
CONVECTION IN A DIFFERENTIALLY

HEATED ROTATING SPHERICAL

SHELL OF BOUSSINESQ FLUID WITH

RADIATIVE FORCING

By

David Babalola

Faculty of Science, University of Ontario Institute of Technology

December 21, 2012

A thesis submitted to the

University of Ontario Institute of Technology

in accordance with the requirements of the degree

of Master of Science in the Faculty of Science



Abstract

In this study we investigate the flow of a Boussinesq fluid contained in a rotating, dif-

ferentially heated spherical shell. Previous work, on the spherical shell of Boussinesq

fluid, differentially heated the shell by prescribing temperature on the inner boundary

of the shell, setting the temperature deviation from the reference temperature to vary

proportionally with − cos 2θ, from the equator to the pole. We change the model to

include an energy balance equation at the earth’s surface, which incorporates latitu-

dinal solar radiation distribution and ice-albedo feedback mechanism with moving ice

boundary. For the fluid velocity, on the inner boundary, two conditions are considered:

stress-free and no-slip. However, the model under consideration contains only simple

representations of a small number of climate variables and thus is not a climate model

per se but rather a tool to aid in understanding how changes in these variables may

affect our planet’s climate.

The solution of the model is followed as the differential heating is changed, us-

ing the pseudo arc-length continuation method, which is a reliable method that can

successfully follow a solution curve even at a turning point.

Our main result is in regards to hysteresis phenomenon that is associated with

transition from one to multiple convective cells, in a differentially heated, co-rotating

spherical shell. In particular, we find that hysteresis can be observed without transition

from one to multiple convective cells. Another important observation is that the

transition to multiple convective cells is significantly suppressed altogether, in the

case of stress-free boundary conditions on the fluid velocity. Also, the results of this

study will be related to our present-day climate.
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Chapter 1

Introduction

1.1 Background

1.1.1 The Climate System

The climate system can be defined as a composite system consisting of five major inter-

active components: the atmosphere, the hydrosphere with the oceans, the cryosphere,

the lithosphere, and the biosphere [18]. The biosphere is the whole body of ecosystems

that comprises living organisms such as plants, animals and microbes, and their non-

living environment. The hydrosphere refers to all the waters of the earth, including

the rivers and the oceans. The lithosphere, sometimes called the geosphere, is the solid

parts of the earth. The cryosphere is the collective iced parts of the climate system.

It includes ice caps, ice sheets, glaciers and snow covers.

The atmosphere is made up of a gaseous mixture, almost evenly distributed over

the earth’s surface. In terms of dimension, it is primarily contained within 100 km

in the vertical direction and of the order of 20 000 km measured from north pole to

south pole [20] in the horizontal. The atmosphere consists of several layers consisting

of different composition, temperature and atmospheric pressure (that decreases with

height). The layers are called the troposphere, the stratosphere, the mesosphere, and

the thermosphere; between every two layers is an idealized separation, called a pause.

For example the tropopause separates the troposphere from the stratosphere. The

composition of the atmosphere consists of gases, such as nitrogen, oxygen, and other

inert gases and suspensions such as liquid, clouds, dust particles, sulfate aerosols and

volcanic ash. The concentrations of these atmospheric elements can vary from layer

to layer in time and space.

The components of the climate system are open to each other, and thus interact
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Chapter 1. Introduction

with one another as a result of their non-isolation. They have different structures,

composition, physical properties and thermodynamic behaviors. They are also open

to receive energy from the solar system but can not transfer or exchange matter with

outer space. A subsystem or group of subsystems with similar but not necessarily

identical behaviors can be classified as an internal system while other subsystems that

are not internal are called external systems. For example, the atmosphere can be con-

sidered as a subsystem or internal system of the climate system and other subsystems

such as geosphere, biosphere, etc., can be considered as external systems. As a result

of this classification of the global climatic system that is very complex due to the

nonlinear interactions of the adjoint components, it is possible to study the dynamics

of a subsystem separate from the other systems.

1.1.2 Current Issues in Climate Change

Climate change has become an important issue facing our planet and our future.

The term climate change has been defined in various manners. According to the

Intergovernmental Panel on Climate Change, climate change refers to a change in the

state of the climate that can be identified (e.g. using statistical tests) by changes in the

mean and/or the variability of its properties, and that persists for an extended period,

typically decades or longer. It refers to any change in climate over time, whether due

to natural variability or as a result of human activity [18].

Alternatively, the United Nations Framework Convention on Climate Change refers

to climate change as a change of climate which is attributed directly or indirectly to

human activity that alters the composition of the global atmosphere and which is, in

addition to natural climate variability, observed over comparable time periods [15].

The consequences of climate change, in particular those due to increases in green

house gases (GHG) in the atmosphere, certainly affect our lives. Some of the obvi-

ous consequences are increased annual mean temperature, increased number of glacier

lakes, increased ground instability in permafrost regions, increased sea levels, warming

of lakes and rivers in some regions which affects water quality, and excess heat-related

2



1.1. Background

mortality in some parts of the world. It has been observed that global GHG emis-

sions will continue to grow over the next couple of decades [18]. The immediate effect

of the rise in GHG emissions is that the outgoing infrared radiation is trapped in

the atmosphere, and as a result there is an increase in the annual mean tempera-

ture of the earth. Consequently the ice at the poles may melt and flow into the sea,

therefore increasing the sea level. Also, beyond the 21st century, anthropogenic (i.e.

human-induced) warming and sea level rise may continue for centuries, even if GHG

concentrations were to be stabilized. This is due to the delay associated with climate

processes and feedbacks, in particular, due to the long time it takes to transport heat

into deep ocean. That means the consequences of climate change will stay with us for

years to come.

1.1.3 Major Climate Influences

Radiation

Solar radiation is the primary energy source for the earth. The incoming solar radiation

is subject to absorption, scattering and reflection by various gases of the atmosphere.

The remainder of the solar radiation that reaches the earth’s surface is absorbed by

the other climatic system components (e.g. hydrosphere, geosphere, cryosphere and

biosphere). The amount of solar energy reaching the earth’s surface varies from

place to place, depending on how transparent the atmosphere is, and on the angle of

incidence of the radiation. The energy, so absorbed, is either converted to internal or

heat energy, which acts to raise the temperature of the planet as a whole, or is trans-

formed to potential or kinetic energy to do work against the surrounding environment.

Albedo is the ratio of reflected to incident solar radiation, and the solar constant

is the amount of incoming solar electromagnetic radiation per unit area that would be

incident on a plane perpendicular to the sun’s rays, at a distance of one astronomical

unit (AU) (roughly the mean distance from the sun to the earth). However, according

to Prevost’s principle of the late 18th century: all bodies with a temperature above

0K emit energy whose quality (in terms of frequency) depends on their temperature.

3



Chapter 1. Introduction

This is consistent with Stefan-Boltzmann’s law: the energy radiated by a blackbody

radiator per second per unit area is proportional to the fourth power of the absolute

temperature; it is also consistent with Wien’s displacement law: for blackbody radi-

ation the wavelength of maximum emission is inversely proportional to the absolute

temperature [20]. From the definitions, it shows that the amount of emitted energy is

a function of the temperature of the emitting body. The larger the amount of emitted

energy, the shorter the wavelength of its peak. In the electromagnetic spectrum, the

solar energy that drives the climatic system is in the range of 0.1 − 2.0µm, i.e. in

the ultraviolet, visible, and infrared regions; while most of the outgoing terrestrial

radiation to outer space is in the range of 4.0 − 60µm, i.e. in the infrared range.

Radiation is defined as short wave when its wavelength λ < 4.0µm, and long wave

when its wavelength λ ≥ 4.0µm. The outgoing energy, emitted by the earth’s surface

and atmosphere, is long-wave. Ultimately, some of this long-wave radiation escapes

to outer space, but some is absorbed as it travels through the atmosphere. When the

energy of the incoming radiation balances that of the outgoing radiation, an equilib-

rium is obtained. This is referred to as energy balance, and it is this balance that

keeps the earth in its long-term perpetual state of quasi-equilibrium. Sellers states

that, if all other variables are held constant, a decrease in the solar constant by about

2% would be sufficient to create another ice age, with ice caps extending equatorward

to 500 latitude, and an increase in the solar constant of about 3% would probably be

sufficient to melt the ice sheets [22]. How solar radiation and the solar constant affect

the energy balance is detailed in Section 2.1.

Clouds

Clouds are visible in the atmosphere. A cloud is a mass of liquid droplets, or frozen

crystals made of water or various chemicals, suspended in the atmosphere above the

earth’s surface. The majority of the earth’s cloud is in the troposphere. It has an

influence on the energy balance, because it reflects solar radiation back to outer space,

thus increasing the albedo, and is opaque to infrared radiation. Infrared radiation
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1.1. Background

that is blocked by the cloud from exiting the atmosphere increases the annual mean

temperature of the earth. The net effect of these two competing characteristics of the

cloud contributes to the radiative forcing of the climate.

Green House Gases

Greenhouse gases (GHG) are defined as those gaseous constituents of the atmosphere,

both natural and anthropogenic, that absorb and re-emit infrared radiation. There

are three constituents of the atmosphere that are the most important greenhouse

gases: carbon dioxide (CO2), water vapor, and methane (CH4). They are accountable

for most of the absorption of infrared radiation in the atmosphere. They allow easy

passage of solar radiation but block the escape of long-wave infrared radiation. By their

nature, the greenhouse gases are invisible in the atmosphere [15]. Pierrehumbert

states that there are two categories of greenhouse gases; long-lived greenhouse gases

and short-lived greenhouse gases [21]. An example of a long-lived greenhouse gas is

CO2, while water vapor is an example of a short-lived greenhouse gas. It takes from

several decades to a thousand years to remove long-lived greenhouse gases from the

atmosphere, because of their chemical stability and long-term influence on the climate;

but it takes only weeks to years to remove short-lived greenhouse gases by condensation

or rapid chemical reactions. The primary importance of short-lived greenhouse gases

is as a feedback mechanism, either to amplify or offset changes due to other factors

including the long-lived greenhouse gases.

Many of the greenhouse gases occur naturally, but the present increase in the at-

mospheric concentrations of GHGs is due mostly to human industrial activities. These

activities include agricultural practices that produce methane gas when bacteria break

down organic matters, fossil fuels that increase CO2 concentrations in the atmosphere

when they are burnt, and deforestation that reduces the number of trees that partake

in photosynthetic process. Greenhouse gases play a significant or dominant role in

radiative forcing of the climate.
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Chapter 1. Introduction

1.1.4 Atmospheric Circulation

The long journey to a better understanding of atmospheric circulation began with the

Hadley Principle proposed by George Hadley, in his paper of 1735: Concerning the

Cause of the General Trade Winds [7]. The trade winds can be defined as the predom-

inant circulation pattern of easterly winds, found in the tropics, in the lower part of

the troposphere, near the earth’s equator. The trade winds blow from the northeast in

the northern hemisphere and from the southeast in the southern hemisphere. Hadley

explained that atmospheric circulation is a result of the relative motion between the

motions of the earth and of the air. By atmospheric circulation, we mean large-scale

air movement, by means of which heat energy is distributed on the earth’s surface. For

instance, given the spherical shape of the earth’s surface and the linear relationship

between velocity and distance from the axis of rotation, if the air in the tropics of

the northern hemisphere has lesser velocity than that of the air at the equator, and

moves from the tropics towards the equator, it will have a relative motion contrary

to that of the daily motion at the equator, and a northeast wind will be produced.

