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ABSTRACT 
	 	
	
Virtual simulations and serious games (video game-based technologies applied to 

teaching and learning) have been incorporated in the teaching and training curricula of a 

large number of professions including medicine/surgery.  Despite their benefits, there are 

open, fundamental issues regarding simulation quality, multi-modal cue interaction, and 

the resulting effect on visual quality perception and ultimately on knowledge transfer and 

retention.  Here the results of a series of seven studies that examined the effect of 

background sound (contextually related and non-related with respect to the visual scene) 

on the perception of visual quality (defined with respect to texture resolution, polygon 

count) presented in stereoscopic and non-stereoscopic 3D. Results indicate that the 

perception of visual quality is dependent on ambient (background) sound.  The results of 

these studies have implications for designers and developers of serious games who 

typically strive for high quality virtual worlds despite the computational burden 

associated with doing so.  The results of these studies also bring us closer to 

understanding the role of quality, multi-modal interactions, and their effect on visual 

quality perception. This thesis is part of a larger effort in developing an understanding of 

virtual environment rendering quality, multi-modal interactions, user-specific factors and 

their effect on knowledge transfer and retention.   
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CHAPTER 1 – INTRODUCTION 
 

1.1 PREAMBLE 
 

A serious game can be defined as an interactive computer application, with or without a 

significant hardware component, that i) has a challenging goal, ii) is fun to play and/or 

engaging, iii) incorporates some concept of scoring, and iv) imparts to the user a skill, 

knowledge, or attitude that can be applied to the real world [Bergeron, 2006]. Serious 

games are able to captivate and engage players/learners (and increased engagement within 

an educational setting has been linked to increased academic performance associated with 

academic achievement [Shute, 2009]), and allow users to experience situations that are 

difficult (even impossible) to achieve in reality due to factors such as cost, time, and 

safety concerns [Squire, 2003]. Furthermore serious games can allow learners/trainees to 

experience situations that are difficult (even impossible) to achieve in reality due to 

factors such as cost, time, and safety concerns, improve psychomotor skills, enhance 

retention of knowledge, enhance decision-making skills, interactive learning, options for 

immediate feedback, and retention of knowledge related to procedures [Mitchell and 

Smith, 2004]. Serious games have been incorporated within the teaching and training 

curricula of a large number of professions including medicine/surgery, and the military 

and due to the large appeal the present users/trainees, particularly the new generation of 

learners (i.e., the digital natives [Prenseky, 2006]) who are accustomed to technology.  A 

number of studies have demonstrated the effectiveness of serious games (an overview was 

provided in the report of the Summit on Educational Games [FAS, 2006], and further 

accounts on the effectiveness of serious games are available in the reviews of Bogost 

[2007] and Gee [2003, 2004, 2007] while the application of serious games in the 

healthcare field has been reviewed by Feingold [2004]).  However, there are concerns that 

must be analyzed and addressed before serious games become more widespread.  The 

Federation of American Scientists [FAS, 2006] in a summit held in 2005 converged on 

eight conclusions regarding serious games: 
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1. It is clear that the modern workforces of technology-oriented countries   

require the skills that many video games require players to master. 

2. Attributes of games could be useful in applications in learning (contextual 

bridging, increased time on task, improved motivation and goal orientation, 

personalization of learning, feedback, cues and partial solutions). 

3. Games for education differ from games for entertainment. 

4. Rigorous research is required to help translate the art and technologies of 

gaming into teaching, learning, and assessment systems. 

5. The video game and educational material industries are inhibited by high 

development costs and uncertain markets for educational innovations 

developed as learning games. 

6. There are a variety of barriers that inhibit markets for educational games,

 including market fragmentation, faculty members’ and parents’ negative 

attitudes about video games, and lack of evidence for efficacy and evidence-

based learning through gaming. 

7. Educational institutions are slow to transform practices and organizational 

systems that take advantage of new technology, including gaming and 

simulations. 

8. There is no serious evidence-based learning framework that currently exists 

for implementing large-scale evaluations of the outcomes of using educational 

games. 

 

Furthermore, there is a lack of research that investigates the technological conditions 

under which learning can be maximized within a virtual simulation/serious game. There is 

also a lack of research that links virtual learning to proven educational theory and practice. 

Tashiro [2007], identified several major issues that must be addressed before widespread 

development of serious games.  More specifically: 

 

1. Instructional designers seldom conduct the research necessary to demonstrate their 

products actually improve learning or skills. In healthcare, an empirically-driven 

approach becomes especially critical in the context of the United States Institute of 
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Medicine’s call for broadly based core competencies [AACN, 2003; Institute of 

Medicine, 2000;  Institute of Medicine, 2003]. Similar problems exist throughout 

the educational games and simulations available at the undergraduate level. 

 

2. With few exceptions, commercially available educational games and simulations 

have not shown to improve what some call critical thinking (including the 

important higher levels of declarative, procedural, and also metacognitive 

knowledge) of users while also improving disposition to engage in higher order 

thinking [Cacioppo, 1982; Caioppo, 1996; Sadowski, 2006]. Such simulations 

have remained elusive, despite many different types of simulations that are being 

evaluated. 

 

3. Few commercially available simulations have been developed to mesh sensibly 

with the strategic needs of undergraduate curricula or with professional 

development, continuing education, and training programs. 

 

4. There are no commercially available products related to improving learning 

outcomes or skills competencies that are designed to become part of an evidence-

based education framework. 

 

 

 
Figure 1. Relationship among the multiple factors that influence transfer. 
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In the context of a virtual learning environment or serious game, transfer can be defined 

as the application of knowledge, skills, and attitudes acquired during training to the 

environment in which they are normally used [Muchinsky, 1999]. However transfer is 

comprised of various other factors as well (see Figure 1). Transfer consists of the capacity 

to replicate what has been learned within the virtual environment/serious game to the real 

world environment. The situated learning model suggests that the virtual 

simulations/environments faithfully represent the real-world environment in order to 

provide the user the ability to practise under the conditions that they will encounter in the 

real-world [Brown et al., 1989; Dalgrano et al., 2010]. 
 
 

Fidelity denotes the degree of similarity between the training situation and the operational 

situation which is simulated [Hays, 1989]. Andrews [1996], defines fidelity as the extent 

to which the virtual environment emulates the real world. In other words, fidelity 

describes the extent in which similarities between the real and the virtual world can be 

measured.  

 

Realism and fidelity are synonymous and can be used to measure similarities form the 

real to the virtual world [Alexander, 2005].  Tashiro [2010], describes levels of realism as 

the degree of realism with respect to the visuals/graphics as well as in the procedural rules 

of an educational game or simulation. However, [Feewerda, 2003], expands upon this 

appreciation and divides realism into three categories:  i) physical, ii) photorealism, and iii) 

functional realism.  

 

Physical realism analyzes the quality of the physical properties of the environment 

[Chalmers, 2008]. Photorealism is the term most commonly used for realistic computer 

imagery. The goal is a resultant rendered image, which is indistinguishable from a 

photograph of the real scene being portrayed [Chalmers, 2008]. Functional realism 

describes the ability of an image to provide sufficient information relating to the real 

scene to enable the viewer to perform an appropriate real task [Ferwerda, 2003]. 
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Hodgkinson [2009], observed that as realism increases, so does the viewer’s judgment, 

guiding them into a circle of “infinite acceptance”, and therefore, total realism is unlikely 

to be reached. However in contrast to Hodgkinson, Chalmers et al. [2009] proposed that 

fully realistic environments are not needed in order to guarantee an effective learning 

process. He proposed an effect called selective rendering, where the environment will 

provide high quality rendering only with respect to the details where the user will be 

focused on, leading to computational resource savings while opening the possibility for a 

successful transfer process under lower quality virtual environments. 

 

Slater [1994], proposed presence as a subjective measure of quality on virtual 

environments. Despite the fact that presence and immersion are sometimes used 

synonymous, immersion refers to the degree to which and individual feels absorber by or 

engrossed in a particular experience [Witmer and Singer, 1998], while presence  refers to 

the subjective experience of actually existing within the computer-mediated environment 

even when one is physically situated in another [Witmer and Singer, 1998]. Immersion is 

often seen as a measure of technical immersion, focused on the level of technical quality, 

especially in the areas of picture quality, field of view and level of interaction [Witmer 

and Singer, 1998].  Slater [1994], describes the difference between the sense of presence 

that can be reached with books and films, and the sense of presence resulting within, 

which is totally different than the sense of presence resulting from the immersion with 

respect to technology. Presence is thus not a direct function of an immersive technology, 

but rather the technology creates the stimuli which the human uses to build up a mental 

model of the virtual environment and his/her engagement with it [Schubert and Crusius, 

2002].  Therefore, it seems that presence could be used as a tool to quantify a user’s 

engagement within the virtual environment, and not as a measure of realism itself. The 

difference between presence and immersion is explained by Taylor [2002], who divides 

the term immersion into diegetic and situated immersion. Diegetic immersion refers to the 

immersion of the act of playing a game. On the other hand, situated immersion is not only 

the immersion resulting from playing the game but also arises by experiencing the illusion 

of existing within the virtual environment (presence). 
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The goal of a virtual simulation or a serious game when applied to education/training, is 

to achieve some amount of transferability that will allow the users/practitioners to 

perform the acquired skill in the real world on the same way it was performed within the 

virtual world. In order to achieve this goal, fidelity, immersion and presence can play and 

important roll and therefore, further analysis of the factors that may influence the 

perception of quality or the feeling of presence is needed. 

 

Storms [1998], found that high-quality sounds (higher sampling rate frequency 

manipulated) coupled with high-quality visual stimuli increase the perceived quality of a 

visual display [Storms, 1998], while Winkler and Faller [2005], showed that both audio 

and video quality contribute significantly to the perceived visual quality, and 

Mastoropoulou el al. [2003] showed the combination of tempo and emotional 

suggestiveness of music can affect users’ visual perception of temporal rate and duration. 

 

The work described in this thesis investigates multimodal interaction within a virtual 

environment/serious game and more specifically, the interactions and resulting effects of 

audio and visual cues.   This work is part of a larger-scale effort to examine virtual 

environment quality, multi-modal interactions, user-specific factors (e.g., personality, 

learning style, existing knowledge, level of attention, motivation etc.) and their effects on 

knowledge transfer and retention within virtual simulations/serious games.  The long-term 

goal of this work is to answer the following questions with respect to virtual 

simulations/serious games: i) “what effect do multi-modal interactions have on 

knowledge transfer and retention?”, and ii) “how much quality is actually needed to 

maximize transfer and retention?” The question have a number of implications when 

considering that any training device—be it a virtual or physical simulator—will never be 

able to completely replicate the real world, and the fact that in virtual worlds we currently 

ignore the sense of smell altogether and limit the haptic senses (touch and movement). 

Complete (perfect) multi-sensory quality appears to be impossible to achieve, at least with 

our current technology.  In addition, striving to reach higher levels of rendering quality 

can also lead to increased development costs, and it remains unclear if such quality is 

even needed for either enjoyment or knowledge transfer.  Within this thesis, as described 
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below, a number of experiments were conducted that examine visual quality perception of 

a virtual scene in the presence of various ambient (background) auditory conditions.   The 

results of these experiments have implications for designers, and developers of virtual 

simulations/serious games, and the educators that employ them. Ultimately, these results 

bring us closer to the long-term goal of developing effective virtual simulations and 

serious games that maximize knowledge transfer and retention.   

 

1.2 RESEARCH OBJECTIVES 
 
As previously described, this thesis is composed of a series of seven experiments that 

examine the role that quality, and multi-modal interactions play with respect to 

knowledge transfer and retention for users of virtual simulations and serious games.  .  

Here, a brief description of each experiment is provided while greater details regarding 

each experiment are provided in Chapter 3.   Each of the experiments builds upon the 

prior experiment in order to develop a better understanding regarding the roll that 

different ambient auditory cues play on the perception of visual quality of virtual 

simulations/serious games. Visual quality can be defined in many ways.  Here, visual 

quality is represented with respect to the polygon count (i.e., the number of polygons 

(typically triangles) required to represent and render a 3D model) and texture resolution.   

1.2.1 Experiment 1 

In this experiment, the perception of visual quality defined with respect to polygon count 

of a single (static) image of a surgeon’s head under four auditory ambient (background) 

sound conditions: i) no sound, ii) white noise, iii) classical music, and iv) “heavy metal” 

music, was examined.  Results indicate that perceived image quality is dependent on 

background sound particularly for the higher quality images where classical music leads 

to the greatest perceived visual quality. 

 

 

 



8 
 

1.2.2 Experiment 2 

In Experiment 1, visual quality was defined with respect to polygon count.  However, 

visual quality can be defined in many ways.  In contrast to Experiment 1, here polygon 

count remained constant while visual quality was defined with respect to the resolution of 

the texture that was mapped to the model varied (once again, the model consisted of a 

surgeon’s head).  Similar to the results of Experiment 1, the results of this experiment 

revealed that the perception of visual quality is dependent on ambient sound and more 

specifically, white noise can have detrimental effects on the perception of high quality 

visuals.   

1.2.3 Experiment 3 

As in Experiment 1, visual quality was defined with respect to polygon count.  However, 

here the visuals were presented to the participants in a stereoscopic 3D viewing 

environment (as with the previous experiments, a single (static) image of a surgeon’s head 

comprised the visuals). Results indicate that sound does influence visual quality 

perception particularly for the higher quality visuals within a stereoscopic 3D viewing 

environment. For the lower quality visuals, the effect is less pronounced. Ambient sound 

consisting of white noise once again had a detrimental effect on visual quality perception 

across all of the image conditions.  

 

1.2.4 Experiment 4 

This experiment was identical to Experiment 3 except that here visual quality was defined 

with respect to texture resolution while polygon count remained static.  Results were 

similar to Experiment 3; sound does influence the perception of visual quality. Classical 

sound and heavy metal music showed to increase in different extent the visual quality 

perception and white noise showed to decrease the visual quality perception.   
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1.2.5 Experiment 5 

The results of the previous experiments have shown that background sound can affect our 

perception of visual quality.  However, these previous experiments did not consider 

contextual auditory sounds.  In other words, the auditory conditions considered were 

completely disjoint from the visuals that consisted of surgeons head.  In this experiment, 

visual quality perception, defined with respect to texture resolution, in the presence of 

ambient auditory sounds was examined.  However, in contrast to the previous 

experiments, here contextual sounds were considered. Results indicate that contextual 

sounds  have a greater effect on visual quality perception over non-contextual sounds.  As 

with the previous experiments, ambient white noise leads to a reduction of visual quality 

perception.   

1.2.6 Experiment 6 

Here, Experiment 5 was repeated but within a stereoscopic 3D viewing environment. 

Results indicate that ambient sound does effect visual perception, particularly for the 

higher quality visuals and more specifically for the  As with the previous experiments, 

ambient white noise led to a decrease of visual quality perception for all visuals 

considered. 

 

1.2.7 Experiment 7 

The previous six experiments considered simple visual scenes comprised of a single static 

model and although the results have provided great insight into the interaction of visual 

and auditory cues, the experiments did not consider user interaction.  This experiment 

builds upon the previous experiments by considering a complex visual environment in the 

presence of both contextual and non-contextual ambient (background) sound cues where 

the visual scene was blurred to approximate the effect of varying texture resolution, while 

conducting a simple task. The task involved navigating through a virtual operating room 

from a starting position to a point in the room which contained a tray and a surgical drill 

and picking up the drill.  Results indicate that ambient (background) sound does not have 

any influence on the perception of visual quality irrespective of the level of blurring of the 



10 
 

visual scene or whether the auditory cues were contextual or non-contextual with respect 

to the visual scene.  However, despite having no effect on visual quality, ambient sound 

did have an effect on the total time it took to complete the task.   More specifically, in the 

presence of ambient white noise, the time to complete the task increased. 

 

1.3 THESIS ORGANIZATION 
 

The first chapter (the current chapter) is the introduction and is comprised of two main 

sections: Preamble and Research Objectives. The Preamble provided a brief introduction 

to the thesis research topic. I have explained, in general terms, the constraints/limitations 

of the field I have been working in, and provided an overview of the terminology relevant 

to the remainder of the thesis chapters. The Research Objectives provided an explanation 

of the research expectations, and a brief explanation of the studies conducted within the 

scope of this thesis. 

 

The remainder of this thesis is organized as follows.  Chapter Two provides background 

information, providing support and relevance to the chosen research topic. The chapter is 

divided in two main sections.  The first section is intended to provide the reader with 

strong background knowledge regarding the field that this thesis investigates. The second 

part of this chapter presents a literature review where the relevant and related previous 

research is described.  

 

The third chapter provides an explanation of the sequence of studies that were conducted 

within the scope of this thesis.   Finally, the fourth (and final) chapter provides a summary 

of this work, the implications of the experimental findings, and plans for future work. 
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2 BACKGROUND 
 
 

2.1 History 
 
 
Computer-based alternatives to live training (medical, army, flight, etc.) have become 

more common in recent years. These include computer-based training systems such as 

virtual environments, and video games [Alexander, 2005]. However, reaching high levels 

of skill competency requires novel approaches of training to ensure resources are 

allocated in a cost effective manner [Ricci, 2002], and virtual technologies such as virtual 

simulation and simulators, and  serious games, offer strong promise and rich possibilities 

for learning innovation, capable of delivering training in a safe, cost-effective, and 

engaging manner. 

 

As previously described, serious games have been referred to as “games that do not have 

any entertainment, enjoyment, or fun as their primary purpose” [Michael, 2006], and 

“leverage the power of computer games to captivate and engage players/learners for a 

specific purpose such as to develop new knowledge or skills” [Corti, 2006]. Fundamental 

to serious games and video games in general, is the concept of “play”.  Krentz [1998], 

proposed that play and work are not opposed to each other since play can be serious and 

useful when it contributes to the educational process. “Play” is only one part of the 

functional exercise which take place during an individual’s development, and the other 

part is non-playful exercises in which the subject “learns how to learn”, not only on the 

context of play but in that of cognitive adaptation [Piaget, 1977].  

 

Learners are allowed to explore (“to play”) with ideas that they may be too afraid to try in 

real life, and devise creative solutions to problems as a result [Attewell et al., 2006]. Also, 

within a serious game (or simulation in general), the player is in ultimate control of the 

environment and does not need to worry about the consequences, because although they 

‘represent real-world systems, the associated costs of participant error is low, protecting 

them from the more severe consequences of mistakes [Garris et al., 2002]. 
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The benefits provided by serious games are becoming more widespread and accepted 

within teaching/training curriculums.  That being said, there are many questions regarding 

the effectiveness of serious games.  More specifically, can effectiveness of a serious game 

be guaranteed and if so, how can effectiveness be maximized?  However, this is an open 

problem affected by various factors including the level of engagement [Csikszentmihalyi, 

1992].  

 

The topic of serious game effectiveness has been studied for many years but results have 

been mixed.   For example, Hays [2005], conducted a review of the literature (105 articles) 

on “instructional games” focusing on the empirical research on the instructional 

effectiveness of games and found that i) the research on the effectiveness of instructional 

games is fragmented, filled with ill-defined terms, and methodological flaws, ii) some 

games can provide effective learning for a variety of learners for different tasks but care 

should be taken not to generalize on the effectiveness of one game in a particular learning 

area for one group of learners, to all games, in all learning areas for all learners, iii) no 

evidence indicating that games are the preferred instructional method in all situations, iv) 

instructional games should include debriefing and feedback in order to provide the learner 

with an understanding of what happened in the game, and v) players should have access 

to support to help them understand how to properly use the game.  That being said, and as 

summarized below, there is also plenty of research that indicates serious games do 

provide effective learning.   

 

 Playing action-based video games can affect cognitive skills related to visual 

attention [Boot et al., 2005].  

