) GoldenEye DoS poly attacks (d) Hulk DoS poly attacks

(e) DDoS poly attacks

Figure 8.5: Comparison of proficiency for IDS trained using our incremental learning
technique with a DNN trained using alternative class balancing methods on the CI-
CIDS2017 dataset. Here Adv-PA symbolizes Adversarial polymorphic attacks, and
PA (non-AI) symbolizes non-AI polymorphic attacks.

8.4 Comparing Class Balancing Techniques

We employ the IDS proficiency (pID) metric to compute the efficiency of our IDS in

detecting both attack and benign observations, particularly in the context of dealing

with imbalanced datasets. Fig. 8.5 and Fig. 8.6 present a comparative analysis of the

pID of CVAE-AN IDS trained using our incremental learning technique in contrast
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(a) Brute Force poly attacks (b) Web poly attacks

(c) Recon poly attacks (d) Spoof poly attacks

(e) Mirai poly attacks (f) DoS poly attacks

(g) DDoS poly attacks

Figure 8.6: Comparison of proficiency for IDS trained using our incremental learning
technique with a DNN trained using alternative class balancing methods on the CI-
CIoT2023 dataset. Here Adv-PA symbolizes Adversarial polymorphic attacks.
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to a DNN trained on data which is resampled using several class balancing methods.

The evaluation is conducted on datasets CICIDS2017 and CICIoT2023 respectively.

The evaluation of performance considers various classes and types of dynamically

changing atypical attacks/polymorphic attacks. From the Fig. 8.5 and Fig. 8.6,

both the CVAE-AN IDS and DNN demonstrate the ability to identify typical attacks

effectively, as indicated by higher pID values. However, when exposed to polymorphic

attacks, the CVAE-AN IDS outperforms a standard DNN model significantly for

most of the attacks in the CICIDS2017 and CICIoT2023 datasets. This highlights

the resilience of our CVAE-AN IDS in the face of dynamically changing atypical

attacks/ polymorphic attacks, illustrating its superiority in handling such challenging

scenarios.

8.5 Polymorphic Attack Quality Analysis

In this section, we provide an analysis of the quality of adversarial atypical/poly-

morphic attacks generated by our system. To investigate atypical/polymorphic ad-

versarial attack realism, we employ several techniques such as syntactic validation,

hypothesis testing, statistical distance based analysis, and correlation analysis. These

methods facilitate a comparison between the distributions of real and synthesized

atypical/polymorphic attacks. Fig. 8.7 compares a few selected features for an orig-

inal Slowloris DoS attack and a CVAE-AN synthesized adversarial attack for the

same attack class. There is a lack of metrics that can measure this similarity of syn-

thesized attacks with real attacks for network intrusion detection applications. Our

aim through this research is to fill that gap to improve the detection of synthesized

adversarial atypical/polymorphic attacks.
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Figure 8.7: Comparison between the distributions of an original Slowloris DoS attack
and a CVAE-AN synthesized adversarial polymorphic attack for the CICIDS2017
dataset.

8.5.1 Hypothesis testing

We employ Python’s scipy.stats library and ks 2samp function to measure the KS

statistic and p-value for comparing two data distributions. Since the KS test cannot

be applied to test all the features in both datasets simultaneously, we compare each

feature separately for the real attack and adversarial attack datasets. We then re-

port the average KS-test statistic and average p-value over the entire dataset. Our

experiments focus on adversarial polymorphic attacks (Adv-PA1) generated by our

model CVAE-AN [3]. Tables 8.5 and 8.6 provide an analysis of the quality of poly-

morphic adversarial network attacks using multiple metrics on the CICIDS2017 and

CICIoT2023 datasets, respectively. For the KS-test, we observe that for all the adver-

sarial polymorphic attacks the average p-values are higher than the threshold value

of 0.05, indicating that the adversarial attack data follows the same continuous dis-

tribution as real attack data.
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Table 8.5: Analysis of the quality of polymorphic adversarial network attacks using
multiple statistical techniques on the CICIDS2017 dataset. The table shows the
average values for all the metrics.

Polymorphic attack class KS Statistic p-value Hellinger Distance KLD JSD

Slowloris DoS Adv-PA1 0.52 0.42 0.24 0.79 0.13
Slowloris DoS Adv-PA2 0.52 0.42 0.24 0.79 0.13
Slowloris DoS Adv-PA3 0.52 0.42 0.24 0.79 0.13
Slow Httptest DoS Adv-PA1 0.41 0.50 0.26 0.73 0.13
Slow Httptest DoS Adv-PA2 0.44 0.50 0.29 1.07 0.16
Slow Httptest DoS Adv-PA3 0.45 0.46 0.34 1.23 0.22
GoldenEye DoS Adv-PA1 0.33 0.46 0.26 0.85 0.13
GoldenEye DoS Adv-PA2 0.34 0.46 0.26 0.85 0.13
GoldenEye DoS Adv-PA3 0.33 0.46 0.26 0.85 0.13
Hulk DoS Adv-PA1 0.42 0.42 0.25 0.56 0.13
Hulk DoS Adv-PA2 0.42 0.42 0.25 0.56 0.13
Hulk DoS Adv-PA3 0.42 0.42 0.25 0.56 0.13
DDoS Adv-PA1 0.39 0.44 0.24 0.73 0.11
DDoS Adv-PA2 0.39 0.44 0.24 0.73 0.11
DDoS Adv-PA3 0.39 0.44 0.24 0.72 0.11

Table 8.6: Analysis of the quality of polymorphic adversarial network attacks using
multiple statistical techniques on the CICIoT2023 dataset. The table shows the
average values for all the metrics.

