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Abstract 

 Haemonchus contortus is a blood feeding parasitic nematode infecting ruminants causing 

anemia and poor health at great economic cost.  The ability to pharmaceutically control 

infection has been challenged by the rapid development and spread of drug resistance. 

The discovery of new targets is therefore required for sustainable parasite control. UNC-

49 is a nematode ligand-gated ion channel that plays an important role in muscle 

contraction required for normal locomotion.  However, little is known regarding its 

sensitivity to different agonists and how they interact with the binding site. This thesis 

describes an investigation into the efficacy of a range of classical GABA receptor 

agonists on Hco-UNC-49 expressed in Xenopus oocytes. The results of our 

electrophysiological recordings indicate that there is a size requirement for full agonism 

of the Hco-UNC-49 binding site. Furthermore, a number of molecules that are known to 

act on vertebrate GABA receptors have no effect on Hco-UNC-49. This suggests that the 

binding site of nematode GABA receptors does exhibit some unique properties.  These 

findings could possibly be exploited to develop new drugs that specifically target GABA 

receptors from parasitic nematodes. 
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Chapter 1: Introduction 

1.1 Cys-Loop Ligand-gated Ion Channels  

Cys-loop ligand-gated ion channels (LGICs) are a family of pentameric, 

membrane-spanning, allosteric proteins that facilitate the movement of ions across a 

biological membrane. Members of this family are characterized by a conserved 13 amino 

acid loop in the N-terminal extracellular domain (ECD) formed from a disulphide bond 

between two cysteine residues (Ortells and Lunt, 1995). Interestingly, bacterial LGICs 

have been identified which lack this cys-loop feature. In place of the disulphide bond, 

prokaryote LGICs exhibit a conserved hydrophobic interaction to stabilize the region 

(Tasneem et al., 2004). Apart from the cys-loop, the large N-terminal ECD also contains 

the binding pocket located at the interface between two subunits (Brejc et al., 2001). Each 

subunit is composed of four transmembrane domains (M1-4), where M2 lines a central 

pore, around which the five subunits assemble (see Figure 1). This pore region 

energetically favors a closed conformation in the unoccupied resting state (Brejc et al., 

2001; Kawate et al., 2009). Channel configurations can be homopentamers of a single 

subunit such as ρ-containing γ-aminobutyric acid (GABA) channels (Cutting et al., 1991) 

and ATP P2X receptors (Torres et al., 1999). However, in vivo receptor populations are 

more often a mix of different subunits (Lester et al., 2004).  
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Opening of the channel gate is facilitated by agonist binding. Neurotransmitters 

are the primary endogenous agonists of LGICs. These channels gate specific ions, and 

thus are categorized as either anion or cation selective.  The major classes of cationic 

channels are excitatory and include the nicotinic acetylcholine receptor (nAchR) (Dani 

and Bertrand, 2006) and serotonin receptor (5-HT3) (Reeves and Lummis, 2002). 

Inhibitory anionic LGICs include GABA (GABAA) (Levitan et al., 1988), and glycine 

receptors (GlyR) (Langosch et al., 2005). LGICs are found extensively throughout the 

central nervous system (CNS) (Dani, 2001) and operate on the millisecond timescale 

(Stroud et al., 1990). Pre-synaptic cells release neurotransmitters to bind LGIC located on 

the post-synaptic cell propagating excitatory signals (from cations) or inhibitory signals 

(from anions). In this manner, LGICs facilitate fast synaptic neurotransmission. 

 

 

Figure 1: Assembly of a pentameric LGIC with the M2 domain lining the pore (Adapted from Moss 

and Smart, 2001). 
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1.1.1 The Binding Pocket 

Binding of an agonist to the extracellular domain (ECD) increases the probability 

of the channel undergoing a conformational change, facilitating the opening of the “gate” 

of the pore and allowing ion passage. Much of our understanding of binding events stems 

from studies of X-ray crystallography, mutagenesis (Sigel et al., 1992; Wagner et al., 

2004), photoaffinity-labelling (Smith and Olsen, 1994), and electrophysiological analysis 

(Bormann, 1988) (See Thompson et al., 2010 for further review). High resolution X-ray 

crystallography provides the best look at LGICs, but the nature of membrane protein 

work is prohibitively difficult, and as a result few crystal structures are available today. 

From the 2.7Å resolution crystal structure of the Acetylcholine binding protein (AChBP) 

of the snail Lymnea stagnalis, it was verified that the orthosteric binding of agonists 

occurs at the interface between two adjacent subunits (Brejc et al., 2001). AChBPs are 

homologous to the ligand binding domain of LGICs and are used extensively for 

homology modeling of LGICs whose crystal structure has yet to be determined (Sixma 

and Smit, 2003). More recent crystal structures of the ECD from prokaryote LGICs 

(Bocquet et al., 2009), and nAchR (Dellisanti et al., 2007), support the use of AChBP as a 

model and provides further evidence that the ligand binding site is situated between two 

adjacent subunits, the “principal” subunit and the “complimentary” subunit. These 

subunits contribute different residues to the binding event. In addition, a minimum of two 

activated binding sites are required for most channel opening (Thompson et al., 2010). 

Often an initial binding event creates a more favorable binding opportunity for 
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subsequent agonists, a phenomenon known as cooperative binding, as defined by the 

equation (Hill, 1910): 

   (
 

      
)       [ ]        

Where B is the fraction of agonist occupancy, Bmax is the maximum occupancy, D is the 

concentration of free ligand and Kd is the dissociation constant. A Hill slope, h, describes 

the slope of the dose-response curve. An h value greater than one suggests cooperative 

binding as seen with most LGIC agonists (Thompson et al., 2010).  

The binding of agonists occurs in a specific pocket in the ECD that is rich in 

aromatic amino acids (Eiselé et al., 1993). One of the primary bonds that occur between 

the agonist and the binding pocket is a single, specific π-cation interaction. Here, the 

positively charged amine group of the agonist affiliates with the electronegative side-

chain of an aromatic amino acid, often tryptophan (Zhong et al., 1998; Beene et al., 

2002).  Using unnatural amino acid mutagenesis, the polar ring of aromatic residues can 

be systematically fluorinated. This fluorination reduces the electronegativity of the ring, 

and thus reduces or eliminates the strength of the bond with agonists (Beene et al., 2003). 

If the aromatic residue in question is contributing to the π-cation bond, then increased 

fluorination should result in a reduced ability of agonists to bind and open the channel. 

Indeed, fluorination of tyrosine 198 (Tyr198) position of the GABAC receptor reduces the 

conductance of chloride ions compared to wildtype receptors (Lummis et al., 2005). 

Further evidence for π-cation interactions is provided from studies using homology 

models and loss of function mutations (Abdel-Halim et al., 2008).  
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The complete agonist binding site is formed from six discontinuous “Loop” 

regions contributed by both adjacent subunits. The principal subunit contributes Loops A-

C while the complimentary subunit supplies Loops D-F (Figure 2). It is noteworthy that, 

although the relative position of the residue partaking in the π-cation bond differs from 

receptor to receptor, (Beene et al., 2002; Lummis et al., 2005; Padgett et al., 2007; Pless 

et al., 2008), the residues that contribute this bond have only been found on the principal 

subunit.  

 

 

 

 

Simultaneous electrophysiological and radiolabelled binding studies using 
3
H-

labelled GABA indicate that agonist binding locks the molecule in place for the duration 

of channel opening (Cheng and Weiss, 1999). This bound state creates a stabilizing 

tightening of the binding pocket (i.e. closing) which is required for opening the channel 

(Armstrong and Gouaux, 2000; Hansen et al., 2005). Conversely, antagonists, which are 

Figure 2: The six discontinuous Loops that make up the aromatic box. Shown above are two 

adjacent Hco-UNC-49B subunits with GABA positioned in the binding site. Adapted from 

Accardi and Forrester, (2011). 
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often bulkier than their agonist counterparts, bind but prevent the pocket from closing and 

therefore the channel gate remains closed (Armstrong and Gouaux, 2000; Hansen et al., 

2005). 

