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Abstract 

Chronic neck pain, including subclinical neck pain (SCNP), is a significant problem that 

places a burden on the healthcare system. Chiropractic manipulation has shown not only 

to be effective in treating symptoms of neck pain, but also in providing a 

neuromodulatory effect on the central nervous system. The motor cortex and cerebellum 

are thought to be important neural structures involved in motor learning and sensorimotor 

integration (SMI), and are therefore key structures to investigate how SMI is changed in a 

SCNP group following chiropractic care. Motor sequence learning (MSL) has also been 

shown to provide alterations in cerebellar projections to the motor cortex. Therefore, the 

studies in this thesis set out to determine if it was possible to induce both cortical and 

cerebellar learning, and if chiropractic care could alter motor output via transcranial 

magnetic stimulation measures to facilitate this learning. 

The study‟s results suggest that in a healthy group of subjects there is alteration in the 

intracortical inhibition of the motor cortex and no significant change in the cerebellum, 

following MSL. However, the results also suggest that in a SCNP group, there is a 

modulation of the cerebellar connections to the motor cortex but no effect specific to the 

motor cortex following both MSL and chiropractic manipulation. Therefore, these 

findings suggest that people with intermittent neck pain have concomitant changes in 

SMI and could manifest as clinical symptomology.  

Key Terms 

Sensorimotor Integration, Motor Sequence Learning, Cerebellum, Transcranial Magnetic 

Stimulation, Chiropractic Manipulation 
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Chapter 1 - Introduction to Neck Pain, Cortical Plasticity and 

Chiropractic Care 
 

Chronic neck pain is a common and significant problem which affects about 30-50% of 

people every year and places a great burden on healthcare systems (Hogg-Johnson et al. 

2008). There has recently been an increase in studies that report evidence for altered 

neuromuscular and proprioceptive function in patients with neck and back pain, with 

discussion and suggestion as to why pain becomes chronic (Gogia 1994; Bränström et al. 

2001; Falla et al. 2004; Stapley et al. 2006). Chiropractic intervention is one of the most 

frequently applied treatments for neck and back pain, however the neurophysiological 

mechanisms that underlie the therapeutic effect resulting in the alteration of the pain 

pathways and the subjective pain experience is poorly understood. Previous research has 

shown that chiropractic adjustments can induce changes to the central nervous system 

which includes excitability, cognitive processing, sensory processing, and motor output 

(Murphy et al. 1995; Herzog et al. 1999; Suter et al. 1999). This combination of effects 

suggests that chiropractic intervention may provide a positive modulation on the 

neurophysiological system and this may play a role in the effect that it has on neck pain.  

 

A mechanism proposed by Haavik-Taylor and Murphy (2007) postulates that areas of 

spinal dysfunction results in input that alters afferent feedback and could therefore be 

responsible for malign central plastic changes due to altered discordant sensorimotor 

integration. By implementing a high-velocity, low-amplitude manipulation technique to 

the area of spinal dysfunction, it is proposed that the altered afferent feedback from the 

spine and limbs may be normalized, thus resulting in normalized sensorimotor 

integration. This hypothesis and sequence of reactive changes is supported by work using 
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transcranial magnetic stimulation (TMS) (Haavik-Taylor and Murphy 2007), measuring 

the balance of motor cortical output to a defined target muscle, and also somatosensory 

evoked potentials (SEPs) (Haavik-Taylor and Murphy 2007; Taylor and Murphy 2010), 

measuring the processing of sensory information by the brain, has indicated that cervical 

spine adjustments can alter sensorimotor integration of the upper limb.  

 

The cerebellum is a neural structure that is actively involved in motor learning and 

sensorimotor integration. Studies have shown that the cerebellum is associated with 

motor learning (Doyon et al. 2002; Doyon et al. 2003; Manto and Bastian 2007; Molinari 

et al. 2007) and is responsible for receiving and integrating the incoming signals from the 

joints of the neck and spine (Manzoni 2005; Manzoni 2007).  There is also evidence that 

the cerebellum plays a role in plastic changes and the adaptation of motor circuits (Doyon 

and Ungerleider 2002; Apps and Garwicz 2005). Recent work has shown that there is a 

modulation of motor cortex excitability due to a reduction of cerebellar modulation in 

both patients suffering from focal hand dystonia (Brighina et al. 2009) and migraine with 

aura (Brighina et al. 2009). Therefore, it is fundamental that the cerebellum as a key 

neural structure is investigated with regard as to how chiropractic intervention alters 

sensorimotor integration to disclose the mechanism behind spinal adjustments. This 

project`s goal is to investigate if there is modulation in cerebellar output from neck pain 

patients, and if spinal manipulation has an effect on sensorimotor integration.  
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Chapter 2 - Inclusion/Exclusion Criteria for Literature Search 
 

The contribution of chiropractic intervention in the alteration of neural components 

during the treatment of patients across a broad scope of neural complaints is sparsely 

represented in the literature. There are even fewer articles regarding these neural 

alterations in neck pain patients, and no known articles defining the role of the 

cerebellum in this process. In order to provide an unbiased and accurate review of the 

literature, evidence needed to be extracted, evaluated, and organized into a 

comprehensive representation of the current state of knowledge. This was accomplished 

by systematically using a set of inclusion/exclusion criteria when searching for literature. 

Keywords used in the literature search were developed from the research question and 

were: Cerebellum, chiropractic care, neck pain, motor sequence learning, and transcranial 

magnetic stimulation. Databases used for the search included Google Scholar and Science 

Direct. A “hand search” of articles was also performed following the attainment of the 

most significant articles from the literature by looking at the references that significantly 

supported their studies. Gray literature was also used as a resource to determine basic 

anatomy and physiology that corresponds with the motor cortex, cerebellum, and their 

associated pathways.  

 

The inclusion/exclusion criteria were set to include relevant literature that would help to 

identify and solve the research question that was developed for this project. The article 

must have been written in English because that is the only language that would be 

comprehensible to the researchers performing this project. It was important that the data 

from one study not overlap another study because this would test a greater subject pool, 



 
5 

and therefore provide greater strength to the literature review.  This analysis also 

specified human subjects in order to provide comparable data between different research 

projects. Techniques that were used to attempt to uncover the neural correlates needed 

were limited to TMS, somatosensory evoked potentials, electroencephalography, and/or 

magnetic resonance imaging because these are techniques that have been shown to 

accurately uncover details about the brain and its activity as specific techniques but also 

in relationship to each other in various research design approaches. Also, this emphasized 

the recency of the literature (1990-2012) as these techniques are relatively modern. 
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Chapter 3 - Functional Neuroanatomy  
 

Although several areas of the brain are known to directly influence the activity of the 

spinal cord through their descending connections, the main pathway that is activated 

during voluntary movement is the corticospinal tract. The next section aims to discuss the 

role of the structures involved in this pathway that allow for movement to occur in the 

human body.  

3.1 – The Primary Motor Cortex 

In the early 20
th

 century, Korbinian Brodmann distinguished 52 anatomically and 

functionally distinct areas of the human brain by examining these regions cyto-

architecture. This led to the well-established Brodmann classification system, which 

identified these structurally different areas. Specifically, Brodmann‟s area 4 was found to 

be unique from other regions of the brain due to its functional capability to control motor 

movements and ultimately came to be known as the primary motor cortex. The primary 

motor cortex (M1) is located in each frontal lobe, directly anterior to the central sulcus in 

the precentral gyrus (Jenkins et al. 2007). Each region in the primary motor cortex 

controls voluntary actions of specific muscles or groups of muscles. Therefore, this 

region of the brain is responsible for movement initiation and coordination of movements 

for fine motor skills (Magill 2007). This occurs because they have motor neurons that 

connect axons to skeletal muscles throughout the entire body. The motor neurons act as 

the control center, while the axons relay the messages (or stimuli) down to the affected 

muscles. M1 is organized somatotopically: meaning that there is a greater representation 

of cortical area dedicated to highly innervated regions of the body (Magill 2007). These 

areas of greater representation include the hand and face regions of the body, as we use 
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the muscles in these parts of the body to perform finely tuned movements, such as to give 

a facial expression or to move your fingers to pick an object up.  

 

Figure 1. The motor homunculi illustrating the location and amount of cortical area dedicated to specific 

skeletal muscles on the body. Adapted from (Kandell et al. 2000). 

 

3.2 – The Corticospinal Tract 

The corticospinal tract (or the pyramidal tract) consists of about a million axons (DeMyer 

1959), of which 60% originate from the primary motor cortex (Magill 2007), and most 

decussate (crosses over to the other side of the body) at the medulla. Because of the cross 

over in the brainstem, the muscles on each side of the body are controlled by the opposite 

hemisphere. The other 40% of the fibers originate from numerous other areas in the 

cerebral cortex. These include the premotor areas, the primary sensory cortex, and areas 5 

and 7 of the parietal cortex (Porter 1993; Rothwell 1994). Therefore, due to the large 

amount of cortical representation that is involved in the corticospinal pathway, it is 

logical to accept that transcranial stimulation over a large amount of areas in the brain 

would result in the activation of this pathway.  
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Although 90% of corticospinal fibers decussate at the medulla, about 10% of the fibers do 

not cross until they reach the level of the spinal cord where they end (Magill 2007). In the 

spinal cord, some corticospinal fibers form synapses with interneurons, which allows for 

the coordination of larger groups of muscles to perform more gross movements 

(Büschges and El Manira 1998). Other fibers make single synapses with motor neurons 

that are involved in controlling fine movements (Pollok et al. 2006). The corticospinal 

tract is also modified by ascending sensory information, which includes visual and 

proprioceptive information. This allows for the ability to note the environment and 

situation one is in, and to smoothly execute movements (Doyon et al. 2003).  

 



 
9 

Figure 2. The corticospinal pathway illustrating the fibers originating in the primary motor cortex, 

decussating at the medulla, and terminating in the ventral horn of the spinal cord. Located in the ventral 

horn are the lower motor neurons which act as the final common pathway for transmitting neural 

information to skeletal muscle. Adapted from (Kandell et al. 2000). 

3.3 - The Cerebellum  

The cerebellum is located in the posterior fossa of the skull, dorsal to the brainstem and 

below the occipital pole of the cerebral hemispheres. It is composed of a 1-mm outer 

layer of grey matter that composes the cerebellar cortex and forms a continuous layer 

over the entire outer surface. A dense mass of white matter is located internally to the 

cortex which contains four pairs of cerebellar nuclei in the ventral aspect: the dentate, the 

emboliform, the globose, and the fastigial nucleus. One identifying feature of the 

cerebellum is that its surface contains many parallel fissures that run transversely. Two 

main fissures separate the cerebellum into three lobes. The primary fissure on the dorsal 

surface separates the anterior and posterior lobes, while the posterolateral fissure on the 

ventral surface separates the posterior lobe from the flocculonodular lobe. A longitudinal 

band of less dense cortex, known as the vermis, forms a medial divide that separates the 

cerebellum into two lateral hemispheres. Each hemisphere can be further divided into 

intermediate and lateral regions (Kandell et al., 2000).  

The cellular structure of the cerebellar cortex consists of three layers consisting of only 

five types of neurons. Four of these neurons are inhibitory (stellate, basket, Purkinje, and 

Golgi), while one is excitatory (granule cells). The two main afferent inputs into the 

cerebellum are mossy fibers and climbing fibers. Both types form excitatory connections 

with cerebellar neurons, however they terminate in different areas of the cerebellum and 

produce different firing patterns in the Purkinje neurons. Mossy fibers originate from 

nuclei in the spinal cord and brainstem and convey afferent information from the 

periphery and the cerebral cortex. Mossy fibers exert excitatory synapses on granule cells 
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within the cerebellar cortex and through the granule cells parallel fibers, they make 

connections with the dendrites of Purkinje cells. Climbing fibers originate exclusively 

from the inferior olivary nucleus and convey somatosensory visual or cerebral cortical 

information. Climbing fibers exert powerful excitatory influences on the Purkinje cells 

and deep cerebellar nuclei. Each climbing fiber synapses onto 1-10 Purkinje neurons, 

however individual Purkinje neurons only receive synaptic input from one climbing fiber 

(Kandell et al., 2000).  

Purkinje cells are the main output neurons and have inhibitory connections with the deep 

cerebellar nuclei, which in turn provides an excitatory pathway to the motor cortex via 

the ventral thalamus (Allen and Tsukahara 1974). Therefore, Purkinje cell activation 

results in the reduction of excitatory output from the deep cerebellar nuclei to the motor 

cortex and it is modification to this pathway that is thought to result in the alteration of 

motor control (refer to chapter 4.3-4.4 for detailed description).   

 

 

Figure 3. Anatomical divisions of the cerebellum. The vermis divides the cerebellum into two 

hemispheres, while the primary and posterolateral fissures divide this structure into three distinct lobes. 

Adapted from (Kandell et al. 2000). 
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Chapter 4 – Neural Plasticity 

Until recently, the central nervous system (CNS) was viewed as an inflexible structure, 

with little capability for adaptation and modification. However, most current research 

exemplifies a paradigm shift with the central nervous system now being considered to be 

a „plastic‟ or „malleable‟ organ, capable of modification to account for external stressors 

or inputs (Celnik and Cohen 2004). This adaptive and reactive attribute of the brain has 

led to the term known as neural plasticity (or neuroplasticity).  

4.1 – Mechanisms of Neural Plasticity 

Plasticity can be defined as “any experience dependent enduring change in neuronal or 

network properties either morphological or functional” (Donoghue et al. 1996). It has 

been well documented that the central nervous system is capable of cortical 

reorganization following altered peripheral input (Kaelin-Lang et al. 2004; Tinazzi et al. 

