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Abstract

Plunger pumps are needed for heavy duty sludge pumping at wastewater treat-

ment facilities. America’s leading pump manufacturer Wastecorp Inc. brought

their plunger pump problem to us in late 2009. It was found that when the

flow rate reaches a critical value, the plunger pump starts to generate a clicking

noise.

A one-dimensional model was built for studying the flow of a typical plunger

pump operation. The velocities and pressures are calculated at certain inter-

esting locations. Pressure jumps have been found while opening or closing the

valves. The valve motion is then modeled with considerations to its geometry.

The results show that as the plunger speed reaches a critical value, the valve

moves more rapidly and more likely to hit the wall and generates a noise. We

also provide a methodology to study the flow across the valve in higher resolu-

tion. A finite-difference approach to the Navier-Stokes equations are presented

with the immersed boundary method.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

A particular industrial problem was the motivation of this thesis. America’s

leading pump manufacturer Wastecorp brought their plunger pump problem

to a workshop on industrial mathematics in late 2009. Their plunger pumps

work well in general. However, it has been found that when the resistance to

the pump reaches a critical value, the plunger pump, which is driven by an AC

motor, starts to generate a clicking noise in a periodic fashion. A preliminary

model was set up during the workshop in order to model the flow and hopefully

identify the factors that might be responsible for the vibration. We continued

with careful studies in this thesis, to gain a better understanding of the fluid

dynamics involved during the plunger pump operation.

Plunger pumps are reciprocating pumps which require a system of suction

and discharge valves to ensure that the fluid moves in a particular direction.

One line of Wastecorp’s plunger pumps are engineered for heavy duty sludge

pumping applications at municipal and industrial wastewater treatment fa-

cilities. A typical plunger pump consists of a cylinder with a reciprocating

plunger, shown in Figure 1.1. The suction and discharge valves are placed on

each side of the cylinder. The valves are made of iron balls which sit on a

ring while closed. In the suction stroke the plunger retracts and the suction

1



Chapter 1. Introduction

suction valve

discharge valve plunger

Air tank

Air tank

Figure 1.1: A cross-sectional view of a typical plunger pump.

valve opens causing suction of fluid into the cylinder; in the forward stroke

the plunger pushes the liquid out of the discharge valve. The valve motion is

only driven by the flow. As the valves close and open, the air tanks on both

sides, known as compensators, reduce the effects of sudden changes of flow

directions. During the pump operation, the air tanks are sealed.

Ideally, the valves should open and close at a precise instant to facilitate the

suction or discharge stroke. It is known that the smooth and quiet operation of

a pump is primarily a reflection of the dynamics of the valve operations (Hen-

shaw, 2009). However, inertia causes the valves to be slightly delayed with

respect to the strokes of the piston. (Price et al., 1995) explains how pres-

sure spikes and possible cavitations can form due to the late-opening valves.

Cavitations will create damage on the system components. (Henshaw, 2009)

explains how hydraulic shocks can result due to the late-closing valves. These

hydraulic shocks cause excessive pump noise and vibration, and shortens the

lives of the pumps.

Efforts have been made to understand the valve dynamics with plunger

pump operation. (Lyashkov, 1972) presents a numerical model for simulat-

ing the operation of high pressure cryogenic pumps and the valve motion is

carefully considered according to the geometry. The pressure in the plunger

2



1.2. Thesis Outline

cylinder is modeled with compressible fluids and pressure spikes are clearly

seen in the simulation results. However, the model is not connected with inlet

or outlet flow effects. (Johnston, 1991) gives a detailed mathematical descrip-

tion of reciprocating pumps with the model of valve motion embedded within

the inlet and outlet flow. The positions of the valve are categorized into three

phases, i.e., fully closed, partially open, or fully open. In each situation, the net

forces are carefully considered and the cavitation effects are also included with

the pressure equations. However, the inlet pressure is assumed to be constant

and the effects of pipeline system is not considered. (Shu et al., 1997) suggests

that the pipeline pressure pulsation produced by reciprocating pumps are a

significant source of noise and vibration. Thus, the model of pipeline system

is connected to the existing model in (Johnston, 1991) to allow simulations of

pressure pulsation. One drawback of this last model is that the flow equations

valid within the pipelines are treated rather simply.

1.2 Thesis Outline

In this thesis, we present careful mathematical derivations for the flow model

that describes the fluid dynamics in the plunger pump system. The first model

consists of a full geometry of the plunger pump and studies the flow at certain

interesting locations. The flow properties in the pipelines are derived from

the Navier-Stokes equations. Although assumptions are made to simplify the

model into ideal fluids, viscous effects can be simply added to adapt different

Reynolds numbers. The dynamics of the air tanks are also included. However,

the valve motion has not been resolved in the first model, so the second model

studies the valve motion in detail.

In an effort to make the thesis self contained, the fundamental equations

of fluid dynamics are developed in the Appendix. Chapter 2 presents the first

one-dimensional model with simulation results. The geometry of the valves

has been simplified to open or closed gates, and pressure jumps have been

3



Chapter 1. Introduction

found in the simulations. However, the motions of the valves have not been

resolved. Thus Chapter 3 presents a refined one-dimensional model concerning

the motions of the valves. Following this, Chapter 4 discusses, at some length,

the behavior of the flow in a vicinity of the valve and the formulation of an

immersed boundary method to study the fluid-valve interactions. Much of this

material is expanded upon in the appendix.

4



Chapter 2

The One-dimensional Flow

Model

In this chapter, we will derive a one-dimensional flow model for the plunger

pump. The model consists of the plunger, the air tanks, the pipes, and the

valves in which the system forms a closed circulation. The equations of motion

of the fluid in the model are derived from the Navier-Stokes equations. We

will analyze the differential equations of the model and some of the numerical

results.

2.1 The Geometry of the Model

In order to study the motion of fluids in a plunger pump, we would like to

understand the pressures and velocities of flow at certain interesting locations.

We can consider a closed system in a laboratory setting, shown in Figure 2.1.

The fluid circulates through the pump within an outer pipe, so that the fluid

leaves the discharge valve, travels through the outer pipe and eventually comes

back to the suction valve. The geometry of the valves is simplified to open

or closed gates. It is important to note that in this model, both valves are

assumed to be either fully closed or completely open.

The plunger is located at the center with an air tank on either side. Both

5
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air air

plunger

valve1valve2

p2 p1

xp

x2, v2 x1, v1

v3v4

L2 L1

p+3 p−3p−4p+4

L4 L3

x

y

v5

air tank 1air tank 2

outer circular pipe with length L5 z

v5

Figure 2.1: The Geometry of the One-dimensional Model.

of the valves only open to the left. L1 and L2 denote the heights of the air tank

1 and air tank 2, respectively, L3 denotes the length of the pipe from valve 1

to the center of the plunger and L4 denotes the length of the pipe from the

center of the plunger to valve 2. The outer circular pipe is of length L5. The

position of the air/liquid interface in air tank 1 is x1, measured from the top

of air tank 1. Similarly for x2. The position of the plunger is denoted by xp

from a local coordinate along the z-direction. The average flow velocities in air

tank 1 and 2 are v1 and v2 respectively, measured along the negative z-axis.

The average velocity passing through valve 1 is v3 and the average velocity

passing through valve 2 is v4, measured along the x-axis. The average velocity

in the outer circulation is v5. The pressure of the air inside air tank 1 is p1.

Similarly for p2. pp denotes the liquid pressure under the plunger. p−3 is the

flow pressure before entering through valve 1 and p+
3 is the flow pressure after

entering through valve 1. Similarly for p−4 and p+
4 .

6



2.1. The Geometry of the Model

ωt

x0

l

(0, xp)

(0, 0)

crank circle

connecting rod

crank pin

plunger

crank center

Figure 2.2: The geometry of the motion of the plunger.

2.1.1 The Plunger Motion

The plunger is connected to a rotating crank through a connecting rod, shown

in Figure 2.2. The crank is centered at (0, 0) and the connecting rod is pinned

on the crank with a distance x0 to its center. As the crank rotates, the plunger

moves up or down along the vertical axis.

The position of the plunger can be written as

(0, xp) = x0(cosωt, sinωt) + l(d1, d2), (2.1.1)

where ω is the angular frequency of the rotating crank, l is the length of the

connecting rod, (d1, d2) is a unit vector along l and

d2
1 + d2

2 = 1. (2.1.2)

Thus, by solving (2.1.1) and (2.1.2) simultaneously, we get

xp = x0 sinωt±
√
l2 − x2

0 cos2 ωt. (2.1.3)

7



Chapter 2. The One-dimensional Flow Model

0 1 2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t (sec)

 

 

Veolocity (m/s)

Displacement (m)

Acceleration (m/s2)

- - - SHM
—– Non SHM

Figure 2.3: An example of displacement, velocity and acceleration of the
plunger. The dashed line indicates the simple harmonic motion and the solid
line shows the plunger motion as described in (2.1.4).

When ωt = −π/2, xp = −x0 − l. Thus, we take the minus sign on the right-

hand side of (2.1.3) and it gives

xp = x0 sinωt−
√
l2 − x2

0 cos2 ωt. (2.1.4)

The velocity and acceleration of the plunger can be calculated by taking the

first and second derivatives with respect to t of (2.1.4), i.e.,

ẋp = x0ω cosωt− x2
0ω cosωt sinωt√
l2 − x2

0 cos2 ωt
, (2.1.5)

ẍp = −x0ω
2 sinωt+

x4
0 cos2 ωt sin2 ωt

(l2 − x2
0 cos2 ωt)

3/2
+
ω2x2

0

(
sin2 ωt− cos2 ωt

)
√
l2 − x2

0 cos2 ωt
. (2.1.6)

An example of the plunger motion is illustrated with l = 0.3 m, x0 = 0.13 m

and ω = 1 rad/sec. The displacement, velocity and acceleration of the plunger

is shown in Figure 2.3 with solid lines. If x0 � l, (2.1.4) can be approximated

8



2.1. The Geometry of the Model

as

xp = x0 sinωt− l. (2.1.7)

The above equation represents a simple harmonic motion and it can be under-

stood as having a connecting rod hanging vertically downwards from the crank

pin at all times and the plunger is attached to the end of the connecting rod.

The plunger is not only allowed to move up or down, but also left and right

with the rotation of the crank pin. In Figure 2.3, we compare the displacement

of the plunger described by (2.1.4) with the simple harmonic motion described

by (2.1.7) by using the same parameters.

In (2.1.7), we start rotating the crank anti-clockwise from the horizontal

axis, so xp is described as a sine function. If we start rotating at (0, x0) and

shift the displacement of the plunger upwards by l, then

xp = x0 cosωt, (2.1.8)

and consequently

ẋp = x0ω sinωt, (2.1.9)

ẍp = −x0ω
2 cosωt. (2.1.10)

For simplicity, we will use (2.1.8) to (2.1.10) for our numerical simulations.

Expression (2.1.4) will include higher order harmonic effects in the solution.

2.1.2 Control Volumes

In order to analyze the flow in the closed system described above, we shall

divide the system into several compartments. Each compartment is a control

volume which we will analyze in detail.

9
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S3S4

Sp

n̂

n̂ n̂

x

y

valve 1valve 2

plunger

Dp

D4 D3

S0

pp

p−4 p+3

z

pp

S0

pp

Figure 2.4: A cross-sectional view of control volume CV1.

The first control volume, namely CV1, encloses the fluid region underneath

the plunger and between both valves, shown in Figure 2.4. It is bounded by

the pipe walls, the plunger, and the valves. The boundary of CV1 is known

as its control surface, denoted by CS1. We have unit normal vectors pointing

outward from the control surface. The cross-sectional area of the pipe at valve

1 is S3 and the cross-sectional area at valve 2 is S4. Sp denotes the cross-

sectional area of the plunger.

For further analysis, we also divide CV1 into three regions. The pipe be-

tween both valves is cut into D3 and D4. Dp is the region below the plunger.

S0 denotes the cross-sectional area of the pipe of D3 and D4 near the plunger.

The second control volume, CV2, shown in Figure 2.5, consists of the fluid

region in the outer circular pipe, air tank 1, and the region D3 defined previ-

ously in CV1. Its control surface is denoted by CS2. We let D5 be the fluid

region in the outer circular pipe and D1 be the liquid region in air tank 1. The

unit normal vectors are pointing outward everywhere from this control surface.

S1 is the cross-sectional area of air tank 1. S4 denotes the cross sectional area

of the pipe L5 near valve 2.

The last control volume CV3 is similar to CV2 and is shown in Figure 2.6.
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p1

p−3p+3
D5D3

D1

S1

S4S3S0

n̂

n̂ n̂
p+4

z

x

y

air tank 1

valve 1
stretched outer circular pipe

L5L3

L1

pp

x1, v1

S3

Figure 2.5: A cross-sectional view of control volume CV2.

2.2 Derivation of the Model

2.2.1 Assumptions

The applications of Wastecorp’s plunger pumps include raw and digested

sewage sludge, industrial and chemical waste and slurries, pulp and paper

stock, oil refinery sludge etc. These sludge fluids can exhibit non-Newtonian

behavior where the shear rate and shear stress do not vary proportionally as

for a Newtonian fluid such as water (Slatter, 1997). Depending on the sludge

type and concentration, different viscosity models can be used to describe the

non-linear relationship between shear rate and shear stress. However, in our

first model, we would like to simply assume that the sludge concentration is

low and the fluid is mostly water. Thus the fluid behaves as a Newtonian fluid

and it is incompressible.

Recall the Navier-Stokes equations derived in the Appendix:

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p+ ν∇2~v + ~g, (2.2.1)

where ρ is the fluid density, ~v is the flow velocity, p is the pressure, ν is the

kinematic viscosity, and ~g represents the acceleration due to gravity. Since we
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D5 D4
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n̂ n̂
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air tank 2

valve 2
stretched outer circular pipe

z

y

x

L5 L4

L2

ppp−3

x2, v2

S4

Figure 2.6: A cross-sectional view of control volume CV3.

assume that the fluid is mostly water, the continuity equation gives us

∇ · ~v = 0. (2.2.2)

For non-dimensionalization, we set

~v = V ~v∗, ~x = L~x∗, t = Tt∗, p = Pp∗, ~g = G~g∗,

where V is a reference velocity, L is a reference length, P = ρV 2, T = L/V ,

G = V/T = V 2/L. The choice for P comes from the Bernoulli’s equation

and the choices for T and G come from a consistency in units. Substitut-

ing these variables back into (2.2.1) and (2.2.2) and dropping the stars, the

incompressible Navier-Stokes equations in non-dimensionalized form read

∂~v

∂t
+ ~v · ∇~v = −∇p+

1

Re
∇2~v + ~g, (2.2.3)

∇ · ~v = 0, (2.2.4)

where Re = V L/ν is the Reynolds number.
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2.2. Derivation of the Model

To estimate the Reynolds number, we look at Model PE-61A plunger

pumps, for example. The radius of the pipe is about 0.1 m, and the maxi-

mum capacity is known as 40 gallons per minute. We divide the volumetric

flow rate by cross-sectional area of the pipes to get

40 gpm = 40× 6.3× 10−5 m3/s

π × 0.0512 m2
≈ 0.3 m/s.

The kinematic viscosity of water at 20◦C is about 1× 10−6 m2/s, thus

Re =
LV

ν
≈ 0.1 m× 0.3 m/s

1× 10−6 m2/s
= 3000.

In reality, the viscosity has a higher value and the above is the maximum

Reynolds number expected.

To derive our model, we use the dimensional form of the Navier-Stokes

equations (2.2.1) and the continuity equation (2.2.2). To simplify the geometry,

we first assume that the pipes, the plunger and the air tanks all have the same

cross-sectional area. For simplicity, we ignore the gravitational effects, hence,

~g = 0. (2.2.5)

Note that the gravitational term can be added, however, the dynamics of the

solution will not change by gravitational effects.

Since we are aiming to derive a one-dimensional model, we also assume

that there are no viscous effects so that the flow velocities are uniform along

the cross-section of the pipes and

ν∇2~v = 0. (2.2.6)

This means that instead of the no-slip condition, the velocities at the pipe

13
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walls are parallel to the walls. Also,

~v · n̂ = 0 (2.2.7)

at any wall.

