

Using Rabin-Karp Fingerprints and LevelDB for Faster Searches

by

Richard A. Deighton

A thesis submitted in conformity with the requirements

for the Degree of Master of Science

Graduate Department of Computer Science

University of Ontario Institute of Technology

© Copyright by Richard A. Deighton, 2012

Page | ii

To my sons Brock and Chad,

my parents Hartley and Pat,

and, my wife Elizabeth.

Page | iii

Contents

Chapter 1: The Research Problem --- 1

1.1 Introduction ..1

1.2 Thesis ...2

1.3 Basic String Terminology ..4

1.4 Strings ..5

1.4.1 Information Retrieval .. 6
1.4.2 Text Search covers a Spectrum of Techniques ... 7
1.4.3 One-Step (On-Line) or Two-Step Preprocessing .. 7

1.5 Some Search Problems ..8

1.5.1 WWW Search Tools ... 8
1.5.2 Local Search Tools ... 9

1.6 Rabin-Karp Algorithm ...9

1.6.1 Introduction .. 9
1.6.2 Example of Rabin-Karp .. 11
1.6.3 Fingerprints in LevelDB ... 13

1.7 Motivation ..13

1.8 Description of Work ..14

1.9 Document Layout...15

Chapter 2: The Rabin-Karp Algorithm -- 17

2.1 Introduction ..17

2.2 Rabin-Karp Algorithm ...23

2.3 Modulo Arithmetic...25

Chapter 3: String Search Literature Review ---------------------------------- 27

3.1 Introduction ..27

3.2 Textbook References ...27

3.2.1 Introduction to Algorithms ... 27
3.2.2 Algorithms on Strings, Trees, and Sequences ... 28
3.2.3 Algorithms on Strings ... 28
3.2.4 Flexible Pattern Matching in Strings .. 29
3.2.5 Modern Information Retrieval .. 29

Page | iv

3.3 Selected Paper References ...30

3.3.1 Data Compression ... 30
3.3.2 Improved Hash for String Matching ... 32
3.3.3 Threat Signatures from Network Flows .. 33

Chapter 4: Our Application Using Rabin-Karp ------------------------------- 35

4.1 Introduction ..35

4.2 Important Side Effects ...36

4.3 Endianness ...36

4.4 Beginning a two-step Process ..39

4.4.1 Introduction .. 39
4.4.2 Impact of Two-Step Process ... 40

4.5 Step-One Building an Index ...51

4.5.1 Introduction .. 51
4.5.2 Index Building Algorithm ... 52
4.5.3 Building our Index Database using LevelDB ... 54

4.6 Step-Two: Match Patterns to Text ...60

4.6.1 Introduction .. 60
4.6.2 Implementing Matching .. 61
4.6.3 The Matching Issues ... 61
4.6.4 Pattern Matching Algorithm ... 71
4.6.5 Application Output ... 75

Chapter 5: Performance of Our New Application ---------------------------- 79

5.1 Experiment Design & Implementation ..79

5.2 Source Text Files ...81

5.3 Setting up and Testing our Application ...83

5.4 Source Computer ...85

5.5 Using GREP ...86

5.6 Preliminary Comparison ..89

5.7 Creating Index Databases in LevelDB ...90

5.8 Performing Searches ..96

5.9 Performance Results ..97

5.9.1 Table of Results .. 97
5.9.2 False Positives by Category .. 101
5.9.3 Average Rate of Processing by Category ... 103

Page | v

5.9.4 Search Time Performance ... 105
5.9.5 Comparing Actual and Spurious Hits ... 109

Chapter 6: Conclusion & Future Work -------------------------------------- 110

6.1 Conclusions ..110

6.1.1 Original Motivation .. 110
6.1.2 Thesis .. 111
6.1.3 Building the Application ... 111
6.1.4 Experiment and Results .. 113
6.1.5 Final Conclusion ... 114

6.2 Recommendations and Future Work ...115

6.2.1 Find out why False Positives Appeared in Non-existent Strings 115
6.2.2 LevelDB Tuning ... 115
6.2.3 Improve Approach to Small Search Strings .. 115
6.2.4 Remove GREP’s Advantage ... 116
6.2.5 More Documents .. 116
6.2.6 Find Parameters .. 116

Bibliography --- 117

Appendix A: Formalizing Characters, Strings, and Search ----------------- 120

Appendix B: ASCII Table --- 129

Appendix C: Command-Line Interface -- 132

Appendix D: Seek Times for each Radix/Modulus Combination ---------- 139

Appendix E: Diagrams of Actual Versus Spurious Hits --------------------- 145

Appendix F: Line Graphs of Performance (hits/ms) ------------------------- 154

Page | vi

List of Figures

Figure 1: The Rabin-Karp Algorithm. Based on figure 32.5 of (Corman, Leiserson,
Rivest, & Stein, 2001, p. 913). .. 12

Figure 2: A chart showing the components of a two-step search technique and the
relationship amongst them. ... 41

Figure 3: Search times for GREP searching text files containing 1, 10, and 100 copies of
The King James Bible. .. 86

Figure 4: An early look at the outcome of our experiment showing how our application
beats GREP times for long pattern lengths ... 90

Figure 5: Bar Chart showing the sizes of the Index Databases created for our experiment.
... 92

Figure 6: Line Graph showing the sizes of the Index Databases created for our
experiment... 93

Figure 7: Area graph showing time required to build each of the Index Databases in our
experiment... 94

Figure 8: Number of spurious hits for each radix/modulus combinations...................... 102

Figure 9: Time to process each category of data for each radix/modulus combination. 104

Figure 10: Performance of our approach for situations where no false positives occurred.
... 105

Figure 11: Search times for all combinations of radix/modulus and window length. 106

Figure 12: Average and lowest times for our application versus average GREP times . 108

Figure 13: Actual and spurious hits for Radix = 4. ... 109

Figure 14: Search Times for Radix = 4 ... 139

Figure 15: Search Times for Radix = 8 ... 139

Figure 16: Search Times for Radix = 16 ... 140

Figure 17: Search Times for Radix = 32 ... 140

Figure 18: Search Times for Radix = 128 ... 141

Figure 19: Actual and spurious hits for radix = 4 ... 142

Figure 20: Actual and spurious hits for radix = 8 ... 143

Figure 21: Actual and spurious hits for radix = 16, modulus = 134,207,779 143

Figure 22: Actual and spurious hits for radix = 16, modulus = 1,073,499,991 144

Figure 23: Actual and spurious hits for radix = 32, modulus = 59,599,993 144

Figure 24: Actual and spurious hits for radix =32, modulus = 1,073,499,991 145

Page | vii

Figure 25: Actual and spurious hits for radix = 128, modulus = 16,699,901 145

Figure 26: Actual and spurious hits for radix = 128, modulus = 1,073,499,991 146

Figure 27: Actual and spurious hits for radix = 128, modulus = 2,147,483,647. 146

Figure 28: Processing rates (ms) for GREP .. 147

Figure 29: Processing rates (ms) for r=4,m=536,799,997. ... 148

Figure 30: Processing rates (ms) for r=8,m=268,399,993. ... 148

Figure 31: Processing rates for r=16,m=134,207,779 .. 149

Figure 32: Processing rates for r=16,m=1,073,499,991 ... 149

Figure 33: Processing rates for r=32,m=59,599,993 .. 150

Figure 34: Processing rates for r=32,m=1,073,499,991 ... 150

Figure 35: Processing rates for r=128,m=16,699,901 .. 151

Figure 36: Processing rates for r=128,m=1,073,499,991 ... 151

Figure 37: Processing rates for r=128,m=2,147,483,647 ... 152

Page | viii

List of Tables

Table 1: Little Endian numbers are stored from least significant byte (LSB) in low
memory address to most significant byte (MSB) in high memory address. 38

Table 2: Big Endian numbers are stored from most significant byte (MSB) in low
memory address to least significant byte (LSB) in high memory address. 39

Table 3: Δpat maximum for practical values of both r and q. These maximum differences
are likely to occur in practice. ... 66

Table 4: This table summarizes the parameters for all 36 Index Databases we created for
our experiment. The table has nine boxes, each of which has a radix, and a
modulus on the top row, and four window lengths on the next row. Information
from the top row plus one of the window lengths under it uniquely describes one
of the 36 Index Databases. We tested 11 pattern lengths (listed below) on each
database giving a total of 396 tests. .. 80

Table 5: Results from GREP searching the text file containing 100 copies of Bible. 87

Table 6: Pattern length and a count of the actual number of occurrences in a 100-Bible
text file. The bottom thre rows are highlighted because they contain patterns that
do not occur in the text file. .. 97

Table 7: Search results for Radix equal to 4, 8, and 16 (with small modulus) showing the
number of matches and spurious hits as well as the time required for each search.
... 99

Table 8: Search results for Radix equal to 16 (with large modulus), and 32 (with both
modulus) showing the number of matches and spurious hits as well as the time
required for each search. ... 99

Table 9: Search results for Radix equal to 128 (with three different modulo) showing the
number of matches and spurious hits as well as the time required for each search.
... 100

Table 10: List of command line parameters. .. 133

Page | ix

Observations

Observation 1: We based the layout and configuration of our experiment’s Index
Databases on radix, modulus, and window length. ... 79

Observation 2: The lowest modulus we used for each radix was the largest prime number
that is less than (231/radix). ... 80

Observation 3: Our experiment was to search for a variety of search pattern lengths. We
used eight search pattern lengths for patterns we know occur in each Index
Database, and three lengths for patterns we are sure do not occur. 81

Observation 4: Our text file contained 100 copies of the King James Bible in 3.86 MB. 82

Observation 5: Our application is extremely fast when searching for strings that we knew
were not in the text file. .. 82

Observation 6: The timing API we used was exclusive to Windows. 83

Observation 7: We tested our application with a different text file, and did not find any
mistakes... 85

Observation 8: GREP has roughly the same performance looking for strings not in a file
as it does finding occurrences of a string. ... 88

Observation 9: GREP counts lines containing a search string. ... 88

Observation 10: The Index Databases for most criteria are approximately ten times larger
than the original text file. .. 91

Observation 11: Generally, radix and window length are two variables that have an effect
on the time and size of an Index Database. ... 94

Observation 12: We dropped a Radix of two from our analysis....................................... 95

Observation 13: Our application is blazing fast at determining when a string does not
exist in a text file. .. 101

Observation 14: The categories with the most false positives. 103

Observation 15: Our application runs faster than GREP when pattern lengths are larger,
but never beats GREP when the Index Database has a window length of four. . 106

Observation 16: The fastest time of the eleven pattern length searches in each
radix/modulus/window length combination was faster than GREP except for
searches involving a window length of four. .. 107

Page | x

List of Algorithms

Algorithm 1: The original Rabin-Karp algorithm is basis for our work. 24

Algorithm 2: Our Index-Building Algorithm, Step-One .. 53

Algorithm 3: Step-Two of Our Approach to Pattern Matching .. 72

Algorithm 4: Naive Text-Search ... 121

Page | xi

List of Equations

Equation 1: Calculating the maximum number of characters our Index Database's
Window Length (WL) can have compared to the length of a pattern (PL.) 3

Equation 2: Hash functions produce Fingerprints (base r) ... 21

Equation 3: Calculating hash value using Horner's Rule .. 21

Equation 4: Equation for calculating character codes in our application. 45

Equation 5: Equation for restricting character codes to be in a range from a minimum of 0
to a maximum of radix using modulo arithmetic. ... 46

Equation 6: Calculating Rabin-Karp's h program constant .. 49

Equation 7: Calculating value for cell in the radix power look-up table 50

Equation 8: Calculating value for cell in the leftmost character/radix power look-up table
... 51

Equation 9: Calculating the minimum fingerprint value for a short pattern range 63

Equation 10: Calculating the maximum fingerprint value for a short pattern range 63

Equation 11: Pattern and window length difference ... 65

Page | xii

Abstract

This thesis represents the results of a study into using fingerprints generated according to

the Rabin-Karp Algorithm, and a database LevelDB to achieve Text Search times below

GREP, which is a standard command-line UNIX text search tool.

Text Search is a set of algorithms that find a string of characters called a Search Pattern

in a much larger string of characters in a document we call a text file.

The Rabin-Karp Algorithm iterates through a text file converting character strings into

fingerprints at each location. A fingerprint numerically represents a window length string

of characters to the left of its location. The algorithm compares the calculated fingerprint

to the Search Pattern’s fingerprint. When fingerprints are not equal, we can guarantee the

corresponding strings will not match. Whereas when fingerprints are, the strings

probably match. A verification process confirms matches by checking respective

characters.

Our application emerges after making the following major changes to the Rabin-Karp

Algorithm. First, we employ a two-step technique rather than one. During step 1, the

preprocessing step, we calculate and store fingerprints in a LevelDB database called an

Index Database. This is our first major change unique to us. Step 2, the matching step, is

our second unique change. We use the Index Database to look-up the Search Pattern’s

fingerprint and gather its set of locations. Finally, we allow the pattern to be any length

relative to the window length. We even created an equation to check if the difference in

length is too long for the fingerprint’s number system base.

We facilitated our performance experiments by first building our application and testing

it against GREP for a wide range of different parameters. Our conclusions and

recommendations determine that although we currently only outperform GREP in about

half the cases, we identify some promising opportunities to modify some parts of our

application so that we can outperform GREP in all instances.

Page | 1

Chapter 1: The Research Problem

1.1.1 Introduction
In general, our task is finding occurrences of a search string in a text file. There are many

algorithms and techniques solving this Text-Search problem. Our procedure is unique

and benefits from synergy. While none of the main parts are particularly new, when we

coupled them together in such a new way, we could measure improvements in

performance. With that in mind, this thesis represents the results of a study into using

Rabin-Karp fingerprints and a database LevelDB to create a text search application that

can achieve text-search times below GREP’s (UNIX’s standard text search tool.) We use

the remainder of this Chapter to provide an overview of the problem, a description of our

Thesis, a discussion of our Motivation behind our Thesis, and a glimpse of our

observations showing evidence of our success.

This chapter provides some material to set a context for the experiment. It presents a

number of sections covering necessary background for several important objects involved

in our work, and touches on their pertinent issues, algorithms, and mathematics of the

problem. Subsequent paragraphs in this section will summarize the presentation of this

material. Later chapters present the theory and implementation of our work in detail.

Hence, to avoid repetition, we try to keep background material in this introductory

chapter at an abstract level.

In that light, we outline most of the modifications we intend to make in the traditional

Rabin-Karp algorithm. We also present the most basic objects of this work, text strings,

by pointing out what they are, and where we encounter them. Next, we introduce the

most important object of our work after text strings, the Rabin-Karp algorithm. (Karp &

Rabin, 1987) We demonstrate Rabin-Karp’s idea of using a numeric fingerprint to

represent substrings within a text file is a novel mixture of hashing, search heuristics, and

simple arithmetic. After this, we describe the motivation for performing this work. It ties

Page | 2

together the previous discussion with an argument that our new application has promise

to solve most, if not all, issues.

The next section gives an overview of the search times we achieved versus GREP. These

times confirm our approach has merit in terms of performance over GREP, which are

quite encouraging from our point of view.

The final section of this introductory chapter introduces the layout of the remaining

document. This discussion will introduce and combine the objects used by the approach,

as well as, many of the changes we make made to Rabin-Karp’s original algorithm into a

concise statement of the solution.

1.2 Thesis
In light of our discussion above, we propose to verify the following Thesis in this work.

We can modify the Rabin-Karp Algorithm, and configure the

LevelDB database, to create a two-step-text-search-engine

algorithm that will outperform the one-step-text-search-engine

GREP in finding search patterns within local text files.

In a general sense, the type of solution we investigate employs both sources of

improvement mentioned earlier: (1) creating a hash file and (2) reusing its information.

In other words, we propose to build a text-search application having two steps, where a

preprocessing step uses pieces of the Rabin-Karp algorithm to create fingerprints that we

save as a hash file using LevelDB. In addition to “hash file,” we sometimes refer to this

LevelDB file as, “Index Database,” or, “index” for short. In any case, this index is

available in any number of subsequent matching steps. We also use techniques from

Rabin-Karp’s algorithm to carry information forward from one fingerprint calculation to

subsequent calculations while building the hash file; thereby significantly reducing the

time required to calculate a fingerprint. After building an index, our process uses this

Page | 3

database and several other techniques to find positions for any search text. In the end,

our work achieved the following two significant outcomes.

First, our application outperforms GREP in more than half of our test runs. These results

alone give our application a great deal of promise. Nevertheless, the best results from our

experiments were observations of opportunities to make significant improvements. For

instance, we observed enough evidence to make us confident we could modify our

application so it could outperform GREP in every case. We list these enhancements in a

later chapter covering future work.

The second significant outcome is a result of our design procedure, not our

experimentation. Hence, even before programming anything we had to solve our biggest

problem, leading our work toward the following equation. It is new to text searching and

represents a value we need to know before we can even run one experiment. That is,

with everything else held equal, what is the maximum length between an Index

Database’s window length WL and the length a pattern can have PL?

∆𝒑𝒂𝒕=
𝐥𝐨𝐠𝟐(𝒎𝒐𝒅𝒖𝒍𝒖𝒔)
𝐥𝐨𝐠𝟐 𝒓 (𝒓𝒂𝒅𝒊𝒙)

Equation 1: Calculating the maximum number of characters our Index Database's

Window Length (WL) can have compared to the length of a pattern (PL.)

This importance of this equation to our analysis can hardly be overstated. It demonstrates

several key issues threatening the analysis. First, it draws our attention toward a

dependency between the modulus q and the radix r. A requirement of the Rabin-Karp

Algorithm is that the two be co-prime; which means one, but not both, must be a prime

number. (Gusfield, 1997) A second issue covered by this equation has to do with modulo

arithmetic. If we did not prevent a user from exceeding this maximum, they could be in a

position where their range’s maximum value is actually less than its minimum value.

This can happen because the Rabin-Karp algorithm, and therefore our application, both

use modulo arithmetic. In any case, if this does occur the application is caught in

Page | 4

somewhat of an endless loop. It would start at what it thinks is the minimum fingerprint

value, verify that fingerprint, and continue the same thing for every subsequent

fingerprint until it hits the end of the database without ever hitting the maximum value.

Having thought that none of the fingerprints exceeded the maximum, it would

erroneously include all those fingerprints it passed by on its way to the end. This

equation is so valuable that we could not even try to include patterns whose length is less

than the index database’s window length without it.

1.3 Basic String Terminology
Before discussing text strings in arbitrary language, it is necessary to introduce a few of

the issues related to them like their building blocks, characters. Every character (c)

belongs to a set of characters called an alphabet (symbolized as Σ.) |Σ| denotes the

number of characters in the alphabet. We only use alphabets like ASCII where each

character has an integer index or code unique in the alphabet. We obtain a character’s

code by interpreting its one-byte bit sequence as a one-byte integer. Hence, having a

common byte, the character and its code are two inseparable views of the same object.

Character codes are typically used to order characters in an alphabet in lexographic, or

alphabetical, order. Our approach respects this use and adds another important role for

character codes.

Strings are a set of characters arranged in some order. Each character has a unique

position in a string; beginning with zero at the left and increasing by one for each

consecutive character moving right along a string. We adopt a custom of naming strings

using a single bold upper-case letter to remind us that most strings are arrays of

characters. We also use the square bracket operator to access a character at a certain

position within a string. For example the character at position 3 in string S is S[3].

Since our analysis only deals with a few strings, throughout this document, we introduce

them here. The most important string array names we use are as follows. We use S to

represent an arbitrary string, T to represent a text file, P to represent a search pattern, and

W to represent a text window we slide through the text file. Similarly, to avoid confusion

Page | 5

we always refer the length of a respective string by tacking an L after its name giving us:

SL for string length, TL for text file length, PL for search pattern length and WL for

window length.

With the above terminology in mind, we present a simple example of the text search

problem lying at the center of our work. Let P=abba (therefore PL=4) and

T=bbabbaxabbabbay (therefore TL=15). The solution for this example is that P

occurs in T at three positions; namely, positions 2, 7, and 10. positions 7 and 10 in this

example demonstrate that occurrences of a pattern may sometimes overlap. We also

demonstrated that manual processes could perform text search; as readers can attest after

verifying by hand the three positions we offered as the solution. Of course, however,

when PL > 10 and TL > 5Mb manually process is impossible to defend as a mechanism

for finding a solution.

1.4 Strings
Strings are ubiquitous in our society. Everywhere one looks, a string is informing them

of something. Further still, our libraries contain huge collections of long text strings we

call books. In addition, we have the WWW filled to the brim with strings we generally

regard as belonging to a document called a web page. In its simplest sense a string is an

ordered set of characters. In most cases, a string occurs within a larger unit usually called

a document. As demonstrated above, the work we are presenting deals with finding and

reporting the position(s) where a Search String occurs in a Text File (i.e., a document.)

With so many text strings in our lives, we are unwittingly drowning in a sea of data, and

thirsting for information. That means we spend a great deal of time shifting through

these documents searching for our information need. In fact, in addition to text search

there is a huge spectrum of choices available to help a user hunt for information

electronically. The sciences built around such a seemingly straightforward subject are

huge. It is important for us to recognize that our work occupies only a small corner of the

huge sea of algorithms, techniques, and theories. To help put our corner into context, and

Page | 6

before getting into the text search part of this spectrum, we must introduce a few helpful

concepts; most of which come from the field called Information Retrieval.

1.4.1 Information Retrieval
Information Retrieval is a science concerned with identifying, extracting, and organizing

information for a huge collection of data. (Beaza-Yates & Ribeiro-Neto, 1999) Since our

work centers around text search, we thought it appropriate to acknowledge the existence

of this vast science that encompasses our work.

People do not usually walk around all day totally focused on finding a specific piece of

information. Nevertheless, when a person actually needs something, they really do start

looking, usually in earnest. Their drive comes from satisfying a desire to find specific

information. Information Retrieval refers to a goal of finding specific information as an

information need. From this point forward, we regard finding a pattern in a text file is

also filling an information need.

Another important concept from Information Retrieval is that users familiar with both

their corpus and their toolset, can satisfy their information need with little effort and time.

Information Retrieval uses metrics like inverse document frequency to help sort

candidate documents from most to least likely to satisfy an information need. Other

useful tools include searching for documents using Metadata values and Keywords that

can pare down a search’s list of candidate documents to a manageable few. (Beaza-Yates

& Ribeiro-Neto, 1999)

Therefore, Information Retrieval has a huge spectrum of tools, many of which are

proficient at filling an information need. While text search, is a smaller set of tools

dealing with finding one string in another. It does fall under the broad heading of

Information Retrieval. The following section looks at how Information Retrieval’s sub-

spectrum containing text searching addresses some information needs.

Page | 7

1.4.2 Text Search covers a Spectrum of Techniques
At one end of the text search spectrum, we have more manual-process-based approaches

such as browsing, or surfing, where a user examines page after page of information on

the WWW looking for links that will bring the goal (i.e., information need) closer.

At the other end of the text search spectrum-the part we are studying, we have automated

approaches where a user simply types their search query and presses [Enter.] Their

information need automatically becomes finding occurrences of that string. Producing a

list of the position for each occurrence of the search string satisfies the information need.

Even though there are many details for such a process, the general idea for text searching

is finding and reporting the positions of the search pattern within all documents of a

corpus a user is searching. We will reinforce this idea throughout our discussion. In fact,

to add more precision to our discussion describing these processes we need to introduce

some details of our notational convention, to which we now turn.

1.4.3 One-Step (On-Line) or Two-Step Preprocessing
Text search algorithms typically use one of two to broad categories of analysis

techniques, one-step or on-line and two-step or preprocessing/matching. On-line

techniques perform a search at the same time they are processing a text file, which can

make them extremely fast. The original Rabin-Karp algorithm is an on-line technique.

We have already announced our interest in two-step processes because our approach

requires we build an index and perform searches using it. Therefore, we turn our

attention to two-step methodologies with preprocessing plus matching. This technique

breaks the problem into two types of steps, a preprocessing step, followed by any number

of subsequent matching steps. The preprocessing step makes one pass through a text file

building and storing some sort of index.

Our solution implements a version of a preprocessing technique using a key-data-pair

database called LevelDB. We configured LevelDB to store an index of the Rabin-Karp

fingerprints for each position of a text file. The innovation here is that Rabin-Karp

originally developed their algorithm as an on-line method, searching for the pattern while

Page | 8

processing the file. (Karp & Rabin, 1987) Our approach builds an index once and allows

any number of searches using that index. Later, we give an overview of the Rabin-Karp

algorithm, describing its details, and the details of our modifications.

Now we turn our attention to giving an overview of searching in general and text

searching in particular.

1.5 Some Search Problems
Having introduced strings and searching, we shift focus briefly to discuss some other text

search tasks. We have intentionally avoided including them to keep our project scope

manageable. Nevertheless, we recognize that several modifications to our framework

would make the following issues candidates for our approach.

Computers have been filling their hard drives and on-line sites at an ever-increasing rate.

We mentioned earlier there are many ways to shift through all this content using several

popular tools from the broader science of Information Retrieval. Recognizing text search

is a popular alternative for many reasons, we contrast it to these other tools in the

following discussion.

1.5.1 WWW Search Tools
Having already introduced surfing the internet earlier, we now examine another form of

looking for information on it. This time we are discussing Google, or Bing, and a whole

host of other internet searching engines available. Internet search tools help sift through

large volumes of data (i.e., they all search the entire WWW for occurrences of a search

pattern or parts thereof.) They report their list usually in less than one second, but the

number of ‘hits’ (i.e., eligible targets) is astronomical. One can hardly call a user’s task

of sifting through hundreds of thousands of ‘hits’ as being a very efficient search tool for

our problem at hand. However, many users with general queries about arbitrary issues

find these internet search tools great advisories. They actually do a very good job of

putting the most likely target near the top.

Page | 9

These tools are two-step with huge preprocessing steps. For instance, Google uses web

‘crawlers’ to spend an entire day and night traversing (crawling) the entire WWW. They

are building an index for use with the hundreds of thousands of search requests the next

day. This is a perfect example of searching with a preprocessing scheme, which is the

same technique we use in our solution.

1.5.2 Local Search Tools
We have built our solution to perform text searching in a local domain, like a text file on

a hard drive. This is similar to the text search functionality of several text search

command-line tools provided by operating systems. Earlier we mentioned how UNIX

had a tool called GREP for just such occasions. Windows has two similar command-line

text search tools, FIND and FINDSTR. All three are functionally equivalent; they find

search strings in one or more text files. While “fast,” they are all one-step techniques,

falling under the on-line category of search algorithms. Furthermore, they do not

“remember” any information from any previous run(s) they can use in a current run,

which is a property of all one-step algorithms. In short, these tools are cumbersome but

are robust enough to be in every advanced user’s toolbox.

1.6 Rabin-Karp Algorithm

1.6.1 Introduction
Since our work relies so much on Rabin and Karp’s ideas and their algorithm, we briefly

introduce it now highlighting its main characteristics. Interested readers can refer to the

next chapter where we give a very detailed formal description. In 1987, R. Karp and M.

Rabin published the randomized fingerprint method as a practical and efficient solution to

the string-matching problem. (Karp & Rabin, 1987) The randomized fingerprint method

is a perfect match for our solution because it carries information forward from one

comparison to the next, it performs well in practice, and we can generalize it to extend to

other related problems. We will refer to their method as simply the Rabin-Karp

Page | 10

algorithm, and give a brief overview of its details here using descriptions from (Corman,

Leiserson, Rivest, & Stein, 2001) and (Gusfield, 1997).

The Rabin-Karp algorithm uses modulo arithmetic, Horner’s Rule, and a number of other

innovative techniques to calculate a fingerprint (decimal number) for each substring in a

larger text file T. The algorithm first calculates pattern P’s fingerprint (denoted as p.)

Then, it iterates through a text file T for every location. At each iteration in T we are at

(offset/position/ or shift) location, denoted as s. Now, it calculates a fingerprint for a

pattern-length substring beginning at s. If a substring’s fingerprint is not equal to p, the

substring will definitely not match the pattern making it a perfect heuristic for string

matching. It also has another advantage that helps speedup the comparison process. As

we demonstrate in more detail later, comparing integer values for equality is a simple

one-step numeric process. Therefore, in one integer comparison we could save having to

compare any characters. In addition, small fingerprints (i.e., 32-bit integers) allow an

algorithm to take advantage of the speed of small integer arithmetic on modern

processors. Incidentally, calculating all fingerprints in T and storing them in LevelDB is

step one in our proposed approach. Fingerprints are calculated using character codes,

radix, and modulus making them a great hash function to the LevelDB database, as we

will show later.