2004; Fratello et al. 2006). This can occur due to a decrease in behaviour or activity, such 

as the case in deafferentation or ischemia of the brain (Hallett et al. 1999; Murphy and 

Dawson 2002; Murphy et al. 2003; Tinazzi et al. 2003). It can also occur due to an 

increase in peripheral input, such as with repetitive muscular activity (Byl and Melnick 

1997; Renner et al. 2005; Cirillo et al. 2010). This phenomenon is thought to occur 

because of alterations in the organization, function, and representation patterns of the 

neuronal connections throughout the associated areas of the brain (Cohen et al. 1999). 

A fundamental consequence of neuroplasticity is that areas of the brain that are 

responsible for specific functions can be reorganized to move or apparently relocate to 

another location. This can occur within the scope of subjectively normal experience, 

however it also occurs during damage to, or the loss of neural tissue (Johansson 2004; 
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Ridding and Ziemann 2010). Conditions that cause cerebral lesions or tissue death, such 

as cerebral vascular accidents (stroke), are common neurologic disorders that correspond 

to plastic cortical changes (Ridding and Ziemann 2010). Despite permanent tissue loss, 

most surviving stroke patients regain various degrees of function with time (Johansson 

2004). It is widely accepted that this occurs because surrounding regions of the brain 

develop and express association with repair processes of the functional deficits that were 

lost to the original insult and concomitant tissue damage. Good stroke recovery has been 

achieved by patients who have recruited task related areas of the brain rather than simply 

recruiting motor areas (Ward et al. 2003).  

4.2 – Repetitive Movement and Neural Plasticity 

The central nervous system and the motor cortex has demonstrated the capability to 

reorganize itself in response to motor performance and training, and represents an 

important contribution to repair processes and rehabilitative treatment (Tinazzi et al. 

1998; Murphy et al. 2003; Liepert et al. 2004). Training, such as repetitive ballistic finger 

movements, has been shown to lead to encoding of the kinematic details of the practiced 

movement in the primary motor cortex (Classen et al. 1998; Takahashi et al. 2005; Cirillo 

et al. 2010). Further studies identified that NMDA receptor activation and GABAergic 

inhibition are neurochemical modulatory mechanisms operating in use-dependant 

plasticity of the motor cortex (Bütefisch et al. 2000). NMDA and GABA are both 

neurotransmitters, which act to either excite or inhibit neural activity respectively. 

Therefore by activating NMDA receptors to accept this neurotransmitter or by inhibiting 

GABA from releasing (GABAergic mechanisms), it is possible to facilitate use-

dependent plasticity. While plasticity can occur via being exposed to a life-long amount 

of experiences and stimuli (long-term potentiation) (Tinazzi et al. 1998), it can also occur 
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very rapidly, within minutes to hours (Tinazzi et al. 1997). Therefore, this rapid technique 

can be used in order to induce motor cortical plasticity and investigate the response 

differences of the motor cortex to different stimuli. 

4.3 - Motor Skill Acquisition  

Developing novel motor skills involves the process of learning movements produced 

either in sequence or independently, and this trains the cortical and subcortical structures 

of the neural system to perform them effortlessly after repeated practice (Willingham 

1998). According to Doyan & Benali (2005), there are five distinct phases when learning 

a motor skill. The fast (early) learning stage is when a considerable improvement in 

performance occurs following an initial single training session. The second stage is the 

slow (later) stage where following several sessions of training, there is a greater amount 

of improvement. The consolidation phase occurs following a latent period of more than 6 

hours after the first training session and is signified by considerable improvements in 

performance without additional practice on the task. The fourth stage is the automatic 

stage and is identified when the learned skill requires minimal cognitive resources and is 

resistant to distraction or the effects of time. Lastly, the retention phase is the end goal of 

motor skill acquisition and is when the skill can be executed on command without further 

practice of the task.  

Based on behavioural, lesion, and imaging studies investigating the neural components 

responsible for motor skill learning and plasticity, it has been demonstrated that 

interactions between cortico-striatal, cortico-cerebellar, and limbic system involvement 

are all necessary for motor skill acquisition. Doyon et al. (Doyon and Ungerleider 2002; 

Doyon et al. 2003), proposed a theoretical framework describing the plastic changes that 
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occur in the neural circuitry that occurs across learning stages. In the fast and 

consolidation learning stages, it has been shown that motor sequence tasks recruit both 

the cortico-striatal and cortico-cerebellar systems depending on the cognitive processes 

required during the task (Shadmehr and Holcomb 1997; Schendan et al. 2003; Aizenstein 

et al. 2004). However, in the automatic phase it has been shown that there is a shift from 

activity in the associative areas of the basal ganglia to the sensorimotor territories, while 

in the cerebellum, a shift occurs from activation of the cerebellar cortex to the dentate 

nucleus (Doyon et al. 2002; Floyer-Lea and Matthews 2004).  

4.4 – Role of the Cerebellum in Neural Plasticity and Motor Learning 

Patients with cerebellar conditions present with altered motor function and learning 

capabilities, and it is likely that disorders in motor learning contribute to impaired 

movement function for daily activities. It has been shown that the cerebellum is involved 

in the control of associative motor learning tasks such as the classical eyeblink 

conditioning response. Studies in cerebellar patients with degenerative cerebellar disorder 

and defined focal regions have demonstrated that the conditioning response in the 

eyeblink response is significantly reduced (Fortier et al., 2000; Gerwig et al., 2003, 

2005). Using voxel-based lesion-symptom mapping techniques, it was shown that cortical 

areas of the anterior lobe may be involved in altered conditioning response timing and 

superior parts of the posterior lobe in stimulus association in humans (Gerwig et al., 

2003, 2005).  

Based on theoretical mathematical modelling of cerebellar function of Marr & Albus 

(Marr, 1969; Albus, 1971), it was proposed that climbing fiber input to Purkinje neurons 

modifies the response of these neurons to mossy fiber afferents and does so for a 
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prolonged period of time. This process was coined long-term depression and involves a 

process where climbing fibers weaken the parallel fiber-Purkinje cell synapses. 

According to this theory, altering the strength of mossy fiber-Purkinje cell synapses 

would select specific Purkinje cells to correct motor commands by integrating the 

afferent feedback of the movement. Therefore, each successive movement would allow 

the climbing fibers to weaken the parallel fiber-Purkinje cell synapses associated with an 

incorrect pattern of activity and allow for refinement of the appropriate movement. This 

theory is based off of Donald Hebb‟s original work on associative learning which stated 

that synaptic plasticity occurs during the presence of a repeated and persistent firing rate 

in a presynaptic neuron which subsequently stimulates a postsynaptic cell (Kandell et al. 

2000). Therefore, in the cerebellum, the alterations between mossy fibers and Purkinje 

cells following motor training can be seen as Hebbian learning.  
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Chapter 5 - Transcranial Stimulation 

Transcranial stimulation is a tool that is used to investigate the excitability of the motor 

cortex. It was first described in 1896 by Arsenne D‟Arsonval (Geddes 1991) who 

identified that a magnetic field could stimulate certain areas of the brain to induce 

specific responses, such as inducing phosphenes (a sensation of light) and vertigo, when 

passing a current through a coil in which the subjects head was placed. This technique 

was rather invasive however, as patients had to be either being evaluated or undergoing 

surgery at the time. The next breakthrough in transcranial stimulation occurred in 1980 

when Merton and Morton developed what is known as transcranial electric stimulation. 

They used a single high voltage shock, rather than a repetition of smaller shocks, and 

demonstrated that stimulation over the motor cortex could produce muscular activation of 

contralateral body parts (Merton and Morton 1980). However, the main problem with this 

procedure was that it caused a significant amount of pain as only a small amount of 

applied current flowed into the brain, while the rest went between the electrodes on the 

scalp causing local discomfort and contraction. 

5.1 - Transcranial Magnetic Stimulation 

Transcranial Magnetic Stimulation (TMS) was created in the early 1980‟s (Barker et al. 

1985), and is a safe way to painlessly stimulate the motor area of the brain that controls 

movement. This occurs due to a rapid discharge of current through a coil being placed 

over the scalp, which induces a magnetic field that is oriented perpendicular to the coil, 

and can reach values of up to 2 Tesla (Barker et al. 1985). This rapidly changing 

magnetic field induces stimulation of the neural tissue in the brain, namely the 

interneurons that synapse onto the neurons of the motor cortex. The magnetic field 

diminishes significantly with distance from the coil surface, which means that deeper 
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cortical structures in the brain (i.e. the thalamus and basal ganglia) remain inactivated 

(Rothwell 1997). There are many different types of TMS coils that can be used including 

round, figure-eight, and double cone coils. Round coils affect a large region of the brain, 

however are sensitive to the radius of the circle (Roth et al. 1991). Larger coils do not 

produce a very local stimulation, but are able to penetrate the motor cortex more deeply 

and can therefore activate deeper muscles (Rothwell et al. 1991). The figure-eight shape 

coil allows for the largest and most localized current under the intersection of both wings 

of the magnetic coil where the two round components merge (Cohen and Bandinelli 

1988; Roth et al. 1991). TMS also allows for the study of plastic changes in cortical areas 

that function in motor and sensory mechanisms (Chen et al. 1998), and mechanisms of 

plasticity (Ziemann et al. 1998).  

5.2 - Motor Evoked Potentials 

Once the TMS coil stimulates the area of the motor cortex that controls the muscle being 

studied, it will then induce neural activity which discharges an action potential all the 

way down the lateral corticospinal tract to the effected muscle (Rothwell 1997; 

Muellbacher et al. 2000). The electromyographic (EMG) response by the muscle to these 

stimuli is known as a motor evoked potential (MEP). Magnetic stimulation of the motor 

cortex evokes EMG responses in contralateral and distal muscle (Rothwell 1997). In 

order to identify the area of M1 which corresponds to the target muscle a “trial and error” 

TMS mapping technique must occur, where the subject is stimulated along the primary 

motor cortex region of the brain until there is activation of the muscle (Rossini 1990). 

Once the area of the brain is identified, progressively increasing the intensity of the 

stimulation while recording EMG will allow for the development of a threshold level, 

which has previously been defined as the probability of evoking an MEP in 5 out of every 
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10 stimulations (Rossini 1990). Inter-subject variability of subjects optimal coil position 

for evoking a response in a muscle may vary up to 2 cm (Meyer et al. 1991), however 

there is a great deal of emphasis to be put on the coil orientation as well because 

stimulation of neural tissue is also dependant on whether or not the magnetic current is 

perpendicular to the motor neuron axons (Barker et al. 1985). A coil orientation with 

handle pointed backwards and rotated approximately 45 degrees away from the mid-

sagittal line has been shown to allow for optimal activation of corticospinal neurons 

trans-synaptically (Werhahn et al. 1994; Kaneko et al. 1996). When performing trials, an 

average of 8-16 MEP‟s is usually taken for each stimulus parameter. In order to account 

for operator variability, a tight fitting cap or a neuro-navigation system is often 

implemented in order to accurately place the coil in the correct placement.  

The MEP is usually larger in the hand and forearm region in the axial skeleton when 

compared to the leg, foot and pelvis regions (Rossini 1990). This is due to the positioning 

and the orientation of the primary motor cortex in the brain. The somatotopic position of 

the hand region on the motor cortex is located near the most superior and superficial part 

of the skull, and has the largest representation devoted to these finely skilled and complex 

neural pathways (Jenkins et al. 2007).  
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Figure 4. Example of an electromyography trace showing a motor evoked potential (Haavik Taylor 2007). 

 

5.3 - Paired-Pulse TMS  

Paired-pulse TMS (ppTMS) is produced when two distinct stimuli are outputted through 

the same coil at different time intervals. The initial stimuli is referred to as the 

conditioning stimulus (CS), while the second stimuli is called the test stimulus (TS), and 

the interaction the stimuli have on each other depends on the time interval between, and 

the intensities of both the CS and TS (Chen and Garg 2000; Ilic 2004). This method of 

TMS is used to non-invasively investigate inhibitory (Chen and Garg 2000; Ilic 2004; 

Cirillo et al. 2010) and excitatory (Chen et al. 1998; Ziemann et al. 1998; Boroojerdi et 

al. 2001) neural networks in the motor cortex.  

5.3.1 – Short Interval Intracortical Inhibition 

Short-interval intracortical inhibition (SICI) occurs when a subthreshold CS is followed 

by a suprathreshold TS at an interstimulus interval (ISI) of 1-6ms (Kujirai et al. 1993). 

The response in the motor evoked potential of the target muscle is inhibited during this 

phenomenon. There are two distinct phases of SICI, with one occurring at approximately 

at an ISI of 1ms, while the other occurs at an ISI of ~2.5-4.5 ms  (Fisher et al. 2002; 
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Hanajima et al. 2003; Roshan et al. 2003). Studies have shown that the first phase of SICI 

is due to refractoriness of the neural elements that are responsible for the activation of 

corticospinal neurons, while the second phase of inhibition is a synaptic inhibition 

mediated by the gamma-aminobutyric acid A (GABAA) receptor (Kujirai et al. 1993; 

Ziemann et al. 1996; Ziemann et al. 1996; Ilic et al. 2002). A reduction of SICI occurs 

prior to and during voluntary activation of motor movements (Ridding et al. 1995; 

Reynolds and Ashby 1999), which is thought to enhance use-dependant plasticity 

(Ziemann and Hallett 2001). An enhancement of SICI by GABAA receptor agonist 

suppresses use-dependent plasticity in human motor cortex (Tegenthoff et al. 1999).  

 

Figure 5. Example EMG trace showing SICI. The MEP evoked by the test stimulus alone is inhibited when 

preceded by a smaller stimulus (Haavik Taylor 2007). 

5.3.2 – Short Interval Intracortical Facilitation/ I wave Facilitation  

Short-interval intracortical facilitation (SICF) or I-wave facilitation (IwF) occurs when 

the first stimulus (S1) is above the MEP threshold and the second stimulus (S2) is below 

or at the level of the MEP threshold (Ziemann et al. 1998; Hanajima et al. 2002; Ilic et al. 

