
RELIABLE PEER-TO-PEER MULTICAST STREAMING

by

Sushant Gautam

A thesis submitted to

the Faculty of Business and Information Technology

In conformity with the requirements for the degree of MSc in Computer Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

(January 14, 2013)

Copyright ©Sushant Gautam, 2013

ii

Abstract

P2P is increasingly gaining its popularity for streaming multimedia contents. The architecture of

streaming has shifted from traditional client server architecture to P2P architecture. Although it is

scalable and robust it faces its own challenges and problems such as churn. In tree topology

frequent joining and leaving of users in search for better quality and reliable streaming makes the

P2P network instable. This thesis provides an effective approach to achieve a resilient network

for streaming. Relying on a single tree to receive data from single parent may leave the user

deprived of getting the data if any of its ancestors leaves the network. Therefore we present an

ideal solution to this problem by introducing a backup tree for the existing base tree. The backup

tree is constructed based on parameter such as bandwidth and delay. In case of failure of a node,

its children along the tree receive the data from the nodes of backup tree. We present an efficient

algorithm for the construction of base tree as well as the backup tree which are based on

normalization of two entities of nodes: bandwidth and delay. Through mathematical formulation

and experimental setups we show that introducing a backup tree for an existing base tree can help

provide resilience to the network.

iii

Acknowledgements

I would like to take this opportunity to express my sincere appreciation to my thesis supervisor,

Dr Ying Zhu for her expert guidance and valuable feedback throughout the research. I deeply

thank my parents, brothers and friends for their continual encouragement and support. Finally,

many thanks go to all of those who helped me in any respect during the completion of this thesis.

iv

Table of Contents

Abstract .. ii

Acknowledgements ... iii

Chapter 1 Introduction ... 1

1.1 Introduction: ... 1

1.2. Background ... 4

1.2.1 P2P Overview ... 4

1.2.2 Live Streaming Architectures in Current Schemes ... 4

1.2.2.1 Client- Server Architecture: ... 5

1.2.2.2 Limitations of Client-Server Architecture: .. 7

1.2.2.3 P2P Architecture: ... 7

1.2.2.4. Challenges of P2P Architecture .. 11

1.3. Motivation and Objective ... 14

1.4. Tools Used .. 15

1.4.1 Python/Twisted: .. 15

1.4.2 Networkx (Network Visualizer): .. 18

1.4.3 Tkinter (UI Application): .. 19

1.5. Thesis Outline ... 21

Chapter 2 Related Works ... 23

2.1 Live Streaming Applications ... 23

CoolStreaming: .. 23

PPLive: ... 25

2.2 Multicast Tree and Reliability ... 27

Chapter 3 Reliable Multicast ... 31

3.1 Definition (Reliability): ... 31

3.2 Example: .. 33

3.3 Proposition: .. 37

3.4 Proof: ... 37

Chapter 4 Implementation .. 41

4.1 P2P Implementation in Twisted (Server and Node) .. 41

4.1.1 Server: ... 41

4.1.2 Node: ... 44

4.2 Input Conversion:... 47

v

4.2.1 BRITE Nodes: ... 48

4.2.2 Input Conversion Algorithm: .. 50

4.2.3 P2P Input Nodes: .. 52

4.3 Topology Formation: ... 53

4.3.1 Node Arrival (Joining of Peers): ... 55

4.3.2 Node Departure (Leaving of Peers) .. 58

4.4 Base Tree Construction Algorithm: ... 59

4.5 Backup Tree Construction Algorithm: ... 62

4.6 Results .. 65

4.6.1 Comparison (Random vs. Algorithm) ... 65

4.6.2 Bandwidth Analysis .. 67

4.6.3 Delay Analysis .. 68

Chapter 5 Conclusion ... 71

Bibliography (or References) ... 72

vi

List of Figures

Figure. 1.1 Client-Server Architecture

Figure 1.2. Mesh Topology

Figure 1.3 Single Trees vs. Multiple Trees

Figure 1.4. A simple Networkx graph

Figure 1.5. A simple Tkinter UI Application

Figure 2.1 System Diagram for DONet Node

Figure 2.2 The system architecture of PPLive P2P-VoD

Figure 3.1 Two Alternate Multicast Tree

Figure 3.3. An optimal Tree

Figure 3.4 A complete Multicast Tree T’

Figure 3.5 Swapping the sub tree W1 and Wj.

Figure 4.1 Content Prodcuer Class

Figure 4.2 Server Protocol Class

Figure 4.3 Server Factory Class

Figure 4.4 A P2P Server Class

Figure 4.5 Node Protocol Class

Figure 4.6 Node Factory Class

vii

Figure 4.7 A Complete Node Class

Figure 4.8 Input Conversion Process

Figure 4.9 Nodes generated from BRITE

Figure 4.10 Fields and its meaning of BRITE outputs fields

Figure 4.11 Input Conversion Algorithm

Figure 4.12 P2P Input Nodes

Figure 4.13 Data structure for storing nodes

Figure 4.14 Server Log

Figure 4.15 A base and its backup tree

Figure 4.16 Normalization Algorithm

Figure 4.17 Node Selection Algorithm

Figure 4.18 Backup Tree Algorithm

Figure 4.19 Average Node Failure

Figure 4.20 Average Bandwidth

Figure 4.21 Average Delay

viii

ix

List of Tables

Table 3.1 All binary states for 3 nodes

Table 4.1 Average Node Failure (Algorithm vs Random Selection)

Table 4.2 BandWidth Analysis

Table 4.3 Delay Analysis

x

xi

List of Abbreviations

 CS Client Server

P2P peer To Peer

PCs Personal Computers

IP Internet Protocol

VOD Video on Demand

DRM Digital Right Management

QoS Quality of Service

VHO Video Hub Offices

SHO Super Hub Offices

GUIs Graphics User Interfaces

POP3 Post Office Protocol 3

IMAP Internet Message Access Protocol

HTTP Hyper Text Transfer Protocol

SSL Secure Socket Layer

DNS Domain Name Server

SSH Secure SHell

ISPs Internet Service Providers

xii

MDC Multiple Description Coding

1

Chapter 1

Introduction

1.1 Introduction:

There was a time when news used to take days to travel from one place to another,

entertainment were regional either they were movies, talk shows or game shows but due

to the advancement in technology all these information can travel from one to place to

another in a lightning speed. Basically, with the rise of internet we have been able to

come closer and share information in no time. Internet has become a new paradigm; one

cannot imagine a day without it. Internet has become a part of our daily routine. Also

with the increase in usage of handy and portable media capturing devices like cell

phones, iPods, iPhones, notebook, PCs which are integrated with the high definition

cameras have attracted and facilitate people to capture all moments of their life and share

them with other people through social networking websites and media sharing websites

like ‘YouTube’. The availability of high bandwidth, faster video encoding techniques,

and free software tools has also encouraged lot of people to capture and share their videos

online. These technological gadgets equipped with high speed internet have changed the

face of entertainment industries such as movie, talk show, news and games. People are

indulging themselves with these means of entertainment more and more. Sharing and

accessing these information has become much easier and cheaper through streaming.

2

Streaming is usually done in traditional client server architecture implementing IP

multicast. This approach of streaming seemed limited in many ways: poor hierarchical

routing, poor scalability, difficulty in deployment, high maintenance and lack of

authentication. So, to overcome these drawbacks peer to peer architecture was introduced

for data streaming. P2P architecture has attracted most of the service providers,

developers and other internet community. Most of the multimedia applications available

online are somehow based on P2P architecture. P2P applications are based on second and

third type of P2P structure. It is a different approach of live streaming than usual IP

multicast as it is developed based on P2P architecture. In this approach, each individual

node is a client and a server. Each node periodically gains the inadequate data from other

node and gives the available data to other nodes. This method is proved to be efficient

and effective.

P2P started with the concept of file sharing. After the popularity of P2P for file sharing

this architecture was further used for media streaming. These days it is being rapidly used

for VOD (video on demand) as well as for Live streaming of media. The different type of

applications based on P2P for streaming based on content distribution can be

distinguished in three different ways [6]. First - Ongoing download is elastic which

means it can be delayed depending on the availability of bandwidth. Once the download

is complete then only user can access that file for its own purpose. For second case let’s

take an example of video file in which the playback starts as soon as the downloading

application has downloaded enough data in the buffer. In this case application can detect

3

and pause in between for rebuffed, if it has enough data in the buffer to continue

playback without depletion in quality. The third case is of real time streaming or live

streaming. In which the delay of more than few seconds will be considered as an issue.

P2P Streaming in itself consists of few problems but it is the most cost effective way of

sharing information among each other. Some of the problems faced by the P2P Streaming

are: Churn (dynamic nodes), DRM (digital right management), pollution attack (mixing

bogus chunks for the content) etc. One of such problems that bring instability in the

network is churn (frequent leaving and joining of nodes). Churn can cause different

problem for the users such as playback issues and bad video quality, this problem in

return can cause user to leave the network. To avoid such problem, stabilizing the

network or dealing with churn is an important issue. To overcome this problem we have

proposed a concept to increase resilience of the topology.

 To achieve resilience in the network we construct a backup tree for the existing base

tree. The base tree is the major tree which streams the data from the source to the nodes

in a tree topology hierarchy. Backup tree is the supporting tree, which is an alternate tree

structure for the base tree. In case of failure of node due to any reason, its descendant’s

children will receive the data from the backup tree. This proposed concept increases the

resilience of the tree in case of failure of any nodes.

