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Abstract

Diffusion imaging is a relatively recent branch of magnetic resonance imaging that

produces images of human physiology through diffusion of water molecules within the

body. One difficulty in calculating diffusion coefficients, particularly in the brain, is

the multitude of natural barriers to water diffusion, such as cell membranes, myelin

sheaths, and fiber tracts. These barriers mean that water diffusion is not a homoge-

neous random process. Due to the complexity of modeling these structures, a simpli-

fying assumption made in some methods of data analysis is that there are no barriers

to water diffusion. We develop tools to simulate the diffusion of water in an inhomoge-

neous medium, which may then be used to test the accuracy of this assumption. The

inherent difficulty (and computational cost) of including barriers (e.g., cell membranes)

can be lessened by employing the immersed boundary (IB) method to represent these

structures without the need for complicated computational grids. The contribution of

this thesis is the implementation and validation of an IB method that allows for dif-

fusion across semi-permeable membranes. The method is tested for a square interface

aligned with the computational grid by comparing it to a second numerical scheme

that uses standard finite differences. We also calculate the rate of convergence for the

IB method to assess the numerical accuracy. To demonstrate the flexibility of the IB

method to simulate diffusion with any interface shape, we also present simulations for

irregular interfaces.
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Chapter 1

Introduction

1.1 Background

Diffusion MRI is a relatively recent branch of magnetic resonance imaging (MRI)

that has been used to produce detailed maps of human physiology as well as various

porous structures. Diffusion MRI [34] attempts to infer structural information about

the material being imaged by interpreting MRI signals based on simplifying models of

diffusion, the displacement of particles undergoing random (Brownian) motion, self-

propelled by thermal energy [30].

In a broader sense, MRI is a well-known, non-invasive imaging technique for vi-

sualizing internal structures with a high degree of detail. It is capable of providing

good contrast between different types of soft tissues in the body and is widely used to

indirectly image the human brain, the heart, muscles, and even to spot tumours.

Diffusion did not play an important role in early MRI development and study.

The first experiments to combine diffusion-weighted magnetic resonance measurement

with MRI were not published until 1984 [27]. However, since the 1990s, developing and

improving diffusion imaging techniques has become a research area of great interest

due to established success in clinical neurodiagnostics [15] and projected benefits. In

addition, ongoing research into diffusion MRI techniques is helping to provide a greater

understanding of diffusion in living systems. Complex data acquisition schemes (e.g.

echo planar imaging [8, 24]) are also being developed that may enhance and improve
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Chapter 1. Introduction

the feasability of these methods.

This thesis presents numerical tools that may be used to study diffusion and assess

the validity of diffusion models used by many diffusion MRI schemes. Specifically,

the contribution of this thesis is the implementation and validation of an immersed

boundary method for the simulation of cellular diffusion. The first chapter of this work

provides a discussion of current diffusion MRI schemes. The second chapter briefly

discusses diffusion in membrane-separated systems, including those found in brain

tissue. A simplified model of diffusion in membrane-based systems is then presented.

In Chapter 3, we discuss the immersed boundary (IB) method and apply it to the

governing equations of our diffusion model. In Chapter 4, we present the results

from our simulations using the IB method to verify its applicability to such biological

problems. The strengths and weaknesses of our proposed numerical method will be

reviewed in the fifth chapter as well as suggestions for future work. We begin with a

brief overview of diffusion MRI and the motivation for developing the tools presented

in this thesis.

1.2 Diffusion Magnetic Resonance Imaging Tech-

niques

Current and future applications of diffusion MRI offer the potential to provide in vivo

detail of the anatomy and connectivity of the brain that normal MRI cannot. The type

of structural information that may be obtained indirectly from diffusion MRI depends

on the imaging scheme used. These range from the simplest - the mapping of apparent

diffusion coefficients - to the more complex, such as diffusion tensor imaging, q-ball

imaging, diffusion spectrum imaging, and tractography [15]. We begin our discussion

of these various imaging techniques with an integral part of all diffusion MRI schemes

- the probability density function.
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1.2. Diffusion Magnetic Resonance Imaging Techniques

1.2.1 Probability density function p

In statistical terms, the erratic motion of diffusing particles can be described by the

displacement distribution which indicates the proportion of particles that will move a

given distance, in a given direction, at a given time. The “diffusion coefficient”, D, is

a constant that determines some averaged measure of displacement and is related to

the mean square displacement of a given particle.

Diffusion MRI attempts to approximate the probability density function p of par-

ticle displacements over a fixed time based on MR signals and either some assumption

of the displacement distribution (e.g., Gaussian distribution for free water molecules),

or a large sample of diffusion-weighted images. Because the microstructure of a ma-

terial determines the mobility of particles within, studying the features of p can allow

indirect imaging of microstructures.

In biomedical diffusion MRI, water molecules are the particles of primary inter-

est since water is a major constituent of biological tissue. However, determining the

form of the displacement distribution is very difficult, particularly in the brain, due to

the multitude of natural barriers to water diffusion, such as cell membranes, myelin

sheaths, and fiber tracts. These barriers mean that water diffusion is not a homo-

geneous random process. Specifically, in a homogeneous medium, if you draw the

displacement distribution for one location in the domain, it would be the same under

translation to another location in the domain. A homogeneous domain also implies

that the displacement distributions will follow a multivariate Gaussian (bell-shaped)

function, corresponding to either isotropic diffusion (equal diffusion coefficient in all di-

rections) or anisotropic diffusion. For this reason, it is helpful to think of the diffusion

coefficient as a variance of the Gaussian distribution.

The heterogeneity of biological tissue implies that the distributions are not Gaus-

sian. Indeed, the distribution’s form depends on the internal structures themselves.

Due to the complexity of modeling these structures, a simplifying assumption made

in some methods of data analysis is that there are no barriers to water diffusion.

3



Chapter 1. Introduction

1.2.2 Diffusion-weighted and Diffusion-tensor Imaging

To interpret and extract data from the MR signal data, the most commonly used

diffusion imaging techniques use this hypothesis for the displacement distribution of

water molecules diffusing over a fixed time. Diffusion-weighted imaging and diffusion

tensor imaging assume that diffusion follows a multivariate Gaussian function. This is

an accurate description for the diffusion of water in a homogeneous medium. However,

biological tissue is highly heterogeneous, such as the white matter tissue in the brain.

For example, neuronal tissue (axons) are expected to produce a preferred direction of

diffusion as water molecules will move more freely (i.e., faster) on average along the

axon membranes, and much slower in a perpendicular direction due to the cell mem-

brane restriction [15]. For such heterogeneous media, the assumption of a Gaussian

diffusion distribution is clearly wrong.

The attraction to these imaging schemes is their simplicity, low hardware require-

ments and short acquisition times compared to more complex methods such as dif-

fusion spectrum imaging. Diffusion-weighted imaging (DWI) uses just one image for

each voxel (three-dimensional volume, typically 1mm3 in size). A diffusion-weighted

image is the unprocessed result of a single pulsed gradient spin-echo sequence in one

gradient direction, with one gradient strength. This scheme is used in more complex

techniques to reconstruct the probability density function p, such as in diffusion spec-

trum imaging. A routine clinical application for DWI is in investigating strokes [27].

When cells die, they expand, causing the extracellular space to decrease around them,

restricting the movement of water molecules. This can be detected through DWI as an

increase in the MR signal intensity, allowing the radiologist to determine areas affected

by acute stroke.

Because of the ability to provide information regarding the anisotropic nature of

diffusion rather than the isotropy of DWI, diffusion tensor imaging (DTI) has a host

of potential applications, such as fibre-tracking or ‘tractography’ to indirectly image

neural tracts in the brain and study brain connectivity [5]. DTI has already been used

to image fiber tracts in white matter, which, if accurate, could potentially provide life-
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1.2. Diffusion Magnetic Resonance Imaging Techniques

saving information for neurosurgery. While standard MRI is able to obtain structural

information of a patient’s brain to spot tumours, for example, it cannot assess the

orientation and intersection of axonal fibers. To carefully treat brain cancer, the

neurosurgeon needs to know how to access the tumour, and what regions she can cut

into without causing further damage [12]. Such information, if it could be obtained

reliably in the future from diffusion MRI, would be of obvious interest. Other clinical

applications for DWI and DTI are in studying white-matter diseases such as epilepsy,

multiple sclerosis and dementia [5]. Apart from studying the brain, diffusion imaging

schemes are also used to investigate the microstructure of a variety of porous materials

including muscle tissue (e.g. in the heart), cartilage, plant tissue, and porous rock [5].

1.2.3 Advanced Methods of Data Analysis

In addition, it should be noted that not all diffusion imaging schemes are based on the

Gaussian distribution hypothesis for diffusion. There are more complex diffusion imag-

ing techniques in use that are either based on a different hypothesis, or no hypothesis

at all.

Q-ball imaging is one technique that, as in DTI, is based on a hypothesis about

the shape of the diffusion probability density function p. One shape that is some-

times assumed for p is that of a pincusion [15]. In this case, it is assumed that the

compartments inside an imaging voxel can be represented by straight and thin pipes

with impermeable walls. Water molecules inside the pipes are therefore assumed to

diffuse uniformly parallel to the pipes but cannot diffuse across the impermeable walls.

However, further studies are required to validate q-ball imaging reconstruction tech-

niques as an accurate scheme for all regions of the brain, although it is considered to

provide realistic depictions of complex fiber architecture [15]. Another drawback for

q-ball imaging is that it is impractical for use in a clinical setting due to hardware

requirements being high and long image acquisition times.

Perhaps the most complex diffusion imaging scheme, also with considerable acqui-

sition time, is diffusion spectrum imaging (DSI). In contrast to the diffusion tensor
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Chapter 1. Introduction

model, DSI is not based on a particular shape or hypothesis for p. Instead, it re-

lies on hundreds of diffusion weighted images, with applications of frequency-encoding

gradients that vary in strength and direction. This process is used to sample a large

proportion of “q-space”, the space corresponding to diffusion gradients with a spe-

cific direction and strength. If a sufficiently dense sample of q-space is provided by

DSI, the displacement distribution, or diffusion probability density function p, can

be derived with the use of a Fourier transform. Established practice suggests 515

diffusion-weighted images for a particular diffusion time interval to provide good qual-

ity data [15]. However, with advances in hardware and imaging techniques, and recent

experience, some suggest that p can be derived with fewer sampling points [15]. This

leads to shorter acquisition times, and makes DSI more feasible for clinical studies.

1.3 Motivation for New Imaging Schemes

Ideally, we would like an imaging scheme that does not require long acquisition times

(such as DWI or DTI), but also provides microstructure information not based on a

hypothesis for the displacement distribution (such as DSI). One such solution would

be to remove the hypothesis from DWI and DTI that diffusion follows a Gaussian

distribution. To replace the Gaussian distribution with a different shape, we would

first need to have an understanding of how a variety of microstructures (e.g. axons)

affect the shape of p. DWI and DTI schemes could then be modified to take into

account numerous shapes for p when interpreting MR signals.

It is difficult to predict the shapes of the displacement distributions p in the pres-

ence of water restriction, such as in the case with semipermeable membranes. How-

ever, through the use of advanced numerical techniques, simulations of diffusion in

heterogeneous media can be performed and corresponding displacement distributions

calculated. Using the standard definitions for diffusion due to thermal energy and im-

posing restrictions to diffusive movement, such as a simple membrane representation,

it is possible to set up such simulations.

In our study, we develop numerical tools to simulate diffusion in heterogeneous
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1.3. Motivation for New Imaging Schemes

media such as brain tissue, with permeable membranes. While this could potentially

be used to test the hypothesis used in DWI and DTI of a Gaussian distribution, other

applications include modeling diffusion in contrast-enhanced perfusion magnetic reso-

nance imaging, and aiding the development of new drugs. Based on an understanding

of how a drug will diffuse, it could be designed to target specific parts of the body.

The inherent difficulty (and computational cost) of representing barriers to diffu-

sion (e.g., cell membranes) in a simulation can be significantly lessened by employing

an immersed boundary method (IBM). The IBM allows for representing various struc-

tures without the need for complicated computational grids. It is an efficient numerical

scheme that is becoming very popular for simulating fluid-structure problems. To our

knowledge, the IBM has not been applied to simulating diffusion in heterogeneous

matter involving discontinuous diffusion coefficients and semipermeable membranes.

7



Chapter 2

Mathematical Models of Diffusion

in Cellular Media

Diffusion is a process that plays a very important role in the everyday function of living

organisms. Biological systems involving membrane-based separations rely heavily on

the diffusion properties of cellular membranes, such as the ability for water molecules to

pass in and out of cells [30]. Even the molecular mechanics controlling the organization

of macromolecules are known to include elements of diffusive processes at several

stages [38].

It is possible that information about cellular microstructures may be obtained by

studying the diffusion of particles as they pass through and go around the microstruc-

tures. In particular, biological diffusion magnetic resonance imaging (MRI) tracks the

diffusion of water molecules since MRI is best suited for these molecules specifically.

To represent diffusion and interpret MR signals, a displacement distribution p is often

used. One difficulty, however, is in predicting the shape of p in heterogeneous material.

As previously mentioned, simplifying models for the displacement distribution

(such as the Gaussian function) are often used to reconstruct images of microstruc-

tures. This is particularly problematic for diffusion in the brain, which is known to be

highly heterogeneous. To provide more accurate information from diffusion imaging,

the displacement distribution p for such matter must be better understood.