 Virtual environments could help to control social anxiety in a controlled manner  

[Know, 2009]. 

 Learners are encouraged to reflect more upon their learning when using serious 

games [Alden, 1999;  Oberhofer, 1999]. 

 Serious games help students to identify particular “complicated points” in their 

understanding [Francis and Bryne, 1999]. 
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 Serious games use can enliven the presentation of learning and teaching content, 

producing an increased relevance of textual-data to real-life context [Lowry, 1999; 

Neral and Ray, 1995]. 

 Serious games can simplify complex theories providing some level of experience 

within which the concept can be easily understood by the learner [Neral and Ray, 

1995]. 

 Serious games use can help on the development of key and transferable skills with 

nominated benefits for communication and social skills [Sutcliffe, 2002], 

perceptual and motor Skills [Green and Bavelier, 2003], critical thinking skills 

[Jiwa and Lavelle, 2002], and psychomotor skills [Stone, 2003]. 

 Play does provide a significant role on formulating the core basics of the learning 

processes (analyzing the problem, finding the challenge, obtaining a solution) 

critical for young learners [Piaget, 1977].  

 One of the reasons why serious games are really effective, particularly with young 

learners is due to the familiarity of them on using interactive interfaces (video 

game consoles) [Aldrich, 2004; Prensky, 2001, 2006].  

 

Despite, the strong support regarding the effectiveness of applying this new tool within 

the curriculum of learning and training processes, there are also many factors that can be 

modified, and since learning can be applied to a large amount of cognitive and motor 

skills, there are several constraints that are worthy of discussion. Facer [2006], suggested 

that video game-based simulation effectiveness cannot be generalized among all groups of 

learners, and questioned the transferability of the results obtained after applying serious 

games to a specific learning group (with respect to age). For Facer, the main difference 

was between young learners and adult learners, basing his hypothesis’s on the different 

learning processes and methods these groups use [Knowles, 1959; Merriam, 1991]. 

 

Griffiths [2002], supports Facer’s idea proposing that there is a lack of analysis of the 

potential use of serious games by adult learners or by learners with specific difficulties. 

As previously described, this paucity is not due to a lack of interest regarding virtual 
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simulations and serious games which have been embraced by educators across a wide 

variety of areas including aviation, military, and surgery [Attewll et al., 2006].  

 

Tables 1 and 2 summarize the most relevant serious games developed and being used up 

to 2006 [Attewll et al., 2006]. 

 

Case study Learner type Start date for use Number of people using game/sim 
Max Trax Learners with numeracy 

difficulties 
December 2001 
(commissioned) 

7288 learners (up to December 
2003) 

Skillswise Learners with literacy and 
numeracy difficulties 

Mar-02 More than 2 million page 
impressions per week (at May 
2006) 

Key Skills 
Trainer 

Learners with numeracy 
problems 

Jul-02 4500 registered learners (at 
December 2005) 

MIST Surgeons in training 1996 220 organizations – number of 
users unknown 

America’s Army Army recruits and 
potential recruits 

Jul-02 7,309,745 users in 2006 

Strategy Copilot Business learners 2000 3000–3500 learners (June 2006) 
Krucible Learners aged 14–19 Sep-03 350 users 
Virtual School Middle management 

leaders in schools 
Sep-03 2000 middle leader participants and 

nearly 700 leadership coaches 

 
Table 1. The most relevant serious games developed and used up to 2006 (first of two tables). 

Reprinted from Atwell [2006].  

 

Type of 
game/sim 

Description Objectives of use Subject Context of use 

Game Racing game with 
numeracy challenges 
included 

To support the 
learning of numeracy 

Maths A service available at Learn 
Direct centres around the UK 

Games Skillswise provides a 
range of resources for 
training informal 
learners with specific 
literacy and numeracy 
needs 

To support learners 
with literacy and 
numeracy needs 

Literacy 
and 
numeracy 

Web resource available at 
www.bbc.co.uk/skillswise 

Game The game is 
embedded into a set of 
materials which take 
200 hours to complete 

To support learners 
developing their key 
skills (Levels 1 and 2) 

Literacy 
and 
numeracy 

The materials can be used in 
any learning context and 
alongside most post-16 
courses 

Simulation Simulation used for 
training surgeons 

To accelerate the 
learning time for 
surgeons 

Medical 
surgery 

In medical teaching hospitals 
and schools 
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Gamesim Training simulation 
game for new recruits 
and potential recruits 

To encourage young 
people to join the 
army and support 
teaching of military 
skills 

Army 
training 

Self-directed exploration of 
the army training 
environment 

Simulation Simulation with role 
playing capability. 

To provide strategy 
training for business 
learners 

Business 
studies 

Business schools, universities 
and companies 

Simulation Krucible is an 
interactive learning 
tool for learners 
studying physics 
between ages 14 and 
19 

To support 14–19 
physics teaching 
 
 
 

 

Physics Sixth form colleges and FE 
colleges 

Training 
simulation 

Simulation game 
based on scenarios in 
a school setting 

Application of 
learning- centred 
leadership 

School 
leadership 

Part of the Leading from the 
Middle programme for 
middle managers. 5hrs 45 
minutes allocated for Virtual 
School within other activities 

 
Table 2. The most relevant Serious games developed and used up to 2006 (Second of two tables). 

Reprinted from Atwell [2006]. 
 

Despite the growing popularity of serious games and virtual simulations, before their use 

becomes more established and widespread, as described above, there are various open 

issues that must be addressed in order to ensure the development of effective serious 

games. Tashiro et al. [2007], developed a typology of serious games for healthcare 

education and explored the strengths and limitations of serious games for improving 

clinical judgment. They found that generally, serious games do not meet the standards for 

instructional materials set forth by the United States National Research Council, and the 

Federation of American Scientists and identified seven areas that require research and 

improvements for the effective development of serious games: 

 

 Disposition to engage in learning.   

 Impact of realism on learning.   

 Threshold for learning.  

 Process of cognitive development during knowledge gain.  

 Stability of knowledge gain (retention). 

    Capacity for knowledge transfer to related problems. 

 Disposition toward sensible action within clinical settings. 
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Related to some of the points described by Tashiro [2003], Alexander [2005], proposed 

three main factors that could drive training transfer: i) quality, ii) immersion, and iii) 

presence. It is important to note that these constructs are not mutually exclusive, and more 

specifically, some of them appear to be functions of each other and exhibit similar effects. 

He also proposed that the higher the degree of transfer, the more successful a training 

system/method can be considered to be. However, what is transfer within the 

simulation/serious games context? What is needed to guarantee a higher degree of transfer? 

 

Transfer as was mentioned on the introduction section have been defined as the 

application of knowledge, skills and attitudes acquired during training to the environment 

in which they are normally used [Muchinsky, 1991]. In other words, transfer is an 

outcome of a successful training process. Nevertheless, transfer can be either positive, 

negative, or null [Gick and Holyoak, 1987]. According to Alexander [2005], positive 

transfer occurs when the practitioner performs the acquired skill in a real-world setting 

better due to the practice performed within the learning/training virtual environment. 

Negative transfer occurs when the practitioner performs worse in the real-world as 

opposed to the virtual world, and this usually happens because trainees apply behaviours 

to the real-world that are appropriate only in the training environment.  Null transfer 

occurs when there is no difference between the performances of the real and the virtual 

world, implying that the training had no effect.  

 

Van Hulst [1998], defines transfer of complex cognitive skills such as: i) rule-based 

transfer, and ii) schema-based transfer. Guilligan [2010], explains rule-based transfer as a 

method that focuses on the familiarity of situations where skills acquired in the training 

setting can be used in the same way as in the target setting. This definition emphasizes the 

idea that the training and target setting should share the common elements that are 

relevant for the task. Rule-based transfer will therefore exhibit greater benefits in cases 

where the trainee has performed and extensive practice over a variety of training cases to 

develop a broad knowledge about the skill acquired [Guilligan, 2010]. 
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Schema-based transfer employs the schema-based theory of learning [White, 1993], 

where the learner develops a generalized knowledge over a specific skill that allows 

him/her to make decisions when presented with unexpected situations based on the 

general understanding acquired. In addition, the more robust (i.e., more information) 

those cognitive schemata are, and the better they are integrated with other cognitive 

schemata, the more likely it is that transfer will actually occur [Van Hulst, 1998]. 

 

However, this raises the question of how one can measure transferability on an acquired 

skill? Wickens and Hollands [2000], proposed comparative tests of transfer, measuring 

post-training performance on a real-world task between two groups: an experimental 

group that trained with the new technology, and a control group that trained directly in the 

operational setting. From this point of view, the only way to test the effectiveness of a 

specific method in terms of transferability, is to conduct a randomized control trial (RCT) 

(or randomized comparative trial).  An RCT is a specific type of scientific experiment, 

and the preferred design for a clinical trial. A RCT is often used to test the efficacy of 

various types of intervention within a patient population [Chalmers, 1981].   

 

For the purpose of this thesis, the primary focus is not on the different types of transfer or 

how to measure them.  Rather, within this thesis, on the focus is on analyzing the 

perceptual effects of audio-visual (multimodal) interaction within a virtual 

simulation/serious game environment and in particular, how ambient auditory cues affect 

visual quality perception.  It is anticipated that the findings resulting from this thesis will 

lead to a greater understanding of the role that multi-modal interactions play  with respect 

to virtual simulations  and serious games and ultimately lead to the development of more 

effective serious games and virtual simulations.     
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2.2 Literature Review 
 

2.2.1 Fidelity 

 

Fidelity denotes the degree of similarity between the training situation and the operational 

situation which is being simulated [Hays, 1989]. In other words, fidelity describes the 

extent to which the virtual environment emulates the real world or how realistic the 

virtual world is [Andrews, 1996]. Fidelity can be measured on multiple continua, and a 

large number of subcategories have been described in the literature [Allen et al., 1986; 

Hays and Singer, 1989; Lane and Alluisi, 1992; Lintern et al., 1990; Rehmann et al., 

1995]. However for the purposes of this thesis, three main subcategories of fidelity will be 

discussed: i) psychological, ii) functional, and iii) physical.  

 

Psychological fidelity is described as the degree to which the simulation replicates the 

psychological factors (e.g., stress, and fear) experienced in the real-world environment, 

engaging the trainee in the same manner as the actual equipment would in the real world 

[Kaiser and Schroeder, 2003]. Psychological fidelity is basically related to the feeling of 

presence, a concept that is described in the following section.  

 

Functional fidelity has been described as the degree to which the simulation acts like the 

operational equipment in reacting to the tasks executed by the trainee [Allen et al., 1986]. 

This type of fidelity is strongly related with physical fidelity that is defined as the degree 

to which the physical simulation looks, sounds, and feels like the operational environment 

in terms of the visual displays, controls, and audio as well as the physics models driving 

each of these variables [Baum et al., 1982]. Physical fidelity encompasses a number of 

dimensions (visual, auditory, vestibular, olfactory, proprioceptic, etc.). A large literature 

base exists concerning these different dimensions of physical fidelity [Becker et al., 1995; 

Borah et al., 1977; McMillan et al., 1990; Rinalducci, 1996 ], but as will be described 

below, the research described in this thesis focuses on visual and auditory factors only. 
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There is a relationship between fidelity and transfer, but it is not as simple as ‘more is 

better.’ Based on Thorndike’s theory of elements [Gick  and Holyak, 1987], the 

implications are that if the level of fidelity captures the critical elements/properties of the 

skills/tasks you wish to teach, that level of fidelity is sufficient even if it noticeably 

deviates from the real world [Alexander, 2005].  Despite the three sub-categories 

considered, the question still remains.  How much fidelity is needed to maximize transfer? 

This question may be further complicated when consideration is given to each of the 

categories.  In other words, one can consider each of the fidelity sub-categories as a 

variable within a simulation/serious game, each of which can be individually adjusted.  

This of course makes it difficult to determine the proper amount of “sub-category” fidelity 

to maximize transfer but it does open a large number of potential future studies.  

 

Generally, it is assumed that a high level of fidelity is needed for each of the three fidelity 

sub-categories to fully replicate a real environment what would led into a successful 

performance in operational conditions [Alexander, 2005]. Turner et al. [2000], describe 

that trainees within a virtual simulation tend to demand high physical-fidelity because 

they think about previous exposure to high-fidelity simulators (physical) and are 

concerned that performance evaluation accurately reflects anticipated real-world 

performance.  However, other characteristics within a rendered (virtual) environment such 

as the polygon count  of the 3D models within the environment and realistic texturing 

(and texture resolution), may be noticed and appreciated by trainees generating an 

unknown effect on the outcome.  However, Alexander [2005], describes that an 

appropriate level of fidelity is dependent on the skills or behaviours that are to be trained 

and more specifically, on the nature of the task itself that that is expected to be transferred. 

If both the training system and operational setting share properties with respect to the 

objectives of the training, other aspects of the training system may tolerate lower levels of 

fidelity without compromising training effectiveness [Alexander, 2005].  Furthermore, as 

previously described, striving to reach full fidelity (which typically involves high polygon 

count models, and higher texture resolutions, etc.) leads to increased computational 

processing in addition to higher development costs [Gilligan, 2010].  In addition, it 

remains unclear if such fidelity is actually needed for either enjoyment or knowledge 
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transfer [Hawkins and Orlady, 1993; Moroney and Moroney, 1999]. Thus, an important 

compromise must be made between physical fidelity, related costs (computational and 

development), and training effectiveness, such that an adequate match can be made 

between training and real environmental elements and the logical structure of tasks 

[Alexander, 2005].  The relationship between fidelity and transfer is further complicated 

by the finding that training effectiveness can be increased by adjusting the level of 

fidelity/difficulty over a sequence of training experiences [Lathan et al., 2002]; this is 

more commonly known as scaffolding. 

 

2.2.2 Realism 

 

Realism is essentially another measure of fidelity since realism is an attribute that can be 

measured on each of the sub-factors that compose fidelity (visual, auditory, vestibular, 

olfactory, proprioceptic, etc.) [Lengyel, 1998]. After careful analysis of the literature, for 

the purposes of this thesis, fidelity and realism will be treated synonymous. 

 

As with fidelity, how much realism is needed in order to provide a practical tool for 

education? Haders [2008], specifically raised this question with respect to simulation for 

clinical education. 

 

Cittan [2008], developed an engine to produce the “highest realistic environment” 

including the use of stereoscopic 3D to produce visuals with depth as in the real-world, 

but questions whether such a high level of realism is actually needed. Initial testing has 

confirmed that the level of immersion is highest when interacting with a stereoscopic 3D 

scene.  

 

In a study conducted by Brogni [2006], participants were placed within an immersive 

virtual simulation (a replica of a street with virtual people walking on the street) and their 

heart rate responses at various stages were measured and analyzed. Brogni was trying to 

develop an objective measure of realism/fidelity presented in a scene. The measures 
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employed by Brogni were all subjective (e.g., practitioner perception measured through 

the use of surveys/questionnaires after the completion of the study) he proposed stress 

level as a measure of realism. It has been demonstrated that both positive (e.g., 

entertainment-induced energy and/or motivation), and negative (e.g., conflict-induced fear 

and/or adverse physiological reactions), types of stress have been shown to enhance skill 

retention as well as the transfer of training from the simulation to the real-world [Mayer 

and Volanth, 1985; Williams, 1980]. The primary goal of “stress training,” is to provide 

practice under conditions similar to those likely to be encountered in the operational 

setting [Alexander, 2005]. 

 

More recently, studies have examined the effects of adding contextually-relevant stress to 

training paradigms on the improvement and transfer of skills concluding that in general, 

stress is an important factor on quality measure, although its effectiveness can be strongly 

related to the type of skills studied [Driskell et al., 2001; Morris et al., 2004].  However, 

further research is required to examine the relationships between the types of stress and 

skill transfer in general (and as influenced by individual differences), and to determine 

how long the beneficial effects of stress training persist [Morris et al., 2004]. 

 

As previously described, striving for perfect quality and realism may not be feasible given 

the high computational and development costs associated with doing so.  That being said, 

there are a number of widely used computer graphics methods and techniques available 

that are available to allow for high quality/realism while minimizing computational 

requirements.  

 
Alexander [2005], and Chalmers [2003], proposed “selective rendering” as a solution to 

the quest of high quality and the high cost involved in achieving it. Selective rendering 

involves rendering high quality visual/graphics for only the portion of the scene that the 

user is viewing. This idea is been based on previous work of the human visual system and 

has been used to improve the quality of displayed images [Greenber, 1997; McNamara, 

2000; Myszkowski, 2001], or to reduce the complexity of the models of objects in the 

scene without reducing the viewer’s quality perception of these models [Luebke and 
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Hallen, 2001; Watson, 2001]. More specifically, due to the intentional blindness 

phenomena that is presented when attention is focused onto an item in a scene, details 

regarding the remainder of the scene, including lightning, resolution, level of detail, and 

even the presence/absence of objects can, literally go unnoticed [Mack and Rock, 1998]. 

It can also be explained by the peripheral vision phenomena where the human eye 

processes detailed information from a relatively small part of the visual field only. The 

lack of visual acuity in the human peripheral vision system has also been exploited to 

reduce the overall computation time of an image by rendering the parts of a scene in the 

peripheral vision at a lower quality [Chalmers, 2003].  

 

Although selective rendering is one solution to the high computational cost associated 

with generating high quality environments, it only focuses on one of the quality factors, 

and more specifically, visuals, despite the fact that virtual environments are multi-modal 

and at the very least, will, in addition to visuals, provide auditory cues/information. 

 

2.2.3 Immersion 

 

Immersion refers to the degree to which an individual feels absorbed by or engrossed in a 

particular experience [Witmer and Singer, 1998]. Immersion is therefore based on the 

extent to which the virtual environment supports an illusion of reality that is inclusive 

(denoting the boundaries of physical reality), extensive (the range of sensory modalities 

accommodated), surrounding (the size of the field of view), and vivid (the display 

resolution, richness, and quality) [Slater and Wilbur, 1997]. Each of these dimensions 

may have a weight of how much implication it has on the perception of a particular 

reality. Based on these scales, Slater and Wilbur [1997], suggest that immersion can be an 

objective and quantifiable description of what a video game, or simulation provides.  
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2.2.4 Presence 

Presence refers to the subjective experience of actually existing within the computer-

mediated environment even when one is physically situated in another environment 

[Slater and Steed, 2000; Witmer and Singer, 1998]. Lombard and Ditton [1997], describe 

presence as very valuable in training tools because it increases motivation and provides a 

more engaging experience. 

 

However, the question remains if there exists any specific way to guarantee the feeling of 

presence within an environment. Witmer and Singer [1994], conclude that video 

resolution and the connectedness and continuity of visual elements are highly important 

for generating perceived presence, while Slater [2010], states that visual display lighting 

within a virtual environment does not affect presence. 

 

Cheng [2005], proposed a study to generate a better understanding of presence by 

examining how presence could be broken-down (by altering behavior and realism). 

Basically he wanted to measure presence (within a game environment) when the game 

behaves normal (coherent with real life) and what would happen if the behavior were not 

coherent. He concludes that understanding the facts of what produces an immersive 

experience (either a normal behaved environment or an environment with a non-coherent 

behavior), is difficult to determine. After analyzing real and non-realistic environments, 

Cheng [2005], proposed that the more realistic graphics/visuals of the virtual environment 

are, the more consistent the quality is perceived.  