4

1.2. Background

1.2.1 P2P Overview

P2p literally means no server. To describe this precisely I have to say P2P is a concept in

which every node acts as a server and a client. Each node periodically exchanges data and

theirs status information which other nodes. Each node extracts unavailable data from

other node and provides available data to other node. On Broad concept P2P can be

classified into three types [9]: Centralized Peer-to-Peer, Pure Peer-to-Peer, and Hybrid

Peer-to-Peer. Centralized P2P means there is a central which helps form the network of

the particular application. This server doesn’t contain any of the data but it keeps tracks

of the clients available in the network. This server is known as tracking server but not the

data server. Examples of centralized p2p: Napster, Bittorent. Pure P2P contains no central

server not even the tracking server. Whenever a client requests a data it is flooded to

every other nodes and nodes having the data reply to the client. Examples of Pure P2p:

Gnutella 0.4, Hybrid P2P is a mixed concept of Pure P2P and centralized P2P which

consists of both the central tracking server and the node exchange their data by flooding.

Examples of Hybrid: Gnutella 0.6, Kaaza. These were the early P2P applications which

were built on concept of P2P file sharing.

1.2.2 Live Streaming Architectures in Current Schemes

P2P architecture can be basically can be categorized into two types in basis of their

architecture as (CS) Client-Server architecture and (P2P) Peer-to-Peer architecture. CS

architecture consists of server and client, server explicitly forward the data and client

5

receives the data whereas in the P2P architecture the client not only receives the data but

also forward the data to the other clients in the network. Existing P2P applications mostly

follows the traditional client-server architecture consisting of regional server to serve

their users. Client-Server architecture faces lots of challenges like improper resources

utilization, high cost for equipment, single point node failure etc. Prone to these problems

has made P2P architecture rise in commercial as well as in academic sector. Researchers

and commercial sectors are these days more attracted to P2P architecture since it has

brought new concepts in cost sharing. P2P architecture tends to resolve these problems

but this architecture itself faces practical challenges like dynamics nodes, QoS, DRM etc.

1.2.2.1 Client- Server Architecture:

Currently most Live Streaming architecture is based on server-client hierarchy. As

described [11] client server architecture consists of 3 major components: SHO (Super

hub offices), VHO (video hub offices) and clients.

 Fig. 1.1 Client-Server Architecture

Legend:

SHO: Super Hub Office

VHO: video Hub Office

6

SHO are the datacenters which holds maximum amount of data. They break up the video

frames into IP packets and deliver it to the VHOs; VHO then supplies the requested data

to the users. The links between the SHO and VHO consists of high speed bandwidth

therefore; accessing the SHO for data is not a critical issue. However the greater distance

between VHO and SHO may lead to some delay in data arrival. The client posses a set up

box for video decoder which reassembles the IP packets to data stream and the video is

then displayed to the users. This approach of client-server faces challenges such as

single-point of failure, cost sharing and server overload.

The architecture of “iCloud” [6] is an enhanced approach of the traditional Client-Server

architecture. The components in this methodology are the same as in Fig 1.1 but the key

difference that makes this architecture efficient is that the regional servers collaboratively

work to serve the users. A user is served by multiple stations implementing the concept of

“iCloud”. This approach basically forms a group of servers to work in collaboration to

serve the users’ request. It depends upon available bandwidth and this bandwidth

decreases as the number of hops between the servers’ increases. So, the server selection

to form a group to work collaboratively depends upon the proximity. The servers that are

destined to serve a user request must be within a definite range or within certain hops.

Also this approach implements the request dispatch protocol which helps to determine the

servers to form a collaborative group to serve a user.

The collaboration of server eliminates the problem of single-point-failure, if one server

accidently goes down then the users can still access the data from other servers. Since a

7

particular user can access data from multiple servers this helps to reduce the work load

from a particular server and also in case if the data requested by the user is not available

than the regional server can share their data so the regional server doesn’t have to access

the data from the SHO. But still this faces the problem as face by above architecture as

the number of user increases.

1.2.2.2 Limitations of Client-Server Architecture:

Based on the above architectures it can be resolved that Client-Server architecture is good

only if there is only limited number of users to be served. As the number of internet users

is growing day by day the client-server architecture fails to meet the requirement for

these increasing users. This was one of the main reasons why P2P prevailed over Client-

Server Architecture. Mainly Client-Server faces following setbacks: (a) Single Point of

Failure (b) No Resource Sharing (c) High Cost. These limitations have made P2P more

viable solution for streaming.

1.2.2.3 P2P Architecture:

Most of the current video streaming are done by multicasting. In multicasting, the data

are forwarded to a desired host in a single transmission through routers or any other

networking devices. But this operation is expensive since it requires those routers which

can support multicast. Many solutions and approach were purposed to solve this problem

like tree structure algorithms, due to the dynamic nature (nodes which can join and leave

8

at any time) of the nodes this effort was also not so effective. Structures like mesh and

forest were suggested but they were too complex to implement.

The network overlay for P2P streaming can be broadly classified into two different

topologies [17].

1.2.2.3.1 Mesh Topology

Many P2P applications such as “CoolStreaming” [8] and “Prime” [16] are built on mesh

topology formation. In mesh topology there is no specific topology formation. In mesh

topology a node comes and joins the network requesting the tracking server to get the

appropriate peer. Mesh topology has no defined hierarchy, a single node gets the stream

data from multiple peer and share date to multiple nodes.

Figure 1.2. Mesh Topology

As in concept of P2P file sharing, the streaming P2P applications work in the same

manner. A new node connects to the network. It goes to the tracking server to get the

9

information of other available nodes. The tracking server sends the information of other

available node to the new node. The new node begins exchanging data with its peers. A

single peer in this case can receive the data from multiple parents. To deal with the

frequent arrival and departure each individual node keeps other nodes information. A

node can get the peer information either by asking the tracking server for the new peer

information or exchanging the peer list information among each others. An individual

node may leave the network gracefully, in this case the leaving node informs the tracking

server about its departure so the tracking server will remove the node from the list as well

as inform other nodes about its departure. A node may also leave the network due to

computer crashes or some other reason, in this case neighboring node will know about its

departure if the neighbors did not receive the keep-alive message from the departing

node. Keep-Alive is a kind of “hello” message which is exchanged between the peers so

as to know the live status of other neighboring nodes.

1.2.2.3.2 Tree Topology

P2P Streaming which forms tree topology as an overlay network has a distinct hierarchy

of nodes. The structure of a tree topology is defined in depth in “Narada” [25],

“ChunkySpread” [26], and “SplitStream” [27]. In a tree topology each node has a single

parent and multiple children. A node joins the network and asks the server for parent, the

node is assigned parent at a certain level of tree which depends upon the bandwidth,

delay and the distribution of tree. A tree has two attributes depth and fan-out (width). The

delay increases as the depth of the tree increases. Since, the data flows from top to bottom

10

the node lying at the bottom of the tree receive the data at last. The bandwidth of the tree

decreases as the width of the tree increases. Increase of width means the number of

children of a particular node increases and the node has to share the bandwidth among all

its children. One of the problems of single tree topology is that the leaf node (nodes that

have no children) does not share the bandwidth.

Figure 1.3 Single Trees vs. Multiple Trees

As the leaf node in single tree topology doesn’t share the resources, in order to utilize

their resources an approach of multiple tree was proposed [18]. In case of multi tree

topology there are multiple trees for a single stream of data. The content server divides

the stream into multiple streams and sends each divided stream into individual sub-tree.

Each individual node is present in the sub tree so they receive each stream through

11

different parents. Each node may have different positions in different sub-trees in

different levels. As the data flows from top of the tree to the bottom each node eventually

receives the stream. This approach helps to utilize the resources of each node in the single

tree either they are the interior nodes or the leaf nodes. But it still faces the problem of

reliability, if a node leaves the network than all the sub-trees have to be reconstructed or

repaired which may interrupt the stream and if it is a live streaming than a small delay

can ruin the interest of viewer from viewing the content.

1.2.2.4. Challenges of P2P Architecture

P2P solves most of the problem faced by the client server architecture but yet it faces its

own challenges. Each Architecture and design has their own advantages and

disadvantages. Below are some of the major challenges faced by P2P applications. Some

of the P2P applications have solved these challenges to some extent and some of them

have not. Considering the general architecture and their analysis here are some of the

challenges faced by today’s P2P streaming applications. Some of those major challenges

are discussed below:

i) Churn

In a P2P multicast system the nodes are dynamic in nature. Peers are joining and leaving

at very high rate. They can come and leave at any point during the exchange of messages.

We cannot rely upon single node to deliver the data to its child nodes as most of our P2P

algorithm implements tree architecture. There has to be a solution for the instability of

nodes in a session to make that process more reliable and algorithm more robust. One of

12

the solutions is to implement the mesh architecture but it also increases the problem of

scalability and overhead in the network. It also increases the network congestion. In such

case we think implementing a many-to-many architecture would be a good option and

solution to most of our problems. Those P2P applications which form an overlay tree

topology face this problem. A solution to this problem was proposed in paper [12] by

determining dynamics users. This paper categorizes users into three types: Silent users,

Long-term users, Short-term users. If silent or long-term users can be determined then

they can be placed on the top of the tree structure which helps to generate stability to the

tree structure. By following this approach the problem of dynamics users can be solved to

some extent, but the problem in this approach lies how to determine the silent and long-

term users.

ii) Network Congestion

Congestion refers to the amount of traffic in the network. It increases if there are lots of

requests to the server which the server cannot handle. If a server sends data at faster rate

than that the receiver can receive, this also causes congestion. Congestion not only affects

single users but also affects lots of users which are following the same path. Analogy of

this problem can be given as the traffics in the road. Heavy traffic in a particular path not

only affects a single vehicle but the entire vehicle which follows the same path.

Congestion affects the quality of service of the system and leads to queuing delay; packet

loss etc. Proper congestion control mechanisms should be employed to avoid such

circumstances. Data rate control mechanism helps in the congestion control as congestion

13

occurs when one peer is sending packets at faster rate but the peer on the receiving end is

at low bandwidth and is not able to accept packets at the same speed sender is sending

packets. Video transcoder tools can be used to control the congestion in the networks.