2002). When this occurs, electromyography responses of the target muscles to the dual 

stimuli can be larger than responses to S1 alone. This has been shown to occur at three 

distinct phases of ISI at: 1.0-1.5; 2.5-3.0; and 4.0-4.5 (Ziemann 1999; Chen et al. 2008). 

These SICF peaks have been shown to be related to I-wave generation (Patton and 

Amassian 1954). There are two types of corticospinal waves following the stimulation of 
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the motor cortex: direct (D) and indirect (I) waves. D-waves are due to the activation of 

the axon of corticospinal neurons, while I-waves are due to the trans-synaptic activation 

of these motor neurons (Patton and Amassian 1954). In respect to SICF and IwF, this 

phenomenon is thought to occur because the second stimulus acts on the neuronal tissue 

around the motor neuron that have been partially facilitated, but have not yet reached 

threshold by the first stimulus, thus activating the indirect pathway (Di Lazzaro et al. 

2004). I waves occur at regular “clock-like” intervals of 1.5 ms intervals, and since the 

three phases of SICF occur around intervals of 1.5 ms as well, it is thought that SICF is 

due to the interaction of I waves generated by the two stimuli (S1 and S2) (Ziemann et al. 

1998).  

 

Figure 6. Example EMG trace showing SICF (or IwF). The MEP from the test stimulus (S1) alone is 

facilitated when followed with a smaller stimulus (S2) (Haavik Taylor 2007). 

 

5.3.3 – Long Interval Intracortical Inhibition 

In contrast to SICI, which is thought to be a GABAA mediated process, long interval 

intracortical inhibition is an inhibitory process that is thought to be mediated by GABAB 

receptors based on studies using GABAB receptor agonists (Valls-Solé et al. 1992; 

Wassermann et al. 1996). This process assesses intra-cortical inhibition with paired 

suprathreshold TMS pulses at interstimulus intervals ranging from 50-200 ms, with the 

optimal inhibition occurring at approximately 100 ms (Nakamura et al. 1997; Chen et al. 
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1999). LICI and SICI differ, as there is no relationship between the levels of SICI and 

LICI in different individuals, as well as the fact that with increasing test pulse strength, 

LICI decreases but SICI tends to increase (Sanger et al. 2001).  

 

Figure 7. Example EMG trace showing LICI. The initial MEP evoked is much larger than the second MEP, which can 

occur at an ISI of 50-200 ms.  

 

5.3.4 – Cerebellar TMS  

Activity of the cerebellothalamocortical pathway can be revealed non-invasively in 

humans. It has been shown that performing either electrical (Ugawa et al. 1991) or 

magnetic (Ugawa et al. 1995; Pinto and Chen 2001) stimulation of the cerebellum 5-7ms 

before stimulation of the motor cortex results in the inhibition of this motor cortical 

stimulation. A double-cone coil has been shown to produce the optimal suppression using 

this technique (Ugawa et al. 1995). During this technique, the coil is placed over the 

cerebellar cortex on the contralateral side of cortical stimulation. The coil is centered to 

be at the midpoint on a line joining the external auditory meatus to the inion, while the 

current in the coil is directed downwards (induces an upward current in the cerebellar 

cortex). This coil position was found to be optimal for suppressing the contralateral motor 

cortex (Ugawa et al. 1995). The intensity of the coil has been most commonly set to 95% 

of active motor threshold for pyramidal tract activation, while the coil is centered over the 
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inion, in order to reduce the risk of activating the spinal cord (Daskalakis et al. 2004; 

Brighina et al. 2009).  

Daskalakis et al. (2004) explored the connectivity between the cerebellum and motor 

cortex by using both cortical inhibitory and excitatory motor circuits to examine how 

cerebellar TMS interacts with these processes. The three inhibitory processes used were 

cerebellar inhibition (CBI), SICI, LICI, while the excitatory measure used was ICF. The 

first experiment showed that with increased TS intensities, CBI, LICI and ICF decreased, 

while SICI increased. The second experiment demonstrated that the presence of CBI 

reduced SICI and increased ICF. The third experiment showed that the interaction 

between CBI and LICI reduced CBI. Based on these results, the authors concluded that 

CBI results in changes to both excitatory and inhibitory neurons. The finding of reduced 

SICI following CBI suggests that there is activation of the Purkinje cells leading to 

suppression of excitatory output from the venterolateral nucleus of the thalamus, thus 

leading to a decreased excitatory drive to both excitatory output motor neurons as well as 

inhibitory (SICI) interneurons.  

 

Figure 8. EMG traces demonstrating the effect of CBI. The MEP evoked by the test stimulus alone at 1mV is inhibited 

when a conditioning stimulus to the cerebellum 5 ms prior to cortical stimulation is given.   
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Chapter 6: Cervical Spine Dysfunction and Chiropractic 

Intervention 

According to Haldeman et al (2008), a majority of the general population experiences 

some degree of neck pain within their lifetime. There are many prevailing factors that 

result in neck pain, including socioeconomic status, prior health, workplace injuries, 

psychological, societal, genetic, health behaviours, and sport injuries (Hogg-Johnson et 

al. 2008). Although neck pain is common, qualitative analysis has shown that there is 

marked degree of variation in the signs and symptoms that occur in the involved 

population. There are many reported cases of some pain, fewer cases of significant 

duration, less cases that need healthcare treatment, and even fewer cases that result in 

disability (Hogg-Johnson et al. 2008). The incidence rate of self-reported neck pain in the 

general population ranges from 146 to 213 per 1000 people (Croft et al. 2001; Côté et al. 

2004; Ståhl et al. 2004), while the annual prevalence rate of neck pain ranged between 

30% and 50% (Hogg-Johnson et al. 2008). Most studies have shown that the prevalence 

of neck pain increases with older age, peaking in mid-life and declining in the later years. 

However, the risk of developing neck pain is the same over all age groups. The younger 

population with neck pain have a better prognosis when compared to older persons 

(Carroll et al. 2008). Therefore, it may be this factor that demonstrates the difference 

between incidence rates and prevalence.  

Chiropractic practitioners are trained to treat neuromuscular conditions through many 

diversified techniques such as physiological therapeutics, exercise, nutrition, and 

manipulation. Chiropractors place an emphasis on the latter of these techniques with the 

goal of correcting disorders of the neuromuscular system by improving joint alignment, 

range of motion, and quality of movement (Haneline 2005). Although chiropractic care is 
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one of the most common complementary treatment methods to neck pain, there is little 

understood about the neurophysiological effects that make treatment so effective. 

Recently, there has been evidence to suggest that patients with neck and back pain 

undergo neurophysiological and proprioceptive changes in function, which may lead to 

chronic changes (Murphy et al. 1995; Herzog et al. 1999; Suter et al. 1999). There is also 

evidence to suggest that chiropractic care can induce changes in nervous system 

functioning including cognitive processing and motor output (Herzog et al. 1999; Haavik-

Taylor and Murphy 2007; Haavik-Taylor and Murphy 2007), suggesting that chiropractic 

treatment not only manages pain and normalizes movement, but also has the potential to 

modulate neural functioning. 

More specifically, Haavik and Murphy (2012) have proposed an interventional approach 

based on the principle that high-velocity, low-amplitude spinal manipulation improves 

function and reduces symptoms. This novel approach suggests that altered afferent 

feedback caused by joint dysfunction affects ascending afferent input into cortical and 

subcortical neural structures, which further leads to altered sensorimotor processing. 

Through the use of spinal manipulation, this therapeutic treatment can facilitate 

normalization of the altered input and therefore return the process to its normal spectrum 

of perceived function (Taylor and Murphy 2010). Several studies have demonstrated 

altered motor control following spinal manipulation of the cervical spine by utilizing 

various TMS techniques(Haavik-Taylor and Murphy 2007; Taylor and Murphy 2008). 

TMS techniques studied have included short interval intracortical inhibition, short 

interval intracortical facilitation, and the cortical silent period, and each are thought to 

reflect different processing mechanisms within the cortex (Fisher et al., 2002; Kujirai et 
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al., 1993; Hanajima et al., 2002). According to Taylor & Murphy (2008) there was an 

increase in SICI following manipulation of dysfunctional segments in the cervical spine 

to the abductor pollicis brevis muscle (APB), as well as an increase in SICF for the APB 

muscle and a decrease in SICF for the extensor indices proprios (EIP) muscle. Therefore, 

these alterations in motor control appear to be targeted and specific to the muscle being 

utilized.  
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Chapter 7: Literature Synthesis and Perspective 

Chiropractic treatment is one of the most common treatments for neck pain, however 

there is little known about the exact biological mechanism involved for its undoubted 

efficacy. Neck pain places a large burden on the healthcare system with approximately a 

30-50% one year prevalence rate in the general population (Hogg-Johnson et al. 2008). 

Therefore, with the appropriate knowledge of the mechanisms involved in the therapeutic 

process of spinal manipulation, it may be possible to enhance treatment capabilities and 

provide better healthcare to clients. There is a growing amount of evidence to suggest that 

there is impaired proprioception and neuromuscular functions in patients with neck and 

back pain (Bränström, Malmgren-Olsson, & Barnekow-Bergkvist, 2001; Falla, Bilenkij, 

& Jull, 2004; Gogia, 1994; Stapley, Beretta, Toffola, & Schieppati, 2006). There is also 

evidence to suggest that chiropractic manipulation can induce changes in the central 

nervous system related to sensory processing and motor control  (Herzog et al. 1999; 

Haavik-Taylor and Murphy 2007; Haavik-Taylor and Murphy 2007). Taylor and Murphy 

(2008) have suggested that altered afferent input to the central nervous system as a 

consequence of neck joint dysfunction may affect the way that the CNS processes 

afferent input from the neck and upper limbs and over time this may lead to altered 

sensorimotor integration, which can then be normalized when the dysfunctional neck 

joints are manipulated. 

One neural structure postulated to be the integrator for this afferent information is the 

cerebellum. Research has shown that the cerebellum is involved in the integration of 

incoming signals from the joints of the neck and spine (Manzoni 2005; Manzoni 2007), 

and has also shown that it is associated with motor learning (Doyon et al. 2002; Doyon et 
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al. 2003; Manto and Bastian 2007; Molinari et al. 2007). There is no known work directly 

showing a relationship between the cerebellum and neck pain or chiropractic treatment. 

However, recent work has shown that there is reduced cerebellar modulation of motor 

cortex excitability in patients with focal hand dystonia (Brighina et al. 2009) and patients 

who suffer from migraine with aura (Brighina et al. 2009). These studies are both 

relevant to the field of chiropractic treatment as migraine and overuse injuries are 

conditions often treated by chiropractors. Given that these two conditions alter cerebellar 

output, it is possible that there will also be modulation in neck pain patients as well.  If an 

alteration in motor output is demonstrated at the level of the cortex or the cerebellum, it 

may provide a neurological marker of whether the altered sensorimotor integration has 

been normalized, or if the patient is still at risk for recurrent neck pain and requires 

further or different care. Changes in the cerebellar output to the cortex would add to the 

current knowledge on the role of this neural structure on sensorimotor processing and 

could also contribute to future study designs to determine how prolonged these alterations 

are and what modes of chiropractic treatment would provide optimal care.  

In order to view changes in the motor output of the cerebellum various TMS techniques 

can be implemented. Ugawa et al (1995) demonstrated that activity of the 

cerebellothalamocortical pathway can be revealed non-invasively in humans. This was 

revealed through stimulation of the cerebellum 5-7 ms before stimulation of the motor 

cortex, which resulted in the inhibition of the cortical stimulation. Recent studies 

(Haavik-Taylor and Murphy 2007; Taylor and Murphy 2008) have shown that 

manipulation of dysfunctional segments in the cervical spine alters sensorimotor 

integration of input from the upper limb by using cortical TMS techniques. Experimental 
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measures used in these studies were SICI, SICF, and CSP and all are thought to be 

measures of SMI processing at the level of the cortex (Fisher et al., 2002; Kujirai et al., 

1993; Hanajima et al., 2002). Due to this alteration from spinal manipulation, it is 

necessary to investigate cortical changes, as well as cerebellar changes, in order to 

determine the exact neural structures which are responsible for sensorimotor changes in 

patients with dysfunctional spinal segments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
30 

References 

Aizenstein, H. J., Stenger, V. A., Cochran, J., Clark, K., Johnson, M., Nebes, R. D., & Carter, C. S. 
(2004). Regional brain activation during concurrent implicit and explicit sequence 
learning. Cerebral Cortex, 14(2), 199-208.  

Allen, G., & Tsukahara, N. (1974). Cerebrocerebellar communication systems. Physiological 
reviews, 54(4), 957-1006.  

Apps, R., & Garwicz, M. (2005). Anatomical and physiological foundations of cerebellar 
information processing. Nature Reviews Neuroscience, 6(4), 297-311.  

Barker, A., Jalinous, R., & Freeston, I. (1985). Non-invasive magnetic stimulation of human motor 
cortex. Lancet, 1(8437), 1106.  

Boroojerdi, B., Battaglia, F., Muellbacher, W., & Cohen, L. G. (2001). Mechanisms influencing 
stimulus response properties of the human corticospinal system. Clinical 
Neurophysiology, 112, 931-937.  

Bränström, H., Malmgren-Olsson, E. B., & Barnekow-Bergkvist, M. (2001). Balance performance 
in patients with whiplash associated disorders and patients with prolonged 
musculoskeletal disorders. Advances in physiotherapy, 3(3), 120-127.  

Brighina, F., Palermo, A., Panetta, M. L., Daniele, O., Aloisio, A., Cosentino, G., & Fierro, B. 
(2009). Reduced cerebellar inhibition in migraine with aura: a TMS study. The 
Cerebellum, 8(3), 260-266.  

Brighina, F., Romano, M., Giglia, G., Saia, V., Puma, A., Giglia, F., & Fierro, B. (2009). Effects of 
cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. 
Experimental brain research, 192(4), 651-656.  

Büschges, A., & El Manira, A. (1998). Sensory pathways and their modulation in the control of 
locomotion. Current Opinion in Neurobiology, 8(6), 733-739.  

