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1. Abstract   

 

 The organochlorine pesticide endosulfan has been shown to be highly toxic to fish 

and there is some evidence to support that it may act as an endocrine disrupting chemical. 

Juvenile rainbow trout (Oncorhynchus mykiss) were caged at 4 sites in Oshawa Creek 

during the fall and spring of 2008 and 2009 while another group was intra-peritoneal 

injected in the laboratory with varying concentrations (ppm) of endosulfan. Plasma 

vitellogenin (VTG) levels, liver ethoxyresorufin-O-deethylase (EROD), citrate synthase 

(CS), lactate dehydrogenase (LDH), and brain acetylcholine esterase (AChE) (caged fish 

only) enzymatic activities were measured. Trout injected with endosulfan experienced an 

increase of the anaerobic (LDH activity) and a decrease of the aerobic (CS activity) 

metabolic pathways, while male VTG levels increased. Since it was a singular injection, 

VTG results have to be confirmed. Fall caged trout showed increased EROD activity and 

inhibited AChE activity while those caged in the spring experienced an unexpected 

exposure to the lampricide 3-Trifluoro-Methyl-4-Nitro-Phenol (TFM) which disrupted 

metabolic parameters (inhibited CS and increased LDH activity). Both fall and spring 

caged trout experienced no induction of VTG activity. Further research is needed since 

the spring exposure was altered due to the unplanned TFM treatment and thus did not 

represent a valid temporal replicate. 
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2. Review of the Literature 
 

2.1.0 Oshawa Creek 
 

2.1.1 Oshawa Creek Watershed 
 

 The Oshawa Creek Watershed is located in Durham region of Southern Ontario, 

specifically in the city of Oshawa. The watershed originates in the Oak Ridges Moraine, 

North of Oshawa, extends through South Slope, Lake Iroquois Plain and ends at Oshawa 

Harbour on Lake Ontario (CLOFMP, 2007).  It also extends into the Municipality of 

Clarington, Town of Whitby, and the Township of Scugog (CLOCA, 2002) (Figure 2.1). 

The watershed itself encompasses an area of approximately 120 km2 with a length of 50 

km and a water course of approximately 360 km (including all tributaries) (CLOFMP, 

2007). 

 Oshawa Creek is divided into eight separate sub watersheds which include; West 

North, East North, West South, East South, Goodman Creek, Main Branch, Montgomery 

Creek, and harbour (CLOCA, 2002). The sub watersheds even though are all part of the 

Oshawa Creek Watershed, vary substantially in their physiographic composition 

(CLOCA, 2002).  

 

2.1.2 Physiography and Surficial Geology of Oshawa Creek Water Shed 
 

 Physiography is the description of the land as controlled by the underlying rock 

and unconsolidated soil material. It is these qualities that help control the environmental 

conditions of the watershed, such as the hydrological cycle. The major components of the 

hydrological cycle are precipitation, evapotranspiration, infiltration to groundwater, 

surface runoff, and ground water discharged (Figure 2.2) (CLOCA, 2002). The  
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Figure 2.1: Oshawa Creek Watershed in Oshawa, Ontario from its spring fed mouth to its 
outfall into Lake Ontario. Oshawa Creek spans ~120 km2 and has a total water course of 
~360 km. 
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Figure 2.2: General surface hydrology of the Oshawa Creek Watershed.  



5 
 

hydrological cycle in conjunction with physiographic parameters affect the water flow 

within the watershed. The Oak Ridges Moraine is topographically hilly composed of sand 

and gravel deposits (CLOFMP, 2007). Hummocky topography creates ideal conditions 

for ground water infiltration and evapotranspiration. Almost all precipitation in this 

region is converted into groundwater, can penetrate to depths of up to 100 m and helps 

feed the tributaries in Oshawa Creek (CLOFMP, 2007).    

 South Slope is the largest physiographic portion of the watershed which extends 

from the Oak Ridges Moraine to Lake Iroquois. This section of the watershed is less 

diverse in altitude variation than compared to the Oak Ridges Moraine, with an average 

slope of 2 % (CLOCA, 2002). This regions surficial soil is primarily composed of sandy 

till materials (CLOFMP, 2007). This allows for a high percentage of precipitation to enter 

and remain in the soil, approximately 20 % (CLOFMP, 2007).  

 The last major section of the watershed is the Lake Iroquois Plain which is 

primarily a flat region with an average slope of about 1 % (CLOCA, 2002). This section 

is comprised of a 3 km wide band of sand and gravel beach bars along the northern edge 

of the plain which can extend to a depth of 8m (CLOCA, 2002). The abundance of sand 

and gravel allows for large amounts of water to infiltrate the area and then spread 

laterally to the valley regions as the downward movement of the water is inhibited by a 

layer of till (CLOCA, 2002). As the course of the water flows southerly in the watershed 

the different topographic regions migrate through several demographic regions including; 

agricultural, urban, and industrial. 

 

2.1.3 Ecological Importance 
 

 Oshawa Creek is an ecologically important feature of the watershed as it provides 

habitat and food sources for numerous aquatic and terrestrial organisms. The river itself 

has a thermal gradient of warm-cold depending on the sub watershed. Focusing on the 

aquatic environment, the river supports breeding grounds for several migratory species 

including various Salmonids (salmon and rainbow trout, brown trout, and brook trout) 
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(CLOCA, 2002; CLOFMP, 2007). This is supported by a variety of cold water habitats 

that provide ideal conditions for breeding (CLOCA, 2002).  

 Besides Salmonids, Oshawa creek provides habitat for a variety of other species 

including; blacknose dace, creek chub, longnose dace, fathead minnow, rock bass, 

pumpkinseed, and slimy sculpin (CLOCA, 2002). In total there are approximately, 31 

fish species representing 11 families (CLOFMP, 2007).   

 

2.1.4 Land Use: Historical and Present 
 

 As previously mentioned Oshawa Creek flows through several different 

demographics before its outfall into Oshawa Harbour. These different demographics 

include; agricultural, urban, and industrialized zones (CLOCA, 2002; CLOFMP, 2007).  

 Historically, the Oshawa creek watershed was primarily sculpted by glacial 

movements (Wisconsin glacier) leaving predominant limestone ridges, with deep smooth 

concave-shaped valleys (CLOCA, 2002). It was this glacier that created the 

aforementioned regions within the Oshawa creek landscape. During the 1700s it was 

thought that Oshawa Creek was wider with greater water flow allowing flat bottomed 

boats to traverse the watershed (CLOCA, 2002). The area was also predominantly used 

for agriculture, which in the long run developed the community that is now Oshawa. The 

prime areas of agriculture were determined by the physiographic features, where most 

farming operations were clumped around areas with loamy soil that could drain well or 

Lake Ontario where there were decreased hazards due to frost (CLOCA, 2002). 

Agriculture practices extended to the edges of Lake Iroquois, where the soils were 

erosion prone and not favourable. 

 This type of activity continued until the 1800s when mass deforestation occurred 

to create farm land and produced a highly productive timber trade (CLOCA, 2002). 

Forest clearing continued until a decline in 1910. It was during this time that the first 

legitimate business (general store) opened, representing the beginning of Oshawa 

(CLOCA, 2002). With an increasing population and the availability of water, Oshawa 
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began to grow, with the location of the first general store becoming the present day 

commercial center of Oshawa (CLOCA, 2002).  

 Industrially, Oshawa has primarily been considered a “manufacturing town” with 

a large focus on the automotive industry. Before the automotive industry, other industries 

occupied Oshawa, and Oshawa Creek including; the Robson tannery (located on the West 

North sub watershed) and Warren Mill (located on the Main Branch sub watershed) 

(CLOCA, 2002). 

 As would be imagined, Oshawa is significantly more developed today than it was 

in the 1800s or even the early 1900s. Even with mass development in the area the 

predominant land usage still pertains to agriculture with 51 % allocated to crop land, and 

18 % to pasture lands (CLOCA, 2002). Residential occupancy only accounts for 11 % of 

the total land use in Oshawa and along the watershed (CLOCA, 2002). Broken down 

further, Goodman Creek (901 hectares) land use is primarily residential (45 %), 

industrial/commercial (22 %), and crop/pasture land (19 %) (CLOCA, 2002). 

 The Main Branch sub watershed of Oshawa Creek is unlike the other areas in that 

it is almost completely developed (containing much of older Oshawa). Main Branch 

contains mostly residential and industrial/commercial development at 57 and 21 % 

respectively (CLOCA, 2002). The West South sub watershed of Oshawa Creek is 

comprised mainly of agricultural land (68 %), with residential and industrial and 

commercial only accounting for 2 and 3 % respectively (CLOCA, 2002). The West North 

sub watershed is primarily agricultural and pastured land (61 and 18 % respectively). 

Residential lands in this area only account for 4 % of the total sub watershed (CLOCA, 

2002). East South sub watershed is also primarily crop land and pasture land accounting 

for 67 and 6 % of the total area of the sub watershed. Residential developments only 

account for 14 % of this area (CLOCA, 2002) 

 The Montgomery Creek sub watershed is in the heart of Oshawa and is 

completely developed with all its land use going towards residential, commercial, and 

industrial applications (CLCOA, 2002). 
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 With such a large portion of the Oshawa Creek Watershed dedicated to 

agricultural practices, it is reasonable to assume that a wide range of different herbicides, 

pesticides, and fungicides are being used (Garret, 2004; Harris et al., 2000). Among this 

mixture, one of the predominant pesticides being used in the area is endosulfan (Harris et 

al., 2000).   

 

2.2.0 Endosulfan 
 

2.2.1 Chemical Composition and Introduction of Use 
 

 Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-

2,4,3-benzodioxathiepin-3-oxide) is a non-systemic organochlorine pesticide 

(insecticide/acaricide) commercially known as “Thiodan” (EPA, 2002; Bernabò et al., 

2008; Bayer Cropscience, 2008). Technical grade endosulfan is composed of two 

biologically active stereo-chemical isomers alpha and beta in a ratio of 70 % to 30 % 

respectively (Garret, 2004; EPA, 2002). 

 Despite the introduction of organochlorine pesticides in the 1950s (endosulfan in 

1957) and many of them being banned in the 1970s (Siang et al., 2007), endosulfan is 

still used commercially worldwide in developed and developing countries including 

Canada (Siang et al., 2007, Garret, 2004, and Tuduri et al., 2006). Endosulfan was 

thought to be a safer alternative than other organochlorine pesticides like DDT (dichloro-

diphenyl-trichloroethane) because it had not been shown to cause eggshell thinning, and 

has a much shorter half life in the environment (Bernabò et al., 2008; Benguira and 

Hontela, 2000).     

 

2.2.2 Applications of Endosulfan 
 

 As previously mentioned endosulfan is a non-systemic (does not affect the body 

as a whole) insecticide, namely an acaricide (aphids, ticks and mites). Besides being used 

specifically for these organisms endosulfan can also be used for a wide range of other 
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organisms (Presibella et al., 2005). A short list of organisms that endosulfan is capable of 

controlling include; meadow spittlebug, cucumber beetle, green stink bug, corn earworm, 

squash bug, thrips, grape phyloxera, grape leafhopper, leather leaf fern borer, aphids, rose 

chafer, lilac borer, and douglas fir needle midge (EPA, 2002; PMRA, 2007; Bayer 

Cropscience, 2008). The list of applicable crops and non crop vegetation include: barley, 

beans, brussels sprouts, cauliflower, collards, kale, corn, eggplants, oats, melons, rye, 

potatoes, squash, tomoatos, apples, almonds, nectarines, peaches, wheat, alfalfa, kohlrabi, 

Christmas trees, shade trees, and ornamental plants and shrubs (EPA, 2002; PMRA, 

2007; Naqvi and Vaishnavi, 1993; Bayer Cropscience, 2008).  With a large range of crop 

and non crop uses, it is quite realistic to assume a large potential for endosulfan to come 

into contact with non-target organisms and environments. 

 

2.2.3 Mode of Action 
  

 Endosulfan’s mode of action has not been conclusively proven, with two 

postulates being currently tested. The first postulate is that endosulfan affects the central 

nervous system by binding to the picrotoxinin site in the g-aminobutyric acid (GABA) 

chloride ionophore complex (Harris et al., 2000; Markey et al., 2007). GABA is an 

inhibitory neurotransmitter that operates through membrane polarization which is 

regulated through increased chloride flux (Harris et al., 2000; Gant et al., 1987; Markey 

et al., 2007).  

The second postulate is similar in fashion but deals with the inhibition of Ca+ and 

Mg-ATPase (Naqvi and Vishnavi, 1993; Yu, 2008). It is thought that this is only 

attributable to the stereo chemical specificity of α-endosulfan (Harris et al., 2000). In 

both cases a negative after potential is created which prevents the axon from recovering 

(Harris et al., 2000; Naqvi and Vaishnavi, 1993; Yu, 2008). This causes continual firing 

of neurotransmitters from a single stimulus leading to a depressed state followed by 

hyper activity, tremors, convulsions, rigid paralysis, respiratory failure and eventually 

death in non target organisms (Harris et al., 2000; Naqvi; Vaishnavi, 1993 and Yu, 2008).     
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2.2.4  Use in Canada 
  

Even though a majority of organochlorine pesticides have been banned since the 

1970s in developed countries, there are a few (endosulfan, dicofol, and methoxychlor) 

still in use in the world today (Harris et al., 2000). Endosulfan is one of these compounds 

even though it has been banned in other developed countries such as Germany, Sweden, 

United Kingdom, Netherlands, Colombia, and Singapore (Siang et al., 2007). Canada has 

not yet followed suit in banning endosulfan but is in a period of reduction (14000 kg used 

in 1988, reduced to 3700 kg in 2003) (Tuduri et al., 2006). See Table 2.1 for sale 

reduction of endosulfan across Canada for the time period of 1991-2001. In a study done 

by Shen et al. (2005), passive air sampling devices were used to determine the 

concentration of organochlorine pesticides across North America. They found that the 

concentration of endosulfan in the air was generally lower than 158 pg/m3.  Across 

Canada, gaseous endosulfan ranged from 3.1-681 pg/m3 for α-endosulfan and 0.03-119 

pg/m3 for β-endosulfan, with the highest concentrations found in Okanagan valley, 

British Columbia, East Point (PEI), McCreary (Manitoba), and Toronto (Ontario) (Tuduri 

et al., 2006). This is of particular importance because atmospherically transferred 

pesticides can cause toxicity to non-target organisms hundreds of kilometres away.   

 

 

2.2.5 Use in Durham Region, Ontario 
  

 As mentioned above, Toronto, Ontario had one of the highest atmospheric 

concentrations of endosulfan detected (Tuduri et al., 2006). In Ontario alone, endosulfan 

use has decreased with a total consumption of 14000 kg in 1988, 6900 kg in 1998, and 

3700 kg of active ingredient in 2003 (Tuduri et al., 2006; Harris et al., 2000). In 1993 the 

regions of heaviest use are in the Southern and Western portions of Ontario (Lambton, 

Kent, Elgin, Haldimand-Norfolk, Niagara, Durham, York and Simcoe counties) (Harris et 

al., 2000). 
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 Surface water concentrations in these regions have ranged from <0.01 to 0.54 

mg/L which is of environmental significance since the Canadian safety guidelines for 

aquatic life has been set at 0.02 µg/L (Harris et al., 2000; Berntssen et al., 2008; Garret, 

2004).  

 

2.2.6 Methods of Application and Sources of Environmental Contamination 
 

 Generally speaking, there are three main methods used for endosulfan application; 

aerial spraying, boom spraying, and hand held application. Others sources include 

accidental and illegal release (Harris et al., 2000; Hose et al., 2003). Aerial spraying and 

boom spraying pose the greatest risk out of the three for environmental contamination as 

they produce the greatest amount of diversity for indirect transport and thus, will be 

focused upon (Garret, 2004; Hose, 2003).  
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Table 2.1: Amount of endosulfan sold (tons) across Canada between the years 1991 and 

2001 (Tuduri et al., 2006). 

Year 1991 1995 1999 2000 2001 
 

Region 
     

Prince Edward 
Island 

Unavailable Unavailable 10-50 <10 <10 

New Brunswick Unavailable Unavailable 4.6 Unavailable 3.5 

British Columbia 6.9 7.3 4.7 Unavailable Unavailable 
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2.2.6.1 Aerial/Boom Spraying 

 

 Aerial/boom (a boom sprayer is a device attached to a tractor to spray fertilizer or 

pesticides on the desired crop) spraying can result in direct exposure to non-targeted 

areas by several means including; direct application on non-targeted areas and spray drift. 

Spray drift is unavoidable in these methods of application and weather conditions must 

be monitored to lower this risk (Garret, 2004). In aerial application, it has been observed 

that spray drift had caused an area 500 m downwind of application to receive a 14 % dose 

equivalent compared to the targeted field (Hose et al., 2003). 

 While boom over spraying may not contaminate as large an area, it has the 

potential to contaminate an area more extensively, with the non-target area receiving a 

higher dose (Hose et al., 2003; Lal, 2007). Both of these methods can then lead to other 

modes of environmental contamination.  

 

2.2.6.2 Vapour Transport 
 

 Vapour transport is the process of volatilization of a chemical and transportation 

to other areas (possibly globally). A study by Kennedy et al. (2001) found that 

approximately 70 % of an endosulfan load sprayed onto a field of cotton had volatilized 

within the first two to three weeks. Unfortunately there is not much that can be done to 

avoid this except to not spray on exceedingly hot days (Hose et al., 2000). Volatilized 

materials can enter a cycle of deposition and volatilization, known as the “grasshopper 

effect” (Shen et al., 2005). It has been noted that organochlorine pesticides (DDT, aldrin, 

and endosulfan) are quite capable of accomplishing this (Gouin et al., 2008; Yao et al., 

2008). Chemicals in this cycle essentially “hop” from area to area moving North or South 

(depending on the hemisphere) and eventually ending up in the poles (Gouin et al., 

2008). Endosulfan being a semi-volatile compound can enter this cycle and has been 

traced all the way to the arctic (410 pg/L in 1986) (EPA, 2002; Tuduri et al., 2006). In 

this process the “hopping” movement can cause both aquatic and terrestrial 

contamination in areas along the way (Hose et al., 2003; Yao et al., 2008). 
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2.2.6.3 Run-off 
 

 Unlike spray drift, run-off contamination applies more to aquatic environments 

and generally causes a higher dose received but with less frequency (Hose et al., 2003). 

This occurs when a pesticide is applied to a field before a storm event, which leads to 

pesticide bound soil particles entering the various aquatic ecosystems (Hose et al., 2003; 

DeLorenzo et al., 2002). Run-off events may also occur by the release of irrigation tailing 

water and irrigation itself (leaching of the chemical into ground water) (Hose et al., 

2003). These types of contamination can cause waterborne levels to exceed the median 

lethal concentrations for several aquatic species and can be raised above the maximum 

allowable water concentrations (Hose et al., 2003; Capkin et al., 2006; Glover et al., 

2007; EPA, 2002). The allowable concentration of endosulfan to protect wildlife in 

Canada is 0.02 µg/L (CCME, 2007), while water concentrations in Ontario have been 

<0.01-0.54 mg/L in the last two decades (Harris et al., 2003). Higher reported 

concentrations are well above the 96 h LC50 (lethal concentration in which to kill 50 % of 

the sample group after 96 h) for several freshwater fish: bluegill sunfish (Lepomis 

macrochirus) (1.7 µg/L), fathead minnows (Pimephales promelas) (1.5 µg/L), and 

rainbow trout (Oncorhynchus mykiss) (1.75 µg/L) (EPA, 2002; Capkin et al., 2006).  Due 

to the low tolerance of many species, a small spill or agricultural runoff of endosulfan can 

cause adverse affects for aquatic systems. 

