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Abstract 

This thesis represents the results of a study into using fingerprints generated according to 

the Rabin-Karp Algorithm, and a database LevelDB to achieve Text Search times below 

GREP, which is a standard command-line UNIX text search tool.   

Text Search is a set of algorithms that find a string of characters called a Search Pattern 

in a much larger string of characters in a document we call a text file.   

The Rabin-Karp Algorithm iterates through a text file converting character strings into 

fingerprints at each location.  A fingerprint numerically represents a window length string 

of characters to the left of its location.  The algorithm compares the calculated fingerprint 

to the Search Pattern’s fingerprint.  When fingerprints are not equal, we can guarantee the 

corresponding strings will not match.  Whereas when fingerprints are, the strings 

probably match.  A verification process confirms matches by checking respective 

characters.   

Our application emerges after making the following major changes to the Rabin-Karp 

Algorithm.  First, we employ a two-step technique rather than one.  During step 1, the 

preprocessing step, we calculate and store fingerprints in a LevelDB database called an 

Index Database.  This is our first major change unique to us.  Step 2, the matching step, is 

our second unique change.  We use the Index Database to look-up the Search Pattern’s 

fingerprint and gather its set of locations.  Finally, we allow the pattern to be any length 

relative to the window length.  We even created an equation to check if the difference in 

length is too long for the fingerprint’s number system base.   

We facilitated our performance experiments by first building our application and testing 

it against GREP for a wide range of different parameters.  Our conclusions and 

recommendations determine that although we currently only outperform GREP in about 

half the cases, we identify some promising opportunities to modify some parts of our 

application so that we can outperform GREP in all instances. 
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Chapter 1: The Research Problem 

1.1.1 Introduction 
In general, our task is finding occurrences of a search string in a text file.  There are many 

algorithms and techniques solving this Text-Search problem.  Our procedure is unique 

and benefits from synergy.  While none of the main parts are particularly new, when we 

coupled them together in such a new way, we could measure improvements in 

performance.  With that in mind, this thesis represents the results of a study into using 

Rabin-Karp fingerprints and a database LevelDB to create a text search application that 

can achieve text-search times below GREP’s (UNIX’s standard text search tool.)  We use 

the remainder of this Chapter to provide an overview of the problem, a description of our 

Thesis, a discussion of our Motivation behind our Thesis, and a glimpse of our 

observations showing evidence of our success. 

This chapter provides some material to set a context for the experiment.  It presents a 

number of sections covering necessary background for several important objects involved 

in our work, and touches on their pertinent issues, algorithms, and mathematics of the 

problem.  Subsequent paragraphs in this section will summarize the presentation of this 

material.  Later chapters present the theory and implementation of our work in detail.  

Hence, to avoid repetition, we try to keep background material in this introductory 

chapter at an abstract level.   

In that light, we outline most of the modifications we intend to make in the traditional 

Rabin-Karp algorithm.  We also present the most basic objects of this work, text strings, 

by pointing out what they are, and where we encounter them.  Next, we introduce the 

most important object of our work after text strings, the Rabin-Karp algorithm. (Karp & 

Rabin, 1987)  We demonstrate Rabin-Karp’s idea of using a numeric fingerprint to 

represent substrings within a text file is a novel mixture of hashing, search heuristics, and 

simple arithmetic.  After this, we describe the motivation for performing this work.  It ties 
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together the previous discussion with an argument that our new application has promise 

to solve most, if not all, issues. 

The next section gives an overview of the search times we achieved versus GREP.  These 

times confirm our approach has merit in terms of performance over GREP, which are 

quite encouraging from our point of view. 

The final section of this introductory chapter introduces the layout of the remaining 

document.  This discussion will introduce and combine the objects used by the approach, 

as well as, many of the changes we make made to Rabin-Karp’s original algorithm into a 

concise statement of the solution. 

1.2 Thesis  
In light of our discussion above, we propose to verify the following Thesis in this work. 

We can modify the Rabin-Karp Algorithm, and configure the 

LevelDB database, to create a two-step-text-search-engine 

algorithm that will outperform the one-step-text-search-engine 

GREP in finding search patterns within local text files.   

In a general sense, the type of solution we investigate employs both sources of 

improvement mentioned earlier: (1) creating a hash file and (2) reusing its information.  

In other words, we propose to build a text-search application having two steps, where a 

preprocessing step uses pieces of the Rabin-Karp algorithm to create fingerprints that we 

save as a hash file using LevelDB.  In addition to “hash file,” we sometimes refer to this 

LevelDB file as, “Index Database,” or, “index” for short.  In any case, this index is 

available in any number of subsequent matching steps.  We also use techniques from 

Rabin-Karp’s algorithm to carry information forward from one fingerprint calculation to 

subsequent calculations while building the hash file; thereby significantly reducing the 

time required to calculate a fingerprint.  After building an index, our process uses this 
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database and several other techniques to find positions for any search text.  In the end, 

our work achieved the following two significant outcomes. 

First, our application outperforms GREP in more than half of our test runs.  These results 

alone give our application a great deal of promise.  Nevertheless, the best results from our 

experiments were observations of opportunities to make significant improvements.  For 

instance, we observed enough evidence to make us confident we could modify our 

application so it could outperform GREP in every case.  We list these enhancements in a 

later chapter covering future work.   

The second significant outcome is a result of our design procedure, not our 

experimentation.  Hence, even before programming anything we had to solve our biggest 

problem, leading our work toward the following equation.  It is new to text searching and 

represents a value we need to know before we can even run one experiment.  That is, 

with everything else held equal, what is the maximum length between an Index 

Database’s window length WL and the length a pattern can have PL?   

∆𝒑𝒂𝒕=
𝐥𝐨𝐠𝟐(𝒎𝒐𝒅𝒖𝒍𝒖𝒔)
𝐥𝐨𝐠𝟐 𝒓 (𝒓𝒂𝒅𝒊𝒙)

 

Equation 1: Calculating the maximum number of characters our Index Database's 

Window Length (WL) can have compared to the length of a pattern (PL.) 

This importance of this equation to our analysis can hardly be overstated.  It demonstrates 

several key issues threatening the analysis.  First, it draws our attention toward a 

dependency between the modulus q and the radix r.  A requirement of the Rabin-Karp 

Algorithm is that the two be co-prime; which means one, but not both, must be a prime 

number. (Gusfield, 1997)  A second issue covered by this equation has to do with modulo 

arithmetic.  If we did not prevent a user from exceeding this maximum, they could be in a 

position where their range’s maximum value is actually less than its minimum value.  

This can happen because the Rabin-Karp algorithm, and therefore our application, both 

use modulo arithmetic.  In any case, if this does occur the application is caught in 
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somewhat of an endless loop.  It would start at what it thinks is the minimum fingerprint 

value, verify that fingerprint, and continue the same thing for every subsequent 

fingerprint until it hits the end of the database without ever hitting the maximum value.  

Having thought that none of the fingerprints exceeded the maximum, it would 

erroneously include all those fingerprints it passed by on its way to the end.  This 

equation is so valuable that we could not even try to include patterns whose length is less 

than the index database’s window length without it. 

1.3 Basic String Terminology  
Before discussing text strings in arbitrary language, it is necessary to introduce a few of 

the issues related to them like their building blocks, characters.  Every character (c) 

belongs to a set of characters called an alphabet (symbolized as Σ.)  |Σ| denotes the 

number of characters in the alphabet.  We only use alphabets like ASCII where each 

character has an integer index or code unique in the alphabet.  We obtain a character’s 

code by interpreting its one-byte bit sequence as a one-byte integer.  Hence, having a 

common byte, the character and its code are two inseparable views of the same object.  

Character codes are typically used to order characters in an alphabet in lexographic, or 

alphabetical, order.  Our approach respects this use and adds another important role for 

character codes. 

Strings are a set of characters arranged in some order.  Each character has a unique 

position in a string; beginning with zero at the left and increasing by one for each 

consecutive character moving right along a string.  We adopt a custom of naming strings 

using a single bold upper-case letter to remind us that most strings are arrays of 

characters.  We also use the square bracket operator to access a character at a certain 

position within a string.  For example the character at position 3 in string S is S[3]. 

Since our analysis only deals with a few strings, throughout this document, we introduce 

them here.  The most important string array names we use are as follows.  We use S to 

represent an arbitrary string, T to represent a text file, P to represent a search pattern, and 

W to represent a text window we slide through the text file.  Similarly, to avoid confusion 
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we always refer the length of a respective string by tacking an L after its name giving us: 

SL for string length, TL for text file length, PL for search pattern length and WL for 

window length.   

With the above terminology in mind, we present a simple example of the text search 

problem lying at the center of our work.  Let P=abba (therefore PL=4) and 

T=bbabbaxabbabbay (therefore TL=15).  The solution for this example is that P 

occurs in T at three positions; namely, positions 2, 7, and 10.  positions 7 and 10 in this 

example demonstrate that occurrences of a pattern may sometimes overlap.  We also 

demonstrated that manual processes could perform text search; as readers can attest after 

verifying by hand the three positions we offered as the solution.  Of course, however, 

when PL > 10 and TL > 5Mb manually process is impossible to defend as a mechanism 

for finding a solution.  

1.4 Strings 
Strings are ubiquitous in our society.  Everywhere one looks, a string is informing them 

of something.  Further still, our libraries contain huge collections of long text strings we 

call books.  In addition, we have the WWW filled to the brim with strings we generally 

regard as belonging to a document called a web page.  In its simplest sense a string is an 

ordered set of characters.  In most cases, a string occurs within a larger unit usually called 

a document.  As demonstrated above, the work we are presenting deals with finding and 

reporting the position(s) where a Search String occurs in a Text File (i.e., a document.) 

With so many text strings in our lives, we are unwittingly drowning in a sea of data, and 

thirsting for information.  That means we spend a great deal of time shifting through 

these documents searching for our information need.  In fact, in addition to text search 

there is a huge spectrum of choices available to help a user hunt for information 

electronically.  The sciences built around such a seemingly straightforward subject are 

huge.  It is important for us to recognize that our work occupies only a small corner of the 

huge sea of algorithms, techniques, and theories.  To help put our corner into context, and 
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before getting into the text search part of this spectrum, we must introduce a few helpful 

concepts; most of which come from the field called Information Retrieval.   

1.4.1 Information Retrieval 
Information Retrieval is a science concerned with identifying, extracting, and organizing 

information for a huge collection of data. (Beaza-Yates & Ribeiro-Neto, 1999)  Since our 

work centers around text search, we thought it appropriate to acknowledge the existence 

of this vast science that encompasses our work. 

People do not usually walk around all day totally focused on finding a specific piece of 

information.  Nevertheless, when a person actually needs something, they really do start 

looking, usually in earnest.  Their drive comes from satisfying a desire to find specific 

information.  Information Retrieval refers to a goal of finding specific information as an 

information need.  From this point forward, we regard finding a pattern in a text file is 

also filling an information need. 

Another important concept from Information Retrieval is that users familiar with both 

their corpus and their toolset, can satisfy their information need with little effort and time.  

Information Retrieval uses metrics like inverse document frequency to help sort 

candidate documents from most to least likely to satisfy an information need.  Other 

useful tools include searching for documents using Metadata values and Keywords that 

can pare down a search’s list of candidate documents to a manageable few.  (Beaza-Yates 

& Ribeiro-Neto, 1999) 

Therefore, Information Retrieval has a huge spectrum of tools, many of which are 

proficient at filling an information need.  While text search, is a smaller set of tools 

dealing with finding one string in another.  It does fall under the broad heading of 

Information Retrieval.  The following section looks at how Information Retrieval’s sub-

spectrum containing text searching addresses some information needs. 
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1.4.2 Text Search covers a Spectrum of Techniques 
At one end of the text search spectrum, we have more manual-process-based approaches 

such as browsing, or surfing, where a user examines page after page of information on 

the WWW looking for links that will bring the goal (i.e., information need) closer.   

At the other end of the text search spectrum-the part we are studying, we have automated 

approaches where a user simply types their search query and presses [Enter.]  Their 

information need automatically becomes finding occurrences of that string.  Producing a 

list of the position for each occurrence of the search string satisfies the information need.  

Even though there are many details for such a process, the general idea for text searching 

is finding and reporting the positions of the search pattern within all documents of a 

corpus a user is searching.  We will reinforce this idea throughout our discussion.  In fact, 

to add more precision to our discussion describing these processes we need to introduce 

some details of our notational convention, to which we now turn. 

1.4.3 One-Step (On-Line) or Two-Step Preprocessing 
Text search algorithms typically use one of two to broad categories of analysis 

techniques, one-step or on-line and two-step or preprocessing/matching.  On-line 

techniques perform a search at the same time they are processing a text file, which can 

make them extremely fast.  The original Rabin-Karp algorithm is an on-line technique.  

We have already announced our interest in two-step processes because our approach 

requires we build an index and perform searches using it.  Therefore, we turn our 

attention to two-step methodologies with preprocessing plus matching.  This technique 

breaks the problem into two types of steps, a preprocessing step, followed by any number 

of subsequent matching steps.  The preprocessing step makes one pass through a text file 

building and storing some sort of index.   

Our solution implements a version of a preprocessing technique using a key-data-pair 

database called LevelDB.  We configured LevelDB to store an index of the Rabin-Karp 

fingerprints for each position of a text file.  The innovation here is that Rabin-Karp 

originally developed their algorithm as an on-line method, searching for the pattern while 
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processing the file.  (Karp & Rabin, 1987)  Our approach builds an index once and allows 

any number of searches using that index.  Later, we give an overview of the Rabin-Karp 

algorithm, describing its details, and the details of our modifications. 

Now we turn our attention to giving an overview of searching in general and text 

searching in particular. 

1.5 Some Search Problems 
Having introduced strings and searching, we shift focus briefly to discuss some other text 

search tasks.  We have intentionally avoided including them to keep our project scope 

manageable.  Nevertheless, we recognize that several modifications to our framework 

would make the following issues candidates for our approach.   

Computers have been filling their hard drives and on-line sites at an ever-increasing rate.  

We mentioned earlier there are many ways to shift through all this content using several 

popular tools from the broader science of Information Retrieval.  Recognizing text search 

is a popular alternative for many reasons, we contrast it to these other tools in the 

following discussion.   

1.5.1 WWW Search Tools 
Having already introduced surfing the internet earlier, we now examine another form of 

looking for information on it.  This time we are discussing Google, or Bing, and a whole 

host of other internet searching engines available.  Internet search tools help sift through 

large volumes of data (i.e., they all search the entire WWW for occurrences of a search 

pattern or parts thereof.)  They report their list usually in less than one second, but the 

number of ‘hits’ (i.e., eligible targets) is astronomical.  One can hardly call a user’s task 

of sifting through hundreds of thousands of ‘hits’ as being a very efficient search tool for 

our problem at hand.  However, many users with general queries about arbitrary issues 

find these internet search tools great advisories.  They actually do a very good job of 

putting the most likely target near the top. 
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These tools are two-step with huge preprocessing steps.  For instance, Google uses web 

‘crawlers’ to spend an entire day and night traversing (crawling) the entire WWW.  They 

are building an index for use with the hundreds of thousands of search requests the next 

day.  This is a perfect example of searching with a preprocessing scheme, which is the 

same technique we use in our solution.  

1.5.2 Local Search Tools 
We have built our solution to perform text searching in a local domain, like a text file on 

a hard drive.  This is similar to the text search functionality of several text search 

command-line tools provided by operating systems.  Earlier we mentioned how UNIX 

had a tool called GREP for just such occasions.  Windows has two similar command-line 

text search tools, FIND and FINDSTR.  All three are functionally equivalent; they find 

search strings in one or more text files.  While “fast,” they are all one-step techniques, 

falling under the on-line category of search algorithms.  Furthermore, they do not 

“remember” any information from any previous run(s) they can use in a current run, 

which is a property of all one-step algorithms.  In short, these tools are cumbersome but 

are robust enough to be in every advanced user’s toolbox.   

1.6 Rabin-Karp Algorithm 

1.6.1 Introduction 
Since our work relies so much on Rabin and Karp’s ideas and their algorithm, we briefly 

introduce it now highlighting its main characteristics.  Interested readers can refer to the 

next chapter where we give a very detailed formal description.  In 1987, R. Karp and M. 

Rabin published the randomized fingerprint method as a practical and efficient solution to 

the string-matching problem.  (Karp & Rabin, 1987)  The randomized fingerprint method 

is a perfect match for our solution because it carries information forward from one 

comparison to the next, it performs well in practice, and we can generalize it to extend to 

other related problems.  We will refer to their method as simply the Rabin-Karp 
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algorithm, and give a brief overview of its details here using descriptions from (Corman, 

Leiserson, Rivest, & Stein, 2001) and (Gusfield, 1997).  

The Rabin-Karp algorithm uses modulo arithmetic, Horner’s Rule, and a number of other 

innovative techniques to calculate a fingerprint (decimal number) for each substring in a 

larger text file T.  The algorithm first calculates pattern P’s fingerprint (denoted as p.)  

Then, it iterates through a text file T for every location.  At each iteration in T we are at 

(offset/position/ or shift) location, denoted as s.  Now, it calculates a fingerprint for a 

pattern-length substring beginning at s.  If a substring’s fingerprint is not equal to p, the 

substring will definitely not match the pattern making it a perfect heuristic for string 

matching.  It also has another advantage that helps speedup the comparison process.  As 

we demonstrate in more detail later, comparing integer values for equality is a simple 

one-step numeric process.  Therefore, in one integer comparison we could save having to 

compare any characters.  In addition, small fingerprints (i.e., 32-bit integers) allow an 

algorithm to take advantage of the speed of small integer arithmetic on modern 

processors.  Incidentally, calculating all fingerprints in T and storing them in LevelDB is 

step one in our proposed approach.  Fingerprints are calculated using character codes, 

radix, and modulus making them a great hash function to the LevelDB database, as we 

will show later.   

The other side of hash files, when the two fingerprint values are equal, we only know one 

fact; their hash functions put them in the same hash bucket.  At this point, we have no 

idea whether any characters in respective strings match at all.  Hence, a pattern’s 

fingerprint value equaling a substring’s fingerprint value is at best an extremely good 

heuristic indicating the possibility the two underlying character strings will match.  We 

must subsequently confirm or deny an occurrence of a match by performing a character-

by-character comparison at the particular location in the text.  We generally refer to this 

comparison as verification.  

In summary, the efficiency of the matching-step in the Rabin-Karp algorithm comes 

about in two ways.  Primarily, we eliminate the need to examine each character in the 
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huge text corpus by the relatively quick method of comparing integer hash values for 

substrings.  Next, we reduce the total amount of character-by-character comparisons 

required to confirm occurrences.  In other words, we only need perform verification at 

locations in T where the fingerprint value of the pattern-length substring in T is equal to 

P’s fingerprint value.   

1.6.2 Example of Rabin-Karp 
The following example uses the ten digits as our alphabet making its radix 10.  Cormen 

uses these values in his rather lengthy example reproduced in Figure 1 and below 

(Corman, Leiserson, Rivest, & Stein, 2001, p. 913).  The top Part (a) of the figure shows 

a text stream with a five character string 16439 highlighted.  The numerical value of that 

string is 7 modulo 13.   Part (b) shows how each location in the text file has a fingerprint 

calculated one after another.  If our search pattern were 16439, we are searching for a 

fingerprint of 7.  Part (b) also shows how a spurious hit (false positive) occurs when 

another substring in the text stream has the same fingerprint of 7 (mod 13).  This 

demonstrates how a completely different set of digits; this time they are, 59534 can give 

the same fingerprint..  Finally, Part (c) illustrates the constant time process used to shift 

one place in the text stream and calculate the next fingerprint using information from the 

current fingerprint. It demonstrates with actual text strings how the Rabin-Karp 

Algorithm uses Horner’s Rule to bring information from the former fingerprint 

calculation forward to calculate the subsequent fingerprint. The process begins with the 

current set of digits 16439, the first digit of which we need to remove when sliding our 

window to the right one digit.  Doing this accounts for the -1x10000 part of the 

expression.  After removing the beginning digit of one, we next want to shift the four 

digit number of 6439 to the left by one position.  Hence, the x10 part of the expression, 

which would have left us with 64390; but, we decided to performed a modulo operator of 

13 on the previous two numbers leaving us with 40 (i.e., 70-30.).  Finally, we add 8, 

which leaves us with a value of 9 (mod 13).  This is an excellent diagram for highlighting 

the main processes and components of the Rabin-Karp. 
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Figure 1: The Rabin-Karp Algorithm.  Based on figure 32.5 of (Corman, Leiserson, 

Rivest, & Stein, 2001, p. 913).  
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1.6.3 Fingerprints in LevelDB 
Using Rabin-Karp principles to make a two-step process requires that we preprocess a 

text file by calculating its fingerprints at every position and saving them for later look-up 

during step two, the search.  We created a LevelDB database for this purpose.  LevelDB 

is an open-source key-value database developed at Google that we describe later.   

Originally, we thought a fingerprint would be our primary key.  Unfortunately, we soon 

discovered a duplicate-key problem for LevelDB related to a fingerprint being neither 

unique nor distinct, making it impossible to serve a role as primary key.  Therefore, our 

primary key consists of a fingerprint’s bytes followed by the bytes for file position.   

1.7 Motivation 
Few, if any, local text search applications in widespread use have two steps.  Even though 

Google, the biggest of them all, is two-steps, it is not very useful for searching local 

information content.  Most current local text search applications, like UNIX’s GREP, run 

on-line.  This means that work done in a current search is independent of, and sometimes 

a replication of, calculations and other work done by a previous search.  It therefore looks 

like a very promising direction to build a two-step-text-search-engine to take advantage 

of the amortization of building a database versus the repeating calculations with a one-

step application like GREP for local search problems. 

Fortunately, researchers have studied the string-matching problem for many years 

especially in biological areas searching for patterns in DNA.  (Gusfield, 1997)  They list 

a huge body of literature describing many different solutions to this problem and 

demonstrating the naïve method is not optimal.  One of the biggest reasons making this 

method inefficient is that it does not keep any information from the previous comparison 

when it starts a new comparison.  Keeping some information may be valuable.  We will 

show later how it can be a source for more efficient search methods. 

Another source of improvement arises from methods that use a two-step process.  In 

these methods, step one is referred to as a preprocessing step; and, step two` as the 
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matching step.  (Corman, Leiserson, Rivest, & Stein, 2001)  Typically, step one analyzes 

T to produce some sort of index that we save and use later in a matching step.  One very 

useful advantage of having an index is that we can repeat many matching steps to locate 

occurrences of any number of patterns without needing to build a new index each time. 

1.8 Description of Work 
This section briefly summarizes the work we performed building this application itself.  It 

also gives an overview of how we obtained the performance results comparing our 

approach and GREP.   

Dismantling and reassembling the Rabin-Karp algorithm was an interesting challenge.  

We used C and C++ in Visual Studio to program and debug our application.  Hence, the 

executable is small (<60k) and fast.  We did not use any Windows exclusive functions, 

APIs, or headers that would preclude it from working in UNIX.  Even LevelDB has a 

C++ API for both operating systems that is easy to switch, making operating on UNIX a 

very real possibility.   

Our work began developing an on-line Rabin-Karp application that worked from the 

command-line.  During this time, we created and implemented a command-line 

parameter list (See Appendix C) that we kept up-to-date whenever we added a new 

parameter.  Once that was functioning, we divided the application into two parts and 

began building the first part, including an Index database.  After being side tracked trying 

to use Oracle DB for several months, we switched our database system to LevelDB.  

Within a week or so, we had LevelDB storing and retrieving our information.  This 

success meant we had completed building our preprocessing step.  We then started work 

on the matching-step.  We modified a few parameters that let our application put the 

positions of all occurrences of the pattern in a results file.  With this finished we tested it 

searching for random phrases from the collection of Mark Twain.  (Twain, 2009)  With 

everything tested and verified, we began our performance test using the bible as our text 

document we downloaded from the internet (The Large Canterbury Corpus, 2001).  We 

constructed our experiment text document by repeating the bible 100 times and saving 
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the results to a text file.  These both gave us a small test text file with one bible for 

testing, and a much bigger file to calculate performance with 100 bibles.  After finding 

our test search strings we ran GREP for each of them.  Later, we compare GREP’s time 

against searching for the same strings using our application.  Each time we ran our 

application, we changed a different parameter while holding others constant.    

1.9 Document Layout   
This document will introduce and discuss all objects used by our approach.  It also 

highlights many of the significant changes we made to Rabin-Karp’s original algorithm 

morphing it from its original on-line application into a two-step search process.  Finally, 

it discusses some of the major issues we encountered along the way and how we solved 

them.  Readers not familiar with string notation and manipulation can review Appendix A 

for the needed nomenclature.  Otherwise, readers can skip directly to Chapter 2: The 

Rabin-Karp Algorithm on page 17.  Furthermore, readers familiar to Rabin-Karp 

fingerprints can just scan the headings of Chapter 2. 

The discussion develops the concepts in the following order. 

Chapter 2: Begins by formalizing the concepts associated with the Rabin-Karp 

Algorithm.  Understanding this algorithm will help with understanding the application we 

built using it.  

Chapter 3: Examines other work in the area of string search in general and Rabin-Karp’s 

fingerprints in particular.  This literature review highlights papers done by other authors 

that have something specific to say about some or all components of our approach. 

Chapter 4: Describes the theory and practical implementation of our approach.  In 

particular, we discuss the constituent parameters affecting the results such as modulo and 

radix.  Then we use these parameters to discuss characteristics of a fingerprint such as 

how we calculate it once for strings like the search string, and recursively for each 

subsequent substring in a Text File.  We also examine some of the properties that not 
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only influence the fingerprints, but also have themselves influenced by the fingerprint.  

The chapter concludes that the approach is implementable using a C++ exe program with 

a size of 58,880 bytes. 

Chapter 5: Describes how we designed our experiments, what experiments we conducted, 

what we needed to support the experiments, and what resulting performance we received 

for each experiment.  In cases where it was obvious and clear why certain results appear, 

we discuss generally how and why we achieved those results.  Finally, we discuss the 

various perspectives on the results to give an overall picture of how our experiments 

compare to GREP. 