[13].

iii) Pollution Attack

It is a kind of stream pollution in the P2P architecture where the attacker mixes the bogus

chunks into the stream while sending the packets to receiver and these chunks degrade

the quality of received media at the receiver’s end [15]. In the P2P applications such as

PPlive and PPstream, a polluter can introduce the corrupted chunks into the video stream.

During an ongoing video streaming session to attract more peers, an attacker can

advertise that it has large no. of video chunks available to upload on high bandwidth (As

it can be checked these using clients like BitTorrents & Vuze). When peers sends request

to this client for downloading these video chunks, it then sends bogus chunks along with

the file requested. This receivers further shares this video stream with other peers and

very quickly these polluted chunks spread all over the network and the video quality

degrades. This attack will force peers to leave the network and the member count will

decrease immediately.

To prevent these jammer attacks BACKLISTING defense mechanism is suggested which

try to put those kinds of peers on backlist which advertise an unusual large no. of chunks

to attract down loaders. Another way to create a backlist is to identify the polluted chunks

by comparing the characteristics of received chunk and this can be done using audio

14

video processing techniques. Further sharing those results with all the peers in the

network will prevent attacker from pollution the video stream. Apart from blacklisting

methods other methods which can be used to prevent attacker from polluting the video

stream are: Traffic encryption and Hash verification.

iv) Security Attacks

Security attacks are same as the pollution attacks. P2P application such as Napster (in

2001) and CoolStreaming (in June 10 2005) were shutdown due to legacy issue. Sharing

of unlicensed chunks by a single peer can duplicate the chunks to other peer and later can

be circulated to the whole network. Initially a peer shares an unlicensed chunk to other

peers. Other peers who are relying on this peer to get data extract the data along with the

unlicensed chunk shared the initial peer. Similarly in this fashion the chunk is shared to

all the peers in the network. This is one of the key challenges that a P2P application

faces. Few solution to this problem have been suggested such as blacklisting, hash

encryption etc [14]. In case of blacklisting when one the client discovers that one of the

peer in the network is sharing an unlicensed chunk he will flood this information to the

whole network and other peers who are extracting data from this unlicensed peer will

stop fetching the data. In this was the client sharing the unlicensed chunk will be isolated

and no will share data with this peer.

1.3. Motivation and Objective

P2P applications have evolved from the limitations of client-server architecture, which

started as file sharing and later gained its popularity in streaming media. The streaming

15

media can broadly be categorized as VOD (video on demand) and Live Streaming. One

of the most emphasized problems of streaming is Churn. Churn is caused by users

leaving and joining the network frequently. In case of VOD a stream of data is streamed

over the network which resides on other node’s hard drive. While for Live Streaming the

streaming data is not saved in any storage device, it is just played as the data is streamed

from one node to another. A few seconds of delay is tolerable in case of VOD as the user

will be able to view the stream after a certain pause (interruption) but in case of Live

Streaming there can be no delay at all. If delay occurs frequently in Live streaming user

will lose his/her interest and leave the network. So, in the case of Live Streaming, the

issue of reliability is very significant. This decreases the reliability of the network. So, to

overcome this problem construction of backup network topology to the existing topology

is proposed.

The objective of this thesis is to:

i) Construct a resilient tree to increase the reliability of the network.

ii) Maximize the performance of the network utilizing parameters such as

bandwidth and delay.

1.4. Tools Used

1.4.1 Python/Twisted:

Python is an object-oriented scripting language. It has been commonly used for scientific

and research purpose for last decade. It is considered to be an easy and efficient tool to

develop and test small prototype models. It has a rich libraries which can fit multipurpose

16

(can be used for UIs, web interfaces and writing server, clients and more). As python is

an open source language, people from different communities are contributing to develop

APIs for python libraries which increase the applicability of this language in various

fields. It can be used for all sorts of development such as: system programming, GUIs,

internet scripting, integrating components, database programming, gaming and more.

Python being an interpreter language its execution speed may not be as fast as compared

to other compiled language such as C, C++. This is due to the fact that python translates

its source code to intermediate form known as byte code, which provides a great leverage

over other programming language that is platform - independent. Since python doesn’t

compile their source code all the way down to binary code, some programs written in

python may execute slowly in comparison to C, C++. Following are some of the well

known company using python [2]:

- Google uses python for its web search and employs Python’s creator.

- Google’s App Engine uses python for application development.

- YouTube video sharing is written in python.

- NSA uses python for cryptography and intelligence analysis.

- Maya (3D modelling & animation software) provides a python API.

These are the few areas where python has been used. Among lots of libraries, Twisted is

one of the frameworks which are gaining its popularity among the community. Twisted is

a networking framework built on python.

17

As mentioned in [1], [3] Twisted is an asynchronous, event-driven networking

framework written in python. Twisted doesn’t have to deal with complexity of threading

and also unlike synchronous frameworks it can process events from multiple network

connections without making the application unresponsive. It also means that a single

thread controls the whole execution of the program (multiple tasks) but an individual task

may release the control over to other task while it is waiting for any other events,

resource etc. Since twisted is written in python it’s a cross platform, object oriented,

interpreted language. It takes the network input and converts that to a process call. Due

to this nature of Twisted, it is considered to be efficient network programming

framework.

Twisted contains web servers, chat clients, chat servers, mail servers and more. It also

supports numerous protocols such as POP3, IMAP, HTTP, SSL, and others. It’s a great

tool with lots of functionalities such as mail, web, news, chat, DNS, SSH, Telnet RPC

and more. Being a cross platform language application built on twisted can run on Linux,

Unix, and Mac OSX. Using twisted has lots of advantages such as [3]: security, stability

and it’s easy to write servers and clients.

- Asynchronous/Event–driven:

- Flexibility: one can start off quickly as twisted provides high level classes not

just that one can also implement their ideas through the scratch.

18

- Open Source: It’s a great advantage that twisted is open source. So, that one

can modify the classes or built a package as per their wish on top of the

existing classes.

- Community-backed: Twisted has a strong community of developers who are

willing to help new comers and also support when one runs into a trouble.

1.4.2 Networkx (Network Visualizer):

 As mentioned in [4], [5]: “NetworkX is a Python language software package for the

creation, manipulation, and study of the structure, dynamics, and function of complex

networks.” Networkx helps to visualize large real world graphs. Since network is

completely written in python it is highly scalable, efficient tool for visualization purpose.

Some of the key features of networkx are as follows:

 It contains data structures for representing huge networks and graphs

 It has enough graphs to suit structure and dynamics of social biological and

infrastructure networks.

 Graphs can be converted to and from any formats.

 Any graphs attributes such as adjacency, degree, diameter etc. can easily be

explored.

 Any portion of the entire graph (i.e. sub graph) can be explored in detail.

 It is written in python, so any operating system can support the library.

19

Networkx has been used in my thesis to visualize the nodes and edges. Nodes represent

an individual client connected to the network while an edge represents their connection.

The edge also displays the amount of data flowing through that connection as well the

delay between the two nodes that are connected to each other. The topology used for the

visualization of this network is a tree topology.

A simple example of networkx is given below.

 Figure 1.4 A simple Networkx graph

1.4.3 Tkinter (UI Application):

Tkinter is UI interface written in python for development of GUI applications. There are

other GUI applications for python such as wxPython, Qt etc. but Tkinter is considered to

be the standard UI toolkit. Tkinter provides a fast and easy way to develop UI application

in python. As other UI framework Tkinter also provides various controls such as buttons,

labels, text box etc. There are altogether 15 controls which are known as widgets.

20

 Some of these frequently used widgets are as follows:

 Button: It provides button the applications.

 Label: used mostly for displaying texts.

 Message: used mostly for writing multi line text.

 Canvas: used mostly to draw different shapes.

 CheckButton: used to select multiple options as checkboxes.

 Entry: used to accept values from the user.

 Frame: used to hold or organize other widgets.

 Listbox: used to provide multiple choices to the user.

 Menubutton: used to provide menus in the application.

 Menu: used as the menu options (values) in the Menubutton widget.

 Radiobutton: used to provide multiple options to user but only one can be

selected.

 Scale: used to provide a slider widget.

 Scrollbar: used to provide scroll options to other widget.

 TkMessageBox: used to display prompt message to the user.

These widgets have their own attributes which helps to provide good look and feel to the

applications. Some of the common attributes of these widgets are: dimensions, colors,

fonts etc.

Tkinter in my thesis has been used for displaying the events of the whole network. It can

also be considered as a log for the server. It displays all the events happening in the

21

network in term of texts. Events such as joining of new node, bandwidth update of the

node, leaving of the node, and reassigning node to the new parents will be displayed in

Tkinter window as they happen in the network.

A simple Tkinter application is displayed below:

Figure 1.5 A simple Tkinter UI Application

1.5. Thesis Outline

This thesis is organized in five chapters.

Chapter 1 is an introduction and background of P2P Streaming. Chapter 2 describes the

related works done in the field of P2P Streaming. The chapter gives information about

the architecture of the some P2P application as well as development and research

performed in the field of reliability of the P2P Streaming.

In Chapter 3, we address the definition of the problem, explain the problem with

diagrammatic examples and provide a mathematical solution to the problem. Chapter 4

presents an implementation of the experimental setup alongside with the results obtained.

22

Chapter 5 summarizes what have been done in this research, and discuss some future

works that can be applied to this research.

23

Chapter 2

Related Works

Most of the internet traffic today is dominated by video. Based on internet traffic index

provided by Cisco [19] one third of internet in 2009 was dominated by video traffic and

is expected to reach around 57% by 2014. This increase of internet traffic suggests that

video streaming is becoming a popular fashion in recent days. Streaming application such

as PPLive [7], CoolStreaming [8], and Cabernet [9] is hype in current scenario of P2P

usage. Even though P2P streaming is gaining its fame it has its own unique problems

which are being tackled by researcher and academic professionals. Some of the problems

such as topology analysis, handling dynamic nodes, streaming architecture and DRM are

active areas of research in current scenarios.