 

2.2.7 Persistence in the Environment     
 

 Endosulfan has been shown to be moderately-highly persistent in the 

environment, depending on the media that it is in (EPA, 2002; Tuduri et al., 2006; Siang 

et al., 2007). In all media endosulfan will break down to its daughter compounds 

(endosulfan sulfate, diol, ether, lactone, and hydroxyether (Figure 2.3)) (Deger et al., 

2003). The breakdown of the parent compound is predominantly associated with 

oxidative and hydrolytic mechanisms with the predominant metabolite being endosulfan 

sulphate which can be equally toxic as endosulfan itself (Garret, 2004; Hose et al., 2003). 
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The sections below will outline the persistence of endosulfan in three main media 

(sediment/soil, water, and air).  

 

2.2.7.1 Sediment/Soil 
 

 There has been a lot of controversy over the persistence of endosulfan in the 

environment and particularly in sediments/soils. One factor that has been agreed upon is 

that the smaller the particle that endosulfan is bound to, the longer it will stay in the 

environment (Garret, 2004; Dorval et al., 2003). Endosulfan bound to sediment will 

persist longer than in the other mediums, with up to 75 % of the compound in solution 

being bound to clay or silt like particles (Hose et al., 2003). Endosulfan bound to 

sediment/soil is able to persist up to 2-6 years (Dorval et al., 2003; EPA, 2002; Gormley 

and Teather, 2003; Raymond et al., 2001). This is mainly due to the hydrolysis of α-

endosulfan to endosulfan sulfate (the most persistent form of endosulfan) and the minor 

degradation of β-endosulfan (binds more tightly to the sediment than α-endosulfan) to 

endosulfan sulfate (Hose et al., 2003; Garret, 2004). It is this metabolite that allows 

endosulfan to persist for longer periods of time in the environment when compared to the 

other mediums (Hose et al., 2003; EPA, 2002).  

 When bound to neutral or acidic soils, α-endosulfan can last up to 2 months and 

β-endosulfan can last up to 2.5 years (EPA, 2002). Similar to sediment persistence, α-

endosulfan breaks down first due to ease of volatility, with its major transformation 

product being endosulfan sulfate (Hose et al., 2003; PMRA, 2007). β-endosulfan goes 

through the same process, just at a slower pace since it binds to the sediment more 

strongly (Garret, 2004; Hose et al., 2003; PMRA, 2007). 

 In both sediment and soil, the initial oxidation/hydrolysis of endosulfan is quite 

quick, producing endosulfan sulfate (the major derivative product). It is endosulfan 

sulfate that predominantly remains and persists in the environment (EPA, 2002; PMRA, 

2007; Deger, 2003). 

  



16 
 

 

Figure 2.3: Chemical breakdown of endosulfan into its daughter compounds. 
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2.2.7.2 Water 
 

 Unlike its persistence in sediment/soil, endosulfan is not very persistent in the 

water column, especially under basic conditions (EPA, 2002; Garret, 2004). This could 

be attributed to its moderate water solubility of 0.32 mg/L (DeLorenzo et al., 2002; 

Naqvi and Vaishnavi, 1993). As with sediment/soil exposure, there is no agreement on 

the persistence in water. It has been suggested that endosulfan in water can persist 

anywhere from 3 days to 7 months (Siang et al., 2007; Harris et al., 2000; DeLorenzo et 

al., 2002; Garret, 2004). Some of the variation can be attributed to water turbidity (helps 

volatilize α-endosulfan) (Siang et al., 2007), pH (more acidic the pH the slower the 

degradation from 1 week – 5 months) (Harris et al., 2002) and the level of dissolved 

oxygen which affect the rate of degradation (Harries et al., 2000). Similar to 

sediment/soil, endosulfan in water undergoes oxidation and hydrolysis to form 

endosulfan sulfate. Along with this process, endosulfan in the water column can also 

undergo volatilization, and photolysis (EPA, 2002; Garret, 2004) converting endosulfan 

to its sulfate form. In Ontario, marshy wetlands adjacent to sprayed crops, or muck crop 

areas, could act as sinks for endosulfan. These areas have high potential for being 

eutrophic and could result in anaerobic sediments and seasonally low dissolved oxygen 

concentrations. This would result in longer persistence of endosulfan sulphate (Harris et 

al., 2000).    

 

2.2.7.3 Air 
 

 Please refer to section 2.2.6.2. 

 

2.2.8 Bioaccumulation in Fish 
 

 Endosulfan persistence in the environment has been shown to be highly variable 

and has the potential to be highly bioaccumulative in fish. A study by the U.S. 

Environmental Protection Agency (2002) showed α and β-isomers to have an octanol-

water partition coefficient (Kow) of 55500 and 61400 respectively and bioconcentration 
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factors (BCF) of 2400 to 11000 times. Kow values are representative of how well a 

compound can cross lipid barriers and enter fatty tissues inside and organism. These 

values are in agreement with another study by the U.S. Department of Health and Human 

Services (DHHS) (2002) which found similar results for both α and β-isomers and BCFs 

of less than 3000 times. Even with the moderate to high potential of endosulfan to 

bioaccumulate, both isomers tend to be quickly eliminated from the organism within a 

time span of 24 h – 2 weeks depending on the cleanliness of the water after exposure 

(EPA, 2002; DHHS, 2002; Naqvi and Vaishnavi, 1993; PMRA, 2007). If fish are 

continuously exposed to chronic levels of endosulfan it is possible that they will retain a 

small amount of endosulfan in their tissues (Henry and Kishimba, 2006) and that 

endosulfan may then travel up the food chain to higher trophic organisms.   

 

2.2.9 Endosulfan Contamination and Mishaps 
 

 With the extensive use of endosulfan in Ontario and around the world, it is not 

surprising that incidences of spills and contamination have occurred. In 1969, 300-400 

dace, white sucker, and rock bass were killed in the North Thames River, Ontario upon 

exposure to 0.096 - 0.26 mg/L endosulfan originating from off-target spraying of potato 

fields (Harris et al., 2000). Another such accident occurred near Simcoe, Ontario in 1972 

in which rainbow trout were killed in a pond exposed to endosulfan from a tobacco field 

(Harris et al., 2000). India is another such country to have endosulfan contamination, 

with fish liver tissue concentrations of 61.92 µg/g wet weight reported (Amaraneni and 

Pillala, 2001), and fish found near cotton plantations found to have high residue levels 

(Naqvi and Vaishnavi, 1993). In both cases fish were exposed chronically from 

agricultural use of endosulfan.  

 Even though aquatic organisms tend to have a higher sensitivity to endosulfan 

than other organisms, endosulfan can still impact mammalian communities including 

humans. Those most at risk are those directly involved with its application and 

formulation (Paul and Balasubramaniam, 1997). In the USA there was one incident in 

which a farmer was killed, while in 1990 and 1993 there were 32 poisonings related to 

endosulfan in southern Sulawesi, Indonesia (EJF, 2002). Workers in India who have 
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applied endosulfan without protective equipment experienced: dyspnea, increased 

respiratory rates, tachycardia, bradycardia, and abdominal discomfort (DHHS, 2000). 

These are only a few of the documented cases in which contamination or injury has been 

linked to endosulfan.  

 

2.2.10 Rainbow trout (Oncorhynchus mykiss) as a Test Species 
 

 Rainbow trout are ideal test species for acute and chronic tests (Tyler et al., 2002) 

because they can be easily cultured in the lab, are not stressed easily during handling, are 

sensitive to a wide variety of toxicants, are more sensitive than other aquatic species, and 

can be obtained all year from commercial suppliers (EPA, 2002). Another feature that 

makes them ideal for testing of the proposed toxicants is that they are naturally found in 

the Oshawa Creek Watershed (originally were a stocked species) and surrounding 

watersheds which allows them to be a representative cold water species for the region 

(EPA, 2002; CLCOA, 2002).   

 

2.3.0 Biomarkers and Histology 
 

2.3.1 Vitellogenin  
 

 Vitellogenin (VTG) is a phospholipoprotein that is the precursor molecule to the 

synthesis of yolk during oocyte formation (Lal, 2007; Jensen and Ankley, 2006). 

Production of VTG occurs through the activation of estrogen receptors by 17-β estradiol, 

which in turn is controlled by the hypothalamic-pituitary-gonadal (HPG) axis (Jensen and 

Ankley, 2006). VTG analysis is utilized as a reliable biomarker for endocrine disruption 

and analytical methods have been developed for various species including; fathead 

minnows, rainbow trout, and crimson-spotted rainbowfish (Melanotaenia fluviatilis) 

(Eidem et al., 2006; Jensen and Ankley, 2006; Xie et al., 2005; Holdway et al., 2007). 

VTG is reliable in showing estrogenic effects of xenobiotics with increased VTG 

production in male fish or anti-estrogenic effects due to a reduction in VTG production in 

female organisms (Jensen and Ankley, 2006; Xie et al., 2005; Harris et al., 2002).  This 
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methodology is quite useful when looking at mixtures of xenobiotics, such as pulp mill 

effluents, urban waste waters, and agricultural runoff (Orrego et al., 2009; Gagné and 

Blaise, 1998).  

 

2.3.2 Ethoxyresorufin-O-deethylase  
 

 Ethoxyresorufin-O-deethylase (EROD) is a well established indirect biomarker 

(terrestrially and aquatically) for the induction of the mixed-function oxygenases (MFO), 

which play a crucial role in the degradation of xenobiotics (Kammann et al., 2005). This 

biomarker has been established in approximately 150 fish species including; flounder 

(Platichthys flesus), dab (Limanda limanda), sand flathead (Platycephalus bassensis), and 

rainbow trout (Oncorhynchus mykiss) (Kammann et al., 2005; Kirby et al., 2007; 

Brumley et al., 1995; Whyte et al., 2000).  One of the main proteins in the MFO system 

is the terminal component P-450 (CYP) 1A1 (Kirby et al., 2007). P-450 system is 

thought to act by the binding of xenobiotics to the cytosolic aryl hydrocarbon receptor 

(AhR). Once bound, AhR binds to an aryl hydrocarbon nuclear translocation protein 

(ARNT). This binding initiates the transcription of several genes to produce the proteins 

P-450, which then leads to the detoxification of the xenobiotic and in rare cases a toxic 

response (Figure 2.4) (Whyte et al., 2000). It is the enzymatic activity of P-450 that 

produces the oxidative deethylation of 7-ethoxyresorufin (7-ER) to resorufin (Petrulis et 

al., 2000). This reaction is carried out in high enough concentrations of 7-ER to allow a 

fluorescence intensity that is proportional to the concentration of P-450 (Petrulis et al., 

2000).        

 

2.3.3 Lactate Dehydrogenase  
 

 Lactate dehydrogenase (LDH) is a hydrogen transferring enzyme that catalyzes 

the last step in glycolysis (Kuznetsov and Gnaiger, 2006; Kurutaş et al., 2006), by 

catalyzing the reversible oxidation of lactate ions to pyruvate ions with the accompanying 

reduction of NAD+ to NADH (Dorey and Draves, 1998; Mishra and Shukla, 1997). CS  
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Figure 2.4: EROD mechanism of action. A toxicant binds to the AhR which is then 
transferred into the nucleus of a cell. There it initiates the synthesis of CYP1A RNA 
which is translated into CYP1A enzyme used to detoxify the causative chemical. It is the 
oxidation of 7-ER to resorufin by CYP1A that produces a colorimetric reaction which 
can then be used to indirectly quantify CYP1A activity. 
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and LDH are related functions where CS is a measure of aerobic metabolic capcity and 

LDH is a measure of anaerobic metabolic capcity; hence an increase in one may result in 

a decrease in the other (Konradt and Brunbek, 2001). Taylor et al., (1973) found that the 

baseline levels for LDH for juvenile rainbow trout in liver ranged between 164-184 

µmol/min/mg protein. 

 

2.3.4 Citrate Synthase  
 

 Citrate synthase (CS) is a key enzyme in the citric acid cycle (Kreb cycle) and is 

found within the mitochondrial matrix (Kuznetsov et al., 2006). It is nuclear encoded and 

thus synthesized outside the mictochindria by cytoplasmic ribosomes and then 

transported into the mitochondrial matrix (Kuznetsov et al., 2006). CS catalyzes the 

reaction of aceytle CoA with oxaloacetate to form citrate, and regenerates coenzyme A 

(Acetyl-CoA + oxaloacetate + H2O  citrate + CoA-SH) (Kuznetsov et al., 2006).  

 

2.3.5 Acetylcholine Esterase  
 

 Acetylcholine esterase (AChE) is an enzyme found on the post-synaptic 

membrane that hydrolyzes the neurotransmitter acetylcholine (ACh), which provides a 

pivotal role in the maintenance of normal nerve function (Sandhal and Jenkins, 2002; Liu 

et al., 2007). ACh is synthesized in the pre-synaptic cleft (composed of acetyl-CoA and 

choline), and released into the synaptic cleft where it then reacts with receptors on the 

post-synaptic cleft which in turn causes a neurological response (Pope et al., 2005; 

Malomouzh and Nikol’skii, 2007). In the case of AChE inhibition, there is a build up of 

ACh in the synaptic cleft, and continual firing at the receptors (overabundance of 

neurotransmitter) (Liu et al., 2007). In muscle fibres this causes hyper activity, tetany, 

paralysis, convulsion and eventually death (Liu et al., 2007; Siang et al., 2007). This is 

important because these effects are commonly seen in fish following exposure to 

organophosphate and carbamate pesticides (Liu et al., 2007; Cannard, 2006; Pope et al., 
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2005). Thus AChE inhibition is an excellent biomarker for monitoring aquatic systems in 

agricultural areas. 

  

2.3.6 Condition Factor 
 

 Condition factor is used as an indicator of fish well being and is a percentage of 

body weight compared to the fish length cubed (rainbow trout only). An increased 

condition factor is indicative of increased fish health (bigger/fatter), whereas a lower 

condition factor is indicative of decreased health (smaller, reduced fat stores) (Raymond 

et al., 2001). Condition factor is dependent on the morphology of the fish species 

(Raymond et al., 2001) 

 

2.3.7 Hepatosomatic Index 
 

 The hepatosomatic index (HSI) is the percentage of body weight attributable to 

the liver and can be used as an indicator of fat deposits and protein induction (Raymond 

et al., 2001). HSI is also a crude indicator of liver activity with a larger liver in proportion 

to body weight indicating increased liver activity, possibly from toxicant removal. 

Similar to condition factor, this index is variable and is dependent on the fish species 

being monitored.  

 

2.3.8 Gonadosomatic Index 
 

 Gonadosomatic index (GSI) is the percentage of body weight attributable to the 

gonads and can be used as an indicator of fish sexual maturation (Ma et al., 2005). 

Increased GSI is indicative of increased gonad size and fish sexual maturation, where 

decreased GSI could be indicative of inhibited sexual function or maturation (Ma et al., 

2005). 
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2.4.0 Injections and Field Tools  
 

2.4.1 Intra-peritoneal Injection  
 

 Intra-peritoneal (i.p.) injections are one of the most commonly used methods for 

administering fish vaccines and other treatments in various vertebrates (Nakanishi et al., 

2002; Wilson and Holberton, 2001). This method is an excellent way to introduce 

endocrine disrupting chemicals into test organisms (Wilson and Holberton, 2001). An 

advantage to this methodology is that it bypasses the natural skin and mucus barriers of 

fish leading to a faster uptake of the desired treatment (Itano et al., 2006). It also allows 

for a specific and known dose to be administered compared to waterborne exposures 

where there is no control on how much toxicant is taken up. Another advantage is that 

this method has been successfully used in numerous fish species including rainbow trout, 

sea bream, and channel catfish to name a few (Snow et al., 2001; della Rocca et al., 2004; 

Xu et al., 2004). Negative aspects of using i.p. injections are increased stress of the fish, 

reduced environmental relevance, higher labour costs compared to water exposure, and 

increased health risks to the researchers (Nakanishi et al., 2002). Injecting fish has 

resulted in numerous cases of slipped needles and accidental injections into the hands of 

the administrators resulting in various health issues (O’Neill et al., 2005). Overall, i.p. 

injections are an effective method to rapidly introduce a vaccine or toxicant into a fish 

under similar metabolic conditions compared to waterborne and food borne exposures 

(Tencella et al., 1994; Sherry et al., 1999).  

 

2.4.2 Semi-permeable Membrane Devices  
 

 Semi-permeable membrane devices (SPMDs) have been utilized in the field to 

mimic environmental exposure over time and concentrate various chemicals, 

predominantly polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and 

organochlorine pesticides (Verwij et al., 2004; Zimmerman et al., 2000). The general 

design of SPMDs includes a thin film of highly refined lipid (triolein) sealed inside a thin 

walled polyethylene tube. Lipophilic compounds then permeate the polyethylene 
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membrane and are partitioned in the lipid and retained until the SPMD is analyzed (Prest 

et al., 1995; Ellis et al., 1995; Stuer-Lauridsen and Kjølholt, 2000). The molecular pore 

size of the polyethylene tubing mimics those found in nature and the small pore size 

provides minimal contribution of particle bound contaminants (Sabaliūnas and 

Södergren, 1997). Along with their ability to mimic biological processes, SPMDs contain 

performance reference compounds which allow for site specific environmental factors to 

be included in the analysis (USGS, 2004). SPMDs have a wide versatility for 

accumulating various families of lipophilic chemicals and they are an essential tool for 

monitoring aquatic contaminants where a wide variety of possible contaminants are 

potentially present. 

 

2.4.3 Thermogravimetric Analysis  
 

 Thermogravimetric analysis (TGA) is the characterization of organic matter 

through the heating and combustion of a given sample (Payá et al., 1998; Grisi et al., 

1998). Two predominant analytical methods have been developed that both utilize muffle 

furnaces. In the first method, the furnace is hooked up to a computer and uses 

sophisticated software by which to program specific temperature profiles. The second 

method is a straight weight change determination after a specified amount of time (Grisi 

et al., 1998). In aquatic and terrestrial mixtures, organic matter is typically composed of 

carbohydrates, lipids, proteins, polyphenols, and complex macromolecular humic 

substances (Kristensen, 1990). It is the temperature at which these materials combust that 

identifies the organic matter composition and total organic matter content of a soil, 

sediment, or other biological matrix (e.g. sewage sludge) (Grisi et al., 1998; Folgueras et 

al., 2003; Boyle 2004).  
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2.4.4 Caging  
 

 Caging fish is a methodology used to monitor aquatic environments that have 

been exposed to chemical contaminants purposely or accidentally (Oikari, 2006). 