Similarly, if air in the tropics with lesser velocity than that of the air at the equator

(in the southern hemisphere), moves from tropics towards the equator, it will have a

relative motion contrary to that of the daily motion at the equator, and a southeast

wind will be produced. Similar relevant ideas were put forward by Edmond Halley,

who stated that the deviation of trade winds from straight east was due to the merid-

ional flow of dense air toward the latitude of maximal radiative heating [8, 2], and

Robert Hooke who invoked the centrifugal force of the earth’s rotation to explain the

equator-ward component of trade winds [2]. From the above ideas, it is obvious that

differential heating coupled with the earth’s rotation causes the atmospheric circula-

tions and gives directions to the winds. The major effect of the earth’s rotation on

atmospheric motion is due to what is referred to today as the Coriolis effect.
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Figure 1.1: Graphical reconstruction of the deflective effect of the earth’s rotation

Coriolis Effect

The Coriolis force is of great importance because we are studying the dynamics of the

atmosphere in a non-inertial frame of reference. In a rotating reference frame, a moving

object tends to experience deflection; this is called the Coriolis effect. The earth rotates

about its axis, and the direction of rotation is counter-clockwise if viewed from the

north pole and clockwise if view from the south pole. In a counter-clockwise rotating

reference frame, the deflection of the moving body is to the right of its direction of

motion, and in a clockwise rotating reference frame, the deflection of the moving body

is to the left of its direction of motion. In a nutshell, an object traveling on the

rotating earth will get pulled to its right in the northern hemisphere, while in the

southern hemisphere, the object gets pulled to its left. A graphical illustration of the

Coriolis effect is shown in Figure 1.1, and presented below in the spirit of [2]. Let N

and S be North and South poles respectively, W to EE be the equatorial circle. Two

latitudes are marked AB and CD in the northern hemisphere, EF and GH in the

southern hemisphere, and the remaining are meridians.

Two directions are of importance here. The direction of the rotation of the earth

and the direction of the translational motion of the air. Suppose that the air at a is

7
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only under the influence of the rotational motion of the earth (i.e. it is stationary with

respect to the earth), then in 12 hours it will cover half of what the latitude circle AB

covers from west to east (in 24 hours coming back to where it started). Now assume

that the air in a is moving to c along a meridian, and the north wind is following the

curve ea from west to east due to rotation of the earth. Provided there are no obstacles

that could meet the air during its course, the air on the moving earth would not be at

c, but at b at the end of its journey. The time it takes for the earth at latitude CD to

cover fc from west to east is the same time it takes the earth at latitude AB to cover

ea, and at the end of this time, the air from a will find itself at b.

It does not matter whether the earth’s motion lags behind that of the air or the air’s

motion lags behind that of the earth, a combined movement of both earth and air will

follow along a certain diagonal curve ab, of which the sides ac, bc and ab represent

those of northerly wind velocity, the difference of the motion at both latitude circles,

and the north-westerly wind velocity, respectively. The same reasoning applies to

the motion of air moving in any direction of the earth. The Coriolis effect becomes

pronounced only for motions occurring over large distances and long periods of time,

such as large-scale movement of air in the atmosphere or water in the ocean.

Also, complementing the Coriolis effect is the centrifugal force. The Coriolis force

is proportional to the rotation rate and the centrifugal force is proportional to its

square. The centrifugal force acts outwards in the radial direction and is proportional

to the distance of the body from the axis of the rotating frame. The Coriolis effect is

higher at the poles than at the equator. The Coriolis force is only one of many forces;

the circulation patterns that are observed in the atmosphere actually result from a

balance of many factors, e.g. pressure gradients, the centrifugal force, the Coriolis

force and the frictional force.

Hadley Cells

The Hadley cell is one of the three cells that make up the general atmospheric cir-

culations in each hemisphere. The other two are the Ferrel cell in the mid-latitudes
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1.1. Background

and the Polar cell in the high latitudes as shown in Figure 1.2. The Hadley cell is

the most persistent of all the three cells. It is bounded roughly by 300, north and

south of the equator. The motion of the atmospheric circulation is a combined zonal

(i.e. east-west) and meridional (i.e. along a meridian) mass transport. It is character-

ized by mass transport towards the equator (by the prevailing north-east trade wind

in the northern hemisphere and south-east trade wind in the southern hemisphere)

in the lower troposphere, with rising motion near the equator, sinking motion in the

subtropics, and mass transport towards the pole in the upper troposphere.

Due to the differential heating induced by the solar radiation, the air at the equator

is warm and at low pressure, while the air at the poles is cold and at high pressure.

The warm, low pressure air at the equator rises, loses heat and moves toward the high

pressure region at the poles. As it approaches the poles and loses more heat, the air

sinks into the region of high pressure, from which the cold air has moved to occupy

the space the warm, low pressure rising air at the equator has left, and a convection

cell is formed.

Figure 1.2: The atmospheric circulation showing three cells: the Hadley cell at
the equatorial region, the Polar cell at the polar region and the Ferrel cell in
between the Hadley and the Polar cells. (The picture is originally uploaded on
http://serc.carleton.edu/earthlabs/climate/5.html)
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Current discussions on climate have raised the issue of poleward expansion of

Hadley cells. This expansion has been attributed to global warming of the atmo-

sphere [12]. Langford and Lewis use a variant of the model presented here to observe

poleward expansion in the Hadley cell, with some weakening in the velocity of atmo-

spheric circulation [10].

1.2 Relationship with Other Works

A mathematical model of convection of a Boussinesq fluid in a rotating spherical

shell is considered and analyzed using numerical computations, guided by bifurcation

theory in [11, 10]. Also in [10] the model is nondimensionalized (i.e. the variables

in the model are put in dimensionless form). Here, however, we follow [11]. Hence,

nondimensionalization of variables is not considered in this work; whenever there is

need for reference to dimensionless parameters such as the Prandtl number, we refer

to [10]. The boundary conditions imposed on the fluid velocity in [10], are no-slip

and stress-free at the inner surface and outer surface respectively, while [11] uses no-

slip boundary conditions at the inner and outer surfaces. In this thesis, both no-slip

and stress-free conditions are considered at the inner boundary. In one case, no-slip

boundary conditions are imposed on the fluid velocity along the inner surface of the

spherical shell, and stress-free boundary conditions are imposed on the velocity on

its outer surface. In the other case, stress-free boundary conditions are imposed on

both the inner and outer surfaces of the spherical shell. Other properties, such as the

rotation rate, the gap width between the concentric spherical shells, and the radius of

the inner shell, are taken to be the same as those of [11, 10].

In [11, 10], the heat transfer mechanism is included implicitly as a function of the

temperature gradient ∆T and− cos 2θ between the pole and the equator, where θ is the

polar angle. The differential heating is maximum at the equator (θ = π
2
) and minimum

at the poles (θ = 0, π). Recent works on climate change are inclined to a radiative

forcing mechanism that is determined by energy balance, and thus, in order to have a

more realistic model, we included this in our equations. The radiative forcing includes

the energy balance equation of the earth-atmosphere system, where the earth’s average
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temperature is allowed to depend on solar radiation [4, 22, 17]. For our model, there

is a linear relationship between solar radiation and differential heating. In order to

see the influence of the radiation variation (or differential heating) on the temperature

at each latitude, we take the solar distribution to be longitudinally averaged, i.e. we

allow the solar distribution to vary with latitude only [4]. The amount of latitudinal

solar absorption will also be influenced by albedo. The latitudes that are covered with

an ice sheet will receive a lower amount of solar energy (due to higher reflection by

ice) than the latitudes that are ice-free [4, 17].

Convection in a rotating spherical shell has been extensively studied with different

forms of forcing and boundary conditions. For example, the thermal convection of

Boussinesq fluid in a moderately rotating spherical shell is studied in [9]; in particular

the fluid is forced by a uniform heat source, and the solutions are characterized by

rotation rate. Zhang et al. [23] also study convection in a rapidly rotating sphere,

in which the convection is analyzed using an asymptotic method. They consider the

influence of stress-free boundary conditions on convection in a Boussinesq fluid with

small Prandtl number. The convection in rotating spherical shells of Boussinesq fluid

studied, by Net et al. [16], considers forcing by external compositional and temper-

ature gradients. The temperature gradient included in their model is in the form of

differential and internal heating. In fact, they critically examine the influence of the

mixture of two fluids on the onset of convection, induced by the two types of forcing.

All these studies use a dynamical system’s approach to study the flow transitions.

This is the philosophy we shall follow.

The linear stability analysis of the convection of a Boussinesq fluid is carried out

in [11], and the existence of cusp bifurcation in a differentially heated rotating spherical

shell is also shown; therefore, we do not attempt to reproduce these results. With this

in mind, much reference will be made to [11]. Also, Marcus et al. [13, 14] use two

control parameters (i.e. the radius ratio and the Reynolds number) to isolate different

forms of transitions. They opined that the nature of the transitions that occur in

differentially rotating spheres, and their stabilities, depend largely on the system’s

radius ratio, and that there is a critical Reynolds number below which Taylor vortices
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may not be virtually detected, and above which symmetrically arranged vortices can

be found. The Taylor vortices are analogous to convective cells. Also, they observe

that vortices never form in a spherical shell with a very large radius ratio. Though the

model studied here differs significantly from the one in [13, 14], their study indicates

that it will be challenging to obtain radius ratios and Reynolds numbers, for which

there will be a visible transition to multiple convective cells, while simultaneously

locating the bifurcation that is associated with it.

Despite all the works done on the convection of Boussinesq fluids in rotating spheri-

cal shells with different types of forcing and boundary conditions used, it is worthwhile

to mention that this work is unique. Most do not consider a latitudinal variation of

the heating, and this is the first time an energy balance equation is used to drive

convection in a spherical shell of Boussinesq fluid.

1.3 Project Direction

It is extremely difficult to have a single model that includes all the climate subsystems

due to their complexity in terms of their inter-relationships. Therefore, in our work,

the hydrosphere, the lithosphere, the biosphere are ignored and only the atmosphere

is considered. Also, within the atmospheric system, the troposphere is most important

for this study. Though it is the thinnest layer of the atmosphere, it constitutes the

majority of the mass of the atmosphere. Recall that in Section 1.1.3, we identified solar

radiation, clouds and greenhouse gases as major climate influences. The collective

effect of clouds and greenhouse gases is to alter the energy balance of the climate and

they directly contribute to the increase in average temperature of the earth. Therefore,

we assume their contributions can be considered as part of the differential heating of

the system. The solar radiation is ultimately the source of the differential heating

because the equator receives more of the heating than the poles.

We will develop two variants of the model studied in [11]. In both variants, the

boundary condition of the temperature of the model in [11] is changed from a pre-

scribed temperature on the inner boundary to a radiative forcing equation. Lewis and

Langford found transition to multiple convective cells in [11], and attributed the tran-
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sition to a cusp bifurcation. We investigate their claims by studying the two variants

of our model. In one of the variants of the model, the inner boundary condition on

the fluid velocity is changed to stress-free, while in the other variant no-slip conditions

are imposed on the inner boundary. It is found that transition to multiple cells occurs

only in a model with the no-slip boundary condition imposed at the inner bound-

ary. For this case, we search for evidence of hysteresis. Also, an ice-albedo feedback

mechanism with moving ice boundary is included in both variants of the model. It is

possible to study the dynamics of the system with or without the ice-albedo feedback,

by switching on and off the ice-albedo feedback mechanism.

The model under consideration is not a climate model per se. In particular, we

consider the spherical shell to be at the laboratory scale, and we take the fluid to have

the properties of water. Thus, we do not expect to obtain quantitatively accurate

solutions, however, we do expect our simple model to exhibit the qualitative features

of flows for which differential heating and rotation play an important role. Thus, we

consider our model as a tool that may aid in developing a better understanding of how

certain climate variables may affect our planet’s climate.
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Chapter 2

The Mathematical Model

2.1 Radiative Forcing

In this section, the various roles of the atmospheric constituents as they affect the

amount of energy available for the dynamics of the atmosphere are considered. Math-

ematically, we proceed with the derivation of the energy-balance equation that will be

used as the inner boundary equation for the model. The first law of thermodynamics

gives the time evolution of the energy on the earth’s surface as:

∂T

∂t
= Qs − I + SA, (2.1.1)

where Qs is the meridional and radial energy transport, SA is the solar absorption and

I is the outgoing radiation. The outgoing radiation can be expressed in terms of its

temperature empirically as in [4]:

I = A+BT − (A1 −B1T )n, (2.1.2)

where T is the temperature at the earth’s surface in 0C; A, A1, B, B1 are empirical

coefficients, and n is the cloudiness as a fraction of unity. For a cloudless atmosphere

(n = 0), equation (2.1.2) coincides with the empirical formula used by North in [17].