Chapter 6: Discusses our conclusions and recommendations for future work 

Appendix A: Formalizing Characters, Strings, and Search 

Appendix B: ASCII Table 

Appendix C: Command-Line Parameters 

Appendix D: Seek Times for each Radix/Modulus Combination 

Appendix E: Diagrams of Actual Versus Spurious Hits 

Appendix F: Line Graphs of Performance (hits/ms) 
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Chapter 2: The Rabin-Karp Algorithm 
Before we get into the modifications we make to the Rabin-Karp algorithm, we use this 

chapter to give a formal description of the existing algorithm.  We therefore begin with 

an overview of Rabin-Karp.  In it, we expand on the description from the introduction 

and provide names for techniques it uses like Horner’s Rule.  We present the Rabin-Karp 

Algorithm to help highlight some issues that might otherwise have remained hidden 

under a cloak of complexity.  The degree of familiarity offered by these opening concepts 

helps set a stage for a formal description featuring these techniques and concepts as well 

as expanding on terms and concepts already mentioned earlier.  Finally, once we dispense 

with a formal definition, we give a detailed example of all processes.  Then, we have the 

tools needed to move to the next chapter that describes in detail changes we made to 

customize the Rabin-Karp algorithm to meet our Thesis.  We based the information 

presented in this chapter from descriptions given in (Corman, Leiserson, Rivest, & Stein, 

2001) and (Gusfield, 1997). 

In what follows, it may seem that we are over-emphasizing Rabin-Karp’s fingerprint.  

The reason it would seem this way is the prominence of the fingerprint in the overall 

algorithm.  In fact, we will even expand our earlier mention of how a fingerprint serves as 

both a hash value for our database and as a heuristic for matching strings.  While these 

particular topics are somewhat removed from the central theme; they are nevertheless, 

important concepts to understanding the foundation of our work.  

2.1 Introduction 
The Rabin-Karp algorithm uses modulo arithmetic, Horner’s Rule, and a number of other 

innovative techniques to calculate a fingerprint (decimal number.)  We add several 

features of our own to make it perform even better.  Rabin-Karp algorithm follows a 

specific path in its analysis.  First, it calculates a fingerprint (denoted as p) for a pattern 

P.  Then, it iterates through the text file T for every offset or shift (s) and calculates a 

fingerprint representing a pattern-length substrings in T beginning at s.  We denote this 

fingerprint as ts (for the fingerprint in the text file t at shift s.)  As we demonstrate later, 
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comparing the fingerprint of a pattern to each of these text file substring fingerprints is 

extremely efficient.  Mostly because comparing integer values for equality is a simple 

one-step numeric process.  In addition, small fingerprints (i.e., 32-bit integers) allow us to 

take advantage of the speed of small integer arithmetic on modern processors. 

When the values for two fingerprints are not equal, we are certain the characters in the 

pattern do not match the characters in the respective substring of the text file.  When two 

fingerprints values are equal, we know (only), they occur in the same hash bucket.  At 

this point, we do not know the respective strings match because of a possibility that two 

different strings could produce the same hash.  Even if we work diligently to reduce the 

possibility of hash collisions, we are still in a position of only knowing that the 

corresponding and respective strings could match.  Using large modulus values will help 

reduce the possibility of a collision, but we can never remove it entirely.  Hence, a 

pattern’s fingerprint value equaling a substring’s fingerprint value is at best an extremely 

good heuristic indicating the possibility the two underlying character strings will match.  

We must subsequently confirm or deny an occurrence by performing a character-by-

character comparison of P with T[s, … ,s+(PL-1)].   

In summary, the efficiency of the matching-step in the Rabin-Karp algorithm comes 

about in two ways.  Primarily, it eliminates a need to examine each character in the huge 

text corpus by the relatively quick method of comparing integer hash values for 

substrings.  Next, it reduces the total amount of character-by-character comparisons 

required to confirm occurrences.  In other words, it only needs to compare the characters 

at locations in T where the fingerprint value of the pattern-length substring in T is equal 

to P’s fingerprint value.  To verify it commences a character-by-character comparison 

that it abandons whenever we discover mismatching characters. 

In the remainder of this Chapter, we present the Rabin-Karp Algorithm from several 

different perspectives.  We begin with a rhetorical description, even the above paragraphs 

add to this description; but we will expand it below.  Next, we formalize the Rabin-Karp 

Algorithm by giving formal definitions to all its parts that, in turn, contribute to a formal 
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definition for the whole.  Next, we give the Rabin-Karp Algorithm as an algorithmic 

listing similar to the Brute-Force listing given earlier.  We then examine the processes 

occurring at each line in the procedure.  Finally, we give a detailed example. 

Even though in previous chapters it seems we have been covering many of the concepts 

needed for our analysis, in some discussions we were informal, in some we were brief, 

and others we ignored altogether.  Now, we need a set of formal definitions that follow, 

so we can present a rigorous description of the technical details of Rabin-Karp’s 

approach.  We present them here as one collection a reader can refer to rather than 

jumping around the report.  We have adjusted some issues and added new ones in these 

definitions.  We need to postpone elaborating on some of these formalisms until later 

when a more appropriate context appears.  Nonetheless, the details we do present will 

suffice for now to demonstrate the main concepts behind the Rabin-Karp’s technique.   

• Appendix A defines an alphabet (Σ.) as a set containing |Σ| characters.  The 

Rabin-Karp approach assumes a user has resolved any implementation issues 

regarding their choice of alphabets.  An issue we do have with alphabets Σ and 

text search is an earlier assumption that it is customary to treat an alphabet’s radix 

as |Σ|.  While it is usual to define a radix for an alphabet as the number of 

characters in it, as the traditional Rabin-Karp Algorithm does, in a few paragraphs 

below we will challenge this concept by introducing our approach to radix and the 

number of characters in our alphabet.   

• Appendix A also describes characters in general as coming from the ASCII 

character set that have corresponding codes.  Since we made such a huge 

modification, we must now formally connect a character’s code to a concept 
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called radix.  Since we treat radix differently, we begin describing Rabin-Karp’s 

original intention, followed by our application’s meaning.  

• Rabin-Karp Algorithm: Let r represent the number of characters in the alphabet Σ 

(i.e., r = ǀΣǀ); and refer to r as the radix of the alphabet.  While our algorithm can 

accommodate this definition, we extend it as follows.  

• Our Modification: Let radix refer to the base of a number system created 

exclusively for calculating fingerprints.  A user establishes a base by looking from 

the inside out.  They look at the size of possible fingerprints with a particular base, 

only after examining how many characters they want to place in the same hash 

bucket.  In fact, both approaches accommodate the same number of characters.  Our 

approach however has more to do with the hash value calculation of the fingerprint.  

When getting a code for any character, we use the following formula 𝑏𝑖 =  𝑐𝑖 𝑚𝑜𝑑 𝑟 

For instance, say we were using ASCII and a radix of eight.  The above equation 

results in having eight different codes each with sixteen characters.  (8*16=128)  An 

important observation about his approach comes by realizing character codes are 

vital for lexographic sorting.  The implication for this example is that since each set 

of sixteen characters have the same code, they all share lexographic positions as 

well, making sorting a rather messy affair.  Essentially, we must use great care when 

choosing a radix that ends-up having many characters with the same code.  At the 

same time, this modification is important because it gives us more control over later 

parts of the system; particularly with calculating the minimum length a search can 

accommodate. 
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• For any string S, let S(i) denote a function that returns the integer code (bi) 

representing the character S[i] (note parenthesis versus square brackets.)  Both 

terms use a parameter i, which represents the position of the character in S.  

Recall that offsets begin from the left. 

• Let H(S) be a hash function that calculates a fingerprint for a string S of length k. 

H(S) is defined with the equation below.  A few observations are in order.  First, 

we typically denote a variable for a particular string’s fingerprint as the string’s 

letter descriptor in lower-case (using subscripts when required.)  Here we see the 

fingerprint for H(S) is equal to s.  Second, in the previous paragraph we made a 

point showing all S(i) will be less-than-or-equal-to r.  This means our hash 

function H(S) produces fingerprints that are part of base r number system. 

𝐻(𝑆) = 𝑠 =  �𝑟𝑘−𝑖
𝑘−1

𝑖=0

𝑆(𝑖) 

Equation 2: Hash functions produce Fingerprints (base r) 

• Rabin-Karp observed that the above equation for H(S) can be calculated using 

Horner’s rule thereby not only keeping the number of multiplications and 

additions linear, but also keeping the intermediate values small.  (Gusfield, 1997, 

p. 79)  In mathematical terms, Horner’s Rule converts the above equation to the 

following,  

𝐻(𝑆) = 𝑆(𝑘 − 1) + 𝑟(𝑆(𝑘 − 2) + 𝑟(𝑆(𝑘 − 3) + ⋯+ 𝑟(𝑆(1) + 𝑟𝑆(0)))) 

Equation 3: Calculating hash value using Horner's Rule 
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For example, in base 10, Horner’s Rule multiplies the current value by ten; which is like 

shifting all digits left one position.  Finally, it puts a digit in the one’s position by adding 

the character code for the new character; we will illustrate this concept using a very 

simplistic example.   

Consider an alphabet consisting of the ten decimal digits Σ= {0, 1, 2, 3, 4, 5, 

6, 7, 8, 9}.  In addition to the digit’s character, each character also has a code.  To 

keep it simple, we will deliberately assign the code a value corresponding to the 

character’s integer digit.  Consequently, the character ‘3’ has a code that equals an 

integer 3, and so on.  It is important with this example to remember that S is just a string 

of characters even if the string just happens to look like some number.  Thus, keep in 

mind in the following discussion that fingerprints are not strings, but are actual numbers.  

The difference is significant because codes are numbers that we can compare directly, 

whereas strings require we perform a character-by-character comparison.  We selected 

this simple example to make it extremely easy to see how we convert a character as an 

integer in the fingerprint calculation.  We even use different fonts to help highlight the 

difference between the character 3 and the integer 3. 

Since the objective of this example is simple, we define radix using a traditional approach 

of the number of characters in an alphabet.  Hence, the radix r for this alphabet is ǀΣǀ=10.  

Incidentally, this means our fingerprint number system is base 10 keeping in line with our 

simple theme.  Let S=123; then, SL=3, and the fingerprint (s) for S is calculated as 

follows.  

𝑠 = 𝑆(3) + 𝑟 × �𝑆(2) + 𝑟 × 𝑆(1)� 

           =   3+10× (2 + 10×1) 
            =   123 
 
 
Recall we have a pattern P of length PL, and a text T of length TL where PL is very 

much smaller than TL.  The Rabin-Karp algorithm is centered on the idea that if there is 

an occurrence of P starting at position l of T then their fingerprints will be equal (i.e., 
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H(P) == H(Tl)).  Unfortunately, the converse is not true.  To make our earlier 

proclamation clear, we formalize it as follows: 

• When two fingerprints are equal, we do not know if their respective strings will 

match.  We therefore use a character-by-character comparison process to verify 

whether the corresponding strings match.  In the meantime, we know for sure if 

two fingerprints are not equal, the corresponding strings will not match.  

Therefore, there is no need to verify it. 

2.2 Rabin-Karp Algorithm 
Briefly, the Rabin-Karp algorithm converts the string-matching problem into a numerical 

approach that uses simple integer arithmetic to calculate a numeric fingerprint.  We will 

eventually use this numeric fingerprint as a hash value representing a string of characters 

that is also an excellent heuristic for finding matches in corresponding character strings.  

Although the original version uses a preprocessing time of Θ(PL), and has the same 

worst-case running time the Brute-Force method, the Rabin-Karp algorithm reduces the 

probability of this worst-case running time to be so small that the time for the matching 

step actually becomes linear Θ(TL-PL+1). 

Even though it has a preprocessing step of Θ(PL), this time is so small compared to the 

text being searched that we regard the following version of the Rabin-Karp algorithm as 

on-line.  We do this because one of our enhancements later will add a more substantial 

preprocessing step of building a database of all fingerprints in a text file, which we will 

greatly expand on later.  In any case, we present the following procedure to introduce the 

algorithm and demonstrate its calculations and processing.  Once again, we will expand 

the details of this algorithm later in the report.  The inputs are the text file T, the search 

pattern P, the radix r (typically equal to |Σ|, but not always,) and the modulus q a prime 

number. 
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Rabin-Karp-Matcher(T, P, r, q) 
1 TL ← Length(T) 
2 PL ← Length(P) 
3 h  ← r(PL-1) mod q 
4 p  ← 0 
5 t0 ← 0 
6 for  i ← 0 to (PL-1) 
7 do p ← (rp + P(i)) mod q 
8    t0 ← (rt0 + T(i)) mod q 
9 for  s ← 0 to TL – PL 
10 do if p == ts 
11  then if P[0 … PL-1] == T[s … s+(PL-1)] 
12   then print “Pattern occurs at position” s 
13  if s < TL – PL   
14   then  ts+1 ← (r(ts – T(s)h) + T(s+ PL)) mod q 

Algorithm 1: The original Rabin-Karp algorithm is basis for our work. 

The above procedure works as follows.  Recall we demonstrated earlier when we 

introduced characters that they could be interpreted as a symbol or an integer; the 

procedure interprets all characters as radix-r digits.  Recalling the use of round brackets 

for a code and square brackets for a character, the term P(i) in line 7 refers to the 

character code (i.e., an integer) at position i in the Pattern rather than its symbol;.  Line 3 

calculates h; a constant used later in Line 14.  The variable h represents the value of the 

high-order digit position of a PL-digit window.  Lines 4 through 8 compute a fingerprint 

for both the Pattern and the first position of the text file.  The method uses Horner’s Rule 

that multiplies every subtotal by r before adding the new character.  This multiplication 

by r shifts the current value to the left by one digit (i.e., the radix r.)  Since r is the base 

of our fingerprint numbering system, the effect of this multiplication is to create an empty 

slot at the right hand end of the number ready to accept another base r digit.  Adding the 

value for the new character to this shifted number, places the new character’s digit at the 

right hand most digit of the number.  This loop continues until our two fingerprints, p and 

t0 are PL-digit numbers representing their respective strings. 

The second part of the algorithm begins with a for-loop of lines 9 through 14.  This loop 

iterates through all possible shifts s in the text file.  In fact, lines 9 -12 are very similar to 
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the naïve text search algorithm presented earlier.  The only difference is the addition of 

line 10 that checks to see if the fingerprint values equal before checking the strings 

character by character for a match.  Line 12 prints locations for matches.  Line 10 is one 

place where the Rabin-Karp algorithm shows a vast improvement over the naïve method 

because it reduces the need to compare characters to only those times when their 

respective fingerprints are equal.   

Finally, Line 13 checks to see if the for loop on line 9 will be executed again.  If so, the 

algorithm uses another innovation on line 14 that computes ts+1 mod q from the value of 

ts mod q in constant time using Horner’s rule. 

2.3 Modulo Arithmetic 
In practice, fingerprints could become huge values parameters become too large, 

certainly too big for simple 32-bit arithmetic.  This problem has a potential to render the 

algorithm useless.  That is until, with yet another stroke of ingenuity, Rabin-Karp 

introduced an idea of using modulo arithmetic in its fingerprint calculations to keep the 

resulting value within an arbitrary range.  They use it in line 3, 7, 8, and 14 in the 

Algorithm listing above.  Modulo arithmetic allows one to reduce a large number of 

objects into a finite searchable space.  Its power comes from allowing one to reduce at 

any time; which is precisely what we did above in Figure 3 for Horner’s Rule.  The other 

nice thing about modulo arithmetic is that the heuristic and equality features of 

fingerprints still hold in this environment.   

As mentioned earlier, but until now not demonstrating; we can finally see how the 

addition of modular arithmetic has led to the fingerprint being a heuristic as to whether or 

not the pattern appears at a particular location. We can also observe how efficient the 

heuristic can or cannot be since if Hq(To)≡Hq(P) we must do a character-by-character 

evaluation on the substring at that location o to verify whether or not there is actually an 

occurrence of P.  These observations lead to the following definition.  
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• If H(P)≡H(Tl) but P does not occur at position l of T, then we call this a false 

match or a spurious hit.  

The key to implementing the Rabin-Karp algorithm then becomes choosing a modulus q 

small enough that the arithmetic is kept efficient, yet large enough that the probability of 

a false positive between P and T is kept small.  While easy to use and having the ability to 

keep fingerprints values smaller than 32bit integers, modulo arithmetic is a very 

expensive function that we try to minimize the use of in our implementation.  We 

elaborate on these shortcut procedures in the following Chapter.   
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Chapter 3: String Search Literature Review 

3.1 Introduction 
Since Rabin and Karp introduced their fingerprint calculation algorithm, it has enjoyed 

much success.  We list a variety of vastly different applications below.  Our search, 

however, did not yield any cases where researchers used the same approach as ours.  In 

fact, even with string searching itself, the algorithm works so efficiently on-line there 

seems no purpose in trying to improve its impressive time and space numbers.  Actually, 

it remains a leading on-line string search algorithm mentioned in many algorithm and 

string processing textbooks; we illustrate four textbooks below.   

3.2 Textbook References 
All of the authors of following four textbooks say they aimed them at graduate and upper 

undergraduate level courses.  Consequently, the last three textbooks combined, contain an 

exhaustive descriptions of all areas of stringology.  Whereas the first textbook on 

algorithms had the best description of the Rabin-Karp Algorithm, hence, we relied 

heavily on it for our work.   

3.2.1 Introduction to Algorithms 
The textbook Introduction to Algorithms (Corman, Leiserson, Rivest, & Stein, 2001) is a 

“must-have” for all computer science students, as well as some professionals, researchers, 

and teachers.  It gives an wide-ranging primer for studying modern computer algorithms 

with.  It covers many algorithms in considerable depth and mathematical rigour, and 

includes a C-like pseudo-code listing for each.  Additionally, it has coherence with 

respect to cross-referencing algorithms with one another.  While some readers may use 

the book as a “cookbook” for the most popular algorithms, it offers much more.  With the 

objective of targeting an audience from students to researchers, and everything in 

between, it presents their material so the algorithm’s design and analysis is accessible to 

all levels of readers.  Somehow, the authors did not sacrifice depth of coverage or 
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mathematical rigor while keeping explanations elementary.  (Corman, Leiserson, Rivest, 

& Stein, 2001) 

This textbook provided us with a description of how to implement the Rabin-Karp 

algorithm.  In fact, we use one of its diagrams later to demonstrate the concepts behind a 

fingerprint. 

3.2.2 Algorithms on Strings, Trees, and Sequences 
The textbook Algorithms on Strings, Trees, and Sequences demonstrates (Gusfield, 1997) 

how to combine computer science with molecular biology using string computation as a 

common thread.  They provide a very rigorous treatment of algorithms for character 

strings and molecular sequences.  They give formal definitions from both sciences for 

fundamental techniques and objects.  They present an exhaustive general-purpose 

description and analysis of all subject matter so others may apply bits and pieces from 

their tapestry of algorithms and proofs. 

This rigorous treatment of the field of deterministic algorithms operating on strings and 

sequences was impressive because it gives complete proofs of behaviours like worst-case 

time, correctness, and space.  Indeed, later we use some of their formal definitions 

inspired they formality we used to develop our work.   

We used this book as a guide to our formal definition of characters and strings. 

3.2.3 Algorithms on Strings 
The textbook Algorithms on Strings (Crochemore, C., & Lecroq, 2009) illustrate the 

correctness proofs for fundamental text processing and matching algorithms and methods 

for evaluating their performance.  They develop their topic by focusing on a generic 

sense of organizing text in a computer environment with limited memory and slow hard 

drives.  Their topics create an algorithmic and technical framework required in fields like 

information retrieval, automatic indexing for search engines, the compression of text, and 

more generally the practical software system, including its edition and its treatment.  This 

framework applies to a plethora of fields such as pattern matching, automatic processing 



Page | 29 

of natural languages, treatment and analysis on genome sequences, analysis of musical 

sequences, safety and security related data flows, and management of a textual databases.  

Their basic approach is to sew their collection of basic algorithms together to create a 

combinatorial underpinning for all string searching activities like pattern matching, 

indexing textual data, comparing texts by alignment, and searching for local regularities. 

(Crochemore, C., & Lecroq, 2009)  

We suspect this to be on most Stringologist’s bookshelves just as it sits well-worn on 

ours.  It mentions the Rabin-Karp algorithm in the context of string searching using a 

hash function. 

3.2.4 Flexible Pattern Matching in Strings 
The textbook Flexible Pattern Matching in Strings (Navarro & Raffinot, 2007) presents 

the string-matching problem from a practical point of view.  While many algorithms have 

extremely good theoretical complexity and space scores, some perform badly in practice; 

often slower than the naive approach of checking every character at every position.  

According to the authors, their impetus for the book was to focus on on-line algorithms 

and implementations performing best in practice.  As such, they cover topics for 

matching simple, multiple, and extended strings; moreover, they also cover regular 

expressions.  In most topics, they present techniques for both exact and approximate 

matching.  They provide an in depth description of the most practical algorithms, and 

promise a normal programmer can implement their approaches in a few hours.  Like the 

previous textbook, this one mentions the Rabin-Karp algorithm in the context of using a 

hash function for string searching.  (Navarro & Raffinot, 2007) 

3.2.5 Modern Information Retrieval 
The textbook Modern Information Retrieval (Baeza-Yates & Ribeiro-Neto, 1999) has an 

interesting twist.  Six of the leading researchers in their respective fields write six of its 

fifteen chapters.  Yet, the content is both modern and cohesive throughout with a 

carefully designed content and organization.  While its coverage is broad, its detail 

contains the richness many textbooks lack.  The book is both rigorous and complete, and 
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approaches modern Information Retrieval a computer scientist’s point of view.  (Baeza-

Yates & Ribeiro-Neto, 1999) 

We used this textbook to provide background information for some of information we 

used in Chapter 1 of our work.  Recall, in Chapter 1 we explained our motive and 

justified our thesis. 

3.3 Selected Paper References 
Rabin-Karp fingerprints have found their way into a broad range of areas, not just pattern 

matching.  The following list of papers show a selection of applications that demonstrate 

their use in practical areas such as data compression and network flows, as well as 

improved hashing.  

3.3.1 Data Compression 
Rabin-Karp fingerprints have found success in many fields of stringology.  For example, 

we begin with the field of compressing data.  Papers for other fields follow. 

3.3.1.1 U.S. Patent Compression Method 
Two employees at Lucent Technologies Inc. invented and patented an on-line method 

and apparatus for achieving relatively low compression ratios in streaming data.  Their 

approach is very interesting because it uses both fingerprints and a hash table.  Their 

input is any data stream, which they divide into equal-length “blocks.”  The blocks 

usually range between 40 and 1000 bytes.  They process their streaming data by 

calculating a fingerprint for every block (using Rabin-Karp’s equation).  Next, they place 

every fingerprint, location pair into a memory-resident hash table.  It does not save these 

hash tables.  In fact, the data stream’s “process history,” defines how many blocks they 

keep in this hash table.  The history length is a number of blocks one can go backward in 

the data stream looking for the longest possible repeating string.  Their purpose is to 

compress this data by replacing repeating strings with a pointer to the nearest location of 

that string.  Readers will recognize that the sliding window process is different than 

Rabin-Karp’s window that slides one character at a time using the last fingerprint to 
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calculate the current one.  The block approach used in this paper must calculate 

fingerprints from scratch at every block This document was very interesting despite its 

legalese.  (Bentley & McLiroy, 2003) 

3.3.1.2 Longest Common Extensions 
At a level of calculating fingerprints, the process in this paper is similar to a previous 

paper’s compression process.  (Bentley & McLiroy, 2003)  The previous paper calculated 

fingerprints for a set of fixed-length blocks.  This paper calculates fingerprints for a set of 

variable-length blocks that just happened to be prefixes.  A similarity emerges when each 

application jumps ahead to its next block getting a fresh set of characters to calculate the 

next fingerprint.  The fingerprint independence from one block to the next deprives these 

processes of the performance enhancing benefit from the faster constant time sliding 

window calculation introduced in (Karp & Rabin, 1987).  Nevertheless, this paper is 

interesting and offers some useful insights.  The following gives a brief overview of the 

paper in terms of the mechanics of fingerprint operations.   

This paper is more theoretical than mechanical in that the authors study the time-space 

trade-offs for the longest common extension (LCE) problem more than how to implement 

them.  In particular, they focus on the space used for the data structure versus the worst-

case time for answering an LCE query.  While they prove a large number of bounds and 

times throughout the report, we feel it better for interested readers to consult the original 

for nomenclature and other issues.  At the same time, one very important observation is 

that they claim to have not only provided the first smooth trade-offs for the LCE problem, 

but also they matched previously known bounds at the extremes when  𝜏 = 1, 𝑜𝑟 𝜏 = 𝑛.  

(Bille, Gørtz, Sach, Vildhøj, Kärkkäinen, & Stoye, 2012) 

From a broad perspective, the LCE process works in the following manner.  For any 

string of text, T, the longest common extension of suffix i and suffix j, denoted LCE(i, j), 

is the length of the longest common prefix of the two suffixes of T starting at position i 

and position j and going as far as possible.  The LCE problem is to preprocess T into a 

compact data structure supporting fast longest common extension queries.   
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Interestingly, the LCE problem is a basic primitive appearing as a sub-problem in a wide 

range of string searching, indexing and matching issues such as compression, cyphering, 

exact and approximate string matching, exact or approximate tandem repeats and 

computing palindromes.  In many of these applications, the LCE problem is the 

computational bottleneck.  Hence, there is a clear need for enhancements such as those 

presented and proven this paper.  In short, using fingerprints as a heuristic rather than the 

traditional character-by-character comparison is enough to produced huge rewards for 

this on-line application.   

Two parts of this paper are very interesting topics: (1) approximate string matching and 

(2) the Aho–Corasick automaton.  While neither is immediately relevant to our 

application, in the long term, both may contribute to its computational and performance 

improvement.  Aho–Corasick is a string-matching algorithm that contains a finite set of 

strings.  It locates any of those lines within an input text.  The second interesting issue 

deals with approximate string matching.  This algorithm allows up to k mismatches to 

occur at the end of the block.  Again, not very useful in our immediate case, but some of 

the ideas may contribute to making our algorithm deal with approximate strings.   

3.3.2 Improved Hash for String Matching 
This paper is an example of the kinds of modifications the Rabin-Karp algorithm 

undergoes in the name of efficiency.  The authors prove they “can accelerate the 

computation of fingerprints by bitwise operations.”  (Fuyao, 2009, p. 1)  They first 

demonstrate that the “Rabin-Karp algorithm is still inferior to other string matching 

algorithms in practice.”  Then, they demonstrate that “the reason is the complex 

arithmetic operations rather than checking for false matches that circumscribe the 

algorithm’s performance.”  (Fuyao, 2009, p. 2)  To improve the situation they make two 

insightful modifications.  First, they replaced Rabin-Karp’s set of arithmetic operations 

for calculating a fingerprint with an equivalent set of bitwise operations.  This 

replacement works magnificently as long as m <= w (where m is length of pattern and 

text window, and w is the length of a machine word.)  Their second modification extends 
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the first for situations where m > w.  Specifically, they take B least significant bits (LSB) 

from each character, which bitwise operations does efficiently.   