 

In general, it remains unclear how increased presence affects the transfer of skills or 

behaviors, or when increased presence is advantageous. A better understanding of the 

concept of presence may provide insight to its use as a mechanism for increasing training 

effectiveness [Alexander, 2005]. 
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2.2.5 Multimodal Interaction 

 

Recall that the definition of physical quality encompasses a number of dimensions, and 

more specifically, visual, auditory, vestibular, and olfactory. These dimensions can be 

correlated with the multisensory perception of the real world. Cross-modal effects relate 

to the impact on the perceptual experience of one sensory input that the presentation of an 

additional sensory input can have [Chalmers, 2008]. Previous experience, for example, 

demonstrates that cross-modal effects can be considerable, even to the extent that large 

amounts of detail in one of the senses may be ignored when in the presence of other 

sensory inputs [McGurk and MacDonald 1976; Ramic et al., 2007; Rimell et al., 2002].  

 

Other studies have been conducted to determine the relationship between the senses and 

how this relation could affect the perception of reality within a virtual environment. 

Woods et al. [2011], discovered that background sound (noise) could have an effect on 

the perception of food gustatory properties (i.e., sugar level, salt level), food crunchiness 

and food liking. They found that background noise has three effects on food perception: i) 

food saltiness and sweetness was reduced in the presence of loud background noise, ii) 

food was “crunchier” in the presence of background noise, and iii) there was a correlation 

between the liking of the food and the liking of the noise. 

 

Other studies have shown that the introduction of smell increases the user’s sense of 

“presence” in the virtual environment [Dinh, 1999; Zybura, 1999]. Smell has been 

effectively used to treat soldiers returning from Iraq with post-traumatic stress disorder 

[Pair, 2006]. 

 

Dhin [1999], supported the premise of the importance of multisensory input on memory 

and the sense of presence in virtual environments. He also highlighted that audio cues 

produce a higher sense of presence and better retention compared to the cues of other 

modalities. Zhang [2005], analyzed the introduction of auditory and/or visual training 

feedback and found that feedback in general improves task performance and user 
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satisfaction, but it could not be determined if audio or visual exerted more or less 

influence on users satisfaction. 

 

In order to provide a better understanding of the multimodal interaction phenomenon 

greater detail regarding the operation of the human visual system is provided. There exist 

two main aspects that define visual perception: i) spatial perception, and ii) temporal 

perception. Spatial perception is highly dependent on visual attention or in other words, 

spatial perception is the ability to perceive or otherwise react to the size, distance, or 

depth aspects of the environment. Temporal perception refers to the ability to perceive the 

passage of time and comes into play when you need to estimate or reproduce the length of 

events, compare the length of two or more events, or place events in the order in which 

they have occurred. However, these are not the only factors that can affect visual 

perception.  More specifically, spatial frequency, which refers  to the levels of detail or 

image sharpness also plays a role in visual perception. Furthermore, the  visual sense has 

a frequency sensitivity that is three times lower than the audition. 

 

Previous work has demonstrated that with respect to visual quality, higher quality 

graphics serves to focus trainees attention initially, however on a long period of time 

analysis graphics showed to be less important than other attribute for sustaining trainees 

attention [Raths, 2006]. 

 

With respect to audio-visual interaction, the ventriloquist effect (also known as 

ventriloquism) is a phenomenon that has been extensively explored in an attempt to 

develop an understanding of the relationship among audition and vision when both senses 

are working together.  

 

There are two types of ventriloquism: i) temporal, and ii) spatial [Berlestona 2003]. In 

temporal ventriloquism, the audio and visual stimuli are delivered at different times but 

the user feels that they being delivered at the same time. With spatial ventriloquism, the 

audiovisual stimuli are delivered from different spatial positions, but the user perceives 

that the stimuli have both been delivered from the same location. 
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Bertelsona [2003], examined the perception of audio-visual cues when both cues were 

presented at separate locations and at separate times and concluded that we perceived the 

audio cues to be synchronized with the visual stimuli (temporal ventriloquism). However, 

it was also concluded that depending the location proximity (between the visual and audio 

sources), the perception of the time in which the stimuli are received might vary. 

 

Ascherslebena [2003], analyzed spatial ventriloquism and discovered a strong visual bias 

of the apparent auditory location and the occasional observation of a much smaller 

auditory bias of the apparent visual location. In other words, when the audio source 

location differs from the visual location, both the auditory and visual locations are 

affected, and participants perceived the sources as coming from different locations. 

 

Vroomen [2004], demonstrated temporal ventriloquism in the flash-lag effect (FLE). FLE 

is a visual illusion in which a flash appears to lag relative to a moving object. Commonly, 

a sound presented in close temporal proximity to a visual stimulus can alter the perceived 

temporal dimensions of the visual stimulus (temporal ventriloquism). Vroomen’s research 

demonstrated that a sound can alter visual perception in the temporal domain.  More 

specifically, a sound sharpens and attracts the occurrence of a flash when it is in temporal 

conflict with it.  

 

Morein-Zamira [2004], analyzed whether irrelevant sounds can influence the perception 

of lights in a visual temporal order judgment task (i.e., participants judged which of two 

lights appeared first). Study results were based on participant brain activity 

measurements. The study supports the phenomena proposed by the temporal ventriloquist 

phenomenon where in the temporal domain, the auditory system influences visual 

perception when the two sources of information are in conflict. 

 

Shams [2000], proposed the following premise: “what you see is what you hear”, 

implying that visual information dominates audition.  However, various studies have 

shown that auditory information can affect the quality perception of an unambiguous 
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visual stimulus to create a striking visual illusion (e.g., the presentation of two auditory 

beats presented in conjunction with a visual cue (a spark) leads to the perception of two 

visual sparks instead of one [Shans, 2001]). Although it is generally believed that vision 

dominates the other senses, visual perception can be manipulated by other sensory 

modalities (in this case hearing). 

 

Burr [2008], shows that auditory stimuli tend to dominate visual stimuli, but the 

domination is not total, and varies somewhat from individual to individual. An attempt 

was made to predict the dominance of audition over visual stimuli by applying some 

quantitative audio-visual model combination but the prediction was imperfect. Results 

showed that when auditory and visual stimuli are in conflict (presented with a small lag in 

between them), sound tends to dominate vision, but not totally. The pattern of results was 

roughly consistent with a model of optimal cue combination, but the quantitative 

predictions were not accurate.  

 

Recanzone [2005], measured the interactions of visual and auditory stimuli in a 

temporally based task in normal human participants. The results showed that the auditory 

system has a pronounced influence over the visual temporal rate perception (how often 

the continuous visual stimulus were presented). This influence was independent of the 

spatial location, spectral bandwidth, and intensity of the auditory stimulus. However, the 

influence was strongly dependent on the disparity in temporal rate between the two 

stimuli, and more specifically, this influence is dependent on how similar (with respect to 

frequency) the patterns used to present the stimulus were.  

 

After analyzing the ventriloquism phenomena and demonstrating the audio-visual 

interactions within the real world, for the purpose of this thesis, the next step is to 

examine audio-visual interaction within a virtual environment (serious game). 

 

Storms [1988], explored the auditory-visual cross-modal perception phenomena with a 

focus on visual quality perception through a series of experiments. He began with a pilot 

study that was designed to investigate the perceptual effects resulting from manipulating 
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visual display pixel resolution and auditory display sampling frequency. A second 

experiment was designed to investigate the perceptual effects of manipulating visual 

(static) display Gaussian noise level and auditory display Gaussian noise level. The visual 

display consisted of a radio, and the auditory stimuli consisted of an obscure portion of 

alternative music composed by a fragment of a song (“A Forest” from the CD “Mixed up” 

by “The Cure”), The song was chosen so participants would not have any preconception 

or preferences about the musical choice presented. Participants were asked to rate the 

quality of the visual and the audio presented in conjunction. Results showed significant 

auditory-visual cross-modal perception phenomena relevant to virtual environments and 

multimedia developers. A third experiment (referred to as “Static Resolution Non-

Alphanumeric” was designed to investigate the perceptual effects of manipulating visual 

(static) display pixel resolution and auditory display sampling frequency. The visual 

display consisted of a fruit-flower scene, while the auditory display consisted of the 

fragment of the previously used song whose frequency was modified. This particular song 

also had no vocals and therefore, participants could not use any changes in speech as a 

cue.  The task of the subject was to rate the perceived quality of auditory-only, visual-

only, and auditory-visual displays via a Likert rating scale ranging from 1 (low) to 7 

(high). Based on the outcomes of these three experiments, Storms [1988], suggests that 

medium and high auditory cue quality in conjunction with high quality visuals increases 

the visual quality compared to the visual alone conditions. These three experiments also 

indicate that low auditory quality in conjunction with high visual quality can lead to a 

decrease in the perception of audio quality compared to the audio alone condition. 

 

Mastoropoulou [2004, 2005], has conducted plenty of experiments to develop an 

understanding of how auditory cues can affect smoothness perception of a virtual scene,  

focusing on the pursuit of the threshold point in which sound cues can compensate for the 

reduction of frame rate (number of frames per second) within a virtual animation.  In one 

of her earliest studies, she hypothesized that the addition of auditory cues (sound of 

footsteps walking and running) to an animated sequence of images can create the 

impression that the temporal frame rate was higher than it actually was and therefore the 

duration of the audio-visual clip would seem shorter. She expected that the influence of 
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auditory cues to be more profound in the case of fast tempo music, but investigated the 

effect of both slow and fast tempo music. Results showed no significant difference on the 

perception of the length of the clip under the different auditory conditions. Within this 

study, she first conducted three pilot studies to test and refine her experimental design 

(Figure 2).  In the first pilot study, participants had to watch an animation (first person 

perspective of a walk around a forest) with and without sound (the sound’s tempo was 

either slow or fast and was randomly chosen). Participants completed a questionnaire after 

the study and were also asked to choose which of the two versions (the one with or 

without sound) of the animation they perceived lasted longer and in which of the two 

animations, the velocity of the motion involved in the scene was higher. Only two of the 

12 participants realized that the visual part of both the animations they had watched was 

the same (with respect to duration and motion speed) and only another two of the 

participants replied that they found the motion faster in the silent animation. 

 

	

Figure 2. The experimental design of Mastoropoulou 2004. Reprinted from [Mastoropoulou, 2004] 
 

In her second pilot study, Mastoropoulou [2004], focused on the participants perception 

of the scene velocity of the animated sequences. To avoid any viewing order effects 

(preconditioning, training due to previous exposure, etc.), different animations of scenes 

with similar content were displayed in pairs. In each pair, one animation was silent and 

the other contained background music of high tempo and distinctive rhythmic quality. All 

of the animations used were based on two sequences of images that were slowed down to 
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obtain the various slower frame rate versions. The camera was moving at exactly the same 

speed (i.e., same scene velocity) and followed the exact the same motion path, thus the 

animations had exactly the same duration and the same motion characteristics. Only two 

of the 13 participants correctly recognized the animation with the faster motion implying 

that the audio did effect the velocity perception. 

 

A third pilot study was conducted in 2004 to determine the two music clips that would be 

used within the main experiment. The candidate clips for the “fast tempo, exciting” music 

clip were excerpts from rap musical pieces, which were rated in terms of fast tempo and 

highly rhythmic quality. The candidates for the “slow tempo, relaxing” music clip were 

excerpts from music pieces used for relaxation and meditation and were rated in terms of 

slow tempo and relaxing quality. 

In Mastoropoulou’s [2004], main study, participants were informed that they should 

carefully watch two computer-generated animations, one silent and one accompanied by 

music (except for the control group that watched two silent movies), in random order, and 

when finished, they would have to answer some questions. In the questionnaire, 

participants were asked which of the two versions of the animation lasted longer and 

which of the two versions contained a higher scene velocity. They also had to comment 

on the music and more specifically, whether they liked it and if so, how much, whether 

they found it relaxing or exciting, and whether it was familiar to them or not.  

 

The results from Mastoropoulou’s [2004], work has shown that slow tempo-relaxing 

music has an opposite effect than her expected effect and that the coupling of an animated 

sequence with an arbitrary music of high tempo cannot universally create the impression 

that the scene temporal rate is higher and therefore that the duration of the audio-visual 

clip is shorter.  

 

However, based on her initial study described above, Mastoropoulou [2005], conducted 

another study where she hypothesized that it would be more difficult for participants to 

distinguish differences in the motion smoothness between audio-visual composites than 

between silent animations. Two conditions were considered: i) “sound”, and ii) “no 
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sound” (control condition). It was also hypothesized that familiarity with animated 

computer graphics would help the participants perform the experimental task more 

efficiently than participants without any prior experience. 

 

During each session, participants viewed pairs of clips depicting walkthroughs, one after 

the other, and after viewing each pair, their task was to indicate which of the two 

walkthroughs they perceived had smoother motion. The two clips in each test pair had the 

same visual content, but were rendered at varying frame rates (either different or the same 

within each pair) and one of the sounds condition was applied. 

 

Results of this study showed that participants with computer graphics familiarity were 

generally better at distinguishing differences in motion across both conditions. However, 

in the presence of sound, not even those with computer graphics familiarity could escape 

the influence of the sound effects. More specifically, the type of sound effect can be used 

to differentiate between different frame-rates. The null hypothesis that stated there is no 

difference between silence and sound effects regarding the ability of the viewer to detect 

smoothness/jerkiness variations was rejected.  

 

Hulusic [2010], presented a method for reducing the amount of effort required to render 

the visual aspects of a game by exploiting movement related-sound effects. A detailed 

psychophysical experiment was conducted to investigate how camera movement speed 

and sound affects the perceived smoothness of an animation.  There were two-research 

hypotheses analyzed in Hulusic’s experiment, the first being that the camera movement 

speed will affect smoothness perception and the second being that sound effects arising 

from the virtual footsteps of a participant affect the perception of animation smoothness. 

Results indicate that walking (slow) animations were perceived as smoother than running 

(fast) animations. It was also found that the addition of sound effects, such as footsteps, to 

a walking/running animation, affects the animation smoothness perception. When a 

running footstep sound was applied to a walking (slow) animation, participants perceived 

the animation to be faster. 
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In a related study conducted by Jumisco [2009], it was observed that computer generated 

image quality is different than participant perceived visual quality. More specifically, 

participants did not perceive the quality of an image to be as good as the corresponding 

rendered version of it. He conducted a qualitative study in which participants had to rate a 

computer created image and the scores where compared against the rates of the real 

image. He also proposed that in the future, further research regarding stereoscopic 3D 

rendered images is needed. He also proposed that a better understanding of multimodal 

dynamic perception could lead to new possibilities for technical quality optimization.  

 

Bonneel et al. [2010], examined the influence of the level of detail of auditory and visual 

stimuli in the perception of audio-visual material rendering quality.  In each trial of their 

experiment, participants were presented with two sequences, each sequence of an object 

falling on a table, bouncing twice and producing audible bounce sounds.  One of the 

sequences was a reference (highest quality with respect to sound and graphics), while for 

the other sequence, auditory and visual levels of detail varied (auditory level detail was 

defined with respect to modal synthesis while visual level of detail was defined with 

respect to the bidirectional reflection distribution function (BRDF).  The participants’ 

task for each trial was to rate, on a scale between 0 and 100, the similarity of the falling 

objects in the two sequences.   They observed significant interactions between visual and 

auditory level of details and the perceived material quality.  In other words, visual level of 

detail was perceived to be higher as the auditory level of detail was increased. 

 

2.3 Summary 
 

Perception in the real world is multi-sensory and thus any serious game and virtual 

simulation should include an appropriate level of realism associated with each of the 

senses, including any cross-modal effects [Chalmers, 2003]. Seitz [2006], demonstrated 

that a multisensory training procedure facilitates visual learning and results in 

significantly faster learning than unisensory visual training. Furthermore, Shams [2008], 

proposed that training protocols that only involve unisensory stimulus, are not as effective 

as those that involve multisensory stimuli. The benefits on multisensory training over 
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unisensory training have been demonstrated through various studies whose results 

indicate that a within multisensory training environment presence and immersion are 

increased [Seitz, 2006], and it may lead to an increase in the perception of quality, both of 

which may ultimately improve transfer. 

 

The first attempt to provide a multisensory environment within a simulation was made by 

Morton Heilig’s Sensorama of the early 1960’s [William et al., 2003], which presented 

stereoscopic 3D images and included user movement, stereo sound, wind and aromas. 

Unfortunately Heilig was unable to find financial backing for his device and nothing 

further was developed [Chalmers, 2009].  As described above, there has been 

considerable previous work regarding the effects of audio-visual interactions.  However, 

little work has considered the effect of sound on visual quality perception. Given the 

potential computational savings which may arise if sounds can in fact lead to an increase 

in visual quality perception, it was decided that within the scope of this thesis, the effect 

of visual quality perception in the presence of ambient (background) auditory stimuli. The 

decision to investigate this was supported by the fact that serious games and virtual 

simulations will typically include visual and the auditory cues (haptic cues are also 

becoming more widely used but are not considered here).   

 

With respect to “image quality” there are few studies that have proposed methods to 

measure image quality and factors that could affect it.  Sullivan [2009], proposed to 

measure visual quality based on the physic parameters of the animations presented to the 

participants (i.e., physics-based laws). Han [2005], measured brain activity under different 

visual conditions (i.e., human movies, cartoon clips, etc.), and observed that different 

neurological and functional processes were engaged with respect to perceiving quality in 

the real and virtual world. In terms of factors that could affect visual quality, Chen [2008], 

established that environment lighting is fundamental on the visual quality appearance. 

 

The second dimension that will be analyzed within the scope of this thesis is audition. 

However, in contrast to the visual dimension, within the scope of this thesis, auditory 

quality will not be examined; auditory cues here will only be used to determine whether 
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or not they can affect visual quality perception. With respect to auditory cues, there are 

several studies have examined their effect on other modalities [Woods 2010; Conrad et 

al., 2010]. It has also been well established that sound (and music in particular), can effect 

moods, emotions and behavior of both individuals and groups, and music is considered to 

lie on a continuum from highly stimulating and invigorating to soothing or calming 

[Gaston 1968; Hallam et al., 2002].  Finally sound and music can also influence task 

performance.  For example, a study by Morsbach et al. [1986], determined that the cries 

of an infant distracted listeners who were instructed to pay attention to a simple cognitive 

task.  Building on this study, Chang and Thompson [2011], proposed a study to test the 

effects of different sounds on a task performance. They applied different auditory cues 

(non-related to the task) and measured the level of distraction that the participants showed 

due to the auditory cues while performing a math-based task. Results showed that 

participants were more distracted by the sound that involves human vocalization than the 

ones that had no vocalization involved. 

 

Conrad et al. [2010], examined the effect of background sound (including classical music 

(Mozart), and heavy metal music to induce “auditory stress”) on laparoscopic surgery. 

They found that stressful music (e.g., heavy metal) had a negative impact on the time 

required to complete a laparoscopic task (task completion time) but it did not impact task 

accuracy. They also found that classical music had a variable effect on task completion 

time but resulted in greater task accuracy across all participants (laparoscopic surgeons). 
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3 CHAPTER 3 – EXPERIMENTS 
 
 
Within the scope of this thesis, seven experiments were conducted, each building upon the 

previous one. The first six experiments were conducted to develop a greater 

understanding of audio-visual cue interaction and more specifically, the effect of ambient 

auditory cues (both contextual and non-contextual with respect to the visual scene) on 

visual quality perception defined with respect to polygon count and texture resolution 

within both stereoscopic 3D (S3D) and non-S3D viewing environments.  In addition, to 

examining the audio-visual interaction, the final experiment also considered the effect of 

auditory cues on the time required to complete a simple task within a virtual environment. 

 
A summary of the experimental conditions are as follows: 
 
 
 Sensory integration (audio-visual) with non-contextual auditory cues: 

. 
 

1. Visual quality defined with respect to polygon-count with non-contextual 

ambient auditory conditions. 

2. Visual quality defined with respect to texture resolution with non-contextual 

auditory conditions. 

 

 Sensory integration (audio-visual) given by the type of visual presentation 

(stereoscopic 3D): 

  

3. Visual quality defined with respect to polygon count (within a stereoscopic 3D 

viewing environment) with non-contextual ambient auditory conditions. 