Bütefisch, C., Davis, B., Wise, S., Sawaki, L., Kopylev, L., Classen, J., & Cohen, L. (2000). 
Mechanisms of use-dependent plasticity in the human motor cortex. Proceedings of the 
National Academy of Sciences of the United States of America, 97(7), 3661.  

Byl, N., & Melnick, M. (1997). The neural consequences of repetition: clinical implications of a 
learning hypothesis. Journal of hand therapy: official journal of the American Society of 
Hand Therapists, 10(2), 160.  

Carroll, L. J., Hogg-Johnson, S., Van Der Velde, G., Haldeman, S., Holm, L. W., Carragee, E. J., . . . 
Peloso, P. M. (2008). Course and prognostic factors for neck pain in the general 
population. European Spine Journal, 17, 75-82.  

Celnik, P., & Cohen, L. (2004). Modulation of motor function and cortical plasticity in health and 
disease. Restorative neurology and neuroscience, 22(3), 261-268.  

Chen, R., Cros, D., Curra, A., Di Lazzaro, V., Lefaucheur, J., Magistris, M., . . . Ugawa, Y. (2008). 
The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN 
committee. Clinical Neurophysiology, 119(3), 504-532.  

Chen, R., & Garg, R. (2000). Facilitatory I wave interaction in proximal arm and lower limb 
muscle representations of the human motor cortex. Journal of Neurophysiology, 83(3), 
1426.  

Chen, R., Lozano, A. M., & Ashby, P. (1999). Mechanism of the silent period following 
transcranial magnetic stimulation evidence from epidural recordings. Experimental brain 
research, 128(4), 539-542.  



 
31 

Chen, R., Tam, A., Butefisch, C., Corwell, B., Ziemann, U., Rothwell, J., & Cohen, L. (1998). 
Intracortical inhibition and facilitation in different representations of the human motor 
cortex. Journal of Neurophysiology, 80(6), 2870.  

Cirillo, J., Rogasch, N. C., & Semmler, J. G. (2010). Hemispheric differences in use-dependent 
corticomotor plasticity in young and old adults. Experimental brain research, 205(1), 57-
68.  

Classen, J., Liepert, J., Wise, S., Hallett, M., & Cohen, L. (1998). Rapid plasticity of human cortical 
movement representation induced by practice. Journal of Neurophysiology, 79(2), 1117.  

Cohen, L., & Bandinelli, S. (1988). S. belli, and M, Hallett," Noninvasive mapping of hand motor 
somatotopic area using magnetic stimulation,". J. Clin. Neurophysiol, 5, 371-372.  

Cohen, L., Ziemann, U., & Chen, R. (1999). Mechanisms, functional relevance and modulation of 
plasticity in the human central nervous system. Electroencephalography and clinical 
neurophysiology. Supplement, 51, 174.  

Côté, P., Cassidy, J. D., Carroll, L. J., & Kristman, V. (2004). The annual incidence and course of 
neck pain in the general population: a population-based cohort study. Pain, 112(3), 267-
273.  

Croft, P. R., Lewis, M., Papageorgiou, A. C., Thomas, E., Jayson IV, M., Macfarlane, G. J., & 
Silman, A. J. (2001). Risk factors for neck pain: a longitudinal study in the general 
population. Pain, 93(3), 317-325.  

Daskalakis, Z. J., Paradiso, G. O., Christensen, B. K., Fitzgerald, P. B., Gunraj, C., & Chen, R. (2004). 
Exploring the connectivity between the cerebellum and motor cortex in humans. The 
Journal of physiology, 557(2), 689-700.  

DeMyer, W. (1959). Number of axons and myelin sheaths in adult human medullary pyramids; 
study with silver impregnation and iron hematoxylin staining methods. Neurology, 9(1), 
42.  

Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Mazzone, P., . . . Rothwell, J. 
(2004). The physiological basis of transcranial motor cortex stimulation in conscious 
humans. Clinical Neurophysiology, 115(2), 255-266.  

Donoghue, J., Hess, G., & Sanes, J. (1996). Substrates and mechanisms for learning in motor 
cortex. Acquisition of Motor Behavior in Vertebrates, 363–386.  

Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of 
motor skills. Current opinion in neurobiology, 15(2), 161-167.  

Doyon, J., Penhune, V., & Ungerleider, L. (2003). Distinct contribution of the cortico-striatal and 
cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-262.  

Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). 
Experience-dependent changes in cerebellar contributions to motor sequence learning. 
Proceedings of the National Academy of Sciences, 99(2), 1017.  

Doyon, J., & Ungerleider, L. G. (2002). Functional anatomy of motor skill learning. 
Neuropsychology of memory, 225-238.  

Falla, D., Bilenkij, G., & Jull, G. (2004). Patients with chronic neck pain demonstrate altered 
patterns of muscle activation during performance of a functional upper limb task. Spine, 
29(13), 1436.  

Fisher, R., Nakamura, Y., Bestmann, S., Rothwell, J., & Bostock, H. (2002). Two phases of 
intracortical inhibition revealed by transcranial magnetic threshold tracking. 
Experimental Brain Research, 143(2), 240-248.  

Floyer-Lea, A., & Matthews, P. (2004). Changing brain networks for visuomotor control with 
increased movement automaticity. Journal of neurophysiology, 92(4), 2405-2412.  



 
32 

Fratello, F., Veniero, D., Curcio, G., Ferrara, M., Marzano, C., Moroni, F., . . . De Gennaro, L. 
(2006). Modulation of corticospinal excitability by paired associative stimulation: 
reproducibility of effects and intraindividual reliability. Clinical Neurophysiology, 
117(12), 2667-2674.  

Geddes, L. (1991). History of magnetic stimulation of the nervous system. Journal of Clinical 
Neurophysiology, 8(1), 3.  

Gogia, P. P. (1994). Electromyograhic Analysis of Neck Muscle Fatigue in Patients With 
Osteoarthritis of the Cervical Spine. Spine, 19(5), 502.  

Haavik-Taylor, H., & Murphy, B. (2007a). Cervical spine manipulation alters sensorimotor 
integration: a somatosensory evoked potential study. Clinical neurophysiology, 118(2), 
391-402.  

Haavik-Taylor, H., & Murphy, B. (2007b). Transient modulation of intracortical inhibition 
following spinal manipulation. Chiropractic Journal of Australia, 37(3), 106.  

Haavik, H., & Murphy, B. (2012). The role of spinal manipulation in addressing disordered 
sensorimotor integration and altered motor control. Journal of Electromyography and 
Kinesiology.  

Haldeman, S., Carroll, L., Cassidy, J. D., Schubert, J., & Nygren, Å. (2008). The Bone and Joint 
Decade 2000–2010 Task Force on Neck Pain and Its Associated Disorders. European 
Spine Journal, 17, 5-7.  

Hallett, M., Chen, R., Ziemann, U., & Cohen, L. (1999). Reorganization in motor cortex in 
amputees and in normal volunteers after ischemic limb deafferentation. 
Electroencephalography and clinical neurophysiology. Supplement, 51, 183.  

Hanajima, R., Furubayashi, T., Iwata, N., Shiio, Y., Okabe, S., Kanazawa, I., & Ugawa, Y. (2003). 
Further evidence to support different mechanisms underlying intracortical inhibition of 
the motor cortex. Experimental Brain Research, 151(4), 427-434.  

Hanajima, R., Ugawa, Y., Terao, Y., Enomoto, H., Shiio, Y., Mochizuki, H., . . . Kanazawa, I. (2002). 
Mechanisms of intracortical I-wave facilitation elicited with paired-pulse magnetic 
stimulation in humans. The Journal of physiology, 538(1), 253.  

Haneline, M. T. (2005). Chiropractic manipulation and acute neck pain: a review of the evidence. 
Journal of manipulative and physiological therapeutics, 28(7), 520-525.  

Herzog, W., Scheele, D., & Conway, P. J. (1999). Electromyographic responses of back and limb 
muscles associated with spinal manipulative therapy. Spine, 24(2), 146.  

Hogg-Johnson, S., Van Der Velde, G., Carroll, L. J., Holm, L. W., Cassidy, J. D., Guzman, J., . . . 
Carragee, E. (2008). The burden and determinants of neck pain in the general 
population. European Spine Journal, 17, 39-51.  

Ilic, T. (2004). Subtle hemispheric asymmetry of motor cortical inhibitory tone. Clinical 
Neurophysiology, 115(2), 330-340. doi: 10.1016/j.clinph.2003.09.017 

Ilic, T., Meintzschel, F., Cleff, U., Ruge, D., Kessler, K., & Ziemann, U. (2002). Short-interval 
paired-pulse inhibition and facilitation of human motor cortex: the dimension of 
stimulus intensity. The Journal of physiology, 545(1), 153.  

Jenkins, G. W., Kemnitz, C. P., & Tortora, G. J. (2007). Anatomy and Physiology: From Science to 
Life. New Jersey: Wiley & Sons. 

Johansson, B. (2004). Brain plasticity in health and disease. The Keio Journal of Medicine, 53(4), 
231-246.  

Kaelin-Lang, A., Sawaki, L., & Cohen, L. (2004). Role of voluntary drive in encoding an elementary 
motor memory. Journal of Neurophysiology, 00143.02004.  

Kandell, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of Neural Science. Newport: 
Appleton and Lange. 



 
33 

Kaneko, K., Kawai, S., Fuchigami, Y., Morita, H., & Ofuji, A. (1996). The effect of current direction 
induced by transcranial magnetic stimulation on the corticospinal excitability in human 
brain. Electroencephalography and Clinical Neurophysiology/Electromyography and 
Motor Control, 101(6), 478-482.  

Kujirai, T., Caramia, M., Rothwell, J., Day, B., Thompson, P., Ferbert, A., . . . Marsden, C. (1993). 
Corticocortical inhibition in human motor cortex. The Journal of physiology, 471(1), 501.  

Liepert, J., Weiss, T., Meissner, W., Steinrücke, K., & Weiller, C. (2004). Exercise-induced changes 
of motor excitability with and without sensory block. Brain research, 1003(1-2), 68-76.  

Magill, R. (2007). Motor Learning and Control: Concepts and Applications. New York: McGraw-
Hill. 

Manto, M., & Bastian, A. J. (2007). Cerebellum and the deciphering of motor coding. The 
Cerebellum, 6(1), 3-6.  

Manzoni, D. (2005). The cerebellum may implement the appropriate coupling of sensory inputs 
and motor responses: evidence from vestibular physiology. The Cerebellum, 4(3), 178-
188.  

Manzoni, D. (2007). The cerebellum and sensorimotor coupling: looking at the problem from the 
perspective of vestibular reflexes. The Cerebellum, 6(1), 24-37.  

Merton, P., & Morton, H. (1980). Stimulation of the cerebral cortex in the intact human subject.  
Meyer, B., Britton, T., Kloten, H., Steinmetz, H., & Benecke, R. (1991). Coil placement in magnetic 

brain stimulation related to skull and brain anatomy. Electroencephalography and 
Clinical Neurophysiology/Evoked Potentials Section, 81(1), 38-46.  

Molinari, M., Leggio, M. G., & Thaut, M. H. (2007). The cerebellum and neural networks for 
rhythmic sensorimotor synchronization in the human brain. The Cerebellum, 6(1), 18-23.  

Muellbacher, W., Facchini, S., Boroojerdi, B., & Hallett, M. (2000). Changes in motor cortex 
excitability during ipsilateral hand muscle activation in humans. Clinical 
Neurophysiology, 111(2), 344-349.  

Murphy, B., & Dawson, N. (2002). The effects of repetitive contractions and ischemia on the 
ability to discriminate intramuscular sensation. Somatosensory & motor research, 19(3), 
191-197.  

Murphy, B., Dawson, N., & Slack, J. (1995). Sacroiliac joint manipulation decreases the H-reflex. 
Electromyography and clinical neurophysiology, 35(2), 87-94.  

Murphy, B., Taylor, H., Wilson, S., Knight, J., Mathers, K., & Schug, S. (2003). Changes in median 
nerve somatosensory transmission and motor output following transient 
deafferentation of the radial nerve in humans. Clinical Neurophysiology, 114(8), 1477-
1488.  

Murphy, B., Taylor, H., Wilson, S., Oliphant, G., & Mathers, K. (2003). Rapid reversible changes to 
multiple levels of the human somatosensory system following the cessation of repetitive 
contractions: a somatosensory evoked potential study. Clinical Neurophysiology, 114(8), 
1531-1537.  

Nakamura, H., Kitagawa, H., Kawaguchi, Y., & Tsuji, H. (1997). Intracortical facilitation and 
inhibition after transcranial magnetic stimulation in conscious humans. The Journal of 
physiology, 498(Pt 3), 817-823.  

Patton, H., & Amassian, V. (1954). Single-and multiple-unit analysis of cortical stage of pyramidal 
tract activation. Journal of Neurophysiology, 17(4), 345.  

Pinto, A. D., & Chen, R. (2001). Suppression of the motor cortex by magnetic stimulation of the 
cerebellum. Experimental brain research. Experimentelle Hirnforschung. 
Experimentation cerebrale, 140(4), 505.  



 
34 

Pollok, B., Gross, J., & Schnitzler, A. (2006). How the brain controls repetitive finger movements. 
Journal of Physiology-Paris, 99(1), 8-13.  

Porter, R. (1993). Corticospinal control of movement. In S. Gandevia, D. Burke & M. Arthy (Eds.), 
Science and Practice in Clinical Neurology (pp. 61-74). Cambridge: Cambridge University 
Press. 

Renner, C., Schubert, M., & Hummelsheim, H. (2005). Selective effect of repetitive hand 
movements on intracortical excitability. Muscle & nerve, 31(3), 314-320.  

Reynolds, C., & Ashby, P. (1999). Inhibition in the human motor cortex is reduced just before a 
voluntary contraction. Neurology, 53(4), 730.  