If we add viscous effects, the viscous term has to be included in the Navier-

Stokes equations. Depending on the profile of the flow, we are able to simplify

the model to one-dimension by using average velocities along cross-sections. An

extra viscous term which includes the average flow velocity and the Reynolds

number will appear. Thus the average velocity can be solved with any given

Reynolds number. In the viscous flow case, the no-slip condition is satisfied.

As the viscosity tends to zero, the viscous term vanishes and we get back to

the case of an ideal fluid.

We consider further the directions of flow. In CV1, for example, if the

plunger is pushed downwards, we shall assume that the flow being pushed by

the plunger will change its direction from vertical to horizontal abruptly while

it enters the pipe region D3 and D4, shown in Figure 2.7. Similarly for the

pulling case. The velocities are also assumed to be uniform in D3, D4 and Dp

respectively. This assumption generalizes to all control volumes, so we have

~v · ∇~v = 0. (2.2.8)

Thus, the Navier-Stokes equations are simplified to

ρ

(
∂~v

∂t

)
= −∇p (2.2.9)

with the continuity equation

∇ · ~v = 0. (2.2.10)
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D4 D3

Dp

pp p+3p−4

S4 S3S0

pp

x

y

plunger pushing downward

valve 1valve 2

L4 L3

pp

z

S0

Figure 2.7: Homogenous flow in D3, D4 and Dp.

2.2.2 Analysis with the Navier-Stokes Equations

Each control volume shall be analyzed. We start with CV1 and consider the

continuity equation (2.2.10). Integrating (2.2.10) over CV1, we get

∫∫∫

CV1

∇ · ~v dV = 0.

By the divergence theorem, this implies

∫∫

CS1

~v · n̂ dS =

∫∫

S3+S4+Sp

~v · n̂ dS +

∫∫

pipe walls

~v · n̂ dS = 0.

From assumption (2.2.7), we deduce that the second term in the above equation

vanishes so ∫∫

S3+S4+Sp

~v · n̂ dS = 0.

At a particular time t,

∫∫

S3+S4+Sp

~v · n̂ dS
∣∣∣∣
t

= −v3S3

∣∣∣∣
t

+ v4S4

∣∣∣∣
t

+ ẋpSp

∣∣∣∣
t

= 0 (2.2.11)
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where ẋp is the plunger velocity. Similarly at time t+ ∆t where ∆t is small,

∫∫

S3+S4+Sp

~v · n̂ dS
∣∣∣∣
t+∆t

= −v3S3

∣∣∣∣
t+∆t

+ v4S4

∣∣∣∣
t+∆t

+ ẋpSp

∣∣∣∣
t+∆t

= 0. (2.2.12)

Subtracting (2.2.11) from (2.2.12), taking the limit as ∆t → 0 and using the

assumption that S3 = S4 = Sp, we get

−∂v3

∂t
+
∂v4

∂t
+
∂ẋp
∂t

= 0.

From assumption (2.2.8), we arrive at

−v̇3 + v̇4 + ẍp = 0 (2.2.13)

where v̇i = d
dt
vi, i = 3, 4.

Now consider the momentum equation (2.2.9). Taking the volume integral

of (2.2.9) over D4,

ρ

∫∫∫

D4

∂~v

∂t
dV =

∫∫∫

D4

−∇p dV. (2.2.14)

By an alternative form of the divergence theorem, the right-hand side of

(2.2.14) can be calculated as

∫∫∫

D4

−∇p dV = −
∫∫

∂D4

pn̂ dS

= −



∫∫

S0

pn̂ dS +

∫∫

S4

pn̂ dS +

∫∫

pipe walls

pn̂ dS




where ∂D4 is the surface boundary of D4, n̂ is the unit normal vector pointing

outward from ∂D4. Since the surface integral of pn̂ over the pipe walls is
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2.2. Derivation of the Model

canceled out to be zero, we have

−
∫∫

∂D4

pn̂ dS = −



∫∫

S0

pn̂ dS +

∫∫

S4

pn̂ dS




=
(
ppS0 − p−4 S4

)
êx

where êx is the unit vector along the x-axis.

For the left-hand side of equation (2.2.14), we have assumed that ~v is

homogenous in D4, so

ρ

∫∫∫

D4

∂~v

∂t
dV = ρ

∂~v4

∂t
S4L4

where ~v4 is the uniform flow velocity in D4. Equating both sides of (2.2.14)

and using the assumption that S0 is equal to S4, we have

ρ
∂~v4

∂t
=
pp − p−4
L4

êx.

Since ~v4 = v4êx, and v4 is independent of space variables, we arrive at

v̇4 =
1

ρ

pp − p−4
L4

. (2.2.15)

A similar analysis can be carried out with the momentum equation (2.2.9)

in D3, the result gives

v̇3 =
1

ρ

p+
3 − pp
L3

. (2.2.16)

Finally, by substituting (2.2.15) and (2.2.16) back into (2.2.13), we obtain

the following relation:

p+
3 − pp
L3

+
p−4 − pp
L4

= ρẍp. (2.2.17)
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This finishes our analysis of CV1.

Let us continue by analyzing CV2. First, integrating the continuity equa-

tion (2.2.10) over CV2 and use the divergence theorem, we get

∫∫∫

CV2

∇ · ~vdV =

∫∫

CS2

~v · n̂dS = 0.

Assumption (2.2.7) gives

∫∫

S4+S1+S0

~v · n̂dS = 0. (2.2.18)

At a particular time t,

∫∫

S4+S1+S0

~v · n̂dS
∣∣∣∣
t

= −v5S4

∣∣∣∣
t

− v1S1

∣∣∣∣
t

+ v3S0

∣∣∣∣
t

= 0 (2.2.19)

and at time t+ ∆t,

∫∫

S4+S1+S0

~v · n̂dS
∣∣∣∣
t+∆t

= −v5S4

∣∣∣∣
t+∆t

− v1S1

∣∣∣∣
t+∆t

+ v3S0

∣∣∣∣
t+∆t

= 0. (2.2.20)

Subtracting (2.2.19) from (2.2.20), taking the limit as ∆t → 0, and using the

assumption that S0 = S1 = S4, we have

−∂v5

∂t
− ∂v1

∂t
+
∂v3

∂t
= 0.

Since assumption (2.2.8), we arrive at

−v̇5 − v̇1 + v̇3 = 0. (2.2.21)

Next, consider the momentum equation (2.2.9). Integrating (2.2.9) over D3
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gives us (2.2.16) again and integrating over D1 results in

v̇1 =
1

ρ

p1 − p−3
L1 − x1

. (2.2.22)

Integrating (2.2.9) over D5 results in

v̇5 =
1

ρ

p+
4 − p−3
L5

. (2.2.23)

We finish our analysis in CV2 by substituting (2.2.16), (2.2.22) and (2.2.23)

back to equation (2.2.21), we obtain:

p−3 − p+
4

L5

=
p1 − p−3
L1 − x1

+
pp − p+

3

L3

. (2.2.24)

Last for CV3, we follow the same analysis from previous. By integrating

the continuity equation (2.2.10), we get

−v̇4 + v̇5 − v̇2 = 0. (2.2.25)

Integrating the momentum equation (2.2.9) over D2 gives

v̇2 =
1

ρ

p2 − p+
4

L2 − x2

. (2.2.26)

Integrating (2.2.9) over D5 gives (2.2.23) again and integrating over D4 gives

(2.2.15) again. Finally, by substitution we get

p−3 − p+
4

L5

=
p+

4 − p2

L2 − x2

+
p−4 − pp
L4

. (2.2.27)
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To summarize, we have the following set of ordinary differential equations:

ẋ1 = v1, ẋ2 = v2, (2.2.28)

v̇1 =
1

ρ

p1 − p−3
L1 − x1

, v̇2 =
1

ρ

p2 − p+
4

L2 − x2

, v̇3 =
1

ρ

p+
3 − pp
L3

, (2.2.29)

v̇4 =
1

ρ

pp − p−4
L4

, v̇5 =
1

ρ

p+
4 − p−3
L5

, (2.2.30)

as well as the pressure relations:

p−3 − p+
4

L5

=
p1 − p−3
L1 − x1

+
pp − p+

3

L3

, (2.2.31)

p−3 − p+
4

L5

=
p+

4 − p2

L2 − x2

+
p−4 − pp
L4

, (2.2.32)

ρẍp =
p+

3 − pp
L3

+
p−4 − pp
L4

. (2.2.33)

To close the system of equations we require an equation of state for the gas

in the compensators. The question of existence and uniqueness reduces to the

standard linear ODE theory depending on the state of the valves. Provided

x1 6= L1, x2 6= L2, L3 6= 0, L4 6= 0, L5 6= 0 and at least one valve is open, there

exists a unique local solution to the system of ordinary differential equations.

See Section 2.3.2 for more details.

2.2.3 Equations of State

Now we make a connection between the positions of the air/liquid interface

and the pressures in the air tanks. If we assume that there is no heat transfer

between the gas and its surroundings while it is compressed (or expanded), we

can use the adiabatic equation of state (Illner et al., 2000)

PV γ = constant, (2.2.34)

where γ is a parameter assumed to be constant during the process (γ = 1.4 for

air). In air tank 1, for example, the air volume is measured as V1 = S1x1 and

20



2.2. Derivation of the Model

the air pressure is p1. If we denote the initial pressure as p10 and the initial

air/liquid interface position as x10, then

p1S
γ
1x

γ
1 = p10S

γ
1x

γ
10.

Therefore in air tank 1,

p1 = p10

(
x10

x1

)γ
. (2.2.35)

Similarly for air tank 2,

p2 = p20

(
x20

x2

)γ
. (2.2.36)

2.2.4 Flow at Open or Closed Valves

We discuss what happens with the pressures and velocities at open or closed

valves.

First consider the pressures. If valve 1 is closed, then we assume that the

fluid is static in D3 and the pressure is the same everywhere in D3. So we have

p+
3 = pp. If valve 1 is open, the pressures before and after entering through

valve 1 are assumed to be identical, i.e., p+
3 = p−3 . Similarly for valve 2. Thus,

p+
3 = pp, if valve 1 is closed,

p+
3 = p−3 , if valve 1 is open.

(2.2.37)

p+
4 = pp, if valve 2 is closed,

p+
4 = p−4 , if valve 2 is open.

(2.2.38)

Now consider the flow velocities. If valve 1 is closed, then there is no flow

coming into the plunger through valve 1 and v3 = 0. Similarly if valve 2 is

closed, then v4 = 0.
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2.2.5 Conditions to Open or Close the Valves

There are two situations we need to consider:

1. How a closed valve can be popped open;

2. How an open valve can be pushed closed.

Let us consider the first case. Assume valve 1 is closed, then v3 = 0 and

p+
3 = pp. To open valve 1, we need p−3 > p+

3 + ∆p, where ∆p is a positive

number to overcome the inertia of the valve. Once valve 1 is open, we would

have p+
3 = p−3 .

For the second case, suppose valve 1 is open and p+
3 = p−3 . Suppose v3

is changing from positive to negative, this means that the flow is driving the

valve back to its closed position. We use the condition v3 < 0 to close valve 1.

Once valve 1 is closed, we set p+
3 = pp and v3 should be zero.

The same conditions apply to valve 2. See Table 2.1 for all cases.

At time t(n) Conditions At time t(n+1)

valve 1 is closed
p+

3 = pp p−3 > p+
3 + ∆p valve 1 opens p+

3 = p−3
v3 = 0 otherwise valve 1 stays closed p+

3 = pp, v3 = 0

valve 1 is open p+
3 = p−3

v3 < 0 valve 1 closes p+
3 = pp, v3 = 0

otherwise valve 1 stays open p+
3 = p−3

valve 2 is closed
p+

4 = pp p−4 > p+
4 + ∆p valve 2 opens p+

4 = p−4
v4 = 0 otherwise valve 2 stays closed p+

4 = pp, v4 = 0

valve 2 is open p+
4 = p−4

v4 < 0 valve 2 closes p+
4 = pp, v4 = 0

otherwise valve 2 stays open p+
4 = p−4

Table 2.1: Conditions to open or close a valve.
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2.3 Numerical Algorithm and Remarks on Sim-

ulation Issues

We derived from the previous section the set of differential equations for

x1, x2, v1, ..., v5:

ẋ1 = v1, ẋ2 = v2,

v̇1 =
1

ρ

p1 − p−3
L1 − x1

, v̇2 =
1

ρ

p2 − p+
4

L2 − x2

, v̇3 =
1

ρ

p+
3 − pp
L3

, (2.3.1)

v̇4 =
1

ρ

pp − p−4
L4

, v̇5 =
1

ρ

p+
4 − p−3
L5

,

as well as the algebraic relations for p+
3 , p

−
3 , p

+
4 , p

−
4 , pp:

p+
3 = pp, if valve 1 is closed,

p+
3 = p−3 , if valve 1 is open,

(2.3.2)

p+
4 = pp, if valve 2 is closed,

p+
4 = p−4 , if valve 2 is open,

(2.3.3)

and the continuity relations:

p−3 − p+
4

L5

=
p1 − p−3
L1 − x1

+
pp − p+

3

L3

,

p−3 − p+
4

L5

=
p+

4 − p2

L2 − x2

+
p−4 − pp
L4

, (2.3.4)

ρẍp =
p+

3 − pp
L3

+
p−4 − pp
L4

, (2.3.5)

where the pressures p1, p2 are related with x1, x2 according to:

p1 = p10

(
x10

x1

)γ
, p2 = p20

(
x20

x2

)γ
. (2.3.6)

Expressions (2.3.1)-(2.3.6) is a system of differential algebraic equations which

consists of 14 equations for 14 unknowns. Our aim is to solve the unknown vari-
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ables x1, x2, v1, ..., v5, p±3 , p
±
4 , pp, p1, p2 with a set of initial conditions x10,...,v50.

Notice that the linear system (2.3.2)-(2.3.4) is singular when both valves are

closed, and has a unique solution otherwise. Below we present a direct numer-

ical approach to solve the above differential algebraic equations.

2.3.1 The Algorithm

We divide the time interval [0, tend] into N equal subintervals with size ∆t, i.e.,

t(n+1) = t(n) + ∆t

where n = 0, ..., N − 1. Here, t(0) = 0 and t(N) = tend.

Step 1: Initialization.

At t = 0, we give initial guesses for the pressures p
(0)
i = pi0, i = 1, 2, the po-

sitions of the air/liquid interface x
(0)
i = xi0, i = 1, 2, and the initial velocities

v
(0)
i = vi0, i = 1, ..., 5. Since xp = x0 cosωt, the plunger is about to push down

at t = 0. Thus we also assume that valve 1 is closed and valve 2 is open.

For t = t(0), ..., t(N−1), repeat Step 2 to Step 7:

Step 2: Assign corresponding pressure equations using (2.3.2) and (2.3.3),

according to whether a particular valve is open or closed.

Step 3: Calculate the plunger acceleration ẍp, then solve the linear system of

equations (2.3.2)-(2.3.4) (e.g. by Gaussian Elimination) for p±3 , p±4 and pp.

Step 4: Update x1, x2, v1, ..., v5 from (2.3.1) by a numerical integration

scheme. For example, a first order Euler scheme can be used. First, we update
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the velocities by

v
(n+1)
1 = v

(n)
1 +

∆t

ρ

p
(n)
1 − p−(n)

3

L1 − x(n)
1

, v
(n+1)
2 = v

(n)
2 +

∆t

ρ

p
(n)
2 − p+(n)

4

L2 − x(n)
2

,

v
(n+1)
3 = v

(n)
3 +

∆t

ρ

p
+(n)
3 − p(n)

p

L3

, v
(n+1)
4 = v

(n)
4 +

∆t

ρ

p
(n)
p − p−(n)

4

L4

,

v
(n+1)
5 = v

(n)
5 +

∆t

ρ

p
+(n)
4 − p−(n)

3

L5

.

Then x1 and x2 can be calculated by using the updated values of v1 and v2,

i.e.,

x
(n+1)
1 = x

(n)
1 + ∆t v

(n+1)
1 , x

(n+1)
2 = x

(n)
2 + ∆t v

(n+1)
2 .