Polymorphic attack class KS Statistic p-value Hellinger Distance KLD JSD

Brute Force Adv-PA1 0.44 0.38 0.25 0.50 0.11
Brute Force Adv-PA2 0.42 0.37 0.26 0.52 0.11
Brute Force Adv-PA3 0.44 0.39 0.25 0.50 0.11
Web Adv-PA1 0.44 0.35 0.26 0.49 0.11
Web Adv-PA2 0.43 0.35 0.26 0.48 0.11
Web Adv-PA3 0.43 0.35 0.26 0.49 0.11
Reconnaissance Adv-PA1 0.39 0.35 0.29 0.61 0.13
Reconnaissance Adv-PA2 0.46 0.35 0.29 0.62 0.14
Reconnaissance Adv-PA3 0.47 0.35 0.29 0.62 0.13
Spoof Adv-PA1 0.40 0.35 0.26 0.48 0.11
Spoof Adv-PA2 0.38 0.35 0.26 0.49 0.11
Spoof Adv-PA3 0.40 0.35 0.26 0.49 0.11
Mirai Adv-PA1 0.59 0.38 0.33 1.55 0.20
Mirai Adv-PA2 0.56 0.38 0.33 1.44 0.20
Mirai Adv-PA3 0.59 0.36 0.32 1.44 0.19
DoS Adv-PA1 0.50 0.35 0.23 0.60 0.10
DoS Adv-PA2 0.34 0.25 0.23 0.58 0.10
DoS Adv-PA3 0.50 0.35 0.23 0.57 0.10
DDoS Adv-PA1 0.48 0.41 0.24 0.67 0.11
DDoS Adv-PA2 0.41 0.41 0.25 0.84 0.12
DDoS Adv-PA3 0.54 0.35 0.22 0.61 0.10
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Figure 8.8: Comparison between the distributions of a real Slowloris DoS attack and
a CVAE-AN synthesized adversarial polymorphic attack for the feature ‘Bwd Packet
Length Min’ based on Hellinger distance.

8.5.2 Statistical distance based analysis

Hellinger Distance

We apply a statistical distance based metric, Hellinger distance to analyze the simi-

larity between the probability distribution of real attack data and adversarially syn-

thesized atypical/polymorphic attacks. Similar to the KS-test analysis, we compare

the distributions of individual feature values of the real attack data and adversarial

atypical/polymorphic data separately to find the distance between them and then cal-

culate the overall average distance to determine their similarity. For instance in Fig.

8.8, we compare the distribution of the feature ‘Bwd Packet Length Min’ for a real

Slowloris DoS attack from the CICIDS2017 dataset and the corresponding adversarial

polymorphic attack synthesized using CVAE-AN. The calculated value for Hellinger

distance for this input feature is 0.08 which is closer to 0 indicating that both these

distributions have close resemblance to each other. This process is repeated for other

attack features and the total average distance is computed.

From Tables 8.5 and 8.6, we observe that for most of the adversarial polymorphic

attacks, the Hellinger distance value is closer to 0 indicating their close resemblance
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to real network attacks.

Kullback-Leibler Divergence (KLD)

We apply KLD to measure the difference between two probability distributions for

each feature and then find the average value for all the features. From Tables 8.5 and

8.6, all of the class wise synthesized attacks have a low positive KLD value (closer to

0 for most cases) demonstrating a significant similarity to original attacks.

Jensen-Shannon Divergence (JSD)

Similar to KLD, we utilize the JSD metric to measure the disparity between two

probability distributions for individual features and then subsequently calculate the

average value across all the features. Based on the information presented in Tables

8.5 and 8.6, it can be observed that all the synthesized attacks exhibit a low positive

JSD value closer to 0. This indicates a substantial similarity to the original attacks.

8.5.3 Correlation analysis

In addition to the distance-based metrics, which quantify the similarity between the

two data distributions feature by feature and average these values, we also investi-

gate the interrelationships among the features of the two datasets. To achieve this,

we employ a Pearson correlation-based metric to examine the correlation similarity

between the two datasets. Initially, we categorize correlation coefficients into six lev-

els as discussed in Table 8.7. Subsequently, we compute the correlation percentage

for every feature pair where the original and adversarial synthesized datasets assign

similar correlation levels using eq.(6.11) and then calculate the average correlation

similarity over the entire dataset.
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Table 8.7: Pearson correlation coefficient levels.

Pearson correlation coefficient Description

Between -1 and -0.5 strong negative
Between -0.5 and -0.3 middle negative
Between -0.3 and -0.1 low negative
Between -0.1 and 0.1 no correlation
Between 0.1 and 0.3 low positive
Between 0.3 and 0.5 middle positive
Between 0.5 and 1 strong positive

(a) ‘Fwd Pkt Len Max’ and ‘Flow IAT Mean’ (b) ‘Fwd Pkt Len Max’ and ‘Fwd Pkt Len Mean’

Figure 8.9: Comparing correlation of feature pairs for a real Slowloris DoS attack and
a synthesized adversarial polymorphic attack on CICIDS2017 dataset.

For instance, Fig. 8.9a compares the correlation of features ‘Fwd Packet Length

Max’ and ‘Flow IAT Mean’ for a real Slowloris DoS attack and a synthesized ad-

versarial polymorphic attack. The correlation value for the two features of the real

attack is computed as -0.35 whereas for the adversarial polymorphic attack, the value

is -0.27. The overall correlation similarity computed using eq. (6.11) is 0.96 which

indicates that for the mentioned feature set, the real and adversarial attacks closely re-

semble each other. Fig. 8.9b compares the correlation of features ‘Fwd Packet Length

Max’ and ‘Fwd Packet Length Mean’ for a real attack and a synthesized attack. The

correlation value for the given feature pair for the real attack is 0.84 whereas for

the synthesized attack, the value is 0.14. The overall similarity score in this case is

calculated as 0.65. Likewise, we compute the correlation similarity for the remaining

features in the dataset to determine the overall average.