2.1 Live Streaming Applications

Some of the applications which has gained fame in research areas due to its efficiency

and versatile architecture are briefly described below

CoolStreaming:

CoolStreaming [8], [20], [21] doesn’t maintain any complex structure that governs the

flow of the data. The direction or path of the data is determined at the real time. Also the

partner within a node keeps periodically changing which enhances the video quality. The

information of the data is periodically exchanged between partners. Results from the

planet lab shows that the performance of the CoolStreaming is directly related with the

24

availability of data and partners. According to the authors Cool-Streaming doesn’t have

any global or complex structure, data forwarding is directly related to the data availability

rather than a specific direction and it is robust and resilient. CoolStreaming basically

consists of three components namely membership manager, partnership manager and

scheduler.

 Figure 2.1 System Diagram for DONet Node

Membership Manager-Each CoolStreaming node has unique key as an IP and also a

membership cache which keeps a partial track of active nodes. Every new node contacts

the source node which redirects the new node to a random deputy node, the new node

than retrieves list of partner from the deputy node. Every new node contacts the source

node because this node exists throughout the streaming. According to the author the

major issue faced was maintaining and updating the membership cache. Every node in

the CoolStreaming periodically generates a message in certain time which contains four

values (seq_num, id, num_partner, ttl) and every other node which receives these

25

message updates their membership cache with the above values for that particular node.

The membership information from one node to another is exchanged by gossiping.

Partnership Manager-It is based on the main idea of Buffer Map (BM). A video is

divided into segments and each partner consists of some these segments. The information

of BM is continuously exchanged in certain time. The availability of data and partner

determines the direction. The path for the flow of data and the number of partner for a

node never fixed. It varies with the availability of data.

Scheduler-Scheduling is to know which segment of data is to be fetched from the

available partners. Once we have the Buffer Map of the node and the partner than it can

be determined from which partner the data is to be fetched. According to the authors for

stable and static environment simple round – robin algorithm would be enough to get the

information but for the dynamic and heterogeneous environment this algorithm would not

work because dynamic environment consists of those nodes which joins and leaves the

Cool-Streaming simultaneously.

PPLive:

Another P2P application which proved to deliver better content and was widely used

during the Beijing Olympics was PPLive. The PPLive system works as other P2P

applications but consists of some additional components such as bootstrap server (it helps

peers to find the suitable tracking server), content server (which is considered as a data

center and holds most of the data), tracking server (which contains the list of available

peers and find the neighboring peers) and the peers (which request data). The individual

26

peers in PPLive network installs PPLive software which implements a protocol through

which the peers can communicate with the server as well as with the other peers.

Figure 2.2 The system architecture of PPLive P2P-VoD

A peer initially request for a particular chunks of data with the bootstrap server and the

server complete all the bootstrapping functionalities and forward its request to an

appropriate tracking server. Chunks are the parts of movie which different peer holds. A

tracker server than establishes a neighborhood of peers who have similar request. The

peers than share and download data with other peers within their neighborhood. If in case

there is no available data within the neighborhood than the peers download the data

directly from the server. Since the PPLive architecture is based on P2P notion each

individual peer contributes a small amount of their hard disk storage. The chunks of the

requested movie are stored in this space. When there are enough available chunks in the

disk than the peer advertises to other peer about their data information.

27

The PPLive architecture mainly shows that it diminishes the server workload and gives

good quality of service for popular movies or videos. Also PPLive offers good playback

continuity. The performance of PPLive degrades for unpopular movies. The performance

may deteriorate because of one of the following reasons [20] i) There are not enough

replicas of the desired movie exiting in the system. ii) Peers that hold the desire movie

are with limited upload bandwidth iii) Peers may not want to fully exploit the available

bandwidth iv) The available upload bandwidth of peer holding the desire movie has been

fully occupied.

2.2 Multicast Tree and Reliability

Reliability of P2P streaming has lately become a topic of discussion among the

researcher. Lots of ideas have been proposed to enhance the reliability of the overlay

topology. Especially in Live Streaming reliability of nodes and topology is of prime

concern. Lots of researchers has discussed about the enhancement of topology,

construction of tree, proposed new architecture, optimized the tree algorithm to increase

the reliability of the topology and node itself.

Among these discussions the author in [22] describes an approach to stream videos over

the internet with resilience known as CoopNet. This paper focuses on two key issues,

firstly – Most of the ISPs charges for upstream bandwidth so it’s not a wise decision to

exploit a single node. In order to resolve this issue the peer in CoopNet will only

contribute in uploading as long as the node is interested in the content. Secondly – Nodes

in P2P streaming are mostly dynamic in nature, they may leave the network at their own

28

will or may be disconnected due to unwanted disruption. This makes the network

topology vulnerable. To address this problem author suggests an approach for live

streaming with large amount of peers which is done by replicating data for peers’

availability and creating multiple paths for peers to get the data. The multiple paths for

the peers can be achieved by using efficient tree management algorithm so, that in case of

failure of one link the peers can choose the alternate path. To increase the quality of

stream, the content is encoded using multiple descriptions coding (MDC) [23]. The MDC

content is replicated so that peers can access data from multiple sources.

The paper suggests of constructing multi tree to overcome the vulnerability of dynamic

nodes. CoopNet tends to build short trees so that it would minimize the probability of

disruption due to failure, congestions at parent nodes. It also suggests making the tree as

diverse as possible which means interior nodes in one tree must likely be the leaf nodes in

other tree. The tree construction algorithm preferred by CoopNet is deterministic rather

than randomized tree construction. In case of deterministic algorithm it is first determined

whether a node in a tree will be a fertile node (node which has children) or a sterile node

(leaf node). If a node is fertile node in one tree than the node in other tree is mostly likely

to be a sterile node. This approach does increase the diversity of the node as well as make

the tree topology resilient to dynamic nodes but still it suffers from single point of failure

as pointed out by the author. If the root node of the tree fails than the streaming content

will not be available to any of the other nodes in the tree.

29

Dynamic Users have huge influence in the stability of the P2P network and delay induced

churn. Kunwoo Park in his paper [12] describes the different dynamic users in the

network which is a considerable factor for building an overlay tree topology. One of the

constraints that affect the performance of p2p application is the dynamic nature peers or

nodes. Based on this paper users can be classified into two types: short-term users and

long term users. Long term users are those who stay in the system for 50% of the session

and short-term are those who stay for 1% of the session. The paper discuss about

determining these types of users. Long term users help to improve the system

performance. So, after identifying the stable users they can be placed on the core of the

distribution structure while short term users can be placed on the leaf nodes. Placing the

long term nodes at the top or core structure of the architecture provides resilience of the

topology. Also the author describes about the concept of mutual exchange of message to

determine the existence of an individual node known as heartbeat message. This message

helps to keep alive records of the neighboring peer.

Dynamic users are one of the areas of research to enhance the efficiency of P2P

Streaming. Unlike dynamic user the construction of tree topology itself is an integral and

important aspect of enhancing P2P Streaming. The topology optimization formulated by

the author in paper [24] is focused on minimizing the average height of the sub-stream

tree and average propagation latency in each tree. The basic theme of the paper is focused

on the construction and maintenance of the multi-tree structure by introducing interior

tree connection. This approach is obtained by optimal node placement and interior tree

30

connection using heuristic algorithm. Numerical analysis shows that this approach can

efficiently build streaming trees with low delay. The multi tree construction approach in

this paper depends upon the number of streams for the given video content. Assume there

are M streams for a video content with a streaming rate of r. The overall M sub tree will

be constructed for each available stream. The basic idea for the node placement in the

tree is if a node is an interior in anyone of the M tree than in the rest M-1 tree that

particular node will have a position of leaf node. This approach certainly does reduces the

churn occurrence in the system but due to the each node placement at a higher level, the

sub tree which has a node with less bandwidth will be a victim of low video quality or

video lag. The approach suggested by the author is good for building trees with low delay

performance.

Our method of increasing reliability of the tree is in closely related to the approach suggested by

the author in [24]. But instead of constructing the multiple trees for each stream we will be

constructing a single backup tree for the existing base tree. Also the backup tree that we will

construct will come into action in case of node failure so that there is no interruption of flow of

data. Also we will be using the process of normalization for picking of optimal nodes in the trees

for the construction of base tree as well as backup tree. This will help to determine an optimal

node based on two parameters bandwidth and delay. The concept of backup tree is to provide an

alternate parent to a node in case of failure. Also data only flows in the base tree backup tree is a

support tree which only maintains connection to other nodes.

31

Chapter 3

Reliable Multicast

We consider the following problem. We have a mesh wireless network, with a set of n

nodes v = {v1, v2,…..,vn}. Each node vi also has a probability of failure, pi. We assume that

download bandwidth are much more than upload bandwidths, and therefore do not need

to be taken into consideration. The objective is to construct a multicast tree for v so that

the entire node in v can receive streamed data from an origin source s, with the quality-

of-service (QoS) requirement of a minimum streaming rate r, and moreover, this

multicast tree is maximally reliable. We observe that a consequence of the QoS

requirement of minimum streaming rate is that a given node vi cannot have more than ci

children in the multicast tree where

 and

 .

Where, ui is the uploading bandwidth of the node vi.

 ci is the children of node vi.

 r is the rate of uploading bandwidth.

We need a precise definition of the reliability of a multicast tree, the property that we

wish to maximize in our proposed problem.