To determine the most relevant features of p, one must first understand the basics

8



2.1. Diffusion in Cellular Media

of diffusion and how structures such as cell membranes can affect diffusion. We will

focus on structures found in brain tissue, as this is an area of considerable interest

both in research development of diffusion MRI, and also in clinical use.

2.1 Diffusion in Cellular Media

Diffusion is the random migration of molecules or small particles, self-propelled by

thermal energy [30]. The thermal energy of fluids such as water at typical (room

or body) temperatures can be associated with this constant random motion of the

molecules. Over time, the molecule or particle will become randomly displaced by

some distance x (without the influence of external forces), and will on average tend

towards areas with fewer elements of its own type due to frequent molecular collisions.

In biological systems, the motion of molecules passing between the inside and

outside of a cell can essentially be described as a random walk [13]. This may seem

counter-intuitive as one expects a more orderly and deterministic manner of motion

for a system to remain stable. However, through ongoing studies of diffusion, there is

much evidence that this principle regularly governs diffusion in living systems.

The first person known to report observations of the random walk in nature was the

botanist Robert Brown, in 1828 [38]. His study of pollen particles from various plants

placed in water discovered an irregular “swarming” motion. The random molecular

collisions responsible for the observed motion is today called Brownian motion, and

technically concerns the motion of a colloidal particle in a liquid [38]. An analogy

between the colloidal particles in a liquid and (clusters of) molecules can be made for

biological systems because, similarly, the size of surrounding solvent particles is much

smaller than the molecules [38]. Due to this, the random walk picture is regularly used

to describe diffusion in living systems.

Living matter is structured and ordered by various biological components, such as

cell membranes (soft interfaces), fibers, and scaffolding structures. These structures

can range in scale from nanometers to the size of whole cells and organisms. Typically,

however, the length scales are in the 1-1000 nm range. For such a small scale, over time

9



Chapter 2. Mathematical Models of Diffusion in Cellular Media

scales relevant in biology, the process of diffusion in cellular media, although random

in nature, can actually serve a deterministic purpose in supporting the functioning of

the cell [38].

We expect that due to the structure of living matter, diffusion of particles often

occurs in highly heterogeneous matter. Such anisotropic conditions may result in

behaviour that is markedly different than expected for isotropic conditions. There

have been many studies and models written for diffusion in isotropic conditions, but

relatively few for anisotropic diffusion. It is not clear how well results obtained using

the assumption of isotropy relate to biological systems because of the presence of

structures such as membranes and fibres, which violate the assumption of isotropy.

More research is required to better understand the process of diffusion in heterogeneous

matter as well as to predict the shape of the displacement distribution.

2.2 Biological Membrane Systems

All cells are surrounded by cell or plasma membranes which offer protection and serve

numerous functions (e.g., facilitating ion conduction, cell-to-cell chemical and electrical

signaling, and controlling movement of particles in and out of cells). These membranes

can be thought of as thin elastic sheets, with a total thickness of a few nanometers

typically [38]. A soap bubble is a simple analogy to biological membranes that surround

our cells. They are fragile and flexible, and can change properties with the influence

of external forces, such as heat. However, the complexity of biological membranes and

the significant role that they play is far greater than that of soap bubbles.

One popular model used to illustrate and explain the properties of cell membranes

is called the “Fluid Mosaic Model.” This description captures the fluid-like nature

in which lipid molecules pass one another relatively easily, the heterogeneity due to

distinct small-scale phases and internal structures, and the various cellular compart-

ments with their specific functions [38]. The chemical composition and structure of

membranes is such that they allow most lipids to pass through, and selectively restrict

the passage of ions, sugars, and amino acids [1].

10



2.3. Diffusion in the Brain

Even though diffusion is often assumed to take place under isotropic conditions,

this assumption is especially poor for regions in which membrane-based separations are

present. Numerous experiments have revealed that tagged molecules can become con-

fined to a region for some time, or that the mean square displacement will sometimes

exhibit unexpected behaviour [38].

Due to the heterogeneity and complexity of membranes, there are various obstacles

to the passage of large molecules and particles through the membrane. For short

diffusion times, the presence of such barriers to diffusion can clearly have a great effect

on the rate of diffusion. When short times are being studied (such as with diffusion

MRI), it is therefore crucial to accurately describe the effect of the membranes on

diffusion. However, if the long-term behaviour is of primary interest, the effect of such

membranes can be greatly diminished or even become negligible [38].

Thanks to advances based on new experimental techniques and theoretical mod-

eling, a better understanding of membranes and their importance has emerged [38].

We will develop a simple brain tissue model that can represent either isotropic or

anisotropic conditions as a numerical tool in further exploring biomedical diffusion

problems in the presence of semipermeable membranes.

2.3 Diffusion in the Brain

One feature of the human brain’s architecture is its complex network of grey matter ar-

eas connected by millions of white matter fibers. Grey matter consists mostly of nerve

cell bodies (neurons) and glial cells, but also contains dendrites and synapses [2]. The

grey matter region of the brain is responsible for processing information which is then

transmitted through neuronal axons (in white matter). Neurons (“nerve cells”) are

complex brain cells with specialized membranous structures, and numerous supporting

elements, such as embedded and peripheral proteins and ion channels [3]. Glial cells

are nerve cells that do not carry electro-chemical signals. Their role is mainly support-

ive, helping the brain digest parts of dead neurons, supporting healthy neurons, and

more. White matter is composed of those neuronal axons, which connect nerve cell
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Chapter 2. Mathematical Models of Diffusion in Cellular Media

bodies to one another in various grey matter areas. The axons carry nerve impulses

between neurons.

Each type of brain cell is unique not only in its function, but also in size, shape, and

composition. Furthermore, the differences in cell structures and orientation can lead

to significant changes in the shape of the displacement distribution. In the context of

biomedical diffusion MRI, these differences are of great importance. Through calcu-

lating and imaging the average displacements of hydrogen atoms in water molecules,

one can infer structures based on the rate of diffusion in a region. For this reason, we

are most interested in simulating the movement of water molecules inside the brain.

To illustrate how diffusion can vary depending on tissue type and configuration, we

consider a few possible scenarios that occur in the brain.

To describe the diffusion of water molecules in the brain, one could draw contours

of the expected probability density function p for a particular tissue and configuration.

This function describes the probability that a particle will move in a given direction

due to random diffusion. As mentioned already, diffusion in grey matter can differ

greatly qualitatively and quantitatively from diffusion in white matter.

In regions of the brain that are mostly fluid-filled, such as in ventricles (which

contain mostly cerebrospinal fluid), particle displacements are equally likely in any

direction because microstructural barriers to water movement are relatively few [5].

The function p in this case is isotropic.

Conversely, in the dense tissue of grey matter there are several barriers to water

mobility such as cell walls and membranous structures. In the case where such bar-

riers are not aligned in any particular orientation, the function p remains isotropic.

However, the shape of p will be narrower since the average length of displacement is

smaller than without the barriers.

In white matter, neuronal axons are oriented parallel to each other with a greater

consistency than that of cell walls in grey matter. As displacements parallel to the

fibre axis are larger on average than in directions perpendicular to the fibre axis, the

function p is anisotropic. White matter also contains more complex microstructures

with fibres crossing each other, sometimes orthogonally. In this case, p is anisotropic
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2.4. Simple Brain Tissue Model

with ridges in the direction of each fibre [5]. Other configurations of structures may

occur in the brain, with different shapes of p, but these are the most common examples.

Having summarized some of the various types and configurations of brain tissue,

we briefly discuss a model of diffusion in cellular media that can be applied to brain

tissue configurations and parameters. Due to the complexity of the brain, defining a

model for diffusion of water molecules in the brain is a challenging task. Furthermore,

the range of tissue types in the brain, and their varying arrangements, sizes, shapes

and functions means that such a model must be flexible, although it will nevertheless

be a broad simplification of actual diffusion. It should, however, capture the key

characteristics of diffusion in both isotropic and anisotropic conditions.

2.4 Simple Brain Tissue Model

We wish to develop a model that represents diffusion of particles across semipermeable

membranes. Using such a model, simulations could be run with varying permeability,

shapes of membranes, and other cellular characteristics. Through such simulations, we

wish to have the ability to demonstrate the influence on average rate of displacement

caused by the presence of semipermeable membranes. As such, the effect of isotropic

and anisotropic conditions on the displacement distribution could be investigated.

This would be a valuable tool that could be used to better understand the influence of

cellular membranes on diffusion, and one that could potentially be applied to various

medical applications that involve diffusion in cellular media.

2.4.1 Restricted Diffusion in Cellular Media

The model we develop is for the restricted diffusion of particles, e.g., water molecules,

in living tissue with cellular boundaries. The particular application is to the diffusion

of water molecules inside brain tissue (e.g., grey or white matter), with molecules that

may move around and across brain cell membranes.

It is well-understood that water molecules are allowed to move through cell mem-

branes of living tissue [18], albeit at a much slower rate than in a free (homogeneous)
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medium. In this heterogeneous domain, we wish to model the diffusion that would oc-

cur with given initial concentrations, brain cell sizes and configurations, and diffusion

times.

Figure 2.1: Cartoon of cellular water diffusion; shaded regions represent cell bodies
and the solid interfaces surrounding them represent the cellular membranes. The
random movement of particles in the intra- and extracellular space is depicted by two
alternate diffusion pathways. In one pathway, the particle diffuses across the center
cell’s membrane, whereas in the second pathway, the particle goes around. Reproduced
following Figure 1 from [21].

We consider a configuration of intracellular and extracellular space separated by

semipermeable interfaces, such as that in Figure 2.1. The intracellular and extracel-

lular spaces have characteristic diffusion coefficients, DI and DO, respectively. Thus,

due to the complexity of structures inside the cell, the average rate of diffusion inside

the cell should be much smaller than the rate outside the cell, meaning that DI is less

than DO.

2.4.2 Model Assumptions

To simplify our model, we assume homogeneity both inside and outside the cell, while

the overall heterogeneity of brain tissue is modelled by separating the extracellular

and intracellular fluid with a semipermeable interface of zero thickness. This of course
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is not accurate because of the presence of larger molecules and structures inside the

membrane, such as the nucleus. However, we assume that these smaller scale inhomo-

geneities are less important than the overall cell tissue heterogeneity.

The justification for such a model is that we can still represent the overall effect

of the cellular membranes as well as restricted diffusion inside the cell by selecting

appropriate permeability coefficients for the membrane, as well as characteristic dif-

fusion coefficients for the average rate of displacement of particles inside and outside

the cell.

To study the displacement distribution for diffusion in cellular media, we assume

that the most important factors are the shape of membranes, their permeabilities, and

the relative diffusion coefficients inside and outside the cell. The shape of the bound-

ary can be changed easily using the immersed boundary method, which we discuss in

Chapter 3. In addition, the diffusion coefficients and membrane permeability are also

parameters that may be changed to model various tissue configurations.

2.4.3 Typical Brain Tissue Parameters

The diffusion coefficients and permeability found in brain tissue vary based on numer-

ous factors, and can be difficult to calculate experimentally. However, for the purpose

of our model, we consider the following parameters to be typical for brain tissue,

and are based on the work Latour et al. [21] (see also Szafer et al. [32] for similar

parameters):

DI = 1.56 × 10−5 cm2/s, DO = 2.12 × 10−5 cm2/s,

P = 0.01 cm/s, a = 2 µm,

where DI and DO are the intracellular and extracellular diffusion coefficients, respec-

tively, P is the permeability coefficient (the rate of permeation of particles through the

interface Γ, with dimensions of conductivity), and a is the cell radius of a spherical cell.
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The inequality between diffusion coefficients DI and DO is due to the greater number

of microstructures inside the cell that impede water diffusion than those outside the

cell.

The diffusion times used in our simulations are typically 1ms or less. Note that for

such short diffusion times, the effects of cell membrane and anisotropy can be studied

well. A good example is a human axon, with a typical diameter of 0.8 − 2 µm [4]. For

a particle within an axon and a diffusion coefficient of D = 1.56 × 10−5 cm2/s, the

particle could travel a distance of 1.2 µm in 1ms. Therefore, the diffusing particle will

potentially reach the cell walls multiple times, and either diffuse across the membrane

or become reflected. Alternatively, for a cell nucleus with a diameter of 4 µm, the

particle would not likely reach the cell membrane in this time. Axons can be modelled

well with the IB method by considering long, parallel membranes. This is left for

future work, but is worthwhile in investigating anisotropic diffusion found in the brain

(e.g. in grey matter). Similarly, the research by Szafer et al. [32] (through Monte Carlo

simulations) offers excellent insight into a broad range of diffusion times for similar

cellular diffusion problems. The relationships between apparent diffusion coefficient

and such factors as the membrane permeability and cell size are also presented.

Based on the theoretical principles presented above for diffusion in cellular media,

we now present the governing equations for our mathematical model.

2.4.4 Governing Equations

The canonical equation to describe free diffusion of molecules or small particles is

ct = ∇· (D∇c) , (2.4.1)

where c is the concentration of particles and D is the diffusion coefficient. This gov-

erning equation is derived from two laws proposed by Adolf Fick. The first law,

J = −D∇c, (2.4.2)
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provides the equation for the diffusive flux, J, as a linear relation to the concentration

gradient ∇c, with D as the proportionality coefficient.