Tables 8.8 and 8.9 show the average correlation similarity score for the adver-
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Table 8.8: Correlation similarity between real attacks and adversarial polymorphic
attacks on CICIDS2017 dataset.

Polymorphic attack Slowloris DoS Slow Httptest DoS GoldenEye
DoS

Hulk
DoS

DDoS

PA1 86.08% 78.79% 82.52% 84.71% 80.60%
PA2 86.04% 81.73% 82.44% 84.29% 80.77%
PA3 85.96% 85.69% 82.42% 84.29% 80.71%

Table 8.9: Correlation similarity between real attacks and adversarial polymorphic
attacks on CICIoT2023 dataset.

Polymorphic attack Brute Force Web Recon Spoof Mirai DoS DDoS

PA1 79.09% 78.33% 82.77% 80.00% 72.23% 81.54% 87.53%
PA2 82.71% 77.81% 80.57% 83.69% 81.11% 84.76% 88.06%
PA3 70.00% 78.04% 82.10% 84.98% 70.71% 88.30% 80.46%

sarially synthesized polymorphic attacks with real attacks on the CICIDS2017 and

CICIoT2023 datasets respectively. We observe that the correlation similarity score of

adversarial attack data with real attack data is above 70% indicating that the adver-

sarial polymorphic attacks generated by our system have a close semantic resemblance

to real attacks.

The overall results using several adversarial attack validation techniques discussed

in this section indicate that our system can generate adversarial polymorphic network

attacks while maintaining the quality of these attacks.

8.5.4 Comparative analysis for synthesized adversarial at-

tack quality

We show the effectiveness of our approach in generating better quality adversar-

ial polymorphic attacks compared to those synthesized by other state-of-the-art DL

models such as GAN [254], VAE [255], and CVAE [54]. We select one representa-

tive adversarial polymorphic attack from each category for this analysis, but similar

results are achieved with other attacks as well.

Fig. 8.10 and Fig. 8.11 provide an assessment of the quality of attacks synthesized
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(a) KS Test (p-value) (b) Hellinger distance

(c) KL Divergence (d) JS Divergence

(e) Correlation similarity

Figure 8.10: Comparing the quality of adversarial polymorphic attacks synthesized
using multiple state-of-the-art DL models on the CICIDS2017 dataset.

using several generative DL models such as CVAE-AN, GAN, VAE, and CVAE for

CICIDS2017 and CICIoT2023 datasets respectively. To corroborate our results, we

compare the quality of a synthesized polymorphic attack with an original attack using

five tests such as KS test, Hellinger distance, KL divergence (KLD) and JS divergence

(JSD), and Correlation similarity. From Fig. 8.10a and Fig. 8.11a, the results for

all the cases of the KS test show the p-value for our CVAE-AN model is the highest

(greater than or equal to the threshold value of 0.05) indicating that the attacks
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(a) KS Test (p-value) (b) Hellinger distance

(c) KL Divergence (d) JS Divergence

(e) Correlation similarity

Figure 8.11: Comparing the quality of adversarial polymorphic attacks synthesized
using multiple state-of-the-art DL models on the CICIoT2023 dataset.

generated using our model have a similar distribution as that of the original attacks

and therefore are of better quality when compared to attacks synthesized using other

DL models.

Fig. 8.10b and Fig. 8.11b indicate that the attacks synthesized using CVAE-

AN have the lowest distance from real attacks suggesting their close resemblance to

original attacks. Additionally, from Fig. 8.10c, 8.11c, 8.10d, and 8.11d, we notice

lower values (closer to 0) for KLD and JSD for the adversarial attacks synthesized by
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our CVAE-AN model which is indicative of better quality attacks and compared to

adversarial attacks synthesized by other DL models.

We observe in Fig. 8.10e and Fig. 8.11e, the correlation similarity of adversarial

attacks generated using CVAE-AN to original attacks is consistently higher and more

stable than that of the other generative models discussed here. Overall, results suggest

the efficacy of the CVAE-AN model in synthesizing realistic adversarial attacks.

For reproducibility, running the experiments under same scenarios, software and

hardware environment, hyperparameter settings, dataset versions and sizes, perfor-

mance metrics, and code versions as described in the thesis should give similar results.

However, since CVAE-AN has been generalized using on two datasets, deviations in

the results can be expected when it is exposed to other diverse datasets and real-world

scenarios.
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Chapter 9

Conclusion and Future Directions

9.1 Conclusion

In this thesis, we introduce a novel hybrid model, Conditional Variational Autoencoder-

Adversarial Network (CVAE-AN) which combines the best characteristics of CVAE

and GAN models. CVAE-AN is employed to adversarially train the polymorphic at-

tacker and the IDS. The attack generator synthesizes realistic dynamically changing

attacks for each new cycle. During the polymorphic attack generation phase, the

functionality of each attack is preserved by keeping the values of functional features

constant. The main objective of the polymorphic attacker is bypassing the detection

by the IDS. On the contrary, the main objective of the IDS is to detect the maximum

possible polymorphic attacks. Our results demonstrate that during the initial cycles,

the polymorphic attacker is successful in eluding detection. However, with incre-

mental retraining, the performance of CVAE-AN IDS improves showing its efficiency

against dynamically changing atypical attacks/polymorphic attacks. The comparison

of CVAE-AN IDS against other state-of-the-art detection techniques shows improved

performance when exposed to polymorphic attacks. Additionally, we apply several
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adversarial attack validation techniques such as syntactic validation, hypothesis test-

ing, statistical distance based criteria, and correlation analysis to measure the quality

of an attack synthesized by our system. Moreover, we provide a comparative anal-

ysis of polymorphic attacks synthesized by multiple state-of-the-art generative DL

models. Our empirical findings suggest that CVAE-AN is the best-performing model

when synthesizing realistic polymorphic adversarial attacks.