3.1 Definition (Reliability):

Given a multicast tree T for a set of nodes V, suppose each node vi is either alive or has

failed (failure includes departure of a node). Recall that each node vi has an associated

probability of failure pi. We begin by defining the indicator variable xi as

32

 Xi =
1 if the indicator variable viis alive.

 if node vihas failed

We call the vector = (x1, x2 ,, xn) the state vector; it indicates the state of the

multicast tree. The set of nodes that are still able to receive the data stream is completely

determined by this state vector. We observe that if node vi has failed, then all descendants

of vi (or all nodes in the sub tree with vi as root) are disconnected from the multicast tree

and cannot receive the data stream.

Given a state vector , we can determine the set of nodes that are disconnected. We

define a function ɸ () such that

 ɸ () = the number of nodes that are disconnected in T with the state vector .

We call ɸ () the structure function of T.

We suppose that the state of node vi, or its indicator variable, is a random variable such

that P {xi = 1} = 1= P {xi = 0} = 1 - Pi, where Pi is the probability of failure of node vi.

Thus, with the probabilities of failures = {p1,......., pn} and a multicast tree T with its

structure function ɸ, it is possible to compute E [ɸ ()], the expected number of nodes

that will be disconnected. We define the reliability of T to be R(T) =

.

The rationale is that n - E[ɸ()] is the number of nodes still connected and receiving data

in the tree and the higher this number is, the more reliable the tree is. We simply

normalize this number to the total number nodes and define that to be R(T) Ɛ [0, 1], a

value of 1 means T is perfectly reliable it follows then that in order to maximize the

reliability, we must construct a multicast tree that minimizes E[ɸ()].

33

For convenience of discussion and without loss of generality, we assume that the nodes

are sorted in order of increasing probabilities of failure, i.e. p1 <= p2 <=........ <= pn. Recall

that the constructed multicast tree must have a streaming rate of e and therefore each

node vi can have at most ci children where ci is the largest integer such that

 . Even

though our current objective is not to minimize end to end delay, we still wish to keep

end to end delay as low as possible while maximizing the reliability of the tree. We note

that a deep and narrow tree results in higher delays, whereas a wider shorter tree yields

lower delays. Thus while we construct the tree to be reliable, we require every node vi to

have exactly ci children. This will ensure that the resulting tree is as wide and short as

possible, while still providing the required rate of r.

To minimize E [ɸ ()] requires us to calculate it: From probability theory. Given the

random variable x, and a function ɸ ().

 E[ɸ()] =

We use a simple example to develop some intuition over this problem (probability of

failure =0).

3.2 Example:

 We have a source s that is perfectly reliable, and 3 receiver nodes v1, v2, v3. Assume ui =

2, i = 1, 2, 3 and the required minimum streaming rate is r =1. This means that each node

including s has at most 2 children in the multicast tree, also p1 < p2 < p3.

Here are two possible multicast trees constructed.

34

Figure 3.1 Two Alternate Multicast Tree s

Let us consider the reliability of tree A and tree B. We simply compute E[ɸ()] for A

and B, and whichever tree has the smaller E[ɸ()] is the more reliable of the two.

For tree A and B: E [ɸ ()] = with being a different function

for A and for B.

We enumerate all possible values of the variable x = (x1, x2, x3); they are all binary strings

of length 3.E.g. (0, 0, 0) means v1, v2, v3 are all failed, (1, 0, 1) means only v2 is failed.

X: state variable (x) P(x) ɸ() for A ɸ() for B

000 p1p2p3 3 3

001 p1p2(1-p3) 3 2

010 P1(1-p2)p3 2 2

011 P1(1-p2)(1-p3) 2 1

100 (1-P1)p2p3 2 3

35

101 (1-P1)p2(1-p3) 1 1

110 (1-P1)(1-p2)(1-p3) 1 2

 Table 3.1 All binary states for 3 nodes

The structure functions for A and B are different precisely because the two trees have

different structures or topologies. For instance, when node 1 is the only failed node, in the

tree A it means 2 nodes (1 and 3) are disconnected whereas in tree B it means only 1

node disconnected. From the above tabulated values, it is simple to calculate E[ɸ()] for

A and B, given the probabilities of failure = (p1, p2, p3). We note that E[ɸ()]

decreases from A to B by p1p2(1-p3) + p1(1-p2)(1-p3) while increases from A to B by (1-

p1)p2p3 + (1-p1)(1-p2)p3.

Taken together, the net difference is:

E [ɸB(x)] – E [ɸA(x)] = Δp2 + Δ(1-p2), where Δ = p3 – p1. i.e., E [ɸB (x)] – E [ɸA (x)] = Δ

= p3 – p1 > 0. This means that tree B is less reliable than tree A, according to our

definition of reliability.

The above simple example confirms our intuition that more reliable nodes (those with

lower probability of failure) should be positioned higher in the multicast tree. As seen in

our toy example, placing the more reliable node 1 higher in the tree results in a more

reliable tree. The reason is very intuitive: In tree B, node 3 is a less reliable node but is

allowed to affect more of the other nodes by its higher node is, the fewer nodes should it

affect in the event of its failure and therefore it should be placed in the constructed tree.

36

It can be thought of this way: If there are two nodes v and w with probability of failure

for v being smaller than for w, i.e., v is more reliable than w. intuitively, it would be more

reliable to have w have fewer descendants than v. Node w is more likely to fail, therefore

w should have fewer descendants than v, which means w should be placed lower in the

tree than v. We thus arrive at the following proposition which consider a restricted case of

our problem. In this restricted version, we make the additional assumption that all nodes

have the same upload rate (u1 = u2 = ... = un), hence all nodes must have the same number

of children in the resulting multicast tree (except for when it runs out of nodes),

ci =

 , i.

The proposition basically states that the optimally reliable tree is simply the one that

positions all the nodes in increasing order of their probabilities of failure. For example, if

there are 6 nodes: 1, 2, 3... 6 with p1 ≤ p2 ≤......≤ p6. Also each node has the upload rate of

u = 2r (This means each node has 2 child nodes).The optimal tree in the following:

 Figure 3.3. An optimal Tree

37

3.3 Proposition:

 Given a set of nodes v = {v1, v2... vn} ordered by their probabilities of failure. p1 ≤ p2≤

.... ≤ pn, and each node have the upload rate u. The optimally reliable complete multicast

tree T with streaming rate r is the following: T has the root node s which is the source.

Node s has C =

 children v1, v2,...vc, respectively. Node v1 has c children vc+1, vc+2,

vc+c. And so on and so forth. The breadth first traversal of T yields the nodes v1, v2,, vn

in this order; and each node has c children until there are no more nodes left.

3.4 Proof:

 The proof that the tree T is the optimal is straight forward. We start with any complete

multicast tree T’ of the n nodes and show that by replacing each node in turn with the one

from T, the reliability of the tree is constantly increased until T’ is transformed into T.

Without loss of generality, we assume that n = c
h
 – 2 for some integer h. The proof works

for any n. This just simplifies the explanation, by having every interior node in any

complete multicast tree possess exactly c children.

Suppose we have any complete multicast tree T’, with the breadth first traversal of T’

yielding {s, w1, w2... wn}. Note that node wi = vk for some k, 1 ≤ k ≤ n.

38

Figure 3.4 A complete Multicast Tree T’

Let i =1, we first look at wi = w1. If w1 = v1, then do nothing. Otherwise we see what

happens to E [ɸ()] the reliability of the tree if we replace w1 with v1 which is wj for

some j > 1. Also w1 = vk for some k > 1. In calculating E [ɸ()] there are only four

possible combinations of pk and pi. pk is the probability of failure for node w1 = vk, K > 1,

and pi is the probability of failure for node vi = wj, j > 1. The four possibilities are:

 P(x) =

Note that with w1 - vk, k > 1, the ɸ () multiplied to [pk (1 - pi)] includes the

number of nodes in the sub tree rooted at w1. However, if w1 is swapped with v1, then [pk

..... (1 - pi)] changes to [pi (1 – pk)], that is the number of descendants of the

former w1, T1 is now multiplied to [pi (1 – pk)]. Let E [ɸ ()]’ be the tree

reliability prior to the swap of Wi with Wj = vi , and E[ɸ()] be the after swap reliability.

39

Figure 3.5 swapping the sub tree W1 and Wj.

Let Ti be the number of nodes in the sub tree rooted at Wi, and Tj be the number of nodes

in the sub tree rooted at Wj = Vi.

Ti comes from ɸ(); all the other node in ɸ() do not contribute to any change because

only Wi and Wj are affected, all the other nodes do not change.

Swapping Wi and Wj results in the change form [pk (1 - pi)] to [pi (1 – pk)...]

which contributes the following difference to E [ɸ ()] – E [ɸ ()]’:

 = TiP1k *pi (1-pk) – Tip1k * pk(1-pi), where p1k is the product of all pi

except j = 1or k

 = Ti [pi (1-pk) – pk (1-pi)] P1k

 = Ti (pi - pk) p1k

 = - Ti |pk – pi | p1k; since pk >= pi

Similarly, the swap also causes the changes from [(1- pk)...... pi......] to [(1- pi)....pk] which

contributes the following difference to E [ɸ ()] - E [ɸ ()]’:

40

 = Tj P1k (1- pi)pk – Tjp1k (1- pk)pi

 = Tj | pk – pi | p1k

The other two possible combinations of [pk pi] and [(1 = pk) (1- Pi)] do not

contribute any change to E [ɸ ()] after swapping pi and pk. Therefore the net difference

from E [ɸ ()] – E [ɸ ()]’ is

 = -Ti |pk - pi|p1k + Tj|pk - pi| p1k < 0 since Ti > Tj

Ti > Tj because the tree is complete and Wi is in front of Wj in the breadth first traversal of

the trees.

This proves that there is a decrease in E [ɸ ()] from swapping Wi and Wj = Vi, which

means an increase in reliability of the tree.