The solar absorption SA depends on the solar constant Q, the meridional (i.e. pole to

equator) distribution of solar radiation S(θ), and the absorption coefficient a, which

is a function of the albedo. Both the solar meridional distribution and the absorption

coefficient vary with colatitude θ, where the colatitude is the complementary angle

of the latitude, i.e. the difference between 900 and the latitude. The solar energy

absorbed by the earth’s surface has the form:

SA = QS(θ)a(θ). (2.1.3)
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The solar meridional distribution S(θ) = 1
2
(1− cos 2θ) is chosen so that its maximum

is at the equator (θ = π
2
) and its minimum is at the pole (θ = 0). By the mere fact that

S(θ) is minimum and maximum at the pole and equator, respectively, this imposes a

differential heating between the pole and the equator. The absorption coefficient is

defined as a = 1 − β(θ) (see [4, 22, 17]), where β is the albedo which we assume is

given by β(θ) = 0.62− 0.3Hm(T, T0), and Hm is the Hill function:

Hm(T, T0) =
Tm

Tm0 + Tm
, (2.1.4)

for whichHm(0, T0) = 0, andHm(T, T0) monotonically tends quickly to 1 as T increases

from T0, where T0 is the temperature at which the ice boundary forms. The value of m

is chosen reasonably large so that it is a smooth approximation of the step function as

shown in Figure 2.1. The ice boundary is the latitude at which the surface temperature

equals T0, i.e. where the ice sheet stops. The ice-covered portion of the earth’s surface

has a higher value of albedo than the ice-free surface, hence, there is a jump in the

values of the albedo across the boundary. This jump is modelled by the Hill function.

That is, for portions of the surface for which T < T0, the surface is ice-covered, Hm ≈ 0

and the albedo β = 0.62. For T > T0, no ice is present and Hm ≈ 1 and we have the

lower albedo β = 0.32. Thus, we have the energy absorbed at the surface as:

SA =
Q

2
(1− β(θ))(1− cos 2θ). (2.1.5)

Figure 2.1: The plot of Hill function in equation 2.1.4, with T0 = 1 and m = 5, 10.
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For a given latitude, the absorbed energy is not always equal to the outgoing en-

ergy, the difference is absorbed by the atmosphere, which can set up temperature

gradients. We model the resulting heat transport mechanism by:

Qs = DR

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T, (2.1.6)

where DR is the diffusion coefficient in the vertical direction, DH is the diffusion coeffi-

cient in the horizontal direction. The diffusion in the vertical describes the mechanism

by which heat is exchanged between the surface and the overlying fluid. We substitute

equations (2.1.2)–(2.1.6) into equation (2.1.1) to obtain a radiative forcing equation

which is imposed on the inner surface as a boundary equation:

∂T

∂t
= DR

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T

−I(θ) +QS(θ)a(θ), (2.1.7)

where we have ignored the effects of clouds (n = 0) in (2.1.2) on the incoming radiation,

and I, DR, DH , Q, a and S are as defined above.

2.2 Model Equations

Although the portion of the atmosphere we are studying is the troposphere and the

fluid is air, for this model, water is taken as the fluid, and the troposphere is represented

by a confined space between two co-rotating shells called a spherical shell. The choice

of studying the troposphere only is based on the fact that more than 99% of the

atmospheric mass is found below an altitude of only 30 km within which tropopause

is about 10 km [20], and the choice of water as the fluid is because water represents

a simple, yet still realistic, fluid that can give the desired dynamics when it is heated.

The model studied here is as presented in [11], with the exception of the radiative

forcing at the inner boundary and stress-free conditions at the top boundary. Thus,

the differential heating is imposed through the solar meridional distribution S(θ).

In addition, we also make a comparison of the effects of using stress-free or no-slip

boundary conditions on the velocity at the inner boundary.

The Navier-Stokes equations in the Boussinesq approximation are used to model
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2.2. Model Equations

the fluid flow within the spherical shell. By the Boussinesq approximation, we mean all

variations of fluid properties are considered to be negligible, except the density where

it is multiplied by gravity. For our atmosphere, a warm fluid is less dense than a cold

fluid, therefore we express the relationship between the density and temperature via

the equation of state of the fluid as:

ρ = ρ0 (1− α (T − Tr)) , (2.2.1)

where ρ is the density of the fluid, T is the temperature, α is the (constant) coefficient

of thermal expansion and ρ0 is the density at a reference temperature Tr. The quantity

α (T − Tr) is dimensionless and assumed to be small.

The fluid (i.e. water) is contained within a spherical shell with inner sphere of

radius ra and outer sphere of radius rb. The inner sphere represents the earth’s surface,

the outer shell represents the tropopause, and in between these concentric spheres is

the troposphere.

The following are the model assumptions:

• gravity is assumed to act radially everywhere in the shell,

• the spherical shell rotates at rate Ω about the polar axis,

• the inner and outer spheres rotate at the same rate,

• there is rotational symmetry about the polar axis,

• there is reflectional symmetry about the equator.

The assumptions of rotational and reflectional symmetry are vital because they will

reduce the domain of computation; as such, the solution we obtain on the reduced

domain gives the full solution of the model when it is reflected across the equator and

rotated around the polar axis.

The Navier-Stokes Boussinesq equations are partial differential equations that de-
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scribe the time evolution of the vector fluid velocity and the temperature of the fluid:

∂u

∂t
= ν∇2u− 2Ω× u + [ger + Ω× (Ω× r)]α (T − Tr)

− 1

ρ0

∇p− (u · ∇) u, (2.2.2)

∂T

∂t
= κ∇2T − (u · ∇)T, (2.2.3)

∇ ·u = 0, (2.2.4)

where u = u(r, θ, ϕ, t) = wer + veθ + ueϕ is the fluid velocity in vector form, u is the

zonal fluid velocity (or azimuthal velocity), v is the polar fluid velocity (or meridional

velocity), and w is the radial fluid velocity. The r, θ, ϕ are radial, polar and zonal

spatial variables respectively, t is the time. The er, eθ, eϕ are unit vectors in the

radial, polar and zonal directions respectively, T = T (r, θ, ϕ, t) is the temperature of

the fluid, Ω = Ω (cos θer − sin θeθ) is the rotation vector, its absolute value Ω = |Ω|

is the rate of rotation about the polar axis, p is the pressure deviation from p0 =

ρ0g(R−r)+ ρ0Ω2r2 sin2 θ
2

, r = rer +θeθ +ϕeϕ, ν is the kinematic viscosity of the fluid, κ

is the coefficient of thermal diffusivity of the fluid, g is the acceleration due to gravity,

∇ is the gradient operator in spherical coordinates. The effects of the centrifugal

buoyancy is introduced into the equations via the term Ω× (Ω× r), and the Coriolis

effect via the term 2Ω× u.

The equations (2.2.2)–(2.2.4) are written in spherical polar coordinates in a rotating

frame of reference. The spatial domain is defined by ra < r < rb, 0 ≤ ϕ < 2π, and

0 < θ < π, where ra is the radius of the inner sphere, rb is the radius of the outer

sphere, and θ = 0 and θ = π correspond to the north and south poles respectively,

while θ = π
2

corresponds to the equator. To satisfy our assumptions that the flow

preserves symmetries, i.e. rotational symmetry: (for which flows that are invariant

under rotation about the polar axis, also called axisymmetric flows) and reflectional

symmetry: (flows that are invariant under reflection across the equator defined by

θ = π
2
), the variables satisfy the following relations:

u = u(r, θ, t) = u(r, π − θ, t), v = v(r, θ, t) = v(r, π − θ, t),

w = w(r, θ, t) = w(r, π − θ, t), T = T (r, θ, t) = T (r, π − θ, t), (2.2.5)
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where the variables u, v, w, T are independent of ϕ. The spatial range of θ as a result

of reflectional symmetry is now 0 ≤ θ ≤ π
2
, and the spatial domain is now redefined

as: ra ≤ r ≤ rb, 0 ≤ θ ≤ π
2
. The symmetries significantly reduce the size of the

computational domain and therefore simplify the problem analysis.

We consider two sets of boundary conditions on the fluid velocity on the inner

boundary of the spherical shell. That is, the no-slip and the stress-free boundary

conditions. By no-slip we mean, the fluid and the solid boundary will have the same

velocity; while in the case of stress-free, the boundary does not impose a stress on the

fluid. The full set of boundary conditions for the no-slip case are:

u = 0, on r = ra,

∂T

∂t
= DR

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T

−sw (I(θ)−QaS(θ)) on r = ra,

∂u

∂r
− u

r
= 0,

∂v

∂r
− v

r
= 0, w = 0 on r = rb,

∂T

∂r
= 0 on r = rb, (2.2.6)

and for the stress-free case

∂u

∂r
− u

r
= 0,

∂v

∂r
− v

r
= 0, w = 0 on r = ra,

∂T

∂t
= DR

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T

−sw (I(θ)−QaS(θ)) on r = ra,

∂u

∂r
− u

r
= 0,

∂v

∂r
− v

r
= 0, w = 0 on r = rb,

∂T

∂r
= 0, on r = rb, (2.2.7)

where I(θ) = A + BT (θ) , S(θ) = 1
2
(1− cos 2θ), DR is the diffusion coefficient in the

vertical direction, DH is the diffusion coefficient in the horizontal direction, and sw is

a parameter that is used to switch between the physical scale and laboratory scale of

the solar radiation effects. The radiative forcing equation is the boundary equation

for the inner surface of the spherical shell.

We replace the Laplacian operators in the equations (2.2.2)–(2.2.4) and boundary

conditions (2.2.6)–(2.2.7) with their equivalents in spherical polar coordinates as out-
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lined in [3], ignoring the derivatives with respect to the azimuthal components. Thus

we have,

∇2u = ∇2ur +∇2uθ +∇2uϕ,

∇2ur = − 2

r2
+

2

r

∂w

∂r
+
∂2w

∂r2
+

cos θ

r2 sin θ

∂w

∂θ
+

1

r2

∂2w

∂θ2
− 2

r2

∂v

∂θ
− 2 cos θ

r2 sin θ
v,

∇2uθ =
2

r

∂v

∂r
+
∂2v

∂r2
+

cos θ

r2 sin θ

∂v

∂θ
+

1

r2

∂2v

∂θ2
− 1

r2 sin2 θ
v +

2

r2

∂w

∂θ
,

∇2uϕ =
2

r

∂u

∂r
+
∂2u

∂r2
+

cos θ

r2 sin θ

∂u

∂θ
+

1

r2

∂2u

∂θ2
− 1

r2 sin2 θ
u, (2.2.8)

Ω× u = (−2Ω sin θu)r + (2Ω cos θu)θ + 2Ω(cos θv + sin θw)ϕ, (2.2.9)

Ω× (Ω× r) = −(Ω2r sin2 θ)r + (Ω2r sin θ cos θ)θ, (2.2.10)

(u · ∇)u =

(
w
∂

∂r
+
v

r

∂

θ
+

u

r sin θ

∂

∂ϕ

)
wer +

(
w
∂

∂r
+
v

r

∂

θ
+

u

r sin θ

∂

∂ϕ

)
veθ

+

(
w
∂

∂r
+
v

r

∂

θ
+

u

r sin θ

∂

∂ϕ

)
ueϕ, (2.2.11)

where ( · )r, ( · )θ and ( · )ϕ denotes r, θ and ϕ components respectively. The derivatives

of the unit vectors in the convective term are non-vanishing, and we have replaced them

as follows:

∂er
∂r

= 0,
∂eθ
∂r

= 0,
∂eϕ
∂r

= 0,

∂er
∂θ

= eθ,
∂eθ
∂θ

= −er,
∂eϕ
∂θ

= 0,

∂er
∂ϕ

= eϕ sin θ,
∂eθ
∂ϕ

= eϕ cos θ,

∂eϕ
∂ϕ

= −(er sin θ + eθ cos θ). (2.2.12)

If we scale the radial coordinate as

r → Rr′,

where R = rb − ra is the gap width, re-write the temperature as

T → T ′ + Tr − q cos 2θ, (2.2.13)

where q is the differential heating parameter that will be related to the solar constant

Q below, substitute these into equations (2.2.2) – (2.2.4), and drop the primes, we
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obtain the following axisymmetric equations:

∂u

∂t
= νs∇2

0u− νs
1

r2 sin2 θ
u− 2Ω (sin θw + cos θv)

− 1

R

[
(u · ∇0)u+

cos θ

r sin θ
uv +

uw

r

]
, (2.2.14)

∂v

∂t
= νs∇2

0v − νs
(

1

r2 sin2 θ
v − 2

r2

∂w

∂θ

)
+ 2Ω cos θu− 1

ρ0Rr

∂p

∂θ

−
(
αΩ2Rr sin θ cos θ

)
(T − q cos 2θ)− 1

R

[
(u · ∇0) v − cos θ

r sin θ
u2 +

vw

r

]
,

(2.2.15)

∂w

∂t
= νs∇2

0w − νs
(

2

r2

cos θ

sin θ
v +

2

r2

∂v

∂θ
+

2

r2
w

)
+ 2Ω sin θu− 1

ρ0Rr

∂p

∂r

−α
(
Ω2Rr sin2 θ + g

)
(T − q cos 2θ)− 1

R

[
(u · ∇0)w − 1

r

(
u2 + v2

)]
,

(2.2.16)

∂T

∂t
= κs∇2

0T +
4qκs
r2

(cos 2θ + cos2 θ +
2q

Rr
sin 2θv)− 1

R
(u · ∇0)T, (2.2.17)

∇0 ·u =
∂w

∂r
+

2

r
w +

1

r

∂v

∂θ
+

cos θ

r sin θ
v = 0, (2.2.18)

where νs = ν/R2, κs = κ/R2,

∇2
0 =

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
, (2.2.19)

∇0 = er
∂

∂r
+ eθ

1

r

∂

∂θ
, (2.2.20)

and

(u · ∇0) f = w
∂f

∂r
+
v

r

∂f

∂θ
, (2.2.21)

for any scalar function f = f(r, θ, t).

The symmetry assumptions effectively introduce new boundary conditions at the

equator and the pole. In order to satisfy the symmetries, no flow of fluid and heat

across the equator and the pole is allowed. Also, the effects of boundary layers on

the fluid flow are ignored with stress-free boundary conditions imposed on the fluid

velocities at the inner and outer boundaries of the shell. In addition, the conditions

u = 0, v = 0 at the pole are necessary to ensure that no discontinuity occurs in the
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fluid velocity at the pole. Thus, we have the additional boundary conditions:

u, v = 0,
∂w

∂θ
= 0,

∂T

∂θ
= 0 on θ = 0,

v = 0,
∂u

∂θ
=
∂w

∂θ
= 0,

∂T

∂θ
= 0 on θ =

π

2
. (2.2.22)

2.2.1 The Steady Axisymmetric Solution

We begin the investigation of our model with the computation of the steady axisym-

metric solutions that are invariant with respect to reflection across the equator; that

is, we seek solutions of (2.2.14) – (2.2.18) that are independent of time and that sat-

isfy the boundary conditions (2.2.6) and (2.2.22) for the no-slip case, and (2.2.7) and

(2.2.22) for the stress-free case.

The method of stream functions is used to solve the steady equations. If v and w

are written in terms of a stream function ξ, defined by

v = −ξ
r
− ∂ξ

∂r
, w =

1

r

∂ξ

∂θ
+

1

r

cos θ

sin θ
ξ, (2.2.23)

then the incompressibility condition (2.2.18) is automatically satisfied. After using

(2.2.23) to replace v and w in the equations, the pressure terms can be eliminated.

Subsequently, the steady solution can be found from the resulting three equations in

the three unknown functions u, ξ and T . The boundary conditions for u and T are

given by equations (2.2.6)–(2.2.7) and (2.2.22) as before, while the conditions on v and

w will be satisfied if ξ satisfies the boundary conditions: for no-slip,

ξ = 0,
∂ξ

∂θ
= 0,

∂3ξ

∂θ3
= 0 on θ = 0,

ξ = 0,
∂2ξ

∂θ2
= 0 on θ =

π

2
,

ξ = 0,
∂2ξ

∂r2
= 0 on r =

rb
R
,

ξ = 0,
∂ξ

∂r
= 0 on r =

ra
R
, (2.2.24)
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and for stress-free,

ξ = 0,
∂ξ

∂θ
= 0,

∂3ξ

∂θ3
= 0 on θ = 0,

ξ = 0,
∂2ξ

∂θ2
= 0 on θ =

π

2
,

ξ = 0,
∂2ξ

∂r2
= 0 on r =

ra
R
,
rb
R
. (2.2.25)

2.3 Analysis of the Radiative Boundary Equation

A critical look into the radiative equation in its steady state is necessary in order

to adapt it to the model studied here and to choose the appropriate values for the

equation parameters. In view of this, we consider the radiative boundary equation

DR

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T

−sw (I(θ)−QaS(θ)) = 0, (2.3.1)

for both stress-free and no-slip cases.

By substituting T → T ′ + Tr − q cos 2θ and r → Rr′ into equation (2.3.1) and also

replacing S and a as described in Section 2.1, we have

DR0

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH0

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T +

4qDH0

r2

(
cos 2θ + cos2 θ

)
−sw

(
A+B(T + Tr)− qB cos 2θ − 0.38Q

2
+

0.38Q cos 2θ

2

)
−sw

(
0.3Qc(1− cos 2θ)Hm

2

)
= 0,

(2.3.2)

whereDR0 = DR

R2 , DH0 = DH

R2 and c is a parameter to switch off and on the contributions

of the Hill function; it takes value c = 1 if the Hill function is on, and c = 0 if the

Hill function is off. In equation (2.3.2), we want a linear relationship between the

differential heating q and the solar constant Q, and we set

qB cos 2θ =
0.38Q cos 2θ

2
,
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and therefore

qB =
0.38Q

2
, (2.3.3)

Q =
2Bq

0.38
. (2.3.4)

Equation (2.3.4) shows a linear relationship between the solar constant Q and the

differential heating parameter q, therefore, an increase in q means an increase in Q,

and vice versa. With relationship (2.3.4), the actual solar constant Q = 0.14Wcm−2

corresponds to the differential heating q = 0.018. We shall not be able to increase the

differential heating to q = 0.018, because the geometry and parameter values for the

model are far from those of the earth. Equation (2.3.2) becomes

DR0

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH0

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T +

4qDH0

r2

(
cos 2θ + cos2 θ

)
−sw

(
A+B(T + Tr)− qB −

0.3qBc(1− cos 2θ)Hm

0.38

)
= 0,

(2.3.5)

where

Hm =
(T + Tr − q cos 2θ)m

Tm0 + (T + Tr − q cos 2θ)m
. (2.3.6)

We need to choose values of the parameter in equation (2.3.5), and a critical value

for the ice boundary temperature T0, that will give a desired radiative forcing. If the

quantity of the differential heating q is still very small, there is an outgoing radiation

of −A. In order to avoid this, the temperature T is scaled as T → T ′

B
− A

B
. This scaling

eliminates A from the boundary equation.

Thus, after dropping primes, we have the equation for the temperature deviation

T at the inner boundary:

DR

(
∂2

∂r2
+

2

r

∂

∂r

)
T +DH

(
1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
T +

4qDH

r2

(
cos 2θ + cos2 θ

)
−sw

(
B(

T

B
+ Tr)− qB −

0.3qBc(1− cos 2θ)Hm

0.38

)
= 0,

(2.3.7)

where DR = DR0

B
, DH = DH0

B
, and the Hill function remains as in equation (2.3.6), i.e.

the T and T0 in the Hill function are not scaled as this does not alter the dynamics of
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the system.

Figure 2.2: An illustrative plot of the ice-boundary temperature against colatitudinal
temperature distribution, where T is the temperature before the scaling (see equation
(2.3)).

It is important to discuss the role of the ice boundary T0 in the boundary equation.

Figure 2.2 shows the critical ice boundary temperature T0 against the temperature

distribution. For this project, we assume T0 to be any reasonable value between

0 and 1 for the temperature of the ice boundary, that is, a situation where there

is an ice sheet at the polar region and the equatorial region is ice-free. This is the

situation in the present-day climate. If the value of T0 is taken to be larger than its

current value, it implies that ice would form and its boundary would shift towards the

equator. If the value of T0 is taken smaller, it means the ice sheet’s boundary is shifting

towards the pole. For sufficiently small T0, no ice forms, and the climate is said to

be undergoing an ice-free regime, and for those values of T0 that are sufficiently large,

ice will extend towards the equator, the climate is said to be undergoing an ice-age

regime. In Chapter 4 we show the results for different values of T0 and how they affect

the mean temperature of the system.
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Chapter 3

The Pseudo Arc-length Continuation
Method

3.1 Numerical Discretization

As the terms in the model appear in various forms of nonlinearity, it is necessary to

replace each of the terms with their equivalent numerical derivatives. As such we will

be able to approximate the solution of the resulting system of nonlinear equations at

certain grid points within the computational domain. The use of numerical derivatives

is necessary because analytical solutions of the system of partial differential equations

(i.e. the Navier Stokes equations) are not possible to find. There are several forms of

numerical derivatives, e.g. forward finite differences, backward finite differences and

centered finite differences. For this work, second order centered finite difference for-

mulae are used. This choice is based on the second order property which enables a

relatively quick convergence, i.e. the error becomes small for a reasonable step size (or

mesh size). In this chapter, we discuss the numerical methods that are implemented.

In particular, we discuss centered finite differencing, the discretization of the partial

derivatives, Newton’s method for computing solutions of nonlinear systems of equa-

tions and the pseudo arc-length continuation technique for computing solutions as a

parameter of the system is varied.

3.2 Centered Finite Differencing

Consider a function f(r, θ) defined on r ∈
[
ra
R
, rb
R

]
, θ ∈

[
0, π

2

]
which is partitioned into

a uniform grid, i.e. the grid points are equally spaced at a distance h in both r and θ

variables. Suppose f(r, θ) is evaluated at two points in the neighborhood of (r, θ), i.e.

f(r − h, θ) and f(r + h, θ).
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3.2. Centered Finite Differencing

Applying Taylor’s Expansion Theorem to each of these perturbed functions, we

have:

f(r− h, θ) = f(r, θ)− ∂f(r, θ)

∂r
h+

∂2f(r, θ)

∂r2

h2

2!
− ∂3f(r, θ)

∂r3

h3

3!
+ ..., (3.2.1)

f(r + h, θ) = f(r, θ) +
∂f(r, θ)

∂r
h+

∂2f(r, θ)

∂r2

h2

2!
+
∂3f(r, θ)

∂r3

h3

3!
+ ... (3.2.2)

Subtracting (3.2.1) from (3.2.2) and dividing by 2h, we can obtain:

∂f(r, θ)

∂r
=
f(r + h, θ)− f(r− h, θ)

2h
+O(h2). (3.2.3)

Adding equations (3.2.1) and (3.2.2) and dividing by h2, we can obtain:

∂2f(r, θ)

∂r2
=
f(r− h, θ)− 2f(r, θ) + f(r + h, θ)

h2
+O(h2). (3.2.4)

where O(h2) = Ch2, and C is proportional to the leading derivative in the truncated

part of the series, evaluated at some point r ∈ ( ra
R
, rb
R

). Upon truncation of the

terms of order O(h2), these so-called centered finite difference formulae can be used

to approximate the indicated derivatives. Higher order and mixed derivatives can be

derived by the method of undetermined multipliers as shown in [19]. The derivation is

also similar for derivatives with respect to more than one variable. The higher order

derivatives in one variable are:

∂3f(r, θ)

∂r3
=
f(r + 2h, θ)− 2f(r + h, θ) + 2f(r− h, θ)− f(r− 2h, θ)

2h3
+O(h2),

∂4f(r, θ)

∂r4
=
f(r + 2h, θ)− 2f(r + h, θ) + 6f(r, θ)− 4f(r− h, θ)

2h3

−f(r− 2h, θ)

2h3
+O(h2).