Ridding, M., Taylor, J., & Rothwell, J. (1995). The effect of voluntary contraction on cortico-
cortical inhibition in human motor cortex. The Journal of physiology, 487(Pt 2), 541.  

Ridding, M., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non 
invasive brain stimulation in healthy subjects. The Journal of Physiology, 588(13), 2291-
2304.  

Roshan, L., Paradiso, G., & Chen, R. (2003). Two phases of short-interval intracortical inhibition. 
Experimental Brain Research, 151(3), 330-337.  

Rossini, P. (1990). Methodological and physiological aspects of motor evoked potentials. 
Electroencephalography and clinical neurophysiology. Supplement, 41, 124.  

Roth, B., Saypol, J., Hallett, M., & Cohen, L. (1991). A theoretical calculation of the electric field 
induced in the cortex during magnetic stimulation. Electroencephalography and Clinical 
Neurophysiology/Evoked Potentials Section, 81(1), 47-56.  

Rothwell, J. (1994). Control of Human Voluntary Movement, 2nd edition. London: Chapman & 
Hall. 

Rothwell, J. (1997). Techniques and mechanisms of action of transcranial stimulation of the 
human motor cortex. Journal of Neuroscience Methods, 74(2), 113-122.  

Rothwell, J., Thompson, P., Day, B., Boyd, S., & Marsden, C. (1991). Stimulation of the human 
motor cortex through the scalp. Exp Physiol, 76(2), 159-200.  

Sanger, T. D., Garg, R. R., & Chen, R. (2001). Interactions between two different inhibitory 
systems in the human motor cortex. The Journal of physiology, 530(2), 307-317.  

Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of 
the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-
1025.  

Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. 
Science, 277(5327), 821-825.  

Ståhl, M., Mikkelsson, M., Kautiainen, H., Häkkinen, A., Ylinen, J., & Salminen, J. J. (2004). Neck 
pain in adolescence. A 4-year follow-up of pain-free preadolescents. Pain, 110(1), 427-
431.  

Stapley, P. J., Beretta, M. V., Toffola, E. D., & Schieppati, M. (2006). Neck muscle fatigue and 
postural control in patients with whiplash injury. Clinical neurophysiology, 117(3), 610-
622.  

Suter, E., McMorland, G., Herzog, W., & Bray, R. (1999). Decrease in quadriceps inhibition after 
sacroiliac joint manipulation in patients with anterior knee pain. Journal of manipulative 
and physiological therapeutics, 22(3), 149-153.  

Takahashi, M., Hayashi, S., Ni, Z., Yahagi, S., Favilla, M., & Kasai, T. (2005). Physical practice 
induces excitability changes in human hand motor area during motor imagery. 
Experimental Brain Research, 163(1), 132-136.  

Taylor, H. H., & Murphy, B. (2008). Altered sensorimotor integration with cervical spine 
manipulation. Journal of manipulative and physiological therapeutics, 31(2), 115-126.  



 
35 

Taylor, H. H., & Murphy, B. (2010a). Altered central integration of dual somatosensory input 
after cervical spine manipulation. Journal of manipulative and physiological 
therapeutics, 33(3), 178-188.  

Taylor, H. H., & Murphy, B. (2010b). The effects of spinal manipulation on central integration of 
dual somatosensory input observed after motor training: a crossover study. Journal of 
manipulative and physiological therapeutics, 33(4), 261-272.  

Tegenthoff, M., Witscher, K., Schwenkreis, P., & Liepert, J. (1999). Pharmacological modulation 
of training-induced plastic changes in human motor cortex. Electroencephalography and 
clinical neurophysiology. Supplement, 51, 188.  

Tinazzi, M., Rosso, T., Zanette, G., Fiaschi, A., & Aglioti, S. (2003). Rapid modulation of cortical 
proprioceptive activity induced by transient cutaneous deafferentation: 
neurophysiological evidence of short term plasticity across different somatosensory 
modalities in humans. European Journal of Neuroscience, 18(11), 3053-3060.  

Tinazzi, M., Valeriani, M., Moretto, G., Rosso, T., Nicolato, A., Fiaschi, A., & Aglioti, S. (2004). 
Plastic interactions between hand and face cortical representations in patients with 
trigeminal neuralgia: a somatosensory-evoked potentials study. Neuroscience, 127(3), 
769-776.  

Tinazzi, M., Zanette, G., Polo, A., Volpato, D., Manganotti, P., Bonato, C., . . . Fiaschi, A. (1997). 
Transient deafferentation in humans induces rapid modulation of primary sensory 
cortex not associated with subcortical changes: a somatosensory evoked potential 
study. Neuroscience letters, 223(1), 21-24.  

Tinazzi, M., Zanette, G., Volpato, D., Testoni, R., Bonato, C., Manganotti, P., . . . Fiaschi, A. (1998). 
Neurophysiological evidence of neuroplasticity at multiple levels of the somatosensory 
system in patients with carpal tunnel syndrome. Brain, 121(9), 1785.  

Ugawa, Y., Day, B., Rothwell, J., Thompson, P., Merton, P., & Marsden, C. (1991). Modulation of 
motor cortical excitability by electrical stimulation over the cerebellum in man. The 
Journal of physiology, 441(1), 57-72.  

Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R., & Kanazawa, I. (1995). Magnetic stimulation over 
the cerebellum in humans. Annals of neurology, 37(6), 703-713.  

Valls-Solé, J., Pascual-Leone, A., Wassermann, E. M., & Hallett, M. (1992). Human motor evoked 
responses to paired transcranial magnetic stimuli. Electroencephalography and Clinical 
Neurophysiology/Evoked Potentials Section, 85(6), 355-364.  

Ward, N., Brown, M., Thompson, A., & Frackowiak, R. (2003). Neural correlates of outcome after 
stroke: a cross-sectional fMRI study. Brain, 126(6), 1430.  

Wassermann, E. M., Samii, A., Mercuri, B., Ikoma, K., Oddo, D., Grill, S. E., & Hallett, M. (1996). 
Responses to paired transcranial magnetic stimuli in resting, active, and recently 
activated muscles. Experimental brain research, 109(1), 158-163.  

Werhahn, K., Fong, J., Meyer, B., Priori, A., Rothwell, J., Day, B., & Thompson, P. (1994). The 
effect of magnetic coil orientation on the latency of surface EMG and single motor unit 
responses in the first dorsal interosseous muscle. Electroencephalography and Clinical 
Neurophysiology/Evoked Potentials Section, 93(2), 138-146.  

Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological 
Review; Psychological Review, 105(3), 558.  

Ziemann, U. (1999). Intracortical inhibition and facilitation in the conventional paired TMS 
paradigm. Electroencephalography and clinical neurophysiology. Supplement, 51, 127.  

Ziemann, U., & Hallett, M. (2001). Hemispheric asymmetry of ipsilateral motor cortex activation 
during unimanual motor tasks: further evidence for motor dominance. Clinical 
Neurophysiology, 112(1), 107-113.  



 
36 

Ziemann, U., Hallett, M., & Cohen, L. (1998). Mechanisms of deafferentation-induced plasticity 
in human motor cortex. Journal of Neuroscience, 18(17), 7000.  

Ziemann, U., Lönnecker, S., Steinhoff, B., & Paulus, W. (1996). Effects of antiepileptic drugs on 
motor cortex excitability in humans: a transcranial magnetic stimulation study. Annals of 
Neurology, 40(3), 367-378.  

Ziemann, U., Rothwell, J., & Ridding, M. (1996). Interaction between intracortical inhibition and 
facilitation in human motor cortex. The Journal of physiology, 496(Pt 3), 873.  

Ziemann, U., Tergau, F., Wassermann, E., Wischer, S., Hildebrandt, J., & Paulus, W. (1998). 
Demonstration of facilitatory I wave interaction in the human motor cortex by paired 
transcranial magnetic stimulation. The Journal of physiology, 511(1), 181.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
37 

 

 

 

 

 

Section 2: Manuscripts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
38 

 

 

 

Manuscript One: The Effects of Motor Learning on the 

Cerebellum and Motor Cortex 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUTHOR: JULIAN DALIGADU, BHSC 

 

AFFILIATION: UNIVERSITY OF ONTARIO INSTITUTE OF TECHNOLOGY 

FACULTY OF HEALTH SCIENCES 

OSHAWA, ON CANADA 

L1H 7K4 

 

CONTACT: Julian.daligadu@uoit.ca 

mailto:Julian.daligadu@uoit.ca


 
39 

Abstract 

Background:  The central nervous system is capable of adaptation following the 

development of motor skills. These changes have been shown to occur in both the 

cerebellum and the motor cortex following motor sequence learning (MSL). Objectives: 

To investigate the role that both the cerebellum and motor cortex play in MSL via 

transcranial magnetic stimulation (TMS) measures of cerebellar inhibition (CBI), short 

interval intracortical inhibition (SICI) and long interval intracortical inhibition (LICI). 

Methodology: Electromyographic (EMG) activity was recorded from the right first dorsal 

interosseous muscle in 11 healthy subjects before and after a MSL task intervention. CBI 

was performed and measured after applying a conditioning stimulus of 70, 80 or 90% of 

maximal stimulator output to the right cerebellar hemisphere prior to cortical stimulation.  

Cortical TMS was performed on the left motor cortex and inhibitory measures of SICI 

and LICI were recordedSICI and LICI measures were compared pre- to post-intervention 

using a paired t-test, while CBI was measured using a repeated measures ANOVA 

comparing the three conditioning stimulus intensities both pre- and post-intervention. 

Results: Following the motor learning task there was an improvement in task 

performance as indicated by a 25% decrease in reaction time (p < 0.001). SICI levels 

decreased by 32% following the MSL intervention (p < 0.03), while there was no change 

in CBI and LICI. Conclusions: In a healthy population, the MSL task can reduce 

intracortical inhibition.  
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Introduction 

The central nervous system has been shown to be a plastic organ, capable of modification 

in neuronal network properties in response to altered afferent input (Donoghue et al. 

1996). Such changes in neural circuitry can be a result of a decrease or increase in 

behaviour or activity (Hallett et al. 1999; Murphy and Dawson 2002; Tinazzi et al. 2003; 

Haavik Taylor and Murphy 2007), or can be a result of an increase in peripheral input, 

such as with an increase in motor functioning like motor skill acquisition (Byl and 

Melnick 1997; Cirillo et al. 2010). Motor training provides a functional method of 

inducing cortical and sub-cortical plasticity within the human central nervous system, and 

this modification can be tested in a lab setting.  

Developing motor skills involves the process of learning movements produced either in 

sequence or independently, and this trains the cortical and subcortical structures of the 

neural system to perform them effortlessly after repeated practice (Willingham 1998). 

According to Doyan & Benali (2005), changes in cortical and subcortical structures can 

occur very rapidly after an initial training sessions, while further changes in neural 

organization can occur after repeated training sessions where the motor task can be 

performed on command. Although there are a plethora of studies showing the response of 

the motor cortex to motor skill development, (Pascual-Leone et al. 1995; Liepert et al. 

2004; Takahashi et al. 2005; Cirillo et al. 2010) there are few studies demonstrating the 

effect on the cerebellum.  

With direct and indirect anatomical connections to almost the entire central nervous 

system, the cerebellum is a multi-functional neural structure that is actively involved in 

motor learning (Bloedel 2004; Manto and Bastian 2007) and sensorimotor integration 
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(Manzoni 2007; Molinari et al. 2007). There is evidence to suggest that the cerebellum 

plays a key role in the development of motor skills, as functional brain imaging 

techniques such as positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI) (Shadmehr and Holcomb 1997; Schendan et al. 2003; 

Aizenstein et al. 2004) have identified the neural networks involved with motor learning 

and the cerebellum. These studies have also helped to identify plastic changes that occur 

throughout the initial and later stages of motor learning as task performance improves 

with practice (Doyon et al. 2002; Doyon et al. 2003). Imaging techniques are beneficial in 

determining the structures and networks involved in the learning process however are 

unable to show the inhibitory and excitatory processes in neural circuitry and the 

resulting change in motor output.  

Activity of the cerebellothalamocortical pathway has been revealed non-invasively in 

humans using both electrical (Ugawa et al. 1991) and magnetic (Ugawa et al. 1995; Pinto 

and Chen 2001) stimulation of the cerebellum 5-7 ms before stimulation of the motor 

cortex. This process has been referred to as cerebellar inhibition (CBI) (Daskalakis et al. 

2004) . This conditioning stimulus resulted in the suppression of motor cortical 

stimulation evoked potentials in the first dorsal interosseous (FDI) muscle. There have 

also been reports that low frequency repetitive TMS of the cerebellum (Oliveri et al. 

2005) produces modulatory effects in the motor system by facilitating motor evoked 

potentials (MEPs) and increasing the amount of intracortical facilitation within the motor 

cortex. Therefore, it is evident that the cerebellum plays a role in the modulation of motor 

function in relation to the motor cortex. It has been shown in previous studies that the 

motor cortex is highly involved in the role of motor learning by utilizing TMS techniques 
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(Pascual-Leone et al. 1995; Cirillo et al. 2010). However, there are no known studies 

reporting the response of the cerebellum to a motor sequence acquisition task while 

utilizing this CBI TMS protocol, although response changes have been identified using 

functional brain imaging technology. TMS techniques such as short interval intracortical 

inhibition (SICI) and long interval intracortical inhibition (LICI) can be used to 

investigate changes in the inhibitory processes of the motor cortex (Hallett 2007), while 

CBI can assess the changes in the degree of inhibitory cerebellar connections to the motor 

cortex. These TMS techniques therefore provide complementary measures which provide 

additional information on mechanism as compared to previously published fMRI 

investigations (Doyon and Benali 2005) and can provide a broader view on how these 

neural structures adapt to motor learning. Therefore, the aim of this study was to 

investigate the role that the cerebellum plays in motor sequence learning through the use 

of CBI, as well as the cortical inhibitory measures short interval intracortical inhibition 

(SICI) and long interval intracortical inhibition (SICI).  