The other side of hash files, when the two fingerprint values are equal, we only know one

fact; their hash functions put them in the same hash bucket. At this point, we have no

idea whether any characters in respective strings match at all. Hence, a pattern’s

fingerprint value equaling a substring’s fingerprint value is at best an extremely good

heuristic indicating the possibility the two underlying character strings will match. We

must subsequently confirm or deny an occurrence of a match by performing a character-

by-character comparison at the particular location in the text. We generally refer to this

comparison as verification.

In summary, the efficiency of the matching-step in the Rabin-Karp algorithm comes

about in two ways. Primarily, we eliminate the need to examine each character in the

Page | 11

huge text corpus by the relatively quick method of comparing integer hash values for

substrings. Next, we reduce the total amount of character-by-character comparisons

required to confirm occurrences. In other words, we only need perform verification at

locations in T where the fingerprint value of the pattern-length substring in T is equal to

P’s fingerprint value.

1.6.2 Example of Rabin-Karp
The following example uses the ten digits as our alphabet making its radix 10. Cormen

uses these values in his rather lengthy example reproduced in Figure 1 and below

(Corman, Leiserson, Rivest, & Stein, 2001, p. 913). The top Part (a) of the figure shows

a text stream with a five character string 16439 highlighted. The numerical value of that

string is 7 modulo 13. Part (b) shows how each location in the text file has a fingerprint

calculated one after another. If our search pattern were 16439, we are searching for a

fingerprint of 7. Part (b) also shows how a spurious hit (false positive) occurs when

another substring in the text stream has the same fingerprint of 7 (mod 13). This

demonstrates how a completely different set of digits; this time they are, 59534 can give

the same fingerprint.. Finally, Part (c) illustrates the constant time process used to shift

one place in the text stream and calculate the next fingerprint using information from the

current fingerprint. It demonstrates with actual text strings how the Rabin-Karp

Algorithm uses Horner’s Rule to bring information from the former fingerprint

calculation forward to calculate the subsequent fingerprint. The process begins with the

current set of digits 16439, the first digit of which we need to remove when sliding our

window to the right one digit. Doing this accounts for the -1x10000 part of the

expression. After removing the beginning digit of one, we next want to shift the four

digit number of 6439 to the left by one position. Hence, the x10 part of the expression,

which would have left us with 64390; but, we decided to performed a modulo operator of

13 on the previous two numbers leaving us with 40 (i.e., 70-30.). Finally, we add 8,

which leaves us with a value of 9 (mod 13). This is an excellent diagram for highlighting

the main processes and components of the Rabin-Karp.

Page | 12

Figure 1: The Rabin-Karp Algorithm. Based on figure 32.5 of (Corman, Leiserson,

Rivest, & Stein, 2001, p. 913).

Page | 13

1.6.3 Fingerprints in LevelDB
Using Rabin-Karp principles to make a two-step process requires that we preprocess a

text file by calculating its fingerprints at every position and saving them for later look-up

during step two, the search. We created a LevelDB database for this purpose. LevelDB

is an open-source key-value database developed at Google that we describe later.

Originally, we thought a fingerprint would be our primary key. Unfortunately, we soon

discovered a duplicate-key problem for LevelDB related to a fingerprint being neither

unique nor distinct, making it impossible to serve a role as primary key. Therefore, our

primary key consists of a fingerprint’s bytes followed by the bytes for file position.

1.7 Motivation
Few, if any, local text search applications in widespread use have two steps. Even though

Google, the biggest of them all, is two-steps, it is not very useful for searching local

information content. Most current local text search applications, like UNIX’s GREP, run

on-line. This means that work done in a current search is independent of, and sometimes

a replication of, calculations and other work done by a previous search. It therefore looks

like a very promising direction to build a two-step-text-search-engine to take advantage

of the amortization of building a database versus the repeating calculations with a one-

step application like GREP for local search problems.

Fortunately, researchers have studied the string-matching problem for many years

especially in biological areas searching for patterns in DNA. (Gusfield, 1997) They list

a huge body of literature describing many different solutions to this problem and

demonstrating the naïve method is not optimal. One of the biggest reasons making this

method inefficient is that it does not keep any information from the previous comparison

when it starts a new comparison. Keeping some information may be valuable. We will

show later how it can be a source for more efficient search methods.

Another source of improvement arises from methods that use a two-step process. In

these methods, step one is referred to as a preprocessing step; and, step two` as the

Page | 14

matching step. (Corman, Leiserson, Rivest, & Stein, 2001) Typically, step one analyzes

T to produce some sort of index that we save and use later in a matching step. One very

useful advantage of having an index is that we can repeat many matching steps to locate

occurrences of any number of patterns without needing to build a new index each time.

1.8 Description of Work
This section briefly summarizes the work we performed building this application itself. It

also gives an overview of how we obtained the performance results comparing our

approach and GREP.

Dismantling and reassembling the Rabin-Karp algorithm was an interesting challenge.

We used C and C++ in Visual Studio to program and debug our application. Hence, the

executable is small (<60k) and fast. We did not use any Windows exclusive functions,

APIs, or headers that would preclude it from working in UNIX. Even LevelDB has a

C++ API for both operating systems that is easy to switch, making operating on UNIX a

very real possibility.

Our work began developing an on-line Rabin-Karp application that worked from the

command-line. During this time, we created and implemented a command-line

parameter list (See Appendix C) that we kept up-to-date whenever we added a new

parameter. Once that was functioning, we divided the application into two parts and

began building the first part, including an Index database. After being side tracked trying

to use Oracle DB for several months, we switched our database system to LevelDB.

Within a week or so, we had LevelDB storing and retrieving our information. This

success meant we had completed building our preprocessing step. We then started work

on the matching-step. We modified a few parameters that let our application put the

positions of all occurrences of the pattern in a results file. With this finished we tested it

searching for random phrases from the collection of Mark Twain. (Twain, 2009) With

everything tested and verified, we began our performance test using the bible as our text

document we downloaded from the internet (The Large Canterbury Corpus, 2001). We

constructed our experiment text document by repeating the bible 100 times and saving

Page | 15

the results to a text file. These both gave us a small test text file with one bible for

testing, and a much bigger file to calculate performance with 100 bibles. After finding

our test search strings we ran GREP for each of them. Later, we compare GREP’s time

against searching for the same strings using our application. Each time we ran our

application, we changed a different parameter while holding others constant.

1.9 Document Layout
This document will introduce and discuss all objects used by our approach. It also

highlights many of the significant changes we made to Rabin-Karp’s original algorithm

morphing it from its original on-line application into a two-step search process. Finally,

it discusses some of the major issues we encountered along the way and how we solved

them. Readers not familiar with string notation and manipulation can review Appendix A

for the needed nomenclature. Otherwise, readers can skip directly to Chapter 2: The

Rabin-Karp Algorithm on page 17. Furthermore, readers familiar to Rabin-Karp

fingerprints can just scan the headings of Chapter 2.

The discussion develops the concepts in the following order.

Chapter 2: Begins by formalizing the concepts associated with the Rabin-Karp

Algorithm. Understanding this algorithm will help with understanding the application we

built using it.

Chapter 3: Examines other work in the area of string search in general and Rabin-Karp’s

fingerprints in particular. This literature review highlights papers done by other authors

that have something specific to say about some or all components of our approach.

Chapter 4: Describes the theory and practical implementation of our approach. In

particular, we discuss the constituent parameters affecting the results such as modulo and

radix. Then we use these parameters to discuss characteristics of a fingerprint such as

how we calculate it once for strings like the search string, and recursively for each

subsequent substring in a Text File. We also examine some of the properties that not

Page | 16

only influence the fingerprints, but also have themselves influenced by the fingerprint.

The chapter concludes that the approach is implementable using a C++ exe program with

a size of 58,880 bytes.

Chapter 5: Describes how we designed our experiments, what experiments we conducted,

what we needed to support the experiments, and what resulting performance we received

for each experiment. In cases where it was obvious and clear why certain results appear,

we discuss generally how and why we achieved those results. Finally, we discuss the

various perspectives on the results to give an overall picture of how our experiments

compare to GREP.

Chapter 6: Discusses our conclusions and recommendations for future work

Appendix A: Formalizing Characters, Strings, and Search

Appendix B: ASCII Table

Appendix C: Command-Line Parameters

Appendix D: Seek Times for each Radix/Modulus Combination

Appendix E: Diagrams of Actual Versus Spurious Hits

Appendix F: Line Graphs of Performance (hits/ms)

Page | 17

Chapter 2: The Rabin-Karp Algorithm
Before we get into the modifications we make to the Rabin-Karp algorithm, we use this

chapter to give a formal description of the existing algorithm. We therefore begin with

an overview of Rabin-Karp. In it, we expand on the description from the introduction

and provide names for techniques it uses like Horner’s Rule. We present the Rabin-Karp

Algorithm to help highlight some issues that might otherwise have remained hidden

under a cloak of complexity. The degree of familiarity offered by these opening concepts

helps set a stage for a formal description featuring these techniques and concepts as well

as expanding on terms and concepts already mentioned earlier. Finally, once we dispense

with a formal definition, we give a detailed example of all processes. Then, we have the

tools needed to move to the next chapter that describes in detail changes we made to

customize the Rabin-Karp algorithm to meet our Thesis. We based the information

presented in this chapter from descriptions given in (Corman, Leiserson, Rivest, & Stein,

2001) and (Gusfield, 1997).

In what follows, it may seem that we are over-emphasizing Rabin-Karp’s fingerprint.

The reason it would seem this way is the prominence of the fingerprint in the overall

algorithm. In fact, we will even expand our earlier mention of how a fingerprint serves as

both a hash value for our database and as a heuristic for matching strings. While these

particular topics are somewhat removed from the central theme; they are nevertheless,

important concepts to understanding the foundation of our work.

2.1 Introduction
The Rabin-Karp algorithm uses modulo arithmetic, Horner’s Rule, and a number of other

innovative techniques to calculate a fingerprint (decimal number.) We add several

features of our own to make it perform even better. Rabin-Karp algorithm follows a

specific path in its analysis. First, it calculates a fingerprint (denoted as p) for a pattern

P. Then, it iterates through the text file T for every offset or shift (s) and calculates a

fingerprint representing a pattern-length substrings in T beginning at s. We denote this

fingerprint as ts (for the fingerprint in the text file t at shift s.) As we demonstrate later,

Page | 18

comparing the fingerprint of a pattern to each of these text file substring fingerprints is

extremely efficient. Mostly because comparing integer values for equality is a simple

one-step numeric process. In addition, small fingerprints (i.e., 32-bit integers) allow us to

take advantage of the speed of small integer arithmetic on modern processors.

When the values for two fingerprints are not equal, we are certain the characters in the

pattern do not match the characters in the respective substring of the text file. When two

fingerprints values are equal, we know (only), they occur in the same hash bucket. At

this point, we do not know the respective strings match because of a possibility that two

different strings could produce the same hash. Even if we work diligently to reduce the

possibility of hash collisions, we are still in a position of only knowing that the

corresponding and respective strings could match. Using large modulus values will help

reduce the possibility of a collision, but we can never remove it entirely. Hence, a

pattern’s fingerprint value equaling a substring’s fingerprint value is at best an extremely

good heuristic indicating the possibility the two underlying character strings will match.

We must subsequently confirm or deny an occurrence by performing a character-by-

character comparison of P with T[s, … ,s+(PL-1)].

In summary, the efficiency of the matching-step in the Rabin-Karp algorithm comes

about in two ways. Primarily, it eliminates a need to examine each character in the huge

text corpus by the relatively quick method of comparing integer hash values for

substrings. Next, it reduces the total amount of character-by-character comparisons

required to confirm occurrences. In other words, it only needs to compare the characters

at locations in T where the fingerprint value of the pattern-length substring in T is equal

to P’s fingerprint value. To verify it commences a character-by-character comparison

that it abandons whenever we discover mismatching characters.

In the remainder of this Chapter, we present the Rabin-Karp Algorithm from several

different perspectives. We begin with a rhetorical description, even the above paragraphs

add to this description; but we will expand it below. Next, we formalize the Rabin-Karp

Algorithm by giving formal definitions to all its parts that, in turn, contribute to a formal

Page | 19

definition for the whole. Next, we give the Rabin-Karp Algorithm as an algorithmic

listing similar to the Brute-Force listing given earlier. We then examine the processes

occurring at each line in the procedure. Finally, we give a detailed example.

Even though in previous chapters it seems we have been covering many of the concepts

needed for our analysis, in some discussions we were informal, in some we were brief,

and others we ignored altogether. Now, we need a set of formal definitions that follow,

so we can present a rigorous description of the technical details of Rabin-Karp’s

approach. We present them here as one collection a reader can refer to rather than

jumping around the report. We have adjusted some issues and added new ones in these

definitions. We need to postpone elaborating on some of these formalisms until later

when a more appropriate context appears. Nonetheless, the details we do present will

suffice for now to demonstrate the main concepts behind the Rabin-Karp’s technique.

• Appendix A defines an alphabet (Σ.) as a set containing |Σ| characters. The

Rabin-Karp approach assumes a user has resolved any implementation issues

regarding their choice of alphabets. An issue we do have with alphabets Σ and

text search is an earlier assumption that it is customary to treat an alphabet’s radix

as |Σ|. While it is usual to define a radix for an alphabet as the number of

characters in it, as the traditional Rabin-Karp Algorithm does, in a few paragraphs

below we will challenge this concept by introducing our approach to radix and the

number of characters in our alphabet.

• Appendix A also describes characters in general as coming from the ASCII

character set that have corresponding codes. Since we made such a huge

modification, we must now formally connect a character’s code to a concept

Page | 20

called radix. Since we treat radix differently, we begin describing Rabin-Karp’s

original intention, followed by our application’s meaning.

• Rabin-Karp Algorithm: Let r represent the number of characters in the alphabet Σ

(i.e., r = ǀΣǀ); and refer to r as the radix of the alphabet. While our algorithm can

accommodate this definition, we extend it as follows.

• Our Modification: Let radix refer to the base of a number system created

exclusively for calculating fingerprints. A user establishes a base by looking from

the inside out. They look at the size of possible fingerprints with a particular base,

only after examining how many characters they want to place in the same hash

bucket. In fact, both approaches accommodate the same number of characters. Our

approach however has more to do with the hash value calculation of the fingerprint.

When getting a code for any character, we use the following formula 𝑏𝑖 = 𝑐𝑖 𝑚𝑜𝑑 𝑟

For instance, say we were using ASCII and a radix of eight. The above equation

results in having eight different codes each with sixteen characters. (8*16=128) An

important observation about his approach comes by realizing character codes are

vital for lexographic sorting. The implication for this example is that since each set

of sixteen characters have the same code, they all share lexographic positions as

well, making sorting a rather messy affair. Essentially, we must use great care when

choosing a radix that ends-up having many characters with the same code. At the

same time, this modification is important because it gives us more control over later

parts of the system; particularly with calculating the minimum length a search can

accommodate.

Page | 21

• For any string S, let S(i) denote a function that returns the integer code (bi)

representing the character S[i] (note parenthesis versus square brackets.) Both

terms use a parameter i, which represents the position of the character in S.

Recall that offsets begin from the left.

• Let H(S) be a hash function that calculates a fingerprint for a string S of length k.

H(S) is defined with the equation below. A few observations are in order. First,

we typically denote a variable for a particular string’s fingerprint as the string’s

letter descriptor in lower-case (using subscripts when required.) Here we see the

fingerprint for H(S) is equal to s. Second, in the previous paragraph we made a

point showing all S(i) will be less-than-or-equal-to r. This means our hash

function H(S) produces fingerprints that are part of base r number system.

𝐻(𝑆) = 𝑠 = �𝑟𝑘−𝑖
𝑘−1

𝑖=0

𝑆(𝑖)

Equation 2: Hash functions produce Fingerprints (base r)

• Rabin-Karp observed that the above equation for H(S) can be calculated using

Horner’s rule thereby not only keeping the number of multiplications and

additions linear, but also keeping the intermediate values small. (Gusfield, 1997,

p. 79) In mathematical terms, Horner’s Rule converts the above equation to the

following,

𝐻(𝑆) = 𝑆(𝑘 − 1) + 𝑟(𝑆(𝑘 − 2) + 𝑟(𝑆(𝑘 − 3) + ⋯+ 𝑟(𝑆(1) + 𝑟𝑆(0))))

Equation 3: Calculating hash value using Horner's Rule

Page | 22

For example, in base 10, Horner’s Rule multiplies the current value by ten; which is like

shifting all digits left one position. Finally, it puts a digit in the one’s position by adding

the character code for the new character; we will illustrate this concept using a very

simplistic example.

Consider an alphabet consisting of the ten decimal digits Σ= {0, 1, 2, 3, 4, 5,

6, 7, 8, 9}. In addition to the digit’s character, each character also has a code. To

keep it simple, we will deliberately assign the code a value corresponding to the

character’s integer digit. Consequently, the character ‘3’ has a code that equals an

integer 3, and so on. It is important with this example to remember that S is just a string

of characters even if the string just happens to look like some number. Thus, keep in

mind in the following discussion that fingerprints are not strings, but are actual numbers.

The difference is significant because codes are numbers that we can compare directly,

whereas strings require we perform a character-by-character comparison. We selected

this simple example to make it extremely easy to see how we convert a character as an

integer in the fingerprint calculation. We even use different fonts to help highlight the

difference between the character 3 and the integer 3.

Since the objective of this example is simple, we define radix using a traditional approach

of the number of characters in an alphabet. Hence, the radix r for this alphabet is ǀΣǀ=10.

Incidentally, this means our fingerprint number system is base 10 keeping in line with our

simple theme. Let S=123; then, SL=3, and the fingerprint (s) for S is calculated as

follows.

𝑠 = 𝑆(3) + 𝑟 × �𝑆(2) + 𝑟 × 𝑆(1)�

 = 3+10× (2 + 10×1)
 = 123

Recall we have a pattern P of length PL, and a text T of length TL where PL is very

much smaller than TL. The Rabin-Karp algorithm is centered on the idea that if there is

an occurrence of P starting at position l of T then their fingerprints will be equal (i.e.,

Page | 23

H(P) == H(Tl)). Unfortunately, the converse is not true. To make our earlier

proclamation clear, we formalize it as follows:

• When two fingerprints are equal, we do not know if their respective strings will

match. We therefore use a character-by-character comparison process to verify

whether the corresponding strings match. In the meantime, we know for sure if

two fingerprints are not equal, the corresponding strings will not match.

Therefore, there is no need to verify it.

2.2 Rabin-Karp Algorithm
Briefly, the Rabin-Karp algorithm converts the string-matching problem into a numerical

approach that uses simple integer arithmetic to calculate a numeric fingerprint. We will

eventually use this numeric fingerprint as a hash value representing a string of characters

that is also an excellent heuristic for finding matches in corresponding character strings.

Although the original version uses a preprocessing time of Θ(PL), and has the same

worst-case running time the Brute-Force method, the Rabin-Karp algorithm reduces the

probability of this worst-case running time to be so small that the time for the matching

step actually becomes linear Θ(TL-PL+1).

Even though it has a preprocessing step of Θ(PL), this time is so small compared to the

text being searched that we regard the following version of the Rabin-Karp algorithm as

on-line. We do this because one of our enhancements later will add a more substantial

preprocessing step of building a database of all fingerprints in a text file, which we will

greatly expand on later. In any case, we present the following procedure to introduce the

algorithm and demonstrate its calculations and processing. Once again, we will expand

the details of this algorithm later in the report. The inputs are the text file T, the search

pattern P, the radix r (typically equal to |Σ|, but not always,) and the modulus q a prime

number.

Page | 24

Rabin-Karp-Matcher(T, P, r, q)
1 TL ← Length(T)
2 PL ← Length(P)
3 h ← r(PL-1) mod q
4 p ← 0
5 t0 ← 0
6 for i ← 0 to (PL-1)
7 do p ← (rp + P(i)) mod q
8 t0 ← (rt0 + T(i)) mod q
9 for s ← 0 to TL – PL
10 do if p == ts
11 then if P[0 … PL-1] == T[s … s+(PL-1)]
12 then print “Pattern occurs at position” s
13 if s < TL – PL
14 then ts+1 ← (r(ts – T(s)h) + T(s+ PL)) mod q

Algorithm 1: The original Rabin-Karp algorithm is basis for our work.

The above procedure works as follows. Recall we demonstrated earlier when we

introduced characters that they could be interpreted as a symbol or an integer; the

procedure interprets all characters as radix-r digits. Recalling the use of round brackets

for a code and square brackets for a character, the term P(i) in line 7 refers to the

character code (i.e., an integer) at position i in the Pattern rather than its symbol;. Line 3

calculates h; a constant used later in Line 14. The variable h represents the value of the

high-order digit position of a PL-digit window. Lines 4 through 8 compute a fingerprint

for both the Pattern and the first position of the text file. The method uses Horner’s Rule

that multiplies every subtotal by r before adding the new character. This multiplication

by r shifts the current value to the left by one digit (i.e., the radix r.) Since r is the base

of our fingerprint numbering system, the effect of this multiplication is to create an empty

slot at the right hand end of the number ready to accept another base r digit. Adding the

value for the new character to this shifted number, places the new character’s digit at the

right hand most digit of the number. This loop continues until our two fingerprints, p and

t0 are PL-digit numbers representing their respective strings.

The second part of the algorithm begins with a for-loop of lines 9 through 14. This loop

iterates through all possible shifts s in the text file. In fact, lines 9 -12 are very similar to

Page | 25

the naïve text search algorithm presented earlier. The only difference is the addition of

line 10 that checks to see if the fingerprint values equal before checking the strings

character by character for a match. Line 12 prints locations for matches. Line 10 is one

place where the Rabin-Karp algorithm shows a vast improvement over the naïve method

because it reduces the need to compare characters to only those times when their

respective fingerprints are equal.

Finally, Line 13 checks to see if the for loop on line 9 will be executed again. If so, the

algorithm uses another innovation on line 14 that computes ts+1 mod q from the value of

ts mod q in constant time using Horner’s rule.

2.3 Modulo Arithmetic
In practice, fingerprints could become huge values parameters become too large,

certainly too big for simple 32-bit arithmetic. This problem has a potential to render the

algorithm useless. That is until, with yet another stroke of ingenuity, Rabin-Karp

introduced an idea of using modulo arithmetic in its fingerprint calculations to keep the

resulting value within an arbitrary range. They use it in line 3, 7, 8, and 14 in the

Algorithm listing above. Modulo arithmetic allows one to reduce a large number of

objects into a finite searchable space. Its power comes from allowing one to reduce at

any time; which is precisely what we did above in Figure 3 for Horner’s Rule. The other

nice thing about modulo arithmetic is that the heuristic and equality features of

fingerprints still hold in this environment.

As mentioned earlier, but until now not demonstrating; we can finally see how the

addition of modular arithmetic has led to the fingerprint being a heuristic as to whether or

not the pattern appears at a particular location. We can also observe how efficient the

heuristic can or cannot be since if Hq(To)≡Hq(P) we must do a character-by-character

evaluation on the substring at that location o to verify whether or not there is actually an

occurrence of P. These observations lead to the following definition.

Page | 26

• If H(P)≡H(Tl) but P does not occur at position l of T, then we call this a false

match or a spurious hit.

The key to implementing the Rabin-Karp algorithm then becomes choosing a modulus q

small enough that the arithmetic is kept efficient, yet large enough that the probability of

a false positive between P and T is kept small. While easy to use and having the ability to

keep fingerprints values smaller than 32bit integers, modulo arithmetic is a very

expensive function that we try to minimize the use of in our implementation. We

elaborate on these shortcut procedures in the following Chapter.

Page | 27

Chapter 3: String Search Literature Review

3.1 Introduction
Since Rabin and Karp introduced their fingerprint calculation algorithm, it has enjoyed

much success. We list a variety of vastly different applications below. Our search,

however, did not yield any cases where researchers used the same approach as ours. In

fact, even with string searching itself, the algorithm works so efficiently on-line there

seems no purpose in trying to improve its impressive time and space numbers. Actually,

it remains a leading on-line string search algorithm mentioned in many algorithm and

string processing textbooks; we illustrate four textbooks below.

3.2 Textbook References
All of the authors of following four textbooks say they aimed them at graduate and upper

undergraduate level courses. Consequently, the last three textbooks combined, contain an

exhaustive descriptions of all areas of stringology. Whereas the first textbook on

algorithms had the best description of the Rabin-Karp Algorithm, hence, we relied

heavily on it for our work.

3.2.1 Introduction to Algorithms
The textbook Introduction to Algorithms (Corman, Leiserson, Rivest, & Stein, 2001) is a

“must-have” for all computer science students, as well as some professionals, researchers,

and teachers. It gives an wide-ranging primer for studying modern computer algorithms

with. It covers many algorithms in considerable depth and mathematical rigour, and

includes a C-like pseudo-code listing for each. Additionally, it has coherence with

respect to cross-referencing algorithms with one another. While some readers may use

the book as a “cookbook” for the most popular algorithms, it offers much more. With the

objective of targeting an audience from students to researchers, and everything in

between, it presents their material so the algorithm’s design and analysis is accessible to

all levels of readers. Somehow, the authors did not sacrifice depth of coverage or

Page | 28

mathematical rigor while keeping explanations elementary. (Corman, Leiserson, Rivest,

& Stein, 2001)

This textbook provided us with a description of how to implement the Rabin-Karp

algorithm. In fact, we use one of its diagrams later to demonstrate the concepts behind a

fingerprint.

3.2.2 Algorithms on Strings, Trees, and Sequences
The textbook Algorithms on Strings, Trees, and Sequences demonstrates (Gusfield, 1997)

how to combine computer science with molecular biology using string computation as a

common thread. They provide a very rigorous treatment of algorithms for character

strings and molecular sequences. They give formal definitions from both sciences for

fundamental techniques and objects. They present an exhaustive general-purpose

description and analysis of all subject matter so others may apply bits and pieces from

their tapestry of algorithms and proofs.

This rigorous treatment of the field of deterministic algorithms operating on strings and

sequences was impressive because it gives complete proofs of behaviours like worst-case

time, correctness, and space. Indeed, later we use some of their formal definitions

inspired they formality we used to develop our work.

We used this book as a guide to our formal definition of characters and strings.

3.2.3 Algorithms on Strings
The textbook Algorithms on Strings (Crochemore, C., & Lecroq, 2009) illustrate the

correctness proofs for fundamental text processing and matching algorithms and methods

for evaluating their performance. They develop their topic by focusing on a generic

sense of organizing text in a computer environment with limited memory and slow hard

drives. Their topics create an algorithmic and technical framework required in fields like

information retrieval, automatic indexing for search engines, the compression of text, and

more generally the practical software system, including its edition and its treatment. This

framework applies to a plethora of fields such as pattern matching, automatic processing

Page | 29

of natural languages, treatment and analysis on genome sequences, analysis of musical

sequences, safety and security related data flows, and management of a textual databases.

Their basic approach is to sew their collection of basic algorithms together to create a

combinatorial underpinning for all string searching activities like pattern matching,

indexing textual data, comparing texts by alignment, and searching for local regularities.

(Crochemore, C., & Lecroq, 2009)

We suspect this to be on most Stringologist’s bookshelves just as it sits well-worn on

ours. It mentions the Rabin-Karp algorithm in the context of string searching using a

hash function.

3.2.4 Flexible Pattern Matching in Strings
The textbook Flexible Pattern Matching in Strings (Navarro & Raffinot, 2007) presents

the string-matching problem from a practical point of view. While many algorithms have

extremely good theoretical complexity and space scores, some perform badly in practice;

often slower than the naive approach of checking every character at every position.

According to the authors, their impetus for the book was to focus on on-line algorithms

and implementations performing best in practice. As such, they cover topics for

matching simple, multiple, and extended strings; moreover, they also cover regular

expressions. In most topics, they present techniques for both exact and approximate

matching. They provide an in depth description of the most practical algorithms, and

promise a normal programmer can implement their approaches in a few hours. Like the

previous textbook, this one mentions the Rabin-Karp algorithm in the context of using a

hash function for string searching. (Navarro & Raffinot, 2007)

3.2.5 Modern Information Retrieval
The textbook Modern Information Retrieval (Baeza-Yates & Ribeiro-Neto, 1999) has an

interesting twist. Six of the leading researchers in their respective fields write six of its

fifteen chapters. Yet, the content is both modern and cohesive throughout with a

carefully designed content and organization. While its coverage is broad, its detail

contains the richness many textbooks lack. The book is both rigorous and complete, and

Page | 30

approaches modern Information Retrieval a computer scientist’s point of view. (Baeza-

Yates & Ribeiro-Neto, 1999)

We used this textbook to provide background information for some of information we

used in Chapter 1 of our work. Recall, in Chapter 1 we explained our motive and

justified our thesis.