As mentioned, diffusion is the random movement of molecules or small particles

due to thermal energy. Diffusion is also loosely defined as the sporadic tendency of

systems to equalize concentration in the absence of impeding external forces [30]. The

flux equation therefore reflects the property that atoms, molecules, or any particle will

migrate (through diffusional processes) in the direction where fewer elements of its

own kind are located (from high concentration to low concentration). An additional

law relating diffusive flux to concentration is Fick’s second law,

∂

∂t
c + ∇·J = 0, (2.4.3)

which captures mathematically the principle of conservation of mass, i.e., that particles

cannot be created or destroyed, as expected for a normal diffusion process. Substitut-

ing (2.4.2) into (2.4.3) yields the diffusion equation (2.4.1).

To include the inhibiting effect of the interface (cell membrane) on the free diffusion

of particles, a flux law is needed at the interface Γ. The magnitude of net flux across

the interface may be modelled as

J = −P A (c2 − c1) , (2.4.4)

(in three-dimensions) where P is the membrane permeability, A is the surface area of

the membrane, and c2 − c1 is the difference in concentration across the membrane for

flow from c1 to c2 (e.g., flow from intracellular concentration to extracellular concen-

tration). That is, we assume that the flux across the membrane is directly proportional

to the jump in concentration across the membrane.

We consider a general form of (2.4.4) which includes the possibility of relating flux

to a nonlinear change of concentration across the membrane. We write the flux law at

the interface Γ in 2D as:

D∇c = P [g(c)]Γ n, (2.4.5)

17



Chapter 2. Mathematical Models of Diffusion in Cellular Media

where [ · ]Γ denotes the jump across the interface, g(c) is a function of concentration,

and n is the unit normal vector of the interface. The flux through the interface Γ

described by (2.4.5) will have a magnitude given by the membrane permeability times

the jump in concentration at the interface, as given by g(c) (see Figure 2.2). We

assume that flux is zero in the tangential direction, a simplification that is a good

approximation when the driving force of particle motion is the concentration gradient

of the system, not the fluid velocity. In this case, flux in the tangential direction

would be negligible in comparison to flux in the normal direction, e.g., through cell

membrane pores, the main means of particle transport.

The inclusion of a general g(c) allows for a variety of linear or nonlinear laws

depending on the problem being studied and the particular application. For our model,

we assume a linear function of concentration, g(c) = c.

Figure 2.2: Discontinuous concentration in 1D with jump in concentration given by
[g(c)]Γ.

Summarizing our brain tissue model, the governing equation for diffusion in the

bulk region is given by

ct = ∇· (D∇c) , (2.4.6)

and the flux law at the interface is

D∇c = P [c]Γ n. (2.4.7)
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Here we assume homogeneous diffusion inside and outside the cells, and model the

overall heterogeneity of the brain tissue with the flux law (2.4.7) at an interface Γ of

zero thickness. The diffusion coefficient D = D(x), permeability P , and shape of Γ

may be varied to simulate diffusion in various brain tissue configurations, e.g., for glial

cells and neuronal cells in grey and white matter.

In Chapter 3, we present our numerical methods for producing simulations. The

immersed boundary (IB) method is discussed, and governing equations are reformu-

lated under this framework to demonstrate the applicability, challenges, and benefits

of using this powerful numerical technique for such fluid-structure problems.
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Chapter 3

Immersed Boundary Method for

Cellular Diffusion

Having presented our simple model for diffusion of particles in cellular media with

semipermeable membranes, we propose an efficient numerical method to perform com-

putational simulations. We use the immersed boundary (IB) method to easily impose

the effect of embedded interfaces (membranes) of any shape and size without setting

up complex computational grids.

We begin with an overview of IB methods and how they are used. We then apply

the IB method framework to our governing equations to derive equations valid on the

entire computational domain. Using the concept of flux as an additional variable, we

have a system of coupled equations which can model diffusion in the presence of any

arbitrary interface configuration. To run simulations, we solve the resulting equations

numerically by applying the Crank-Nicolson numerical scheme. This produces a linear

system of equations representing the evolution in time of particle concentrations for

each point in the computational grid. We are then able to run our simulations for a

variety of cellular parameters and configurations, the results of which are presented in

Chapter 4.
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3.1. The Immersed Boundary Method

3.1 The Immersed Boundary Method

In 1972, Charles S. Peskin developed a method for simulating the pumping motion of

the human heart and associated fluid dynamics of the blood flow [28]. His approach

employed a single Cartesian grid which did not conform to the heart geometry, and

featured an entirely new method for expressing the effect of an immersed boundary on

fluid flow. This boundary, or interface may be, for example, a membrane immersed in

a fluid, or an interface between two different fluids.

Numerous variants and refinements of his immersed boundary (IB) method have

since been developed, and are generally classified as such if they simulate viscous

flows with embedded interfaces on grids not conforming to the shape of the immersed

objects. Due to its simplicity, the IB method has become one of the main numerical

techniques for scientific computation of fluid-structure interaction problems, including

those involving moving interfaces [18, 25, 29]. A similar class of methods, often termed

“Cartesian grid methods”, has also been developed for simulating inviscid flows [9, 10,

40]. These too have been extended to simulate unsteady viscous flows [37, 39], with

capabilities similar to those of IB methods [25].

To simulate flow past an immersed solid body (see Figure 3.1a), the conventional

approach employs structured or unstructured grids conforming to the shape of the

object. The generation of the grid proceeds in two general steps. First, generate a

surface grid covering the boundary Γb. A grid in the fluid volume Ωf is then generated

with the surface grid as its boundary condition.

If a conventional finite difference method on a structured grid is used for the the

representation of governing equations, special care is needed because the immersed

boundary (hereafter termed ‘interface’), in general, does not coincide with the grid.

The finite difference form of the governing equations must be transformed to a curvi-

linear coordinate system aligned with the grid lines to make the discretisation of the

transformed equations somewhat simpler. If a finite volume method is used instead,

the integral form of the governing equations is discretised and the shape of the interface

may be incorporated directly into the discretisation.
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Figure 3.1: (a) An immersed body around which a flow is to be simulated. The body
has volume Ωb, boundary Γb, length scale L, and a boundary layer of thickness δ.
(b) An immersed boundary in a Cartesian grid on which the governing equations are
discretised. Reproduced following Figure 1 of [25].

When using unstructured grids, both finite volume and finite element methods

may be used. Grid transformations are not needed in either approach, allowing the

interface to be represented somewhat more easily. However, for both structured and

unstructured grids, the amount of work required to account for arbitrarily shaped

interfaces, especially ones lacking symmetry, is quite significant [25]. For flows with

moving boundaries, the generation of body-conformal grids requires the use of a dy-

namic mesh, which, for the finite element method, can be very inefficient. The solution

must then be projected onto the new grid at every time step. As such, the computa-

tional cost and accuracy of the solution procedure will be severely affected for large

motions [25]. Including body motion using the IB method, however, is simpler due to

the use of a fixed (in time) Cartesian grid.

In Figure 3.1b, we consider a nonbody-conformal Cartesian grid that is used in

the immersed boundary method. The interface is represented through means such as

a surface grid Ωb as before (e.g., a set of Lagrangian points). However, instead of

building an unstructured grid around the interface, a structured, Cartesian grid Ωf is

generated independent of the surface grid that cuts through Ωf .

The immersed boundary method requires a modification of the governing equations

to enable imposing boundary conditions on the interface. The modifications to the

governing equations will depend on the problem being solved, and can take a variety of
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forms. This step distinguishes IB methods from one another and is the most significant

aspect of developing an IB method algorithm. See [25] for an excellent discussion on

the many approaches used in imposing boundary conditions on immersed boundaries.

After the appropriate modification has been made, the governing equations are

then discretised using a numerical scheme (e.g., finite difference, finite element, or

finite volume) without any coordinate transformations required. This greatly reduces

the per-grid-point operation count, and the simplicity is one of the benefits of the IB

method. In this way, the IB method has become an attractive approach for simulating

fluid flow problems with moving boundaries.

Before discussing the specifics of our numerical methods, it is useful to compare the

advantages and disadvantages of the IB method as it compares to other techniques.

The primary advantage of the IB method is that the task of grid generation is greatly

simplified [25]. Conversely, generating body-conformal structured or unstructured

grids can be very cumbersome. For instance, with body-conformal grids, we often seek

a grid providing relatively high resolution around the boundaries, while attempting to

minimize the number of total grid points. This can be quite challenging for increasingly

complex geometries. Furthermore, structured body-conformal grids may suffer from

grid smoothness deterioration between interfaces of subdomains of varying grid sizes.

With the IB approach of employing a non body-conformal Cartesian grid, algorithm

and grid complexity are not significantly affected by the geometric complexity of an

immersed boundary.

The advantage of body-conformal grids, however, is that they tend to allow for

better control of the grid resolution in the vicinity of the body [25]. In fluid-structure

problems, this has implications for the increase in grid size required with increasing

Reynolds number (a dimensionless constant used in fluid mechanics problems to distin-

guish between flow regimes and quantify the relative importance of viscous and inertial

forces in the equations of motion). As the Reynolds number increases, the number

of grid points for an accurate approximation of flow around the boundary layer in-

creases. For a Cartesian grid, the increase of the required grid points is faster than for

a corresponding body-conformal grid. This does not necessarily imply a corresponding

23



Chapter 3. Immersed Boundary Method for Cellular Diffusion

increase in computational cost, however, as a substantial fraction of the grid points

may be inside the solid body where fluid flow equations need not be solved [25].

Another disadvantage of IB methods is that they are known to require small time

steps to maintain stability and accuracy when solved with explicit methods. Some

implicit and approximately implicit methods have been proposed in the literature to

remove the severe stability constraint, but are typically too computationally expen-

sive, with little improvement in the rate of convergence [17]. Due to these drawbacks,

practical computations using the IB method typically use an explicit discretisation,

despite the time step requirements. However, one promising numerical method is a

semi-implicit scheme (i.e., based on an implicit scheme, but is effectively explicit) that

was proposed by Hou and Shi [17] as an IB method for solving the Navier-Stokes equa-

tions. They are able to significantly improve the accuracy of the numerical solution,

with a computational cost comparable to that of an explicit scheme. Such approaches,

with advanced algorithms to improve the accuracy near the interface are more com-

plex and therefore less easily implemented. However, there is much to be gained by

such methods, and they are certainly a good option for those desiring highly accurate

quantitative information in the entire domain.

We use the Crank-Nicolson method in the discretisation of the governing equations.

This scheme (which is implicit in time) is a popular choice because it has been shown

to be unconditionally stable, and is simple to implement. However, this comes at an

expense to the accuracy of the solution, and is therefore a tradeoff between simplicity

and accuracy. We will discuss the advantages and disadvantages of such a scheme

further in Chapter 4 along with numerical simulations for 1D and 2D problems. In

Section 3.2 we apply the IB method framework to reformulate the governing equations,

and then use the Crank-Nicolson method in Section 3.3 to discretise the new governing

equations.
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3.2 An Immersed Boundary Method for Cellular

Media

Since the development of Peskin’s original IB method, there have been a number

of non-biological fluid-structure applications proposed, and the interest continues to

grow. Suspension flows [31], parachute dynamics [20], and multimaterial simula-

tions [35] are a few recent examples of such applications. Biological and multiphase

flows, however, continue to be the most common use of the IB method.

In a recent paper by Huang et al., an IB method was proposed for the restricted

diffusion of a fluid through permeable interfaces. Examples of such flows include heat

transfer processes restricted at contact boundaries [16], and diffusion of water and

oxygen molecules restricted by cell membranes in biological tissues [19]. The approach

used in the IB formulation is the continuous forcing process (see [25]), where a set of

governing equations valid on the entire domain are formulated to impose the effect of

the interface on fluid motion. The coupled equations are valid in both the bulk region

Ωf and the interface Ωb (see Fig. 3.1).

The key idea behind Huang et al.’s approach is to use flux f as an additional

variable in the formulation of model equations for concentration c. The approach of

using flux as an unknown function for diffusion problems, however, is not new; in fact

it also appears in mixed finite element methods (see, for example [7, 11, 6]). Using

c and f , Huang et. al. formulate a set of equations which are valid in the entire

domain Ω, including on the interface Γ. The delta function proposed by Peskin is

used in the flux and concentration equations to impose the effect of the interface on

the diffusion of particles. This approach, however, leads to a smoothing of the desired

discontinuity in concentration at the interface. Some have proposed advanced methods

to more accurately capture the discontinuity at such interfaces. Leveque et al. [23] and

Layton [22] propose some numerical techniques, which also address the short time step

restraint.

However, these methods, and many others, have not yet (to our knowledge) been

applied to the diffusion equation with discontinuous diffusion coefficients and semi-
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permeable interfaces. This particular diffusion problem is the main interest in our

study, and simulations of diffusion of particles in cellular media. In our numerical

method, we discretise the model equations proposed by Huang et al. [18]. They provide

an elegant and powerful means of simulating diffusion for arbitrarily shaped interfaces,

with relative ease.

3.2.1 Reformulating the Governing Equations under the IB

Method

At the interface Γ, there will be a discontinuity in concentration c, as expressed im-

plicitly in the interface flux law (3.2.1),

D∇c = P [c]Γ n, (3.2.1)

where D is the diffusion coefficient, P is the permeability, [ · ]Γ denotes the jump across

the interface, and n is the unit normal vector of the interface. We assume that c is

smooth everywhere except at the interface, and define

c = cs + [c]Γ H (x − xΓ) , (3.2.2)

where [c] is the jump in concentration across the interface Γ and H is the Heaviside

step function. The discrete form of H is zero on one side of the interface and one on

the other side. This gives us discontinuous concentration at Γ because

lim
x→x−

Γ

c = cs, and lim
x→x+

Γ

c = cs + [c]Γ .