(3.2.5)

3.2.1 Error Analysis

Neglecting the O(h2) terms in the expressions for the derivatives (3.2.3)–(3.2.5) leads

to error. This error, called truncation error, is a function of the grid spacing (mesh size)

h. Round-off error is a result of the limitation in computing machines. It depends

on the floating point number representation of the machine on which the computation

is carried out (single or double precision). Due to round-off error, significant digits
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are lost in the evaluation of the function values of the centered differences. The total

error in any numerical computation is the aggregate of truncation and round-off errors,

which are independent of each other.

Consider, for example, the truncation error in the formula for the first derivative.

∂f(r, θ)

∂r
=
f(r + h, θ)− f(r− h, θ)

2h
+
∂3f(r, θ)

∂r3

h2

2(3!)
+ ... (3.2.6)

The local truncation error in (3.2.6) can be written as:

ET (h) = Ch2 ≡ O(h2), (3.2.7)

where C = 1
2(3!)

∂3f(r,θ)
∂r3
|θ,r=ξ is a constant evaluated in the interval r ∈

[
ra
R
, rb
R

]
. Also,

suppose that each function evaluation in (3.2.6) has a rounding error of ε, then the

round-off error in the first derivative can be written as:

ER(h) =
ε+ ε

2h
=
ε

h
. (3.2.8)

Therefore, the total error can be written as follows:

Etotal = ET (h) + ER(h) = Ch2 +
ε

h
. (3.2.9)

It is obvious from equation (3.2.9) that there is a dilemma as regards to the choice of

the size of h that minimizes the total error. As h→ 0, the truncation error decreases

and the truncated Taylor series gives a better approximation to the derivatives, but at

the same time, the round-off error increases causing the error in the numerical solution

to grow. To overcome this, the choice of h must be a compromise chosen to balance

these two sources of error. The critical value of h at which Etotal is minimum is the

point

dEtotal
dh

= 2Ch− ε

h2
= 0,

(3.2.10)

and

hoptimum =
( ε

2C

) 1
3
, (3.2.11)
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such that

d2Etotal(hoptimum)

dh2
= 6C,

(3.2.12)

where hoptimum is the optimal mesh size h = 1
N+1

and C > 0.

3.3 Discretization of PDE

For all computations in this thesis, the domain of computation is equally partitioned

for both the θ and r coordinates, with step size h. We have three unknown variables ξ,

u, and T , which are concatenated into vector form as X = [ξ, u, T ]T . For both no-slip

and stress-free cases, each variable ξ, u, T , is discretized at N×N interior grid points.

Also, for both choices of boundary conditions on the inner boundary, the values of ξ

are specified at the points on the boundary, but values of the temperature deviation

T at the points on the boundary are not specified, hence, there are an extra 4N + 4

unknown variables. In the case of the variable u, for the stress-free case, its values are

specified at θ = 0, but unknown for all other boundary points. This adds an additional

3N +2 unknown variables. Similarly, for the no-slip case, the values of u, are specified

at both θ = 0 and r = ra
R

, but unknown for all other boundary points. This adds

an additional 2N + 1 unknown variables. The total number of unknown variables is

Σ = 3N2 + 7N + 6 (if the boundary condition on velocity at r = ra
R

is stress-free) or

Σ = 3N2 + 6N + 5 (if boundary condition on velocity at r = ra
R

is no-slip). Since

the equation is evaluated at each grid point, Σ nonlinear algebraic equations in Σ

unknowns are solved using Newton’s Method and Keller’s Continuation, as described

in Section 3.4 and Section 3.5, respectively.

Define

f(ri, θj) = fi,j

for some arbitrary function f where ri = ra
R

+ ih and θj = πik
2

, 0 ≤ i, j ≤ N + 1 and

let equations (2.2.14)–(2.2.18), which can be written as

F (x(r, θ)) = 0, (3.3.1)
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be the nonlinear equation that is solved for the axisymmetric solution x = [ξ, u, T ]T .

Assuming k = h, the different orders of the partial derivatives of ξ, u, T in (3.3.1) can

be replaced with their corresponding difference approximations:

∂f

∂r
=

fi+1,j − fi−1,j

2h
,

∂2f

∂r2
=

fi+1,j − 2fi,j + fi−1,j

h2
,

∂3f

∂r3
=

fi+2,j − 2fi+1,j + 2fi−1,j − fi−2,j

2h3
,

∂4f

∂r4
=

fi+2,j − 4fi+1,j + 6fi,j − 4fi−1,j + fi−2,j

h4
,

∂f

∂θ
=

fi,j+1 − fi,j−1

2h
,

∂2f

∂θ2
=

fi,j+1 − 2fi,j + fi,j−1

h2
,

∂3f

∂θ3
=

fi,j+2 − 2fi,j+1 + 2fi,j−1 − fi,j−2

2h3
,

∂4f

∂θ4
=

fi,j+2 − 4fi,j+1 + 6fi,j − 4fi,j−1 + fi,j−2

h4
,

∂2f

∂r∂θ
=

fi+1,j+1 − fi−1,j+1 − fi+1,j−1 − fi−1,j−1

4h2
,

∂3f

∂r2∂θ
=

fi+1,j+1 − 2fi+1,j + fi+1,j−1 − fi−1,j+1 + 2fi−1,j − fi−1,j−1

2h3
,

∂3f

∂θ2∂r
=

fi+1,j+1 − 2fi,j+1 + fi−1,j+1 − fi+1,j−1 + 2fi,j−1 − fi−1,j−1

2h3
,

(3.3.2)

∂4f

∂r2∂θ2
=
fi+1,j+1 − 2fi,j+1 + fi−1,j+1 − 2fi+1,j + 4fi,j

h4

−2fi−1,j + fi+1,j−1 − 2fi,j−1 + fi−1,j−1

h4
.

Thus, we obtain a system of nonlinear algebraic equations:

F(x) = 0, (3.3.3)

where F ∈ RΣ and x ∈ RΣ is a vector with components being the unknowns xi,j =

[ξi,j, ui,j, Ti,j]
T , 0 ≤ i, j ≤ N + 1. We solve for the xi,j for all 0 ≤ i, j ≤ N + 1.
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3.4 Newton’s Method

The idea of Newton’s method is to linearize the system of nonlinear algebraic equations

and solve repeatedly until the difference between the approximation at the current step

and that of the previous step meet a certain criteria. The choice of stopping criteria

depends on the degree of accuracy needed for the solution, the nature of the problem,

or some other limiting physical factors arising from the computational hardware.

To discuss the numerical method, it is convenient to consider a general system of

nonlinear equations expressed in vector form as:

F(x) = 0, (3.4.1)

where x is the solution of (3.4.1), x = (x1, x2, x3, ...xn) and F = (f1, f2, f3, ...fn)T .

Let (3.4.1) be perturbed as F(x + h), where x is some approximate or guess of the

solution, and approximate it using the first two terms of its Taylor series expansion:

0 = F(x + h) ≈ F(x) + F′(x)h. (3.4.2)

The perturbation (also called the correction vector) of x is h = (h1, h2, h3, ...hn), and

F′(x) is the matrix of partial derivatives of F with respect to x, called the Jacobian

matrix. Solving the system of linear equations (3.4.2) for h, we have:

h = −F′(x)
−1

F(x). (3.4.3)

To be able to find h it is required that F′(x) in (3.4.3) be nonsingular. For a

large system of equations, it is computationally expensive to compute the inverse.

Thus instead, the system is written as a system of n linear equations in n unknown

variables:

F′(x(k))h(k) = −F(x(k)), (3.4.4)

where the updated approximation is given by

x(k+1) = x(k) + h(k), (3.4.5)

where k is the iteration count. The x(0) is the initial guess for Newton’s iteration. This

method is guaranteed to converge provided the initial guess is sufficiently close to the
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solution, and F′(x(k)) is nonsingular. The system (3.4.4) can be solved using Gaussian

elimination or some other suitable method.

3.5 The Pseudo Arc-length Continuation Method

Consider the nonlinear system of equations in (3.4.1) whose solution is to be found

for different values of a bifurcation parameter q (e.g. the differential heating). The

equation can be re-written as:

F (x, q) = 0, (3.5.1)

where x ∈ Rn, q ∈ R and F (x, q) ∈ Rn. To successfully follow the solution of

F (x, q) for different values of the bifurcation parameter q, we use the pseudo-arc

length continuation method, at the heart of which is the idea of bordered matrices.

The method is a technique to find consecutive points of a solution branch to (3.5.1),

and is adapted in this work as stated in [6, 1].

Consider the solution x and the parameter q as functions of s, i.e. x = x(s) and

q = q(s). Differentiation of (3.5.1) with respect to s leads to:

∂F

∂x
(x, q)

dx

ds
+
∂F

∂q
(x, q)

dq

ds
= 0, (3.5.2)

which is a system of n equations in n+ 1 unknowns in x and q. We choose t(x)T = dx
ds

and tq = dq
ds

, such that the tangent at any point on the solution branch is taken as

t = [t(x)T , tq]T . Suppose that a point (xT0 , q0) with tangent vector t0 and point (xT1 , q1)

are known, then the following steps are required:

(1) Find a tangent vector t1 at (xT1 , q1) by solving the system of equations:

[Fx, Fq]t1 = 0,

tT0 t1 = 1. (3.5.3)

The second equation in (3.5.3) is necessary to preserve the direction of the tangents t0

and t1, and to make the system n+1 equations in n+1 unknowns. Then the equations
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Figure 3.1: A figure illustrating pseudo-arclength continuation.

can be put in matrix form as: Fx Fq

t
(x)T
0 t

(q)
0

 .
 tx1

tq1

 =

 0

1

 . (3.5.4)

The matrix in (3.5.4) takes the form of a bordered matrix (as shown below), with

borderwidth m = 1:  A B

CT D

 ,
where A ∈ Rn×n, B, C ∈ Rn×m, and D ∈ Rm×m. Equation (3.5.4) can be solved using,

e.g. the BEM (i.e. the Block Elimination Mixed) algorithm as outlined in [6]; the

error analysis of BEM is detailed in [6, 5].

