

DESIGN AND IMPLEMENTATION OF THE

CRYPTO-ASSISTANT: AN ECLIPSE PLUGIN

FOR USABLE PASSWORD-BASED COLUMN

LEVEL ENCRYPTION BASED ON HIBERNATE

AND JASYPT

By

Ricardo Rodriguez Garcia

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Science (MSc)

in

Computer Science

Faculty of Business and IT

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

March 2013

Copyright © Ricardo Rodríguez Garcia, 2013

2

Author’s Declaration

 I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Ricardo Rodríguez García.

3

CONTENTS

AUTHOR’S DECLARATION 2

CONTENTS 3

ABSTRACT 7

KEYWORDS 8

ACKNOWLEDGMENTS 9

LIST OF TABLES 10

LIST OF FIGURES 11

CHAPTER 1 – INTRODUCTION 12

1.1 PREAMBLE 12

1.2 RESEARCH OBJECTIVES 13

1.3 RESEARCH QUESTIONS 14

1.4 ORGANIZATION OF THESIS 15

2 CHAPTER 2 – LITERATURE REVIEW 17

2.1 INTRODUCTION 17

2.2 COMPUTER SECURITY 17

2.2.1 SECURITY 17

2.2.2 COMPUTER SECURITY 17

2.2.3 SECURITY GOALS 18

2.2.4 SECURITY ASSURANCE AND RISK MANAGEMENT 20

2.3 WHY DO DEVELOPERS MAKE SECURITY ERRORS? 23

2.3.1 SOFTWARE ERRORS. 27

2.3.2 SECURITY ERRORS 29

2.4 TOOLS FOR SECURITY 31

2.4.1 SOFTWARE TOOLS FOR SECURITY 32

4

2.4.2 SECURITY TOOLS AND INSECURITY 35

2.4.3 SECURITY TOOLS AND USABILITY 36

2.4.3.1 Security Usability Fundamentals 37

2.4.3.2 Making Security Usable 38

2.4.3.3 How Users Make Decisions 41

2.4.3.4 How Users Really Make Decisions 41

2.5 SUMMARY 42

3 CHAPTER 3 – CRYPTO-ASSISTANT 44

3.1 INTRODUCTION 44

3.1.1 MOTIVATION 44

3.2 PROBLEM DEFINITION 45

3.2.1 INITIAL HYPOTHESIS 48

3.2.2 COMMUNICATION STRATEGY 49

3.2.3 WARNINGS AND USER REACTIONS 50

3.2.4 COMPONENT SELECTION 52

3.2.5 DESIGN CONSIDERATIONS 53

3.2.5.1 Recommended Encryption algorithms 55

3.2.5.2 Key management 57

3.2.5.3 Database encryption strategies 58

3.2.5.3.1 Inside the DBMS. 58

3.2.5.3.2 Off-loading encryption outside of the DBMS. 59

3.2.5.3.3 Application level encryption. 59

3.3 DEVELOPMENT 60

3.3.1 ARCHITECTURE 60

3.3.1.1 Eclipse 61

3.3.1.2 Hibernate & Hibernate Tools 62

3.3.1.3 Jasypt Java Simplified Encryption Library 63

3.4 USAGE 64

3.5 INSTALLATION 69

3.6 USABILITY EVALUATION 72

5

3.6.1 COGNITIVE WALK-THROUGH 72

3.7 SUMMARY 73

4 CHAPTER 4 – PILOT USER STUDY 75

4.1 INTRODUCTION 75

4.2 PURPOSE/BACKGROUND INFORMATION 75

4.3 EXPERIMENTAL DESIGN 76

4.3.1 RECRUITMENT PROCESS 77

4.3.1.1 Initial contact 77

4.3.1.2 Eligibility 77

4.3.2 THE STUDY 78

4.3.2.1 Workshop 78

4.3.2.2 Experiment 78

4.3.3 DATA COLLECTION AND EVALUATION 79

4.3.4 ETHICS 80

4.4 RESULTS 80

4.5 ANALYSIS 82

4.5.1 LESSONS LEARNED AND EXPERIMENTAL LIMITATIONS 83

4.5.2 IMPLICATIONS OF THE RESULTS OBTAINED FROM THE PILOT USER STUDY 85

4.6 SUMMARY 87

5 CHAPTER 5 – DISCUSSION AND CONCLUSION 88

5.1 INTRODUCTION 88

5.2 DISCUSSION 88

5.3 FUTURE RESEARCH 90

5.4 CONCLUSION 90

6 BIBLIOGRAPHY 92

7 APPENDIX A - DATA COLLECTION 99

7.1 SCREENING QUESTIONNAIRE 99

7.2 EXIT QUESTIONNAIRE 109

6

7.3 PILOT STUDY LOGS 114

8 APPENDIX B – EXPERIMENT MATERIAL 119

8.1 DATA OPT-OUT & REMOVAL FORM 119

8.2 CONSENT FORM 120

8.3 OPT OUT SURVEY 122

8.4 PRE-SCREENING CONSENT FORM 123

8.5 WORKSHOP SLIDES 125

8.6 EXPERIMENT SLIDES 138

8.7 EMAIL CORRESPONDENCE 142

8.8 RECRUITMENT POSTER 150

8.9 REFERENCE CHEAT SHEET 151

9 APPENDIX C - RESEARCH ETHICS BOARD DOCUMENTATION 152

9.1 APPLICATION FOR ETHICAL REVIEW OF RESEARCH INVOLVING HUMAN PARTICIPANTS 153

9.2 CHANGE RENEWAL REQUEST 181

9.3 CHANGE REQUEST APPROVAL 184

10 APPENDIX D CODE DOCUMENTATION 185

7

ABSTRACT

The lack of encryption of data at rest or in motion is one of the top 10 database

vulnerabilities according to team SHATTER [72]. In the quest to improve the security

landscape, we identify an opportunity area: two tools Hibernate and Jasypt that work

together to provide password-based database encryption. The goal is to encourage

developers to think about security and incorporate security related tasks early in the

development process through the improvement of their programming system or integrated

development environment (IDE). To this end, we modified the Hibernate Tools plugin for

the popular Eclipse IDE, to integrate it with Hibernate and Jasypt with the purpose of

mitigating the impact of the lack of security knowledge and training. We call this

prototype the Crypto-Assistant. We designed an experiment to simulate a situation where

the developers had to deal with time constraints, functional requirements, and lack of

familiarity with the technology and the code they are modifying. We provide a report on

the observations drawn from this preliminary evaluation. We anticipate that, in the near

future, the prototype will be released to the public domain and encourage IDE developers

to create more tools like Crypto-Assistant to help developers create more secure

applications.

8

KEYWORDS

Security, usability, software tool, action research, encryption, qualitative research, secure

software development.

9

ACKNOWLEDGMENTS

I would like to thank my supervisors Miguel Vargas Martin and Julie Thorpe for

supporting me during the realization of this thesis work.

We thank the Natural Sciences and Engineering Research Council of Canada and the

University of Ontario Institute of Technology for the financial support of this work.

Thanks to my family and friends who have always given me their support and

without which this work would not have been possible.

10

LIST OF TABLES

Table 1 Actions in programming activity .. 28

11

LIST OF FIGURES

Figure 2-1 Eclipse IDE one of the most popular programming systems. 25

Figure 2-2 Faults are propagated into executable code and become runtime failures. 26

Figure 2-3 Windows Vista user account control dialog. .. 40

Figure 3-1 How encryption works ... 45

Figure 3-2 Use of Jasypt and Hibernate for encryption without Crypto-Assistant support.

.. 47

Figure 3-3 Use of Jasypt and Hibernate for encryption with Crypto-Assistant support. ... 48

Figure 3-5 Crypto-Assistant - High level architecture ... 61

Figure 3-6 Property Encryption page added by the Crypto-Assistant. 66

Figure 3-7 Mapping files wizard, preview screen showing the use of Jasypt Hibernate

types for encryption. .. 68

Figure 3-8 Install new software dialog. ... 69

Figure 3-9 Add repository dialog. .. 70

Figure 3-10 Installing Crypto-Assistant... 71

Figure 3-11 Restart eclipse dialog. .. 71

12

CHAPTER 1 – INTRODUCTION

1.1 Preamble

Information and computer security have acquired relevance lately mainly due in part to

attacks against high profile businesses such as Sony, Apple, and Amazon. Tools have

reduced the difficulty and skills necessary to launch an attack. On the other hand the

difficulty for developers to build secure software has increased with more and more

vulnerabilities discovered every day. “Security is a chain; it's only as secure as the

weakest link.” [58]. An attacker could compromise the whole system by exploiting the

weakest link. In contrast, developers’ main goals imply meeting functionality and time to

market requirements; security is a secondary goal [82] that might be desired, but not

required [88] depending on the criticality and perceived risk of the application developed.

This thesis work aims to provide some insight to the question: how can we help

developers to produce secure software? Based on the premise that the actions of

developers are influenced by the tools they use, by providing them the tools that focus on

security, we may be able to change developers’ perspectives and behaviours with the aim

of increasing the security of information systems.

To make a better use of resources, we focused on a particular problem: the lack of

encryption of sensitive information while using Hibernate. Hibernate Object/Relational

Mapping (ORM) tool, facilitates the storage and retrieval of Java objects. One of the

easiest ways to achieve the encryption of sensitive information is to use custom Hibernate

data types provided by the Jasypt (Java simplified encryption) library. A more detailed

description of these tools is provided in Chapter 3. Nevertheless, the process to encrypt

sensitive data with Hibernate and Jasypt is still fairly complex, not particularly intuitive,

and prone to errors. This was the main motivation for us to build a prototype tool to help

developers in this task. The prototype consists of a series of modifications to the

Hibernate Tools plugin for Eclipse. Hibernate Tools include an Eclipse plugin with the

13

aim to increase the usability of Hibernate. When we refer to usability we mean “the ease

of use and learnability of a human-made object”. The usability increase is achieved

through a set of editors and wizards that reduce the learning curve associated with its use.

Usability is one aspect that contributes significantly to the use, or not, of security tools;

the prototype focuses on improving this property. The integration of Hibernate Tools and

Jasypt, reduces the complexity of using encryption to protect sensitive information. The

prototype used a security warning as a mechanism to communicate the risk of

compromising sensitive data due to a lack of encryption. This was done to encourage

developers to classify and protect sensitive data at the early stages of development; when

is cheaper and easier to fix any possible issues derived from the lack of security

considerations. The ultimate goal was to make the process as easy and intuitive as

possible, and reduce the learning curve and potential number of errors in which

developers could incur.

The evaluation of the prototype included a user study to simulate the usual

conditions that a developer has to deal with: little familiarity with the application code,

vague requirements, and time constraints. We designed a programming task that involved

the use of the prototype and asked the participants to perform the migration of a web

application data layer from JDBC (Java database connectivity) API (Application

programming interface) to Hibernate and at the same time improve the application in a

given amount of time. A full description of the study is given in Chapter 4. We

deliberately hid the fact that we were focusing on security and observed if the changes

introduced in the programming system influenced the software artefacts produced. We

collected logs, artefacts and questionnaires from participants to gain an insight on their

perception of the tools used and tasks performed to understand their behaviour.

1.2 Research objectives

This research work has several objectives:

1. The main goal of this research is to create a tool to help developers build

more secure and reliable applications. To achieve this goal, we developed a prototype

based on the code of the Hibernate Tools plugin for Eclipse. By choosing the popular

14

Eclipse platform, we aim to maximize the audience that could benefit from the work done

during the realization of this research.

2. The second goal is to help developers in the application of the “Build

Security In” [9] concept. This concept indicates that to develop secure applications,

security must be present in every phase of the software development life cycle, from the

inception through its development and even after during the maintenance phase; it would

be much easier to apply this concept with the help of integrated development tools and

processes that promote awareness and train developers to act in response to security risks.

A well-integrated programming environment that promotes a continuous process of

improvement and focus on security principles and practices will result in the ongoing

production of more dependable, trustworthy and survivable software systems.

3. Another goal is to support security researchers and tool developers by

sharing the experience gained while developing the Crypto-Assistant prototype. It is

anticipated that this research could be used as a reference by other security researchers

who wish to improve or create tools for security that encourage developers to integrate

and carry out security related activities during the development process.

1.3 Research questions

To achieve the goal of producing a tool to help in the development of secure software, the

research was motivated by the following research questions:

1. What research has been done to answer what a secure system is?

2. What research has been done to determine the cause of software security errors?

3. What kinds of tools have been created to help developers to produce secure

systems?

4. What problems have these tools solved, and which security errors remain that

would benefit from a tool?

5. What kind of tool could be developed to aid developers in the encrypting of

sensitive data?

6. How to evaluate the usability and security of Crypto-Assistant, a tool to help

developers encrypt sensitive data?

15

7. How well did the Crypto-Assistant work in term of helping developers encrypt

their data?

To answer these questions, first it was necessary to define what security is and how to

define a secure system. To understand the causes of security errors we begin by defining

error to understand how security errors are different from common errors and examine

what factors contribute to the introduction of security errors in software. Several examples

are presented to show the diversity of ideas and nature of security tools.

One of the main problems of security tools is that they are complex and difficult to

use by someone without considerable knowledge about the tool and security. The lack of

usability prevents users from benefiting from the security that tools intend to provide.

There is an intrinsic relationship between security and usability. A security mechanism

can become detrimental to security if it is hard to use and a system that is too usable has

to make sacrifices in terms of security. A door is a good example; for usability we can

keep it unlocked for easy access, but, if we require security then we lock it restricting its

use to only users with the correct key, if we require more security we can add locks or

chains for the door but we would require more keys and effort to use it; if we need to use

it very frequently, then one might just leave it open, disabling the security mechanism in

exchange for better usability. The last two questions regarding Crypto-Assistant are left to

be addressed in the Chapters 3 and 4.

1.4 Organization of thesis

The organization of this thesis is as follows. We begin by introducing the concept of

security and what a secure system is, then exploring some of the causes of security flaws

in software. First we learn about errors in general, following up with code errors and

security errors and the possible causes of them.

A general overview of tools for software security is provided to show the diversity

and nature of these tools and as a reference point to compare the Crypto-Assistant

prototype presented.

Then we will present the Crypto-Assistant prototype starting by the problem it aims to

address, along with a usability evaluation in terms of learnability. Chapter 4 is dedicated

16

to describing the prototype evaluation with a small group of three users. Its content

ranges from the presentation of the initial hypothesis, to the experimental design and the

rationale behind the design decisions made. Finally, we present the observations from that

test and discuss the possible causes that lead to them and the implications of the results.

We conclude this work, presenting some ideas for future research, with the hope

that other researchers will continue studying Crypto-Assistant and possibly develop other

tools to help software developers create secure code.

17

2 CHAPTER 2 – LITERATURE REVIEW

2.1 Introduction

In this chapter, the information collected as a background for the prototype

developed is presented. The next sections show an overview of the different ideas that

contributed to the realization of this research work. This chapter begins with the research

questions that led to uncovering the theory, followed by a discussion about the

formulation of the hypothesis that led to the design of the prototype evaluated in this

research.

2.2 Computer security

In this section, we introduce the concept of security and some definitions of computer

security to help the reader understand the content of this chapter. Along this text we will

be using computer security and cyber security indistinctively.

2.2.1 Security

Security is defined as the degree of protection to safeguard assets against danger, damage,

loss and crime. In military terms, the Department of Defence of the United States of

America defines security as “A condition that results from the establishment and

maintenance of protective measures that ensure a state of inviolability from hostile acts or

influences.” [62]. As a form of protection, we can define security as the structures and

processes that improve security as a condition.

2.2.2 Computer security

The NIST (National Institute of Standards and Technology)defines computer security

[42] as “Measures and controls that ensure confidentiality, integrity, and availability of

18

information system assets including hardware, software, firmware, and information being

processed, stored, and communicated.” From a business point of view the

ISO(International Organization for Standardization)/IEC (International Electrotechnical

Commission 27002 standard [39] defines information security as “the protection of

information from a wide range of threats in order to ensure business continuity, minimize

business risk, and maximize return on investments and business opportunities”.

Bishop [6] analyses different components that are necessary to attain computer security:

1. Security requirements: they refer to the goals of security; what do we want to

protect? Against what we want to protect them?

2. Security policies: Requirements dictate that some actions and system states be

allowed and others disallowed. A security policy is a specific statement of what is

and what is not allowed.

3. Security mechanisms: Enforce the policies; their goal is to ensure that the system

never enters a disallowed state. The mechanisms may be technical or operational

(sometimes called procedural).

4. Security assurances: The problem of measuring how well requirements conform to

needs, policy conforms to requirements, and mechanisms implement the policy

fall in the realm of assurance.