1.1.2 Linking Binding to Gating 

The question of exactly how binding of an agonist opens the channel gate has 

plagued the field from its infancy, and is still not fully understood. Loss of function 

mutations of the cysteine-loop indicates its involvement in this process (Schofield et al., 

2003). Another key component appears to involve the extracellular M2-M3 linker region, 

as identified by crystallography (Miyazawa et al., 2003) and scanning cysteine 

accessibility mutagenesis (SCAM) analysis. SCAM involves creating a functional 

cysteine-less mutant, then systematically mutating residues of interest into cysteine. 

Electrophysiology is carried out with the co-application of a sulphydryl reagent with 

either agonists or antagonists. If the mutated cysteine position experiences movement 

when the receptor binds to an agonist, it may affect its availability to bind to the 

sulphydryl reagents. Using SCAM, Bera et al. (2002) identified movement in the M2-M3 

linker region to a more water accessible environment during gating. Site-directed 

mutagenesis of residues in the M2-M3 linker region has also been shown to affect gating 

(Campos-Caro et al., 1996; Kusama et al., 1994). 

Du et al. (2012) summarizes how, using modeling (Zheng and Auerbach, 2011) 

and the Unwin model (Unwin et al., 2002), a binding event may distress local residues 

initiating a conformational wave passing through the cys-loop into the M2-M3 domain. 
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This destabilization likely involves rotation of the ECD, which forces the pore and gate-

forming M2 domain to tilt outwards and open the gate.  

1.1.3 The Pore  

Studies assessing the amino acid composition of M2 have shown the presence of a 

kink within the M2 helix that has been identified as the gate structure (Unwin et al., 

2005). It is the symmetrical outward tilting of the M2 domains which moves the kink and 

provides the space for ions to pass into the cell (Thompson et al., 2010).  LGICs are 

capable of spontaneously opening without ligand binding, but this phenomenon is very 

rare and energetically unfavourable (Hu and Peoples, 2008). The amino acids that make 

up the narrowest section of the gate are composed of serine, threonine or valine 

depending on the channel type (Thomson et al., 2010).  Certain mutations to this gate 

which reduce the size of the amino acid side-groups create constitutively active channels 

resulting, for the most part, in unregulated movement of ions (Pan et al., 1997). Main ion 

selectivity for conductance occurs at a membrane cross-section below the gate called the 

intermediate ring. This ring is composed of glutamic acid in cationic channels and 

uncharged residues in anionic channels (Wotring et al., 2003; Konno et al., 1991). 

Mutagenesis of these regions can actually switch ion selectivity of the channel 

(Keramidas et al., 2000).  

1.2 Bacterial LGICs 

  LGICs have been identified across the animal kingdom and in prokaryotes.  

Cockcroft et al. (1990) hypothesized that LGICs originated before the dawn of 

eukaryotes. According to Cockcroft’s tree, the origin of channel gating predates 
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eukaryote divergence, and likely early small molecules could bind and induce ion specific 

currents.  A role of chemosensation in the single-celled organism might have created the 

evolutionary pathway that led to the neurotransmitter signal transduction seen today. At 

the more basic level of life, LGICs have been found to have a role in pH- and osmo-

regulation (Stock et al., 1977).  

The crystal structure of two bacterial LGICs, the Erwinia ligand-gated ion 

channel (ELIC), and the Gloeobacter ligand-gated ion channel (GLIC) have been solved 

and bear striking similarities with other LGICs (Hilf and Dutzler, 2008; Bocquet et al., 

2009). Although these channels lack a cys-loop and an intracellular domain, they share 

the same pentameric structure as well as mechanism of binding and gating as other 

LGICs. ELIC is a cationic GABA-gated channel that is sensitive to similar open channel 

blockers as other LGICs (Thompson et al., 2012). This suggests a conserved pore region 

for this family of receptors. Interestingly, ELIC is sensitive to benzodiazepines, but not 

classic competitive orthosteric GABAA antagonists (Thompson et al., 2012), illustrating 

the fact that direct comparisons with other GABA receptors will have its limits.   

1.3 Vertebrate GABA Receptors 

There are two classes of vertebrate GABA receptors; GABAA type LGICs and 

GABAB type G protein coupled receptors (GPCRs) (Jones et al., 1998). GABA-gated 

LGICs are responsible for the majority of inhibitory signalling in the CNS. These 

channels are activated by the small amino-acid derivative GABA. GABA is formed 

through the actions of the glutamic acid decarboxylase enzyme (GAD) (Tappaz et al., 

1977). GABA is then transported into vesicles found mostly on interneuron pre-synaptic 
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cells where it is released following an action potential (Freund and Buzsaki, 1996). The 

amount of neurotransmitter vesicle release is synchronized and operates in the 

millisecond timescale (Kraushaar and Jones, 2000). 

1.3.1 GABAA Receptors 

Unlike those of prokaryotes, LGICs such as GABAA receptors play a role in 

signal transmission. GABA is released from pre-synaptic vesicles upon electrical 

activation of the cell (Burgoyne and Barclay, 2002) whereby they migrate across a 

synapse to bind to receptors on the post-synaptic cell membrane, inducing 

hyperpolarization through the influx of chloride ions. GABAA channels are composed of 

eight classes of subunits (α1-6, β1-4, ɣ2, θ, δ, ε, π and ρ) with several exhibiting long and 

short splice variants (Simon et al., 2004). Functional GABAA receptors require the co-

assembly of at least 2α, and 2β subunits (Barnard et al., 1998; Farrar et al., 1999), the 

most common form being composed of two α1, two β2, and one γ2 (Ernst et al., 2003; 

Benke et al., 2004). The ɣ2 subunit is required for benzodiazepine sensitivity (Pritchett et 

al., 1989). Different subunit arrangements will confer different pharmacological and 

electrophysiological properties (Sieghart, 1995).  

The GABAA receptor binding site is composed of a conserved aromatic box 

which is made up of aromatic residues from four binding loops (Loop A: Tyr97; Loop B: 

Tyr157; Loop C: Tyr205; Loop D: Phe64) located at the interface of a principal β and a 

complimentary α subunit. The residue Tyr97 makes a π-cation interaction with the amine 

of GABA (Padgett et al., 2007). Other residues on the principal subunit required for 

binding include arginine 207 (Arg207), which may directly interact with the carboxyl 
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group of the GABA molecule (Wagner et al., 2004) and Tyr157 which may hydrogen 

bond with Thr130 from the α subunit to help stabilize the binding pocket. These 

interactions better enable GABA to bind and elicit the full conformational change to open 

the gate (Padgett et al., 2007).  

1.3.2 GABAc Receptors 

GABAc is a subclass of GABAA receptors composed entirely of ρ subunits (Olsen 

and Sieghart, 2008). Unlike other GABAA receptors, these form homomeric channels 

with the agonist binding site located at the interface of two homologous subunits (Zhang 

et al., 2001). GABAC receptors were originally identified within populations of GABAA 

receptors by their insensitivity to the plant alkaloid bicuculline, a GABAA specific 

antagonist (Drew and Johnston, 1992). Other pharmacological differences include 

insensitivity to steroid anaesthetics, as well as propofol, barbituates, and benzodiazepines 

(Chang-sheng et al., 2003). Intuitively, insensitivity to the latter two can likely be 

attributed to the lack of the GABAA ɣ subunit which is required for their binding. Apart 

from pharmacological differences, these receptors exhibit a uniquely longer mean open 

time, lower conductance, and lower rate of desensitization than other GABAA channels 

(Zhang et al., 2001; Wotring et al., 1999; Chebib, 2004). Three ρ subunits have been 

identified, with varying agonist and antagonist pharmacologies (Pan et al., 2006). This 

new ρ (or rho) designation was chosen to label the subunits because they were first 

discovered in rhodopsin containing retina cells (Polenzani, et al., 1991; Cutting et al., 

1991). Although not as ubiquitous as other GABAA receptors, GABAC are also found 

throughout the CNS (Wegelium et al., 1998; Enz and Cutting, 1999). 
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1.4 Invertebrate GABA Receptors   

Invertebrates also utilize GABA for their own wide array of analogous GABA-

gated chloride channels which are targets of a number of pharmaceuticals and 

insecticides. However, these receptors have not been as well characterized as their 

vertebrate counterparts.  