3.3 Selected Paper References
Rabin-Karp fingerprints have found their way into a broad range of areas, not just pattern

matching. The following list of papers show a selection of applications that demonstrate

their use in practical areas such as data compression and network flows, as well as

improved hashing.

3.3.1 Data Compression
Rabin-Karp fingerprints have found success in many fields of stringology. For example,

we begin with the field of compressing data. Papers for other fields follow.

3.3.1.1 U.S. Patent Compression Method
Two employees at Lucent Technologies Inc. invented and patented an on-line method

and apparatus for achieving relatively low compression ratios in streaming data. Their

approach is very interesting because it uses both fingerprints and a hash table. Their

input is any data stream, which they divide into equal-length “blocks.” The blocks

usually range between 40 and 1000 bytes. They process their streaming data by

calculating a fingerprint for every block (using Rabin-Karp’s equation). Next, they place

every fingerprint, location pair into a memory-resident hash table. It does not save these

hash tables. In fact, the data stream’s “process history,” defines how many blocks they

keep in this hash table. The history length is a number of blocks one can go backward in

the data stream looking for the longest possible repeating string. Their purpose is to

compress this data by replacing repeating strings with a pointer to the nearest location of

that string. Readers will recognize that the sliding window process is different than

Rabin-Karp’s window that slides one character at a time using the last fingerprint to

Page | 31

calculate the current one. The block approach used in this paper must calculate

fingerprints from scratch at every block This document was very interesting despite its

legalese. (Bentley & McLiroy, 2003)

3.3.1.2 Longest Common Extensions
At a level of calculating fingerprints, the process in this paper is similar to a previous

paper’s compression process. (Bentley & McLiroy, 2003) The previous paper calculated

fingerprints for a set of fixed-length blocks. This paper calculates fingerprints for a set of

variable-length blocks that just happened to be prefixes. A similarity emerges when each

application jumps ahead to its next block getting a fresh set of characters to calculate the

next fingerprint. The fingerprint independence from one block to the next deprives these

processes of the performance enhancing benefit from the faster constant time sliding

window calculation introduced in (Karp & Rabin, 1987). Nevertheless, this paper is

interesting and offers some useful insights. The following gives a brief overview of the

paper in terms of the mechanics of fingerprint operations.

This paper is more theoretical than mechanical in that the authors study the time-space

trade-offs for the longest common extension (LCE) problem more than how to implement

them. In particular, they focus on the space used for the data structure versus the worst-

case time for answering an LCE query. While they prove a large number of bounds and

times throughout the report, we feel it better for interested readers to consult the original

for nomenclature and other issues. At the same time, one very important observation is

that they claim to have not only provided the first smooth trade-offs for the LCE problem,

but also they matched previously known bounds at the extremes when 𝜏 = 1, 𝑜𝑟 𝜏 = 𝑛.

(Bille, Gørtz, Sach, Vildhøj, Kärkkäinen, & Stoye, 2012)

From a broad perspective, the LCE process works in the following manner. For any

string of text, T, the longest common extension of suffix i and suffix j, denoted LCE(i, j),

is the length of the longest common prefix of the two suffixes of T starting at position i

and position j and going as far as possible. The LCE problem is to preprocess T into a

compact data structure supporting fast longest common extension queries.

Page | 32

Interestingly, the LCE problem is a basic primitive appearing as a sub-problem in a wide

range of string searching, indexing and matching issues such as compression, cyphering,

exact and approximate string matching, exact or approximate tandem repeats and

computing palindromes. In many of these applications, the LCE problem is the

computational bottleneck. Hence, there is a clear need for enhancements such as those

presented and proven this paper. In short, using fingerprints as a heuristic rather than the

traditional character-by-character comparison is enough to produced huge rewards for

this on-line application.

Two parts of this paper are very interesting topics: (1) approximate string matching and

(2) the Aho–Corasick automaton. While neither is immediately relevant to our

application, in the long term, both may contribute to its computational and performance

improvement. Aho–Corasick is a string-matching algorithm that contains a finite set of

strings. It locates any of those lines within an input text. The second interesting issue

deals with approximate string matching. This algorithm allows up to k mismatches to

occur at the end of the block. Again, not very useful in our immediate case, but some of

the ideas may contribute to making our algorithm deal with approximate strings.

3.3.2 Improved Hash for String Matching
This paper is an example of the kinds of modifications the Rabin-Karp algorithm

undergoes in the name of efficiency. The authors prove they “can accelerate the

computation of fingerprints by bitwise operations.” (Fuyao, 2009, p. 1) They first

demonstrate that the “Rabin-Karp algorithm is still inferior to other string matching

algorithms in practice.” Then, they demonstrate that “the reason is the complex

arithmetic operations rather than checking for false matches that circumscribe the

algorithm’s performance.” (Fuyao, 2009, p. 2) To improve the situation they make two

insightful modifications. First, they replaced Rabin-Karp’s set of arithmetic operations

for calculating a fingerprint with an equivalent set of bitwise operations. This

replacement works magnificently as long as m <= w (where m is length of pattern and

text window, and w is the length of a machine word.) Their second modification extends

Page | 33

the first for situations where m > w. Specifically, they take B least significant bits (LSB)

from each character, which bitwise operations does efficiently.

Whereas the Rabin-Karp algorithm uses a character’s entire code in its arithmetic

operations that calculate a fingerprint; their version uses a constant number (B) of low

order bits from a character’s code and bitwise operations to speed up the string matching

process considerably. The authors prove that the probability of a hash collision is very

low, and the complexity of running time on average is linear. (Fuyao, 2009)

At first, the performance improvements demonstrated by these simple alterations were

attractive for our work. Unfortunately, we show later that the percent of time calculating

fingerprints is insignificant compared to building the index database. In the end, since

the modifications will not be significant compared to the effort implementing it, we

decided not to add these to our application.

3.3.3 Threat Signatures from Network Flows
ARAKIS is a CERT Polska project sponsored by NASK (Research and Academic

Computer Network) a research and development company in Poland. According to their

website, ARAKIS is a project “that aims to create an early warning and information

system concerning novel network threats. The system developed as part of the project

focuses on detection and characterization of new automated threats with a focus

primarily, though not only, on exploits used in the wild, not malware. Currently the

system detects threats that propagate actively through scanning. The public dashboard of

the project shows a snapshot of network activity observed by the system. (NASK

(Research and Academic Computer Network), 2012).

The system generates network threat signatures used in intrusion detection and

prevention systems. Currently, this is a mostly manual process, thus prone to errors and

slow. The system described in this paper uses Rabin-Karp fingerprints to not only

detecting network packets that are an attack threat but also to extract a network threat

signature in one step, thus is fast and less error prone. (Kijewski, 2006)

Page | 34

This paper demonstrates the breadth of topics using Rabin-Karp fingerprints.

Page | 35

Chapter 4: Our Application Using Rabin-Karp

4.1 Introduction
The concepts for this project involve a greater depth of understanding than first meets the

eye; especially considering how simple the 14-step Rabin-Karp Algorithm shown earlier

appears. This Chapter is about describing how we modified, inspired by this depth of

understanding, Rabin-Karp to create our own text search application. As the number of

sections in this chapter attests, we made a great number of modifications, many of which

helped speed-up individual steps. We discuss these later. However, the biggest

modifications we made were NOT for speed. Instead, they were, (a) adding both a

preprocessing step and a matching step, and (b) creating a command-line application.

Following this section, we first present topic (a) then, we present the other topics before

finishing the chapter with a section on topic (b.) The main reason for placing topic (b) at

the very end is, it provides a setting that allows us to not only review each parameter

required to make our application run, but also to connect these parameters to their

underlying techniques that we just presented.

At the same time, other modifications we make have big impacts on the technique’s

performance. For instance, we talk about issues regarding the selection of LevelDB

database, fingerprints, Radix, and Modulus. We try to keep the discussion focused

exclusively on covering new capabilities. Unfortunately, sometimes we must not only

explore issues for situations demanding a background context, but also digress to explain

how the application works and why it requires certain parameters. We address two of

these types of reasons in the next several Sections. Their content does not fit with other

topic lines, so we placed them here to describe how, the first reason (sorting fingerprints)

helped our modification, and the second one (Endianness) stood in our way from making

any progress unless and until we fixed the problem.

Page | 36

4.2 Important Side Effects
An important issue needs a brief description before we get started on the details. We are

talking about several very important side effects of our Algorithm’s two-step approach:

(a) collections, and (b) sorting. They are important to note because of their far-reaching

effects and incredible benefits.

The first issue concerns a benefit we obtained by going from a one-step to a two-step

process. Now, our algorithm always returns a file with a collection of locations (file

positions) after every run. Dealing with a collection allows us to process and analyze an

entire group of similar entities mostly key byte arrays; and not just during the actual run

itself, but also during post-processing analysis including calculations that produce some

of the useful statistics we show later.

Having a collection requires a container. We have two containers, a database for

persistence, and a vector for our C++ programming. Elsewhere we described how

LevelDB automatically uses its key byte array to sort database keys lexicographically.

This means LevelDB automatically sorts our keys first by fingerprint then, if two

consecutive fingerprints are equal, by file position. Since we use iterators to traverse our

data, we perform our analysis by always skipping one position at a time in a forward

direction. An immediate benefit of this appears when we are building vectors that hold

our collections, LevelDB has already sorted our source data in an order we need for

analysis and reporting. Having data in our vectors already sorted the way we need them

allows us to do some processes rather quickly like deleting false-positives before the

verification step in several of our matching algorithms below.

4.3 Endianness
During development, we discovered an unplanned modification by uncovering a bug in

LevelDB. We made this modification because of a concept called Endianness. In a

simple sense, this refers to how a hardware configuration forces an operating system to

order numerical bytes in memory. The changes to our application described below work

Page | 37

automatically behind the scenes, and do not rely on any input parameters. Briefly, the

application performs a quick test on a simple integer in memory, and determines whether

it is running on a Little or Big Endian host platform. With this knowledge, the

application automatically adjusts the byte order for its integers. We explain the details of

Endianness and our modification in more detail below.

Before we explain the problem, however, we are compelled to mention we only have a

problem because we manipulate integer values like fingerprints and file position, on a

byte-by-byte level for several reasons. Consider a primary key in an Index Database as a

case in point. Elsewhere we explain that a primary key in LevelDB is a byte array that

looks and acts the same as a string. LevelDB will not accept any other data type for a

primary key value than a byte array. In any case, our application uses a primary key that

is also a composite key consisting of bytes from a fingerprint value followed by bytes

from a file position value. We built functions to transform the bytes of numeric values to

a composite key, and back from the composite key to numeric values. All of this low

level byte manipulation brought the Endianness to the fore.

After considerable investigation, we discovered that our Index Database was not sorting

its records in the order suggested by their fingerprint integer values. After significant

investigation and debugging, we found that since we were using Windows, at the

hardware level (i.e., Intel-based system), it was actually using a native format for storing

integer values called “Little Endian.” Whereas, LevelDB internally assumed data was all

stored in “Big Endian” format; this is probably because LevelDB developers originally

built it for UNIX hardware (that uses Big Endian) and only recently ‘ported’ it to work on

Windows hardware. In any case, we had discovered the bug and now set out to fix it.

We derived the descriptions and examples explaining Endianess from the web page.

(RapidTables.com, 2011) We also used an Intel White Paper for further material. (Intel

Corporation, 2004) Before beginning our description, we need to define several terms

that play a significant role in Endianess. The first is least significant byte (LSB), and the

second is most significant byte (MSB).

Page | 38

• LSB is a byte representing the smallest quantity or weight of all the bytes making

up a number. (Intel Corporation, 2004).

• MSB is a byte representing the largest quantity or weight of all the bytes making

up a number. (Intel Corporation, 2004)

• The name Little Endian literally means little end first, meaning the LSB is stored

on the left hand end of a number’s multi-byte value. (RapidTables.com, 2011)

In other words, Windows rearranges the bytes in a word so the LSB is at the left-hand

end and the MSB on the right hand end. It turns out that Little Endian is not an ideal

format when it comes to sorting numbers inside an application. Unless, a programmer

writes a sorting routine to accommodate the bytes being in backward order (which

LevelDB does not), sorting is backwards.

The following tables describe how a simple integer such as, “0x0D0C0B0A” is stored in

Little Endian format.

Address

Data Example
0 byte0 0A (LSB)
1 byte1 0B
2 byte2 0C
3 byte3 0D

 Table 1: Little Endian numbers are stored from least significant byte (LSB) in low

memory address to most significant byte (MSB) in high memory address.

• Big Endian sorts in lexicographic order. The reason for this is predictably, that

the name Big Endian literally means big end first, meaning the MSB is stored on

the left hand end of a number’s multi-byte value. (RapidTables.com, 2011)

Most UNIX hardware stores integers in Big Endian format. The following table shows

how the same integer as above “0x0D0C0B0A”, is stored in Big Endian format.

Page | 39

Address

Data Example
0 byte0 0D

 1 byte1 0C
2 byte2 0B
3 byte3 0A (LSB)

Table 2: Big Endian numbers are stored from most significant byte (MSB) in low

memory address to least significant byte (LSB) in high memory address.

LevelDB expects all values to be in Big Endian format without explicitly saying so in any

written material. We actually consider this a bug in LevelDB because Windows users

like us may actually be using LevelDB on Windows and experiencing subtle errors and

not even realize it. We were fortunate enough to uncover this bug during our testing. In

fact, we only caught this bug because we built our test cases by hand and knew how

many duplicate hash values to expect for given locations.

We based our fix on a commitment that we will store all LevelDB keys (and values) in

Big Endian format.

• No byte order switching takes place if our application is running on Big Endian

hardware (likely using UNIX). If, on the other hand, our application is running

on Little Endian hardware (likely using Windows,) we set a global flag we use to

ensure every numeric value’s bytes are ‘reordered’ first switching from right-to-

left going into LevelDB, then switching from left-to-right coming out of

LevelDB.

4.4 Beginning a two-step Process

4.4.1 Introduction
Creating a two-step algorithm from a one-step algorithm presents some interesting

challenges. It follows that we should perhaps discuss both steps in this one section. We

Page | 40

do not. Instead, we give each step its own section following this one. This way, we can

use this section to consider issues we could not specifically relate to one particular step or

the other.

Before we entertain these issues, we introduce a diagram showing how a two-step

algorithm works, in general; and, what our two-step algorithm looks like in particular.

Figure 2 shows the two steps, one on the right, and one on the left. The right hand side

shows how we read a text file, calculate fingerprints, and write the Index Database. The

bottom of the left had side shows how a Search String is provided. Then, its fingerprint

is calculated, which, in turn, is searched for in the database. Matching fingerprints yields

a list of corresponding locations, which we check in the text file to verify the string in it

matches the search string. Either this verification step returns a match if the two strings

are the same. Otherwise, it returns a mismatch (also called false positive or spurious hit.)

4.4.2 Impact of Two-Step Process
There are a number of issues arising from the modification of dividing the one-step

Rabin-Karp Algorithm into two steps. The basic idea of a two–step approach is to build

an Index Database during step one. Then in step two, use that Index in all subsequent

matching requests, of which there can be many. We introduce in this section some of the

changes we made to accommodate this separation of functionality. Below, we examine

window length, as well as the two parameters radix and modulo before introducing

several enhancements that speed-up our application’s performance.

Page | 41

Figure 2: A chart showing the components of a two-step search technique and the

relationship amongst them.

4.4.2.1 Window Length
Thus far, throughout this report we made it seem natural that calculating fingerprints

from a text file is done for the same length substring as the search pattern length (PL.)

This was no fluke, as we could have used any length for calculating text file fingerprints.

We used the search pattern length to avoid discussing the very issue we must now deal

with; using a length for calculating fingerprints from a text file that is different from the

search pattern length. We are now at a point where this issue becomes important because

it has a tremendous effect on building an Index Database and using it to search for

strings. This is the point in our analysis where we will start making more use of the two

concepts defined below. The reason is that they both refer to the length of the string used

to calculate fingerprints in a text file.

Page | 42

• During all analysis involving a text file we use a text file Window (W) that has a

Window Length (WL) associated with it. W always contains a substring from a

text file containing WL characters.

A typical user of step two only wants locations for occurrences of their search string.

They never expect an application to issue an error message saying, “Pattern length too

long (or too short) cannot use this Index with that search string.” Since this scenario

could happen, we created a few extra algorithms and made a few new enhancements. We

discuss these below.

One of the first modifications we performed was to make Window Length (WL) a user

input for step one. This way, we can vary the length to examine what differences arise

for various lengths holding everything else constant. We discuss this change further in

the section below about step one. Another modification we needed to make was to create

three algorithms that can use any Index Database to find search patterns of (almost) any

length. The three algorithms deal respectively with the following three situations:

PL<WL, PL=WL and, PL>WL. Each of these circumstances has a different

mechanism to find and verify matches. Once again, we will describe these in detail in the

section below about step two. It is worth noting that the Rabin-Karp Algorithm works

only when PL=WL.

We designated fingerprints earlier as heuristics to whether or not a search string matches

a substring from a text file. When a fingerprint from a text file equals a search string’s

fingerprint, we have the following two possibilities. When the respective characters do

match, we refer to the incident as a hit. Whereas, when the characters do not match we

call it a spurious hit. Thus, when the values of two fingerprints equal, we only know

there is a possible match with the respective strings. The extra step we must execute to

ensure the substrings do match we call verification. When we have a spurious hit, we do

not know it until after we run verification, which is expensive, so we do not want to run it

Page | 43

too often. The best way to ensure this is to minimize spurious hits, which we discuss

below.

4.4.2.2 Examining Radix and Modulo
Searching for a fingerprint in the Index Database is fast O(1). Verification, on the other

hand, is considerably slower O(n2) and is responsible for much of the performance cost

of having many spurious-hits for a given fingerprint value. Our experiments confirm that

the size of the hash, or, said differently, the maximum value for a fingerprint, plays a key

role to the number of spurious hits to expect. Three parameters contribute to the size of

the hash, window length, radix, and modulus. Explaining the details of these effects plus

others below, is precisely why we dedicate this sub-section to deal with modulus and

radix concepts. For example, radix and modulus are at the heart of another change we

made. We changed our application to create several look-up tables for calculation of

fingerprints using these two parameters. We will describe these tables later in our

discussion. In any case, following this section, we return the discussion back to the two-

step technique and describe each step in a section of its own.

4.4.2.3 Command-Line Inputs
In Appendix C, we describe how a user enters all command-line inputs. This section,

however, we only highlight the following three; among other values, a user inputs a

modulus, a window length, and a radix on the command-line. All three inputs are

mandatory. However, if a user is unsure what prime number to use for modulus, they can

simply enter a zero on the command-line. A value of zero causes the application to use

the radix as is and to assign a prime value of 1,073,499,991 automatically to the modulus;

which is the largest prime value our application can use without running a risk of

overflow.

While we are discussing modulus, this is a good place to digress for a paragraph to make

the following observation about modulus. One of the major changes we made to Rabin-

Karp was allowing a user to supply any modulus they deemed as suitable, provided it was

a prime number. The original Rabin-Karp Algorithm paper used probabilistic analysis

Page | 44

when selecting a prime modulus for a particular run. Recall the original algorithm is on-

line and each run could do one search in one text file at one time. It would be difficult to

do real-life experiments on modulus in this scenario. In their paper, Rabin-Karp also

relied on probability to calculate the theoretical time and space values for their

Algorithm. (Karp & Rabin, 1987) We do not currently have probabilistic random

number generation in our application; but it would be an excellent enhancement to make

it an option. Currently we assume the higher the modulus the better to avoid collisions,

hence verifications. The number given above is the high value prime number we use

regularly, although our experiments use several of them.

4.4.2.4 Program Inputs
A user can input the size of both fingerprints and file position; do not forget these are

both part of the database key. Unfortunately, since these sizes are data types supplied as

typedefs, we cannot have a user enter them as command-line parameters. Instead, a user

changes them by assigning a data type for two program typedefs called, HashValue_t and

FilePosition_t. These typedefs are located at the top of an application file called

RKUtils.h. A user can choose between C’s “long” or “long long” data types for

HashValue_t and “[unsigned] long” or “[unsigned] long long” for FilePosition_t. A

warning is appropriate because assigning these as 64bit integers instead of 32bit will

double the size of an already large Index Database.

The original reason for Rabin-Karp to use modulo arithmetic was to keep calculated

values small enough to capitalize on the speed with which modern processors perform

one-word integer arithmetic. As mentioned briefly above, we sidestepped the speed gain

from modulus calculations by approaching the problem more broadly than RK with look-

up tables.

We can still use 32-bit fingerprints, but we calculate them differently; different enough to

allow us a maximum modulo of a prime number around 231 without risking overflow. To

maximize the size of available modulus and radix, we used some precisely placed 64-bit

integer parameters within several utility functions overloading them to the environment.

Page | 45

Additionally, the environment comes into play again when each function must decide to

return 32-bit or 64-bit integer values based on how a user has setup their system (e.g., if

HashValue_t = long long the function would return a 64-bit integer.)

Our two-pronged rational was as follows. First, higher modulus allows bigger hash

values, and higher radix allows wider hash separation. To increase one or another, or

even both, we need to increase the size of the numbers used to make certain calculations.

We did just that. Moreover, we are pre-calculating all values and using look-up tables for

all calculations making the 64-bit calculation penalty negligible. Since the look-up tables

involve radix as well, we introduce and describe them in the next section.

4.4.2.5 Tying Radix and Modulus

4.4.2.5.1 Introduction
Radix is a value in Rabin-Karp that is at the center of most calculations. The biggest

reason is that it is the base for the fingerprint number system. The higher the radix, the

more characters can exist in an alphabet without having overlapping character codes. We

provide a description of radix and all its roles in the following sections.

4.4.2.5.2 Limiting Alphabet Size with Radix
In our application, we define radix as the base of a number system created exclusively for

calculating fingerprints. This means that a ‘digit’ in a fingerprint’s number system ranges

from zero to radix. Additionally, instead of using the actual character code when

calculating a fingerprint, we use a value that is the character code modulus the radix. In

other words, when retrieving a code for any character in an alphabet, we use the

following equation:

𝒃𝒊 = 𝒄𝒊 𝒎𝒐𝒅 𝒓𝒂𝒅𝒊𝒙

Equation 4: Equation for calculating character codes in our application.

To understand the significance of this equation, let us assume we were using ASCII and a

radix of eight. This combination of circumstances causes the following interrelated facts:

Page | 46

(a) the number of different character codes dropped from 128 to 8; (b) the number of

different digits in the fingerprint’s number system dropped by exactly the same amount

from 128 to 8; and, (c) since 128/8=16, each hash bucket will have sixteen different

characters in it. Said differently, this means that one character code now represents

sixteen different characters, which is likely to result in a significant number of spurious

hits.

We defined the formal definitions for strings in Appendix A. In that writing we provide

the following definition for S(i):

For any string S, let S(i) denote a function that returns an integer code

representing of the character S[i].

This definition is still valid and leads to the following modifications to our application.

When a character is involved in a process concerning character comparison like

verification, our application uses ci for both characters. This assumption helps keep the

number of spurious hits to a minimum. Whereas, characters involved with any

calculation related to fingerprints use the function, S(i). Dropping any reference to bi, we

define the S(i) function as follows:

𝑆(𝑖) = 𝑐𝑖 𝑚𝑜𝑑 𝑟𝑎𝑑𝑖𝑥

Equation 5: Equation for restricting character codes to be in a range from a

minimum of 0 to a maximum of radix using modulo arithmetic.

Even though our application makes the implementation of the above concepts useful and

workable, there is still a need to emphasize the care a user must take selecting a radix.

For instance, to satisfy our experimental analysis we originally thought we would alter

the value for radix to range from 2 to 128. We ran a modest analysis to build an index

using a radix of two. After twelve hours of running with no end in sight, we aborted the

attempt. In the end, the smallest radix we could use ended up being four, as will be

shown later in our results section.

Page | 47

At the same time, this modification is important because it gives us more control over

later parts of our system; particularly with calculating the minimum difference in length a

search can accommodate. Although counterintuitive, having a high radix means, we

cannot accommodate large differences between WL and PL. We elaborate later during

our description of the matching step.

4.4.2.5.3 Demonstrating 32-Integer Results
Adding to the above decision is a complication of selecting radix and modulus together to

avoid overflow in calculations using 32-bit integers. Even though we discuss 32-bit

integers elsewhere, this particular topic is worth mentioning because we include a

modulus in our experiment that shows the performance of imposing the 32-bit restriction

juxtapose to the performance of not imposing that restriction. Therefore, our task is to

discuss how to select a modulus for a given radix so as not to cause overflow.

Calculating the lowest modulus for a radix requires first knowing a maximum value for a

modulus given a radix. That is, we need to know which calculation’s result may trigger

an overflow. Our analysis showed us the biggest risk occurs when the application

multiplies a modulus by a character code. Even though this result is passed to the mod()

function, the value passed in must be a 32-bit integer. Consequently, to calculate the

biggest modulus that avoids overflow, we first recall that the largest character code is the

radix and the maximum result is 231 (the maximum value for a signed 32-bit integer.)

Hence, the maximum value that a modulus and accompanying radix can take to avoid

overflowing 32-bit arithmetic is (231 / radix). In our experiments, we selected a modulus

that was the largest prime number we could find that was less than this value for the radix

we selected.

4.4.2.6 Creating Look-Up Tables
As a final part of this subsection, we describe how we use look-up tables to rid our

application of a great deal of unnecessary calculations. We must be forthright and

confess the idea was not ours. Indeed, as the next section illustrates, the idea originates

in the original Rabin-Karp Algorithm itself. When we considered the savings in number

Page | 48

of calculations over all characters in a text file, the value was significant. For one thing,

every calculation we make has a modulus function at the end of it. This modulus

calculation is expensive because of everything happening in the background.

Consequently, we borrowed the concept of look-up tables that we calculate before

anything else in our application, to get rid of many mod calculations.

4.4.2.6.1 Small Integers from Large Integers
Before we get to the actual look-up tables, we revisit one of the biggest advantages for

our application. Look-up tables not only save calculations during a match step, but also

prevent several side effects of these calculations. For example, we will look at 32-bit

versus 64-bit integer calculations that we use in our application. Above, we

demonstrated that the value of a modulus must be such that when multiplied by any other

value must produce a value that is less than a signed 32-bit integer; otherwise, an

overflow would occur in an intermediate calculation. Similar arguments exist for other

values such as radix and even character codes.

Currently, for our application we only ever use 32-bit modulo; the last experiment used a

32-bit signed integer to demonstrate that our application will not fail due to an overflow.

When calculating the values in a look-up table we call a function whose parameters cast

each 32-bit input value to 64-bit numbers. We use these to do all our calculations within

that function. This allows values inside the function to be large without causing an

overflow. Finally, after taking the modulus of the resulting value, we can cast the result

back to 32-bit integer and pass it back as such. This means that within our utility

function we have performed 64-bit arithmetic to calculate and return a 32-bit value. Of

course, using a 64-bit modulus is computationally very expensive. However, if we only

do it a few times, the calculation is worth the investment. It also allows us to use very

large modulo to reduce the problem of spurious hits, explained elsewhere.

4.4.2.6.2 High Order byte
We include this section as an illustration of the not only Rabin-Karp’s look-up table, but

also to illustrate their creation and use in general. Earlier, we provided a listing for the

Page | 49

Rabin-Karp Algorithm on page 24. Line 3 of the listing demonstrated look-up table

functionality (albeit with only one value) that seemed interesting and useful for our

application. The Rabin-Karp Algorithm calculated a value for h on line 3 and saved it for

repeated use in later lines. We replicate the equation for h below as a reminder of how

many calculations are involved in just this one variable; and to demonstrate the power of

using look-up tables that can sometimes save millions of calculations.

𝒉 = 𝒓𝒂𝒅𝒊𝒙(𝑾𝑳−𝟏) % 𝒎𝒐𝒅𝒖𝒍𝒖𝒔

Equation 6: Calculating Rabin-Karp's h program constant

Even though this particular look-up table only has one cell, the savings in calculations are

enormous. Without the variable h, Rabin-Karp’s application would have had to use the

above equation once for each character in a text file. When one considers the calculation

produces the same result every time, it only makes sense to calculate it once and look it

up every time we need it.

The value h represents is a high-order- byte multiplier used to remove a fingerprint’s high

order digit when the fingerprint window is slid right one character. Interested readers

should refer back to the actual algorithm on page 24 above for more information.

Another point we are stressing is that calculations we repeat many times producing the

same result, can be pre-calculated, and stored in an array. This way, we can perform a

look-up to get a particular value rather than a huge expensive calculation. Cumulatively,

this trade-off saves incredible number of calculations.

Our application uses the following two look-up tables.