When we talk about computer security, what we are trying to protect usually is the

information stored in a computer; after all, computers are only tools that help us to

process and access information. We protect this information by preserving desired

qualities while avoiding or mitigating undesired ones.

2.2.3 Security goals

There is a general consensus that, the main group of desirable qualities or

objectives of information security are confidentiality, integrity and availability.

This is known as the security CIA (Confidentiality, Integrity, Availability) triad

[76][12][75]; however, there are some works that extend these security objectives and

19

add others like accountability and assurance; the following concepts are extracted from

Gary Stoneburner work [68].

Confidentiality is the requirement that private or confidential information should not be

disclosed to unauthorized individuals. Confidentiality protection applies to data in

storage, during processing, and while in transit. It comes from the need to use and store

sensitive information, for example, defence plans, personal and financial data, trade

secrets or intellectual property. When sensitive information is handled, there is a need to

restrict access to those resources only to individuals that have been granted appropriate

permissions and have genuine business reason to access and use that information.

Confidentiality also applies to the existence of data since revealing the mere existence

may reveal information that must be protected. Access control mechanisms support

confidentiality by providing the means to achieve it; one of such mechanism is

cryptography [5], which scrambles data to make it unusable without the appropriate

encryption key; this adds another protection layer to the equation because an attacker

would be required to have access to the data and the encryption key to be able to decrypt

it.

Integrity refers to the ability to ensure that data is an accurate and unchanged

representation of the original information. Its goal is that of preventing improper or

unauthorized change. Integrity has two facets: data integrity (the content of the

information), and origin integrity (the source of the data, often called authentication). The

source of the information is important for users to trust the accuracy and credibility of

certain data. A mechanism to ensure integrity falls into two classes: prevention

mechanisms, and detection mechanisms. Prevention mechanisms try to maintain the

integrity of the data by blocking any unauthorized attempts to change the data or any

attempts to change the data in unauthorized ways. The former occurs when a user tries to

change data which she has no authority to change. The latter occurs when a user

authorized to make certain changes in the data tries to change the data in other ways that

are not authorized. Detection mechanisms do not try to prevent the modification of data

but instead to identify if it is trustworthy, making sure that it meets certain conditions.

20

These mechanisms can report the cause of the integrity violation or simply report that

there is an integrity problem.

Availability refers to the ability to use the resources when desired. This means that the

resources are available when they are needed. The most available systems are accessible

at all times and have safeguards against power outages, natural disasters, hardware

failures and system upgrades. Attempts to block availability, called denial of service

attacks, can be very difficult to detect, because the analyst must determine if the unusual

access patterns are attributable to deliberate manipulation of resources or the environment.

A deliberate attempt to make a resource unavailable may simply look like, or be, an

atypical event. In some environments, it may not even appear atypical.

Accountability is the requirement that actions of an entity may be traced uniquely to that

entity. Accountability is a fundamental requirement of security policies because directly

supports non-repudiation, deterrence, fault isolation, intrusion detection and prevention,

and after-action recovery and legal action.

Assurance (that the other four objectives have been adequately met)

We need assurance to be confident that the security instruments, both technical and

operational, work as intended to protect the system and the information it processes. The

other four security objectives (integrity, availability, confidentiality, and accountability)

have been adequately met by a specific implementation when:

 Required functionality is present, and correctly implemented.

 There is sufficient protection against unintentional errors by users or software.

 There is sufficient resistance to intentional penetration or bypass.

Assurance is essential; without it, the other objectives are not met. No methodology can

provide absolute assurance that a system is secure, but different methods provide different

levels of confidence. The methods for evaluating assurance depend not only on the

system, but also on the environment in which the evaluation occurs and on the process

used to specify, design, implement, and test the system.

2.2.4 Security assurance and risk management

21

Risk management is the process of identifying, assessing, and taking steps to

eliminate or reduce the risk to an acceptable level [69]. Risk management is an ongoing

process, risk assessments should be conducted throughout the system development life

cycle, from pre-system acquisition, through system manufacturing and deployment, and

during its operations and support.

Before claiming that a system is secure, it is important to identify the threats to the

system in question. Enumerating the threats to a system helps system architects develop

realistic and meaningful security requirements [51]. Systems security engineering

involves identifying security risks, requirements and prevention or recovery strategies.

Without identifying threats, it is impossible to provide assurance for the system and

justify security measures taken. Proper identification of threats and appropriate selection

of countermeasures reduces the vulnerability of the system.

Threat modelling uses the perspective of an aggressor to help a designer to anticipate

the goals of an attacker and answers questions about what the system is designed to

protect, and from whom. Threat modelling consists of three high-level steps:

1. Characterizing the system.

2. Identifying assets and access points.

3. Identifying threats.

Once threats are identified, it is necessary to create a threat profile of the system,

describing all the potential attacks that need to be mitigated against or accepted as low

risk. A risk assessment is performed to map each threat either into a mitigation

mechanism or an assumption that it is not worth worrying about it. At this point, the

security requirements for the system can be defined.

The threats selected for mitigation must be addressed by some countermeasure.

Security requirements are driven by security threats. Security requirements can adopt a

negative form and state what must not be allowed to happen.

Assurance gives the user confidence that a system works as intended, without flaws or

surprises, even in the presence of malice. According to Snow [64], assurances are

22

confidence-building activities whose goal is to demonstrate that: “The system's security

policy is internally consistent and reflects the requirements of the organization,

1. There are sufficient security functions to support the security policy,

2. The system functions to meet a desired set of properties and only those properties,

3. The functions are implemented correctly, and

4. The assurances hold up through the manufacturing, delivery and life cycle of the

system.” [64]

Assurance is provided through structured design, processes, documentation, and testing,

with greater assurance provided by more processes, documentation, and testing.

Securing systems involve trade-offs; finding an ideal balance is a challenge. It is

often impossible to mitigate every threat, and even if this could be done, it would almost

certainly take place at the cost of decreased usability. It is important to keep in mind that

the cost of security should not exceed the cost of the expected risk.

To provide assurance about the security of a system, once the system has been

analysed, threats identified and safeguards put in place, the effectiveness of the safeguards

must be tested. The goal is to evaluate how well they perform under stress or when used

in ways beyond the normal specification. Security acceptance testing not only exercises

the product for its expected behaviour given the expected environment and input

sequences, but also tests the product with swings in the environment outside the specified

bounds and with improper inputs that do not match the interface specification. Tests must

include proper inputs, but in an improper sequence. One must anticipate malicious

behaviour and design to counter it, and then test the countermeasures for effectiveness.

The expectation is that the product will behave safely, even if not properly, under any of

these stresses. If it does not, it should be redesigned and the cycle repeated.

Security testing is the process of determining how effectively an entity being

assessed meets specific security objectives. Three types of assessment methods can be

used to accomplish this—testing, examination, and interviewing.

23

Testing is the process of exercising one or more assessment objects under specified

conditions to compare actual and expected behaviours.

Examination is the process of checking, inspecting, reviewing, observing, studying, or

analysing one or more entities to facilitate understanding, achieve clarification, or obtain

evidence.

Interviewing is the process of conducting discussions with individuals or groups within an

organization to facilitate understanding, achieve clarification, or identify the location of

evidence. Assessment results are used to support the determination of security control

effectiveness over time.

Despite all the efforts of security researchers and practitioners, it is impossible to

guarantee 100% security. However, it is possible to achieve a 100% risk acceptance.

Failure to take these elements into consideration can lead to a situation where no risk is

judged acceptable, and thus no acceptable system can be designed [51].

2.3 Why do developers make security errors?

All humans are fallible; to make mistakes is part of our nature. The mistakes we

make are reflected in the products or artefacts produced by the actions we carry out. In

software development, this is reflected in the quality and bug density in the applications

produced. To better understand and clarify this issue, we will introduce some terms taken

from [36] and [45] :

Mistake – a human action that produces an incorrect result.

Fault [or Defect] – an incorrect step, process, or data definition in a program.

Failure – the inability of a system or component to perform its required function within

the specified performance requirement.

Error – the difference between a computed, observed or measured value or condition and

the true, specified, or theoretically correct value or condition.

24

Specification – a document that specifies in a complete, precise, verifiable manner, the

requirements, design, behaviour, or other characteristic of a system or component, and

often the procedures for determining whether these provisions have been satisfied

Correctness – the degree to which a system or component is free from faults in its

specification, design, and implementation.

The degree to which software, documentation, or other items meet specified requirements,

and user needs as well as expectations, whether specified or not

Programming system – is a set of components such as “editors, debuggers, compilers,

and documentation, each with (1) a user interface; (2) some set of information, such as

program code or runtime data, which the programmer views and manipulates via the user

interface; and (3) a notation in which the information is represented" [45]. Figure 2-1

shows the user interface of Eclipse IDE one of the most popular programming systems.

25

Figure 2-1 Eclipse IDE one of the most popular programming systems.

Having these basic concepts defined we can explain how errors are introduced into a

system; according to Williams [84] the progression of a software failure can be explained

as follows:

First a mistake is made and becomes a fault (or defect) in a software artefact such

as the specification, design or code; when this happens in code, we call it a software error

[45]. A software error is a fault that propagates as a defect in the executable code. When a

defective piece of code is executed this leads to a runtime fault, in other words a machine

26

state that may cause a visible failure; when the runtime fault becomes visible a failure is

perceived. However, software errors do not always translate into runtime faults and

runtime faults not always cause failures, if this is the case then we say that faults remain

latent. Figure 2-2 shows a graphic representation of this progression.

Figure 2-2 Faults are propagated into executable code and become runtime failures.

Testing is part of the software development process; it helps developers to reveal

failures[65]. However, to solve failures, it is necessary that the faults that led to the

failure are found and corrected. The process of finding the cause of a failure is time-

consuming and unpredictable; this adds uncertainty and delays to the development

process that can reflect in monetary losses. Furthermore, even when the root cause of a

failure is detected, the cost associated to fix it may exceed the risk associated to deal with

the failure. These faults can remain latent in the product through a follow-on release or

perhaps forever.

Fixing a fault, once it is detected, may involve different activities such as redesign and re-

code. The stage of the development life cycle in which a failure is detected has a direct

effect on the cost of fixing them; the earlier a defect is detected the cheaper it is to fix it.

To illustrate this, we can compare building software to building a house; it is easier to

correct a defect in the blueprints before the house has been built, than once the

construction is completed. When errors remain undetected until the software is released

27

the cost can be very expensive, costing companies and users billions of dollars in repairs

[70], lawsuits and lost sales. The costs associated with fixing an error are not only

monetary. Imagine what happens when a failure is detected once the software is in

production. The development team might have to send someone to work on-site with the

client in order to find the cause of the failure. It is understandable that the client will not

be extremely happy if this occurs. Coding errors can also cause physical damage and, in

the worst case, fatalities [73].

2.3.1 Software errors.

The process of building a software system is a complex one that involves several elements

including people, processes, and technology. The construction of a system begins with a

set of requirements that need to be fulfilled by the final product; those requirements

become specifications that a programmer translates into code using a programming

system. Each one of these phases is prone to certain types of errors and also provides

certain defences. The specifications act as a high level defence mechanism against errors,

but they may be incomplete, defective, or ambiguous and predispose programmers to

misunderstand the system true requirements.

Programmers can use their knowledge, attention, and expertise to defend against

software errors. However, programmers may have deficiencies in their defences that may

turn into code errors. Another element of the process is the programming system

consisting of several components such as compilers, libraries, languages, and

environments. Each component has a set of defences against software errors. For

example, compilers defend against syntax errors by showing warnings to programmers,

but they also have latent usability issues like displaying confusing error messages, which

may misguide programmers to incorrectly diagnose the cause of an error. Finally, the

code may have latent errors that can eventually lead to a program’s runtime failure.

According to Ko and Myers [45] there are four main aspects that contribute to

software errors:

28

Surface qualities: The particular syntactic or notational anomalies that make a code

fragment incorrect. Examples of this type of error are syntax oversights, trivial typos and

mechanical errors simply describe unintended text in a program; erroneous assignment

statements, and array references. Surface qualities of software errors are significantly

influenced by the language syntax. The high frequency of these errors suggests that

language syntax can be a cause of software errors on its own.

Cognitive: Programmers’ lack of knowledge about language syntax, control constructs,

data types, and other programming concepts may lead programmers to a situation that

cause errors such as inventing language syntax, data-type inconsistencies [67], and

misplaced or malformed statements. Lack of attention could result in a programmer

forgetting the inclusion of a function or use the wrong variable or operand. Such problems

can be attributed to distractions or a lack of vigilance. In the same category, the lack of

knowledge and experience can turn into strategic issues, referring to problems like

unforeseen code interactions or poorly designed algorithms.

Programming activity: Another aspect of software errors is the programming activity in

which the cause of the software error occurred. For example, the code may be free of

typos and syntax errors, but the algorithm implemented might be incorrect; this could be

attributed to the programmer’s invalid or inadequate interpretation of the requirements or

problem at some stage in the specification activity.

Action type: There are different actions that can be performed during a programming

activity like creation, modification, design, exploration, and understanding. Each one of

these actions is prone to different kinds of errors.

Table 1 Actions in programming activity

Creating Writing code, or creating a design and

requirement specifications

Modifying Modifying code or changing

29

specifications

Designing Considering various software architectures,

data types, algorithms, etc.

Exploring Searching for code, documentation, runtime

data

Understanding Comprehending a specification, an

algorithm, a comment, runtime behaviour,

etc.

All these aspects help us to understand a little more regarding what is behind a software

error; however, they are limited only to a causal relationship. The interactions between the

programmer and the programming environment that lead to the errors may have a higher

level of complexity. For example, what appears to be an incorrect algorithm

implementation may have its origin in the specifications due to lack of clarity or detail.

If we want to help developers to build better software, then we need to address the root

cause of an error, and as we have seen these are very diverse and might require an entirely

different strategy to address each one of them.

2.3.2 Security errors

Security errors are a peculiar type of error, they are inherently latent because their

effects are not immediate and might not reflect on an evident failure contrary to what

happens with active errors; the effects of active errors are more immediate such as when a

typo prevents the program to compile or produces an incorrect output. Reason in [55]

defines latent errors as issues that remain dormant for a long time and whose

consequences are not evident until certain conditions are met. Security errors fall under

the latter category. Many times the problem with this type of error is not always an

incorrect implementation of a security feature but the total omission of security

30

considerations. This may be attributed to several factors, such as the lack of a formal

process that integrates security tasks through the different stages of the software

development life cycle, lack of security training, absence of security policies and lack of

experience and awareness about possible threats.

For security errors, the first line of defence comes at the requirements engineering

and design phase. Using threat modelling, security requirements are collected as

functional and non-functional requirements that specify different aspects of how the

system must behave. The security requirements may be formalized in a security policy. A

security policy is a definition of what it means to be secure for a system, organization or

other entity. For systems, the security policy addresses constraints on functions and data

flow among them, constraints on access by external systems and adversaries including

programs and access to data by people.

In the absence of security requirements, policies or a secure design, there are two

additional lines of defense where threats can be mitigated: the programmer, and the

programming environment. Ultimately security decisions relay at the programmers’

discretion. This might be the case when the programmer also plays the role of architect

and designer and this is common for small projects. In order for programmers, to defend

an application against security errors they need to be aware of threats, attacks and

countermeasures [49]. This requires awareness, education, training, and skills. Awareness

by itself is not enough; even if developers are aware of the risks, they might not be able to

identify instances of weaknesses or to implement the correct solutions. The industry is

now aware of the importance of security, and despite some efforts of educational

institutions to teach developers about security [57], cyber security is still an specialization

rather than the norm. Today developers are by and large unaware of the myriad ways they

can introduce security problems into their work [79].

31

2.4 Tools for security

 Different tools have been developed to help developers reduce the number of

security errors; these tools are very diverse and might be in the form of security standards,

guidelines, weaknesses taxonomies, frameworks, software applications, amongst others.

Weaknesses taxonomies help to establish a common vocabulary and an

understanding of the ways computer security fails. Several classification schemes have

been proposed, currently the most comprehensive is the MITRE corporation’s Common

Weakness Enumeration (CWE) [17] that incorporates 909 elements. The main goal of

the CWE initiative is to stop vulnerabilities at the source by educating software acquirers,

architects, designers, and programmers on how to eliminate the most common mistakes

before software is delivered. CWE serves as a resource for programmers as they design

new software and write code, and supports educators in teaching security as part of the

curriculum for software engineering, computer science, and management information

systems; CWE ultimately helps to prevent the kinds of security vulnerabilities that have

plagued the software industry and put enterprises at risk. MITRE’s CWE continues to

evolve as a collaborative community effort to populate a publicly available repository of

software errors in code, design, architecture, and implementation for developers and

security practitioners. CWE is used by tool vendors for tagging what their tool’s report

and claim to cover. Nevertheless, due to the high detail level of the CWE, it has inherent

usability issues; developers that want to use it might get lost and confused by all the terms

introduced and even if they understand them correctly they might not be able to recognize

instances of the weaknesses in their work.