Whereas the Rabin-Karp algorithm uses a character’s entire code in its arithmetic 

operations that calculate a fingerprint; their version uses a constant number (B) of low 

order bits from a character’s code and bitwise operations to speed up the string matching 

process considerably.  The authors prove that the probability of a hash collision is very 

low, and the complexity of running time on average is linear.  (Fuyao, 2009) 

At first, the performance improvements demonstrated by these simple alterations were 

attractive for our work.  Unfortunately, we show later that the percent of time calculating 

fingerprints is insignificant compared to building the index database.  In the end, since 

the modifications will not be significant compared to the effort implementing it, we 

decided not to add these to our application. 

3.3.3 Threat Signatures from Network Flows 
ARAKIS is a CERT Polska project sponsored by NASK (Research and Academic 

Computer Network) a research and development company in Poland.  According to their 

website, ARAKIS is a project “that aims to create an early warning and information 

system concerning novel network threats.  The system developed as part of the project 

focuses on detection and characterization of new automated threats with a focus 

primarily, though not only, on exploits used in the wild, not malware.  Currently the 

system detects threats that propagate actively through scanning.  The public dashboard of 

the project shows a snapshot of network activity observed by the system.  (NASK 

(Research and Academic Computer Network), 2012).   

The system generates network threat signatures used in intrusion detection and 

prevention systems.  Currently, this is a mostly manual process, thus prone to errors and 

slow.  The system described in this paper uses Rabin-Karp fingerprints to not only 

detecting network packets that are an attack threat but also to extract a network threat 

signature in one step, thus is fast and less error prone.  (Kijewski, 2006) 
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This paper demonstrates the breadth of topics using Rabin-Karp fingerprints.  
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Chapter 4: Our Application Using Rabin-Karp 

4.1 Introduction 
The concepts for this project involve a greater depth of understanding than first meets the 

eye; especially considering how simple the 14-step Rabin-Karp Algorithm shown earlier 

appears.  This Chapter is about describing how we modified, inspired by this depth of 

understanding, Rabin-Karp to create our own text search application.  As the number of 

sections in this chapter attests, we made a great number of modifications, many of which 

helped speed-up individual steps.  We discuss these later.  However, the biggest 

modifications we made were NOT for speed.  Instead, they were, (a) adding both a 

preprocessing step and a matching step, and (b) creating a command-line application.  

Following this section, we first present topic (a) then, we present the other topics before 

finishing the chapter with a section on topic (b.)  The main reason for placing topic (b) at 

the very end is, it provides a setting that allows us to not only review each parameter 

required to make our application run, but also to connect these parameters to their 

underlying techniques that we just presented. 

At the same time, other modifications we make have big impacts on the technique’s 

performance.  For instance, we talk about issues regarding the selection of LevelDB 

database, fingerprints, Radix, and Modulus.  We try to keep the discussion focused 

exclusively on covering new capabilities.  Unfortunately, sometimes we must not only 

explore issues for situations demanding a background context, but also digress to explain 

how the application works and why it requires certain parameters.  We address two of 

these types of reasons in the next several Sections.  Their content does not fit with other 

topic lines, so we placed them here to describe how, the first reason (sorting fingerprints) 

helped our modification, and the second one (Endianness) stood in our way from making 

any progress unless and until we fixed the problem. 
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4.2 Important Side Effects 
An important issue needs a brief description before we get started on the details.  We are 

talking about several very important side effects of our Algorithm’s two-step approach: 

(a) collections, and (b) sorting.  They are important to note because of their far-reaching 

effects and incredible benefits.   

The first issue concerns a benefit we obtained by going from a one-step to a two-step 

process.  Now, our algorithm always returns a file with a collection of locations (file 

positions) after every run.  Dealing with a collection allows us to process and analyze an 

entire group of similar entities mostly key byte arrays; and not just during the actual run 

itself, but also during post-processing analysis including calculations that produce some 

of the useful statistics we show later.   

Having a collection requires a container.  We have two containers, a database for 

persistence, and a vector for our C++ programming.  Elsewhere we described how 

LevelDB automatically uses its key byte array to sort database keys lexicographically.  

This means LevelDB automatically sorts our keys first by fingerprint then, if two 

consecutive fingerprints are equal, by file position.  Since we use iterators to traverse our 

data, we perform our analysis by always skipping one position at a time in a forward 

direction.  An immediate benefit of this appears when we are building vectors that hold 

our collections, LevelDB has already sorted our source data in an order we need for 

analysis and reporting.  Having data in our vectors already sorted the way we need them 

allows us to do some processes rather quickly like deleting false-positives before the 

verification step in several of our matching algorithms below.   

4.3 Endianness 
During development, we discovered an unplanned modification by uncovering a bug in 

LevelDB.  We made this modification because of a concept called Endianness.  In a 

simple sense, this refers to how a hardware configuration forces an operating system to 

order numerical bytes in memory.  The changes to our application described below work 
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automatically behind the scenes, and do not rely on any input parameters.  Briefly, the 

application performs a quick test on a simple integer in memory, and determines whether 

it is running on a Little or Big Endian host platform.  With this knowledge, the 

application automatically adjusts the byte order for its integers.  We explain the details of 

Endianness and our modification in more detail below.   

Before we explain the problem, however, we are compelled to mention we only have a 

problem because we manipulate integer values like fingerprints and file position, on a 

byte-by-byte level for several reasons.  Consider a primary key in an Index Database as a 

case in point.  Elsewhere we explain that a primary key in LevelDB is a byte array that 

looks and acts the same as a string.  LevelDB will not accept any other data type for a 

primary key value than a byte array.  In any case, our application uses a primary key that 

is also a composite key consisting of bytes from a fingerprint value followed by bytes 

from a file position value.  We built functions to transform the bytes of numeric values to 

a composite key, and back from the composite key to numeric values.  All of this low 

level byte manipulation brought the Endianness to the fore. 

After considerable investigation, we discovered that our Index Database was not sorting 

its records in the order suggested by their fingerprint integer values.  After significant 

investigation and debugging, we found that since we were using Windows, at the 

hardware level (i.e., Intel-based system), it was actually using a native format for storing 

integer values called “Little Endian.”  Whereas, LevelDB internally assumed data was all 

stored in “Big Endian” format; this is probably because LevelDB developers originally 

built it for UNIX hardware (that uses Big Endian) and only recently ‘ported’ it to work on 

Windows hardware.  In any case, we had discovered the bug and now set out to fix it.   

We derived the descriptions and examples explaining Endianess from the web page.  

(RapidTables.com, 2011)  We also used an Intel White Paper for further material.  (Intel 

Corporation, 2004)  Before beginning our description, we need to define several terms 

that play a significant role in Endianess.  The first is least significant byte (LSB), and the 

second is most significant byte (MSB). 
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• LSB is a byte representing the smallest quantity or weight of all the bytes making 

up a number.  (Intel Corporation, 2004). 

• MSB is a byte representing the largest quantity or weight of all the bytes making 

up a number.  (Intel Corporation, 2004) 

• The name Little Endian literally means little end first, meaning the LSB is stored 

on the left hand end of a number’s multi-byte value.  (RapidTables.com, 2011) 

In other words, Windows rearranges the bytes in a word so the LSB is at the left-hand 

end and the MSB on the right hand end.  It turns out that Little Endian is not an ideal 

format when it comes to sorting numbers inside an application.  Unless, a programmer 

writes a sorting routine to accommodate the bytes being in backward order (which 

LevelDB does not), sorting is backwards. 

The following tables describe how a simple integer such as, “0x0D0C0B0A” is stored in 

Little Endian format. 

Address 

 

Data Example 
0 byte0 0A  (LSB) 
1 byte1 0B 
2 byte2 0C 
3 byte3 0D  

 Table 1: Little Endian numbers are stored from least significant byte (LSB) in low 

memory address to most significant byte (MSB) in high memory address.  

• Big Endian sorts in lexicographic order.  The reason for this is predictably, that 

the name Big Endian literally means big end first, meaning the MSB is stored on 

the left hand end of a number’s multi-byte value.  (RapidTables.com, 2011) 

Most UNIX hardware stores integers in Big Endian format.  The following table shows 

how the same integer as above “0x0D0C0B0A”, is stored in Big Endian format. 
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Address 

 

Data Example 
0 byte0 0D  

 1 byte1 0C 
2 byte2 0B  
3 byte3 0A  (LSB) 

Table 2: Big Endian numbers are stored from most significant byte (MSB) in low 

memory address to least significant byte (LSB) in high memory address. 

LevelDB expects all values to be in Big Endian format without explicitly saying so in any 

written material.  We actually consider this a bug in LevelDB because Windows users 

like us may actually be using LevelDB on Windows and experiencing subtle errors and 

not even realize it.  We were fortunate enough to uncover this bug during our testing.  In 

fact, we only caught this bug because we built our test cases by hand and knew how 

many duplicate hash values to expect for given locations.   

We based our fix on a commitment that we will store all LevelDB keys (and values) in 

Big Endian format.   

• No byte order switching takes place if our application is running on Big Endian 

hardware (likely using UNIX).  If, on the other hand, our application is running 

on Little Endian hardware (likely using Windows,) we set a global flag we use to 

ensure every numeric value’s bytes are ‘reordered’ first switching from right-to-

left going into LevelDB, then switching from left-to-right coming out of 

LevelDB.   

4.4 Beginning a two-step Process 

4.4.1 Introduction 
Creating a two-step algorithm from a one-step algorithm presents some interesting 

challenges.  It follows that we should perhaps discuss both steps in this one section.  We 
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do not.  Instead, we give each step its own section following this one.  This way, we can 

use this section to consider issues we could not specifically relate to one particular step or 

the other.   

Before we entertain these issues, we introduce a diagram showing how a two-step 

algorithm works, in general; and, what our two-step algorithm looks like in particular.  

Figure 2 shows the two steps, one on the right, and one on the left.  The right hand side 

shows how we read a text file, calculate fingerprints, and write the Index Database.  The 

bottom of the left had side shows how a Search String is provided.  Then, its fingerprint 

is calculated, which, in turn, is searched for in the database.  Matching fingerprints yields 

a list of corresponding locations, which we check in the text file to verify the string in it 

matches the search string.  Either this verification step returns a match if the two strings 

are the same.  Otherwise, it returns a mismatch (also called false positive or spurious hit.) 

4.4.2 Impact of Two-Step Process 
There are a number of issues arising from the modification of dividing the one-step 

Rabin-Karp Algorithm into two steps.  The basic idea of a two–step approach is to build 

an Index Database during step one.  Then in step two, use that Index in all subsequent 

matching requests, of which there can be many.  We introduce in this section some of the 

changes we made to accommodate this separation of functionality.  Below, we examine 

window length, as well as the two parameters radix and modulo before introducing 

several enhancements that speed-up our application’s performance.   
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Figure 2: A chart showing the components of a two-step search technique and the 

relationship amongst them. 

4.4.2.1 Window Length 
Thus far, throughout this report we made it seem natural that calculating fingerprints 

from a text file is done for the same length substring as the search pattern length (PL.)  

This was no fluke, as we could have used any length for calculating text file fingerprints.  

We used the search pattern length to avoid discussing the very issue we must now deal 

with; using a length for calculating fingerprints from a text file that is different from the 

search pattern length.  We are now at a point where this issue becomes important because 

it has a tremendous effect on building an Index Database and using it to search for 

strings.  This is the point in our analysis where we will start making more use of the two 

concepts defined below.  The reason is that they both refer to the length of the string used 

to calculate fingerprints in a text file.   
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• During all analysis involving a text file we use a text file Window (W) that has a 

Window Length (WL) associated with it.  W always contains a substring from a 

text file containing WL characters. 

A typical user of step two only wants locations for occurrences of their search string.  

They never expect an application to issue an error message saying, “Pattern length too 

long (or too short) cannot use this Index with that search string.”  Since this scenario 

could happen, we created a few extra algorithms and made a few new enhancements.  We 

discuss these below.   

One of the first modifications we performed was to make Window Length (WL) a user 

input for step one.  This way, we can vary the length to examine what differences arise 

for various lengths holding everything else constant.  We discuss this change further in 

the section below about step one.  Another modification we needed to make was to create 

three algorithms that can use any Index Database to find search patterns of (almost) any 

length.  The three algorithms deal respectively with the following three situations: 

PL<WL, PL=WL and, PL>WL.  Each of these circumstances has a different 

mechanism to find and verify matches.  Once again, we will describe these in detail in the 

section below about step two.  It is worth noting that the Rabin-Karp Algorithm works 

only when PL=WL.   

We designated fingerprints earlier as heuristics to whether or not a search string matches 

a substring from a text file.  When a fingerprint from a text file equals a search string’s 

fingerprint, we have the following two possibilities.  When the respective characters do 

match, we refer to the incident as a hit.  Whereas, when the characters do not match we 

call it a spurious hit.  Thus, when the values of two fingerprints equal, we only know 

there is a possible match with the respective strings.  The extra step we must execute to 

ensure the substrings do match we call verification.  When we have a spurious hit, we do 

not know it until after we run verification, which is expensive, so we do not want to run it 
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too often.  The best way to ensure this is to minimize spurious hits, which we discuss 

below. 

4.4.2.2 Examining Radix and Modulo 
Searching for a fingerprint in the Index Database is fast O(1).  Verification, on the other 

hand, is considerably slower O(n2) and is responsible for much of the performance cost 

of having many spurious-hits for a given fingerprint value.  Our experiments confirm that 

the size of the hash, or, said differently, the maximum value for a fingerprint, plays a key 

role to the number of spurious hits to expect.  Three parameters contribute to the size of 

the hash, window length, radix, and modulus.  Explaining the details of these effects plus 

others below, is precisely why we dedicate this sub-section to deal with modulus and 

radix concepts.  For example, radix and modulus are at the heart of another change we 

made.  We changed our application to create several look-up tables for calculation of 

fingerprints using these two parameters.  We will describe these tables later in our 

discussion.  In any case, following this section, we return the discussion back to the two-

step technique and describe each step in a section of its own.   

4.4.2.3 Command-Line Inputs 
In Appendix C, we describe how a user enters all command-line inputs.  This section, 

however, we only highlight the following three; among other values, a user inputs a 

modulus, a window length, and a radix on the command-line.  All three inputs are 

mandatory.  However, if a user is unsure what prime number to use for modulus, they can 

simply enter a zero on the command-line.  A value of zero causes the application to use 

the radix as is and to assign a prime value of 1,073,499,991 automatically to the modulus; 

which is the largest prime value our application can use without running a risk of 

overflow.   

While we are discussing modulus, this is a good place to digress for a paragraph to make 

the following observation about modulus.  One of the major changes we made to Rabin-

Karp was allowing a user to supply any modulus they deemed as suitable, provided it was 

a prime number.  The original Rabin-Karp Algorithm paper used probabilistic analysis 
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when selecting a prime modulus for a particular run.  Recall the original algorithm is on-

line and each run could do one search in one text file at one time.  It would be difficult to 

do real-life experiments on modulus in this scenario.  In their paper, Rabin-Karp also 

relied on probability to calculate the theoretical time and space values for their 

Algorithm.  (Karp & Rabin, 1987)  We do not currently have probabilistic random 

number generation in our application; but it would be an excellent enhancement to make 

it an option.  Currently we assume the higher the modulus the better to avoid collisions, 

hence verifications.  The number given above is the high value prime number we use 

regularly, although our experiments use several of them.   

4.4.2.4 Program Inputs 
A user can input the size of both fingerprints and file position; do not forget these are 

both part of the database key.  Unfortunately, since these sizes are data types supplied as 

typedefs, we cannot have a user enter them as command-line parameters.  Instead, a user 

changes them by assigning a data type for two program typedefs called, HashValue_t and 

FilePosition_t.  These typedefs are located at the top of an application file called 

RKUtils.h.  A user can choose between C’s “long” or “long long” data types for 

HashValue_t and “[unsigned] long” or “[unsigned] long long” for FilePosition_t.  A 

warning is appropriate because assigning these as 64bit integers instead of 32bit will 

double the size of an already large Index Database. 

The original reason for Rabin-Karp to use modulo arithmetic was to keep calculated 

values small enough to capitalize on the speed with which modern processors perform 

one-word integer arithmetic.  As mentioned briefly above, we sidestepped the speed gain 

from modulus calculations by approaching the problem more broadly than RK with look-

up tables.   

We can still use 32-bit fingerprints, but we calculate them differently; different enough to 

allow us a maximum modulo of a prime number around 231 without risking overflow.  To 

maximize the size of available modulus and radix, we used some precisely placed 64-bit 

integer parameters within several utility functions overloading them to the environment.  
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Additionally, the environment comes into play again when each function must decide to 

return 32-bit or 64-bit integer values based on how a user has setup their system (e.g., if 

HashValue_t = long long the function would return a 64-bit integer.)   

Our two-pronged rational was as follows.  First, higher modulus allows bigger hash 

values, and higher radix allows wider hash separation.  To increase one or another, or 

even both, we need to increase the size of the numbers used to make certain calculations.  

We did just that.  Moreover, we are pre-calculating all values and using look-up tables for 

all calculations making the 64-bit calculation penalty negligible.  Since the look-up tables 

involve radix as well, we introduce and describe them in the next section. 

4.4.2.5 Tying Radix and Modulus 

4.4.2.5.1 Introduction 
Radix is a value in Rabin-Karp that is at the center of most calculations.  The biggest 

reason is that it is the base for the fingerprint number system.  The higher the radix, the 

more characters can exist in an alphabet without having overlapping character codes.  We 

provide a description of radix and all its roles in the following sections.  

4.4.2.5.2 Limiting Alphabet Size with Radix 
In our application, we define radix as the base of a number system created exclusively for 

calculating fingerprints.  This means that a ‘digit’ in a fingerprint’s number system ranges 

from zero to radix.  Additionally, instead of using the actual character code when 

calculating a fingerprint, we use a value that is the character code modulus the radix.  In 

other words, when retrieving a code for any character in an alphabet, we use the 

following equation: 

𝒃𝒊 =  𝒄𝒊 𝒎𝒐𝒅 𝒓𝒂𝒅𝒊𝒙 

Equation 4: Equation for calculating character codes in our application. 

To understand the significance of this equation, let us assume we were using ASCII and a 

radix of eight.  This combination of circumstances causes the following interrelated facts: 
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(a) the number of different character codes dropped from 128 to 8; (b) the number of 

different digits in the fingerprint’s number system dropped by exactly the same amount 

from 128 to 8; and, (c) since 128/8=16, each hash bucket will have sixteen different 

characters in it.  Said differently, this means that one character code now represents 

sixteen different characters, which is likely to result in a significant number of spurious 

hits. 

We defined the formal definitions for strings in Appendix A.  In that writing we provide 

the following definition for S(i):  

For any string S, let S(i) denote a function that returns an integer code 

representing of the character S[i].   

This definition is still valid and leads to the following modifications to our application.  

When a character is involved in a process concerning character comparison like 

verification, our application uses ci for both characters.  This assumption helps keep the 

number of spurious hits to a minimum.  Whereas, characters involved with any 

calculation related to fingerprints use the function, S(i).  Dropping any reference to bi, we 

define the S(i) function as follows:  

𝑆(𝑖) = 𝑐𝑖 𝑚𝑜𝑑 𝑟𝑎𝑑𝑖𝑥 

Equation 5: Equation for restricting character codes to be in a range from a 

minimum of 0 to a maximum of radix using modulo arithmetic. 

Even though our application makes the implementation of the above concepts useful and 

workable, there is still a need to emphasize the care a user must take selecting a radix.  

For instance, to satisfy our experimental analysis we originally thought we would alter 

the value for radix to range from 2 to 128.  We ran a modest analysis to build an index 

using a radix of two.  After twelve hours of running with no end in sight, we aborted the 

attempt.  In the end, the smallest radix we could use ended up being four, as will be 

shown later in our results section.   
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At the same time, this modification is important because it gives us more control over 

later parts of our system; particularly with calculating the minimum difference in length a 

search can accommodate.  Although counterintuitive, having a high radix means, we 

cannot accommodate large differences between WL and PL.  We elaborate later during 

our description of the matching step.  

4.4.2.5.3 Demonstrating 32-Integer Results 
Adding to the above decision is a complication of selecting radix and modulus together to 

avoid overflow in calculations using 32-bit integers.  Even though we discuss 32-bit 

integers elsewhere, this particular topic is worth mentioning because we include a 

modulus in our experiment that shows the performance of imposing the 32-bit restriction 

juxtapose to the performance of not imposing that restriction.  Therefore, our task is to 

discuss how to select a modulus for a given radix so as not to cause overflow.    

Calculating the lowest modulus for a radix requires first knowing a maximum value for a 

modulus given a radix.  That is, we need to know which calculation’s result may trigger 

an overflow.  Our analysis showed us the biggest risk occurs when the application 

multiplies a modulus by a character code.  Even though this result is passed to the mod() 

function, the value passed in must be a 32-bit integer.  Consequently, to calculate the 

biggest modulus that avoids overflow, we first recall that the largest character code is the 

radix and the maximum result is 231 (the maximum value for a signed 32-bit integer.)  

Hence, the maximum value that a modulus and accompanying radix can take to avoid 

overflowing 32-bit arithmetic is (231 / radix).  In our experiments, we selected a modulus 

that was the largest prime number we could find that was less than this value for the radix 

we selected. 

4.4.2.6 Creating Look-Up Tables 
As a final part of this subsection, we describe how we use look-up tables to rid our 

application of a great deal of unnecessary calculations.  We must be forthright and 

confess the idea was not ours.  Indeed, as the next section illustrates, the idea originates 

in the original Rabin-Karp Algorithm itself.  When we considered the savings in number 
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of calculations over all characters in a text file, the value was significant.  For one thing, 

every calculation we make has a modulus function at the end of it.  This modulus 

calculation is expensive because of everything happening in the background.  

Consequently, we borrowed the concept of look-up tables that we calculate before 

anything else in our application, to get rid of many mod calculations.   

4.4.2.6.1 Small Integers from Large Integers 
Before we get to the actual look-up tables, we revisit one of the biggest advantages for 

our application.  Look-up tables not only save calculations during a match step, but also 

prevent several side effects of these calculations.  For example, we will look at 32-bit 

versus 64-bit integer calculations that we use in our application.  Above, we 

demonstrated that the value of a modulus must be such that when multiplied by any other 

value must produce a value that is less than a signed 32-bit integer; otherwise, an 

overflow would occur in an intermediate calculation.  Similar arguments exist for other 

values such as radix and even character codes.   

Currently, for our application we only ever use 32-bit modulo; the last experiment used a 

32-bit signed integer to demonstrate that our application will not fail due to an overflow.  

When calculating the values in a look-up table we call a function whose parameters cast 

each 32-bit input value to 64-bit numbers.  We use these to do all our calculations within 

that function.  This allows values inside the function to be large without causing an 

overflow.  Finally, after taking the modulus of the resulting value, we can cast the result 

back to 32-bit integer and pass it back as such.  This means that within our utility 

function we have performed 64-bit arithmetic to calculate and return a 32-bit value.  Of 

course, using a 64-bit modulus is computationally very expensive.  However, if we only 

do it a few times, the calculation is worth the investment.  It also allows us to use very 

large modulo to reduce the problem of spurious hits, explained elsewhere. 

4.4.2.6.2 High Order byte 
We include this section as an illustration of the not only Rabin-Karp’s look-up table, but 

also to illustrate their creation and use in general.  Earlier, we provided a listing for the 
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Rabin-Karp Algorithm on page 24.  Line 3 of the listing demonstrated look-up table 

functionality (albeit with only one value) that seemed interesting and useful for our 

application.  The Rabin-Karp Algorithm calculated a value for h on line 3 and saved it for 

repeated use in later lines.  We replicate the equation for h below as a reminder of how 

many calculations are involved in just this one variable; and to demonstrate the power of 

using look-up tables that can sometimes save millions of calculations.  

𝒉 = 𝒓𝒂𝒅𝒊𝒙(𝑾𝑳−𝟏) % 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 

Equation 6: Calculating Rabin-Karp's h program constant 

Even though this particular look-up table only has one cell, the savings in calculations are 

enormous.  Without the variable h, Rabin-Karp’s application would have had to use the 

above equation once for each character in a text file.  When one considers the calculation 

produces the same result every time, it only makes sense to calculate it once and look it 

up every time we need it.   

The value h represents is a high-order- byte multiplier used to remove a fingerprint’s high 

order digit when the fingerprint window is slid right one character.  Interested readers 

should refer back to the actual algorithm on page 24 above for more information.  

Another point we are stressing is that calculations we repeat many times producing the 

same result, can be pre-calculated, and stored in an array.  This way, we can perform a 

look-up to get a particular value rather than a huge expensive calculation.  Cumulatively, 

this trade-off saves incredible number of calculations.   

Our application uses the following two look-up tables. 

4.4.2.6.3 Radix Powers 
Many places throughout the program we perform calculations that involve fingerprints.  

These calculations happen during indexing, during searching, and during calculations 

determining fingerprint ranges, to name a few.  In every one of these cases, the 

calculation required raising a radix to a certain power and taking the modulus of the 
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result.  We saw an opportunity for a look-up table with so many repetitions of the same 

calculations.  We base this one-dimensional table on window length with each position in 

the array also being the respective array index.  The value in each cell is the modulus of 

the radix raised to the position (or address), as shown in an equation below.  To 

accommodate very large windows and search patterns, we gave the array an arbitrarily 

large number of entries; where the index i ranges from 0 to 100.  This range would 

presumably be bigger than any reasonable WL or PL, we are likely to see in our 

application.  This means that we can be reasonably certain the value for the variable h we 

talked about above is contained in a cell of the powRADIX[] array.  The following 

expression defines the values in our powRADIX[] look-up table.   

𝒑𝒐𝒘𝑹𝑨𝑫𝑰𝑿[𝒊] = 𝒓𝒂𝒅𝒊𝒙𝒊 % 𝒎𝒐𝒅𝒖𝒍𝒖𝒔 

Equation 7: Calculating value for cell in the radix power look-up table 

We use this look-up table in our application.  We also use it in our algorithm listing 

below.  In the listing, we treat the powRADIX[] array somewhat like a function.  Thus, if 

a token like ‘powRADIX[12]’ occurs in a listing, we interpret it as asking for the result of 

performing the calculation listed above for i=12.   