Now we take the gradient of both sides of (3.2.2):

∇c = ∇cs + ∇ ([c]Γ H (x − xΓ)) ,

= ∇cs + n

∫
Γ

[c]Γ δ(x − xΓ)dxΓ, (3.2.3)
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where we have used the following relationship between the Heaviside step function and

the delta function:

∇H(x − xΓ) = n

∫
Γ

δ(x − xΓ)dxΓ. (3.2.4)

Rearranging the interface flux law (3.2.1), we have

f ·n = −D∇c ·n = −P [g(c)]Γ .

If we use the following approximation,

[g(c)]Γ = g′(cavg) [c]Γ , (3.2.5)

where cavg is the average of cI and cE (intracellular and extracellular concentration,

respectively), then we have

−f ·n
P

= [g(cavg)]Γ ,

= g′(cavg) [c]Γ ,

⇒ −f ·n
Pg′(cavg)

= [c]Γ . (3.2.6)

For our model, we let g(c) = c, which means that g′(c) = 1. This term, which

is used in the following equations, and not g(c), is scalar and does not depend on

concentration c. Therefore, we can replace cavg by c for simplicity. For g(c) different

from c, we would have to denote which c we choose for the approximation in (3.2.5).

Combining (3.2.6) with (3.2.3) we have

∇c = ∇cs + n

∫
Γ

[c]Γ δ(x − xΓ)dxΓ,

= ∇cs + n

∫
Γ

−f ·n
Pg′(c)

δ(x − xΓ)dxΓ,

= ∇cs −
∫

Γ

f

Pg′(c)
δ(x − xΓ)dxΓ, (3.2.7)

where we again use the assumption that flux f is zero along Γ.

Now we multiply by the diffusion coefficient D. At this point we will assume that D
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is continuous everywhere, whereas in a real-life problem involving cellular membranes,

this is not the case. Typically, the intracellular and extracellular diffusion coefficients

are not the same, so there should be a discontinuity in D across the interface. We will

approximate the jump in D by a function D(x) that changes quickly from one side of

the boundary to the other. Numerically, this is achieved by setting D = DI inside the

interface, D = DO outside, and D = 1
2
(DI + DO) on the interface.

Multiplying (3.2.7) by the diffusion coefficient, we have:

D∇c +

∫
Γ

Df

Pg′(c)
δ(x − xΓ)dxΓ = D∇cs.

Next we take the divergence of both sides:

∇·
(

D∇c +

∫
Γ

Df

Pg′(c)
δ(x − xΓ)dxΓ

)
= ∇· (D∇cs) .

Because flux is continuous everywhere (due to conservation of mass), [c]Γ does not

contribute to the flux D∇cs, thus

∇· (D∇cs) = −∇ · f = ct.

We now have the governing equation for concentration, valid on the entire domain

Ω:

ct = ∇·
(

D∇c +

∫
Γ

Df

Pg′(c)
δ(x − xΓ)dxΓ

)
. (3.2.8)

We also seek an equation to compute flux f on Ω. We begin by finding an equation

for f in the subdomain Ω/Γ. Consider the following identity:

∇ (g′(c)ct) = g′(c) (∇c)t + g′′(c)ct∇c. (3.2.9)

In the subdomain Ω/Γ, ct = ∇· (D∇c). Substituting this into (3.2.9), we have

∇ (g′(c)∇ · (D∇c)) = g′(c) (∇c)t + g′′(c)∇· (D∇c)∇c.
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Now we multiply both sides by D and replace D∇c by −f :

−D∇ (g′(c)∇· f) = −g′(c)ft + g′′(c)f∇· f .

Rearranging, we have

g′(c)ft = g′′(c)f∇· f + D∇ (g′(c)∇· f) . (3.2.10)

Additionally, by using the interface flux law (3.2.1), we can obtain an equation valid

for Γ:

−f = P [g(c)]Γ n,

−f ·n = P [g(c)]Γ .

Now we take the time derivative:

−ft ·n = P

[
g′(c)

∂c

∂t

]
Γ

,

= P [g′(c)∇· (D∇c)]Γ ,

= P [g′(c)∇· (−f)]Γ ,

⇒ ft ·n = P [g′(c)∇· (f)]Γ . (3.2.11)

Combining (3.2.10) and the interface flux law (3.2.1) yields an equation in f on the

entire domain Ω that we use to solve for flux:

ft

(
g′(c) +

∫
Γ

D

P
δ(x − xΓ)dxΓ

)
= g′′(c)f∇· f + D∇(g′(c)∇· f). (3.2.12)

To verify that (3.2.12) is valid for all of Ω, we can consider the subdomain x ∈ Ω/Γ

and interface Γ separately. In x ∈ Ω/Γ, it is straightforward to see that (3.2.12) yields

(3.2.10). On the interface Γ, we can obtain the time derivative of the interface flux

law (3.2.1), given by (3.2.11), by integrating (3.2.12) across the interface Γ. Because

we use g(c) = c in our model, to simplify the presentation, we will substitute this into
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(3.2.12) before integrating.

Choosing g(c) = c also means that g′(c) = 1, and g′′(c) = 0. Substituting these

into (3.2.12) yields:

ft

(
1 +

∫
Γ

D

P
δ(x − xΓ)dxΓ

)
= D∇(∇· f). (3.2.13)

Now we integrate both sides across Γ in the normal direction as follows:

lim
ϵ→0

∫ γ−ϵ

γ+ϵ

ft

(
1 +

∫
Γ

D

P
δ(x − xΓ)dxΓ

)
·n dn = lim

ϵ→0

∫ γ−ϵ

γ+ϵ

D∇(∇· f) ·n dn, (3.2.14)

where n is the unit normal vector to the interface (pointing outward as shown in Fig.

3.2). To integrate the left-hand-side of (3.2.12), we expand and integrate each part

separately.

Figure 3.2: To verify that (3.2.12) is valid on the interface, we integrate across Γ in
the normal direction, n. The vector n is the unit normal vector of the interface.

First, because f is continuous across the interface Γ, we have:

lim
ϵ→0

∫ γ−ϵ

γ+ϵ

ft ·n dn = lim
ϵ→0

[Ft(γ − ϵ) − Ft(γ + ϵ)] ·n,

= Ft(γ) − Ft(γ),

= 0,
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where we have used the Fundamental Theorem of Calculus and let Ft be the anti-

derivative of ft on [γ − ϵ, γ + ϵ]. Secondly, we have:

lim
ϵ→0

∫ γ−ϵ

γ+ϵ

ft

(∫
Γ

D

P
δ(x − xΓ)dxΓ

)
·n dn, = lim

ϵ→0

D

P

∫ γ−ϵ

γ+ϵ

∫
Γ

ftδ(x − xΓ)dxΓ ·n dn,

=
D

P
ft(xΓ) ·n,

where we again use the assumption that flux f is zero along Γ and can therefore be

pulled inside the integral over Γ.

Integrating the right-hand-side, we have:

lim
ϵ→0

∫ γ−ϵ

γ+ϵ

D∇(∇· f) ·n dn = D lim
ϵ→0

∫ γ−ϵ

γ+ϵ

[
∂

∂n
(∇· f)n +

∂

∂τ
(∇· f)

]
·n dn,

= D lim
ϵ→0

∫ γ−ϵ

γ+ϵ

[
∂

∂n
(∇· f)n + 0

]
·n dn, (3.2.15)

where τ is the variable in the tangential direction, n is the variable in the normal

direction, and we use the assumption that there is no flux in the tangential direction.

Simplifying and integrating (3.2.15), we have:

lim
ϵ→0

∫ γ−ϵ

γ+ϵ

D∇(∇· f) ·n dn = D lim
ϵ→0

∫ γ−ϵ

γ+ϵ

∂

∂n
(∇· f)n ·n dn,

= D

[
∇· f

∣∣∣∣
γ−ϵ

−∇ · f
∣∣∣∣
γ+ϵ

]
,

= D [∇· f ]Γ ,

where [ · ]Γ denotes the jump across the interface as in condition (3.2.1). Combining

results, we have:

0 +
D

P
ft ·n = D [∇· f ]Γ .

Rearranging, we have the jump condition (3.2.11)

f ·n = P [∇· f ]Γ.

Having verified that the flux equation (3.2.12) is valid in the entire domain, we can
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now present the final model equations, where we have followed the work of Huang et

al. [18]. The concentration c of particles, and the transmembrane flux f , for g(c) = c,

are given by the following coupled equations:

ct = ∇·
(

D∇c +

∫
Γ

Df

P
δ(x − xΓ)dxΓ

)
, (3.2.16)

ft

(
1 +

∫
Γ

D

P
δ(x − xΓ)dxΓ

)
= D∇(∇· f). (3.2.17)

The boundary condition for concentration on the outer boundaries is taken to be the

Neumann homogeneous boundary condition,

∂c

∂n
=

∇c ·n
|n|

= ∇c ·n = 0,

where ∂c
∂n

is the normal derivative, n is the unit normal vector to the interface Γ, and

|n| = 1. In this way, diffusion is confined within the domain Ω in which we run our

simulations.

We take Neumann boundary condition at the outer boundary because it facilitates

studying the effect of the outer boundaries. One applicable scenario is in simulating

diffusion on a domain restricted by some outer boundary, such as a microstructure

surrounding a group of cells. We could make the domain size small and vary the

simulation run time to study the effect of the outer boundary on the solution. This

would provide insight, for example, into errors that can be accrued by considering

diffusion times that are too long for a given area, i.e. in the case where the outer

boundaries play a significant role.

This can be particularly important to consider when applying diffusion models in

the interpretation of signals from MRI experiments over a given voxel size and diffusion

time. By varying the domain size and run time, we can simulate different scenarios

for short-time diffusion.

Alternatively, applying periodic boundary conditions would artificially represent

an infinite domain. Furthermore, if the domain size is not chosen appropriately with

periodic boundary conditions, it may lead to artificially long transport due to molecules
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passing through the outer boundaries.

The initial conditions for concentration and flux are chosen in our simulations based

on the problem we are interested in modelling, and on the spatial dimension (i.e., 1D vs.

2D). We will mention briefly the initial conditions used in the presentation of results

in Chapter 4. We now provide an overview of the discretisation of the governing

equations used in our simulations.

3.3 Discretisation of Governing Equations

To discretise the governing equations in 1D and 2D, we use the Crank-Nicolson method,

which replaces the partial derivatives with implicit finite differences. Specifically, the

method uses central differencing in space, and the average of the forward and backward

Euler methods at tn and tn+1. This method is second order accurate in time, and has

been shown to be unconditionally stable for the diffusion equation (among others) [33].

However, oscillatory behaviour can occur if the ratio of time step ∆t to the square of

space step ∆x is large [36], e.g., for the 1D diffusion equation ct = αcxx, where α is

the diffusion coefficient, the condition is:

α
∆t

(∆x)2
≤ 1

2
. (3.3.1)

Note: this relation is not dependent upon the scale used in time and space since the

units for ∆t and ∆x will cancel with the units of α (taken here to be the diffusion

coefficient, with dimension time−1space). This strict requirement on ∆t can become

prohibitive for small mesh size and dimensions greater than 1D; in such cases, al-

ternative methods are often used (e.g. backward Euler method, or an explicit jump

method [22]). We choose to use the Crank-Nicolson method despite this restriction

because we use sufficiently small mesh sizes and do not consider dimensions higher

than two. In 3D, one may still use this numerical scheme. However, small time steps

may be required to maintain an acceptable numerical accuracy.

Furthermore, to ensure that the solutions do not blow up or approach negative
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solutions, we seek to satisfy the maximum principle (see [26]). For the Crank-Nicolson

method, the maximum principle is satisfied if the ratio in (3.3.1) is ≤ 1 [26]. We also

choose to use the Crank-Nicolson method because it is relatively easy to set up and is

a good first step in developing more efficient numerical methods.

For a 1D problem, i.e., for u = u(x), on the uniform grid {x0, x1, ..., xN} of grid

size ∆x and at uniformly spaced discrete times {t0, t1, ..., tn+1} where ∆t is the step

size, the implicit finite difference formulae used by the Crank-Nicolson method are:

u =
Un+1

l − Un
l

2
,

∂u

∂t
=

Un+1
l − Un

l

∆t
,

∂u

∂x
=

1

2

(
Un+1

l+1 − Un+1
l−1

2∆x
+

Un
l+1 − Un

l−1

2∆x

)
,

=
1

4∆x

(
Un+1

l+1 − Un+1
l−1 + Un

l+1 − Un
l−1

)
,

where Un
l is the approximation of u(xl, tn), where xl = x0 + l∆x and tn = t0 + n∆t.