To help software developers and security practitioners, prioritize and allocate their

security resources better, there are other classifications that focus on the most prevalent

security errors like the OWASP’s (Open Web Application Security Project) Top Ten

project [10] for web applications, SANS institute top 25 CWE [14], and the seven

kingdoms of security errors [80] for software in general.

The “seven kingdoms of security” taxonomy was designed with the primary goal of

organizing sets of security rules that could be used to help software developers understand

32

the types of errors that have an impact on security; with the belief that one of the most

effective ways to deliver this information to developers is through the use of tools. The

expectation is that, by better understanding how systems fail, developers will better

analyse the systems they create, more readily identify and address security problems when

they see them, and generally avoid repeating the same mistakes in the future. When this

set of security rules integrates with the programming environment, it becomes a powerful

teaching mechanism.

Standards, guidelines, and security patterns [48], [59] help developers by

collecting the knowledge and experiences of the security community in a reusable form;

Some examples of these are the BSIMM [74] (Building Security In Maturity Model)

“which study real-world software security initiatives”. The BSIMM does not tell what

one should do; instead, it tells what everyone else is actually doing. It allows an

organization to determine where it stands in terms of maturity with its software security

initiative and how to evolve over time”.

To help developers in the search of countermeasures to common security

problems, security patterns have been collected, classified [59] and evaluated [23],[48].

Security patterns have different levels of abstractions. There is no single correct level of

detail for security patterns. Different potential consumers of security patterns work at

different levels. A developer may be primarily concerned with patterns of code-level

objects, an architect may build network models, and a CIO may be primarily interested in

trust relationships between organizations. All are valid uses of the security patterns

approach, though each target audience might find little value in patterns at a much

different level of detail.

2.4.1 Software tools for security

Software tools for security can adopt very diverse forms; this section presents some

instances of software security tools. This is by no means an exhaustive overview of the

different tools for security available. Nevertheless, it is useful to illustrate the diversity of

tools that can be found to help developers attain secure systems. Research in the area of

33

security tools is focused on two main areas [37]: tools that assist in the testing of software

applications, and tools that help developers to create components that led to obtaining

secure systems. However, software tools for security are not limited to these two branches

as will be shown in this section.

Finifter and Wagner [24] carried out a comparison of how different programming

languages and web frameworks influenced the security of web applications. They found

that there is a relationship between the features offered by the frameworks employed were

the most effective defences were those that were enabled by default or inherent in

framework design or language and, that, optional protections, even when present in the

frameworks were not used. The different programming languages did not show any

significant advantage of one over the other.

Tools for testing fall under two categories: white box, and black box testing tools.

Black box testing, also called functional testing, is testing that ignores the internal

mechanism of a system or component and focuses exclusively on the outputs generated in

response to selected inputs and execution conditions. White box testing, also called

“structural testing” and “glass box testing”, takes into account the internal mechanism of a

system or component. In recent times, the tendency is to integrate these tools in the IDE

and perform the analysis on the fly at the same time developers write the code. An

example of a tool that adopts this strategy is the prototype developed by Xie et al. [87],

[53], [86], [88]. It offers interactive support for secure programming integrated with the

Eclipse programming environment. The prototype was in the form of an Eclipse plugin

that help developers to detect security errors while they are writing code. The prototype

proved to be useful for novice programmers; however, their test with experienced users

was not very successful, but that might be attributed in part to the experimental design

they applied for the evaluation; among other usability issues of the tool. Some popular

tools for source code analysis are HP’s Fortify, Coverity’s products, SSVChecker (Static

Security Vulnerability Checker) and LAPSE (Lightweight Analysis for Program Security

in Eclipse) [54]. Some of these tools perform static and dynamic analysis to detect

vulnerabilities.

34

Other tools help to perform penetration testing of web applications or systems in

general. The web application attack and audit framework (w3af) is an open-source web

application security scanner. The project provides a vulnerability scanner and exploitation

tool for Web applications. It provides information about security vulnerabilities and aids

in penetration testing efforts. The Metasploit Project is a computer security project which

provides information about security vulnerabilities and aids in penetration testing and

signature development for Intrusion Detection Systems (IDS). Its most well-known sub-

project is the open-source Metasploit Framework, a tool for developing and executing

exploit code against a remote target machine. Exploit can be defined as “a piece of

software, a chunk of data, or sequence of commands that takes advantage of a bug, glitch

or vulnerability in order to cause unintended or unanticipated behaviour to occur on

computer software, hardware, or something electronic (usually computerised). Such

behavior frequently includes such things as gaining control of a computer system or

allowing privilege escalation or a denial-of-service attack”.

Other tools like the one presented by Mutti et al. in “An Eclipse plug-in for

specifying security policies in modern information systems” [50] take a different

approach, presenting a plugin to develop security policies using ontological web language,

which allows to automate part of the process of validation and verification. Or the web

goat project whose goal is to: “ create a de-facto interactive teaching environment for

web application security.” [11]. This is done through the creation of a deliberately

insecure web application that can be used by security practitioners to analyse and test

security tools.

The Protection Analysis[4] project deserves a special mention here because its

intended aim was the same as ours: to produce security tools. The main goal was to

produce a tool to make protection evaluation more effective and economical by

automating the detection of security flaws. A general strategy referred as “pattern-directed

protection evaluation” was identified. They sketched algorithms for such tool, but the

static analysis technology available at the time was not sufficient to realize them.

35

The SDL(Security Development Lifecycle) Threat Modeling Tool [60] according

to Microsoft is the first threat modeling tool which is not designed for security experts. It

makes threat modeling easier for all developers by providing guidance on creating and

analyzing threat models. The tool enables any developer or software architect to:

1. Characterize systems and analyze data flow diagrams.

2. Communicate about the security design of their systems.

3. Analyze those designs for potential security issues using a proven

methodology (STRIDE).

4. Suggest and manage mitigations for security issues.

The SDL Threat Modeling Tool is indeed a very good example of what represents a

usable security tool. By allowing non-security experts to take advantage of Microsoft’s

experience regarding security with ease of use and intuitiveness.

There are other tools for analysis [7], design [18], and modelling; depending on what we

are looking for there is a chance that might be a tool for that.

2.4.2 Security tools and insecurity

Often, users do not understand how a tool works and the kind of protection it

provides and this prevents them from benefiting effectively from them. This can be

dangerous because it creates a false sense of security; many times users believe that the

mere presence of security tools automatically protects them and they are not necessarily

aware of the risk they are exposed to. The correct use and understanding of the features

provided by a tool falls in the realm of usability

The lack of usability is detrimental to security. In “Why Johnny Can’t Encrypt” [83]

a usability test of PGP 5 was performed. Originally PGP’s goal was to enable users to

protect their email messages’ confidentiality and authenticate the source of them. In its

marketing material it stated that the “significantly improved graphical user interface

makes complex mathematical cryptography accessible for novice computer users.” [83].

The study found that PGP 5 does not make the task manageable for average computer

36

users. The lack of usability had negative consequences for security; one example is that

users ended up sending their private keys in plain text to the researchers while trying to

send an encrypted message. Due to the lack of feedback, users could not tell if what they

were doing was correct or not.

Cryptography is the foundation of cyber security, it provides the primitives that help

us to attain security goals, and nevertheless it poses a usability challenge to anyone that

needs it. A common problem with the use of encryption is that many times it is

approached as an end instead of a medium. The mere use of encryption does not provide

confidentiality protection. The security provided depends directly on the placement and

management of the encryption keys. If the key used for encryption is stored along with

the data it is intended to protect, the protection it provides is null. Therefore it is

necessary to design security tools to be easy to use and understand.

2.4.3 Security tools and usability

According to the International Standard Organisation (ISO) [38], usability can be defined

as the extent to which a product can be used by specified users to achieve specified goals

with effectiveness, efficiency and satisfaction in a specified context of use. Usability is a

contextual property; a system deemed usable in one context may not be usable in another.

This definition focuses on users’ goals (effectiveness), the speed with which goals are

achieved (efficiency), and users’ satisfaction with the system within a specified context.

Security comes with certain costs in terms of usability. Traditionally, that is the

sacrifice we make to be secure. Security many times becomes an afterthought requirement

[85]. This is a common mistake, to attain security many aspects need to be considered at

different stages of a project. However, people that work on security make the same

mistake with usability, inventing or designing security policies and mechanisms that

people cannot use. The lack of usability is one of the most recurring problems when it

comes to security. When security tools are used incorrectly [83],[26] it leads to an

insecurity situation.

37

Gutmann et al. [29] enumerate four different stands that can be adopted while

balancing security and usability:

 The two should work together as equal partners.

 Security comes first, and usability should be the compromising junior partner.

 Usability comes first, and security should be the compromising junior partner.

 Security is best left as a separate product, naturally layered into the application

without disturbing it and without compromising strong design principles.

The approach one chooses will influence the system architecture, the way in which

systems are deployed, and the way in which security is delivered to, and experienced by

users. Therefore, there is no easy answer to the trade-off question yet. To deliver security

properly, we must rethink the assumption of a usability compromise.

The main challenge for current security efforts is not to find better encryption

algorithms or protocols but to make the existing ones usable.

2.4.3.1 Security Usability Fundamentals

We need to understand the basic concepts of application security and usability, Gutmann

defines them as follow in his work “Engineering security” [28]:

“An application, exhibits functionality if things that are supposed to happen, do

happen. Similarly, an application exhibits security if things that are not supposed

to happen, do not happen”

Security usability combines technical and human factors. If a highly secure system is

unusable, users will move their data to less secure but more usable systems. Problems

with usability are a major contributor to many high-profile security failures today.

“However, usable security is not well-aligned with traditional usability for three reasons:

1. Security is rarely the desired goal of the individual. In reality, security is often in

opposition to the actual goal. Such as a locked door oppose the main purpose of

the door that is allowing access through it.

2. Security information is about risk and threats. Such communication is most often

unwelcome. Increasing unwelcome interaction is not a goal of usable design.

38

3. Since individuals must trust their machines to implement their desired tasks, risk

communication itself may undermine the value provided by them.

A broader conception of both security and usability is therefore needed for usable

security.” [81]

Usability, just like security, is a contextual property and has different meanings in

different contexts. For some, efficiency may be a priority, for others, learnability, for still

others, flexibility. In a security context, the priorities must be whatever is needed in order

for the security to be used effectively.

Security software is usable if the people who are expected to use it [83]:

1. Are reliably made aware of the security tasks they need to perform;

2. Are able to figure out how to perform successfully those tasks;

3. Don’t make dangerous errors; and

4. Are sufficiently comfortable with the interface to continue using it.

This is the definition we used to develop the prototype presented in later sections.

2.4.3.2 Making Security Usable

Most computer security is not easy for people to use. Ideally, they should be empowered

to make and enforce their own security and privacy decisions, but the usability barrier has

made this implausible so far. Whitten [82] presents a research work in which she

proposes that security usability is different from usability for other kind of software. In

consequence usability of computer security must be specially tailored to address the

problems inherent to it.

Two techniques are presented by Whitten:

 Safe staging, which takes the basic concept of multi-level user interfaces (which are

usually designed to aid learning and to support both novice and expert users), and

enhances it by providing a clear theory of how to design levels and transitions that

39

preserve the user’s security at all times.

 Metaphor tailoring, adds a new technique, risk enumeration, to existing techniques

for designing visual user interface metaphors. Risk enumeration, enables us to

tailor our visual representation of the most important aspects of security in a

methodical and prioritized way.

However, the techniques presented may not be equally applicable to all aspects of

computer security; some security may be inherently unusable, and some security may

already be usable enough. The difficulty for the developer is to identify when and how to

apply these concepts.

Another fundamental concept extracted from [82] is the “well-in-advance” principle; the

concept of “just-in-time” help has become a popular usability design strategy. It is based

on the idea that the information necessary to enable a user to perform a particular task

should be triggered when the user begins to attempt that task. Whitten argues that this is a

fine strategy when the task is the user’s primary goal but that it is a bad strategy when the

task is a secondary goal that must be attended to in order to accomplish the primary goal

safely, as is very often the case in computer security.

To better understand this argument, consider Microsoft Windows Vista pop-ups

requesting users’ permission to perform a certain task. Figure 2-3 shows an example of

how this dialog looks. Users usually just blindly press the “Continue” button and proceed.

It is not a surprise that, when users are already engaged in some primary task, they will be

reluctant to grant much attention to an interruption that tells them they must learn some

new concepts before they can proceed safely to achieve their goals.

40

Figure 2-3 Windows Vista user account control dialog.

The “well-in-advance” principle establishes that when some primary user task requires

that some security tasks be attended to in order to be safe, the user needs to have a

reasonable idea of the complexity and effort required to achieve those security tasks, well

in advance of deciding to tackle the primary task.

 Other efforts try to integrate techniques and tools and improve them to support the

design of usable and secure systems. Failys [22], developed a framework for specifying

usable and secure systems. IRIS (Integrating Requirements and Information Security)

considers the system design process from three different perspectives — Usability,

Security, and Requirements — and guides the selection of techniques towards integrative

Security, Usability, and Requirements Engineering processes. Failys’ research makes

three significant contributions:

1) A conceptual model for usable secure Requirements Engineering is presented, upon

which the IRIS framework is founded;

2) The CAIRIS (Computer Aided Integration of Requirements and Information

Security) software tool is presented to support the elicitation and specification of

usable and secure systems.

3) The description of how the results of applying IRIS can be used to improve the

design of existing User-Centered Design techniques for secure systems design.

One has several options at the moment of designing security features to integrate into

applications. However, the designer’s interpretation of these concepts is what really

matters. The real challenge for many designers is how to enable users to achieve their

41

goals within an acceptable risk threshold in a way that is easy to understand.

2.4.3.3 How Users Make Decisions

In this section, we take a look at some of the human mental processes that are relevant to

how users make decisions about security, and explore the reason why security user

interfaces do not perform very well, in some cases.

The Bayesian decision-making model [1], assumes that someone making a

decision will carefully take all relevant information into account in order to come up with

an optimal decision. The formalization of this model is called “Subjective Expected

Utility” (SEU) [63],[30] and makes the following assumptions about the decision-making

process:

1) “The decision-maker has a utility function that allows them to rank their

preferences based on future outcomes.

2) The decision-maker has a full and detailed overview of all possible alternative

strategies.

3) The decision-maker can estimate the probability of occurrence of outcomes for

each alternative strategy.

4) The decision-maker will choose between alternatives based on their subjective

expected utility.”[28]

However, this is an ideal situation in which the user has enough information to make a

rational decision, yet people do not always act in a rational way or have enough

information, and often make their decisions based on other factors, such as emotions [3],

or past experiences.

2.4.3.4 How Users Really Make Decisions

When a rational decision is not possible, humans use heuristics [47]. A heuristic is a

technique designed for solving a problem more quickly when classic methods are too

slow, or for finding an approximate solution when classic methods fail to find any exact

solution. By trading optimality, completeness, accuracy, and/or precision for speed, a

42

heuristic can quickly produce a solution that is good enough for solving the problem at

hand, as opposed to finding all exact solutions in a prohibitively long time.

Research from the US Department of Defense [44],[43] discovered that people

under pressure do not weigh their options and choose the best one. Instead, they use what

is called “recognition-primed decision making” (RPD). In which they generate options

one at a time, without ever comparing any two, rejecting the ones that do not work and

going with the first one that does. Humans take this approach to making a decision when

they cannot hold all of the necessary information in working memory, or cannot retrieve

the information needed to solve the problem from long-term memory, or cannot apply

standard problem solving techniques within the given time limit.

This approach to making decisions is used under the following circumstances:

1) The decision-maker is under pressure.

Normally, programmers are faced with time pressures, whether from employers,

assignments, or communities, i.e., social pressure.

2) The conditions are dynamic.

The situation may change by the time a long and detailed analysis is performed.

3) The goals are ill-defined.

 Often security goals are not expressed due to a lack of security knowledge.

4) The information about the different options is incomplete or unavailable.

5) In the case of security, users have little knowledge on how to make a system

secure and the mechanisms and actions that are required for it.

This model, along with the SEU model, represents the most general decision making

process. Different factors affect them, but this generalization can give us a broad idea

of how developers make decisions during software development.