We simply repeat this procedure for W2, W3 etc. At each iteration, wither Wi is already Vi

or we swap Wi with Wj = Vi, j > i. After each swap, the same reasoning as above shows

that the E [ɸ ()] decreases and thus reliability increases. This process ends until all the

nodes have been considered in turn. Since reliability always increases or doesn’t change

at each iteration, the resulting tree T with the breadth-first traversal yielding {v1, v2... vn}

is the optimally reliable tree.

41

Chapter 4

Implementation

4.1 P2P Implementation in Twisted (Server and Node)

The twisted components used for client server architecture is similar to that of

components used for P2P architecture. The major difference that set them apart is that

every node in P2P structure behaves as a server (forwards or generates data) as well as

client (receives the data). Basically a P2P network comprises of two major components

server and the node.

A basic classes and functions outline used for P2P server is explained below [10].

4.1.1 Server:

This server produces the data to the nodes in continuous fashion.

Producer:

Since it is a streaming server, IPushProducer is an ideal interface written for streaming

purpose. The server and client maintain the relationship of producer and consumer.

resumeProducing() informs the producer to produce the data. pauseProducing() tells the

producer to pause as enough data has been produced for the time being to be processed. It

calls resumeProducing() once the data has been processed.

42

Figure 4.1 Content Producer Class

Protocol:

Twisted being an event-driven programming its protocol waits for an event from the

network, upon receiving such events it makes a call to methods on protocol. All the

protocol in twisted are either inherited or subclasses from

twisted.internet.protocol.Protocol. For every new connection an instance of protocol is

made which handles that particular connection and also manages the flow of data through

that connection.

The protocol used here is LineReceiver. This protocol has two different event handlers:

lineReceived() and rawDataReceived(). Since we are receiving data as lines so it

plausible to use lineReceived(). For every line received this method is called once. The

protocol class also handles the connection. Whenever a connection is made, the producer

is registered first. As long as connection is on, the registered node continuously receives

the data. In order to stop receiving the data, the connection has to be unregistered first

and then the loseConnection() method has to be called. If loseConnection() is called

without unregistering the producer, the data in the buffer is sent first and then only the

connection is disconnected.

43

 Figure 4.2 Server Protocol Class

Factory:

The Factory class inherits from twisted.internet.protcol.Factory.

The factory class here simply instantiates instances of a protocol class. “__name__ ==

‘__main__’ “ is the main function in python. Whenever a file is executed it first looks

for this function to load the program. reactor is the event loop of twisted. For a server to

establish TCP connection the reactor listens at a specific port. It connects the factory to

the network which here is known as the instance of ServerFactory().

 Figure 4.3 Server Factory Class

44

So, putting all the classes together, here is a complete outline of a P2P Server.

 Figure 4.4 A P2P Server Class

4.1.2 Node:

A basic classes and functions outline used for P2P Node is explained below.

Protocol:

The protocol class for individual node is the same as the server itself. As the node in P2P

behaves both as a server and a client there is an ‘if else’ condition to distinguish the

45

factory for the initial connection between any two nodes. The name of the factory is

defined in the factory class at factory before the connection is made. Other functions in

protocol behave in the way as the server does.

 Figure 4.5 Node Protocol Class

Factory:

An individual node consists of both the server factory and the client factory. These both

factories instantiates an instance of a protocol class. Each factory is given their name

based on theirs factory type. The NodeServerFactory class represents the node as a server

while the NodeClientFactory class represents the node as a client. For the node server,

reactor listens for connection at a specific port number, while for the node client reactor

connects to a specific port number and IP address. The instance of the server and client

class is instantiated at the main class of the node so that when the node is started initially,

an individual node will behave as both as a server and client depending upon the action

that it have to perform.

46

 Figure 4.6 Node Factory Class

So, putting all the classes together, here is a complete outline of a P2P Node.

47

 Figure 4.7 A Complete Node Class

4.2 Input Conversion:

The objective of this experiment is to determine a resilient solution for P2P Live

Streaming using tree topology. To achieve the goal, the parameters that are considered

are bandwidth and delay. Since, in a single tree topology a node can have only one parent

but can have multiple children. The input we have got from the BRITE topology consists

of nodes having multiple parent and multiple children. To attain a node with single parent

but multiple children we use an input conversion algorithm. The algorithm receives the

BRITE output format and generates a two dimensional matrix containing single parent

48

and multiple children if there are any. This 2 dimensional array is than mapped into a .txt

file which is the required initial node input for the experiment.

The nodes in the P2P experiments are automatically generated from the BRITE topology

generator. As explained in the section 1.5.4 BRITE is a universal topology generator not

restricted to any particular way of generating topologies. The objective behind using a

topology generator is to obtain a huge set of nodes which than would be fed into the

designed P2P experiment. The BRITE output conversion to desired P2P nodes consists of

three components.

 Figure 4.8 Input Conversion Process

4.2.1 BRITE Nodes:

The image below shows the initial state of the Input as generated from BRITE.

 Figure 4.9 Nodes generated from BRITE

Conversion

Algorithm
P2P input Nodes BRITE Nodes

49

This figure contains information about the number of nodes, edges and the model used to

generate the topology. BRITE topology generator contains two different models:

Waxman and Barabasi. Using any of these models is not of a great concern since we are

interested in the nodes and edges generated by the model rather than the models itself.

So, using any of these models won’t affect our results. We need the BRITE topology

generator for generating a topology. Feeding the basic parameter in BRITE topology

generator we obtain a mesh topology. Later using an algorithm the mesh topology is

transverse into tree topology. Basically, the entire output file from BRITE contains the

same information except the number of nodes and edges, which depend upon the

parameter (number of nodes), passed while generation of BRITE output file.

The table below describes what the fields are [28] in corresponding to the figure 3.2:

 Explanation of Node fields

 Explanation of Edge fields

 Figure 4.10 Fields and its meaning of BRITE outputs fields

50

The experiment designed for P2P Live Streaming requires only few of these fields so we

ignore those fields that are not relevant to the experiment. From the node table we only

consider the number of nodes and their ids, rest of the other fields are irrelevant to the

experiment. From the edge table we only consider ‘from’, ‘to’, ‘bandwidth’ and ‘delay’

fields while the rest of the other fields are ignored.

4.2.2 Input Conversion Algorithm:

The BRITE file received as an output is in .brite format containing lots of fields that are

not required to the experiment. To remove these irrelevant fields we use input conversion

algorithm. The algorithm basically reads through the given file and returns a two

dimensional array which is later mapped to .txt file and fed to the system as nodes.

The pseudo-code below explains how the conversion from BRITE nodes to P2P nodes is

attained.

 Figure 4.11 Input Conversion Algorithm

51

The function generateMatrixFormat() receives the topology generated from BRITE and

converts into two dimensional matrix array which is represented by outputMatrixArray in

the above code. The algorithm starts with passing filename as a parameter which also

means the complete path to the filename.

inputMatrixArray is a two dimensional array which holds only the edge values of BRITE

topology. The function readfileAsArray(filename) returns the values after the Edges (7)

(refer to figure 3.2) as it is but in two dimensional matrix.

outputMatrixArray is the final matrix which array which holds only bandwidth and delay

of each edge. Since not all node connects to each node, these types of edges which

doesn’t exists are represented by a dummy value as ‘x’ in the two dimensional array.

There are two loops in this algorithm; the first loop represents the node id, the second

loop represents the rows in the inputMatrixArray. The second column of this array

represents the parent node, the third column represents the child node, the fifth column

represents the delay of the edge and the sixth column represents the bandwidth of the

node. These are the fields that we are interested in fetching from the inputMatrixArray.

So, the second and thirds column of the array is assigned as parent and child, if any of

this node id matches the loop count or col (which represents the node id), the fifth and

sixth column of that array is assigned as delay and bandwidth of that parent and child and

is finally stored in the outputMatrixArray. This process continues as long as association

of each node with another node is reached, in short the loop check for the connection of

one node with every other node.

52

All those nodes which have association with another node are stored in the

outputMatrixArray with their respective bandwidth and delay and for those edges without

association the value is represented as ‘x’.

4.2.3 P2P Input Nodes:

After the conversion process of BRITE file to two dimensional arrays of P2P Nodes,

these values in the arrays are mapped as a matrix in a text file separated with spaces.

The figure below shows the output of the matrix file referring figure 3.2 as the initial

input.

Figure 4.12 P2P Input Nodes

Each value in the array represents the edge value (relation of a node with other node). For

example

- The first x value in the first row and first column means that there is no association

(edge) for 1
st
 – 1

st
 node.

- The second value 100.0, 1.0 in the first row and second column means that there is

a connection between 1
st
 – 2

nd
 nodes. 100.0 represent the bandwidth of that edge

and 1.0 represents the delay of that edge.

53

- There exists no association (edge) for a node with itself. E.g. 1
st
- 1

st
node, 2

nd
 – 2

nd

node etc.

- The association between i
th

 – j
th

 contains the same value as the association between

j
th

 – i
th

 does.

4.3 Topology Formation:

The P2P Node forms a tree topology for sharing the data and passing the information to

the next level. The basic implementation of server and node id explained in section 3.1.

These two components have their own attributes. Every node has same attribute in the

topology. The attributes are as follow:-

NodeId : It represents the node uniquely in the topology. This is the id generated from the

BRITE topology generator. For the streaming server, the node id is assigned

‘ ’ by default.

Name: The name of the node given by themselves. For this experiment it is

automatically generated alphabetically starting from ‘A’.

Listen Port: The port at which node waits for connection (any node connecting at this

port is the child of particular node).

Child: It contains the ids of node to which it streams the data (a node can have multiple

child which are separated by comma).

Parent: It contains the id of a node (a particular node has just one parent)

Upload bandwidth: It is the amount of the data the node streams to its children.