4.4.2.6.4 Changing Characters in Window 
We now turn to the window sliding through the text file one character at a time.  After we 

slide the window one character to the right, the leftmost character is left dangling.  Recall 

from an earlier discussion that Rabin-Karp’s h variable is the high-level byte multiplier 

for removing this character.  Rabin-Karp pre-calculates h, our application goes one step 

further by multiplying h by a character code value and storing the result in an array.  This 

array contains our look-up table called charOUT[] with one address for each available 

character code in the alphabet (i = 0 to 127 in our case.)    

Recall earlier we defined S(i) as a function accepting character code as input (i) and 

returning character code mod radix.  Notice that function appears in the subsequent 

equation as well as the radix raised to the power of for the leftmost character.  We use the 
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following equation to calculate each cell’s value before any other calculations in our 

application: 

𝑐ℎ𝑎𝑟𝑂𝑈𝑇[𝑖] = (𝑆(𝑖) × 𝑟𝑎𝑑𝑖𝑥𝑊𝐿−1) % 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 

Equation 8: Calculating value for cell in the leftmost character/radix power look-up 

table 

After we fill this array with values, we simply provide a character code, and get back a 

value for removing that particular character from the current fingerprint.  Not having to 

perform above calculations for each character in a text file is now possible.  While sliding 

a window through a text file calculating fingerprints, a simple look-up is all that is 

required to get the value necessary to remove the leftmost character.  Performing this 

calculation for each character in a text file would be a huge endeavor compared to 

retrieving a variable’s value from an array.  The point is using these two pre-calculated 

look-up tables save a great deal of CPU calculations later during the actual runs.  They 

also give us the advantage of overloading the functions based on 32-bit versus 64-bit 

calculations.  Getting a value from a look-up table takes the same time for 32-bit as for 

64-bit. 

We use both these look-up tables in our applications.  We also include it in our algorithm 

listing below to demonstrate how and where we implemented it during Step one.  In the 

listing, we treat the charOUT[] array somewhat like a function.  Thus, if a token like 

‘charOUT[i]’ occurs in a listing, we interpret it as asking to look up and return the value 

needed to remove the character with code = i from the left hand end of the current 

fingerprint.  Line 14 of the listing below illustrates its use.   

4.5 Step-One Building an Index 

4.5.1 Introduction 
Now that we have introduced a few issues of our two-step process, we can examine the 

changes we made for step one of the process; called Building an Index.  We have already 
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briefly introduced LevelDB, the database engine we use; and will talk about it further 

below.  We have also introduced the fingerprint and file position that we combine for our 

index database’s primary key.  All these issues including the original Rabin-Karp 

Algorithm contribute to step one of our process. 

4.5.2 Index Building Algorithm 

4.5.2.1 Introduction 
The best way to demonstrate the changes we made to Rabin-Karp Algorithm is using 

algorithm listings.  The following listing shows our algorithm for step one that can be 

compared to the original algorithm listing called, “Rabin-Karp-Matcher” on page 24.  We 

will do that below.  In the meantime, looking at the overall listing one can observe that 

our algorithm steps through a text file one character at a time, the same as the original.  A 

change we made was to add processes and functions necessary for building an Index 

Database during that same stepping process.  More precisely, as we add one character to 

a fingerprint we also add one record to the database in the same step.  We will have more 

to say on this later.  Finally, notice how no more lines of code remain dedicated to 

checking a pattern’s fingerprint, or verifying characters match.  That is because step one 

only builds an index.  Step two is where all those other activities takes place like 

searching, and matching.   
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Index-Building-Algorithm(T, W, r, q) 
1 TL ← Length(T) 
2 WL ← Length(W) 
3 for i = 0 to 127 
4 do charOUT[i] ← (i mod r) * r(WL-1) mod q 
5 t0 ← 0 
6 for  i ← 0 to (WL-1) 
7 do t0 ← (rt0 + T(i)) mod q 
8 for  s ← 0 to TL – WL 
9 do s = correctEndian (s);  
10 do ts = correctEndian (tS);  
11 do key = copy bytes (tS + s); (to DBkey structure) 
12 do insert key and s into LevelDB (Populate database) 
13 If (s+1 > TL-WL) then EXIT ; 
14 do ts+1 ← (r(ts – charOUT[T[s]]) + T(s + WL)) mod q 

Algorithm 2: Our Index-Building Algorithm, Step-One 

 

4.5.2.2 Creating the Index Database 
The above procedure works as follows.  Recall we demonstrated earlier when we 

introduced characters they could be interpreted as either a symbol or an integer; the 

procedure interprets all characters as integers.  Recalling the use of round brackets for a 

code and square brackets for a character, the term T(i) in line 7 refers to the character 

code (i.e., an integer) at position i in the text file rather than its symbol.  The for-loop 

starting on line 3 populates the charOUT[] array; a constant used later in Line 13.  Lines 

6 and 7 compute a fingerprint for the first position of the text file.  The method uses 

Horner’s Rule that multiplies every subtotal by r before adding the new character.  This 

loop continues until our fingerprint t0 is WL-digit numbers representing its respective 

string. 

The second part of the algorithm begins with a for-loop of lines 8 through 15.  This loop 

iterates through all possible shifts s in the text file performing the following calculations.  

First, Lines 9 & 10 check the Endianness and rearrange the byte orders if required.  Then, 

Line 11 concatenates the two integers, fingerprint and file position, by treating them as 

byte arrays and copying the bytes to another temporary byte array.  This temporary array 
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is now in a format to copy to a key byte array suitable for insertion in the database.  Line 

12, inserts this value as the key and the position (s) as the value into our Index Database.   

Finally, Line 13 checks to see if the for loop on line 8 will be executed again.  If not, it 

exits to prevent overflow.  If so, the algorithm uses another innovation on line 14 that 

computes ts+1 mod q from the value of ts mod q in constant time using Horner’s rule. 

Now that we have looked at how the process calculates and formats its data, we are in a 

much better place to have a little closer look at the database engine we used called 

LevelDB.  The next section covers LevelDB. 

4.5.3 Building our Index Database using LevelDB 

4.5.3.1 Introduction 
Throughout the document, we have been mentioning LevelDB as a tool we used to store 

our preprocessing information.  It probably stands alone as the biggest modification we 

made to create our application.  We also mentioned earlier that LevelDB was not our first 

choice.  Originally, we worked with Oracle DB for several months before concluding we 

could not configure it properly to get the results we expected.  Having found no reason 

why this phenomenon was occurring, we aborted Oracle DB and decided to try LevelDB.  

LevelDB is an Open-Source Key-Value pair database created at Google.  As such, it is 

NOT a relational database.  While the records are automatically sorted by their key byte 

array, and keys can be located quickly with a function like Get(), there is no functionality 

typical relational databases provide.  For example, a user cannot build an index on the 

value byte array, they cannot perform joins to secondary tables, and they cannot use SQL 

to perform any of its usual functions.  LevelDB is just a fast, reliable, and easy way to 

store values in a table that automatically sorts its records by its key and allows many 

useful lookup and iterating functions based on key values.  Below, we give a brief 

description of LevelDB including where to get it, how we set it up, and how a user works 

with this database, both voluntarily and otherwise.   
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LevelDB’s web page is (Google Inc., 2012) (see http://code.google.com/p/leveldb/) 

where program download and documentation are both available.  Unfortunately, there is 

not too much documentation for users in general.  As for programmers, there is a three-

page set of examples.  Although, well written and filled with appropriate concision this 

“Detailed documentation” (Dean & Ghemawat) as they refer to it falls way short of 

serious programming documentation.  Perhaps the documentation was trying to follow 

the same idea behind the database itself of small footprint and fast results.  In any case, 

the documentation does not expose many of the nuances and fine details that would assist 

or even allow for any kind of strategic optimization of the setup parameters like cache 

and block sizes.  Because of this lack of information, we did not attempt to check 

LevelDB’s sensitivity to these parameters in particular during our experimentation.  

Aside from the fact that our experiment needed to vary our own parameters like radix, 

pattern length and modulus for instance, we had absolutely no direction as to how the 

block size or cache size ultimately affect the speed and size of LevelDB.  

Understandably, we put this kind of effort in our later chapter on future work and 

enhancements.   

4.5.3.2 Google’s LevelDB Description 
The web page we just introduced above contains lists of LevelDB features and 

limitations.  Interested readers should refer to the LevelDB project page at the following 

URL: http://code.google.com/p/leveldb/ 

4.5.3.3 LevelDB Functions and Properties 
Before we get into our use of LeveDB, we must review a few characteristics we need to 

accomplish our task.  We will begin with several properties we need in our analysis, and 

end with a list of its most important functions. 

LevelDB is a very useful database as the above list declares.  Throughout our brief 

discussion, we will review several of the major features from the list as we introduce new 

ones.  We begin with the fact that LevelDB is an open-source C++ library.  Its open-

source license is a BSD-styled license that allows us to use the library and documentation 

http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/
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freely for our research, that is, as long as we acknowledge the owners.  To install it, we 

simply supplied the path to its libraries and header files, put in its main header, and 

compiled within several minutes.  Then, the work began by us building a C++ application 

that performed all our calculations.   

LevelDB allows its key to be an arbitrary byte array they call a slice.  We take advantage 

of this when we construct our key by concatenating the file position bytes to the 

fingerprint bytes; in the next section, we describe how we build a key byte array in detail.  

LevelDB also keeps the records sorted by the key as it puts() them.  This means LevelDB 

will keep our records primarily sorted by fingerprint, with file position breaking any ties.  

This is exactly the order we need our output, so iterating through keys having fingerprints 

of equal value, we get a sorted list of file positions automatically.  Incidentally, this 

sorting process is precisely one of the places we needed Big Endian byte arrangement.  It 

is also how we discovered our integers were in Little Endian.   

Having sorted records helps during a step two analysis when we are looking for particular 

fingerprints.  LevelDB has a built-in iterator similar to STL’s iterator that allows us to 

skip through collections of keys according to our own criteria.  It also allows us to find 

keys with its SeekToFirst(key) method.  The iterator has every other method needed to 

skip thorough the database starting wherever we wish, and ending wherever we wish.  

During runs in step-two, the iterator provides us with all the functionality we require.  

One of the characteristics of matching short values is a significant asset for our 

application.  In our case, we mostly search LevelDB for a particular fingerprint, which is 

only half as long as the entire key (the other half is file position.)  Nonetheless, the 

iterator will simply stop at the first record with a fingerprint matching ours.  We can then 

continue iterating to subsequent records having the same fingerprint to get a list of all 

locations that single fingerprint has.  Since LevelDB has sorted the records, the iteration 

results in a sorted list of file positions for that particular fingerprint.  We will expand on 

this characteristic throughout this section. 
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LevelDB has the following components: Options; Status; ReadOptions; WriteOptions; 

and, WriteBatch.  These components have functions that give a user quite liberal and 

thorough access to the database’s capabilities.  We do not need to expand on what each 

one is and how it works because of the breadth of features.  The fact is these 

functions/components contain all the functionality one would expect a key-value database 

to have.  

Finally, as described above, three of LevelDB’s main functions give users access to enter, 

retrieve, or delete a record from a database.  They are:  Put(key, value), Get(key), 

Delete(key).  These functions have the same functionality as comparable functions in 

typical databases; not the least of which is the Put() function sorting records by its key 

byte array. 

4.5.3.4 Our LevelDB Database 
With our recent work using LevelDB, as far as we can tell, all functional and 

characteristics claims are true.  The Detailed documentation opens with the following 

description:  “The LevelDB library provides a persistent key value store.  Keys and values 

are arbitrary byte arrays.  The keys are ordered within the key value store according to a 

user-specified comparator function.”  (Dean & Ghemawat) 

In this section, we will define our key and value byte arrays.  Then, we will discuss why 

we do not use a comparator function.  The key and value byte arrays are how an 

application trades data with LevelDB.  It is up to the application to get everything in the 

correct format within the byte array.   

4.5.3.4.1 Key and Value Byte Arrays 
We discussed these earlier so we will not get into too much detail.  Nevertheless, formal 

definitions for both byte arrays are as follows: 

• The key for our LevelDB database is the bytes of a fingerprint followed by the 

bytes of a text file position, with the bytes arranged in Big Endian format.  
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Currently, the program can work with fingerprint prime values between 1 and 231 

(2,147,483,648) without overflow problems. 

• A key byte array is a data structure called a slice used by LevelDB to usher the 

primary key into and out of a database.  In our application, it consists of the key 

defined above. 

• Since we have control over the type (hence, size) of the fingerprint, through 

HashValue_t, and the text file position, through FilePosition_t, (see section called 

Program Inputs on page 44), we have ultimate control over the size of the key 

byte array.   

• A value byte array is a data structure called a slice used by LevelDB to usher 

value data into and out of a database.  In our application, it consists of the same 

text file position as is included in the key above.  This integer is also in Big 

Endian format.   

The key and value byte arrays are very important data structures for LevelDB.  They play 

an important role.  Whenever data goes in to a database or out of one, these two data 

structures are the only conduits for that data.  The key byte array is also the variable 

LevelDB uses in comparisons for database searching and browsing. 

• The default sort order is lexicographically on the key byte array; that is, this is the 

sort order used by LevelDB when a user does not provide a user-specified 

comparator function.  Integers in Big Endian format sort from smallest to largest 

lexicographically, as we would expect. 



Page | 59 

4.5.3.4.2 Functional Dependency 
A digression is in order explaining the variable’s value we placed into the value byte 

array.  Although, we already declared LevelDB was not a relational database, some of 

the relational model’s rules are helpful for other types of databases such as LevelDB.  

One relational rule in particular applies to many types of databases.  Repeating the same 

value on the same record in a database breaks a relational rule preventing records from 

having functional dependencies among their fields.  A functional dependency means that 

we can calculate a value on a record from one or more values on the same record.  The 

concept behind this rule is for users to calculate the needed values when required rather 

than store them.  Functional dependencies open a door to allowing a user to cause a 

database to lose its integrity.  For now, we will just have to admit that our application has 

functional dependencies.  Several of the recommended improvements will find a need for 

the value byte array, thereby removing these dependencies.    

4.5.3.5 Administrator Functions 
A user can create an Index Database anywhere in a directory tree they have a security 

access of ‘modify.’  Hence, when a user creates an Index Database, the command-line 

input requires a parameter giving a name for this directory (where the corresponding 

LevelDB database will exist.)   

As LevelDB is building the Index Database, it uses many temporary files for moving data 

around.  For instance, one of our Index Databases has 1,934 files in its database directory 

(described above.)  Unfortunately, the names LevelDB uses for these files are the same 

for every database.  These two issues make it a minimum REQUIRMENT for users to 

create new directories for each database.  Alternatively, a user could at least empty a 

directory from a previous database before building a new one on that particular 

subdirectory.  Thus, the security needs are to at least give a user permission to both create 

and delete directories as well as empty existing ones.   
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4.5.3.6 No Duplicated Keys 
Some might call LevelDB, “light-weight” because it does not drag along very much 

overhead.  For instance, it does not have support for duplicate keys; something we very 

much need to deal when we encounter hash collisions.  We therefore needed a 

mechanism to overcome the fact that our Index Databases represent many records having 

the same fingerprint that we originally planned on as being our database key.  The 

duplication of fingerprints comes from the simple fact that fingerprints are not unique for 

a given text file.  Elsewhere in the report, we discussed two primary reasons for duplicate 

fingerprints that we reproduce here for convenience.  (1) Two substrings with matching 

characters and length will always have the same fingerprint, and (2) depending on radix, 

and modulus, two completely different character substrings can end up having exactly the 

same fingerprint by chance. 

Whatever the cause, the solutions to us was obvious (and already discussed above.)  We 

created our own database key by concatenating the bytes for file position to the bytes for 

fingerprint.  This action eliminates the chance of overlap completely because the file 

position is unique for each record in a text file.   

4.6 Step-Two: Match Patterns to Text 

4.6.1 Introduction 
This section is about the tools and techniques we use to match a pattern (P) of length 

(PL) with text in a window (W) of length (WL) from a text file (T) of length (TL.)  The 

chapter is about step-two of our approach to text search.  The main obstacle in this part of 

the application is not building an Index Database beforehand; the obstacle is designing an 

Index Database meeting user needs in the first place.  Designing an Index Database 

requires decisions for all parameters like radix, alphabet, window length, etc. that 

represent a great deal of work.  Nevertheless, once a user builds an Index Database, they 

can use it repeatedly to search for all kinds of text. 
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4.6.2 Implementing Matching 
Below we will see we have exactly three categories of matching available to us.  Each 

one depends directly or indirectly with WL, PL, r and q.  When we discuss each 

category later, we assume a reader is familiar with the following facts. 

All of the functions in our application that find locations return a vector containing sorted 

file positions.  We refer to this vector, both here and in the pseudo-code, by the arbitrary 

name Locs.  By now we know step one of our application scans an entire text file once, 

building an Index Database containing fingerprint and file position information.  We 

know as well, that the Index Database never has any duplicate keys because the second 

part of a key byte array value is a unique file position.  Therefore, LevelDB will sort the 

records first by fingerprint then by file position.  Incidentally, this sort order is correct 

because of our Big Endian format change described earlier.   

Finally, when comparing a short string to a longer string for a match.  If every character 

in the short string matches the respective character in the longer string, then the shorter 

string matches the longer string, but not the other way around.  These types of partial 

matches are how we can locate fingerprints in an Index Database without needing a file 

position.   

4.6.3 The Matching Issues 
In this section, we investigate and describe a generalization we created allowing us to use 

one Index Database for locating patterns of different lengths.  In fact, with a few 

exceptions we can use almost any window length (WL) and still find patterns of almost 

any length from the same Index Database.  To accomplish this, our application operates 

with three categories of matches: (1) Pattern length is shorter than Window length 

(PL<WL); (2) Pattern is same length as Window (PL==WL), and (3) Pattern length is 

greater than Window length (PL>WL.)  We use the remainder of this section to explore 

each of the three categories and describe solutions we developed for each. 
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4.6.3.1 Pattern Shorter than Window Length (PL<WL) 
We begin by examining the toughest of the three categories, finding patterns whose 

lengths are smaller than the Index Database’s window length.  Consider a user that first 

selected a window length of WL=5, now wanting to find locations for patterns shorter 

than WL say PL=3 (PL<WL.)  This is the most difficult to solve of the three matching 

problems because we need to work with partial fingerprints.  We will quickly review an 

example before moving on to bigger issues in this topic.  We begin our discussion below 

with an example using a three character pattern “123”, with WL=5 and PL = 3.   

4.6.3.1.1 Example of Matching a Short Fingerprint 
We have already stressed how important this function is because the search pattern is 

shorter than the window length.  It is somewhat easy to grasp through example than it is 

through formal definitions.  Hence, we present the following example.  To demonstrate 

how we solve this problem, assume we have a search pattern, P equal to 123 (an 

integer.)  Since the pattern has three characters, its pattern length PL=3.  Our alphabet 

consists of all digits, Σ ={0,1,2,3,4,5,6,7,8,9}; which means radix r=10 

(because that’s how many characters are in the alphabet.)  Remember, in our application 

a user can set r to any value.  In this example, we have set the radix to the number of 

characters in the alphabet, not only because it is a standard approach, but also, to make 

our example’s characters act like digits and digits to act like characters.  Furthermore, let 

q=13, and WL = 5.  Continuing with our example, the hash function is for this set-up is: 

H(𝑃) = (103−1 × 1) + (103−2 × 2) + (103−3 × 3) =123.  Finally, the text file from 

which we will perform our search is, T =0123456789123.   

Solving this seems trivial at first because we can manually scan the text file looking for 

123.  Doing that is as doing the Brute Force Algorithm described earlier.  We will 

nevertheless continue our example and solve it through our algorithm.  Our WL is 5 so 

we need to search for all fingerprints looking like 123xx, where xx are any digits.  The 

manner in which we do this is by recognizing there is a range of values for this format.  

In other words, we want to find locations in T where fingerprint values exist in the range 
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from a minimum of 12300 to a maximum of 12399.  Hence, anytime we want to find a 

shorter pattern, we have a convenient mechanism as a guide.  More formally, the 

matching mechanism where PL<WL works as follows. 

Notice that to calculate the range’s minimum value of 12300, we simply shifted the 

known value H(P) of 123 (with PL=3) to the left two positions.  We accomplished this 

in this example by simply multiplying H(P) by r2.  In general, to calculate the range’s 

minimum value we multiply the pattern’s fingerprint H(P) by rWL-PL.  To calculate the 

maximum value we do the same shift (i.e., 12300) but this time we add rWL-PL-1 to that 

result (which in our example is r2-1, or 100-1=99).   

4.6.3.1.2 Setting a Range of Fingerprints 
With the specific example now calculated out, it is easier to see the interplay of the 

variables and parameters in the following two equations that define the minimum and 

maximum values of a fingerprint range.  Any fingerprint falling between these two values 

may indeed contain the short pattern we are looking for.  Unfortunately, being within the 

range does not say anything about being an actual match, all it says is that it might match.  

Therefore, after collecting a vector full of positions having a fingerprint within the range, 

our application compares the characters in each substring against the characters in our 

pattern using our verification process.  The equations for both ranges follow. 

𝐻𝑚𝑖𝑛(𝑃) = 𝐻(𝑃)  × 𝑟𝑊𝐿−𝑃𝐿 𝑚𝑜𝑑 𝑞 

Equation 9: Calculating the minimum fingerprint value for a short pattern range 

 

𝐻𝑚𝑎𝑥(𝑃) = 𝐻(𝑃)  ×  𝑟𝑊𝐿−𝑃𝐿 𝑚𝑜𝑑 𝑞 + (𝑟𝑊𝐿−𝑃𝐿 − 1) 𝑚𝑜𝑑 𝑞 

Equation 10: Calculating the maximum fingerprint value for a short pattern range 
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Even after discarding the fingerprints outside this range, there still a possibility that the 

range is so huge there may be thousands of possible fingerprints that are nowhere near 

our target value.  This scenario means we would be verifying many file locations that do 

not have strings matching our pattern.  Even with our simple example, dropping the 

pattern length by one leads to a range from 12000 to 12999.  The factor of ten 

difference is because our radix is also ten.  Even still, however, adding one digit we 

jumped from a range of one hundred possible fingerprints to a range of one thousand.  

Now consider a user with a radix of 127 (with its corresponding new base of 127.)  Since 

1273 is roughly equal to two million we have that many possible fingerprints.  Consider 

the size of the range in our previous example when we shortened the pattern’s length by 

one, and then apply it to this last example.  Two million times 127 is a big number.  It is 

easy to see how big a range can get, and to speculate how many of the fingerprints in that 

range are false positives (spurious hits.) 

4.6.3.1.3 Pattern and Window Length Difference 
Another way to screen whether a shorter pattern can be found for a given window length 

in a particular database is to calculate an allowable difference between their lengths.  This 

is a higher-level approach than above because it tells us if calculating a range is even 

possible to begin with.  This section demonstrates how our application calculates 

allowable length differences. 

We begin by subtracting the two range equations from above (Hmax(P)–Hmin(P)) gives the 

maximum difference between two fingerprints (denoted as Δmax(P)).  We have already 

simplified the right hand side of the resulting equation as follows: 

∆max  (𝑃) = (𝑟𝑊𝐿−𝑃𝐿 − 1)𝑚𝑜𝑑 𝑞 

Since (mod q) implies a range from 0 to q-1, to have an ability to distinguish 

fingerprint values, we want to ensure that the right hand side be as large as possible.  

Since q-1 is its maximum value anyway, we use it.  Substituting, q-1 for Δmax(P) and 
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dropping the mod q (because when the RHS is equal to q-1 that is precisely the value 

mod q would return) leaves us with the following equality, 

𝑞 − 1 = (𝑟𝑊𝐿−𝑃𝐿 − 1) 

Next, we simplify by adding one to both sides, yielding, 

𝑞 = 𝑟𝑊𝐿−𝑃𝐿 

Simplifying even further, we take the log2 of both sides; rearranging the RHS gives us, 

log2(𝑞) = (𝑊𝐿 − 𝑃𝐿) log2(𝑟) 

Next, let Δpat=(WL-PL) denote the maximum difference between window length and 

pattern length.  After making that substitution, we simply divide both sides by the log of 

r.  This leaves us with the following equation to calculate the maximum length difference 

between an Index Database’s WL and a shorter Pattern PL,   

∆𝑝𝑎𝑡=
log2 𝑞
log2 𝑟

 

Equation 11: Pattern and window length difference  

This very handy equation is precisely the tool we need to issue a message like, “Pattern 

length too short cannot use this Index.” to users.  Our application uses the value from this 

equation before accepting a short pattern for analysis.  If the difference is too large, there 

is little sense even beginning any calculations to begin with so, the application issues a 

message and terminates  

4.6.3.1.4 Parameter Influences 
While this equation is informative, it does not help us with ready-made conclusions about 

how large r or q should be without tackling a confusing interplay of conflicting 
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assumptions.  A basic trade-off exists between maximizing both r and q together.  Yet, 

any user of our application will ultimately have to decide on values for several 

parameters including r and q.  Nevertheless, this section looks at the maximum length 

difference in terms of various values of r and q.  More importantly, we made several 

assumptions when contemplating how to illustrate any useful lessons.  In the end, we 

decided a table would give readers an idea of some reasonable values we can expect to 

see for Δpat when we assign typical values to both r and q in practice.  This section will 

examine this question in some detail. 

Table 3, shows the maximum value we can expect for Δpat=(WL-PL), using various 

practical values for a radix r (rows) and a modulo q (columns.) 

r ↓ / q → 257 32,173 15,485,863 1,073,676,287 2,147,483,647 

2 8.0 14.9 23.9 30.0 31.0 

16 2.0 3.7 5.9 7.5 7.7 

32 1.6 3.0 4.8 6.0 6.2 

127 1.1 2.1 3.4 4.3 4.4 

Table 3: Δpat maximum for practical values of both r and q.  These maximum 

differences are likely to occur in practice. 

We considered the following ideas when selecting the values for q and r in this table.  

Earlier, we established that q must be a prime number.  We also mentioned performance 

demands require that modulo arithmetic (and its intermediate values) be performed on 

integers that can fit into a single computer word (i.e., q ≤ 232); although later, we tested 

and expanded it to accommodate 64-bit math using loop-up tables.  Further, since some 

intermediate modulo values can be negative, q must be of a signed integer type.  Since q 

cannot be any of the unsigned integer types, our fit-in-a-computer-word-limit shrinks to q 

≤ 231.)  Therefore, to get an appreciation for the effects various values of q have on the 
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maximum length difference, in our experiment we selected a range of prime numbers that 

are near values that are related to computer words, such as: 28(=256); 216(=32,168); 

224(=16,777,216); 230(=1,073,741,824); and, 231(=2,147,483,648). 