Unfortunately, cage designs and techniques have not been harmonized nationally or 

internationally (Oikari, 2006). Caging is advantageous because it allows the 

transplantation of “clean” fish into a contaminated area to monitor various biomarkers in 

the fish such as EROD and AChE (Fenet et al., 1998).  

 When designing a caged experiment, the type of fish must be considered because 

some species stress easily, do not do well when placed in larger populations, or are 

cannibalistic (Oikari, 2006). Overall, two fish species that have proven to work well in 

caged experiments are rainbow trout and fathead minnows since they are responsive to 

chemical contaminants (more sensitive than other native species), and can be easily 

handled without stressing the fish (Oikari, 2006; Hanson et al., 2006). 

 Since there is large variability with cage designs, locations, and environmental 

factors, caged experiments are interpreted cautiously because it is hard to identify a single 

contaminant and variability between locations could significantly skew the results 

(Oikari, 2006).  
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3. Aims of the study 
 

The primary aim of the different sections of this study was to determine the 

chronic effects of a single i.p. injection of endosulfan on a population of juvenile rainbow 

trout (Oncorhynchus mykiss) and to take 30 day field observations of Oshawa Creek at 

two times of year (spring and fall) to determine any possible effects of endosulfan, 

location and season on caged rainbow trout. Due to the lack of conclusive evidence from 

the surrounding agricultural sector for the use of endosulfan within the watershed, the 

field and the laboratory experiments became separate entities. 

 It was hypothesized that a single i.p injection of endosulfan will cause a 

noticeable effect in liver EROD, CS, LDH, plasma VTG, HSI, GSI and condition factor. 

Alternatively, endosulfan will not affect the various biomarkers in rainbow trout after a 

single i.p. injection of endosulfan. 

 It was also hypothesized that potential contaminants in various regions of Oshawa 

Creek would have a negative effect in rainbow trout placed along its course for 30 days. 

Alternatively, caging of fish within Oshawa Creek would have no effect on liver EROD, 

CS, LDH, blood plasma VTG, HSI, GSI, brain AChE and condition factor in the caged 

trout.  
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4. Materials and Methods 
 

4.1.0 Chemicals and Reagents 
 

 All chemicals and reagents were obtained from Sigma Aldrich (Oakville, Ontario 

Canada) and Fisher Scientific (112 Colonnade Road, Ottawa, Ontario, K2E 7L6) except 

for polyclonal antibody (Rabbit anti-Sea Bream) for trout vitellogenin which was 

acquired from Biosense Laboratory (Thormøhlensgt, 55 Bergen, N-5008, Norway). 

 

4.2.0 Fish Sampling 
 

 All trout were anaesthetized with MS-222 (90 mg/L) in 10 L of water until there 

was no response from outside stimulus. They were then placed ventral side up and blood 

was removed from the caudal vein with a 22G1 blood sampling needle and a 4-6 ml 

vaccutainer. The trout were then opened longitudinally by inserting scissors in the anus 

and cutting towards the head, ending just after the operculum. Tissues excised include 

liver, kidney, 2nd gill arch, gonads, fat, muscle and brain. All tissues were placed in 2 ml 

cryo-tubes and stored in a -80 oC freezer, with the exception of the gill arches and gonads 

which were stored in 4 % formalin in 1.7-2 ml micro-centrifuge tubes. Blood containing 

vaccutainers were spun at 4000 rpm at 4 oC for 10 minutes, supernatant removed and 

placed in 1.7 ml micro-centrifuge tubes. The blood plasma was then stored in a -80 oC 

freezer.     

 

4.3.0 Tissue Analysis 
 

4.3.1 Bradford Protein Analysis 
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 Bradford protein analysis was performed on liver, brains, and blood plasma. The 

technique used was modified from a cuvette technique by Bradford (1976). Samples were 

diluted in Milli-Q water (1/5 liver, 1/40 brain, and 1/50 blood plasma) and plated in 

triplicate on a 96 well UV micro-plate. 225 µl of Bradford reagent (Bioshop Inc.) was 

added to each well except blanks and incubated for 45 minutes. Absorbance was read in a 

(Bio-Tek Synergry HT micro plate reader) plate reader at 595 nm. 

 

4.3.2 7-Ethoxyresorufin-O-deethylase 
 

 Livers were sectioned with 50 mg of liver being added to 250 ul of HEPES 

grinding buffer and put into a 2 ml micro-centrifuge tube. They were then homogenized 

at level 3 for 5-8 s using an Ika: T-25 basic Ultra-Turrax homogenizer. Liver homogenate 

was then centrifuged at 9000 g for 20 minutes at 2 ºC. The supernatant was further 

collected in 1.5 ml micro-centrifuge tubes, thus containing within the supernatant the S9 

fraction of the liver. Supernatants were stored at -80 ºC until further analysis. 

Hepes grinding buffer was prepared by dissolving 5.592 g potassium chloride and 

2.603 g HEPES in 500 ml of Milli-Q water and adjusted to pH 7.5, then stored at 4 oC. 

Hepes buffer was prepared by dissolving 13.015 g Hepes in 500 ml of Milli-Q 

water and adjusted to pH 7.8 and also stored at 4 oC.  

Next, 0.022 mg of 7-ethoxyresorufin was dissolved in 1 ml DMSO (dimethyl 

sulfoxide). It was then checked for absorbance (461.5 nm) to ensure that it read between 

1.60 and 1.70 absorbance units. A volume of 550 µl was required per plate. It was then 

stored at -20 oC wrapped in tinfoil. 

NADPH was prepared at the moment of use and required 10 mg of NADPH per 1 

ml of Milli-Q water per plate. 

Resorufin standards were prepared by creating a super stock solution which was 

diluted to produce working solutions. Super stock solutions consisted of 5.0 mg resorufin 

dissolved in 1 ml DMSO (this may take several days). Once dissolved the super stock 
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was wrapped in tin foil and stored at -20 oC. The working solution was diluted from the 

super stock; by diluting 1 ml super stock in 9 ml DMSO. This was stored in the same 

manner as the super stock. The working solution was used to create the standard curve: 

10 µl of working solution was diluted in 4990 µl of HEPES grinding buffer and aliquoted 

into 5 test tubes containing 0, 200, 400, 600, 800 µl and 1000, 800, 600, 400, 200 µl of 

working solution and HEPES grinding buffer respectively.  

Once the livers were homogenized, 50 µl of standard were added to wells B-F in 

triplicate in a 96 well, non-binding flat bottomed, black polystyrene microplate (well A 

was used for a blank). 50 µl of homogenized liver S9 fraction was then added to the 

remainder of the plate in triplicate. 550 µl of 7-ethoxyresorufin was combined to 4550 µl 

of HEPES buffer and then 50 µl was added to every well of the plate except the blanks. 

The plate was then incubated in the dark at room temperature for 10 minutes. Once 

incubation was completed 10 µl of NADPH was added to every well except the blanks to 

start the enzymatic reaction. Once the NADPH was added to the plate, the plate was 

immediately read. The KC4 EROD protocol was set with an excitation filter of 530 nm 

(30 nm bandwidth), an emission filter of 590 nm (35 nm bandwidth) and a sensitivity set 

to wells F1-F3. Data collected consisted of fluorescent units per minute for liver samples 

and mean slope for the resorufin calibration curve.     

 

4.3.3 Enzyme Linked Immunosorbent Assay (ELISA) for fish Vitellogenin 
 

 The ELISA method to test for fish VTG was based on those described by Orrego 

et al., (2009). 96 well flat bottomed, half area, high binding, polystyrene plates from 

Corning were utilized as they effectively allow for half the reagents to be used. Blood 

plasma was diluted in coating buffer (1.59 g sodium carbonate and 2.93 g of sodium 

bicarbonate dissolved in 1 L Milli-Q water and adjusted to a pH of 9.3) to a final 

concentration of 50 µg/ml (final protein dilutions were determined from a previous 

Bradford assay).  50 µl of sample was transferred to the plate in triplicate with 100 µl of 

coating buffer being added in triplicate to the first wells of the plate (blank). The plate 

was placed in a plastic container with a moist Kimwipe and left for 12 hours at 4 oC. 
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After the incubation period the plate was washed three times with 0.05 % TWEEN-20 in 

phosphate buffered saline (PBS) (TPBS) (PBS: 1.15 g of Na2HPO4, 0.2 g KH2PO4, 8.0 g 

NaCl, and 0.2 g KCl dissolved in 1 L Milli-Q water and adjusted to pH 7.3. TPBS: 100 

ml PBS with 500 µl Tween-20 made up to a final volume of 1 L with Milli-Q water). 

During the third wash the plate was allowed to sit for 5 minutes before removing the 

TPBS.  

 The plate was then blocked by adding 100 µl of blocking solution (2 % Bovine 

Serum Albumin (BSA) in PBS) to each well of the plate minus the blank. The plate was 

then placed back in the plastic container and incubated at room temperature for 1 h 

followed by another washing sequence.  

 Polyclonal antibody, rabbit anti-sea-bream was used as the primary antibody. 

Primary antibody was used at a concentration of 1/1000 in 1 % BSA in PBS. This was 

added at a volume of 50 µl per well except the blank and incubated for 24 hours at 4 oC. 

This was followed by another wash sequence. 

 Peroxidase sheep anti- IgG rabbit was used as the secondary antibody at a 

concentration of 1/5000 in 1 % BSA in PBS. This was added to the plate at 50 µl to all 

sample wells. The plate was then allowed to incubate for 1 h at room temperature 

followed by another washing sequence.  

 Finally the plate was developed by adding 50 µl of developing solution (1 o-

Phenylenediamine dihydrochloride (OPD) tablet in 24 ml Solution A (2.1014 g Citric 

acid dissolved in 100 ml of Milli-Q water), 25 ml Solution B (3.5598 g Na2HPO4·2H2O 

dissolved in 100 ml Milli-Q water), and 15 µl 30 % hydrogen peroxide) to each well and 

then incubated at 37 oC for 30 minutes. The reaction was stopped by the addition of 50 µl 

of 1.8 M H2SO4 to all sample wells. The plate was then read at 492 nm on the absorbance 

setting. VTG concentrations were then determined by comparison to the standard curve. 

The standard curve was performed in triplicate and used concentrations of 25, 50, 100, 

250, 500, 750, and 100 ng/ml of VTG. 
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4.3.4 Liver Lactate Dehydrogenase 
 

 Trout liver samples were homogenized using an Ika: T-25 basic Ultra-Turrax 

homogenizer on level 3 for 30 s in 9 volumes of imidazole buffer (3.4 g imidazole 

dissolved in 1 L of Milli-Q water, adjusted to pH 7.6) and centrifuged at 2300 g for 10 

minutes at 4 oC. The supernatants were collected and stored at -80 oC until further 

analysis. 

 Samples were thawed and 25 µl were transferred in triplicate to a 96 well UV 

micro-plate and incubated at room temperature for 10 minutes. During the incubation 

time the dosing solution was mixed (25 ml of NADH (4.729 mg of NADH dissolved in 

25 ml imidazole buffer)) and 5 ml of sodium pyruvate (3.668 mg sodium pyruvate 

dissolved in 5 ml of imidazole buffer) and incubated at 25 oC. After incubation 225 µl of 

dosing solution was added to each well to initiate the reaction. The plate was read to 

measure the change in absorbance at 340 nm at 30 second intervals for 3 minutes at 25 
oC. 

 

4.3.5 Liver Citrate Synthase 
 

 Livers were homogenized and supernatants collected in the same fashion as 

described for LDH. Samples were transferred to sample and control wells in duplicate 

and 150 µl of Tris buffer (121.14 g Tris (Tris-(hydroxymethyl)-aminomethan) in 1 L of 

Milli-Q water and adjusted to pH 8.1) to sample wells and 175 µl to control wells. The 

plate was incubated at room temperature for 5 minutes and then the addition of 25 µl of 

(5,5'-dithiobis(2-nitrobenzoate)) (DTNB) (1.1889 mg dissolved in 3 ml of Tris buffer) 

was added to all wells. The plate was then incubated for another 5 minutes. Following 

incubation, 25 µl of 3 Mm acetyle-CoA was added to every well and the plate incubated 

again for 10 minutes at room temperature. At this point 25 µl of oxaloacetate (0.297 mg 

dissolved in 1.5 ml of Tris buffer) was added to all the sample wells to initiate the 

reaction. The absorbance of the samples was read at 412 nm at 30 second intervals for 5 

minutes.    
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4.3.6 Condition Factor 
 
 Condition factor was calculated by: 

      100. 

 
4.3.7 Hepatosomatic Index 
 
 Hepatosomatic index was calculated by:   100  

 . 

 

4.3.8 Gonadosomatic Index 
 

 Gonadosomatic index was calculated by:   100  

 . 

 

4.4.0 Statistical Analysis 
 

 All data was tested for normality and homogeneity of variance with a Shapiro-

Wilks test and Brown-Forsyth test respectively. Laboratory exposure 2, EROD was the 

only test to fail the Brown-Forsyth test and was transformed by an inverse regression. All 

data was tested at α = 0.1 to decrease the chances of Type II error and by 2-way factorial 

ANOVA to test if gender had any significant effects, if so those tissue analysis were split 

and analyzed by gender. Both laboratory exposures were analyzed by 2-way factorial 

ANOVA. Both field exposures were analyzed by 1-way ANOVA. All abiotic factors 

were also analyzed by 1-way ANOVA. Fishers LSD test was used when significance was 

indicated from the fore mentioned ANOVAs.  
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5. Laboratory Endosulfan Exposure 1 
 

5.1.0 Introduction 
 

 Endosulfan a non-systemic organochlorine pesticide used by many countries 

around the world including Canada and the United States (Harris et al., 2000; Siang et 

al., 2007). In Ontario, from Durham region and North to Georgian Bay endosulfan has 

the highest use for agricultural purposes (Harris et al., 2000) but, in recent years it use 

has been in decline (Tuduri et al., 2006). Due to its prevalent use, toxicologically relevant 

concentrations in aquatic ecosystems (Bernabo et al., 2008) and high toxicity to various 

aquatic species (LC50: 1.7 µg/L for rainbow trout and bluegill sunfish (Lepomis 

macrochirus), 1.5 µg/L for fathead minnows (Pimephales promelas), and 0.1 µg/L for 

striped bass (Mornone saxatillis) (Capkin et al., 2006; EPA, 2002)). Endosulfan has the 

potential to greatly disrupt aquatic populations and ecosystems and has been shown to 

have sub-chronic effects and be an endocrine disrupting compound causing feminization 

of Japanese medaka and decreased testicular testosterone in rats (Gormley and Teather, 

2003; DHHS, 2000).  

 In rainbow trout (Oncorhynchus mykiss) endosulfan has caused a wide range of 

effects including: hyperactivity, convulsions, paralysis, erratic behaviour, and eventually 

death through water borne and feed borne exposures (Harris et al., 2000; Broomhall S., 

2002; Brunelli et al., 2009; Naqvi and Vaishnavi, 1993; Yu, 2008). Very little work has 

been done with respect to intra-peritoneal injections (i.p.) of endosulfan and its 

subsequent effects on metabolic enzymes and the reproductive biomarker vitellogenin. In 

one study involving rainbow trout, i.p. injections, and monitoring of vitellogenin found 

no induction of vitellogenin at 9 days after injection (Andersen et al., 1997). However, 

vitellogenin induction may have occurred and returned to base levels before vitellogenin 

was analyzed (Orrego et al., 2009). 

 The aim of this study was to investigate the effects of endosulfan on various 

metabolic enzymes and its potential ability to cause feminization in rainbow trout via a 
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single i.p. injection at four different concentrations. Biomarkers including liver citrate 

synthase, lactate dehydrogenase, cytochrome P450 activity and blood plasma vitellogenin 

induction were investigated and correlated to dose.   

 

5.2.0 Materials and Methods 
 

5.2.1 Fish 
 

 Rainbow trout (Oncorhynchus mykiss) were obtained on May 7th, 2008 from 

Rainbow Springs Trout Farm in Thamesford, ON. The batch contained 247 trout (197 ± 

64 g). They were held in 1500 L tanks and maintained at 11.8 ± 0.23 oC with a dissolved 

oxygen content of 9.5 ± 0.19 ppm and acclimated in lab for two weeks before use.  

 

5.2.2 Stock and Working Solutions 
 

5.2.2.1 Endosulfan Stock Solution 
 

 Endosulfan stock solution was created by weighing 70 mg of 2:1, α:β-endosulfan 

(analytical standard) into a 2 ml micro-centrifuge tube on a micro-balance. In the fume 

hood 1 ml of acetone was used to dissolve the endosulfan. This was then added to 9 ml of 

acetone in a 10 ml brown injection bottle. Contents were mixed on a vortex for ~10 s. 

Final stock solution created was 7 mg/ml and stored in a plastic box in the -20 oC freezer 

until needed. 

 

5.2.2.2 Endosulfan Working Solutions 
 

 From the endosulfan stock solution, 4 working solutions were produced (0.1, 

0.32, 1, and 3.2 mg/ml). In each working solution the process was identical except for the 

amount of corn oil or endosulfan used. Briefly for the 0.1 mg/ml working solution; 0.143 

μl of stock solution was combined with 9.857 ml of corn oil in a 10 ml brown injection 
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bottle. The bottle was then capped with a rubber septum and sealed shut by crimping a 

metal ring around the rubber septum and the top of the bottle. The solution was stored 

alongside the stock solution in the -20 oC freezer. For the 0.32, 1, and 3.2 mg/ml working 

solutions; 0.457, 1.429, and 4.571 ml endosulfan stock solution were combined with 

9.543, 8.571, and 5.429 ml of corn oil respectively. All solutions were thawed for 1 h 

before use and mixed with a vortex for ~20 s.     

 

5.2.2.3 17-β-estradiol 
 

 Estradiol solution was created by weighing out 50 μg of 17-β-estradiol (≥ 98 %) 

into a 2 ml micro-centrifuge tube on the micro-balance. To this 1ml of acetone was used 

to dissolve the 17-β-estradiol by mixing it on a vortex for ~10 s. This solution was then 

added to 9 ml of corn oil in a 10 ml brown injection bottle and mixed for another 10 s and 

sealed as previously mentioned. Again this solution was stored alongside the endosulfan 

stock solution in the -20 oC freezer until needed. 

   

5.2.2 Injections 
 

 Injections commenced on August 25th and 26th, 2008.  Over the 2 days 120 fish 

were injected and an additional 20 were measured for experimental controls. Of the 

injected fish; 20 were carrier controls (corn oil), 20 were positive controls (17-β-

estradiol), and 80 were injected with four endosulfan treatments (0.1, 0.32, 1, and 3.2 

mg/kg endosulfan (20 fish per treatment)). Injections were carried out by anesthetising 

the trout with MS-222 (90 mg/L) in 10 L of water. Once the fish were non-responsive to 

outside stimulus they were transported to a scale and weighed to the 100th of a gram and 

measured for total, fork, and standard lengths. The trout were then placed ventral side up 

in a plastic container which allowed for constant water flow and fresh water to be passed 

over the gills. They were then injected using a Socorex© 187 pistol grip, vial feeding 

syringe and rotated, leaving the dorsal side up. Trout were then tagged with an Avery 

Dennison© tagging gun and coloured t-bar anchor tags (colour of tag depended on 
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treatment). Tags were placed in the muscle, port side just before the dorsal fin. Once 

injected and tagged, trout were placed in a recovery bucket with an air stone. Once 

recovered they were placed into one of two 1500 L tanks (10 fish from each treatment per 

tank).    