54

Delay: It is the amount of the time the data takes to travel from its parent to itself.

Backup Parent: It is the parent in the backup tree. Only connection is established between

the nodes, there is no data flow in the backup tree. The data only flows in the

base tree.

Backup Child: It is the children in the backup tree. A node can have multiple children

which are separated by commas.

Depart time: The time which is generated randomly at the point when the node connects

in the network. This time is allocated so that the nodes fall automatically after

certain amount of time without doing it manually.

The main server holds a copy of all these information of each node in a dictionary. A

server holds information in the following manner.

All the above attributes are represented by a different data structures present in the

Python. There is a main data structure known as ‘dictionary’ which holds this

information.

Figure 4.13 Data structure for storing nodes

55

4.3.1 Node Arrival (Joining of Peers):

The streaming server listens at a particular port waiting for the nodes to connect. The port

of the server can be any integer value or any port which is not open already. This is the

main server which is the only producer of the content. Other nodes just forward the

content in the tree.

Below is the server UI.

Figure 4.14 Server Log

The server UI contains of a log report where every event occurring in the network is

displayed. Also server holds all the information of the nodes and their events.

The nodes for the topology are automatically generated and convert to feed in the system.

A node initially connects to the server with a message which contains 3 parameters

(information).

56

A step by step connection and formation of tree topology is described below.

Step 1: Establishing connection and sending initial message to server.

A new node establishes connection with server and sends message as ‘initialInfo' along

with its name. Since the experiment is carried in a single system IP cannot uniquely

identify a node. But in real case IP is used to identify a node. For this experiment IP is

replaces with name or Id to uniquely identify it. Port is the listening port for the particular

new node.

Step 2: Parent connection Information.

In this process the server looks in to its database and finds out a parent for the new node.

To find a parent there is an algorithm known as ‘Node Selection Algorithm’ described in

later section. This algorithm searches for the parent based on the two parameter

bandwidth and delay. A node in database which has maximum streaming capacity and

lowest possible delay is selected as a parent for the new node.

57

Step 3: Establishing connection with the Parent Node.

Once the new node receives the id and port number of its parent, it request for initial

connection to the new parent which is already a part of the existing topology by sending

message as ‘new_connect’ along with its name (Id).

Step 4: Receiving Data from the parent Node

Once the connection between the new node and its parent is established it starts to receive

data as long as its parent gets the data. The parent node in this case just forward whatever

data it has received from its parent. The data forwarded is a stream of image, but the

image is forwarded in string format as a lot of chunks. The new node receives all these

chunks and assembles it and displays the image and so on it forwards the received data to

its children.

Here is a display of a tree topology with a server and seven nodes.

58

 Figure 4.15 Base tree and its backup tree

4.3.2 Node Departure (Leaving of Peers)

In P2P environment dealing with node departure is one of the research topics. Users leave

frequently in the P2P environment which causes tree instability and which in return

causes playback problems. Users leave the network in two different ways, one is graceful

leaving in which the server is pre informed before the departure and other case is sudden

leave which may be caused due to hardware problem or network issues. To address this

problem we use a backup tree where each node a backup parent to receive the data in

case the current parent leaves.

In case of graceful departure a node sends a departure message to all its children, parent

and server.

59

A departing node in graceful process sends a message as ‘msg’ leave to notify everyone

that it is leaving. Once other node receives this message they inform their backup parent

about it and receives data from them. Also everyone in connection with departing node

removes the node from their list as well.

In case of sudden leave every node that is connected to departing node loses a connection

which is notified by an API in twisted known as connectionLost(). As same in the case of

graceful node, the node behaves exactly the same way in sudden leave. Once a node

departs from the topology the server re construct the backup tree and sends the new

backup parent information to all the nodes in the topology

4.4 Base Tree Construction Algorithm:

Base Tree is the major tree in the topology through which the data flows from the parent

to the children. The top of the tree is always the streaming server. Base is formed due to

the continuous arrival of new node and also due to the failure of a node. During a process

of new node arrival the server has to select a parent for the new node from the existing

topology. The algorithm used during this process is known as ‘Parent Selection

60

Algorithm’. The parent is selected based on two parameters – bandwidth and delay. Any

node that has the best combination of high bandwidth with low delay will be considered

as the parent for the new node. During this process first of the all the nodes in the existing

topology are normalized on this factor and any node that has the highest value of

normalization factor will be the parent node.

Normalization Factor:

The two parameter based on which the parent is selected are two different factors. So to

combine these two factors is known as normalization. The factor that determines this

process is known as the normalization factor.

Following program describes how a node in a network is normalized.

 Figure 4.16 Normalization Algorithm

The function getNormalizeFactor() takes six parameters:

‘hiDelay’ = highest delay value in the network.

‘loDelay’ = lowest delay value in the network.

‘selfDelay’ = delay of the node which is to be normalized.

‘loBandwidth’ = lowest uploading bandwidth of any node in the network.

61

‘hiBandwidth’ = highest uploading bandwidth of any node in the network.

‘selfBandwidth’ = uploading bandwidth of the node which is to be normalized

The delay of the above parameter is calculated from the server to a particular node. The

uploading bandwidth of the node keeps decreasing as the number of the children of that

particular node keeps on increasing. The delay of the node in the tree keeps on increasing

as we move along downwards to the tree and the node that reside on the higher of the tree

has less delay.

The function has two factors bandwidth factor and delay factor which are both initially

set to 0. The above algorithm determines the both the factor for a node and returns the

half of their sum. The both factor delay and bandwidth contains an equally important role

in determining the factor.

Parent Node Selection:

When a new node connects to the content server it selects a parent for new node using

‘parent selection algorithm’. The selected parent id is then forwarded to the new node and

the new node connects to the id given by the server and gets data from that node.

Following pseudo code explains the parent selection algorithm.

Figure 4.17 Node Selection Algorithm

62

The function getParentNode() gives the id of the parent that the new node will stream

data from. It contains parameter such as

baseTreeDict: This is the current tree topology of the base tree. This tree will be

normalized and the new node will be added to this dictionary

newNodeID: The id of the new node.

It contains of three conditions: The first condition where there are no node at all in the

tree. This is the very beginning phase of tree construction where the server initiates

connection and waits for the peers to build the topology. The first node to join this tree

will directly receive data from the server. The second condition where there is only one

node in the tree. The server doesn’t have to normalize the tree since there is only one

node. The one node will be the parent for the new node. The third condition where there

are two or more than two nodes in the tree. This is the most likely scenario for any new

node joining the tree. In this case the server normalizes the nodes existing in the network

and picks a node having the highest normalization factor as explained in the normalizing

algorithm.

4.5 Backup Tree Construction Algorithm:

Backup Tree is the secondary tree in the network which contains an alternate parent to a

particular node in case of node failure or departure. Backup Tree is constructed in two

scenarios:

63

 Node Arrival- Every time when a new node arrives in a network the backup tree is

reconstructed even if a backup tree exists. It is necessary to reconstruct the backup tree

one a new node has arrived because the new node becomes the leaf node in the base tree.

To achieve a resilient tree all the interior node in the base tree are made the leaf node in

the backup tree, and most of the leaf node in the base are made the interior node in the

backup tree. Also, the arriving new node might have good bandwidth and less delay

placing it at the top of the tree can make the topology stable.

Node Failure- When a node departs with pre-information or without any information, a

small segment of existing backup tree becomes the path for the data flow and new backup

tree is created again. If a node leaves the network with pre-information, the children node

or the affecting node immediately receive the data from their backup parent and a new

backup tree is created. The new information (parent name, port) is forwarded to all the

nodes in the base tree by server.

In case of sudden departure where the children nodes do not receive any pre-information

of their parent failure, the server provides the information about the failure and the

children node switch to their backup parent for the data. The server initially maintains a

connection with all the nodes, while in case of failure this initial connection of failed

node is lost which helps the server to identify the failed node. Once a node has failed the

server creates a backup tree of the recent base tree and forward the new information

(parent name, port) to all the nodes in the base tree.

Following algorithm explains the backup tree construction.

64

 Figure 4.18 Backup Tree Algorithm

The backup tree is made from the base tree. The algorithm starts with identifying the interior

nodes from the leaf nodes of the base tree. The innerNodeList consists of interior nodes of the

base tree while the leafNodeList consists of leaf nodes of the base tree. The objective of the

constructing the backup tree is to make the interior node of the base tree as leaf node of the

backup tree while the leaf node of the base is made the interior node of the backup tree. So, we

start constructing the tree with leaf node of base tree. The first while loop starts constructing the

backup tree, it chooses the node with the highest bandwidth in the base tree which is done by the

function getHighestBandWidth(). The nodes with the highest bandwidth are sequentially chosen

and placed at the top of the tree i.e. (backupDict). Once all the leaf node of the base tree is chosen

the second while loop starts appending the interior node of the base tree to the backup tree. The

65

process for choosing the interior node of the base tree is same as that of choosing the leaf node

from the base tree. Finally all the nodes are appended to the backup tree until each node in the

base tree is finished. backupDict is a dictionary which consists the final backup tree of the given

base tree.

4.6 Results

4.6.1 Comparison (Random vs. Algorithm)

Since the objective of this experiment is to achieve a resilient multicast using the algorithm

developed. We have compared the result obtained of total node failure (number of nodes affected

in the base tree + number of nodes affected in the backup tree) using the proposed algorithm and

random selection algorithm. In case of random algorithm, the nodes in the backup tree are

selected randomly instead of using the algorithm.

Below is the mathematical formulation to obtain the average node failure in the tree

Let n be the number of nodes in the tree

 Let ni be the node id

 NF (base) =

 NF (backup) =

 NF (Total) = NF (base) + NF (backup)

 NF (Avg) = NF (Total) / n

Where, NF (base) is the total number of node failed in base tree

 NF (backup) is the total number of node failed in backup tree

 NF (Total) is the sum of node failed in both the trees (base and backup tree)

Based on the above mathematical formula we calculate the average number of node failed in the

multicast for a particular number of node n.

