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ABSTRACT 

Haemonchus contortus is a parasitic nematode that is controlled by several nematocides 

which target ion channels.  We have identified two H. contortus ion channel genes, Hco-

unc-49B and C that encode two GABA-gated chloride channel subunits.  

Electrophysiological analysis shows that the Hco-UNC-49B subunit forms a functional 

homomeric channel in Xenopus laevis oocytes that produces a robust response to GABA 

and is highly sensitive to picrotoxin.  In contrast, Hco-UNC-49C alone does not respond 

to GABA but can assemble with Hco-UNC-49B to form a heteromeric channel with an 

increased sensitivity to GABA and a lower sensitivity to picrotoxin.  To investigate the 

subunit requirements for high agonist sensitivity, we generated cross-assembled channels 

by co-expressing the H. contortus subunits with UNC-49 subunits from the nematode 

Caenorhabditis elegans (Cel-UNC-49).  Co-expressing the Cel-UNC-49B with Hco-

UNC-49C produced a heteromeric channel with a low sensitivity to GABA.  In contrast, 

co-expressing Hco-UNC-49B with Cel-UNC-49C produced a heteromeric channel that 

was highly sensitive to GABA.  These results suggest that the Hco-UNC-49B subunit is 

the key determinant for the high agonist sensitivity of heteromeric channels.  
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Haemonchus contortus 

Nematodes are one of the most diverse groups of organisms known (Lorenzen and 

Platt, 1994).  H. contortus is a gastrointestinal parasitic nematode, of the order 

Strongylida, which infects small ruminants such as cattle, sheep and goats (Nikolaou and 

Gasser, 2006).  Infection with H. contortus is referred to as Haemonchosis (Mehlhorn, 

2008).  The parasite lives in the abomasum (one of the four stomach chambers) of its host 

where it latches onto the abomasum wall and feeds on blood.  Infection of the host with 

H. contortus can result in changes in weight (partly due to impaired digestion), reduction 

in the quality and quantity of wool in sheep, decrease in milk production in cattle, 

lowered reproductive abilities (Parkins and Holmes, 1989), anemia and finally 

hypoproteinemia (Mehlhorn, 2008).  The latter two complications are due to the blood-

sucking nature of the parasite.  The degree of which these symptoms may occur depends 

on host nutritional and immunological status, the level of infection and host age (Parkins 

and Holmes, 1989).  In severe cases, H. contortus infection may lead to death (Nikolaou 

and Gasser, 2006).  Due to these effects, these gastrointestinal parasites are the leading 

cause in productivity losses in the sheep meat and wool industries around the world 

(Newton and Meeusen, 2003).  

 

Haemonchus contortus – Life cycle 

 The life cycle of H. contortus was initially described in detail by Veglia (1915). 

The life cycle begins when adult females lay their eggs in the abomasum of small 

ruminants.  The eggs are laid in the four cell stage and are approximately 70 x 46 µm in 

size.  The eggs are then released into the outside environment via the host’s feces around 
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the 11 to 26 cell stage.  Development beyond this stage requires the presence of oxygen, 

and must therefore occur outside the host.  After excretion from the host, the eggs hatch 

in feces at approximately 14 to 17 hours, releasing L1 stage larvae (Figure 1.1).  

Development continues through stages L2 to L4 before reaching the adult stage.  It is 

during the L3 stage of development that the parasite is infective. Sheep become infected 

by accidentally ingesting L3 larvae while grazing.  Once inside the host, the parasite 

develops into the L4 stage and later will sexually differentiate and develop into male or 

female adult worms.  L4’s can also undergo hypobiosis, where their development ceases 

as a result of various seasonal, host-immune and parasite factors.  Adult female worms 

lay their eggs after about 18 days following the host’s oral infection (Stoll, 1929).  

Female adults lay around 4500 eggs daily (Coyne and Smith, 1992) and can grow to 25-

30 mm x 170-380 µm, whereas males can grow to 15-18 mm x 160-270 µm (Nikolaou 

and Gasser, 2006). 

 Each stage of the H. contortus life-cycle occurs in two phases of development.  

The first being a period of activity and the second a period of inactivity, frequently 

termed “lethargis”, where structural changes take place within the larvae (Nikolaou and 

Gasser, 2006).  Following lethargis, the larvae are fully developed and can continue on to 

the next stage of development.  The degree of growth in each life-cycle stage differs 

depending on the H. contortus strain as well as both environmental and host factors 

(Rossanigo and Gruner, 1996). 
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Macrocyclic lactones are composed of two subclasses of anthelmintics, the avermectins 

and milbemycins.  The avermectins and milbemycins were both isolated in the 1970s 

from a soil living Streptomyces species (Yates et al., 2003).  These drugs are active 

against both nematodes (endoparasites) as well as ectoparasites, but do not have a 

significant effect on tapeworms or flukes.  The avermectins are comprised of ivermectin, 

abamectin, and doramectin (Martin et al., 1997).  The avermectin primarily used in 

livestock is ivermectin (Dourmishev et al., 2005), whereas the milbemycin, moxidectin, 

is used in livestock as well as a preventative therapy in dogs and cats (Harder et al., 

2003).  Both drugs are thought to primarily act on a specific class of invertebrate-specific 

receptors called the glutamate-gated chloride channels (GluCls) (Cully et al., 1994, 1996; 

Dent et al., 1997, 2000; Laughton et al., 1997; Jagannathan et al., 1999; Forrester et al., 

1999, 2002; Cheeseman et al., 2001; Horoszok et al., 2001).  The avermectins may act on 

GluCls that are associated with the nematode pharynx and thus inhibits pharyngeal 

pumping required for feeding.  An inhibition in motility may also be associated with the 

action of macrocyclic lactones (Geary et al., 1993). 

Several other smaller classes of anthelmintics that target other ion channels have 

been discovered.  Piperazine acts as a γ-amino butyric acid (GABA)-gated chloride 

channel agonist in nematode somatic muscle.  It acts to increase the chloride conductance 

which leads to hyperpolarization and relaxation of the somatic muscle, resulting in 

paralysis (Martin, 1982, 1985).  Praziquantel is thought to act on calcium channels, 

increasing the permeability of the trematode tegument (covering) to calcium, causing 

muscle contractions (Martin et al., 1997).  This specific drug is used to control the 

trematode Schistosoma mansoni, which is the causative agent of schistosomiasis 
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(Redman et al., 1996).  Lastly, a new class of anthelmintics has been recently discovered 

called, amino-acetonitrile derivatives (AADs).  AADs are thought to act on a nematode 

specific group of acetylcholine receptor subunits, and exhibit broad spectrum activity on 

sheep and cattle nematodes (Kaminsky et al., 2008).     

 Due to the reliance and poorly managed use of anthelmintics, resistance to each 

new anthelmintic class is becoming increasingly widespread (Newton and Meeusen, 

2003).  To date, H. contortus has become resistant to all known anthelmintics, with the 

exception of the newly discovered AADs.  The first case of resistance to the avermectins 

was reported in 1988 in South Africa and is becoming increasingly common in 

Australasia, Africa and South America (Newton and Meeusen, 2003).  In some areas 

resistance is becoming so prevalent that the profitability of the entire sheep industry has 

been threatened (Besier and Love, 2003).  Resistance is a serious obstacle to 

agriculturally dependant incomes in many parts of the world.  Therefore, ongoing 

research into new anthelmintics is essential in order to maintain a level of parasite control 

appropriate for modern agriculture. 

 

Ligand-gated Ion Channels 

 Ligand-gated ion channels (LGICs) play key roles in rapid synaptic transmission 

when bound to a ligand, such as a neurotransmitter.  The binding of a ligand causes a 

conformational change in the channel, allowing for channel opening (For review see 

Unwin, 1993).  This open channel conformation permits the flow of ions down their 

electrochemical gradients.  The resulting pathway, a few atoms in diameter, is formed for 

only a matter of milliseconds.  However, thousands of ions of the correct charge are able 
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to pass through the channel (Unwin, 1993).  The function of these channels is to respond 

to a stimulus such as a neurotransmitter and quickly modify the potential of the post-

synaptic membrane.    