4.4.2.6.3 Radix Powers
Many places throughout the program we perform calculations that involve fingerprints.

These calculations happen during indexing, during searching, and during calculations

determining fingerprint ranges, to name a few. In every one of these cases, the

calculation required raising a radix to a certain power and taking the modulus of the

Page | 50

result. We saw an opportunity for a look-up table with so many repetitions of the same

calculations. We base this one-dimensional table on window length with each position in

the array also being the respective array index. The value in each cell is the modulus of

the radix raised to the position (or address), as shown in an equation below. To

accommodate very large windows and search patterns, we gave the array an arbitrarily

large number of entries; where the index i ranges from 0 to 100. This range would

presumably be bigger than any reasonable WL or PL, we are likely to see in our

application. This means that we can be reasonably certain the value for the variable h we

talked about above is contained in a cell of the powRADIX[] array. The following

expression defines the values in our powRADIX[] look-up table.

𝒑𝒐𝒘𝑹𝑨𝑫𝑰𝑿[𝒊] = 𝒓𝒂𝒅𝒊𝒙𝒊 % 𝒎𝒐𝒅𝒖𝒍𝒖𝒔

Equation 7: Calculating value for cell in the radix power look-up table

We use this look-up table in our application. We also use it in our algorithm listing

below. In the listing, we treat the powRADIX[] array somewhat like a function. Thus, if

a token like ‘powRADIX[12]’ occurs in a listing, we interpret it as asking for the result of

performing the calculation listed above for i=12.

4.4.2.6.4 Changing Characters in Window
We now turn to the window sliding through the text file one character at a time. After we

slide the window one character to the right, the leftmost character is left dangling. Recall

from an earlier discussion that Rabin-Karp’s h variable is the high-level byte multiplier

for removing this character. Rabin-Karp pre-calculates h, our application goes one step

further by multiplying h by a character code value and storing the result in an array. This

array contains our look-up table called charOUT[] with one address for each available

character code in the alphabet (i = 0 to 127 in our case.)

Recall earlier we defined S(i) as a function accepting character code as input (i) and

returning character code mod radix. Notice that function appears in the subsequent

equation as well as the radix raised to the power of for the leftmost character. We use the

Page | 51

following equation to calculate each cell’s value before any other calculations in our

application:

𝑐ℎ𝑎𝑟𝑂𝑈𝑇[𝑖] = (𝑆(𝑖) × 𝑟𝑎𝑑𝑖𝑥𝑊𝐿−1) % 𝑚𝑜𝑑𝑢𝑙𝑢𝑠

Equation 8: Calculating value for cell in the leftmost character/radix power look-up

table

After we fill this array with values, we simply provide a character code, and get back a

value for removing that particular character from the current fingerprint. Not having to

perform above calculations for each character in a text file is now possible. While sliding

a window through a text file calculating fingerprints, a simple look-up is all that is

required to get the value necessary to remove the leftmost character. Performing this

calculation for each character in a text file would be a huge endeavor compared to

retrieving a variable’s value from an array. The point is using these two pre-calculated

look-up tables save a great deal of CPU calculations later during the actual runs. They

also give us the advantage of overloading the functions based on 32-bit versus 64-bit

calculations. Getting a value from a look-up table takes the same time for 32-bit as for

64-bit.

We use both these look-up tables in our applications. We also include it in our algorithm

listing below to demonstrate how and where we implemented it during Step one. In the

listing, we treat the charOUT[] array somewhat like a function. Thus, if a token like

‘charOUT[i]’ occurs in a listing, we interpret it as asking to look up and return the value

needed to remove the character with code = i from the left hand end of the current

fingerprint. Line 14 of the listing below illustrates its use.

4.5 Step-One Building an Index

4.5.1 Introduction
Now that we have introduced a few issues of our two-step process, we can examine the

changes we made for step one of the process; called Building an Index. We have already

Page | 52

briefly introduced LevelDB, the database engine we use; and will talk about it further

below. We have also introduced the fingerprint and file position that we combine for our

index database’s primary key. All these issues including the original Rabin-Karp

Algorithm contribute to step one of our process.

4.5.2 Index Building Algorithm

4.5.2.1 Introduction
The best way to demonstrate the changes we made to Rabin-Karp Algorithm is using

algorithm listings. The following listing shows our algorithm for step one that can be

compared to the original algorithm listing called, “Rabin-Karp-Matcher” on page 24. We

will do that below. In the meantime, looking at the overall listing one can observe that

our algorithm steps through a text file one character at a time, the same as the original. A

change we made was to add processes and functions necessary for building an Index

Database during that same stepping process. More precisely, as we add one character to

a fingerprint we also add one record to the database in the same step. We will have more

to say on this later. Finally, notice how no more lines of code remain dedicated to

checking a pattern’s fingerprint, or verifying characters match. That is because step one

only builds an index. Step two is where all those other activities takes place like

searching, and matching.

Page | 53

Index-Building-Algorithm(T, W, r, q)
1 TL ← Length(T)
2 WL ← Length(W)
3 for i = 0 to 127
4 do charOUT[i] ← (i mod r) * r(WL-1) mod q
5 t0 ← 0
6 for i ← 0 to (WL-1)
7 do t0 ← (rt0 + T(i)) mod q
8 for s ← 0 to TL – WL
9 do s = correctEndian (s);
10 do ts = correctEndian (tS);
11 do key = copy bytes (tS + s); (to DBkey structure)
12 do insert key and s into LevelDB (Populate database)
13 If (s+1 > TL-WL) then EXIT ;
14 do ts+1 ← (r(ts – charOUT[T[s]]) + T(s + WL)) mod q

Algorithm 2: Our Index-Building Algorithm, Step-One

4.5.2.2 Creating the Index Database
The above procedure works as follows. Recall we demonstrated earlier when we

introduced characters they could be interpreted as either a symbol or an integer; the

procedure interprets all characters as integers. Recalling the use of round brackets for a

code and square brackets for a character, the term T(i) in line 7 refers to the character

code (i.e., an integer) at position i in the text file rather than its symbol. The for-loop

starting on line 3 populates the charOUT[] array; a constant used later in Line 13. Lines

6 and 7 compute a fingerprint for the first position of the text file. The method uses

Horner’s Rule that multiplies every subtotal by r before adding the new character. This

loop continues until our fingerprint t0 is WL-digit numbers representing its respective

string.

The second part of the algorithm begins with a for-loop of lines 8 through 15. This loop

iterates through all possible shifts s in the text file performing the following calculations.

First, Lines 9 & 10 check the Endianness and rearrange the byte orders if required. Then,

Line 11 concatenates the two integers, fingerprint and file position, by treating them as

byte arrays and copying the bytes to another temporary byte array. This temporary array

Page | 54

is now in a format to copy to a key byte array suitable for insertion in the database. Line

12, inserts this value as the key and the position (s) as the value into our Index Database.

Finally, Line 13 checks to see if the for loop on line 8 will be executed again. If not, it

exits to prevent overflow. If so, the algorithm uses another innovation on line 14 that

computes ts+1 mod q from the value of ts mod q in constant time using Horner’s rule.

Now that we have looked at how the process calculates and formats its data, we are in a

much better place to have a little closer look at the database engine we used called

LevelDB. The next section covers LevelDB.

4.5.3 Building our Index Database using LevelDB

4.5.3.1 Introduction
Throughout the document, we have been mentioning LevelDB as a tool we used to store

our preprocessing information. It probably stands alone as the biggest modification we

made to create our application. We also mentioned earlier that LevelDB was not our first

choice. Originally, we worked with Oracle DB for several months before concluding we

could not configure it properly to get the results we expected. Having found no reason

why this phenomenon was occurring, we aborted Oracle DB and decided to try LevelDB.

LevelDB is an Open-Source Key-Value pair database created at Google. As such, it is

NOT a relational database. While the records are automatically sorted by their key byte

array, and keys can be located quickly with a function like Get(), there is no functionality

typical relational databases provide. For example, a user cannot build an index on the

value byte array, they cannot perform joins to secondary tables, and they cannot use SQL

to perform any of its usual functions. LevelDB is just a fast, reliable, and easy way to

store values in a table that automatically sorts its records by its key and allows many

useful lookup and iterating functions based on key values. Below, we give a brief

description of LevelDB including where to get it, how we set it up, and how a user works

with this database, both voluntarily and otherwise.

Page | 55

LevelDB’s web page is (Google Inc., 2012) (see http://code.google.com/p/leveldb/)

where program download and documentation are both available. Unfortunately, there is

not too much documentation for users in general. As for programmers, there is a three-

page set of examples. Although, well written and filled with appropriate concision this

“Detailed documentation” (Dean & Ghemawat) as they refer to it falls way short of

serious programming documentation. Perhaps the documentation was trying to follow

the same idea behind the database itself of small footprint and fast results. In any case,

the documentation does not expose many of the nuances and fine details that would assist

or even allow for any kind of strategic optimization of the setup parameters like cache

and block sizes. Because of this lack of information, we did not attempt to check

LevelDB’s sensitivity to these parameters in particular during our experimentation.

Aside from the fact that our experiment needed to vary our own parameters like radix,

pattern length and modulus for instance, we had absolutely no direction as to how the

block size or cache size ultimately affect the speed and size of LevelDB.

Understandably, we put this kind of effort in our later chapter on future work and

enhancements.

4.5.3.2 Google’s LevelDB Description
The web page we just introduced above contains lists of LevelDB features and

limitations. Interested readers should refer to the LevelDB project page at the following

URL: http://code.google.com/p/leveldb/

4.5.3.3 LevelDB Functions and Properties
Before we get into our use of LeveDB, we must review a few characteristics we need to

accomplish our task. We will begin with several properties we need in our analysis, and

end with a list of its most important functions.

LevelDB is a very useful database as the above list declares. Throughout our brief

discussion, we will review several of the major features from the list as we introduce new

ones. We begin with the fact that LevelDB is an open-source C++ library. Its open-

source license is a BSD-styled license that allows us to use the library and documentation

http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/

Page | 56

freely for our research, that is, as long as we acknowledge the owners. To install it, we

simply supplied the path to its libraries and header files, put in its main header, and

compiled within several minutes. Then, the work began by us building a C++ application

that performed all our calculations.

LevelDB allows its key to be an arbitrary byte array they call a slice. We take advantage

of this when we construct our key by concatenating the file position bytes to the

fingerprint bytes; in the next section, we describe how we build a key byte array in detail.

LevelDB also keeps the records sorted by the key as it puts() them. This means LevelDB

will keep our records primarily sorted by fingerprint, with file position breaking any ties.

This is exactly the order we need our output, so iterating through keys having fingerprints

of equal value, we get a sorted list of file positions automatically. Incidentally, this

sorting process is precisely one of the places we needed Big Endian byte arrangement. It

is also how we discovered our integers were in Little Endian.

Having sorted records helps during a step two analysis when we are looking for particular

fingerprints. LevelDB has a built-in iterator similar to STL’s iterator that allows us to

skip through collections of keys according to our own criteria. It also allows us to find

keys with its SeekToFirst(key) method. The iterator has every other method needed to

skip thorough the database starting wherever we wish, and ending wherever we wish.

During runs in step-two, the iterator provides us with all the functionality we require.

One of the characteristics of matching short values is a significant asset for our

application. In our case, we mostly search LevelDB for a particular fingerprint, which is

only half as long as the entire key (the other half is file position.) Nonetheless, the

iterator will simply stop at the first record with a fingerprint matching ours. We can then

continue iterating to subsequent records having the same fingerprint to get a list of all

locations that single fingerprint has. Since LevelDB has sorted the records, the iteration

results in a sorted list of file positions for that particular fingerprint. We will expand on

this characteristic throughout this section.

Page | 57

LevelDB has the following components: Options; Status; ReadOptions; WriteOptions;

and, WriteBatch. These components have functions that give a user quite liberal and

thorough access to the database’s capabilities. We do not need to expand on what each

one is and how it works because of the breadth of features. The fact is these

functions/components contain all the functionality one would expect a key-value database

to have.

Finally, as described above, three of LevelDB’s main functions give users access to enter,

retrieve, or delete a record from a database. They are: Put(key, value), Get(key),

Delete(key). These functions have the same functionality as comparable functions in

typical databases; not the least of which is the Put() function sorting records by its key

byte array.

4.5.3.4 Our LevelDB Database
With our recent work using LevelDB, as far as we can tell, all functional and

characteristics claims are true. The Detailed documentation opens with the following

description: “The LevelDB library provides a persistent key value store. Keys and values

are arbitrary byte arrays. The keys are ordered within the key value store according to a

user-specified comparator function.” (Dean & Ghemawat)

In this section, we will define our key and value byte arrays. Then, we will discuss why

we do not use a comparator function. The key and value byte arrays are how an

application trades data with LevelDB. It is up to the application to get everything in the

correct format within the byte array.

4.5.3.4.1 Key and Value Byte Arrays
We discussed these earlier so we will not get into too much detail. Nevertheless, formal

definitions for both byte arrays are as follows:

• The key for our LevelDB database is the bytes of a fingerprint followed by the

bytes of a text file position, with the bytes arranged in Big Endian format.

Page | 58

Currently, the program can work with fingerprint prime values between 1 and 231

(2,147,483,648) without overflow problems.

• A key byte array is a data structure called a slice used by LevelDB to usher the

primary key into and out of a database. In our application, it consists of the key

defined above.

• Since we have control over the type (hence, size) of the fingerprint, through

HashValue_t, and the text file position, through FilePosition_t, (see section called

Program Inputs on page 44), we have ultimate control over the size of the key

byte array.

• A value byte array is a data structure called a slice used by LevelDB to usher

value data into and out of a database. In our application, it consists of the same

text file position as is included in the key above. This integer is also in Big

Endian format.

The key and value byte arrays are very important data structures for LevelDB. They play

an important role. Whenever data goes in to a database or out of one, these two data

structures are the only conduits for that data. The key byte array is also the variable

LevelDB uses in comparisons for database searching and browsing.

• The default sort order is lexicographically on the key byte array; that is, this is the

sort order used by LevelDB when a user does not provide a user-specified

comparator function. Integers in Big Endian format sort from smallest to largest

lexicographically, as we would expect.

Page | 59

4.5.3.4.2 Functional Dependency
A digression is in order explaining the variable’s value we placed into the value byte

array. Although, we already declared LevelDB was not a relational database, some of

the relational model’s rules are helpful for other types of databases such as LevelDB.

One relational rule in particular applies to many types of databases. Repeating the same

value on the same record in a database breaks a relational rule preventing records from

having functional dependencies among their fields. A functional dependency means that

we can calculate a value on a record from one or more values on the same record. The

concept behind this rule is for users to calculate the needed values when required rather

than store them. Functional dependencies open a door to allowing a user to cause a

database to lose its integrity. For now, we will just have to admit that our application has

functional dependencies. Several of the recommended improvements will find a need for

the value byte array, thereby removing these dependencies.

4.5.3.5 Administrator Functions
A user can create an Index Database anywhere in a directory tree they have a security

access of ‘modify.’ Hence, when a user creates an Index Database, the command-line

input requires a parameter giving a name for this directory (where the corresponding

LevelDB database will exist.)

As LevelDB is building the Index Database, it uses many temporary files for moving data

around. For instance, one of our Index Databases has 1,934 files in its database directory

(described above.) Unfortunately, the names LevelDB uses for these files are the same

for every database. These two issues make it a minimum REQUIRMENT for users to

create new directories for each database. Alternatively, a user could at least empty a

directory from a previous database before building a new one on that particular

subdirectory. Thus, the security needs are to at least give a user permission to both create

and delete directories as well as empty existing ones.

Page | 60

4.5.3.6 No Duplicated Keys
Some might call LevelDB, “light-weight” because it does not drag along very much

overhead. For instance, it does not have support for duplicate keys; something we very

much need to deal when we encounter hash collisions. We therefore needed a

mechanism to overcome the fact that our Index Databases represent many records having

the same fingerprint that we originally planned on as being our database key. The

duplication of fingerprints comes from the simple fact that fingerprints are not unique for

a given text file. Elsewhere in the report, we discussed two primary reasons for duplicate

fingerprints that we reproduce here for convenience. (1) Two substrings with matching

characters and length will always have the same fingerprint, and (2) depending on radix,

and modulus, two completely different character substrings can end up having exactly the

same fingerprint by chance.

Whatever the cause, the solutions to us was obvious (and already discussed above.) We

created our own database key by concatenating the bytes for file position to the bytes for

fingerprint. This action eliminates the chance of overlap completely because the file

position is unique for each record in a text file.

4.6 Step-Two: Match Patterns to Text

4.6.1 Introduction
This section is about the tools and techniques we use to match a pattern (P) of length

(PL) with text in a window (W) of length (WL) from a text file (T) of length (TL.) The

chapter is about step-two of our approach to text search. The main obstacle in this part of

the application is not building an Index Database beforehand; the obstacle is designing an

Index Database meeting user needs in the first place. Designing an Index Database

requires decisions for all parameters like radix, alphabet, window length, etc. that

represent a great deal of work. Nevertheless, once a user builds an Index Database, they

can use it repeatedly to search for all kinds of text.

Page | 61

4.6.2 Implementing Matching
Below we will see we have exactly three categories of matching available to us. Each

one depends directly or indirectly with WL, PL, r and q. When we discuss each

category later, we assume a reader is familiar with the following facts.

All of the functions in our application that find locations return a vector containing sorted

file positions. We refer to this vector, both here and in the pseudo-code, by the arbitrary

name Locs. By now we know step one of our application scans an entire text file once,

building an Index Database containing fingerprint and file position information. We

know as well, that the Index Database never has any duplicate keys because the second

part of a key byte array value is a unique file position. Therefore, LevelDB will sort the

records first by fingerprint then by file position. Incidentally, this sort order is correct

because of our Big Endian format change described earlier.

Finally, when comparing a short string to a longer string for a match. If every character

in the short string matches the respective character in the longer string, then the shorter

string matches the longer string, but not the other way around. These types of partial

matches are how we can locate fingerprints in an Index Database without needing a file

position.

4.6.3 The Matching Issues
In this section, we investigate and describe a generalization we created allowing us to use

one Index Database for locating patterns of different lengths. In fact, with a few

exceptions we can use almost any window length (WL) and still find patterns of almost

any length from the same Index Database. To accomplish this, our application operates

with three categories of matches: (1) Pattern length is shorter than Window length

(PL<WL); (2) Pattern is same length as Window (PL==WL), and (3) Pattern length is

greater than Window length (PL>WL.) We use the remainder of this section to explore

each of the three categories and describe solutions we developed for each.

Page | 62

4.6.3.1 Pattern Shorter than Window Length (PL<WL)
We begin by examining the toughest of the three categories, finding patterns whose

lengths are smaller than the Index Database’s window length. Consider a user that first

selected a window length of WL=5, now wanting to find locations for patterns shorter

than WL say PL=3 (PL<WL.) This is the most difficult to solve of the three matching

problems because we need to work with partial fingerprints. We will quickly review an

example before moving on to bigger issues in this topic. We begin our discussion below

with an example using a three character pattern “123”, with WL=5 and PL = 3.

4.6.3.1.1 Example of Matching a Short Fingerprint
We have already stressed how important this function is because the search pattern is

shorter than the window length. It is somewhat easy to grasp through example than it is

through formal definitions. Hence, we present the following example. To demonstrate

how we solve this problem, assume we have a search pattern, P equal to 123 (an

integer.) Since the pattern has three characters, its pattern length PL=3. Our alphabet

consists of all digits, Σ ={0,1,2,3,4,5,6,7,8,9}; which means radix r=10

(because that’s how many characters are in the alphabet.) Remember, in our application

a user can set r to any value. In this example, we have set the radix to the number of

characters in the alphabet, not only because it is a standard approach, but also, to make

our example’s characters act like digits and digits to act like characters. Furthermore, let

q=13, and WL = 5. Continuing with our example, the hash function is for this set-up is:

H(𝑃) = (103−1 × 1) + (103−2 × 2) + (103−3 × 3) =123. Finally, the text file from

which we will perform our search is, T =0123456789123.

Solving this seems trivial at first because we can manually scan the text file looking for

123. Doing that is as doing the Brute Force Algorithm described earlier. We will

nevertheless continue our example and solve it through our algorithm. Our WL is 5 so

we need to search for all fingerprints looking like 123xx, where xx are any digits. The

manner in which we do this is by recognizing there is a range of values for this format.

In other words, we want to find locations in T where fingerprint values exist in the range

Page | 63

from a minimum of 12300 to a maximum of 12399. Hence, anytime we want to find a

shorter pattern, we have a convenient mechanism as a guide. More formally, the

matching mechanism where PL<WL works as follows.

Notice that to calculate the range’s minimum value of 12300, we simply shifted the

known value H(P) of 123 (with PL=3) to the left two positions. We accomplished this

in this example by simply multiplying H(P) by r2. In general, to calculate the range’s

minimum value we multiply the pattern’s fingerprint H(P) by rWL-PL. To calculate the

maximum value we do the same shift (i.e., 12300) but this time we add rWL-PL-1 to that

result (which in our example is r2-1, or 100-1=99).

4.6.3.1.2 Setting a Range of Fingerprints
With the specific example now calculated out, it is easier to see the interplay of the

variables and parameters in the following two equations that define the minimum and

maximum values of a fingerprint range. Any fingerprint falling between these two values

may indeed contain the short pattern we are looking for. Unfortunately, being within the

range does not say anything about being an actual match, all it says is that it might match.

Therefore, after collecting a vector full of positions having a fingerprint within the range,

our application compares the characters in each substring against the characters in our

pattern using our verification process. The equations for both ranges follow.

𝐻𝑚𝑖𝑛(𝑃) = 𝐻(𝑃) × 𝑟𝑊𝐿−𝑃𝐿 𝑚𝑜𝑑 𝑞

Equation 9: Calculating the minimum fingerprint value for a short pattern range

𝐻𝑚𝑎𝑥(𝑃) = 𝐻(𝑃) × 𝑟𝑊𝐿−𝑃𝐿 𝑚𝑜𝑑 𝑞 + (𝑟𝑊𝐿−𝑃𝐿 − 1) 𝑚𝑜𝑑 𝑞

Equation 10: Calculating the maximum fingerprint value for a short pattern range

Page | 64

Even after discarding the fingerprints outside this range, there still a possibility that the

range is so huge there may be thousands of possible fingerprints that are nowhere near

our target value. This scenario means we would be verifying many file locations that do

not have strings matching our pattern. Even with our simple example, dropping the

pattern length by one leads to a range from 12000 to 12999. The factor of ten

difference is because our radix is also ten. Even still, however, adding one digit we

jumped from a range of one hundred possible fingerprints to a range of one thousand.

Now consider a user with a radix of 127 (with its corresponding new base of 127.) Since

1273 is roughly equal to two million we have that many possible fingerprints. Consider

the size of the range in our previous example when we shortened the pattern’s length by

one, and then apply it to this last example. Two million times 127 is a big number. It is

easy to see how big a range can get, and to speculate how many of the fingerprints in that

range are false positives (spurious hits.)

4.6.3.1.3 Pattern and Window Length Difference
Another way to screen whether a shorter pattern can be found for a given window length

in a particular database is to calculate an allowable difference between their lengths. This

is a higher-level approach than above because it tells us if calculating a range is even

possible to begin with. This section demonstrates how our application calculates

allowable length differences.

We begin by subtracting the two range equations from above (Hmax(P)–Hmin(P)) gives the

maximum difference between two fingerprints (denoted as Δmax(P)). We have already

simplified the right hand side of the resulting equation as follows:

∆max (𝑃) = (𝑟𝑊𝐿−𝑃𝐿 − 1)𝑚𝑜𝑑 𝑞

Since (mod q) implies a range from 0 to q-1, to have an ability to distinguish

fingerprint values, we want to ensure that the right hand side be as large as possible.

Since q-1 is its maximum value anyway, we use it. Substituting, q-1 for Δmax(P) and

Page | 65

dropping the mod q (because when the RHS is equal to q-1 that is precisely the value

mod q would return) leaves us with the following equality,

𝑞 − 1 = (𝑟𝑊𝐿−𝑃𝐿 − 1)

Next, we simplify by adding one to both sides, yielding,

𝑞 = 𝑟𝑊𝐿−𝑃𝐿

Simplifying even further, we take the log2 of both sides; rearranging the RHS gives us,

log2(𝑞) = (𝑊𝐿 − 𝑃𝐿) log2(𝑟)

Next, let Δpat=(WL-PL) denote the maximum difference between window length and

pattern length. After making that substitution, we simply divide both sides by the log of

r. This leaves us with the following equation to calculate the maximum length difference

between an Index Database’s WL and a shorter Pattern PL,

∆𝑝𝑎𝑡=
log2 𝑞
log2 𝑟

Equation 11: Pattern and window length difference

This very handy equation is precisely the tool we need to issue a message like, “Pattern

length too short cannot use this Index.” to users. Our application uses the value from this

equation before accepting a short pattern for analysis. If the difference is too large, there

is little sense even beginning any calculations to begin with so, the application issues a

message and terminates

4.6.3.1.4 Parameter Influences
While this equation is informative, it does not help us with ready-made conclusions about

how large r or q should be without tackling a confusing interplay of conflicting

Page | 66

assumptions. A basic trade-off exists between maximizing both r and q together. Yet,

any user of our application will ultimately have to decide on values for several

parameters including r and q. Nevertheless, this section looks at the maximum length

difference in terms of various values of r and q. More importantly, we made several

assumptions when contemplating how to illustrate any useful lessons. In the end, we

decided a table would give readers an idea of some reasonable values we can expect to

see for Δpat when we assign typical values to both r and q in practice. This section will

examine this question in some detail.

Table 3, shows the maximum value we can expect for Δpat=(WL-PL), using various

practical values for a radix r (rows) and a modulo q (columns.)

r ↓ / q → 257 32,173 15,485,863 1,073,676,287 2,147,483,647

2 8.0 14.9 23.9 30.0 31.0

16 2.0 3.7 5.9 7.5 7.7

32 1.6 3.0 4.8 6.0 6.2

127 1.1 2.1 3.4 4.3 4.4

Table 3: Δpat maximum for practical values of both r and q. These maximum

differences are likely to occur in practice.

We considered the following ideas when selecting the values for q and r in this table.

Earlier, we established that q must be a prime number. We also mentioned performance

demands require that modulo arithmetic (and its intermediate values) be performed on

integers that can fit into a single computer word (i.e., q ≤ 232); although later, we tested

and expanded it to accommodate 64-bit math using loop-up tables. Further, since some

intermediate modulo values can be negative, q must be of a signed integer type. Since q

cannot be any of the unsigned integer types, our fit-in-a-computer-word-limit shrinks to q

≤ 231.) Therefore, to get an appreciation for the effects various values of q have on the

Page | 67

maximum length difference, in our experiment we selected a range of prime numbers that

are near values that are related to computer words, such as: 28(=256); 216(=32,168);

224(=16,777,216); 230(=1,073,741,824); and, 231(=2,147,483,648).

Similarly, to get an appreciation of the sensitivity for the maximum difference with

respect to values for our radix r, we selected several values that are candidates for our

problem. For instance, by reducing the characters in T to two values, then we have a

binary system where r=2. But, for an alphabet that includes all ASCII characters, our

radix should be r=128. When using this value for radix there are no requirements to

have all 128 characters actually appear in a text file. Nevertheless using ASCII character

codes keeps the alphabet so every character value sorts as we would expect (i.e.,

alphabetically.) Finally, to indicate the effect of values for r between these two extremes

we included r=16 and r = 32. Unfortunately, as we mention elsewhere, using an r of 2

was not practical at all. In fact, after some ten hours of executing we aborted the run and

moved our lowest value for r up to 4.

There are several main points made in this and earlier sections worth review. First,

LevelDB keeps its records sorted by values in its key byte array, which in our case

consists of the fingerprint bytes followed by the file position bytes in Big Endian format.

Second, when we ask LevelDB to find a fingerprint without giving a file position, it will

place a cursor at the first record whose fingerprint portion of its key byte array matches

the given fingerprint. Third, there is a calculation that supplies values telling us the

largest allowable length difference between WL and PL that can exist when searching a

pattern whose length is shorter than the database’s window length. Finally, earlier we

discussed LevelDB’s iterator that has many of the functions as STL iterators.

4.6.3.1.5 Getting File Positions
Understanding iterators allows us to see how our application finds locations for shorter

patterns that have passed the above length test but are still shorter than WL. Briefly, we

use an iterator to find the smallest and largest fingerprint in the range given by Equation

11 on page 65 above. The range of Hmin(P) and Hmax(P) could not only be a very large

Page | 68

spread depending on the modulus q, the radix r, and the length difference (WL-PL), but

also produce a large number of spurious hits. Whatever the case, this fingerprint range

allows us to (a) use an iterator’s function SeekToFirst(Hmin(P)) to search for the first

occurrence of the value of Hmin(P) in the Index Database, and(b) loop through the sorted

records until the cursor passes the value of Hmax(P). During this looping process, our

application stops at each record and appends the file position value into a vector we

already introduced called Locs. Every file position in Locs is a candidate for matching

the pattern. Therefore, our application iterates through Locs and performs verification

for every file position. It will delete any position from Locs that is a false positive,

leaving us with a vector containing exactly what we need; a list of file positions where

the pattern occurs.