4. Visual quality defined with respect to texture resolution (within a stereoscopic 

3D viewing environment) with non-contextual auditory conditions. 
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 Sensory integration (audio-visual) with contextual auditory cues: 

 

5. Visual quality defined with respect to texture resolution with contextual 

auditory conditions. 

6. Visual quality defined with respect to texture resolution (within a stereoscopic 

3D viewing environment) with contextual auditory conditions.  

 

 Sensory integration (audio-visual) while performing goal directed actions:  
 

7. Visual quality defined with respect to scene blurriness under both contextual 
and non-contextual auditory cues. 

 
Greater details regarding each of the experiments are presented below. 
 
 

3.1 GENERAL CONDITIONS 

 

3.1.1 Participant Recruitment 

Participants recruited in all seven experiments were all students at the University 

of Ontario Institute of Technology (across various faculties including the Faculty 

of Business and Information Technology, faculty of Health Sciences, Faculty of 

Engineering and Applied Sciences, Faculty of Faculty of Social Science and 

Humanities, Faculty of Energy Systems and Nuclear Science, and Faculty of 

Education) but none of them were enrolled in any of the courses taught by Dr. Bill 

Kapralos (or any of the other researchers involved in this work).  None of the 

students were also enrolled in any of the courses for which I was a Teaching 

Assistant for. Participants did not have to meet any special requirement to 

participate in our studies, in terms of previous knowledge or familiarity with the 

technology and they did participate on a strictly voluntary basis (i.e., they were not 

compensated in any way). All of the participants were verbally asked (by the 

experimenter) if they had any auditory or visual disabilities, and none of the 

participants reported any. In all of the seven experiments, the age range of the 
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participants was between 19 and 23 years.  All of the experiments conducted 

within the scope of this thesis abided by the University of Ontario Institute of 

Technology Research Ethics Review process and the Helsinki Declaration. 

3.1.2 Experimental Setup 

All visual conditions were presented to the participants on an Acer Aspire laptop 

with a 15.6” screen size and a resolution of 1366 × 768. The size of each image 

within the display was 800 × 630.  The auditory stimuli were presented over  a pair 

of Sony MDR 110LP headphones. The distance between the chair where the 

participants were seated and the table where the laptop was placed, was always the 

same (50cm from the back legs of the chair to the table).  Participants were not 

allowed to move the chair but the distance of the participants to the screen was not 

always the same due to leaning backward and forward movements; although 

participants were asked to limit movement, such movements were not explicitly 

controlled. The experiments took place in a large university laboratory (room 

dimensions of 40.0 m × 20.0 m × 9.5 m).  Although the room itself contained a 

variety of equipment including workstations, tables, chairs, etc., for the duration of 

the experiment effort was taken to limit the amount of external noise (e.g., 

equipment not used in the experiment was turned off) and aside from the 

participant and experimenter, no one else was present in the room. The average 

background noise level, also measured at the location where the participant's head 

would be (and measured in the absence of the sound stimulus) was 57 dBA (the 

maximum and minimum background noise level was 63 dBA and 55 dBA 

respectively). Participants were not informed of how many trials they had to run 

during the experiments but prior to the experiment, they were  told that the 

experiment could take up to approximately 40 minutes.  

 

With respect to the 3D stereoscopic experiments, the stereoscopic 3D “depth” 

setting on the Acer Asipre laptop was set to “Default” which, on a scale of 0-15, 

represents a setting of 3. Depth is the only modifiable stereoscopic-related 

parameter within the NVIDIA stereoscopic 3D system; other stereoscopic-related 
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parameters were not available to modify. It was observed that participants went 

through an ”adaptation stage” during the first three to four trials whereby they 

moved their heads trying to find the best spot in which the 3D stereoscopic effect 

could be perceived. Participants were allowed to do this and we did not attempt to 

control for such movements.  

 

3.1.3 Experimental Variables. 

3.1.3.1 Controlled Variables 
 

 Visual Variables 
 

With respect to visual conditions, visual quality was defined by polygon count and 

texture resolution (see Section 3.1.4), visual quality was also defined with respect 

to “blurriness” in Experiment 7 to approximate texture resolution variation. The 

visual environment within the virtual environment used in Experiment 7 was too 

complex and would therefore require far too much time to vary the texture 

resolution of all the models within the environment.   

 

 Auditory Variables 

 

With respect to the auditory cues, only the type of sound delivered to the 

participants was varied (see Section 3.1.5). The “no sound” condition (where the 

visuals were presented alone, without sound) formed  the control condition.  

 

3.1.3.2 Non-controlled Variables 
 

Aside from the controlled variables described above,  there were other variables 

whose effect was not explicitly tested. 
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With respect to visuals, such non-controlled variables include: the size or 

brightness of the screen (laptop monitor), the distance between the participants and 

the screen, and the different types of display technology (LCD, LED, etc.). 

Furthermore, visual quality was varied with respect to polygon count and texture 

resolution only despite the fact that visual quality can also be affected by lighting 

and shadow effects for example which were not addressed within the scope of this 

thesis.   

 

With respect to the auditory conditions, there were many non-controlled variables 

that were not addressed within the scope of this thesis include sound level 

(volume) , loudspeaker effects (we decided to use headphones over loudspeakers), 

quantization levels, sampling frequency (both of which were kept constant at 16-

bit and 44.1 kHz respectively).  Furthermore, the sounds in all of our auditory 

conditions were complex; simple sounds (e.g., pure tone, sound from a single 

instrument) were not considered.   

 

3.1.4 Visual Stimuli 

 
Rendered model of a surgeon’s head (the rendering was varied with respect 
to polygon count). 

 
This condition consisted of six static images of a single surgeon’s head (see Figure 

3).  As described in Table 3, the quality of each image varied with respect to 

polygon count only; everything else remained the same (texture resolution, etc.) 

but the number of polygons comprising the model of the surgeon’s head was 

varied. Images were presented on an Acer Aspire laptop with a 15.6” screen size 

and a resolution of 1366 × 768. The size of each image within the display was 800 

× 630.  When displayed, the image remained static (i.e., participants were not able 

to interact with the image in any manner).   
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Figure 3. Visual stimuli. Six renderings of a surgeon's head, each varying with respect to polygon 
count. 

 
 

Image/Model Polygon Count 
1 17,440 
2 13,440 
3 1,250 
4 865 
5 678 
6 548 

 
 

Table 3. Polygon count for each of the six surgeon head models considered. 
 

 
 
Rendered model of a surgeon’s head (the rendering was varied with texture 
resolution). 

 
 

This condition consisted of six images of a single surgeon’s head (see Figure 4). 

The model of the surgeon’s head was comprised of 17,440 polygons but for each 

of the six images, visual quality was varied with respect to texture resolution (see 

Table 4) only while all other parameters, including polygon count and image size, 

remained the same. Images were presented on an Acer Aspire laptop with a 15.6” 

screen size and a resolution of 1366 × 768. The size of each image within the 
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display was 800 × 630.  When displayed, the image remained static (i.e., 

participants were not able to interact with the image in any manner).   

 

 
 
 

Figure 4. Surgeon's head textured with varying resolution texture. 
 

Image/Model Texture Resolution 
1 1024 × 1024 
2 512 × 512 
3 256 × 256 
4 128 × 128 
5 64 × 64 
6 32 × 32 

 
 

Table 4. Texture Resolution for each model in each of the six images. 
 
 

Rendered model of a surgeon’s head, upper body, and surgical drill (the 
rendering was varied with respect texture resolution). 

 

This condition consisted of six images of a surgeon’s upper body holding a 

surgical drill (see Figure 5). The 3D model of the surgeon’s upper body was 
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comprised of 13,656 triangles, the drill consisted of 4,586 triangles, and the drill 

bit consisted of 616 triangles. For each of the six images, quality was varied with 

respect to texture resolution only (see Table 5) while all other parameters, 

including polygon count and image size, remained the same. Images were 

presented on an Acer Aspire laptop with a 15.6” screen size and a resolution of 

1366 × 768. The size of each image within the display was 800 × 630. 

 

 

 

 

Figure 5. Surgeon's upper body holding an orthopaedic drill model. 
 

Image/Model Texture Resolution 
1 1024 x 1024 
2 512 x 512 
3 256 x 256 
4 128 x 128 
5 64 x 64 
6 32 x 32 

 
 

Table 5. Texture resolution for each model in each of the six images. 
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3.1.5 Auditory Stimuli 

 
Non-contextual auditory stimuli. 

 
The non-contextual auditory stimuli consisted of four ambient (background) sound 

conditions (non-related to the visual scene): i) no sound at all, ii) white noise, iii) 

classical music (Mozart), and iv) heavy metal music (similar to the work described 

in [Woods and Conrad, 2011]). The white noise sound was sampled at a rate of 

44.1 kHz and band-pass filtered using a 256-point Hamming windowed FIR filter 

with low and high frequency cut-offs of 200 Hz and 10 kHz respectively. The 

level of each of the sounds was normalized (using the “normalize multiple audio 

tracks” option of the Audacity audio editor software) to ensure that all sounds had 

the same peak level. The sound pressure level of the output sounds was 66dB 

(about the same level as typical conversation [Morfey, 2005]) measured with a 

Radio Shack sound level meter (model 33-2055). All auditory stimuli were 

monophonic and were output with a pair of Sony MDR 110LP headphones. 

 
Contextual auditory cues. 
 

In addition to the four non-contextual cues described above, several of the 

experiments included contextual auditory cues (contextual with respect to the 

visuals). The three contextual auditory conditions were: v) surgical drill sound, vi) 

operating room ambiance mixed with a surgical drill sound, and vii) operating 

room ambiance without the drill sound.  The operating room ambiance sound 

included machines beeping, doctors and nurses talking, and was purchased from 

AudioSparx.com and the operating room ambiance + drill sound was made by 

mixing the operating room ambiance sound with a recording of an actual drill 

sound (it was mixed using the Audacity audio editor software).  The recording was 

made in an Eckel audiometric room to limit any external noise (air condition 

“hums”, etc.) and reverberation of the generated sounds within the environment, at 

a sampling rate of 44.1 kHz.  As with the non-contextual auditory cues described 

above, the white noise sound was sampled at a rate of 44.1 kHz and band-pass 

filtered using a 256-point Hamming windowed FIR filter with low and high 



44 
 

frequency cut-offs of 200 Hz and 10 kHz respectively. The level of each of the 

sounds was normalized (using the “normalize multiple audio tracks” option of the 

Audacity audio editor software) to ensure that all sounds had the same peak level. 

The sound pressure level of the output sounds was 66dB (about the same level as 

typical conversation [Morfey, 2005]) measured with a Radio Shack sound level 

meter (model 33-2055). As with the non-contextual auditory stimuli, all auditory 

stimuli were monophonic and were output with a pair of Sony MDR 110LP 

headphones. 

 

3.1.6 Experimental Method 

 
Non-contextual auditory cues experimental design (Experiments 1-4) 

 

Prior to the start of the experiment, participants were presented with a brief 

questionnaire and were asked to answer several questions regarding their video 

game play habits.  The experiment began immediately following the completion of 

the questionnaire.  For each trial, participants were presented with one of the six 

images shown on either Figure 3 or Figure 4 (depending on how visual quality 

was defined) in conjunction with one of the four non-contextual background sound 

conditions described in Section 3.1.1 and their task was to rank the image with 

respect to their perceived visual quality on a scale from 1 (lowest perceived 

quality) to 7 (highest perceived quality).  Each of the six images and each of the 

four background sound combinations (24 combinations in total) was repeated 

three times (total of 72 trials).    

 

 

Contextual auditory cues experimental design (Experiments 5 and 6) 
 

As with the non-contextual auditory cues experiments described above, prior to 

the start of the experiment, participants were presented with a brief questionnaire 

regarding their video game play habits. The experiment began immediately 

following the completion of the questionnaire. In each trial, participants were 
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presented with one of the six images in conjunction with one of the seven 

contextual ambient sound conditions described in Section 3.1.2. Their task was to 

rank the image with respect to their perceived visual quality on a scale from 1 

(lowest perceived quality) to 7 (highest perceived quality). Each of the six images 

and each of the seven background sound combinations (42 combinations in total) 

was repeated three times for a total of 126 trials. All participants completed the 

experiment within a single session. 

 

3.2 Experiments 
 

Sensory Integration (Audio-Visual) with Non-Contextual 
Auditory Cues. 
 

3.2.1 Experiment 1: Visual quality defined with respect to polygon-count 
with non-contextual ambient auditory conditions. 

 

Participants 
 

Participants consisted of unpaid student volunteers from the University of Ontario 

Institute of Technology.  A total of 18 (9 male and 9 female) volunteers 

participated in the experiment (average age was 21).  

 
 
 

Visual Stimuli 
 
The visual stimuli were given by the “rendered model of a surgeon’s head varied 

with polygon count” condition described in Section 3.1.1.  

 

Auditory Stimuli 

 

The auditory stimuli were given by the “non-contextual auditory stimuli” 

described in Section 3.1.2. 
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Experimental Method 

 

The experimental method used was the “non-contextual auditory cues 

experimental design” described in Section 3.1.3. 

 

Results 
 
Questionnaire 
 
As previously described, the experiment began with a brief questionnaire that 

gauged participants’ video game habits.  The first question asked whether they 

play video games or not and 14 of the 18 participants (78%) did report playing 

video games.  For those that did report playing video games, the average number 

of hours per week spent playing video games was 2.4 hours, six of them reported 

they primarily played console-based video games, six of them primarily played 

PC-based video games, and two of them primarily played video games on their 

mobile phone.  The questionnaire then asked participants to rate several video 

game attribute according to their importance on a 7-point scale (1 being least 

important and 7 being most important).  A summary of the average ratings for 

each of the attributes is provided in Table 6 and as shown, graphics and sound 

received the highest scores (4.0 and 3.8 respectively) indicating participants 

believed they are the two most important attributes.  Participant game preferences 

did not appear to impact experimental and therefore, will not be discussed further.  

 

 

 

Video Game Attribute 
Avg. “Importance”  

( /7.0) 
Graphics/visuals 4.0 
Sound 3.8 
Interaction 1.7 
Story/narrative 3.1 
Level of challenge/difficulty 2.9 

 
Table 6. Experiment 1. Summary of the video game attribute importance. 
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Experiment 
 
A summary of the results is presented in Figure 6 where the x-axis represents 

polygon count and the y-axis represents perceived visual quality (ranging from 1-7) 

and on Table 7. The analysis of variance (ANOVA) was selected as the statistical 

model with two factors: 6 visual conditions (static images of a model of a 

surgeon’s head, varying with respect to the number of polygons used to represent 

the model) × 4 auditory conditions: i) no sound at all, ii) white noise, iii) classical 

music, and iv) heavy metal music.  

 

The results of the two way ANOVA (ambient sound by visual (image)) revealed 

significant main effects for sound (F=12.118, p = .001) and image (F=33.09, p 

=.001) in addition to the interaction between these two terms (F=14.374, p = .005).  

Since I was interested in the effect of ambient sound on the perception of visual 

quality, the two-way interaction was further analyzed by six subsequent one-way 

ANOVAs with sound as a factor, one for each of the visual conditions (polygon 

count).   

 

The analysis for the model with a polygon count of 17,440 revealed significant 

results (F(6)=34.503, p=.001).  Subsequent post-hoc comparisons (Tukey HSD) 

revealed that classical music auditory condition influenced the perception of this 

visual; in contrast to the other three auditory conditions, the perception of visual 

quality increased in the presence of classical music auditory condition  (p<.001), 

which did not differ from each other (p<.05 for all).  The analysis for the model 

with a polygon count of 13,440 revealed significant results (F(6)=32.531, p<.001). 

Subsequent post-hoc comparisons (Tukey HSD) revealed that the classical music 

auditory condition led to an increase in the perception of visual quality (p<.001) 

when compared to other three auditory conditions (which did not differ from each 

other (p<.05 for all)).  The analysis for the model with a polygon count of 1,250 

significant results (F(5)=8.752, p<.001). Subsequent post-hoc comparisons (Tukey 

HSD) revealed that the classical music auditory condition resulted in an increase 

in the perception of visual image quality when compared to the other images 
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(p<0.001) which did not differ from each other (p<.05 for all).  The analysis for 

the model with a polygon count of 865 showed significant results (F(5)=11.705, 

p<.001). Subsequent post-hoc comparisons (Tukey HSD) revealed that the 

classical music auditory condition influenced the perception of visual quality 

causing it to be higher in quality than the other sounds (p<.001) (which did not 

differ from each other (p<.05 for all)). 

 

The analysis for the model with a polygon count of 678 revealed significant results 

(F(5)=34.503, p=.001).  Subsequent post-hoc comparisons (Tukey HSD) revealed 

that white noise auditory condition influenced the perception of this visual; in 

contrast to the other three auditory conditions, the perception of visual quality 

decreased in the presence of white noise  (p<.001), which did not differ from each 

other (p<.05 for all). 

 

The analysis for the model with a polygon count of 548 (the lowest polygon count) 

did not reveal any significance (F(5)=.372, p=.073) suggesting that sound did not 

have any influence on the perception of visual quality for the model with the 

lowest polygon count.   

 

In summary, the heavy metal music and no sound ambient auditory conditions 

showed no influence on visual quality perception. Classical music led to an 

increase in visual quality perception. Finally, the white noise auditory condition 

had an attenuating effect on the perception of the visual quality. More specifically 

for the visuals with polygon counts between 17,440 and 885, the classical music 

auditory condition led to an increase in the perceived visual quality. Meanwhile, 

the white noise auditory condition had an attenuating effect on the perception of 

the quality for the visual with polygon counts of 885 and 548. The heavy metal 

music auditory condition was not statistically different from the no sound auditory 

condition. 
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Figure 6. Experiment 1 results. Image quality (polygon count) vs. perceived quality (images 

presented individually). 
 

Image # Sound Mean Std. Deviation 

1 

No Sound 3.759 0.439 
White Noise 3.833 0.574 
Classical Music 5.555 0.615 
Metal Music Sound 4.092 0.521 

2 

No Sound 3.574 0.339 

White Noise 3.685 0.620 
Classical Music 5.388 0.551 
Metal Music Sound 4.166 0.607 

3 

No Sound 3.074 0.436 
White Noise 3.370 0.469 
Classical Music 4.814 0.538 
Metal Music Sound 3.203 0.444 

4 

No Sound 2.629 0.441 
White Noise 2.296 0.426 
Classical Music 3.055 0.446 

Metal Music Sound 2.333 0.427 

5 

No Sound 2.944 0.707 
White Noise 1.925 0.405 
Classical Music 2.962 0.377 
Metal Music Sound 3.259 0.554 

6 

No Sound 1.388 0.171 
White Noise 1.611 0.328 
Classical Music 1.796 0.345 
Metal Music Sound 1.703 0.570 

 
Table 7. Experiment 1 results.  Mean and Standard Deviation.  

 



50 
 

3.2.2 Experiment 2: Visual quality defined with respect to texture 
resolution with non-contextual auditory conditions. 

Participants 
 

Participants consisted of unpaid student volunteers from the University of Ontario 

Institute of Technology.  A total of 18 (7 male and 11 female) volunteers 

participated in the experiment (average age was 20).  

 

Visual Stimuli 

 

The visual stimuli were given by the “rendered model of a surgeon’s head varied 

with respect to texture resolution” condition described in Section 3.1.1.  

 

Auditory Stimuli 

 

The auditory stimuli were given by the “non-contextual auditory stimuli” 

described in Section 3.1.2. 

 

Experimental Method 

 

The experimental method used was the “non-contextual auditory cues 

experimental design” described in Section 3.1.3. 