The cysteine-loop ligand-gated ion channels (cys-loop LGICs) are 

neurotransmitter receptors with a characteristic protein structure.  Each channel is 

composed of five LGIC subunits embedded in the cell membrane in such a way that they 

create a central pore (Figure 1.2A) (Hille, 1992).  Each subunit is characterized by a large 

extracellular N-terminal ligand binding domain (Figure 1.2B).  This region contains the 

cysteine-loop (cys-loop), which is formed by two cysteine residues bonded together by a 

disulphide bond (Cockcroft et al., 1990).  In addition, each subunit contains four trans-

membrane spanning regions, M1-M4, with the M2 lining the pore of the ion channel and 

determining the charge of the ions allowed to pass (Chebib and Johnston, 2000).  An 

intracellular loop of variable sequence and length is located between the M3 and M4 

regions and is generally thought to contribute to subtype specificity and intracellular 

regulatory processes (Olsen and Tobin, 1990). 
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Figure 1.2: Structure of LGICs from the cys-loop family A. The channel is formed by 5 subunits arranged in a 
ring-like configuration (the fifth subunit denoted by the dashed shape). B. Schematic representation of the 
topology of one subunit of a LGIC. The subunit topology of the four transmembrane spanning loops (TM1-TM4) 
and large N-terminal domain containing the cys-loop is shown. (Adapted from Raymond and Sattelle, 2002) 

 

The subunit combination can change the properties of the resulting channel, such as 

neurotransmitter affinity, localization and pharmacology (Bamber et al., 1999, 2003, 

2005).   

  Four primary types of LGICs have been recognized in vertebrates, which are 

organized based on their associated ligand.  The excitatory or cationic channels include 

the nAChRs and serotonin-gated cation channels (5-HT3) (Ortells and Lunt, 1995).  The 

inhibitory or anionic channels include the GABAA receptors and glycine receptors 

(Ortells and Lunt, 1995).         

 Invertebrate LGICs not only include the excitatory nAChRs and inhibitory GABA 

receptors, but a broad array of unusual LGICs. For example, there have been several 

novel ligand-gated chloride channels (LGCCs) identified that have been shown to be 

activated by neurotransmitters such as histamine (Gisselmann et al., 2001; Zheng et al., 

2002), glutamate (Cully et al., 1994), acetylcholine (Putrenko et al., 2005) serotonin 
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(Ranganathan et al., 2000), dopamine (Rao et al., 2009) and tyramine (Pirri et al., 2009).  

In addition, excitatory GABA receptors have been identified in both C. elegans and 

Drosophila melanogaster (Beg and Jorgensen, 2003; Gisselmann et al., 2004).   

 

Mammalian GABA-gated chloride channels 

GABA is the most widely distributed inhibitory neurotransmitter found 

throughout the vertebrate central nervous system (Sivilotti and Nistri, 1991).  In 

mammals, GABA is able to activate three different classes of receptors, GABAA, GABAB 

and GABAC receptors.  GABAA and GABAC receptors are LGCCs, whereas GABAB 

receptors are part of the G-protein coupled receptor superfamily (McKernan and Whiting, 

1996).  

When activated, the GABAA receptors allow for the influx of Cl-
, causing 

hyperpolarization of the associated neuron.  Hence, the GABAA receptors are a means of 

decreasing neuronal excitability by providing inhibitory input.  In mammals, these 

receptors are expressed in the peripheral and central nervous system and have modulatory 

binding sites for benzodiazepines, barbiturates, and neurosteroids (Figure 1.3) (Bormann, 

1988; MacDonald and Olsen, 1994).  The convulsant bicuculline acts as a competitive 

antagonist for the GABAA receptor and picrotoxin acts as non-competitive channel 

blocker (Enna and Mohler, 2007).   
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Figure 1.3. The GABAA receptor which is a LGCC containing modulatory sites for benzodiazepines, 
barbiturates and neurosteroids.  Channel activity is blocked by picrotoxin and bicuculline.  Intracellular 
modulation is achieved by protein kinases (Adapted from Bormann, 2000). 

 

The protein sequences of the GABAA receptor subunits show 20-30% sequence 

similarity with other LGICs such as the nAChR, the glycine receptor and the 5-HT3 

receptor (Mehta and Ticku, 1999).  Vertebrate GABAA subunits can be organized into 

several subtypes, including α (6 isoforms), β (3 isoforms), γ (3 isoforms), δ, ε, θ, π (1 

isoform each) and ρ (3 isoforms) (Mehta and Ticku, 1999).  There is approximately 70% 

amino acid identity between isoforms within the same class and approximately 30% 

amino acid identity between subtypes (Mehta and Ticku, 1999).  Studies have shown that 

the GABAC receptors may actually be composed solely of ρ subunits that primarily 

localizes to the mammalian retina (Cutting et al., 1991; Enz and Cutting, 1998; 

Feigenspan and Bormann, 1998).  Their classification as a separate group of GABA 

receptors is no longer supported by the International Union of Pharmacology which 

recommends they be classified as a minor subtype of the GABAA receptor family 

(Barnard et al., 1998).   
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While a large variety of subunit types have been identified, the precise 

combination of the native GABAA receptor remains unknown.  The actual number of 

subtypes and isoforms identified allows for the assembly of an extremely large number of 

pentameric channel combinations.  However, not all combinations of subunits are able to 

respond to GABA.  It is estimated that the actual number of native vertebrate GABAA 

receptor subunit combinations occurring in the nervous system may be less than 20 

(McKernan and Whiting, 1996).  However, the majority of vertebrate GABAA receptors 

are likely composed of α, β and γ subunits (Pritchett et al., 1989; Pritchett and Seeburg, 

1991; Malherbe et al., 1990).  Although the α and β subunits are able to form functional 

GABA responsive channels in vitro, they lack several GABAA receptor characteristics 

(Pritchett et al., 1988).  For example, the inclusion of the γ subunit is necessary for 

receptor sensitivity to benzodiazepines (Pritchett et al., 1989).  In addition to channel 

pharmacology, the GABAA receptor subunit combinations determine receptor trafficking 

and localization.  It was found that the γ2 subunit is important for bringing receptors to 

synaptic regions, whereas the δ subunit is involved in targeting receptors to extra-

synaptic regions (Nusser et al., 1998; Wei et al., 2003). 

The major GABA binding site was identified by radiolabeling purified GABAA 

receptors with [3H]muscimol and [3H]flunitrazepam.  This method identified binding 

sites on both the α and β subunits (Deng et al., 1986; Bureau and Olsen, 1988), indicating 

that the GABA binding site may be located at the interface of the two subunits.   
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GABA neurotransmission in C. elegans  

 In the model free living nematode, Caenorhabditis elegans, GABA containing 

neurons are mostly associated with neuromuscular junctions and comprises less than 10% 

of the nervous system (Docherty et al., 1985).  In contrast, mammalian GABA receptors 

act in the central nervous system and are involved in 30% to 40% of synapses (Docherty 

et al., 1985).  Analysis of the C. elegans genome suggests that nematodes possess both 

GABAA and GABAB-like receptors (Jorgensen, 2005). However, the vertebrate GABAA 

receptor subtype and isoform classification is not conserved, making comparisons 

between nematodes and mammals more challenging. 

  GABA acts mainly as an inhibitory neurotransmitter in C. elegans (Jorgensen, 

2005).  GABA synthesis occurs in the neuron by glutamic acid decarboxylase, which 

converts the amino acid glutamate to GABA (Figure 1.4).  As GABA must be packaged 

for its subsequent release from the pre-synaptic neuron, its transport is mediated through 

a synaptic vesicle by the vesicular GABA transporter (Schuske et al., 2004).  Once 

released from the pre-synaptic neuron, it can act on inhibitory GABA receptors (on the 

post-synaptic neuron), causing the influx of anions into the neuron (Schuske et al., 2004). 
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Figure 1.4. GABA synthesis and transport. GABA is synthesized in the neuron from glutamate using the 
biosynthetic enzyme glutamic acid decarboxylase. GABA is then transported into a vesicle with the aid of the 
vesicular GABA transporter and subsequently transported to the plasma membrane, for release. GABA released 
from the presynaptic neuron is free to act on inhibitory or excitatory GABA receptors (Adapted from Schuske et 
al., 2004) 

 

 In order to identify which neurons are GABAnergic in C. elegans, McIntire (et 

al., 1993a) stained the nematode with antibodies against GABA.  It was found that of the 

302 neurons present (White et al., 1986) 26 contained GABA.  Specifically, they 

identified 19 motor neurons that innervate the dorsal and ventral body muscles, 4 motor 

neurons that innervate the head muscles, 2 motor neurons that innervate the enteric 

muscles and finally 1 interneuron.  The parasitic nematode, Ascaris suum appears to have 

a similar pattern of GABA localization compared to C. elegans (Johnson and Stretton, 

1987; Guastella et al., 1991).   
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Laser ablation studies of C. elegans GABAnergic neurons were performed in 

order to identify GABA’s actual role in the nematode (McIntire et al., 1993b). Motor 

neurons innervating the dorsal and ventral body wall muscles are responsible for worm 

movement.  Movement is characterized by a sinusoidal wave in the nematodes’ body.  