 Fish were sampled on 0, 2, 4, 8, 16, and 28 days after injection and analyzed as 

per 4.2.0 – 4.5.0. 

 

5.3.0 Results 
 

 In all biomarkers tested, the only one significantly affected by the sex of the fish 

was liver LDH, all other data was pooled for gender and analyzed accordingly. 

 Since trout were not tagged individually and separated by tank when sampling, 

only final weights and standard lengths for each treatment over 28 days are shown in 

Table 5.1 and Table 5.2. 

 It should be noted that there was mortality in the highest treatments (1.0 and 3.2 

mg/kg endosulfan) before their timed sampling dates. There was mortality 1 day before 

the first sampling period in which four trout in the 3.2 mg/kg endosulfan treatment died. 

Before the second sampling period four trout in 3.2 mg/kg endosulfan died again along 

with 2 from 1.0 mg/kg endosulfan treatment. Lastly before the third sampling period 

there was a loss of 2 trout from 3.2 mg/kg endosulfan treatment. 

Exposure of rainbow trout to endosulfan by single i.p. injection had no significant 

effects of GSI, HSI, condition factor, and standard length. However, exposure did have 

an effect on liver EROD, CS, female LDH, and blood plasma VTG (Figures 5.3.1 – 

5.3.6).  

Exposure to 0.32 mg/kg endosulfan caused a 2-fold decrease in liver EROD 

activity in fish sampled on day 2 compared to fish sampled at day 16 (Figure 5.1 and 

Figure 5.2). Fish exposed to 0.1 mg/kg endosulfan at day 28 had significantly lower 

EROD than fish sampled on day 16. Fish injected with 1.0 mg/kg endosulfan sampled on 
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day 16 were significantly lower compared to corn oil controls sampled on days 2, 8, 16. 

Fish injected with the 0.32 mg/kg endosulfan had decreased EROD activity at days 2 and 

4 compared to fish sampled on day 28 (1.5 and 1.0-fold respectively). Fish exposed to 3.2 

mg/kg endosulfan and sampled on day 4 had a 3.0, 2.5, 4.0, and 2.0-fold increase in 

EROD activity compared to fish exposed to 3.2 mg/kg endosulfan sampled on days 2, 8, 

16, and 28, respectively. EROD activity was also significantly higher than the corn oil 

controls on all days.  

The majority of liver EROD activities across all endosulfan treatments were 

below time zero fish except for trout sampled at day 4 exposed to 3.2 mg/kg endosulfan. 

Fish EROD at time zero was significantly induced compared with fish exposed to 0.1 

mg/kg endosulfan (fish sampled on days 2, 4, 8, 28), fish exposed to 0.32 mg/kg 

endosulfan across all sample days, fish exposed to 1.0 mg/kg endosulfan (sample on days 

8-16), and fish exposed to 3.2 mg/kg endosulfan (sampled on days 2, 8, 16, 28). 

Trout injected with higher endosulfan treatments (1.0 and 3.2 mg/kg endosulfan) 

had a greater induction of EROD activity compared to fish exposed to the lower 

treatments (0.1 and 0.32 mg/kg endosulfan) but, were declining as EROD activity in trout 

exposed to the lower doses started to increase. Trout exposed to 1.0 mg/kg endosulfan 

had a 2.0-fold increase in EROD activity compared to fish exposed to 0.32 mg/kg 

endosulfan sampled on day 2 and fish exposed to 3.2 mg/kg endosulfan was significantly 

higher than all other endosulfan treatments sampled on day 4. 

EROD activity in fish exposed to 17-β estradiol was 2.0 – fold lower compared to 

corn oil controls  sampled on day 8 but, recovered when compared to fish in the same 

treatment sampled on day 16 (increase of 2.0 – fold). 

Liver citrate synthase activity was reduced by endosulfan exposure with LDH of 

fish exposed to 0.1 mg/kg endosulfan sampled on day 2 and 4 inhibited by approximately 

3-fold compared to carrier controls fish.  Fish injected with 0.1 mg/kg endosulfan 

experienced a recovery in CS activity at day 8 with a 4 – fold increase compared to trout 

in the same treatment sampled on day 4 (Figure 5.3 and Figure 5.4). 
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Table 5.1: Weight of time zero fish (TZ), control rainbow trout (EC) and fish exposed to, 

corn oil (CO), 5 mg/kg 17-β estradiol (E2), and endosulfan (0.1, 0.32, 1 and 3.2mg/kg) 

over 28 days. Values are given as means ± standard deviation. 

  TZ EC CO 17-B 
 

Time zero 
  

157.91 ± 20.30 
        

Day 2     183.84 ± 24.54 188.51 ± 37.71 141.29 ± 29.11 

Day 4     211.99 ± 39.37 177.46 ± 53.54 132.49 ± 34.04 

Day 8     194.81 ± 74.13 249.97 ± 23.10 165.00 ± 20.98 

Day 16     242.67 ± 72.26 223.29 ± 39.28 233.39 ± 29.34 

Day 28     191.53 ± 65.75 242.07 ± 31.21 248.83 ± 77.64 

 

 0.1 0.32 1 3.2 

 
Day 2 

 
190.49 ± 60.15 

 
198.67 ± 46.77 

 
223.26 ± 30.07 

 
195.04 ± 65.08 

Day 4 161.95 ± 21.71 233.75 ± 90.27 127.68 ± 93.48 151.09 ± 36.32 

Day 8 188.56 ± 59.90 234.51 ± 71.68 226.18 ± 47.60 147.10 ± 42.06 

Day 16 191.92 ± 57.42 255.72 ± 24.20 256.07 ± 92.42 223.50 ± 48.12 

Day 28 272.15 ± 84.73 174.67 ± 94.32 166.66 ± 72.82 209.49 ± 67.30 
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Table 5.2: Standard length of time zero fish (TZ), control rainbow trout (EC) and fish 

exposed to corn oil (CO), 5 mg/kg 17-β estradiol (E2), and endosulfan (0.1, 0.32, 1 and 

3.2 mg/kg) over 28 days. Values are given as means ± standard deviation. 

  TZ EC CO 17-B 

 
Time zero 

  
23.93 ± 1.34 

         

Day 2     24.60 ± 1.27 24.00 ± 1.58 22.50 ± 1.58 

Day 4     24.98 ± 1.44 26.18 ± 1.41 22.53 ± 2.19 

Day 8     24.38 ± 2.43 26.68 ± 1.16 23.75 ± 1.55 

Day 16     25.25 ± 3.52 25.70 ± 1.67 26.00 ± 1.41 

Day 28     23.55 ± 2.58 25.20 ± 1.12 25.73 ± 2.49 

 

  0.1 0.32 1 3.2 

 
Day 2 

  
25.23 ± 1.54 

 
25.45 ± 2.50 

 
25.73 ± 1.07 

 
24.00 ± 2.31 

Day 4  23.13 ± 0.85 25.83 ± 3.29 21.35 ± 4.79 23.45 ± 2.49 

Day 8  24.18 ± 2.67 26.38 ± 2.04 26.15 ± 1.27 23.08 ± 1.85 

Day 16  24.38 ± 1.60 26.55 ± 1.32 26.3 ± 2.89 25.78 ± 1.00 

Day 28  26.60 ± 1.35 23.23 ± 3.35 25.9 ± 2.87 24.88 ± 2.31 
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Figure 5.1: Liver EROD activity of time zero fish (TZ), control trout (EC) exposed to 

nothing, corn oil (CO) and 17-β estradiol (E2). Values are given as means ± standard 

error. Note bars follow the order as appearing in the legend. a denotes significance 

between 17-β estradiol and corn oil. 
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Figure 5.2: Liver EROD activity of time zero fish (TZ) and rainbow trout exposed to 

endosulfan (0.1, 0.32, 1 and 3.2 mg/kg). Data is presented as means ± standard error. 

Note bars follow the order as appearing in the legend. * denotes significance between 

matching treatments across time, a denotes significance compared to 0.32 mg/kg at day 

28, b denotes significance compared to 3.2 mg/kg, day 4, d denotes significance between 

0.32 mg/kg and 1.0 mg/kg, day 2, and c denotes significance compared to time zero. 

  

Day Sampled

0 2 4 8 16 28

E
R

O
D

 A
ct

iv
ity

 
(p

m
ol

/re
s/

m
in

/m
g 

pr
ot

ei
n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
TZ 
CO 
0.1 mg/kg 
0.32 mg/kg 
1.0 mg/kg 
3.2 mg/kg 

*,
c

*,c

*,
a,
c

*,c

*,d
*

,c

*,b

*,c

*,c

*,c

*,ca,b a,b
a,b

b b

c

c
c

c

c,
d

c
c c



43 
 

Similar effects were seen for fish exposed to 1.0 mg/kg endosulfan but, a recovery in CS 

activity did not appear until day 28. CS activity in trout exposed to 0.32 mg/kg 

endosulfan was only inhibited at day 16 compared to corn oil controls. A decrease in CS 

activity of 0.21 ± 0.09 µmol/min/mg protein was experienced by fish exposed to 0.32 

mg/kg endosulfan sampled on day 16 compared to fish sampled on day 8. Fish exposed to 

3.2 mg/kg endosulfan sampled on day 8 and 16 had 2.5 – 3 fold of 0.25 ± 0.11 and 0.24 ± 

0.12 µmol/min/mg protein inhibited CS activity, respectively, compared to similarly 

treated fish sampled on days 2 and 4, and corn oil controls. Fish exposed to 3.2 mg/kg 

endosulfan had a partial recovery in CS activity day 28. It should be noted that corn oil 

control fish had a lowered CS activity over time and controls sampled on day 28 had 

significantly lower CS activity than controls exposed at all other sampling periods.   

Exposure to 17- β estradiol caused CS activity inhibition in livers of fish sampled 

on day 4 onwards and was significantly lower than the corn oil control trout sampled on 

days 4 through 16. 

There was a significant difference in liver LDH activity between sexes in both 

experiments. In the first experiment, there was no significant difference in male liver 

LDH for any treatments at any day sampled but there were a significant treatment 

differences in LDH activity for female (Figure 5.5). Fish exposed to 0.1 mg/kg 

endosulfan had induced LDH activity at days 8 and 16 relative to the controls. At day 28 

LDH activity in 0.1 mg/kg injected trout returned back to control and 2 day levels. LDH 

activities at days 8 and 16 in 0.1 mg/kg injected fish were greater than respective 

controls. Trout injected with 0.32 mg/kg endosulfan had significantly induced LDH 

activity after 2 days, but significantly decreased back to control levels on the sollowing 

sampling days. Female trout injected with 1.0 mg/kg endosulfan had a significant 

induction in LDH activity at day 28 relative to controls. On all of the other sampling days 

female LDH in all endosulfan treatments was lower than corn oil controls and not 

different from each other. Fish dosed with 0.32 and 1.0 mg/kg endosulfan had the highest 

recorded overall LDH activity of 0.67 and 0.69 ± 0.02 µmol/min/mg protein respectively. 
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Time zero fish liver LDH activity was higher than most treatments across all days 

except compared to trout injected with 0.32 mg/kg endosulfan sampled on day 2 and fish 

injected with 3.2 mg/kg endosulfan sampled on day 28. 

There were no differences in plasma VTG between male and female trout exposed 

to endosulfan and 17-β estradiol. All concentrations were about 40 to 60 – fold increased 

compared to the corn oil controls on sample day 2 except for 0.32 mg/kg endosulfan 

injected fish (Figure 5.6). After day 2, all VTG activity declined to below 2 – fold higher 

than corn oil controls for all days except for day 8. Day 8 was significantly induced (4 to 

10 – fold) compared to corn oil controls but was not different compared to day 4 

continuing to show the decline in VTG activity for the duration of endosulfan exposure. 
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Figure 5.3: Liver CS activity of time zero fish (TZ), control trout (EC) exposed to 

nothing, corn oil (CO) and 17-β estradiol (E2). Values given as means ± standard error. 

Note bars follow the order as appearing in the legend. * denotes significance between 17-

β estradiol compared to day 2 and a signifies difference compared to corn oil. 
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Figure 5.4: Liver CS activity of time zero fish (TZ) and rainbow trout exposed to 

endosulfan (0.1, 0.32, 1 and 3.2 mg/kg). Data is presented as means ± standard error. 

Note bars follow the order as appearing in the legend. * denotes significance within 

treatments across sampling days, a shows the difference between 0.1 mg/kg and corn oil, 

b is comparison between 1.0 mg/kg and corn oil, c denotes significance between 0.32 

mg/kg and d denotes significance between 3.2 mg/kg and corn oil. 
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Figure 5.4: Female liver LDH Activity of time zero fish (TZ) and rainbow trout exposed 

to endosulfan (0.1, 0.32, 1 and 3.2 mg/kg). Data is presented as means ± standard error. 

Note bars follow the order as appearing in the legend. * denotes significance within 

treatments across time, letters represent difference in treatments compared to corn oil 

controls. 
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Figure 5.6: Plasma VTG activity of rainbow trout exposed to endosulfan (0.1, 0.32, 1 

and 3.2 mg/kg) and 17-β estradiol (E2). Data is given as fold increase over corn oil 

control. Note bars follow the order as appearing in the legend. Day 2 and 8 are 

significantly induced compared to corn oil. 
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5.4.0 Discussion 
 

The inhibited CS levels that were observed for all endosulfan treatments might 

have affected the fish bioenergetics. A study by Mathers et al., (1993) found that rainbow 

trout fry fed minimal rations had decreased CS activity (15.56 ± 3.49 µmols/g·DWmin) 

compared to trout that were fed a medium ration. Thus it could be conceptualized that the 

decreased CS activity could have been caused by a decrease in ration intake, rather than a 

direct effect of endosulfan. In future studies fish should be fed to a controlled ration level 

to remove this possible confounding effect of ration.  

Overall liver CS activity was generally lower in trout exposed to endosulfan than 

to corn oil and 17-β estradiol and a study by Tripathi and Verma (2004) observed that 

adult freshwater catfish (C. Batrachus) exposed to 0.06 mg/L of endosulfan had 

decreased liver CS activity compared to the controls with a peak decrease of 1.3853 ± 

0.582 to a final activity of 2.068 ± 0.344 units/g wt tissue mass at 21 days exposure. 

Since this was a waterborne application of endosulfan it is not directly comparable to i.p. 

injections, however it demonstrated that endosulfan had an effect on aerobic metabolism. 

This study also observed that as the fish were removed from exposure tanks and placed in 

clean water CS activity along with LDH activity returned to normal, further supporting 

the hypothesis that endosulfan is quickly eliminated from the body and does not 

accumulate in the tissues after a pulse waterborne exposure (Tripathi and Verma, 2004; 

EPA, 2002). 

 Endosulfan exposure did cause an increase in female liver LDH activity which is 

in agreement with Kurutaş et al., (2006) who observed increased LDH groupings 

compared to the controls via histopathological techniques. This increasing trend seen is in 

agreement to effects seen with rainbow trout fed cyclopropenoid fatty acids and aflatoxin 

B1 (Taylor et al., 1973).  

Contrary to this, Tripathi and Verma (2004) observed a decrease in brain LDH 

activity by 31% when freshwater catfish were exposed to 0.06 mg/L endosulfan.  The 

increased female LDH activity seen in this study was however, not larger than the time 

zero control which could be attributed to the females going through sexual maturation 
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and requiring more nutrients than they were obtaining from their feed. It has been found 

that female cardiac LDH activity was 30 % higher than in males (Battiprolu et al., 2006), 

indicating a possible higher reliance on anaerobic glycolysis. Thus gender must also be 

considered when investigating metabolic enzymes.  

 The higher time zero LDH activity could also be attributed to cyclic enzyme 

induction corresponding to daily feeding times. To possibly reduce this effect, trout 

should have been starved for a period greater than 24 h to disrupt the cycle (Mathers et 

al., 1993). 

 Liver EROD activity is used primarily to quantify the induction of cytochrome P-

450 1A1 (Petrulis et al., 2000). An unexpected result from this study was the decreased 

activity of EROD with exposure compared to corn oil controls. This is contrary to several 

other studies that reported increased activity (Coimbra et al., 2007; Jensen et al., 1991). 

Fish treated with 3.2 mg/kg endosulfan sampled at day 4 did have a significantly 

increased EROD activity compared to the other treatments including corn oil. 

Unfortunately that day correlated to significant death at that time. The decreased EROD 

could be attributed to the other concentrations being too low to cause a significant 

induction of EROD or endosulfan being transformed and being eliminated from the body 

before it could significantly induce EROD activity (Tripathi and Verma, 2004; EPA 

2002). Unfortunately EROD is hard to detect at significant levels if there are large 

variances in baseline levels (Kammann et al., 2005).    

 There was high variability in the weight and sexual maturation of the fish used in 

this experiment. For future experiments it would be recommended to individually tag 

each fish and to decrease fish weight variability by reducing their time in holding tanks 

before they are to be used and keep their feed maintained (e.g. 4 % body weight) and not 

fed to satiation. In this particular experiment the trout were held for approximately 4 

months before being used and the fish had time to mature. Upon removal there were 4 

fish that had mature gonads. To avoid this issue it would be advisable to use the fish 

within a more appropriate amount of time (2 weeks after collecting from the hatchery). 

This would reduce the amount of weight and sexual variation seen in this experiment. 

 Plasma VTG induction from endosulfan exposure was similar to that of 17-β 

estradiol for all endosulfan doses at sample day 2 (1 – fold increase over corn oil control). 
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There was no difference between males and females during this time period and 

increased plasma VTG levels would be indicative of endocrine disruption (Larkin et al., 

2003). The VTG induction did decline after 2 days for all treatments which is in 

agreement with 17-β estradiols induction and decline pattern (Orrego et al., 2009).  

 Increased VTG is characteristic of organochlorine exposure and has been found 

for several organochlorine compounds (Hodges et al., 2000 and Metcalfe et al., 2000). 

VTG induction observed in this experiment is contradictory to results found by DHHS 

(2000) and Harris et al. (2000). They observed a decrease in plasma VTG for catfish 

exposed to 1.5 µg/L endosulfan after 48 hours and no induction of VTG in rainbow trout 

after 9 days with a single i.p. injection. Harris et al., (2000) proposed endosulfan as an 

anti-estrogenic compound which would be in agreement with DHHS (2000). If induction 

of VTG did follow the pattern observed in this experiment then it is quite possible that 

the observations by DHHS (2000) were too late after injection to see any VTG induction.   

 It should be noted that there is very little work with VTG measurements for 

rainbow trout and endosulfan. Thus more work should be done on this aspect to give a 

more definitive conclusion. 