 

Results 
 
Questionnaire 
 
The experiment began with a brief questionnaire that gauged participants’ video 

game habits.  The first question asked whether they play video games or not and 

15 of the 18 participants (83%) did report playing video games.  For those that did 

report playing video games, the average number of hours per week spent playing 

video games was 3.7 hours, eleven of them reported they primarily played 

console-based video games, three of them primarily played PC-based video games, 

and one of them primarily played video games on their mobile phone.  The 
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questionnaire then asked participants to rate several video game attribute 

according to their importance on a 7-point scale (1 being least important and 7 

being most important).  A summary of the average ratings for each of the 

attributes is provided in Table 8 and as shown, graphics and sound received the 

highest scores (4.5 and 3.4 respectively) indicating participants believed they are 

the two most important attributes.  Participant game preferences did not appear to 

impact experimental and therefore, will not be discussed further.  

 

 

Video Game Attribute 
Avg. “Importance” ( 

/7.0) 
Graphics/visuals 4.5 
Sound 3.4 
Interaction 1.2 
Story/narrative 2.7 
Level of challenge/difficulty 3.2 

 
Table 8. Experiment 2. Summary of video game attribute importance. 

 
 
Experiment 

 
A summary of the results is presented in Figure 7 where the x-axis represents 

texture resolution and the y-axis represents perceived visual quality (ranging from 

1-7) and on Table 9. The analysis of variance (ANOVA) was selected as the 

statistical model with two factors: 6 visual conditions (static images of a model of 

a surgeon’s head, varying with respect to the number of polygons used to 

represent the model) × 4 auditory conditions: i) no sound at all, ii) white noise, iii) 

classical music, and iv) heavy metal music.  

 

The results of the two way ANOVA (ambient sound by visual (image)) revealed 

significant main effects for sound (F=8.610, p = .001) and image (F=10.530, p 

=.001) in addition to the interaction between these two terms (F=4.694, p = .003).  

Since I was interested in the effect of ambient sound on the perception of visual 

quality, the two-way interaction was further analyzed by six subsequent one-way 

ANOVAs with sound as a factor, one for each of the visual conditions (polygon 

count).   
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The analysis for the model with a texture resolution of 10124 × 1024 revealed 

significant results (F(5)=13.071, p=.001).  Subsequent post-hoc comparisons 

(Tukey HSD) revealed significant influence over the quality perception for all the 

conditions but no sound condition. The classical music and heavy metal music 

auditory conditions increased the perception of the visual quality; in contrast to the 

other three auditory conditions (which did not differ from each other (p<.05 for 

all)). The white noise auditory condition led to a decrease in the perceived visual 

quality when compared to the other auditory conditions (which did not differ from 

each other (p<.05 for all)).  The analysis for the model with a polygon count of 

512 × 512 revealed significant results (F(5)=14.360, p<.001). Subsequent post-hoc 

comparisons (Tukey HSD) revealed that the classical music and heavy metal 

music auditory conditions led to an increase in the perception of visual quality 

(p<.001) when  compared to other auditory conditions (which did not differ from 

each other (p<.05 for all)). The white noise auditory condition led to a decrease in 

the perceived visual quality when compared to the other auditory conditions 

(which did not differ from each other (p<.05 for all)).   The analysis for the model 

with a polygon count of 256 × 256 indicated significant results (F(5)=14.306, 

p<.001). Subsequent post-hoc comparisons (Tukey HSD) revealed that the 

classical music and heavy metal music auditory conditions resulted in an increase 

in the perception of visual quality perception when compared to the other images 

(p<0.001) (which did not differ from each other (p<.05 for all)), while the white 

noise auditory condition led to a decrease in the perceived visual quality (p<.001).  

The analysis for the model with a polygon count of 128 × 128 revealed significant 

results (F(5)=11.705, p<.001). Subsequent post-hoc comparisons (Tukey HSD) 

revealed that white noise auditory condition influenced the perception of this 

visual; in contrast to the other three auditory conditions, the perception of visual 

quality decreased in the presence of white noise auditory conditions (p<.001) 

(which did not differ from each other (p<.05 for all)). 
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The analysis for the model with a polygon count of 64 × 64 did not reveal  any 

significant results (F(5)=34.503, p=.001), suggesting that sound did not have any 

influence on the perception of visual quality for this specific model. The analysis 

for the model with a polygon count of 32 × 32 revealed significant results 

(F(5)=3.757, p=.001).  Subsequent post-hoc comparisons (Tukey HSD) revealed 

that the classical music and heavy metal music auditory conditions increased the 

perception of the visual quality; in contrast to the other three auditory conditions 

(which did not differ from each other (p<.05 for all)). 

 

In summary, the heavy metal music and classical music auditory conditions 

generally led to an increase in the perception of visual quality perception. More 

specifically, the influence is easily appreciated under the higher texture resolution 

conditions (1024 × 1024, 512 × 512, 256 × 256, and 128 × 128) in contrast to the 

effect shown on the lower resolution conditions. Finally, the white noise auditory 

condition had an attenuating effect on the perception of the visual quality across 

all texture resolutions considered.  

 
Figure 7. Experiment 2 results. Texture resolution (x-axis) vs. perceived visual quality (y-axis) across 

each of the four non-contextual auditory conditions considered. 
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Image # Sound Mean Std. Deviation 

1 

No Sound 4.44 0.316 
White Noise 2.67 0.320 
Classical Music 6.57 0.242 
Metal Music Sound 6.00 0.320 

2 

No Sound 5.00 0.320 
White Noise 2.67 0.320 
Classical Music 6.43 0.442 
Metal Music Sound 5.67 0.320 

3 

No Sound 5.33 0.320 
White Noise 1.71 0.288 
Classical Music 5.90 0.356 
Metal Music Sound 5.62 0.288 

4 

No Sound 2.67 0.320 
White Noise 1.71 0.288 
Classical Music 4.29 0.288 
Metal Music Sound 4.62 0.288 

5 

No Sound 2.67 0.320 
White Noise 1.76 0.242 
Classical Music 4.00 0.320 
Metal Music Sound 3.90 0.305 

6 

No Sound 2.05 0.288 
White Noise 1.19 0.171 
Classical Music 4.33 0.320 
Metal Music Sound 3.67 0.320 

 
Table 9. Experiment 2 results.  Mean and Standard Deviation. 

 
Sensory Integration (Audio-Visual) with Non-Contextual Auditory Cues Discussion 
(Polygon Count and Texture Resolution Variation vs. Non-Contextual Auditory 
Cues) 

 

Here the results of the first two experiments that examined perception of visual quality 

(with respect to polygon count and texture resolution) under four non-contextual related 

ambient (background) auditory conditions (with respect to the visual scene): i) no sound 

at all, ii) white noise, iii) classical music (Mozart), and iv) heavy metal music, were 

presented.  Results indicate that perception of visual quality is influenced by background 

sound.  

 

The findings presented here, and more specifically, that ambient (background) sound can 

effect perception is supported by previous studies.  Woods et al. [2008], investigated the 

effect of background sound (noise) on the perception of food perception and more 
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specifically, on gustatory food properties (i.e., sugar level, salt level), food crunchiness 

and food liking.  They found background noise has three effects on food perception: i) 

food saltiness and sweetness was reduced in the presence of loud background noise, ii) 

food was “crunchier” in the presence of background noise, and iii) there was a correlation 

between the liking of the food and the liking of the noise.  Conrad et al. [2010], examined 

the effect of background sound (including classical music (Mozart), and dichaotic (metal) 

music) on laparoscopic surgery.  They found that dichaotic music had a negative impact 

on time until task completion but did not impact task accuracy.  They also found that 

classical music had a variable effect on time until task completion but resulted in greater 

task accuracy amongst all participants (laparoscopic surgeons). 

 

Based on the results presented here, it can be concluded that background ambiance music 

does affect visual quality perception. More specifically, when considering the higher 

quality visuals (defined both with respect to polygon count and texture resolution), the 

perception of visual quality increased in the presence of ambient sound consisting of 

either both classical music and heavy metal music auditory conditions.  In addition, 

ambient sound consisting of white noise led to a decrease in visual quality perception 

across all visuals conditions defined with respect to polygon count or texture resolution. 

However, as shown on the results from the Experiment 1 only classical music condition 

showed to increase the visual quality perception, and on Experiment 2 both classical and 

heavy metal music showed to increase visual quality perception.  

 

The results of the two studies presented so far are preliminary; although the results have 

shown that ambient sound can influence our perception of visual quality, there are many 

questions that must be considered before a greater understanding regarding the effect of 

audio-visual sensory integration and visual quality perception is developed. In addition to 

polygon count and texture resolution as considered in these two experiments, visual 

quality can be defined in many ways other ways including blurring of the scene.  Visuals 

can also be presented in stereoscopic 3D and in fact, the following set of experiments 

replicate these two experiments within a stereoscopic 3D viewing environment. 
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Sensory Integration (Audio-Visual) Given by the Type of Visual 
Presentation (Stereoscopic 3D vs. Non-Stereoscopic 3D) 

 

In the experiments described in this section, the effect of stereoscopic 3D visuals on 

visual quality perception when presented under specific ambient auditory cues is 

examined. This is accomplished by replicating Experiments 1 and 2 previously described 

within a stereoscopic 3D viewing environment. 

3.2.3 Experiment 3: Visual quality defined with respect to polygon count 
in a stereoscopic 3D viewing environment with non-contextual 
ambient auditory conditions 

Participants 
 

Participants consisted of unpaid student volunteers from the University of Ontario 

Institute of Technology.  A total of 18 (1 male and 17 female) volunteers 

participated in the experiment (average age was 21).  

 

Visual Stimuli 
 

The visual stimuli were identical to the visual stimuli of Experiment 1 (rendering 

of the surgeon’s head with varying polygon count (Section 3.1.1) but here, the 

visuals were presented in stereoscopic 3D. The Acer Aspire laptop used in this 

experiment (see Section 3.1.1) employs NVIDIA’s 3D Vision technology (active 

stereoscopic system with wireless glasses). The stereoscopic 3D “Depth” setting 

was set to “Default” which, on a scale of 0-15 (where 0 represents no stereoscopic 

3D effect and 15 represents the maximum), the “Default” setting is set to 3. Depth 

is the only modifiable stereoscopic-related parameter within the NVIDIA 

stereoscopic 3D system; other stereoscopic-related parameters are not available. 

Each 3D visual was presented with its corresponding background sound until the 

participant made a choice. When displayed, participants were able to rotate the 3D 

model.   
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Auditory Stimuli 

 

The auditory stimuli were given by the “non-contextual auditory stimuli” 

described in Section 3.1.2. 

 

Experimental Method 

 

The experimental method used was the “non-contextual auditory cues 

experimental design” described in Section 3.1.3. 

 

Results 
 
Questionnaire 
 
The first question asked whether or not participants regularly played video games 

(in order to determine their regular use of computer-animated figures): 9 of the 18 

participants (50%) played video games regularly. Of these participants, the 

average number of hours per week spent playing video games was 2.7 hours 

(minimum one hour and maximum 10 hours), six of them reported they primarily 

played console- based video games, two of them primarily played PC-based video 

games, and one of them primarily played video games on their mobile phone. 

When asked to indicate their video game genre preference (from a list of given 

genres), three of the participants prefer “Strategy” games, five “Sports” games and 

one “Shooter” games. The questionnaire then asked participants to rate several 

video game attributes according to their importance on a 7-point scale (1 being 

least important and 7 being most important). A summary of the average ratings for 

each of the attributes is provided in Table 10. Participant game and musical genre 

preferences did not appear to impact experimental results and therefore, will not 

be discussed further. 

Video Game Attribute 
Avg. “Importance” 

( /7.0) 
Graphics/visuals 4.5 
Sound 3.3 
Interaction 1.4 
Story/narrative 2.3 
Level of challenge/difficulty 3.5 

Table 10. Experiment 3. Summary of video game attributes.  
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Experiment 
 
A summary of the results is presented in Figure 8 where the x-axis represents 

polygon count and the y-axis represents perceived visual quality (ranging from 1-7) 

and on Table 11. The analysis of variance (ANOVA) was selected as the statistical 

model with two factors: 6 visual conditions (static images of a model of a 

surgeon’s head, varying with respect to the number of polygons used to represent 

the model) × 4 auditory conditions: i) no sound at all, ii) white noise, iii) classical 

music, and iv) heavy metal music. 

 The results of the two way ANOVA (ambient sound by visual (image)) revealed 

significant main effects for sound (F(2)=23.2, p = .001) and image (F(2)=35.84, p 

=.001) in addition to the interaction between these two terms (F(2)=2.13, p = .008).  

Since the effect of ambient sound on the perception of visual quality was of 

interest, the two-way interaction was further analyzed by six subsequent one-way 

ANOVAs with sound as a factor, one for each of the visual conditions (polygon 

count).   

 

 
Figure 8. Experiment 3. Polygon count (x-axis) vs. perceived visual quality (y-axis) across each if the 

four non-contextual auditory conditions considered. 
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Image # Sound Mean Std. Deviation 

1 

No Sound 5.055 0.826 
White Noise 3.740 0.371 
Classical Music 5.648 0.820 
Metal Music Sound 4.888 0.921 

2 

No Sound 4.574 1.571 
White Noise 3.611 0.383 
Classical Music 5.388 0.818 
Metal Music Sound 4.851 0.998 

3 

No Sound 4.000 1.357 
White Noise 3.592 0.554 
Classical Music 5.388 0.785 
Metal Music Sound 3.870 1.588 

4 

No Sound 3.981 1.345 
White Noise 3.518 0.460 
Classical Music 5.277 0.937 
Metal Music Sound 4.055 1.496 

5 

No Sound 3.666 1.409 
White Noise 3.462 0.486 
Classical Music 3.907 1.261 
Metal Music Sound 4.370 1.537 

6 

No Sound 2.444 1.778 
White Noise 2.500 0.383 
Classical Music 2.777 1.850 
Metal Music Sound 2.222 1.832 

 
Table 11. Experiment 3 results.  Mean and Standard Deviation. 

 

The analysis for the model with a polygon count of 17,440 revealed significant 

results (F(2)=19.562, p=.001).  Subsequent post-hoc comparisons (Tukey HSD) 

revealed that the white noise auditory condition influenced the perception of this 

visual; in contrast to the other three auditory conditions, the perception of visual 

quality decreased in the presence of white noise auditory condition (p<.001), 

which did not differ from each other (p<.05 for all).  The analysis for the model 

with a polygon count of 13,440 revealed significant results (F(5)=9.3, p<.001). 

Subsequent post-hoc comparisons (Tukey HSD) revealed that the white noise 

auditory condition led to a decrease in the perception of visual quality compared to 

other three auditory conditions (p<.001), all three of which did not differ from 
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each other (p<.05 for all).  The analysis for the model with a polygon count of 

1,250 revealed significant results (F(5)=8.752, p<.001). Subsequent post-hoc 

comparisons (Tukey HSD) revealed that the classical music auditory condition 

resulted in an increase in the perception of visual image quality when compared to 

the other images (p<0.001) which did not differ from each other (p<.05 for all).  

The analysis for the model with a polygon count of 865 revealed significant results 

(F(5)=7.912, p<.001). Subsequent post-hoc comparisons (Tukey HSD) revealed 

that the classical music auditory condition influenced the perception of visual 

quality causing it to be higher in quality than the other sounds (p<.001), which did 

not differ from each other (p<.05 for all). 

 

The analysis for the models with a polygon count of 678 and 548 (the two lowest 

polygon counts) did not reveal any significance (F(5)=1.77, p=0.16 and F(5)=.372, 

p=.773 respectively) indicating that ambient sound did not have any influence on 

the perception of visual quality for these two conditions (i.e., the two models with 

the lowest polygon counts).   

 

In summary, classical music led to an increase in visual quality perception. The 

heavy metal music auditory condition showed to increase the visual quality 

perception when compared against the no sound and the white noise ambient 

auditory conditions, however the effect is not as strong as classical music auditory 

condition. Finally, the white noise ambient auditory condition had an attenuating 

effect on the perception of the visual quality although this effect was evident only 

for the models whose polygon count was greater than 678. Ambient sound does 

influence higher quality visuals when presented in stereoscopic 3D.  
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3.2.4 Experiment 4 : Visual quality defined with respect to texture 
resolution in a stereoscopic 3D viewing environment with non-
contextual auditory conditions. 

Participants 

 

Participants consisted of unpaid student volunteer from the University of Ontario 

Institute of Technology (UOIT). A total of 18 volunteers (5 male and 13 female) 

participated in the experiment (average age was 20 years old).  

 

 

Visual Stimuli 
 

The visual stimuli were identical to the visual stimuli of Experiment 2 (rendering 

of the surgeon’s head with varying texture resolution (Section 3.1.1)) but here, as 

in Experiment 3, the visuals were presented in stereoscopic 3D. As with 

Experiment 3, the stereoscopic 3D “Depth” setting on the Acer Asipre laptop was 

set to “Default” which, on a scale of 0-15 represents a setting of 3. Depth is the 

only modifiable stereoscopic-related parameter within the NVIDIA stereoscopic 

3D system; other stereoscopic-related parameters are not available. Each 3D 

model was presented with its corresponding background sound until the 

participant made a choice. When displayed, participants were able to rotate the 

image.   

 

Auditory Stimuli 

 

The auditory stimuli were given by the “non-contextual auditory stimuli” 

described in Section 3.1.2. 

 

Experimental Method 

 

The experimental method used was the “non-contextual auditory cues 

experimental design” described in Section 3.1.3. 
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Results 
 
Questionnaire 
 
The first question asked whether or not participants regularly played video games 

(in order to determine their regular use of computer-animated figures): 16 of the 

18 participants (89%) played video games regularly. Of these participants, the 

average number of hours per week spent playing video games was 3.8 hours 

(minimum one hour and maximum 10 hours), six of them reported they primarily 

played console- based video games, seven of them primarily played PC-based 

video games, and three of them primarily played video games on their mobile 

phone. When asked to indicate their video game genre preference (from a list of 

given genres), six of the participants prefer “Strategy” games, five “Sports” games, 

four “Shooter” games, and one responded with “Other”. Participant game and 

genre preferences did not appear to impact experimental results and therefore, will 

not be discussed further. The questionnaire then asked participants to rate several 

video game attributes according to their importance on a 7-point scale (1 being 

least important and 7 being most important). A summary of the average ratings for 

each of the attributes is provided in Table 12 and as shown participants believed 

that graphics and sound are the two most important attributes. Participant game 

and musical genre preferences did not appear to impact experimental results and 

therefore, will not be discussed further. 

 

Video Game Attribute 
Avg. “Importance” 

( /7.0) 
Graphics/visuals 4.7 
Sound 4.3 
Interaction 2.9 
Story/narrative 2.9 
Level of challenge/difficulty 2.3 

 
Table 12. Experiment 4. Summary of video game attribute importance. 

 
Experiment 
 
A summary of the results is presented in Figure 9 where the x-axis represents 

texture resolution and the y-axis represents perceived visual quality (ranging from 

1-7) and on Table 13.  
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The results of the two way ANOVA (ambient sound by visual (image)) revealed 

significant main effects for sound (F=21.2, p < .001) and image (F=9.6, p <.001) 

in addition to the interaction between these two terms (F=5.18, p < .008).  Since 

the effect of the ambient sound on the perception of visual quality is of interest 

here, the two-way interaction was further analyzed by six subsequent one-way 

ANOVAs with ambient sound as a factor, one for each of the six visuals (images).  