Similarly, to get an appreciation of the sensitivity for the maximum difference with 

respect to values for our radix r, we selected several values that are candidates for our 

problem.  For instance, by reducing the characters in T to two values, then we have a 

binary system where r=2.  But, for an alphabet that includes all ASCII characters, our 

radix should be r=128.  When using this value for radix there are no requirements to 

have all 128 characters actually appear in a text file.  Nevertheless using ASCII character 

codes keeps the alphabet so every character value sorts as we would expect (i.e., 

alphabetically.)  Finally, to indicate the effect of values for r between these two extremes 

we included r=16 and r = 32.  Unfortunately, as we mention elsewhere, using an r of 2 

was not practical at all.  In fact, after some ten hours of executing we aborted the run and 

moved our lowest value for r up to 4.   

There are several main points made in this and earlier sections worth review.  First, 

LevelDB keeps its records sorted by values in its key byte array, which in our case 

consists of the fingerprint bytes followed by the file position bytes in Big Endian format.  

Second, when we ask LevelDB to find a fingerprint without giving a file position, it will 

place a cursor at the first record whose fingerprint portion of its key byte array matches 

the given fingerprint.  Third, there is a calculation that supplies values telling us the 

largest allowable length difference between WL and PL that can exist when searching a 

pattern whose length is shorter than the database’s window length.  Finally, earlier we 

discussed LevelDB’s iterator that has many of the functions as STL iterators.   

4.6.3.1.5 Getting File Positions 
Understanding iterators allows us to see how our application finds locations for shorter 

patterns that have passed the above length test but are still shorter than WL.  Briefly, we 

use an iterator to find the smallest and largest fingerprint in the range given by Equation 

11 on page 65 above.  The range of Hmin(P) and Hmax(P) could not only be a very large 
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spread depending on the modulus q, the radix r, and the length difference (WL-PL), but 

also produce a large number of spurious hits.  Whatever the case, this fingerprint range 

allows us to (a) use an iterator’s function SeekToFirst(Hmin(P)) to search for the first 

occurrence of the value of Hmin(P) in the Index Database, and(b) loop through the sorted 

records until the cursor passes the value of Hmax(P).  During this looping process, our 

application stops at each record and appends the file position value into a vector we 

already introduced called Locs.  Every file position in Locs is a candidate for matching 

the pattern.  Therefore, our application iterates through Locs and performs verification 

for every file position.  It will delete any position from Locs that is a false positive, 

leaving us with a vector containing exactly what we need; a list of file positions where 

the pattern occurs.   

4.6.3.2 Pattern Equal to Window Length (PL==WL) 
If the above was the toughest of the three situations, this one is the easiest; finding 

patterns whose lengths are the same as the Index Database’s window length.  In this case, 

we still use a cursor, but we do not need all the confirmation steps we saw in the previous 

situation where (PL<WL.)  Our first step in this process is to calculate the pattern’s 

fingerprint H(P).  Next, we simply use an iterator’s function SeekToFirst(H(P)) to 

search for the first occurrence of the fingerprint H(P) in the Index Database.  Then, we 

iterate through the sorted records until the cursor comes to an entry whose value is not 

equal to the pattern’s fingerprint H(P).  When that happens, we are finished gathering 

locations.  In exactly the same fashion as above during this looping process, our 

application stops at each record and appends the file position value into a Locs vector.  

Also as above, every file position in Locs is a candidate for matching the pattern.  

Consequently, our application performs verification for each entry in the vector.  During 

the verification process, the application deletes any position from Locs that is a false 

positive.  After this verification step, our vector Locs has a list of file positions where the 

pattern occurs.  
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4.6.3.3 Pattern Longer than Window Length (PL>WL) 
If the above scenarios were the toughest and easiest of the three situations, it makes sense 

to assume this one falls between the two.  It does not.  It is closer to the toughest than the 

easiest.  In this scenario we have a task of finding a pattern whose length (PL) is bigger 

than the Index Database’s window length (WL).  While we give plenty of details later, 

our basic angle of attack for solving this problem is first to chop the pattern into an 

ordered set of substrings whose lengths are all equal to WL even the last one.  Then, for 

each substring, we calculate a fingerprint.  In addition, once we know a beginning file 

location, we can quickly and easily calculate the locations for each substring in the 

pattern.  With these two broad concepts as a backdrop, we now turn to the details.  

To begin with, we still use a cursor, but will have a few confirmation steps to perform 

before we get that far in the analysis.  Our first step is to calculate a set of fingerprints for 

the entire length of the search pattern.  Each fingerprint represents a substring of P that is 

exactly WL characters long (even the last one.)  The first fingerprint, therefore, is for a 

substring of the first WL characters in the pattern.  We denote it as H(P0).  Next, we 

calculate the second fingerprint from our long pattern, H(PWL).  We continue calculating 

each successive fingerprint in the long pattern until we reach its end.  The last fingerprint 

is tricky because we want it to be the same length WL as the other substrings.  Thus, no 

matter where the fingerprint for the second last position ends, our last fingerprint will 

always be calculated as: 𝑯(𝑷𝑷𝑳−𝑾𝑳
𝑾𝑳 ) .  It implies there most certainly will be some 

overlap between the last position’s substring and the second last position’s substring.   

Now we have a set of fingerprints for our pattern.  The first process finds all file positions 

for the first fingerprint in the pattern by iterating through the Index Database.  As usual, 

we put the resulting file positions into a vector called Locs.  Think of this vector as a sort 

of master set of file positions because at every step in our process, it contains a file 

position for every occurrence along with false positives.  The entire idea of our process 

from here on is determining the file positions in this set that are candidates for an 

occurrence of a match and removing the file positions that are spurious hits.  As we will 
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elaborate later, a key to identifying match potentials versus spurious hits is calculating 

how far away a fingerprint is from the beginning of the pattern.   

Now that we have a starting point, we can begin a process of whittling down the file 

positions in Locs using the remaining fingerprints and a special comparison.  The second 

step is virtually identical to the first step.  The two differences are: (a) finding file 

positions for the last substring in the pattern instead of the first, and (b) placing these 

positions in a vector called NextLocs instead of in Locs.  The notion behind this and the 

remaining parts of the process is as follows: if a file position in Locs is part of an 

occurrence, then it must have a ‘corresponding file position’ in NextLocs and vice versa.  

We calculate the ‘corresponding file position’ in NextLocs by adding the file position in 

Locs to the number of characters between the two substrings.  If there is such a file 

position in NextLocs, we save that file position in Locs for the next round because it has 

a higher probability of being part of a match than it did before the comparison.  

Otherwise, NextLocs does not have a corresponding file position.  That means we can 

remove the respective file position from Locs because it can never be the beginning 

substring of an occurrence when we know there are no ending substrings that matchup.   

We continue processing each file position in Locs by adding the respective distance to its 

file position and searching for an entry with that particular file position in NextLocs.  To 

do this, we iterate through Locs keeping all entries whose corresponding file position 

occurs in NextLocs and removing the remaining entries.  We based the process on a view 

that every occurrence of the pattern must include a match for the first fingerprint, the last 

fingerprint, and every fingerprint in between. 

After finishing with the file positions for the last fingerprint, we empty NextLocs and 

repeat the entire process for the second last fingerprint in the pattern instead of the last.  

Keep in mind that the number of entries in the Locs vector keeps growing steadily 

smaller with each step.  In any case, we repeat this process for each fingerprint in the 

original long pattern.  Finally, after performing all these steps for each of the long 

pattern’s fingerprints, our Locs vector will only contain file positions where each 
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substring’s fingerprint occurs in the proper location with respect to one another.  Since 

this is the definition of an occurrence, our Locs vector contains a list of file positions 

showing where every occurrence of the pattern exists in the text file. 

4.6.4 Pattern Matching Algorithm 

4.6.4.1 Introduction 
Now that we have provided the necessary background information, we present the 

following listing to show the algorithm we implemented and demonstrate its calculations 

and processing.  This algorithm listing is somewhat larger and more complex than 

previous listings because of the three different types of matching.  Once again, we will 

expand the details of this algorithm in subsequent sections of the report.  The inputs are a 

text file T, a search pattern P, a window length WL, a radix r, a modulus q, and an Index 

database DB. 

Rabin-Karp-Matcher(T, P, r, q, WL, DB) 
##-1 prepares program constants like look-up tables  
1 TL ← Length(T) 
2 PL ← Length(P) 
3 p ← 0 
4 powRADIX[0] = 1 
5 charOUT[0]  = 1 
6 for (i = 1 to 100) 
7 do powRADIX[i] ← (powRADIX[i-1] * r) mod q 
8 for (i = 0 to 127) 
9 do charOUT[i]  ← ((i mod r) * powRADIX[WL-1]) mod q 
##-2 works on problems where search pattern length is less than Index Database window length PL<WL 
10 if ((WL-PL) > 0 and ((WL-PL) ≤ (log2(q)/log2(r))) 
11 p  ← 0 
12 for  (i ← 0 to (PL-1)) 
13  do  p ← (rp + P(i)) mod q 
14 LL ← (p * powRADIX[WL-PL]) mod q  
15 UL ← (p * powRADIX[WL-PL]) mod q + (powRADIX[WL-PL]–1) mod q  
16 get s from DB for (LL ≤ key and UL ≥ key) and save as vector 
Locs[] 
  



Page | 72 

##-3 works with patterns whose lengths are the same as the window length  PL == WL 
17 if ((WL-PL) == 0)  
18 p  ← 0 
19 for  (i ← 0 to (PL-1)) 
20  do p ← (rp + P(i)) mod q 
21 get s from DB for p == key and save as vector Locs[]  
##-4 works with patterns whose lengths are larger than the window length PL > WL 
22 if ((WL-PL) < 0) 
23 p ← 0 
24 for  (i ← 0 to (WL-1)) 
25  do p ← (rp + P(i)) mod q 
26 get s from DB for p == key and save as vector Locs[] 
27 p2  ← 0 
28 for  (i ← (PL-WL) to (PL-1)) 
29  do p2 ← (rp2 + P(i)) mod q 
30 get s2 from DB for p2 == key and save as vector NextLocs[] 
31 keep s in Locs[] for all s=s2-WL in NextLocs[] 
32 v ← 0 
33 for (k ← WL to PL–2WL) 
34   do p3  ← 0 
35  do v  ← v+1 
36  do for  i ← (s) to (s + WL-1) 
37   do p3 ← (rp3 + P(i)) mod q 
38  do get s3 from DB for p3 == key and save as vector 
NextLocs[] 
39  do keep s in Locs[] for all s=s3-WL in NextLocs[] 
40##-5 Remove ‘spurious hit’ 
41 SpuriousHits ← 0 
42 for each s in Locs[] 
43 if P[0 … PL-1] == T[s … s+(PL-1)] 
44  then print “Pattern match at position: ” s 
45 else SpuriousHits ← SpuriousHits + 1 
46  delete s from Locs[] 
47 print “Total Spurious Hits:” SpuriousHits 
 

Algorithm 3: Step-Two of Our Approach to Pattern Matching 

4.6.4.2 Algorithm Description 

4.6.4.2.1 Character Symbols and Codes 
Before beginning a description of step two of our algorithm, we need to point out a few 

general topics about confusing concepts we want to make completely clear.  First, 

throughout this document we have stressed that a character has two components, a 

symbol, and an integer.  This algorithm in particular uses both side-by-side.  When we 

need to refer specifically to a code or a symbol, we use parentheses or square brackets 

respectively.  Remember as well that all character codes range from 0 to r – 1, which are 



Page | 73 

also digits in the r-based numbering system used in calculating fingerprints.  In the 

listing, we clearly see an example of not only parentheses on Line 13 during fingerprint 

calculations, but also square brackets on line 43 during verification.   

4.6.4.2.2 Vectors 
Next, earlier we referred to a vector of values without really defining what a vector was 

or does.  Since the algorithm listing uses several vectors, in particular to hold locations 

for later processing, we should provide at least a general definition for them.  In a general 

sense, a vector is a C++ data structure similar to an array.  In particular, we use the term 

vector to refer to a data structure having the same characteristics and properties as an 

STL (Standard Template Library) vector.  (Prata, 2005)   The algorithm listing identifies 

vectors by putting the square brackets immediately after their names, typically without 

any parameters.  We use the same names in the listing that we did earlier while 

discussing the matching theory.  In any case, throughout this algorithm we use a phrase 

“and save as vector X[],” to indicate that we want to store all of the values we 

just obtained into a vector called ‘X.’   

The algorithm uses two vectors, namely Locs[] and NextLocs[].  The first vector contains 

a sorted list of positions that satisfy whatever information need a user was trying to 

achieve.  The second vector plays a support role when a search pattern is longer than an 

Index Database’s window length.  The basic procedure our algorithm follows is first to 

fill a ‘main’ vector called Locs[] with file positions having fingerprints that match the 

first one.  Next, we fill another vector NextLocs[] with file positions whose fingerprints 

match the fingerprint from a corresponding place in the pattern.  Finally, the procedure 

checks each position from Locs[] to see if the second vector has a corresponding position 

a certain number of bytes away.  If so, we keep the file position value in Locs[], if not, 

we remove it from Locs[].   

4.6.4.2.3 Index Database 
Additionally, there is little mention of the Index Database in the listing other than in the 

get statements.  We have already defined our algorithm for building this database earlier.  
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Now that we are examining our matching algorithm listing, we can see how an Index 

Database is actually used.  To begin with, the DB parameter passes the Index Database 

into the algorithm.  We can therefore we assume it already exists from an earlier run of 

our algorithm’s step one process, and is filled with data from the text file T (also passed 

in.)  We use a get command (see Line16 for example) to access its data.  For instance, we 

use a get command to return values for ‘s’, the location portion of the key.  The ‘s’ is 

significant because it stands for ‘shift,’ which represents the same value as file position; 

but, it is used mostly when the context is how far a sliding window has moved.   

4.6.4.2.4 Algorithm Parts 
In addition to the above general statements about the algorithm, we can get on with 

describing some of its specific features and characteristics.  First, notice how we placed 

five bold comment lines (that begin with “##”) throughout the listing.  These comments 

delineate the major parts of the algorithm; which are: (1) program constants and 

initialization, (2) search when search string smaller than Index Database’s window, (3) 

search when search string is same length as window, (4) search when search string is 

longer than window, and (5) verification and output.   

The general flow of control is as follows.  Execute Lines 1 through 9 to load program 

constants and look-up tables.  Next, choose a situation between comments two, three, or 

four.  Execute the lines for selected comment.  Finally, place results into vector called 

Locs[].  The difference between comments two, three, and four are related to the concept 

we introduced earlier about the three scenarios for matching (PL < WL; PL == WL; and 

PL > WL.)  The matching process depends which scenario is present, and the comments 

delineate the three processes.  Comment two, lines 10 through 16 deal with the scenario 

PL < WL.  This is a complicated process and can end with no positions in the Locs [] 

vector.  This can occur when the length difference is too small.  The second part of the if 

statement on line 10 demonstrates, no values are placed in the vector.  Comment three, 

Lines 17 through 21, deals with the scenario where PL == WL.  Finally, comment four, 

lines 22 through 39, deal with the scenario where the search pattern length is larger than 

the window length.   
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4.6.4.2.5 Verification and Output 
After the above processes are completed, we have enough information to send our Locs[] 

vector through verification.  That means we execute the lines for the last comment.  Lines 

41 through47 we call verification because that is precisely what happens.  For each file 

position value in the Locs[] vector, we go to that position in the text file and check to see 

if that character matches the first character in the pattern.  If they match, we move to the 

next characters and check to see if they match.  We continue this checking until either a 

mismatch occurs or we reach the end of the pattern.  If all corresponding characters 

match, a message prints the file position; otherwise, a spurious hit occurs and its counter 

is incremented.  

4.6.5 Application Output 
The application uses appropriate command-line output throughout the analysis to keep a 

user informed of progress.  None of this output is of any consequent to an analysis, so we 

will ignore its details.  Instead, the application produces three result files containing all 

information needed to perform an analysis.  Step one creates one file containing its 

output, while Step two creates two files.  We give a brief description of all three files in 

this section. 

First, in all three cases, during an execution, the application checks for the output file(s.)  

If a file exists already, it is open for modification.  If a file by that name does not exist in 

the database directory, the application creates a new file and opens it for modification.   

4.6.5.1 Output File Description 

4.6.5.1.1 File *.src 
The application places the results of searches in a CSV (Comma Separated Values) file 

located in the database directory (same as command line parameter.)  This file also has 

the same name as the database, but it has a “.src” extension tacked on its end.  There is 

one record in this file for each search.  Each record contains values for the following 

columns separated by commas: 
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a) Matches: 

A count of the number of occurrences of the pattern were found. 

b) Spurious Hits: 

A count of the number of times an occurrence was flagged but was not found.  

This is also known as False Positive. 

c) Window Length: 

Length used to calculate the fingerprint for building the LevelDB Index Database. 

d) Pattern Length: 

Length of the pattern being sought for this run 

e) Radix: 

Base of fingerprint numbering system, also maximum number for character code. 

f) Modulo: 

The maximum number a fingerprint can be.  All calculations use (% modulus.) 

g) Time (milliseconds) 

The actual time it took to perform the search.  A value of zero is used if radix and 

modulus are too small to allow search to proceed because length difference is too 

large. 

h) Number of repeated searches to get time over 10 ms  

We discovered that sometimes searches happen so fast we could not get a time 

measurement other than zero.  To remedy this problem we keep performing the 

same search in a loop until the total time exceeds 10 ms.   

i) Search string: 

A reprint of the string used in original search pattern 
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4.6.5.1.2 File *.wrt 
The application places the results of building an Index Database in a CSV (Comma 

Separated Values) file located in the database directory.  This file also has the same name 

as the database, but it has a “.wrt” extension tacked on its end.  This file contains a log of 

how many bytes the application has read from the Text File and how long it took to read 

them.  The command-line parameter “--report-every=” “(or -e=)” controls the number of 

bytes to be read before writing the next record in this file.  There is one record in this file 

for each byte count span.  Each record contains values for the following columns 

separated by commas: 

a) Radix: 

Base of fingerprint numbering system, also maximum number for character code. 

b) Modulo: 

The maximum number a fingerprint can be.  All calculations use (% modulus.) 

c) Window Length: 

Length used to calculate the fingerprint for building the LevelDB Index Database. 

d) Bytes read: 

Cumulative bytes read from Text File, so we have a running total of the bytes 

processed thus far.   

e) Time (seconds): 

Time taken from the last write operation in this file until this write operation.  

Note, unlike the bytes read in the previous field, this value is not cumulative and 

is just the time taken to process the last increment of bytes. 
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4.6.5.1.3 File *.wtot 
The application places the results of building an Index Database in a CSV (Comma 

Separated Values) file located in the database.  This file also has the same name as the 

database, but it has a “.wtot” extension tacked on its end.  This file contains a log of how 

many bytes the application read from the Text File in total, how many bytes the LevelDB 

Index Database is, and how long it took to create the LevelDB Index Database.  There is 

one record in this file for each byte count span.  Each record contains values for the 

following columns separated by commas: 

a) Radix: 

Base of fingerprint numbering system, also maximum number for character code. 

b) Modulus: 

The maximum number a fingerprint can be.  All calculations use (% modulus.) 

c) Window Length: 

Length used to calculate the fingerprint for building the LevelDB Index Database. 

d) textFileSize (bytes): 

Number of bytes processed in the Text file during the Index Building step. 

e) Time to create Index Database: 

Total time taken to build the Index Database in LevelDB. 

f) Size of Index Database (bytes): 

Total number of bytes in the resulting Index Database. 
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Chapter 5: Performance of Our New Application 
This chapter describes the results of our experiment.  It highlights our algorithm’s 

performance and compares some aspects of that performance with the performance of 

GREP (the de facto standard text search application for UNIX).  In this chapter, we 

describe GREP.  We also present the parameters, their ranges, and all the combinations 

and permutations we included in our experiment.  Furthermore, we describe the hardware 

and the text file(s) we ran the experiments on.  Finally, we present the experiment 

outcomes.  Throughout the presentation, we highlight and keep track of some of the most 

interesting observations we made while conducting our experiments. 

5.1 Experiment Design & Implementation 
The previous chapters have demonstrated that we changed several major aspects of 

Rabin-Karp’s original algorithm into a new application using LevelDB.  Having written 

and tested our application, our primary goal now is to determine whether our newly 

created application can outperform GREP.  To determine this, we designed an 

experimental approach based on varying one parameter at a time holding all other 

parameters constant.  To begin with, we built 36 different Index Databases to 

accommodate different radix, modulus, and window length parameters as shown in Table 

4 below.   

The layout and contents of Index Databases is made up of each 
radix and modulus combination, of which there are nine, each of 
which has four Index Databases, one for each of the four window 
lengths; making a total of 36 different Index Databases.   

Observation 1: We based the layout and configuration of our experiment’s Index 

Databases on radix, modulus, and window length. 
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 Table 4: This table summarizes the parameters for all 36 Index Databases we 

created for our experiment.  The table has nine boxes, each of which has a radix, 

and a modulus on the top row, and four window lengths on the next row.  

Information from the top row plus one of the window lengths under it uniquely 

describes one of the 36 Index Databases.  We tested 11 pattern lengths (listed below) 

on each database giving a total of 396 tests. 

Another important observation we can see in this table is as follows: 

For each of the five radix values (4, 8, 16, 32, 128), the lowest 
modulus we used in our experiments is equal to the largest prime 
number that would not allow any calculation to exceed the value 
of a signed 32-bit integer.  The equation to calculate this 
maximum value is (231/radix).  Therefore, the smallest modulus is 
the biggest prime we could find that does not exceed this value. 

Observation 2: The lowest modulus we used for each radix was the largest prime 

number that is less than (231/radix). 

Once we create an Index Database, we can search it repeatedly keeping in mind the 

Window Length (WL) used to create it.  With this in mind, we introduce the next 

experimental parameter, Pattern Length (PL), to account for each of the searches in our 

experiment.  One issue we kept in mind when selecting pattern lengths was to ensure we 

obtained a mixture of searches that included each of our three scenarios described in the 

previous chapter as PL<WL, PL==WL, and PL<WL.  Since we created a different search 

strategy for these same three criteria, it only makes sense to keep this in the foreground 

while considering other issues.   
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In our experiments we decided to use eight different pattern 
lengths (PL) {2, 4, 8, 10, 12, 16, 32, 64} for patterns that we 
know exist in the text file.  We also used three different pattern 
lengths {4, 8, 12} for patterns we know for sure do not exist in the 
text file.  These last three patterns are substrings of, 
“ZZZZZZZZZZZZ” having a length of 4, 8, and 12. 

Observation 3: Our experiment was to search for a variety of search pattern 

lengths.  We used eight search pattern lengths for patterns we know occur in each 

Index Database, and three lengths for patterns we are sure do not occur. 

With 36 Index Databases and 11 different pattern lengths, we needed to perform 396 

different searches to accomplish our experimental objectives.  Perhaps not surprisingly, 

both organizing the experimental runs using a batch file; and, analyzing the mountain of 

resulting data from each run individually and all runs together consumed a great deal of 

resources.  Not to mention the difficulty we encountered deciding how to formulate, and 

format, all of these results.  On the one hand, we needed to present convincing evidence 

for our conclusions; on the other hand, we could not clutter the report with 396 different 

graphs showing each experiment against GREP. 

Nevertheless, the remainder of this chapter explains our approach in more detail, and 

describes the highlights from the observed results. 

5.2 Source Text Files 
During our deliberations, we needed several text files, one text file for our testing and 

verification, and another text file for the actual experiments.  We will discuss the test text 

file later; for now, we introduce our experimental text file.  After considering many 

sources of English text available, we decided on using the King James Bible.  (The Large 

Canterbury Corpus, 2001)  First, the document has old English style prose making it easy 

to find substrings with different numbers of occurrences ranging from one, to hundreds, 

to even thousands.  Second, by making our experiment’s text file from one hundred 

copies of the bible one after another, we end up with file positions for our search strings 
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at predictable distances, and we can predict the number of occurrences for each of our 

search strings by multiplying the numbers from the single copy by 100.  These two 

features gave us reliable devices for quick and easy verification of our results.  Finally, a 

single copy of the Bible only occupies some 4,050,944 bytes (3.86 MB) of disk space, 

which helps our text editor load it and count occurrences for any search string very 

quickly.  The text file with 100 copies occupies 404,742,144 bytes (385 MB) of disk 

space. 

We used a text file containing 100 copies of the King James Bible 
for all experiments.  This file occupies 404,742,144 bytes (385 
MB) on a disk.  It was large enough to produce meaningful time 
differences for most patterns.   

Observation 4: Our text file contained 100 copies of the King James Bible in 3.86 

MB. 

With regard to application speed, we will compare the actual numbers with GREP below.  

In the meantime, since some searches were so fast, we had to add a function in our 

application that kept repeating a search until the cumulative elapsed time exceeded 10 

milliseconds.  This made sure we had big enough time numbers to guarantee a search did 

not return a value of 0.00 ms.  The following observation illustrates where we desperately 

needed this function.  

For a radix of 4, a PL of 4, a modulus of 1,073,499,991 and a 
search Pattern of “ZZZZ” our application had to repeat the 
search 1329 times just to get a cumulative elapsed time of 
10.002ms, which works out to 0.0075ms for one run of that 
particular search.  

Observation 5: Our application is extremely fast when searching for strings that we 

knew were not in the text file. 

After adding this function, we decided we also needed to improve the precision of our 

timer because C++’s standard timer is only precise to a millisecond.  We did some 
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digging and found a structure from <Windows.h> called ‘QueryPerformanceCounter’ 

that met all of our timing needs.  To get the most up-to-date information on this interface 

go to www.Microsoft.com.  We installed and verified the API and implemented it rather 

easily.   

Using the <Windows.h> header file, and this timing API, is the 
only issue preventing our application’s code from porting 
directly to UNIX.  A user wanting to port the application will 
need to change these with suitable replacements.   

Observation 6: The timing API we used was exclusive to Windows. 

5.3 Setting up and Testing our Application 
Even though we tested our application extensively during its development, we felt it was 

necessary to perform a final test before beginning our experiment to ensure everything 

was performing as expected.  Our test involved using a text file that was different from 

our experimental text file, yet had enough variation to assure us we were counting and 

locating a randomly selected phrase from the file.  The two-step process required us to 

first use a sophisticated text editor to select the phrases, count them, and give us their 

locations throughout the file.  Next, we compared those results against what our 

application produced.  However, before we could use this file we had to first verify that 

our text editor program was working as expected.  