    
       

5.5.0 Conclusion 
 
 From this experiment it can be concluded that exposure to juvenile rainbow trout 

via a single i.p. injection with endosulfan can cause increased liver EROD activity, 

disrupted aerobic and anaerobic metabolism and has the potential to be an endocrine 

disrupter as evidenced by induced plasma VTG levels. Follow up experiments should be 

done possibly with use of genomics, to look at VTG expression to confirm its induction 

by endosulfan acting as an endocrine disruptor as there is conflicting evidence. In future 

studies it would also be desirable to individually tag fish so changes in weight and length 

could be determined.    
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6. Laboratory Endosulfan Exposure 2 
 

6.1.0 Introduction 
 

 A second laboratory exposure was conducted which controlled for some of the 

confounding factors that occurred in the first laboratory exposure. Factors which were 

addressed included standardizing the trout weights (50-90 g) and adding an additional 

treatment to account for the possibility of endosulfan acting as an anti-estrogenic 

compound in rainbow trout (Harris et al., 2000). 

 The aim of this study was to replicate the original laboratory exposure and to 

investigate the possibility of endosulfan acting as an anti-estrogenic compound through 

the use of an endosulfan and 17-β estradiol mixture. 

 

6.2.0 Materials and Methods 
 

6.2.1 Fish 
 

300 rainbow trout (Oncorhynchus mykiss) were obtained December 22, 2008 

from Rainbow Springs Trout Farm in Thamesford, ON. They were held in 1500 L tanks 

and maintained at 10.4 ± 0.2 oC with a dissolved oxygen content of 9.44 ± 0.11 ppm and 

acclimated in lab for two weeks before use. 164 trout were selected between the weights 

of 50-90 g for use in this exposure. 

 

6.2.2 Stock and Working Solutions 
 

6.2.2.1 Endosulfan Stock Solution 
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 Endosulfan stock solution was created by weighing 40.3 mg of 2:1, α:β-

endosulfan (analytical standard) into a 2 ml micro-centrifuge tube on a micro-balance. In 

the fume hood 1 ml of acetone was used to dissolve the endosulfan. This was then added 

to 9 ml of acetone in a 10 ml brown injection bottle. Contents were mixed on a vortex for 

~10 s. Final stock solution created was 4.03 mg/ml and stored in a plastic box in the -20 
oC freezer until needed. 

 

6.2.2.2 Endosulfan Working Solutions 
 

 From the endosulfan stock solution, 4 working solutions were produced (0.1, 

0.32, 1, and 3.2 mg/ml. In each working solution the process was identical except for the 

amount of corn oil or endosulfan used. Briefly for the 0.1 mg/ml working solution; 0.124 

μl of stock solution was combined with 9.88 ml of corn oil in a 10 ml brown injection 

bottle. The bottle was then capped with a rubber septum and sealed shut by crimping a 

metal ring around the rubber septum and the top of the bottle. The solution was stored 

alongside the stock solution in the -20 oC freezer. For the 0.32, 1, and 3.2 mg/ml working 

solutions; 0.397, 1.24, and 3.97 ml endosulfan stock solution were combined with 9.60, 

8.76, and 6.03 ml of corn oil respectively. All solutions were thawed for 1 hour before 

use and mixed with a vortex for ~20 s.     

 

6.2.2.3 17-β-estradiol  
 

 This solution was prepared as per section 5.2.2.3. 

 

6.2.2.4 Mix Solution 
 

 Mix solution was a combination of 0.32 mg/ml endosulfan and 5 mg/ml 17-β 

estradiol. It was prepared in the same manner as the 0.32 mg/ml with the addition of 50 

µg of 17-β estradiol and vortexed until the solution was thoroughly mixed and then stored 

alongside the other solutions in the -20 oC freezer. 
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6.2.3 Injections 
 

 Injections commenced on January 14th, 2009 as per section 5.2.2 with the addition 

of the mixed treatment. The extra treatment added another 20 trout to a total fish count of 

164 trout with a weight range between 50-90 g. 

 Fish were sampled on 0, 2, 4, 8, 16, and 28 days after injection and analyzed as 

per 4.2.0 – 4.5.0. 

 

6.3.0 Results 
 

 Since trout were not tagged individually or separated by tank when sampled final 

weight and standard length are given for each treatment and sampling period (Table 6.1 

and Table 6.2).  

 As per section 5.3.0 sexes were analysed for differences in the various biomarkers 

tested. The only biomarker that was significantly affected was liver LDH and only female 

LDH had significantly different activity. If no difference was detected than data were 

pooled by sexes and analysis was continued normally. There was no difference in the 

gonadosomatic index. Condition factor and hepatosomatic index did have significant 

differences which can be seen in Figure 6.1 and Figure 6.2.  

Fish exposed to 0.1 mg/kg endosulfan had a 1.0 – fold increase at day 8 followed 

by a reduction in condition factor in trout sampled on day 28 of the same magnitude as 

the original increase. This increase in condition factor was also higher than fish injected 

with corn oil sampled on days 4-16 by 2.4 ± 0.13 - 1.4 ± 0.05 g/cm3 respectively. The 

decrease in condition factor for trout dosed with 0.1 mg/kg endosulfan sampled on day 16 

and 28 were below the condition factor for the corn oil control fish at the corresponding 

days. Condition factor in fish dosed with 0.32 mg/kg endosulfan did not vary 

significantly over time but was significantly greater than the corn oil controls sampled on 

day 4 by 0.14 ± 0.1 g/cm3. Fish exposed to 1.0 mg/kg endosulfan had higher condition 
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factor than corn oil controls sampled on day 4. Fish dosed with 1.0 mg/kg endosulfan had 

a 1 – fold lower condition factor at day 8 and 16 compared to fish sampled on day 2 and 

28. Trout injected with 3.2 mg/kg endosulfan sampled on day 16 had a higher condition 

factor than fish sampled on days 4 and 28. Fish dosed with 3.2 mg/kg had a larger 

condition factor on days 2 through 8 by approximately 1.0 – fold.  On day 4, the 

condition factor of fish exposed to 3.2 mg/kg endosulfan was lower than both 0.32 and 

1.0 mg/kg endosulfan treatments by 0.16 ± 0.08 and 0.17 ± 0.07 g/cm3 respectively.  

Mix treatment fish followed the same condition factor pattern as those injected 

with 3.2 mg/kg endosulfan but, on day 2 their condition factor was significantly higher 

than fish exposed to 3.2 mg/kg endosulfan on days 2 – 8. Similar to those exposed to 1.0 

and 3.2 mg/kg endosulfan, the mix treatment showed a lowering condition factor on 

sample days 4 – 16 with recovery occurring on days 16 – 28, relative to controls. 

 Trout exposed to 17-β estradiol and corn oil exhibited the above mentioned 

profile with those sampled at day 8 having a lowered condition factor compared to fish 

sampled on days 2 and 28 for 17-β estradiol. Corn oil controls sampled on day 4 had a 

lowered condition factor compared to fish sampled on day 2. 

Trout exposed to 0.1 mg/kg endosulfan increased their hepatosomatic index by 

1.0 – fold from sample day 2 to 8. After day 8 the hepatosomatic index of fish dosed with 

0.1 mg/kg endosulfan dropped by 1.0 – fold to levels below corn oil controls at days 16 

and 28 (Figure 6.3 and 6.4). Exposure to 0.32 mg/kg endosulfan followed an increasing 

trend through all days with those sampled on day 16 (1.0 – fold) having larger HSI than 

fish sampled on days 2 and day 28. Fish dosed with 0.32 mg/kg sampled on day 28 for 

the same treatment had a larger hepatosomatic index than all sample days with a 1.5 – 

fold increase from day 2. HSI of fish injected with 0.32 mg/kg endosulfan was not 

different from the corn oil controls. Trout injected with 1.0 mg/kg endosulfan had a 

decreased hepatosomatic index compared to corn oil control fish sampled at day 16. Fish 

sampled on days 2, 4, 16, and 28 in the third endosulfan treatment (1.0 mg/kg) had a 

hepatosomatic index lower than the corn oil control fish sampled on day 28. Exposure to 

3.2 mg/kg endosulfan displayed an increasing trend in hepatosomatic index starting at 

day 16 with fish sampled on day 28 being significantly larger than those sampled on days  
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Table 6.1: Weight of time zero fish (TZ), control rainbow trout (EC) and fish exposed to 

corn oil (CO), 5 mg/kg 17-β estradiol (E2), endosulfan (0.1, 0.32, 1 and 3.2 mg/kg) and 

mix solution of 5 mg/kg 17-β estradiol and 0.32 mg/kg endosulfan over 28 days. Values 

are given as means ± standard deviation.  

  TZ EC CO 17-B 

 
Time zero 

  
68.14 ± 5.42 

         

Day 2     55.99 ± 6.72 61.05 ± 10.63 58.30 ± 13.70 

Day 4     59.73 ± 15.43 61.14 ± 8.79 60.73 ± 7.78 

Day 8     67.46 ± 8.76 65.49 ± 10.50 68.78 ± 13.84 

Day 16     59.89 ± 16.39 63.84 ± 3.63 72.05 ± 10.30 

Day 28     92.69 ± 15.67 76.19 ± 14.67 73.70 ± 8.48 

 

 0.1 0.32 1 3.2 MIX 

 
Day 2 

 
61.50 ± 11.31 

 
71.05 ± 7.28 

 
67.62 ± 11.89 

 
53.16 ± 3.23 

 
66.86 ± 14.80 

Day 4 56.93 ± 10.18 72.18 ± 14.11 71.16 ± 9.87 77.55 ± 5.38 55.75 ± 6.46 

Day 8 54.34 ± 1.74 75.05 ± 9.33 70.24 ± 10.67 62.79 ± 14.22 68.65 ± 7.37 

Day 16 68.49 ± 10.71 67.45 ± 4.97 66.46 ± 6.69 74.60 ± 11.82 58.43 ± 6.73 

Day 28 60.86 ± 10.62 74.74 ± 12.28 70.33 ± 4.18 80.57 ± 14.95 70.20 ± 4.18 
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Table 6.2: Standard length of time zero fish (TZ), control rainbow trout (EC) and fish 

exposed to corn oil (CO), 5 mg/kg 17-β estradiol (E2), endosulfan (0.1, 0.32, 1 and 3.2 

mg/kg) and mix solution of 5 mg/kg 17-β estradiol and 0.32 mg.kg endosulfan over 28 

days. Values are given as means ± standard deviation. 

  TZ EC CO 17-B 

 
Time zero 

  
16.75 ± 0.289 

         

Day 2     16.15 ± 1.06 16.25 ± 0.55 15.80 ± 1.53 

Day 4     16.40 ± 1.36 17.00 ± 0.77 16.15 ± 0.44 

Day 8     16.55 ± 0.53 16.95 ± 1.34 17.28 ± 1.53 

Day 16     15.93 ± 1.48 16.78 ± 0.26 17.25 ± 0.96 

Day 28     18.38 ± 0.85 17.13 ± 0.63 17.13 ± 0.85 

 

 0.1 0.32 1 3.2 MIX 
 

Day 2 
 

16.50 ± 1.29 
 

17.28 ± 0.63
 

16.75 ±1.19 
 

15.88 ± 0.48 
 

16.50 ± 0.46 
 

Day 4 16.18 ± 0.54 17.35 ± 1.64 17.20 ± 1.13 18.50 ± 0.41 16.08 ± 0.25 
 

Day 8 15.40 ± 0.20 17.65 ± 0.72 17.48 ± 0.92 16.83 ± 1.39 17.58 ± 0.53 
 

Day 16 17.33 ± 0.70 16.78 ± 0.91 17.38 ± 0.48 17.63 ± 1.25 16.25 ± 0.32 
 

Day 28 17.00 ± 0.82 17.25 ± 0.87 17.00 ± 0.71 17.63 ± 1.03 17.13 ± 0.24 
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Figure 6.1: Condition factor of time zero fish (TZ) and control trout (EC) along with fish 

injected with corn oil (CO) and 17-β estradiol (E2). Values are given as means ± standard 

error. Note bars follow the order as appearing in the legend. * represents significance 

within treatments across time. 
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Figure 6.2: Condition factor of time zero fish (TZ) and rainbow trout exposed to 

endosulfan (0.1, 0.32, 1 and 3.2 mg/kg) and a mix of 5mg/kg 17-β estradiol and 0.32 

mg.kg endosulfan. Values are given as means ± standard error. Note bars follow the order 

as appearing in the legend. * represents significance within treatments across time, a, c, d 

denotes significance between 0.1, 0.32, 1.0 mg/kg and corn oil respectively, b compares 

0.1 mg/kg and corn oil on day 28, e and f compares days 4 and 16 and days 4, 8, and 28 

for 3.2 mg/kg respectively, lastly g denotes significance between 0.32 mg/kg and 1.0 

mg/kg with 3.2 mg/kg. 
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Figure 6.3: Hepatosomatic of time zero fish (TZ) and control trout (EC) along with fish 
injected with corn oil (CO) and 17-β estradiol (E2). Values are given as means ± standard 
error. Note bars follow the order as appearing in the legend. a and b represents significant 
difference of corn oil compared to experimental control across all sample days.  
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Figure 6.4: Hepatosomatic index of time zero fish (TZ) and rainbow trout exposed to 

endosulfan (0.1, 0.32, 1 and 3.2 mg/kg) and a mix of 5 mg/kg 17-β estradiol and 0.32 

mg/kg endosulfan. Values are given as means ± standard error. Note bars follow the order 

as appearing in the legend. * represents significance within treatments across time, a 

indicates difference of 0.1 mg/kg with corn oil at day 28, b represents significance of 0.32 

mg/kg across all sample days, c and d show difference with 1.0 mg/kg compared to corn 

oil on day 16, e denotes significance of 3.2 mg/kg, days 2 and 8 with day 28, and f 

signifies significance of the mix treatment with corn oil on the corresponding days. 
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4 and 8. Corn oil control fish HSI was also larger at day 16 than HSI of fish treated with 

3.2 mg/kg endosulfan sampled on days 2-16.  

  Fish exposed to the mixed treatment also displayed an increasing trend in 

hepatosomatic index at day 8 and like the other treatments HSI decreased at day 16 and 

28 compared to corn oil controls. Mix treatment fish had a total increase in hepatosomatic 

index of 0.11 ± 0.17 g/cm3 over the 28 days. 

 Corn oil control fish had a significant increase in hepatosomatic index at day 16 

and 28 compared to fish sampled on days 2 and 4. This was a 1.5 – fold increase for those 

2 days. Fish injected with corn oil had a maximum increase in hepatosomatic index of 

0.56 ± 0.33 g/cm3 over the experimental controls.  

 Liver citrate synthase activity was generally reduced by endosulfan with CS of 

0.1 mg/kg injected fish not different over time, but liver CS activity of all endosulfan 

injected fish sampled on days 8 - 28 had 2.0 to 4.5 – fold lowered activities compared to 

the respective corn oil controls (Figure 6.5 and Figure 6.6). CS activity of fish injected 

with 0.32 mg/kg endosulfan did not vary significantly over the 28 day sampling period. 

CS of controls increased by 0.21 ± 0.09 µmol/min/mg protein over the experimental 

period reaching 0.44 ± 0.09 µmol/min/mg protein at the 28 day sampling period.  

Fish injected with the 17-β estradiol – 0.32 mg/kg endosulfan mixed treatment 

followed the same CS activity pattern as all the endosulfan treatments where CS activity 

was not different over time but was significantly lower for fish sampled on days 2 – 28 

compared to the controls sampled on days 8 – 28. 

Female liver lactate dehydrogenase activity in trout was also affected by exposure 

to endosulfan (Figure 6.7 and Figure 6.8). Females injected with 0.1 mg/kg endosulfan 

had a 26 and 23 – fold induction of LDH activity on days 2 and 28 compared to 0.1 

mg/kg injected fish sampled on day 16, respectively. LDH activity of 0.1 mg/kg injected 

fish not higher than controls on the corresponding days. Fish injected with 0.32 mg/kg 

endosulfan had no difference in LDH activity across all sample days, but were  
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Figure 6.5: Liver CS activity of time zero fish (TZ) and control trout (EC) along with 

fish injected with corn oil (CO) and 17-β estradiol (E2). Values are given as means ± 

standard error. Note bars follow the order as appearing in the legend. * denotes 

significance within treatments across time, a represents difference of 17-β estradiol 

compared to corn oil, and b represents the same thing as “a” but only for day 2. 
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Figure 6.6: Liver CS activity of time zero fish (TZ) and trout exposed to endosulfan (0.1, 

0.32, 1 and 3.2 mg/kg) and a mix of 5 mg/kg 17-β estradiol and 0.32 mg/kg endosulfan. 

Values are given as means ± standard error. Note bars follow the order as appearing in 

the legend. * represents significance within treatments across time, a denotes significance 

across all treatments and time except for 1.0 mg/kg, day 4 compared to corn oil on day 8 

and 3.2 mg/kg at day 2 with corn oil on days 8 and 16. 
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significantly lower than day 16 corn oil controls which had LDH activity of 1.33 

µmol/min/mg protein. Trout dosed with 1.0 mg/kg endosulfan had a significantly larger 

liver LDH activity on day 8 than at all other sample periods, but their LDH activity was 

not different from corn oil controls on any sample day. Fish injected with 1.0 mg/kg 

endosulfan had the highest LDH activity (1.00 ± 0.39 µmol/min/mg protein) compared to 

the other endosulfan and mix treatments. Exposure to 3.2 mg/kg endosulfan did not 

produce any significant induction of LDH across all sample days. Fish sampled on days 8 

and 16 from the 3.2 mg/kg endosulfan treatment had significantly inhibited LDH activity 

compared to corn oil controls sampled on days 2, 16, and 28. Trout dosed with 3.2 mg/kg 

endosulfan sampled on day 8 had lower LDH activity than fish treated with 0.1 and 0.32 

mg/kg endosulfan sampled on day 1. Trout injected with 3.2 mg/kg endosulfan also had 

lower LDH activity compared to fish treated with 0.1 mg/kg endosulfan sampled on day 

28. 

A significant decrease in LDH activity was observed in mixed treatment fish 

sampled on days 8 (2.5 – fold) and day 28 (320 – fold) compared to corn oil controls. 

Mix treated fish sampled at day 4 had a significant induction of LDH activity compared 

to fish sampled on day 28. 

Time zero fish had a larger liver LDH activity compared to all treatments and 

sampling times except for fish dosed with 1.0 mg/kg endosulfan sampled on day 8. 

  Within controls (Figure 6.7), corn oil treated fish sampled at day 16 had the 

largest induction of LDH activity compared to all the other controls except for time zero 

fish. The next largest activity was in livers of experimental controls sampled on day 4 at 

0.73 ± 0.16 µmol/min/mg protein.  

 Trout injected with endosulfan were observed to have plasma VTG induction 

relative to corn oil controls compared to all other treatments across all sample days 

(Figure 6.9). Corn oil controls also had the highest induction of VTG (966.1 ± 37.1 

ng/ml). Fish treated with the mix treatment had increased VTG induction compared to all 

treatments except corn oil controls, day 28 experimental controls, and those treated with 

0.32 mg/kg endosulfan. Trout treated with 17-β estradiol had increased VTG induction 
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for days sampled on days 2, 8, and 16 compared to fish treated with 0.32 mg/kg 

endosulfan by 2 – fold.    