A number of insect GABA receptors subunits have been identified including the 

Drosophila melanogaster resistant to dieldrin receptor (RDL) (ffrench-Constant et al., 

1991), the glycine-like receptor (GRD) (Harvey et al., 1994), and the ligand-gated 

chloride channel homologue 3 (LCCH3) (Hendersen et al., 1993). Nematode GABA 

channels include LGC-37 (Laughton et al., 1994), LGC-38 (Siddiqui et al., 2012), UNC-

49 and the EXP-1 cationic channel (Beg and Jorgensen, 2003).  

1.4.1 The RDL GABA Receptor 

RDL is one of the most well studied invertebrate GABA receptors and is 

expressed throughout the fly CNS (Hoise et al., 1997).  Isolated from Drosophila, RLD 

was identified by mutant rdl genes resistant to the pesticide dieldrin (ffrench-Constant et 

al., 1991). These receptors play a regulatory role in olfaction and olfaction memory. 

Reduced RDL expression results in enhanced, but unstable olfaction learning (Boumghar 

et al., 2012). Like GABAC, RDL receptors are capable of forming homopentameric 

channels (ffrench-Constant et al., 1993) and are bicuculline resistant (Zhang et al., 1994). 

Homology modeling of RDL consistently places the positively charged nitrogen of 

various agonists between two aromatic amino acids (Mcgonigle and Lummis, 2010). 

Further investigation using unnatural amino acid mutagenesis identified both residues as 
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contributing to π-cation bonds with the ligand. This is the first reported aromatic box to 

contain two residues involved in  π-cation interactions; specifically Phe206 of Loop B 

and Tyr254 of Loop C (Lummis et al., 2011).  

1.4.2 Ascaris Muscle GABA Receptors 

 In the early 1960s, Del Castillo et al. observed the ability of GABA (Del Castillo 

et al., 1964), and the anthelmintic piperazine (Del Castillo et al., 1963) to inhibit 

contractile activity on the human parasitic roundworm Ascaris lumbricoides muscle 

preparations. Likewise, Holden-Dye et al. (1989), and Martin (1982) observed similar 

effects of GABA agonists on the muscle of the related pig parasitic roundworm Ascaris 

suum. However, the pharmacological profile of these muscle GABA receptors was 

clearly different to what had been traditionally observed for vertebrate GABAA receptors.  

Specifically, the GABA receptor agonist IMA exhibited full agonist ability, something 

unseen for vertebrate GABA receptors. In addition, the nematode GABA receptors were 

unresponsive to sulphonated agonists of GABAA, as well as benzodiazepines (Holden-

Dye et al., 1989). Furthermore, these receptors are more resistant to known vertebrate 

GABA receptor blockers picrotoxin, dieldrin and t-butylbicyclophosphorothionate 

(Holden-Dye et al., 1989). These observations suggested that the receptors in question 

were GABA receptors unlike those of GABAA or GABAC. 

1.4.3 The Nematode UNC-49 GABA Receptor 

In a study by McIntire et al. (1993), uncoordinated gene 49 (unc-49) lack of 

function mutants produced a “shrinker” phenotype whereby the roundworm 

Caenorhabditis elegans would be unable to relax its somatic muscles. Antibody labelled 
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GABA studies on C. elegans, showed a pattern of UNC-49 presence in the somatic 

muscle along motor neurons, with only a small presence in the central nerve cluster near 

the head (Bamber et al., 1999). This anatomical distribution is quite different from the 

CNS localization of vertebrate GABAA receptors. At the neuromuscular junction (NMJ) 

UNC-49 acts to coordinate movement by relaxing muscles during locomotion, allowing 

for a sinusoidal, snake-like movement. unc-49 encodes for three unique GABA receptor 

subunits. These subunits, UNC-49A, UNC-49B, and UNC-49C are produced from the 

alternative splicing of one unc-49 gene, a common phenomenon seen in nematode ion 

channels (Bamber et al., 1999). The B subunit has been shown to be required for GABA 

binding and is localized to the NMJ, where it may co-assemble with the C subunit to 

form a functional channel (Bamber et al., 1999). This B subunit appears to be similar to 

RDL and the GABAC ρ subunit as it is also able to form homomeric channels (Deng et 

al., 1986). UNC-49A does not co-localize with B or C, nor is it detected in comparable 

concentrations in vivo (Bamber et al., 2005). Initial pharmacological studies have 

indicated that the GABA binding site in UNC-49 is distinct from classical mammalian 

GABAA receptors as the GABA receptor antagonist bicuculline shows little activity at the 

nematode receptor (Bamber et al., 2003). 

Haemonchus contortus Hco-UNC-49 subunits show similar splicing and function 

as the C. elegans channel (Siddiqui et al., 2010). Electrophysiological studies revealed 

that Hco-UNC-49 is a GABA-gated chloride channel distinct from the previously known 

Cel-UNC-49 channel (Siddiqui et al., 2010). Specifically, the UNC-49C subunit appears 

to be a positive modulator of GABA sensitivity in the H. contortus channel, but is a 

negative modulator in the C. elegans channel. Homology modeling coupled with 
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mutagenesis studies identified residues of the aromatic box to be composed of Loop A: 

Phe106, Loop B:Tyr166, Loop C: Tyr218, and Loop D: Tyr64, of which either Tyr166 or 

Tyr218  could make a π-cation interaction with GABA (Accardi and Forrester 2011). 

Because of the unique neuromuscular function and pharmacology of UNC-49, it 

is a very appealing receptor with respect to drug development. Selectivity and specificity 

are always a primary concern when targeting parasites while attempting to minimize side 

effects to the host. Therefore, a detailed understanding of the differences between the 

nematode GABA receptors and any host homologs may increase the chance of 

developing both safe and effective novel antiparasitic drugs. 

1.5 Haemonchus contortus  

Haemonchus contortus is a parasitic nematode of ruminants such as goat and 

sheep. Unlike the completely free-living nematode Caenorhabditis elegans, H. contortus 

has both parasitic and free living life stages. Breeding occurs within the sheep abomasum 

and once the eggs develop to the 11-26 celled stage, they are excreted by the host among 

the feces into the fields.  Eggs hatch and proceed to develop into their L2 larvae stage 

while feeding off bacteria in the soil and feces (Veglia, 1915). L3 larvae reach the 

parasitic life stage and migrate to the tops of grazing vegetation to be ingested. Upon 

reaching the abomasum, the now L4 larvae burrow into the mucosal membrane, 

undergoing a final moulting to ultimately reside by the stomach epithelia where they feed 

and breed; reproduction occurs while feeding (Nikolaou and Gasser, 2006). A key 

anatomical difference between H. contortus and C. elegans is the presence of a modified 
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mouth containing a hollowed spear used to facilitate penetration of host blood vessels 

(Veglia, 1915). 

These blood feeding parasites reside in the abomasum of ruminants, triggering 

such sequelae as anemia, emaciation, weakened immune system, and even death 

(Allonby and Urquhat, 1975). These conditions in turn cause poor productivity and place 

a large financial burden on the farming industry.  Parasitic nematodes also infect plant 

crops and almost 50% of the human race; this is especially prevalent in developing 

countries due to poor quality drinking water, as seen by the high incidence of river 

blindness, a disease caused by the parasitic nematode Onchocerca volvulus (Osei-

Atweneboana et al., 2007). As such, numerous anthelmintic drugs have been created to 

combat these financial and health burdens. The most successful antiparasitic drugs target 

ligand-gated ion channels (Geary, 2005).  However, drug resistance has diminished the 

effectiveness of nearly all antiparasitic drugs (Beech et al., 2010).  