We used EditPad Pro (7.1.2 x64) (www.editpadpro.com) as our text editor.  It has all the 

features we needed to accomplish our objectives for selecting phrases, counting them, 

and locating them in a file.  In a sense, we had to have faith that EditPad Pro was 

providing us with the correct results to begin with.  To verify this we created a two-

paragraph text file, did some searching, and verified manually that EditPad Pro did not 

make any mistakes.  Aside from having to read the entire file to manually locate and 

count the occurrences ourselves, we had no other choice but use this smaller file to verify 

with a reasonable amount of certainty that EditPad Pro was producing correct results.  In 

http://www.microsoft.com/
http://www.editpadpro.com/
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the end, after confirming that our application produced exactly the same counts and 

locations verified that EditPad Pro was indeed working correctly.  We were henceforth 

confident that we knew exactly how many of our patterns occurred in a text file, and 

exactly where each occurrence was located.   

Getting back to testing our application, we used EditPad Pro to select a set of 

appropriately sized phrases we would use in our test.  The text file we used for testing is 

The Works of Mark Twain by Mark Twain.  (Twain, 2009)  We obtained this eBook from 

the Gutenberg Project on the internet at: (http://www.gutenberg.org/).  The size of this 

text file is 20,045,824 bytes (19.1 MB).  As its title suggests the contents of this single 

text file is the complete works of Mark Twain.   

We carried out our testing method using the following processes.  After performing steps 

(a) through (d) once for every pattern length, we then used step (e) through (g) on each 

search pattern and each Index Database.  We performed this same procedure in our 

experiment on the same 396 combinations of parameters that we used in our experiment.  

a) Load text file into EditPad. 

b) Select a phrase at random making sure it was as long as our selected pattern 

length for this test.  We performed our random selection process manually by 

blindly moving the cursor horizontally and spinning the mouse down wheel one 

or more times.  While not very scientific, it did not have to be, we just needed to 

verify our application found the search pattern the same number of times as 

EditPad Pro found. 

c) Run a count in EditPad to get the number of times the selected phrase occurs in 

the file.  

d) Select several occurrences and note their location in the file.  
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e) Run our application to either build an Index Database (if required), or search an 

existing Index Database if there is one for a phrase.  

f) Verify the total number of occurrences our application produced was the same as 

the number EditPad produced.    

g) Verify the locations obtained from EditPad Pro earlier appeared in our 

application’s output file.  

The results of performing the above tests were positive and reassuring.   

After extensive testing, we found all values we checked matched 
our expectation, and we did not find any serious flaws or 
overlooked processes during our testing procedure.  The results 
left us confident our application was doing what we expected it to 
do and produced results we expected. 

Observation 7: We tested our application with a different text file, and did not find 

any mistakes. 

5.4 Source Computer  
All of our work, including testing, building Index Databases, and searching for patterns 

were all carried out on the same computer.  This meant we did not need to do any other 

forms of analysis to put its results on a level playing field.  The following list shows some 

of the most important hardware and software components possessed by our system and 

used in performing our experiments. 

Manufacturer:  ASUSTeK Computer Inc. 

Model:   ASUS Notebook G73jh Series 

Processor:   Intel(R) Core(TM) i7 CPU Q720 @ 1.60GHz 1.60 GHz 

Installed memory:  8.00 GB 
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HD Disk 0:  OS (C:); 228,936 Mb; OCZ-AGILITY2 (SSD) 

HD Disk 1:  OS (D:); 171,704 Mb; OCZ-AGILITY2 (SSD) 

OS:    Windows 7 Ultimate 64-bit Service Pack 1 

5.5 Using GREP  
Since the purpose of our experiments required comparing our search times against GREP, 

we begin by reviewing the results obtained from searching with GREP.  Even though we 

are using the 100 Bible text file, the diagram of Figure 3 shows the relative search times 

for three of our text files: they contain 1, 10, and 100 copies of the Bible.  A quick glance 

at this diagram demonstrates that GREP’s time is roughly proportional to the size of its 

target file with a few minor exceptions. 

 

Figure 3: Search times for GREP searching text files containing 1, 10, and 100 

copies of The King James Bible. 

The first action we performed after running our text file containing 100 copies of the 

Bible through GREP was comparing the number of occurrences for each of our patterns 
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with our expected results.  We summarized GREP’s results in the table below, and used it 

for this comparison.  The table has the following four columns: (1) length of pattern; (2) 

actual count of occurrences from EditPad; (3) count of occurrences given by GREP, and; 

(4) time taken by GREP in milliseconds.  We highlighted the last three rows to remind 

readers those searches use patterns whose strings for sure did not exist in the file.   

Pattern 

 

Actual 

 

GREP 

 

 

GREP Time 

  2 83,400 82,200 1042.28 
4 1,216,800 1,146,400 771.47 
8 212,100 208,800 758.15 
10 39,600 39,500 457.87 
12 39,600 39,500 390.88 
16 1,300 1,300 390.68 
32 100 100 333.43 
64 100 100 341.77 
4 0 0 587.39 
8 0 0 407.24 
12 0 0 343.35 

Table 5: Results from GREP searching the text file containing 100 copies of Bible.  

This shaded portion illustrates an important observation about GREP’s times.  Since 

GREP is an on-line search tool, it processes an entire text file for every search.  We can 

therefore expect there to be a time associated with looking for a string that does not exist.  

In fact, we see times comparable to or even slower than times using a search pattern that 

not only exists, but also, occurs more than 39,000 times.  Another interesting point about 

the bottom three rows is that the shorter the search string, the longer it took GREP to 

search a file.   
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GREP takes roughly the same amount of time to count 
occurrences of strings that exist in the text file as it does 
searching for strings that do not exist in the text file.  In addition, 
shorter strings take longer to search for than longer ones, which 
happens whether the string exists or does not exist.  

Observation 8: GREP has roughly the same performance looking for strings not in a 

file as it does finding occurrences of a string. 

One of the most striking observations in this table is how far apart GREP’s counts are 

from the actual count.  At first, we thought there was a mistake somewhere in our 

processes that would explain the discrepancies.  After an exhaustive search we were 

confident our numbers were correct.  That is when we discovered the following 

observation.  

GREP does not count the actual number of times a string occurs 
in a file, it only counts the number of different lines containing at 
least one copy of that string.  

Observation 9: GREP counts lines containing a search string. 

This means, once GREP discovers an occurrence on a line, it can skip the remainder of 

that line; thereby saving big chunks of time.  This bias gives GREP an edge over our 

application that does not even ‘know’ that lines exist because GREP could end up 

skipping a large part of a file; especially when lines are long (like paragraphs) and the 

search string occurs nearer to its start than its end.  It also highlights a difference in 

outputs between the two applications.  Whereas GREP reports the line number for an 

occurrence, our application reports the exact location in the file for that same occurrence. 

We explored several methods to make the results more compatible with one another.  

Modifying our application to act the same as GREP by reporting only line numbers and 

skipping to the next line once an occurrence is discovered was one such consideration.  

We rejected this because it restricted our application’s ability a great deal.  A second 
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consideration was to pipe the line number from GREP through another program that can 

actually count occurrences and report locations for each line.  We also rejected this 

because of the overhead required to pipe the results and start this other program would 

very difficult to capture accurately.  In the end, we decided to leave both applications as 

they were and recognize that with all other things held equal, GREP will report a time 

based on doing much less work than our application.  In other words, we have no way of 

capturing the difference it would make in time if we could somehow force GREP to 

count occurrences instead of lines with an occurrence.  We therefore must accept this bias 

with the knowledge that if times are the same for both applications, GREP is definitely 

the slower one.  

5.6 Preliminary Comparison 
GREP is a very popular search tool on UNIX operating systems.  It will be good to 

contrast GREP with our approach, which is a command-line program for Windows.  

Before we present all of our results we must layout our tool and our experimental 

procedure.  We do this in the following sections.  This section summarizes a results 

demonstrate we are heading in a profitable direction regarding our thesis. 

Figure 4 shows a summary of the performance we achieved by aggregating roughly 360 

or so experiments.  The lighter line shows GREP’s times, while the darker line shows our 

best times. Since GREP has no parameters, its time is the same for every run of a 

particular search pattern length.  In contrast, our application has several parameters 

affecting search time.  These parameters yield different search times for each search 

pattern length; we plotted the best of those times.   

This graph confirms that our application shows faster times for experiments involving all 

search pattern lengths except 4 and 8 bytes. This evidence supports our thesis; thereby 

proving that not only we can build an application, but also, in some cases that new 

application outperforms GREP.  With more resources to continue studying this problem 

area we could produce some very fast search times.  In the end, this mechanism could be 

an extremely fast way to index and recall information using a Rabin-Karp fingerprint. 
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We made this graph by aggregating the same data that was used to create all the graphs 

shown in Appendix F: Line Graphs of Performance (ms).  Appendix F contains one graph 

for each combination of Radix and Modulus using the same two axes as Figure.  The 

main difference between the following graph and those in Appendix F is that later graphs 

show performance for each window length in our analysis.  Remember Pattern Length 

and Window Length are different. 

 

Figure 4: An early look at the outcome of our experiment showing how our 

application beats GREP times for long pattern lengths 

 

5.7 Creating Index Databases in LevelDB 
Recalling that our application consisted of two-step process, we now examine results 

from step one of that process: creating Index Databases.  This procedure involves 

examining the text file one byte at a time, calculating a fingerprint, flipping the byte 
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arrays to Big Endian format, and writing that fingerprint and its associated file position to 

the Index Database.  The mechanisms just described used in this procedure are the same 

ones we described earlier when discussing our Index-Building Algorithm (see Algorithm 

2.)   

Once created, the Index Database is available for any number of searches.  As described 

earlier, our experiments require us to create 36 different Index Databases.  That is, one 

database for each combination of radix/modulus, and window length.  Figure 5 shows the 

sizes for each of the 36 Index Databases.  These results lead to the following observation: 

Most of the resulting Index Database sizes are roughly ten times 
as large as the original text file containing 100 Bibles that has a 
size of 404,742,144 bytes (385 MB).  

Observation 10: The Index Databases for most criteria are approximately ten times 

larger than the original text file. 

The several exceptions to this observation are Index Databases for a radix of four.  We 

will have more to say about a radix of four later.  The other exception happens only when 

the window length is eight, the radix is 128, and the modulo are primes close to 230 and 

231.  For some reason, these two instances look totally out of place.  Their size is about 

three or four hundred megabytes larger than all other databases with a window length of 

eight.  They are also about two hundred megabytes bigger than the corresponding 

databases with window lengths of 10 and 12.  We took the same database size data and 

produced a line graph in Figure 6 below showing exactly the same information as the bar 

graph.  The spike in size is also visible on this graph for the two databases in question.  

Also, we put the size of the Index Databases beside each respective marker for the 

smallest radix of 4, a radix of 8, and the largest radix of 128, which produce the smallest, 

medium and largest sized database sizes respectively.   
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Figure 5: Bar Chart showing the sizes of the Index Databases created for our 

experiment. 
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Figure 6: Line Graph showing the sizes of the Index Databases created for our 

experiment. 

The next logical piece of information to examine is the time it takes to build these Index 

Databases.  To that end, Figure 7 below  illustrates the times taken to build Index 

Databases by window length and by radix/modulus.  This particular chart cannot help in 

finding specific times for specific parameters.  Instead, it shows how all the times are 

roughly the same being between 5,000 and 6,000 seconds for all but the same two 

databases that were the largest above. 
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Figure 7: Area graph showing time required to build each of the Index Databases in 

our experiment. 

Figure 6 and Figure 7 illustrate several other observations and conclusions.  For instance, 

the transition from one window length to the next on both graphs is not smooth.  Both the 

times and the sizes jump around without any apparent reason, making it difficult to draw 

any conclusions with regard to size or to time.  However, from a general point of view, 

the following observation about these results is worth highlighting:  

In a general sense, both the size and the time required to build an 
Index Database increase with increasing radix and increasing 
window length. 

Observation 11: Generally, radix and window length are two variables that have an 

effect on the time and size of an Index Database. 

At this point, we must discuss how LevelDB, despite producing large files, is actually 

compressing the data a great deal.  Recall that the database key consists of the fingerprint 

Radix= 4  ; Modulus= 536799997

Radix= 8  ; Modulus= 268399993

Radix= 16  ; Modulus= 134207779

Radix= 16  ; Modulus= 1073499991
Radix= 32  ; Modulus= 1073499991

Radix= 32  ; Modulus= 59599993
Radix= 128  ; Modulus= 16699901

Radix= 128  ; Modulus= 1073499991
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concatenated with a file position making it 16 bytes long.  In addition, the number we put 

into the database value field was file position, consisting of another 8 bytes.  This implies 

that each record in our Index Databases is 16 bytes long.  If we assume there is a record 

in an Index Database for every byte of its respective text file, we can calculate its 

theoretical size.  In this case, we have a 24-byte record and a 404,742,144-byte text file.  

The product of these two values is 9,713,811,456 bytes.  So, one would expect an Index 

Database of approximately this size.  Yet, Figure 6 shows that the maximum size for all 

of our Index Databases is 4,961,000,000 bytes, roughly half the theoretical value.   

According to its documentation, LevelDB automatically compresses data using another 

application from GOOGLE code called Snappy compression library.  (Google Inc., 2012)  

Snappy is similar to LevelDB in that it is a C++ API that is easy to use.  In fact, a typical 

user would not even know LevelDB had a copy of Snappy embedded in it.  According to 

Snappy’s Web Site  (https://ccp.cloudera.com/display/CDHDOC/Snappy+Installation) 

“It [Snappy] does not aim for maximum compression, or compatibility with any other 

compression library; instead, it aims for very high speeds and reasonable compression.”   

Finally, our original experimental design involved including a radix of two.  In retrospect, 

it was not a good idea.  Since its alphabet would only consist of two characters, it is 

perhaps understandable why it took so long building an Index Database.  Recall earlier 

we mentioned that after about 10 or 12 hours of building, we stopped the process.  We 

subsequently aborted our plan of including a radix of two in our experiments.  It 

encourages hash collisions because the resulting number system is so close to binary.  

We rejected using a radix of two in our experiment.  The reasons 
are the extremely large amount of time it took to build a partial 
Index Database, likely caused from having an alphabet with only 
two characters. 

Observation 12: We dropped a Radix of two from our analysis 

http://code.google.com/p/snappy/
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In any event, both Index Database size and the time required to build one are large but 

nowhere near unmanageable.  These results look as if they could be trimmed adjusting 

page size, buffer size, and/ or block size in LevelDB.  In addition, we did not use 

LevelDB’s function for doing batch writes; which would increase performance.  

LevelDB’s overheads make the time and size at least five orders of magnitude bigger 

than our algorithm running on its own.  To verify this difference, we clocked our program 

running alone without writing to the database; just calculating the fingerprint for each 

byte in the file.  We recorded a time of less than one hundred milliseconds do this for the 

100-Bible text file  

5.8 Performing Searches 
With such disappointing results from step-one, a salvation of our approach will have to 

come from searches.  We created the following search strategy to test this answer.  Table 

6 shows the numbers supporting our strategy, which were included in a table shown 

earlier when we discussed GREP.  We used eight pattern lengths containing strings that 

we confirmed exist in the Bible.  Since, we know each string appears at least once for 

every Bible, we also know that they occur several megabytes apart from one another.  

The number of occurrences of the string for each pattern length appears in the table’s 

second column.  We also included three pattern lengths (highlighted at the bottom of the 

table) containing strings that do not appear in the text file.  The three non-existent strings 

are substrings of “ZZZZZZZZZZZZ” with the respective pattern lengths. 
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Pattern 

 

Actual 

 2 83,400 
4 1,216,800 
8 212,100 
10 39,600 
12 39,600 
16 1,300 
32 100 
64 100 
4 0 
8 0 
12 0 

Table 6: Pattern length and a count of the actual number of occurrences in a 100-

Bible text file.  The bottom thre rows are highlighted because they contain patterns 

that do not occur in the text file. 

Our search strategy required us to perform a search for each of the eleven strings on each 

of our 36 Index Databases.  Tracking a search’s results was easy because of our option to 

append results data from each search to the end of an existing results file.  That meant 

when all the processing was finished we had one text file containing all information 

describing the results.   

5.9 Performance Results 
After completing all of the above searches, we had a file filled with numbers that we 

present in this section.  Before showing graphs and summaries, we feel it is telling to 

show a table of those numbers.   

5.9.1 Table of Results 
We took the results file and imported its data into Excel so we could manipulate it into a 

presentable summary format containing number of hits, number of spurious hits and total 

time for each radix/modulus, each window length, and each pattern length.  In addition, 
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having this table provides a mechanism for a reader to verify or double-check values 

presented later, or to see a context within which a particular result may reside.   

Aside from each table showing the radix, modulus, and window 

length against pattern length, the cells are also colour coded to 

indicate the relationship between PL and WL.  As shown here, 

the top colour indicates where the difference between pattern 

length and window length is too large for a given radix and 

modulus.  Next, we have three colours showing the different search scenarios from 

earlier: PL<WL, PL==WL, and PL>WL.  Finally, the last colour shows the case where 

the pattern is not in the text file.   

 

Matches Spurious Time (ms) Matches Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms)
2 83,400 9,970,800 46,862.69 83,400 9,970,800 58,537.84 83,400 9,970,800 45,182.79 83,400 9,970,800 67,604.62
4 1,216,800 8,677,500 35,002.80 1,216,800 8,677,500 32,829.61 1,216,800 8,677,500 42,112.85 1,216,800 8,677,500 50,995.52
8 212,100 614,200 17,457.52 212,100 614,200 2,815.77 212,100 614,200 3,055.83 212,100 614,200 3,900.43

10 39,600 68,200 11,567.70 39,600 68,200 1,132.16 39,600 68,200 428.99 39,600 68,200 546.42
12 39,600 21,700 13,753.54 39,600 21,700 1,179.04 39,600 21,700 373.68 39,600 21,700 326.59
16 1,300 1,000 12,639.82 1,300 1,000 404.36 1,300 1,000 68.45 1,300 1,000 95.06
32 100 0 17,298.16 100 0 78.15 100 0 27.90 100 0 52.16
64 100 0 39,309.76 100 0 1,399.93 100 0 123.99 100 0 37.97

4 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 19,353,400 193,892.03 1,593,000 19,353,400 98,376.89 1,593,000 19,353,400 91,374.50 1,593,000 19,353,400 123,558.80

2 83,400 5,108,600 23,069.93 83,400 5,108,600 23,910.44 83,400 26,210,000 121,066.33 0 0 0.00
4 1,216,800 4,355,600 24,581.35 1,216,800 4,355,600 26,014.16 1,216,800 5,120,300 26,436.77 1,216,800 59,357,997 252,949.10
8 212,100 407,500 13,222.46 212,100 407,500 2,833.25 212,100 407,500 2,191.66 212,100 418,700 2,216.99

10 39,600 27,300 7,870.47 39,600 27,300 741.49 39,600 27,300 266.15 39,600 27,400 276.71
12 39,600 17,500 7,980.07 39,600 17,500 943.78 39,600 17,500 279.11 39,600 17,500 226.30
16 1,300 600 7,937.63 1,300 600 360.02 1,300 600 53.04 1,300 600 50.80
32 100 0 4,741.35 100 0 18.36 100 0 10.72 100 0 10.88
64 100 0 16,648.56 100 0 1,025.15 100 0 35.41 100 0 12.20

4 0 0 0.01 0 0 0.01 0 3,000 23.83 0 17,219,215 62,878.35
8 0 0 0.01 0 0 0.01 0 0 0.01 0 800 3.76

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 9,917,100 106,051.85 1,593,000 9,917,100 55,846.69 1,593,000 31,786,200 150,363.03 1,509,600 77,042,212 318,625.08

2 83,400 1,331,200 6,398.80 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 4,096,000 23,075.13 1,216,800 4,163,200 23,885.04 1,216,800 64,964,997 268,775.27 0 0 0.00
8 212,100 397,100 13,592.47 212,100 397,100 2,797.85 212,100 398,100 2,138.01 212,100 591,000 3,900.05

10 39,600 18,700 7,983.78 39,600 18,700 627.50 39,600 18,700 239.67 39,600 18,800 342.99
12 39,600 16,900 8,607.45 39,600 16,900 931.75 39,600 16,900 272.20 39,600 16,900 328.24
16 1,300 600 7,852.56 1,300 600 358.92 1,300 600 47.95 1,300 600 80.06
32 100 0 2,384.50 100 0 13.15 100 0 10.36 100 0 10.44
64 100 0 9,926.06 100 0 465.86 100 0 43.02 100 0 15.48

4 0 0 0.01 0 300 2.61 0 46,828,818 152,172.48 0 0 0.01
8 0 0 0.01 0 0 0.01 0 300 2.59 0 185,000 903.73

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,860,500 79,820.79 1,509,600 4,596,800 29,082.70 1,509,600 112,228,415 423,701.56 292,800 812,300 5,581.01

Radix = 8 and Modulus = 268,399,993

Radix = 16 and Modulus = 134,207,779

Pattern 
Length

Radix = 4 and Modulus = 536,799,997
Window Length = 4 Window Length = 8 Window Length = 10 Window Length = 12

Cell Colours
Pattern To Short
PL Shorter than WL
PL Same Length as WL
PL Longer than WL
Pattern does not Exist
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Table 7: Search results for Radix equal to 4, 8, and 16 (with small modulus) showing 

the number of matches and spurious hits as well as the time required for each 

search. 

 

Table 8: Search results for Radix equal to 16 (with large modulus), and 32 (with 

both modulus) showing the number of matches and spurious hits as well as the time 

required for each search. 

Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms)
2 83,400 1,331,200 6,929.20 83,400 5,068,200 42,972.12 0 0 0.00 0 0 0.00
4 1,216,800 4,096,000 25,429.05 1,216,800 4,124,500 24,998.77 1,216,800 12,727,900 84,896.66 0 0 0.00
8 212,100 397,100 13,170.74 212,100 397,100 2,217.73 212,100 397,400 3,084.95 212,100 406,200 14,823.52

10 39,600 18,700 7,175.75 39,600 18,700 543.69 39,600 18,700 307.08 39,600 18,700 321.77
12 39,600 16,900 5,952.68 39,600 16,900 987.48 39,600 16,900 387.78 39,600 16,900 323.96
16 1,300 600 5,801.42 1,300 600 301.45 1,300 600 69.84 1,300 600 80.14
32 100 0 2,161.91 100 0 12.52 100 0 13.16 100 0 40.23
64 100 0 9,069.78 100 0 497.28 100 0 24.36 100 0 15.86

4 0 0 0.01 0 0 0.01 0 2,815,208 12,937.62 0 0 0.01
8 0 0 0.01 0 0 0.01 0 0 0.01 0 7,000 159.99

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,860,500 75,690.56 1,593,000 9,626,000 72,531.08 1,509,600 15,976,708 101,721.48 292,800 449,400 15,765.50

2 83,400 1,304,800 6,211.09 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 4,016,900 22,757.56 1,216,800 11,824,300 61,275.58 0 0 0.00 0 0 0.00
8 212,100 396,800 10,978.55 212,100 396,800 2,075.84 212,100 409,600 3,032.00 212,100 7,275,300 34,387.04

10 39,600 18,700 6,102.47 39,600 18,700 465.20 39,600 18,700 317.85 39,600 22,500 351.25
12 39,600 16,900 6,234.25 39,600 16,900 670.15 39,600 16,900 377.88 39,600 16,900 363.80
16 1,300 600 4,935.72 1,300 600 255.94 1,300 600 74.05 1,300 600 66.91
32 100 0 1,781.10 100 0 11.89 100 0 11.43 100 0 10.50
64 100 0 7,208.96 100 0 281.77 100 0 34.36 100 0 16.60

4 0 0 0.01 0 5,422,600 17,529.07 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 1,500 12.52 0 6,377,301 29,172.08

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,754,700 66,209.73 1,509,600 17,679,900 82,565.46 292,800 447,300 3,860.10 292,800 13,692,601 64,368.19

2 83,400 1,304,800 6,580.30 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 4,016,900 24,121.48 1,216,800 4,381,500 36,694.85 0 0 0.00 0 0 0.00
8 212,100 396,800 13,485.66 212,100 396,800 2,642.78 212,100 397,000 13,215.78 212,100 769,900 16,947.70

10 39,600 18,700 7,778.40 39,600 18,700 532.98 39,600 18,700 343.88 39,600 18,700 359.20
12 39,600 16,900 6,335.18 39,600 16,900 809.63 39,600 16,900 368.78 39,600 16,900 343.16
16 1,300 600 6,200.93 1,300 600 330.79 1,300 600 78.19 1,300 600 71.58
32 100 0 2,262.87 100 0 11.46 100 0 10.36 100 0 14.77
64 100 0 9,337.43 100 0 358.17 100 0 28.30 100 0 25.30

4 0 0 0.01 0 593,500 2,366.77 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 0 0.01 0 312,800 1,715.91

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,754,700 76,102.29 1,509,600 5,408,000 43,747.45 292,800 433,200 14,045.32 292,800 1,118,900 19,477.63

Pattern 
Length

Radix = 16 and Modulus = 1,073,499,991
Window Length = 4 Window Length = 8 Window Length = 10 Window Length = 12

Radix = 32 and Modulus = 1,073,499,991

Radix = 32 and Modulus = 59,599,993
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Table 9: Search results for Radix equal to 128 (with three different modulo) 

showing the number of matches and spurious hits as well as the time required for 

each search. 