(2) Predict a new point along the tangent vector t1 a distance ∆s away from

(xT1 , q1). See Figure 3.1. The predictor is specified as

x′ = x1 +
∆s

‖t1‖
tx1 , (3.5.5)

q′ = q1 +
∆s

‖t1‖
tq1. (3.5.6)

(3) Correct the predicted point, using Keller’s method. We seek the solution in an

hyperplane orthogonal to the tangent vector t1. Thus, we solve the following system
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of equations for the next point on the solution branch:

F (x, q) = 0,

t
(x)T
1 (x− x′) + t

(q)T
1 (q − q′) = 0, (3.5.7)

with the associated Jacobian :  Fx Fq

t
(x)T
1 t

(q)
1

 (3.5.8)

Since equation (3.5.7) is nonlinear, it is solved iteratively using Newton’s method. The

solution of (3.5.7) provides a new point (x2, q2) along the solution branch (see Figure

3.1). Steps (1) to (3) can now be repeated using known solutions (x1, q1) and (x2, q2)

to obtain the next point along the branch, and so on. The power of pseudo arc-length

continuation arises because the Jacobian (3.5.8) is not singular at limit points along

the solution curve, where a limit point is a point at which the curve turns back on

itself as depicted in Figure 3.1.
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Results

4.1 Results and Comparisons

In this section, we validate the results of the computation by comparing them with the

model studied in [10]. This is made possible by setting appropriate values for some

parameters in the radiative forcing equation imposed on the inner boundary of the

spherical shell in our model. Table 4.1 shows the values of all parameters used in the

computation for both cases of boundary conditions imposed on the lower boundary of

the computational domain.

ra 9 cm
ν 1.01x10−2 cm2/sec
κ 1.41x10−3 cm2/sec
α 2.06x10−4 1/0C
ρ0 0.998 gm cm3

Tr 0 0C
g 980 cm/sec2

B 1.45 Wcm−2/0C
DR 1.21x10−2 cm2/sec
DH 1.21x10−2 cm2/sec

Table 4.1: The table of values for computation. The units are non-SI units because
the model is on laboratory scale and similar works used non-SI units [11, 4].

In Table 4.1, the ra is the radius of the inner sphere, ν is the kinematic viscosity,

κ is the coefficient of thermal diffusivity, DR is the diffusion coefficient in the radial

direction, DH is the diffusion coefficient in the meridional direction, α is the coefficient

of thermal expansion, ρ0 is the density at reference temperature Tr, g is the acceleration

due to gravity, and B is the coefficient of linear expansion of outgoing radiation.

The results in [11, 10] are obtained with prescribed temperature, of the form T =

Tr −∆T cos 2θ, on the inner boundary of the spherical shell, with the set of equations
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(2.2.14)–(2.2.18). In [10], the differential heating parameter is ∆T , and it is the same

as the differential heating parameter q in our model. In order to transform our model

to the case of the prescribed temperature, the following values are assigned to the

radiative forcing equation: D = 0, sw = 1, A = 0, B = 1 and c = 0, and we

have on the inner boundary, T = −Tr. We choose Tr = 0 so that the temperature

deviation from reference temperature on the inner surface is zero for all latitudes, and

the differential heating is 2∆T (or equivalently, 2q) between the equator and the pole.

Obviously, with this set of parameter values, the radial heat exchange between the

fluid and the boundary does not affect the temperature at the boundary, the effect of

albedo feedback is removed, and the forcing from the boundary increases linearly with

the differential heating.

Figure 4.1: (1st row): With prescribed temperature. (2nd row): With radiative forc-
ing. A single-cell circulation pattern observed for heating parameter q = 0.0017, gap
width R = 3.4, rotation rate Ω = 0.01 and with parameters chosen to mimic pre-
scribed temperature on the inner boundary. From left to right, the stream function ξ;
the azimuthal velocity u and the temperature deviation T from −q cos 2θ.
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For the solutions (i.e. the contour plots) presented in Figure 4.1 and Figure 4.2,

from left to right, we have the stream function ξ = ξ(r, θ), the azimuthal (zonal)

velocity u = u(r, θ) and the temperature deviation T = T (r, θ) from the reference

profile Tr − q cos 2θ. The stream function is the combined radial and meridional com-

ponents of the velocity. Each of the radial and polar components can be recovered

by using equation (2.2.23). The fluid flow follows the contour of the stream function

ξ. The arrows indicate the directions of motion and the signs ‘+’ and ‘−’ indicate

where the functions have their maximum and minimum respectively. For each of the

solutions, the result is a cross-section of the flow at an arbitrary value of the zonal

(i.e. azimuthal) variable ϕ. The complete solution for the 3-dimensional problem in

equations (2.2.2)–(2.2.4) is obtainable by rotating this cross-sectional solution about

the polar axis and reflecting it about the equator. Although the model is studied in

a spherical shell, the results are presented in a rectangular domain. This is possible

because the symmetric spherical shell and the rectangular region are homeomorphic.

By homeomorphic, we mean that the result obtained on the rectangular domain can

be mapped to the domain of the spherical shell without any qualitative changes in the

solution. For all the results presented in this chapter, we take N = 40 and r is a scaled

dimensionless variable. The ice boundary temperature is taken as T0 = 00C and this

essentially sets the Hill function (i.e. equation (2.1.4)) to unity. Wherever a different

value of T0 is used, its value is given explicitly.

For a single-cell circulation pattern, the direction of motion shows the warm air

rising at the equator (θ = π
2
) and falling at the pole (θ = 0). In this case, the temper-

ature deviation T is the difference between the temperature of a particular latitude

and −q cos 2θ (see equation 2.2.13). With gap width R = 3.4 and heating parame-

ter q = 0.0017, the solutions of this model as presented in Figure 4.1(2nd row) are

qualitatively the same, without any obvious difference, as the ones presented in Figure

4.1(1st row). For the same heating parameter q, the gap width R and rotation rate

Ω in both solutions, a single-cell circulation pattern is observed that reaches from the

equator to the pole.

Also in [11, 10], as the heating parameter q increases, there is a transition from a
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single-cell circulation pattern to a triple-cell circulation pattern. This form of tran-

sition to multiple cells is also observed in our model. The solution of the radiative

forcing model is as shown in Figure 4.2(2nd row) and is compared with the similar

solution of [10] in Figure 4.2(1st row), for the corresponding parameter values.

Figure 4.2: (1st row): Taken from the model of [10] with stress-free on outer boundary:
A three-cell circulation pattern observed for heating parameter ∆T = 0.0037. (2nd
row): A three-cell circulation pattern observed for heating parameter q = 0.0037,
gap width R = 3.4, rotation rate Ω = 0.01 and with parameters chosen to mimic
prescribed temperature on the inner boundary. From left to right, the stream function
ξ; the azimuthal velocity u and the temperature deviation T from −q cos 2θ on the
inner boundary.

The three cells observed here are similar to the earth’s convective cells, i.e. the

Hadley, the Ferrel and the polar cells, respectively (see Section 1.1.4). The Hadley

cell is observed in the tropics, the polar cell at the polar latitudes, and the Ferrel

cell in between the Hadley cell and the polar cell. A significant difference is that the
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earth’s Hadley cell is bounded between the equator and 300 latitude in both northern

and southern hemispheres. While in our solution, the first cell (i.e. the Hadley cell)

from the equator reaches well beyond 300 latitude. This extension of our Hadley cell,

alters the relative latitudinal positions of the other two cells when compared one to

one with the corresponding convective cells of the earth. Nevertheless, they share

many qualitative features. The azimuthal velocity u also exhibits similarity with

atmospheric flow. For example, the jet stream is a westerly (i.e. blowing from the

west) strong wind appearing in the mid-latitudes and having maximum velocity near

the top of the tropopause. The trade winds are predominantly easterly (i.e. blowing

from the east) appearing in the tropics. The similarity is easily explained. Take

the northern hemisphere of the earth, for instance. The earth rotates in a counter-

clockwise direction. The fluid that moves from the polar region towards the equator

will get deflected to the right, and its direction of motion (easterly) will contradict

that of the earth (westerly). This is indicated with a ‘−’ sign in Figure 4.2, and it

corresponds to the trade winds. Also, the fluid that moves from the equator towards

the pole will have the same direction of motion (westerly) as the rotation of the earth.

This is indicated with a ‘+’ sign in Figure 4.2, and it corresponds to the jet stream.

The jet stream is observed in the mid-latitudes while the trade wind is observed in the

tropics. The difference is the polar westerly winds that are absent in our results.

Figure 4.3(2nd row) are the stream functions for different values of the heating

parameter q, for the radiative forcing model, while Figure 4.3(1st row), are the stream

functions for the case of the model in [10], with prescribed temperature on the inner

boundary. The temperature deviation from the reference profile (i.e. Tr − q cos 2θ)

at the boundary, is shown in Figure 4.4 for both cases of prescribed temperature and

the radiative forcing. It is obvious from Figure 4.4 that the prescribed temperature

case fixes the deviation of temperature from reference profile of each latitude to zero,

and this coincides with the reference temperature Tr = 0. The radiative forcing allows

each latitude to respond to forcing differently. However, the response of the latitude

to changes in temperature does not appear to have a significant effect on the flow

patterns, although it appears to allow transition to multiple cells at a slightly smaller
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Figure 4.3: A sequence of transition from one to multiple circulation patterns observed
for different heating parameters. (1st row): Taken from the model of [10] with stress-
free on outer boundary: (left to right) ∆T = 0.0010, ∆T = 0.0030 and ∆T = 0.0037.
(2nd row): with radiative forcing and parameter values in Table 4.1: (left to right)
q = 0.0010, q = 0.0030 and q = 0.0037, with gap width R = 3.4 and rotation rate
Ω = 0.01. The figures show only the stream function plots

value of q.

The mode of transition to multiple circulation cells in both cases described above

are similar. It is observed that when q = 0, there is nothing happening in the system,

but for small and nonzero q, there is a convective cell that reaches from the equator to

the pole. A further increase in q causes the single cell to start shrinking towards the

equator, until a new convective cell is formed next to the pole. These two convective

cells are found to have the same flow orientation. This is made possible because of

a gap between the two convective cells in which the flow is stationary. It is known

that two convective cells with the same flow orientation can not be next to each other

without such a gap in between them [14, 11, 10]. If the differential heating is increased

further, the two cells adjust for the formation of the third convective cell. The third
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Figure 4.4: The comparison of temperature deviation on the inner boundary for ra-
diative forcing and prescribed temperature for q = 0.0010, q = 0.0030 and q = 0.0037
respectively. The blue straight line is the reference temperature Tr = 0.

cell forms in between the two existing cells, and has contrary flow orientation. The

convective cells for different values of the differential heating are qualitatively the same

for both cases of prescribed temperature and radiative forcing, as the ones shown in

Figures 4.2 and 4.1. Although both prescribed temperature and radiative forcing cases

give qualitatively the same flow patterns as is evident in Figure 4.3, it seems that in

the radiative forcing model, a small value of the differential heating is required to

induce the transition to multiple cells.

4.2 Effects of Lower Boundary Conditions on Transitions

In this section, we solve the radiative forcing model with stress-free boundary con-

ditions on the fluid velocity on the inner spherical shell, while keeping all parameter
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values (see Table 4.1) the same, as in the case of the model with no-slip boundary

conditions on the inner spherical shell. The observed difference in patterns of circula-

tion due to this change in boundary condition is as shown in Figure 4.5. The heating

Figure 4.5: (1st row): With no-slip boundary conditions. (2nd row): With stress-free
boundary conditions.

parameter q is allowed to increase from q = 0 to q = 0.0037 in both cases, and it is

observed that with no-slip boundary conditions, there is a transition from a one-cell

to a three-cell circulation pattern. This form of transition is not observed for values of

heating parameter 0 ≤ q ≤ 0.0037 in the system with stress-free boundary conditions.

Furthermore, in the stress-free case, when the heating parameter q is increased further

to q = 0.0147, the convective cell remains qualitatively the same without any form of

transition to multiple convective cells. That is, there is still only one cell. Thus, it

appears that the no-slip boundary condition plays a fundamental role in the transi-
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tion. At the very least, it enables the transition to occur at a much smaller value of

differential heating q than in the stress-free case. This is discussed further in Section

4.5.

In similar works on rotating spherical shells, where transition to multiple convec-

tive cells occurs, the transition is associated with a bifurcation [14, 11]. Therefore, in

the next section, we only search for bifurcation in the radiative forcing model, with

no-slip inner boundary conditions on velocity.