3.3.1 One-Dimensional

Using the Crank-Nicolson method to discretise (3.2.16) in 1D on the uniform grid

{x0, x1, ..., xN} of grid size ∆x and at uniformly spaced discrete times {t0, t1, ..., tn+1}

where ∆t is the step size, we have:

Cn+1
i − Cn

i

∆t
=

D

2(∆x)2

((
Cn+1

i+1 − 2Cn+1
i + Cn+1

i−1

)
+
(
Cn

i+1 − 2Cn
i + Cn

i−1

))
+

Dδh,i

P

(
1

4∆x

((
F n+1

i+1 − F n+1
i−1

)
+
(
F n

i+1 − F n
i−1

)))
,

where C is the vector of unknowns for concentration c, i is the spatial index, and n

is the temporal index; that is, the i-th component of Cn is Cn
i ≈ C(xi, tn). δh,i is

the discrete delta function at xi, and the line integral over Γ vanishes in 1D for point

interfaces Γ = xΓ. We have also set D(xi) = D for the 1D tests, although in 2D we
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allow spatial dependence of D. We use the discrete form of δ(x − xΓ) proposed by

Peskin [28]:

δh,i =
1

(2∆xj)d

d∏
j=1

(
1 + cos

π(xj − xΓj)

∆xj

)
,

where d is the spatial dimension (1, 2, or 3), xj is the j-th component of xi, xΓj is the

j-th component of xΓ on the boundary, and δh,i = 0 for |xj −xΓj| > ∆xj. Rearranging

and grouping terms, we have:

(1 + 2ξ)Cn+1
i − ξ(Cn+1

i+1 + Cn+1
i−1 ) = (1 − 2ξ)Cn

i + ξ(Cn
i+1 + Cn

i−1)

+
D∆t

4P∆x
δh,i(F

n+1
i+1 − F n+1

i−1 + F n
i+1 − F n

i−1),

where ξ = D∆t
2(∆x)2

. In the 1D problem that we consider, we fix the value of con-

centration at x = x0 and x = xN (the outer boundaries of the domain). Using these

boundary conditions, we have the following system of equations in matrix-vector form:

ξ



ξ−1 + 2 −1 0 0 · · · 0

−1 ξ−1 + 2 −1 0 · · · 0

0 −1 ξ−1 + 2 −1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . −1

0 · · · · · · · · · −1 ξ−1 + 2





Cn+1
1

Cn+1
2

Cn+1
3

...

...

Cn+1
N



= ξ



ξ−1 − 2 1 0 0 · · · 0

1 ξ−1 − 2 1 0 · · · 0

0 1 ξ−1 − 2 1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1

0 · · · · · · · · · 1 ξ−1 − 2





Cn
1

Cn
2

Cn
3

...

...

Cn
N
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+
D∆t

4P∆x



0 δ1 0 0 · · · 0

−δ2 0 δ2 0 · · · 0

0 −δ3 0 δ3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . δN−1

0 · · · · · · · · · −δN 0





F n+1
1

F n+1
2

F n+1
3

...

...

F n+1
N



+
D∆t

4P∆x



0 δ1 0 0 · · · 0

−δ2 0 δ2 0 · · · 0

0 −δ3 0 δ3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . δN−1

0 · · · · · · · · · −δN 0





F n
1

F n
2

F n
3

...

...

F n
N


+ 2ξ



C0

0
...
...

0

C1


,

where C0 and C1 are the values of concentration fixed at x0 and x1 respectively.

Using the Crank-Nicolson method to discretise the flux equation (3.2.17) in 1D, we

have:

F n+1
i − F n

i

∆t
(1 +

D

P
δh,i) =

D

2(∆x)2

(
F n+1

i+1 − 2F n+1
i + F n+1

i−1 + F n
i+1 − 2F n

i + F n
i−1

)
.

Rearranging and grouping terms, we have:

(
(1 +

D

P
δh,i) + 2ξ

)
F n+1

i − ξ
(
F n+1

i+1 + F n+1
i−1

)
=

(
(1 +

D

P
δh,i) − 2ξ

)
F n

i + ξ
(
F n

i+1 + F n
i−1

)
.

At the outer boundaries, flux will be given by Fick’s first law (3.3.2),

f = −D∇c. (3.3.2)

In particular, we use a finite difference approximation of (3.3.2) to calculate flux at the

outer boundaries. Using this as the boundary condition for flux, we have the following

system of equations in matrix-vector form:
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ξ



Υ1 + 2 −1 0 0 · · · 0

−1 Υ2 + 2 −1 0 · · · 0

0 −1 Υ3 + 2 −1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . −1

0 · · · · · · · · · −1 ΥN + 2





F n+1
1

F n+1
2

F n+1
3

...

...

F n+1
N



= ξ



Υ1 − 2 1 0 0 · · · 0

1 Υ2 − 2 1 0 · · · 0

0 1 Υ3 − 2 1
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . . . . 1

0 · · · · · · · · · 1 ΥN − 2





F n
1

F n
2

F n
3

...

...

F n
N


+ 2ξ



F0

0
...
...

0

F1


,

where Υi = (1 + D
P

δi)ξ
−1 for i = 1, 2, ...N , and F0 and F1 are the values of flux at

x0 and xN respectively, calculated from (3.3.2) based on fixed values of concentration

at the boundaries. In the 1D numerical test we present in Chapter 4, we compare

our numerical solution with an analytical solution for steady-state concentration. To

pre-compute the values for F0 and F1 and use them as the flux boundary conditions,

we use the steady-state solution and plug into (3.3.2) the values of concentration for

two points near each of the boundaries.

Having demonstrated the discretisation of (3.2.16) and (3.2.17) in one dimension,

we now go into similar detail for the discretisation in two dimensions.

3.3.2 Two-Dimensional

The discretisation of the governing equations in two or more dimensions adds a greater

level of complexity, not only in the size of matrices, but also in the details of the

numerical methods used. For example, we now integrate along the interface Γ, whereas

the interfaces are single points in 1D. In addition, the flux variable is now vector
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valued. To demonstrate the discretisation, we present our numerical methods for two

dimensions, where it is a straightforward extension to apply the methods for three-

dimensions.

For our simulation domain, we choose ∆x = ∆y on a square domain, where time t

is discretised into points n = 0, 1, 2, ..., x is discretised into points xi for i = 0, 1, ..., N ,

and y is discretised into points yj for j = 0, 1, ..., N . Using the Crank-Nicolson method

to discretise (3.2.16), we have:

Cn+1
i,j − Cn

i,j

∆t
=

1

2(∆x)2
[(Di+1,jC

n+1
i+1,j + Di−1,jC

n+1
i−1,j + Di,j+1C

n+1
i,j+1 + Di,j−1C

n+1
i,j−1

−4Di,jC
n+1
i,j )] +

1

2(∆x)2
[(Di+1,jC

n
i+1,j + Di−1,jC

n
i−1,j + Di,j+1C

n
i,j+1 + Di,j−1C

n
i,j−1

−4Di,jC
n
i,j)] + Si,j,

where Si,j is the discretised version of the integral term in (3.2.16). We will discuss

this term below.

Rearranging and grouping terms, we have:

(1 + (2µ)Di,j)C
n+1
i,j − µ

2
(Di+1,jC

n+1
i+1,j + Di−1,jC

n+1
i−1,j + Di,j+1C

n+1
i,j+1 + Di,j−1C

n+1
i,j−1)

= (1 − (2µ)Di,j)C
n
i,j +

µ

2
(Di+1,jC

n
i+1,j + Di−1,jC

n
i−1,j + Di,j+1C

n
i,j+1 + Di,j−1C

n
i,j−1), (3.3.3)

where µ = ∆t
(∆x)2

. To simplify and condense the notation for indices, we use the

following index scheme:

Cl−1 = Ci−1,j, Cl = Ci,j, Cl+1 = Ci+1,j,

Cl−M = Ci,j−1, Cl+M = Ci,j+1.

Substituting these indices into (3.3.3), we have:

(1 + (2µ)Dl)C
n+1
l − µ

2
(Dl+1C

n+1
l+1 + Dl−1C

n+1
l−1 + Dl+NCn+1

l+N + Dl−NCn+1
l−N )

= (1 − (2µ)Dl)C
n
l +

µ

2
(Dl+1C

n
l+1 + Dl−1C

n
l−1 + Dl+NCn

l+N + Dl−NCn
l−N) . (3.3.4)
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Using this five-point stencil, we require values of concentration at ‘ghost points’ -

points outside of the computational mesh of xi and yj points. Since these points do

not exist, we may use the Neumann homogeneous boundary condition,

∂c

∂n
= ∇c ·n = 0,

to write equations for concentration at these ghost points outside the outer walls.

First, rearranging the Neumann homogeneous boundary condition and substituting

the (outward) unit normal vector n for each of the outer boundaries produces the

following equations:
∂c
∂n

= − ∂c
∂y

= 0, ∂c
∂n

= ∂c
∂y

= 0,

∂c
∂n

= − ∂c
∂x

= 0, ∂c
∂n

= ∂c
∂x

= 0,

for the bottom, top, left, and right boundaries, respectively (reading from the top

left to the bottom right). Using second order differencing, the discretised boundary

conditions are:

∂c

∂x
=

ci+1,j − ci−1,j

2∆x
= 0,

∂c

∂y
=

ci,j+1 − ci,j−1

2∆y
= 0. (3.3.5)

Solving for concentration and using the indices in l, we have

cl−N = cl+N , cl+N = cl−N ,

cl−1 = cl+1, cl+1 = cl−1.

Finally, we must substitute these boundary conditions into (3.3.4) to remove the ghost

points on each of the outer boundaries. This is a tedious, but straightforward, step

which we will not demonstrate here for the four outer boundaries and four corners.

For a N×N computational mesh, we have N2 unknowns: c1, c2, . . . cN×N . We solve

a system of N2 equations to obtain N2 unknowns. To do so, we solve the system of

equations simultaneously by first writing it in terms of matrix-vector products. The

size and complexity of the matrix-vector form is too great to represent here, so will
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write the system compactly as

B1C
n+1 = B0C

n,

where B0, B1 are N2 × N2 matrices, and Cn is the N2 × 1 vector of unknowns.

Next, we discretise the integral term from (3.2.16),

∇ ·
(∫

Γ

Df

P
δ(x − xΓ)dxΓ

)
=

(
∂

∂x
,

∂

∂y

)
·
(

D

P

∫
Γ

g(x, y)δ(x − xΓ)dxΓ,
D

P

∫
Γ

h(x, y)δ(x − xΓ)dxΓ

)
, (3.3.6)

where we let f = (g(x, y), h(x, y)) be the vector-valued flux in two dimensions.

Applying the Crank-Nicolson method to (3.3.6), and combining with (3.3.4), we

have:

(1 + (2µ)Dl)C
n+1
l − µ

2
(Dl+1C

n+1
l+1 + Dl−1C

n+1
l−1 + Dl+NCn+1

l+N + Dl−NCn+1
l−N )

= (1 − (2µ)Dl)C
n
l +

µ

2
(Dl+1C

n
l+1 + Dl−1C

n
l−1 + Dl+NCn

l+N + Dl−NCn
l−N) +

∆t

4∆x

[
(Gn+1

l+1 In+1
l+1 − Gn+1

l−1 In+1
l−1 ) + (Gn

l+1I
n
l+1 − Gn

l−1I
n
l−1)
]
+

∆t

4∆x

[
(Hn+1

l+1 In+1
l+1 − Hn+1

l−1 In+1
l−1 ) + (Hn

l+1I
n
l+1 − Hn

l−1I
n
l−1)
]
,

where

Il =
Dl

P

M̃−1∑
k=1

∆s δh,l(xl − xΓ,k),

(using the trapezoidal rule for numerical integration over a closed path Γ), M̃ is the

number of points along the interface Γ, ∆s (weighting factor) is chosen to be the arc

length of the interface, and

δh,l(Xk, Yk) =
1

(2∆x)2

(
1 + cos

π(xi − Xk)

∆x

)(
1 + cos

π(yj − Yk)

∆x

)
, (3.3.7)

if |xi − Xk| ≤ ∆x and |yj − Yk| ≤ ∆x.

The flux on the outer boundary is zero everywhere because of the Neumann ho-

40



3.3. Discretisation of Governing Equations

mogeneous boundary condition for concentration. As such, no extra terms are needed

for the flux boundary conditions, and we can remove the ghost points by setting flux

equal to zero on the boundary. The matrix-vector form of this system of equations

can be expressed compactly as:

B1C
n+1 = B0C

n + D1

(
Gn+1 + Gn

)
+ D2

(
Hn+1 + Hn

)
,

where B1, B0, D1, D2 are N2 × N2 matrices, Cn is the N2 × 1 concentration vector of

unknowns, and Gn, Hn are the N2 × 1 vectors of unknowns for flux in the x- and y-

directions, respectively.

Using linear solvers in MATLAB, we solve the system for Cn+1 given the approx-

imate values for the horizontal and vertical components of flux f , (G,H), found as

described below, and the approximate values of c at tn stored in Cn.

To solve for f = (g(x, y), h(x, y)) in (3.2.17), we have two governing equations,

which we discretise separately:

gt

(
1 +

∫
Γ

D

P
δ(x − xΓ)dxΓ

)
= D

∂

∂x

(
∂g

∂x
+

∂h

∂y

)
= D

(
∂2g

∂x2
+

∂2h

∂x∂y

)
, (3.3.8)

ht

(
1 +

∫
Γ

D

P
δ(y − yΓ)dyΓ

)
= D

∂

∂y

(
∂g

∂x
+

∂h

∂y

)
= D

(
∂2g

∂y∂x
+

∂2h

∂y2

)
. (3.3.9)

Using the Crank-Nicolson method to discretise (3.3.8), we have:

Gn+1
l − Gn

l

∆t
ηl =

D

2(∆x)2

[
Gn+1

l+1 − 2Gn+1
l + Gn+1

l−1 +
Hn+1

l+M+1 − Hn+1
l−M+1 − Hn+1

l+M−1 + Hn+1
l−M−1

4

]
+

D

2(∆x)2

[
Gn

l+1 − 2Gn
l + Gn

l−1 +
Hn

l+M+1 − Hn
l−M+1 − Hn

l+M−1 + Hn
l−M−1

4

]
, (3.3.10)

where

ηl = 1 +
Dl∆s

P

[
δh,l(xl − XΓ,1) − δh,l(xl − XΓ,N)

2
+

N−1∑
k=2

δh,l(xl − XΓ,k)

]

is the discretisation of the integral part from (3.3.8) and (3.3.9), the discrete delta

function δh,l is given by (3.3.7), and the diffusion coefficient D(x, y) is written as D for
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ease of reading, although in practice, we replace D(xl) with Dl in the discretisation.