4.6.3.2 Pattern Equal to Window Length (PL==WL)
If the above was the toughest of the three situations, this one is the easiest; finding

patterns whose lengths are the same as the Index Database’s window length. In this case,

we still use a cursor, but we do not need all the confirmation steps we saw in the previous

situation where (PL<WL.) Our first step in this process is to calculate the pattern’s

fingerprint H(P). Next, we simply use an iterator’s function SeekToFirst(H(P)) to

search for the first occurrence of the fingerprint H(P) in the Index Database. Then, we

iterate through the sorted records until the cursor comes to an entry whose value is not

equal to the pattern’s fingerprint H(P). When that happens, we are finished gathering

locations. In exactly the same fashion as above during this looping process, our

application stops at each record and appends the file position value into a Locs vector.

Also as above, every file position in Locs is a candidate for matching the pattern.

Consequently, our application performs verification for each entry in the vector. During

the verification process, the application deletes any position from Locs that is a false

positive. After this verification step, our vector Locs has a list of file positions where the

pattern occurs.

Page | 69

4.6.3.3 Pattern Longer than Window Length (PL>WL)
If the above scenarios were the toughest and easiest of the three situations, it makes sense

to assume this one falls between the two. It does not. It is closer to the toughest than the

easiest. In this scenario we have a task of finding a pattern whose length (PL) is bigger

than the Index Database’s window length (WL). While we give plenty of details later,

our basic angle of attack for solving this problem is first to chop the pattern into an

ordered set of substrings whose lengths are all equal to WL even the last one. Then, for

each substring, we calculate a fingerprint. In addition, once we know a beginning file

location, we can quickly and easily calculate the locations for each substring in the

pattern. With these two broad concepts as a backdrop, we now turn to the details.

To begin with, we still use a cursor, but will have a few confirmation steps to perform

before we get that far in the analysis. Our first step is to calculate a set of fingerprints for

the entire length of the search pattern. Each fingerprint represents a substring of P that is

exactly WL characters long (even the last one.) The first fingerprint, therefore, is for a

substring of the first WL characters in the pattern. We denote it as H(P0). Next, we

calculate the second fingerprint from our long pattern, H(PWL). We continue calculating

each successive fingerprint in the long pattern until we reach its end. The last fingerprint

is tricky because we want it to be the same length WL as the other substrings. Thus, no

matter where the fingerprint for the second last position ends, our last fingerprint will

always be calculated as: 𝑯(𝑷𝑷𝑳−𝑾𝑳
𝑾𝑳) . It implies there most certainly will be some

overlap between the last position’s substring and the second last position’s substring.

Now we have a set of fingerprints for our pattern. The first process finds all file positions

for the first fingerprint in the pattern by iterating through the Index Database. As usual,

we put the resulting file positions into a vector called Locs. Think of this vector as a sort

of master set of file positions because at every step in our process, it contains a file

position for every occurrence along with false positives. The entire idea of our process

from here on is determining the file positions in this set that are candidates for an

occurrence of a match and removing the file positions that are spurious hits. As we will

Page | 70

elaborate later, a key to identifying match potentials versus spurious hits is calculating

how far away a fingerprint is from the beginning of the pattern.

Now that we have a starting point, we can begin a process of whittling down the file

positions in Locs using the remaining fingerprints and a special comparison. The second

step is virtually identical to the first step. The two differences are: (a) finding file

positions for the last substring in the pattern instead of the first, and (b) placing these

positions in a vector called NextLocs instead of in Locs. The notion behind this and the

remaining parts of the process is as follows: if a file position in Locs is part of an

occurrence, then it must have a ‘corresponding file position’ in NextLocs and vice versa.

We calculate the ‘corresponding file position’ in NextLocs by adding the file position in

Locs to the number of characters between the two substrings. If there is such a file

position in NextLocs, we save that file position in Locs for the next round because it has

a higher probability of being part of a match than it did before the comparison.

Otherwise, NextLocs does not have a corresponding file position. That means we can

remove the respective file position from Locs because it can never be the beginning

substring of an occurrence when we know there are no ending substrings that matchup.

We continue processing each file position in Locs by adding the respective distance to its

file position and searching for an entry with that particular file position in NextLocs. To

do this, we iterate through Locs keeping all entries whose corresponding file position

occurs in NextLocs and removing the remaining entries. We based the process on a view

that every occurrence of the pattern must include a match for the first fingerprint, the last

fingerprint, and every fingerprint in between.

After finishing with the file positions for the last fingerprint, we empty NextLocs and

repeat the entire process for the second last fingerprint in the pattern instead of the last.

Keep in mind that the number of entries in the Locs vector keeps growing steadily

smaller with each step. In any case, we repeat this process for each fingerprint in the

original long pattern. Finally, after performing all these steps for each of the long

pattern’s fingerprints, our Locs vector will only contain file positions where each

Page | 71

substring’s fingerprint occurs in the proper location with respect to one another. Since

this is the definition of an occurrence, our Locs vector contains a list of file positions

showing where every occurrence of the pattern exists in the text file.

4.6.4 Pattern Matching Algorithm

4.6.4.1 Introduction
Now that we have provided the necessary background information, we present the

following listing to show the algorithm we implemented and demonstrate its calculations

and processing. This algorithm listing is somewhat larger and more complex than

previous listings because of the three different types of matching. Once again, we will

expand the details of this algorithm in subsequent sections of the report. The inputs are a

text file T, a search pattern P, a window length WL, a radix r, a modulus q, and an Index

database DB.

Rabin-Karp-Matcher(T, P, r, q, WL, DB)
##-1 prepares program constants like look-up tables
1 TL ← Length(T)
2 PL ← Length(P)
3 p ← 0
4 powRADIX[0] = 1
5 charOUT[0] = 1
6 for (i = 1 to 100)
7 do powRADIX[i] ← (powRADIX[i-1] * r) mod q
8 for (i = 0 to 127)
9 do charOUT[i] ← ((i mod r) * powRADIX[WL-1]) mod q
##-2 works on problems where search pattern length is less than Index Database window length PL<WL
10 if ((WL-PL) > 0 and ((WL-PL) ≤ (log2(q)/log2(r)))
11 p ← 0
12 for (i ← 0 to (PL-1))
13 do p ← (rp + P(i)) mod q
14 LL ← (p * powRADIX[WL-PL]) mod q
15 UL ← (p * powRADIX[WL-PL]) mod q + (powRADIX[WL-PL]–1) mod q
16 get s from DB for (LL ≤ key and UL ≥ key) and save as vector
Locs[]

Page | 72

##-3 works with patterns whose lengths are the same as the window length PL == WL
17 if ((WL-PL) == 0)
18 p ← 0
19 for (i ← 0 to (PL-1))
20 do p ← (rp + P(i)) mod q
21 get s from DB for p == key and save as vector Locs[]
##-4 works with patterns whose lengths are larger than the window length PL > WL
22 if ((WL-PL) < 0)
23 p ← 0
24 for (i ← 0 to (WL-1))
25 do p ← (rp + P(i)) mod q
26 get s from DB for p == key and save as vector Locs[]
27 p2 ← 0
28 for (i ← (PL-WL) to (PL-1))
29 do p2 ← (rp2 + P(i)) mod q
30 get s2 from DB for p2 == key and save as vector NextLocs[]
31 keep s in Locs[] for all s=s2-WL in NextLocs[]
32 v ← 0
33 for (k ← WL to PL–2WL)
34 do p3 ← 0
35 do v ← v+1
36 do for i ← (s) to (s + WL-1)
37 do p3 ← (rp3 + P(i)) mod q
38 do get s3 from DB for p3 == key and save as vector
NextLocs[]
39 do keep s in Locs[] for all s=s3-WL in NextLocs[]
40##-5 Remove ‘spurious hit’
41 SpuriousHits ← 0
42 for each s in Locs[]
43 if P[0 … PL-1] == T[s … s+(PL-1)]
44 then print “Pattern match at position: ” s
45 else SpuriousHits ← SpuriousHits + 1
46 delete s from Locs[]
47 print “Total Spurious Hits:” SpuriousHits

Algorithm 3: Step-Two of Our Approach to Pattern Matching

4.6.4.2 Algorithm Description

4.6.4.2.1 Character Symbols and Codes
Before beginning a description of step two of our algorithm, we need to point out a few

general topics about confusing concepts we want to make completely clear. First,

throughout this document we have stressed that a character has two components, a

symbol, and an integer. This algorithm in particular uses both side-by-side. When we

need to refer specifically to a code or a symbol, we use parentheses or square brackets

respectively. Remember as well that all character codes range from 0 to r – 1, which are

Page | 73

also digits in the r-based numbering system used in calculating fingerprints. In the

listing, we clearly see an example of not only parentheses on Line 13 during fingerprint

calculations, but also square brackets on line 43 during verification.

4.6.4.2.2 Vectors
Next, earlier we referred to a vector of values without really defining what a vector was

or does. Since the algorithm listing uses several vectors, in particular to hold locations

for later processing, we should provide at least a general definition for them. In a general

sense, a vector is a C++ data structure similar to an array. In particular, we use the term

vector to refer to a data structure having the same characteristics and properties as an

STL (Standard Template Library) vector. (Prata, 2005) The algorithm listing identifies

vectors by putting the square brackets immediately after their names, typically without

any parameters. We use the same names in the listing that we did earlier while

discussing the matching theory. In any case, throughout this algorithm we use a phrase

“and save as vector X[],” to indicate that we want to store all of the values we

just obtained into a vector called ‘X.’

The algorithm uses two vectors, namely Locs[] and NextLocs[]. The first vector contains

a sorted list of positions that satisfy whatever information need a user was trying to

achieve. The second vector plays a support role when a search pattern is longer than an

Index Database’s window length. The basic procedure our algorithm follows is first to

fill a ‘main’ vector called Locs[] with file positions having fingerprints that match the

first one. Next, we fill another vector NextLocs[] with file positions whose fingerprints

match the fingerprint from a corresponding place in the pattern. Finally, the procedure

checks each position from Locs[] to see if the second vector has a corresponding position

a certain number of bytes away. If so, we keep the file position value in Locs[], if not,

we remove it from Locs[].

4.6.4.2.3 Index Database
Additionally, there is little mention of the Index Database in the listing other than in the

get statements. We have already defined our algorithm for building this database earlier.

Page | 74

Now that we are examining our matching algorithm listing, we can see how an Index

Database is actually used. To begin with, the DB parameter passes the Index Database

into the algorithm. We can therefore we assume it already exists from an earlier run of

our algorithm’s step one process, and is filled with data from the text file T (also passed

in.) We use a get command (see Line16 for example) to access its data. For instance, we

use a get command to return values for ‘s’, the location portion of the key. The ‘s’ is

significant because it stands for ‘shift,’ which represents the same value as file position;

but, it is used mostly when the context is how far a sliding window has moved.

4.6.4.2.4 Algorithm Parts
In addition to the above general statements about the algorithm, we can get on with

describing some of its specific features and characteristics. First, notice how we placed

five bold comment lines (that begin with “##”) throughout the listing. These comments

delineate the major parts of the algorithm; which are: (1) program constants and

initialization, (2) search when search string smaller than Index Database’s window, (3)

search when search string is same length as window, (4) search when search string is

longer than window, and (5) verification and output.

The general flow of control is as follows. Execute Lines 1 through 9 to load program

constants and look-up tables. Next, choose a situation between comments two, three, or

four. Execute the lines for selected comment. Finally, place results into vector called

Locs[]. The difference between comments two, three, and four are related to the concept

we introduced earlier about the three scenarios for matching (PL < WL; PL == WL; and

PL > WL.) The matching process depends which scenario is present, and the comments

delineate the three processes. Comment two, lines 10 through 16 deal with the scenario

PL < WL. This is a complicated process and can end with no positions in the Locs []

vector. This can occur when the length difference is too small. The second part of the if

statement on line 10 demonstrates, no values are placed in the vector. Comment three,

Lines 17 through 21, deals with the scenario where PL == WL. Finally, comment four,

lines 22 through 39, deal with the scenario where the search pattern length is larger than

the window length.

Page | 75

4.6.4.2.5 Verification and Output
After the above processes are completed, we have enough information to send our Locs[]

vector through verification. That means we execute the lines for the last comment. Lines

41 through47 we call verification because that is precisely what happens. For each file

position value in the Locs[] vector, we go to that position in the text file and check to see

if that character matches the first character in the pattern. If they match, we move to the

next characters and check to see if they match. We continue this checking until either a

mismatch occurs or we reach the end of the pattern. If all corresponding characters

match, a message prints the file position; otherwise, a spurious hit occurs and its counter

is incremented.

4.6.5 Application Output
The application uses appropriate command-line output throughout the analysis to keep a

user informed of progress. None of this output is of any consequent to an analysis, so we

will ignore its details. Instead, the application produces three result files containing all

information needed to perform an analysis. Step one creates one file containing its

output, while Step two creates two files. We give a brief description of all three files in

this section.

First, in all three cases, during an execution, the application checks for the output file(s.)

If a file exists already, it is open for modification. If a file by that name does not exist in

the database directory, the application creates a new file and opens it for modification.

4.6.5.1 Output File Description

4.6.5.1.1 File *.src
The application places the results of searches in a CSV (Comma Separated Values) file

located in the database directory (same as command line parameter.) This file also has

the same name as the database, but it has a “.src” extension tacked on its end. There is

one record in this file for each search. Each record contains values for the following

columns separated by commas:

Page | 76

a) Matches:

A count of the number of occurrences of the pattern were found.

b) Spurious Hits:

A count of the number of times an occurrence was flagged but was not found.

This is also known as False Positive.

c) Window Length:

Length used to calculate the fingerprint for building the LevelDB Index Database.

d) Pattern Length:

Length of the pattern being sought for this run

e) Radix:

Base of fingerprint numbering system, also maximum number for character code.

f) Modulo:

The maximum number a fingerprint can be. All calculations use (% modulus.)

g) Time (milliseconds)

The actual time it took to perform the search. A value of zero is used if radix and

modulus are too small to allow search to proceed because length difference is too

large.

h) Number of repeated searches to get time over 10 ms

We discovered that sometimes searches happen so fast we could not get a time

measurement other than zero. To remedy this problem we keep performing the

same search in a loop until the total time exceeds 10 ms.

i) Search string:

A reprint of the string used in original search pattern

Page | 77

4.6.5.1.2 File *.wrt
The application places the results of building an Index Database in a CSV (Comma

Separated Values) file located in the database directory. This file also has the same name

as the database, but it has a “.wrt” extension tacked on its end. This file contains a log of

how many bytes the application has read from the Text File and how long it took to read

them. The command-line parameter “--report-every=” “(or -e=)” controls the number of

bytes to be read before writing the next record in this file. There is one record in this file

for each byte count span. Each record contains values for the following columns

separated by commas:

a) Radix:

Base of fingerprint numbering system, also maximum number for character code.

b) Modulo:

The maximum number a fingerprint can be. All calculations use (% modulus.)

c) Window Length:

Length used to calculate the fingerprint for building the LevelDB Index Database.

d) Bytes read:

Cumulative bytes read from Text File, so we have a running total of the bytes

processed thus far.

e) Time (seconds):

Time taken from the last write operation in this file until this write operation.

Note, unlike the bytes read in the previous field, this value is not cumulative and

is just the time taken to process the last increment of bytes.

Page | 78

4.6.5.1.3 File *.wtot
The application places the results of building an Index Database in a CSV (Comma

Separated Values) file located in the database. This file also has the same name as the

database, but it has a “.wtot” extension tacked on its end. This file contains a log of how

many bytes the application read from the Text File in total, how many bytes the LevelDB

Index Database is, and how long it took to create the LevelDB Index Database. There is

one record in this file for each byte count span. Each record contains values for the

following columns separated by commas:

a) Radix:

Base of fingerprint numbering system, also maximum number for character code.

b) Modulus:

The maximum number a fingerprint can be. All calculations use (% modulus.)

c) Window Length:

Length used to calculate the fingerprint for building the LevelDB Index Database.

d) textFileSize (bytes):

Number of bytes processed in the Text file during the Index Building step.

e) Time to create Index Database:

Total time taken to build the Index Database in LevelDB.

f) Size of Index Database (bytes):

Total number of bytes in the resulting Index Database.

Page | 79

Chapter 5: Performance of Our New Application
This chapter describes the results of our experiment. It highlights our algorithm’s

performance and compares some aspects of that performance with the performance of

GREP (the de facto standard text search application for UNIX). In this chapter, we

describe GREP. We also present the parameters, their ranges, and all the combinations

and permutations we included in our experiment. Furthermore, we describe the hardware

and the text file(s) we ran the experiments on. Finally, we present the experiment

outcomes. Throughout the presentation, we highlight and keep track of some of the most

interesting observations we made while conducting our experiments.

5.1 Experiment Design & Implementation
The previous chapters have demonstrated that we changed several major aspects of

Rabin-Karp’s original algorithm into a new application using LevelDB. Having written

and tested our application, our primary goal now is to determine whether our newly

created application can outperform GREP. To determine this, we designed an

experimental approach based on varying one parameter at a time holding all other

parameters constant. To begin with, we built 36 different Index Databases to

accommodate different radix, modulus, and window length parameters as shown in Table

4 below.

The layout and contents of Index Databases is made up of each
radix and modulus combination, of which there are nine, each of
which has four Index Databases, one for each of the four window
lengths; making a total of 36 different Index Databases.

Observation 1: We based the layout and configuration of our experiment’s Index

Databases on radix, modulus, and window length.

Page | 80

Radix = 4, m =

Radix = 8, m =

Radix = 16, m = 134,207,779
WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL=

WL=

 Radix = 16, m =

Radix = 32, m =

Radix = 32, m =

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL=

WL=

 Radix = 128, m =

Radix = 128, m =

Radix = 128, m =

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL

WL=

WL=

 Table 4: This table summarizes the parameters for all 36 Index Databases we

created for our experiment. The table has nine boxes, each of which has a radix,

and a modulus on the top row, and four window lengths on the next row.

Information from the top row plus one of the window lengths under it uniquely

describes one of the 36 Index Databases. We tested 11 pattern lengths (listed below)

on each database giving a total of 396 tests.

Another important observation we can see in this table is as follows:

For each of the five radix values (4, 8, 16, 32, 128), the lowest
modulus we used in our experiments is equal to the largest prime
number that would not allow any calculation to exceed the value
of a signed 32-bit integer. The equation to calculate this
maximum value is (231/radix). Therefore, the smallest modulus is
the biggest prime we could find that does not exceed this value.

Observation 2: The lowest modulus we used for each radix was the largest prime

number that is less than (231/radix).

Once we create an Index Database, we can search it repeatedly keeping in mind the

Window Length (WL) used to create it. With this in mind, we introduce the next

experimental parameter, Pattern Length (PL), to account for each of the searches in our

experiment. One issue we kept in mind when selecting pattern lengths was to ensure we

obtained a mixture of searches that included each of our three scenarios described in the

previous chapter as PL<WL, PL==WL, and PL<WL. Since we created a different search

strategy for these same three criteria, it only makes sense to keep this in the foreground

while considering other issues.

Page | 81

In our experiments we decided to use eight different pattern
lengths (PL) {2, 4, 8, 10, 12, 16, 32, 64} for patterns that we
know exist in the text file. We also used three different pattern
lengths {4, 8, 12} for patterns we know for sure do not exist in the
text file. These last three patterns are substrings of,
“ZZZZZZZZZZZZ” having a length of 4, 8, and 12.

Observation 3: Our experiment was to search for a variety of search pattern

lengths. We used eight search pattern lengths for patterns we know occur in each

Index Database, and three lengths for patterns we are sure do not occur.

With 36 Index Databases and 11 different pattern lengths, we needed to perform 396

different searches to accomplish our experimental objectives. Perhaps not surprisingly,

both organizing the experimental runs using a batch file; and, analyzing the mountain of

resulting data from each run individually and all runs together consumed a great deal of

resources. Not to mention the difficulty we encountered deciding how to formulate, and

format, all of these results. On the one hand, we needed to present convincing evidence

for our conclusions; on the other hand, we could not clutter the report with 396 different

graphs showing each experiment against GREP.

Nevertheless, the remainder of this chapter explains our approach in more detail, and

describes the highlights from the observed results.

5.2 Source Text Files
During our deliberations, we needed several text files, one text file for our testing and

verification, and another text file for the actual experiments. We will discuss the test text

file later; for now, we introduce our experimental text file. After considering many

sources of English text available, we decided on using the King James Bible. (The Large

Canterbury Corpus, 2001) First, the document has old English style prose making it easy

to find substrings with different numbers of occurrences ranging from one, to hundreds,

to even thousands. Second, by making our experiment’s text file from one hundred

copies of the bible one after another, we end up with file positions for our search strings

Page | 82

at predictable distances, and we can predict the number of occurrences for each of our

search strings by multiplying the numbers from the single copy by 100. These two

features gave us reliable devices for quick and easy verification of our results. Finally, a

single copy of the Bible only occupies some 4,050,944 bytes (3.86 MB) of disk space,

which helps our text editor load it and count occurrences for any search string very

quickly. The text file with 100 copies occupies 404,742,144 bytes (385 MB) of disk

space.

We used a text file containing 100 copies of the King James Bible
for all experiments. This file occupies 404,742,144 bytes (385
MB) on a disk. It was large enough to produce meaningful time
differences for most patterns.

Observation 4: Our text file contained 100 copies of the King James Bible in 3.86

MB.

With regard to application speed, we will compare the actual numbers with GREP below.

In the meantime, since some searches were so fast, we had to add a function in our

application that kept repeating a search until the cumulative elapsed time exceeded 10

milliseconds. This made sure we had big enough time numbers to guarantee a search did

not return a value of 0.00 ms. The following observation illustrates where we desperately

needed this function.

For a radix of 4, a PL of 4, a modulus of 1,073,499,991 and a
search Pattern of “ZZZZ” our application had to repeat the
search 1329 times just to get a cumulative elapsed time of
10.002ms, which works out to 0.0075ms for one run of that
particular search.

Observation 5: Our application is extremely fast when searching for strings that we

knew were not in the text file.

After adding this function, we decided we also needed to improve the precision of our

timer because C++’s standard timer is only precise to a millisecond. We did some

Page | 83

digging and found a structure from <Windows.h> called ‘QueryPerformanceCounter’

that met all of our timing needs. To get the most up-to-date information on this interface

go to www.Microsoft.com. We installed and verified the API and implemented it rather

easily.

Using the <Windows.h> header file, and this timing API, is the
only issue preventing our application’s code from porting
directly to UNIX. A user wanting to port the application will
need to change these with suitable replacements.

Observation 6: The timing API we used was exclusive to Windows.

5.3 Setting up and Testing our Application
Even though we tested our application extensively during its development, we felt it was

necessary to perform a final test before beginning our experiment to ensure everything

was performing as expected. Our test involved using a text file that was different from

our experimental text file, yet had enough variation to assure us we were counting and

locating a randomly selected phrase from the file. The two-step process required us to

first use a sophisticated text editor to select the phrases, count them, and give us their

locations throughout the file. Next, we compared those results against what our

application produced. However, before we could use this file we had to first verify that

our text editor program was working as expected.

We used EditPad Pro (7.1.2 x64) (www.editpadpro.com) as our text editor. It has all the

features we needed to accomplish our objectives for selecting phrases, counting them,

and locating them in a file. In a sense, we had to have faith that EditPad Pro was

providing us with the correct results to begin with. To verify this we created a two-

paragraph text file, did some searching, and verified manually that EditPad Pro did not

make any mistakes. Aside from having to read the entire file to manually locate and

count the occurrences ourselves, we had no other choice but use this smaller file to verify

with a reasonable amount of certainty that EditPad Pro was producing correct results. In

http://www.microsoft.com/
http://www.editpadpro.com/

Page | 84

the end, after confirming that our application produced exactly the same counts and

locations verified that EditPad Pro was indeed working correctly. We were henceforth

confident that we knew exactly how many of our patterns occurred in a text file, and

exactly where each occurrence was located.

Getting back to testing our application, we used EditPad Pro to select a set of

appropriately sized phrases we would use in our test. The text file we used for testing is

The Works of Mark Twain by Mark Twain. (Twain, 2009) We obtained this eBook from

the Gutenberg Project on the internet at: (http://www.gutenberg.org/). The size of this

text file is 20,045,824 bytes (19.1 MB). As its title suggests the contents of this single

text file is the complete works of Mark Twain.

We carried out our testing method using the following processes. After performing steps

(a) through (d) once for every pattern length, we then used step (e) through (g) on each

search pattern and each Index Database. We performed this same procedure in our

experiment on the same 396 combinations of parameters that we used in our experiment.

a) Load text file into EditPad.

b) Select a phrase at random making sure it was as long as our selected pattern

length for this test. We performed our random selection process manually by

blindly moving the cursor horizontally and spinning the mouse down wheel one

or more times. While not very scientific, it did not have to be, we just needed to

verify our application found the search pattern the same number of times as

EditPad Pro found.

c) Run a count in EditPad to get the number of times the selected phrase occurs in

the file.

d) Select several occurrences and note their location in the file.

Page | 85

e) Run our application to either build an Index Database (if required), or search an

existing Index Database if there is one for a phrase.

f) Verify the total number of occurrences our application produced was the same as

the number EditPad produced.

g) Verify the locations obtained from EditPad Pro earlier appeared in our

application’s output file.

The results of performing the above tests were positive and reassuring.

After extensive testing, we found all values we checked matched
our expectation, and we did not find any serious flaws or
overlooked processes during our testing procedure. The results
left us confident our application was doing what we expected it to
do and produced results we expected.

Observation 7: We tested our application with a different text file, and did not find

any mistakes.

5.4 Source Computer
All of our work, including testing, building Index Databases, and searching for patterns

were all carried out on the same computer. This meant we did not need to do any other

forms of analysis to put its results on a level playing field. The following list shows some

of the most important hardware and software components possessed by our system and

used in performing our experiments.

Manufacturer: ASUSTeK Computer Inc.

Model: ASUS Notebook G73jh Series

Processor: Intel(R) Core(TM) i7 CPU Q720 @ 1.60GHz 1.60 GHz

Installed memory: 8.00 GB

Page | 86

HD Disk 0: OS (C:); 228,936 Mb; OCZ-AGILITY2 (SSD)

HD Disk 1: OS (D:); 171,704 Mb; OCZ-AGILITY2 (SSD)

OS: Windows 7 Ultimate 64-bit Service Pack 1

5.5 Using GREP
Since the purpose of our experiments required comparing our search times against GREP,

we begin by reviewing the results obtained from searching with GREP. Even though we

are using the 100 Bible text file, the diagram of Figure 3 shows the relative search times

for three of our text files: they contain 1, 10, and 100 copies of the Bible. A quick glance

at this diagram demonstrates that GREP’s time is roughly proportional to the size of its

target file with a few minor exceptions.

Figure 3: Search times for GREP searching text files containing 1, 10, and 100

copies of The King James Bible.

The first action we performed after running our text file containing 100 copies of the

Bible through GREP was comparing the number of occurrences for each of our patterns

1

10

100

1000

10000

2 4 8 10 12 16 32 64 4 8 12

lo
g1

0(
Ti

m
e

(m
ill

is
ec

on
ds

))

Pattern Length

Grep search times on Bible(s)

100 Bibles 10 Bibles One Bible

No Matches
File Size (bytes)

Page | 87

with our expected results. We summarized GREP’s results in the table below, and used it

for this comparison. The table has the following four columns: (1) length of pattern; (2)

actual count of occurrences from EditPad; (3) count of occurrences given by GREP, and;

(4) time taken by GREP in milliseconds. We highlighted the last three rows to remind

readers those searches use patterns whose strings for sure did not exist in the file.

Pattern

Actual

GREP

GREP Time

 2 83,400 82,200 1042.28
4 1,216,800 1,146,400 771.47
8 212,100 208,800 758.15
10 39,600 39,500 457.87
12 39,600 39,500 390.88
16 1,300 1,300 390.68
32 100 100 333.43
64 100 100 341.77
4 0 0 587.39
8 0 0 407.24
12 0 0 343.35

Table 5: Results from GREP searching the text file containing 100 copies of Bible.

This shaded portion illustrates an important observation about GREP’s times. Since

GREP is an on-line search tool, it processes an entire text file for every search. We can

therefore expect there to be a time associated with looking for a string that does not exist.