 

  



67 
 

 

Figure 6.7: Female liver LDH activity of of time zero fish (TZ) and control trout (EC) 

along with fish injected with corn oil (CO) and 17-β estradiol (E2). Values are given as 

means ± standard error. Note bars follow the order as appearing in the legend. * denotes 

significance within treatment across time and a represents significance across all days and 

treatments, except with time zero. 
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Figure 6.8: Female liver LDH activity of time zero fish (TZ) and trout exposed to 

endosulfan (0.1, 0.32, 1 and 3.2 mg/kg) and a mix of 5 mg/kg 17-β estradiol and 0.32 

mg/kg endosulfan. Values are given as means ± standard error. Note bars follow the order 

as appearing in the legend. * denotes significance within treatments across time, a 

indicates significance across time and treatments except compared to 1.0 mg/kg at day 8, 

b represents significance across all time periods for 1.0 mg/kg, c shows significant 

difference of 3.2 mg/kg on day 16 with corn oil on days 2, 16 and 28, d indicates a 

difference between 3.2 mg/kg at day 16 with 0.1 mg/kg and 0.32 mg/kg on day 2 and 0.1 

mg/kg at day 28. 
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Figure 6.9: Plasma vitellogenin activity of time zero fish (TZ) control rainbow trout (EC) 

and trout exposed to corn oil (CO), 0.32 mg/kg endosulfan and a mix of 5mg/kg 17-β 

estradiol and 0.32 mg.kg endosulfan. Values are given as means ± standard error. Note 

bars follow the order as appearing in the legend. * denotes significance of fish treated 

with corn oil compared to all other treatments at all sampling days. a represents 

significance on fish treated with mix treatment compared to experimental control fish 

those treated with 0.32 mg/kg endosulfan sampled at days 2, 8 and 16. b denotes 

significance between fish treated with 17-β estradiol and fish treated with 0.32 mg/kg 

endosulfan on days 2, 8, and 16. 
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6.4.0 Discussion 
 

 Citrate synthase activity was significantly inhibited in all treatments in fish livers 

sampled on days 8-28. This observation is an indication that endosulfan caused a 

decrease in aerobic metabolism which was also seen in the first laboratory endosulfan 

exposure (Section 5.3.0). However, there was not an increase in female liver LDH 

activity across all treatments or in males. There was only increased LDH in trout sampled 

on days 2 and 8 for 0.1 and 1.0 mg/kg endosulfan treated trout respectively. This was 

contrary to what would be thought to occur when aerobic metabolism is inhibited. LDH 

activity results are different to what was found in the first endosulfan experiment. 

Females in both experiments had a significant difference in liver LDH compared to 

males, similar to results observed by Battiprolu et al., (2006) but, in the first experiment 

there was a noticeable increase in liver LDH activity in contrast to this experiment.   

 In the first experiment the trout were significantly larger than those used in this 

exposure. A study by Somero and Childress (1980) observed an increase in muscle LDH 

activity from 5 different sampling points for Paralobrax clathratus and 9 sampling spots 

along the dorsal side of Medialuna californiensis with increasing fish size. Even though 

this is in dorsal muscle tissue it could be indicative that the smaller trout used in the 

second experiment did not have the potential to induce anaerobic metabolic rates 

compared to the larger fish used in the first laboratory exposure.  

 Rats fed a diet of 1.0 and 2.0 mg/kg of endosulfan per day experienced a 1.3 and 

1.6 fold increase in testicular LDH respectively (Sinha et al., 2001). Although involving 

testes, it is apparent that endosulfan caused an increase in LDH activity in the test 

organisms in various tissues. Thus it is possible that injected trout were able to 

metabolize endosulfan and remove it before anaerobic metabolism was necessary.   

 Exposure to endosulfan caused a decrease in condition factor followed by 

recovery, except for the lower doses which experienced a slow decline. This decline and 

recovery could be indicative of endosulfan being removed from the body (EPA, 2002).  A 

decrease in condition factor was also observed in white sturgeon (Acipenser 

transmontanus) exposed to various organochlorine chemicals in the USA (Foster et al., 
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2001). The decrease in condition factor could be caused by endosulfan reducing fat stores 

of the trout exposed. Decreased fish weight was reported following exposure to varying 

simultaneous exposures to endosulfan and disulfoton (Arnold et al., 1995). At the highest 

exposure concentrations (50 ng/L endosulfan and 10 µg/L disulfoton), trout experienced 

a 50 % decrease in weight compared to controls over the 34 day exposure. A decrease in 

fish weight can lead to a decrease in condition factor as observed in this experiment.   

There was no correlation of endosulfan dose and increased HSI or liver EROD 

which was also observed in some experiments with Nile tilapia (Oreochromis niloticus) 

exposed to 0.001 - 1.0 µg/g endosulfan (Coimbra et al., 2007). Trout exposed to 

endosulfan experienced increases followed by decreases in HSI. The increase in HSI is 

most likely related to the liver increasing CYP 1A1 protein production to detoxify the 

injected endosulfan followed by possible liver damage as endosulfan persisted or 

increased endosulfan concentrations were administered. It is this increasing of production 

of CYP 1A1 followed by possible necrosis that might cause the liver to increase in size 

without inducing significant levels of EROD activity (Coimbra et al., 2007). This type of 

result has also been seen in rainbow trout with other pesticides (Paraquat) (Fifueiredo-

Fernandes et al., 2006).  

The increased liver EROD activity and lack of HSI significance in the first 

endosulfan experiment could have resulted  from all endosulfan concentrations not 

causing irreparable liver necrosis, thus allowing the trout to continue to produce CYP 

1A1 without any inhibitory effects (Coimbra et al., 2007). This could in large part be due 

to the larger fish that were used in the first experiment since they are more tolerant to 

endosulfan exposure (Capkin et al., 2006).  

Fish treated with 0.32 mg/kg endosulfan and mix treatment showed little 

difference in induction of plasma VTG activity. It has been thought that endosulfan acts 

an endocrine disruptor, possibly acting as an anti-estrogenic compound. It is possible that 

at the concentration tested in the mix treatment was not strong enough to cause an anti-

estrogenic effect. The large induction of VTG in fish treated with corn oil is contradictory 

to what other studies observed including; Orrego et al., (2009) and Aït-Aïssa et al., 

(2003) who observed decreased VTG levels compared to 17-β estradiol treatment. The 
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VTG results for corn oil controls were also contradictory to those found in the first 

laboratory experiment. Fish injected with corn oil had a 7 – fold induction relative to the 

previous experimental corn oil controls. This variation could be due to contaminated corn 

oil or an error in the running of the VTG assay. Future studies could use a different 

immersing agent instead of corn oil and VTG expression could be determined by gene 

expression instead of an ELISA.   

 Compared to the first laboratory experiment, this experiment has produced 

conflicting results, specifically the difference in liver LDH activity and high control 

plasma VTG. To counter act this effect it would be recommended to repeat the 

experiment again at concentrations of interest with standardized fish weights. In this case 

it would be advisable to repeat with trout that were 50-90 g as there was less variability in 

their final weights. Another modification would also be increasing the starvation period 

before sampling to ensure enzyme induction with feeding is disrupted and not able to 

skew the results. Finally, it would be essential to tag individual fish to permit growth 

changes to be determined.  

 

6.5.0 Conclusion 
 

 From this experiment it can be concluded that endosulfan disturbs aerobic and 

anaerobic metabolism as seen with the inhibited liver CS levels and slight increase in 

liver LDH activity. Endosulfan also caused an increase in liver EROD activity but not an 

increase in HSI. There was however a decrease and recovery in condition factor over the 

28 day sample period. Lastly endosulfan treated fish compared to the mix and 17-β 

estradiol treatment did not confirm that endosulfan causes an anti-estrogenic effect in 

rainbow trout with no differences in plasma VTG levels. Further studies should be 

implemented that look at more diverse mix treatments to determine the effects of 

endosulfan as an endocrine disrupting chemical.   



73 
 

7. Oshawa Creek Field Exposure 1 
(August –September 2008) 
 

7.1.0 Introduction 
 

 Oshawa Creek Watershed is located in Southern Ontario, Canada. It is a spring 

fed river system composed 8 sub-watersheds that eventually empty out into Lake Ontario 

at Oshawa Harbour (CLOCA 2002). Oshawa Creek is primarily composed of gravel, 

sand, silt, clay, and muck types of sediment which could potentially bind and retain 

harmful chemicals (Hose et al., 2003; EPA, 2002). This could hold primary importance 

due to the variable land use that is contained within the Oshawa Creek Watershed. To the 

North the land is used for primarily agricultural purposes with scattered horse farms. 

Moving South the land is used for residential and then finally commercial and industrial 

platforms closer to Lake Ontario (CLOCA 2002; CLOFMP 2007). With the varied use 

surrounding Oshawa Creek it is quite viable that there are at least one point source of 

contaminants entering the Creek, be it from agricultural (pesticides), residential (sewage 

and garbage), or industrial processes (heavy metals) providing a variety of toxicologically 

relevant effects. 

 Besides the varied land use within the watershed, Oshawa Creek is home to a 

variety of aquatic life including; american brook lamprey (Lampetra appendix), 

blacknose dace (Rhinichthys atratulus), brook (Salvelinus fontinalis), brown (Salmo 

trutta), rainbow trout (Oncorhynchus mykiss), chinook Salmon (Oncorhynchus 

tshawytscha), and pike (Esox luciu ) (CLOFMP 2007). In particular the salmonids use 

Oshawa Creek as a breeding ground both in the fall (salmon) and in the spring (trout). If 

there were toxicants in the water it is possible that they could affect the most susceptible 

life-stages and in turn decrease their populations.  

 It is the aim of this study to preliminarily characterize the West and Main Branch 

of Oshawa Creek with caged rainbow trout (Oncorhynchus mykiss) during the early fall 
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of 2008. An off stream reference site was used which was located in Black Creek. Blood 

plasma VTG, liver EROD, LDH, CS, and brain AChE were assessed to determine 

potential evidance of toxicity.     

 

7.2.0 Materials and methods 
 

7.2.1 Fish 
 

 Rainbow trout (Oncorhynchus mykiss) were obtained on May 7th, 2008 from 

Rainbow Springs Trout Farm in Thamesford, ON. The batch contained 247 trout (197 ± 

64 g). They were held in 1500 L tanks and maintained at 11.8 ± 0.23 oC with a dissolved 

oxygen content of 9.5 ± 0.19 ppm and acclimated in lab for two weeks before use.  

 

7.2.2 Cages 
 

7.2.2.1 Original Cage Design 
 

 Trout cages were constructed out of 61x30x41 cm Rubbermaid© containers with 

1.9 cm holes were bored out of all four sides. 0.635 cm drill bit was used to drill 4 holes 

into the bottom of the container, along the upper rim of the container and 4 adjoining 

holes in the lid. Total of 10 holes were drilled around the perimeter of the lid (3 along 

each side and two on the handles) to secure the lid to the bottom. The lid and bottom 

were connected by zip ties. A viewing window (17 cm x 7 cm) was cut into the center of 

the lid and secured closed with a zip tie.  Another 4 holes were drilled with the 0.635 cm 

bit in a rectangle pattern (21 cm x 10.5 cm) in which an identification sign was attached 

with zip ties. The sign was made out of bright yellow plastic and a laminate covering to 

protect the print. The modified Rubbermaid© containers were then attached to two cinder 

blocks via 60 cm zip ties crisscrossed through the bottom of the containers in the 

aforementioned holes (Figure 7.1). 
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7.2.2.2 Cage Trial 1 
 

 Two cages were placed in the field at each site on July 8th and recovered on July 

22nd-August 8th. The cages were removed from the field due to excessive rains and 

subsequent cage damage and losses (77.7 % damaged, 22.2 % missing, and 11.1 % 

destroyed). 

 

7.2.2.3 Cage Modification 1 
 

 The previous steps were used in this modification except that the 4 holes drilled 

into the bottom of the cages were replaced with 4, 1.27 cm holes and an additional 12, 

0.635 cm holes were drilled into the bottom around the perimeter. Two plastic plates (31 

cm x 23 cm) with matching holes to the bottom of the cage were used to reinforce the 

bottom (one inside, one outside). They were attached to the bottom of the cage with black 

zip ties through the 12, 0.635 holes. The cages were then attached to the two cinder 

blocks via 60 cm zip ties lengthwise through the 1.27 cm holes in the bottom of the cage 

(Figure 7.2). The two cinder blocks were then connected to each other with 2, 60 cm zip 

ties (one at each end). A 121.92 cm length of chain was then fed around the center 

support of the cinder blocks and connected with a quick link. Attached to the chain was a 

10.16 cm metal ring. Once in the water the metal ring was attached to a length of rope 

(varied depending on site) which connected both cages and then secured to a shore based 

structure (tree) approximately 2 m away from the river bank.    

  

7.2.2.4 Cage Trial 2 
 

 Cages were replaced in the field on August 11th, 2008 at above mentioned sites. 

 

 

7.2.3 Cage Locations  
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 Locations for placing cages were determined mainly on where UOIT had pre-

existing permits for experimentation in the Oshawa Creek Watershed. Once this was 

determined the second factor considered was if the river was deep enough to have the 

cages completely submerged with about 30 cm of extra headspace. This was 

accomplished by visiting the different sites and wading into the water with chest waiters 

and getting an approximate depth. A third criterion was to attempt to have all the sites on 

Oshawa Creek kept as far apart as possible (minimum 10 km) to prevent overlap of 

exposures. A fourth criterion was the ease at which the site was accessible by foot. From 

this criterion, three sites were decided upon in Oshawa Creek (Figure 7.3) and one in 

Black Creek (offsite reference). Oshawa Creek sites were located (North to South) near 

Simcoe St. and Columbus Rd. (43.979 N, 78.925 W), Simcoe St. and Conlin Rd. (43.946 

N, 78.904 W), and Simcoe St. and Thomas St. (43.869 N, 78.846 W). The offsite 

reference site was located near Taunton Rd. and Hancock Rd. (43.953 N, 78.786 W).  
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Figure 7.1: Original cage design depicting an interior and exterior view of the cages used 

in the fall exposure. 
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Figure 7.2: Cage modification 2 depicting reinforced bottom with plastic platting and 

increased number of holes around the exterior. 
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Figure 7.3: Locations of cages in the Oshawa Creek Watershed during the fall exposure. 
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7.2.4 Field Exposure 
 

 Trout field exposure was initiated on August 19, 2008. The trout were transported 

to the various field locations in plastic garbage buckets (with lids) with battery powered 

air systems connected to two air stones in the bucket. The buckets were secured in the 

truck with bungee cords (one around the bucket and one holding the lid on). Once in the 

field, the buckets were moved near the cages, the bungee cord and lid removed. Trout 

were then acclimated to field water with river water. After acclimation, the trout were 

lifted from the bucket with a 25 cm x 20 cm net and put into the cages through the 

window on the top of the cage. The window was then re-secured with a black zip tie. The 

trout remained in the field until September 18th when they were brought back to the lab in 

a similar fashion as to when they were taken out. They were then anaesthetized and 

sampled as per 4.2.0. 

 

7.2.5 Abiotic Field Measurements 
 

7.2.5.1 Flow Rate 
 

 Flow rates were measured at each site on days 0, 14, and 28. This was 

accomplished by placing a cork ring in the water and recording how long it took to travel 

one meter. Flow rate was measured and reported in seconds per meter in triplicate. 

 

7.2.5.2 Dissolved Oxygen 
 

 Dissolved oxygen (DO) was measured with a La Motte dissolved oxygen kit 

(Winkler modification) on days 0, 14, 28. Briefly, a 50 ml water sample was collected in 

50 ml glass bottle ensuring there were no air bubbles. Then 8 drops of manganous 

sulphate were added followed by 8 drops of alkaline potassium iodide azide solution. The 

bottle was capped and gently inverted 8-12 times. This produced a yellow/brown 

flocculent that was allowed to settle below the neck of the bottle before 8 drops of 1:1 

sulfuric acid were added. The bottle was then inverted again until the flocculent 
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disappears (the sample was now fixed). The sample was then stored on ice until analyzed 

back in the lab (up to 8 h of storage). Once back in the lab 20 ml of the sample was 

transferred to a 50 ml holding tube (provided), a 10 ml syringe (provided) was filled with 

sodium thiosulphate (0.025 N) and was used to titrate the fixed sample until a pale yellow 

colour appeared. Eight drops of starch indicator solution was added turning the sample 

blue and titration continued until the blue colour disappeared. The amount of sodium 

thiosulphate used was directly proportional to the amount of dissolved oxygen in the 

water in parts per million. 

        

7.2.5.3 Alkalinity, Hardness, pH, Nitrate and Nitrite  
 

 All measurements were taken at once using a Quick Dip test strip manufactured 

by: Jungle: fish care made easy. The strip was dipped into the water and held level for 30 

s, and then alkalinity, hardness, pH, and nitrite were read. After 60 s nitrate was read. 

These concentrations were determined by comparing the test strip the legend provided 

with the test strips. 

 

7.2.5.4 Total Organic Carbon 
 

 Sediment samples were gathered at each caging site on days 0, 14, and 28. They 

were collected with a 50 ml Falcon tube and stored on ice until transported back to the 

lab. Once back in the lab they sat at room temperature for 2 days until the head water was 

removed and disposed of. Samples were then stored in the -80 oC freezer until further 

analyzed.  

  

7.2.5.5 Thermogravimetric Analysis 
  

 TGA analysis was carried out on TA Instruments SDT Q 600 Thermal Analyzer 

with Q series software for data analysis. Sediment was allowed to thaw for 24 h and then 

placed in the aluminum crucible at a weight of 68.954 ± 14.805 mg wet weight. The 
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samples were then heated to determine the percent weight that was composed of organic 

materials. This was performed with the following design; sampling interval of 1.0 s/pt, 

run sample under dry air at 50 ml/min, data storage turned off, equilibrate at 120 oC, 

isothermal for 10 minutes, turn on data storage, heat ramp 20 oC/min to 600 oC, turn flow 

rate to 0 ml/min, turn on air cool.  

    TOC was also determined by the simpler method of TGA. Samples (10 g) were 

dried for ~24 h at 120 oC to remove any water content. The samples were then transferred 

into ceramic crucibles (5 g of sample) and placed in a Fisher instruments muffle furnace 

(550 oC) until there was no weight change (measured at ~3 h intervals). Change of initial 

mass (entering furnace) and end of furnace treatment was used as a measure of total 

organic carbon. 

 

7.2.6 Tissue Analysis 
 

7.2.6.1 Brain Acetylcholine Esterase (AChE) 
 

 Brain AChE analysis was performed using a modified version of the procedure 

described by Sandahl and Jenkins (2002). Brains were sectioned so that 4 mg of brain 

was immersed in 156 µl of  100 mM sodium phosphate buffer with 1 % triton X-100 (1 

in 39 volumes). They were then homogenized with an Ika: T-25 basic Ultra-Turrax 

homogenizer. Homogenates were then centrifuged at 1000 g for 10 minutes at 4 oC, 

supernatants removed and stored at -80 oC. 