One can observe the most interesting situation from these tables by scrutinizing the 

bottom three rows in each table.  There are spurious hits listed in several of these cells 

where we know the search pattern does not exist in the text file.  They should not be 

caused by duplicate hash values simply because there seem to be too many (91 million 

for a radix of 128 and a modulus of 1,073,499,991) to have such a simple cause as hash 

bucket collisions.  We have yet to decode the meaning of these because there does not 

appear to be any obvious reason for them appearing where they do; and no obvious 

Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms)
2 83,400 109,500 7,457.05 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 0 8,218.98 0 0 0.00 0 0 0.00 0 0 0.00
8 212,100 0 9,915.62 212,100 0 15,208.48 212,100 360,301 14,368.35 0 0 0.00

10 39,600 0 5,020.73 39,600 0 433.37 39,600 400 242.10 39,255 408,331 19,923.22
12 39,600 0 5,334.82 39,600 0 666.62 39,600 0 272.08 39,255 0 257.72
16 1,300 0 4,219.03 1,300 0 204.65 1,300 0 42.83 1,288 0 65.88
32 100 0 2,880.74 100 0 32.15 100 0 10.11 99 0 10.81
64 100 0 7,537.11 100 0 360.05 100 0 24.36 99 0 250.03

4 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 342,500 1,768.52 0 0 0.01

12 0 0 0.01 0 0 0.01 0 0 0.01 0 297 5.32
TOTAL 1,593,000 109,500 50,584.11 292,800 0 16,905.36 292,800 703,201 16,728.38 79,996 408,628 20,513.01

2 83,400 0 6,376.74 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 0 11,282.69 1,216,800 98,045,116 429,285.83 0 0 0.00 0 0 0.00
8 212,100 0 9,351.60 212,100 0 1,187.13 212,100 1,600 9,512.54 212,100 102,888,908 447,346.41

10 39,600 0 4,313.34 39,600 0 367.80 39,600 0 245.40 39,600 4,800 221.09
12 39,600 0 4,683.17 39,600 0 611.88 39,600 0 292.71 39,600 0 190.28
16 1,300 0 4,651.45 1,300 0 143.97 1,300 0 36.78 1,300 0 25.65
32 100 0 4,320.12 100 0 47.37 100 0 24.05 100 0 29.30
64 100 0 7,955.65 100 0 227.82 100 0 66.79 100 0 58.44

4 0 0 0.01 0 91,505,516 335,442.46 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 2,200 117.98 0 0 0.01

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 0 52,934.80 1,509,600 189,550,632 767,314.28 292,800 3,800 10,296.27 292,800 102,893,708 447,871.19

2 83,400 0 9,959.80 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 0 14,461.22 1,216,800 106,923,398 576,194.72 0 0 0.00 0 0 0.00
8 212,100 0 14,144.82 212,100 0 1,198.87 212,100 442,800 19,995.07 212,100 60,166,400 318,647.61

10 39,600 0 7,145.12 39,600 0 363.99 39,600 0 297.86 39,600 600 250.99
12 39,600 0 7,211.02 39,600 0 660.82 39,600 0 372.64 39,600 0 235.89
16 1,300 0 6,985.85 1,300 0 160.98 1,300 0 78.27 1,300 0 38.68
32 100 0 5,077.56 100 0 54.39 100 0 35.57 100 0 40.12
64 100 0 9,940.52 100 0 224.53 100 0 106.11 100 0 94.95

4 0 0 0.01 0 26,573,497 136,529.25 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 1,000 10.50 0 45,666,775 228,391.15

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 0 74,925.93 1,509,600 133,496,895 715,387.57 292,800 443,800 20,896.03 292,800 105,833,775 547,699.41

Pattern 
Length

Radix = 128 and Modulus = 1,073,499,991

Radix = 128 and Modulus = 2,147,483,647

Radix = 128 and Modulus = 16,699,901
Window Length = 4 Window Length = 8 Window Length = 10 Window Length = 12
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pattern as to where they occur and how many there are of them.  They appear for all 

radix/modulus combinations except a radix of four.  They also do not occur when the 

window length is four.  Other than those two situations, they appear at least once in every 

radix/modulus combination.  At the same time, they do not seem to favour a particular 

cell for any combination.  Its looks as if they appear at random with no particular rhyme 

or reason.  Nevertheless, we do not regard these as errors because all of them correctly 

show that our application did not find any occurrences, and correctly reported them as 

being spurious hits.  Since we could uncover no reason from our analysis, finding one is a 

definite recommendation we will make later. 

Another observation worth noting from these tables concerns the speed with which our 

application determines no match is found (see cells in bottom three lines that do not have 

those mysterious reportings of spurious hits.) 

Our application can determine when a search pattern does not 
exist in less than 0.01 milliseconds, which we used as a default 
for faster times because our significant digits left us with a limit 
of two decimal places.   

Observation 13: Our application is blazing fast at determining when a string does 

not exist in a text file. 

5.9.2 False Positives by Category 
At the top end of the tables, where PL is shorter than WL analyses occur, we also find 

some large numbers for spurious hits.  These are much more understandable because of 

the search mechanism we use to find matches in this area; see Algorithm 3 on page 72.  

We search all fingerprints that fall between the minimum and maximum fingerprint 

values calculated by our application using Equation 9 and Equation 10.  Figure 8 below 

shows the distribution of all spurious hits for all combinations of radix/modulus and 

category.   
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Figure 8: Number of spurious hits for each radix/modulus combinations. 

The diagram shows how the spurious hits are most prominent in the back row “PL shorter 

than WL” and the front row “Pattern does not Exist” categories.  In both cases, we find 

the largest values in the categories having a radix of 128 and the 2 largest modulo.  Once 

again we have no explanation for why the non-existent patterns are even there, let alone 

so large.  However, we can explain why the radix 128 values for large modulo exist in the 

“PL shorter than WL.”  The distance between the minimum and maximum fingerprints, 

we calculate using Equation 9 and Equation 10 on page 63 can be very large, thereby 

including all records with fingerprints between those two values.  In contrast, the diagram 

shows radix 128 with the lowest modulus as the only combination having very few if any 

spurious hits in all categories.   
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False positives occur mainly in the PL<WL category and in the 
“Pattern does not Exist” category.   

Observation 14: The categories with the most false positives. 

5.9.3 Average Rate of Processing by Category 
Figure 9 below shows the rate (in terms of hits per millisecond) at which processes run in 

each of the categories for each of the radix/modulus combinations.  We decided to use 

hit/millisecond because the term milliseconds/hit produced some rather small numbers.  

When using this ‘hits per millisecond’ measure, bigger is better.  The term hit refers to 

both actual hits and spurious hits for each category.   
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Figure 9: Time to process each category of data for each radix/modulus 

combination. 

As one can see from this graph, the best times occur for the “Pattern does not Exist” 

category in each radix/modulus combination, which is the same conclusion we reached 

earlier.  This processes flies along at rates in the order of 600 to 800 hits per millisecond.  

It makes sense that this is the fastest category because there would most likely be only 

one or two characters required to validate it as a false positive in the text file.  Recall that 

these patterns are substrings of “ZZZZZZZZZZZZ” and, the Bible does not have any 

occurrences of “ZZ.”  Similarly, the longest times occur for the “PL longer than WL” 

category.  Once again, this makes sense since our approach must validate a set of 

different WL-sized substrings, which can take longer to verifying than any of the other 

categories.  The slowest radix/modulus arrangement was the 128/16,699,901 

combination, while the fastest was 16/134,207,779 combination.   

Recalling that the graph’s vertical axis is ‘hits per millisecond’ means the lower the value 

the worse the time.  There is a remarkable dip in all categories for the 128/16,699,901 

combination.  One may think this appears odd because the previous chart showed the 

same combination had the lowest number of false positives.  However, it does make 

sense because this combination is only processing actual hits, each of which requires 

validation to check every character; whereas the other averages are “washed down” by 

fast false positive validations that usually finish after only a few characters.   
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Figure 10: Performance of our approach for situations where no false positives 

occurred. 

Figure 10 is the same graph but only shows analyses that did not have any false positives.  

In other words, these are the only numbers we have that demonstrate our application’s 

speed without needing to separate false positive’s time.  As can be seen in this graph, 

these only occur for a radix of 128.  The graph also shows the category where WL equals 

PL exhibited the fastest times.  The markers that fall on the horizontal axis represent 

analyses that had false positives and were therefore not eligible for this graph since it is 

trying to capture the raw times each of the categories takes to process actual hits.   

5.9.4 Search Time Performance 
The following diagram shows an overview of the search times for all combinations of 

radix/modulus and window length.  We include this figure to give a bird’s-eye-view of 

the overall results of our experiment.   
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Figure 11: Search times for all combinations of radix/modulus and window length. 

We included this diagram to demonstrate how a group of combinations does not run 

faster than GREP, while a good number of them do.  To avoid cluttering up this part of 

the report, we break this diagram into its constituent radixes and include the individual 

graphs for each radix in Appendix D, since there are so many of them.   

The analyses where our application runs faster than GREP 
involve larger pattern lengths, starting around 10 bytes.  The 
groups that stay above the GREP line for all pattern lengths are 
all associated with a window length of four.   

Observation 15: Our application runs faster than GREP when pattern lengths are 

larger, but never beats GREP when the Index Database has a window length of 

four. 
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We also took the time results and did some cleaning of the data.  In other words, we 

removed (a) the three “Pattern does not exist” rows from our results, and (b) the best and 

worst times from our results and from GREP.  We also sorted the average times from 

smallest to largest.  Finally, we plotted the average times for our application, the average 

time for GREP, and the minimum times for our application on the graph shown in Figure 

12 below.  The horizontal axis labels on this graph also show the radix/modulus/window 

length combinations in order of fastest to slowest.   

Each radix/modulus/window length combination has eleven 
different pattern lengths to analyze one after the other.  On an 
individual basis, the fastest time for the eleven analyses is always 
faster than GREP’s average time, with the exception of 
combinations having a window length of four.  Collectively, when 
we average the times for the eleven searches, most of these 
averages times are faster than GREP’s average.   

Observation 16: The fastest time of the eleven pattern length searches in each 

radix/modulus/window length combination was faster than GREP except for 

searches involving a window length of four. 
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Figure 12: Average and lowest times for our application versus average GREP times 
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5.9.5 Comparing Actual and Spurious Hits 
In the same manner as earlier, we placed another group of diagrams in Appendix E to 

avoid cluttering up this part of the report.  We show a sample of these graphs in Figure 13 

below.  It consists of a bar chart showing the positive (actual) hits in white and negative 

(spurious) hits in black for each pattern length and each window length.   

 

Figure 13: Actual and spurious hits for Radix = 4. 

The chart shows that for all but the 32 and 64 byte search strings have about as many 

positive hits as negative (spurious hits) for this particular radix/modulus combination.  It 

also shows how this combination does not have any strange false positives in the last 

three positions where no pattern exists.    
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Chapter 6: Conclusion & Future Work 
The work required for the information presented in this report has covered a great deal 

since it began.  Aside from a few setbacks here and there, there is little doubt it was a 

success.  As its title alludes, we present this final chapter in two parts: Conclusions and 

Future Work.  Conclusion looks back at our motivation and thesis from the first chapter, 

briefly reviews not only the application we built but also the results of experiments we 

ran using it.  Future Work covers all those tasks we need to look at to make this 

application more useable such as reducing the database size and improving several parts 

of our algorithm. 

6.1 Conclusions 
We begin the Conclusion by reflecting on our original motivation and Thesis.  Following 

that, we will briefly describe both steps.  Next, we will examine the experimental results 

we achieved running our system and comparing our results to GREP.  We remind avid 

readers to review the “Observations” boxes above to refresh some of the many of 

observations we made during the experiment and while writing the respective part of this 

report.  In short, there is enough positive evidence to not only support the original thesis, 

but also to merit putting more resources into it; perhaps even for smart devices. 

6.1.1 Original Motivation 
Way back in the Introduction we began our motivation discussion describing one-step 

search engines and talked about their popularity for on-line searching.  We then 

introduced a two-step method; and more or less described it as follows: 

Few, if any, local text search applications in widespread use have a two-step approach.  

Most current local text search applications, like GREP, run on-line.  This means that 

work done in the current search is independent of, any and all other work already done in 

a previous search.  A two-step-text-search-engine builds a database in the first step; 

thereby allowing users to take advantage of doing many kinds of pre-calculations once, 

and subsequently using their results many times for any and all searches ever needing to 
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be run.  One-step applications like GREP have no memory.  Instead, they perform all 

required calculation each time they perform a search.  

Building a two-step local search engine was our motivation. 

6.1.2 Thesis  
The above motivation steered us to the following Thesis. 

We can modify the Rabin-Karp Algorithm, and configure the 

LevelDB database, to create a two-step-text-search-engine algorithm 

that will outperform the one-step-text-search-engine GREP in 

finding search patterns within local text files.   

In a general sense, the two-step application we built does beat GREP more than half the 

time.  It also is four orders of magnitude faster determining when a string does not exist.  

It also seems feasible to apply a list of tasks that will make it beat GREP every time.  We 

will present that list of tasks later. 

6.1.3 Building the Application 
We used C++ to build our application so anyone could compile and use in either 

Windows or UNIX.  There was one feature we needed a more precise timer function we 

obtained from <Windows.h> that invalidates this assumption.  However, comparable 

timer function APIs exist for UNIX that can easily replace the one we used from 

Windows.   

We also downloaded and linked LevelDB into our application.  Since LevelDB is a 

background kind of API, it had no bearing on the fact that we built our application to run 

in a command-line environment.  It has about a dozen or so possible parameters 

explained in Appendix C.  Since we used Windows, we also used Visual Studio 10 as our 

IDE, and ran our app from a DOS window.  During testing, we would ran our application 

directly from a DOS window.  For our experiments, we used a batch file to sequence 
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several analyses together.  This was especially helpful for writing the entire set of 100-

Bible Index Databases whose batch file ran overnight.  

In the end, our two-step application worked as follows.  A preprocessing step using a 

modified Rabin-Karp algorithm to create fingerprints that we save in a hash file using 

LevelDB, which we usually refer to as an “Index Database.”  After building an Index 

Database, our application used it and a set of parameters to find the positions of all 

occurrences of a search string quite quickly.  To get our application in a position to 

perform both steps we needed to write a great deal of C++ code.   

Earlier, we described several techniques from the Rabin-Karp algorithm we used to carry 

information from one fingerprint calculation forward to the subsequent fingerprint 

calculations while building the hash file.  We also built look-up tables and several other 

techniques we thought would speed everything up.  While we were building our 

application, we were thinking these kinds of improvements would significantly reduce 

the time required to build an Index Database.  Unfortunately, even though this part of the 

processing had better performance, it only characterizes about 0.1% of the total time 

actually required to build a Database Index; LevelDB used the other 99.9%.   

We made several other substantial improvements in the Rabin-Karp Algorithm worth 

mentioning.  First, we built the functionality to perform searches for five different 

circumstances: (1) (PL - WL) is too big, (2) PL<WL, (3) PL=WL (this is the only 

function the original Rabin-Karp algorithm covered), (4) PL>WL, and (5) search Pattern 

does not exist.  Second, we had to build the functionality to understand the architecture 

type, decide whether integers were Little Endian or not, and, if so, switch the integer’s 

byte arrays into Big Endian format for use in LevelDB.   

Finally, we had to not only test our application, but also design an experiment to help 

produce evidence for our thesis.  We did both.  Earlier we described how our testing went 

smoothly, demonstrating only minor issues that we repaired easily compared to the above 

work.  The following section describes our observations during the experimental portion 

of this work. 
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6.1.4 Experiment and Results 
After we constructed and tested our application, the next part of our work involved us 

designing and running an experiment that would help decide how our application faired 

against GREP.  We had a rather lengthy, but familiar, list of parameters to accommodate 

in our experiment.  These were: (1) radix, (2) modulus, (3) window length, and (4) search 

pattern length.   

Our Index Database structure incorporated the first three of these parameters.  We used 

four radixes: 4, 16, 32, and 128.  Next, first we used one modulus for each radix based on 

not allowing any calculation to overflow a signed 32-bit integer.  Recalling a modulus 

must be a prime number, for these modulo we found the largest prime number smaller 

than (231/radix).  This approach resulted in four experiments, to which we added four 

more modulo; one for radix 16 and 32, and two for radix 128.  This makes eight 

combinations so far.  For each of these combinations of radix and modulus we built four 

Index Databases, one for each of our four window lengths: 4, 8, 10, and 12.  In the end, 

we ran 36 step-one processes to begin our experiment that resulted in 36 different Index 

Databases.   

Next, we needed to test these databases against a range of pattern lengths.  We used two 

types of search patterns to accomplish this.  First, we used eight patterns whose strings 

we knew existed in the text file, and whose lengths were 4, 8, 12, 16, 32, and 64 bytes.  

Second, we used three patterns we knew did not occur in the text file whose lengths were 

4, 8, and 12.  This gave us eleven Patterns to run through each of the 36 Index Databases 

resulting in 396 different runs.   

By far the fastest of these runs were for patterns that we knew did not occur in the text 

file.  All of these, with the exception of a few surprising runs having false positives, ran 

at speeds that were faster than 0.01 milliseconds.  In fact, the fastest of these searches 

occurred for a radix/modulus combination of 128/1,073,499,991; a window length of 4; 

and a pattern length of 4.  This search took a trifling 0.0075ms.  At the same time, our 

slowest search occurred for a radix/modulus combination of 128/ 2,147,483,647, a 
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window length of 8, and a pattern length of 4.  This search took an astounding 

576,194.72ms to find 1,216,800 occurrences.  The reason this search took so long was the 

time needed to rule out the huge number of false positives, 106,923,398 of them to be 

exact.   

During our analysis of the results, we noted that in cases like above where the pattern is 

smaller than the window length, we use a ‘from fingerprint’ and a ‘to fingerprint’ to find 

all locations that may contain the search pattern.  In such situations, especially with a 

large radix, the distance between the ‘from’ and the ‘to’ fingerprints is so large our 

application must sift through millions of spurious fingerprints looking for the search 

pattern.  The reason for the slowness for these types of searches is a practical matter of 

volume of work rather than some sophisticated theoretical justification.   

Naturally, therefore, GREP was faster than our application for most searches where the 

pattern length was less than the window length.  However, this was the only category 

where GREP was a clear winner.  In all other categories, especially, when searching for a 

string we know does not exist, our application was faster than GREP with a minor 

exception here and there.   

6.1.5 Final Conclusion 
Now that we have conducted all the experiments and examined the evidence from several 

interesting perspectives, we submit that we should look at the evidence from two points 

of view, holistically and individually.  From a holistic standpoint there is enough positive 

evidence to not only support our original thesis, but also to merit putting more resources 

into the application, perhaps with an eye towards smart devices.  From a more individual 

viewpoint, our experimental results did not help us make statements one way or another 

about a combination of values for any of the four parameters (radix, modulus, window 

length, and pattern length) that was the best; or, that was even better than most.  We have 

a few indications about the worst, like window lengths of 2 and 4; but not best.  It is 

probably more descriptive to say that our application is not yet mature enough to reveal 

sufficient evidence to support these kinds of decisions. 
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We will address all of these issues in our recommendations that follow. 

6.2 Recommendations and Future Work 
Our experiments show that this new approach has a great deal of potential to help 

improve the performance of local searches.  Moreover, although we did not even look at 

wider searches, our application could help in searching enterprise data stores as well.  

However, before we can even consider performing these kinds of search, we must ensure 

we make several improvements our experiments brought to light. These are as follows. 

6.2.1 Find out why False Positives Appeared in Non-existent Strings 
One of the most frustrating parts of our results was the existence of false positives for 

strings we know did not exist in the file.  We need to investigate why and how strings 

like “ZZZZ” and “ZZZZZZZZ” and “ZZZZZZZZZZZZ” could produce fingerprints that 

existed in an Index Database; in one case 91,505,516 times.  We checked the source file 

and verified the strings themselves did not occur.  Therefore, we must do some research 

to find out what is happening in these cases.  

6.2.2 LevelDB Tuning 
We mentioned earlier in the report that LevelDB has several parameters we can use to 

tune the database.  Given the fact that building the Index Database is slow and end-up 

being huge, we must investigate them and adjust them to make our step-one perform as 

nicely as step-two does.   

6.2.3 Improve Approach to Small Search Strings 
Searches whose pattern length (PL) is less that the window length (WL) are difficult and 

much more susceptible to performance lags due to a wide search area.  In fact, this 

formulation and approach cannot beat GREP’s performance for any combination of 

parameter values.  As we just pointed out our range of fingerprints is so wide, we find 

that most of the time spent searching is in eliminating false positives.  We need to find a 

way to tighten up the way we handle these types of searches. 
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6.2.4 Remove GREP’s Advantage 
Throughout the report, we have reminded readers about GREP counting lines only.  By 

far the most time consuming part of our algorithm is verifying character strings in the text 

file match the search string.  Therefore, when a line has more than one occurrence of a 

search pattern our application must verify them all; whereas GREP only need look at the 

first occurrence.  This means our comparisons are biased toward GREP.  It is essential we 

find a mechanism to correct this biased.   

6.2.5 More Documents 
Currently we have our application configured to only work with one text file at a time.  

There is no reason why the application can produce one index file for a set of documents. 

6.2.6 Find Parameters 
A theme of our experiment was to vary the parameters one at a time and compare the 

results in terms of performance, which was successful.  However, we had trouble 

identifying a set of parameters that stood out as the best.  This leaves our basic question 

as to, “what are the best parameters?” unanswered.  We need another experiment 

designed without any GREP comparison.  This experiment will have an objective to 

identify the best set of parameters. 
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Appendix A: Formalizing Characters, Strings, and Search 

A.1: Introduction 

This chapter covers the following topics.  To begin, we briefly repeat a point from the 

Introduction concerning the strings involved in our work, to emphasize their importance.  

Next, we commence our formal system discussing a string’s most important element, a 

character, (or symbol.)  We discuss the difference between the two and describe some of 

their important properties.  We then use that formalism to move the discussion into 

strings, their characteristics, and their operators and functions.  The discussion is 

impressively both broad and deep, due to the importance of string analysis in science.  

Finally, we once again address our favourite topic, the set of strings involved in this 

study.  This time, we dedicate a whole section to each of them discussing their role in the 

analysis and a set of useful properties and characteristics.  Finally, to make or formal 

definitions stand out we use a simple bullet list format (NOTE: We do not use bullets or 

bullet lists anywhere else throughout the text except for this.): 

The Chapters that follow make use of a string.  In fact, we have made it abundantly clear 

strings are the cornerstone of this work.  We therefore begin our discussion providing a 

rigorous formalism to strings, their elements, and a few characteristics.  This formalism 

will provide mathematical and notational mechanisms needed to include strings, their 

elements, and their characteristics in subsequent formal discussion.  Doing this, forces us 

to begin with a string’s atomic unit, a character (or symbol.)   

• A text string (S) is a contiguous set of characters.   

• S has a length (SL) equal to the number of characters it has (i.e., SL = |S|). 

• Every character in a text string occurs at a unique position (i) within a string.  The 

first character in a string occurs at position i = 0.  The last character in a string 

occurs at position i = SL - 1.   
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An easy way to think of a text string is as an array of characters where the array index 

acts as a position within the string.  As above, the array representing the text string S has 

an index (i) with a range [i = 0 to SL - 1].  Arrays and their indexes offer the kind of 

accurateness we need when referring to a character at a particular position.  For instance, 

S[j] or Sj, refer to the jth element of string/array S.  Similarly, we use S[i…j] or Si   j 

when referring to substrings of S beginning at position i and ending at position j (where, i 

< j and j < SL.) 

A.2 Brute-Force Algorithm 

Armed with this information we can now examine a method of finding one string inside 

another.  To that end, we turn to giving a formal description of the brute-force algorithm 

for text search.  We hope this will define a benchmark of sorts on how the most basic 

form of text searching is accomplished.  Before we can give a brute-force solution, we 

must first clearly define a problem.  We have described it in words above.  Now we 

formally defined the text search problem as follows.  

• Given a pattern P of length PL and a text file T of length TL (where PL is much 

smaller than TL), search all position l of T and report all occurrences where 

𝑷𝟎𝑷𝑳−𝟏 =  𝑻𝒍𝒍+𝑷𝑳−𝟏 (l = 0, 1,…, TL-PL).  

We treat the terms Brute-Force and Naïve as being interchangeable.  They both describe 

a procedure that checks the first position in a text file to see if its following characters 

match every character in the search pattern.  It records the results and moves to the 

second character in the text file to perform the same check.  It repeats this process until it 

has checked each substring in the text file having a length of PL.   

Earlier we defined Text Search as a process of finding the occurrences of a search pattern 

P of length PL, in a text file T of length TL (where SL << TL.)  Since Cormen gives 
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such a succinct description of a naïve (and brute-force) text-search algorithm, we 

reproduce it here as follows (Corman, Leiserson, Rivest, & Stein, 2001) 

Naïve-Text-Search(T, P) 

2 PL ← Length(P)  

1 TL ← Length(T)  

3 for  s ← 0 to TL – PL 

4 do if P[0 … PL-1] == T[s … s+(PL-1)]  

5  then print “Pattern occurs at position” s 

Algorithm 4: Naive Text-Search 

While easy to understand and easy to program, having a worst-case running time of 

Θ(nm) makes the Brute-Force method unsatisfactory for most applications including 

ours.  Even the practical running time of this method is still too slow for large texts.  

Consider for instance, when T represents one or more web sites, TL gets extremely large 

(109 characters is a realistic number in such an application) the shear bulk of characters to 

be checked makes it obvious that response times would  be totally inadequate for modern 

search applications. 

The worst-case for this solution operates in time O(PL(TL – PL + 1)).  A worst-case 

scenario exists when both P and T contain the same repeated character (recall that 

overlaps are allowed.)  In such a case, the number of comparisons made is Θ(PLTL) 

because there is an occurrence of P at each of the first TL – PL+1 positions in T; and the 

method performs exactly PL(TL-PL+1) comparisons.  For instance, if P = aaa and T = 

aaaaaaaaaa (PL=3, TL=10,) then the worst-case is encountered with exactly 24 

comparisons being made.  
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The algorithm gets a text file T and a search pattern P as parameters.  Notice at line 3 

how a for-loop covers each position in the text file one position (byte) at a time.  At each 

offset, we align the left end of P with the left end of T and compare the characters of P 

and T left-to-right until a mismatch occurs or P is exhausted.  If a mismatch occurs, we 

continue below at shifting.  If P is exhausted without a mismatch, we report an 

occurrence at the position of the left end of P.  If, however, all characters of P match all 

characters of T, we report an occurrence as above.  P is then shifted one character to the 

right by returning to line 3, where a string comparison is repeated beginning at the left 

end of P.  The for-loop is repeated until the right end of P is at location TL; which is one 

character past the right end of T. (Corman, Leiserson, Rivest, & Stein, 2001) and 

(Gusfield, 1997)}   

A.3 Character Characteristics 

The atomic unit of a string is a character (or symbol).  Later in this chapter, we deal with 

our preference to use the term character over the term symbol because the work we do 

deals mainly with strings taken from the English language.  In that sense, it feels more 

natural to refer to English characters than to refer to English symbols.  The result is that 

our preference is to use character.  However, we may encounter situations where we find 

the term symbol more convenient and precise.  Whichever sounds better is likely to be 

our choice.  This section formalizes these concepts. 

A.3.1 Characters and Symbols 

It is difficult to overstate the importance of symbols in general, and characters in 

particular; their usage after all constitutes visible portion of an alphabet.  They form the 

basic building blocks for some major branches of science that deal with information; 

library science, information management, communications, and computer science to 

name a few.  They also form the basic building block of this work.  Although, our main 

goal is manipulating strings, we must first understand a string’s elements, their 
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characters, and some of their fundamental properties before we can evaluate them when 

they occur in strings.   