In fact, we see times comparable to or even slower than times using a search pattern that

not only exists, but also, occurs more than 39,000 times. Another interesting point about

the bottom three rows is that the shorter the search string, the longer it took GREP to

search a file.

Page | 88

GREP takes roughly the same amount of time to count
occurrences of strings that exist in the text file as it does
searching for strings that do not exist in the text file. In addition,
shorter strings take longer to search for than longer ones, which
happens whether the string exists or does not exist.

Observation 8: GREP has roughly the same performance looking for strings not in a

file as it does finding occurrences of a string.

One of the most striking observations in this table is how far apart GREP’s counts are

from the actual count. At first, we thought there was a mistake somewhere in our

processes that would explain the discrepancies. After an exhaustive search we were

confident our numbers were correct. That is when we discovered the following

observation.

GREP does not count the actual number of times a string occurs
in a file, it only counts the number of different lines containing at
least one copy of that string.

Observation 9: GREP counts lines containing a search string.

This means, once GREP discovers an occurrence on a line, it can skip the remainder of

that line; thereby saving big chunks of time. This bias gives GREP an edge over our

application that does not even ‘know’ that lines exist because GREP could end up

skipping a large part of a file; especially when lines are long (like paragraphs) and the

search string occurs nearer to its start than its end. It also highlights a difference in

outputs between the two applications. Whereas GREP reports the line number for an

occurrence, our application reports the exact location in the file for that same occurrence.

We explored several methods to make the results more compatible with one another.

Modifying our application to act the same as GREP by reporting only line numbers and

skipping to the next line once an occurrence is discovered was one such consideration.

We rejected this because it restricted our application’s ability a great deal. A second

Page | 89

consideration was to pipe the line number from GREP through another program that can

actually count occurrences and report locations for each line. We also rejected this

because of the overhead required to pipe the results and start this other program would

very difficult to capture accurately. In the end, we decided to leave both applications as

they were and recognize that with all other things held equal, GREP will report a time

based on doing much less work than our application. In other words, we have no way of

capturing the difference it would make in time if we could somehow force GREP to

count occurrences instead of lines with an occurrence. We therefore must accept this bias

with the knowledge that if times are the same for both applications, GREP is definitely

the slower one.

5.6 Preliminary Comparison
GREP is a very popular search tool on UNIX operating systems. It will be good to

contrast GREP with our approach, which is a command-line program for Windows.

Before we present all of our results we must layout our tool and our experimental

procedure. We do this in the following sections. This section summarizes a results

demonstrate we are heading in a profitable direction regarding our thesis.

Figure 4 shows a summary of the performance we achieved by aggregating roughly 360

or so experiments. The lighter line shows GREP’s times, while the darker line shows our

best times. Since GREP has no parameters, its time is the same for every run of a

particular search pattern length. In contrast, our application has several parameters

affecting search time. These parameters yield different search times for each search

pattern length; we plotted the best of those times.

This graph confirms that our application shows faster times for experiments involving all

search pattern lengths except 4 and 8 bytes. This evidence supports our thesis; thereby

proving that not only we can build an application, but also, in some cases that new

application outperforms GREP. With more resources to continue studying this problem

area we could produce some very fast search times. In the end, this mechanism could be

an extremely fast way to index and recall information using a Rabin-Karp fingerprint.

Page | 90

We made this graph by aggregating the same data that was used to create all the graphs

shown in Appendix F: Line Graphs of Performance (ms). Appendix F contains one graph

for each combination of Radix and Modulus using the same two axes as Figure. The

main difference between the following graph and those in Appendix F is that later graphs

show performance for each window length in our analysis. Remember Pattern Length

and Window Length are different.

Figure 4: An early look at the outcome of our experiment showing how our

application beats GREP times for long pattern lengths

5.7 Creating Index Databases in LevelDB
Recalling that our application consisted of two-step process, we now examine results

from step one of that process: creating Index Databases. This procedure involves

examining the text file one byte at a time, calculating a fingerprint, flipping the byte

Page | 91

arrays to Big Endian format, and writing that fingerprint and its associated file position to

the Index Database. The mechanisms just described used in this procedure are the same

ones we described earlier when discussing our Index-Building Algorithm (see Algorithm

2.)

Once created, the Index Database is available for any number of searches. As described

earlier, our experiments require us to create 36 different Index Databases. That is, one

database for each combination of radix/modulus, and window length. Figure 5 shows the

sizes for each of the 36 Index Databases. These results lead to the following observation:

Most of the resulting Index Database sizes are roughly ten times
as large as the original text file containing 100 Bibles that has a
size of 404,742,144 bytes (385 MB).

Observation 10: The Index Databases for most criteria are approximately ten times

larger than the original text file.

The several exceptions to this observation are Index Databases for a radix of four. We

will have more to say about a radix of four later. The other exception happens only when

the window length is eight, the radix is 128, and the modulo are primes close to 230 and

231. For some reason, these two instances look totally out of place. Their size is about

three or four hundred megabytes larger than all other databases with a window length of

eight. They are also about two hundred megabytes bigger than the corresponding

databases with window lengths of 10 and 12. We took the same database size data and

produced a line graph in Figure 6 below showing exactly the same information as the bar

graph. The spike in size is also visible on this graph for the two databases in question.

Also, we put the size of the Index Databases beside each respective marker for the

smallest radix of 4, a radix of 8, and the largest radix of 128, which produce the smallest,

medium and largest sized database sizes respectively.

Page | 92

Figure 5: Bar Chart showing the sizes of the Index Databases created for our

experiment.

Page | 93

Figure 6: Line Graph showing the sizes of the Index Databases created for our

experiment.

The next logical piece of information to examine is the time it takes to build these Index

Databases. To that end, Figure 7 below illustrates the times taken to build Index

Databases by window length and by radix/modulus. This particular chart cannot help in

finding specific times for specific parameters. Instead, it shows how all the times are

roughly the same being between 5,000 and 6,000 seconds for all but the same two

databases that were the largest above.

Page | 94

Figure 7: Area graph showing time required to build each of the Index Databases in

our experiment.

Figure 6 and Figure 7 illustrate several other observations and conclusions. For instance,

the transition from one window length to the next on both graphs is not smooth. Both the

times and the sizes jump around without any apparent reason, making it difficult to draw

any conclusions with regard to size or to time. However, from a general point of view,

the following observation about these results is worth highlighting:

In a general sense, both the size and the time required to build an
Index Database increase with increasing radix and increasing
window length.

Observation 11: Generally, radix and window length are two variables that have an

effect on the time and size of an Index Database.

At this point, we must discuss how LevelDB, despite producing large files, is actually

compressing the data a great deal. Recall that the database key consists of the fingerprint

Radix= 4 ; Modulus= 536799997

Radix= 8 ; Modulus= 268399993

Radix= 16 ; Modulus= 134207779

Radix= 16 ; Modulus= 1073499991
Radix= 32 ; Modulus= 1073499991

Radix= 32 ; Modulus= 59599993
Radix= 128 ; Modulus= 16699901

Radix= 128 ; Modulus= 1073499991

4,500

5,500

6,500

4

8

10

12

Ti
m

e
to

 b
ui

ld
 In

de
x

(s
ec

s)

Window Length (bytes)

Time Required to Construct Index Database in LevelDB

Page | 95

concatenated with a file position making it 16 bytes long. In addition, the number we put

into the database value field was file position, consisting of another 8 bytes. This implies

that each record in our Index Databases is 16 bytes long. If we assume there is a record

in an Index Database for every byte of its respective text file, we can calculate its

theoretical size. In this case, we have a 24-byte record and a 404,742,144-byte text file.

The product of these two values is 9,713,811,456 bytes. So, one would expect an Index

Database of approximately this size. Yet, Figure 6 shows that the maximum size for all

of our Index Databases is 4,961,000,000 bytes, roughly half the theoretical value.

According to its documentation, LevelDB automatically compresses data using another

application from GOOGLE code called Snappy compression library. (Google Inc., 2012)

Snappy is similar to LevelDB in that it is a C++ API that is easy to use. In fact, a typical

user would not even know LevelDB had a copy of Snappy embedded in it. According to

Snappy’s Web Site (https://ccp.cloudera.com/display/CDHDOC/Snappy+Installation)

“It [Snappy] does not aim for maximum compression, or compatibility with any other

compression library; instead, it aims for very high speeds and reasonable compression.”

Finally, our original experimental design involved including a radix of two. In retrospect,

it was not a good idea. Since its alphabet would only consist of two characters, it is

perhaps understandable why it took so long building an Index Database. Recall earlier

we mentioned that after about 10 or 12 hours of building, we stopped the process. We

subsequently aborted our plan of including a radix of two in our experiments. It

encourages hash collisions because the resulting number system is so close to binary.

We rejected using a radix of two in our experiment. The reasons
are the extremely large amount of time it took to build a partial
Index Database, likely caused from having an alphabet with only
two characters.

Observation 12: We dropped a Radix of two from our analysis

http://code.google.com/p/snappy/

Page | 96

In any event, both Index Database size and the time required to build one are large but

nowhere near unmanageable. These results look as if they could be trimmed adjusting

page size, buffer size, and/ or block size in LevelDB. In addition, we did not use

LevelDB’s function for doing batch writes; which would increase performance.

LevelDB’s overheads make the time and size at least five orders of magnitude bigger

than our algorithm running on its own. To verify this difference, we clocked our program

running alone without writing to the database; just calculating the fingerprint for each

byte in the file. We recorded a time of less than one hundred milliseconds do this for the

100-Bible text file

5.8 Performing Searches
With such disappointing results from step-one, a salvation of our approach will have to

come from searches. We created the following search strategy to test this answer. Table

6 shows the numbers supporting our strategy, which were included in a table shown

earlier when we discussed GREP. We used eight pattern lengths containing strings that

we confirmed exist in the Bible. Since, we know each string appears at least once for

every Bible, we also know that they occur several megabytes apart from one another.

The number of occurrences of the string for each pattern length appears in the table’s

second column. We also included three pattern lengths (highlighted at the bottom of the

table) containing strings that do not appear in the text file. The three non-existent strings

are substrings of “ZZZZZZZZZZZZ” with the respective pattern lengths.

Page | 97

Pattern

Actual

 2 83,400
4 1,216,800
8 212,100
10 39,600
12 39,600
16 1,300
32 100
64 100
4 0
8 0
12 0

Table 6: Pattern length and a count of the actual number of occurrences in a 100-

Bible text file. The bottom thre rows are highlighted because they contain patterns

that do not occur in the text file.

Our search strategy required us to perform a search for each of the eleven strings on each

of our 36 Index Databases. Tracking a search’s results was easy because of our option to

append results data from each search to the end of an existing results file. That meant

when all the processing was finished we had one text file containing all information

describing the results.

5.9 Performance Results
After completing all of the above searches, we had a file filled with numbers that we

present in this section. Before showing graphs and summaries, we feel it is telling to

show a table of those numbers.

5.9.1 Table of Results
We took the results file and imported its data into Excel so we could manipulate it into a

presentable summary format containing number of hits, number of spurious hits and total

time for each radix/modulus, each window length, and each pattern length. In addition,

Page | 98

having this table provides a mechanism for a reader to verify or double-check values

presented later, or to see a context within which a particular result may reside.

Aside from each table showing the radix, modulus, and window

length against pattern length, the cells are also colour coded to

indicate the relationship between PL and WL. As shown here,

the top colour indicates where the difference between pattern

length and window length is too large for a given radix and

modulus. Next, we have three colours showing the different search scenarios from

earlier: PL<WL, PL==WL, and PL>WL. Finally, the last colour shows the case where

the pattern is not in the text file.

Matches Spurious Time (ms) Matches Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms)
2 83,400 9,970,800 46,862.69 83,400 9,970,800 58,537.84 83,400 9,970,800 45,182.79 83,400 9,970,800 67,604.62
4 1,216,800 8,677,500 35,002.80 1,216,800 8,677,500 32,829.61 1,216,800 8,677,500 42,112.85 1,216,800 8,677,500 50,995.52
8 212,100 614,200 17,457.52 212,100 614,200 2,815.77 212,100 614,200 3,055.83 212,100 614,200 3,900.43

10 39,600 68,200 11,567.70 39,600 68,200 1,132.16 39,600 68,200 428.99 39,600 68,200 546.42
12 39,600 21,700 13,753.54 39,600 21,700 1,179.04 39,600 21,700 373.68 39,600 21,700 326.59
16 1,300 1,000 12,639.82 1,300 1,000 404.36 1,300 1,000 68.45 1,300 1,000 95.06
32 100 0 17,298.16 100 0 78.15 100 0 27.90 100 0 52.16
64 100 0 39,309.76 100 0 1,399.93 100 0 123.99 100 0 37.97

4 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 19,353,400 193,892.03 1,593,000 19,353,400 98,376.89 1,593,000 19,353,400 91,374.50 1,593,000 19,353,400 123,558.80

2 83,400 5,108,600 23,069.93 83,400 5,108,600 23,910.44 83,400 26,210,000 121,066.33 0 0 0.00
4 1,216,800 4,355,600 24,581.35 1,216,800 4,355,600 26,014.16 1,216,800 5,120,300 26,436.77 1,216,800 59,357,997 252,949.10
8 212,100 407,500 13,222.46 212,100 407,500 2,833.25 212,100 407,500 2,191.66 212,100 418,700 2,216.99

10 39,600 27,300 7,870.47 39,600 27,300 741.49 39,600 27,300 266.15 39,600 27,400 276.71
12 39,600 17,500 7,980.07 39,600 17,500 943.78 39,600 17,500 279.11 39,600 17,500 226.30
16 1,300 600 7,937.63 1,300 600 360.02 1,300 600 53.04 1,300 600 50.80
32 100 0 4,741.35 100 0 18.36 100 0 10.72 100 0 10.88
64 100 0 16,648.56 100 0 1,025.15 100 0 35.41 100 0 12.20

4 0 0 0.01 0 0 0.01 0 3,000 23.83 0 17,219,215 62,878.35
8 0 0 0.01 0 0 0.01 0 0 0.01 0 800 3.76

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 9,917,100 106,051.85 1,593,000 9,917,100 55,846.69 1,593,000 31,786,200 150,363.03 1,509,600 77,042,212 318,625.08

2 83,400 1,331,200 6,398.80 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 4,096,000 23,075.13 1,216,800 4,163,200 23,885.04 1,216,800 64,964,997 268,775.27 0 0 0.00
8 212,100 397,100 13,592.47 212,100 397,100 2,797.85 212,100 398,100 2,138.01 212,100 591,000 3,900.05

10 39,600 18,700 7,983.78 39,600 18,700 627.50 39,600 18,700 239.67 39,600 18,800 342.99
12 39,600 16,900 8,607.45 39,600 16,900 931.75 39,600 16,900 272.20 39,600 16,900 328.24
16 1,300 600 7,852.56 1,300 600 358.92 1,300 600 47.95 1,300 600 80.06
32 100 0 2,384.50 100 0 13.15 100 0 10.36 100 0 10.44
64 100 0 9,926.06 100 0 465.86 100 0 43.02 100 0 15.48

4 0 0 0.01 0 300 2.61 0 46,828,818 152,172.48 0 0 0.01
8 0 0 0.01 0 0 0.01 0 300 2.59 0 185,000 903.73

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,860,500 79,820.79 1,509,600 4,596,800 29,082.70 1,509,600 112,228,415 423,701.56 292,800 812,300 5,581.01

Radix = 8 and Modulus = 268,399,993

Radix = 16 and Modulus = 134,207,779

Pattern
Length

Radix = 4 and Modulus = 536,799,997
Window Length = 4 Window Length = 8 Window Length = 10 Window Length = 12

Cell Colours
Pattern To Short
PL Shorter than WL
PL Same Length as WL
PL Longer than WL
Pattern does not Exist

Page | 99

Table 7: Search results for Radix equal to 4, 8, and 16 (with small modulus) showing

the number of matches and spurious hits as well as the time required for each

search.

Table 8: Search results for Radix equal to 16 (with large modulus), and 32 (with

both modulus) showing the number of matches and spurious hits as well as the time

required for each search.

Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms)
2 83,400 1,331,200 6,929.20 83,400 5,068,200 42,972.12 0 0 0.00 0 0 0.00
4 1,216,800 4,096,000 25,429.05 1,216,800 4,124,500 24,998.77 1,216,800 12,727,900 84,896.66 0 0 0.00
8 212,100 397,100 13,170.74 212,100 397,100 2,217.73 212,100 397,400 3,084.95 212,100 406,200 14,823.52

10 39,600 18,700 7,175.75 39,600 18,700 543.69 39,600 18,700 307.08 39,600 18,700 321.77
12 39,600 16,900 5,952.68 39,600 16,900 987.48 39,600 16,900 387.78 39,600 16,900 323.96
16 1,300 600 5,801.42 1,300 600 301.45 1,300 600 69.84 1,300 600 80.14
32 100 0 2,161.91 100 0 12.52 100 0 13.16 100 0 40.23
64 100 0 9,069.78 100 0 497.28 100 0 24.36 100 0 15.86

4 0 0 0.01 0 0 0.01 0 2,815,208 12,937.62 0 0 0.01
8 0 0 0.01 0 0 0.01 0 0 0.01 0 7,000 159.99

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,860,500 75,690.56 1,593,000 9,626,000 72,531.08 1,509,600 15,976,708 101,721.48 292,800 449,400 15,765.50

2 83,400 1,304,800 6,211.09 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 4,016,900 22,757.56 1,216,800 11,824,300 61,275.58 0 0 0.00 0 0 0.00
8 212,100 396,800 10,978.55 212,100 396,800 2,075.84 212,100 409,600 3,032.00 212,100 7,275,300 34,387.04

10 39,600 18,700 6,102.47 39,600 18,700 465.20 39,600 18,700 317.85 39,600 22,500 351.25
12 39,600 16,900 6,234.25 39,600 16,900 670.15 39,600 16,900 377.88 39,600 16,900 363.80
16 1,300 600 4,935.72 1,300 600 255.94 1,300 600 74.05 1,300 600 66.91
32 100 0 1,781.10 100 0 11.89 100 0 11.43 100 0 10.50
64 100 0 7,208.96 100 0 281.77 100 0 34.36 100 0 16.60

4 0 0 0.01 0 5,422,600 17,529.07 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 1,500 12.52 0 6,377,301 29,172.08

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,754,700 66,209.73 1,509,600 17,679,900 82,565.46 292,800 447,300 3,860.10 292,800 13,692,601 64,368.19

2 83,400 1,304,800 6,580.30 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 4,016,900 24,121.48 1,216,800 4,381,500 36,694.85 0 0 0.00 0 0 0.00
8 212,100 396,800 13,485.66 212,100 396,800 2,642.78 212,100 397,000 13,215.78 212,100 769,900 16,947.70

10 39,600 18,700 7,778.40 39,600 18,700 532.98 39,600 18,700 343.88 39,600 18,700 359.20
12 39,600 16,900 6,335.18 39,600 16,900 809.63 39,600 16,900 368.78 39,600 16,900 343.16
16 1,300 600 6,200.93 1,300 600 330.79 1,300 600 78.19 1,300 600 71.58
32 100 0 2,262.87 100 0 11.46 100 0 10.36 100 0 14.77
64 100 0 9,337.43 100 0 358.17 100 0 28.30 100 0 25.30

4 0 0 0.01 0 593,500 2,366.77 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 0 0.01 0 312,800 1,715.91

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 5,754,700 76,102.29 1,509,600 5,408,000 43,747.45 292,800 433,200 14,045.32 292,800 1,118,900 19,477.63

Pattern
Length

Radix = 16 and Modulus = 1,073,499,991
Window Length = 4 Window Length = 8 Window Length = 10 Window Length = 12

Radix = 32 and Modulus = 1,073,499,991

Radix = 32 and Modulus = 59,599,993

Page | 100

Table 9: Search results for Radix equal to 128 (with three different modulo)

showing the number of matches and spurious hits as well as the time required for

each search.

One can observe the most interesting situation from these tables by scrutinizing the

bottom three rows in each table. There are spurious hits listed in several of these cells

where we know the search pattern does not exist in the text file. They should not be

caused by duplicate hash values simply because there seem to be too many (91 million

for a radix of 128 and a modulus of 1,073,499,991) to have such a simple cause as hash

bucket collisions. We have yet to decode the meaning of these because there does not

appear to be any obvious reason for them appearing where they do; and no obvious

Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms) Matches Spurious Time (ms)
2 83,400 109,500 7,457.05 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 0 8,218.98 0 0 0.00 0 0 0.00 0 0 0.00
8 212,100 0 9,915.62 212,100 0 15,208.48 212,100 360,301 14,368.35 0 0 0.00

10 39,600 0 5,020.73 39,600 0 433.37 39,600 400 242.10 39,255 408,331 19,923.22
12 39,600 0 5,334.82 39,600 0 666.62 39,600 0 272.08 39,255 0 257.72
16 1,300 0 4,219.03 1,300 0 204.65 1,300 0 42.83 1,288 0 65.88
32 100 0 2,880.74 100 0 32.15 100 0 10.11 99 0 10.81
64 100 0 7,537.11 100 0 360.05 100 0 24.36 99 0 250.03

4 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 342,500 1,768.52 0 0 0.01

12 0 0 0.01 0 0 0.01 0 0 0.01 0 297 5.32
TOTAL 1,593,000 109,500 50,584.11 292,800 0 16,905.36 292,800 703,201 16,728.38 79,996 408,628 20,513.01

2 83,400 0 6,376.74 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 0 11,282.69 1,216,800 98,045,116 429,285.83 0 0 0.00 0 0 0.00
8 212,100 0 9,351.60 212,100 0 1,187.13 212,100 1,600 9,512.54 212,100 102,888,908 447,346.41

10 39,600 0 4,313.34 39,600 0 367.80 39,600 0 245.40 39,600 4,800 221.09
12 39,600 0 4,683.17 39,600 0 611.88 39,600 0 292.71 39,600 0 190.28
16 1,300 0 4,651.45 1,300 0 143.97 1,300 0 36.78 1,300 0 25.65
32 100 0 4,320.12 100 0 47.37 100 0 24.05 100 0 29.30
64 100 0 7,955.65 100 0 227.82 100 0 66.79 100 0 58.44

4 0 0 0.01 0 91,505,516 335,442.46 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 2,200 117.98 0 0 0.01

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 0 52,934.80 1,509,600 189,550,632 767,314.28 292,800 3,800 10,296.27 292,800 102,893,708 447,871.19

2 83,400 0 9,959.80 0 0 0.00 0 0 0.00 0 0 0.00
4 1,216,800 0 14,461.22 1,216,800 106,923,398 576,194.72 0 0 0.00 0 0 0.00
8 212,100 0 14,144.82 212,100 0 1,198.87 212,100 442,800 19,995.07 212,100 60,166,400 318,647.61

10 39,600 0 7,145.12 39,600 0 363.99 39,600 0 297.86 39,600 600 250.99
12 39,600 0 7,211.02 39,600 0 660.82 39,600 0 372.64 39,600 0 235.89
16 1,300 0 6,985.85 1,300 0 160.98 1,300 0 78.27 1,300 0 38.68
32 100 0 5,077.56 100 0 54.39 100 0 35.57 100 0 40.12
64 100 0 9,940.52 100 0 224.53 100 0 106.11 100 0 94.95

4 0 0 0.01 0 26,573,497 136,529.25 0 0 0.01 0 0 0.01
8 0 0 0.01 0 0 0.01 0 1,000 10.50 0 45,666,775 228,391.15

12 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01
TOTAL 1,593,000 0 74,925.93 1,509,600 133,496,895 715,387.57 292,800 443,800 20,896.03 292,800 105,833,775 547,699.41

Pattern
Length

Radix = 128 and Modulus = 1,073,499,991

Radix = 128 and Modulus = 2,147,483,647

Radix = 128 and Modulus = 16,699,901
Window Length = 4 Window Length = 8 Window Length = 10 Window Length = 12

Page | 101

pattern as to where they occur and how many there are of them. They appear for all

radix/modulus combinations except a radix of four. They also do not occur when the

window length is four. Other than those two situations, they appear at least once in every

radix/modulus combination. At the same time, they do not seem to favour a particular

cell for any combination. Its looks as if they appear at random with no particular rhyme

or reason. Nevertheless, we do not regard these as errors because all of them correctly

show that our application did not find any occurrences, and correctly reported them as

being spurious hits. Since we could uncover no reason from our analysis, finding one is a

definite recommendation we will make later.

Another observation worth noting from these tables concerns the speed with which our

application determines no match is found (see cells in bottom three lines that do not have

those mysterious reportings of spurious hits.)

Our application can determine when a search pattern does not
exist in less than 0.01 milliseconds, which we used as a default
for faster times because our significant digits left us with a limit
of two decimal places.

Observation 13: Our application is blazing fast at determining when a string does

not exist in a text file.

5.9.2 False Positives by Category
At the top end of the tables, where PL is shorter than WL analyses occur, we also find

some large numbers for spurious hits. These are much more understandable because of

the search mechanism we use to find matches in this area; see Algorithm 3 on page 72.

We search all fingerprints that fall between the minimum and maximum fingerprint

values calculated by our application using Equation 9 and Equation 10. Figure 8 below

shows the distribution of all spurious hits for all combinations of radix/modulus and

category.

Page | 102

Figure 8: Number of spurious hits for each radix/modulus combinations.

The diagram shows how the spurious hits are most prominent in the back row “PL shorter

than WL” and the front row “Pattern does not Exist” categories. In both cases, we find

the largest values in the categories having a radix of 128 and the 2 largest modulo. Once

again we have no explanation for why the non-existent patterns are even there, let alone

so large. However, we can explain why the radix 128 values for large modulo exist in the

“PL shorter than WL.” The distance between the minimum and maximum fingerprints,

we calculate using Equation 9 and Equation 10 on page 63 can be very large, thereby

including all records with fingerprints between those two values. In contrast, the diagram

shows radix 128 with the lowest modulus as the only combination having very few if any

spurious hits in all categories.

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

53
6,

79
9,

99
7

26
8,

39
9,

99
3

13
4,

20
7,

77
9

1,
07

3,
49

9,
99

1

59
,5

99
,9

93

1,
07

3,
49

9,
99

1

16
,6

99
,9

01

1,
07

3,
49

9,
99

1

2,
14

7,
48

3,
64

7

4 8 16 16 32 32 128 128 128

N
um

be
r o

f S
pu

rio
us

 H
its

Radix and Modulus

Number of False Positives
by Radix and by Category

Pattern does not Exist
PL Longer than WL
PL Same Length as WL
PL Shorter than WL

Page | 103

False positives occur mainly in the PL<WL category and in the
“Pattern does not Exist” category.

Observation 14: The categories with the most false positives.

5.9.3 Average Rate of Processing by Category
Figure 9 below shows the rate (in terms of hits per millisecond) at which processes run in

each of the categories for each of the radix/modulus combinations. We decided to use

hit/millisecond because the term milliseconds/hit produced some rather small numbers.

When using this ‘hits per millisecond’ measure, bigger is better. The term hit refers to

both actual hits and spurious hits for each category.

0

100

200

300

400

500

600

700

800

900

53
6,

79
9,

99
7

26
8,

39
9,

99
3

13
4,

20
7,

77
9

1,
07

3,
49

9,
99

1

59
,5

99
,9

93

1,
07

3,
49

9,
99

1

16
,6

99
,9

01

1,
07

3,
49

9,
99

1

2,
14

7,
48

3,
64

7

4 8 16 16 32 32 128 128 128

To
ta

l N
um

be
r o

f H
its

 p
er

 m
ill

is
ec

on
d

Radix and Modulus

Total Hits / millisecond
by Radix and by Category

Pattern does not Exist

PL Same Length as WL

PL Shorter than WL

PL Longer than WL

Page | 104

Figure 9: Time to process each category of data for each radix/modulus

combination.

As one can see from this graph, the best times occur for the “Pattern does not Exist”

category in each radix/modulus combination, which is the same conclusion we reached

earlier. This processes flies along at rates in the order of 600 to 800 hits per millisecond.

It makes sense that this is the fastest category because there would most likely be only

one or two characters required to validate it as a false positive in the text file. Recall that

these patterns are substrings of “ZZZZZZZZZZZZ” and, the Bible does not have any

occurrences of “ZZ.” Similarly, the longest times occur for the “PL longer than WL”

category. Once again, this makes sense since our approach must validate a set of

different WL-sized substrings, which can take longer to verifying than any of the other

categories. The slowest radix/modulus arrangement was the 128/16,699,901

combination, while the fastest was 16/134,207,779 combination.

Recalling that the graph’s vertical axis is ‘hits per millisecond’ means the lower the value

the worse the time. There is a remarkable dip in all categories for the 128/16,699,901

combination. One may think this appears odd because the previous chart showed the

same combination had the lowest number of false positives. However, it does make

sense because this combination is only processing actual hits, each of which requires

validation to check every character; whereas the other averages are “washed down” by

fast false positive validations that usually finish after only a few characters.