Essentially a bend in the body is made by contracting muscles on one side of the body by 

excitatory input, while at the same time relaxing muscles on the opposite side of the body 

by inhibitory input (McIntire et al., 1993b).  When the neurons innervating the dorsal and 

ventral body wall muscles are laser ablated, the worm is not able to move in the 

sinusoidal pattern as efficiently and when touched, it hyper-contracts muscles on both 

sides of the body (McIntire et al., 1993b), indicating a loss of muscle inhibition.  

Therefore, it was suggested that GABA neurons are responsible for the inhibitory input 

used in locomotion (McIntire et al., 1993b).  

The motor neurons innervating the head region regulate foraging, where the tip of 

the nose moves side to side (Jorgensen, 2005).  Ablating the GABA containing neurons 

in the head region results in worms with an exaggerated, side to side, foraging movement.  

It is thus thought that these GABA containing neurons in the head are involved in 

relaxing the muscles on the opposite site of the bend to restore the head to its forward 

position (Jorgensen, 2005).  Therefore GABA is again playing a role in neuromuscular 

inhibition. 

The GABA motor neurons identified in the enteric muscles are responsible for 

nematode defecation (McIntire et al., 1993b).  The worm undergoes a series of muscular 

contractions that eventually results in the excretion of intestinal matter.  These muscular 

contractions begin with the posterior body muscles, followed by the anterior body 
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muscles and end with the contraction of the enteric muscles (Thomas, 1990).  When the 

GABA containing motor neurons associated with the enteric muscles are laser ablated, 

the worm is no longer able to contract the enteric muscles and expel its intestinal contents 

and as a result the worm swells with food and waste (McIntire et al., 1993b).  This effect 

suggests an excitatory role of GABA in enteric muscle contractions, rather than the 

characteristic inhibitory role seen in vertebrates.     

 

GABA Receptors in C. elegans 

 Observations from the above laser ablation studies have been complemented by 

the identification of specific GABA receptors in C. elegans.  exp-1 encodes a GABA-

gated cation channel and was originally identified by mutants with defects in their 

defecation cycle (Thomas, 1990).  Mutants of exp-1 were able to move and forage 

normally, however they were unable to undergo enteric muscle contractions required for 

release of their intestinal contents (McIntire et al., 1993b).  exp-1 was first isolated and 

characterized by Beg and Jorgensen (2003) and identified as the only gene known to be 

specifically required for excitatory GABA functions.  exp-1 encodes a protein closely 

related to the LGIC subunits and shares 22% identity to another C. elegans GABA 

receptor subunit, UNC-49B, and 21% identity to the human β2 GABA receptor subunit 

(Beg and Jorgensen, 2003).  The primary variation observed when compared to other 

GABA receptor subunits is in the M2 domain (Beg and Jorgensen, 2003) where ion 

selectivity occurs (Chebib and Johnston, 2000).  Electrophysiological analysis showed 

EXP-1 as able to form homomeric channels (ion channels composed of a single 

population of subunits) that are highly sensitive to GABA and to a lesser degree 
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responsive to the GABA agonist, muscimol.  In contrast to all other GABA-gated anion 

channels, EXP-1 is selective for monovalent cations and is not sensitive to the classic 

GABAA receptor channel blocker, picrotoxin (Beg and Jorgensen, 2003).         

 The GABAA receptors responsible for inhibiting body muscle contraction during 

movement and abnormal foraging are encoded by the unc-49 gene (Schuske et al., 2004).  

Studies by Bamber (et al., 1999) demonstrated that the unc-49 gene, under the control of 

one promoter, encodes three different GABAA receptor subunits.   This unusual gene 

structure is conserved with Caenorhabditis briggsae, a related nematode (Schuske et al., 

2004).  Through alternative splicing, the subunits share a common N-terminal domain but 

different GABA-binding and trans-membrane domains, generating UNC-49A, UNC-49B 

and UNC-49C.  However, only UNC-49B and UNC-49C are expressed at high levels, 

while UNC-49A has a low expression in adult worms (Bamber et al., 1999).  

Electrophysiological studies show that when expressed in Xenopus oocytes, UNC-49B 

alone is able to form functional homomers, whereas UNC-49C is not.  In addition, green 

fluorescent protein tagging in C. elegans shows UNC-49B and UNC-49C both localize to 

neuromuscular junctions and when both are expressed in oocytes, they co-assemble to 

form functional GABA receptors (Bamber et al., 1999).  However, all unc-49 mutants (or 

worms with abnormal locomotion) lack functional UNC-49B but none of these mutants 

lack UNC-49C, suggesting that only UNC-49B is required for receptor function (Bamber 

et al., 2005).  It is currently predicted that UNC-49B is responsible for channel activation, 

and interacts with the cytoskeleton at the neuromuscular synapse, enabling synaptic 

localization (Figure 1.5) (Bamber et al., 2005).  UNC-49C is thought to negatively 
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vertebrate GABA receptors, HG1 has the closest similarity to the α/γ subunit sequences 

of GABAA receptor subunits (Feng et al., 2002).  Vertebrate GABAA α and γ subunits 

generally need to be expressed in combination with a β subunit to form functional 

channels (Mehta and Ticku, 1999).  Thus, a β-like GABAA receptor subunit sequence 

from C. elegans, GAB-1, was isolated and co-expressed with HG1 for further 

electrophysiological characterization (Feng et al., 2002).  It was demonstrated that the 

HG1 GABA receptor subunit was able to co-assemble with the C. elegans GAB-1 to 

produce a GABA-sensitive channel, suggesting that HG1 is in fact from the GABA 

receptor subunit family.  However, since HG1 requires the GAB-1 subunit for channel 

assembly, it is not known how relevant this subunit is for the biology of H. contortus. 

 

Other Evidence for the Role of GABA in parasitic nematodes 

 In another closely related parasitic nematode, Ascaris suum, the presence of extra-

synaptic inhibitory GABA receptors were identified in muscle bag cells due to their 

inhibitory response to locally applied GABA (Martin, 1980; Holden-Dye et al., 1989) 

These receptors were initially believed to have close similarity to the vertebrate GABAA 

receptors, although typical vertebrate GABAA receptor agonists, including bicuculline, 

dieldrin and t-butylbicyclophosphorothionate (TBPS) had weak actions on the Ascaris 

suum GABA receptors (Martin, 1980; Holden-Dye et al., 1989; Martin et al., 1991).   

However, the anti-parasitic drug, piperazine, thought to act on GABA receptors, was 

found to have a hyperpolarizing effect on the Ascaris muscle (Martin, 1985).  

Immunolocalization studies using antibodies raised against the H. contortus HG1 subunit 
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was able to detect possible HG1-like subunits in Ascaris neuromuscular junctions, which 

is consistent with the localization observed in H. contortus (Skinner et al., 1998).  

 

GABA receptors in other invertebrates   

 GABA receptors in insects are the targets of several different classes of 

insecticides as well as convulsants.  Studies into the mechanism of resistance to the 

insecticide dieldrin lead to the isolation of a GABA-gated chloride channel gene from 

Drosophila called rdl (resistance to dieldrin) (Ffrench-constant et al., 1991).  A mutation 

in this gene appears to confer cyclodiene resistance, which was caused by an amino acid 

change from alanine to serine at position 302 located in the M2 channel pore lining 

domain (Ffrench-constant et al., 1991).  Electrophysiological characterization of the wild 

type RDL channel found that it is equally responsive to GABA and the GABA receptor 

agonist muscimol.  In addition, the GABA-gated chloride channel blocker, picrotoxin, 

and the cyclodiene insecticide dieldrin, were able to inhibit the GABA response.  The 

mutant RDL homomeric channel appears to have a similar response to GABA and 

muscimol as the wild type, but was no longer sensitive to the inhibitory effects of 

picrotoxin and dieldrin.  The mutation in the M2 domain appears to provide the resulting 

channel with approximately 100 fold less sensitivity to picrotoxin compared to the wild 

type (Ffrench-constant et al., 1993).  The resistant nature of the mutant RDL has been 

suggested to be caused by the mutation in the M2 region located near the 

picrotoxin/cyclodiene binding site, causing a direct structural change in the antagonist 

binding site, and as a result weakening the bound drug conformation (Zhang et al., 1994).  