2.5 Summary

 Computer security can be defined as measures and controls that ensure

confidentiality, integrity, and availability of information system assets including

hardware, software, firmware, and information being processed, stored, and

43

communicated. There is no such thing as a secure system but only systems with an

acceptable level of risk. Many factors can contribute to the introduction of security errors,

such as lack of quality code, skills, knowledge, and concentration, which all can result in

security errors. Security errors are different from common coding errors because they are

latent and its effects are not immediately perceived. To help developers build secure

systems, several tools have been created. Some tools make visible errors hidden in the

code to assist in the code review efforts of an organization. Other tools assist in the testing

and design security features. Many common security issues still remain unsupported or

minimally-supported, such as input sanitation, access control, and intrusion detection.

One of the bigger problems of security is not the lack of safe encryption mechanisms, but

rather the usability of these encryption mechanisms for either the user or software

developer, depending on the context.

44

3 CHAPTER 3 – CRYPTO-ASSISTANT

3.1 Introduction

This chapter describes the motivation for the development of the prototype presented. The

chapter continues with the presentation of the development process, the strategy adopted,

and factors that influenced the development of the prototype. These factors include an

analysis of how users react to security warnings and how they make decisions. Finally a

cognitive walkthrough evaluation of the learnability of the Crypto-Assistant is presented

where no major issues were detected.

3.1.1 Motivation

With the intention of building a tool to help programmers to add security to their

applications, we started the search for a security error in which we could focus our efforts.

The prototype developed has the main goal to contribute to the remediation of the

software weakness “CWE-311: Missing Encryption of Sensitive Data” [15] in its more

specific form: “CWE-312: Clear text Storage of Sensitive Information” [16], which is a

very common issue, occupying the 8
th

 position in “SANS Top 25 Most Dangerous

Software Errors” [14] and is also part of the OWASP’s Top 10 project category: “2010-

A7-Insecure Cryptographic Storage” [77]. This vulnerability occurs when the application

stores data in clear text in a resource that might be accessible to an attacker when

information should be encrypted or otherwise protected. According to the “CWE-700:

Seven Pernicious Kingdoms” taxonomy [80] this kind of weaknesses falls under the

“CWE-254: Security Features” category and within the “CWE-359: Privacy Violations”

class. According to Team SHATTER [72] (Security Heuristics of Application Testing

Technology for Enterprise Research), unencrypted sensitive data is one of the top 10

database vulnerabilities.

45

3.2 Problem definition

The networked database is crucial for the functioning of any application. The most

valuable assets reside in the database. The information stored can include transaction

records, financial data, and customer information. Protecting this data is very important,

and failure to do so might result in financial and legal cost; but, it is also an increasingly

difficult and non-trivial task.

Sensitive data stored on networked servers are at risk from attackers who only need to

find a way inside the system to access this confidential information. Additionally,

attackers might impersonate a user of the system and therefore one must consider internal

threats including employees that can access and exploit this data. Another situation in

which sensitive data can be compromised is when physical backups are stolen or lost,

surprisingly, there are many examples of this kind of confidentiality breach [78],[27],[71].

To allow the reader to have a more complete picture of how the development of Crypto-

Assistant evolved; some important concepts will be introduced to highlight the aspects

that we had to take into consideration during the development of the prototype.

The purpose of encryption is to protect sensitive information from unauthorized readers

(confidentiality) by making it unintelligible. However, the data must remain accessible for

the authorized applications and users who require it for a legitimate business reason

(availability). Figure 3-1 shows the interaction of the different components of encryption.

Figure 3-1 How encryption works

46

Encryption keys are required to encrypt and decrypt data therefore they need to be

accessible in order to store or access encrypted information. When using encryption, the

protection it provides is as good as the protection of the encryption keys. In the same way

a company might store employee records in a locked drawer and designate a person to be

responsible for the key, the same must happen with encryption keys.

Figure 3-2 and Figure 3-3 depict a broad overview of the process to implement

transparent data encryption in an application with Hibernate Tools Eclipse plugin and

Jasypt. Both tools will be described in greater detail in section 3.3.1.2 and 3.3.1.3.

47

Figure 3-2 Use of Jasypt and Hibernate for encryption without Crypto-Assistant support.

48

Figure 3-3 Use of Jasypt and Hibernate for encryption with Crypto-Assistant support.

3.2.1 Initial Hypothesis

Based on observations about the causes of security errors in the previous chapter and the

information presented here about the use of Jasypt and Hibernate to protect sensitive data,

we identified several factors that contribute to the problem of developers not

implementing encryption and we can summarize them as follows:

1. Lack of awareness about the risks of storing sensitive data in plain text.

49

2. Lack of knowledge about available protection mechanisms and their

effective use.

3. Lack of usability of the protection mechanisms.

Our initial idea was to raise awareness and let developers fix the issues. However, lack of

awareness is not the only problem. Even if developers are aware of the risks, there are

other problems that contribute to the problem of developers not implementing encryption.

One of the most evident is the lack of training in secure programming techniques. This

should come as no surprise because if developers are not even aware of the possible issues,

they will not know how to fix them. Or goal was to help developers that have little or no

experience about security and as a result, we could not expect that they were familiar with

any security mechanism.

When a developer is aware of the risk and willing to take corrective actions the

last obstacle to overcome is the effective use of a protection mechanism or a tool for

security, the focus of the problem switch then to the usability of the tools.

The hypothesis we formulated is the following:

Rising awareness about the risk of storing sensitive data in plain text and putting a

usable and intuitive encryption mechanism conveniently located at the reach of the

developers in the IDE; will be reflected in an increase of encryption as protection

mechanism.

3.2.2 Communication strategy

Developers’ behaviour is influenced by their environment, this includes the programming

systems and tools that they use and as a result, if security is not integrated with them, it

might be perceived as an interruption in the work flow by forcing them to leave their IDE

due to the lack of tool support. Therefore, we wanted to integrate security tasks within the

tools developers use to build applications. The IDE was proposed as an effective teaching

mechanism [80] and is the only layer that we have to communicate a problem to the

developer.

50

Security warnings are common in computer systems to communicate a failure or

deter users to engage in risky behaviours. The purpose of security warnings is to protect

users and their systems. Warnings can be useful to capture user’s attention and raise

awareness about possible risks. But, if no remediation action is provided or if the

remediation action is too complex or time consuming, some users may ignore them

rendering the effectiveness to null. To increase its effectiveness, they must enable users to

take a mitigation or remediation action. Based on this information we choose to use

security warnings to meet the goal of raising awareness. To increase our chance of

success, research was conducted on the use of computer warnings and how users make

decisions.

3.2.3 Warnings and User Reactions

Computer security warnings are intended to protect users and their systems. However,

users frequently ignore these warnings. In [8], the authors describe a study designed to

gain insight into how users perceive and respond to computer alerts. From this study,

there are some remarkable contributions that can be applied to the design of computer

warnings in general.

1. There is a trade-off between the amount of information presented to a user in a

warning and the chance the user will utilize that information in a useful way. It is

less likely that a user will interrupt his or her work to read a long technical text.

2. Warnings must be presented only when necessary, and then with only the

necessary information.

3. Only present a security warning prompt when automatically eliminating or

guarding against a risk is not possible.

Warnings should only be presented with situations in which the best course of action

depends on the details of the circumstances that are known to the user. Many times users

are not familiar with the concepts used in security warnings and this can affect the

effectiveness of the information presented. It is easy to find examples of warnings that are

not effective [8]. We incorporate this information in the development of the Crypto-

51

Assistant. To increase the effectiveness of our warning we investigated further on how

users make decisions.

The chosen strategy was to embed a warning in the workflow of the tools, deliver the

warning message, and assist the user to perform a risk defusing operation. This strategy

might seem too simplistic but it implies several difficulties. One of them is to find the

right placement and timing for the warning message. We will refer to the placement of the

warning in the workflow as the communication point. The communication point must be

identified early enough in the development process when the error is cheaper to fix. The

information presented must be brief, clear and easy to understand. Figure 3-4

Communication strategy shows the possible outcomes of the warning display

52

Figure 3-4 Communication strategy

3.2.4 Component selection

The design of the Crypto-Assistant prototype began with the search for a suitable tool to

embed the warning message. The goal was to maximize the relevance of the message

53

placing it in a decisive moment of the application development integrating it in the tool

workflow. We focus the search in open source components; that would allow us to modify

the code to produce a prototype more quickly.

We were inspired by the scaffolding capabilities of MyEclipse [52], a closed source

commercial implementation of Eclipse that only required a database schema to generate

the skeleton for a CRUD (Create, Read, Update and Delete) application. The goal was to

influence the development of the application in an early stage; before the cost of any

necessary modification would become prohibitive.

The platform selected for the prototype was the Eclipse IDE. Its opens source nature and

popularity made it an ideal candidate for our research. Hibernate was selected based on its

popularity, abstraction capabilities and the availability of Hibernate Tools plugin for

Eclipse. Jasypt (Java simplified encryption library) is a library for simplified symmetric

encryption in Java; this library expands Hibernate user types, allowing transparent data

encryption.

3.2.5 Design considerations

The first design idea was inspired in MyEclipse; we wanted to use the reverse engineering

capabilities of the Hibernate Tools. We considered it a good communication point to

integrate encryption before the full application was completed. The idea was to suggest

the use of encryption to users trying to generate Java classes and mapping files from an

existing database schema. The database schema would work as input for our tool. Then

users would be able to select what field they wanted and if the database was empty use

Hibernate to regenerate the database structure. However, there was a fundamental

problem with this approach. More specifically, the database may contain existing records

requiring encryption and changes in the schema. This last realization added a new

challenge for our tool because to increase the usability of the tool, we needed to simplify

the whole process or rely on the user to find a solution. However, based on the

observations of the ASIDE (Assured Software Integrated Development Environment)

54

project [53] we cannot trust that users would know how to complete the task by

themselves.

To understand better what would be required to simplify the process, we needed to

consider the effects of encryption in data and what would be required to simplify the

migration process.

Encryption of fields or columns with Jasypt requires changes in the structure of the

database. Encryption and decryption algorithms are known as ciphers. Ciphers often use

an operation mode that produce output in fixed block sizes and require the input data to

match this output size or it will be padded. The effects of encryption operations might be

more evident on small data items which may increase the size of the stored data.

Encryption transforms character data into meaningless binary data; this has consequences

not only in the size of encrypted data, but also in the data type used to store the

information. Jasypt stores encrypted data encoded in character form using Base64 or

hexadecimal format, which increases the data size by approximately one third than if it

were stored in its original binary form. Jasypt encodes the data in Base64 by default and

therefore, it is necessary to resize and update the database columns to accommodate the

encrypted data.

The Jasypt default configuration uses a random salt for every value encrypted. A salt is

random data that is used as an additional input to an encryption function, which makes

slower the decryption of data by the use of brute-force, dictionary and rainbow tables’

attacks. The use of a random salt allows that the same data encrypted always result in a

unique cypher text, making impossible to perform search queries based on the encrypted

field since the encryption of the same value produces different outputs due to the addition

of the random salt. One must put special care before encrypting information in indexed

fields. Indices are used to improve the speed of lookups, and searches may be seriously

degraded by the computational overhead of decrypting the field contents each time

searches are conducted. Depending on the strategy adopted, the encryption of indexed

data might not be feasible (i.e. the use of a random salt makes such operations impossible

to perform). Unfortunately, most often administrators index the fields that must be

55

encrypted. New planning considerations are needed to determine what fields must be

indexed; a decision that might not be easy to take.

Referential integrity is another important factor to consider. If a field with integrity

constraints have to be encrypted, that is, a field that is part of a relation (e.g., a foreign key

is encrypted) then all of the tables that are part of the relation would require changes in

their structure and update of its values in addition to the use of a fixed salt.

The resources needed to provide our prototype the capabilities to automate the process of

modifying an existing data base schema and its data, was beyond our scope. We required

that the solution proposed to the user was simple enough to be described in a warning

message.

Therefore we had to reconsider our first strategy and located a better communication point;

Hibernate Tools allows for the creation of mapping files from Java classes to improve the

usability of Hibernate. Using this as a communication point still gave us an input structure,

the Java source, but did not imply the existence of a database structure; the structure can

be generated from the mapping files. This decision eliminated the need to include all the

features required to simplify the change of structure in the first design.

3.2.5.1 Recommended Encryption algorithms

The encryption algorithm was an important factor to consider for our problem.

Our implementation allows the developer to choose their encryption algorithm from the

ones available for the virtual machine. Many databases use Data Encryption Standard

(DES) to protect sensitive data. However, DES has long been considered insufficient to

protect any information for a considerable amount of time. Advanced Encryption

Standard or AES and triple DES (3DES) are, at the time of writing, the recommended

algorithms by NIST for symmetric encryption [2]. Triple DES offers a better protection

against cryptographic attacks than DES; however, the use of this algorithm comes with a

trade off in performance. AES encrypts and decrypts data in 128-bit blocks, using 128,

192 or 256 bit keys. The nomenclature for AES for the different key sizes is AES-x,

where x is the key size. All three key sizes are considered adequate by NIST for Federal

56

Government applications. Triple DES encrypts and decrypts data in 64-bit blocks, using

three 56-bit keys. NIST recommends that applications should use three distinct keys.

Due to export restrictions Java puts a limit on the key size allowed for encryption,

this produces a run-time exception if a key size of 128 bit is meant to be used and the Java

runtime is not properly configured to enable strong encryption. To minimize the chance of

using a weak encryption algorithm, we implemented a warning mechanism to alert the

user if the algorithm selected for encryption is different from AES. The mechanism is

limited to inform the user that AES is the recommended algorithm but it requires the

strong encryption configuration.

If a user wants to use AES they would have to get the unrestricted security policy

files from Oracle and install them in their Java Virtual machine:

1) Download the unlimited strength JCE policy files.

Go to: http://www.oracle.com/technetwork/java/javase/downloads/index.html

2) Uncompress and extract the downloaded file.

This will create a subdirectory called jce. This directory contains the

following files:

 README.txt Detailed install information

 COPYRIGHT.html Copyright information

 local_policy.jar Unlimited strength local policy file

 US_export_policy.jar Unlimited strength US export policy file

3) Install the unlimited strength policy JAR files.

To utilize the encryption/decryption functionalities of the JCE framework

without any limitation, replace the original JCE policy files (US_export_policy.jar

and local_policy.jar) with the unlimited strength versions extracted in the previous

step.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

57

 The standard place for JCE jurisdiction policy JAR files is:

 <java-home>/lib/security [Unix]

 <java-home>\lib\security [Win32]

<java-home> refers to the directory where the Java SE Runtime Environment

(JRE) was installed.

3.2.5.2 Key management

Because cryptography is based on keys that encrypt and decrypt data, the database

protection is only as good as the protection of the keys. Security depends on two factors:

where the keys are stored, and who has access to them. Secure key management is often

overlooked when planning an encryption strategy.

Some important questions to address in planning an encryption strategy include: how

many encryption keys will be needed, and how they will be managed?

The answer to these questions should include careful planning of where the keys will be

stored, how to protect them, and how often the keys should change.

The fewer keys you use to encrypt information, the easier the solution is to manage,

but the more critical key security becomes. Crypto-Assistant uses a single key that is

embedded in the mapping files of every class that have an encrypted field. This may not

be the best solution from a security perspective. Part of managing keys is deciding where

to store them. One easy solution is to store the keys in a restricted database table or file.

But, all administrators with privileged access could also have access to these keys,

decrypt any data within the system, and then cover their tracks. The recommended

approach is to use a Hardware Security Module to store the keys. In this case, the keys

never leave the hardware and therefore access can be controlled so neither administrators

nor intruders can penetrate the machine and steal them.

We recommend the separation of the database and application servers. This

architecture protects against rogue database administrators and media stealing; even if the

58

data can be accessed the key is needed to decrypt the data is still out of reach and vice

versa.

Proper management involves restricting personal access to key storage locations,

random key updates and encoded key storage servers. An effective key management

system involves every aspect of key creation like distribution, revocation, network access,

and personnel management. As a result, key management is outside of the scope of our

study.

3.2.5.3 Database encryption strategies

There are several strategies that one can adopt when choosing a database encryption

strategy. Each one of these strategies has their own advantages and risks that must be

taken into consideration.

Different aspects must be taken in consideration when planning an encryption

database strategy. The next sections are condensed from RSA’s document: “Securing

Data at Rest: Developing a Database Encryption Strategy”[61]. The information collected

here has the intention to be an introduction to explain how the encryption capabilities

implemented in our prototype work and other alternatives that could have been adopted.

3.2.5.3.1 Inside the DBMS.

If the DBMS (Database Management System) supports encryption, the process of

encryption and decryption takes place within the database the main advantage of this

process is that it is transparent to the application. The data is encrypted as soon as it is

stored in the database; however, any data that enters or leaves the database, will be

making it as clear text. This is one of the simplest database encryption strategies, but it

presents performance trade-offs and security considerations that must be evaluated. One

of the disadvantages of this strategy is the extra processing that takes place in the DBMS

every time that storing or accessing data is necessary. This can have serious consequences

on the performance of the entire system. This strategy implies that the DBMS has access

to the encryption key, and sometimes it means that the keys are stored in the same server;

59

an attacker capable of gaining access to the DBMS will have access to both the data and

the encryption key, gaining access to the unencrypted data. To prevent this situation a

dedicated “Hardware Security Module” (HSM) can be used to store the keys, however

this option is not always possible like when virtualization is used in a shared cloud

infrastructure.