4.3 Hysteresis and Multiple Transitions

In this section, we discuss hysteresis and transition to multiple cells, in order to under-

stand the possible link between the two. Hysteresis can occur when a real eigenvalue

of a system crosses the imaginary axis (i.e. changes from negative to positive) and it

changes back to negative by crossing the imaginary axis a second time. At each cross-

ing of the eigenvalue, a saddle-node bifurcation occurs and the solution curve turns

back on itself. This creates an S-shaped curve, where there is a region in parameter

space in which three steady solutions exist simultaneously. The transition as presented

in Section 4.1 has no such crossing of the eigenvalue and so no region of multiple steady

solution exits. It was shown in [11], however, that as a second parameter, specifically

the gap width, is varied the transition can become hysteretic. The point in parameter

space at which this occurs is called a cusp point or cusp bifurcation.

In our search for hysteresis, we shall substitute the importance of Reynolds number

in [13, 14] with differential heating, because the forcing for our radiative model is not

from the rotation rate of the inner sphere, but from differential heating as in [11, 10].

We choose to discuss the hysteresis and the transition to multiple cells in terms of the

aspect ratio η = ra
rb

, where rb = ra +R, and the differential heating parameter q. Also,

we redefine the radius ratio rR = R
ra

, where R = rb− ra is the gap width, and rb is the

radius of the outer shell, as in [11], in terms of aspect ratio η. Thus, we have rR = 1−η
η

.

Also, we define the set of critical values of the aspect ratio and differential heating,

at which transition to multiple cells occurs, as (ηt, qt). Similarly, we define the set of

critical values of the aspect ratio and differential heating, at which a cusp bifurcation
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occurs, as (ηc, qc).

The following reasoning is relevant because it points to the fact that there could be

some instances where hysteresis can occur without being accompanied by transition

from single to multiple cells. In [11], with aspect ratio of ηt = 2.9 and differential

heating qt = 0.0037, there is transition from one to three convective cells, but at the

critical points ηc = 0.426 and qc = 0.020, where the cusp bifurcation that is associated

with the transition occurs, there is transition from one to two convective cells. There

are two crucial points to note here. One, it takes more heating to initiate transition

at lower aspect ratio. Two, if the cusp bifurcation had occur at some critical point

ηc = 0.426 and q, such that q ≤ qt, the hysteresis observed may not be accompanied by

transition from one to multiple convective cells because of the point mentioned above.

The transition to multiple convective cells in the radiative forcing model, with

(ηt, qt) = (2.9, 0.0037), is as shown in Figure 4.5. The associated maximum real

eigenvalues, for both cases of no-slip and stress-free, are shown in Figure 4.6. None of

the maximum real eigenvalues is zero or positive. The search for hysteresis requires

one to carefully follow the behavior of the eigenvalues of the system for different

combinations of (η, q). Figure 4.7 shows the convective cell, along with the azimuthal

velocity and temperature deviation from −q cos 2θ, for (η, q) = (0.5, 0.001). The single

convective cell is not unexpected, because the differential heating q = 0.001 is such

that q < qt with a smaller aspect ratio η < ηt. Therefore, the differential heating q

can not initiate transition to multiple convective cells in the geometry with η = 0.5.

The behavior of the maximum real eigenvalues in Figure 4.7 is similar to what is

observed in [11] for the same aspect ratio (although the combination of radii is different:

R = 12 and ra = 12 and the differential heating value is different: q = 0.020).

A further decrease in the aspect ratio from η = 0.5 to ηc = 0.22 clearly reveals

the maximum eigenvalues of the system crossing the imaginary axis and returning

again. This behavior of the maximum real eigenvalues is what is required for hysteresis

as mentioned above. Figure 4.10 shows the maximum real eigenvalues crossing the

imaginary axis and the continuation of the steady solution, turning upon itself twice,
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Figure 4.6: Up to Down: The maximum real eigenvalue of no-slip boundary system
and maximum eigenvalue of stress-free boundary system.

thereby forming an S-shaped curve. The continuation of the steady solution shows

two turning points. The portion of the solution before and after the turning points

corresponds to the negative eigenvalues of the system, and they are said to be linearly

stable. In fact, for those values of the differential heating qc for which they both exist,

they are said to be bistable. The portion of the solution between the two turning points

corresponds to the positive values of the eigenvalues, and the corresponding solution

is linearly unstable. Figure 4.9 shows the associated convective cell, the azimuthal

velocity and the temperature deviation from −q cos 2θ. Again, the single cell is as

expected because we are dealing with lower aspect ratio and low differential heating

value qc = 0.001, such that qc < qt. For further discussion, see Section 4.5.
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Figure 4.7: From left to right: A single convective cell, the azimuthal velocity and the
temperature deviation for q = 0.001, R = 3, ra = 3 and aspect ratio η = 0.5.

Figure 4.8: The plot of maximum real eigenvalues and continuation of steady solution
for R = 3, ra = 3 and aspect ratio η = 0.5.

4.4 Some Results Relevant to Climate

For the sake of the application of some of the results to our present-day climate, the

differential heating is chosen as q = 0.0037 (this value is chosen because at the differen-

tial heating q = 0.0037, there are three convective cells). Though q is the differential

heating for the system, it has a direct relationship with actual solar constant Q as

described in Chapter 2. Specifically, the corresponding value of the solar constant for

the chosen value of differential heating q is Q = 0.028. The actual value of the solar

constant for the earth is Q = 0.14, which corresponds to q = 0.018. In this section,

we study the response of each latitude to a change in the heating. This response is
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Figure 4.9: From left to right: A single convective cell, the azimuthal velocity and the
temperature deviation from −q cos 2θ for qc = 0.001, R = 10.50, ra = 3 and aspect
ratio ηc = 0.22.

presented in each figure in terms of the temperature deviation from the reference pro-

file (i.e. Tr− q cos 2θ). The ‘normal’ solar amount is the assumed present-day amount

of solar radiation energy q = 0.0037, and any form of alteration to the normal solar

amount is called ‘shifted’.

4.4.1 Temperature Deviation and Circulation Pattern

The azimuthally and annually averaged atmospheric circulation on the earth consists

of three convective cells, the Hadley, the Ferrel and the polar cells. Both Hadley

and polar cells have the same direction of circulation but the Ferrel cell has contrary

circulation direction. It is observed in this study that there is a correlation between the

direction of motion of each cell, and the response of the temperature deviation from

reference profile at the latitudes in which it exists. In each of the figures, a straight

line is drawn tangent to the temperature deviation from the reference profile curve at

the equator, and it is extended to the pole, such that each of the regions enclosed by

the curve above the line is assigned ‘+’ sign and those below the line is assigned a

‘−’ sign. In Figure 4.11, the quantity of heat is low, and we have a single cell. The

‘+’ sign indicates that there is a single circulation cell, that will rise and fall at the

equator and pole respectively.

As the heating parameter increases, even before the transition from one cell to
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Figure 4.10: The plot of maximum real eigenvalues and continuation of steady solution
for R = 10.50, ra = 3 and aspect ratio ηc = 0.22.

two cells, there is a form of contrary temperature deviation in the mid-latitudes as

shown in Figure 4.12, separating the two ‘+’ signs. This implies that the two cells

that will eventually form can have the same direction of circulation, with the cell at

the pole having the same direction of circulation as the cell at the equator. It is worth

mentioning that, an existing cell will not change its orientation, irrespective of the

number of new cells that is formed. At its birth, the second cell circulates as the first

cell as shown in Figure 4.13.

Further increase in heating leads to transition from two cells to three cells, with

the third cell occupying the position made ready for it between the first and second

cells. The figure depicting this is shown in Figure 4.14. It is also observed that this

form of contrary temperature deviation happens when there is a transition from an

odd number of cells to an even number of cells. The position and direction of circu-

lation for subsequent cells will follow the same pattern. It is of interest to test the

validity of this observation. The heating is increased further until there is a transi-

tion from three cells to four cells, and the result is as shown in Figure 4.15. All the

odd-numbered cells have the same circulation direction and all the even-numbered cells
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Figure 4.11: Right: A one-cell pattern with q = 0.001. Left: The curve is the temper-
ature deviation from reference profile. Table 4.1 shows values for computation with
Ω = 0.01 and R = 3.4. The straight line is drawn tangent to the curve at the equator.

have the same circulation direction which is opposite to that of the odd-numbered cells.

4.4.2 The Effects of Solar Radiation on Mean Temperature

We define T0 to be the annually averaged temperature at which a permanent ice sheet

forms. That is, it is assumed that all latitudes for which T < T0 will be ice-covered.

Thus, assume that, for a given amount of incoming solar radiation qi = q0, where

q0 = 0.0037, the ice sheet is present for all colatitudes θ < θi. Now if there is a decrease

in the amount of incoming solar energy qi, there is a tendency for the ice boundary θi

to shift equator-wards, due to a temperature decrease. Figure 4.16 shows the case of

solar constant being reduced by about 10% (i.e. qi = 0.9q0) and T0 = 1x10−4. The

pole (θ = 0) exhibits more drop in temperature than the equator (θ = π
2
). It is also

observed that there is an overall drop in mean temperature. If the solar amount

is increased by 10% (i.e. qi = 1.10q0) and T0 = 1x10−4, there is a proportionate

increase in the mean temperature of the earth. Figure 4.17 shows the increased (or

‘shifted’) heat energy against the ‘normal’ heat energy (i.e. qi = q0). Though there is

an overall temperature increase, the polar temperature responds lesser than that of the

equator. So, comparing both cases of reduced and increased solar energy, it is obvi-

ous that the equatorial region is more sensitive to a change in incoming solar radiation.
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Figure 4.12: Right: A one-cell pattern with q = 0.0025. Left: The curve is the tem-
perature deviation from the reference profile. Table 4.1 shows values for computation
with Ω = 0.01 and R = 3.4. The straight line is drawn tangent to the curve at the
equator.

4.4.3 Effects of Ice Boundary on Mean Temperature

Figure 4.18 presents the cases for which the temperature of the ice boundary T0 is

changed from T0 = 10C to T0 = 00C. The figure shows that an ice-covered planet

will result from a reduction in annually-averaged temperature of the earth and an

ice-free planet will result from an increased annually-averaged temperature. This is

not unexpected and it confirms the effectiveness of the ice-albedo feedback mechanism

incorporated into the radiative forcing equation via the Hill function. Moving the ice

boundary temperature from T0 = 00C to T0 = 10C, shows a drop in temperature dis-

tribution, and this corresponds to an ice-covered planet. Figure 4.18(1st row) shows

that the response at the pole is maximum for ice-covered planet and minimum for

ice-free planet. There seems to be an indication that the pole is more sensitive to

heating in an ice-covered planet than the equator, and reverse seems to be the case in

an ice-free planet.

4.4.4 Sensitivity of Latitudes to a Change in the Heating

Global warming is a phenomenon that comes with increased heating of the atmosphere.

This leads to increasing average temperature of the earth, to the ice boundary moving

towards to the pole, and to a melting of the ice sheet. In this section, we seek to
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Figure 4.13: Right: A two-cell pattern with q = 0.0030. Left: The curve is the tem-
perature deviation from the reference profile. Table 4.1 shows values for computation
with Ω = 0.01 and R = 3.4. The straight line is drawn tangent to the curve at the
equator.

understand how vulnerable the ice is to a change in the heating. In Figure 4.19,

it is assumed that the temperature deviation of the present-day climate follows the

middle curve, and thus the increased heating follows the upper curve and the reduced

heating follows the lower curve. Specifically, let qN be the heating for the normal solar

radiation, qR for the reduced solar heating and qI for the increased solar heating. Let

qN = 0.0037, qI = 1.10qN and qR = 0.9qN , where qI and qR are ‘shifted’ solar amounts.

The temperature deviation is taken from the earth’s surface and the extreme points of

the pole and equator are considered in computing the values in Table 4.2. We define,

∆Inc. = TI − TN and ∆Dec. = TR − TN , where TN is the temperature deviation

from reference profile at normal solar heating, TR at reduced solar heating, and TI at

increased solar heating.