1.6 The Xenopus laevis Expression System 

 Early work with oocytes of the African Clawed frog, Xenopus laevis, established 

their ability to properly translate injected exogenous mRNA into proteins (Gurdon et al., 

1971). A number of studies including those on LGICs use X. laevis oocytes as an 

expression system for proteins. X. laevis oocytes do not express many endogenous ion 

channels, preventing cross-activation and lowering background noise (Dascal, 1987). The 

size of the oocyte permits the use of the two-electrode voltage clamp (TEVC) measuring 

technique, as opposed to the less accurate and noisy discontinuous single-electrode 

voltage clamp (dSEVC) (Sherman-Gold, 1993).  Additionally, they are a robust cell 

capable of maintaining membrane integrity under the constant exposure to drugs and heat 
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from a microscope. Although the currents observed may not truly reflect those in the 

endogenous physiological setting, this system allows for comparing relative responses.   

1.7 Objectives 

UNC-49 is a GABA gated chloride channel found throughout the phylum 

nematoda (Accardi et al., 2012). This suggests that the receptor plays an essential role in 

the biology of free-living and more importantly, parasitic nematodes. Very little is known 

regarding its structural determinism for orthosteric binding of agonists, an avenue that is 

often manipulated to create new drug leads. Preliminary work with UNC-49 suggests that 

it does not fit into the category of any known GABA receptor. This thesis describes the 

results of a comprehensive analysis of the agonist pharmacology of the UNC-49 receptor 

from H. contortus which was complemented by in silico homology modeling and ligand-

docking.  Overall, UNC-49 possesses a unique agonist profile apart from other GABA 

receptors and results indicate that there is a size restriction for agonist binding. This study 

is important as it has provided new information on the nature of the binding site and the 

requirements for channel activation.  This is not only valuable for understanding the 

differences in GABA receptors between parasitic nematodes and vertebrates, but may 

assist in the discovery of novel, potent, and highly specific molecules that could act as 

antiparasitic drugs. 
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Chapter 2: Materials and Methods 

2.1 cRNA Synthesis 

 Complementary DNA of Hco-unc-49b (Genbank Accession #: EU939734.1) and 

Hco-unc-49c (Genbank Accession #: EU049602.1) were previously cloned into the 

expression vector PT7TS and stored in 50% w/v glycerol at -80°C. PT7TS contains 

flanking 5’ and 3’ untranslated regions coding for X. laevis β-globin to prevent 

degradation inside X. laevis oocyte cytosol (Dent et al., 1997). Approximately, 0.4-1µg of 

linearized plasmid was used for the T7 RNA polymerase mMESSAGE mMACHINE in 

vitro transcription kit from Ambion (Ambion, Austin, TX, USA). Briefly, RNA 

polymerase machinery from the T7 bacteriophage recognizes a promoter site on the linear 

template and transcribes sense RNA. Roughly 20µg of capped copy RNA (cRNA) yield 

was achieved per reaction. cRNA was deoxyribonuclease treated, precipitated using 

lithium chloride, and resuspended in nuclease free water. 

2.2 Xenopus laevis Oocyte Isolation 

Female Xenopus laevis frogs were obtained from NASCO and fed a diet of 1g 

NASCO frog brittle twice weekly (Nasco, Fort Atkinson, WI, USA). They were housed 

in a climate-controlled, light-cycled room with regular changes to the water. Frogs were 

anesthetized with 0.15% 3-aminobenzoic acid ethyl ester methane sulphonate salt (MS-

222) (Sigma-Aldrich, Oakville, ON, CA), prior to surgical removal of a section of ovary. 

MS-222 was buffered with NaHCO3 to pH 7 +/- 0.5. Ovarian lobes extracted were 

sectioned into pieces containing roughly 10-20 oocytes prior to a defolliculation 

treatment of 2mg/ml collagenase-II (Sigma-Aldrich) in oocyte Ringer’s solution (82 mM 
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NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES pH 7.5 (Sigma-Aldrich)). Defolliculation 

took place at room temperature under light shaking for two hours.  Collagenase was 

washed from the oocytes with ND96 solution (1.8 mM CaCl2, 96 mM NaCl, 2 mM KCl, 

1 mM MgCl2, 5mM HEPES pH 7.5) and allowed one hour to recover at 18°C in 

supplemented ND96 (supplemented with 275µg/ml pyruvic acid sodium salt (Sigma-

Aldrich) for a source of carbon energy and 100µg/ml of the antibiotic gentamycin 

(Sigma-Aldrich). 

2.2.1 Xenopus laevis Oocyte Injections 

Stage V and VI oocytes were selected for cytoplasmic injection of cRNA.  

Injections were carried out using a Drummond Nanoject II (Drummond Scientific 

Company, Broomhall, PA, USA) mounted on micromanipulators (World Precision 

Instruments, Inc., Sarasota, FL, USA). Roughly 25ng of cRNA was preferentially 

injected into the vegetal pole of selected oocytes. To form heteromeric channels, equal 

concentrations of Hco-unc-49b and Hco-unc-49c were mixed and injected into the 

oocytes. Negative control oocytes were injected with nuclease free water. Oocytes were 

stored in supplemented ND96 and allowed to recover and express the cRNA for 48 hours, 

with bi-daily changes of supplemented ND96 solution.  

2.3 List of Compounds Tested and Their Preparations 

4-amino-3-hydroxybutyric acid (GABOB), 4-amino-2-hydroxybutyric acid 

(AHBA) and ethyl-4-aminobutyrate (Et-4AB) were gifts from Dr. Jean-Paul Desaulniers 

(UOIT). Sodium salicylate was a gift from Dr. Ayush Kumar (UOIT). Isoguvacine 

hydrochloride was purchased from Torcris (Tocris Bioscience, Bristol, U.K). All other 
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compounds were purchased from Sigma-Aldrich. These are ɣ-aminobutyric acid 

(GABA), β-alanine, 5-aminovaleric acid (DAVA),  imidazole-4-acetic acid (IMA), 

guanidinoacetic acid (GAA), isonipecotic acid, trans-4-aminocrotonic acid (TACA), 

guanidinopropionic acid (GPA), dopamine, acetylcholine (Ach), 3-

aminopropylphosphonic acid (3-APA), glutamic acid, glycine, piperidine-4-sulphonic 

acid (P4S), and taurine (see figure 3)   Initial millimolar stock concentrations were 

dissolved in non-supplemented ND96. Water insoluble compounds were dissolved in 

100% dimethyl sulphoxide (DMSO). These include guanidinopropionic acid, and 

guanidinoacetic acid. For these solutions 0.1% DMSO was added to non-supplemented 

ND96 wash solution and used in electrophysiological recordings. Fresh working 

concentrations of compounds were prepared each week.  

2.4 Electrophysiological Recordings 

Channel activity was measured using the two-electrode voltage clamp (TEVC) 

technique, utilizing an Axoclamp900A amplifier (from Molecular Devices, Sunnyvale, 

CA, USA). Oocytes were pierced using two microelectrodes filled with 3M KCl (1-5MΩ 

resistance), connected to Axon Instruments headstages (from Molecular Devices) via 

Ag|AgCl wire. Borosilicate glass microelectrodes were created using a P-97 

Flaming/Brown micropipette puller (Sutter Instruments Company, Novato, CA, USA). 

Oocytes’ voltages were clamped at -60mV to measure changes in the current-resistance 

relationship induced by channel opening. Oocytes were exposed to various compounds 

using a gravitational flow system into an RC-1Z perfusion chamber (Warner Instruments 

Inc., Holliston, MA, USA).  Non-supplemented ND96 was used to wash compounds 

from the oocytes once a maximal current response was achieved. Electrophysiological 
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tracings were digitized onto a PC using an Axon Instruments Digidata 1440 (from 

Molecular Devices), recorded and saved using the Clampex 10.2 software (from 

Molecular Devices), and analyzed using Clampfit 10.2 (from Molecular Devices). 