Step 5: Update p1 and p2 from (2.3.6), i.e.,

p
(n+1)
1 = p

(n)
1

(
x

(n)
1

x
(n+1)
1

)γ

, p
(n+1)
2 = p

(n)
2

(
x

(n)
2

x
(n+1)
2

)γ

.

Step 6: Set t(n+1) = t(n) + ∆t.

Step 7: Check if valves change states according to Table 2.1 and go back to

Step 2.

2.3.2 Remarks on Changing the States of the Valves

The condition vi < 0, i = 3, 4, for closing a valve needs some extra care. By

computing vi at each fixed time step and say we have vi > 0 at t(n) and vi < 0

at t(n+1). Since the valve is closed as soon as a negative velocity is detected, we

need to adjust the time step to ensure that at some t∗ where t(n) < t∗ < t(n+1),

vi(t
∗) = 0, i = 3, 4. Since we know the values of vi at each t(n) and t(n+1), t∗

can be found by a root-finding algorithm. For example, the secant method can

be used and only one iteration is needed to find the exact value of t∗ since we

have used a first order Euler scheme to update the velocities.

From (2.3.2) and (2.3.3), we see that there are four distinct situations
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concerning open or closed valves, i.e.,

1. valve 1 is open, valve 2 is closed;

2. valve 1 is closed, valve 2 is open;

3. both valves are closed;

4. both valves are open.

For each of the four situation, we have a different set of linear equations

(2.3.2)-(2.3.4). For situations 1, 2 and 4, the linear system has a unique solution

since the determinant is non-zero. However, challenges arise while both valves

are closed. The linear system (2.3.2)-(2.3.4) for p±3 , p±4 and pp reads




0 1 0 0 −1

0 0 1 0 −1

1
L5

+ 1
L1−x1

1
L3

0 − 1
L5

− 1
L3

1
L5

0 − 1
L4
− 1
L5
− 1

L2−x2
1
L4

0 1
L3

1
L4

0 − 1
L3
− 1

L4







p−3

p+
3

p−4

p+
4

pp




=




0

0

p1
L1−x1

− p2
L2−x2

ρẍp




.

(2.3.7)

The row echelon form of the augmented matrix gives




L1−x1+L5

L5(L1−x1)
1
L3

0 − 1
L5

− 1
L3

p1
L1−x1

0 1 0 0 −1 0

0 0 1 0 −1 0

0 0 0 − L5+L1−x1+L2−x2
(L2−x2)(L1−x1+L5)

0 − (L2−x2)p1+(L1−x1+L5)p2
(L2−x2)(L1−x1+L5)

0 0 0 0 0 ρẍp




.

(2.3.8)

We see the linear system is singular as a consequence of the conservation of

mass and the assumption of incompressibility. Thus, it has infinitely many

solutions while ẍp = 0, and no solution while ẍp 6= 0. Since we use xp =

x0 cosωt, ẍp = 0 if and only if xp = 0. However, when xp = 0, we are in either

situation 1 or 2, i.e., one valve is open and the other one is closed. Therefore,

we must avoid this singularity. One way to avoid this is to artificially force the

original closed valve to open. This special treatment is shown in Table 2.2.
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2.4 Results

A Matlab program is coded to simulate the motion of Model PE-61A plunger

pumps, in which the parameters and initial conditions are given in Table 2.3.

Figures 2.10 to 2.9 show a typical simulation of 5 strokes, with L5 = 200 m. We

first give qualitative explanations to the results. Further quantitative analysis

will be presented later in this chapter.

2.4.1 Qualitative Behaviors

Let us look at the first stroke. Figure 2.8 shows that as the plunger is pushed

downwards, v3 = 0 and v4 > 0. This means that valve 1 is closed and valve

2 is open during the first downward stroke. Next, when the plunger is pulled

upwards, valve 1 is open and valve 2 is closed. We confirm the states of the

valves by examining Figure 2.9. During the first downward stroke, p+
3 > p−3

and p+
4 = p−4 which is consistent with the fact that valve 1 is closed and valve

2 is open. In the pulling case, p+
3 = p−3 and p+

4 > p−4 which verifies that valve

1 is open and valve 2 is closed.

From Figure 2.10 and 2.11, we see that the air volumes and pressures

in both of the air tanks undergo opposite variations. During the downward

plunger movement, since valve 2 is open, some liquid flows into air tank 2 and

some flows through L5 and comes back to air tank 1. So in both air tanks, the

air is compressed as we see in Figure 2.10. Consequently, the pressures p1 and

p2 are both increased, as shown in Figure 2.11. The opposite happens for the

upward plunger movement.

At time t(n) At time t(n+1) Adjusted at time t(n+1)

valve 1 is closed
both valves are closed

valve 1 opens
valve 2 is open valve 2 stays closed
valve 1 is open

both valves are closed
valve 1 stays closed

valve 2 is closed valve 2 opens

Table 2.2: Changing valve states at both valves are closed.
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Figure 2.8: v3, v4, v5 when L5 = 200 m.

By looking at the second stroke and afterwards, we notice that the solution

goes into a different regime. From Figure 2.8, it can be seen that as we start

the second downward stroke, valve 1 closes and valve 2 opens. And as seen

in Figure 2.9, p−3 gradually becomes larger than p+
3 . As p−3 > p+

3 + ∆p, valve

1 is popped open, according to Table 2.1. Thus we get a sudden increase for

v3 and v4 since both valves are now opened, as shown in Figure 2.8. Then as

the plunger is pulled up again, v4 goes from positive to negative, valve 2 is

then closed and valve 1 remains open, and now we see that in Figure 2.9, p−4

gradually becomes larger than p+
4 . As p−4 > p+

4 +∆p, valve 2 is popped open at

the end of the second stroke. This behavior then continues periodically with

the strokes.

If we look at v5 in Figure 2.8, it increases from zero to about 0.3 m/s during

the first stroke, and gradually increases to about 0.4 m/s after the fifth stroke.

This can be compared with the maximum capacity of Model PE-61A plunger

pumps which is known about 0.3 m/s. This validates our model qualitatively.

With the addition of viscosity, the velocity v5 will not change with the same

plunger velocity. However, extra power is needed to overcome the frictional

effects.
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Figure 2.9: p±3 , p±4 , pp when L5 = 200 m. The dashed line shows p−i , i = 3, 4,
and the solid line indicates p+

i , i = 3, 4.

2.4.2 Variation of L5

We found previously that the solution contains two different regimes. The first

regime only contains the situations where one valve is open and the other one is

closed. The second regime allows both valves to be open for some times. This

phase change of the solutions might be caused by the fact that we have a closed

loop. The fluid that being pumped out from the discharge valve circulates back

and pops up the suction valve. We ran the program by varying the length of

L5 while other parameters were kept fixed. It is interesting to find that the

duration of the first regime depends upon L5. This indicates some natural

oscillation of the solutions due to the closed loop system. The levels of the

air/liquid interface and air pressures in both of the air tanks oscillate due to

the connecting outer loop.

Simulation results for L5 = 800 m are shown in Figures 2.12 to 2.14 and

L5 = 3200 m are shown in Figures 2.15 to 2.17. By comparing with the case of

L5 = 200 m, we see that the first regime of the solution remains longer as we

increase L5. In particular, when L5 = 200 m, it only takes one stroke for the

solution to get into the second regime; when L5 = 800 m, it takes about two
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Figure 2.10: x1, x2 when L5 = 200 m.

strokes for the solution to develop into the second regime; when L5 = 3200 m,

it takes about four strokes. Thus, as the length of L5 quadruples, the duration

of the first regime doubles.

We see that in Figures 2.14 and 2.17, x1 and x2 also vary on a larger scale

in the first regime of the solution. This suggests another possible oscillation

other than the strokes of the plunger. We shall analyze these observations in

the next section.

2.5 Further Analysis

As mentioned in the previous section, the solution oscillates with a frequency

different from the stroke frequency, as seen in the first regime. In order to

understand the oscillatory behaviors better, we carry out some asymptotic

analysis. As discussed before, we have four different situations:

1. valve 1 is open, valve 2 is closed;

2. valve 1 is closed, valve 2 is open;

3. both valves are closed;
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Figure 2.11: p1, p2 when L5 = 200 m.

4. both valves are open.

For each of the above cases, we can solve the linear system (2.3.2)-(2.3.4)

symbolically and then substitute the pressure solutions p±3 , p±4 and pp back to

(2.3.1). Below we give the resulting ordinary differential equations for each

situation.

Situation 1: valve 1 is open, valve 2 is closed. System (2.3.2)-(2.3.4) has a

unique solution, and substitution gives

v̇1 =
1

ρ

p1 − p2 + ρẍp (L5 + L2 − x2)

L5 + L2 − x2 + L1 − x1

, (2.5.1)

v̇2 =
1

ρ

p2 − p1 + ρẍp (L1 − x1)

L5 + L2 − x2 + L1 − x1

, (2.5.2)

v̇3 = ẍp, v̇4 = 0, v̇5 =
1

ρ

p2 − p1 + ρẍp (L1 − x1)

L5 + L2 − x2 + L1 − x1

. (2.5.3)

Situation 2: valve 1 is closed, valve 2 is open. System (2.3.2)-(2.3.4) has a

31



Chapter 2. The One-dimensional Flow Model

0 2 4 6 8 10 12
−0.5

0
0.5

1
1.5

v 3 (
m

/s
)

0 2 4 6 8 10 12
−0.5

0
0.5

1
1.5

v 4 (
m

/s
)

0 2 4 6 8 10 12
0

0.2

0.4

v 5 (
m

/s
)

0 2 4 6 8 10 12
−0.2

0

0.2

x p (
m

)

t (sec)

Figure 2.12: v3, v4, v5 when L5 = 800 m.

unique solution, and substitution yields

v̇1 =
1

ρ

p1 − p2 + ρẍp (L2 − x2)

L5 + L2 − x2 + L1 − x1

, (2.5.4)

v̇2 =
1

ρ

p2 − p1 + ρẍp (L5 + L1 − x1)

L5 + L2 − x2 + L1 − x1

, (2.5.5)

v̇3 = 0, v̇4 = −ẍp, v̇5 =
1

ρ

p2 − p1 − ρẍp (L2 − x2)

L5 + L2 − x2 + L1 − x1

. (2.5.6)

Situation 3: both valves are closed. Pressure solutions exist if and only if

ẍp = 0. When ẍp = 0, we have infinitely many solutions, i.e.,

p−3 =
(L1 − x1)p2 + (L5 + L2 − x2)p1

L5 + L1 − x1 + L2 − x2

,

p+
4 =

(L2 − x2)p1 + (L5 + L2 − x2)p1

L5 + L1 − x1 + L2 − x2

,

p+
3 = p−4 = pp = s
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Figure 2.13: p±3 , p±4 , pp when L5 = 800 m. The dashed line shows p−i , i = 3, 4,
and the solid line indicates p+

i , i = 3, 4.

where s is an arbitrary real number. Substitution yields

v̇1 =
1

ρ

p1 − p2

L5 + L2 − x2 + L1 − x1

,

v̇2 =
1

ρ

p2 − p1

L5 + L2 − x2 + L1 − x1

,

v̇3 = 0, v̇4 = 0, v̇5 =
1

ρ

p2 − p1

L5 + L2 − x2 + L1 − x1

.

Situation 4: both valves are open. Pressure solution is unique and substitu-

tion gives

v̇1 =
1

ρ

(p1 − p2)(L3 + L4 + L5) + ρẍp [(L4 + L2 − x2)L5 + (L3 + L4)(L2 − x2)]

(L1 + L2 + L3 + L4 − x1 − x2)L5 + (L3 + L4)(L1 − x1 + L2 − x2)
,

v̇2 =
1

ρ

(p2 − p1)(L3 + L4 + L5) + ρẍp [(L3 + L1 − x1)L5 + (L3 + L4)(L1 − x1)]

(L1 + L2 + L3 + L4 − x1 − x2)L5 + (L3 + L4)(L1 − x1 + L2 − x2)
,

v̇3 =
1

ρ

(p2 − p1)L5 + ρẍp [(L4 + L2 − x2)L5 + L4(L1 − x1 + L2 − x2)]

(L1 + L2 + L3 + L4 − x1 − x2)L5 + (L3 + L4)(L1 − x1 + L2 − x2)
,

v̇4 =
1

ρ

(p1 − p2)L5 − ρẍp [(L3 + L1 − x1)L5 + L3(L1 − x1 + L2 − x2)]

(L1 + L2 + L3 + L4 − x1 − x2)L5 + (L3 + L4)(L1 − x1 + L2 − x2)
,

v̇5 =
1

ρ

(p2 − p1)(L3 + L4) + ρẍp [(L1 − x1)L4 − (L2 − x2)L3]

(L1 + L2 + L3 + L4 − x1 − x2)L5 + (L3 + L4)(L1 − x1 + L2 − x2)
.
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Figure 2.14: x1, x2 when L5 = 800 m.

2.5.1 Linearization

Let us consider situation 1. We re-write (2.5.1) as

ẍ1 =
1

ρ

p1 − p2

L5 + L2 − x2 + L1 − x1

+
ẍp(L5 + L2 − x2)

L5 + L2 − x2 + L1 − x1

. (2.5.7)

The second term on the right-hand side of (2.5.7) represents the oscillations of

the plunger motion. The first term on the right-hand side of (2.5.7) represents

some natural oscillation. The contribution from the plunger oscillations can

be obviously seen in Figures 2.10, 2.14 and 2.17. In order to understand the

natural oscillation, we can expand the first term on the right-hand side in

powers of 1/L5 to get

ẍ1 =
1

ρ
(p1 − p2) ε+

1

ρ
(p2 − p1) (L1 − x1 + L2 − x2) ε2 +O

(
ε3
)

(2.5.8)
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Figure 2.15: v3, v4, v5 when L5 = 3200 m.

where ε = 1/L5. For simplicity, Let us consider the case of γ = 1 (isothermal),

so

p1 =
p10x10

x1

,

p2 =
p20x20

x2

,

where pi0, i = 1, 2, are the initial pressures in the air tanks and xi0, i = 1, 2,

are the initial positions of the air/liquid interface. From the initial conditions,

we also have

p10 = p20 = p0,

x10 = x20 = l/2,

where l = L1 = L2. Substituting the above equations into (2.5.8), we get to

leading order

ẍ1 =
εp0l

2ρ

(
1

x1

− 1

x2

)
.
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Figure 2.16: p±3 , p±4 , pp when L5 = 3200 m. The dashed line shows p−i , i = 3, 4,
and the solid line indicates p+

i , i = 3, 4.

We can carry out similar analysis for (2.5.2) and get, also to leading order,

ẍ2 = −εp0l

2ρ

(
1

x1

− 1

x2

)
.

Collectively,

ẍ1 = Γ2

(
1

x1

− 1

x2

)
, (2.5.9)

ẍ2 = −Γ2

(
1

x1

− 1

x2

)
(2.5.10)

where Γ2 = εp0l/2ρ. By letting y1 = x1, y2 = x2, y3 = ẋ1, and y4 = ẋ2, we

have

ẏ1 = y3, ẏ2 = y4, ẏ3 = Γ2

(
1

y1

− 1

y2

)
, ẏ4 = −Γ2

(
1

y1

− 1

y2

)
. (2.5.11)

The critical points of the system (2.5.11) are: y1 = y2 = k, y3 = 0, y4 = 0,

where 0 < k < l. If we choose k = l/2 (the choice of this k matches up the

initial conditions in our previous simulations, however, k can be arbitrary and

it will only change the frequency) then the critical point is y∗ = (l/2, l/2, 0, 0).
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Figure 2.17: x1, x2 when L5 = 3200 m.