Similarly, the discretisation of (3.3.9) is:

Hn+1
l − Hn

l

∆t
ηl =

D

2(∆x)2

[
Gn+1

l+M+1 − Gn+1
l−M+1 − Gn+1

l+M−1 + Gn+1
l−M−1

4
+ Hn+1

l+M − 2Hn+1
l + Hn+1

l−M

]
+

D

2(∆x)2

[
Gn

l+M+1 − Gn
l−M+1 − Gn

l+M−1 + Gn
l−M−1

4
+ Hn

l+M − 2Hn
l + Hn

l−M

]
. (3.3.11)

Rearranging and grouping terms for (3.3.10) we have:

(ηl + µDl) Gn+1
l − µ

2

(
Dl+1G

n+1
l+1 + Dl−1G

n+1
l−1

)
= (ηl − µDl) Gn

l +
µ

2

(
Dl+1G

n
l+1 + Dl−1G

n+1
l−1

)
+

µ

8

[(
Dl+M+1H

n+1
l+M+1 − Dl−M+1H

n+1
l−M+1 − Dl+M−1H

n+1
l+M−1 + Dl−M−1H

n+1
l−M−1

)]
+

µ

8

[(
Dl+M+1H

n
l+M+1 − Dl−M+1H

n
l−M+1 − Dl+M−1H

n
l+M−1 + Dl−M−1H

n
l−M−1

)]
,

where

µ =
∆t

(∆x)2 .

Similarly, rearranging and grouping terms for (3.3.11) we have:

(ηl + µDl) Hn+1
l − µ

2

(
Dl+MHn+1

l+M + Dl−MHn+1
l−M

)
= (ηl − µDl) Hn

l +
µ

2

(
Dl+MHn

l+M + Dl−MHn+1
l−M

)
+

µ

8

[(
Dl+M+1G

n+1
l+M+1 − Dl−M+1G

n+1
l−M+1 − Dl+M−1G

n+1
l+M−1 + Dl−M−1G

n+1
l−M−1

)]
+

µ

8

[(
Dl+M+1G

n
l+M+1 − Dl−M+1G

n
l−M+1 − Dl+M−1G

n
l+M−1 + Dl−M−1G

n
l−M−1

)]
.

The matrix-vector form of these two systems of equations can be expressed com-

pactly as:

E1G
n+1 = E0G

n + G1

(
Hn+1 + Hn

)
, and

F1H
n+1 = F0H

n + G1

(
Gn+1 + Gn

)
,

where E1, E0, F0, F1, and G1 are N2 ×N2 matrices. Using linear solvers in MATLAB,

we solve for Gn+1 and Hn+1, and substitute these into our system of equations for
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Cn+1.

Now that we have a numerical scheme for solving the governing equations, we

present simulations for some one- and two-dimensional problems. We will provide a

second numerical technique that uses strictly finite difference equations (without the

IB method framework) to validate our proposed numerical scheme. By comparing the

results from both methods, we may demonstrate that the immersed boundary method

is a viable technique for modelling diffusion in cellular media.
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Numerical Tests and Validation

We present some numerical tests to establish the proposed immersed boundary (IB)

method’s applicability to simulating diffusion in cellular media. Specifically, we are

interested in the simulations of diffusion in cellular media involving semipermeable

membranes and diffusion coefficients DI and DO (interior and exterior, respectively)

that are not necessarily equal. Using the model equations presented in Chapter 2,

and the numerical schemes outlined in Chapter 3, we run simulations in one and two

dimensions.

In Section 4.1, we consider a simple one-dimensional problem for which we have an

analytical solution (at equilibrium). In Section 4.2.1, we present a second numerical

scheme in which we discretise the governing equations using standard finite differences,

without using the IB method framework. This finite difference (FD) method is used

in Section 4.2.2 to validate the IB method in the absence of an analytical solution.

Because of the difficulty in deriving the FD method, we only consider a square

interface in our comparisons. In Section 4.3, we demonstrate the flexibility and power

of the IB method framework by presenting simulations for a variety of interface shapes,

including ellipses, and groups of circles.

In both one and two dimensions, we present qualitative and quantitative com-

parisons between two sets of solutions to reveal the strengths and weaknesses of the

proposed IB method. One quantitative assessment we present is a convergence analysis

to test the accuracy of our numerical method. To calculate the order of convergence,

44



4.1. One-Dimensional Tests

we first calculate L2 errors,

E =

√√√√ 1

Nd

Nd∑
i=1

(ci − c̃i)2, (4.0.1)

where N is the number of computational grid points in each dimension d, and ci is

the exact solution at the i-th grid point. When comparing the computations on the

two dimensional grid, we do not know the exact solution and therefore approximate

ci using c̄i, the numerical solution at the i-th grid point using N = 200. c̃i is the

numerical solution at N = 25, 50, or 100, where, for the computations in 1D, we also

use N = 200 and N = 400. The order of convergence, then, is

p =
log(E1

E2
)

log(2)
, (4.0.2)

where E1 and E2 are two successive L2 errors calculated for N1 and N2, respectively,

with N1 = 1
2
N2.

In the following numerical tests, we will present a convergence analysis for the

simulations in one and two dimensions and discuss what the implications are for the

accuracy of the IB method. We will also present the qualitative behaviour of the

IB method by comparing the numerical solutions to the analytical solution in one

dimension, and likewise to the FD method solutions in two dimensions.

4.1 One-Dimensional Tests

In the following numerical tests, we consider a simple one-dimensional problem for

which we have an analytical solution. The diffusion equation in 1D is:

ct = D cxx, (4.1.1)

where D is the diffusion coefficient. We consider two interfaces of permeability P

located at points x1 and x2, and fix the concentration to be c0 = 2.0 and c1 = 1.0 at
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the two ends of the interval x ∈ [0, 1]. The boundary conditions at the interfaces are

given by the linear flux law,

Dcx = P [c]Γ, (4.1.2)

where [ · ]Γ denotes the jump across the interface.

The analytical steady-state solution to (4.1.1) can be found by solving cxx = 0

for the three regimes, separated at x1 and x2. If we denote concentration in the

first, second, and third regime by c(1), c(2), and c(3), respectively, then the boundary

conditions are:

1. c(1)(0) = c0 2. c(3)(1) = c1

3. Dc
(1)
x (x1) = P [c(1)(x1) − c(2)(x1)] 4. Dc

(2)
x (x1) = P [c(1)(x1) − c(2)(x1)]

5. Dc
(2)
x (x2) = P [c(2)(x2) − c(3)(x2)] 6. Dc

(3)
x (x2) = P [c(2)(x2) − c(3)(x2)].

The analytical steady-state solution will satisfy these boundary conditions, and is

given by:

c =


mx + c0, x < x1;

mx + cm, x1 ≤ x < x2;

m(x − 1) + c1, x ≥ x2,

(4.1.3)

where the constants

m =
c1 − c0

2DP−1 + 1
, and cm =

DP−1(c0 + c1) + c0

2DP−1 + 1
,

are found from imposing the linear flux law (4.1.2) at the interface Γ [18].

Note that we do not consider a discontinuous diffusion coefficient in our one-

dimensional numerical tests as we did not derive an analytical solution for such a

problem. However, the numerical tests in two dimensions do implement a discon-

tinuous diffusion coefficient since this is an important physical property of biological

tissues.
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Figure 4.1: Steady-state solutions for a one-dimensional problem with concentration
fixed at both ends and two immersed interfaces located at x1 = 7/18 and x2 = 11/18.
The analytical solution is represented by a solid line, the numerical solution is plotted
as ∗ points, and the vertical dashed lines mark the locations of the immersed interfaces.
The cellular parameters used are D = 1.0 µm2/ms and P = 0.02 µm/ms.

4.1.1 Qualitative Comparison of Analytical and Numerical

Solutions

In Figure 4.1 we plot the numerical and analytical steady-state solutions for a simula-

tion where the cellular parameters are chosen to be D = 1.0 µm2/ms and P = 0.02 µm/ms.

For the computational mesh, we use ∆x = 0.02, N = 200 points along x, and

∆t = 0.001. The analytical solution is represented by a solid line and the numeri-

cal solution is plotted as ∗ points.

The numerical solution is considered to have reached steady-state once the flux f

throughout the entire domain is a constant value. In Figure 4.2, the flux is plotted

(left) for a non-steady-state solution, as well as the delta function δ(x − xi).

In Figure 4.1, we see that the numerical and analytical solutions are qualitatively

quite similar. The greatest discrepancies between the two methods are at the interfaces

x1 and x2, as can be seen in the graph of relative error |ci − c̃i|, plotted in Figure 4.3.
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Figure 4.2: The flux f (left) and delta function δ (right) for the non-steady-state
solution using the immersed boundary method in one dimension.

This may be due to the finite representation of the delta function, δh(x − xi),

which is used in the discretisation of the IB method governing equations, (3.2.16) and

(3.2.17). In the limit lim∆x→0 ∆x, the maximum value of the discrete delta function

approaches infinity, which leads to a sharper drop in concentration at the interface

Γ. Therefore, we expect that the numerical solution would more closely match the

analytical solution at the interface as ∆x is decreased.

Furthermore, we use finite differences to discretise the derivatives of concentration

and flux at the interface. This approach is known to reduce the order of accuracy

when applied to problems involving discontinuities in the analytical solution. We will

discuss this further when we present the following convergence tests for the IB method.

4.1.2 Convergence Analysis

Using equation (4.0.2), we calculate the orders of convergence for the previous one-

dimensional diffusion problem. We choose the diffusion coefficient D = 1.0 µm2/ms

and test different values of permeability P . We choose the analytical solution as the

exact solution, and present the convergence results in Table 4.1 for N=25, 50, 100,

200, and 400 points.

For the IB method, we observe approximate first-order convergence rates. Further-
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Figure 4.3: Absolute error |ci − c̃i| for the 1D immersed boundary method, where
ci is the exact steady-state solution, c̃ is the numerical solution, and we use
D = 1.0 µm2/ms, P = 0.02 µm/ms, and N=100. The error is largest at the two
interfaces located at x1 = 7/18 and x2 = 11/18.

more, the rate of convergence gets much worse as permeability P decreases. This is

because the finite differences used in the discretisation of derivatives introduce signifi-

cant errors into the numerical solution for small P . As P decreases, the discontinuity

in the solution for concentration c becomes more apparent at the interface Γ. The

numerical scheme therefore converges more slowly to the numerical solution as more

points are needed to accurately represent the jump in concentration using the finite

difference discretisation.

In general, the approximately first-order convergence rates are expected because of

the nonsmoothness of concentration at the interface Γ. In fact, immersed boundary

methods are known to produce first-order rates of convergence because they are often

applied to problems whose true solutions are not smooth [14]. For example, many

fluid-structure problems to which IB methods are applied involve an infinitely thin

membrane, which are not sufficiently regular to achieve second-order convergence rates.

There are related methods, such as the class of immersed interface methods [41, 23],

that have observed higher order convergence rates. Note that these have been applied
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to elliptic problems, and are generally much more difficult to set up than the immersed

boundary method. One immersed boundary method that has observed second-order

convergence rates is that by Peskin and Griffith [14], in which they consider an interface

of finite thickness. In this case, the solution is sufficiently smooth to achieve second-

order accuracy.

Table 4.1: Orders of convergence, p, for the IB method in one dimension. Here, the
cellular parameters used are D = 1.56 µm2/ms and P = 0.01 µm/ms, 1.0 µm/ms,
and 100 µm/ms.

P=0.01 P=1.0 P=100
N ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 6.6044E-02 2.0364E-02 2.2171E-02
50 4.7153E-02 0.49 1.1276E-02 0.85 1.1302E-02 0.97
100 3.3506E-02 0.49 7.2307E-03 0.64 5.7021E-03 0.99
200 2.3751E-02 0.50 4.3432E-03 0.74 2.8656E-03 0.99
400 1.6815E-02 0.50 2.4225E-03 0.84 1.4370E-03 1.00

Despite the approximate first-order convergence, we do however have good qual-

itative behaviour using the IB method in one dimension, as shown in the example

presented in Section 4.1.1. We will now present numerical tests for the IB method in

two dimensions to test the validity and accuracy of the proposed method for diffusion

in cellular media.

4.2 Two-Dimensional Tests

We now consider simulations for our cellular diffusion model in two dimensions. Be-

cause an analytical solution is not available, and we wish to validate the proposed

immersed boundary (IB) method, we implement a second numerical method based on

a standard finite difference (FD) scheme. This FD method uses the Crank-Nicolson

method in its discretisation, but does not use the IB method framework to impose the

effect of the interface. Instead, the flux law (4.2.2) is imposed at the interface Γ as a

boundary condition. This is relatively easy to do because the immersed interface we
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consider in our numerical tests is square and lies on the computational grid. Stan-

dard finite differences can then be used and still achieve second-order convergence, as

demonstrated in the following tests.

4.2.1 Finite Difference (FD) Scheme

The standard diffusion equation in a homogeneous medium is

ct = ∇· (D∇c) , (4.2.1)

where c is the concentration of particles and D is the diffusion coefficient. In the

discretisation of (4.2.1) using the FD method, we formally consider the concentration

inside and outside the interface separately, allowing us to produce a discontinuity in

concentration in our numerical solution at the interface Γ.