RDL subunits have been localized to the adult and embryonic nervous system of D. 
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melanogaster and appear to play a role in processing olfactory, visual and 

mechanosensory information (Harrison et al., 1996; Aronstein et al., 1996). 

 A LGCC subunit from D. melanogaster with high similarity to vertebrate GABAA 

β subunits was discovered, and called ligand-gated chloride channel homolog 3 (LCCH3) 

(Henderson et al., 1993).  This subunit alone is unable to form functional homomeric 

channels (Zhang et al., 1995; Gisselmann et al., 2004).  When simultaneously expressed 

with RDL, the resulting RDL/LCCH3 heteromeric channel (ion channels composed of 

more than one population of subunits) had different properties than the RDL subunit on 

its own.  The heteromeric channel is insensitive to picrotoxin as well as bicuculline and 

has a reduced sensitivity to GABA (Zhang et al., 1995).  However, this channel is not 

thought to function as an in vivo channel since RDL and LCCH3 localize to different 

tissues (Aronstein and Ffrench-constant, 1995; Aronstein et al., 1996) and expression of 

each gene occurs in different stages in D. melanogaster (Aronstein et al., 1996; Harrison 

et al., 1996).     

 A third D. melanogaster subunit named GRD has been cloned, and has a high 

degree of similarity with vertebrate ionotropic GABAA β receptor subunits (Harvey et al., 

1994).  Electrophysiological analysis revealed that GRD does not form functional 

homomeric channels (Gisselmann et al., 2004).  However when expressed 

simultaneously with LCCH3, the GRD/LCCH3 channel responds to GABA and 

muscimol.  Interestingly, the heteromeric channel was not sensitive to the antagonistic 

effects of bicuculline.  When attempting to identify the ions that flow through this 

GRD/LCCH3 channel, results indicated channel permeability to both sodium and 

potassium, with no significant contribution of chloride ions.  This suggested that the 
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GRD/LCCH3 channel is forming a cation selective channel (Gisselmann et al., 2004).  

This channel however has little homology to the C. elegans cation channel EXP-1 

(described above).  Since the localization of GRD has not yet been studied, it is not 

known if GRD and LCCH3 are expressed in the same tissues and life-stages.  Therefore, 

whether these subunits would assemble in vivo is currently unknown.     

 

Conclusion and rational for current study 

 It is clear from the available literature that most of our current understanding of 

the role of GABA in the nervous system of invertebrates has emerged mostly from two 

model organisms, the nematode C. elegans and the fruit-fly Drosophila melanogaster. 

While information from these two organisms provides a very important basis for our 

understanding of GABAnergic neurotransmission in lower organisms, it may not entirely 

relate to other invertebrate organisms.  Parasitic nematodes have an entirely different 

lifestyle and may therefore exhibit differences in their specific GABAnergic nervous 

system when compared to C. elegans.  Therefore, a more comprehensive understanding 

of these channels in parasitic nematodes will allow us to understand the differences in 

GABA neurotransmission between parasitic and non-parasitic nematodes. This may lead 

to a better understanding of a nervous system designed specifically for parasitism and 

may in turn lead to the discovery of new targets for future anti-parasitic drugs.  This 

thesis will focus on one aspect of the GABA nervous system of a parasitic nematode and 

describe the isolation and function of two GABA receptor subunits, Hco-UNC-49B and 

C, from the parasitic nematode H. contortus, which are orthologues of the UNC-49 

subunits from the free-living nematode, C. elegans.   
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MOLECULAR CHARACTERIZATION OF NOVEL GABA-GATED 

CHLORIDE CHANNEL SUBUNITS FROM HAEMONCHUS 

CONTORTUS 

 

 

 

 

*The initial cloning of Hco-unc-49C was conducted as an undergraduate research project 
(Salma Siddiqui, UOIT Honours Thesis, 2007) 
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INTRODUCTION 

Livestock infected with parasitic nematodes can cause great losses in productivity 

in the agricultural sector.  One gastrointestinal nematode responsible for great economic 

hardship is the blood-feeding parasite, Haemonchus contortus, which resides in the 

abomasum of sheep and goats where it causes anemia and other complications 

(Mehlhorn, 2008).  Infection with H. contortus is commonly controlled through different 

classes of anthelmintics that target various proteins including β-tubulin (targets for 

benzimidazoles) as well as receptors called ligand-gated chloride channels (LGCCs).  

Currently used drugs that target LGCCs include the macrocyclic lactones which activate 

glutamate-gated chloride channels (GluCls) and piperazine which is thought to target γ-

amino butyric acid (GABA)-gated chloride channels (Kohler, 2001).  However, increased 

drug resistance has rendered several currently available anthelmintics, including the 

macrocyclic lactones, less effective (Prichard, 1994) and thus, there is an ongoing need to 

discover novel protein targets for future anti-parasitic drugs.   

Mammalian GABAA-gated chloride channels play an important role in the 

function of the inhibitory nervous system and are mainly found in the brain.  Several 

classes of GABAA- receptor subunits have been identified in mammals which include α, 

β, γ, δ, ε, π, θ and ρ subunits (for review see Mehta and Ticku, 1999; Whiting, 2003).  

The individual subunits are part of the cysteine-loop ligand-gated ion channel (cys-loop 

LGIC) superfamily.  Each subunit exhibits a large extracellular N-terminal region 

containing a cysteine-loop (cys-loop) (Cockcroft et al., 1990), and four highly conserved 

membrane spanning domains (M1- M4) with the second membrane spanning domain 

lining the channel pore (Unwin, 1993).  The various types of subunits assemble as 
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pentamers and the different combinations of these subunits can result in channels with 

different properties and pharmacology (Mehta and Ticku, 1999; Sieghart, 1995).   

Invertebrates, such as nematodes and arthropods, are also known to utilize 

GABAA receptors for inhibitory neurotransmission.  One particular class of GABAA 

receptors, the RDLs (Resistance to Dieldrin), appear to be in many ways divergent from 

mammalian GABAA receptors and thus may be unique to invertebrates (Dent, 2006).  In 

insects, RDL receptors have been shown to be associated with cyclodiene resistance 

(Ffrench-constant et al., 1991) and appear to play a role in GABA-mediated processing 

of olfactory, visual and mechanosensory information (Harrison et al., 1996; Aronstein et 

al., 1996).  In the model free-living nematode, Caenorhabditis elegans, three RDL-like 

subunits (UNC-49A, UNC-49B and UNC-49C) have been characterized and are encoded 

by a single gene that is differentially spliced (Bamber et al., 1999).  When expressed in 

Xenopus laevis oocytes, the Cel-UNC-49B subunit alone is able to form a functional 

homomeric channel and can assemble with Cel-UNC-49C to form a functional 

heteromeric channel that exhibits a reduced sensitivity to GABA (Bamber et al., 1999) 

and differing responses to various channel modulators and inhibitors (Bamber et al., 

2003).  The Cel-UNC-49B/C heteromeric channel appears to be the native channel which 

is expressed at neuromuscular junctions and plays a key role in GABA-mediated control 

of locomotion (Bamber et al., 1999, 2005).  

In contrast to C. elegans, the role of GABA in parasitic nematodes is less 

understood. Evidence for GABA neurotransmission has been demonstrated in the 

parasitic nematodes Ascaris suum (Guastella et al., 1991; Martin, 1980, 1985; Martin et 

al., 1991), H. contortus (Laughton et al., 1994; Portillo et al., 2003) and Trichinella 
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spiralis (Ros-Moreno et al., 1999).  In A. suum, GABA receptors associated with somatic 

muscle have been shown to be neither bicuculline- nor picrotoxin-sensitive (Holden-Dye 

et al., 1988), which is a pharmacological profile distinct from mammalian GABAA 

receptors.  The A. suum receptor is also partially sensitive to the GABAA receptor 

agonist, muscimol (Holden-Dye et al., 1989).  To date, however, the only putative GABA 

receptor subunit gene isolated and characterized from a parasitic nematode is the H. 

contortus gene Hco-HG1, which encodes a protein orthologous to the uncharacterized C. 

elegans subunit, LGC-37 (Laughton et al., 1994) and is expressed in ring motor- and 

inter-neurons (Skinner et al., 1998).  Although Hco-HG1 does not appear to form a 

functional GABA receptor channel in Xenopus oocytes, it can co-assemble with a C. 

elegans subunit, GAB-1, to form a functional GABA-sensitive channel (Feng et al., 

2002).  While these reports provide evidence that GABA is utilized by parasitic 

nematodes, we still do not know the full extent of the repertoire of GABA receptors in 

these organisms, nor do we fully understand the potential differences in GABA 

neurotransmission between free-living and parasitic nematodes.  