The Jacobian matrix then becomes

J
∣∣
y∗

=




0 0 1 0

0 0 0 1

−4Γ2

l2
4Γ2

l2
0 0

4Γ2

l2
−4Γ2

l2
0 0




(2.5.12)

where
4Γ2

l2
=

2εp0

ρl
.

with eigenvalues of

λi = 0, 0,±2i

√
εp0

ρl
. (2.5.13)

In the next part, we will verify that the angular frequency of natural oscillations

corresponding to the geometry of the closed pumping loop can be approximated

as 2
√
εp0/ρl. This corresponds to our previous observation that the period of

natural oscillation is proportional to
√
L5.
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2.5.2 Natural Frequency

In this section, we solve the equations in situations 1 and 2 separately, so that

one of the valves is always open and the other valve is always closed. Figure

2.18 shows the numerical solution of (2.5.1)-(2.5.3) (valve 1 is always open,

valve 2 is always closed) with the initial conditions in Table 2.3. Figure 2.19

shows the numerical solution of (2.5.4)-(2.5.6) (valve 1 is always closed, valve

2 is always open) with the same initial conditions. We can see the symmetry

between both cases, i.e., the case where valve 1 is open and valve 2 is closed

is a mirror image of the case where valve is 1 closed and valve is 2 open.

From (2.5.13), we know that the approximated angular frequency for nat-

ural oscillation is

ωapprox = 2

√
εp0

ρl
= 2

√
1.013× 105

200× 103 × 1.31
rad/sec ≈ 1.4236 rad/sec.

And by measuring the distance between similar crests (or troughs) of x2 for

example, in Figure 2.18, we get the angular frequency is 1.4047 rad/sec.

If we change L5 to 800 m, we can see from Figure 2.20 that the frequency

is lowered by 1/2. The approximated angular frequency is

ωapprox = 2

√
εp0

ρl
= 2

√
1.013× 105

800× 103 × 1.31
rad/sec ≈ 0.7118 rad/sec.

and the measured frequency is 0.7229 rad/sec.

2.5.3 Switching Valves

In the previous section, we solved (2.5.1)-(2.5.3) and (2.5.4)-(2.5.6) separately

without switching valves and found out the natural frequency is close to our

prediction with the linearized model. Now we present some results for switch-

ing between both cases.

Instead of using the conditions in Table 2.1 and 2.2, we only switch between

situations 1 and 2 and do not allow both valves to be open or both to be closed.
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Figure 2.18: Solution for system (2.5.1)-(2.5.3), L5 = 200 m. Valve 1 is always
open and valve 2 is always closed.

Thus, we assume valve 1 is open and valve 2 is closed during the upward stroke

and vice versa. Initial conditions are the same as in Table 2.3. We also assume

xi ∈ C1, i = 1, ..., 5, i.e., the displacement and velocities are all continuous. So

that we can use the last numerical value of the solution in the previous case

as an initial condition to the next case.

Figure 2.21 shows the solution for L5 = 200 m. The measured angular

frequency in this case is 1.4380 rad/sec (ωapprox = 1.4236 rad/sec). Figure

2.22 shows the solution for L5 = 800 m and the observed angular frequency is

0.7649 rad/sec (ωapprox = 0.7118 rad/sec).

Now we compare Figure 2.21 with Figure 2.10 and Figure 2.22 with Figure

2.14. We can see that the initial phase of x1 and x2 in 2.10 is resembled in

Figure 2.21. Similarly, the initial phase of x1 and x2 in Figure 2.14 is resembled

in Figure 2.22.
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Figure 2.19: Solution for system (2.5.4)-(2.5.6), L5 = 200 m. Valve 1 is always
closed and valve 2 is always open.

Description Symbol Value Units

Height of air tank 1 L1 1.310 m
Height of air tank 2 L2 1.310 m
Length of pipe L3 L3 0.338 m
Length of pipe L4 L4 0.338 m
Radius of the pipes Rp 0.051 m
Angular frequency of the crank ω 4.398 rad/sec
Maximum stroke length x0 0.133 m
Pressure needed to overcome the inertia of the
valve

∆p 2.187× 104 Pa

Initial pressure in air tank 1 p10 1.013× 105 Pa
Initial pressure in air tank 2 p20 1.013× 105 Pa
Initial position of the air/liquid interface in air
tank 1

x10 0.655 m

Initial position of the air/liquid interface in air
tank 2

x20 0.655 m

Initial flow velocity in air tank 1 v10 0 m/s
Initial flow velocity in air tank 2 v20 0 m/s
Initial flow velocity at valve 1 v30 0 m/s
Initial flow velocity at valve 2 v40 0 m/s
Initial flow velocity in L5 v50 0 m/s

Table 2.3: System Dimensions for Model PE-61A Plunger Pumps and initial
conditions.
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Figure 2.20: Solution for system (2.5.1)-(2.5.3), L5 = 800 m. Valve 1 is always
open and valve 2 is always closed.
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Figure 2.21: Solution for (2.5.1)-(2.5.3) and (2.5.4)-(2.5.6) with switching
valves at the top and bottom of each stroke, L5 = 200 m.
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Figure 2.22: Solution for (2.5.1)-(2.5.3) and (2.5.4)-(2.5.6) with switching
valves at the top and bottom of each stroke, L5 = 800 m.
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Chapter 3

Modelling the Valve Motion

The one-dimensional flow model from the previous chapter provides an overview

of the flow under plunger motion within a closed circulation. However, the

valves were assumed either fully open or completely closed and the motion of

the valve are not resolved. In this chapter, we provide a refinement of the one-

dimensional model by studying the motion of the valves. Instead of modeling

with a closed loop, we use fixed pressure values at the discharge valve outlet (or

suction valve inlet). Simulation results show that as we increase the frequency

of the rotating crank (pump faster), the natural maximum displacement of the

valve also increases. This explains the potential cause of the clicking noise as

the valve hits the boundary.

3.1 How Do the Valves Move?

As mentioned in the introductory chapter, the valves are spherical and made

of iron. While the valve is closed, it sits on a circular ring and seals the flow

path, shown with a dashed circle in Figure 3.1. As the valve opens, fluid flows

through the valve by going around the ball. Both suction and discharge valves

have the same geometry.

To begin with modelling the valve motion, we first consider the simple case

where the ball valve can only move vertically up or down. It is also assumed
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inlet

outlet

the ball valve

circular ring

Figure 3.1: A cross-sectional view of the valve region.

x

rv

ro

√
r2v − r2o

the ball valve

d
d− rv

Figure 3.2: The geometry of the valve model.

that the circular ring of the valve seat has the same radius as the inlet pipe.

Figure 3.2 shows the geometry of our valve model. The distance the valve

travels from the original closed position is denoted by x, 0 ≤ x ≤ xmax, where

xmax is the maximum distance that the valve is allowed to travel. The radius

of the valve and the radius of the pipe are rv and ro respectively and d denotes

the distance from the center of the valve to the corner of the pipe edge. A

basic geometrical argument gives

d =

√(√
r2
v − r2

o + x
)2

+ r2
o. (3.1.1)
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discharge valve
plunger

p

p

pout

Figure 3.3: The case in which the suction valve is shut.

In order to understand how the valves are popped open and move up or

down, let us begin with the case where the suction valve is shut and the

plunger is pushing downwards from the top of the stroke. In this case, only

the discharge valve is allowed to move. This situation is illustrated in Figure

3.3. The pressure underneath the plunger is denoted by p and it is assumed to

be uniform everywhere in the plunger cylinder and below the ball valve. The

pressure at the discharge valve outlet is denoted by pout and it is assumed to

be a fixed constant in our model.

3.2 The Equations of Motion

3.2.1 Forces Acting on the Valve

We will discuss the forces acting on the discharge valve to determine the equa-

tions of valve motion. We assume that the ball valve is always fully immersed

in the fluid, thus it experiences both gravitational and buoyant forces, denoted

Fg and Fb respectively and

~Fg = −mvgêx,

~Fb = mfgêx,

where mv is the mass of the valve, mf is the mass of the fluid occupied by the

same volume as the valve, g is the acceleration due to gravity, and êx is the
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Chapter 3. Modelling the Valve Motion

unit vector along the x-axis.

To simplify the effects of fluid pressure on the valve, we assume that the

pressures underneath the valve is uniform everywhere and they act on a surface

area of πd2
v/4, where dv is the diameter of the valve. Similarly for the pressures

at the top of the valve. So,

~Fbelow = p
πd2

v

4
êx,

~Fout = −pout
πd2

v

4
êx.

As the valve is in motion, there is also a drag force acting on it to oppose

the motion. We assume that the motion of the valve is slow enough so that

the drag force is linearly proportional to the relative velocity of the valve to

the fluid. Thus,

~Fdrag = −γ (ẋ− vf ) êx,

where γ is a constant drag coefficient and vf is the velocity of the fluid at the

valve.

We sum all the above forces with account of directions and use the Newton’s

second law to obtain

mvẍ =
πd2

v

4
(p− pout)− (mv −mf ) g − γ (ẋ− vf ) ,

for 0 ≤ x ≤ xmax. If we let v = ẋ, then

dx

dt
= v, (3.2.1)

dv

dt
=
πd2

v

4mv

(p− pout)− g
(

1− mf

mv

)
− γ

mv

(v − vf ) . (3.2.2)

If p is constant, then (3.2.1) and (3.2.2) can be solved exactly with ap-

propriate initial conditions. However, the pressure in the plunger cylinder is

related to the motion of the plunger and it is time dependent. So next we will

discuss how the pressure varies in the plunger cylinder.
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3.2. The Equations of Motion

3.2.2 Pressure Variations in the Plunger Cylinder

We assumed the fluid is incompressible in the previous chapter since liquid wa-

ter is effectively incompressible. However, the liquid in the pump can contain

air bubbles. So the fluid can be considered as compressible although the com-

pression is very small. We can use this compressibility to derive a differential

equation for the pressure.

The process of liquid discharge can be represented by the volumetric bal-

ance of the fluid (Lyashkov, 1972). The amount of liquid being pushed by the

plunger minus the amount of liquid being compressed must be equal to the

amount of liquid going out of the valve, if we assumed there is no leakage and

the temperature prevents a change of phase. Thus we have

dVp + dVc = dVv, (3.2.3)

where dVp is the change in volume of the liquid under the plunger during

downward plunger movement for an element of time dt, dVc is the change in

volume due to liquid compressibility during the same dt, and dVv is the volume

of liquid flowing through the discharge valve during the time dt.

The first term in (3.2.3) is given by

dVp =
πd2

p

4
vpdt, (3.2.4)

where dp is the diameter of the plunger cylinder, vp is the velocity of the

plunger and

vp = −ωx0 sin(ωt),

where ω is the angular frequency of the rotating crank and x0 is the maximum

stroke length. The negative sign on the right-hand side of the above equation

is to ensure that vp is positive as the plunger is moving downwards.

The process of the downward stroke can be assumed adiabatic (no change
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dBdA
vA vB

A B

pA pB

Figure 3.4: The flow in a pipe going through an orifice.

in heat in the liquid) so that

dVc = −βsV dp, (3.2.5)

where βs is the adiabatic compression coefficient, defined as the relative change

of volume with pressure at constant entropy. The volume V can be calculated

as

V = V0 +
πd2

p

4
x0 cosωt,

where V0 is the fluid volume in the plunger cylinder when the plunger is at the

center of the downward stroke.

In order to derive the last term in (3.2.3), let us first consider the pipe flow

with an orifice (Çengel and Cimbala, 2006), shown in Figure 3.4. The orifice

is located at B and point A is a location before the orifice. dA and dB denote

the diameter of the cross-sectional area at point A and B respectively. The

velocities at A and B are denoted by vA and vB. Similarly, pA and pB denote

the pressures. From the conservation of mass, we have

πd2
A

4
vA =

πd2
B

4
vB

so that

vA =
d2
B

d2
A

vB. (3.2.6)

We assume that the flow in the pipe is steady, incompressible and frictionless.
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Recalling the Bernoulli’s Equation derived in the Appendix, we have

1

2
v2
A +

pA
ρ

=
1

2
v2
B +

pB
ρ
. (3.2.7)

Substituting (3.2.6) into (3.2.7) and rearranging, we get

vB =

√
2 (pA − pB)

ρ (1− β4)
,

where β = dB/dA, provided pA ≥ pB. If dB/dA is small, vB can be approxi-

mated as

vB =

√
2

ρ
(pA − pB).

So we see that the velocity at the orifice is proportional to the square root of

the pressure difference between A and B. Taking account of the pressure losses

due to frictional effects, we introduce a correction factor, called the discharge

coefficient, denoted by µ. Thus,

vB = µ

√
2

ρ
(pA − pB)

where 0 ≤ µ ≤ 1 and the volumetric flow rate is given by

V̇B =
πd2

B

4
µ

√
2

ρ
(pA − pB). (3.2.8)

We can use the above idea to derive the expression for Vv, the volume of

liquid flowing through the discharge valve. In reality, the flow is unlikely to be

steady. However, as we solve the equations numerically, we can still assume

the flow to be steady within each time interval so that Bernoulli’s equation

for steady flow can be applied. The compressibility is also very small and the

frictional effect is negligible. Thus, we obtain an expression for dVv which is
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comparable to (3.2.8):

dVv = fvµ

√
2

ρ
(p− pout)dt, (3.2.9)

where fv ' 2πro (d− rv) is the cross-sectional area of the orifice for the valve

and d is given by (3.1.1).

Substituting (3.2.4), (3.2.5) and (3.2.9) back into (3.2.3) and re-arranging,

we get

dp

dt
=

1

βsV (t)

[
πd2

p

4
vp(t)− fv(x)µ

√
2

ρ
(p− pout)

]
, (3.2.10)

where

V (t) = V0 +
πd2

p

4
x0 cosωt, (3.2.11)

vp(t) = −ωx0 sinωt, (3.2.12)

fv(x) = 2πro

(√(√
r2
v − r2

o + x
)2

+ r2
o − rv

)
. (3.2.13)

Notice that while the valve is closed, the second term on the right-hand side

of (3.2.10) is zero.

3.3 Numerical Simulation

From the previous section, we would like to solve the following system of

equations numerically:

dx

dt
= v, (3.3.1)

dv

dt
=
πd2

v

4mv

(p− pout)− g
(

1− mf

mv

)
− γ

mv

(v − vf ) , (3.3.2)

dp

dt
=

1

βsV (t)

[
πd2

p

4
vp(t)− fv(x)µ

√
2

ρ
(p− pout)

]
, (3.3.3)
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where V (t), vp(t) and fv(x) are given in (3.2.11)-(3.2.13). By assuming the

discharge valve is closed at the beginning, we also have the initial conditions:

x(0) = 0, v(0) = 0, p(0) = p0, (3.3.4)

where p0 < pout.

We also need more considerations about the position of x. While the valve

is closed, x = 0. If the valve is accelerating downwards, then it stays at the

zero position since it is stuck on the ring seat. If the valve hits the maximum

position and it is accelerating upwards, it cannot go beyond xmax but bounces

back from the boundary in the opposite direction.

With the above considerations, we will present below the algorithm to solve

the system (3.3.1)-(3.3.3) with the initial conditions (3.3.4).

3.3.1 The Algorithm

Divide the time interval [0, tend] into N equal subintervals with the size ∆t,

i.e.,

t(i+1) = t(i) + ∆t

where i = 0, ..., N − 1. At t = 0, initial values are given for the pressure

p(0) = p0, the position of the valve x(0) = 0, and the velocity of the valve

v(0) = 0. For t = t(0), ..., t(N−1):

Step 1: Update x, v and p using a Euler’s scheme, for example,

x(i+1) = x(i) + ∆t v(i), (3.3.5)

v(i+1) = v(i) + ∆t

[
πd2

v

4mv

(
p(i) − pout

)
− g

(
1− mf

mv

)
− γ

mv

(v(i) − vf )
]
.

(3.3.6)

p(i+1) = p(i) + ∆t
1

βsV (t(i))

[
πd2

p

4
vp(t

(i))− fv(x(i))µ

√
2

ρ
(p(i) − pout)

]
. (3.3.7)
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Step 2: Re-calculate x(i+1) if it is out of range. We denote the terms in the

square bracket in the right-hand side of (3.3.6) by v̇(i) and re-calculate x(i+1)

by the following conditions:

If x(i+1) < 0:

Set x(i+1) = 0, and if v̇(i) < 0, set v(i+1) = 0.

If x(i+1) > xmax:

Find ∆t1 where x(i) + v(i)∆t1 = xmax. Next, set v(i+1) = −v(i). Then

x(i+1) = xmax + v(i+1)(∆t−∆t1).

Step 3: Set t(i+1) = t(i) + ∆t.