Methodology 

Subjects 

Experiments were performed on 11 healthy volunteers (mean age: 23.5; range19-33; 9 

men and 2 women) after giving their written informed consent. All of the participants 

were right handed according to the widely used and adopted Edinburgh Handedness 

Inventory and none of them had any history of neurological disease (See Appendix 1 & 3 

for TMS safety checklist and Edinburgh Handedness Inventory respectively). The study 

was approved by the local ethics committee and conducted in accordance with 



 
43 

regulations laid down in the Decleration of Helsinki (See Appendix 2 for project consent 

form). 

Electromyographic Recordings 

Electromyographic (EMG) activity was recorded from the right first dorsal interosseus 

(FDI) muscle using a pair of Ag-AgCl surface electrodes in a belly-tendon arrangement. 

A ground electrode strap was placed around the wrist of the right arm, between the site of 

stimulation and the recording electrodes. The EMG signal was amplified (1000x) and 

band-pass filtered (bandwidth 20-2000 Hz) with a Cambridge Electronic Design 1902 

isolated amplifier (Cambridge Electronic Design, Cambridge, UK), digitizing at a 

sampling rate of 1 kHz (CED 1401 laboratory interface; Cambrdige Electronic Design, 

Cambridge, UK) and received by a laboratory computer for storage and off-line analysis. 

Data was analyzed using SIGNAL software version 4.08 (Cambridge Electronic Design, 

Cambridge, UK). Subjects were asked to maintain a relaxed position throughout the 

experiment, with their hand placed in a pronated position, while EMG activity was 

monitored to ensure that the muscle was at complete rest (Figure 9).  
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Figure 9. Electrodes were placed in a belly-tendon formation over the right FDI muscle, with ground electrode placed 

over the wrist and hand placed in a pronated position.  

Motor Sequence Task 

During the motor sequence task, the subjects were seated in a comfortable chair with their 

hand resting in a pronated orientation on a platform that held a modified numeric keypad. 

With their hand lying palm down in a relaxed position, participants were asked to place 

their index finger on the keypad in a comfortable position so that they could reach the 7, 

8 and 9 keys, while the other three fingers and thumb were taped down in order to 

maintain hand orientation (Figure 10). 

 

Figure 10. A custom keyboard was developed to allow the index finger to reach the 7, 8 and 9 keys of the numeric 

keypad. Other digits were then taped down in place to allow the proper hand orientation to allow the index finger to 

move freely and optimally activate the FDI muscle through abduction.  

 A custom program was made using E-Prime 2.0 software (Psychology Software Tools, 

Sharpsburg, PA) which prompted the participants to enter randomized sequences of the 

keys 7, 8 and 9 in six letter blocks being displayed on a screen. This side to side 

movement of the index finger allowed optimal activation of the FDI muscle by 

performing its primary action of abducting the index finger. Subjects were asked to 
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perform the action of pressing the sequence as quickly and accurately as possible. The 

task was separated into three parts: a pre-section, complex task, and a post-section. The 

task was the same for all three parts. Accuracy and reaction time data were calculated 

from two blocks of 15 trials performed at the beginning and end of the complex task, 

whereas the complex task itself contained 225 trials performed over a 20 minute period.  

Transcranial Magnetic Stimulation 

For cortical stimulation, a figure-of-eight coil (outer diameter 10 cm) was applied over 

the hand region of the left motor cortex. Magnetic stimulation was applied to the target 

site via the use of two Magstim 200 stimulator units (Magstim Co., Whitland, Dyfed, 

UK) given in BiStim mode. The coil was held with the handle pointed backwards and 

rotated approximately 45 degrees away from the mid-sagittal line, with the current 

flowing posteriorly. This specific coil orientation has been shown to allow the induced 

current to be perpendicular to the central sulcus, which allows for optimal activation of 

corticospinal neurons trans-synaptically (Kaneko et al., 1996; Werhahn et al., 1994). The 

optimal coil position for inducing motor evoked potentials (MEPs) in the FDI muscle was 

determined as the site where stimulation at just above threshold intensity which 

consistently produced the largest MEPs. The optimal site was then marked with a felt tip 

pen on a cloth cap that the subject was asked to wear throughout the entire experiment, in 

order to maintain consistent coil placement. TMS was delivered at a frequency of 0.2 Hz 

with a 20% variance in order to account for anticipatory effects in all trials.  

RTh and 1 mV MEP 

In order to determine the correct parameters needed for the paired-pulse TMS techniques 

being utilized in this experiment (SICI and LICI), it was necessary to find the stimulus 
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intensity that elicited a MEP of approximately 1 mV as well as the subjects resting motor 

threshold (RTh). The 1 mV MEP was calculated by determining the level of stimulator 

output that would elicit approximately a 1 mV MEP in peak to peak amplitude after 

averaging 14 pulses. RTh was calculated by determining the lowest stimulus intensity 

needed to elicit a MEP of approximately 0.05 mV in at least five out of ten trials, while 

the subject was at rest.  

Paired Pulse TMS 

Short interval intracortical inhibition (SICI) and long interval intracortical inhibition 

(LICI) were assessed using paired-pulse TMS paradigms. The SICI protocol consisted of 

a subthreshold conditioning stimulus (set to 80% of RTh) that is followed by a 

suprathreshold test stimulus (TS) by 2.5 ms (Kujirai et al., 1993). The test stimulus 

intensity was monitored before and after the motor training intervention in order to ensure 

that it was still similar to the pre-trial peak-to-peak amplitude and adjusted accordingly. 

Each data block consisted of sixteen stimuli. The conditioned MEP amplitude was 

expressed as a percentage of the suprathreshold 1 mV amplitude.  

Long interval intracortical inhibition (LICI) was assessed by applying a suprathreshold 

stimulus preceded by another suprathreshold stimulus and separated by an interstimulus 

interval (ISI) of 100 ms (Nakamura et al. 1997; Chen et al. 1999). The two suprathreshold 

stimuli were set to the 1 mV value of stimulator output and the inhibition was measured 

as a ratio between the first and second MEPs.  

Cerebellar TMS 

The cerebellar conditioning stimulus (CCS) was delivered over the right cerebellar 

hemisphere with a double cone coil (110 mm mean diameter). This coil has previously 
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been found to be the most effective in applying an inhibitory stimulus to induce 

cerebellar brain inhibition (CBI) (Ugawa et al. 1995). The coil was positioned in the 

midpoint of a line joining the external auditory meatus to the inion and the coil was 

oriented downwards to produce an upwards current in the cerebellar cortex (Ugawa et al. 

1995; Daskalakis et al. 2004; Brighina et al. 2009). The coil was held by a stand and was 

strapped around the participants‟ heads in order to maintain a close fit and proper coil 

orientation (Figure 11).  

 

Figure 11. Cerebellar coil was positioned over the right hemisphere of the subjects cerebellum, and strapped in place 

around the subjects head to maintain a close fit. 

The intensity of the stimulator was pseudo-randomized to stimulate at 70, 80, or 90% of 

the combined output of the two Magstim units connected by a BiStim Unit. These 

intensities were chosen based on pilot data (Daligadu et al. 2012) which showed that an 

inhibitory modulation could be demonstrated at these three intensities without the 

contamination of brain stem or nerve root stimulation. The test stimulus over the motor 

cortex was set to a stimulus intensity that evoked a MEP of approximately 0.8 mV, as 
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CBI has been demonstrated to be most effective when MEP amplitudes were below 1 mV 

(Daskalakis et al. 2004). The interstimulus interval between the CCS and the test stimulus 

of the motor cortex was set to 5 ms. This ISI  was chosen because it has been previously 

shown to induce CBI and the effects are thought to be related to cerebellar stimulation as 

opposed to stimulation of peripheral nerves or muscles (Ugawa et al. 1995; Daskalakis et 

al. 2004).  

Experimental Design 

This experiment looked to examine the effects of a motor sequence learning task on the 

cerebellar and motor cortices. The cortical measures used were SICI and LICI, while CBI 

was used to measure the inhibitory effect of the cerebellum. These were measured both 

before and after a 20 minute motor sequence learning task that was used to specifically 

activate and train the FDI muscle. SICI and LICI were performed after the attainment of 

the 1 mV MEP and the RTh (Bistim set-up), and both measures were averaged over 16 

stimuli. CBI was performed following the attainment of the 0.8 mV MEP (single 

Magstim set-up) and was averaged over 10 stimuli. An additional 4 stimuli were given at 

each of the three intensities used in order to monitor for brainstem and nerve root 

activation.  

Statistical Analysis 

Once data was acquired, the peak-to-peak amplitude for each trial was measured off-line 

using a customized Signal configuration (Cambridge Electronic Design, Cambridge, UK) 

and the average amplitude was calculated for each session using Microsoft Excel. SICI 

and CBI were measured as a ratio of conditioned MEPs to unconditioned MEPs, while 

LICI was measured as a ratio of the first MEP to the second MEP. Paired t-tests were run 
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between the pre- and post-intervention MEPs in order to compare the mean peak-to-peak 

amplitudes using IBM SPSS Statistics (Version 19) for SICI and LICI. Performance on 

the motor sequence task was analyzed based on the measures of reaction time and 

accuracy of the keystrokes. The effects of cerebellar inhibition were evaluated through 

repeated measures ANOVA with Time (two levels: pre- and post-intervention) and 

between conditioning stimulus intensity (three levels: 70%, 80%, and 90% MSO), with 

appropriate post hoc tests as required.   

Results 

None of the subjects reported side effects from the experimental measures. A total of 11 

subjects completed the study, however 1 subject found the cerebellar stimulation too 

uncomfortable and two subjects had large artefacts from the high intensity cerebellar 

stimulation that swamped the EMG signal and could not be suppressed, even with efforts 

to further decrease impedance of the skin overlying the FDI.  Therefore there were 11 

data sets for SICI and LICI and 8 data sets for the CBI analysis. 

     

 

Figure 12. Raw EMG data illustrating the effect of SICI on the test stimulus. This paired-pulse technique results in the 

suppression of the test MEP from a conditioning stimulation that occurs 2.5 ms prior to the TS.  

SICI MEP

TS MEP
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Figure 13. Averaged results for pre- and post-intervention SICI, with the conditioned response (CR) being averaged to 

the TS. The motor sequence learning intervention led to a 32% decrease in the effect of SICI.  

 

For the SICI data, a significant effect was observed when comparing pre- to post-

intervention results. The mean amplitude of the pre-intervention SICI measure was 0.237 

± 0.47 SE, compared to the post-intervention SICI which was 0.346 ± 0.66 SE (p < 0.03) 

(Figure 12 & 13). LICI showed no significant change from pre-intervention (mean ratio 

17.98 ± 6.19 SE) compared to post-intervention (mean ratio 16.48 ± 5.84 SE; p = 0.831) 

(Figure 14). For the CBI measure, repeated measures ANOVA evidenced a significant 

effect for the factor of stimulus intensity (F = (6,2) 31.64 (p < 0.001)), however none for 

the factor of time (Figure 15).  
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Figure 14. Averaged ratios for pre- and post- intervention LICI. The motor sequence learning showed no significant 

differences between pre- and post-intervention LICI values when investigating the ratio between the first conditioning 

MEP to the second test MEP. 
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Figure 15. Conditioned response magnitude for CBI averaged according to the TS (where 1.00 indicates TS 

amplitude). There was greater inhibition as the conditioning cerebellar stimulation was increased. However, there was 

no significant difference between the pre- and post-intervention responses at all three levels of stimulus intensity.  

 

The motor training task showed that following the motor sequence learning intervention, 

the reaction time improved significantly (from 493.1 ms to 367.29 ms, p = 0.001). As 

reaction time decreased, task accuracy also decreased significantly following the 

intervention (97.6% to 95.2%, p = 0.024). However, this was only a 2.5% decrease in 

accuracy.  

Discussion 

This research project looked to identify neural changes in the motor cortex and 

cerebellum following a motor sequence learning task. The motor cortex was investigated 

using paired-pulse TMS measures of SICI and LICI, while the cerebellum was 

investigated using CBI. A significant decrease in SICI was found following the 

intervention, while no changes were found using the LICI and CBI measures. It was also 

noted that a significant improvement in reaction time occurred during the intervention, 

and a significant decrease in accuracy. 

Motor sequence learning tasks have been demonstrated to have the capacity to induce 

structural plastic changes in both the motor cortex (Pascual-Leone et al. 1994; Pascual-

Leone et al. 1995; Cirillo et al. 2010) and the cerebellum (Doyon et al. 2003). However, 

few studies have used this technique to show plastic changes in the motor cortex with 

TMS measures following motor sequence learning, and no known studies have used it to 

show cerebellar changes with CBI.  
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It has been previously shown that motor cortex representations change when humans 

perform and learn sequences in response to sensory cues. These motor sequences often 

require participants to press a sequence in order, and with repetition the reaction time to 

start the button gradually decreases (Nissen & Bullemer, 1987). This decrease in reaction 

time is thought to reflect implicit (or learning) knowledge, and has been shown to induce 

a larger representation of the finger muscles in the motor cortex using TMS mapping 

techniques (Pascual-Leone et al. 1994). In the present study, we found that from the 

beginning of the intervention to the end, there was a 25% decrease in the time needed to 

react to the motor sequence. Therefore, this decrease in reaction time is interpreted as 

implicit knowledge learning.  

This increase in implicit knowledge was reflected in a 32% decrease in SICI following 

the intervention. Previous studies have also demonstrated a decrease in SICI following 

motor learning of both simple and complex tasks (Gallasch et al. 2009; Cirillo et al. 