2.5 Statistical Analysis 

Full agonist dose-response curves were produced using Prism 5.0 (Graphpad 

Software, San Diego, CA, USA). Curves were generated using the equation from Prism’s 

log(agonist) vs.normalized response -variable slope setting : 

     
 

  (
    
[ ]

)
 
 

Where Imax is the maximal current response of the agonist, EC50 is the 

concentration of agonist that produces half maximal response, [D] is the concentration of 

agonist, and h is the Hill slope. Relative dose-response curves were generated by defining 

maximal response relative to that of GABAs max response. 

Averaged EC50 and h values, along with their standard error of mean (SEM) were 

calculated from at least three replicate oocytes from two separate frogs. All bar graphs 

were created using Microsoft Excel 2010. Statistical analysis was performed using a 

student’s t-test where indicated in order to determine significance (P<0.05). 

2.6 Homology Modeling 

AChBP was used as the template for the generation of a 3-D Hco-UNC-49B 

homodimer to illustrate the binding pocket located at the interface between two B 

subunits. The extracellular coding sequence of Hco-UNC-49B (Genbank accession #: 
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ACL14329) was aligned to the 2.7 Å resolution, HEPES bound AChBP, chain A subunit 

(Genbank accession #: P58154) (Protein Data Bank ID 1I9B), which is widely used for 

homology modeling. This alignment was achieved using the align2d code of 

MODELLER9.10 (Sali and Blundell, 1993), and the dimer was prepared from a doubled 

alignment of AChBP with Hco-UNC-49B. A total of 50 models were generated to 

compensate for the poor sequence homology, and the most energetically favorable model 

with the least number of restraint violations was chosen from the MODELLER output 

file. These violations were assessed by means of their DOPE and molpdf scores; 

Ramachandran plot analysis was performed to evaluate structural violations (Lovell et al., 

2002). UCSF Chimera 1.6.1 was used for imaging the models and preparing them for 

docking ligands (Pettersen et al., 2004).   

2.6.1 Computational Ligand Docking 

Energetically reduced zwitterion ligands were obtained from the Zinc database: 

http://zinc.docking.org/ (Irwin et al., 2012). Only the zwitterion of the compound AHBA 

was created and energy reduced using the MM2 force field from ChemBio3D Ultra 12.0 

software (CambridgeSoft, Cambridge, U.K). Analysis of ligand length and charge 

separation distance was performed using the Display Distance Measurement program of 

ChemBio3D Ultra 12.0. Docking of ligands into the Hco-UNC-49B dimer was achieved 

using UCSF DOCK 6.5. The binding site was defined by a 10 Å region including the 

aromatic residues Tyr64 Phe106, Tyr166 and Tyr218 using the default parameters of 

DOCK accessory programs sphgen, grid and dock6. 
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Chapter 3: Results 

3.1 Pharmacological Profile of Hco-UNC-49 

3.1.1 Full Agonists 

Hco-UNC-49B and Hco-UNC-49C encoding subunits of cRNA were successfully 

injected and expressed into Xenopus laevis oocytes. Application of GABA upon oocytes 

injected with Hco-UNC-49B exhibited an EC50 of 75.57 ±5.63 whereas oocytes injected 

with a mix of Hco-UNC-49B and C exhibited an EC50 of 59.24 ±7.73. Current responses 

to GABA on Hco-UNC-49B and BC expressing oocytes were concentration-dependent 

and comparable to previous work in our lab (Accardi and Forrester, 2011; Sididiqui et al., 

2010). Because of the intrinsic uncertainty surrounding actual subunit composition from 

injecting a mix of subunits, the formation of a population of heterogeneous 

heteropentameric channels was assessed by nature of current-responses distinct from that 

of the homomeric channels. Oocytes injected with water elicited no current responses to 

any compound within the concentration ranges used in this study.  
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Figure 3: Chemical structure of the compounds assayed for agonist activity upon the Hco-UNC-49B and BC receptor complexes using TEVC. 

Compounds that activate Hco-UNC-49 are listed under Agonists, while those that elicited no current response are listed under No Responses

GABA β-alanine DAVA IMA 

GAA Isoguvacine Isonipecotic acid 

GABOB 

Et-4AB TACA 

3-APA Glutamic acid Glycine 

GPA 

AHBA 

Taurine Ach 

Sodium Salicylate P4S Dopamine 
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 A pharmacological profile of Hco-UNC-49B and BC was performed against a 

range of compounds (Figure 3). These compounds were classically used GABAA 

agonists, or suspected to interact with the Hco-UNC-49 binding site based on chemical 

structure. Initial screening of each compound was performed at a minimum concentration 

of 500µM on three oocytes injected with Hco-unc-49 and three water injected oocytes. In 

addition, each molecule was tested as an antagonist by co-applying 500µM of each 

compound with an EC50 concentration of GABA, and comparing this current to the 

current induced by GABA alone.  

Of all the compounds tested, those that displayed no current responses (at the 

maximum concentration indicated) were glycine (5mM), taurine (5mM), sodium 

salicylate (5mM), Ach (5mM), P4S (5mM), 3-APA (500µM), dopamine (500µM), and 

glutamic acid (5mM).  

Those compounds that displayed initial agonist activity were selected for further 

analysis by means of concentration response analysis. Shown in Figure 4 are the 

representative electrophysiological traces of several agonists and their resultant dose-

response curves on the heteropentameric channel relative to a maximal GABA 

concentration. From these trials, the rank order potency for Hco-UNC-49BC was 

determined to be GABA > TACA > Isoguvacine >> IMA > GABOB > GAA >> Et-4AB 

> Isonipecotic acid > DAVA > β-alanine >> GPA > AHBA (Table 1). GPA (5mM) only 

achieved 6.5% of an EC50 concentration of GABA (data not shown). AHBA weakly and 

partially activated the channel at a maximal concentration of 100mM achieving 30% of 

maximal GABA response. 
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Figure 4: Comparative electrophysiological tracings comparing the maximal currents produced on 

the Hco-UNC-49BC receptor by 500µM GABA and (A) 10mM GAA (B) 500mM β-alanine (C) 

10mM isonipecotic acid (D) 25mM DAVA. (E) Dose-response curves comparing agonist responses 

relative to maximal GABA; each datapoint is a mean ±SEM with n>3. 

E 

B A 

C D 
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Table 1: EC50 and Hill slope values of agonists at the heteromeric and homomeric Hco-UNC-49 

channels. Corresponding replicate numbers, n, and the ratio of heteromer:homomer EC50 values are 

included. Rank order potency is presented in descending order. 

Compounds Hco-UNC-49BC 

EC50 ± SEM [µM] 

(Hill slope ± SEM) 

n Hco-UNC-49B 

EC50 ± SEM [µM] 

(Hill slope ± SEM) 

n BC/B 

GABA 59.24 ±7.73 

(2.5 ±0.42) 

9 75.57 ±5.63 

(2.62 ±0.12) 

7 .784 

TACA 78.15 ±5.23 

(2.25 ±0.33) 

11 116.60 ±15.62 

(2.46 ±0.18) 

9 .67
*
 

Isoguvacine 99.29 ±11.87 

(1.95 ±0.3) 

14 118.50 ±20.10 

(1.66 ± 0.19) 

11 .838 

IMA 174.53 ±20.75 

(1.93 ±0.17) 

11 235.25 ±18.52 

(2.19 ±0.19) 

13 .742
*
 

GABOB 276.01 ±40.35 

(1.73 ±.075) 

7 343.76 ±55.41 

(1.90 ±0.08) 

7 .803 

GAA 572.03 ±60.88 

(2.75 ± 0.05) 

3    

Et-4AB 1268.40 ±173.82 

(2.4 ± 0.09) 

6 1733.38 ±427.06 

(3.46 ±0.48) 

6 .732 

Isonipecotic 

acid 
1725.25 ±362.03 

(1.78 ± 0.23) 

4    

DAVA
a
 3914 ±520 

(1.47 ±0.18) 

7 4350 ±290 

(1.47 ±0.12) 

7 .9 

β-alanine
a
 25 721 ±2806 

(1.49 ±0.19) 

7 40 201 ±6166 

(1.50 ±0.1) 

6 .64
*
 

GPA  - 6 - 6 - 

AHBA
a
 - 3 - 3 - 

a
 = Partial agonists                     

* = Statistically significant (P<0.05) 
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3.1.2 Partial Agonists 

Interestingly, DAVA and β-alanine appear to be partial agonists with maximal 

responses of 32% and 49% respectively on the Hco-UNC-49BC channel. Further 

investigation of DAVA showed a characteristic partial agonist inhibitory effect of the 

GABA response. Specifically, at higher concentrations DAVA inhibited a maximal 

GABA induced current (Figure 5). 