Page | 105

Figure 10: Performance of our approach for situations where no false positives

occurred.

Figure 10 is the same graph but only shows analyses that did not have any false positives.

In other words, these are the only numbers we have that demonstrate our application’s

speed without needing to separate false positive’s time. As can be seen in this graph,

these only occur for a radix of 128. The graph also shows the category where WL equals

PL exhibited the fastest times. The markers that fall on the horizontal axis represent

analyses that had false positives and were therefore not eligible for this graph since it is

trying to capture the raw times each of the categories takes to process actual hits.

5.9.4 Search Time Performance
The following diagram shows an overview of the search times for all combinations of

radix/modulus and window length. We include this figure to give a bird’s-eye-view of

the overall results of our experiment.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

53
6,

79
9,

99
7

26
8,

39
9,

99
3

13
4,

20
7,

77
9

1,
07

3,
49

9,
99

1

59
,5

99
,9

93

1,
07

3,
49

9,
99

1

16
,6

99
,9

01

1,
07

3,
49

9,
99

1

2,
14

7,
48

3,
64

7

4 8 16 16 32 32 128 128 128

N
um

be
r o

f H
its

 p
er

 m
ill

is
ec

on
d

Radix and Modulus

Hits with no False Positives
per millisecond

by Radix and by Category

PL Same Length as WL

PL Shorter than WL

PL Longer than WL

Page | 106

Figure 11: Search times for all combinations of radix/modulus and window length.

We included this diagram to demonstrate how a group of combinations does not run

faster than GREP, while a good number of them do. To avoid cluttering up this part of

the report, we break this diagram into its constituent radixes and include the individual

graphs for each radix in Appendix D, since there are so many of them.

The analyses where our application runs faster than GREP
involve larger pattern lengths, starting around 10 bytes. The
groups that stay above the GREP line for all pattern lengths are
all associated with a window length of four.

Observation 15: Our application runs faster than GREP when pattern lengths are

larger, but never beats GREP when the Index Database has a window length of

four.

1

10

100

1,000

10,000

100,000

1,000,000

2 4 8 10 12 16 32 64

Lo
g

(S
ea

rc
h

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Search Pattern Length (bytes)

Search Times for all Radix, Modulus, and
Window Length

GREP

Page | 107

We also took the time results and did some cleaning of the data. In other words, we

removed (a) the three “Pattern does not exist” rows from our results, and (b) the best and

worst times from our results and from GREP. We also sorted the average times from

smallest to largest. Finally, we plotted the average times for our application, the average

time for GREP, and the minimum times for our application on the graph shown in Figure

12 below. The horizontal axis labels on this graph also show the radix/modulus/window

length combinations in order of fastest to slowest.

Each radix/modulus/window length combination has eleven
different pattern lengths to analyze one after the other. On an
individual basis, the fastest time for the eleven analyses is always
faster than GREP’s average time, with the exception of
combinations having a window length of four. Collectively, when
we average the times for the eleven searches, most of these
averages times are faster than GREP’s average.

Observation 16: The fastest time of the eleven pattern length searches in each

radix/modulus/window length combination was faster than GREP except for

searches involving a window length of four.

Page | 108

Figure 12: Average and lowest times for our application versus average GREP times

Page | 109

5.9.5 Comparing Actual and Spurious Hits
In the same manner as earlier, we placed another group of diagrams in Appendix E to

avoid cluttering up this part of the report. We show a sample of these graphs in Figure 13

below. It consists of a bar chart showing the positive (actual) hits in white and negative

(spurious) hits in black for each pattern length and each window length.

Figure 13: Actual and spurious hits for Radix = 4.

The chart shows that for all but the 32 and 64 byte search strings have about as many

positive hits as negative (spurious hits) for this particular radix/modulus combination. It

also shows how this combination does not have any strange false positives in the last

three positions where no pattern exists.

Pos - WL = 4

Neg - WL = 4

Pos - WL = 8

Neg - WL = 8

Pos - WL = 10

Neg - WL = 10

Pos - WL = 12

Neg - WL = 12

1

10000

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 4; Mod = 536,799,997

Page | 110

Chapter 6: Conclusion & Future Work
The work required for the information presented in this report has covered a great deal

since it began. Aside from a few setbacks here and there, there is little doubt it was a

success. As its title alludes, we present this final chapter in two parts: Conclusions and

Future Work. Conclusion looks back at our motivation and thesis from the first chapter,

briefly reviews not only the application we built but also the results of experiments we

ran using it. Future Work covers all those tasks we need to look at to make this

application more useable such as reducing the database size and improving several parts

of our algorithm.

6.1 Conclusions
We begin the Conclusion by reflecting on our original motivation and Thesis. Following

that, we will briefly describe both steps. Next, we will examine the experimental results

we achieved running our system and comparing our results to GREP. We remind avid

readers to review the “Observations” boxes above to refresh some of the many of

observations we made during the experiment and while writing the respective part of this

report. In short, there is enough positive evidence to not only support the original thesis,

but also to merit putting more resources into it; perhaps even for smart devices.

6.1.1 Original Motivation
Way back in the Introduction we began our motivation discussion describing one-step

search engines and talked about their popularity for on-line searching. We then

introduced a two-step method; and more or less described it as follows:

Few, if any, local text search applications in widespread use have a two-step approach.

Most current local text search applications, like GREP, run on-line. This means that

work done in the current search is independent of, any and all other work already done in

a previous search. A two-step-text-search-engine builds a database in the first step;

thereby allowing users to take advantage of doing many kinds of pre-calculations once,

and subsequently using their results many times for any and all searches ever needing to

Page | 111

be run. One-step applications like GREP have no memory. Instead, they perform all

required calculation each time they perform a search.

Building a two-step local search engine was our motivation.

6.1.2 Thesis
The above motivation steered us to the following Thesis.

We can modify the Rabin-Karp Algorithm, and configure the

LevelDB database, to create a two-step-text-search-engine algorithm

that will outperform the one-step-text-search-engine GREP in

finding search patterns within local text files.

In a general sense, the two-step application we built does beat GREP more than half the

time. It also is four orders of magnitude faster determining when a string does not exist.

It also seems feasible to apply a list of tasks that will make it beat GREP every time. We

will present that list of tasks later.

6.1.3 Building the Application
We used C++ to build our application so anyone could compile and use in either

Windows or UNIX. There was one feature we needed a more precise timer function we

obtained from <Windows.h> that invalidates this assumption. However, comparable

timer function APIs exist for UNIX that can easily replace the one we used from

Windows.

We also downloaded and linked LevelDB into our application. Since LevelDB is a

background kind of API, it had no bearing on the fact that we built our application to run

in a command-line environment. It has about a dozen or so possible parameters

explained in Appendix C. Since we used Windows, we also used Visual Studio 10 as our

IDE, and ran our app from a DOS window. During testing, we would ran our application

directly from a DOS window. For our experiments, we used a batch file to sequence

Page | 112

several analyses together. This was especially helpful for writing the entire set of 100-

Bible Index Databases whose batch file ran overnight.

In the end, our two-step application worked as follows. A preprocessing step using a

modified Rabin-Karp algorithm to create fingerprints that we save in a hash file using

LevelDB, which we usually refer to as an “Index Database.” After building an Index

Database, our application used it and a set of parameters to find the positions of all

occurrences of a search string quite quickly. To get our application in a position to

perform both steps we needed to write a great deal of C++ code.

Earlier, we described several techniques from the Rabin-Karp algorithm we used to carry

information from one fingerprint calculation forward to the subsequent fingerprint

calculations while building the hash file. We also built look-up tables and several other

techniques we thought would speed everything up. While we were building our

application, we were thinking these kinds of improvements would significantly reduce

the time required to build an Index Database. Unfortunately, even though this part of the

processing had better performance, it only characterizes about 0.1% of the total time

actually required to build a Database Index; LevelDB used the other 99.9%.

We made several other substantial improvements in the Rabin-Karp Algorithm worth

mentioning. First, we built the functionality to perform searches for five different

circumstances: (1) (PL - WL) is too big, (2) PL<WL, (3) PL=WL (this is the only

function the original Rabin-Karp algorithm covered), (4) PL>WL, and (5) search Pattern

does not exist. Second, we had to build the functionality to understand the architecture

type, decide whether integers were Little Endian or not, and, if so, switch the integer’s

byte arrays into Big Endian format for use in LevelDB.

Finally, we had to not only test our application, but also design an experiment to help

produce evidence for our thesis. We did both. Earlier we described how our testing went

smoothly, demonstrating only minor issues that we repaired easily compared to the above

work. The following section describes our observations during the experimental portion

of this work.

Page | 113

6.1.4 Experiment and Results
After we constructed and tested our application, the next part of our work involved us

designing and running an experiment that would help decide how our application faired

against GREP. We had a rather lengthy, but familiar, list of parameters to accommodate

in our experiment. These were: (1) radix, (2) modulus, (3) window length, and (4) search

pattern length.

Our Index Database structure incorporated the first three of these parameters. We used

four radixes: 4, 16, 32, and 128. Next, first we used one modulus for each radix based on

not allowing any calculation to overflow a signed 32-bit integer. Recalling a modulus

must be a prime number, for these modulo we found the largest prime number smaller

than (231/radix). This approach resulted in four experiments, to which we added four

more modulo; one for radix 16 and 32, and two for radix 128. This makes eight

combinations so far. For each of these combinations of radix and modulus we built four

Index Databases, one for each of our four window lengths: 4, 8, 10, and 12. In the end,

we ran 36 step-one processes to begin our experiment that resulted in 36 different Index

Databases.

Next, we needed to test these databases against a range of pattern lengths. We used two

types of search patterns to accomplish this. First, we used eight patterns whose strings

we knew existed in the text file, and whose lengths were 4, 8, 12, 16, 32, and 64 bytes.

Second, we used three patterns we knew did not occur in the text file whose lengths were

4, 8, and 12. This gave us eleven Patterns to run through each of the 36 Index Databases

resulting in 396 different runs.

By far the fastest of these runs were for patterns that we knew did not occur in the text

file. All of these, with the exception of a few surprising runs having false positives, ran

at speeds that were faster than 0.01 milliseconds. In fact, the fastest of these searches

occurred for a radix/modulus combination of 128/1,073,499,991; a window length of 4;

and a pattern length of 4. This search took a trifling 0.0075ms. At the same time, our

slowest search occurred for a radix/modulus combination of 128/ 2,147,483,647, a

Page | 114

window length of 8, and a pattern length of 4. This search took an astounding

576,194.72ms to find 1,216,800 occurrences. The reason this search took so long was the

time needed to rule out the huge number of false positives, 106,923,398 of them to be

exact.

During our analysis of the results, we noted that in cases like above where the pattern is

smaller than the window length, we use a ‘from fingerprint’ and a ‘to fingerprint’ to find

all locations that may contain the search pattern. In such situations, especially with a

large radix, the distance between the ‘from’ and the ‘to’ fingerprints is so large our

application must sift through millions of spurious fingerprints looking for the search

pattern. The reason for the slowness for these types of searches is a practical matter of

volume of work rather than some sophisticated theoretical justification.

Naturally, therefore, GREP was faster than our application for most searches where the

pattern length was less than the window length. However, this was the only category

where GREP was a clear winner. In all other categories, especially, when searching for a

string we know does not exist, our application was faster than GREP with a minor

exception here and there.

6.1.5 Final Conclusion
Now that we have conducted all the experiments and examined the evidence from several

interesting perspectives, we submit that we should look at the evidence from two points

of view, holistically and individually. From a holistic standpoint there is enough positive

evidence to not only support our original thesis, but also to merit putting more resources

into the application, perhaps with an eye towards smart devices. From a more individual

viewpoint, our experimental results did not help us make statements one way or another

about a combination of values for any of the four parameters (radix, modulus, window

length, and pattern length) that was the best; or, that was even better than most. We have

a few indications about the worst, like window lengths of 2 and 4; but not best. It is

probably more descriptive to say that our application is not yet mature enough to reveal

sufficient evidence to support these kinds of decisions.

Page | 115

We will address all of these issues in our recommendations that follow.

6.2 Recommendations and Future Work
Our experiments show that this new approach has a great deal of potential to help

improve the performance of local searches. Moreover, although we did not even look at

wider searches, our application could help in searching enterprise data stores as well.

However, before we can even consider performing these kinds of search, we must ensure

we make several improvements our experiments brought to light. These are as follows.

6.2.1 Find out why False Positives Appeared in Non-existent Strings
One of the most frustrating parts of our results was the existence of false positives for

strings we know did not exist in the file. We need to investigate why and how strings

like “ZZZZ” and “ZZZZZZZZ” and “ZZZZZZZZZZZZ” could produce fingerprints that

existed in an Index Database; in one case 91,505,516 times. We checked the source file

and verified the strings themselves did not occur. Therefore, we must do some research

to find out what is happening in these cases.

6.2.2 LevelDB Tuning
We mentioned earlier in the report that LevelDB has several parameters we can use to

tune the database. Given the fact that building the Index Database is slow and end-up

being huge, we must investigate them and adjust them to make our step-one perform as

nicely as step-two does.

6.2.3 Improve Approach to Small Search Strings
Searches whose pattern length (PL) is less that the window length (WL) are difficult and

much more susceptible to performance lags due to a wide search area. In fact, this

formulation and approach cannot beat GREP’s performance for any combination of

parameter values. As we just pointed out our range of fingerprints is so wide, we find

that most of the time spent searching is in eliminating false positives. We need to find a

way to tighten up the way we handle these types of searches.

Page | 116

6.2.4 Remove GREP’s Advantage
Throughout the report, we have reminded readers about GREP counting lines only. By

far the most time consuming part of our algorithm is verifying character strings in the text

file match the search string. Therefore, when a line has more than one occurrence of a

search pattern our application must verify them all; whereas GREP only need look at the

first occurrence. This means our comparisons are biased toward GREP. It is essential we

find a mechanism to correct this biased.

6.2.5 More Documents
Currently we have our application configured to only work with one text file at a time.

There is no reason why the application can produce one index file for a set of documents.

6.2.6 Find Parameters
A theme of our experiment was to vary the parameters one at a time and compare the

results in terms of performance, which was successful. However, we had trouble

identifying a set of parameters that stood out as the best. This leaves our basic question

as to, “what are the best parameters?” unanswered. We need another experiment

designed without any GREP comparison. This experiment will have an objective to

identify the best set of parameters.

Page | 117

Bibliography
Anonymous. (1989, Aug 1). The Bible, Old and New Testaments, King James Version.

Retrieved December 12, 2012, from Project Gutenberg:
http://www.gutenberg.org/ebooks/10

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval . New York:
ACM Press.

Beaza-Yates, R., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. New York:
ACM Press.

Bentley, J. L., & McLiroy, M. D. (2003). Patent No. US 6,611,213 B1. United States of
America.

Bille, P., Gørtz, I., Sach, B., Vildhøj, H., Kärkkäinen, J., & Stoye, J. (2012). Time-Space
Trade-Offs for Longest Common Extensions. Lecture Notes in Computer Science-
Combinatorial Pattern Matching, 7354, 293-305.

Corman, T. H., Leiserson, C., Rivest, R., & Stein, C. (2001). Introduction to Algorithms.
Cambridge: The MIT Press.

Crochemore, M., C., H., & Lecroq, T. (2009). Alorithms on Strings. Cambridge:
Cambridge University Press.

Dean, J., & Ghemawat, S. (n.d.). Leveldb. Retrieved 01 12, 2012, from Google Project
Hosting: http://leveldb.googlecode.com/svn/trunk/doc/index.html

Fuyao, Z. (2009). A String Matching Algorithm Based on Efficient Hash Function.
Information Engineering and Computer Science, 2009. ICIECS 2009.
International Conference on (pp. 1-4). Wuhan, China: IEEE eXpress Conference
Publishing.

Gnu. (2009, Feb 13). Grep for Windows. Retrieved Feb 10, 2012, from Sourceforge.net:
http://gnuwin32.sourceforge.net/packages/grep.htm

Google. (2011). leveldb (A fast and lightweight key/value database library by Google).
Retrieved 4 10, 2011, from Google Project Hosting:
http://code.google.com/p/leveldb/

Google Inc. (2012, 05 30). leveldb. Retrieved 06 01, 2012, from Google Project Hosting:
http://code.google.com/p/leveldb/

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences. Cambridge:
Cambridge University Press.

Intel Corporation. (2004, 11 15). Endianness White Paper. Retrieved 12 2, 2011, from
intel.com: http://www.intel.com/design/intarch/papers/endian.pdf

Karp, R., & Rabin, M. (1987). Efficient Randomized Pattern-Matching Algorithms. IBM
Journal of Research and Development, 249-260.

Kijewski, P. (2006). Automated Extraction of Threat Signatures from Network Flows.
18th Annual FIRST Conference. Baltimore: CERT Polska/NASK.

NASK (Research and Academic Computer Network), P. (2012, August 09). Home Page.
Retrieved 09 08, 2012, from ARAKIS, a CERT Polska (NASK) project:
http://www.arakis.pl/en/index.html

Navarro, G., & Raffinot, M. (2007). Fexible Pattern Matching in Strings. Cambridge:
Cambridge University Press.

Prata, S. (2005). C++ Primer Plus (Fifth Edition). Indianapolis: Sams Publishing.

Page | 118

RapidTables.com. (2011). Little and Big Endian. Retrieved 12 02, 2011, from
RapidTables.com: http://www.rapidtables.com/prog/endianess.htm

The Large Canterbury Corpus. (2001, 11 20). English Natural Language Corpus.
Retrieved 10 17, 2011, from The king James version of the bible:
http://corpus.canterbury.ac.nz/

Twain, M. (2009, May 14). The Works of Mark Twain by Mark Twain. Retrieved
December 12, 2011, from Project Gutenberg:
http://www.gutenberg.org/ebooks/28803

Page | 119

Appendix A: Formalizing Characters, Strings, and Search

A.1: Introduction

This chapter covers the following topics. To begin, we briefly repeat a point from the

Introduction concerning the strings involved in our work, to emphasize their importance.

Next, we commence our formal system discussing a string’s most important element, a

character, (or symbol.) We discuss the difference between the two and describe some of

their important properties. We then use that formalism to move the discussion into

strings, their characteristics, and their operators and functions. The discussion is

impressively both broad and deep, due to the importance of string analysis in science.

Finally, we once again address our favourite topic, the set of strings involved in this

study. This time, we dedicate a whole section to each of them discussing their role in the

analysis and a set of useful properties and characteristics. Finally, to make or formal

definitions stand out we use a simple bullet list format (NOTE: We do not use bullets or

bullet lists anywhere else throughout the text except for this.):

The Chapters that follow make use of a string. In fact, we have made it abundantly clear

strings are the cornerstone of this work. We therefore begin our discussion providing a

rigorous formalism to strings, their elements, and a few characteristics. This formalism

will provide mathematical and notational mechanisms needed to include strings, their

elements, and their characteristics in subsequent formal discussion. Doing this, forces us

to begin with a string’s atomic unit, a character (or symbol.)

• A text string (S) is a contiguous set of characters.

• S has a length (SL) equal to the number of characters it has (i.e., SL = |S|).

• Every character in a text string occurs at a unique position (i) within a string. The

first character in a string occurs at position i = 0. The last character in a string

occurs at position i = SL - 1.

Page | 120

An easy way to think of a text string is as an array of characters where the array index

acts as a position within the string. As above, the array representing the text string S has

an index (i) with a range [i = 0 to SL - 1]. Arrays and their indexes offer the kind of

accurateness we need when referring to a character at a particular position. For instance,

S[j] or Sj, refer to the jth element of string/array S. Similarly, we use S[i…j] or Si j

when referring to substrings of S beginning at position i and ending at position j (where, i

< j and j < SL.)

A.2 Brute-Force Algorithm

Armed with this information we can now examine a method of finding one string inside

another. To that end, we turn to giving a formal description of the brute-force algorithm

for text search. We hope this will define a benchmark of sorts on how the most basic

form of text searching is accomplished. Before we can give a brute-force solution, we

must first clearly define a problem. We have described it in words above. Now we

formally defined the text search problem as follows.

• Given a pattern P of length PL and a text file T of length TL (where PL is much

smaller than TL), search all position l of T and report all occurrences where

𝑷𝟎𝑷𝑳−𝟏 = 𝑻𝒍𝒍+𝑷𝑳−𝟏 (l = 0, 1,…, TL-PL).

We treat the terms Brute-Force and Naïve as being interchangeable. They both describe

a procedure that checks the first position in a text file to see if its following characters

match every character in the search pattern. It records the results and moves to the

second character in the text file to perform the same check. It repeats this process until it

has checked each substring in the text file having a length of PL.

Earlier we defined Text Search as a process of finding the occurrences of a search pattern

P of length PL, in a text file T of length TL (where SL << TL.) Since Cormen gives

Page | 121

such a succinct description of a naïve (and brute-force) text-search algorithm, we

reproduce it here as follows (Corman, Leiserson, Rivest, & Stein, 2001)

Naïve-Text-Search(T, P)

2 PL ← Length(P)

1 TL ← Length(T)

3 for s ← 0 to TL – PL

4 do if P[0 … PL-1] == T[s … s+(PL-1)]

5 then print “Pattern occurs at position” s

Algorithm 4: Naive Text-Search

While easy to understand and easy to program, having a worst-case running time of

Θ(nm) makes the Brute-Force method unsatisfactory for most applications including

ours. Even the practical running time of this method is still too slow for large texts.

Consider for instance, when T represents one or more web sites, TL gets extremely large

(109 characters is a realistic number in such an application) the shear bulk of characters to

be checked makes it obvious that response times would be totally inadequate for modern

search applications.

The worst-case for this solution operates in time O(PL(TL – PL + 1)). A worst-case

scenario exists when both P and T contain the same repeated character (recall that

overlaps are allowed.) In such a case, the number of comparisons made is Θ(PLTL)

because there is an occurrence of P at each of the first TL – PL+1 positions in T; and the

method performs exactly PL(TL-PL+1) comparisons. For instance, if P = aaa and T =

aaaaaaaaaa (PL=3, TL=10,) then the worst-case is encountered with exactly 24

comparisons being made.

Page | 122

The algorithm gets a text file T and a search pattern P as parameters. Notice at line 3

how a for-loop covers each position in the text file one position (byte) at a time. At each

offset, we align the left end of P with the left end of T and compare the characters of P

and T left-to-right until a mismatch occurs or P is exhausted. If a mismatch occurs, we

continue below at shifting. If P is exhausted without a mismatch, we report an

occurrence at the position of the left end of P. If, however, all characters of P match all

characters of T, we report an occurrence as above. P is then shifted one character to the

right by returning to line 3, where a string comparison is repeated beginning at the left

end of P. The for-loop is repeated until the right end of P is at location TL; which is one

character past the right end of T. (Corman, Leiserson, Rivest, & Stein, 2001) and

(Gusfield, 1997)}

A.3 Character Characteristics

The atomic unit of a string is a character (or symbol). Later in this chapter, we deal with

our preference to use the term character over the term symbol because the work we do

deals mainly with strings taken from the English language. In that sense, it feels more

natural to refer to English characters than to refer to English symbols. The result is that

our preference is to use character. However, we may encounter situations where we find

the term symbol more convenient and precise. Whichever sounds better is likely to be

our choice. This section formalizes these concepts.

A.3.1 Characters and Symbols

It is difficult to overstate the importance of symbols in general, and characters in

particular; their usage after all constitutes visible portion of an alphabet. They form the

basic building blocks for some major branches of science that deal with information;

library science, information management, communications, and computer science to

name a few. They also form the basic building block of this work. Although, our main

goal is manipulating strings, we must first understand a string’s elements, their

Page | 123

characters, and some of their fundamental properties before we can evaluate them when

they occur in strings.

The programming language C illustrates the two-sided property of characters nicely. In

C, a char type has the unique property that it is both a character type and an integer type

simultaneously. In other words using a character’s integer representation, we can write

its alphabet as a set of integers by, Σ = {i |i = 0 … (|Σ|-1)}. We can also write it as a set

of characters by, Σ = {ci |i = 0 … (|Σ|-1)}. Looking at ASCII character ‘a’ as an example,

it has the following bit code: 0110 0000. Interpreting these eight bits as an integer

evaluates to a code of (1*25 + 1*26) = 96. Thus, C regards lines: char c = ‘a’; and

char c = 96; as both valid and equivalent.

We take advantage of this equivalence throughout our application code. In addition, later

in this document, we will treat characters as symbols and integers interchangeably

depending on the situation. It is important to notice that in this case we are using zero-

based addressing as a convention that is popular in textbooks. We also find it more

helpful programming in C. However, one-based addressing is just as common in the

literature.

A.3.2 The ASCII Character Set

The most popular encoding for English language texts is ASCII (American Standard

Code for Information Interchange) defined by (ANSI13.4-1968. See

http://www.research.att.com/~bs/glossary.html#GANSI) We use ASCII in our analysis

because we are restricting our study to English language corpuses. Even though ASCII

has elements that we typically refer to as symbols, the vast majority of ASCII includes all

upper and lower-case English letters, punctuation marks, digits, and arithmetic operators.

We will therefore henceforth begin referring to most ASCII symbols as characters.

• ASCII is a simple one-byte character encoding where each element in the

alphabet has a unique one-byte bit arrangement. At the same time, the seven

http://www.research.att.com/~bs/glossary.html#GANSI

Page | 124

lower order bits from that same byte define the character’s code as an integer. As

we demonstrated earlier, this means each ASCII character has a natural zero-

based code build into its byte.

While it may be tempting to refer to an ASCII code as an “index,” we will resist the

temptation. The reason for this is that later we use the term “index” to refer to a

character’s position within a string. It is vital we do not mix-up a character’s code (an

integer value,) for its index-position within a string-(another integer value.) The two are

vastly different concepts.

Alphabet index or ASCII code, it does not matter what name one calls it; there can never

be any confusion about its value. We calculate it from the lower seven bits of its byte;

using the eighth bit for a sign. Incidentally, we ignore negative ASCII codes. Appendix

A shows an ASCII table that demonstrates |ASCII|=128. The codes go from 0 up to 127.

Another way of confirming a code’s value range is to observe that 27 = 128, then minus

one for 0 gives 127 as our upper limit.

A.3.3 String Characteristics

Having introduced the basic atomic elements of strings, we are now in a position to

discuss some characteristics of strings. Our analysis later will make use of most of these

characteristics. The first point to understand is that we use the term string and sequences

synonymously to mean an ordered finite-length set of characters from an alphabet. We

use string or sequences depending on the context; but we heavily prefer to use string.

Another point to notice is our approach deals with strings that may or may not have any

meaning to us. The issue of meaning does not have any role in our analysis. We simply

aim to analyze the juxtaposition of characters in a string and use that result to help us find

positions where that string occurs in other files. The features and characteristics of these

strings are all the tools we need for our approach.

Page | 125

A.3.4 String Nomenclature and Properties

We begin by formalizing several interrelated terms and concepts needed to describe a

string’s features and characteristics. They designate not only strings themselves, but also

their characteristics, and several operations we perform on them during our approach.

The following list terms and concepts have been adopted from (ref=GUSFIELD;

Algorithms on Strings, Trees, and Sequences). We repeat earlier definitions of a string

for completeness).

• A string S is a finite-length set of contiguous characters written from left to right.

It is helpful to think of a string as a one-dimensional array of characters.

• The characters contained in a string belong to some finite alphabet Σ. Our

analysis relies on the ASCII alphabet or some subset of it.

• Σ* denotes a set of every finite length string that can be formed using characters

from the alphabet Σ.

• The empty or NULL string, denoted ɛ, contains no characters. Incidentally, ɛ

belongs to Σ* as well as every other string having ɛ as a suffix, prefix, or both.

• Each character in a string exists at a location or position (as we prefer) within the

string.

• The position is calculated by counting the number of characters beginning at the

first character on the left end of a string; which is assigned a position of 0. The

second character has a position 1, and so on. It is especially important to note that

we adopt a convention where the first position in a string is zero (not one.) It is

not uncommon to encounter in the literature, not only descriptions for string

manipulation using positions that are one-based, but also, use several other terms

Page | 126

describing a character’s position in a string. For instance, depending on the

context, we sometimes conveniently refer to a position as an offset; a location; or,

shift from the beginning of a string.

• We have already seen earlier, the length of a string S is the number of characters

it contains, and is denoted SL, or mathematically ǀSǀ. Moreover, using a zero-

based approach, the position of the last character in a string is ǀSǀ-1 or SL-1.

• S[i] signifies the character of S occurring at position i. Remember, zero-based

positioning means all positions must fall in the range: 0 <= i <= ǀSǀ-1

• S[i,…,j] is a substring of S that starts at position i and ends at position j (where i

≤ j).