We accomplish this by first separating the computational grid points into two sets:

XO, those that are outside or exactly on the interface; and XI , those that are inside

or exactly on the interface. We therefore split the domain Ω into regions Ωout and Ωin,

where Ωout is defined as (Ω \ Ωin) ∪ Γ (see Figure 4.4). The grid points in Ωout form

the set XO, and those in Ωin form the set XI . Between XO and XI , there is an overlap

of points at the interface Γ, meaning that we will have two values of concentration

at each grid point that is aligned with the interface. In Figure 4.4, the points that

overlap, i.e., those on the interface Γ, are represented as bold circles, and the smaller

circles represent the remaining points in XI .

To impose the effect of the interface on the numerical solution, we use the following

boundary condition at Γ:

D∇c = P [c]Γ n, (4.2.2)

where P is the membrane permeability, [ · ]Γ denotes the jump across the interface,

and n is the unit normal vector of the interface. The boundary condition used on the
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outer walls of Ω is the Neumann homogeneous boundary condition,

∂c

∂n
= ∇c ·n = 0. (4.2.3)

Figure 4.4: For the finite difference (FD) method, concentration is solved separately
for each of the subdomains, Ωout and Ωin. These correspond to regions outside and
inside the cell, respectively. Boundary conditions are used on the interface Γ, to model
the effect of the semipermeable membrane.

We use the Crank-Nicolson method to discretise equations (4.2.1), (4.2.2), and (4.2.3),

and approximate the solution to c at each of the points in XO and XI .

To simultaneously solve for concentration in the entire domain Ω, we form a single

set of unknowns for concentration. First, we denote Cn
l and C̃n

m as the approximate

solutions generated at grid points l = 0, 1, ..., N and m = 0, 1, ..., N in XO and XI ,

respectively, at time tn, where n = 0, 1, ... We combine Cn
l and C̃n

m into a single

column vector U with elements Un
k . For N points in the x direction, N points in the

y direction, and M points along the interface, k = 1, 2, ..., N2 + M .

Figure 4.5 illustrates a computational grid involving N = 8 points in the x and

y directions, and M = 12 points on the interface Γ. This example has unknowns

{C1, C2, ..., C60} and {C̃1, C̃2, ..., C̃16}. The ordering of Cn
l and C̃n

m in the vector of

unknowns U is in a bottom-up, left-to-right fashion, as demonstrated in Table 4.2 for

some values of k. The five point stencil described below is also presented to further

demonstrate the ordering of unknowns.
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Figure 4.5: Illustration of the indexing system used for the vector of unknowns U for
the finite difference (FD) method. This computational domain uses N = 8 points in
the x and y directions, and M = 12 points on the interface Γ.

Discretising (4.2.1) using the Crank-Nicolson method for points in XO, we have:

(1 + 4ξO) Cn+1
l − ξO

(
Cn+1

l+1 + Cn+1
l−1 + Cn+1

l+N + Cn+1
l−N

)
= (1 − 4ξO) Cn

l + ξO

(
Cn

l+1 + Cn
l−1 + Cn

l+N + Cn
l−N

)
, (4.2.4)

where ξO = DO∆t/h2, h = ∆x = ∆y is the spatial mesh size, and DO is the diffusion

coefficient. For points in XI , we have:

(1 + 4ξI) C̃n+1
m − ξI

(
C̃n+1

m+1 + C̃n+1
m−1 + C̃n+1

m+M/3 + C̃n+1
m−M/3

)
= (1 − 4ξI) C̃n

m + ξI

(
C̃n

m+1 + C̃n
m−1 + C̃n

m+M/3 + C̃n
m−M/3

)
, (4.2.5)

where ξI = DI∆t/h2, and DI is the diffusion coefficient.

The five point stencil used here requires points outside of the computational grid,

called ‘ghost points’. We use the homogeneous Neumann boundary condition at the

outer boundary to remove the ghost points, as similarly used for the IB method in

Section 3.3.2. At the interface Γ, we also have ghost points, which we remove using

the interface flux law (4.2.2). Beginning with the ghost points at Γ, we use centered
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differences to approximate the spatial derivatives in (4.2.2), i.e.,

∂c
∂x

≈ Cn
l+1−Cn

l−1

2h
, ∂c

∂y
≈ Cn

l+N−Cn
l−N

2h
.

Table 4.2: Indices k for the vector of unknowns U are given for elements of the vectors
Cl and C̃m for a computational grid involving N = 8 points in the x and y directions
and M = 12 points on the interface Γ. Labels for the five point stencil at each element
k are also presented on the right-hand-side, including ghost points, denoted by ∗.

k Cl k C̃m Uk k − N k − 1 k k + 1 k + N

1 C1 20 C̃1 C1 * * 1 2 9
2 C2 22 C̃2 C2 * 1 2 3 10
3 C3 24 C̃3 C3 * 2 3 4 11
4 C4 26 C̃4 C4 * 3 4 5 12
5 C5 32 C̃5 C5 * 4 5 6 13
6 C6 33 C̃6 C6 * 5 6 7 14
7 C7 34 C̃7 C7 * 6 7 8 15
8 C8 35 C̃8 C8 * 7 8 * 16
9 C9 42 C̃9 C9 1 * 9 10 17
10 C10 43 C̃10 C10 2 9 10 11 18
11 C11 44 C̃11 C11 3 10 11 12 19
12 C12 45 C̃12 C12 4 11 12 13 21
13 C13 52 C̃13 C13 5 12 13 14 23
14 C14 54 C̃14 C14 6 13 14 15 25
15 C15 56 C̃15 C15 7 14 15 16 27
16 C16 58 C̃16 C16 8 15 16 * 28
17 C17 C17 9 * 17 18 29
18 C18 C18 10 17 18 19 30
19 C19 C19 11 18 19 21 31
21 C20 C̃1 * * 20 22 32
23 C21 C20 12 19 21 23 *
25 C22 C̃2 * 20 22 24 33
27 C23 C21 13 21 23 25 *
28 C24 C̃3 * 22 24 26 34
29 C25 C22 14 23 25 27 36
30 C26 C̃4 * 24 26 * 35

By substituting the normal vector n for each of the four sides of the square interface
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into (4.2.2) and rearranging, we obtain the boundary conditions on Γ,

DI
∂c

∂y
= DO

∂c

∂y
= P (Cn

l − C̃n
m) (top), (4.2.6)

DI
∂c

∂y
= DO

∂c

∂y
= −P (Cn

l − C̃n
m) (bottom), (4.2.7)

DI
∂c

∂x
= DO

∂c

∂x
= P (Cn

l − C̃n
m) (left), and (4.2.8)

DI
∂c

∂x
= DO

∂c

∂x
= −P (Cn

l − C̃n
m) (right). (4.2.9)

To remove the ghost points on the interface, the equality between boundary con-

ditions for Cn
l and C̃n

m is used. We demonstrate with an example for points on the

bottom wall of the square interface (ignoring the additional boundary conditions for

corner points).

Discretising (4.2.7) for points in XO, we have:

DO

(
Cn

l+N − Cn
l−N

2h

)
= −P (Cn

l − C̃n
m),

⇒ Cn
l+N = Cn

l−N − 2P
h

DO

(Cn
l − C̃n

m). (4.2.10)

For points in XI we have:

DI

(
C̃n

m+M/3 − C̃n
m−M/3

2h

)
= −P (Cn

l − C̃n
m),

⇒ C̃n
m−M/3 = C̃n

m+M/3 − 2P
h

DI

(Cn
l − C̃n

m). (4.2.11)

If we consider a point in XO on the bottom boundary, the five point stencil used

in (4.2.4) requires Cn
l+N , which is a ghost point. To remove Cn

l+N from (4.2.4), we

substitute (4.2.10) into (4.2.4), giving us:

(1 + 4ξO) Cn+1
l +

P∆t

2h
Cn+1

l − ξO

(
Cn+1

l+1 + Cn+1
l−1 + 2Cn+1

l−N

)
− P∆t

h
C̃n+1

m

= (1 − 4ξO) Cn
l − P∆t

2h
Cn

l + ξO

(
Cn

l+1 + Cn
l−1 + 2Cn

l−N

)
+

P∆t

h
C̃n

m.
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We remove the remaining ghost points in our discretisation using the boundary

conditions (4.2.6), (4.2.7), (4.2.8), and (4.2.9). This is where the bookkeeping becomes

very complicated because we have to use the appropriate Cn
l and C̃n

m in our boundary

conditions. In other words, since we wish to solve the system of N2 + M equations

simultaneously, we rewrite the system of equations by replacing Cn
l and C̃n

m by elements

Un
k based on the relationships between indices l and m, and index k in the vector of

unknowns, U . This process, while tedious, leads to a system of equations which we

can write in matrix-vector form as

B1U
n+1 = B0U

n,

and is block-tridiagonal. The coefficient matrices B1 and B0 are far too complex to

present here. Given the complexity of forming these coefficient matrices for a square,

constant-in-time interface, this method would be much more difficult than the IB

method to set up for arbitrarily shaped, moving interfaces.

Having discretised the equations (4.2.1) and (4.2.2), we can run simulations for the

finite difference (FD) and immersed boundary (IB) methods with the same parameters.

We present the differences between the numerical solutions in order to provide an

analysis of the strengths and weaknesses of using the IB method for simulating diffusion

in cellular media.

4.2.2 Qualitative Comparison of IB and FD Method Solutions

For our two-dimensional tests, we use the following Gaussian distribution centered at

(x0, y0) for the initial concentration taken at time t = t0:

c(t0, x, y) =
1√

4πDt0
e
− (x−x0)2+(y−y0)2

4Dt0 . (4.2.12)

We make this choice of initial condition because, in the absence of restriction to diffu-

sion, (4.2.12) provides the (time-dependent) function for the displacement of a molecule

that was at x = (x0, y0) at time t = t0.
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4.2. Two-Dimensional Tests

We first demonstrate the immersed boundary (IB) method and finite difference

(FD) method results for a constant diffusion coefficient D throughout the domain.

We plot contours of concentration for the IB method (left) and FD method (right)

in Figure 4.6. The cellular parameters used here are P = 1.0 µm/ms, and DI =

DO = 1.0 µm2/ms at t = 0.425 ms. For the computational domain, we use N = 200

points in the x and y directions, M = 400 points along the interface Γ, mesh size

∆x = ∆y = 0.0275, and a time step of ∆t = 5 × 10−4.
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Figure 4.6: Contours of concentration for the IB method (left) and FD method
(right) at t = 0.425 ms. The parameters used are P = 1.0 µm/ms, and DI =
DO = 1.0 µm2/ms, with N = 200.

Next, we demonstrate the results for more cellular-like parameters where the dif-

fusion coefficient DI inside the cell is not equal to the diffusion coefficient DO outside

the cell. We plot contours of concentration for the IB and FD methods in Figure 4.7,

where P = 0.01 µm/ms, DI = 1.56 µm2/ms, DO = 2.12 µm2/ms, t = 0.5 ms, and

N = 200.

The contours of concentration demonstrate the qualitative behaviour of diffusion

for the two simulations. In Figure 4.6, we see that the contours appear quite similar

for both methods, meaning that for these parameter values, the IB method appears

to produce valid results. In Figure 4.7, the contours appear quite similar inside the

square interface, whereas they differ more outside the interface. The bottom two plots
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Figure 4.7: Contours of concentration for the IB method (left) and FD method (right)
at t = 0.5 ms. The parameters used here are P = 0.01 µm/ms, DI = 1.56 µm2/ms, and
DO = 2.12 µm2/ms. The bottom row also includes a plot of the numerical solutions,
where concentration values at each point are displayed.

are a combination of the concentration values and corresponding contours. Here, the

differences in concentration values between the FD and IB method simulations are less

obvious, and the two simulations appear to be qualitatively the same in behaviour.

An alternate view of concentration is given in Figure 4.8 for an IB method sim-

ulation. We can clearly see the sharp drop in concentration at the four sides of the

square interface.

To further investigate the differences between the FD and IB methods, we plot the

relative and absolute differences in concentration between the two methods at each

point in the computational mesh, with N = 200. In Figure 4.9, the cellular parameters

are P = 0.1 µm/ms, DI = 1.0 µm2/ms, and DO = 1.0 µm2/ms. On the left, we plot
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4.2. Two-Dimensional Tests

Figure 4.8: A three-dimensional view of concentration values for the IB method, where
P = 0.1 µm/ms, DI = 1.56 µm2/ms, DO = 2.12 µm2/ms, and t = 0.45 ms. We can
see here the sharp drop in concentration at the square interface.

the absolute difference, and on the right, we plot the relative difference. In Figure 4.10,

similar graphs are produced, except that the diffusion coefficient is discontinuous, with

DI = 1.56 µm2/ms and DO = 2.12 µm2/ms.

We can see from the error graphs that the differences in concentration between

the two methods are quite large for P ≤ 1.0 µm/ms, whereas the two methods agree

comparatively well for P ≥ 1.0 µm/ms. In both cases, the absolute and relative errors

are largest at the interface, and outside.

One reason why the results appear worse near the interface Γ is due to the way the

FD numerical solution is used at the interface. Specifically, the FD method calculates

two values of concentration at each point on the interface, but only one value is used

in the error calculations. This is especially problematic for small permeability P .