2010), and reflects the current findings in this study using motor sequence learning. SICI 

is thought to be reflective of the excitability in GABAA-ergic circuitry within the human 

cortex, and it is therefore suggested that the decrease in intracortical inhibition plays an 

important role in motor skill learning and motor cortical plasticity. LICI is also a measure 

of intracortical inhibition, however it is thought to be reflective of the excitability in 

GABAB-ergic circuitry. Since there was no modulation of LICI following the 

intervention, it is suggested that this inhibitory pathway does not play a role in motor 

adaptation.  

Previous imaging studies have shown that there is activation of cerebellar structures such 

as the cerebellar cortex and the deep cerebellar nuclei in the process of motor learning 
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(Doyon et al. 2002). However, in the present study there were no such changes as 

indicated by the TMS measure of CBI. This could be due in large to a couple of reasons. 

Firstly, we did use a novel motor sequence learning intervention in order induce cortical 

and potentially cerebellar plasticity and learning modulations. This was based on similar 

methodologies previously studied, which were shown to induce plasticity in the cortex 

using cortical TMS (Pascual-Leone et al. 1994), and cerebellum using neuroimaging 

(Doyon et al. 2002). However, the slight modifications made to this motor learning task 

may have led to a greater amount of recruitment from motor cortex as opposed to the 

cerebellum, as demonstrated by the decrease in SICI following the intervention. It may 

also have been that the task we selected was not complex enough to require large 

amounts of cerebellar involvement for learning to occur. Previously published work on 

motor training, via pressing the numbers 7,8,9 repeatedly in sequence on a keypad, has 

been shown to cause changes in somatosensory evoked potential peaks related to 

sensorimotor integration (Haavik Taylor and Murphy 2007), however this task reflected 

simple motor training as opposed to the more complex task of motor sequence acquisition 

which has been shown to involve the cerebellum (Doyon et al. 2002). It was thought that 

by randomly generating the number sequences, that we would be better testing skill 

acquisition as opposed to motor training, however the random nature may have favoured 

motor skill acquisition requiring changes in cortical inhibition reflective in the SICI 

changes but requiring fewer cerebellar changes for improvement to occur. 

Secondly, we used a modified CBI protocol from that of Ugawa et al. (1995) who 

originally developed it. The original protocol involves stimulating the cerebellum at a 

stimulus intensity that is sub-threshold to posterior fossa stimulation (cervical medullary 
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evoked potentials or CMEP). However, it is not possible to evoke a CMEP in all people, 

and we therefore found that it was difficult to find subjects that could perform the 

protocol. Also, the stimulus from the cerebellar coil is rather uncomfortable for the 

participant to undergo numerous sweeps. Therefore, the modifications made to our 

protocol were made in order to allow all screened subjects to participate in the study and 

to shorten the amount of exposure to CBI. It is possible however, that this modified CBI 

protocol may have not had the capacity to determine changes within the cerebellar cortex, 

or even possibly have activated complementary neural structures which would have led to 

the suppression of the conditioned CBI MEPs. However, EMG was monitored 

throughout the experiment and while eliciting conditioning CBI stimuli alone, in order to 

ensure that there was no cortical output to the FDI that would have been interfering with 

the CBI. Therefore, it would be unlikely that activation of the corticospinal tract directly 

would have resulted in the suppression of the MEP responses.  

Future studies should aim at further fine tuning the motor sequence learning task to elicit 

a greater response from the cerebellum. The sample size of the cerebellar group was also 

small and therefore further research should include a greater sample size to enhance the 

statistical power.  
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Abstract 
Background: Chiropractic manipulation is one of the most common treatment methods 

for neck pain, however little is understood about its neurophysiological effects. Previous 

work has shown that spinal manipulation affects sensorimotor integration (SMI), and it is 

thought that structures involved in this process include the motor cortex and cerebellum. 

Objective: To investigate if there is modulation in cerebellar output from subclinical neck 

pain patients, and if spinal manipulation and motor sequence learning (MSL) has an 

effect on SMI with respect to the cerebellum and motor cortex. Methodology: 

Electromyographic (EMG) responses were recorded from the right first dorsal 

interosseous muscle in 10 volunteers who experienced subclinical neck pain (SCNP), 

before and after a combined intervention of chiropractic treatment and MSL. Transcranial 

magnetic stimulation (TMS) was performed on the left motor cortex and included the 

inhibitory measures of short interval intracortical inhibition (SICI) and long interval 

intracortical inhibition (LICI). Cerebellar TMS was performed over the right cerebellar 

hemisphere using the inhibitory measure of cerebellar inhibition (CBI), with conditioning 

stimulus intensities at 70, 80, and 90% maximal stimulator output (MSO). SICI and LICI 

measures were compared pre- to post-intervention using paired t-tests, while CBI was 

measured using a repeated measures ANOVA. Results: Following the intervention there 

was an improvement in task performance as indicated by a 19% decrease in mean 

reaction time (p < 0.0001). There was a significant decrease in CBI following the 

combined spinal manipulation and MSL intervention (F = (7,2) 7.92 (p < 0.05)). No 

changes were seen in the inhibitory cortical measures. Conclusions: Altered SMI in 

SCNP patients may play a role in the modulation of cerebellar output to the motor cortex. 

Chiropractic treatment may potentially be able to modify this defunct SMI. 
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Introduction 

Chiropractic treatment is one of the most common treatments for neck and back pain, 

however there is little understood about the neurophysiological mechanism that results in 

its efficacy to deter pain. Neck pain is a common and significant problem which affects 

about 30-50% of people every year and places a great burden on healthcare systems 

(Hogg-Johnson et al. 2008). Subclinical neck pain (SCNP) falls under this category and is 

defined as recurring neck dysfunction, such as mild neck pain, ache, and/or stiffness in 

individuals who have not sought any treatment for their maladies (Haavik and Murphy 

2011). Recent studies have provided a growing body of evidence for altered 

neuromuscular and proprioceptive function in patients with neck and back pain which 

may explain why pain becomes chronic (Bränström et al. 2001; Falla et al. 2004; Stapley 

et al. 2006). There is also accumulating evidence to suggest that chiropractic 

manipulation can result in changes to the central nervous system function including reflex 

excitability, cognitive processing, sensory processing, and motor output (Murphy et al. 

1995; Herzog et al. 1999; Haavik-Taylor and Murphy 2007; Haavik-Taylor and Murphy 

2007). This is also evident in individuals that fall under the category of SCNP, as 

chiropractic manipulation has led to alterations in cortical somatosensory processing 

(Haavik-Taylor and Murphy 2007), and  in elbow joint position sense (Haavik and 

Murphy 2011). This evidence suggests that chiropractic manipulation may have a 

positive neuromodulatory effect on the central nervous system and this may play a role in 

the effect it has on neck pain.  

One mechanism proposed by Haavik-Taylor and Murphy (2007) suggests that areas of 

spinal dysfunction alters sensory feedback and could therefore be responsible for 
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improper sensorimotor integration (SMI) due to central plastic changes. The use of 

appropriate chiropractic care and spinal manipulation to the areas of spinal dysfunction 

would therefore normalize the afferent input, thus resulting in appropriate SMI. Previous 

work using paired-pulse transcranial magnetic stimulation (TMS) of the motor cortex has 

indicated that cervical spine manipulation can alter sensorimotor integration of the upper 

limb by decreasing the amount of short interval intracortical inhibition (SICI) (Haavik-

Taylor and Murphy 2007).  

The cerebellum is neural structure that is actively involved in both motor learning (Doyon 

et al. 2002; Doyon et al. 2003; Manto and Bastian 2007; Molinari et al. 2007) and SMI of 

afferent input from the joints of the neck and spine (Manzoni 2005; Manzoni 2007). It 

has also been suggested that the cerebellum is a plastic structure resulting in the 

modulation of motor circuitry (Doyon and Ungerleider 2002; Apps and Garwicz 2005). 

More recently, studies have shown that the cerebellum is also involved in the modulation 

of motor cortex excitability due to a reduction of cerebellar inhibition in patients 

suffering from migraine with aura (Brighina et al. 2009) and patients with focal hand 

dystonia (Brighina et al. 2009). These findings are highly relevant as they provide support 

for the concept that changes in the excitability of cerebellar projections may occur in 

individuals who suffer from overuse injuries and migraine, two conditions commonly 

treated with neck manipulation. Therefore, the effect of chiropractic manipulation on 

cerebellar function and its contribution to SMI, as well as its interactions with the motor 

cortex needs to be investigated in order to further understand the role and mechanisms 

underlying the efficacy of spinal manipulation. This research study therefore aims to 

investigate if there is modulation in cerebellar output to the motor cortex in SCNP 
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patients, and if spinal manipulation and motor sequence learning has an effect on SMI 

with respects to the cerebellum and subsequently the motor cortex. This will be 

performed using the cortical TMS measures of SICI and long interval intracortical 

inhibition (LICI), as well as the cerebellar TMS measure known as cerebellar inhibition 

(CBI) following spinal manipulation and a motor learning task.  

Methodology 

Subjects 

Experiments were performed on 10 volunteers (mean age: 23.8; range: 20-35; 7 males & 

3 females) each of which experienced recurring neck pain classified as SCNP, as assessed 

by the neck disability index (refer to appendix 4), and by a registered chiropractor, after 

giving their informed written consent. All of the participants were right handed as 

assessed by the Edinbugh Handedness Inventory (EHI), and none had any history of 

neurological disease as assessed by the TMS Safety Checklist (TSC) (refer to appendix 1 

& 3 respectively). The study was approved by the local ethics committee and conducted 

in accordance with regulations laid down in the Decleration of Helsinki (refer to appendix 

2 for consent form).  

Electromyographic Recordings 

Electromyographic (EMG) activity was recorded from the right first dorsal interosseus 

(FDI) muscle using a pair of Ag-AgCl surface electrodes in a belly-tendon arrangement. 

The ground electrode was placed around the wrist of the right arm, in a location that was 

located between the stimulating coil and the surface electrodes. The EMG signal was 

amplified (1000x) and band-pass filtered (20-2000 Hz) with a Cambridge Electronic 
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Design 1902 isolated amplifier (Cambridge Electronic Design, Cambridge, UK) 

digitizing at a sampling rate of 1kHz (CED 1401 laboratory interfacel Cambridge 

Electronic Design, Cambridge, UK) and received by a laboratory computer for off-line 

analysis. Data was analyzed using SIGNAL software version 4.08 (Cambridge Electronic 

Design, Cambridge, UK). Subjects were asked to maintain a relaxed position throughout 

the experiment, while their hand was placed in a pronated position. EMG activity was 

monitored during the protocol to ensure that the muscle was at rest.  

Motor Sequence Task 

Throughout the motor sequence learning (MSL) task, subjects were asked to sit in a chair 

with their arm supported by a soft pillow with a modified numeric keypad lying on top. 

With their hand palm down in a relaxed position, participants were asked to place their 

index finger on the keypad in a comfortable position so that they could reach the 7, 8 and 

9 keys, while the other three fingers and thumb were taped down in order to maintain 

proper hand orientation. A custom program was created using E-prime 2.0 software 

(Psychology Software Tools, Sharpsburg, PA) which prompted the participants to enter 

randomized sequences of the keys 7, 8 and 9 in six letter blocks being displayed on the 

screen. This side to side movement of the index finger allowed optimal activation of the 

FDI muscle by performing its primary action of abducting the index finger. Each 

participant‟s performance was measured by accuracy and reaction time to the task. Due to 

the long duration of the task (~20 min), the task was separated into three parts: a pre-

section, the complex task, and a post-section. The task was the same for each section, 

however the pre- and post-sections only consisted of 15 trials, while the complex task 

itself consisted of 225 trials.  
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Chiropractic Treatment 

Participants received high velocity, low amplitude spinal manipulation immediately 

following the pre-intervention measures. Manipulations focused on the cervical and upper 

thoracic spine, in treatment of neck pain, and were targeted on dysfunctional cervical 

joints, which were determined by a registered chiropractor. Clinical evidence of joint 

dysfunction includes restricted intersegmental range of motion, palpable muscle tension 

at the intervertebral level, and tenderness to palpation of the joint  (Hubka and Phelan 

1994; Fryer et al. 2004). Myofascial trigger points in the cervical muscles were also 

treated if determined necessary by the chiropractor. The high velocity, low amplitude 

manipulation consisted of thrusts to the spine held in lateral flexion, with slight rotation 

and slight extension. This is a standard manipulation common to physiotherapists, 

physicians, and chiropractors. Previous research has shown that reflex EMG only occurs 

after this specific type of manipulation, rather than that of low-amplitude manipulations, 

and would thus be more capable of modulating afferent input to the central nervous 

system (Herzog et al. 1995).  

Transcranial Magnetic Stimulation 

Cortical stimulation was performed using a figure-of-eight coil (outer diameter 10mm) 

and was applied over the hand region of the left motor cortex (to elicit a response in the 

right FDI). Magnetic stimulation was given via the use of two Magstim 200 stimulator 

units (Magstim Co., Whitland, Dyfed, UK) connected together with a BiStim unit. The 

coil was held with the handle pointed backwards at approximately 45 degrees away from 

the mid-sagittal line, with the current flowing posteriorly. This coil orientation has been 

previously shown to allow the induced current to be perpendicular to the central sulcus, 
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which allows for the optimal activation of corticospinal neurons trans-synaptically 

(Werhahn et al. 1994; Kaneko et al. 1996). The optimal coil position for inducing a motor 

evoked potential (MEP) in the right FDI muscle was determined as the site where a 

slightly suprathreshold stimulus consistently produced the largest MEPs. This location 

was then marked with a felt tip pen onto a cap that the subject was asked to wear 

throughout the entire procedure.  TMS was delivered at a frequency of 0.2 Hz with a 20% 

variance in order to account for anticipatory effects.  

RTh and 1mV MEP 

In order to determine the correct parameters used in the paired-pulse measures being 

utilized in this study (SICI and LICI), it was necessary to attain the correct stimulus 

intensity that elicited a MEP of approximately 1 mV and the subjects resting threshold 

(RTh). The 1 mV MEP was calculated by determining the stimulus intensity that would 

elicit MEPs of approximately 1 mV in peak to peak amplitude after averaging 14 sweeps. 