To better understand inhibitory GABA neurotransmission in parasitic nematodes, 

we have isolated two GABA receptor subunit genes from H. contortus, Hco-unc-49B and 

C, which are orthologous to the unc-49 genes from the free-living nematode C. elegans 

(Cel-unc-49).  Similar to what has been reported for C. elegans, we found that the Hco-

UNC-49B and C subunits form a functional heteromeric channel that is picrotoxin 

resistant.  However, in contrast to the C. elegans channel, this Hco-UNC-49B/C 

heteromeric channel is more GABA sensitive than the Hco-UNC-49B homomeric 

channel.  Furthermore, the Hco-UNC-49B/C channel is almost 3x more sensitive to 
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GABA compared to the previously reported C. elegans B/C heteromeric channel.  By co-

expressing H. contortus UNC-49 subunits with C. elegans UNC-49 subunits we found 

that only heteromeric channels containing the Hco-UNC-49B subunit exhibited high 

sensitivity to GABA.  These results demonstrate that H. contortus channels may have 

different properties than those found in C. elegans and these differences may be the result 

of the unique properties of the Hco-UNC-49B subunit when it is assembled in a 

heteromeric channel.   

 

EXPERIMENTAL PROCEDURES 

Cloning and Sequencing of Hco-unc-49B and Hco-unc-49C.  RNA was isolated 

using Trizol (Invitrogen) from adult H. contortus worms supplied by Dr. Roger Prichard 

(Institute of Parasitology, McGill University).  Copy DNA (cDNA) was synthesized 

using the RevertAidTM minus first strand cDNA synthesis kit (Fermentas) using the 

manufacturer’s recommendations.  A modified oligo-dT anchor primer 

(5’CCTCTGAAGGTTCACGGATCCACATCTAGATTTTTTTTTTTTTTTTTTVN3’); 

[where V is either A, C, or G and N is either A, C, G, or T (Weston et al., 1999)] was 

used to create the cDNA, which was subsequently used as template for the isolation of 

Hco-unc-49C and Hco-unc-49B. 

 Partial H. contortus gene sequences were identified by searching a H. contortus 

specific online sequence database (Sanger Institute, Cambridge, UK).  Partial sequences 

predicted to encode GABAA-receptor subunits were chosen for further molecular cloning 

and functional analysis.  These sequences were used to design gene specific primers for 
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the 5’ and 3’ rapid amplification of cDNA ends (RACE) procedure (Frohman et al., 

1988).   

 Isolation of Hco-unc-49C.  The 5’ region of Hco-unc-49C was isolated using a 

sense primer specific to the splice leader 1 (SL1) sequence (SL1-5’ 

GGTTTAATTACCCAAGTTTGAG 3’) [a sequence commonly found spliced onto the 5’ 

end of nematode mRNA (Van Doren and Hirsh, 1988)] along with two antisense gene 

specific primers in a nested polymerase chain reaction (PCR) (nested primer 

5’ATAGCAGAAGCCCAGATAGAC3’) using a PTC-100 Programmable Thermal 

Controller (MJ Research, Inc.).  PCR cycling conditions were as follows: 20 s 94oC, 30 s 

55oC, and 60 s 72oC; 35 cycles.  Resultant amplicons of the predicted size were sub-

cloned into pGEM-T easy (Promega) and sequenced (Genome Quebec).  The 3’ sequence 

was amplified using two sense gene specific primers in a nested PCR (nested primer 5’ 

TCACAGAGACGCATTTGATG 3’) with two antisense primers specific to the modified 

oligo-dT anchor added to the cDNA.  Amplicons of the expected size were sub-cloned 

and sequenced (Genome Quebec), yielding the predicted full length Hco-unc-49C gene.  

The full length sequence was verified (Genbank Accession Number 1003415) using 

primers (named Hco-unc-49 5’ and Hco-unc-49C 3’), which flank the 5’ and 3’ coding 

sequence, in a nested PCR. 

 Isolation of Hco-unc-49B.  To isolate the 3’ region of Hco-unc-49B a nested PCR 

was performed using two sense gene specific primers (nested primer 5’ 

CGATTCCGCTTATTCAACATCCTC 3’) along with primers specific to the modified 

oligo-dT anchor at the 3’ end as mentioned above.  PCR amplicons were cloned and 

sequenced as above.  Since it is predicted that, like the unc-49B transcripts in C. elegans, 
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the Hco-unc-49B transcript shares the same 5’ end with Hco-unc-49C, the full length 

Hco-unc-49B coding sequence (Genbank Accession Number 1119896) was amplified 

using the same sense Hco-unc-49 5’ primer as above along with an antisense primer 

specific to the 3’ coding sequence of Hco-unc-49B.  

 Sequence analysis.  The predicted full-length genes of Hco-unc-49B and Hco-

unc-49C were translated and the resulting amino acid sequences were aligned with their 

C. elegans counterparts using the program, MacVector (MacVector Inc., North Carolina, 

USA).  Phylogenetic analysis was performed using the neighbour joining algorithm in 

MacVector.     

 Reverse-transcription PCR.  Transcription levels of Hco-unc-49B and Hco-unc-

49C in different life stages of H. contortus were examined using reverse transcription 

PCR (RT-PCR).  Total RNA was isolated from H. contortus eggs, third stage larvae (L3), 

adult male and adult female using RNAStat (TelTest Inc).  The resultant RNA (1-2 μg) 

was then DNase (Ambion) treated, to remove any genomic DNA contamination, and used 

in a reverse transcription reaction (Quantitect RT Kit, Qiagen) as per the manufacturer’s 

recommendations.  Expression levels of the corresponding cDNA were determined by 

PCR.  Hco-unc-49B amplicons were generated using the sense primer 

5’TGACCACTCTCATCA-CCGCAAC3’ and antisense primer 

5’CGACCGCATATTCGACCAATG3’.  Hco-unc-49C was amplified using the sense 

primer 5’CCTGGGTTTCTGCTATCTACTGGTC3’ and antisense primer 

5’TTTGTGCTCGCTTTTCTTCTCC3’.  The resultant amplicons for both genes were 

approximately 100 bp in size.  A control gene, 18s ribosomal RNA (rRNA) (Genbank 

Accession Number L04153.1), was amplified using the sense primer 
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5’AATGGTTAAGAGGGACAATTCG3’ and antisense primer 

5’CTTGGCAAATGCTTTCGC3’.  A second control gene, Hco-leg, encoding an adult-

specific asparaginyl proteinase (Genbank Accession Number AM177177), was amplified 

to verify there was no cross contamination of adult RNA with other life-stages.  The Hco-

leg sense primer used was 5’GAAAAGATAAGTTCGGACACCTGG3’ and the 

antisense primer was 5’TCAGAATCATCCATCCAAGTCACC3’.  At least three 

replicates were performed for each gene. 

 Expression of unc-49B and unc-49C in Xenopus laevis oocytes.  The coding 

sequence of Hco-unc-49B and Hco-unc-49C were sub-cloned into the oocyte expression 

vector, pT7Ts.  The vector was then linearized and used as template in an in vitro 

transcription reaction (T7 mMessage mMachine kit, Ambion) using the manufacturer’s 

recommendations, producing the corresponding copy RNA (cRNA).  The cRNA was 

subsequently precipitated using lithium chloride and diluted in H20.  Cel-unc-49B and 

Cel-unc-49C full length cDNA clones (provided by Dr. B. Bamber, University of Toledo) 

were linearized using Asp-718I (Roche) and used as template in an in vitro cRNA 

reaction (T3 mMessage mMachine kit, Ambion) according to the manufacturer’s 

recommendations.    

 X. laevis oocytes were surgically removed from females anesthetized with 0.15% 

(w/v) ethyl 3-amino benzoate methane sulfonate (MS-222) (Sigma).  Defolliculation of 

the oocytes was achieved using 2 mg/mL collagenase (Sigma) in OR2 buffer (82 mM 

NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM Hepes pH 7.5) for 2 hours while rocking at room 

temperature.  The oocytes were then stored in ND96 buffer (96 mM NaCl, 2 mM KCl, 1 

mM MgCl2, 1.8 mM CaCl2, 5 mM Hepes pH 7.5) supplemented with 0.275 μg/mL 
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pyruvate and 100 μg/mL gentamycin (Sigma).  Each oocyte was injected with 50 nL of 

Hco-unc-49B and/or Hco-unc-49C cRNA (0.3 – 0.5 ng/nL) using a Drummond Nanoject 

microinjector.  Oocytes were incubated at 20oC in supplemented ND96, which was 

replaced at least every 24 hours.  Recordings were routinely made 2-5 days post cRNA 

injection.   