Latitude Normal Inc.(0C) Dec.(0C) ∆ Inc. x10−3(0C) ∆ Dec.x10−3(0C)
Pole 0.0106 0.0119 0.0085 1.3000 −2.1000

Equator 0.0111 0.0124 0.0089 1.3000 −2.2000
Temp.

Gradient 0.0005 0.0005 0.0004

Table 4.2: The response of the pole and equator to changes in solar heating. Table
4.1 shows values for computation with Ω = 0.01, DR = 0, R = 3.4 and T0 = 1x10−4.

From the result shown in Figure 4.19 and Table 4.2, we may infer that the equa-
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Figure 4.14: Right: A three-cell pattern with q = 0.0037. Left: The curve is the
temperature deviation from the reference temperature. Table 4.1 shows values for
computation with Ω = 0.01 and R = 3.4. The straight line is drawn tangent to the
curve at the equator.

torial latitudes are more sensitive to reduced heating than the polar latitudes, while

they both respond equally to increased heating. The interpretation of Table 4.2 is as

follows. We shall consider the entries of the table in terms of their absolute values. If

we reduce the heating until we have an ice-covered planet, that is, if we reduce q until

the temperature at the equator is T0 = 1x10−4, then the ice boundary will be at the

equator. Similarly, if we increase the solar heating until we have an ice-free planet,

i.e. such that the ice boundary is at the pole, then the polar temperature will be

T0 = 1x10−4. Table 4.2 shows that with the same quantity of change in heating, the

equatorial latitudes respond more to an increase in heating than the polar latitudes

respond to a reduction in heating. This equatorial sensitivity could suggest that, it

may take more change in heating to have an ice-free planet than is required to have an

ice-covered planet. This opinion agrees with Sellers that stated that a 2%-5% decrease

in solar radiation could initiate an ice-aged regime and an increase of 3%-10% could

be needed to have an ice-free earth [22]. The difference may be connected with the

curvature of the earth, in particular with the increase in the slope associated with the

change in solar heating S(θ) as a function of latitude.
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Figure 4.15: Right: A four-cell pattern with q = 0.0070. Left: The curve is the
temperature deviation from the reference temperature. Table 4.1 shows values for
computation with Ω = 0.01 and R = 3.4. The straight line is drawn tangent to the
curve at the equator.

4.5 Discussions

There will always be convection in a differentially heated spherical shell, with either

radiative forcing or prescribed temperature on the inner boundary of the shell. For as

long as there is differential heating in the system, no matter how small the quantity

of heating might be, or the nature of boundary condition that is imposed on velocity

on the inner boundary of the spherical shell, there will be onset of convection. The

differential heating could be seen as being responsible for driving the system dynamics

coupled with the boundary conditions. As shown in Figure 4.1, for a small quantity

of heating, the convection appears as a single cell extending from equator to pole.

This pattern of motion may remain the same for a large range of values of the heating

parameter, or it may change, depending on the nature of the lower boundary condition

imposed on the system’s velocity.

The boundary layer or viscosity effect may be necessary to have transition from one

cell to multiple cells. Modeling the problem with stress-free boundary conditions on

the inner boundary switches off the effect of the friction between the boundary layer

of the fluid and the inner boundary. Consequently, there is a significant reduction in

energy dissipation at the boundary, and the fluid has much more energy to rise at the

equator and travel far to the polar area before falling. By comparing the circulation
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Figure 4.16: The response of each latitude to a change in the heating: temperature
deviation is plotted as a function of colatitude θ for the case of reduced solar amount.
The upper curve is for the ‘normal’ solar amount qi = q0 = 0.0037 and the lower curve
is for the reduced solar amount qi = 0.9q0. There is an overall reduction in temperature
deviation. Table 4.1 shows values for computation with Ω = 0.01, DR = 0, R = 3.4
and T0 = 1x10−4.

patterns in Figures 4.5(1st row) and 4.5(2nd row), it is obvious that in the no-slip

case the fluid that rises at the equator does not go far to the pole before falling, and

the other two convective cells build up between it and the pole. This could be due

to the fact that the fluid that is rising at the equator area has lost some energy as a

result of friction at the boundary layer, and in the single cell configuration the fluid is

unable to balance the pressure gradient between the equator and the pole, set up by

the increased differential heating.

As shown in Section 4.4.1, we find a correlation between the temperature deviation

from reference profile on the inner surface and the flow orientation of the convective

cells. The direction of motion of a cell at a particular latitude seems to be greatly

influenced by the response of the latitude to a change in heating. Also, if we have

more than three convective cells, the correlation is still maintained.

The transition to multiple convective cells that is observed in the model with

radiative forcing is similar to the one observed in [11, 10], in which the transition to

multiple cells is attributed to a cusp bifurcation. The transition to multiple convective

cells is not dependent on the type of forcing that drives the system. Marcus et al. [13,
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Figure 4.17: The response of each latitude to a change in the heating: temperature
deviation is plotted as a function of colatitude θ for the case of increased solar amount.
The lower curve is for the ‘normal’ solar amount qi = q0 = 0.0037 and the upper
curve is for the increased solar amount qi = 1.10q0. There is an overall increment
in temperature deviation. Table 4.1 shows values for computation with Ω = 0.01,
DR = 0, R = 3.4 and T0 = 1x10−4.

14] used rotation rate of the inner boundary of the spherical shell, to drive the model

they studied, Lewis and Langford [11, 10] used differential heating with prescribed

temperature on the inner boundary of the spherical shell to drive their model, and

radiative forcing on the inner boundary of the spherical shell is used in our model.

In all the above cases, there are transitions to multiple convective cells. If the cusp

bifurcation attributable to the transition occurs in the spherical shell with small aspect

ratio, with the quantity of differential heating that is not sufficient to cause transition

to multiple cells in a large aspect ratio, the corresponding hysteresis may not be

accompanied by transition to multiple convective cells. It is also observed that more

heating is required to initiate transition to multiple convective cells in a spherical shell

with small aspect ratio.

The three cell circulation pattern so obtained in this study is similar to what is

observed on present-day planet earth. Despite the similarity, they are not totally

identical to the Hadley, the Ferrel and the Polar cells. The convective cell at the

equator in our model goes beyond 300 of the equator, therefore, it alters the positions

of the other two cells. Regardless, it is still reasonable to relate some of our results with
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Figure 4.18: (1st row) The plot of temperature deviation from reference profile for
T0 = 00C(green), corresponds to an ice-free planet, and T0 = 10C(blue) corresponds
to an ice-covered planet. (2nd row) The plot of temperature distribution for both
cases of T0 = 00C(green) and T0 = 10C(blue). Table 4.1 shows values for computation
with q = 0.0037, Ω = 0.01, DR = 0 and R = 3.4. The temperature deviation and
temperature distribution are plotted as a function of colatitude θ.

the earth’s atmospheric conditions. It is known that the climatic condition at the mid-

latitudes is always under the influence of the extreme climatic conditions at the polar

latitudes and the equatorial latitudes. This combined contrary climatic conditions

could be responsible for the response of the mid-latitudes to a change in heating as

shown in Subsection 4.4.1. To bridge the gap between the two extreme conditions, the

convective cell in the mid-latitudes have a circulation pattern that serves as a conveyor

belt between the two.

The sensitivity of each latitude to a change in heating is put to test in Subsection

4.4.4. From the assumed present-day climate situation, the amount of heating that is
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Figure 4.19: Sensitivity of each latitude to change in the heating: the case of normal
(middle curve), reduced (lower curve) and increased (upper curve) solar heating. Table
4.1 shows values for computation with Ω = 0.01, DR = 0, R = 3.4 and T0 = 1x10−4.
The temperature deviation is plotted as a function of colatitude θ.

available for the dynamics of the atmosphere is changed i.e. increased and decreased,

by the same percentage, while keeping the temperature of the ice boundary constant.

It is observed that the equator responds more to a decrease in heating than the pole,

while they respond the same way to increased heating. It could be inferred from this

latitudinal behavior that the ice-covered planet might be easier to achieve than ice-free

planet. Finally, from Figure 4.18(1st row) there seems to be an indication that in an

ice-covered planet, the pole may respond more to heating than the equator and this

response is reversed for an ice-free planet.
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Conclusion and Future Work

5.1 Conclusion

The transition to multiple convective cells is robust in a differentially heated rotat-

ing spherical shell of Bousinessq fluid, provided a no-slip condition is imposed on the

velocity at the inner boundary. This transition to multiple convective cells may be

attributed to hysteresis. In other words, hysteresis is necessary for transition to mul-

tiple convective cells in a differentially heated co-rotating spherical shell of Bousinessq

fluid. This may not be true for all systems with spherical shell geometry, where there

is transition to multiple convective cells [13, 14]. In a system of differential heated

co-rotating spherical shell of Bousinessq fluid, where there are transition to multiple

cells and hysteresis, the transition is usually found in the spherical shell with large

aspect ratio, while the hysteresis that is associated with it will usually be found in

the spherical shell with small aspect ratio. Nevertheless, the hysteresis may or may

not be accompanied by transition to multiple cells, if the aspect ratio is small and the

quantity of differential heating is also small. The occurrence or non-occurrence of the

transition along with the hysteresis phenomenon depends on the value of the heating

parameter at which the hysteresis occurs. For a small differential heating value that

is not sufficient to initiate transition to multiple cells in a spherical shell with large

aspect ratio, the hysteresis that occurs at that heating value may not be accompanied

by transition to multiple cells.

The current discussion in meteorology is about global warming, which is a con-

sequence of the atmosphere not being transparent enough for outgoing long-wave ra-

diation. With some technological advancements that could lead to increased carbon

dioxide and other greenhouse gases in the atmosphere, these gases will continue to
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restrict the outgoing radiation, by absorbing it and re-emitting it, to warm the atmo-

sphere. Table 4.2 shows that the equator responds more to change in heating than the

pole and this could imply further change in heating might lead to an ice-covered planet

faster than ice-free planet. Also Figure 4.19 shows latitudinal response to change in

heating. It could be inferred that, with global warming which leads to increased heat-

ing for the atmosphere, the ice boundary will continue to move pole-wards until all the

ice is melted. The consequence of this ice-free regime in our planet can be grave, and

it includes higher temperature. The increased average annual temperature will lead to

the extension of desert areas and these areas will not be able to support the growth of

most plants. Also, the melted ice will flow into the sea and the sea level will rise. The

sea-level rise will cause rivers and oceans to overflow their banks leading to excessive

flooding of many habitable places and farm vegetation. To maintain the presence of

the ice-sheet, the atmosphere would have to retain its current level of transparency to

the outgoing radiation; the human activities that increase the amount of greenhouse

gases in the atmosphere would have to be reduced or controlled. On the other hand, if

the amount of solar radiation for the heating of the atmosphere is somehow reduced,

e.g. by excessive volcanic activity, then we might experience the ice boundary moving

to the mid-latitude and possibly to the equator, depending on how reduced the heating

might be.

Despite some understandings of the earth’s climate we have derived from the so-

lutions of this model, it has many limitations. The size of the geometry is negligibly

small when compared to the size of the earth. As a result of this, the parameter values

are different from those of the earth and the heating parameter for the model can

not be increased to match the solar constant for the earth. Having said that, this

laboratory-scale model and the earth are dynamically similar in terms of balance of

forces and the boundary conditions as they affect the motions (i.e. transport pro-

cesses).
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5.2 Future Work

The future work on this project could include the ocean-atmosphere heat transfer

mechanisms into the radiative forcing, as there is significant heat exchange between the

ocean and the atmosphere. The ocean absorbs a significant amount of solar radiation

because of its low albedo and acts as a heat sink. The absorbed radiation is converted

to heat energy and is exchanged with the atmosphere, by various means; the significant

medium of heat exchange with the atmosphere is through evaporation, because of the

latent heat of vaporization of the water.

The solution of the model that breaks reflectional symmetry can be studied also.

This will help to understand if the convective cells in northern hemisphere form before

the ones in the southern hemisphere.
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