RTh was determined by finding the lowest level of stimulator output that would elicit a 

MEP of approximately 0.05 mV in at least 5 out of 10 trials, while the subjects hand was 

at rest.  

Paired Pulse TMS 

SICI and LICI were assessed using paired-pulse TMS paradigms. SICIs protocol 

consisted of a subthreshold conditioning stimulus (set to 80% of the RTh) preceded by a 

suprathreshold test stimulus at an interstimulus interval (ISI) of 2.5 ms (Kujirai et al. 

1993). The test stimulus for SICI was set to the stimulator intensity that elicited an 

approximate 1 mV MEP. The test stimulus was monitored both before and after the 

intervention in order to ensure that the peak-to-peak amplitude was within 15% of each 
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other. If this value was outside of this 15% allowance, the stimulator intensity was raised 

until it was back within range. Each data block consisted of sixteen stimuli. The 

conditioned MEP amplitude was expressed as a percentage of the suprathreshold 1 mV 

amplitude.  

LICIs protocol was assessed by applying a suprathreshold stimulus preceded by another 

suprathreshold stimuli and separated by an ISI of 100 ms (Nakamura et al. 1997; Chen et 

al. 1999). The two suprathreshold stimuli were set to the stimulator intensity that elicited 

the 1 mV MEP and the inhibition was measured as a ratio between the first and second 

MEPs.  

Cerebellar TMS 

The cerebellar conditioning stimulus (CCS) was delivered over the right cerebellar 

hemisphere with a double cone coil (110 mm mean diameter). This coil has been 

previously shown to be effective in applying an inhibitory stimulus to induce CBI 

(Ugawa et al. 1995). In order to position the coil with correct placement the coil was set 

at the midpoint of a line joining the external auditory meatus to the inion and the coil was 

oriented downwards, in order to produce an upwards current within the cerebellar cortex 

(Ugawa et al. 1995; Daskalakis et al. 2004; Brighina et al. 2009). The coil was placed in a 

stand and was strapped around the head of the participant in order to maintain a close fit 

and proper coil orientation. The intensity of the stimulator was pseudorandomized to 

stimulate at 70, 80, or 90% of the combined maximal stimulator output (MSO) of the two 

Magstim units connected by a BiStim unit. These intensities were chosen based on pilot 

data which showed that an inhibitory modulation of the test MEP could be attained at 

these levels, without the contamination of brain stem or nerve root stimulation . The test 
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stimulus, which was placed over the left motor cortex, was set to a stimulus intensity that 

elicited an MEP of approximately 0.8 mV, as CBI was demonstrated to be most effective 

when MEP amplitudes were below 1 mV (Daskalakis et al. 2004). The interstimulus 

interval between the CCS and the test stimulus of the motor cortex was set to 5 ms as it 

has been previously shown to induce CBI (Ugawa et al. 1995; Daskalakis et al. 2004). 

The inhibition was expressed as a percentage of the 0.8 mV test stimulus.  

Experimental Design 

This experiment looked to examine the effects of chiropractic treatment and a MSL task 

on the cerebellar and motor cortices. The cortical measures used were SICI and LICI, 

while the cerebellar measure used was CBI. These were measured both before and after a 

combined intervention of the chiropractic treatment and MSL task. These two tasks were 

combined as it was necessary to keep the experimental procedure under 3 hours in order 

to prevent the subjects tiring and thus decreasing their excitability levels. SICI and LICI 

were performed after the attainment of the 1 mV MEP and the RTh (Bistim set-up), and 

both measures were averaged over 16 stimuli. CBI was performed following the 

attainment of the 0.8 mV MEP (single Magstim set-up) and was averaged over 10 

stimuli. An additional 4 stimuli were given at each of the three intensities used in order to 

monitor for brainstem and nerve root activation.  

Statistical Analysis 

Once the data was acquired, the peak-to-peak amplitude for each sweep was measured 

off-line using a customized Signal configuration (Cambridge Electron Design, 

Cambridge, UK) and the average amplitude was calculated for each session using 

Microsoft Excel. SICI and CBI were measured as a ratio of test MEPs, and LICI was 
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measured as a ratio of the first to second MEPs. Paired t-tests were run between the pre- 

and post- intervention groups in order to compare the mean peak-to-peak amplitudes for 

SICI and LICI. CBI was analyzed using a repeated measures ANOVA test with time (two 

levels: pre- and post-intervention) and between conditioning stimulus intensity (three 

levels: 70, 80, and 90% MSO), with appropriate post-hoc analyses as needed using IBM 

SPSS Statistics (Version 19). The MSL task was analyzed based on the measures of 

reaction time and accuracy of the keystrokes using a paired t-test between the pre- and 

post-intervention trials, which was also performed in IBM SPSS Statistics.  

Results 

SICI and LICI were performed on all participants both before and after the spinal 

manipulation and MSL task. However, only 7 participants were able to complete the CBI 

measure, as 3 of the subjects had large artefacts from the high intensity cerebellar 

stimulation that swamped the EMG signal and could not be suppressed, even after 

repeated abrading of the skin overlying the FDI muscle. Therefore, there were 10 data 

sets for SICI and LICI and 7 data sets for the CBI data analysis.  

The MSL task showed that following the training intervention, the subjects reaction time 

improved significantly (from 451.63 to 364.14 ms; p < 0.0001) (Figure 16), while the 

participants accuracy of the task remained unchanged (p = 0.55).  
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Figure 16.Motor sequence learning reaction times for all subjects. The MSL task resulted in a significantly decreased 

reaction time to the intervention for all subjects.  

For the CBI measure, a significant difference was seen when comparing pre- and post-

intervention with respects to the factor of time (F = (6,2) 7.92 (p < 0.05)), and with the 

factor of conditioning stimulus intensity (F = (6,2) 6.56 (p < 0.05)). However, there was 

no reported interactive effect between the two factors.  A priori contrasts revealed that 

there was significant difference between pre- and post-intervention at both 70 (p < 

0.0001) and 80% (p < 0.05) MSO, however no significant difference at 90%.   
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Figure 17. Raw EMG demonstrating the effect of CBI on cortical stimulation. When a conditioning stimulus is 

presented over the posterior fossa 5 ms prior to a cortical stimulus, it results in the suppression of the MEP.  

 

Figure 18. Responses for CBI at all conditioning stimulus intensities compared pre- to post-intervention, with the 

conditioned response (CR) being averaged to the test stimulus (TS). At 70 and 80% of MSO there was a significant 

change in the conditioned response, however no change at 90%.  
 

Both SICI and LICI remained unchanged when comparing from pre- to post-intervention.  
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Discussion 

The aim of this research project was to identify if there was modulation in cerebellar 

output in SCNP patients following spinal manipulation and MSL. Cortical TMS was used 

to measure the level of inhibition included SICI and LICI, while CBI was used to 

measure the inhibitory effect of the cerebellum on the motor cortex. A significant 

decrease in CBI was found following the intervention, while no change was found in the 

cortical measures of SICI and LICI. Significant improvement in reaction time occurred 

after the MSL segment of the intervention, while there was no change in the accuracy of 

the task.  

MSL tasks have been previously shown to induce plasticity within the circuitry of both 

the motor cortex (Pascual-Leone et al. 1994; Pascual-Leone et al. 1995; Cirillo et al. 

2010) and the cerebellum (Doyon et al. 2003). The decrease in mean reaction time as 

demonstrated in this study reflects implicit learning, which has been previously reported 

to induce altered representations of finger muscles in the motor cortex (Pascual-Leone et 

al. 1994). Neck manipulation has also been shown to provide a modulatory effect on the 

motor cortex by reducing the amount of intracortical inhibition (Haavik-Taylor and 

Murphy 2007). However, there are no known studies that have demonstrated the effects 

of neck manipulation alongside MSL using TMS to measure cortical and cerebellar 

output.  

It has been previously demonstrated that cerebellar modulation is present in certain 

patient groups including focal hand dystonia (Brighina et al. 2009) and migraine with 

aura (Brighina et al. 2009). This study further adds to the literature by demonstrating an 
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alteration to cerebellar output in neck pain patients when they received a manipulation 

based chiropractic treatment prior to performing MSL. In manuscript one, there was no 

change seen following MSL alone in a healthy patient population, however in this study 

there was a change following the combined intervention in a SCNP group of subjects. It 

may be possible that these results occurred because of altered sensorimotor integration as 

proposed by Haavik Taylor & Murphy (2012), which was remedied following treatment. 

However, a limitation to these results is that due to the time limit being placed on the 

protocol, we had to perform the chiropractic treatment and MSL task one after another. 

Therefore, the design did not allow us to attribute whether the changes were due to the 

chiropractic intervention or the MSL task.  

It is interesting to note that there was no significant effect on SICI following chiropractic 

treatment and the MSL. Referring back to manuscript one in this thesis, it was found that 

after MSL alone there was a significant decrease in the amount of intracortical inhibition 

as determined by SICI, while in another previous study by Haavik-Taylor & Murphy 

(2007) there was also a decrease in SICI following chiropractic treatment. It has also been 

shown that spinal dysfunction, as assessed by simultaneous median and ulnar stimulation 

divided by the arithmetic sum of somatosensory evoked potentials obtained from 

individual stimulation of the median and ulnar nerves, altered sensorimotor processing 

whereas chiropractic care resulted in changes to this ratio (Haavik-Taylor and Murphy 

2007). Therefore, the lack of a significant change in SICI can be seen as uncharacteristic 

to the past literature.  

This lack of results may have occurred due to numerous reasons. Firstly, there may have 

been an interaction between the spinal manipulation and the MSL task which may have 
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potentially cancelled out the effect observed from strictly the MSL task alone. Secondly, 

the previous study by Haavik-Taylor & Murphy (2007b) was shown to produce changes 

in the abductor pollicis brevis muscle, rather than the FDI which was used in the current 

study. Therefore, the FDI may not be susceptible to changes in excitability following 

spinal manipulation. Lastly, a SCNP group was used in the current study, and their 

altered sensorimotor integration may have led to insignificant changes in cortical 

excitability pre- to post-intervention.  

Daskalakis et al. (2004) demonstrated that there is an interaction between CBI and SICI. 

This study postulated that if TMS of the cerebellum activated inhibitory Purkinje cells, 

the output from the deep cerebellar nuclei to the motor cortex via the ventrolateral 

nucleus of the thalamus would be reduced. Furthermore, if the cerebellothalamocortical 

pathway terminated on inhibitory neurons within the motor cortex, it would be expected 

that the cerebellum would also have the potential to reduce local intracortical inhibition. 

If the MSL task had a significant effect on the cerebellum in this group of subjects due to 

their neck pain and altered sensorimotor integration, then it is possible that a decreased 

level of CBI output to the motor cortex would result in an increase in SICI. However, 

with previous studies demonstrating that both chiropractic care and MSL tasks decrease 

SICI levels, the combined effects may have negated one another resulting in the lack of 

change seen in this study.  

Future studies should individually investigate the effects of MSL and chiropractic 

manipulation on neck pain patients. By performing CBI and SICI protocols in separate 

experiments, the design could include an immediate post-manipulation measure prior to 

the MSL which would allow us to more clearly attribute changes to the either 
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manipulation or MSL effects.  Also, a control condition, such as a passive head 

movement group, should be included to act as a control for the non-specific physiological 

effects that occur with a neck manipulation such as the application of pressure over a 

joint and head movements that occur during a neck manipulation. This comparison 

should be performed in that of a healthy age- and gender-matched control group.  
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Thesis Summary 
 

Subclinical neck pain is a substantial problem that affects numerous people each year, 

and places a burden on the healthcare system. Altered afferent input to neural structures, 

as a result of neck pain, results in defunct sensorimotor integration within the motor 

cortex, however it is unclear if there is modulation that occurs within the cerebellum as 

well. Motor sequence learning has also been shown to induce sensorimotor and plasticity 

changes within the cerebellum, and therefore these two mechanisms may alter the 

cerebellum similarly in order to induce plastic changes within the structure. Two studies 

were performed in order to determine if it was possible to induce both cortical and 

cerebellar learning, and if chiropractic care could alter motor output, via transcranial 

magnetic stimulation measures, to facilitate this learning.  

Study one set out to determine if motor sequence learning could result in altered 

cerebellar and cortical processing and motor output. Results showed that following the 

motor learning intervention, there was an alteration in intracortical inhibition of the motor 

cortex, however no significant change in cerebellar output. Study two investigated if 

subjects with subclinical neck pain had altered sensorimotor integration within the 

cerebellum and motor cortex, and if chiropractic intervention could remedy this 

alteration. Results from this study demonstrated that following a combined intervention 

of motor sequence learning and chiropractic intervention, there was a modulation of 

cerebellar output to the motor cortex with no modulation within cortical inhibitory 

mechanisms.  
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There have been no known studies to have reported cerebellar processing changes 

following chiropractic manipulation, and few that have reported changes following motor 

sequence learning. The combined results of these two studies indicate that people who 

have subclinical neck pain have some form of altered sensorimotor integration which is 

changed when receiving chiropractic treatment. It is also evident that there is a change in 

cortical connections following MSL in the normal population, however a change in 

cerebellar processing in SCNP patients following chiropractic treatment. Therefore, it is 

evident that there is a modulation effect that occurs following chiropractic manipulation 

in the cerebellum, and that the cerebellum plays a role in those patients with altered 

afferent input. This is highly significant to future work in the field as this dysfunctional 

cerebellar processing may have potential as a measurement tool to determine those SCNP 

patients with disordered cerebellar integration and who may therefore be at risk of 

developing chronicity.     
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Appendix 1: TMS Safety Checklist 
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Appendix 2: Project Consent Form 
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Appendix 3: Edinburgh Handedness Inventory 
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Appendix 4: Neck Disability Index (NDI) 
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Appendix 5: Chiropractic Patient Examination Form 
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