 The 100 mM sodium phosphate buffer (pH 8.0) was composed of two other 

solutions (dibasic and monobasic stock solutions). Dibasic stock solution was composed 

of 26.807 g of sodium dibasic phosphate (Na2HPO4-heptahydrate) dissolved in 1 L of 

Milli-Q water and stored at 4 oC. Likewise the monobasic stock solution was composed 

of 13.8 g of 0.1 M NaH2PO4 dissolved in 1 L Milli-Q water and stored at 4 oC. Sodium 

phosphate buffer was then prepared by mixing 385 ml of dibasic stock and 15 ml of 

monobasic stock solution. pH was then adjusted to 8.0 by adding dibasic stock if pH was 

below 8.0 and monobasic stock if pH was above 8.0.  
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 An aliquot of 99 ml of sodium phosphate buffer was then combined with 1 ml of 

Triton X-100 to produce the buffer the brains were homogenized in.  

 Brain supernatants were thawed and 50 µl were transferred to 1.5 ml micro-

centrifuge tubes containing 900 µl of 100 mM sodium phosphate buffer. A mass of 7.926 

mg of DTNB was dissolved in 2 ml of 100 mM sodium phosphate buffer and 50 µl was 

added to each micro-centrifuge tube. The tubes were then incubated at room temperature 

for 10 minutes to allow non-enzymatic activity to stabilize. Once the incubation period 

was completed 200 µl were transferred in triplicate to a 96 well UV microplate starting at 

well B1 (Wells A1-3 were used for blanks containing 250 µl of sodium phosphate 

buffer). An additional 50 µl of Sodium phosphate buffer was added to samples in 

columns 1, 4, 7, and 10. Reaction was initiated by the addition of 50 µl of acetylcholine 

iodide (AtChI) to all sample wells except for samples in columns in 1, 4, 7, and 10 

(AtChI was prepared by dissolving 13.014 mg of AtChI in 4.5 ml of sodium phosphate 

buffer). Plate was immediately read for absorbance at 412 nm at 12 s intervals for 10 

minutes at 25 oC. 

 

7.2.6.2 Other Tissue Analysis 

 
All other tissue analysis were conducted in accordance with sections 4.2.0 – 4.5.0 

 

7.3.0 Results 
 

Abiotic factors listed above can be found in Table 7.1 along with caged rainbow 

trout characteristics (Table 7.2). The only significantly different characteristics found 

were water temperature and water flow; there was also no significant difference in total 

organic content in the soil between sites. Taunton had significantly lower water flow 

(almost 3 – fold slower than Columbus) and temperature compared to the other three 

sites. 
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 It should be noted that over the 30 day exposure 4 fish died and 2 escaped; 3 died 

from Thomas and one from Taunton. The 2 fish that escaped, escaped during the initial 

caging (Conlin and Thomas) and were not replaced. There were numerous fish observed 

with sores on their ventral sides. 

 SPMDs were not analyzed for this experiment based on that SPMDs near the 

Oshawa land fill revealed no toxicologically relevant data. 

As with the laboratory exposures the different biomarkers were analysed to see if 

differences occurred due to sexes and if so were analysed separately. If not then the data 

was pooled and the analysis continued. There were three differences due to sexes which 

included EROD, weight and hepatosomatic index. Interestingly, these along with AChE 

were the only biomarkers that were significantly affected.  

 Female weight and HSI were not significantly affected while male weight and 

HSI were and are described in Table 7.3. Since fish were not weighed or tagged 

individually initially final weights are given per site. 

 Female liver EROD was also significantly affected (Figure 7.4) with time zero 

liver EROD being 2-3 fold higher than trout liver EROD at all the cage sites. The fish 

caged at Taunton had increased liver EROD activity compared to the trout at Columbus 

and Thomas sites. 

 There was no difference in plasma VTG activity in caged trout, thus data will not 

be shown. 

 Brain acetylcholine esterase was also significantly affected in both female and 

male trout (no difference due to sexes) (Figure 7.5). Trout at Taunton and Thomas had 

decreased AChE levels compared to time zero by approximately 2 – fold and to trout at 

the Conlin site (1.5 – fold). Fish caged at Taunton also had decreased levels compared to 

trout at Columbus.     
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Table 7.1: Descriptive abiotic factors for field sites on Oshawa Creek and off stream 

reference site (Black Creek). Values are given as means ± standard deviation. 

 Water flow 
(s/m) 

Water 
Temperature 

(°C) 

Dissolved 
oxygen 
(ppm) 

Alkalinity 
(ppm) 

 
Columbus 

 
3.44 ± 1.50 

 
15.40 ± 1.94 

 
9.65 ± 0.47 

 
300 ± 0 

Conlin 6.58 ± 1.17 16.05 ± 1.64 10.10 ± 0.28 300 ± 0 

Thomas 8.03 ± 3.68 17.07 ± 1.83 9.74 ± 0.83 300 ± 0 

Taunton 14.6 ± 12.7a 13.62 ± 1.27b 9.80 ± 0.42 300 ± 0 

 

 Hardness 
(ppm) 

Nitrite  
(ppm) 

Nitrate 
(ppm) 

pH Total 
Organic 
Content 

(g) 
 

Columbus 
 

268 ± 63 
 

1.9 ± 1.3
 

8.1 ± 3.8
 

8.4 ± 0 
 

5.00 ± 0.03 

Conlin 300 ± 0 2.5 ± 0 10 ± 0 8.3 ± 0.2 5.06 ± 0.06 

Thomas 300 ± 0 4.4 ± 3.8 7.6 ± 4.8 8.3 ± 0.3 5.07 ± 0.10 

Taunton 262 ± 75 1.9 ± 1.3 10 ± 0 8.3 ± 0.4 5.52 ± 0.27 

*superscripts in common denote no significant difference. 
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Table 7.2: Descriptive rainbow trout characteristics for caged fish. Values are given as 

means ± standard deviation. 

 n Weight 
(g) 

Standard 
Length 

(cm) 

Condition 
Factor 
(g/cm3) 

 
Time zero 

 
5 

 
233.7 ± 64.3 

 
25.8 ± 1.8 

 
1.3 ± 0.2 

Columbus 10 152.5 ±  54.2 23.4 ± 2.5 1.1 ± 0.2 

Conlin 9 191.5 ± 56.6 25.6 ± 2.1 1.1 ± 0.2 

Thomas 7 179.7 ±  45.7 24 ± 2.4 1.3 ± 0.1 

Taunton 9 162.4 ± 37.7 23.7 ± 1.91 1.2 ± 0.1 

 

 Hepato 
somatic  

Index (%) 

Gonado  
somatic  

Index (%) 
 

Time zero 
 

0.828 ± 0.078 
 

0.067 ± 0.017 

Columbus 1.11 ± 0.127 0.118 ± 0.023 

Conlin 0.13 ± 0.090 0.094 ± 0.020 

Thomas 0.937 ± 0.122 0.226 ± 0.158 

Taunton 1.214 ± 0.210 0.088 ± 0.019 
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Table 7.3: Male weight and HSI for caged rainbow trout in Oshawa Creek and off stream 

reference site (Black Creek). Values are given as means ± standard deviation. 

 Weight (g) HSI (%) 
 

Time Zero 
 

259.2 ± 33.1ab 
 

8.4 ± 0.7de 

Columbus 105.3 ± 23.8c 4.2 ± 1.0 

Conlin 198.3 ± 29.0b 6.0 ± 1.1e

Thomas 175.8 ± 27.0b 8.4 ± 1.6de

Taunton 163.4 ± 22.8bc 5.6 ± 0.6

*superscripts in common denote no significant difference.  
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Figure 7.4: Female liver EROD activity of time zero fish (TZ) and to trout caged in 

Oshawa Creek and the off stream reference site, Black Creek. Values are given as means 

± standard error. a denotes significance between time zero and trout at all other cage 

sites. b represents increased EROD activity for trout at Taunton and Conlin compared to 

fish at Columbus and Thomas. Letters in common signify no significant difference. 
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Figure 7.5: Brain AChE activity of time zero fish (TZ) and trout caged in Oshawa Creek 

and the off stream reference site, Black Creek. Values are given as means ± standard 

error. a indicates significance between time zero fish and those at Columbus and Conlin 

with fish caged at Taunton and Thomas. b denotes fish caged at Taunton had significantly 

decreased AChE activity compare to Columbus and Conlin but not to Thomas. Letters in 

common signify no significant difference. 
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7.4.0 Discussion 
 

 Trout at Taunton and Conlin sites had increased weight compared to the 

Columbus and Thomas sites. Their increased weight could be due to those sites receiving 

higher nutrient sources then the other sites. Taunton site is located at the base of a culvert 

creating a large circulating pool that can have an influx of nutrients after rain events. 

Conlin on the other hand is the most Northerly site with rocky patches just upstream of 

the cages. After rain events or wildlife movement across the stream, macro-invertebrates 

or insect larvae could be dislodged and travel downstream to the cages. 

 There is another possibility that could account for the variability in male weight. 

The trout used in this experiment were originally obtained from the hatchery in May 2008 

and housed in the lab until their use in August 2008 due to poor weather conditions. 

During this time, the trout had ample time to increase weight and become more variable 

from each other. This type of size differentiation can be described by the observations 

made my McLaughlin (2001). In that study, two types of feeding behaviour in brook 

charr were observed (active foraging and sit and wait). The active foragers in turn were 

able to acquire more nutrients then the sit and wait fish. This type of behaviour of fish 

housed in confined conditions where food is only administered to the top of the tank can 

result in decreased food reaching the trout at the bottom of the tank and increased fish 

weight variability. 

 It is odd that there was a significant HSI increase in fish at Thomas but there was 

no significance in male EROD. Thomas could have an increased HSI due to increased 

mixture of chemicals that the trout were exposed to (agricultural, residential, commercial 

and industrial sources). In this case it is possible that the trout were being exposed to 

chemicals that did not cause liver necropsy and allowed the liver to produce enough CYP 

1A1 at low enough concentrations to manage the toxicity (Coimbra et al., 2007; 

Kammann et al., 2005). It should also be noted that the trout being exposed were on 

average 200 g and already had a well developed liver. 

 It is also possible that at the other sites, trout were being exposed to chemicals 

that could cause sub-lethal toxicity or liver necrosis and inhibiting CYP 1A1 production 
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and EROD activity (Coimbra et al., 2007; Ma et al., 2005). If this were the case then the 

trout at Columbus, Conlin, and Taunton would not have the ability to detoxify the 

chemicals and decreased health and higher mortality would have been expected along 

with increased serum sorbitol dehydrogenase which was not measured. Fortunately this 

was not the case.  

 Fish caged at Conlin and Taunton sites had increased female liver EROD activity 

compared to the other sites but, was lower than time zero trout. Trout at Taunton could 

have experienced increased EROD activity due to pesticide exposure from the 

surrounding farm lands. This type of induction has been seen with endosulfan and other 

pesticides (EPA, 1999; Harris et al., 2000; Brumley et al., 1995). Fish at Conlin 

experienced an increase in EROD activity. The surrounding area is predominantly 

agricultural and horse farms, thus trout at Conlin could have experienced the same type 

of exposure as seen in those caged at Taunton. Trout at Conlin also had a higher stream 

flow than Taunton, allowing for less exposure time after a potential pulse exposure and 

thus possibly lower EROD activity. 

 AChE activity was inhibited in brain of trout at Taunton and Thomas. These 

effects are seen when acetylcholine esterase is deactivated and acetylcholine cannot be 

broken down into choline and acetyl-Coa (Pope et al., 2005; Malomouzh and Nikol’skii, 

2007). These effects have been observed with carbamate pesticides among other 

chemicals including; organochlorines, chlorpyrifos, and tetraethyl pyrophosphate and in 

various aquatic species including; Asian swamp eel, pacific steelhead, goldfish, and 

rainbow trout (Sandhal and Jenkins, 2002; Liu et al., 2007; Pope et al., 2005; Siang et al., 

2007). Effects seen in fish at the Taunton site might thus be attributed to its location and 

surrounding agricultural land as previously described. Thomas had the second slowest 

water flow out of the four sites and was the furthest downstream. Since this site is 

furthest downstream, it is exposed to agricultural, residential and industrial discharges, all 

of which could have caused the observed decrease in brain AChE activity. Decreased 

AChE activity can cause convulsions, paralysis and death. Paralysis can lead to increased 

predation by aquatic, terrestrial, and avian sources and could lead to decreased 

populations.    
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 As was previously mentioned, there was high variability due to weight. To get 

more accurate results it would be advised for any future work to reduce variability in 

weight by using similarly sized experimental fish. To achieve this, it is recommended that 

holding time be reduced before use and that fish be fed a constant amount of feed (4 % 

body weight per day) instead of being fed to satiation. If the fish were to be housed for an 

extended period then the fish should be individually tagged so variation in weight and 

size a can be tracked on a per fish basis.    

 The sores observed on the caged trout were most likely caused by their bellies 

rubbing against the zip ties used to hold the cage to the cinder blocks or to hold the 

plastic plates to the bottom of the cages. The trout would have also been forced against 

the zip ties during times of increased current or if the cages were lifted too far out of the 

water while checking for mortality. 

 

7.5.0 Conclusion 
  

 Fish caged in Oshawa Creek along with the off stream reference site (Black 

Creek) experienced increased female liver EROD activity along with decreased brain 

AChE activity. Since most of the surrounding area is dedicated to agriculture it is 

possible that the observed effects were due to agricultural runoff. The variability in 

weights likely was caused by the increased holding time in the lab before use and should 

be avoided for future experiments. Lastly, more cage modifications will be needed to 

ensure they are not interfering with the health of the trout (sores observed on ventral side 

of fish).   
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8. Oshawa Creek Field Exposure 2 
(May 2009)  
 

8.1.0 Introduction 
 

The first field exposure was pseudo-replicated during the spring of 2009. The 

same sites were used except for the off stream reference site due to higher public traffic 

and disturbance through the area. This replication will allow for seasonal effects to be 

compared across the various sites and within different branches of Oshawa Creek.  

 The aim of this study was to primarily characterize the West and Main branch of 

Oshawa Creek with caged rainbow trout (Oncorhynchus mykiss) during early spring of 

2009. An off stream reference site was used which was located in the East branch of 

Oshawa Creek. Blood VTG, liver EROD, liver LDH, liver CS, and brain AChE were 

investigated to determine potential causes of toxicity.     

 

8.2.0 Materials and Methods 
 

8.2.1 Fish 
 

300 rainbow trout (Oncorhynchus mykiss) were obtained December 22, 2008 

from Rainbow Springs Trout Farm in Thamesford, ON. They were held in 1500 L tanks 

and maintained at 10.4 ± 0.2 oC with a dissolved oxygen content of 9.44 ± 0.11 ppm and 

were held in the lab for 4 months before use in this experiment. A total of 53 fish were 

used in this experiment. 
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8.2.2  Cages 
 

 The same cages from the first field experiment were used with slight 

modifications. In this modification the cages were kept the same from the first 

modification except for the addition of more 1.9 cm holes drilled along all four sides of 

the container to about 1-2 cm from the bottom. This helped improve water flow through 

the cage and reduce sediment build-up inside the cage (Figure 7.2). 

 

8.2.3 Cage Locations 
 

 The same locations were used as per section 7.2.3 except for the off stream 

reference site. The off stream reference site was moved to inside Camp Samac (43.565N, 

78.531W) (Figure 8.1) due to increased traffic and fishing at the original site. 
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Figure 8.1: Locations of cages in the Oshawa Creek Watershed during the spring 
exposure. Starred placements indicate sites affected by TFM.  
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8.2.4 Field Exposure 2 
 

 The second field exposure was initiated on April 27th, 2009 by placing the cages 

in the river. Trout were place in the cages on May 4th, 2009 and the experiment was 

conducted as per section 7.2.4. The second field exposure concluded on May 29th, 2009 

and fish were brought back to the lab and dissected as per 4.2.0. 

 

8.2.5 Abiotic and Tissue Measurements 
 

All abiotic and tissue measurements were conducted in the same manner as 

sections 7.2.5 and 7.2.6 except for dissolved oxygen and pH which were ascertained 

using an Oxy-check© and a Combo© (ph, EC, TDS, temperature waterproof tester) by 

Hanna Instruments . Dissolved oxygen was verified using the methodology described in 

section 7.2.5.2. 

8.3.0 Results 
 

 All abiotic factors measured are detailed in Table 8.1. The only abiotic factor that 

was significantly different between sites was dissolved oxygen. Conlin was about 2 ppm 

higher in dissolved oxygen then all other sites.  

 Descriptive characteristics of the trout caged at the 4 sites can be found in Table 

8.2. There was no difference in trout lengths, weights, condition factor, HSI or GSI in 

caged fish.  

 It should be noted that over the 25 day exposure in Oshawa Creek, 17 fish died 

and 2 escaped while putting the fish into the river. Of the 17 dead fish; 4 died at 

Columbus, 3 at Conlin, 2 at Thomas, and 8 at Samac. The trout lost at Samac all occurred 

after a large rain event which buried one cage under approximately 15 cm of sediment 

(killing 5). When putting the trout into their cages at the initiation of field exposure 2 

escaped, one at Conlin and one at Thomas.  
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 At the conclusion of the experiment there were a number of fish observed that had 

sores on their ventral sides. 

 Trout caged in Osahwa Creek were removed from the river 3 days early due to the 

Department of Fisheries and Oceans (DFO) applying a lampricide (3-Trifluoro-Methyl-4-

Nitro-Phenol (TFM)) to Oshawa and Lynde Creek on May 20th, 2009. TFM was applied 

to 5 sites along Oshawa Creek, at Winchester Road, in Camp Samac (below dam), Conlin 

Road (2 sites), and a tributary to Oshawa Creek in Goodman Creek sub watershed. A 

total of 917.5 L of TFM was applied to Oshawa Creek at a concentration ranging from 

6.0 to 7.8 ppm over a time period of 13 hours. Trout caged at Conlin and Thomas were 

exposed to the lampricide. However, there was no mortality at those sites following the 

one week post-exposure period.   

 As with the previous experiments, all trout biomarkers were tested for significant 

gender effects and if none were found data was pooled and analysis was continued. There 

were no significant differences in any biomarkers between genders. There were no 

significant differences in condition factor, HSI, GSI, liver EROD, plasma VTG, and brain 

AChE activity. However, there was a significant difference in liver CS and LDH activity.  

 Fish caged at Thomas and Samac experienced inhibited liver CS activity 

compared to fish caged at Columbus, Conlin, and time zero by approximately 1.5 – fold 

(Figure 8.2). However, fish at Samac and Thomas did not differ significantly in CS 

activity. Trout caged at Samac had the greatest inhibition of CS activity with an activity 

of 1.72 ± 0.13 µmol/min/mg protein. Liver LDH activity was significantly different for 

fish caged at Conlin and Thomas compared to trout caged at Columbus, Samac and time 

zero by approximately 2 – fold apiece (Figure 8.3). Fish housed at Conlin had the highest 

induction of liver LDH activity with a final activity level of 0.84 ± 0.16 µmol/min/mg 

protein. 
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Table 8.1: Descriptive abiotic factors for field sites on Oshawa Creek and off stream 

reference site (Camp Samac (East Branch)). Values are given as means ± standard 

deviation. 