Integration of the attack generator and IDS in CVAE-AN provides a more stream-

lined, cohesive, and unified approach to cybersecurity. CVAE-AN’s ability to continu-

ously adapt to atypical attack patterns is crucial in the face of rapidly changing cyber

attacks. While we cannot control when and where an attack is launched, continu-

ous refinement of the NIDS through incremental training allows us to relax the rigid

class feature profiles. Beyond acknowledging the potential dangers of polymorphic

adversarial attacks, ensuring the quality and functionality of synthesized attacks is

crucial to prevent the corruption of IDS training data by invalid adversarial attack

samples. The outcomes presented in the thesis contribute to the progress in adver-

sarial machine learning and cybersecurity, improving the resilience and reliability of

NIDS against sophisticated polymorphic network threats.

9.2 Advantages and Limitations

The CVAE-AN framework presented in this thesis has demonstrated encouraging

outcomes in enhancing the resilience of NIDS against atypical/polymorphic network

attacks. Our CVAE-AN attack generator exhibits the capability to produce diverse

variations of a single attack by employing conditional generation, adversarial training,

and latent space encoding. Through the incorporation of incremental training and

data augmentation, the IDS proves adept at adapting to evolving attack strategies.

170



Leveraging the semisupervised nature of the CVAE-AN model, IDS learns from both

labeled and unlabeled data to enhance its ability to identify attacks with varying

feature profiles. Furthermore, the assessment of attack quality, involving a range of

syntactic and statistical metrics such as KS test, Hellinger distance, KL divergence,

JS divergence, and correlation similarity, offers a comprehensive evaluation of the

model’s effectiveness in synthesizing realistic polymorphic network attacks.

However, it is essential to acknowledge certain limitations. CVAE-AN is a com-

plex model introduced to train both the attack generator and the IDS in adversarial

settings. This increased complexity can lead to higher costs during training especially

if deployed in real-world scenarios. The sample sizes of training and test datasets may

introduce variability in the results. Similar to standard DL models, CVAE-AN may

exhibit sensitivity to hyperparameter choices and therefore requires careful tuning

to improve the model’s effectiveness. The generalization of CVAE-AN results to the

datasets employed in this research may be limited. Therefore, the performance of

this model in one context may not translate universally. The specific attack scenar-

ios considered in this thesis may not cover the entire spectrum of real-world attacks,

potentially leaving certain vulnerabilities unaddressed. Examining the model’s perfor-

mance for only three polymorphic attack cycles per attack class yields limited results.

Additionally, while the employed attack quality metrics are necessary to measure the

quality of the adversarial synthesized attack, these may not fully capture the model’s

effectiveness in generating realistic attacks since an in-depth semantic analysis is not

considered.
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9.3 Future directions

Through this research, we have identified several key aspects for future exploration

within the area of DL-based network intrusion detection, with a particular emphasis

on addressing atypical and polymorphic network attacks. The primary objective in

highlighting these crucial facets is to pave the way for the future development of a well-

informed network security solution. The essential aspects for our future investigations

are outlined as follows:

9.3.1 Utilizing a wide range of network security datasets

Although our empirical results are based on the analysis of two benchmark datasets

named CICIDS2017 and CICIoT2023, our CVAE-AN model is sufficiently generic to

be applied to other network datasets. For future work, we further plan to include an

evaluation of multiple attack categories, utilizing benchmark datasets such as UNSW-

NB15, CSE-CIC-IDS2018, and DDoS 2019. Additionally, we intend to investigate the

performance of our IDS against completely unknown network attacks. This involves

training the IDS on one network dataset and assessing its performance against an-

other. This can be done to ensure that the IDS is capable of effectively identifying

and capturing the characteristics of multiple up-to-date and diversified attacks.

To enhance the applicability of our model across diverse flow-based network secu-

rity datasets, we aim to identify shared features among these datasets. Our strategy

would involve categorizing features into modifiable aspects, including flow duration,

total packets/bytes, packets/bytes per second, etc., and non-modifiable aspects such

as port number, connection state, etc. Additionally, we recognize the significance of

classifying features based on domain constraints, such as inherent data structure and

semantic links, and class constraints, which encompass characteristics distinguishing
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one class from another based on functionality.

9.3.2 Online IDS training

CVAE-AN IDS training is done in advance/offline to prepare the IDS for any polymor-

phic version of a known attack profile, however, for zero-day and unknown attacks the

IDS can only keep up by training in real time. This will ensure that the IDS continu-

ously learns from new network data and adjusts to emerging threats, providing a more

robust and up-to-date defense mechanism. While our model currently isn’t trained

in real time, we have plans to extend it for such scenarios in the future. Moreover,

to reduce the complexity of the IDS for real networks, we can explore the possibil-

ity of developing a lightweight IDS that can satisfactorily model typical, unknown,

and atypical/polymorphic network behavior using a less complex and cost-efficient

training method.

9.3.3 Semantic validation of flow-based adversarial attacks

The attack quality validation techniques employed in this research are necessary yet

may not guarantee better quality adversarial attacks. Therefore, in the future, we

would like to focus on identifying precise and explicit network constraints that re-

searchers must adhere to when synthesizing high-quality and realistic adversarial

network attacks. For example, one area of focus could be semantic validation by

considering the interrelationships among network features.

For an adversarial attack to be feasible and effective, the modifications to corre-

lated features cannot be random. To preserve adversarial attack functionality, any

alterations in the feature profile should not diminish the impact of the attack. This

can be achieved by eliminating feature dependency during the synthesis of polymor-
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phic adversarial attacks. The approach involves categorizing interrelated features into

different groups and selecting features from each group to synthesize a polymorphic

attack. For example, features such as Inter Arrival Time (IAT) and packets per sec-

ond are correlated and should be placed in the same group. When manipulating a

feature to synthesize a polymorphic attack, it is crucial to ensure that it does not

negatively affect another feature.