These analyses showed that for model with the highest texture resolution (1028 × 

1028) the ANOVA yielded significant results (F(5)=4.823, p=.001).  Subsequent 

post-hoc comparisons (Tukey HSD) revealed that all ambient sound conditions 

influenced the perception of visual quality. The classical music ambient auditory 

condition (p<.001) led to an increase in the perceived visual quality when 

compared to the other conditions (p<.05 for all). The heavy metal music auditory 

condition led to an increase in the perceived visual quality when compared to the 

white noise and  no sound auditory conditions (p<.05 for both), but lead to a 

decrease in the perceived visual quality when compared to the classical music 

condition (p<.001), implying that the heavy metal music condition, despite it 

increases the visual quality perception is not as effective as the classical music 

auditory condition. The white noise auditory condition led to a decrease in the 

perceived visual quality (p<.001) when compared to the other conditions (p<.05 

for all). 

 

The analysis for the model with a texture resolution of 512 × 512 showed 

significant results (F(5)=29.3, p<.001). Subsequent post-hoc comparisons (Tukey 

HSD) revealed that all four ambient auditory conditions influenced the perception 

of visual quality compared to the other sounds (p<.05 for all). The classical music 

and heavy metal music auditory conditions led to an increase in perceived visual 

quality (p<.001) when compared to the other auditory conditions (p<.05 for all). In 

contrast, the white noise auditory condition led to a decrease in the perceived 

visual quality (p<.001) when compared to the other conditions (p<.05 for all). 
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The analysis for the model with a texture resolution of 256 × 256 showed 

significant results (F(5)=5.43, p<.001). Subsequent post-hoc comparisons (Tukey 

HSD) revealed that the white noise auditory condition led to a decrease in visual 

quality perception compared to the other sounds (p<.001), which did not differ 

from each other (p<.05 for all). 

 

The analysis for the model with a texture resolution of 128 × 128 showed 

significant results (F(5)=16.52, p<.001). Subsequent post-hoc comparisons (Tukey 

HSD) revealed that all four auditory conditions influenced the perception of visual 

quality (p<.001), which did not differ from each other (p<.05 for all).  The 

classical music auditory condition led to an increase in the perceived visual quality 

(p<.001).  The heavy metal music auditory condition also led to an increase in the 

perceived visual quality (p<.022) when compared to the other auditory conditions 

while the white noise auditory condition led to a decrease in the perceived visual 

quality (p<.001). 

 

The analysis for the model with a texture resolution of 64 × 64 showed significant 

results (F(5)=17.983, p<.001). Subsequent post-hoc comparisons (Tukey HSD) 

revealed that the white noise auditory condition led to a decrease in the perception 

of visual quality compared to the other auditory conditions (p<.001), which did 

not differ from each other (p<.05 for all). 

 

The analysis for the model with a texture resolution of 32 × 32 showed significant 

results (F(5)=29.3, p<.001). Subsequent post-hoc comparisons (Tukey HSD) 

revealed that all four auditory conditions influenced the perception of visual 

quality compared to the other auditory conditions (p<.05 for all). The classical 

music and heavy metal music auditory conditions led to an increase in perceived 

visual quality (p<.001) and (p<.022) respectively.  The white noise auditory 

condition led to a decrease in the perceived visual quality (p<.001). 
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In summary, there was a significant difference between the classical music 

auditory condition (resulted in the greatest perceived quality) and the other three 

auditory conditions.  There was also a significant difference between the white 

noise auditory condition and the other three auditory conditions (white noise led to 

a decrease in visual quality perception). The heavy metal music and no sound 

ambient auditory conditions had a similar influence on visual quality perception 

(i.e., no effect).  

 

 
Figure 9. Experiment 4 results. Texture resolution (x-axis) vs. perceived visual quality (y-axis) across 

each of the four non-contextual conditions considered. 
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Image # Sound Mean Std. Deviation 

1 

No Sound 3.759 0.439 
White Noise 3.833 0.574 
Classical Music 5.555 0.615 
Metal Music Sound 4.092 0.521 

2 

No Sound 3.574 0.339 
White Noise 3.629 0.635 
Classical Music 5.388 0.551 
Metal Music Sound 4.185 0.596 

3 

No Sound 3.074 0.436 
White Noise 3.314 0.491 
Classical Music 4.814 0.538 
Metal Music Sound 3.203 0.444 

4 

No Sound 2.629 0.441 
White Noise 2.296 0.426 
Classical Music 3.055 0.446 
Metal Music Sound 2.333 0.427 

5 

No Sound 2.944 0.707 
White Noise 1.925 0.405 
Classical Music 2.962 0.377 
Metal Music Sound 3.259 0.554 

6 

No Sound 1.388 0.171 
White Noise 1.611 0.328 
Classical Music 1.833 0.431 
Metal Music Sound 1.703 0.570 

 

Table 13. Experiment 4 results.  Mean and Standard Deviation. 
 

Audio-visual Sensory Integration Given by the Types of Visual Presentation 

Discussion (Stereoscopic 3D vs. Non-Stereoscopic 3D) 

 

The use of stereoscopic 3D within a gaming (and serious gaming) environment has been 

limited but it has been used extensively in virtual reality-based training simulations, most 

notably pilot training, where the depth perception it provides allows pilot trainees to 

assess complex 3D structures, and other aircraft positions while providing the ability to 

enhance group experience and group training while motivating the trainee to more deeply 

explore the learning material [Schiefele et al., 1999]. In addition to pilot training, 

stereoscopic 3D has been applied to virtual environments developed for surgical training 

[Tendick et al., 2000; Henn et al., 2002; Reitinger et al., 2006], and plant operator training 

[Fisk and Hill, 2010], amongst others. While S3D has the potential for increasing 
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engagement by providing the users with additional visual information (depth into and out 

of the screen plane), there are many issues that must be properly addressed when 

designing S3D serious games.  

 
Within a non-stereoscopic viewing environment, the results of Experiments 1 and 2 

suggest that our perception of visual quality is influenced by ambient auditory stimuli. 

However, in these two experiments the influence that stereoscopic 3D has on our 

perception of visual quality in the presence of auditory stimuli yet was not examined. 

 
Here the results of two experiments that examined the perception of visual quality within 

a stereoscopic 3D viewing environment under various ambient (background) auditory 

conditions. In Experiments 3 and 4, visual quality was defined with respect to polygon 

count and texture resolution (of a model of a surgeon’s head) respectively and the four 

non-contextual ambient auditory conditions (with respect to the visual scene) were: i) no 

sound at all, ii) white noise, iii) classical music, and iv) heavy metal music (see Section 

3.1.2).  

 

In Experiment 3, the classical music auditory condition led to an increase in visual quality 

perception, heavy metal music auditory condition showed to increase the visual quality 

perception (less than the classical music auditory condition) when compared to the other 

auditory conditions, while the white noise auditory condition had an attenuating effect on 

the perception of the visual quality perception although both of these effects were evident 

only for the visual models with polygon counts greater than 678 (i.e., the classical music 

and heavy metal music ambient auditory conditions had no effect on the two smallest 

polygon count models). In Experiment 4 the classical music auditory conditions led to an 

increase in visual quality perception. In contrast, the white noise auditory condition led to 

a decrease in visual quality perception. The heavy metal sound and no sound auditory 

conditions showed no effect on the visual quality perception. 

 

As the results for both Experiments 3 and 4 indicate, the difference between the visual 

presentations in3D stereoscopic vs. non-stereoscopic 3D is present only for the higher 

quality visual models (polygon count greater than 1,250, and texture resolution greater 
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than 256 × 256). Results indicate that stereoscopic 3D may result in a more sensitive 

perception of visual quality for higher quality visuals. More specifically, ambient sound 

can influence visual quality when presented in conjunction with the high quality visuals, 

but it showed to not have the same effect when presented to the low quality visual 

conditions; this can be explained by the extra information that the participant is presented 

in stereoscopic 3D (i.e., depth), and therefore lack of quality might not be influenced on 

the same way than before. 

 

The results of Experiments 3 and 4 together with the results of Experiments 1 and 2 

suggest that ambient sound can affect various aspects of a virtual simulation/serious game. 

More specifically, distracting sounds such as white noise can lead to a decrease in the 

perception of visual quality; classical music (and heavy metal music in some cases) can 

cause our perception of visual quality to increase. Although previous work has examined 

the interaction of auditory cues and the other senses with respect to visual cues, in 

contrast to Experiments 1 and 2 in this thesis, the experiments presented here specifically 

examined the interaction of ambient auditory cues and visuals within a stereoscopic 3D 

viewing environment. The significance of these experiments lies in the simple fact that 

sound is shown to influence the perception of visuals with respect to stereoscopic 3D. 

This impact of sound on visuals will have implications for any studies into stereoscopic 

3D in relation to audio-visual media, and particularly in studies that explore the role of 

stereoscopic 3D in serious games, training and simulations. Any future studies into 

quality or stereoscopic 3D must take into consideration the importance of multi- modal 

interactions. 

 

In addition to polygon count and texture resolution, visual quality can be defined in many 

other ways including blurring of the visual scene.  Visuals can also be presented in either 

stereoscopic or non-stereoscopic 3D as considered in Experiments 3 and 4 described here. 

Furthermore, with respect to the visuals, the ambient sounds considered here lacked any 

context (with respect to the visuals). What effect, if any, will contextual auditory cues 

have on our perception of visual quality? Moreover, it is unclear if specific attributes of 

the music (the classical music and heavy metal music auditory conditions) were 
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responsible for the results (such as the presence of lyrics, the frequency band, rhythm, 

etc.). The next set of experiments considered contextual auditory cues (with respect to the 

visual scene).   

Sensory Integration (Audio-Visual) with Contextual Auditory 
Cues Discussion 

 

In the last four experiments, the four ambient auditory conditions were non-contextual 

with respect to the visual scene.  Here, the influence of contextual ambient auditory cues 

on the perception of visual quality is examined. To be consistent to the previous 

experiments described in this thesis, contextual auditory cues were considered both in a 

stereoscopic 3D and non-stereoscopic 3D viewing environment.  

3.2.5 Experiment 5: Visual quality defined with respect to texture 
resolution with contextual auditory conditions 

 

Participants 
 

Participants consisted of unpaid student volunteers from the University of Ontario 

Institute of Technology.  A total of 18 (3 male and 15 female) volunteers 

participated in the experiment (average age was 22).  

 
Visual Stimuli 
 

The visual stimuli were given by the “rendered model of a surgeon’s head varied 

with respect to texture resolution” condition described in Section 3.1.1.  

 

Auditory Stimuli 

 

The auditory stimuli were given by the “contextual auditory stimuli” described in 

Section 3.1.2. 
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Experimental Method 

 

The experimental method used was the “contextual auditory cues experimental 

design” described in Section 3.1.3. 

 
 
 Results 
 

Questionnaire 
 

The first question asked whether or not participants regularly played video games 

(in order to determine their regular use of computer-animated figures): 12 of the 

18 participants (66%) played video games regularly. Of these participants, the 

average number of hours per week spent playing video games was 3.7 hours 

(minimum one hour and maximum 10 hours), nine of them reported they primarily 

played console- based video games, two of them primarily played PC-based video 

games, and one of them primarily played video games on their mobile phone. 

When asked to indicate their video game genre preference (from a list of given 

genres), two of the participants prefer “Strategy” games, seven “Sports” games 

and three “Shooter” games. The questionnaire then asked participants to rate 

several video game attributes according to their importance on a 7-point scale (1 

being least important and 7 being most important). A summary of the average 

ratings for each of the attributes is provided in Table 14. Participant game 

preferences did not appear to impact experimental results and therefore, will not 

be discussed further. 

 

Video Game Attribute 
Avg. “Importance” 

( /7.0) 
Graphics/visuals 5.2 
Sound 3.5 
Interaction 1.8 
Story/narrative 2.8 
Level of challenge/difficulty 4.3 

 
Table 14. Experiment 5. Summary of video game attribute importance. 
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Experiment 

 
A summary of the results is presented in Figure 2 where the x-axis represents 

visual quality (texture resolution) and the y-axis represents perceived visual 

quality (ranging from 1-7) and on Table 15. The analysis of variance (ANOVA) 

was selected as the statistical model with two factors: six visual conditions (static 

images of a model of a surgeon’s upper-torso, varying with respect to texture 

resolution) × seven auditory conditions (i) no sound at all, ii) white noise, iii) 

classical music, iv) heavy metal music, v) operating room ambiance sound, vi) 

surgical drill sound, and vii) operating room ambiance mixed with the surgical 

drill sound). 

 

 
 

Figure 10. Experiment 5 results. Texture resolution (x-axis) vs. perceived visual quality (y-
axis) for each of the seven auditory conditions (three contextual and four non-contextual). 
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Image # Sound Mean Std. Deviation 

1 

No sound 4.305 0.481 
White Sound 3.305 0.481 
Classical Music sound 4.611 0.445 
Metal Music Sound 3.638 0.481 
Surgical room ambiance 4.638 0.481 
Drill Sound 3.638 0.481 
Surgical Room + Drill Sound 5.638 0.481 

2 

No sound 3.638 0.481 
White Sound 3.027 0.481 
Classical Music sound 3.638 0.481 
Metal Music Sound 3.638 0.481 
Surgical room ambiance 4.638 0.481 
Drill Sound 4.611 0.445 
Surgical Room + Drill Sound 5.305 0.481 

3 

No sound 4.305 0.481 
White Sound 2.777 0.518 
Classical Music sound 4.611 0.509 
Metal Music Sound 4.305 0.481 
Surgical room ambiance 5.305 0.481 
Drill Sound 3.638 0.481 
Surgical Room + Drill Sound 5.638 0.481 

4 

No sound 2.722 0.467 
White Sound 2.305 0.481 
Classical Music sound 3.666 0.512 
Metal Music Sound 3.333 0.471 
Surgical room ambiance 3.305 0.481 
Drill Sound 3.305 0.481 
Surgical Room + Drill Sound 4.305 0.481 

5 

No sound 2.361 0.437 
White Sound 1.916 0.429 
Classical Music sound 2.638 0.437 
Metal Music Sound 2.972 0.481 
Surgical room ambiance 4.305 0.481 
Drill Sound 3.305 0.481 
Surgical Room + Drill Sound 3.972 0.481 

6 

No sound 1.916 0.351 
White Sound 1.472 0.521 
Classical Music sound 2.666 0.449 
Metal Music Sound 2.666 0.449 
Surgical room ambiance 3.361 0.437 
Drill Sound 2.694 0.437 
Surgical Room + Drill Sound 3.638 0.481 

 
Table 15. Experiment 5 results.  Mean and Standard Deviation. 

 



73 
 

The results of a two-way ANOVA (ambient/background sound by visual quality 

(texture resolution)) revealed significant main effects for sound (F=19.02, p = .001) 

and visual quality (F=20.95, p =.001) in addition to the interaction between them 

(F=8.14, p = .001).  Since I was interested in the effect of ambient sound on the 

perception of visual quality, the two-way interaction was further analyzed by six 

subsequent one-way ANOVAs with ambient sound as a factor, one for each of the 

visual quality (texture resolution) conditions.   

 

The results of a one-way ANOVA for the model corresponding to a texture 

resolution of 1028 × 1028 yielded significant results (F(5)=33.974, p=.001). 

Subsequent post-hoc comparisons (Tukey HSD) revealed that the operating room 

ambiance auditory condition caused the perception of visual quality for the image 

with a texture resolution of 1028 × 1028 to increase (p<.001).  This increase was 

not observed for the other six auditory conditions (which did not differ from each 

other (p<.05 for all).  

 

 The analysis for the model with a texture resolution of 512 × 512 showed 

significant results (F(5)=33.395, p<.001). Subsequent post-hoc comparisons 

(Tukey HSD) revealed that the white noise auditory condition led to decrease the 

perception of visual quality (p<.037),  when compared to other six auditory 

conditions condition (which did not differ from each other (p<.05 for all). 

Furthermore subsequent post-hoc comparisons also revealed that the operating 

room ambiance auditory condition caused the perception of visual quality for the 

image with a texture resolution of 512 × 512 to increase as well (p<0.016).  This 

increase was not observed for the other six auditory conditions (which did not 

differ from each other (p<.05 for all).  

 

The analysis for the model with a texture resolution of 256 × 256 showed 

significant results (F(5)=46.678, p<.001). Subsequent post-hoc comparisons 

(Tukey HSD) revealed that the white noise auditory condition led to decrease the 

perception of visual quality (p<.001), when compared to other six auditory 
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conditions (which did not differ from each other (p<.05 for all). Furthermore 

subsequent post-hoc comparisons also revealed that the operating room ambiance 

mixed with the surgical drill auditory condition caused the perception of visual 

quality for the image with a texture resolution of 256 × 256 to increase as well 

(p<0.022).  This increase was not observed for the other six auditory conditions 

(which did not differ from each other (p<.05 for all).  

 

The analysis for the model with a texture resolution of 128 × 128 showed 

significant results (F(5)=16.52, p<.001). Subsequent post-hoc comparisons (Tukey 

HSD) revealed that the operating room ambiance auditory condition caused the 

perception of visual quality for the image with a texture resolution of 128 × 128 to 

increase (p<.001).  This increase was not observed for the other six auditory 

conditions (which did not differ from each other (p<.05 for all).  

 

The analysis for the model with a texture resolution of 64 × 64 showed significant 

results (F(5)=41.502, p<.001) Subsequent post-hoc comparisons (Tukey HSD) 

revealed an interesting combination. The white noise auditory condition led to a 

decrease in the perception of visual quality (p<.001). This detriment was also 

observed under the heavy metal sound auditory condition for the image with a 

texture resolution of 64 × 64 (p<.001). These detriments were not observed for the 

other five auditory conditions (which did not differ from each other (p<.05 for all). 

Furthermore subsequent post-hoc comparisons also revealed that the operating 

room ambiance auditory condition increased the perception of visual quality 

(p<0.022). This increase was also observed under the operating room ambiance 

auditory condition coupled with the drill sound auditory condition for the image 

with a texture resolution of 64 × 64 (p<.001).  These increases were not observed 

for the other six auditory conditions (which did not differ from each other (p<.05 

for all).  

 

The analysis for the model with a polygon count of 32 × 32 showed significant 

results (F(5)=33.764, p<.001) Subsequent post-hoc comparisons (Tukey HSD) 
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revealed an interesting combination. White noise auditory condition caused a 

decrease on the perception of visual quality (p<.001). This detriment was also 

observed under the No sound auditory condition for the image with a texture 

resolution of 32 × 32 (p<.001). These detriments were not observed for the other 

five auditory conditions (which did not differ from each other (p<.05 for all). 

Furthermore subsequent post-hoc comparisons also revealed that the operating 

room ambiance sound coupled with the drill sound auditory condition increased 

the perception of visual quality (p<0.035). This increase was also observed under 

the operating room ambiance auditory condition for the image with a texture 

resolution of 32 × 32 (p<.021).  These increases were not observed for the other 

five auditory conditions (which did not differ from each other (p<.05 for all).  

3.2.6 Experiment 6: Visual quality defined with respect to texture 
resolution in a stereoscopic 3D viewing environment with contextual 
auditory conditions. 

 
Participants 

 

Participants consisted of unpaid student volunteers from the University of Ontario 

Institute of Technology.  A total of 18 (8 male and 10 female) volunteers 

participated in the experiment (average age was 22).  

 

Visual stimuli 

 

The visual stimuli used in this experiment were the same as the visual stimuli used 

in Experiment 5. However, here the visuals were presented in a stereoscopic 3D. 

As with Experiment 5, the stereoscopic 3D “Depth” setting on the Acer Aspire 

laptop was set to “Default” which, on a scale of 0-15 (where 0 represents no 

stereoscopic 3D effect and 15 represents the maximum), the “Default” setting is 3. 

Each 3D model was presented with its corresponding background sound until the 

participant made a choice. Participants were able to interact with the model (i.e. 

rotate it using the mouse). 
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Auditory Stimuli 

 

The auditory stimuli were given by the “contextual auditory stimuli” described in 

Section 3.1.2. 

 

Experimental Method 

 

The experimental method used was the “contextual auditory cues experimental 

design” described in Section 3.1.3. 