3.3.2 Parameters and Small Time Steps

The values of parameters and initial conditions are given in Table 3.1. The

drag coefficient, discharge coefficient, and the fluid velocity at the valve are

chosen to be fixed constants for simplicity.

The adiabatic compression coefficient of water at 20◦C and 0.1MPa is

βs = 4.5594 × 10−10 ms2/kg. This small number introduces difficulties for

our numerical algorithm and small time steps are required to ensure stability.

3.4 Results

A program in Matlab is coded for our simulation. We give explanations for

the numerical results, as well as examine the local behavior while the valve is

opening. At the end, we show that as we increase the angular frequency ω of the

crank, the natural maximum displacement of the valve also increases. As the

natural maximum displacement exceeds the maximum displacement allowed,

the ball valve hits the boundary. This explains potentially the clicking noise

as the power of the plunger pump is increased.
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Figure 3.5: Solution of equations (3.3.1) to (3.3.3) with initial conditions
(3.3.4), ω = 7π

5
rad/sec.

3.4.1 Pressure Peaks and Valve Opening

Figure 3.5 and 3.6 show a typical simulation for a complete downward stroke

(tend = π) with ω = 7π/5 rad/sec (the maximum designed frequency of the

pump). We can see in Figure 3.5, as the plunger is moving downwards, the

valve is popped open, reaches a maximum displacement about 0.04 m and then

comes back, as shown in the top left graph of x. Figure 3.6 shows the local

behavior of the solution just after t = 0. The horizontal line in the pressure

graph indicates the valve outlet pressure and the curve is the pressure inside

the plunger cylinder. We can see that initially p0 < pout and the valve is closed.

As the plunger is pushing downwards, the pressure in the cylinder builds up

and then pops the valve open as the acceleration of the valve changes from

negative to positive.

There are two peaks in the pressure graph. The first pressure peak is at the

beginning of the stroke and it is related to the opening of the valve as shown

in Figure 3.6. The second peak is at the end of the downward stroke while the

valve is trying to close.
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Figure 3.6: Local behavior of the solution just after t = 0, ω = 7π
5

rad/sec.

3.4.2 Variation of ω and Impact of the Valve

Numerical experiments show that the natural maximum displacement of the

valve increases as the angular frequency of the crank ω increases. Figures 3.7 to

3.14 show the solutions for ω = 4π/5, π, 6π/5, and 8π/5 rad/sec. We can see

that the maximum value of x increases as ω increases. At ω = 8π/5, the natural

maximum displacement exceeds xmax and the valve hits the boundary and

bounces back. This mechanism may explain the clicking noise when the pump

is operated under higher resistance. By looking at the dominant effects in

(3.3.1)-(3.3.3), we see that increasing ω and keeping γ constant is effectively the

same as increasing γ and keeping ω constant. Thus, increasing the frequency

of the pump gives a higher resistance in the system.
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Figure 3.7: Solution of equations (3.3.1) to (3.3.3) with initial conditions
(3.3.4), ω = 4π

5
rad/sec.

Description Symbol Value Units

Average liquid volume in the plunger
cylinder

V0 0.0055 m3

Maximum stroke length x0 0.1334 m
Diameter of the plunger cylinder dp 0.2000 m
Adiabatic compression coefficient βs 4.5594× 10−10 ms2/kg
Radius of the pipes ro 0.0508 m
Radius of the valve rv 0.0631 m
Mass of the valve mv 8.2823 kg
Drag coefficient γ 0.0100 kg/s
Discharge coefficient µ 0.7000 dimensionless
Fluid velocity at the valve vf 0.2000 m/s
Maximum displacement of the valve xmax 0.0500 m
Pressure at the discharge valve outlet pout 1.1146× 105 Pa
Initial pressure inside the plunger
cylinder

p0 1.0133× 105 Pa

Initial valve position x0 0 m
Initial valve velocity v0 0 m/s

Table 3.1: Parameters and initial conditions for simulating the valve motion.
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Figure 3.9: Solution of equations (3.3.1) to (3.3.3) with initial conditions
(3.3.4), ω = π rad/sec.
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Figure 3.10: Local behavior of the solution just after t = 0, ω = π rad/sec.
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Chapter 4

Future Work and Conclusions

4.1 Future Work

In the future, we would like to study the valve dynamics in a higher resolution,

especially by computer simulations. We can simulate the flow past the spher-

ical valve in the valve region, shown in Figure 4.1. Navier-Stokes equations

can be solved numerically for the fluid with appropriate boundary conditions

to ensure the fluid-solid interactions.

In order to achieve the goal of simulating the moving valve with the fluid,

we divide the work into two parts. First of all, we can study the flow across

a fixed valve at various positions. This will provide us some indications about

how the valve can be driven according to the flow. On the other hand, some

novel numerical techniques can be used to simulate the moving valve together

with the motion of the fluid. Immersed boundary method, for example, is

suitable for such fluid-structure interaction problems.

4.1.1 Flow across a Fixed Valve at Various Positions

For studying the flow across a fixed valve, we divide the computational domain

into the fluid domain and the obstacle domain. The Navier-Stokes equations

are only solved in the fluid domain. The no-slip conditions are then applied
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obstacle domain

obstacle domain

inflow

outflow

fluid domain

valve

Figure 4.1: Geometry of the valve region for fluid simulation.

to the boundary of the obstacle. Details of the numerical treatment of the

Navier-Stokes equations with complex geometries are presented in Appendix

B.

Some example simulations are shown within a simple geometry. We assume

a circular obstacle of radius 0.25 within a rectangular domain [0, 8]×[0, 1]. The

obstacle represents the valve and the rectangular domain a segment of the pipe

with inflow at x = 0 and outflow at x = 8. The obstacle is located at (0.5, 0.5)

to be close to the inflow boundary. The boundary conditions are given by

u =
Re

2
y(1− y), v = 0, on the lines x = 0 and x = 8,

u = 0, v = 0, on the lines y = 0 and y = 1,

and initial condition of u = v = 0 everywhere except at perhaps a boundary.

Figure 4.2 and Figure 4.3 show the velocity and pressure solution around

the circular obstacle for Re = 100 at t = 2.5. The flow is divided into two

streams at the obstacle and vortices can clearly be seen behind the circle.

The flow is eventually settled down at some length after the obstacle. Higher
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Figure 4.2: u and v-velocity around the obstacle for Re = 100 at t = 2.5 with
obstacle centered at (0.5, 0.5).

Reynolds number will create more disturbances downstream. In the real valve

geometry, the symmetry observed in Figures 4.2 and 4.3 will break down sinc

we will have a kinked pipe. We can simulate the flow patterns and obtain some

hints of where the valve will hit. If the flow direction has suddenly changed, the

ball valve may not be able to react as fast and be drifted to some non-preferred

locations.

4.1.2 Towards the Moving Valve with the Immersed

Boundary Method

The finite difference method that we described in Appendix B for simulating

the flow around the solid will likely lead to loss of accuracy near the bound-

ary, since the curved boundary is approximated onto the grid lines. Another

conventional approach to simulate the flow past a curved solid boundary is to

employ grids that conform to the body. However, body-fitted methods may

require high computational cost, especially in the case of a moving body (Mit-
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Figure 4.3: Velocity vector plot and pressure around the obstacle for Re = 100
at t = 2.5 with obstacle centered at (0.5, 0.5).

tal and Iaccarino, 2005). Here we introduce the immersed boundary method,

in order to handle simulations for a moving boundary with less computational

cost.

For simplicity, consider a problem of viscous incompressible fluid in a two-

dimensional square domain containing a massless immersed boundary in the

form of a simple closed curve Γ, shown in Figure 4.4. The configuration of Γ is

given in parametric form: ~X(s, t), where s is a variable that tracks a material

point of the immersed boundary, and t is the variable of time. The equations
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Γ : ~X(s, t)

Ω

Figure 4.4: A two-dimensional square fluid domain Ω with a massless immersed
boundary Γ.

of motion of the system are:

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ µ∇2~v + ρ~g + ~f, (4.1.1)

∇ · ~v = 0, (4.1.2)

~f(~x, t) =

∫

Γ

~F (s, t)δ(~x− ~X(s, t)) ds (4.1.3)

∂ ~X(s, t)

∂t
= ~v( ~X(s, t), t) =

∫

Ω

~v(~x, t)δ(~x− ~X(s, t)) d~x, (4.1.4)

~F (s, t) = ~S( ~X(·, t), t). (4.1.5)

Here ~x = (x, y), ~v = (u(~x, t), v(~x, t)) is the fluid velocity, p(~x, t) is the fluid

pressure, and ~g is the acceleration due to gravity. ρ and µ are constant fluid

density and dynamic viscosity. ~f is the force density (with respect to d~x)

acting on the fluid and ~F (s, t) is the boundary force density (with respect to

ds).

Expressions (4.1.1) and (4.1.2) are the Navier-Stokes equations and the

constraint for incompressibility whereas (4.1.3) and (4.1.4) describe the inter-

action between the immersed boundary and the fluid. In (4.1.3), the force

density is applied to the fluid by the immersed boundary, while in (4.1.4), the

immersed boundary is carried along with the fluid. Equation (4.1.5) states

that the boundary force on the particular segment at time t is determined by

the boundary configuration at time t. If the boundary is elastic, the function
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~S satisfies a generalized Hooke’s law. Since the boundary force ~F (s, t) is in-

tegrated with a two-dimensional Dirac delta function over a one-dimensional

curve Γ, the force density ~f(~x, t) is a one-dimensional singular Dirac delta

function.

For elastic boundaries, the forcing term (4.1.5) can be expressed explicitly.

However, for flow over a rigid boundary, there are some difficulties since the

boundary force ~F (s, t) is unknown. It must be applied to the fluid so that the

boundary condition (e.g. the no-slip condition) is satisfied. The interactions

between the fluid and the rigid body can be viewed as follows. When a fluid

flows over a body it exerts a force on the surface. Conversely, the surface exerts

a force of opposite sign on the fluid.

One straight forward method for the rigid boundaries is known as feedback

forcing. The rigid body is still considered to be elastic but extremely stiff and

the forcing term ~F is given as (Lai and Peskin, 2000)

~F (s, t) = κ( ~Xe(s)− ~X(s, t)), (4.1.6)

where κ is a positive constant such that κ � 1. We can interpret (4.1.6) as

if we connected the boundary points ~X to fixed equilibrium points ~Xe with

a very stiff spring. The solid boundary is allowed to move a little. If the

boundary points fall away from the desired places, the force on the spring will

pull these boundary points back.

The major drawback of the feedback forcing approach is that large negative

values of κ requires very small time steps to ensure stability and the flow

simulations can be extremely expensive. Alternative forcing approaches, such

as the direct forcing approach, have less limitations on the time steps (Mittal

and Iaccarino, 2005). Another advantage of the direct forcing approach is

that the calculation of the force field is viable when the interface is moving

or deforming. The computation of the Lagrangian force field is directly from

the momentum equation and all the Navier-Stoles terms are calculated over
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the Lagrangian points. However, a complicated interpolation scheme must be

employed (Lima E Silva et al., 2003).

Looking back to Figure 4.1, we are aiming to simulate the moving valve

in a complex geometry. We can use the strategy described in Appendix B

to deal with the curved boundaries of the pipe and the kinked domain. The

valve inside the fluid domain can be treated with the immersed boundary

method described above. As discussed above, the Navier-Stokes equations can

be solved together with a singular force on the boundary to describe the fluid-

solid interactions. The direct forcing approach, for example, can be used to

calculate the forcing term for the solid valve. The motion of the valve is not

known a prior, however, can be studied from the overall forces acting on the

valve at each time step. This could lead us to the simulation of a moving valve

driven by the fluid.

4.2 Conclusions

The one-dimensional flow model was designed and studied to understand the

plunger pump operation in general. The valve motion was then modeled by

taking care of the geometry of the valve. It has been found that the valve mo-

tion is related to the plunger speed and as the plunger speed is increased, the

valve hits the boundary more violently. This observation is consistent with the

clicking noise observed at high speed operation of the pump. For understand-

ing the flow around the valve in higher resolution, we studied the numerical

method for solving the Navier-Stokes equations. By introducing the immersed

boundary method, a methodology of simulating solid-fluid interactions is pre-

sented.

The one-dimensional model calculates the flow velocities and pressures at

the air tanks, the valves, and underneath the plunger. Since the model was

designed with a closed loop, the natural frequencies of the solution are found

to be dependent on the length of the outer circular pipe. Another important
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observation is the pressure jumps at opening and closing the valves. The first

model does not take into account the valve motion.

To understand the valve motion and the pressure jumps at opening and

closing the valve, the geometry of the valve is considered in detail. Simulation

results show that as the frequency of the rotating crank is increased, the natural

displacement of the valve also increases. Since increasing frequency of the

pump is effectively the same as increasing the resistance of the system, this

means that as we increase the resistance, the valve is likely to hit the boundary

and causing some noise, as observed by the manufacturers.

In the future, we would like to study the valve motion in a higher resolution.

Flow patterns around a circular obstacle has been shown in a rectangular

geometry. By extending this methodology to a complex geometry, we can

simulate the flow across a fixed valve at various positions. This will allow us

to predict how the valve can be driven with the fluid. Next, the immersed

boundary method is introduced to provide a methodology for simulating the

moving valve. The rigid boundary poses some difficulties at computing the

forcing term at the boundary, however, forcing approaches such as the direct

forcing method can be employed. At the end, we provide a plan for future

simulation of the moving valve.
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Appendix A

Derivation of the Navier-Stokes

Equations

Since this thesis is based on the theory of fluid dynamics, we shall provide

some background in this Appendix. We start from the continuity equation

and deduce that the velocity field for incompressible flows is divergence free.

Euler’s equation then provides a tool for modelling inviscid flow which helps the

development of the first one-dimensional model. Bernoulli’s equation is used in

Chapter 3. By extending to viscous fluids, we provide the constitutive equation

(stress-strain rate relation) and hence derive the Navier-Stokes equations for

an incompressible viscous fluid.

A.1 The Equation of Continuity

Fluid dynamics is the study of the motion of fluids (liquids and gasses). The

phenomena considered in fluid dynamics are macroscopic, so a fluid is regarded

as a continuum. This means that any small volume element in the fluid is

always supposed so large that it contains a great number of molecules. The

physical quantities associated with the fluid within a given small volume will

be regarded as being spread uniformly over that volume (Batchelor, 1970).

The mathematical description of the state of a moving fluid is determined
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by the fluid velocity ~v, the pressure p and the density ρ. If we are in a three-

dimensional cartesian coordinate system, these quantities are functions of the

coordinates x, y, z and of the time t.

Let us derive some fundamental equations of fluid dynamics (Landau and

Lifshitz, 1987). We begin with the equation which expresses the conservation

of matter. Consider some volume V0 of space. The mass of fluid in this volume

is
∫
ρ dV , where the integral is taken over V0 and ρ is the fluid density. The

mass of fluid flowing in unit time through an area ds of the surface bounding

this volume is ρ(~v · n̂)ds, where n̂ is the unit normal pointing outward from

the volume (we put a hat on n instead of an arrow just to indicate it is a unit

vector). Then ρ(~v · n̂)ds is positive if the fluid is flowing out of the volume,

and negative if the flow is into the volume. The total mass of fluid flowing out

of the volume V0 in unit time is therefore

∮

∂V0

ρ~v · n̂ ds

where the integration is taken over the whole of the closed surface ∂V0 sur-

rounding the volume V0. On the other hand, the decrease per unit time in the

mass of fluid in the volume V0 is

− ∂

∂t

∫

V0

ρ dV.

Equating the above two expressions,

∂

∂t

∫

V0

ρ dV = −
∮

∂V0

ρ~v · n̂ ds = −
∫

V0

∇ · (ρ~v) dV (A.1.1)

by applying Green’s theorem. Thus,

∫ [
∂ρ

∂t
+∇ · (ρ~v)

]
dV = 0.

Since the above equation must hold for any volume, then provided the inte-
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grand is sufficiently regular, the integrand must vanish, i.e.,

∂ρ

∂t
+∇ · (ρ~v) = 0. (A.1.2)

This is known as the equation of continuity.