Furthermore, in the future, it will be interesting to design a mathematical model

capable of explaining feature dependency. Additionally, it is crucial to establish a fixed

threshold value to determine an acceptable level of correlation similarity between an

original and synthesized attack. The acceptable threshold can further be employed

as a benchmark to determine the effectiveness of the adversarial attack generation

process.

9.3.4 Packet-based attack manipulation

Current techniques for crafting adversarial network attacks rely on feature manipu-

lation. However, this strategy may prove impractical for intrusion detection systems

in real network environments. The challenge lies in the irreversibility of the feature

extraction process from raw traffic, unlike in other research areas such as computer vi-

sion. The adversarial attacks generated through feature manipulation might struggle

to be reintroduced into the network for real-time analysis due to the semantic interde-

pendencies among network features [256]. Consequently, leveraging the feature space

for adversarial manipulations in network data may not be a feasible approach. There-

fore, our future exploration aims to investigate the feasibility of generating adversarial

attacks at the packet level to demonstrate their realism in evading a DL-based IDS.
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9.3.5 Comprehensive assessment of generative models for syn-

thesizing realistic attacks

In future research endeavors, it can be compelling to investigate the utilization of

alternate generative models such as Conditional GAN (CGAN) [257], Semisupervised

GAN (SGAN) [28], Semisupervised Adversarial Autoencoder (SSAAE) [26], among

others, to synthesize realistic polymorphic network attacks. Subsequently, a compre-

hensive assessment of the impact and quality of these synthesized adversarial network

attacks on intrusion detection systems can be conducted.

9.3.6 Hyperparameter Optimization

Hyperparameter optimization is a critical step in building an effective DL-based IDS.

This process enhances the capability of the system to generalize effectively against

sophisticated atypical and polymorphic network attacks and reduces overfitting [2].

Moving forward, we aim to investigate further the requirements of hyperparameter

optimization and examine how a single hyperparameter affects the performance and

efficiency of the model.

9.3.7 Tracking the evolution of an adversarial polymorphic

attack

An adversarial polymorphic network attack poses a significant challenge to the robust-

ness of a DL-based IDS. Consequently, it becomes crucial to analyze and understand

the severity of this dynamically changing attack over time. For this reason, in our

future work, we plan to focus on analyzing the strength or changes in the intensity

of the attack as time progresses with different stages of the attack.
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Furthermore, for this research, our attention has been limited to analyzing only 3

polymorphic attack cycles for each attack category. In the future, we aim to examine

the performance of both the attacker and IDS over multiple attack cycles within the

polymorphic attack chain.

9.3.8 Explainable AI for NIDS

Many Deep Learning-based Network Intrusion Detection Systems (NIDS) function as

black boxes, making it challenging to comprehend the rationale behind specific deci-

sions. Explainable AI (XAI) techniques, such as Local Interpretable Model-Agnostic

Explanations (LIME) [258] and SHapley Additive exPlanation (SHAP) [241], consti-

tute a rapidly advancing research field that aids in understanding the decision-making

process of DL-based IDS. Embracing proper cybersecurity practices becomes imper-

ative for optimizing DL-based NIDS, enhancing detection rates across various attack

types (typical, unknown, atypical/polymorphic), and mitigating biased outcomes. A

potential avenue for achieving this optimization in the future involves applying XAI

to the CVAE-AN IDS model to enhance its interpretability.

9.3.9 Ensemble learning

Ensemble learning combines the detection results of diverse ML/DL models to im-

prove the overall generalization capability. This technique harnesses the strengths of

multiple ML/DL models and overcomes their weaknesses [259,260]. It can be partic-

ularly effective in situations such as polymorphic attacks where a single model may

struggle due to complexity and rapidly changing attack profiles. Consequently, for

our forthcoming research, we intend to investigate further into ensemble learning to

enhance the overall detection resilience against atypical/polymorphic attacks.
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9.3.10 Human-centricity

DL techniques provide useful insights from input network data and can be employed

to automate cyber defense strategies. However, due to the sensitive nature of network

security applications and their intolerance towards errors, the real decision-making

power lies with the network security expert. Therefore DL-based NIDS needs con-

stant supervision by a security expert, especially in the case of dynamically changing

environments where constant updates are needed. Completely replacing cybersecu-

rity experts with a DL model can be possible when it is as creative and intelligent as

humans are and can make ethical decisions. This currently seems like a possibility

much further in the future.

9.3.11 Non-security applications

Beyond the realm of network security, the CVAE-AN framework, coupled with qual-

ity analysis, holds the potential for addressing challenges in various non-security do-

mains. Some potential applications include high quality data generation and detecting

anomalies in fields like healthcare, weather forecasting, finance, and drug discovery,

where it can assist in generating potential molecular structures. The generative ca-

pabilities of CVAE-AN can extend to learning image structures and creating diverse

samples for creative arts, as well as transferring styles between images. The intro-

duced quality metrics are valuable for generating more realistic voice/audio samples,

benefiting the training of voice recognition systems. Additionally, CVAE-AN can gen-

erate diverse, high-quality text samples to augment training data for large language

models, contributing to tasks like text completion, summarization, or paraphrasing.

The conditional aspect of the model allows precise control over the generated text,

for instance, the production of text based on a specific writing style or structure.
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Appendix A

CICIDS2017/CICIoT2023 dataset

A detailed description of the CICIDS2017 dataset including the number of flows, per-

centages of attacks, attack type, and their description is given in table A.1. For our

research, we have used five classes of attack and one normal class. All the attacks

belong to the Denial of Service (DoS) or Distributed Denial of Service (DDoS) cate-

gories. The table explains in detail each attack category and its description. As seen

in the table, the DoS Hulk attack and DDoS attack classes are volumetric attacks

that overwhelm the victim server with a huge number of incoming packets. On the

other hand, GoldenEye, Slowloris, and Slowhttptest DoS attacks exploit the HTTP

vulnerability by leaving a huge number of half open connections and exhausting all

the victim server connections, thus denying access to other legitimate users. Table

A.2 and A.3 describe all the features in the CICIDS2017 dataset.