3.2.5.3.2 Off-loading encryption outside of the DBMS.

The recommended strategy is to consider database architectures that off-load encryption

processing and secure key management to a separate, centralized “Encryption Server”.

The “Encryption Server” performs the computations required by encryption and

decryption. The benefits of this strategy are that it removes the computational overhead of

cryptography from the DBMS or application servers, and perhaps most importantly, it

allows separation of encrypted data from encryption keys. The keys in this architecture

never leave the encryption server. Locking down access and monitoring the “Encryption

Server” is important in this scenario as well, but easily achievable.

3.2.5.3.3 Application level encryption.

This is the architecture that allows explicit control over the information that is encrypted.

The application has the chance to classify and manage who has access to the information

during what times and for what purpose. This requires authorization and authentication

controls, otherwise, encryption at this level provides no additional security.

In this architecture, the application server takes the responsibility to perform the

cryptographic operations. Data is introduced in the application as plain text, then

encrypted and sent obfuscated to the database. The keys never leave the application server

and therefore the separation of the encrypted data and the encryption key is achieved in

this way. Attempts to snoop or intercept writes on disk or direct access to the database

would yield useless information.

However, encryption at this level puts limitations in the operations that can be

performed in the database (e.g., searches or lookups that cannot be performed on the

obfuscated information at the database level). Since the encryption is done on a per

60

application basis, if multiple applications require encryption, this will add additional

complexity to the protection of data. Typically, application level encryption is software

based [21] which is the case of our Crypto-Assistant prototype. Furthermore, encryption

is a CPU intensive task and will compete for resources with other processes. In addition,

the application server needs access to the encryption key, therefore, if an attacker breaks

into the server and finds the keys, the information can be decrypted that is why it is

important to separate the database and the applications server in case one of them is

compromised to provide an effective protection.

3.3 Development

Development of the Crypto-Assistant had a double purpose: testing the hypothesis

previously mentioned, and to help developers use encryption in their applications. Using

the hypothesis as a starting point, the first high level requirements were elicited:

1. Raise awareness among non-security savvy developers about the risks and

consequences of not protecting data at rest.

2. Simplify the encryption process to protect data at rest so that developers without

deep cryptography knowledge or security training could benefit from its use.

3.3.1 Architecture

In this section, we discuss the architecture of the Crypto-Assistant, providing a brief

explanation about the role of its various components. The Crypto-Assistant is built on top

of Hibernate Tools plugin for Eclipse IDE. The prototype uses Jasypt (Java simplified

encryption) library [40] to provide its encryption capabilities.

Figure 3-5 shows a broad overview of the Crypto-Assistant architecture. The

selection of these components had a double purpose. First, they are tightly related to the

target problem: the lack of encryption of data at rest. Therefore, they are an ideal case

study for the research presented in the previous chapter. The second reason to choose

them is because both of them are open source. Thanks to this, we were able to build the

61

prototype on top of the functionality these tools provide and speed up the development

process to have an operational prototype in a relatively short time.

Figure 3-5 Crypto-Assistant - High level architecture

3.3.1.1 Eclipse

“The Eclipse Platform is an IDE for anything, and for nothing in particular” [20].

The Eclipse Platform is a general purpose IDE that contains the functionality required to

build a specific integrated development environment (IDE). However, the Eclipse

Platform is itself a composition of components; by using a subset of those components, it

is possible to build arbitrary applications. One of the advantages of the Eclipse Platform is

its integration capabilities. Building a tool or application on top of the Eclipse Platform

enables the tool or application to integrate with other tools and applications also written

using the Eclipse Platform. Thanks to its managed windowing system, it allows a rich and

consistent experience for its users across multiple platforms.

The built-in functionality of the platform is very generic. It takes additional tools

to extend the Platform to work with new content types, to do new things with existing

content types, and to focus the generic functionality on something specific. The platform

provides extension points that allow developers to integrate new functionality through

executable modules called plugins.

62

A tool provider writes a tool as a separate plugin that operates on files in the

workspace and surfaces its tool-specific UI in the workbench. When the platform is

launched, the user is presented with an integrated development environment (IDE)

composed of the set of available plugins. The quality of the user experience depends

significantly on how well the tools integrate with the Platform and how well the various

tools work with each other.

3.3.1.2 Hibernate & Hibernate Tools

Hibernate is an object relational mapping tool (ORM) [32]whose main goal is to

enable developers to persist Java objects in relational databases. Hibernate abstracts the

underlying database and increase developer productivity by reducing 95% of the Java

code that is typically required to access databases. Hibernate provides its own data types

that act as translators between the applications and the underlying database. To achieve its

functionality Hibernate uses a set of XML files for configuration and data mapping;

additionally data mapping can be done using code annotations embedded in Java code.

Hibernate Tools [33] makes working with Hibernate more pleasant. Hibernate

Tools is a toolset for Hibernate 3 implemented as an integrated suite of Eclipse plugins,

together with a unified Ant task for integration into the build cycle. An Ant task is a piece

of code that extends the functionality of the Ant build system. Hibernate Tools makes the

following features available within Eclipse:

Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-

completion and syntax highlighting. The editor even supports semantic auto-completion

for class names, property/field names, table names and column names.

Console: The Hibernate Console perspective permits configuring database

connections, provides visualization of classes and their relationships and allows to

execute Hibernate Query Language (HQL) queries interactively against the database and

browse the results.

63

Reverse Engineering: The most powerful feature of Hibernate Tools is a database

reverse engineering tool that can generate domain model classes and Hibernate mapping

files, annotated EJB3 (Enterprise Java Beans 3) entity beans, and HTML documentation.

Wizards: Several wizards are provided, including wizards to generate Hibernate

configuration (cfg.xml) files that tell Hibernate how to connect to a database (which is a

fundamental requirement of any application using Hibernate) and Hibernate console

configurations that help Eclipse to provide auto completion and reverse engineering

capabilities for Java projects.

Ant task: Apache Ant is a software tool for automating software build processes. It

is similar to Make but is implemented using Java. Hibernate Tools provide a unified Ant

task that allows performing schema generation, mapping generation, or Java code

generation as part of the build process.

3.3.1.3 Jasypt Java Simplified Encryption Library

Jasypt [40] is a Java library which allows developers to add symmetric encryption

capabilities to their projects with minimum effort, and without the need of having deep

knowledge on how cryptography works. Normally, the use of encryption in Java requires

the programmer to have a broad understanding of Java and cryptography recommended

modes of use. Jasypt simplifies the use of encryption providing a more clear and concise

application programming interface (API) that is easy to understand and use. With Jasypt,

encrypting and checking a password can be as simple as...

And encryption and decryption of text:

64

And the encryption of sensitive data directly from Hibernate

These are steps in the right direction, but further steps can be taken to simplify the

process even more.

This is why the Crypto-Assistant was developed. Its development was based on

the assumption that its simplicity would encourage developers to encrypt their

application’s sensitive data and that they do this encryption correctly. By combining the

power of these tools together, the Crypto-Assistant simplifies the process of incorporating

a database encryption strategy into an application under development.

The database encryption strategy implemented by our prototype takes encryption and

decryption out of the DBMS, the workload takes place at the application server where

Hibernate is running and it integrates transparently with the application; this means that

the application does not require any changes in its code. Some code changes may be

required but only to support cryptography best practices (e.g. key rotation[2] that involves

decryption of the data with the old key and re-encryption of it using a new key).

3.4 Usage

The development of Crypto-Assistant simplifies the process of using encryption with

Hibernate.

In order to protect sensitive data within an application with the help of Hibernate

Tools Eclipse plugin and Jasypt, assuming that the developer already has a Hibernate

configuration file, a developer must perform the following actions:

65

1. First, mapping files must be generated for the persistent classes using the “New

Hibernate Mapping File (*.hbm)” wizard. This involves:

a. Selecting the classes for which we want to generate mapping files.

b. Generating the mapping files.

2. Manually modify each one of the mapped files generated for classes that contain

sensitive data. This involves:

a. Opening the mapping files of the classes that contain sensitive information.

b. Choose the properties that contain sensitive information.

c. For each one of the properties chosen, a developer has to:

i. Modify the data type assigned by Hibernate tools during the

mapping file generation and assign instead a Jasypt Hibernate type

compatible with the original data type that was assigned to the

property.

ii. Select a password, encryption algorithm, and key derivation cycles.

iii. While doing this, the user must be careful not to select properties

that will be used as primary or foreign keys because this would

break the relationships among database tables.

3. Finally update the configuration files to recognize the mapping files that were

created and modified previously

The use of Crypto-Assistant changes the original procedure in the following form:

1. First, mapping files must be generated for the persistent classes using the “New

Hibernate Mapping File (*.hbm)” wizard.

a. This involves selecting the classes for which we want to generate mapping

files.

b. Selecting the fields that contain sensitive data.

c. Generating the mapping files

66

Most of the Crypto-Assistant functionality is not visible to the user. The only visible

modification consists on the addition of a new page in the “New Hibernate Mapping File

(*.hbm)” wizard. This wizard generates Hibernate XML mapping files taking as input a

set of Java classes.

Figure 3-6 Property Encryption page added by the Crypto-Assistant.

The new page added by the Crypto-Assistant, Figure 3-6, presents a security

warning whose intention is to raise awareness about the risk of storing sensitive data

without encryption, and it offers a course of action to mitigate that risk, allowing

developers to select the properties or fields of a class containing sensitive information.

Crypto-Assistant uses password based encryption, where the encryption key is generated

by applying a hash function to the password provided and atleast 1000 times. On this

screen, it is possible to configure the password, encryption algorithm, and key iterations

used to generate the encryption key for the fields selected, the selection of these values

was determined by the configuration parameters required by the Jasypt encryptor.

67

The prototype helps to reduce the chance of human error in several ways. More

specifically, it hides properties such as the ones used as primary or foreign keys whose

encryption would break the entity relations. This might be confusing if users are looking

for these specific fields but it prevents them from breaking the relations in the database by

mistake. For the encryption algorithm, AES and 3DES are the recommended algorithms

by NIST; however, the default security policy of the JVM put limits on the cryptographic

strength available by default. The process to enable stronger cryptography requires the

manual installation of unrestricted policy files. Development of a tool to assist developers

in the installation and the detection of this file requires a considerable effort; in

consequence it was outside the scope of the prototype we present. The algorithm selected

by default in the prototype is DES, this was done to provide an “out of the box”

experience for the users, and avoid confusion about why the application would throw a

run time exception related to security if a strong encryption algorithm is selected and the

strong encryption policy files are not installed for the Java virtual machine. Other

algorithms can be selected if available but a warning message will be shown in the wizard

page if the algorithm selected is not AES which is the recommended one.

To avoid using a default password, a random one is generated every time the

wizard is used. The passwords generated are stored in the mapping files. The developer is

responsible for keeping track of the password in case the mapping files are regenerated

using the wizard. . Optionally, the users can choose their own password. If the wizard is

used to make modifications to the configuration files, a new password will be generated

by default, users would have to enter it manually each time they make changes and want

to keep the same encryption key.

68

Once the user decides to proceed to the preview page, heuristics are applied to

assign a suitable encrypted type to each one of the properties selected. At the end the

mapping files generated contain embedded configuration settings to allow Hibernate to

use Jasypt’s custom data types to perform the encryption and decryption of the selected

properties. Error! Reference source not found. shows the preview screen of the

mapping wizard with an encrypted type being used.

Figure 3-7 Mapping files wizard, preview screen showing the use of Jasypt Hibernate types for

encryption.

The encryption passwords are stored in the mapping files. This is not the most

secure approach; however, using the recommended strategy of separating the database

server from the application server to protect the keys will provide protection for the data

at rest in the event that an attacker gains access to it. Jasypt supports other options but the

69

complexity associated with them would not allow the simplification that we were trying to

achieve. Key management is out of the scope of this prototype version and therefore it

relies on the developer’s effort to protect the encryption keys.

3.5 Installation

The installation of Crypto-Assistant is no different from any other Eclipse plugin. The

best way to install it is to use the update manager. Once Crypto-Assistant is compiled it

is packaged in a zip file that can be used an update site.

1) Select Help > Install New Software. The install dialog will appear Figure 3-8

Figure 3-8 Install new software dialog.

70

2) Click Add… and type in the name and locate the zip file containing the update

site for the Crypto-Assistant plugin, as in Figure 3-9.

Figure 3-9 Add repository dialog.

3) Click ok and select the components to install from the window that appears

Figure 3-10.

71

Figure 3-10 Installing Crypto-Assistant

4) Click the checkbox next to the update site you just added in this case is

Crypto-Assistant. Click Next.

5) The dialog box in Figure 3-11will appear. Click Yes and you will be ready to

use Crypto- Assistant

Figure 3-11 Restart eclipse dialog.

72

3.6 Usability evaluation

Usability is one of the main goals of the Crypto-Assistant. To evaluate the usability of our

prototype we used several methods. Learnability was one of the main aspects of usability

that we tried to address.

One of the most important aspects of the Crypto-Assistant is learnability.

Learnability refers to the skills or knowledge that a new user requires in order to use the

system effectively. Since our target audience were developers with little or no security

training this aspect was important and required evaluation.

3.6.1 Cognitive Walk-through

The cognitive walk-through method described in [66], [56], allows to perform an

evaluation of the learnability of our prototype without user intervention. To carry out this

activity there are some prerequisites:

1. A general description of who the users will be and what relevant knowledge they

possess.

2. A specific description of one or more representative tasks to be performed with the

system.

3. A list of the correct actions required to complete each of these tasks with the

interface being evaluated.

The targeted users are developers in general, who have little knowledge regarding security.

The actions to be performed by the user are the selection of the properties that require

encryption. The correct action is the expansion of entities and clicking on the properties

that require protections marking them as checked.

The cognitive walk-through consists of an evaluator answering the following questions in

a believable way.

1. Will the user try to achieve the right effect?

73

The display of a warning message has the purpose to influence the developer to

incorporate the classification and selection of sensitive data for encryption as part of her

current goals.

2. Will the user notice that the correct action is available?

The page does not explicitly indicate how to carry out the correct action. However, the

selection area stands out from the other components by taking most of the space available

suggesting some interaction must take place.

3. Will the user associate the correct action with the effect that the user is trying to

achieve?

All of the controls and messages on the screen are associated with the protection of

sensitive data throughout encryption. Therefore, one can assume that the user will

associate the checking of the items in the tree with the protection of data. However, this

might be an opportunity area to implement a visual metaphor, by placing a lock icon that

would be open or closed to reflect the status of the check box.

4. If the correct action is performed, will the user see that progress is being made

toward the solution of the task?

A check mark will be displayed next to the item checked.

We explored alternative behaviours that might be not completely satisfactory in section

3.2.2. For example users might not understand the messages or the behavior that is

expected from them or they might simply skip the warning page and continue without

reading the warnings. Despite the possible issues the answers to the questions posed by

the cognitive walk-through appeared to be satisfactory, therefore, we assumed that there

were not outstanding problems with respect to the learnability (skills/knowledge) required

to use Crypto-Assistant.

3.7 Summary

In this chapter a brief introduction to the problem that motivated the creation of the

Crypto-Assistant was given. The principal motivations to build this prototype are:

74

1. Test the hypotheses introduced in this chapter.

2. Make developers aware of the dangers to which sensitive data at rest is

exposed.

3. Increase the usability of encryption to a level that any developer can use it

effectively without having to be an expert on security or cryptography.

A brief overview of the main aspects to have in consideration at the moment of choosing

a design strategy was presented. Then our prototype and the different components that

form part of it were introduced. Finally, a small evaluation of its usability focusing in

learnability was performed and no major problems were found.

75

4 CHAPTER 4 – PILOT USER STUDY

4.1 Introduction

In this research, several philosophical stands were adopted. First a positivist stand is

adopted, this means that we believe the ideas we are testing can be reduced and analysed

in an experimental setting and the results obtained from them can be applied to real

situations. Software security deals with psychological and sociological aspects and

therefore our model cannot take into account all of the different variables that influence

this activity. Our theory and hypothesis may be incomplete and therefore we adopt a

pragmatic approach. This stance tries to qualitatively [31] assess the feelings of the

subjects that were exposed to our prototype, and to identify the most relevant factors for

our purposes. The Crypto-Assistant was designed based on the hypothesis presented in the

previous chapter, that is, to test this hypothesis; we designed an experiment with a

scenario that resembles a typical situation that developers have to deal with and assigned

them a task that involved the use of our prototype. Our product is still a prototype and it

has many areas of opportunity to improve. The evaluation we performed is formative [25]

in the hope to advance our knowledge and the final product with the results obtained. The

plan is to make the source code available for review and use with an open source license.