 Water flow 
(s/m) 

Water 
Temperature 

(°C) 

Dissolved 
oxygen 
(ppm) 

 
Columbus 

 
3.32 ± 0.56 

 
13.15 ± 0.55 

 
10.2 ± 0.15a 

Conlin 2.14 ± 0.08 10.02 ± 3.68 12.93 ± 1.75 

Thomas 2.49 ± 0.37 15.38 ± 1.49 10.47 ± 0.09a 

Samac 3.55 ± 0.07 13.78 ± 1.24 10.45 ± 0.18a 

 

 Alkalinity  
(ppm) 

Hardness 
 (ppm) 

pH Total 
Organic 
Content 

(ppt) 
 

Columbus 
 

300 ± 0 
 

300 ± 0 
 

8.37 ± 0.07 
 

0.25 ± 0 

Conlin 300 ± 0 300 ± 0 5.79 ± 2.62 0.28 ± 0 

Thomas 300 ± 0 300 ± 0 8.28 ± 0.08 0.34 ± 0.01 

Samac 300 ± 0 300 ± 0 8.39 ± 0.04 0.27 ± 0 
 

*superscripts in common denote no significant difference. 
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Table 8.2: Descriptive rainbow trout characteristics for caged fish. Values are given as 

means ± standard deviation. 

 n Weight (g) Standard 
Length 

(cm) 

Condition 
Factor 
(g/cm3) 

 
Time zero 

 
5 

 
121.10 ± 5.76 

 
20.04 ± 0.45

 
1.51 ± 0.06 

Columbus 11 104.41 ± 4.65 19.74 ± 0.27 1.33 ± 0.03 

Conlin 10 105.30 ± 12.88 20.86 ± 0.44 1.29 ± 0.07 

Thomas 10 117.69 ±  9.49 20.41 ± 0.31 1.39 ± 0.13 

Samac 17 121.94 ± 8.10 20.82 ± 0.42 1.34 ± 0.06 

 

 Hepato  
somatic  

Index (%) 

Gonado  
somatic  

Index (%) 
 

Time zero 
 

1.03 ± 0.044 
 

0.086 ± 0.012 

Columbus 1.22 ± 0.166 0.111 ± 0.023 

Conlin 1.42 ± 0.129 0.121 ± 0.018 

Thomas 0.987 ± 0.113 0.075 ± 0.013 

Samac 1.318 ± 0.094 0.118 ± 0.028 
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Figure 8.2: Liver CS activity of  time zero fish (TZ) and trout caged in Oshawa Creek 

and the reference site, Camp Samac (East Branch). Values are given as means ± standard 

error. a indicates significance between time zero fish and those at Columbus and Conlin 

with fish caged at Samac and Thomas. b denotes that trout housed at Samac and Thomas 

were not significantly different to each other. Letters in common signify no significant 

difference.  
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Figure 8.3: Liver LDH activity of time zero fish (TZ) and trout caged in Oshawa Creek 

and the reference site, Camp Samac (East Branch). Values are given as means ± standard 

error. a indicates significance between time zero fish and those at Samac and Columbus 

with fish caged at Conlin and Thomas. b denotes that trout housed at Samac, Columnus, 

and time zero fish were not significantly different to each other. 
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8.4.0 Discussion 
 

 This field exposure suffered higher mortality compared to the first one. The 

majority of the deaths occurred at the Samac site after a large rain event. Besides the loss 

of those fish the highest mortality rate was seen at the Columbus site. Unfortunately 

when the fish were discovered, they were too far decomposed to collect liver samples 

from to determine CS, LDH and EROD activity.  

 DO was significantly increased at Conlin compared to the other sites. DO levels 

were increased by about 2 ppm (DO at Conlin: 12.93 ± 1.75 ppm). Increased DO could 

represent increased stream health (little pollution). According to Snieszko (1974), aquatic 

environments exposed to higher levels of organic pollution have decreased DO levels. As 

observed in a river polluted by a cannery which had DO levels of 1.2 – 2.6 ppm 

(Snieszko, 1974). The high DO levels seen across all cage sites however, does not 

explain the increased mortality seen at Conlin. 

 There were significant changes in liver CS activity across sites with fish at Samac 

and Thomas having lower levels compared to time zero fish, and those at Columbus and 

Conlin. Fish at Samac would have experienced toxicants coming from agricultural, 

commercial, and residential lands just north of the site. Within the commercial area 

includes a golf course and it has been know for golf courses to use pesticides (i.e. 

diazinon) that are toxic to fish (Potter and Braman, 1991).  

Fish at Thomas also experienced decreased CS activity. Fish at the Thomas site 

could have been affected from a number of sources (agricultural, commercial, industrial 

and residential) since this site is located almost at the end of Oshawa Creek near Lake 

Ontario. Without a specific point source it is impossible to tell what caused the CS 

inhibition in livers of fish at Thomas and Samac.  

It is quite possible that decreased liver CS levels might have been observed in fish 

at Conlin too but, as previously mentioned; trout that had died during their time in the 

river were too decomposed to collect any tissue samples from.    
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Trout caged at Conlin and Thomas had significantly increased levels of liver LDH 

compared to the other sites. This is indicative of increased anaerobic metabolism 

(Battiprolu et al., 2006). It would be expected that increased liver LDH activity would be 

seen in fish caged at Conlin and Thomas for two reasons. Fish caged at Conlin 

experienced the highest levels of mortality, possibly due to the agricultural runoff from 

the farm next door. Bagchi et al., (1995) observed a similar increase in liver LDH activity 

with rats fed a variety of pesticides including; endrin, chlordane, alachlor, chlorpyrifos, 

and fenthion. This would be quite reasonable considering large amounts of pesticides are 

applied in the spring.  

Secondly trout caged at Thomas were also downstream from all TFM application 

sites. TFM is a lampricide used to control parasitic sea lamprey (Petromyzon marinus) in 

the Great Lakes (Krueger and Spangler, 1980) has been shown to increase trout LDH 

levels significantly compared to the controls (Swift, 1978). Since there was no mortality 

at any of the sites treated with TFM it is reasonable to conclude that increased LDH 

activity would eventually return to baseline levels. 

As previously mentioned Oshawa Creek was treated with the lampricide TFM (3-

Trifluoro-Methyl-4-Nitro-Phenol) on May 20th, 2009. Two of the application points were 

upstream of the cages at Conlin and Thomas. Application at Conlin was approximately 

100 m upstream from the cages. TFM has been known to be toxic to fish when under 

stressed conditions with the most sensitive being the channel catfish (96 h LC50 = 0.60 

mg/L) and the least sensitive being the bluegill sunfish (96 h LC50 = 37 mg/L) (EPA, 

1999). Other effects known to be caused by TFM include induced mixed function 

oxygenase activity, estrogen agonist, inducing VTG production and fish fry development 

abnormalities (EPA, 1999).  

Since there were no significant differences in trout caged at any site for liver 

EROD, plasma VTG activity or fish mortality, it is safe to assume that TFM does not 

likely pose a risk to rainbow trout via pulse exposure.    
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8.5.0 Conclusion 
 

 From the spring field exposure in Oshawa Creek (west branch) and reference site 

Samac (east branch), it was noticeable that different biomarkers were affected, possibly 

due to different pesticides being used in the agricultural community. Oshawa Creek water 

affected both aerobic and anaerobic metabolism in exposed trout and TFM appeared to 

have no significant affects after a pulse exposure. Cage design still needs to be modified 

to prevent external injuries. Future exposures should be conducted to conclude the effects 

of contaminants in Oshawa Creek since the river was treated with TFM during the 

Spring. It would also be interesting to look at the east branch as well. 
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9. General Discussion 
 

9.1.0 Laboratory Endosulfan Exposures 
 

 It was the aim of these studies to investigate the endocrine and metabolic 

disruption potential of endosulfan on rainbow trout. Rainbow trout were selected as a test 

organism because they are easily obtainable, do not stress easily from handling, and are 

sensitive to endosulfan through waterborne exposure (96 h LC50 = 1.7µg/L) (Capkin et 

al., 2006). Furthermore, trout have already been proven to be a useful indicator species 

for endocrine and metabolic disruption as observed by Orrego et al., (2009), Sherry et al., 

(1999), and Battiprolu et al., (2006). Consequently, due to these characteristics rainbow 

trout were chosen to investigate the effects of endosulfan. The fish were obtained from 

Rainbow Springs Trout Farm in Thamesford, ON. 

 At the initiation of this experiment there was little knowledge in the area of 

endosulfan being administered via i.p. injection in rainbow trout. There was also very 

little known about the metabolic and endocrine disruptive effects of endosulfan on 

rainbow trout via this route of exposure. There have been some studies indicating that 

endosulfan might act as an anti-estrogenic compound in rainbow trout (Harris et al., 

2000; Andersen et al., 1997), along with indications that endosulfan might act through 

other pathways or act through a hormetic principal as observed in Japanese medaka by 

Gormley and Teather, (2003). Through two experiments where trout were exposed to 

endosulfan through a single i.p. injection (Sections 5 and 6), conflicting evidence of 

endocrine disruption was observed. In the first experiment there was large induction of 

plasma VTG activity in all treatments compared to the corn oil controls in fish sampled 

on day 2 followed by a reduction in VTG activity. In the second experiment there was 

very little plasma VTG activity in all treatments except the corn oil controls which had a 

large induction of VTG activity. Also found in the second experiment VTG activity in 

fish treated with 5 mg/kg 17-β estradiol had the same VTG activity compared to fish 

treated with the mix (Figure 6.3.9).  
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 Differences in VTG activity between the two experiments could be due to the 

individual trout used. In the first experiment trout were larger (1-3 times larger) than 

those used in the second experiment. This size difference could have caused increased 

maturation in the trout, the sex ratio was approximately 1:1 males to females across all 

treatments which could explain the increased VTG activity across all treatments in those 

sampled on day 2. If all trout matured equally, there would be an equal expression in 

VTG activity which was seen in Figure 5.3.6. The second exposure, it was unsure why 

the corn oil controls had increased VTG activity compared to trout exposed to 17-β 

estradiol or the mix treatment. The increased corn oil control VTG activity is 

contradictory to what would be expected by that treatment as observed by Orrego et al., 

(2009). The mix treatment was not different from the 0.32 mg/kg treatment, indicating 

that the concentration of endosulfan used in the mix was not concentrated enough to get a 

viable result indicative of endocrine disruption. 

 For future experiments to probe endocrine disruption with endosulfan it would be 

advised to use a triploid population to prevent biases in the data caused by gender. It 

would also be advised to use an increased number of mix treatments to ensure that the 17-

β estradiol in the mix is not causing an equal VTG activity level as 17-β estradiol alone. 

 In both laboratory experiments, trout treated with endosulfan had inhibited liver 

CS activity compared to the corn oil controls. The decrease in liver CS activity is 

indicative of a reduction in aerobic metabolism (Kreb cycle) (Kuznetsov et al., 2006). A 

reduction in CS activity can be caused by seasonal variation in water temperature as 

observed by St-Pierre et al., (1998). However, trout were held at a constant temperature 

while in the lab thus, this is most likely not the situation. Tripathi and Verma (2004) also 

saw decreased liver CS activity in freshwater catfish which might be caused by 

reallocation of resources. It is possible that resources allocated for energy production, are 

being used to help detoxify endosulfan. If this were the case then it would have been 

expected to see increased liver EROD activity in both experiments. Liver EROD activity 

was only elevated in the first endosulfan experiment. Further testing should be conducted 

to ensure that endosulfan does induce EROD activity.  
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 There was an increase in female liver LDH activity in both laboratory exposures 

which would be consistent with the observations of Tripathi and Verma (2004) of 

decreased Kreb cycle activity and increased gluconeogenesis. This enzyme was the only 

tissue biomarker assay that was significantly different due to gender. Female trout rely 

more heavily on anaerobic metabolism (Kuznetsov and Gnaiger, 2006) by approximately 

30 % compared to males (Battiprolu et al., 2006). In the second experiment there was less 

induction of LDH activity compared to the first exposure, this effect could be a result of 

the smaller trout used in the second exposure. Fish in the first experiment had livers that 

were approximately 1 to 1.5 – fold larger than the fish in the second experiment. The 

increased liver sizes would allow for a greater induction of LDH (Kurutaş et al., 2006). 

 To generate more accurate results, it is recommended that similar sized triploid 

trout be used since they are all destined to be females. This would avoid differences 

between male and female liver CS and LDH activity. Also by looking at glucose – 6 – 

phosphate dehydrogenase, resource allocation can be further determined during 

endosulfan exposure. 

 

9.2.0 Oshawa Creek Field Exposures   
 

 Through the course of the two field experiments (fall and spring), there was very 

little in common between the two seasons with respects to induction or inhibition of 

biomarkers. In the fall field exposure trout exhibited increased female liver EROD 

activity, decreased brain AChE activity, and significance in male HSI while, the spring 

field exposure only exhibited decreased liver CS activity and increased liver LDH 

activity. Oshawa Creek travels through several different demographics including: 

agricultural, industrial, commercial, and residential areas (CLOCA, 2002). The only 

demographic that would most likely have a seasonal variant in chemical contamination 

into Oshawa Creek would be from the agricultural sector. This would come from 

different pesticides or fertilizers being used for various pests at different times of the 

year.  
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 The inhibited brain AChE experienced in the fall trial is representative of 

pesticide application, namely; carbamate and phosphate based pesticides (Sandhal and 

Jenkins, 2002; Siang et al., 2007). Decreased brain AChE activity was seen in fish caged 

at Taunton and Thomas. Thomas is the farthest site south from the agricultural 

community, indicating that the toxicant in question might have come from another 

source. Unfortunately without a point source it is impossible to pinpoint the cause. The 

associated increase in liver EROD activity would be related to increase CYP 1A1 activity 

detoxifying the chemical causing the decreased brain AChE. 

 Even though the spring exposure in Oshawa Creek was supposed to be a temporal 

replicate of the fall exposure it is difficult to compare the two because the Department of 

Fisheries and Oceans treated Oshawa and Lynde Creek with a lampricide called TFM (3-

Trifluoro-Methyl-4-Nitro-Phenol). The purpose of the lampricide is to eradicate larval 

and embryonic lampreys (EPA, 1997). Some of the application sites were approximately 

100 m upstream from the cages and TFM has been known to cause mortality in fish that 

are stressed along with induced plasma VTG and liver EROD activity (EPA, 1997). 

Interestingly enough there was no induction of liver EROD or plasma VTG in fish from 

sites that got treated with TFM.  

However, there was induction of liver LDH and inhibited liver CS activity 

indicating a change from aerobic to anaerobic metabolism as previously discussed 

(Tripathi and Verma, 2004). It would appear that TFM does cause some stress in trout as 

indicated by the opposing CS and LDH activities but, is not a significant threat to trout 

even at concentrated doses. It is possible that liver CS and LDH activity levels would 

have returned to normal if trout were left in Oshawa Creek for a longer period of time 

after TFM application.  

 

9.3.0 Conclusion     
 

 From the laboratory and field experiments of rainbow trout it can be concluded 

that endosulfan does cause a disturbance in aerobic and anaerobic metabolism but its 
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potential as an endocrine disruptor needs further investigation. The use of triploid trout 

and more mix treatments are recommended. For the field experiments it would appear 

that fall exposure caused the largest induction of liver EROD activity and brain AChE 

inhibition. It is also apparent that application of TFM to a river does not pose a large risk 

to fish species inhabiting the treated watershed.  
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10. Summary 
 

 The Oshawa Creek watershed is a diverse system that flows from its spring fed 

headwaters north of Oshawa, to its outfall in Lake Ontario through the Oshawa Harbour. 

The creek flows through agricultural, residential, commercial and industrial areas before 

reaching Lake Ontario. It is reasonable to assume that Oshawa Creek may be exposed to 

a wide variety of toxicants from all the previously mentioned sectors. It is also safe to 

assume that on a temporal scale, the agricultural areas have the highest potential to 

release the most diverse amounts of toxicants into the Oshawa Creek watershed.  

 One of the potential toxicants that could be released is the pesticide endosulfan. 

Endosulfan is an organochlorine pesticide. Like most other organochlorine pesticides 

such as DDT, endosulfan was first introduced to North America in the 1950s as a safer 

alternative. Its use has spread across the world with some of the highest use still residing 

in North America, Durham region of Ontario. Endosulfan has been shown to be highly 

toxic to aquatic organism, especially fish. It is uncertain whether endosulfan has the 

potential to act as an endocrine disrupting chemical (anti estrogenic compound). 

 Rainbow trout (Oncorhynchus mykiss) were selected as a test species to 

preliminarily monitor Oshawa Creek and observe the effects of endosulfan on various 

biomarkers after a single i.p. injection. Rainbow trout are now native to Oshawa Creek 

watershed,  easily obtainable, do not stress easily from handling, and have a wide variety 

of reliable biomarkers that can be tested. Biomarkers that were tested include; serum 

vitellogenin, liver ethoxyresorufin-O-deethylase, liver citrate synthase, liver lactate 

dehydrogenase, and brain acetylcholine esterase for trout caged in Oshawa Creek. 

 Trout exposed to 0.1, 0.32, 1.0, 3.2 mg/kg endosulfan and mix treatment (0.32 

mg/kg endosulfan and 5 mg/kg 17-β estradiol) via a single i.p. injection, displayed 

induced female liver lactate dehydrogenase activity, along with inhibited liver citrate 

synthase activity during two different injection periods. In the first injection experiment 
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trout were observed to have increased ethoxyresorufin-O-deethylase activity and 

increased vitellogenin levels at sample day 2 unlike trout in the second experiment.  

 From these experiments it is apparent that endosulfan disrupts metabolic 

pathways in trout. However, confirmation as an endocrine disruptor (anti estrogenic 

compound) needs further experimentation possibly with the aid of more mix treatments.  

 Rainbow trout were caged at four locations along Oshawa Creek in the fall and 

spring of 2008-2009. The two exposures could not be counted as a full replication 

because the lampricide 3-Trifluoro-Methyl-4-Nitro-Phenol (TFM) was administered to 

Oshawa and Lynde Creek in the Spring of 2009, exposing half of the caged fish. 

However, there was increased mortality in the spring exposure compared to the fall in 

trout caged at Columbus. In the fall exposure, trout experienced increased liver 

ethoxyresorufin-O-deethylase activity in fish caged at Taunton and Conlin but no 

difference at the furthest site downstream (Thomas). Trout also experienced inhibited 

brain acetylcholine esterase activity at Taunton and Thomas indicating exposure to a 

carbamate or phosphate based pesticide.  

 Trout exposed to TFM did not have increased mortality, ethoxyresorufin-O-

deethylase, or vitellogenin activity, but did have increased liver lactate dehydrogenase 

activity. TFM appears to cause slight metabolic disturbance in trout, but does not appear 

to pose a risk of mortality or liver impairment after a pulse exposure.  

 Based on the results of these experiments endosulfan needs further investigation 

as a potential endocrine disrupting chemical causing an anti-estrogenic effect in rainbow 

trout. Further characterization of Oshawa Creek is needed to account for seasonal 

variability in chemical contamination and the altered spring exposure due to Oshawa 

Creek being treated with TFM. 
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