 Electrophysiological Recordings.  Two-electrode voltage clamp electro-

physiology was performed using the Axoclamp 900A voltage clamp (Molecular 

Devices).  Glass electrodes containing Ag|AgCl wire were filled with 3 M KCl and had a 

resistance between 1 and 5 MΩ.  Oocytes were clamped at a -60 mV for the duration of 

the experiments.  The drugs GABA and muscimol (both from Sigma) were dissolved in 

ND96.  Picrotoxin (Sigma) and moxidectin (Fort Dodge Animal Health) were dissolved 

in dimethylsulfoxide (DMSO).  Drugs were washed over the oocytes using an RC-1Z 

recording chamber (Warner Instrument Inc.).  Data was obtained and analyzed using the 

Clampex software (Molecular Devices) and graphs were produced using Graphpad.  

GABA and muscimol EC50 values were determined by generating dose response curves 

fitted to the equation: 

Imax =           1                
          {1 + (EC50/[D])h} 
 

where Imax is the maximal response, [D] is the concentration of drug, EC50 is the 

concentration of drug that is required to produce half-maximal current, and h is the Hill 

coefficient.  Imax, EC50 and h were free parameters.  The curves were then normalized to 

the estimated Imax.  The equation generating the dose response curves was used to fit a 

sigmoidal curve of variable slope to the normalized data (GraphPad).  The significance of 
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the EC50 values were verified using a student’s t-test where a p ≤ 0.01 was considered 

significant.       

 Current voltage relationships were performed by changing the holding potential in 

20 mV steps from -60 mV to +40 mV, and at each step the oocytes was exposed to 1 mM 

GABA.  For reduced chloride trials, NaCl was partially substituted with Na-gluconate 

(Sigma) in the ND96 for a final Cl- concentration of 62.5 mM. 

 

RESULTS 

Cloning of the Hco-unc-49 genes.  PCR isolation of the Hco-unc-49C gene 

yielded a 1767 bp cDNA sequence.  This full-length sequence included a 276 bp 5’ un-

translated region (UTR).  We observed that some of our clones were missing this 5’ UTR 

and portions of 5’ coding sequence (Figure 2.1A).  However, the SL1 sequence was 

found attached to the extreme 5’ ends of all 5’ RACE PCR amplicons, suggesting the 

occurrence of trans-splicing.  These putative 5’ truncated products had lost their signal 

peptide cleavage site and are therefore predicted to be non-functional.  The 3’ end 

contained 171 bp UTR as well as a poly-A tail.  When translated in the appropriate 

reading frame, the sequence encodes for a 440 amino acid polypeptide, containing the 

signature cys-loop.  In addition, four hydrophobic trans-membrane domains were 

identified as well as a signal peptide cleavage site using the SignalP 3.0 server 

(http://www.cbs.dtu.dk/services/SignalP/).  The Hco-UNC-49C protein sequence shares a 

66% homology with its predicted C. elegans orthologue, Cel-UNC-49C, a GABAA 

receptor subunit.  An amino acid alignment of Hco-UNC-49C and Cel-UNC-49C 
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revealed a high degree of sequence homology, especially in the membrane spanning 

domains (Figure 2.2).   

 The Hco-unc-49B gene was found to have 1489 bp of coding sequence and 699 

bp of unique 3’ UTR. Several of our clones differed in the length of the 3’UTR (data not 

shown) and one clone contained only the first 560 bp of 5’ coding region ending with the 

last 280 bp of the 3’ UTR (Figure 2.1B).  

 

 

  

 

 

 

 

 

 

 

 

 
Figure 2.1. Splicing pattern of Hco-unc-49C and Hco-unc-49B.  A) Trans-splicing identified, yielding 3 putative 
transcripts that were missing different portions of the 5’ end of Hco-unc-49C.   B) Alternative splicing identified 
at the 3’ end of Hco-unc-49B yielding a transcript containing only a portion of the N-terminal domain (top 
diagram is the full predicted Hco-unc-49B and below is the spliced version identified).  Light grey regions 
indicate the N-terminal coding polypeptide sequence and dark grey regions indicate the membrane spanning 
domains 
 

The full predicted Hco-UNC-49B polypeptide consists of 496 amino acids and 

shares a 68% homology with the C. elegans subunit Cel-UNC-49B.1.  However, the H. 

contortus polypeptide has a longer M3-M4 intracellular domain and is therefore more 

Hco-unc-49B 

Hco-unc-49C 

A 
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similar to Cel-UNC-49B.3 (Bamber et al., 1999).  The Hco-UNC-49B and Hco-UNC-

49C polypeptides share a common N-terminal domain and are identical until just after the 

cys-loop; at this point the sequences diverge and thus exhibit two different C-terminal 

ends (Figure 2.2).     
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Figure 2.2.  Protein sequence alignment H. contortus and C. elegans UNC-49B and C.  Dark shaded areas 
indicate regions of amino acid identity or no alignment between the two sequences, lightly shaded areas indicate 
similar amino acids and no shading indicates no similarity.  Signal peptide cleavage site is identified by an 
arrowhead.  The downward facing arrow indicates the region where Hco-UNC-49 is spliced, generating Hco-
UNC-49B and C.  The putative binding domains, BDI and BDII (Bamber et al., 1999) are indicated. The cys-
loop and four membrane spanning domains are identified by the appropriate bars. 
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 Phylogenetic analysis revealed that Hco-UNC-49B and Hco-UNC-49C group closely 

together with their C. elegans counterparts and with the C. elegans LGC-38 RDL-like 

protein (GenBank Accession Number AAA81158) (Figure 2.3A).  The UNC-49 subunit 

sequences appear to form a separate grouping from vertebrate GABA-gated chloride 

channel subunits, suggesting the UNC-49s are invertebrate specific.   

Hco-unc-49B and Hco-unc-49C are differentially expressed in various life stages.  

RT-PCR analysis of Hco-unc-49B and Hco-unc-49C detected the presence of transcripts 

in four life-stages of H. contortus (eggs, L3 larvae, adult female and adult male) (Figure 

2.3B).  However, PCR amplicons of Hco-unc-49B and Hco-unc-49C were least intense in 

the egg stage compared to the other life stages.  No PCR products were visible in the 

negative controls lacking reverse transcriptase, verifying that there was no genomic DNA 

contamination.  As well, only Hco-leg amplicons were detected in the adult male and 

female stages confirming that there was no cross contamination of RNA between the 

adult and juvenile stages. 
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Figure 2.3. A) Phylogenetic analysis of Hco-UNC-49B and Hco-UNC-49C.  Polypeptide sequences of various 
GABA-gated chloride channel subunits, as well as GluCl subunits sequences are included.  A nACh gated cation 
channel was included as an out group.  B) Life stage expression of Hco-unc-49B and Hco-unc-49C in egg, third 
stage larvae and adult female and male worms.  Hco-18s and Hco-leg are used as control genes to determine 
cDNA quality and if cross-contamination occurred between life stages, respectively. 
  

 Pharmacological characterization of Hco-UNC-49B and Hco-UNC-49C.  When 

expressed in X. laevis oocytes, Hco-UNC-49B alone was able to form a homomeric 

channel and produce a robust response (current) to 100 μM GABA (Figure 2.4A) which 

was consistently observed.  In contrast, Hco-UNC-49C alone or oocytes injected with 

A 

B 

Hco-unc-49B 

Hco-unc-49C 

Hco-18s 

Hco-leg 

Cel avr-15 

Dm RDL var.A 

Dm GluCl 

Cel glc-2 

Hs nAChR 

Cel avr-14 

Hs GABA gamma2 

Hs GABA beta-2 

Hs GABA alpha-6 

Hs GABA alpha-3 

Hs GABA beta-1 

Hs GABA beta-3 

Cel LGC-38 

Hco UNC-49C 

Hco UNC-49B 

Cel UNC-49B.1 

Cel UNC-49C 

Cel UNC-49A 



45 
 

water did not respond to GABA (Figure 2.4B).  When both Hco-UNC-49B and Hco-

UNC-49C (Hco-UNC-49B/C) were injected in equal amounts a strong response to 100 

μM GABA was also observed (Figure 2.4C).  Neither Hco-UNC-49B, Hco-UNC-49C, 

nor Hco-UNC-49B/C responded to 1 mM glutamate or glycine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.4. Hco-UNC-49B and B/C channels expressed in Xenopus laevis oocytes response to GABA, but not to 
glutamate (Glu) or glycine (Gly). A) Hco-UNC-49B responds to 100 μM GABA but not to 1 mM glutamate or 1 
mM glycine (below traces). B) Hco-unc-49C injected oocytes do not respond to 100 μM GABA, 1 mM 
glutamate or 1 mM glycine. C) Hco-UNC-49B/C responds to 100 μM GABA but not to 1 mM glutamate or 1 
mM glycine.   
 