 

Results 
 

Questionnaire 
 

The first question asked whether or not participants regularly played video games 

(in order to determine their regular use of computer-animated figures): 16 of the 

18 participants (89%) played video games regularly. Of these participants, the 

average number of hours per week spent playing video games was 2.6 hours 

(minimum one hour and maximum 10 hours), eight of them reported they 

primarily played console- based video games, six of them primarily played PC-

based video games, and two of them primarily played video games on their mobile 

phone. When asked to indicate their video game genre preference (from a list of 

given genres), five of the participants prefer “Strategy” games, four “Sports” 

games and seven “Shooter” games. The questionnaire then asked participants to 

rate several video game attributes according to their importance on a 7-point scale 

(1 being least important and 7 being most important). A summary of the average 

ratings for each of the attributes is provided in Table 16. Participant game and 

musical genre preferences did not appear to impact experimental results and 

therefore, will not be discussed further. 
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Video Game Attribute 
Avg. “Importance” 

( /7.0) 
Graphics/visuals 4.4 
Sound 3.7 
Interaction 2.2 
Story/narrative 2.5 
Level of challenge/difficulty 3.1 

 
Table 16. Experiment 6. Summary of video game attribute importance. 

 
 
Experiment 
 
A summary of the results is presented in Figure 11 where the x-axis represents 

poly-count variance and the y-axis represents perceived quality (ranging from 1-7) 

and on Table 17.  

 

 
 

Figure 11. Experiment 6 results. Texture resolution (x-axis) vs. perceived visual quality (y-axis) across 
each of the seven (contextual and non-contextual) auditory conditions. 
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Image Sound Mean Std. Dev. 

1 

Surgical room ambiance 6.416 0.419 
Surgical room ambiance + Drill 5.166 0.430 
Drill 4.500 1.000 
Heavy Metal Music Sound 5.500 0.430 
No Audio 5.333 0.384 
Noise 3.583 0.569 
Classical Music 5.500 0.962 

2 

Surgical room ambiance 6.083 0.630 
Surgical room ambiance + Drill 5.000 0.471 
Drill 4.500 1.036 
Heavy Metal Music Sound 5.083 1.370 
No Audio 5.083 1.166 
Noise 4.083 0.687 
Classical Music 5.333 0.272 

3 

Surgical room ambiance 6.250 0.739 
Surgical room ambiance + Drill 5.083 0.876 
Drill 4.333 0.720 
Heavy Metal Music Sound 5.333 1.054 
No Audio 5.750 0.957 
Noise 3.250 0.569 
Classical Music 5.083 0.687 

4 

Surgical room ambiance 5.333 1.247 
Surgical room ambiance + Drill 5.083 0.917 
Drill 4.416 0.569 
Heavy Metal Music Sound 4.661 0.769 
No Audio 5.166 1.170 
Noise 3.250 0.569 
Classical Music 4.416 0.957 

5 

Surgical room ambiance 3.250 0.687 
Surgical room ambiance + Drill 4.000 0.720 
Drill 3.166 1.000 
Heavy Metal Music Sound 4.416 0.957 
No Audio 4.000 0.816 
Noise 2.666 0.942 
Classical Music 3.416 1.228 

6 

Surgical room ambiance 3.000 1.333 
Surgical room ambiance + Drill 2.666 1.563 
Drill 2.583 1.641 
Heavy Metal Music Sound 2.750 2.132 
No Audio 2.166 1.914 
Noise 1.666 1.122 
Classical Music 4.000 1.276 

 
Table 17. Experiment 6 results.  Mean and Standard Deviation 
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The analysis of variance (ANOVA) was selected as the statistical model with two 

factors: six visual conditions (model of a surgeon’s head, visual varying with 

respect to texture resolution) × seven auditory conditions: i) no sound at all, ii) 

white noise, iii) classical music, iv) heavy metal music, v) surgical drill sound, vi) 

operating room ambiance mixed with the surgical drill sound and vii) operating 

room ambiance sound without the surgical drill sound. Main effects and 

interactions were further analyzed using Tukey HSD post-hoc comparisons. The 

results revealed only that only the main effects for visual (F=9.83, p<.001) and 

auditory (F=27.19, p<.001) conditions, were significant and there was no 

significant interaction between the sound and image (F=7.14, p<.761). More 

specifically, on average the participants were relatively accurate at discriminating 

the quality of the visual images, where the lower quality visuals were judged as 

lower and higher quality visuals were judged as higher.  With the exception of the 

white noise auditory condition, visual quality was not affected by ambient sound.  

Ambient sound consisting of white noise led to a significant reduction in the 

perception of the visual quality across all of the visuals considered. 

 

 
Visual Quality Perception with Contextual and Non-Contextual Auditory Cues 
Discussion 

 

Experiments 5 and 6 examined the perception of visual quality (defined with respect to 

the texture resolution of a visual model) under both contextual and non-contextual 

ambient auditory conditions (with respect to the visual scene). Results suggest that 

contextual ambient auditory cues increase our perception of visual quality while non-

contextual cues in the form of white noise may lead to a decrease in visual quality 

perception particularly when considering lower quality visuals. These results are 

consistent with the results of Experiments 1-4 and the work of others.  More specifically, 

Experiments 1-4 indicate that perception of visual quality of a virtual model is dependent 

on ambient (background) sound.  In those experiments, it was observed that ambient 

white noise resulted in a decrease of visual quality perception for visual quality defined 
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with respect to polygon count and texture resolution.  In contrast, ambient sound 

consisting of either classical music or heavy metal music led to an increase in the 

perception of visual quality when considering both polygon count, and texture resolution.  

 

Although not specific to multimodal interactions, it has also been well established that 

sound (and music in particular), can effect moods, emotions and behavior of both 

individuals and groups, and music is considered to lie on a continuum from highly 

stimulating and invigorating to soothing or calming [Gaston, 1968; Hallam et al., 2002].  

Finally sound and music can also influence task performance.  For example, a study by 

Morsbach et al. [1986], determined that the cries of infant distracted listeners instructed to 

pay attention to a simple cognitive task.  Building on this study, Chang and Thompson 

[2011], demonstrated that whines, cries, and motherese (child-directed speech) distracted 

listeners completing simple mathematical (subtraction) problems. 

 

Here, in Experiments 5 and 6, the visual stimuli consisted of a single surgeon (upper body 

only) holding a surgical drill. There were two key parts on the model presented: i) the 

(upper body of) the surgeon, and ii) the surgical drill that the surgeon was holding. In 

order to be congruent with the idea of contextual cuing, included three contextual ambient 

auditory conditions: i) operating room ambiance, ii) operating room ambiance + drill 

sound, and iii) drill (alone).  Results indicate that contextual ambient sounds can lead to 

an increase in the perception of visual quality.  However in Experiment 5 (which also 

examined the effect of contextual ambient auditory conditions on visual quality 

perception but in a non-stereoscopic 3D viewing environment), this increase was 

observed for only two of the three contextual ambient auditory conditions and more 

specifically, for the operating room ambiance, and operating room ambiance + drill 

auditory conditions and not for the drill auditory condition despite the fact that the 

surgeon within the visual scene was holding a surgical drill. In Experiment 6, contextual 

related auditory cues showed to influence visual quality but this influence was not 

statistically significant, this might be explained by the extra information provided in 

experiment 6 and more specifically, the addition of stereoscopic 3D (depth), and this 

additional information may have reduced the ability of the participants to pay attention to 
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the auditory cues presented.   

 

Assuming the premise that contextual auditory cues increase visual quality perception, the 

results presented here suggest that participants perceived the operating room ambiance 

cue as providing the greatest contextual component, thus leading to the observed increase 

for this condition.  This discrepancy leads to the question of just how contextual auditory 

cues may be defined. Contextual cuing is a concept in psychology that refers to the 

manner in which the human brain gathers information from external elements and their 

surroundings [Chun and Jiang, 1998]. External elements refer to the different sensory 

inputs (audio, visual, haptics, etc.) that will drive the attention based on past experiences 

with the regularities of the world. Regularities of the world can be the objects around a 

given target object, their spatial layout, their trajectories, sound involved, etc.  

 

One explanation is provided by Scott and Canter [1997], who compared the perceived 

similarity of a diverse set of familiar places based on a photographic sorting task to 

similarity measures based on a second task that immediately followed. In the second task, 

the same participants were instructed to now regroup the labeled pictures based on 

imagined actions, thoughts and feelings they might have at the places represented.  The 

authors reported that the photograph-based similarity mapping indicated a focus on 

physical features and compositions in the pictures (e.g., landform and water). The second 

grouping also showed the effects of the landform and to a lesser extent the water factor, 

but the participants’ verbal descriptors focused more on ‘activities, people, sounds, 

emotions and physical conditions’. It was concluded that the type of task that was asked 

to perform drove subject’s attention being able to modify subject’s focus over the same 

action.  Here, the task of the participants was to rate the visual quality of the presented 

image. Participants were not instructed to focus on any part of the visual scene including 

the drill held by the surgeon.  Given the results presented here, participants did not focus 

on the drill at all but rather assumed that the surgeon provided the context of the visual 

scene (i.e., the operating room ambiance led to the greatest increase in visual quality 

perception). The drill ambient auditory condition appears to operate as a distractive cue 

alone and when mixed with the operating room ambiance (i.e., although there was an 
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increase in visual quality perception with the operating room ambiance + drill condition, 

this increase was less than the increase with the operating room ambiance condition. 

 

The significance of Experiments 5 and 6 lies in the fact that contextual sound is shown to 

influence the perception of visual quality (at least when presented in non-stereoscopic 3D).  

However, there are many questions that must be considered before a greater 

understanding regarding the effect of visual quality presented in conjunction with auditory 

cues on visual quality perception.  

 

In addition to the different types of auditory cues (contextual dependent and non-

dependent) and the different types of visual presentations (non-stereoscopic 3D and 

stereoscopic 3D) in order to obtain a greater understanding on the audio-visual 

multimodal interaction phenomenon our next experiment will also consider the effect of 

user interaction on visual quality perception and, more specifically, actively involving the 

participant by having them perform a simple task within the virtual world under various 

auditory conditions (contextual and non-contextual). A simple measurement of 

performance could be defined and this will allow for the comparison of sounds that are 

unnatural to an interaction with a virtual object being acted upon with more natural 

sounds. 

 

Sensory Integration (Audio-Visual) While Performing Goal 
Directed Actions  
 

The previous six experiments examined the influence of contextual and non-contextual 

ambient auditory conditions of visual quality within both a stereoscopic and non-

stereoscopic viewing environment. Experiment 7 builds upon the first six experiments by 

examining the influence of both contextual and non-contextual ambient auditory 

conditions on visual quality and also on task completion time.   In contrast to the previous 

six experiments, participants in Experiment 7 had to interact with the environment and 

more specifically, they had a task to complete (navigate the environment to reach and pick 

up a tool).     
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3.2.7 Experiment 7: Visual quality defined with respect to level of visual 
blurring under both contextual and non-contextual auditory cues. 

Participants 
 

Participants consisted of unpaid student volunteers from the University of Ontario 

Institute of Technology (UOIT).  A total of 12 volunteers (6 male and 6 female) 

participated in the experiment (average age was 20 years old).  

 
 Visual Stimuli 

 
 

 The visual scene consisted of six rendered (3D) versions of an operating room 

with various tools, and equipment (see Figure 3).  Within the operating room were 

three non-player characters (nurses) which, for the purposes of this experiment, 

they remained static and did not afford any interaction with the participants.  Each 

of the rendered versions of the scene was filtered (dynamically) with a blurring 

filter, which caused the scene to be blurred.  The level of blurring introduced to 

each of the six scenes varied linearly from 0 to 1 with 0 (no blurring introduced; 

i.e., the original, reference scene) 1 (the highest level of blurring).  The blurring 

effect was accomplished dynamically using an OpenGL GLSL-based shader. The 

blurring was accomplished by (on a per-pixel basis) sampling several discrete 

areas around a center point (each pixel) and averaging the result. An example of 

the six levels of blurring is provided in Figure 12. 

   

 

 

 

 

 

   



84 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Figure 12. Experiment 7. The levels of visual quality (defined with respect to image blurring) 

considered in this experiment. (a) Original (non-filtered) version. (b) - (f) Application of the blurring 
filter with an increase in the blurring effect. 

 
 

Auditory Stimuli 
 

Four ambient (background sound) conditions were examined: i) no sound, ii) 

white noise (see Section 3.1.2), iii) operating room ambiance mixed with a 

surgical drill sound (see Section 3.1.2), and iv) operating room ambiance without 

the drill sound (see Section 3.1.2).  For all trials, the auditory stimulus (when 

present) began playing at the start of the trial and was stopped once the participant 

chose the surgical drill.  The sound pressure level of the output sounds was 60dB 

(about the same level as typical conversation [Morfey, 2005]) measured with a 

Radio Shack sound level meter (model 33-2055). All auditory stimuli were 

monophonic and were output with a pair of Sony MDR 110LP headphones.  

 
Experimental Method 

 
Participants were seated in front of the laptop computer, which was used to 
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conduct the experiment. Participants were provided with an overview of the 

experiment followed by a description of their required task by one of the 

experimenters.   In each trial, participants were presented with one of the six 

versions of the rendered operating room shown in Figure 12, in conjunction with 

one of the four ambient sound conditions described above. Figure 13 illustrates the 

view of the operating room presented to the participants at the start of the 

experiment.  Their task was to navigate through the operating room from their 

starting position to a point in the room which contained a tray and a surgical drill 

and pick up the drill (as outlined in Figure 13(a), they had to navigate around the 

bed and one of the NPC nurses to reach the drill). 

 

(a) 

 

(b) 

 
Figure 13. The experimental environment (a) Then view of the operating room environment at the 

start of each experimental trial. (b) Upon picking the drill, participants were asked to rate the visual 
quality perception 

 

Navigation through the environment was accomplished in a first-person 

perspective (taking on the role of the surgeon) using the standard arrow keys (to 

move the “player”) and mouse (to move the camera).  Within this first-person 

view, the hand and lower arm of the participant’s avatar was displayed.  Choosing 

the surgical drill involved moving their avatar’s hand over the drill and clicking 

the left mouse button.  Once the drill was chosen, it appeared in the hand of the 

“surgeon” and the participant was prompted to rank the visual scene with respect 

to their perceived visual quality on a scale from 1 (lowest perceived quality) to 7 

(highest perceived quality); see Figure 13(b).  Aside from interacting with the 

drill, there were no other interactions permitted (e.g., the participants could not 

interact with any of the NPCs or other objects in the room).  Entering their choice 
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signaled the end of the trail; the following trial began after the user clicked the 

“Continue” button that appeared on the visual quality ranking screen after the 

participant entered their choice.  Each of the six rendered versions of the operating 

room and each of the four ambient sound combinations (24 combinations in total) 

were repeated three times for a total of 72 trials, all of which were presented in a 

randomized ordering.  The experiment took approximately 30 minutes to complete 

and all participants completed it in a single session. As with the previous six 

experiments, the Acer Aspire laptop was used here as well. The operating room 

environment was viewed in “full screen” mode. 

 
Results 

 
Two different variables were analyzed as outcomes for this experiment. The first 

one was the participants’ perceived quality of the visual scene in the presence 

various ambient auditory cues and the second was the total task completion time.  

Results of the first analysis (perceived visual quality) are summarized in Figure 14 

where the x-axis represents visual quality (amount of visual blurring) and the y-

axis represents perceived quality (ranging from 1-7; error bars represent standard 

deviation). Inspection of Figure 14 and clearly indicate that visual quality 

perception decreases as the level of blurriness increases.   
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Figure 14. Experiment 7 results. Visual Quality perception (x-axis) vs. image blurring level under 
four ambient sound conditions. Image quality is defined with respect to a blurring of the entire scene 

with Level 1 representing the least blurring and Level 6 the greatest blurring. 
 
 

 
 

The analysis of variance (ANOVA) was selected as the statistical model with two 

factors: six visual conditions × four ambient (background) auditory conditions. 

Main effects and interactions were further analyzed using the Tukey HSD post-

hoc comparisons. In addition to the main effects for visual conditions (p<.000) and 

ambient sound (p<.130), there was no significant interaction between the ambient 

sound and image (p<1.00). Post-hoc tests revealed that the type of ambient sound 

did not influence the perceived quality of the visual scene irrespective of the level 

of blurring. Although there was no difference in visual quality perception with 

respect to auditory conditions, there was a significant difference between the each 

of the six visual conditions examined.  In other words, participants did perceive a 

difference in visual quality across each of the six scenes they were presented with.    

 

The second variable analyzed was the task completion time (i.e., the time taken for 

the participant to reach the surgical drill and “choose” it from the initial starting 
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point). Results of the second variable analyzed (task completion time) are 

summarized in Figure 15 where the x-axis represents the ambient sound condition 

and the y-axis represents time (in seconds).  A summary of the task completion 

time averaged across each of the six visual quality conditions for each of auditory 

conditions is provided in Table 18.   

 

 
 

Figure 15. Experiment 7 results. Ambient auditory condition (x-axis) vs. time to complete the task (y-
axis) in the presence of contextual and non-contextual auditory conditions. 

 
 

 
AVERAGE TASK COMPLETION TIME  

Ambient Sound Condition Time (s) ± Std. Dev. (s) 

     No sound 7.30 ± 0.41 
     White noise 9.26 ± 0.44 
     Operating room ambiance  +  
           Drill 

6.97 ± 0.32 
 

     Operating room ambiance  5.71 ± 0.13 

 
Table 18. Task completion time averaged across auditory condition. 

 
 

The analysis of variance (ANOVA) was selected again as the statistical model with 

two factors: 6 visual conditions × 4 ambient (background) sounds. Main effects and 

interactions were further analyzed using Tukey HSD post-hoc comparisons. 
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Furthermore from the main effects for visual conditions (p<.902) and ambient sound 

(p<.000), there was no significant interaction between the sound and image 

(p<.936). Post-hoc tests revealed that the type of ambient sound influenced the task 

completion time. The auditory condition consisting of white noise sound resulted in 

the largest task completion times while auditory condition consisting of the 

operating room ambiance alone resulted in the least amount of time to complete the 

task. Interestingly, the auditory condition consisting of the operating room ambiance 

+ drill sound showed a similar effect (with respect to task completion time) to the 

no-sound condition, both of which resulted in task completion times that were 

greater than task completion times of the operating room ambiance auditory 

condition.    

 
 

 

Audio-Visual Sensory Integration while Performing Goal Directed Actions 
Discussion. 

 

Experiment 7 examined the effect of contextual ambient (background) sound on visual 

quality perception (defined with respect blurring of the scene), and task completion time 

while conducting a simple task (navigating through a virtual operating room to reach a 

tray of surgical instruments) was examined.  Results indicate that ambient (background) 

sound has no influence on the perception of visual quality irrespective of the level of 

blurring or whether the auditory cues were contextual or non-contextual with respect to 

the visual scene.  However, results also indicate that ambient sound did have an effect on 

task completion time and more specifically, white noise led to a large increase in task 

completion time while contextual ambient sound consisting of operating room ambiance 

resulted in the lowest task completion time. 

 

Experiments 1-6 revealed that the perception of visual quality of a virtual model is 

dependent on ambient (background) sound. Experiments 1-6 examined visual quality 

perception of a single object with visual quality defined with respect to polygon count and 

texture resolution in the presence of various ambient auditory conditions (that were non-

contextual with respect to the visual scene) including white noise, classical music, and 
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heavy metal music.  In Experiments 1-6, it was observed that auditory cues did in fact 

influence the perception of visual quality.  White noise resulted in a decrease of visual 

quality perception and classical music increased the perception of visual quality for visual 

quality defined with respect to polygon count, particularly for the images corresponding 

to the highest polygon counts.  