A comprehensive overview of the CICIoT2023 dataset is presented in Table A.4.

This table provides the details such as flow count, percentage of each attack class and

normal data, and types of attacks with their description. Table A.5 describes all the

features in the CICIoT2023 dataset. Table A.6 and Table A.7 present a compilation

of acronyms utilized throughout this study.
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Table A.1: CICIDS2017 Dataset Class Description

Class Total
Flows

Percentage Attack Type Description

Normal 667887 63.70% Non malicious data This represents data from nor-
mal user activities.

DoS Hulk 231073 22.04% Volumetric A large number of malicious
obscure HTTP requests are
sent to the victim server by
the attacker to exhaust all its
resources and render it use-
less for legitimate clients. Also
known as HTTP Unbearable
Load King.

DDoS 128027 12.21% Volumetric The attacker controls other
hosts (bots) that overwhelm a
victim server by sending mul-
tiple HTTP/TCP/UDP pack-
ets. The victim server cannot
handle excessive load from the
attacker hosts, thereby making
the resources unavailable for le-
gitimate clients.

DoS GoldenEye 10293 0.98% HTTP vulnerability ex-
ploit

An Application layer based
DoS attack where the attacker
keeps the connection with the
victim HTTP server alive until
it consumes all the sockets on
the victim. The victim server
is rendered useless for legiti-
mate requests.

DoS Slowloris 5796 0.55% HTTP vulnerability ex-
ploit

Slow HTTP header attack
where partial HTTP GET/-
POST requests are sent to the
victim server to keep as many
open connections as possible.
The victim server gets over-
whelmed and is unable to cater
to legitimate connection re-
quests.

DoS Slowhttptest 5499 0.52% HTTP vulnerability ex-
ploit

Just like Slowloris attack, this
attack too keeps the victim
HTTP server resources en-
gaged while waiting for incom-
plete requests to finish. Due
to the long wait times, legit-
imate clients are denied ser-
vice since all connections are
busy. Slow Httptest attack can
be launched in different modes
such as slow header, slow body,
and slow read [232].

Total 1048575 100% - -
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Table A.2: List of CICIDS2017 Features [8]

Feature Description

flow duration Duration of flow in microseconds.
tot fwd pkts Total packets transmitted from sender to receiver (forward direction)
tot bwd pkts Total packets transmitted from receiver to sender (backward direction)
tot len fwd pkt Total size of packets in forward direction
tot len bwd pkt Total size of packets in backward direction
fwd pkt len min Minimum size of packet in forward direction
fwd pkt len max Maximum size of packet in forward direction
fwd pkt len mean Mean size of the packet in forward direction
fwd pkt len std Standard deviation size of the packet in forward direction
bwd pkt len min Minimum size of packet in backward direction
bwd pkt len max Maximum size of the packet in backward direction
bwd pkt len mean Mean size of the packet in backward direction
bwd pkt len std Standard deviation size of the packet in backward direction
flow bytes/s Number of flow bytes per second
flow pkts/s Number of flow packets per second
flow IAT mean Mean time between two packets sent in flow
flow IAT std Standard deviation time between two packets sent in flow
flow IAT max Maximum time between two packets sent in flow
flow IAT min Minimum time between two packets sent in flow
fwd IAT min Minimum time between two packets sent in forward direction
fwd IAT max Maximum time between two packets sent in forward direction
fwd IAT mean Mean time between two packets sent in forward direction
fwd IAT std Standard deviation time between two packets sent in forward direction
fwd IAT tot Total time between two packets sent in forward direction
bwd IAT min Minimum time between two packets sent in backward direction
bwd IAT max Maximum time between two packets sent in backward direction
bwd IAT mean Mean time between two packets sent in backward direction
bwd IAT std Standard deviation time between two packets sent in backward direction
bwd IAT tot Total time between two packets sent in backward direction
fwd PSH flag Number of times the PSH (Push) flag was set in packets traveling in the forward direction

(0 for UDP)
bwd PSH flag Number of times the PSH (Push) flag was set in packets traveling in the backward direction

(0 for UDP)
fwd URG flag Number of times the URG (Urgent) flag was set in packets traveling in the forward direction

(0 for UDP)
bwd URG flag Number of times the URG (Urgent) flag was set in packets traveling in the backward

direction (0 for UDP)
fwd hdr len Total bytes used for headers in the forward direction
fwd pkts/s Number of forward packets per second
bwd pkts/s Number of backward packets per second
min pkt len Minimum length of a packet
max pkt len Maximum length of a packet
pkt len mean Mean length of a packet
pkt len std Standard deviation length of a packet
pkt len var Variance length of a packet
FIN flag count Number of packets with FIN (Finish) flag set
SYN flag count Number of packets with SYN (Synchronize) flag set
RST flag count Number of packets with RST (Reset) flag set
PSH flag count Number of packets with PSH (Push) flag set
ACK flag count Number of packets with ACK (Acknowledgement) flag set
URG flag count Number of packets with URG (Urgent) flag set
CWR flag count Number of packets with CWR (Congestion Window Reduced) flag set
ECE flag count Number of packets with ECE (Explicit Congestion Notification Echo) flag set
down/up ratio Download to upload ratio
avg pkt size Average size of packet
avg fwd seg size Average segment size observed in forward direction
avg bwd seg size Average segment size observed in backward direction
fwd avg bytes/bulk Average number of bytes bulk rate in the forward direction
fwd avg packets/bulk Average number of packets bulk rate in the forward direction
fwd avg bulk rate Average bulk rate in the forward direction
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Table A.3: List of CICIDS2017 Features (contd.) [8]