The GABA response for both Hco-UNC-49B and Hco-UNC-49B/C was dose dependant 

when tested with concentrations of GABA ranging from 1 μM to 5 mM (Figure 2.5A).  
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Oocytes expressing Hco-UNC-49B exhibited a slightly, but significantly, lower 

sensitivity to GABA compared to oocytes expressing both Hco-UNC-49B and C subunits 

(Figure 2.5B).  The GABA EC50 value for Hco-UNC-49B was 64.0 ± 4.4 μM (n=6) with 

a Hill coefficient of 1.9 ± 0.2, suggesting that at least two GABA molecules are required 

to open the channel.  Hco-UNC-49B/C exhibited an EC50 of 39.9 ± 5.7 μM (n=10) with a 

Hill coefficient of 2.2 ± 0.4, similar to that of the homomeric channel. 

Current-voltage analysis of the Hco-UNC-49B/C channel using full Cl- ND96 

(103.6 mM Cl-) indicated a reversal potential of -17.2 ± 4.0 mV (n=5) (Figure 2.5C) 

consistent with the calculated Nernst potential for Cl- (-18.5 mV), assuming 50 mM 

internal Cl- (Kusano et al., 1982).  When NaCl was partially replaced with Na-gluconate 

in the ND96 (final concentration 62.5 mM Cl-), the reversal potential shifted to -6.9 ± 4.2 

mV (n=4), consistent with the predicted Nernst potential of -5.7 mV.   
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Figure 2.5. GABA activates the Hco-UNC-49 channels and allows for the influx of Cl- A) Dose response trial of 
Hco-UNC-49B and Hco-UNC-49B/C with concentrations of GABA ranging from 1 μM to 5 mM.  B) Dose 
response curve of Hco-UNC-49B and Hco-UNC-49B/C with the current normalized to the percentage of 
maximal response.  C) Current voltage analysis of Hco-UNC-49B/C using 103.6 mM Cl– in ND96 buffer 
solution and reduced chloride concentration of 62.5 mM in ND96 buffer solution.  GABA responses were 
generated with 1 mM GABA.   
  

 

 The Hco-UNC-49B homomeric channel was much more sensitive to the GABA-

gated chloride channel blocker picrotoxin, compared to the Hco-UNC-49B/C heteromeric 

channel.  In the presence of picrotoxin, the response of Hco-UNC-49B to GABA was 
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reduced by 94.0 ± 0.9% (n=4) compared to a 46.0 ± 5.9% (n=4) reduction in the response 

of Hco-UNC-49B/C to GABA (Figure 2.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2.6.  Hco-UNC-49B/C is more resistant to the inhibiting effects of picrotoxin compared to Hco-UNC-
49B.  A) Hco-UNC-49B and B) Hco-UNC-49B/C channel response to 50 μM GABA alone followed by 50 μM 
GABA combined with 100 μM picrotoxin.  C) Graph indicating the percent picrotoxin dependant inhibition of 
the GABA response for each Hco-UNC-49 channel. 

 

The Hco-UNC-49B/C channel has a higher sensitivity to muscimol compared to 

the Hco-UNC-49B channel.  Both Hco-UNC-49B and Hco-UNC-49B/C responded to 

100 μM muscimol (Figure 2.7A, 2.7B).  However, the Hco-UNC-49B current generated 

by muscimol was only 23.5 ± 3.5% (n=3) of the current generated by the same 
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concentration of GABA (Figure 2.7C).  In contrast, the response of Hco-UNC-49B/C to 

muscimol was 48.1 ± 15.1% (n=3) of the GABA response.  The muscimol EC50 values 

for the Hco-UNC-49B and Hco-UNC-49B/C channels were 157.5 ± 13.2 μM (n=8) (Hill 

coefficient of 2.8 ± 0.3), and 62.2 ± 4.0 μM (n=8) (Hill coefficient of 2.0 ± 0.2), 

respectively (Figure 2.7D).   
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Figure 2.7.  Muscimol activates the Hco-UNC-49 channels.  A) Muscimol response for the Hco-UNC-49B and 
B) Hco-UNC-49B/C channels. Oocytes were first washed in 100 μM GABA and then in 100 μM muscimol.  C) 
Bar graph representing the channel response of muscimol in comparison to GABA.  Percentage indicates the 
difference in channel response between GABA and muscimol.  D) Dose response analysis of muscimol for the 
Hco-UNC-49B and Hco-UNC-49B/C channels.   
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Anti-parasitic drug effects. The antiparasitic drug moxidectin, which is thought to 

selectively target GluCls (Forrester et al., 2002), potentiates the GABA response of Hco-

UNC-49B/C by 40.2 ± 10.7% (n=6) when oocytes are washed with 50 μM GABA 

followed by 50 μM GABA with 10 μM moxidectin (Figure 2.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8. Moxidectin (MOX) potentiates the response of Hco-UNC-49B/C to GABA. A) The response of the 
Hco-UNC-49B/C channel to 50 μM GABA. The oocyte was then washed with 10 μM MOX followed by 50 μM 
GABA/10 μM MOX combined.  B) Bar graph representing the GABA response in the presence and absence of 
MOX.     
  

The Hco-UNC-49B subunit is associated with high GABA sensitivity in nematode 

heteromeric channels.  Previous reports on the UNC-49 channel in C. elegans have found 

that the assembly of Cel-UNC-49C with Cel-UNC-49B produces a heteromeric channel 
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with a lower sensitivity to GABA compared to the Cel-UNC-49B homomeric channel 

(Bamber et al., 1999).  Our results from the H. contortus UNC-49 subunits demonstrate 

the opposite trend; the heteromeric channel has higher sensitivity to GABA compared to 

the homomeric channel.  To determine which specific subunit (either B or C) is 

associated with high GABA sensitivity in the H. contortus heteromeric channels, we 

produced cross-assembled channels that contain both C. elegans and H. contortus UNC-

49 subunits.  Dose response curves were generated and the associated EC50 values for 

GABA were calculated for each resulting channel.  The calculated EC50 for Cel-UNC-

49B was 41.7 ± 8.7 μM (n=10), which is similar to that previously reported (Bamber et 

al., 1999).  When the Cel-UNC-49B subunit was co-expressed with Hco-UNC-49C, a 

significant decrease in GABA sensitivity was observed with an EC50 of 97.2 ± 10.2 μM 

(n=10) (Figure 2.9A).  In contrast, when Hco-UNC-49B was co-expressed with Cel-

UNC-49C the resulting channel was significantly more sensitive to GABA with an EC50 

of 24.5 ± 2.1 μM (n=8), compared to the Hco-UNC-49B channel (Figure 2.9B).  A 

summary of EC50 values and hill coefficients is shown in Table 1.  
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Figure 2.9. Hco-UNC-49 and Cel-UNC-49 cross-assembled heteromeric channels have differing GABA 
sensitivities.  A)  Dose response curves generated by Cel-UNC-49B and Cel-UNC-49B/Hco-UNC-49C showing 
a decrease in GABA sensitivity due to the introduction of Hco-UNC-49C.  B) Dose response curves showing the 
response of Hco-UNC-49B (from Figure 2.5) and Hco-UNC-49B/Cel-UNC-49C to GABA.   
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Table 1. Comparison of EC50 and Hill Coefficient values for H. contortus and C. elegans UNC-49 
homomeric, heteromeric and cross-assembled heteromeric channels 
 

 
Drug 

 
Channel EC50 (μM) 

 
Hill Coefficient 

  
GABA 

  
Hco-UNC-49B 

  
64.0 ± 4.4 

  
1.9 ± 0.2 

GABA Hco-UNC-49B/C* 39.9 ± 5.7 2.2 ± 0.4 
GABA Hco-UNC-49B/ Cel-UNC-49C*** 24.5 ± 2.1 1.6 ± 0.1 
  