• Sometimes, we shed the square brackets finding it convenient to denote a

substring of S that begins at location r and has a length of n using the term: 𝑺𝒓𝒏.

Furthermore, in situations where we know n by the context (or understand it), we

omit n and simply use Sr instead. This nomenclature also helps us reduce some

equation’s size and clutter when describing string characteristics and properties.

• Concatenating two strings S and T produces a new string, written as ST,

consisting of the characters from S followed by the characters from T. The length

of this new string is ǀSǀ + ǀTǀ.

• The substring S[0,…,i] is a prefix of S, beginning at the first position and ending

at location i.

• Similarly, the substring S[i,…,ǀSǀ-1] is a suffix of S that begins at position i and

ends at the last position in S.

Page | 127

• Note that ɛ is both a prefix of and a suffix of all strings. Similarly, a string S is

also both a prefix of and a suffix of itself. To distinguish these trivial cases, the

term proper is prepended to prefix, suffix, or substring if the prefix, suffix, or

substring is (a) not the entire string S[i,…,j], where i=0, and j=|S|-1, and (b) is not

the empty string ɛ. For instance, a substring S[0,…,3]of S is a proper prefix of S,

iff |S| > 4.

• It is an error to define a substring S[0,…,3]of S if |S| < 4.

• When comparing a character from one string with a character from another string,

they match if their characters (and/or codes) are equal; otherwise, they mismatch.

• When two strings (say S and R) of the same length n are compared, we say string

S matches string R if every character in respective positions from the left to the

right match (i.e., they match iff S[i]=R[i] for all i=0,…,n-1); otherwise, S and R

mismatch.

• When two strings have different lengths, we compare characters in the shorter

string to corresponding characters in a proper prefix of the longer string. If each

character in the shorter string matches the corresponding characters in the proper

prefix of the longer string, we say that the shorter string matches the longer string;

otherwise, they mismatch.

A.4 The Text Document

Among one of the most important strings we deal with is a text file. When a user begins

an analysis, they must supply a string T called a text file of length TL as the object they

wish to search. Optionally, they can also provide a string P called a search pattern of

Page | 128

length PL they wish to find in T (where PL<<TL). As described earlier, we can solve

this problem by searching for all occurrences of P in a string T. In a general sense-that

is, while not following the earlier algorithms Brute-Force or Rabin-Karp-the results of

our analysis amounts to repeating a comparison for all proper substrings of T having a

length PL, from position 0 to position TL-PL; and, reporting an occurrence at offset l

whenever 𝑷𝟎𝑷𝑳−𝟏 = 𝑻𝒍𝒍+𝑷𝑳−𝟏 . Fortunately, we do not need to perform so many

operations to obtain the same results. The point here is that a search for a pattern P must

report every occurrence of P in the text file T.

When we open a text file, we do it in binary mode so we do not have to worry about the

end-of-line issues associated with opening them as text files. Once opened, T has

positions that start at zero for the first character and end at (TL-1.) They are the source

of values used to satisfy an information need such as when declaring, “a pattern

occurrence was discovered at this position in T.” Our application provides occurrence

positions in a file or on the screen after performing a search process.

A.5 The Search Pattern

A search pattern is another value a user must supply when using step-two the matching

step. As we have reiterated many times throughout this report already, a user supplies a

string P called a search pattern of length PL they wish to find. The application then

returns a file containing the position of each occurrence of that pattern in a text file.

Page | 129

Appendix B: ASCII Table

Dec Hex Binary Character Description
0 00 00000000 NUL null
1 01 00000001 SOH start of header
2 02 00000010 STX start of text
3 03 00000011 ETX end of text
4 04 00000100 EOT end of transmission
5 05 00000101 ENQ enquiry
6 06 00000110 ACK acknowledge
7 07 00000111 BEL bell
8 08 00001000 BS backspace
9 09 00001001 HT horizontal tab
10 0A 00001010 LF line feed
11 0B 00001011 VT vertical tab
12 0C 00001100 FF form feed
13 0D 00001101 CR enter / carriage return
14 0E 00001110 SO shift out
15 0F 00001111 SI shift in
16 10 00010000 DLE data link escape
17 11 00010001 DC1 device control 1
18 12 00010010 DC2 device control 2
19 13 00010011 DC3 device control 3
20 14 00010100 DC4 device control 4
21 15 00010101 NAK negative acknowledge
22 16 00010110 SYN synchronize
23 17 00010111 ETB end of trans. block
24 18 00011000 CAN cancel
25 19 00011001 EM end of medium
26 1A 00011010 SUB substitute
27 1B 00011011 ESC escape
28 1C 00011100 FS file separator
29 1D 00011101 GS group separator
30 1E 00011110 RS record separator
31 1F 00011111 US unit separator
32 20 00100000 Space space
33 21 00100001 ! exclamation mark
34 22 00100010 " double quote
35 23 00100011 # number
36 24 00100100 $ dollar
37 25 00100101 % percent
38 26 00100110 & ampersand
39 27 00100111 ' single quote
40 28 00101000 (left parenthesis
41 29 00101001) right parenthesis
42 2A 00101010 * asterisk
43 2B 00101011 + plus
44 2C 00101100 , comma
45 2D 00101101 - minus
46 2E 00101110 . period
47 2F 00101111 / slash

Page | 130

Dec Hex Binary Character Description
48 30 00110000 0 zero
49 31 00110001 1 one
50 32 00110010 2 two
51 33 00110011 3 three
52 34 00110100 4 four
53 35 00110101 5 five
54 36 00110110 6 six
55 37 00110111 7 seven
56 38 00111000 8 eight
57 39 00111001 9 nine
58 3A 00111010 : colon
59 3B 00111011 ; semicolon
60 3C 00111100 < less than
61 3D 00111101 = equality sign
62 3E 00111110 > greater than
63 3F 00111111 ? question mark
64 40 01000000 @ at sign
65 41 01000001 A
66 42 01000010 B
67 43 01000011 C
68 44 01000100 D
69 45 01000101 E
70 46 01000110 F
71 47 01000111 G
72 48 01001000 H
73 49 01001001 I
74 4A 01001010 J
75 4B 01001011 K
76 4C 01001100 L
77 4D 01001101 M
78 4E 01001110 N
79 4F 01001111 O
80 50 01010000 P
81 51 01010001 Q
82 52 01010010 R
83 53 01010011 S
84 54 01010100 T
85 55 01010101 U
86 56 01010110 V
87 57 01010111 W
88 58 01011000 X
89 59 01011001 Y
90 5A 01011010 Z
91 5B 01011011 [left square bracket
92 5C 01011100 \ backslash
93 5D 01011101] right square bracket
94 5E 01011110 ^ caret / circumflex
95 5F 01011111 _ underscore
96 60 01100000 ` grave / accent
97 61 01100001 a
98 62 01100010 b
99 63 01100011 c
10

64 01100100 d

Page | 131

Dec Hex Binary Character Description
10

65 01100101 e

10

66 01100110 f
10

67 01100111 g

10

68 01101000 h
10

69 01101001 i

10

6A 01101010 j
10

6B 01101011 k

10

6C 01101100 l
10

6D 01101101 m

11

6E 01101110 n
11

6F 01101111 o

11

70 01110000 p
11

71 01110001 q

11

72 01110010 r
11

73 01110011 s

11

74 01110100 t
11

75 01110101 u

11

76 01110110 v
11

77 01110111 w

12

78 01111000 x
12

79 01111001 y

12

7A 01111010 z
12

7B 01111011 { left curly bracket

12

7C 01111100 | vertical bar
12

7D 01111101 } right curly bracket

12

7E 01111110 ~ tilde
12

7F 01111111 DEL delete

Adapted from: http://www.rapidtables.com/prog/ascii_table.htm#space (accessed May

30, 2012.)

http://www.rapidtables.com/prog/ascii_table.htm#space

Page | 132

Appendix C: Command-Line Interface

C.1 Introduction

We implemented our application using Visual C++ and Microsoft Visual Studio (10) VS.

We used this tool not only because it had unsurpassed support in its IDE that includes

optimization for very fast performance, but also because we kept it simple enough so it

can be compile in UNIX using gcc. gcc is a public domain C compiler for UNIX by

GNU. In any case, this section is briefly about the salient points related to being a

command line tool. We discuss all available options; what they do; and, how to use

them. There are a few new ideas presented as well.

C.2 Application Paths

To run our application the only required path is to the LevelDB library file. Some of the

other paths required to be set are a function of how a user wants to run the application. If

they want to execute it from a different directory than it resides, then a path to the

application’s home must be set. Other than that, paths to the text file, to the database file,

to the output file, and to the configuration files are application parameters.

C.3 Input Parameters

Our application is an exe called: RKLevelDB.exe. It occupies a mere 58k of disk space,

even less memory when running. To use the application a user must be at a command

prompt with all paths needed already set. A user must then type in the application name

and supply enough command-line parameters to satisfy the application’s need. We

reproduce these command-line parameters in Table 10 on the next page. There, we give

a context for not only discussing them, but also for the application’s capabilities they

produce. All parameters have a long and a short version that we juxtaposed in the table.

We primarily refer to the long version of parameters throughout our discussion as a

convenience, but users are free to select either. In the next section, we highlight a few of

the important parameters.

Page | 133

Long command short Description of command values and purpose
--brief -b Flag suppressing verification step in search (T = suppress).
--database-
directory=

-d= Path to index database-DO NOT add final separator in path.

--report-every= -e= Mb to report time statistics secs/(value supplied) Mb
--finish-after= -f= number of Mb in text file to index (for testing)
--generate-pattern -g Flag for selecting pattern from text file randomly.
--help -h Flag to show list of command-line arguments.
--window-length= -l= Length of window (number of characters) for creating

fingerprints.
--modulus= -m= Prime number for fingerprint modulo arithmetic.
--database-name= -n= name of the index database
--overwrite-
database

–o Flag to replace index database with a new one.

--pattern= -p= Pattern to search for.
--radix= -r= Radix used as base of number system for characters

& fingerprints.
--search -s Flag to signal a search is requested (T to include search.)
--path-to-text-file= -t= Path (including name) to the text file that is to be built or

searched.
--verbose-file= -v= Path (including name) of text file to append performance

data.
--write -w Flag to write to index database (true = write/append if

exists)
NOTE-1) Always use '/' as the path separator for both DOS & UNIX; and, always

place a '/' at the end of the path (e.g., “C:/dir1/dir2/").
NOTE-2) All options (except -d & -n) can be set in a configuration text file as follows:

the program will search for and use a file with the name: --database-
directory+--database-name+.config if it exists. Use only short option names
in the file, only ever put one parameter on one line, always include the “=”
sign when listing parameters requiring them and, always ensure the “-” sign
is in col 0 on a line

NOTE-3) Any parameter given on command-line takes precedence over these options

Table 10: List of command line parameters.

Page | 134

C.3 Technical Parameters

Some parameters are optional, others are mandatory, and some are mandatory depending

on other parameter values. First, notice how options requiring a user-defined value have

an equal sign on their right hand end; the equal sign is part of the parameter usage. For

example the proper use of the ‘finish-after’ parameter given on a command line is shown

between the quotation marks as follows: “--finish-after=1500”. In addition, whenever a

directory has a space in its name, a user must enclose it within quotation marks. In fact,

we recommend as standard practice to use quotation marks when supplying all string

parameter values. We also recommend using the UNIX style for path separators, a

forward slash (i.e., “/”) for directories. This separator works for directories in both

Windows and UNIX; making it easy to switch from one operating system to another.

Using this separator will also help avoid some confusing situations with escape

sequences. Unfortunately, the Windows style backslash separator (i.e., “\”) is the same as

the symbol used for an escape sequence (e.g., “\0” is the escape sequence for a NULL

character). With these preliminaries out of the way, we now turn to describing some

details for parameters.

As can be seen in Table 10, we use the same application for both creating/modifying the

Index and searching for patterns using the (--write) and (--search) parameters

respectively. A user must supply one of these, but may choose to supply both to perform

both steps in one execution. Each of these parameters needs a group of other parameters

to supply some of their needed details. For instance, we already discussed above about

two of the most important parameters needed for both types of analysis; these are the

Index Database directory (--database-directory=) and its name (--database-name=).

Referring to Error! Reference source not found., we can see that (--database-

directory=) option supplies a path to the target LevelDB database, and by our convention

path names must end in a separator. Then, the (--database-name=) option supplies the

name for the Index Database that is a subdirectory in (--database-directory=). Both of

these parameters set a context for the pending action of either reading or writing to and

from an Index Database. One part of the application goes out and searches for the --

Page | 135

database-name= subdirectory, using it if available; creating it if not. We will have more

say about these particular parameters later. In addition, both require a user to supply the

name and location of a text file they want to index or search. They supply this file (and

path) through the (--path-to-text-file=) parameter.

When the search parameter is specified, a user must also supply a search pattern using

the (--pattern=) parameter. In addition, searching has an optional parameter called (--

brief) that disables the character-by-character verification that we initiate when a

pattern’s fingerprint equals a text’s fingerprint. Be wary with this command because it

essentially says a search’s results include false positives. We provide this switch

primarily for research related studies.

When a user supplies the write parameter, several optional parameters are available that

mostly control the reporting of performance information. Before getting to their

description, however, there are several other parameters used primarily for testing that we

include for thoroughness. To begin, the (--overwrite-database) parameter tells the

application to build a new Index Database. Using the database directory and name

specified in earlier parameters, the application checks to see if an Index Database exists,

and deletes it if it does before building a new one. Another parameter helps with testing

the index creation step. A (--finish-after=) parameter is supplied to ask the application

to stop processing the text file after so many bytes. If a user sets this option, the

application will finish building an Index Database when it reaches the number of bytes in

the text file supplied as the parameter’s value.

Aside from this parameter, the write process has several interrelated parameters

controlling the creation and filling of a file containing performance information. A brief

description of these parameters follows. To begin with, the (--verbose-file=) parameter

not only triggers the reporting of performance information, but also names the file where

this information will be written. Performance information is two columns, first, the

number of bytes processed since previous write, and second, the time taken in

milliseconds since the previous performance report. Omitting this parameter turns off

Page | 136

performance reporting altogether. When the parameter is included, the application

checks to see if the file named in the parameter exists. If it does not exist, the application

creates it. If, on the other hand, the file does exist the application opens it, leaves any

existing data in tacked and appends new information at the end. The performance

information reported above is controlled by the (--report-every=) parameter. This

parameter allows a user to specify how many bytes to process between reporting

incidents. That is, our application has a clock and a counter of bytes processes in the text

file. This option takes advantage of that information by reporting the time it has taken to

process that many bytes of the text file.

C.4 Configuration File

All options (except --database-directory= and --database-name=) can be set in a

configuration text file. We need both “--database-directory=” and “--database-name=”

beforehand through command-line so the application can know where to search for a

configuration file. Referring to the above table, we can see that “--database-directory=”

option supplies a path to the target LevelDB database, and by our convention path names

must end in a separator. Then, the “--database-name=” option supplies the name for the

Index Database that is a subdirectory in --database-directory=. Both of these

parameters set a context for the pending action of either reading or writing to and from an

Index Database. One part of the application goes out and searches for the --database-

name= subdirectory, using it if available; creating it if not. We will have more say about

these particular parameters later.

At the same time, another part of the program automatically searches for a file with a

name that is similar to the Index File. Using the long command-line parameter names

given above we can see the configuration file name is simply the Index Database

directory and name with a “.config” tacked onto its right hand end. In other words, a

configuration file has the following name and location, after substituting parameter

values for their name below:

--database-directory + --database-name+.config

Page | 137

If the file does not exist, the application continues as normally. If the file does exist

however, it will use the parameters specified within it; provided those values have not

already been supplied on the command-line. In essence, command-line supplied

parameters take precedent over commands in a configuration file.

C.5 Creating a Configuration File

A configuration file is a place to put commonly used parameters that you want associated

with a certain database. As demonstrated above, the file lives in the same directory as the

database itself so no confusion should arise. Configuration files are optional meant to

help researchers configure experiments consistently. The following list gives some of the

rules and formats for a configuration file that has a name equal to: “database-

directory+database-name+.config”

• Create file with one option per line.

• The order of option names in the file is totally arbitrary regardless of connections

• Use only short option names (i.e., the single letter ones.)

• Do not indent lines, ensuring the “-” is the first char on a line.

• For example, to set the radix to 128 use “–r=128” on a separate line.

• As shown in previous line, the “=” is part of option name and must be included.

• Also, as shown there can be no blanks between any two characters

• It is good practice to wrap all strings including database directory with quotes.

• It is important for us to reiterate the fact that options supplied on the command-

line take precedence over options given in a configuration file. In other words,

with the example given above for setting radix in a configuration file. A radix of

128 will only be used if neither “-r=x” nor "--radix=x” were included on the

command-line.

Page | 138

Appendix D: Seek Times for each Radix/Modulus

Combination.

The graphs in this Appendix show how seek times change for each pattern length for our

application and for GREP. There is one graph for each radix. Then, within a graph, there

is a line for GREP and a line for each window length and Modulus. The vertical axis is

the log of seek time in milliseconds; with log required because of the wide spread of

time. Later we show graphs of performance in term of hits per millisecond where higher

values are better. Unlike that measure of performance, the one used on these graphs is

actual time taken to process; meaning that higher is worse. Therefore, we are looking for

lines that are lower than the line for GREP. In addition, we mentioned earlier how none

of the analyses involving a window length of four was faster than GREP. The line in the

graph below runs almost parallel to the GREP line. Finally, the graphs also show how

the times for longer patterns (> 10) are almost always better than GREP.

Page | 139

Figure 14: Search Times for Radix = 4

Figure 15: Search Times for Radix = 8

1

10

100

1000

10000

100000

2 4 8 10 12 16 32 64Lo
g

(S
ea

rc
h

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Search Pattern Length (bytes)

Search Times for Radix = 4

GREP

wl=4,
m=536,799,997
wl=8,
m=536,799,997

1

10

100

1000

10000

100000

1000000

2 4 8 10 12 16 32 64Lo
g

(S
ea

rc
h

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Search Pattern Length (bytes)

Search Times for Radix = 8

GREP

wl=4,
m=268,399,993
wl=8,
m=268,399,993

Page | 140

Figure 16: Search Times for Radix = 16

Figure 17: Search Times for Radix = 32

1

10

100

1000

10000

100000

1000000

2 4 8 10 12 16 32 64Lo
g

(S
ea

rc
h

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Search Pattern Length (bytes)

Search Times for Radix = 16

GREP

wl=4,
m=134,207,779
wl=8,
m=134,207,779
wl=10,
m=134,207,779

1

10

100

1000

10000

100000

2 4 8 10 12 16 32 64Lo
g

(S
ea

rc
h

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Search Pattern Length (bytes)

Search Times for Radix = 32

GREP

wl=4, m=59,599,993

wl=8, m=59,599,993

wl=10, m=59599993

Page | 141

Figure 18: Search Times for Radix = 128

1

10

100

1000

10000

100000

1000000

2 4 8 10 12 16 32 64

Lo
g

(S
ea

rc
h

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Search Pattern Length (bytes)

Search Times for Radix = 128

GREP
wl=4, m=16,699,901
wl=8, m=16,699,901
wl=10, m=16,699,901
wl=12, m=16,699,901
wl=4, m=1,073,499,991
wl=8, m=1,073,499,991
wl=10, m=1,073,499,991
wl=12, m=1,073,499,991
wl= 4, m=2,147,483,647
wl= 8, m=2,147,483,647
wl=10, m=2,147,483,647
wl=12, m=2,147,483,647

Page | 142

Appendix E: Diagrams of Actual Versus Spurious Hits

The bar graphs shown in this Appendix juxtapose actual hits (white bars labeled “Pos”)

with false positive hits (dark bars labeled “Neg”) by pattern length and window length.

There is one graph for each radix/modulus combination. In the main body of the report,

we mentioned how pattern lengths of 32 and 64 never have a false positive for any radix.

In addition, we also mentioned that the last three categories (where the search pattern did

not exist in the file) should not have any false positives. While the graph below

demonstrates this condition, later graphs show how false positives appear seemingly at

random locations for these categories. Finally, a quick glance at all these graphs

illustrates how the false positives

Figure 19: Actual and spurious hits for radix = 4

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

10000000

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 4; Mod = 536,799,997

Page | 143

Figure 20: Actual and spurious hits for radix = 8

Figure 21: Actual and spurious hits for radix = 16, modulus = 134,207,779

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

100000000

2

8

12

32

4

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 8; Mod = 268,399,993

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

100000000

2
4

8
10

12

16

32

64

4

8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 16; Mod = 134,207,779

Page | 144

Figure 22: Actual and spurious hits for radix = 16, modulus = 1,073,499,991

Figure 23: Actual and spurious hits for radix = 32, modulus = 59,599,993

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

100000000

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 16; Mod = 1,073,499,991

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

100000000

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 32; Mod = 59,599,993

Page | 145

Figure 24: Actual and spurious hits for radix =32, modulus = 1,073,499,991

Figure 25: Actual and spurious hits for radix = 128, modulus = 16,699,901

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

10000000

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 32; Mod = 1,073,499,991

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

10000000

2

8

12

32

4

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 128; Mod = 16,699,901

Page | 146

Figure 26: Actual and spurious hits for radix = 128, modulus = 1,073,499,991

Figure 27: Actual and spurious hits for radix = 128, modulus = 2,147,483,647.

Pos - WL = 4
Neg - WL = 4

Pos - WL = 8
Neg - WL = 8

Pos - WL = 10
Neg - WL = 10

Pos - WL = 12
Neg - WL = 12

1

1E+09

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 128; Mod = 1,073,499,991

Pos - WL = 2

Neg - WL = 2

Pos - WL = 4

Neg - WL = 4
Pos - WL = 8

Neg - WL = 8
Pos - WL = 10

Neg - WL = 10
Pos - WL = 12

Neg - WL = 121

1E+09

2
4

8
10

12
16

32
64

4
8

12

Lo
g1

0
(n

um
be

r o
f m

at
ch

es
)

Pattern Length
(bytes)

Text File Searches: Radix = 128; Mod = 2,147,483,647

Page | 147

Appendix F: Line Graphs of Performance (hits/ms)

This Appendix contains a set of line graphs showing the rates at which “hits” are

processed. A hit is an actual occurrence of a string, or a false positive. The performance

measure shown on the graphs is “hits per millisecond,” meaning higher numbers show

better performance than lower numbers. The first graph shows the rates for GREP; while

the remaining graphs show the rates for each radix. These later graphs also superimposed

the GREP rates for easy comparisons. The vertical axis shows the log of the rates. Using

the log of the rates is due to GREP’s huge range from 0.29 through 1486.00 milliseconds.

In addition, GREP’s incredibly fast processing rate for a pattern length of four its average

processing rate really high compared to our application.

Figure 28: Processing rates (ms) for GREP

Page | 148

Figure 29: Processing rates (ms) for r=4,m=536,799,997.

Figure 30: Processing rates (ms) for r=8,m=268,399,993.

Page | 149

Figure 31: Processing rates for r=16,m=134,207,779

Figure 32: Processing rates for r=16,m=1,073,499,991

Page | 150

Figure 33: Processing rates for r=32,m=59,599,993

Figure 34: Processing rates for r=32,m=1,073,499,991

Page | 151

Figure 35: Processing rates for r=128,m=16,699,901

Figure 36: Processing rates for r=128,m=1,073,499,991

Page | 152

Figure 37: Processing rates for r=128,m=2,147,483,647

	Abstract
	Chapter 1: The Research Problem
	1.1.1 Introduction
	1.2 Thesis
	1.3 Basic String Terminology
	1.4 Strings
	1.4.1 Information Retrieval
	1.4.2 Text Search covers a Spectrum of Techniques
	1.4.3 One-Step (On-Line) or Two-Step Preprocessing

	1.5 Some Search Problems
	1.5.1 WWW Search Tools
	1.5.2 Local Search Tools

	1.6 Rabin-Karp Algorithm
	1.6.1 Introduction
	1.6.2 Example of Rabin-Karp
	1.6.3 Fingerprints in LevelDB

	1.7 Motivation
	1.8 Description of Work
	1.9 Document Layout

	Chapter 2: The Rabin-Karp Algorithm
	2.1 Introduction
	2.2 Rabin-Karp Algorithm
	2.3 Modulo Arithmetic

	Chapter 3: String Search Literature Review
	3.1 Introduction
	3.2 Textbook References
	3.2.1 Introduction to Algorithms
	3.2.2 Algorithms on Strings, Trees, and Sequences
	3.2.3 Algorithms on Strings
	3.2.4 Flexible Pattern Matching in Strings
	3.2.5 Modern Information Retrieval

	3.3 Selected Paper References
	3.3.1 Data Compression
	3.3.1.1 U.S. Patent Compression Method
	3.3.1.2 Longest Common Extensions

	3.3.2 Improved Hash for String Matching
	3.3.3 Threat Signatures from Network Flows

	Chapter 4: Our Application Using Rabin-Karp
	4.1 Introduction
	4.2 Important Side Effects
	4.3 Endianness
	4.4 Beginning a two-step Process
	4.4.1 Introduction
	4.4.2 Impact of Two-Step Process
	4.4.2.1 Window Length
	4.4.2.2 Examining Radix and Modulo
	4.4.2.3 Command-Line Inputs
	4.4.2.4 Program Inputs
	4.4.2.5 Tying Radix and Modulus
	4.4.2.5.1 Introduction
	4.4.2.5.2 Limiting Alphabet Size with Radix
	4.4.2.5.3 Demonstrating 32-Integer Results

	4.4.2.6 Creating Look-Up Tables
	4.4.2.6.1 Small Integers from Large Integers
	4.4.2.6.2 High Order byte
	4.4.2.6.3 Radix Powers
	4.4.2.6.4 Changing Characters in Window

	4.5 Step-One Building an Index
	4.5.1 Introduction
	4.5.2 Index Building Algorithm
	4.5.2.1 Introduction
	4.5.2.2 Creating the Index Database

	4.5.3 Building our Index Database using LevelDB
	4.5.3.1 Introduction
	4.5.3.2 Google’s LevelDB Description
	4.5.3.3 LevelDB Functions and Properties
	4.5.3.4 Our LevelDB Database
	4.5.3.4.1 Key and Value Byte Arrays
	4.5.3.4.2 Functional Dependency

	4.5.3.5 Administrator Functions
	4.5.3.6 No Duplicated Keys

	4.6 Step-Two: Match Patterns to Text
	4.6.1 Introduction
	4.6.2 Implementing Matching
	4.6.3 The Matching Issues
	4.6.3.1 Pattern Shorter than Window Length (PL<WL)
	4.6.3.1.1 Example of Matching a Short Fingerprint
	4.6.3.1.2 Setting a Range of Fingerprints
	4.6.3.1.3 Pattern and Window Length Difference
	4.6.3.1.4 Parameter Influences
	4.6.3.1.5 Getting File Positions

	4.6.3.2 Pattern Equal to Window Length (PL==WL)
	4.6.3.3 Pattern Longer than Window Length (PL>WL)

	4.6.4 Pattern Matching Algorithm
	4.6.4.1 Introduction
	4.6.4.2 Algorithm Description
	4.6.4.2.1 Character Symbols and Codes
	4.6.4.2.2 Vectors
	4.6.4.2.3 Index Database
	4.6.4.2.4 Algorithm Parts
	4.6.4.2.5 Verification and Output

	4.6.5 Application Output
	4.6.5.1 Output File Description
	4.6.5.1.1 File *.src
	4.6.5.1.2 File *.wrt
	4.6.5.1.3 File *.wtot

	Chapter 5: Performance of Our New Application
	5.1 Experiment Design & Implementation
	5.2 Source Text Files
	5.3 Setting up and Testing our Application
	5.4 Source Computer
	5.5 Using GREP
	5.6 Preliminary Comparison
	5.7 Creating Index Databases in LevelDB
	5.8 Performing Searches
	5.9 Performance Results
	5.9.1 Table of Results
	5.9.2 False Positives by Category
	5.9.3 Average Rate of Processing by Category
	5.9.4 Search Time Performance
	5.9.5 Comparing Actual and Spurious Hits

	Chapter 6: Conclusion & Future Work
	6.1 Conclusions
	6.1.1 Original Motivation
	6.1.2 Thesis
	6.1.3 Building the Application
	6.1.4 Experiment and Results
	6.1.5 Final Conclusion

	6.2 Recommendations and Future Work
	6.2.1 Find out why False Positives Appeared in Non-existent Strings
	6.2.2 LevelDB Tuning
	6.2.3 Improve Approach to Small Search Strings
	6.2.4 Remove GREP’s Advantage
	6.2.5 More Documents
	6.2.6 Find Parameters

	Bibliography