Feature Description

bwd avg bytes/bulk Average number of bytes bulk rate in the backward direction
bwd avg pkts/bulk Average number of packets bulk rate in the backward direction
bwd avg bulk rate Average bulk rate in the backward direction
subflow fwd pkts average number of packets in a sub flow in the forward direction
subflow fwd bytes average number of bytes in a sub flow in the forward direction
subflow bwd pkts average number of packets in a sub flow in the backward direction
subflow bwd bytes average number of bytes in a sub flow in the backward direction
init win bytes fwd total number of bytes sent in initial window in the forward direction
init win bytes bwd total number of bytes sent in an initial window in the backward direction
act data pkt fwd Count of packets with at least 1 byte of TCP data payload in the forward direction
min seg size fwd Minimum segment size observed in the forward direction
active min Minimum time a flow was active before becoming idle
active mean Mean time a flow was active before becoming idle
active max Maximum time a flow was active before becoming idle
active std Standard deviation time a flow was active before becoming idle
idle min Minimum time a flow was idle before becoming active
idle mean Mean time a flow was idle before becoming active
idle max Maximum time a flow was idle before becoming active
idle std Standard deviation time a flow was idle before becoming active
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Table A.4: CICIoT2023 Dataset Class Description [9]

Class Total
Flows

Percentage Attack Type Description

Normal 1098195 2.35% Non malicious data This represents data from normal user
activities in the IoT network.

DDoS 33984560 72.80% Volumetric and HTTP vul-
nerability exploit attack
(Attack on availability)

DDoS attack is an attack that tar-
gets the availability of resources in the
IoT network. This class of attack
is a combination of various types of
Distributed Denial of Service (DDoS)
attacks such as ICMP flood, UD-
P/TCP flood, PSHACK flood, SYN
flood, RSTFIN flood, SynonymousIP
flood, HTTP flood, UDP Fragmen-
tation, ACK Fragmentation, ICMP
Fragmentation, and Slowloris. These
attacks are targeted at Internet of
Things (IoT) devices within the net-
work.

DoS 8090738 17.30% Volumetric and HTTP vul-
nerability exploit attack
(Attack on availability)

DoS attack in an IoT network is a type
of volumetric attack primarily focused
on disrupting the availability of IoT
operations. DoS attack class is a com-
bination of several DoS attacks such
as HTTP flood, UDP/TCP flood, and
SYN Flood.

Mirai 2634124 5.64% Volumetric attack
(Attack on availability)

Mirai attack is a volumetric DDoS at-
tack targeted on multiple IoT devices
within the network. This attack class
consists of multiple varieties of Mirai
attacks such as the GREETH/GREIP
flood, and UDP Plain flood.

Spoofing 486504 1.04% Masquerade attack
(Attack on confidentiality)

In a spoofing attack, the attacker poses
as a genuine entity within the network
to illicitly obtain access. This category
of attack encompasses attacks such as
ARP Spoofing and DNS spoofing.

Reconnaissance 354565 0.79% Probing attack
(Attack on confidentiality)

In this attack an unauthorized entity
tries to actively acquire information
about a target before launching an ac-
tual attack. This class of attack con-
sists of various attack techniques such
as Ping Sweep, OS Scan, Port Scan,
Vulnerability Scan, and Host Discov-
ery.

Web attack 24829 0.05% Vulnerability exploit at-
tack
(Attack on integrity)

Web based attacks in an IoT net-
work exploit the vulnerabilities of web
applications/services associated with
IoT devices. This class of attacks
consists of several common types of
web attacks such as SQL injection,
Command injection, Uploading attack,
Cross-Site Scripting, Backdoor Mal-
ware, and Browser Hijacking.

Brute Force 13064 0.03% Manual, trial and error at-
tack
(Attack on confidentiality)

A Brute Force attack in an IoT net-
work is a cybersecurity attack where an
attacker can target the authentication
mechanism of an IoT device by trying
all possible combinations of the user id
and passwords. This attack class in-
cludes attacks such as dictionary brute
force.

Total 46686579 100% - -
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Table A.5: List of features in CICIoT2023 dataset [9]

Feature Description

Flow duration Duration of the flow for the packet.
Header length Length of the header
Protocol type Type of protocol employed such as UDP, TCP, ICMP, IP, IGMP, Unknown
Duration Time to Live (TTL)
Rate The rate at which the packets are being sent within a network flow.
Srate The rate at which the packets are being transmitted from source to destination (outbound)

within a network flow.
Drate The rate at which the packets are being received by a destination from a source (inbound) within

a network flow.
fin flag number The value of FIN (Finish) flag. Can be set to 0 or 1.
syn flag number The value of SYN (Synchronize) flag. Can be set to 0 or 1.
rst flag number The value of RST (Reset) flag. Can be set to 0 or 1.
psh flag number The value of PSH (Push) flag. Can be set to 0 or 1.
ack flag number The value of ACK (Acknowledgement) flag. Can be set to 0 or 1.
ece flag number The value of ECE (Explicit Congestion Notification Echo) flag. Can be set to 0 or 1.
cwr flag number The value of CWR (Congestion Window Reduced) flag. Can be set to 0 or 1.
ack count The number of packets within a network flow where the ACK flag is set.
syn count The number of packets within a network flow where the SYN flag is set.
fin count The number of packets within a network flow where the FIN flag is set.
urg count The number of packets within a network flow where the URG flag is set.
rst count The number of packets within a network flow where the RST flag is set.
HTTP Indication that the application layer protocol is HTTP.
HTTPS Indication that the application layer protocol is HTTPS.
DNS Indication that the application layer protocol is DNS.
Telnet Indication that the application layer protocol is Telnet.
SMTP Indication that the application layer protocol is SMTP.
SSH Indication that the application layer protocol is SSH.
IRC Indication that the application layer protocol is IRC.
TCP Indication that the transport layer protocol is TCP.
UDP Indication that the transport layer protocol is UDP.
DHCP Indication that the application layer protocol is DHCP.
ARP Indication that the data link layer protocol is ARP.
ICMP Indication that the network layer protocol is UDP.
IPv Indication that the network layer protocol is IP.
LLC Indication that the data link layer protocol is LLC.
Tot sum Total combined length of all the packets within a network flow.
Min The size of the smallest packet within a network flow.
Max The size of the largest packet within a network flow.
AVG The average size of the packet within a network flow.
Std Standard Deviation of packet length within the network flow.
Tot size Total size of the packet.
IAT Inter Arrival Time
Number Total count of the packets for a network flow.
Magnitude (Average of the lengths of received packets in the flow + average of the lengths of transmitted