4.2 Purpose/Background Information

The purpose of this experiment is to test the effectiveness of our prototype against the

hypothesis formulated and presented in Chapter 3.

If our participants use the prototype to encrypt sensitive data we would have

achieved the goal of influencing developers to produce more secure applications. The

focus of the experiment is to learn about the usability of the Crypto-Assistant and more

specifically, its effectiveness towards the aforementioned hypothesis. The following

questions were formulated to help us in its evaluation and improvement.

1. Is it effective at encouraging the use of encryption as a protection mechanism?

76

2. Is it effective at raising awareness about the risk to which data at rest is exposed?

3. Are the features provided easy to understand and use?

4. In case the users do not use the encryption capabilities suggested and provided by

the Crypto-Assistant, what is the reason?

Question three was answered in part by the learnability evaluation presented in the

previous chapter. However this pilot user study was complementary to that evaluation.

4.3 EXPERIMENTAL DESIGN

In this section we will describe how we performed our evaluation of the Crypto-Assistant.

Several difficulties presented that were not part of the original scope of this research. The

first problem was the difficulty to find suitable candidates for our experiment. Even

though Hibernate is a popular ORM tool used extensively in industry, it is not very

popular among students or hobbyists that were the source of our research subjects.

Therefore, we had to design a workshop that would prepare the research subjects to

perform the task we had prepared for them. This was especially difficult due to the many

features and complexity associated to Hibernate and the time constraints of the

participants. Didactic material had to be created especially for the occasion which was not

contemplated when we first envisioned the experiment.

A programming task had to be designed to resemble a realistic situation and in

some way lead the participants to interact with our prototype. The task we envisioned was

a maintenance task that involved the modification of a web application. Therefore we had

to develop a small web application that would be easy to modify and needed to have the

basic functionality of any popular application such as, for example, the registration of

users, and the ability to log in/out and manipulation of users’ data.

Once the design of the programming task was done we had to refine our

experimental design to move out of the picture elements that were irrelevant to our

purpose and could prevent the participants from completing the task. One of those

elements was the difficulty to learn Hibernate in a short period of time. For this purpose

we provided the participants with stub classes, and example source code, configuration

77

files, and a cheat sheet for quick reference. Another element we wanted to mitigate was

the effect that the experimental setting could have on the responses of the participant.

More specifically, we wanted to ensure that the participants did not to simply please us

with their answers and therefore we had to conceal the real purpose of the experiment.

4.3.1 Recruitment process

Participants were recruited from UOIT campus through the use of posters and an email

directed to all the students at the university using the university distribution list for

official announcements. More information about the participants is available in Appendix

A.

4.3.1.1 Initial contact

Once a volunteer contacted the research personnel, they were sent an email along with the

pre-screening consent form requesting them to complete an electronic screening

questionnaire. The time required to complete the questionnaire was about 15 minutes and

its purpose was to assess the eligibility of the volunteers. Upon completion of the

questionnaire, the participants were informed about their eligibility via email by the

research personnel.

4.3.1.2 Eligibility

Participants were selected based on the number of correct answers in the screening

questionnaire. The total number of questions was 31, and the first eight questions helped

us develop a profile of the participants, while the rest of the questions had the intention to

gauge the participants' knowledge about SQL (Structured Query Language) & Java

technology. From those questions, 11 were about SQL and with 12 about general Java

knowledge, Servlets and JSP; this questionnaire along with the answers provided by the

participants is included in Appendix A.

The criterion to select the participants was to have a minimum of 12 correct answers

which amounted to more than 50% of the total number of questions about SQL and Java.

78

4.3.2 The study

The study consisted of two phases: (1) a workshop to provide the participants with the

necessary information about Hibernate and Hibernate Tools plugin, and (2) the

experiment, where participants had to perform a short programming task.

4.3.2.1 Workshop

The workshop took place at the UOIT North Campus the first week of October 2012.

Participants were welcomed by a member of the research team and instructed to begin

with the setup of their equipment. The session was started with a quick overview of the

workshop, and the tools to be used. After this brief introduction, participants were

instructed to set up the development environment needed for the workshop. Storage

devices were handed out to participants loaded with the files required to participate in the

session. The files included documents and source code to follow the workshop and

perform the experiment.

The development environment was composed by a virtual machine loaded with

Lubuntu 12.04, Eclipse IDE and MySQL database server. The eclipse IDE was

preconfigured with our prototype.

During the workshop participants were not informed explicitly about the changes

introduced by the Crypto-Assistant. This was covered during the workshop as if it was

another feature of Hibernate and part of the process to generate mapping files with the

help of Hibernate Tools. This was done to avoid contamination in the behaviour of the

participants. At the end of the workshop, participants could choose to leave without

compensation aside from the free lunch and knowledge gained, or continue and

participate in the experiment.

4.3.2.2 Experiment

For the experiment, participants were required to modify a small web application to use

Hibernate instead of JDBC (Java Database Connectivity), and perform any improvements

they deemed necessary to improve the quality of the application. This was deliberate to

79

simulate a typical situation developers face when they have to meet functional

requirements and deal with vague requirements, unfamiliarity with code and technology

used, and time constraints.

There was an incentive for the top three applications of one gift cards with a value

of $150 for the best quality. A link to Wikipedia’s article about software quality was

provided as a reference. This had the goal to encourage them to look for possible defects

including security ones.

The rules of the experiment were:

 They could use any resources from the internet.

 They could not communicate to any other person.

 They could not speak to each other.

The application to modify was small enough to be considered a toy program but was

complex enough so they would struggle to understand the whole code at first sight. To

help them to overcome this difficulty an overview of the application architecture was

provided before they started the task and a list of the specific steps needed to complete the

migration from JDBC to Hibernate was given to all of them, the application contained

stub classes and an example method implementation using Hibernate was included to help

them to understand what they have to do.

At the end of the study participants were compensated with $30 each. A link to the

exit questionnaire was emailed to them so they could answer it at their convenience and

employ the time required to provide quality answers.

4.3.3 Data collection and evaluation

Data was collected using logs produced by the software, source code and questionnaires

produced by the participants. Logs and questionnaires can be found in Appendix A.

The logs collected the interaction of users with the wizard page added by the

Crypto-Assistant to the “New mapping file wizard”. Any selection or manipulation of the

interface within this screen produced an entry in the log file. Including in particular any

80

fields they selected for encryption, we planned to use this information to analyze what

users did with the prototype.

A screening questionnaire was used to assess the suitability of the participants for

the study. Another questionnaire was used at the end of the experimental phase to gauge

the participants acceptance of the prototype. The software artefacts produced by the

participants were analysed too.

4.3.4 Ethics

All of the experiments abide by the University of Ontario Institute of Technology Ethics

Review process for experiments involving human participants. None of the participants

were put at risk at any moment and they were informed of their right to withdraw from the

beginning and through the course of the experiment.

4.4 Results

In our small pilot study we started with four participants that qualified through the process

described before.

For several reasons including a fire drill and a building evacuation, the

commencement of the workshop was delayed approximately 30 minutes. One of the

participants did not have the equipment necessary but was provided with a laptop by the

research personnel. Another participant had problems setting up the software necessary,

and the research personnel tried to assist the participant in the set up but the cause of the

error was unknown. After several delays and malfunctions the participant decided to

withdraw from the experimental session. The workshop continued without any additional

delays.

The duration of the workshop, including lunch, was estimated to be 2.5 hours.

However, due to the multiple delays during the workshop this was extended to about 3.5

hours from the 4 that were originally allocated. All three participants decided to stay and

continue with the experimental session. However, the time pressure became a great issue

81

because the task was complex enough to at least take them an hour. The experimental

session required an introduction to explain the rules of the experiment and the architecture

of the software to modify which took about 15 minutes of the half hour that was left.

Because of this situation, participants were allowed to work at their discretion on the task,

and all of them dedicated approximately one hour to complete the task.

We expected users would use the cheat sheet (Appendix B 8.9) as reference to carry out

the task assigned. We assumed that the participants would select some of the sensitive

fields during the interaction with the wizard to generate the mappings files. Analysing the

logs collected, we discovered that the subjects did not interact with our prototype as we

expected. The only interaction that appears in the logs is the examination of the combo

box containing the list of encryption algorithms.

Through the answers extracted from the exit questionnaire we were able to extract some

qualitative data from the participants:

 Two of them identified the difficulty of the task as average and one as easy; the

source code collected from them corroborated this with its completeness level.

 Participants declared that none of them had received any formal training about

security even when two of them had professional experience developing software

and one was enrolled in a program related to security. However, the study took

place at the beginning of the school year and the participant was a new student.

 One participant (P3) that correctly identified the application to being vulnerable to

network attacks. The other two could not tell if it was vulnerable to any attacks.

 All of the participants were aware of the presence of sensitive data in the

application. They identified password, credit card and social insurance numbers as

the most sensitive information and two of them identified the entire table as

sensitive for containing personal information.

 When asked what would be their suggestion to protect this data and only two

provided an answer: encryption was suggested by both, but, one of them explicitly

indicated Hibernate’s encryption capabilities as a protective mechanism.

82

 Two of them qualified the difficulty of implementing encryption in their programs

as average and the other one as easy.

 The lack of time and the focus on functionality was identified as the main reason

for not using the features added by the prototype. One of the participants declared

that she had the intention to go through it later.

 All participants had a good opinion about the usefulness of the encryption

capabilities; their answers were measured using a likert scale with values that went

from “not useful” (1) to “essential” (5), which is the maximum level. Their

answers were for participant “useful” (3) to “very useful” (4) and “essential” (5).

 Only one subject (P3) used the contextual help button and found the information

presented relevant and the difficulty to understand it as average.

 The easy encryption capabilities was one of the features that were well received by

the users, one of the participants wrote: “I like how the tools had a simple way of

implementing after the initial setup, as well as an easy way of adding encryption to

sensitive user information.”

 When answering the question about what they did not like about the tools, we

received only one answer referring to Hibernate basic functionality: “They were

very clunky to use for a small program; there was a lot of setup for a small amount

of payoff. But this is necessary for larger applications to make proper use of

them.”

4.5 Analysis

With the result at hand, we prepared to answer the questions posed at the beginning. It is

important to highlight that these answers are based in the observations extracted from this

small pilot study and they are not definitive or intended to be generalized. This results are

only applicable the situation described here and further study is needed to draw more

general conclusions.

 Is Crypto-Assistant effective at encouraging the use of encryption as a protection

mechanism?

83

Under the laboratory conditions described and with an external factor of extreme time

pressure, the Crypto-Assistant will not be effective to encourage the use of encryption.

 Is it effective at raising awareness about the risk to which data at rest is exposed?

All the participants were aware about the threat of lack of encryption of data at rest

and its potential disclosure to unauthorized parties.

 Are the features provided easy to understand and use?

Even when the participants did not make use of the encryption features, one stated that

one of the features she liked most was how easy it was to add encryption. These

results along with the learnability evaluation performed suggest that user acceptance

and effortlessness of use was attained.

 In case the users do not use the encryption capabilities suggested and provided by

the Crypto-Assistant, what is the reason?

Time constraints were mentioned by all the participants, this element plays an

important external factor that was not in our consideration through the development of

the prototype.

4.5.1 Lessons learned and experimental limitations

There are some limitations with the approach of our experimental design. In this section

we try to acknowledge the most relevant and explain how they might have influenced the

results we observed and what was learnt from this experience.

 The main limitations are: the limited number of participants in the study and the

design of the experiment itself. Documentation about design and test of security tools is

still scarce in consequence we had to develop our own methodology. Our ad-hoc

approach was more focused on the testing of the hypothesis presented than in the

improvement of the tool we were developing. It would have been better to first focus only

in the development and evaluation of the prototype and then with the prototype ready,

focus on the hypothesis test.

84

 The prototype design is another factor to consider. While designing the prototype,

usability was the top most priority. We did not take into consideration the effect of

external factors in users' goals. Even when we were aware of them and tried to use one in

the form of an incentive offered with the purpose of including security indirectly as one of

the participant’s goals. A redesign of the prototype would include making explicit the use

of encryption by adding a new menu item to Eclipse user interface indicating clearly that

encryption will be available. By indicating explicitly the use of encryption before even

starting the process; we align with Witten’s [82] well in advance principle mentioned in

section 2.4.3. The selection of this explicit menu item would imply the intention of the

user to protect the data with encryption aligning the purpose of the prototype with the user

intentions.

 The developers’ goal was to perform the migration from JDBC to Hibernate and it

was stated that this goal was the main task of the experiment. It was also mandatory to

complete it in order to be eligible for one of the gift cards; therefore, the warning

presented might have been perceived as an interruption that was on their way to finish the

task requested. The use of encryption to protect the data was not an explicit goal. A new

study comparing the performance of participants with the explicit goal of encrypting data

with and without the support of the Crypto-Assistant prototype would shed new light on

the efficiency of the prototype.

The theoretical “information disclosure” risk might have been perceived as non-

existent due to the experimental nature of the task. Even when we tried to recreate a

realistic setting the participants knew that it was just an experiment and the release of the

data in the prototype would not affect them directly.

The limitation in time was important too as the results obtained may differ if time

pressure was not a factor. By adding a time constraint, the subjects had to optimize the

resources they had. In this case the alternative presented to mitigate the risk involved the

allocation of time to perform the risk mitigation task. Participants might have decided that

the cost associated to perform the risk defusing task was not worth the potential benefit

since there was no real threat and this was not an explicit requirement. Participants had

85

explicit functional goals to meet and missing those goals represented a greater risk in the

context of the experiment. The time constraint was a determinant factor to prioritize

functionality over any other feature.

The unfamiliarity of participants with the prototype is another factor to consider.

Participants’ lack of experience with the technologies and functions added by the

prototype might be significant for the results of the experiment. This might have been an

issue but, the demographics we were targeting justify this condition.

There is also the threat of over encryption. Users might find that all the fields in a

table are sensitive risking to over encrypting data which might render it unsearchable.

This problem was not addressed and it is still present in the final version of the prototype.

4.5.2 Implications of the results obtained from the pilot user study

The results show that user goals are hard to change and external factors such as time

constraints are an issue and suggest that a redesign must take place to improve the

effectiveness of the Crypto-Assistant.

In an effort to better understanding of what parts required more work, we found

that the security threat model presented in [41] was ideal to evaluate our prototype. This

model presents several factors that affect the security of a system and helps to evaluate if

the system contributes to insecure behaviours by evaluating the security and usability in a

user-centric way. By using that model it was possible to determine that there were some

threats to security that our prototype was not addressing. Three of the security factors that

are part of the model apply directly to the design of our prototype:

Vigilance–secure systems tend to expect users to be alert and proactive in assessing the

security state of a system. Even experts (people who understand the working of a secure

system) are not always alert. Tasks that pose this security risk tend to be those that require

users to divert attention from a primary task in order to attend to a security task. Such

tasks should be analysed and integrated into users’ workflow or eliminated if possible.

86

The prototype tried to incorporate encryption into the workflow of developers, in a

non-intrusive way. This approach requires a user to be vigilant and proactive to defuse the

information disclosure risk.

Motivation–users have different levels of motivation to perform security tasks in different

circumstances. Participants would be more motivated to perform a risk defusing operation

if they perceive that a risk affects them more directly than in a case where the risk is

perceived to be low or directed at someone else.

 As mentioned before the lab setting and the experimental nature of the activity

might be determined in the perception of participants about the risk mentioned in the

warning. Time constraints also affected how the participants responded to the stimulus

presented.

Conditioning–repetitive security tasks for which users can predict an outcome can become

a threat to the security of a system. A security-usability analysis of a system should assess

whether security tasks have the potential for condition users.

By using a warning we preconditioned the behaviour of the participants. People

are used to dismiss warnings, a behaviour that could be explained by great exposure to

many ineffective security warnings on computer systems.

In the light of these results the need of a change in the design of our prototype is

required. A solution to the defects detected in the version evaluated might be mitigated by

adopting a different stand.

Mitigation of the threats identified can be achieved through separation of concerns

making awareness and functionality separate goals. The incorporation of a new menu item

that explicitly enables the functionality added by the prototype addresses the three issues

detected. First, it would make the prototype compatible with the principle of “well in

advance” [82] information introduced by Whitten. The explicitness implies motivation

from part of the user. It also defuses the need of vigilance and by moving away from the

warning design conditioning is also addressed. This change in the design and approach

taken comes with a change in the profile of the target users. The users must be willingly

87

and proactively looking for the incorporation and use of encryption in their applications

which implies that they already performed an assessment and decided to use Jasypt in

their database encryption strategy. The increase of awareness can be achieved through the

same warning strategy adopted in this version and described in section 3.2.2. Embedding

warnings in the workflow of other tools whose activities might be related to certain design

risks and display security warnings at relevant points having in consideration that the

earlier an error is detected the cheaper is to fix.