66

The tabular data given below shows the average number of node failure in the both scenario for

both the tree (base tree and backup tree).

Number of Nodes Average Node failure

(Using proposed algorithm)

Average Node Failure

(Using random algorithm)

5 2.12 2.323

10 2.69 2.812

15 3.212 3.401

20 3.443 3.821

25 3.512 4.254

30 3.674 4.336

 Table 4.1 Average Node Failure (Algorithm vs. Random Selection)

Below is the graphical representation of above obtained data.

Figure 4.19 Average Node Failures

67

The tabular and graphical data shows that the proposed algorithm provide better resilience to the

multicast tree as compared to the random selection for construction of backup tree.

4.6.2 Bandwidth Analysis

Since the data flows through the base tree we have analyzed how the bandwidth varies as the

number of node increases in the base tree. The average flow of bandwidth is considered to be

lowest bandwidth link in the multicast tree.

Let T be the multicast tree.

 B (avg) T = B (min)T

Where, B (avg) is the average bandwidth of the base tree T

 B (min) is the minimum bandwidth that any link has in the base tree T

The tabular data below shows the bandwidth variation as the number of node increases in the base

tree. Assuming the server is streaming as the rate of 100 lines per second.

Number of Nodes Bandwidth (lines per second)

1 100

5 40

10 30.819

15 27.481

20 24.710

25 23.802

30 22.905

Table 4.2 Bandwidth Analysis

Below is the graphical representation of above obtained data.

68

 Figure 4.20 Average Bandwidth

The tabular and graphical data shows that as the number of node increases in the base tree the

average bandwidth of the multicast tree decreases.

4.6.3 Delay Analysis

Delay is the amount of the time it takes for a node to send a data and receive a reply for the sent

message. We have used following mathematical formulation to calculate the average delay of the

base tree.

T (delay) = ∑ ni where i = 1,2,.... Number of nodes

T (avg) = T(delay) / n

 Where, T (avg) = avg .delay of the base tree

 T (delay) = Total delay of the tree

 ni = nodal delay of each node in the base tree

69

 n = Total number of nodes in the tree

 Using the above formula we have obtained following results for the average delay of the

multicast tree for different number of nodes.

Number of Nodes Average Delay

1 1

5 1.6

10 2.21

15 2.45

20 2.62

25 2.712

30 2.78

Table 4.3 Delay Analysis

Below is the graphical representation of above obtained data.

70

 Figure 4.21 Average Delay

The tabular and graphical data shows that as the number of node increases in the base tree the

average delay of the multicast increases

71

Chapter 5

Conclusion

This thesis studies about the most common problem faced in P2P Streaming that is churn. We

present an approach to provide resilience to the P2P network caused by frequent joining and

leaving of nodes. The proposed solution to this problem is to construct a backup tree for the

existing base tree which provides continuous data or streaming to the failed nodes. Through

mathematical interpretation and experimental results we show that introducing a backup tree can

significantly increase the resilience of the tree which in return helps to provide effective tree

topology structure.

For further step, we are interested in prototyping and evaluating the algorithms and proposed

approach in real internet environment.

72

Bibliography (or References)

[1] Minor Gordon, “Twisted in knots”, IEEE Distributed Systems Online, vol. 8, no. 3,

2007, at. No. 0703-o3005

[2] Lutz Mark, “Learning Python”, 4
th

 Edition, 2007

[3] Fettig Abe, “Twisted Network Programming Essentials” 2 5

[4] Networkx 1.7 Documentation, 30 March. 2012. Documentation of networkx.

 http://networkx.lanl.gov/overview.html

[5] Networkx – Wikipedia, the free dictionary, 1
st
 Nov. 2012, Wikipedia

 http://en.wikipedia.org/wiki/NetworkX

[6] Hyunseok Chang, Sugih Jamin, Wenjie Wang, Live streaming performance of the

Zattoo network”, In Proceedings of the 9th ACM SIGCOMM conference on Internet

measurement conference, IMC '2009.

[7] Kai Wang, Chuang Lin, "Insight into the P2P-VoD System: Performance Modeling

and Analysis", 2009 Proceedings of 18th International Conference on Computer

Communications and Networks, 2009 , Page1-6

[8] Xinyan Zhang, Jiangchuan Liu, Bo Li, Yum, Y.-S.P. “CoolStreaming DONet: A

Data-driven Overlay Network for Peer-to-Peer Live Media Streaming.” In

Proceedings of IEEE INFOCOM 2005, 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Page 2102 - 2111 vol. 3.

[9] Yaping Zhu, Rui Zhang-Shen, Sampath Rangarajan, Jennifer Rexford, “Cabernet:

Connectivity Architecture for Better Network Services”, In Proceedings of

http://networkx.lanl.gov/overview.html
http://en.wikipedia.org/wiki/NetworkX

73

International Conference On Emerging Networking Experiments And Technologies,

ACM CoNEXT 2008.

[10] Documentation – Twisted, 30 March. 2012. Documentation of twisted

 http://twistedmatrix.com/trac/wiki/Documentation

[11] Shicong Meng, Ling Liu, Jianwei Yin, “Scalable and Reliable IPTV Service through

Collaborative Request Dispatching”, In proc. Of IEEE International Conference on

Web Services (ICWS) 2010, Page 179-186.

[12] Kunwoo Park, Dukhyun Chang, Junghoon Kim, Wonjun Yoon, and Ted Taekyoung

Kwon, (2010), “An Analysis of User Dynamics in P2P Live Streaming” Services,

Communications (ICC), 2010 IEEE International Conference on, Page 1-6

[13] Mubashar Mushtaq, Toufik Ahmed, “P2P-based mobile IPTV: Challenges and

opportunities”, Proceedings of the 2 8 IEEE/ACS International Conference on

Computer Systems and Applications, March 31-April 04, 2008, Page 975-980

[14] Yu-Yi Chen, Jinn-Ke Jan, Yo-Yu Chi, Meng-Lin Tsai, (2009), A Feasible DRM

Mechanism for BT-Like P2P System Information, Engineering and Electronic

Commerce, 2009. IEEC '09. International Symposium on , 323 -327

[15] Prithula Dhungel, Xiaojun Hei, Keith, W. Ross & Nitesh Saxena. “The Pollution

Attack in P2P Live Video Streaming Measurement Results and Defenses.” In

proceedings of the 2007 workshop on Peer-to-peer streaming and IP-TV, August

2007, Page: 323-328.

http://twistedmatrix.com/trac/wiki/Documentation
http://ieeexplore.ieee.org.uproxy.library.dc-uoit.ca/xpl/mostRecentIssue.jsp?punumber=5497983
http://portal.acm.org.uproxy.library.dc-uoit.ca/citation.cfm?id=1544345&CFID=791089&CFTOKEN=27851842
http://portal.acm.org.uproxy.library.dc-uoit.ca/citation.cfm?id=1544345&CFID=791089&CFTOKEN=27851842
http://portal.acm.org.uproxy.library.dc-uoit.ca/citation.cfm?id=1544345&CFID=791089&CFTOKEN=27851842
http://ieeexplore.ieee.org.uproxy.library.dc-uoit.ca/xpl/mostRecentIssue.jsp?punumber=5175054
http://ieeexplore.ieee.org.uproxy.library.dc-uoit.ca/xpl/mostRecentIssue.jsp?punumber=5175054

74

[16] Magharei N., and Rejaie, R. Prime: “Peer-to-peer receiver driven mesh-based

streaming”, In Proceedings of IEEE INFOCOM, 2007.

[17] Yong Liu, Yang Guo, Chao Liang, “A survey on peer-to-peer video streaming

systems”. The Journal of P2P Networking and Applications, Springer, Volume 1,

Number 1 / March, 2008, page 18-28

[18] Castro, M., Druschel, P., Kermarrec, A.M., Nandia, Rowstron, A., and Singh, A.

“SplitStream: High bandwidth multicast in cooperative environments”. In

Proceedings of ACM SOSP (2003).

[19] Cisco “Cisco visual networking index: Forecast and methodology, 2 9-2 14”, 2 1

[20] Susu Xie, Bo Li, Keung G.Y., Xinyan Zhang “CoolStreaming: Design Theory and

Practice” In proceedings of IEEE transactions, December 2007, Page 1661 – 1671

[21] Bo Li, Hao Yin “Peer-to peer Live Video Streaming on the internet: issues, existing

approaches, and challenges” In proceedings of IEEE communication magazine,

2007, pages 94-99

[22] Venkata N. Padmanabhan, Helen J.Wang, Philip A. Chou “Resilient peer-to-peer

Streaming” In proceedings of IEEE international conference on Network Protocols,

2003, Page 16 - 27

[23] V.K. Goyal. Multiple Description Coding: Compression Meets the Network. IEEE

Signal Processing Magazine, September 2001, page 74-93

75

[24] Chao Liang, Yong Liu & Keith W. Ross, (2009), “Topology Optimization in Multi-

Tree Based P2P Streaming System.” IEEE, Tools with Artificial Intelligence, 21
st

International Conference On, Page 806 -813

[25] Y.-H. Chu, S. G.Rao, and H. Zhang, “A case for end system multicast,” in

Proceedings of ACM SIGMET- RICS, 2000.

[26] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous

unstructured end system multicast,” in Proceedings of IEEE International Conference

on Network Protocols (ICNP), 2006

[27] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh,

“SplitStream: High-bandwidth multicast in cooperative environments,” in

Proceedings of ACM SOSP, 2003.

[28] Alberto Medina, Anukool Lakhina, Ibrahim Matta, John ByersThe, “BRITE Output

Format”, 3 March, 2 12,