The more impermeable a membrane is, the greater the jump in concentration will be

at the interface. This means that the difference in concentration values for the FD

method at each interface grid point will be greater than for large P . Correspondingly,

the difference in FD and IB method solutions will be larger for small P since the

IB method does not as accurately model the discontinuity in concentration at the
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Figure 4.9: Comparison of FD and IB method simulations, where the difference in
concentration values at each point is displayed. On the left, we plot the absolute
difference, and on the right, we plot the relative difference (in percent). Here we
consider a constant diffusion coefficient, DI = DO = 1.0 µm2/ms, P = 0.1 µm/ms
(top row), P = 1.0 µm/ms (bottom row), and t = 0.35 ms.

interface Γ.

This small inaccuracy in the IB method at the interface will affect not only the

solution at the interface, but also outside for the example problems where particles

are diffusing outward from an initially large concentration at the center of the square

cell. The numerical schemes proposed for the IB method are therefore less accurate

currently for small P , e.g., P ≤ 1.0 µm/ms.

Another inaccuracy in the IB numerical scheme is that we approximate the discon-

tinuity in diffusion coefficient with the average of DI and DE (interior and exterior)

at the interface Γ for the IB method. This produces a smoothed concentration over

60



4.2. Two-Dimensional Tests

the interface that will not be produced by the FD method. Therefore, this may be

another contributing factor to the larger errors found near the interface Γ.

Figure 4.10: Comparison of FD and IB method simulations, where the difference
in concentration values at each point is computed and displayed. On the left, we
plot the absolute difference, and on the right, we plot the relative difference (in per-
cent). The cellular parameters used here are DI = 1.56 µm2/ms, DO = 2.12 µm2/ms,
P = 0.1 µm/ms (top row), P = 1.0 µm/ms (bottom row), and t = 0.35 ms.

Another interesting observation is that, for the initial concentration used in the

above simulations, the relative error begins to increase early in the simulation, reaches

a maximum, then decreases for longer time t. This is because the jump in concentration

increases initially, then decreases as concentration equalizes. At this point, the IB

method solutions match the FD method solutions more closely.

Overall, the IB method agrees well qualitatively with the FD method. In this sense,

the numerical techniques used in the IB method are valid for simulating diffusion in
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Chapter 4. Numerical Tests and Validation

cellular media with discontinuous diffusion coefficients and semipermeable membranes.

Although we would like quantitatively accurate information as well, it is not realistic

to ever get 100% accurate results for real systems. Therefore, we are most interested

in qualitatively accurate results that can be used to validate diffusion MRI techniques

for very coarse cellular configurations.

Before concluding our discussion of the IB method with some examples of irreg-

ular interfaces, we present some numerical tests for orders of convergence to further

investigate the accuracy of the IB method.

4.2.3 Convergence Analysis

Having demonstrated a qualitative comparison between the IB and FD methods, we

present the orders of convergence for the two methods. We again consider the square

interface problem, with initial concentration given by (4.2.12), and vary the cellular

parameters of diffusion coefficient D and permeability P . In Table 4.3 and 4.4, we

consider a constant D, and in Table 4.5, we consider a discontinuous D.

Table 4.3: Errors and rates of convergence for the FD and IB methods, where DI =
DO = 1.0 µm2/ms, and P = 0.10 µm/ms.

Finite Difference Method Immersed Boundary Method
t=0.26 t=0.52 t=0.26 t=0.52

N ∥L2∥ p ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 9.2685E-04 4.0938E-04 1.5199E-03 2.4522E-03
50 2.3347E-04 1.99 1.1318E-04 1.85 4.0799E-04 1.90 7.5307E-04 1.70
100 4.7093E-05 2.31 2.5412E-05 2.16 1.1595E-04 1.82 2.1397E-04 1.82
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4.2. Two-Dimensional Tests

Table 4.4: Errors and rates of convergence for the FD and IB methods, where DI =
DO = 1.0 µm2/ms, and P = 1.0 µm/ms.

Finite Difference Method Immersed Boundary Method
t=0.30 t=0.51 t=0.30 t=0.51

N ∥L2∥ p ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 7.5975E-04 3.4728E-04 8.3913E-04 6.0122E-04
50 1.9087E-04 1.99 9.0901E-05 1.93 2.3569E-04 1.83 2.3654E-04 1.35
100 3.8506E-05 2.31 1.8909E-05 2.27 6.8912E-05 1.77 9.2563E-05 1.35

Table 4.5: Errors and rates of convergence for the FD and IB methods, where
DI = 1.56 µm2/ms, DO = 2.12 µm2/ms, and P = 0.10 µm/ms.

Finite Difference Method Immersed Boundary Method
t=0.27 t=0.45 t=0.27 t=0.45

N ∥L2∥ p ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 5.3026E-04 2.8291E-04 2.2653E-03 2.8037E-03
50 1.3126E-04 2.01 7.7172E-05 1.87 6.8413E-04 1.73 8.4824E-04 1.72
100 2.7385E-05 2.26 1.8148E-05 2.09 2.1067E-04 1.70 2.4230E-04 1.81

We can see from the above convergence tests that the rate of convergence for the

FD method is roughly second-order, and is less than second-order for the IB method.

Without more accurately handling the discontinuity in concentration at the interface Γ,

the IB method cannot achieve second-order convergence. An additional result is that

the values of D and P do not appear to significantly affect the numerical convergence of

the IB method. This suggests that the scheme converges for small P and discontinuous

D, and changing these parameters will not cause the simulation to converge at slower

rates.

One final result that is needed to demonstrate both the validity and flexibility of the

IB method to simulate diffusion in cellular media is to consider irregular interfaces Γ,

such as circles and ellipses, since square interfaces are not commonly found in cellular

media, especially in brain cells. We will present plots of concentration to qualitatively

describe the simulations, as well as a convergence analysis for circular interfaces.
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4.3 Irregular Interfaces

To demonstrate the flexibility of the IB method for simulating diffusion in cellular

media, we consider a few interface problems where Γ is circular, elliptical, and where

there are a group of circles. The computational grid is the standard Cartesian grid,

and the computations proceed in the same manner as with the square interface. The

shape of the interface is simply represented by a group of points (shown as small red

circles in the following figures). Since irregular interfaces are simple to implement, the

IB method is a powerful tool for studying these kinds of configurations.

As we do not have an analytical solution, and our FD method discussed in 4.2.1 is

only for square cells, we do not validate the accuracy of these results. However, there

is no reason to expect the configurations presented here to be less accurate than those

presented in the previous section.

Figure 4.11 presents plots of concentration for a circular interface Γ with two

different sets of cellular parameters. A three-dimensional plot of concentration is

presented in Figure 4.12 to better visualize the qualitative properties of the numerical

solution for a circular interface. Figures 4.13 and 4.14 present four more simulations,

where we vary the size, shape, and cellular parameters of the immersed interface Γ.
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Figure 4.11: Contours of concentration for the IB method at t = 0.5 ms. The
parameters used here are P = 1.0 µm/ms, DI = DO = 1.0 µm2/ms (left), and
DI = 1.56 µm2/ms and DO = 2.12 µm2/ms (right).

64



4.3. Irregular Interfaces

Figure 4.12: A three-dimensional view of concentration values for the IB method,
where P = 0.1 µm/ms, DI = 1.56 µm2/ms, and DO = 2.12 µm2/ms, and t = 0.25 ms.
We can see here the sharp drop in concentration at the interface.
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Figure 4.13: Contours of concentration for the IB method for an elliptical inter-
face (left), and a group of four circles (right). The parameters used here are
DI = DO = 1.0 µm2/ms, P = 1.0 µm/ms (left), and 2.0 µm/ms (right).
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Figure 4.14: Contours of concentration for the IB method for a group of four circles.
For the figure on the left, the Gaussian distribution used for the initial concentration
is centered at the center of the domain, and is off-centered for the figure on the right.
The cellular parameters used here are DI = DO = 1.0 µm2/ms, and P = 2.0 µm/ms.

The IB method is clearly a very powerful numerical technique for simulating fluid-

structure problems. As shown, this method can be applied to cellular media problems

to simulate diffusion of particles, restricted by various tissue configurations. Standard

methods involve body-conformal grids which can become computationally expensive,

and can be avoided using the IB method approach.

We finish the discussion of the IB numerical scheme with a convergence analysis

for simulations involving circular interfaces, as shown in Figure 4.11. In Table 4.6 we

consider a constant D, and in Tables 4.7 and 4.8, we consider a discontinuous diffusion

coefficient.

Table 4.6: Errors and rates of convergence for the IB method with a circular interface,
where DI = DO = 1.0 µm2/ms, and P = 0.10 µm/ms.

t=0.135 t=0.265 t=0.450 t=0.525
N ∥L2∥ p ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 6.0807E-03 5.5800E-03 5.7885E-03 5.5940E-03
50 9.4940E-04 2.68 2.5777E-03 1.11 3.2020E-03 0.85 3.1725E-03 0.82
100 3.7770E-04 1.33 1.2148E-03 1.09 1.4540E-03 1.14 1.4119E-03 1.17
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4.3. Irregular Interfaces

Table 4.7: Errors and rates of convergence for the IB method with a circular interface,
where DI = 1.56 µm2/ms, DO = 2.12 µm2/ms and P = 0.10 µm/ms.

t=0.095 t=0.190 t=0.285 t=0.380
N ∥L2∥ p ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 2.3370E-03 5.2845E-03 6.1976E-03 6.0339E-03
50 1.1897E-03 0.97 3.3432E-03 0.66 3.9679E-03 0.64 3.9507E-03 0.61
100 5.3300E-04 1.16 1.5768E-03 1.08 1.8423E-03 1.11 1.7992E-03 1.13

Table 4.8: Errors and rates of convergence for the IB method with a circular interface,
where DI = 1.56 µm2/ms, DO = 2.12 µm2/ms, and P = 10 µm/ms.

t=0.065 t=0.125 t=0.215 t=0.250
N ∥L2∥ p ∥L2∥ p ∥L2∥ p ∥L2∥ p

25 3.5330E-03 1.3757E-03 1.0190E-03 1.0288E-03
50 9.2720E-04 1.93 5.0250E-04 1.45 7.0040E-04 0.54 7.5750E-04 0.44
100 1.8560E-04 2.32 1.9740E-04 1.35 3.6710E-04 0.93 4.0100E-04 0.92

The above rates of convergence demonstrate that the IB method is still less than

second-order for circular interfaces Γ. The convergence rates appear worse for the

circular interface than for the square interface likely because the interface points do

not lie on the computational grid. As shown by Leveque et al. [23], advanced techniques

may be used to achieve second-order convergence when an interface cuts through the

computational domain.

Overall, the IB method we have implemented appears to behave as reported in the

literature, with less than second-order accuracy, and is certainly a powerful tool for

simulating diffusion in cellular media.
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Chapter 5

Conclusion and Future Work

Diffusion magnetic resonance imaging (MRI) is a field of great research interest with

emphasis on improving the accuracy of imaging schemes, validating current method-

ologies, and investigating new applications. We proposed an immersed boundary (IB)

method for efficiently simulating diffusion in complex media as a possible tool in test-

ing the hypotheses of common diffusion imaging techniques, mainly the assumption

of Gaussian distributions in DWI and DTI. The IB method can be applied well to

diffusion in brain tissue since semipermeable membranes of various shapes may be

implemented with relative ease.

To validate and test the results from the IB method, a second numerical technique

was implemented using standard finite differences for a square interface. Numerical

tests revealed that the IB method matched well qualitatively with the simulations

using the finite difference method for permeability coefficients P ≥ 1.0 µm/ms. Inac-

curacies in the IB method implementation at the interface Γ, particularly in handling

the discontinuity in diffusion coefficient and concentration across the interface, are

exaggerated for small P , i.e., low permeability.

Tests for rates of convergence revealed that the IB method has less than second-

order convergence for all cellular parameters considered with the square interface, and

approximately first-order convergence for the irregular interfaces. The convergence

results therefore demonstrate that a more complex method of handling discontinuity

at the interfaces is required to achieve second-order convergence. This would ensure
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that the IB method can be applied with greater success for much smaller values of P

and for irregular interfaces.

The IB method is known to be less accurate when applied to models involving dis-

continuous solutions across infinitely thin membranes. Special consideration is needed,

and advanced techniques have been proposed in the literature (e.g., Leveque et al. [23]),

to achieve second-order (and higher) accuracy throughout the computational domain.

To demonstrate the relative ease and efficiency of modeling diffusion with irregular

interface shapes, simulations using the IB method were run with non-square interfaces.

To set up such simulations using finite difference, finite element, or finite volume

methods would be far more computationally expensive and difficult to implement. For

this reason, we propose that the IB method is well suited to simulating diffusion in

biological material.

As the IB method has not been used to our knowledge in the simulation of diffusion

in connection with diffusion imaging, the results of our study are promising. For exam-

ple, using the proposed IB method, one could simulate MR signals from the dephasing

of hydrogen atoms (in water molecules) as is done in actual MRI experiments. From

this signal, one could calculate the apparent diffusion coefficient and compare it to the

known (imposed) diffusion coefficient. For simulations involving homogeneous media

(e.g., no impermeable membranes), one expects agreement between the apparent dif-

fusion coefficient and the imposed diffusion coefficient. For a heterogeneous problem,

it could be seen how well the two diffusion coefficients agree. From such studies, one

could test the hypotheses used in DWI and DTI that diffusion follows a Gaussian

distribution (as in the free motion of water molecules).

In addition, we would like to consider other interface shapes, such as long, fiber-like

interfaces, and shapes with greater irregularity. Our hope is that our IB method could

be used as a tool with application to diffusion MRI, as well as simulating diffusion of

contrast-enhanced dye (CED), and other clinical applications such as the development

of targeted drugs.
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