A.1.1 Divergence Free for Incompressible Flow

Incompressible flow means that the density within an infinitesimal volume

that moves with the velocity of the fluid is constant. We shall show that the

continuity equation is equivalent to the divergence free of the velocity field.

Since the vector identity

∇ · (ρ~v) = ρ∇ · ~v + ~v · ∇ρ,

the continuity equation (A.1.2) becomes

∂ρ

∂t
+ ρ∇ · ~v + ~v · ∇ρ = 0. (A.1.3)

For incompressible flow,

d

dt
ρ(x(t), y(t), z(t), t) =

∂ρ

∂t
+ ~v · ∇ρ = 0.

Therefore, the divergence of the fluid velocity must vanish for incompressible

flow:

∇ · ~v = 0. (A.1.4)
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A.2 Euler’s Equation

Consider some volume V0 in the fluid. The total force acting on this volume is

−
∮

∂V0

pn̂ ds

where p is the fluid pressure and the integral is taken over the surface bounding

the volume. Transforming it to a volume integral,

−
∮

∂V0

pn̂ ds = −
∫

V0

∇p dV.

Thus the fluid surrounding any volume element dV exerts on that element a

force −dV∇p, i.e., a force −∇p acts on unit volume of the fluid. The equation

of motion of a volume element in the fluid neglecting any external forces can

be written by equating the force −∇p to the product of the mass per unit

volume ρ and the acceleration d~v/dt:

ρ
d~v

dt
= −∇p. (A.2.1)

d~v/dt denotes the rate of change of the velocity of a given fluid particle as

it moves in space. We notice that the change d~v of the given fluid particle

during the time dt consists of two parts (Landau and Lifshitz, 1987). The first

part is the change during dt in the velocity at a point fixed in space, namely

(∂~v/∂t) dt. The second part is the difference between the velocities at the

same instance at two points d~r apart, namely d~r ·∇~v, where d~r is the distance

moved by the given fluid particle during the time dt. Thus,

d~v =

(
∂~v

∂t

)
dt+ d~r · ∇~v.

Dividing both sides by dt,

d~v

dt
=
∂~v

∂t
+ ~v · ∇~v.
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Substituting this in (A.2.1), we get

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p. (A.2.2)

This is the Euler’s equation and is one of the fundamental equations of fluid

dynamics.

If the fluid is in a gravitational field, an additional force ρ~g acts on any

unit volume, where ~g is the acceleration due to gravity. Thus (A.2.2) becomes

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p+ ~g. (A.2.3)

Note that in the above derivations, we have not taken into account of

internal friction (viscosity) in the fluid. The motions of fluids in which viscosity

are unimportant are said to be ideal. The one-dimensional model in Chapter

2 is derived based on the assumption of an ideal fluid.

A.3 Bernoulli’s Equation

In the case of steady flow, the equations of fluid dynamics are greatly simplified.

Steady flow means that the velocity is constant in time at any point in the

fluid. So ~v is a function of spatial coordinates only and ∂~v/∂t = 0. Thus

(A.2.2) becomes

~v · ∇~v = −1

ρ
∇p.

By using the vector identity

1

2
∇~v2 = ~v × (∇× ~v) + ~v · ∇~v,

we have

1

2
∇~v2 − ~v × (∇× ~v) = −1

ρ
∇p. (A.3.1)
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Let us now introduce the concept of streamlines. Streamlines are lines such

that the tangent to a streamline at any point gives the direction of the velocity

at that point. In steady flow the streamlines do not vary with time and coincide

with the paths of the fluid particles. We take the scalar product of (A.3.1) with

the unit vector tangent to the streamline at each point (Landau and Lifshitz,

1987). We denote this unit vector by l̂, so

1

2
∇~v2 · l̂ − ~v × (∇× ~v) · l̂ = −1

ρ
∇p · l̂.

Since the vector ~v× (∇×~v) is perpendicular to ~v, the second term on the left-

hand side is zero and thus, denoting the directional derivative in the direction

of l̂ as ∂/∂l̂,
∂

∂l̂

(
1

2
~v2

)
+

1

ρ

∂p

∂l̂
= 0.

Since the flow is incompressible, ρ is constant, and

∂

∂l̂

(
1

2
~v2 +

p

ρ

)
= 0.

Therefore,

1

2
~v2 +

p

ρ
= constant (A.3.2)

along a streamline. Equation (A.3.2) is the Bernoulli’s Equation. In general

the constant takes different values for different streamlines.

A.4 The Constitutive Equation

In any viscous flow, fluid layers move at different velocities and internal fric-

tions arise from the shear stresses between the layers. As the need of studying

viscous flow, we shall first derive the constitutive equation, which is a relation-

ship between the stress tensor and the rate-of-strain tensor. The constitutive

relation is then used to derive the Navier-Stokes equations in the next Section.
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Chapter A. Derivation of the Navier-Stokes Equations

Before digging into the technical details, let us first clarify some notations for

tensor calculus.

A.4.1 Notations (Heinbockel, 1996)

Index Notation

We can write vectors ~A = (A1, A2, A3), for example, in the index notation.

The quantities

Ai, i = 1, 2, 3

represents the components of the vector ~A. The symbol Ai refers to all of the

components of the vector ~A simultaneously.

The Kronecker Delta

The Kronecker delta δij is defined as

δij =





1, if i = j,

0, if i 6= j.

(A.4.1)

With i, j ranging over the values 1, 2, 3, it represents 9 quantities. It is a sec-

ond rank identity tensor, as we shall use later.

The Levi-Civita Symbol

In three-dimensions, the Levi-Civita or permutation symbol εijk is defined as

εijk =





1, if (i, j, k) is an even permutation of the integers (1, 2, 3),

−1, if (i, j, k) is an odd permutation of the integers (1, 2, 3),

0, otherwise.

(A.4.2)

A permutation of (1, 2, 3) is called even or odd depending on whether there is

an even or odd number of transpositions of the digits.
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The Summation Convention

The summation convention states that whenever there arises an expression

where there is an index which occurs twice on the same side of any equation,

it represents summation on these repeated indices. For example,

yk = akixi, i, k = 1, 2

represents the linear equations

y1 = a11x1 + a12x2,

y2 = a21x1 + a22x2.

With the notations above, we now continue our journey towards the constitu-

tive equation.

A.4.2 The Stress Tensor

It is possible to distinguish two kinds of forces which act on a fluid (Batchelor,

1970). The first kind of forces are called volume forces or body forces. Such

forces are capable of penetrating into the interior of the fluid, and act on all

elements of the fluid. Gravity is an example. The second kind of forces, which

only act on a thin layer adjacent to the boundary of the fluid element, are

called surface forces.

We define stress as the surface force per unit area, denoted by σ. We shall

determine the dependence of σ on the direction of the normal to the surface

element across which it acts. This will lead to the definition of stress tensor.

Let us consider a fluid element in the shape of a tetrahedron with volume

∆V , shown in Figure A.1 (Batchelor, 1970; Heinbockel, 1996). The three

orthogonal faces have areas ∆Ax, ∆Ay, ∆Az, and unit outward normals −x̂,

−ŷ, −ẑ. The inclined surface has area ∆A and unit outward normal n̂. Surface
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z

x

y

n̂

∆Ax

∆Az

∆Ay

Figure A.1: A tetrahedral fluid element.

forces act on the fluid in the tetrahedron across each of the four faces and their

sum is:

σn∆A+ σ−x∆Ax + σ−y∆Ay + σ−z∆Az,

where the subscript of σ denotes the unit outward normal of the surface which

the stress acts on. From the orthogonality of three of the faces, we have

∆Ax = (n̂ · x̂)∆A = nx∆A,

∆Ay = (n̂ · ŷ)∆A = ny∆A,

∆Az = (n̂ · ẑ)∆A = nz∆A,

where the subscript of n denotes the coordinate component of the vector n̂.

We also have from Newton’s third law,

σ−x = −σx,

and similarly for other stresses. Thus, the sum of the surface forces can be

written as

[σn − (nxσx + nyσy + nzσz)] ∆A, (A.4.3)

which is proportional to ∆A.
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The total body force on the fluid within the tetrahedron is proportional to

the volume ∆V . The mass of the fluid in the tetrahedron is also of order ∆V ,

provided the local density is finite. So the product of the mass and acceleration

of the fluid is of order ∆V , provided the local acceleration is finite. Thus if

the linear dimensions of the tetrahedron are approaching zero without change

of its shape, the last term of the equation

mass× acceleration = total body forces + total surfaces forces

approaches zero only as ∆A, whereas the first two terms approaches zero as

∆V , which is of smaller order than ∆A. The equation can only be satisfied if

the coefficient of ∆A in (A.4.3) vanishes identically. Thus,

σn = nxσx + nyσy + nzσz.

Writing the above equation in component form,

σnx = nxσxx + nyσyx + nzσzx,

σny = nxσxy + nyσyy + nzσzy,

σnz = nxσxz + nyσyz + nzσzz.

(A.4.4)

Instead of using x, y, z as subscripts, we can use digits 1, 2, 3 and the system

(A.4.4) can be written as

σnj = niσij, i, j = 1, 2, 3. (A.4.5)

Equation (A.4.5) is known as the Cauchy stress law and σij is the stress tensor

and it can be shown that it is symmetric. σij denotes the stress in the j-

component of the force per unit area exerted across a plane surface element

normal to the i-direction, shown in Figure A.2. The diagonal components σii

(no sum) are called the normal stresses and the other components are called
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σ33

σ32
σ31

σ13

σ12
σ11

σ22

σ23

σ21

z

y

x

Figure A.2: The stress tensor.

the tangential stresses.

A.4.3 The Rate-of-Strain Tensor

In the theory of elasticity, strain represents the deformation of a material. In

one-dimension, strain is defined as the change in length divided by the original

length. When a force is applied to a solid, strains arise. If the deformation is

small, stresses and strains are related by Hooke’s law. However in the theory

of fluid dynamics, the force exerted by one portion of fluid on a neighboring

portion is related with the rate of deformation of the fluid. Thus, we will

consider rate-of-strain instead of strain.

To introduce the rate-of-strain tensor, let us consider the differences of

velocities in space (Zhou et al., 2000). Let the velocity of a fluid at position

~x and time t be ~v(~x, t), and a simultaneous velocity at a neighboring position

~x+ δ~x be ~v(~x+ δ~x) + δ~v, where δ~x is small. For rectangular coordinates,

δvi = δxj
∂vi
∂xj

.

To see the geometrical character of the relative velocity δ~v, we split ∂vi/∂xj (a
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second-rank tensor) into parts which are symmetric and anti-symmetric, i.e.,

∂vi
∂xj

= eij + ξij, (A.4.6)

where

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (A.4.7)

ξij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
. (A.4.8)

Then, we can write

δvi = δv
(s)
i + δv

(a)
i ,

where

δv
(s)
i = δxjeij, δv

(a)
i = δxjξij.

The contribution δv
(s)
i represents a pure straining motion. eij is a symmetric

second rank tensor, known as the rate-of-strain tensor. Explicitly, if we let

~v = (u, v, w), then

eij =




∂u

∂x

1

2

(
∂u

∂y
+
∂v

∂x

)
1

2

(
∂u

∂z
+
∂w

∂x

)

1

2

(
∂v

∂x
+
∂u

∂y

)
∂v

∂y

1

2

(
∂v

∂z
+
∂w

∂y

)

1

2

(
∂w

∂x
+
∂u

∂z

)
1

2

(
∂w

∂y
+
∂v

∂z

)
∂w

∂z



. (A.4.9)

The diagonal components represent the rate of dilation in each direction

and the off-diagonal components represent the rate of angle changes due to

the deformation. To understand better the components of the rate-of-strain

tensor, let us consider a two-dimensional (three-dimensional analysis is similar)

rectangular element of fluid with dimensions ∆x and ∆y. Figure A.3 shows

the velocities of the fluid at each point A, B, C and D.

First, we assume that the only non-zero component of the tensor is ∂u/∂x.
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v + ∂v
∂y∆y

u + ∂u
∂y∆y

v + ∂v
∂x∆x

u + ∂u
∂x∆x

u + ∂u
∂x∆x + ∂u

∂y∆y

v + ∂v
∂x∆x + ∂v

∂y∆y

v

uA

D C

B
x

y

Figure A.3: An infinitesimal square element of fluid in 2D.

After some time ∆t, ABCD will become A′B′C ′D′, shown in Figure A.4. The

segment AB is stretched in the x-direction and its rate of strain per unit length

is (
u+

∂u

∂x
∆x

)
∆t− u∆t

∆x∆t
=
∂u

∂x
= e11.

Similar arguments can be carried out for all the diagonal components of the

tensor. Thus eii (no sum) represent the rates of dilation per unit length in the

i-directions.

It is interesting to relate the volumetric change of a fluid element with the

divergence of its velocity field. We extend the two-dimensional fluid element

ABCD to a cubic by adding a third dimension ∆z and the velocity at A

becomes ~v = (u, v, w). Then the rate of change of volume of the cubic element

is

(
∆x+

∂u

∂x
∆x∆t

)(
∆y +

∂v

∂y
∆y∆t

)(
∆z +

∂w

∂z
∆z∆t

)
−∆x∆y∆z

∆x∆y∆z∆t

≈ ∂u

∂x
+
∂v

∂y
+
∂v

∂z
= ∇ · ~v.

Therefore, a divergence free velocity field is equivalent to an incompressible

fluid flow.
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A

C

B

D

A′ B′

D′ C ′
v

u

v

u + ∂u
∂x∆x

u + ∂u
∂x∆x

v

v

ux

y

Figure A.4: Deformation of a fluid element due to dilation.

The geometrical meanings of the off-diagonal terms can be understood as

follows. We assume now the only non-zero terms are ∂u/∂y and ∂v/∂x. After

some short time ∆t, the rectangle ABCD will become A′B′C ′D′, shown in

Figure A.5. Since

α ≈ tanα =

∂v

∂x
∆x∆t

∆x
=
∂v

∂x
∆t,

β ≈ tan β =

∂u

∂y
∆y∆t

∆y
=
∂u

∂y
∆t,

we see that the rate of change of angle BAD is approximately

α + β

∆t
=

(
∂v

∂x
+
∂u

∂y

)
= 2e12 = 2e21.

Therefore, the quantity e12 or e21 (due to symmetry) represents the averaged

rate of change from a 45◦ angle due to the deformation. The other off-diagonal

components have similar representations.

For δv
(a)
i , we see that ξij is an anti-symmetrical tensor and can be written

as

ξij = −1

2
εijkωk,
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u+ ∂u
∂y∆y
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v

ux
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Figure A.5: Deformation of a fluid element due to angle change.

where

ω1 =
∂v3

∂x2

− ∂v2

∂x3

, ω2 =
∂v1

∂x3

− ∂v3

∂x1

, ω3 =
∂v2

∂x1

− ∂v1

∂x2

.

Thus,

δv
(a)
i = δxjξij = −1

2
εijkδxjωk,

which is the i-component of the vector 1
2
~ω × δ~x. So, δ~v(a) is the velocity

produced at position δ~x relative to a point about which there is a rigid-body

rotation with angular velocity 1
2
~ω.

A.4.4 The Relation between Stress Tensor and Rate-of-

Strain Tensor

If a fluid is at rest, only normal stresses are exerted, and the stress tensor has

the form

σij = −pδij, i, j = 1, 2, 3, (A.4.10)

where p is the hydrostatic pressure. For a fluid in motion, experiments show

that the shear stress components are not zero and so we assume a stress tensor
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v0
F

Area A

d

Figure A.6: The viscosity experiment.

having the form

σij = −pδij + τij, i, j = 1, 2, 3, (A.4.11)

where τij is called the viscous stress tensor.

When a fluid at rest is sheared, it begins to flow. Consider the experiment

involving a fluid moving between two parallel planes (Heinbockel, 1996), shown

in Figure A.6. Let d denote the distance between the two planes. Now keep

the lower surface fixed and move the upper surface with a constant velocity ~v0.

It is shown by experiment that the force F required to maintain the constant

velocity of the upper surface is related to the area of the upper surface A and

the ratio v0/d as

F

A
= µ

v0

d
. (A.4.12)

The constant µ is called the coefficient of viscosity. The result indicates that

the stress is proportional to the gradient of the velocity.