GABA 

  
Cel-UNC-49B 

  
41.7 ± 8.7 

  
1.9 ± 0.3 

GABA Cel-UNC-49B/Hco-UNC-49C** 97.2 ± 10.2 1.1 ± 0.1 

        
Muscimol Hco-UNC-49B 157.5 ± 13.2 2.8 ± 0.3 
Muscimol Hco-UNC-49B/C***  62.2 ± 4.0 2.0 ± 0.2 

 
p-values comparing the UNC-49B/C heteromeric channel with the corresponding UNC-49B homomeric channel 
* p<0.01, **p<0.001, ***p<0.0001 
  
 

DISCUSSION 

This thesis describes the isolation and pharmacological characterization of two 

Hco-UNC-49 subunits, Hco-UNC-49B and Hco-UNC-49C, from the sheep parasitic 

nematode, H. contortus.  Like their C. elegans orthologues, Hco-UNC-49B and C share 

the same N-terminal sequence but differ in their C-terminal sequence, which includes the 

membrane spanning regions.  It is assumed, therefore, that similar to the situation in C. 

elegans, these unc-49B and C transcripts are generated by alternative splicing of the same 

unc-49 gene.  A similar phenomenon has been reported for a GluCl gene called avr-14 

which has been shown, in several nematode species, to be alternatively spliced to form 

two different transcripts (Laughton et al., 1997; Jagannathan et al., 1999; Yates and 

Wolstenholme, 2004).  It appears, therefore, that this type of transcript generation is 

conserved in the nematode phyla.     
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Analysis of the unc-49 transcripts has revealed some interesting characteristics. 

Firstly, we found the length of the 5’ UTR between H. contortus and C. elegans unc-49B 

and C transcripts is similar.  However, the 3’ UTR of Cel-unc-49B appears to be a few 

hundred base pairs longer than its H. contortus counterpart.  Since it is generally accepted 

that the 3’ UTR plays an important role in transcript regulation, it is possible that Cel-

unc-49B may be under a slightly different control mechanism compared to the equivalent 

gene in H. contortus. It has also been suggested the increased length of the 3’ UTR may 

infer a decreased evolutionary age or an increase in the complexity of the organism 

(Mazumder et al., 2003).  Secondly, we have found higher levels of both Hco-unc-49B 

and C expression in adult and L3 larvae compared to eggs.  This suggests that both 

transcripts are important in processes that occur specifically in more mature stages of life 

such as those associated with motility.   

Functional analysis of the Hco-UNC-49 channels revealed properties that were 

similar to previously reported C. elegans UNC-49 channels.  Firstly, the H. contortus 

UNC-49B subunit, like its C. elegans counterpart, forms a functional homomeric channel 

with a similar EC50 for GABA and is highly sensitive to the open channel blocker, 

picrotoxin.    Secondly, similar to studies in C. elegans, Hco-UNC-49C does not form a 

functional channel alone but will associate with Hco-UNC-49B to produce a picrotoxin 

resistant heteromeric channel.  The resistance of the H. contortus and C. elegans channels 

to picrotoxin can be attributed to the fact that the M2 region of the UNC-49C subunit of 

both species exhibits a methionine at a key position that is associated with picrotoxin 

resistance (Bamber et al., 2003; Zhang et al., 1995) (Figure 2.2).  Thus, incorporation of 

the nematode UNC-49C subunit causes heteromeric channels to become resistant to 
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picrotoxin.   It is interesting to note that the GABAA receptor characterized from Ascaris 

muscle is also picrotoxin resistant (Holden-Dye et al., 1988) suggesting that this receptor 

shares similar properties to the Hco-UNC49B/C heteromeric channel. 

Both H. contortus homomeric and heteromeric channels responded to the 

restricted structural analogue of GABA, muscimol.  However, like with GABA, the 

heteromeric channel had a higher sensitivity to muscimol compared to the homomeric 

channel.  Although, compared to GABA, muscimol was a less potent agonist for these 

channels. This is different than what has been observed for mammalian, particularly rat, 

GABAA receptors, where muscimol appears to be a more potent agonist compared to 

GABA (Amin and Weiss, 1993; Vien et al., 2002). A similar trend was observed for 

GABAA receptors from the tobacco budworm (Wolff and Wingate, 1998).  Our results 

appear more similar to the Ascaris GABAA receptor where muscimol was ~60% less 

potent compared to GABA (Holden-Dye et al., 1989), which further supports the notion 

that the previously characterized Ascaris muscle receptor was an Hco-UNC-49B/C-like 

channel.  

Further comparison of the H. contortus and C. elegans UNC-49 channels revealed 

an important difference; the parasite UNC-49B/C channel appears to have a higher 

sensitivity to GABA.  In an attempt shed some light on the subunit determinants for 

either high or low GABA sensitivity of heteromeric channels, we co-expressed C. 

elegans UNC-49 subunits with H. contortus UNC-49 subunits.  First, we observed the 

same sensitivity of the Cel-UNC-49B homomeric channel to GABA as reported by 

Bamber et al., 1999 (EC50 of 42 μM).  However, co-expression of Cel-UNC-49B and 

Hco-UNC-49C resulted in a heteromeric channel with a decreased sensitivity to GABA 
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(EC50 of 97 μM). This was, in fact, the same trend as observed for the Cel-UNC-49B/C 

channel, where incorporation of the C subunit decreased the sensitivity of the channel to 

GABA (Bamber et al., 1999). Interestingly, co-expression of Hco-UNC-49B with Cel-

UNC-49C produced a channel with a higher sensitivity to GABA than both the Hco-

UNC-49B homomeric channel and the Hco-UNC-49B/C heteromeric channel.  

Therefore, it appears that when Hco-UNC-49B assembles with an UNC-49C subunit, the 

sensitivity of the channel to GABA increases, regardless of whether the co-injected UNC-

49C RNA is from H. contortus or C. elegans.    

The cause for the increased GABA sensitivity in Hco-UNC-49B-associated 

heteromeric channels is unknown.  It should be noted that the only UNC-49B subunit that 

we detected from H. contortus exhibited a longer M3-M4 intracellular loop compared to 

the C. elegans UNC-49B subunit that we used in this study.  Whether this difference is 

associated with the results of the current study is not known at this time.  The M3-M4 

intracellular loop is generally thought to contribute to subtype specificity as well as 

intracellular regulatory processes (Olsen and Tobin, 1990) and not necessarily binding 

affinities.  We believe that the more likely cause may be found in the amino acid 

differences in the BDs of Hco-UNC-49B and Cel-UNC-49B. In mammalian GABAA 

receptors, a mutation of a highly conserved threonine residue in BDI of the β subunit 

caused a decrease in GABA sensitivity to the resulting α1β2γ2 channel (Amin and Weiss, 

1993).  In the Hco-UNC49B subunit, a threonine is present in the equivalent position 

while in the C. elegans UNC-49B subunit, a glutamic acid is present.  Interestingly, 

however, when comparing the EC50 values of the UNC-49B homomeric channels from 

both species, there is only a slight difference (64 vs 42 μM).  Thus, if this unique 
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threonine residue found on Hco-UNC-49B causes an enhancement of GABA binding, it 

may only become involved when Hco-UNC-49B becomes associated with an UNC-49C 

subunit suggesting that, like mammalian GABAA receptors, the GABA binding site is on 

the interface of adjacent subunits (Deng et al., 1986; Bureau and Olsen, 1988) (in our 

case in the interface of UNC-49B and UNC-49C).  Another amino acid variation between 

the UNC-49B subunits from both species resides in the BDII where a serine is found in 

the Hco-UNC-49B subunit and a lysine in found in the equivalent position in Cel-UNC-

49B.  The significance of this variation is currently not known. However, we are 

currently investigating residues in both BDs to verify their role in GABA binding. 

 

CONCLUSIONS 

 This thesis describes the isolation and pharmacological characterization of two 

novel GABA receptor subunits from the parasitic nematode H. contortus.  In addition, a 

novel method was used to understand the binding characteristics of a parasite ion channel 

and its subunits by creating cross-species heteromeric channels and comparing their 

channel properties.  Future research will aim to further investigate how Hco-UNC-49B is 

able to confer increased GABA sensitivity to Hco-UNC-49B/C heteromeric channels.   

The goal here was to better understand the role of GABA receptors in a parasite 

such as H. contortus and how they compare to homologous receptors found in a non-

parasitic nematode.  Clear differences in channel properties were observed between the 

H. contortus homomeric and heteromeric channels when compared to the free-living 

nematode C. elegans.   How these different channel properties affect overall GABA 

neurotransmission in parasitic nematodes will be an important area of future research.       
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