packets in the flow)0.5

Radius (Variance of the lengths of received packets in the flow + variance of the lengths of transmitted
packets in the flow)0.5

Covariance Covariance of the lengths of received and transmitted packets
Variance (Variance of the lengths of received packets in the flow/ variance of the lengths of transmitted

packets in the flow)
Weight (Total packets received x Total packets transmitted).
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Table A.6: List of acronyms

Acronym Description Acronym Description

AA Atypical Attack GAN Generative Adversarial Network
AAE Adversarial Autoencoder GB Gradient Boosting
AC Actor Critic GBT Gaussian Based Thresholding
AE Autoencoder GEA Generating Evolution Algorithm
ADASYN Adaptive Synthetic Sampling GNB Gaussian Naive Bayes
Adv-PA Adversarial Polymorphic Attack GS-HPO Grid Search Hyperparameter Optimization
AI Artificial Intelligence HFSE Heterogeneous Feature Selection Ensemble
AIDS Anomaly-based Intrusion Detection System HIDS Host-based intrusion detection system
ANN Artificial Neural Network HOIC High Orbit Ion Cannon
ANOVA Analysis of Variance HP Hyperparameter
AUC Area Under the Curve HPO Hyperparameter Optimization
BA Balanced Accuracy HTTP Hypertext Transfer Protocol
BE Backward Elimination IDS Intrusion Detection System
BiGAN Bidirectional Generative Adversarial Net-

work
IoT Internet of Things

BiLSTM Bidirectional Long Short-Term Memory IPS Intrusion Prevention System
BIM Basic Iterative Method JSD Jensen–Shannon Divergence
BNB Bernoulli Naive Bayes JSMA Jacobian-based Saliency Maps Attacks
bs Batch Size KLD Kullback–Leibler Divergence
CNN Convolutional Neural Network KNN k- Nearest Neighbor
CGAN Conditional Generative Adversarial Net-

work
KS Test Kolmogorov–Smirnov Test

CVAE Conditional Variational Autoencoder LGBM Light Gradient Boosting Machine
CVAE-
AN

Conditional Variational Autoencoder- Ad-
versarial Network

LIME Local Interpretable Model-Agnostic Expla-
nations

C& W Carlini& Wagner’s attack LR Logistic Regression
DAE Deep Autoencoder lr Learning Rate
DAEQ-N Deep Autoencoder Q-network LSTM Long Short-Term Memory
DBN Deep Belief Network LSVC Linear Support Vector Classifier
DCGAN Deep Convolutional Generative Adversarial

Network
MAPE-K Monitor-Analyze-Plan-Execute over a

shared Knowledge
DDoS Distributed Denial of Service ML Machine Learning
DDQN Double Deep Q-network MLP Multi-Layer Perceptron
DHR-Net Deep Hierarchical Reconstruction Network MS-HPO Manual Search Hyperparameter Optimiza-

tion
DL Deep Learning NB Naive Bayes
DNN Deep Neural Network NIDS Network-based Intrusion Detection System
DoS Denial of Service OCN Open-set Classification Network
DQN Deep Q-Network OC-SVM One-Class Support Vector Machine
DRL Deep Reinforcement Learning OER Overall Error Rate
DT Decision Tree PA Polymorphic Attacks
DTC Decision Tree Classifier PCA Principal Component Analysis
ES-HPO Evolutionary Search Hyperparameter Opti-

mization
PG Policy Gradient

ESR Evasion Success Rate pID IDS Proficiency
ETC Extra Tree Classifier QQ Plot Quantile Quantile Plot
EVT Extreme Value Theory RFC Random Forest Classifier
FA Factor Analysis RFE Recursive Feature Elimination
FAR False Alarm Rate ROC Receiver Operating Characteristic
FC-Net Fully Connected Network ROS Random Oversampling
FGSM Fast Gradient Signed Method RUS Random Undersampling
FN False Negative SAE Stacked Autoencoder
FNR False Negative Rate SDN Software Defined Network
FP False Positive S-DTC Stacked Decision Tree Classifier
FPR False Positive Rate SGAN Semi-supervised Generative Adversarial

Network
FS Feature Selection SHAP SHapley Additive exPlanations
GA Genetic Algorithm SIDS Signature-Based Intrusion Detection
GACN Generative Adversarial Cooperative Net-

work
SMBO Sequential Model-Based Optimization
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Table A.7: List of acronyms (contd.)

Acronym Description Acronym Description

SMOTE Synthetic Minority Oversampling Tech-
nique

TPR True Positive Rate

SSAAE Semi-supervised Adversarial Autoencoder t-SNE t-Distributed Stochastic Neighbor Embed-
ding

SVM Support Vector Machine UA Unknown attacks
TA Typical Attack VAE Variational Autoencoder
TL Transfer Learning WGAN Wasserstein Generative Adversarial Net-

work
TN True negative WGAN-GP Wasserstein Generative Adversarial Net-

work with Gradient Penalty
TNR True negative Rate WnD Wide and Deep
TP True Positive XAI Explainable AI algorithm
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