The above experiment with viscosity suggests that the viscous stress tensor

τij is proportional to the velocity gradient ∂vi/∂xj. So we write

τij = cijmp
∂vm
∂xp

, (A.4.13)

where cijmp is a proportionality constant and it is a forth rank tensor. We

shall restrict to fluids of isotropic structure, thus the viscous stress must be

independent of any reference frame. Hence we assume that cijmp is an isotropic
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tensor. From tensor analysis, an isotropic tensor has the basic form

cijmp = λδijδmp + µ(δimδjp + δipδjm) + ν(δimδjp − δipδjm) (A.4.14)

where λ, µ, ν are constants. From (A.4.11) we find that the viscous stress

tensor is symmetric since the stress tensor is symmetric, which means that

cijmp needs to be symmetric in the indices i and j. This requires that ν be

zero. Thus,

cijmp = λδijδmp + µ(δimδjp + δipδjm)

and (A.4.13) reduces to

τij = λδij
∂vp
∂xp

+ µ

(
∂vj
∂xi

+
∂vi
∂xj

)
. (A.4.15)

The coefficient µ is called the first coefficient of viscosity and λ is the second

coefficient of viscosity. In terms of the rate-of-strain tensor defined in (A.4.7),

equation (A.4.15) can be written as

τij = λδijekk + 2µeij. (A.4.16)

If we substitute (A.4.16) back into (A.4.11), we have

σij = −pδij + λδijekk + 2µeij. (A.4.17)

This is the relationship between the stress tensor and the rate-of-strain tensor,

known as the constitutive equation. For incompressible flow, ekk = 0, thus

σij = −pδij + 2µeij. (A.4.18)

Note that the viscous stress tensor is a linear function of the rate-of-strain

tensor. Such a fluid is called a Newtonian fluid. In cases where the viscous

stress tensor is a nonlinear function of the rate-of-strain tensor, the fluid is
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(
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∂z

dz

)
dxdy

(
σxx +

∂σxx
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Figure A.7: An infinitesimal cubic fluid element with surface stresses shown
in x-direction only.

called non-Newtonian.

A.5 The Navier-Stokes Equations

Let us now go back to the equations of motion of fluids. In order to obtain

the equations of motion of a viscous fluid, we need to include the additional

terms in the equation of motion of an ideal fluid as explained previously. The

equation of continuity is valid for both ideal and viscous fluids. However,

Euler’s equation requires modification (Landau and Lifshitz, 1987). First, let

us re-write the Euler’s equation (A.2.2) in the index notation,

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
. (A.5.1)

where vi are components of the velocity of the fluid, xi are components of the

cartesian coordinates.

Let us now consider the effects of stresses on a fluid particle and hence

derive the terms to be added to the Euler’s equation. Figure A.7 shows an

infinitesimal cubic fluid element in cartesian coordinates with surface forces
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shown in the x-direction only (White, 1986). The net surface force in the

x-direction is given by

dFx,surf =

[
∂

∂x
(σxx) +

∂

∂y
(σyx) +

∂

∂z
(σzx)

]
dxdydz. (A.5.2)

From (A.4.11), we notice that the stress tensor can be decomposed into two

parts, namely the viscous stresses and the hydrostatic pressure. So we can

rewrite (A.5.2) as

dFx,surf

dV
= −∂p

∂x
+

∂

∂x
(τxx) +

∂

∂y
(τyx) +

∂

∂z
(τzx)

where dV = dxdydz. Similarly,

dFy,surf

dV
= −∂p

∂y
+

∂

∂x
(τxy) +

∂

∂y
(τyy) +

∂

∂z
(τzy) ,

dFz,surf

dV
= −∂p

∂z
+

∂

∂x
(τxz) +

∂

∂y
(τyz) +

∂

∂z
(τzz) .

Collectively, we have

d~Fsurf

dV
= −∇p+∇ · τij (A.5.3)

where

τij =




τxx τyx τzx

τxy τyy τzy

τxz τyz τzz


 .

The term −∇p in (A.5.3) is already included in the Euler’s equation, so the

equations of motion of a viscous fluid can now be obtained by adding the

expression ∂τij/∂xj to the right-hand side of Euler’s equation (A.5.1). By

comparing (A.4.11) with (A.4.18) and using the definition of the rate-of-strain
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tensor (A.4.7), we get

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
. (A.5.4)

Thus,

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂vi
∂xj

+
∂vj
∂xi

)]
. (A.5.5)

In general, the viscosity coefficients do not change much in the fluid, and they

can be treated as a constant. By using the incompressibility constraint, we

then have equation (A.5.5), in vector form, as

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p+ µ∇2~v (A.5.6)

where ρ is the density of fluid, ~v is the fluid velocity, p is the fluid pressure and

µ is called the dynamic viscosity. Expression (A.5.6) is called the Navier-Stokes

equations. Introducing the kinematic viscosity by the ratio

ν =
µ

ρ
, (A.5.7)

we can also write the Navier-Stokes equations as

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p+ ν∇2~v. (A.5.8)

If the fluid is in a gravitational field and ~g is the acceleration due to gravity,

then

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p+ ν∇2~v + ~g. (A.5.9)
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Appendix B

Numerical Treatment for the

Navier-Stokes Equations

A finite-difference scheme is presented for solving the Navier-Stokes equations

for incompressible flow in this appendix. The algorithm comes from the pro-

jection method (Chorin, 1968) which consists of two stages. First, for each

time step, an intermediate velocity that does not satisfy the incompressibility

constraint is computed. Then the pressure Poisson equation is solved to ensure

the divergence-free condition is satisfied and used to update the velocity field

for the next time step.

B.1 The Initial-Boundary Value Problem

B.1.1 The Two-dimensional Navier-Stokes Equations

Let us begin with the mathematical description of flows. Consider the flow of

a fluid in a region Ω ⊂ RN (e.g. N = 2, 3) throughout time t ∈ [0, tend]. The
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flow is characterized by the following:

~v : Ω× [0, tend]→ RN velocity field,

p : Ω× [0, tend]→ R pressure,

ρ : Ω× [0, tend]→ R density.

The equations of motion of an incompressible fluid in their non-dimensional

form are

∂~v

∂t
+ ~v · ∇~v = −∇p+

1

Re
∇2~v + ~g, (B.1.1)

∇ · ~v = 0, (B.1.2)

where Re = V L/ν is the Reynolds number.

For clarity, we begin by considering variables in a two-dimensional space.

Let ~x = (x, y)T, ~v = (u, v)T, ~g = (gx, gy)
T, where T denotes the transpose, the

momentum equations (B.1.1) can be written as

∂u

∂t
+
∂p

∂x
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
+ gx, (B.1.3)

∂v

∂t
+
∂p

∂y
=

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
− ∂(v2)

∂y
− ∂(uv)

∂x
+ gy, (B.1.4)

and the continuity equation (B.1.2) becomes

∂u

∂x
+
∂v

∂y
= 0. (B.1.5)

Note that in (B.1.3) and (B.1.4), the term ~v · ∇~v in equation (B.1.1) has been

rewritten using the continuity equation.
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B.1.2 Initial Conditions

For initial conditions, we impose at t = 0

u = u0(x, y) and v = v0(x, y) (B.1.6)

such that the continuity equation (B.1.5) is satisfied.

B.1.3 Boundary Conditions

To formulate the boundary conditions for the velocities, let vn denote the com-

ponent of velocity orthogonal to the boundary, vt the component of velocity

parallel to the boundary, and ∂vn/∂n, ∂vt/∂n their derivatives in the normal

direction. If the boundary segments of the domain are parallel to the coordi-

nate axes, then along the vertical boundary segments, we have

vn = u, vt = v,
∂vn
∂n

=
∂u

∂x
,

∂vt
∂n

=
∂v

∂x
,

and along the horizontal boundary segments,

vn = v, vt = u,
∂vn
∂n

=
∂v

∂y
,

∂vt
∂n

=
∂u

∂y
.

For points along the fixed boundary ∂Ω, we shall consider the following bound-

ary conditions (Griebel et al., 1998):

1. No-slip condition: No fluid penetrates the boundary and the fluid

is traveling at the same velocity as the boundary, for example, if the

boundary is at rest,

vn(x, y) = 0 and vt(x, y) = 0. (B.1.7)
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2. Inflow condition: Both velocity components are given, i.e.,

vn(x, y) = v0
n and vt(x, y) = v0

t (B.1.8)

where v0
n and v0

t are given data.

3. Outflow condition: Neither velocity component changes in the direc-

tion normal to the boundary, i.e.,

∂vn(x, y)

∂n
= 0 and

∂vt(x, y)

∂n
= 0. (B.1.9)

B.2 Discretization in Two-dimensions

The two-dimensional Navier-Stokes equations on smooth domains with smooth

Dirichlet boundary conditions (with the velocities rather than normal deriva-

tives of velocities specified along the boundary) has a unique solution for all

time (Ladyshenskaja, 1969). In general, the solution or solutions of the Navier-

Stokes equations cannot be calculated analytically. Instead, we shall describe

the numerical treatment of the unsteady incompressible Navier-Stokes equa-

tions, in particular the finite-difference method. We shall discuss the two-

dimensional case below.

B.2.1 Spatial Discretization on Staggered Grids

When solving the Navier-Stokes equations, the computational domain is often

discretized using a staggered grid (Harlow and Welch, 1965) to prevent possible

pressure oscillations which could have occurred if we had evaluated all variables

at the same grid points.

Suppose we have a rectangular region Ω = [a, b] × [c, d] ⊂ R2. Dividing

this domain into M cells of equal size in the x-direction and N cells in the
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p0,0
u0,0

v0,0

pM+1,0
uM+1,0

vM+1,N+1v0,N+1

p0,N+1 pM+1,N+1
uM+1,N+1

vM+1,0

boundary strip

boundary of domain

c

d

a b

u0,N+1

x

y

Figure B.1: Staggered grid arrangement with M = N = 3. The broad line is
the boundary of the physical domain.

y-direction, the grid lines are spaced at a distance

∆x =
b− a
M

and ∆y =
d− c
N

.

The staggered grid arrangement is shown in Figure B.1. The pressure p is

located at the cell centers, marked by the crosses; the velocity u is at the

midpoint of the vertical cell edges, marked by the squares; and the velocity

v is at the midpoints of the horizontal cell edges, marked by the circles. For

this arrangement, not all grid points lie on the domain boundary. An extra

boundary strip is needed, so that the boundary conditions can be applied by

averaging the nearest grid points on either side (Griebel et al., 1998).

The continuity equation (B.1.5) is discretized at the center of each cell

(i, j), i = 1, ...,M , j = 1, ..., N . We replace the partial derivatives ∂u/∂x and
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ui,j

ui,j+1

ui,j−1

vi,j vi+1,j

vi+1,j−1vi,j−1

ui,jui−1,j ui+1,j

Figure B.2: Values required to discretize ∂(uv)/∂y (left) and ∂(u2)/∂x (right)
of cell (i, j).

∂v/∂y by using the centered difference with half the mesh width:

[
∂u

∂x

]

i,j

=
ui,j − ui−1,j

∆x
, (B.2.1)

[
∂v

∂y

]

i,j

=
vi,j − vi,j−1

∆y
. (B.2.2)

The momentum equation (B.1.3) for u is discretized at the midpoints of

the vertical cell edges, i.e., on the grid points where ui,j’s are located while

the momentum equation (B.1.4) for v is discretized at vi,j grid points. For the

diffusive terms, we can use central differences with half the mesh width. How-

ever, for the convective terms ∂(u2)/∂x, ∂(uv)/∂y, ∂(v2)/∂y, and ∂(uv)/∂x,

we need some special treatments. For instance, in order to discretize ∂(uv)/∂y

at the midpoint of the right edge of cell (i, j) (black dot in Figure B.2), we need

suitable values of the product uv lying on the same vertical line as ui,j. One of

the ways to tackle this difficulty is to take the average of u and v taken at the

locations marked with an × in Figure B.2. Similarly, to discretize ∂(u2)/∂x,

we use a central difference with half the mesh width of values averaged at the

locations marked with a square in Figure B.2. Similarly for the convective

terms in (B.1.4) for v.

Thus, in equation (B.1.3) for u at the midpoint of the right edge of cell
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(i, j), i = 1, ...,M − 1, j = 1, ..., N , we have

[
∂(u2)

∂x

]

i,j

=
1

∆x

((
ui,j + ui+1,j

2

)2

−
(
ui−1,j + ui,j

2

)2
)
, (B.2.3)

[
∂(uv)

∂y

]

i,j

=
1

∆y

(vi,j + vi+1,j)(ui,j + ui,j+1)

4

− 1

∆y

(vi,j−1 + vi+1,j−1)(ui,j−1 + ui,j)

4
, (B.2.4)

[
∂2u

∂x2

]

i,j

=
ui+1,j − 2ui,j + ui−1,j

∆x2
, (B.2.5)

[
∂2u

∂y2

]

i,j

=
ui,j+1 − 2ui,j + ui,j−1

∆y2
, (B.2.6)

[
∂p

∂x

]

i,j

=
pi+1,j − pi,j

∆x
. (B.2.7)

Similarly in equation (B.1.4) for v at the midpoint of the upper edge of cell

(i, j), i = 1, ...,M , j = 1, ..., N − 1, we have

[
∂(v2)

∂y

]

i,j

=
1

∆y

((
vi,j + vi,j+1

2

)2

−
(
vi,j−1 + vi,j

2

)2
)
, (B.2.8)

[
∂(uv)

∂x

]

i,j

=
1

∆x

(ui,j + ui,j+1)(vi,j + vi+1,j)

4

− 1

∆x

(ui−1,j + ui−1,j+1)(vi−1,j + vi,j)

4
, (B.2.9)

[
∂2v

∂x2

]

i,j

=
vi+1,j − 2vi,j + vi−1,j

∆x2
, (B.2.10)

[
∂2v

∂y2

]

i,j

=
vi,j+1 − 2vi,j + vi,j−1

∆y2
, (B.2.11)

[
∂p

∂y

]

i,j

=
pi,j+1 − pi,j

∆y
. (B.2.12)

B.2.2 Boundary Conditions

Due to the staggered arrangement, not all the values lie on the boundary. Thus

for the boundary conditions of velocity components, we need (Griebel et al.,
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1998)

u0,j, uM,j, j = 1, ..., N, (B.2.13)

vi,0, vi,N , i = 1, ...,M, (B.2.14)

on the boundary and also the values

ui,0, ui,N+1, i = 1, ...,M, (B.2.15)

v0,j, vM+1,j, j = 1, ..., N, (B.2.16)

outside the domain Ω. We shall discuss the following type of boundary condi-

tions:

1. No-slip Condition

For a no-slip boundary condition with the boundary at rest, the contin-

uous velocities vanish at the boundary. For the values lying directly on

the boundary, we set

u0,j = 0, uM,j = 0, j = 1, ..., N, (B.2.17)

vi,0 = 0, vi,N = 0, i = 1, ...,M. (B.2.18)

Since the horizontal boundary contains no u-values and the vertical

boundary contains no v-values, the zero boundary condition is enforced

in these cases by averaging the values on either side of the boundary:

v0,j = −v1,j, vM+1,j = −vM,j, j = 1, ..., N, (B.2.19)

ui,0 = −ui,1, ui,N+1 = −ui,N , i = 1, ...,M. (B.2.20)

2. Inflow Conditions

On an inflow boundary, the velocities are explicitly given. We impose this

for the velocities normal to the boundary by directly fixing the values
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on the boundary line. For the velocity components tangential to the

boundary, we average the values on either side of the boundary such

that the average has the desired value on the boundary.

3. Outflow Conditions

For an outflow boundary condition, the normal derivatives of both ve-

locity components are set to zero at the boundary. This means that the

total velocity does not change in the direction normal to the boundary.