4.6 Summary

Despite the limitations in the realization of the user study, it provided valuable

information about the developers’ mental model. The data collected shows that in general

the prototype had good acceptance. Nevertheless, encryption was not used and despite the

usability improvements the results suggest it was perceived as a time consuming task that

was not aligned with the participants' functional goals. An evaluation of the results

obtained suggested that a change in the design might be beneficial.

88

5 CHAPTER 5 – DISCUSSION AND

CONCLUSION

5.1 Introduction

In this chapter we will discuss the results of the user study and the contributions of our

work in addition to providing some suggestions for future directions for researchers in the

field. The user study we performed showed that even when the participants received the

functionality provided by the prototype with enthusiasm and were made aware of the risk

of storing sensitive information in clear text by the warning presented, they did not used it

to encrypt any data due to a lack of time.

5.2 Discussion

The results of the prototype evaluation suggest that the prototype was not effective in

improving the use of encryption under time constraints. Functional requirements have a

higher priority for developers over security concerns. The warning presented by the

prototype was not able to persuade the participants to mitigate the risk they were being

informed of, with the suggested strategy, even with the learnability and efficiency added

by the tool.

The experiments carried by Xie et al. [87] with professional developers influenced

the development of our evaluation methodology and therefore have several similarities.

Instead of a virtual machine, a laptop was set up and loaded with their prototype. Their

ASIDE (Assured Software Integrated Development Environment) prototype performed

static analysis on participants’ code and presented several warnings for problems detected.

The fact that the purpose of the experiment was to test the prototype was hidden from

participants. Their participants were assigned the task to build an online stock trading

system; a project with basic functionality was included to help developers getting started.

The results from [87] are similar to the ones we collected. They show that

warnings had some success raising awareness about possible errors. In total, 22% to 27%

89

of the warnings presented were clicked on. Despite that, warnings were not successful in

protecting user or their systems from the risk they were intended to prevent or mitigate. In

both experiments participants showed their willingness to address those concerns if they

have had more time. These results suggest that environmental factors such as time

constraints have a significant and detrimental effect on software security and should be

considered in the design of a security tool.

From a psychological standpoint, there are several experiments that examine

human behaviour on risky decisions [34],[19],[46]. Some of these studies focus on the

effects of time pressure on the search for risk defusing operators [35]. A risk defusing

operator (RDO) is an action intended by the decision maker to be performed in addition to

an otherwise attractive alternative and expected to decrease the risk. However, their

approach is different from ours, since those situations are purely hypothetical and do not

require to perform any action which reduces their realism. In our experiment we had two

risks:

1. Disclosure of sensitive data, which was presented through the warning.

2. Failure to deliver the required functionality that was given by the task context.

The results of our experiment suggest that people perceived as a greater risk to their

immediate goals, not having completely implemented the functionality we requested them.

This is understandable because there is no benefit on fixing the security of a product that

does not fulfil its functional requirements. These results could be explained by the

findings of Kocher et al. [46] which found that when there are mixed losses and gains

involved at the same time, subjects become more loss averse and more gain seeking under

time pressure, depending on the framing of the prospects. Their results suggest the

importance of goals or aspiration levels, as they refer to them, under time pressure.

These findings reveal that the use of warnings to encourage the use of the

functionality provided by our prototype might have not been the best approach. Warnings

impose limitations about the amount and type of information that can be presented at once

to the user. The adoption of a security solution must be carefully evaluated to assess if it

provides the right protection and the trade-offs in usability are acceptable for the users of

90

the system. This type of assessment is difficult to perform when participants are in a rush

to achieve a functional goal and the information presented to them is limited.

5.3 Future research

There are some avenues for future work in the functionality of the Crypto-Assistant, In

future research the lessons learned and documented in section 4.5.1 would need to be

applied to improve the Crypto-Assistant such as making explicit in the user interface that

encryption is available.

The evaluation methodology can be improved conducting a performance comparison, e.g.

assigning the task to encrypt entity data to a set of participants both with and without

Crypto-Assistant support. This approach would more accurately evaluate the benefits

provided by our prototype. Another change of the evaluation would be to focus

exclusively on usability problems and the improvement of the tool, using other techniques

such as Cranor’s “the human in the loop” security framework [13] to analyze and improve

the design of the prototype.

The prototype can be improved by adding support for key management and key rotation.

There is already some progress done to move the definition of the encrypted types to a

separate file that would be managed by the Crypto-Assistant to minimize the exposure of

the encryption keys.

5.4 Conclusion

The technical community has underestimated the security problem. We feel this work was

not the exception. The development and testing of the Crypto-Assistant was more

demanding and complex than we initially anticipated. However, the results and

experience gained through the whole process was worth overcoming all the existing

difficulties.

The main goals of this research were producing a tool for security and help in the

application of the “Built Security In” concept. We achieved those goals with the Crypto-

Assistant. Another goal was to help the future developers of security. We cannot say we

91

achieved this goal yet but hope that with the theoretical framework introduced in Chapter

2; the design process in Chapter 3; and the user study in Chapter 4; we have condensed

enough knowledge to serve as reference point for other developers.

The material condensed in Chapter 2, the documentation of the development

process, the design and the source code of Crypto-Assistant along with the data collected

from the pilot study presented here are the contributions of this thesis. It is important that

to remark that the results presented here are not conclusive, they are based in a small

sample and are not intended to be generalized but rather a point towards ways that the

design of Crypto-Assistant and the experiment can be improved, as previously mentioned

in section 5.4. In the future the Crypto-Assistant code will be released for the benefit of

the community. Future work includes more realistic evaluations with actual users, and

work in areas that were left out of the scope of the work presented here, .i.e., key

management, integration of visual metaphors and evaluation of the changes suggested by

this initial evaluation.

92

6 Bibliography

[1] M. Baddeley, “Herding, social influence and economic decision-making: socio-

psychological and neuroscientific analyses,” Philos Trans R Soc Lond B Biol Sci, vol.

365, no. 1538, pp. 281–290, Jan. 2010.

[2] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “NIST SP800-57:

Recommendation for Key Management – Part 1: General(Revised),” Mar. 2007

[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-

Part1-revised2_Mar08-2007.pdf. [Accessed: 20-Nov-2012]

[3] A. Bechara, “The role of emotion in decision-making: Evidence from neurological

patients with orbitofrontal damage,” Brain and Cognition, vol. 55, no. 1, pp. 30–40,

Jun. 2004.

[4] R. BisbeyII. and D. Hollingworth, “Protection Analysis: Final Report,” May 1978.

[5] M. Bishop, Computer Security: Art and Science, 1st ed. Addison-Wesley

Professional, 2002.

[6] M. Bishop, “What is computer security?,” IEEE Security Privacy, vol. 1, no. 1, pp.

67 – 69, Feb. 2003.

[7] D. Bolchini and P. Paolini, “Capturing Web Application Requirements through

Goal-Oriented Analysis,” PROCEEDINGS OF THE WORKSHOP ON

REQUIREMENTS ENGINEERING (WER 02, pp. 16–28, 2002.

[8] C. Bravo-Lillo, L. Cranor, J. Downs, and S. Komanduri, “Bridging the gap in

computer security warnings: a mental model approach,” Security & Privacy, IEEE,

no. 99, pp. 1–1, 2011.

[9] “Build Security In Home,” Available: https://buildsecurityin.us-

cert.gov/bsi/home.html. [Accessed: 18-Oct-2012]

[10] “Category:OWASP Top Ten Project - OWASP,” Available:

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project. [Accessed:

04-Nov-2012]

[11] “Category:OWASP WebGoat Project - OWASP,” Available:

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project. [Accessed:

10-Dec-2012]

[12] “CIA Triad « CIPP Guide,” Available: https://www.cippguide.org/2010/08/03/cia-

triad/. [Accessed: 22-Oct-2012]

[13] L.F. Cranor, “A framework for reasoning about the human in the loop,” in

Proceedings of the 1st Conference on Usability, Psychology, and Security, Berkeley,

CA, USA, 2008, pp. 1:1–1:15 [Online]. Available:

http://dl.acm.org/citation.cfm?id=1387649.1387650. [Accessed: 20-Aug-2012]

93

[14] “CWE - 2011 CWE/SANS Top 25 Most Dangerous Software Errors,” Available:

http://cwe.mitre.org/top25/index.html#CWE-311. [Accessed: 06-Nov-2012]

[15] “CWE - CWE-311: Missing Encryption of Sensitive Data (2.3),” Available:

http://cwe.mitre.org/data/definitions/311.html. [Accessed: 06-Nov-2012]

[16] “CWE - CWE-312: Cleartext Storage of Sensitive Information (2.3),” Available:

http://cwe.mitre.org/data/definitions/312.html. [Accessed: 06-Nov-2012]

[17] “CWE - VIEW SLICE: CWE-2000: Comprehensive CWE Dictionary (2.3),”

Available: http://cwe.mitre.org/data/slices/2000.html. [Accessed: 04-Nov-2012]

[18] A.K. Dalai and S.K. Jena, “Evaluation of web application security risks and secure

design patterns,” in Proceedings of the 2011 International Conference on

Communication, Computing & Security - ICCCS ’11, Rourkela, Odisha, India, 2011,

p. 565 [Online]. Available: http://dl.acm.org.uproxy.library.dc-

uoit.ca/citation.cfm?id=1948057. [Accessed: 31-Aug-2011]

[19] I.E. Dror, J.R. Busemeyer, and B. Basola, “Decision making under time pressure: an

independent test of sequential sampling models,” Memory & Cognition, 1999

[Online]. Available: http://eprints.soton.ac.uk/18349/. [Accessed: 19-Nov-2012]

[20] “Eclipse Platform Technical Overview,” Available:

http://www.eclipse.org/resources/resource.php?id=131. [Accessed: 29-Nov-2012]

[21] EMC, “Approaches for Encryption of Data-at-Rest in the Enterprise: A Detailed

Review| Whitepapers | TechRepublic.” [Online]. Available:

http://www.techrepublic.com/whitepapers/approaches-for-encryption-of-data-at-rest-

in-the-enterprise-a-detailed-review/1007473. [Accessed: 29-Nov-2012]

[22] S. Faily, “A framework for usable and secure system design,” PhD, University of

Oxford, 2011 [Online]. Available:

http://oxford.academia.edu/ShamalFaily/Papers/728979/A_framework_for_usable_a

nd_secure_system_design. [Accessed: 23-Aug-2012]

[23] E.B. Fernandez, N. Yoshioka, H. Washizaki, and M. VanHilst, “Measuring the Level

of Security Introduced by Security Patterns,” in ARES ’10 International Conference

on Availability, Reliability, and Security, 2010, 2010, pp. 565–568.

[24] M. Finifter and D. Wagner, “Exploring the Relationship Between Web Application

Development Tools and Security,” in Proceedings of the 2nd USENIX Conference

on Web Application Development. USENIX (June 2011), 2011 [Online]. Available:

http://www.usenix.org/event/webapps11/tech/final_files/webapps11_proceedings.pd

f#page=107. [Accessed: 16-Sep-2012]

[25] “Formative and Summative Evaluations in the Instructional Design Process,”

Available: http://www.nwlink.com/~donclark/hrd/isd/types_of_evaluations.html.

[Accessed: 07-Nov-2012]

[26] S. Furnell, “Why users cannot use security,” Computers & Security, vol. 24, no. 4,

pp. 274–279, Jun. 2005.

94

[27] “GE Money Alerting Clients About A Data Security Breach. These Guys Act Like

Pros, No Matter What - AlertBoot Endpoint Security,” Available:

http://www.alertboot.com/blog/blogs/endpoint_security/archive/2008/01/08/ge-

money-alerting-clients-about-a-data-security-breach-these-guys-act-like-pros-no-

matter-what.aspx. [Accessed: 07-Nov-2012]

[28] P. Gutmann, “Engineering Security,” New Zealand, May-2012 [Online]. Available:

http://www.cs.auckland.ac.nz/~pgut001/pubs/book.pdf. [Accessed: 26-Oct-2012]

[29] P. Gutmann and I. Grigg, “Security Usability,” IEEE Security Privacy, vol. 3, no. 4,

pp. 56 – 58, Aug. 2005.

[30] P.J. Hammond, “6 SUBJECTIVE EXPECTED UTILITY,” Handbook of Utility

Theory: Volume 1: Principles, p. 213, 1999.

[31] O. Hazzan, “Qualitative Research in Software Engineering” [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.7613&rep=rep1&type

=pdf. [Accessed: 16-Sep-2012]

[32] “Hibernate - JBoss Community,” Available: http://www.hibernate.org/. [Accessed:

12-Mar-2013]

[33] “Hibernate Tools - JBoss Community,” Available:

http://www.hibernate.org/subprojects/tools.html. [Accessed: 03-Dec-2012]

[34] O. Huber, “Behavior in risky decisions: Focus on risk defusing,” Uncertainty and

risk, pp. 291–306, 2007.

[35] O. Huber and U. Kunz, “Time pressure in risky decision-making: effect on risk

defusing,” Psychology Science, vol. 49, no. 4, p. 415, 2007.

[36] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std 610.12-

1990, p. 1, 1990.

[37] Ion Ivan and Luckacs Breda, “Informatics Security Metrics Comparative Analysis,”

Informatica Economica, vol. XI, no. 4, pp. 107–110, 2007.

[38] ISO 9241-11: Ergonomic requirements for office work with visual display terminals

(VDTs) -- Part 9: Requirements for non-keyboard input devices, 2000.

[39] “ISO/IEC 27002 code of practice,” Available:

http://www.iso27001security.com/html/27002.html. [Accessed: 25-Oct-2012]

[40] “Jasypt: Java simplified encryption - Main,” Available: http://www.jasypt.org/.

[Accessed: 16-Sep-2012]

[41] R. Kainda, I. Flechais, and A.W. Roscoe, “Security and Usability: Analysis and

Evaluation,” in ARES ’10 International Conference on Availability, Reliability, and

Security, 2010, 2010, pp. 275 –282.

[42] R. Kissel, P.D. Gallagher, and D. Introduction, Revision 1 Glossary of Key

Information Security Terms. 2011.

95

[43]G.A. Klein, “A recognition-primed decision (RPD) model of rapid decision making,”

in Decision making in action: Models and methods, G.A. Klein, J. Orasanu, R.

Calderwood, and C.E. Zsambok, Eds. Westport, CT, US: Ablex Publishing, 1993,

pp. 138–147.

[44] G.A. Klein, “Recognition-Primed Decisions.,” KLEIN ASSOCIATES INC

YELLOW SPRINGS OH, 1998 [Online]. Available:

http://en.scientificcommons.org/18500209. [Accessed: 26-Oct-2012]

[45] A.J. Ko and B.A. Myers, “A framework and methodology for studying the causes of

software errors in programming systems,” Journal of Visual Languages &

Computing, vol. 16, no. 1–2, pp. 41–84, Feb. 2005.

[46] M.G. Kocher, J. Pahlke, and S.T. Trautmann, “Tempus Fugit: Time Pressure in

Risky Decisions,” University of Munich, Department of Economics, Discussion

Papers in Economics 12221, 2011 [Online]. Available:

http://ideas.repec.org/p/lmu/muenec/12221.html. [Accessed: 19-Nov-2012]

[47] E. Kurz-Milcke and G. Gigerenzer, “Heuristic decision making,” Marketing JRM, no.

1, pp. 48–60, 2007.

[48] Markus Schumacher, “Security Patterns,” 12-Jul-2005. [Online]. Available:

http://www.securitypatterns.org/patterns.html. [Accessed: 19-Aug-2011]

[49] Microsoft Corporation, Improving Web Application Security: Threats and

Countermeasures, 1st ed. Microsoft Press, 2003.

[50] S. Mutti, M.A. Neri, and S. Paraboschi, “An Eclipse plug-in for specifying security

policies in modern information systems” [Online]. Available:

http://digiway.novasemantics.it/attach/MuArPa11/eclipseIt11.pdf. [Accessed: 05-

Nov-2012]

[51] S. Myagmar, A.J. Lee, and W. Yurcik, “Threat modeling as a basis for security

requirements,” in Symposium on Requirements Engineering for Information Security

(SREIS), 2005 [Online]. Available:

http://craigchamberlain.com/library/security/Threat%20Modeling%20as%20a%20B

asis%20for%20Security%20Requirements.pdf. [Accessed: 26-Nov-2012]

[52] “MyEclipse for Spring: Spring MVC Scaffolding,” Available:

http://www.myeclipseide.com/documentation/quickstarts/scaffoldingtutorial/scaffold

ing.html. [Accessed: 16-Jan-2013]

[53] “OWASP ASIDE Project - OWASP,” Available:

https://www.owasp.org/index.php/OWASP_ASIDE_Project. [Accessed: 06-Nov-

2012]

[54] “OWASP LAPSE Project - OWASP,” Available:

https://www.owasp.org/index.php/OWASP_LAPSE_Project. [Accessed: 08-Nov-

2012]

[55] J. Reason, Human Error, 1st ed. Cambridge University Press, 1990.