 

In Experiment 7, both contextual and non-contextual ambient auditory cues were 

considered.  Furthermore, the visual scene was modeled after an actual operating room 

and contained many objects (the operating room itself, the bed, lights, NPCs, etc.) as 

opposed to a single model considered in Experiments 1-6. Also, in Experiment 7, visual 

quality was defined with respect to blurring of the scene which was chosen to 

approximate the effect of reduced texture resolution as in Experiments 2, and Experiments 

4-6 (the virtual scene employed in Experiment 7, there were far too many objects/models 

making it impractical to individually reduce the texture resolutions of each).  In addition, 

in Experiment 7, participants were required to complete a task that involved navigating 

through the operating room to reach the tray of surgical instruments and choose the 

surgical drill and this may have led to overloading of their mental workload with 

differential effects of sensory manipulations on perception and action particularly when 

considering that the participants were undergraduate students in non-medical areas of 

study and not familiar with surgery and operating rooms in particular.  As speculated by 

Milner and Goodale [1995], in their two-stream hypothesis of visual processing, visual 

information is processed in different areas of the brain when the intention of the visual 

information is to make a judgment (the ventral stream) or to make an action (the dorsal 

stream).  Future work will repeat this experiment but with participants within the medical 

field who are familiar with an operating room to test the effect of ambient sound on both 

visual quality perception and task completion time given the prior experience with the 

surgical environment.  Future work will also repeat this experiment in stereoscopic 3D to 

examine multi-modal cue interaction within a stereoscopic 3D environment and what 

effect this may have on task completion time. 
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Although ambient sound did not affect visual quality perception, it did have an effect on 

the total time required to complete the task (“task completion time”) and more specifically, 

ambient sound consisting of white noise resulted in the largest task completion times 

while the operating room ambiance sound resulted the lowest task completion time. 

Interestingly, the ambient sound condition consisting of the operating room ambiance 

with drill sound showed a similar effect (with respect to completion time) to the no-sound 

condition, both of which were greater than the auditory condition consisting of the 

operating room ambiance only.  This result is supported by previous work.  Conrad et al. 

[2010] examined the effect of background sound (including classical music (Mozart), and 

heavy metal music to induce “auditory stress”) on laparoscopic surgery.  They found that 

stressful music (e.g., heavy metal) had a negative impact on task completion time but did 

not impact task accuracy.  They also found that classical music had a variable effect on 

time until task completion but resulted in greater task accuracy amongst all participants 

(laparoscopic surgeons).  Although task accuracy was not examined here, it has been 

shown that ambient sound consisting of white noise has a negative impact on task 

completion time similar to the “stressful” music of the Conrad et al. [2010], study.   

 

Collectively, the results presented here and in previous experiments, suggest that sound 

can affect various aspects of a virtual simulation/serious game.  Distracting sounds such 

as white noise can not only decrease the perception of visual quality, but also can 

detrimentally affect task completion time.  Designers and developers of virtual 

simulations and serious games should work closely with educators and content experts to 

explore and devise proper ways to help trainees in learning how to perform under the 

presence of potentially distracting sounds which, in many situations, characterize the real-

world environment and cannot be eliminated.  Perhaps virtual simulations and serious 

games can be used to explicitly acquaint trainees with such “real-world” distracting 

sounds while performing technical tasks to minimize any negative effects when 

distracting sounds are encountered in the real-world.  
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4 Conclusions 
 

4.1 Results 
 

In this thesis, the results of a series of seven experiments that examined the effect of 

background sound (contextually related and non-related with respect to the visual scene) 

on the perception of visual quality defined with respect to (texture resolution, and polygon 

count) presented in stereoscopic and non-stereoscopic 3D were presented. The results of 

Experiments 1-4 reveal that the perception of visual quality of a virtual model is 

dependent on ambient (background) sound. In these particular experiments, it was 

observed that ambient white noise resulted in a decrease of visual quality perception for 

visual quality defined with respect to polygon count and texture resolution. In contrast, 

ambient sound consisting of either classical music or heavy metal music led to an increase 

in the perception of visual quality when considering both polygon count, and texture 

resolution under different visual presentations (stereoscopic 3D and non-stereoscopic 3D). 

 

Experiments 5 and 6 considered contextual auditory cues.  Results indicate that contextual 

auditory cues (with respect to the visual scene) and more specifically, the operating room 

ambiance, and operating room ambiance + drill auditory conditions lead to the greatest 

increase in visual quality perception. This influence was greater than the influence 

exhibited by the classic music and heavy metal music (non-contextual) auditory 

conditions also considered in Experiments 5 and 6. 

 

Experiment 7 analyzed the effect of multi-modal interaction (audio-visual) while 

performing goal directed actions. Surprisingly, an influence was evident with respect to 

the time required to complete the task (the “task completion time”) and not on the visual 

quality perception as demonstrated in Experiments 1-6.   More specifically, white noise 

ambient sound caused the task completion time to increase while ambient sound 

consisting of operating room ambiance led to a reduction in the task completion time. The 

results of these seven experiments indicate that ambient (background) sound does have 

some influence over visual quality perception.  
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4.2 Background 
 
The world we live in is full of information and our senses are constantly receiving this 

information and processing it.  The central nervous system integrates these various 

sensory inputs to arrive at a coherent representation of the external world, and this is 

termed multimodal sensory interaction. Various models of sensory integration have been 

proposed; describing how we pay attention to the different cues we received from the 

external world and how these cues are processed.  

For example, Broadbent’s [1958], model hypothesized that information from all of the 

stimuli presented to our senses at any given time enters a sensory buffer.  One of the 

inputs is then selected on the basis of its physical characteristics for further processing by 

being allowed to pass through a filter.  Because we have only a limited capacity to process 

information, this filter is designed to prevent the information-processing system from 

becoming overloaded.  The inputs not initially selected by the filter remain briefly in the 

sensory buffer, and if they are not processed, they decay rapidly.  Broadbent assumed that 

this filter rejected the unattended message at an early stage of processing.  

One of the experiments Broadbent conducted involved sending a message (a 3-digit 

number) to a participant’s right ear, and a different message (a different 3-digit number) 

to their left ear simultaneously.  Participants were asked to listen to both messages at the 

same time and repeat what they heard (this is known as a “dichotic listening task”). 

Results showed that participants repeated what was heard in the right ear, followed by 

what was heard in the left ear and this led Broadbent to produce his “filter” model to 

explain how selective attention operates (Figure 16).  Broadbent concluded that we could 

pay attention to only one channel at a time hence this is referred to as a single channel 

model. 
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Figure 16. Broadbent's filter model of attention. Reprinted from [McLeod, 2011]. 

 

Broadbent's model has been analyzed for many years, and more recent research has found 

that it does not cover all the variability present in multimodal sensory interactions. For 

example, Broadbent’s model predicts that hearing your name when you are not paying 

attention should be impossible because unattended messages are filtered out before you 

process the meaning. This is in contrast to the “cocktail party effect”, which refers to the 

ability to focus one's auditory attention on a particular stimulus while filtering out a range 

of other stimuli, much the same way that a partygoer can focus on a single conversation in 

a noisy room [Bronkhorst and Adelbert, 2000]. This effect is what allows most people to 

"tune in" to a single voice and "tune out" all others but not cancelling them at all. It may 

also describe a similar phenomenon that occurs when one can immediately detect words 

of importance originating from unattended stimuli, for instance hearing one's name in 

another conversation [Woods et al., 1995; Conway, 2001]. This implies that people 

usually process the meaning before filtering out the cue, opposite to what Broadbent’s 

model proposes.  

 

As an alternative to Broadbent's model, Treisman [1964], proposed a model also based on 

selective attention. Selective attention requires that stimuli are filtered so that attention is 
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directed. However, the difference between Treisman’s and Broadbent’s models is that the 

filter in Treisman’s model attenuates rather than eliminates the unattended material. 

However, if a non-attended channel includes your name, for example, there is a chance 

you will hear it because the material, although attenuated, is still there (see Figure 17). 

 

 

 

Figure 17. Treisman’s attention filter model. Reprinted from [McLeod, 2011]. 
 
 
Treisman agreed with Broadbent in that there is a bottleneck, but disagreed with its 

location. Treisman conducted experiments using the speech shadowing 

method.  Typically, in this method participants are asked to simultaneously repeat aloud 

speech played into one ear (called the attended ear) while another message is spoken to 

the other ear.  In one type of Treisman’s shadowing experiments, identical messages were 

presented to the two ears but with a slight delay between them. If this delay was too long, 

then participants did not notice that the same material was played to both ears.  In an 

experiment with bilingual participants, Treisman presented the attended message in 

English and the unattended message in a French translation.  When the French version 

lagged only slightly behind the English version, participants could report that both 

messages had the same meaning.  Therefore, the unattended message was being processed 

for meaning and Broadbent's filter model, where the filter extracted information only with 

respect to physical characteristics, could not explain these findings. 

In terms of visual attention, several studies have analyzed how humans focus their visual 

attention. Posner [1978], found that when people are told to fixate on one part of the 

visual field, it is still possible to attend to stimuli approximately seven degrees on either 



96 
 

side of the fixation point. Also, attention can be shifted more quickly when a stimulus is 

presented in an “expected” rather than “unexpected” location (i.e., when the visual 

stimulus is presented on the same position where the subject attention is located). Posner 

[1980], calls this covert attention (also known as the spotlight theory). 

Evidence in support of the spotlight theory came from a study by LaBerge [1983].  He 

presented participants with five-letter words and a target. The target could appear in the 

position of any of the five letters in a word.  In one condition participants task was to 

respond to the whole word by categorizing it.  In another condition, the task was to 

respond to the middle letter only by categorizing it. As a secondary task on both of the 

conditions mentioned before a target was presented when participants were performing 

the primary task and participants were asked to hit the target.  It was expected that, when 

being asked to respond to the middle letter, a narrow attentional beam would be 

employed.  The results indicate that when participants were asked to categorize the word 

their attentional beam was broad, so it did not matter at which point on the display the 

visual target was presented, response times were equally fast [LaBerge, 1983]. However, 

when participants focused on the middle letter, the position of the target was critical. 

Response times were significantly slower when the target was not presented in the center 

of the five-letter display [LaBerge, 1983].  

Although the models described above were proposed for multiple senses (i.e., sensory 

interaction), most cases were tested by stimulating one of the senses only. However, a 

number of studies did examine multimodal sensory interaction based on these previous 

models [Shaffer, 1975; Allport et al., 1972]. 

McLeod [2011], called the multimodal interaction phenomena as “divided attention” and 

refers to the ability to perform two tasks simultaneously. Eysenck and Keane [1995], 

identify three factors that affect the performance of dual tasks (DT). 

1. Task difficulty (the more difficult the less successful the DT performance). 

2. Task practice (improve DT performance). 

3. Task similarity (non-similar tasks are easier, perhaps use different resources). 
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In terms of task similarity, several studies have found that task similarity is an important 

factor in determining the ability to perform two tasks at the same time.  Researchers such 

as McLeod [1977], Treisman and Davies [1973], have found that dual-task performance is 

greatly improved when the two tasks are dissimilar (i.e., in different sensory modalities).  

However, while task similarity is relatively easy to measure and manipulate in a 

laboratory environment, it is much harder to measure the similarity of more everyday 

tasks (i.e., driving or playing the piano) [McLeod, 2011]. 

Practice is another factor determining dual-task performance. Spelke et al. [1976], have 

found that, with practice, participants can greatly improve their dual-task performance 

(e.g., dictation and reading for comprehension). They even go so far as to suggest that 

with practice, we can perform two tasks together equally well. However, this claim has 

been challenged and further studies have shown that although practice can increase dual-

task performance, performance is not as good as when each task is performed alone 

[McLeod, 2011]. 

The third main factor determining dual-task performance is task difficulty.  Sullivan 

[1976], and Duncan [1979], have found that increasing the difficulty of the tasks reduces 

performance. 

These key factors for multimodal interaction can also be explained by a concept called 

cognitive load. The term cognitive load is used in cognitive psychology to illustrate the 

load related to the executive control of working memory (WM). Theories contend that 

during complex learning/training activities, the amount of information and interactions 

that must be processed simultaneously can either under-load, or overload the finite 

amount of working memory one possesses. All elements must be processed before 

meaningful learning can continue [Pass et al., 2004].  This supports Treisman’s [1964],  

attention filter model and therefore can also be used to explain McLeod’s [2011], 

“divided attention” model previously described. 
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4.3 Explanation of the Results With Respect to Existing 
Theories 

 
The results of Experiments 1-7 can be explained with the models described above.  As the 

experiments within this thesis have shown, ambient (background) sound influences visual 

quality perception. By using Tresiman’s bottleneck attenuation model, it can be 

hypothesized that the participants of Experiments 1-7 were analyzing the different stimuli 

they were presented with (auditory and visual), one at the time, and depending on the task 

they were asked to perform, their cognitive load differed. More specifically, the difference 

between the results of the experiments can be explained by cognitive load. Experiments 1-

6 showed that ambient sound influences visual quality perception. However, this 

influence differed across the various conditions examined. For example, in contrast to a 

non-stereoscopic 3D viewing environment, when considering a stereoscopic 3D viewing 

(Experiments 3, and 4), the user is presented with additional information (depth) and this 

additional information requires greater cognitive resources to process, due to that 

difference between the visual presentations in 3D stereoscopic vs. non-stereoscopic 3D 

was present only for the higher quality visual models (polygon count greater than 1,250, 

and texture resolution greater than 256 × 256). Results indicate that stereoscopic 3D 

might result in a more sensitive perception of visual quality for higher quality visuals.  As 

a further example, in contrast to Experiments 1-4, Experiments 5 and 6 considered 

contextual ambient auditory stimuli.  Contextual ambient auditory cues led to a greater 

increase in visual quality perception than the increase with non-contextual auditory 

stimuli.  Recalling the “task similarity” factor proposed by Keane [1995], described 

above, it is hypothesized that participants did not require using the same amount of 

cognitive resources when presented with contextual auditory stimuli due to the contextual 

similarity for both of the cues. Contextual related cues (audio-visual) can be easily 

integrated by the attention model and due to that caused participants to perceive visual 

quality higher. That is, the participants can pay more attention to the visual quality when 

cognitive resources are not being fully used. When participants were presented with the 

non-contextual auditory conditions, due the no contextual relation between the cues, it is 

hypothesized that participants needed to use additional cognitive resources and this 

resulted in a smaller increase of visual quality perception. 



99 
 

In contrast to Experiments 1-6, in Experiment 7, participants were required navigate 

through a virtual operating room and pick up a drill (using a mouse and keyboard to do 

so) that was located in the opposite end of the starting position. In order to navigate 

through the room, participants needed to synchronize mouse movements, which rotated 

the avatar head, and pressing the arrow keys on the keyboard, which moved the avatar 

around the environment. At the same time participants were also present with ambient 

auditory cues and they were asked to rate the visual quality perception of the scene (visual 

quality was defined by blurriness of the visual scene).  

The task of Experiment 7 was different (more complex because of the navigation 

component) from the tasks of Experiments 1-6.  Given the greater complexity associated 

with the task of Experiment 7, it is hypothesized that greater cognitive resources may 

have been required to complete the task, leaving less processing for ambient auditory cues 

and therefore ambient sound did not influence visual quality perception.  

The main task for the participants in Experiment 7 was to navigate through the operating 

room and pick up the drill.  Once the drill was picked up, a pop-up widow was displayed 

prompting the participants to rate the perceived visual quality (the pop-up window 

covered the majority of the visual scene and the ambient auditory cues were stopped once 

the pop-up window appeared). In contrast, in Experiments 1-6, the visual and auditory 

stimuli were present while the participants were prompted to rate the visual quality.  In 

other words, in Experiment 7, participants were rating visual quality perception after 

being presented with the auditory and visual stimuli, not at the same time. Therefore, 

since synchronizing the movements required to move their avatar within the virtual 

operating room, involved some increased amount of cognitive resources, and as a result, 

participants were not able to differentiate the different visual quality conditions. This is 

supported by [Pass, 2003], who proposed that high cognitive load usages reduce short 

memory retention. However, despite the fact that ambient sound did not exhibit any 

influence over visual quality perception, sound did influence task competition time. This 

can be explained by the task practice factor proposed by Keane [1995], who proposed that 

the more a specific task is practiced, the better you become at doing that task in 

conjunction with some other task. Since each condition of Experiment 7 was repeated 
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three times, participants performed a total of 72 trials of navigating through the operating 

room from the starting position to the position of the drill in order to choose/pick the drill. 

Repeating this action 72 times this can be considered as training [Mayer, 2003], and can 

therefore lead to a decrease in the required cognitive resources. As a result, since 

participants were not using the same amount of cognitive resources during the latter trials 

as required in the earlier trials, they were able to unconsciously (Tresiman’s attention 

filter model [1964]) start paying attention to the auditory cues presented, resulting in a 

reduction in the task completion time when presented with contextual dependent auditory 

cues. I would like to clarify that the fact that participants due to the practice start using 

less cognitive resources to accomplish the task results in a capability to pay attention to 

the other cues (e.g., auditory cue) rather than an increase of the performance quality 

Influence is showed only on completion time rather than on visual quality perception 

because of the nature of the asked task. Since participants were asked to navigate the 

virtual environment and pick up a drill, they were always more focused on the motor task 

rather than in rating visual quality. 

4.4 Serious Games 
 
As previously described, auditory cues can influence visual quality perception and this 

influence was explained above by a phenomenon called “cognitive load” which describes 

why in some cases, depending on the type of auditory cue presented (contextual or non-

contextual with respect to the visual scene) and the task difficulty, the influence over 

visual quality perception differs. 

 

The work presented in this thesis is part of a larger-scale effort to examine virtual 

environment quality, multi-modal interactions, user-specific factors (e.g., personality, 

learning style, existing knowledge, level of attention, motivation etc.) and their effects on 

knowledge transfer and retention when using virtual simulation/serious games.  The 

results presented here indicate that multimodal interaction is fundamental to perceiving 

the external world and therefore, any virtual environment (serious games, etc.) should 

include and account for multimodal interactions. However, multimodal interactions are 

constrained by attention models that describe how our cognitive resources may become 
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loaded depending on the senses that are being stimulated and the characteristics of the 

task performed [Pass, 2003].   In addition, these models also describe how these cognitive 

resources can decrease through practice of a particular skill.  With this in mind, it is 

hypothesized that this will lead us to the point where knowledge transfer and retention 

may be constrained by cognitive resource demands required by the audio-visual 

interactions of users of serious games. 

 

“No one learns to run before learning how to walk”.  If a user of a serious game is 

presented a game that requires large cognitive resources, they will be so focused on 

performing the required task that they may ignore some or all of the cues presented to 

him/her. If, instead of presenting the user to a difficult task from the onset, they are 

initially presented with a simple task and only when they reach a certain level of 

proficiency do they move to the next level, the practise that will arise from completing the 

simpler tasks may limit the cognitive resources required at the next (more difficult) level. 

4.5 Future Work 
 
Future work will further analyze the cognitive load phenomenon when presented with a 

goal-oriented task and examine what effect this will have on training/learning, retention, 

and transferability of an acquired skill.  An example of an experiment that will be 

conducted to examine this is repeating Experiment 7 in stereoscopic 3D. The stereoscopic 

3D environment should add additional cognitive resources and thus should lead to a 

greater task completion times than that observed in Experiment 7. 

 

Here, only audio and visual cue interactions were analyzed despite the availability of 

other sense, most notably touch (haptics) and olfactory. Therefore, future work will 

investigate the effect of audio, visual, audio and haptic cues on the perception of visual 

quality. Future work will also examine multimodal interactions within a virtual 

environment that incorporates a learning task.  This will allow us to examine multimodal 

effects on learning and knowledge transfer and retention more specifically.   
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