 

 

 

 

Figure 5: (A) Representative tracing showing the response of maximal DAVA (25mM), GABA 

(500µM) and the combination of 500µM GABA with 25mM of DAVA at the Hco-UNC-49BC 

channel. (B) Averaged current from 25mM DAVA, 500µM GABA, or both co-applied. Bars 

marked by (*) indicate current is significantly different from 500µM GABA alone (P ≤ 0.05). Error 

bars represent SEM with n=4. 
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3.1.3 Comparison of Homomeric (B) and Heteromeric (BC) Channel Properties 

As an additional confirmation of general trends in the efficacy of different 

agonists, the homomeric channel was also examined. As seen for the heteromeric 

channel, both DAVA and β-alanine also acted as partial agonists on the homomeric, Hco-

UNC-49B channel. Both the homomeric and heteromeric channels share the same trends 

in their rank order potency for all the compounds examined in this study (Table 1). In 

addition, similar to their responses to GABA, the heteromeric channel generally exhibited 

a greater sensitivity to agonists compared to the homomeric channel. This increased 

sensitivity was often associated with a shift in EC50 (Figure 6; Table 1).  

 

 

 

 

 

 

 

 

Figure 6: Effect of incorporating Hco-UNC-49C subunit(s) into the channel alters sensitivity 

profile of compounds. Dose-response curve of TACA is relative to a maximal GABA 

concentration. n>6 
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3.2 Homology Modeling and Docking 

The AChBP (1I9B) was previously determined to be a suitable template for 

homology modeling of the Hco-UNC-49B extracellular domain, as described by Accardi 

and Forrester (2011). Figure 7 depicts the resulting homodimer with GABA docked into 

the binding pocket produced by homology modeling. 

 

 

 

 

Figure 7: (A) GABA molecule docked in the putative binding site. Side-chains of the residues that 

make up the aromatic box are labelled. Nitrogens and oxygens are labelled blue and red 

respectively ( B) Hco-UNC-49B homodimer model. The discontinuous binding loops are 

highlighted in black and labelled.  

A 

B 

A 

B 
C D 

E 

F 



30 
 

Invertebrate GABA receptors have been suggested to contribute two aromatic 

residues for π-cation interactions with ligands. Docking of GABA into the defined 

binding pocket aligns the amine group near the loop B Tyr166, as well as loop C Tyr218 

(Figure 7). This is in accordance with a previous Hco-UNC-49B model (Accardi and 

Forrester, 2011). All agonists successfully docked within the defined 10 Å binding 

pocket, mostly orienting their amine group in the vicinity of Tyr166 and Tyr218 (Figure 

8). Comparative docking of the agonists used in this study revealed differences in the 

orientations of the molecules within the binding site as well as the proximities of their 

respective amines with either of the tyrosine residues. 
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Figure 8: Comparative docking of agonists into the binding site of Hco-UNC-49B. Shown are the residues (grey) of the defined aromatic box, with 

oxygens labelled red and nitrogens blue. Teal molecules in panels are: (A) β-alanine, (B) DAVA, (C) glycine, (D) TACA, (E) Et-4AB, (F) IMA,      

(G) (R)-(-)-GABOB, (H) (S)-(+)-AHBA, ( I) GAA, (J) GPA, (K) isoguvacine, and (L) isonipecotic acid. Racemic mixtures of GABOB and AHBA 

were electrophysiologically tested, but binding orientations between enantiomers varied little. As such, only one enantiomer of each is shown. 
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Glycine, β-alanine, GABOB, and TACA were all found to dock their amino 

groups in comparable fashion to that of GABA. Glycine and β-alanine carboxyl groups 

did not reach as deep into the binding cleft in comparison to GABA and TACA. Docking 

of DAVA positioned its amine group closer to Tyr218, tilting the carboxyl end away 

from the center of the cleft. AHBA and GABOB are two similar molecules with a 

hydroxyl group off the carbon backbone but at different positions. Because of this they 

dock with their carboxyl ends positioned in different orientations. Et-4AB was the largest 

compounds docked, with its ester group positioned closest to Tyr218 and Tyr166, 

pushing the amine group away from the pocket depths.  IMA docked similarly to Et-4AB, 

except that its charged amine is located between Tyr218 and Tyr166. The carboxyl ends 

of GPA and GAA docked in the same position, but the charged amine of GAA was more 

equidistant between Tyr166 and Tyr218, whereas for GPA it was closer to Tyr218. 

Comparing isoguvacine and isonipecotic acid, it was their amine groups that docked in 

the same space, with the carboxyl of isonipecotic acid directed away from the binding 

pocket. 

3.3 Molecular Measurements of Compounds 

 In order to rationalize the relationship between the electrophysiological EC50 

values and the poses observed from docking, we measured the total atomic length and the 

distance between charged amine and carboxyl groups of the agonists (Table 2). 
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Table 2: Length measurements of docked charged agonists listing their relative potencies in 

descending order.  

Ligand Total molecule 

length (Å) 

Dipole separation 

(Å) 

GABA 6.9 6.1 

TACA 6.6 5.7 

Isoguvacine 5.9 4.9 

IMA 6.6 5.6 

GABOB  6.9 6.0 

GAA 6.2 6.0 

Et-4AB 10.3 6.1
 c
 

Isonipecotic acid 5.9 4.9 

DAVA
a
 8.1 7.3 

β-alanine
a
 5.6 4.8 

AHBA
a
 6.0 4.3 

GPA 8.1 7.2 

Glycine
b
 4.4 3.6 

   
a
 = partial agonist 

b
 = no response  

c
 = no charged oxygen, distance measured for ether oxygen instead 

   

Glycine is unable to elicit a current response on Hco-UNC-49, almost certainly a result of 

its small size. With one carbon longer than glycine, but one less than GABA, β-alanine is 

the shortest compound to activate the channel, and is a weak partial agonist. DAVA is 

also a weak partial agonist with one carbon different (longer) than GABA. GPA was the 

weakest partial agonist that generated a response and is one carbon longer than GAA (a 

full agonist). This difference increases the distance between charged groups by 1.2Å, 

identical to the difference seen between DAVA and GABA. The difference in hydroxyl 

positioning between GABOB and AHBA does not affect the molecular chain length, but 

causes the zwitterion of AHBA to curl up on itself, bringing the charged amine and 

carboxyl groups closer together than GABOB does. Isoguvacine and isonipecotic acid are 

the shortest full agonists and are identical in size. Unlike other GABA analogues, these 
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compounds contain bulkier ring structures in place of an amine group, which may affect 

binding. IMA is another cyclic compound, but is the same length as the straight chained 

TACA and both are full agonists. Et-4AB is a full agonist that is 2.1 Å longer than the 

partial agonist DAVA. It is also the only agonist that does not possess a charged carboxyl 

group. In place of a carboxyl group, Et-4AB contains a longer and uncharged ethyl ester.  
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Chapter 4: Discussion 

4.1 Assessment of the Hco-UNC-49C Subunit 

UNC-49 has been previously investigated regarding allosteric modulation and 

susceptibility to anthelmintics. However, little is known regarding agonist susceptibility. 