96

[56] J. Rieman, M. Franzke, and D. Redmiles, “Usability evaluation with the cognitive

walkthrough,” in Conference companion on Human factors in computing systems,

1995, pp. 387–388 [Online]. Available: http://dl.acm.org.uproxy.library.dc-

uoit.ca/citation.cfm?id=223735. [Accessed: 05-Dec-2012]

[57] G.W. Romney, C. Higby, B.R. Stevenson, and N. Blackham, “A teaching prototype

for educating IT security engineers in emerging environments,” in Information

Technology Based Higher Education and Training, 2004. ITHET 2004. Proceedings

of the FIfth International Conference on, 2004, pp. 662–667.

[58] B. Schneier, Secrets and lies: digital security in a networked world. John Wiley,

2000.

[59] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P.

Sommerlad, Security Patterns: Integrating Security and Systems Engineering. John

Wiley & Sons, 2006.

[60] “SDL Threat Modeling Tool,” Available:

http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx. [Accessed: 11-

Dec-2012]

[61] “Securing Data at Rest: Developing a Database Encryption Strategy,” RSA Security

Inc, 2002 [Online]. Available:

http://www.rsa.com/products/bsafe/whitepapers/DDES_WP_0702.pdf. [Accessed:

19-Sep-2012]

[62] “security,” Departament of Defense Dictionary of Military and Associated Terms.

[Online]. Available: http://www.dtic.mil/doctrine/dod_dictionary/data/s/6926.html.

[Accessed: 20-Oct-2012]

[63] H. Simon, Reason in Human Affairs. Stanford University Press, 1990.

[64] B. Snow, “We need assurance![assurance of computing quality, reliability, and

safety],” in Computer Security Applications Conference, 21st Annual, 2005, p. 7–pp

[Online]. Available: http://ieeexplore.ieee.org.uproxy.library.dc-

uoit.ca/xpls/abs_all.jsp?arnumber=1565230. [Accessed: 29-Nov-2012]

[65] “Software testing (chapt.5),” in Guide to the Software Engineering Body of

Knowledge SWEBOK, .

[66] R. Spencer, “The streamlined cognitive walkthrough method, working around social

constraints encountered in a software development company,” in Proceedings of the

SIGCHI conference on Human factors in computing systems, 2000, pp. 353–359

[Online]. Available: http://dl.acm.org.uproxy.library.dc-

uoit.ca/citation.cfm?id=332456. [Accessed: 03-Dec-2012]

[67] J.G. Spohrer and E. Soloway, “Analyzing the high frequency bugs in novice

programs,” in Papers presented at the first workshop on empirical studies of

programmers on Empirical studies of programmers, Norwood, NJ, USA, 1986, pp.

230–251 [Online]. Available: http://dl.acm.org/citation.cfm?id=21842.28897.

[Accessed: 30-Oct-2012]

97

[68] G. Stoneburner, “SP 800-33. Underlying Technical Models for Information

Technology Security,” National Institute of Standards & Technology, Gaithersburg,

MD, United States, Dec. 2001 [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf. [Accessed: 22-Oct-

2012]

[69] G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide for

Information Technology Systems,” 800-30, Jul. 2002 [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf. [Accessed: 26-Nov-

2012]

[70] G. Tassey, “The economic impacts of inadequate infrastructure for software testing,”

2002.

[71] “TD Bank says it ‘worked diligently to find’ lost tapes | The Morning Sentinel,

Waterville, ME,” Available: http://www.onlinesentinel.com/news/td-bank-says-it-

worked-diligently-to-find-lost-tapes_2012-10-10.html. [Accessed: 07-Nov-2012]

[72] “Team Shatter,” Available: http://www.teamshatter.com/. [Accessed: 16-Sep-2012]

[73] “The Big Cost of Software Bugs: When Coding Goes Awry,” Bloomberg. [Online].

Available: http://www.bloomberg.com/slideshow/2012-08-03/the-big-cost-of-

software-bugs.html. [Accessed: 30-Oct-2012]

[74] “The Building Security In Maturity Model (BSIMM),” Available: http://bsimm.com/.

[Accessed: 14-Nov-2012]

[75] “The CIA principle,” Available: http://www.doc.ic.ac.uk/~ajs300/security/CIA.htm.

[Accessed: 22-Oct-2012]

[76] “The CIA Triad | TechRepublic,” Available:

http://www.techrepublic.com/blog/security/the-cia-triad/488. [Accessed: 22-Oct-

2012]

[77] “Top 10 2010-A7-Insecure Cryptographic Storage - OWASP,” Available:

https://www.owasp.org/index.php/Top_10_2010-A7. [Accessed: 07-Nov-2012]

[78] “TRICARE discloses SAIC breach: stolen backup tapes held data on 4.9 million

(updated) : Office of Inadequate Security,” Available:

http://www.databreaches.net/?p=20816. [Accessed: 07-Nov-2012]

[79]K. Tsipenyuk, “Seven pernicious kingdoms: A taxonomy of software security errors,”

in NIST Workshop on Software Security Assurance Tools, Techniques, and Metrics,”

November, 2005, 2005, pp. 36–43.

[80] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms: a taxonomy

of software security errors,” IEEE Security Privacy, vol. 3, no. 6, pp. 81 – 84, Dec.

2005.

[81] “USEC ’12,” Available: http://infosecon.net/usec12/index.php. [Accessed: 05-Nov-

2012]

98

[82] A. Whitten, “Making Security Usable,” PhD, Carnegie Mellon, 5000 Forbes Avenue

Pittsburgh, PA 15213-3890, 2004 [Online]. Available:

http://www.gaudior.net/alma/MakingSecurityUsable.pdf. [Accessed: 22-Aug-2012]

[83] A. Whitten and J.D. Tygar, “Why Johnny can’t encrypt: A usability evaluation of

PGP 5.0,” in Proceedings of the 8th USENIX Security Symposium, 1999, vol. 99

[Online]. Available:

http://www.usenix.org/events/sec99/full_papers/whitten/whitten.ps. [Accessed: 23-

Aug-2012]

[84] D.L. Williams, “A (Partial) Introduction to Software Engineering Practices and

Methods,” NCSU CSC326 Course Pack, vol. 2009, 2008 [Online]. Available:

https://online.ist.psu.edu/sites/ist412/files/williamstext.pdf. [Accessed: 27-Oct-2012]

[85] T. Wilson, “Security Still An Afterthought, Study Says - Dark Reading,” Dark

Reading, 04-Nov-2011. [Online]. Available: http://www.darkreading.com/security-

monitoring/167901086/security/application-security/231902431/security-still-an-

afterthought-study-says.html. [Accessed: 05-Nov-2012]

[86] J. Xie, B. Chu, and H. Richter Lipford, “Idea: interactive support for secure software

development,” Engineering Secure Software and Systems, pp. 248–255, 2011.

[87] J. Xie, H. Lipford, and B.-T. Chu, “Evaluating interactive support for secure

programming,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, New York, NY, USA, 2012, pp. 2707–2716 [Online]. Available:

http://doi.acm.org/10.1145/2207676.2208665. [Accessed: 10-Nov-2012]

[88] J. Xie, H.R. Lipford, and B. Chu, “Why do programmers make security errors?,” in

2011 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2011, pp. 161 –164.

99

7 Appendix A - Data Collection

7.1 Screening questionnaire

100

101

102

103

104

105

106

107

108

109

7.2 Exit questionnaire

110

111

112

113

114

7.3 Pilot study logs

Legend

Yellow fill with dark
yellow text

Interaction with the mapping wizard

Green text Making visible the property
encryption page

Light purple Interaction with the encryption page

Red text Hiding the property encryption page

Black on white Plugin component message

Participant 01

Date Component Message
2012-10-05
11:51:55,57
1

bernate.eclipse.jdt.ui.wizards.N
ewHibernateMappingFileWizar
d

Changing page name: title: Create Hibernate
XML Mapping file(s)

2012-10-05
11:51:58,91
1

bernate.eclipse.jdt.ui.wizards.N
ewHibernateMappingFileWizar
d

Changing page name: ColumnEncryption title:
Property Encryption

2012-10-05
11:51:59,18
9

te.eclipse.jdt.ui.wizards.NewHi
bernatePropertyEncryptionPag
e Showing page

2012-10-05
11:52:07,49
4

bernate.eclipse.jdt.ui.wizards.N
ewHibernateMappingFileWizar
d

Changing page name: PreviewPage title: Create
Hibernate XML Mapping file(s)

2012-10-05
11:52:07,49
4

te.eclipse.jdt.ui.wizards.NewHi
bernatePropertyEncryptionPag
e Processing selected items

2012-10-05
11:52:08,17
6

ernate.eclipse.jdt.ui.wizards.Ne
wHibernateMappingPreviewPa
ge

Create textFileChange/resourceChange for new
hbm.xml
/Directory/src/domain/Contact.hbm.xml

2012-10-05
11:52:08,24
6

te.eclipse.jdt.ui.wizards.NewHi
bernatePropertyEncryptionPag
e Hiding page

2012-10-05
12:07:28,84
1

bernate.eclipse.jdt.ui.wizards.N
ewHibernateMappingFileWizar
d

Changing page name: title: Create Hibernate
XML Mapping file(s)

2012-10-05
12:07:56,52
0

bernate.eclipse.jdt.ui.wizards.N
ewHibernateMappingFileWizar
d

Changing page name: ColumnEncryption title:
Property Encryption

2012-10-05 te.eclipse.jdt.ui.wizards.NewHi Showing page

115

12:07:56,54
4

bernatePropertyEncryptionPag
e

2012-10-05
12:26:53,90
3

bernate.eclipse.jdt.ui.wizards.N
ewHibernateMappingFileWizar
d

Changing page name: PreviewPage title: Create
Hibernate XML Mapping file(s)

2012-10-05
12:26:53,90
4

te.eclipse.jdt.ui.wizards.NewHi
bernatePropertyEncryptionPag
e Processing selected items

2012-10-05
12:26:53,93
8

ernate.eclipse.jdt.ui.wizards.Ne
wHibernateMappingPreviewPa
ge

Create textFileChange/resourceChange for new
hbm.xml
/Directory/src/domain/Contact.hbm.xml

2012-10-05
12:26:53,95
3

te.eclipse.jdt.ui.wizards.NewHi
bernatePropertyEncryptionPag
e Hiding page

2012-10-05
12:27:04,91
1

ernate.eclipse.jdt.ui.wizards.Ne
wHibernateMappingPreviewPa
ge perform textFileChanges changes

Participant 02

Date Component Message

2012-10-
05
12:26:08,
556

bernate.eclipse.jdt.ui.wizards.NewHibernateMapp
ingFileWizard

Changing page name: title:
Create Hibernate XML Mapping
file(s)

2012-10-
05
12:26:16,
219

bernate.eclipse.jdt.ui.wizards.NewHibernateMapp
ingFileWizard

Changing page name:
ColumnEncryption title:
Property Encryption

2012-10-
05
12:26:16,
292

te.eclipse.jdt.ui.wizards.NewHibernatePropertyEn
cryptionPage

Showing page

2012-10-
05
12:26:26,
804

te.eclipse.jdt.ui.wizards.NewHibernatePropertyEn
cryptionPage

Encryption algorithm selected
PBEWITHMD5ANDDES

2012-10-
05
12:26:51,
739

bernate.eclipse.jdt.ui.wizards.NewHibernateMapp
ingFileWizard

Changing page name:
PreviewPage title: Create
Hibernate XML Mapping file(s)

2012-10-
05
12:26:51,
739

te.eclipse.jdt.ui.wizards.NewHibernatePropertyEn
cryptionPage

Processing selected items

116

2012-10-
05
12:26:52,
111

ernate.eclipse.jdt.ui.wizards.NewHibernateMappi
ngPreviewPage

Create
textFileChange/resourceChang
e for new hbm.xml
/Directory/src/domain/Contact
.hbm.xml

2012-10-
05
12:26:52,
144

te.eclipse.jdt.ui.wizards.NewHibernatePropertyEn
cryptionPage

Hiding page

2012-10-
05
12:27:20,
939

ernate.eclipse.jdt.ui.wizards.NewHibernateMappi
ngPreviewPage

perform textFileChanges
changes

Participant 03

Date Component Message
2012-10-05
12:26:18,7
63

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: title: Create Hibernate XML
Mapping file(s)

2012-10-05
12:26:34,5
61

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: ColumnEncryption title:
Property Encryption

2012-10-05
12:26:34,6
86

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Showing page

2012-10-05
12:27:11,6
58

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: PreviewPage title: Create
Hibernate XML Mapping file(s)

2012-10-05
12:27:11,6
98

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Processing selected items

2012-10-05
12:27:12,7
51

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Hiding page

2012-10-05
12:27:34,8
45

ernate.eclipse.jdt.ui.wizards.
NewHibernateMappingPrevie
wPage perform textFileChanges changes

2012-10-05
13:34:28,4
42

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: title: Create Hibernate XML
Mapping file(s)

2012-10-05
13:34:30,8
15

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: ColumnEncryption title:
Property Encryption

2012-10-05 te.eclipse.jdt.ui.wizards.New Showing page

117

13:34:30,8
77

HibernatePropertyEncryption
Page

2012-10-05
13:34:36,5
50

ernate.eclipse.jdt.ui.wizards.
NewHibernateMappingPrevie
wPage

Create textFileChange/resourceChange for new
hbm.xml
/Experiment/src/ca/uoit/dao/HibernateUtil.hbm.x
ml

2012-10-05
13:39:12,1
70

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: title: Create Hibernate XML
Mapping file(s)

2012-10-05
13:39:14,3
62

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: ColumnEncryption title:
Property Encryption

2012-10-05
13:39:14,4
10

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Showing page

2012-10-05
13:39:16,8
83

ernate.eclipse.jdt.ui.wizards.
NewHibernateMappingPrevie
wPage

Create textFileChange/resourceChange for new
hbm.xml
/Experiment/src/ca/uoit/dao/DAOUtil.hbm.xml

2012-10-05
13:39:16,8
93

ernate.eclipse.jdt.ui.wizards.
NewHibernateMappingPrevie
wPage perform textFileChanges changes

2012-10-05
13:50:28,4
15

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: title: Create Hibernate XML
Mapping file(s)

2012-10-05
13:50:30,1
04

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: ColumnEncryption title:
Property Encryption

2012-10-05
13:50:30,1
35

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Showing page

2012-10-05
13:50:32,0
76

bernate.eclipse.jdt.ui.wizards
.NewHibernateMappingFileW
izard

Changing page name: PreviewPage title: Create
Hibernate XML Mapping file(s)

2012-10-05
13:50:32,0
77

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Processing selected items

2012-10-05
13:50:32,1
09

ernate.eclipse.jdt.ui.wizards.
NewHibernateMappingPrevie
wPage

Resouce already exist on project
src/ca/uoit/dao/HibernateUtil.hbm.xml

2012-10-05
13:50:32,1
10

ernate.eclipse.jdt.ui.wizards.
NewHibernateMappingPrevie
wPage

Create textEdit change to replace the content of
HibernateUtil.hbm.xml

2012-10-05
13:50:32,5
86

te.eclipse.jdt.ui.wizards.New
HibernatePropertyEncryption
Page Hiding page

2012-10-05 ernate.eclipse.jdt.ui.wizards. perform textFileChanges changes

118

13:50:35,6
97

NewHibernateMappingPrevie
wPage

119

8 Appendix B – Experiment Material

8.1 Data opt-out & removal form

120

8.2 Consent form

121

122

8.3 Opt out survey

123

8.4 Pre-screening consent form

124

125

8.5 Workshop slides

126

127

128

129

130

131

132

133

134

135

136

137

138

8.6 Experiment slides

139

140

141

142

8.7 Email correspondence

143

144

145

146

147

148

149

150

8.8 Recruitment poster

151

8.9 Reference cheat sheet

152

9 Appendix C - Research Ethics Board

Documentation

153

9.1 Application for ethical review of research involving human

participants

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

9.2 Change renewal request

182

183

184

9.3 Change request approval

185

10 Appendix D Code documentation

186

187

188

189

190

191