This can be achieved by setting velocity values at the boundary equal to

their neighboring velocities inside the domain, i.e., for j = 1, ..., N ,

u0,j = u1,j, uM,j = uM−1,j, (B.2.21)

v0,j = v1,j, vM+1,j = vM,j, (B.2.22)

and for i = 1, ...,M ,

ui,0 = ui,1, ui,N+1 = ui,N , (B.2.23)

vi,0 = vi,1, vi,N = vi,N−1, (B.2.24)

B.2.3 Temporal Discretization

To discretize the time derivatives ∂u/∂t and ∂v/∂t, we divide the time interval

into equal subintervals with size ∆t and use an Euler scheme to update the

time:

[
∂u

∂t

](n+1)

=
u(n+1) − u(n)

∆t
, (B.2.25)

[
∂v

∂t

](n+1)

=
v(n+1) − v(n)

∆t
, (B.2.26)

where the superscripts denote the time level.
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B.3 The Time-Stepping Algorithm

We begin at the initial time t = 0, with given initial velocities u and v, time

is incremented by ∆t at each step until the final time tend is reached. At time

step n, the values of all variables are known and they are used to compute the

variables for step n+ 1.

The idea of this time-stepping algorithm comes from Chorin’s projection

method (Chorin, 1968). The projection method is based on the Helmholtz de-

composition of any vector field into a curl-free part and a divergence-free part.

To understand the algorithm, let us first re-write the momentum equation

(B.1.1) as

∂~v

∂t
+∇p =

1

Re
∇2~v − ~v · ∇~v + ~g ≡ R. (B.3.1)

Taking the divergence on both sides of the above equation,

∇ ·
(
∂~v

∂t

)
+∇2p = ∇ · R. (B.3.2)

Since the velocity field is divergence free, the first term on the left hand side

vanishes, so we get

∇2p = ∇ · R ≡ ∇ ·
(

1

Re
∇2~v − ~v · ∇~v + ~g

)
. (B.3.3)

If we use the explicit Euler’s method to first update the velocity field to an

intermediate velocity ~v∗ such that it does not involve the pressure term, i.e.,

~v∗ = ~v(n) + ∆tR,

then

R =
~v∗ − ~v(n)

∆t
. (B.3.4)
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Substituting (B.3.4) back to equation (B.3.3), we get

∇2p =
1

∆t
∇ · ~v∗ − 1

∆t
∇ · ~v(n).

It is obvious that the second term of the right-hand side vanishes since ~v(n) is

divergence free. We are left with

∇2p =
1

∆t
∇ · ~v∗ (B.3.5)

known as the Pressure Poisson Equation that we need to solve with (B.3.3)

and (B.3.4). Once we have solved p, it is then used to update the velocity field

to the next time step by projecting ~v∗ back to the divergence free field, i.e.,

~v(n+1) = ~v∗ −∆t∇p. (B.3.6)

In (B.3.6), we used the Helmholtz decomposition of the vector field ~v∗, where

~v(n+1) is divergence free and ∇p is curl free since the curl of a gradient is always

zero.

B.3.1 The Algorithm

Using the spatial discretization in the previous section, the time-stepping loop

can be summarized as follows (Griebel et al., 1998; Chorin, 1968):

Step 1: Compute the intermediate velocities F (n) and G(n) (the right-hand

side of (B.3.3)), where

F (n) = u(n) + ∆t

[
1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂(u2)

∂x
− ∂(uv)

∂y
+ gx

]
, (B.3.7)

G(n) = v(n) + ∆t

[
1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
− ∂(v2)

∂y
− ∂(uv)

∂x
+ gy

]
. (B.3.8)
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Step 2: Solve the Poisson equation for p(n+1) (the left-hand side of (B.3.3)):

∂2p(n+1)

∂x2
+
∂2p(n+1)

∂y2
=

1

∆t

(
∂F (n)

∂x
+
∂G(n)

∂y

)
. (B.3.9)

Step 3: Compute the new velocity field with the pressure values p(n+1) com-

puted in step 2 (discrete version of (B.3.6)):

u(n+1) = F (n) −∆t
∂p(n+1)

∂x
, (B.3.10)

v(n+1) = G(n) −∆t
∂p(n+1)

∂y
. (B.3.11)

B.3.2 The Stability Conditions

In order to ensure stability of the numerical algorithm, we must impose the

following conditions on the stepsizes ∆x, ∆y, and ∆t (Tome and McKee, 1994):

2∆t

Re
<

(
1

∆x2
+

1

∆y2

)−1

, |umax|∆t < ∆x, |vmax|∆t < ∆y, (B.3.12)

where umax and vmax are the maximal absolute values of the velocities occurring

on the grid. The latter two are known as the Courant-Friedrichs-Lewy (CFL)

conditions. They impose that no fluid particle may travel a distance greater

than the mesh spacing ∆x or ∆y in time ∆t.

B.4 The Pressure Poisson Equation

In Step 2 of the time-stepping algorithm above, the pressure p(n+1) is com-

puted implicitly by solving a linear system of equations. The discrete Poisson

equation is given by

p
(n+1)
i+1,j − 2p

(n+1)
i,j + p

(n+1)
i−1,j

∆x2
+
p

(n+1)
i,j+1 − 2p

(n+1)
i,j + p

(n+1)
i,j−1

∆y2

=
1

∆t

(
F

(n)
i,j − F (n)

i−1,j

∆x
+
G

(n)
i,j −G(n)

i,j−1

∆y

)
, (B.4.1)
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for i = 1, ...,M , j = 1, ..., N .

B.4.1 Pressure Boundary Conditions

In (B.4.1), the following pressure boundary values are required:

p0,j, pM+1,j, j = 1, ..., N,

pi,0, pi,N+1, i = 1, ...,M.

Determining the pressure boundary conditions for open boundaries (e.g. inflow

and outflow) is still an open question. Many treatments can be found in

literature and they are problem dependent (Sani and Gresho, 1994). For closed

boundaries, Neumann pressure boundary conditions are often used (Gresho

and Sani, 1987). In particular, if no-slip condition is imposed for velocities at

the boundary, then the normal derivatives of the pressure also vanish at the

boundary. In this case,

p0,j = p1,j, pM+1,j = pM,j, j = 1, ..., N, (B.4.2)

pi,0 = pi,1, pi,N+1 = pi,N , i = 1, ...,M. (B.4.3)

B.4.2 Iterative Methods

From the pressure conditions (B.4.2) and (B.4.3), the discrete Poisson equation

for the pressure (B.4.1) may become (Griebel et al., 1998)

εEi

(
p

(n+1)
i+1,j − p(n+1)

i,j

)
− εWi

(
p

(n+1)
i,j − p(n+1)

i−1,j

)

∆x2

+
εNj

(
p

(n+1)
i,j+1 − p(n+1)

i,j

)
− εSj

(
p

(n+1)
i,j − p(n+1)

i,j−1

)

∆y2

=
1

∆t

(
F

(n)
i,j − F (n)

i−1,j

∆x
+
G

(n)
i,j −G(n)

i,j−1

∆y

)
, i = 1, ...,M, j = 1, ..., N, (B.4.4)
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where the ε’s ((W)est, (E)ast, (S)outh, (N)orth) are defined as

εWi =





0, if i = 1,

1, if i > 1,

εEi =





1, if i < M,

0, if i = M,

εSj =





0, if j = 1,

1, if j > 1,

εNj =





1, if j < N,

0, if j = N.

Equation (B.4.4) is a linear system of equations containing MN equations and

MN unknown pij’s to be solved numerically. Since the linear system above is

large and sparse, we would choose iterative methods rather than direct meth-

ods which would be too costly for computations. A few classical iterative

methods to solve a n × n linear system A~z = ~b are summarized as follows

(Burden and Faires, 2005):

The Jacobi Iterative Method

Given an initial guess of the solution z
(0)
i , where zi are components of the vec-

tor ~z and the superscript denotes the iteration number. We calculate each z
(k)
i

from the components of ~z(k−1) for k ≥ 1 by

z
(k)
i =

1

aii

(
n∑

j=1,j 6=i

(
−aijz(k−1)

j

)
+ bi

)
, i = 1, ..., n. (B.4.5)

The Gauss-Seidel Iterative Method

A possible improvement of the Jacobi iterative method is the Gauss-Seidel

method, given as

z
(k)
i =

1

aii

(
−

i−1∑

j=1

(
aijz

(k)
j

)
−

n∑

j=i+1

(
aijz

(k−1)
j

)
+ bi

)
, i = 1, ..., n. (B.4.6)

The Successive Over-Relaxation (SOR) Method
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The convergence of both the Jacobi and Gauss-Seidel methods are guaranteed

for any choice of the initial guess ~z(0) for strictly diagonally dominant matrix

A. To accelerate the convergence for systems that are convergent by the

Gauss-Seidel, we introduce the SOR method as:

z
(k)
i = (1− ω)z

(k−1)
j +

ω

aii

(
−

i−1∑

j=1

(
aijz

(k)
j

)
−

n∑

j=i+1

(
aijz

(k−1)
j

)
+ bi

)
,

(B.4.7)

i = 1, ..., n, where ω is a parameter such that 1 < ω < 2. Note that when

ω = 1, one recovers the Gauss-Seidel method.

Due to the sparsity of our pressure Poisson equation, any of the above

methods provides us a simple formula to update the pressure. For example,

the SOR method gives: for it = 1, ..., itmax, i = 1, ...,M , j = 1, ..., N ,

pit+1
i,j =(1− ω)pit

i,j +
ω(

εEi +εWi
∆x2

+
εNj +εSj

∆y2

)×

(
εEi p

it
i+1,j + εWi p

it+1
i−1,j

∆x2
+
εNj p

it
i,j+1 + εSj p

it+1
i,j−1

∆y2
− rhsi,j

)
(B.4.8)

where rhsi,j denotes the right-hand side of the equation (B.4.4). The iteration

terminates once a maximal number of iterations itmax has been achieved or

when the norm ‖pit+1− pit‖ has fallen within a given tolerance. The norm can

be chosen either as the discrete L2-norm

‖r‖2 =

(
1

MN

M∑

i=1

N∑

j=1

r2
i,j

)1/2

(B.4.9)

or the maximum norm

‖r‖∞ = max
{
|ri,j|

∣∣ i = 2, ...,M + 1, j = 2, ..., N + 1
}

(B.4.10)

where r = pit+1 − pit.
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A final remark is to note that the linear system for the pressure equation

(B.4.4) is singular, since the boundary values for the pressure have only Neu-

mann conditions. In our case for simulating the incompressible flow, we do not

need the actual pressure values, but rather the gradient of the pressure. Thus

one way to resolve this singularity is to assign the pressure values along the

boundary to their corresponding neighboring cells in the boundary strip prior

to each iteration. The ε’s in equation (B.4.4) become identical 1’s.

B.5 Flow in Complex Geometries

Below we present the treatment for flows in obstacle domains by extending the

ideas of rectangular domains explained above.

B.5.1 The Obstacle Domains

First we imbed the fluid domain Ω in a rectangular domain Φ. The cells

of Φ are then divided into fluid cells and obstacle cells. The Navier-Stokes

equations are solved only in the fluid cells. The artificial boundary strips are

also considered as obstacle cells. Furthermore, we denote those obstacle cells

which share an edge with at least one fluid cell as boundary cells. A domain Ω

that has an arbitrary curved boundary is approximated by a domain Ω̄ whose

boundary is specified by the set of boundary edges lying on grid lines. Figure

B.3 illustrates the fluid cells, obstacle cells and boundary cells in a rectangular

domain.

The set of boundary cells are further classified to determine the boundary

values. We classify the boundary cells into 8 different types by determining

which of the four adjacent cells are fluid cells. For example, we use the notation

BE to denote a boundary cell whose right (eastern) neighbor cell belongs to

Ω̄, or BNW to denote a boundary cell whose north and west cells belong to

Ω̄. Thus, BE, BW , BN and BS are edge cells whereas BNE, BNW , BSW and

BSE are corner cells. Boundary cells with two opposite or more than two
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Figure B.3: Fluid cells are shown in blue and boundary cells are shown in red.
Obstacle cells include red and green blocks.

neighboring fluid cells are not admissible.

B.5.2 Boundary Conditions for Obstacle Cells

For simplicity, we present the implementation of the boundary conditions using

the no-slip condition. Depending on the cell types, we use different formulas

for the boundary values. For an edge cell, for example a BE cell (i, j) (see

Figure B.4), we set

ui,j = 0, vi,j = −vi+1,j, vi,j−1 = −vi+1,j−1 (B.5.1)

for the velocity boundary values and the pressure condition is

pi,j = pi+1,j. (B.5.2)

For a corner cell BNE for instance (see Figure B.4), we have

vi,j = 0, ui,j = 0 (B.5.3)
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pi,j+1

pi+1,jpi,j

vi,j
ui,j

Obstacle

pi+1,jpi,j

vi,j
ui,j

Obstacle

vi+1,j

vi,j−1 vi+1,j−1

Corner Cell BNE Edge Cell BE

Figure B.4: Boundary conditions at obstacle boundary cells.

for velocities. For pressure, we use an average of the two adjacent values, i.e.,

pi,j =
1

2
(pi+1,j + pi,j+1). (B.5.4)
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Appendix C

The Numerical Scheme of the

Immersed Boundary Method

The immersed boundary (IB) method was originally developed by Peskin to

model blood flow in a human heart (Peskin, 1972). A regular Eulerian grid

is used for the fluid and a Lagrangian grid is used for the immersed bound-

ary. The boundary condition at the immersed boundary is modeled as forces

exerted by the immersed structure onto the fluid in the domain. Mathemati-

cally, it is a force distribution along the immersed boundary and the boundary

moves with the local fluid velocity. Thus the Navier-Stokes equations with a

complicated boundary condition are converted into a problem on a rectangular

region with singular forces. The essential idea of the IB method is that the

interaction between the fluid and the immersed boundary is connected through

the spreading of the singular force from the Lagrangian grid to the Eulerian

grid by using a discrete delta function (Lai and Peskin, 2000).

The immersed boundary method employs a mixture of Eulerian and La-

grangian variables so we need two distinct discretized grids. For instance, we

choose a fixed Cartesian mesh for the whole fluid domain and a curvilinear

mesh for the immersed boundary. Let the fluid domain Ω = [0, L] × [0, L].

For the Cartesian mesh, a staggered grid discretization can be used, as de-

scribed in Chapter 4. If we divide the domain into N cells in both directions,
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h = ∆x = ∆y = L/N is the mesh width. For the curvilinear mesh, we use

another set of K Lagrangian points ~X = (Xk, Yk) for k = 0, 1, ..., K − 1 to

discretize the immersed boundary with initial mesh width ∆s. Notice that the

Cartesian points are fixed and the boundary points are moving, and those two

sets of points generally do not coincide with each other.

A simple explicit version of the immersed boundary method is presented

below (Peskin and Printz, 1993; Lai and Peskin, 2000). At the beginning of the

time step, ( ~X(n)(s), ~v(n)(~x)) are given, and we need to update to ( ~X(n+1)(s),

~v(n+1)(~x)). The superscript is to denote the time step index.

Step 1: Compute the boundary force ~F (n)(s) and apply the force to the

fluid:

~F (n)(s) = ~S(n)( ~X(n)), (C.0.1)

~f (n)(~x) =
∑

s

~F (n)δh(~x− ~X(n)(s))∆s, (C.0.2)

where the two-dimensional discrete delta function is defined as

δh(~x) = φh(x)φh(y) (C.0.3)

and φh can be chosen as

φh(r) =





1

4h

(
1 + cos

πr

2h

)
|r| ≤ 2h,

0 otherwise.

(C.0.4)

Step 2: Use the finite-difference scheme described in Chapter 4, for exam-

ple, to solve the Navier-Stokes equations with the force term ~f (n)(~x) to update

the velocity field ~v(n+1)(~x).

Step 3: Interpolate the new velocity from the Cartesian grid to the bound-
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ary points, and move the boundary points to new positions ~X(n+1)(s):

~V (n+1)(s) =
∑

~x

~v(n+1)(~x)δh(~x− ~X(n)(s))h2, (C.0.5)

~X(n+1)(s) = ~X(n)(s) + ∆t~V (n+1)(s), (C.0.6)

where δh is the discrete delta function defined above.

Expression (C.0.4) is to ensure δh is a smooth approximation to the Dirac

delta function. There are other choices of φh (Peskin, 2002). Notice that φ

is continuous and has a compact support. Continuity of φ is to avoid sudden

jumps in the velocity and force as the immersed boundary moves through the

computational grid of the fluid. Bounded support of φ is to keep down the

computational cost of the algorithm.
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