To address this deficiency, this thesis describes for the first time a pharmacological 

profile of a range of classical GABAeric compounds on both Hco-UNC-49B and Hco-

UNC-49BC channels.   

Hco-UNC-49 subunits expressed in X. laevis oocytes produced a population of dose 

responsive GABA-gated chloride channels eliciting currents similar to those previously 

studied in our lab (Siddiqui et al., 2010; Accardi and Forrester, 2011). These currents 

achieved microampere amplitude and were inhibited by the channel blocker picrotoxin 

and the allosteric modulator pregnenolone sulphate (Brown et al., 2011). The EC50 of 

GABA on the heteromer was 59.24 ±7.73µM, whilst 75.57 ±5.63 µM for the homomer. 

This tendency of the heteromeric channel to be more sensitive appears to be a trend for 

agonists at H. contortus, but not the C. elegans UNC-49 receptor (Siddiqui et al., 2010). 

Any difference in EC50, Hill slope, or shape of the curve between the heteromer and 

homomer was attributed to the C subunit as its presence or absence is the only difference 

in preparing these oocytes. Previous research on both H. contortus and C. elegans UNC-

49 receptors suggests that the C subunit appears to alter not only agonist, but allosteric 

modulator responses. When exposed to picrotoxin, UNC-49 channels containing C 

subunits appear to resist the blockage (Bamber et al., 2003; Brown et al., 2011). The role 
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of the C subunit may be limited to modulatory effects, analogous to GABAA γ subunit, 

which appears to be required for benzodiazepine binding (Pritchett et al., 1989). 

4.2 Agonist Pharmacology 

Based on structural analysis, it appears that there is a size restriction that dictates 

partial and full agonism in addition to potency (Table 2). This length-efficacy link is 

highlighted by glycine, β-alanine, GABA and DAVA, and is also suggested in a review 

by Du et al. (2012). An increase or decrease of a single carbon in the backbone of GABA 

prevents maximal channel activation and reduces potency by an order of magnitude. 

Comparing the docking of glycine, β-alanine, and DAVA to that of GABA into Hco-

UNC-49B suggests an explanation to this phenomenon. Pless et al. (2011) showed that a 

number of GlyR agonists partake in a π-cation interaction with the same residue as 

glycine. In our study it appears that less efficacious compounds orient themselves further 

from the residues responsible for π-cation interactions, which likely reduces their ability 

to activate the channel.  

In our model, a docked GABA molecule presents its amine group oriented almost 

equidistant between Tyr166 and Tyr218 of the principal subunit’s Loop B and C 

respectively. Mutagenesis of both these residues caused over a 10-fold increase in EC50, 

and both were suspected of participating in the π-cation bond with GABA (Accardi and 

Forrester, 2011).  McGonigle and Lummis (2010) also observed the importance of those 

analogous residues in RDL, and suggested the possibility of two π-cation bonds. If this is 

the case for Hco-UNC-49 then agonists must approach both residues to fully open the 

channel. In support of this, DAVA and β-alanine both position their amine nearer to 
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Tyr218 than Tyr166 and fail to achieve maximal chloride conductance. Length also likely 

explains how GPA produces almost no response in comparison to the one carbon shorter 

GAA. This comparison is very similar to that of GABA and DAVA, which also exhibit a 

one carbon difference. GAA and GPA dock their carboxyl groups in a similar space, 

while the longer GPA places its amine group further from the two putative π-cation 

residues. Across from these putative π-cation contributing residues is an arginine that 

may bind the negatively charged carboxyl group of a ligand to stabilize the binding 

pocket.  Mutation of the Hco-UNC-49B Arg66 yields channels with much reduced 

responses to GABA (Accardi and Forrester, 2011).This Arg-carboxyl association has 

been previously described for the GABA LGICs GABAA (Wagner et al., 2004), GABAC 

(Harrison and Lummis, 2006), and RDL (McGonigle and Lummis, 2010), as well as in 

the GlyR (Pless et al., 2011) suggesting a conserved role for this arginine residue. In our 

model GABA also docks with its carboxyl group positioned near Loop D’s Arg66 of the 

complementary subunit. In comparison, the carboxyl of glycine and β-alanine fails to 

approach Arg66 as closely as GABA, due to their shorter length.  

β-alanine, isonipecotic acid, and isoguvacine all have a dipole separation of 4.8-4.9 

Å, yet β-alanine is the only partial agonist. The differences in potency could then be a 

result of the total size of the molecule. The cyclical compounds isoguvacine and 

isonipecotic acid are 0.3 Å longer and contain a bulkier piperidine in place of an amine 

group, allowing them to possibly wedge more fully into the binding crevice. The ~10 fold 

difference in efficacy between isoguvacine and isonipecotic acid has been previously 

observed for both vertebrate (Kusama et al., 1993) and invertebrate (Hoise and Sattelle, 

1996) GABA receptors, and may be a result of the reduced planarness of isonipecotic 
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acid (Woodward et al., 1993) caused by the lack of a double bond in the ring. Docking 

shows that isoguvacine and isonipecotic bind with their amine groups in a similar space, 

but isonipecotic acid has its carboxyl group less directed towards Arg66, further 

suggesting the importance of an interaction with arginine. Whatever the cause, it is 

apparent that single changes to ligand structure can alter orientation of binding and 

effectiveness of gating. This may explain the drastic difference in efficacy between 

GABOB and AHBA. The 3-hydroxyl of GABOB permits full agonism while the 2-

hydroxyl of AHBA yields a very weak partial agonist. It should be noted that regarding 

GABOB, we used a commercially available product composed of equal proportions R-(-

)-GABOB and S-(+)-GABOB enantiomers. R-(-)-GABOB has been shown to be twice as 

potent as S-(+)-GABOB on both GABAA (Roberts et al., 1981) and GABAC (Hinton et 

al., 2008; Yamamoto et al., 2012a) receptors. 

Contrary to the theme of size determinism, Et-4AB displayed full agonist properties. 

It should be noted that to the best of our knowledge Et-4AB has never been shown to be a 

GABA receptor agonist. Et-4AB is more than 2Å longer than the partial agonist DAVA, 

but displayed full agonist ability with a lower EC50. Surprisingly, Et-4AB and DAVA 

dock in a similar orientation with the positively charged amine group pointed away from 

the binding site, which would reduce or eliminate any π-cation interactions. In addition, 

Et-4AB has no zwitterion state; the oxygen that normally ionizes is instead involved in 

the backbone of an ester. It is unclear whether Et-4AB participates in a π-cation bond 

without interacting with the Arg66, or if, contrary to our model the double bonded 

oxygen aligns with Arg66 and provides sufficient charge interaction to stabilize the 

binding pocket. Bower et al. (2008) has previously determined that various agonists of 
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the 5-HT3 receptor do not necessarily interact with the same residues for channel 

activation. This may prove to be the case for a number of compounds investigated in this 

study, including Et-4AB.  

4.3 Characterization Relative to Vertebrate GABA Receptors 

There is now a sizable body of evidence suggesting a diversity of invertebrate and 

bacterial GABA-gated chloride channels that do not fall under the umbrella 

categorization of GABAA or GABAC type. However, in comparison to vertebrate GABA 

receptors, Hco-UNC-49 appears to follow more closely the agonist profile of the GABAA 

receptor. For example, GAA and DAVA both show antagonist properties on GABAC, but 

were agonists of Hco-UNC-49BC and GABAA (Chebib et al., 2009; Kerr and Ong, 1995; 

Yamamoto et al., 2012b). Furthermore, isonipecotic acid only achieves partial agonist 

activity on the GABAC, but is a full, albeit weak, agonist of UNC-49BC and GABAA 

(Kusama et al., 1993; Woodward et al., 1993). Deviating from this trend is the Hco-UNC-

49 insensitivity towards sulphonated compounds such as taurine (del Olmo et al., 2000) 

and P4S which exhibit efficacy at the GABAA receptor but not GABAC (Woodward et 

al., 1993). Taken together, UNC-49BC channels exhibit a pharmacological profile 

separating themselves from those of their vertebrate analogues.    
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4.4 Characterization Relative to Invertebrate GABA Receptors 

Martin (1982) showed that the application of the anthelmintic piperazine induced 

conductance of chloride ions into somatic muscle cells of the parasite Ascaris suum. 