The programming language C illustrates the two-sided property of characters nicely.  In 

C, a char type has the unique property that it is both a character type and an integer type 

simultaneously.  In other words using a character’s integer representation, we can write 

its alphabet as a set of integers by, Σ = {i |i = 0 … (|Σ|-1)}.  We can also write it as a set 

of characters by, Σ = {ci |i = 0 … (|Σ|-1)}.  Looking at ASCII character ‘a’ as an example, 

it has the following bit code: 0110 0000.  Interpreting these eight bits as an integer 

evaluates to a code of (1*25 + 1*26) = 96.  Thus, C regards lines: char c = ‘a’; and 

char c = 96; as both valid and equivalent.   

We take advantage of this equivalence throughout our application code.  In addition, later 

in this document, we will treat characters as symbols and integers interchangeably 

depending on the situation.  It is important to notice that in this case we are using zero-

based addressing as a convention that is popular in textbooks.  We also find it more 

helpful programming in C.  However, one-based addressing is just as common in the 

literature. 

A.3.2 The ASCII Character Set 

The most popular encoding for English language texts is ASCII (American Standard 

Code for Information Interchange) defined by (ANSI13.4-1968. See 

http://www.research.att.com/~bs/glossary.html#GANSI)  We use ASCII in our analysis 

because we are restricting our study to English language corpuses.  Even though ASCII 

has elements that we typically refer to as symbols, the vast majority of ASCII includes all 

upper and lower-case English letters, punctuation marks, digits, and arithmetic operators.  

We will therefore henceforth begin referring to most ASCII symbols as characters.  

• ASCII is a simple one-byte character encoding where each element in the 

alphabet has a unique one-byte bit arrangement.  At the same time, the seven 

http://www.research.att.com/~bs/glossary.html#GANSI
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lower order bits from that same byte define the character’s code as an integer.  As 

we demonstrated earlier, this means each ASCII character has a natural zero-

based code build into its byte.  

While it may be tempting to refer to an ASCII code as an “index,” we will resist the 

temptation.  The reason for this is that later we use the term “index” to refer to a 

character’s position within a string.  It is vital we do not mix-up a character’s code (an 

integer value,) for its index-position within a string-(another integer value.)  The two are 

vastly different concepts. 

Alphabet index or ASCII code, it does not matter what name one calls it; there can never 

be any confusion about its value.  We calculate it from the lower seven bits of its byte; 

using the eighth bit for a sign.  Incidentally, we ignore negative ASCII codes.  Appendix 

A shows an ASCII table that demonstrates |ASCII|=128.  The codes go from 0 up to 127.  

Another way of confirming a code’s value range is to observe that 27 = 128, then minus 

one for 0 gives 127 as our upper limit.   

A.3.3 String Characteristics 

Having introduced the basic atomic elements of strings, we are now in a position to 

discuss some characteristics of strings.  Our analysis later will make use of most of these 

characteristics.  The first point to understand is that we use the term string and sequences 

synonymously to mean an ordered finite-length set of characters from an alphabet.  We 

use string or sequences depending on the context; but we heavily prefer to use string. 

Another point to notice is our approach deals with strings that may or may not have any 

meaning to us.  The issue of meaning does not have any role in our analysis.  We simply 

aim to analyze the juxtaposition of characters in a string and use that result to help us find 

positions where that string occurs in other files.  The features and characteristics of these 

strings are all the tools we need for our approach.   
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A.3.4 String Nomenclature and Properties 

We begin by formalizing several interrelated terms and concepts needed to describe a 

string’s features and characteristics.  They designate not only strings themselves, but also 

their characteristics, and several operations we perform on them during our approach.  

The following list terms and concepts have been adopted from (ref=GUSFIELD; 

Algorithms on Strings, Trees, and Sequences).  We repeat earlier definitions of a string 

for completeness).   

• A string S is a finite-length set of contiguous characters written from left to right.  

It is helpful to think of a string as a one-dimensional array of characters. 

• The characters contained in a string belong to some finite alphabet Σ.  Our 

analysis relies on the ASCII alphabet or some subset of it. 

• Σ* denotes a set of every finite length string that can be formed using characters 

from the alphabet Σ.   

• The empty or NULL string, denoted ɛ, contains no characters.  Incidentally, ɛ 

belongs to Σ* as well as every other string having ɛ as a suffix, prefix, or both.  

• Each character in a string exists at a location or position (as we prefer) within the 

string.   

• The position is calculated by counting the number of characters beginning at the 

first character on the left end of a string; which is assigned a position of 0.  The 

second character has a position 1, and so on.  It is especially important to note that 

we adopt a convention where the first position in a string is zero (not one.)  It is 

not uncommon to encounter in the literature, not only descriptions for string 

manipulation using positions that are one-based, but also, use several other terms 



Page | 126 

describing a character’s position in a string.  For instance, depending on the 

context, we sometimes conveniently refer to a position as an offset; a location; or, 

shift from the beginning of a string. 

• We have already seen earlier, the length of a string S is the number of characters 

it contains, and is denoted SL, or mathematically ǀSǀ.  Moreover, using a zero-

based approach, the position of the last character in a string is ǀSǀ-1 or SL-1. 

• S[i] signifies the character of S occurring at position i.  Remember, zero-based 

positioning means all positions must fall in the range: 0 <= i <= ǀSǀ-1  

• S[i,…,j] is a substring of S that starts at position i and ends at position j (where i 

≤ j).  

• Sometimes, we shed the square brackets finding it convenient to denote a 

substring of S that begins at location r and has a length of n using the term: 𝑺𝒓𝒏.  

Furthermore, in situations where we know n by the context (or understand it), we 

omit n and simply use Sr instead.  This nomenclature also helps us reduce some 

equation’s size and clutter when describing string characteristics and properties. 

• Concatenating two strings S and T produces a new string, written as ST, 

consisting of the characters from S followed by the characters from T.  The length 

of this new string is ǀSǀ + ǀTǀ. 

• The substring S[0,…,i] is a prefix of S, beginning at the first position and ending 

at location i.   

• Similarly, the substring S[i,…,ǀSǀ-1] is a suffix of S that begins at position i and 

ends at the last position in S.   
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• Note that ɛ is both a prefix of and a suffix of all strings.  Similarly, a string S is 

also both a prefix of and a suffix of itself.  To distinguish these trivial cases, the 

term proper is prepended to prefix, suffix, or substring if the prefix, suffix, or 

substring is (a) not the entire string S[i,…,j], where i=0, and j=|S|-1, and (b) is not 

the empty string ɛ.  For instance, a substring S[0,…,3]of S is a proper prefix of S, 

iff |S| > 4.   

• It is an error to define a substring S[0,…,3]of S if |S| < 4. 

• When comparing a character from one string with a character from another string, 

they match if their characters (and/or codes) are equal; otherwise, they mismatch.   

• When two strings (say S and R) of the same length n are compared, we say string 

S matches string R if every character in respective positions from the left to the 

right match (i.e., they match iff S[i]=R[i] for all i=0,…,n-1); otherwise, S and R 

mismatch.   

• When two strings have different lengths, we compare characters in the shorter 

string to corresponding characters in a proper prefix of the longer string.  If each 

character in the shorter string matches the corresponding characters in the proper 

prefix of the longer string, we say that the shorter string matches the longer string; 

otherwise, they mismatch.  

A.4 The Text Document 

Among one of the most important strings we deal with is a text file.  When a user begins 

an analysis, they must supply a string T called a text file of length TL as the object they 

wish to search.  Optionally, they can also provide a string P called a search pattern of 
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length PL they wish to find in T (where PL<<TL).  As described earlier, we can solve 

this problem by searching for all occurrences of P in a string T.  In a general sense-that 

is, while not following the earlier algorithms Brute-Force or Rabin-Karp-the results of 

our analysis amounts to repeating a comparison for all proper substrings of T having a 

length PL, from position 0 to position TL-PL; and, reporting an occurrence at offset l 

whenever 𝑷𝟎𝑷𝑳−𝟏 =  𝑻𝒍𝒍+𝑷𝑳−𝟏 .  Fortunately, we do not need to perform so many 

operations to obtain the same results.  The point here is that a search for a pattern P must 

report every occurrence of P in the text file T. 

When we open a text file, we do it in binary mode so we do not have to worry about the 

end-of-line issues associated with opening them as text files.  Once opened, T has 

positions that start at zero for the first character and end at (TL-1.)  They are the source 

of values used to satisfy an information need such as when declaring, “a pattern 

occurrence was discovered at this position in T.”  Our application provides occurrence 

positions in a file or on the screen after performing a search process. 

A.5 The Search Pattern 

A search pattern is another value a user must supply when using step-two the matching 

step.  As we have reiterated many times throughout this report already, a user supplies a 

string P called a search pattern of length PL they wish to find.  The application then 

returns a file containing the position of each occurrence of that pattern in a text file.   
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Appendix B: ASCII Table 

Dec Hex Binary Character Description 
0 00 00000000 NUL null 
1 01 00000001 SOH start of header 
2 02 00000010 STX start of text 
3 03 00000011 ETX end of text 
4 04 00000100 EOT end of transmission 
5 05 00000101 ENQ enquiry 
6 06 00000110 ACK acknowledge 
7 07 00000111 BEL bell 
8 08 00001000 BS backspace 
9 09 00001001 HT horizontal tab 
10 0A 00001010 LF line feed 
11 0B 00001011 VT vertical tab 
12 0C 00001100 FF form feed 
13 0D 00001101 CR enter / carriage return 
14 0E 00001110 SO shift out 
15 0F 00001111 SI shift in 
16 10 00010000 DLE data link escape 
17 11 00010001 DC1 device control 1 
18 12 00010010 DC2 device control 2 
19 13 00010011 DC3 device control 3 
20 14 00010100 DC4 device control 4 
21 15 00010101 NAK negative acknowledge 
22 16 00010110 SYN synchronize 
23 17 00010111 ETB end of trans. block 
24 18 00011000 CAN cancel 
25 19 00011001 EM end of medium 
26 1A 00011010 SUB substitute 
27 1B 00011011 ESC escape 
28 1C 00011100 FS file separator 
29 1D 00011101 GS group separator 
30 1E 00011110 RS record separator 
31 1F 00011111 US unit separator 
32 20 00100000 Space space 
33 21 00100001 ! exclamation mark 
34 22 00100010 " double quote 
35 23 00100011 # number 
36 24 00100100 $ dollar 
37 25 00100101 % percent 
38 26 00100110 & ampersand 
39 27 00100111 ' single quote 
40 28 00101000 ( left parenthesis 
41 29 00101001 ) right parenthesis 
42 2A 00101010 * asterisk 
43 2B 00101011 + plus 
44 2C 00101100 , comma 
45 2D 00101101 - minus 
46 2E 00101110 . period 
47 2F 00101111 / slash 
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Dec Hex Binary Character Description 
48 30 00110000 0 zero 
49 31 00110001 1 one 
50 32 00110010 2 two 
51 33 00110011 3 three 
52 34 00110100 4 four 
53 35 00110101 5 five 
54 36 00110110 6 six 
55 37 00110111 7 seven 
56 38 00111000 8 eight 
57 39 00111001 9 nine 
58 3A 00111010 : colon 
59 3B 00111011 ; semicolon 
60 3C 00111100 < less than 
61 3D 00111101 = equality sign 
62 3E 00111110 > greater than 
63 3F 00111111 ? question mark 
64 40 01000000 @ at sign 
65 41 01000001 A  
66 42 01000010 B  
67 43 01000011 C  
68 44 01000100 D  
69 45 01000101 E  
70 46 01000110 F  
71 47 01000111 G  
72 48 01001000 H  
73 49 01001001 I  
74 4A 01001010 J  
75 4B 01001011 K  
76 4C 01001100 L  
77 4D 01001101 M  
78 4E 01001110 N  
79 4F 01001111 O  
80 50 01010000 P  
81 51 01010001 Q  
82 52 01010010 R  
83 53 01010011 S  
84 54 01010100 T  
85 55 01010101 U  
86 56 01010110 V  
87 57 01010111 W  
88 58 01011000 X  
89 59 01011001 Y  
90 5A 01011010 Z  
91 5B 01011011 [ left square bracket 
92 5C 01011100 \ backslash 
93 5D 01011101 ] right square bracket 
94 5E 01011110 ^ caret / circumflex 
95 5F 01011111 _ underscore 
96 60 01100000 ` grave / accent 
97 61 01100001 a  
98 62 01100010 b  
99 63 01100011 c  
10

 
64 01100100 d  
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Dec Hex Binary Character Description 
10

 
65 01100101 e  

10
 

66 01100110 f  
10

 
67 01100111 g  

10
 

68 01101000 h  
10

 
69 01101001 i  

10
 

6A 01101010 j  
10

 
6B 01101011 k  

10
 

6C 01101100 l  
10

 
6D 01101101 m  

11
 

6E 01101110 n  
11

 
6F 01101111 o  

11
 

70 01110000 p  
11

 
71 01110001 q  

11
 

72 01110010 r  
11

 
73 01110011 s  

11
 

74 01110100 t  
11

 
75 01110101 u  

11
 

76 01110110 v  
11

 
77 01110111 w  

12
 

78 01111000 x  
12

 
79 01111001 y  

12
 

7A 01111010 z  
12

 
7B 01111011 { left curly bracket 

12
 

7C 01111100 | vertical bar 
12

 
7D 01111101 } right curly bracket 

12
 

7E 01111110 ~ tilde 
12

 
7F 01111111 DEL delete 

 

Adapted from: http://www.rapidtables.com/prog/ascii_table.htm#space  (accessed May 

30, 2012.) 

  

http://www.rapidtables.com/prog/ascii_table.htm#space
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Appendix C: Command-Line Interface 

C.1 Introduction 

We implemented our application using Visual C++ and Microsoft Visual Studio (10) VS.  

We used this tool not only because it had unsurpassed support in its IDE that includes 

optimization for very fast performance, but also because we kept it simple enough so it 

can be compile in UNIX using gcc. gcc is a public domain C compiler for UNIX by 

GNU.  In any case, this section is briefly about the salient points related to being a 

command line tool.  We discuss all available options; what they do; and, how to use 

them.  There are a few new ideas presented as well.   

C.2 Application Paths 

To run our application the only required path is to the LevelDB library file.  Some of the 

other paths required to be set are a function of how a user wants to run the application.  If 

they want to execute it from a different directory than it resides, then a path to the 

application’s home must be set.  Other than that, paths to the text file, to the database file, 

to the output file, and to the configuration files are application parameters.  

C.3 Input Parameters 

Our application is an exe called: RKLevelDB.exe.  It occupies a mere 58k of disk space, 

even less memory when running.  To use the application a user must be at a command 

prompt with all paths needed already set.  A user must then type in the application name 

and supply enough command-line parameters to satisfy the application’s need.  We 

reproduce these command-line parameters in Table 10 on the next page.  There, we give 

a context for not only discussing them, but also for the application’s capabilities they 

produce.  All parameters have a long and a short version that we juxtaposed in the table.  

We primarily refer to the long version of parameters throughout our discussion as a 

convenience, but users are free to select either.  In the next section, we highlight a few of 

the important parameters. 
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Long command short Description of command values and purpose 
--brief -b Flag suppressing verification step in search (T = suppress). 
--database-
directory= 

-d= Path to index database-DO NOT add final separator in path. 

--report-every= -e= Mb to report time statistics secs/(value supplied) Mb 
--finish-after= -f= number of Mb in text file to index (for testing) 
--generate-pattern -g Flag for selecting pattern from text file randomly. 
--help -h Flag to show list of command-line arguments. 
--window-length= -l= Length of window (number of characters) for creating 

fingerprints. 
--modulus= -m= Prime number for fingerprint modulo arithmetic. 
--database-name= -n= name of the index database 
--overwrite-
database 

–o Flag to replace index database with a new one. 

--pattern= -p= Pattern to search for. 
--radix= -r= Radix used as base of number system for characters 

& fingerprints. 
--search -s Flag to signal a search is requested (T to include search.) 
--path-to-text-file= -t= Path (including name) to the text file that is to be built or 

searched. 
--verbose-file= -v= Path (including name) of text file to append performance  

data. 
--write -w Flag to write to index database (true = write/append if 

exists) 
NOTE-1) Always use '/' as the path separator for both DOS & UNIX; and,  always 

place a '/' at the end of the path (e.g., “C:/dir1/dir2/"). 
NOTE-2) All options (except -d & -n) can be set in a configuration text file as follows: 

the program will search for and use a file with the name: --database-
directory+--database-name+.config if it exists.  Use only short option names 
in the file, only ever put one parameter on one line, always include the “=” 
sign when listing parameters requiring them and, always ensure the “-” sign 
is in col 0 on a line 

NOTE-3)  Any parameter given on command-line takes precedence over these options  

Table 10: List of command line parameters. 
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C.3 Technical Parameters 

Some parameters are optional, others are mandatory, and some are mandatory depending 

on other parameter values.  First, notice how options requiring a user-defined value have 

an equal sign on their right hand end; the equal sign is part of the parameter usage.  For 

example the proper use of the ‘finish-after’ parameter given on a command line is shown 

between the quotation marks as follows: “--finish-after=1500”.  In addition, whenever a 

directory has a space in its name, a user must enclose it within quotation marks.  In fact, 

we recommend as standard practice to use quotation marks when supplying all string 

parameter values.  We also recommend using the UNIX style for path separators, a 

forward slash (i.e., “/”) for directories.  This separator works for directories in both 

Windows and UNIX; making it easy to switch from one operating system to another.  

Using this separator will also help avoid some confusing situations with escape 

sequences.  Unfortunately, the Windows style backslash separator (i.e., “\”) is the same as 

the symbol used for an escape sequence (e.g., “\0” is the escape sequence for a NULL 

character).  With these preliminaries out of the way, we now turn to describing some 

details for parameters. 

As can be seen in Table 10, we use the same application for both creating/modifying the 

Index and searching for patterns using the (--write) and (--search) parameters 

respectively.  A user must supply one of these, but may choose to supply both to perform 

both steps in one execution.  Each of these parameters needs a group of other parameters 

to supply some of their needed details.  For instance, we already discussed above about 

two of the most important parameters needed for both types of analysis; these are the 

Index Database directory (--database-directory=) and its name (--database-name=).  

Referring to Error! Reference source not found., we can see that (--database-

directory=) option supplies a path to the target LevelDB database, and by our convention 

path names must end in a separator.  Then, the (--database-name=) option supplies the 

name for the Index Database that is a subdirectory in (--database-directory=).  Both of 

these parameters set a context for the pending action of either reading or writing to and 

from an Index Database.  One part of the application goes out and searches for the --
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database-name= subdirectory, using it if available; creating it if not.  We will have more 

say about these particular parameters later.  In addition, both require a user to supply the 

name and location of a text file they want to index or search.  They supply this file (and 

path) through the (--path-to-text-file=) parameter.   

When the search parameter is specified, a user must also supply a search pattern using 

the (--pattern=) parameter.  In addition, searching has an optional parameter called (--

brief) that disables the character-by-character verification that we initiate when a 

pattern’s fingerprint equals a text’s fingerprint.  Be wary with this command because it 

essentially says a search’s results include false positives.  We provide this switch 

primarily for research related studies.  

When a user supplies the write parameter, several optional parameters are available that 

mostly control the reporting of performance information.  Before getting to their 

description, however, there are several other parameters used primarily for testing that we 

include for thoroughness.  To begin, the (--overwrite-database) parameter tells the 

application to build a new Index Database.  Using the database directory and name 

specified in earlier parameters, the application checks to see if an Index Database exists, 

and deletes it if it does before building a new one.  Another parameter helps with testing 

the index creation step.  A (--finish-after=) parameter is supplied to ask the application 

to stop processing the text file after so many bytes.  If a user sets this option, the 

application will finish building an Index Database when it reaches the number of bytes in 

the text file supplied as the parameter’s value.   

Aside from this parameter, the write process has several interrelated parameters 

controlling the creation and filling of a file containing performance information.  A brief 

description of these parameters follows.  To begin with, the (--verbose-file=) parameter 

not only triggers the reporting of performance information, but also names the file where 

this information will be written.  Performance information is two columns, first, the 

number of bytes processed since previous write, and second, the time taken in 

milliseconds since the previous performance report.  Omitting this parameter turns off 
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performance reporting altogether.  When the parameter is included, the application 

checks to see if the file named in the parameter exists.  If it does not exist, the application 

creates it.  If, on the other hand, the file does exist the application opens it, leaves any 

existing data in tacked and appends new information at the end.  The performance 

information reported above is controlled by the (--report-every=) parameter.  This 

parameter allows a user to specify how many bytes to process between reporting 

incidents.  That is, our application has a clock and a counter of bytes processes in the text 

file.  This option takes advantage of that information by reporting the time it has taken to 

process that many bytes of the text file.   

C.4 Configuration File 

All options (except --database-directory= and --database-name=) can be set in a 

configuration text file.  We need both “--database-directory=” and “--database-name=” 

beforehand through command-line so the application can know where to search for a 

configuration file.  Referring to the above table, we can see that “--database-directory=” 

option supplies a path to the target LevelDB database, and by our convention path names 

must end in a separator.  Then, the “--database-name=” option supplies the name for the 

Index Database that is a subdirectory in --database-directory=.  Both of these 

parameters set a context for the pending action of either reading or writing to and from an 

Index Database.  One part of the application goes out and searches for the --database-

name= subdirectory, using it if available; creating it if not.  We will have more say about 

these particular parameters later.   

At the same time, another part of the program automatically searches for a file with a 

name that is similar to the Index File.  Using the long command-line parameter names 

given above we can see the configuration file name is simply the Index Database 

directory and name with a “.config” tacked onto its right hand end.  In other words, a 

configuration file has the following name and location, after substituting parameter 

values for their name below: 

--database-directory + --database-name+.config 



Page | 137 

If the file does not exist, the application continues as normally.  If the file does exist 

however, it will use the parameters specified within it; provided those values have not 

already been supplied on the command-line.  In essence, command-line supplied 

parameters take precedent over commands in a configuration file.   

C.5 Creating a Configuration File   

A configuration file is a place to put commonly used parameters that you want associated 

with a certain database.  As demonstrated above, the file lives in the same directory as the 

database itself so no confusion should arise.  Configuration files are optional meant to 

help researchers configure experiments consistently.  The following list gives some of the 

rules and formats for a configuration file that has a name equal to: “database-

directory+database-name+.config” 

• Create file with one option per line.  

• The order of option names in the file is totally arbitrary regardless of connections 

• Use only short option names (i.e., the single letter ones.) 

• Do not indent lines, ensuring the “-” is the first char on a line. 

• For example, to set the radix to 128 use “–r=128” on a separate line.  

• As shown in previous line, the “=” is part of option name and must be included. 

• Also, as shown there can be no blanks between any two characters 

• It is good practice to wrap all strings including database directory with quotes. 

• It is important for us to reiterate the fact that options supplied on the command-

line take precedence over options given in a configuration file.  In other words, 

with the example given above for setting radix in a configuration file.  A radix of 

128 will only be used if neither “-r=x” nor "--radix=x” were included on the 

command-line. 
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Appendix D: Seek Times for each Radix/Modulus 

Combination. 

The graphs in this Appendix show how seek times change for each pattern length for our 

application and for GREP.  There is one graph for each radix.  Then, within a graph, there 

is a line for GREP and a line for each window length and Modulus.  The vertical axis is 

the log of seek time in milliseconds; with log required because of the wide spread of 

time.  Later we show graphs of performance in term of hits per millisecond where higher 

values are better.  Unlike that measure of performance, the one used on these graphs is 

actual time taken to process; meaning that higher is worse.  Therefore, we are looking for 

lines that are lower than the line for GREP.  In addition, we mentioned earlier how none 

of the analyses involving a window length of four was faster than GREP.  The line in the 

graph below runs almost parallel to the GREP line.  Finally, the graphs also show how 

the times for longer patterns (> 10) are almost always better than GREP. 
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Figure 14: Search Times for Radix = 4 

 

Figure 15: Search Times for Radix = 8 
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Figure 16: Search Times for Radix = 16 

 

Figure 17: Search Times for Radix = 32 
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Figure 18: Search Times for Radix = 128 
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Appendix E: Diagrams of Actual Versus Spurious Hits 

The bar graphs shown in this Appendix juxtapose actual hits (white bars labeled “Pos”) 

with false positive hits (dark bars labeled “Neg”) by pattern length and window length.  

There is one graph for each radix/modulus combination.  In the main body of the report, 

we mentioned how pattern lengths of 32 and 64 never have a false positive for any radix.  

In addition, we also mentioned that the last three categories (where the search pattern did 

not exist in the file) should not have any false positives.  While the graph below 

demonstrates this condition, later graphs show how false positives appear seemingly at 

random locations for these categories.  Finally, a quick glance at all these graphs 

illustrates how the false positives  

 

Figure 19: Actual and spurious hits for radix = 4 
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Figure 20: Actual and spurious hits for radix = 8 

 

Figure 21: Actual and spurious hits for radix = 16, modulus = 134,207,779 
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Figure 22: Actual and spurious hits for radix = 16, modulus = 1,073,499,991 
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Figure 24: Actual and spurious hits for radix =32, modulus = 1,073,499,991 

 

Figure 25: Actual and spurious hits for radix = 128, modulus = 16,699,901 
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Figure 26: Actual and spurious hits for radix = 128, modulus = 1,073,499,991 
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Appendix F: Line Graphs of Performance (hits/ms)  

This Appendix contains a set of line graphs showing the rates at which “hits” are 

processed.  A hit is an actual occurrence of a string, or a false positive.  The performance 

measure shown on the graphs is “hits per millisecond,” meaning higher numbers show 

better performance than lower numbers.  The first graph shows the rates for GREP; while 

the remaining graphs show the rates for each radix.  These later graphs also superimposed 

the GREP rates for easy comparisons.  The vertical axis shows the log of the rates.  Using 

the log of the rates is due to GREP’s huge range from 0.29 through 1486.00 milliseconds.  

In addition, GREP’s incredibly fast processing rate for a pattern length of four its average 

processing rate really high compared to our application. 

 

Figure 28: Processing rates (ms) for GREP 
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Figure 29: Processing rates (ms) for r=4,m=536,799,997. 

 

Figure 30: Processing rates (ms) for r=8,m=268,399,993. 
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Figure 31: Processing rates for r=16,m=134,207,779 

 

Figure 32: Processing rates for r=16,m=1,073,499,991 
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Figure 33: Processing rates for r=32,m=59,599,993 

 

Figure 34: Processing rates for r=32,m=1,073,499,991 
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Figure 35: Processing rates for r=128,m=16,699,901 

 

Figure 36: Processing rates for r=128,m=1,073,499,991 
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Figure 37: Processing rates for r=128,m=2,147,483,647 
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