From these early trials the pharmacological profile of the population of receptors found at 

the NMJ was assessed, but their identity was never elucidated. Table 3 compares the rank 

order potency of compounds tested from those muscle electrophysiology trials with 

another invertebrate GABA receptor (RDL) and the current study of the Hco-UNC-49 

receptor.  

Table 3: Rank order potencies of agonists on Hco-UNC-49BC, RDL, and Ascaris suum GABAergic 

receptors. Rank order potency is listed in descending order. 

Hco-UNC-49BC RDL
a
 RDL

b
 Ascaris suum 

Muscle
c
 

GABA TACA TACA GABA 

Muscimol
d
 

 

GABA 

 

GABA 

 

TACA 

TACA Muscimol 

 

Muscimol 

 

R(-)GABOB 

Isoguvacine Isoguvacine Isoguvacine IMA 

IMA DAVA* IMA Muscimol 

GABOB β-alanine Isonipecotic acid Isoguvacine 

GAA P4S (Very weak) β-alanine S(+)GABOB 

Et-4AB   GAA 

Isonipecotic acid   DAVA 

DAVA
*
    Isonipecotic acid 

β-alanine
*
    

P4S (no response)    

 

 

* 
= partial agonist

 

a
 = from Mcgonigle and Lummis (2010) 

b
 = from Hoise and Sattelle (1996) 

c
 = from review: Martin (1993) 

d 
= from Siddiqui et al. (2010) 
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Based on the physiological properties and pharmacological profiles, it appears that A. 

suum UNC-49 receptors might have been the primary ion channel investigated by 

Holden-Dye and Martin in the late 1980s. These receptors share the same anatomical 

distribution with Cel-UNC-49BC (Bamber et al., 2005), and a similar pharmacological 

profile with Hco-UNC-49. If UNC-49 is the receptor originally studied on the Ascaris 

muscle it is likely to be in the UNC-49BC configuration since both the Ascaris and UNC-

49BC receptors are resistant to picrotoxin (Brown et al., 2011; Holden-dye et al., 1989; 

Bamber et al., 2003).  

The Drosophila RDL receptor is another invertebrate channel that has garnered 

interest, with modeling and pharmacological profiles becoming increasingly prevalent. 

Independently, Hoise and Sattelle, (1996), and later Mcgonigle and Lummis, (2010) 

found a strikingly similar rank order potency of agonists that compares with Hco-UNC-

49BC. A key difference between these receptors may be found in the size restriction of 

the binding pocket. One carbon shorter than GABA, β-alanine is a 10-fold more potent 

full agonist on RDL compared to being a weak partial agonist on Hco-UNC-49. On the 

other side, DAVA is one carbon longer than GABA and is a partial agonist with similar 

EC50 values for both the RDL receptor and Hco-UNC49. However, the maximal current 

responses of DAVA in the RDL receptor was ~75% of the GABA response compared to 

32% in the Hco-UNC-49BC receptor.  It is possible that the agonist binding site on Hco-

UNC-49 has more stringent criteria for full activation.  
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4.5 Conclusion 

This study characterized various agonist responses on the Hco-UNC-49 GABA 

gated chloride channel. Results of docking these agonists into a homology model of Hco-

UNC-49B suggest that despite a variety of molecular sizes and functional groups, most 

agonists docked in a similar fashion within the aromatic box. The most potent of these 

agonists docked with their positively charged nitrogen group between Tyr166 and Tyr 

218 and their negatively charged oxygen group near Arg66. Those agonists that failed to 

make these predicted interactions with local residues correlated with a weaker potency 

(higher EC50 value). Even small differences in functional group positioning or carbon 

backbone length were enough to severely impair potency. Comparing docking 

orientations of certain agonists such as the potent GAA and impotent GPA highlight this 

trend. The presence of an additional carbon in the backbone of GPA relative to GAA is 

associated with a slightly different binding orientation which equates to a drastic drop in 

potency. Future unnatural amino acid mutagenesis studies are required to verify the 

necessity of both Tyr166 and Tyr218 residues contributing π-cation interactions for 

channel activation. Also mutagenesis studies of the aromatic box coupled with 

competitive antagonist binding may shed further light on the importance of certain 

functional groups in determining agonist binding and gating.      

  The docking simulations described in this study assume that all agonists bind 

within the predicted binding cleft.  However, this study did not investigate the possibility 

that certain agonists may bind to a site outside of this agonist binding site. For instance, 

the ability of Et-4AB to fully activate Hco-UNC-49 cannot be readily explained by 

conventional interactions with the aromatic box. Et-4AB docks its positively charged 
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nitrogen in a position suggestive of a partial agonist or even an inactive compound. In 

addition, the lack of a charged oxygen prevents an interaction with Arg66. Taken together 

with its docking orientation, the full agonist ability of Et-4AB implies unusual binding 

interactions.  

 Overall, the pharmacological profile described here exhibits similarity to previous 

studies of Ascaris muscle receptors. However, some differences were observed that are 

likely the result of differences in the cell type and species examined, and the assay used. 

However, overall the results from this thesis suggest that the previously characterized 

Ascaris GABA receptor was an UNC-49-like channel. If this is indeed the case then 

pharmaceutical targeting of UNC-49 may assist in a wide range of parasitic nematode 

infections.  

Development of novel chemical controls for anthelmintics is essential for the 

continued prosperity of the agriculture sector.  With climate change potentially increasing 

the rate of parasite infections coupled with human population growth, there is an urgent 

need for continued research on chemical control methods to cope with parasitic burdens. 

In order to continue producing selective drugs without harming the host, studies on the 

pharmacological profiles and the mechanisms behind binding and gating of novels targets 

are required. Results from this thesis provide further evidence that the agonist binding 

site of the UNC-49 receptor has a unique structure and sensitivity to various agonists and 

thus is a good candidate for both drug screening and rational drug design. 
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Chapter 6: Appendices 

Appendix A: Antagonists 

Antagonists 

 

 

              

  

A1: Methods 

3-aminopropyl (methyl)-phosphinic acid (APMPA), and 6-Imino-3-(4-methoxyphenyl)-

1(6H)-pyridazinebutanoic acid hydrobromide (gabazine) were purchased from Tocris. 

(1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) was purchased from 

Sigma. 

The TPMPA dose-response curve was produced by fitting to the equation: 
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Where Iinh+ is the GABA induced current in the presence of an inhibitor, Iinh- is the 

current generated solely in the presence of GABA, [inh] is the concentration of inhibitor, 

IC50 is the concentration of inhibitor required to achieve a 50% reduction of GABA 

response, and h is the Hill slope. 

APMPA Gabazine TPMPA 
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A1: Results  

The compounds gabazine, TPMPA and APMPA exhibited no agonist activity up 

to 500µM, but elicited a range of inhibition of EC50 GABA-induced currents. At 500µM 

APMPA produced up to 30% inhibition on the heteromeric channel, while 100µM 

gabazine averaged a 57% inhibition. TPMPA, the selective GABAC antagonist, appeared 

to be the most potent of the three had an IC50 value of 54.5 ±5.1µM on Hco-UNC-49B, 

compared to 80.2 ±9.6µM on Hco-UNC-49BC (Figure A1). 

 

 

 

 

Figure A1: Inhibition curve for TPMPA at the Hco-UNC-49B and Hco-UNC-49BC receptor 


