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Abstract 

Escherichia coli O157:H7 is an emerging food-borne and water-borne pathogen that belongs to 

Enterohemorrhaghic pathogenic group of bacteria. E. coli O157:H7 colonizes the gastrointestinal 

tract and is responsible for hemorrahagic colitis, renal failure, bloody diarrhoea, hemolytic 

uremic syndrome, thrombocytopenia, hemolytic anemia and other systemic problems.                 

E. coli O157:H7 is responsible for outbreaks of Enterohemorrhaghic E. coli infections and 

causes significant mortality and morbidity globally. Factor V (Mr-330,00Da) is a procofactor 

that upon activation to FVa profoundly enhances thrombin generation and fibrin clot formation 

as part of prothrombinase. The fibrin clot immobolizes the pathogen and allows the immune 

system to target and destroy the bacterium. Our research has shown that pathogenic Escherichia 

coli O86a:K61 secretes the protease OmpT as part of outer membrane vesicles (OMVs), which 

inactivates coagulation Factor V and in so doing, induces a hemorrhagic state. To further 

characterize the effect of OmpT on the coagulation, this study has employed a genetic approach 

using wild type, an OmpT deletion mutant, and an over-expressing OmpT construct in 

pathogenic E. coli O157:H7. Although the growth of the three strains in liquid culture was not 

significantly different over time in nutrient rich media, OmpT over expression retarded cell 

growth in nutrient deficient media (p<0.05). Wild type cells and OmpT over expressing cells 

produced significantly larger numbers of different size ranges of outer membrane vesicles than 

OmpT deletion mutant (p<0.05). Wild type cells and outer membrane vesicles prolonged both 

the prothrombin time and activated partial thromboplastin time in normal human plasma, and this 

effect was enhanced with OmpT over expressing cells and abolished in the OmpT deletion 

mutant. Wild type cells and outer membrane vesicles inactivated Factor V, but not other factors 

(fibrinogen, FII and FX), in normal human plasma to a 250kDa product and the effect was 
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increased in OmpT overexpressing strain and abolished in the OmpT deletion mutant. The effect 

of OmpT was direct and did not involve the host plasminogen system. In summary, this research 

indicates that OmpT has a role in OMV biogenesis and composition, and disrupting the 

coagulation process and fibrin barrier formation during the host innate immune response and in 

doing so may permit enhanced bacterial survival within host environments. The research will 

also lead to a greater understanding of the mechanism of action of E. coli virulence factors and 

positively impact healthcare environments through the development of novel and robust 

vaccines, antimicrobial drugs, diagnostic methods, and medical treatments. 
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1.1 Blood Coagulation Cascade 

Hemostasis (Haemo from Latin - blood, stasis from Greek- stop) is a property of the circulatory 

system where blood is maintained in a liquid state within a vessel in the uninjured state and the 

ability of the system to form a fibrin clot, in response to injury to prevent excessive blood loss. 

Hemostasis is maintained within the body in three stages. Primary hemostasis is maintained by 

platelets; secondary hemostasis by plasma clotting factors which leads to fibrin clot formation 

and tertiary hemostasis by plasmin formation that leads to the fibrin breakdown. The delicate 

physiological balance of hemostasis is maintained by fibrinolysis and coagulation. The blood 

coagulation process is initiated by two important pathways: the intrinsic pathway that is triggered 

by a negatively charged surface (such as glass), and the extrinsic pathway that is stimulated by 

sub-endothelial membrane protein, tissue factor released from the site of injury. These pathways 

in turn activate a rapid, sequential and tightly regulated common pathway that converts soluble 

fibrinogen to an insoluble fibrin clot. Figure 1.1A represents the blood coagulation cascade in 

detail. 

Experimental evidence indicates that the intrinsic pathway may have less hemostatic significance 

than the extrinsic pathway (Davie et al., 1991). The intrinsic pathway is activated by contact 

through damaged negatively charged endothelium and subendothelium that activates Factor XII 

(FXII) to Factor XIIa (FXIIa), which in turn activates prekallikrein to kallikrein (Riddel et al., 

2007). High molecular weight kininogen (HMWK) anchors these proteins to the blood vessel.  

Kallikrein also activates FXII to FXIIa by a positive feedback mechanism (Riddel et al., 2007). 

FXIIa along with kallikrein (attached to HMWK) proteolytically cleaves Factor XI (FXI) to 

Factor XIa (FXIa). FXIa bound to a charged surface with HMWK activates Factor IX (FIX) to  
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Figure 1.1A The blood coagulation cascade. The coagulation cascade is divided into extrinsic 

(represented by the blue panel) and intrinsic pathways (represented by the cream panel), which 

leads to the common pathway (represented by the green panel). The inactive proteases are 

represented in red, active proteases in green, phospholipid membrane by highlighted yellow line 

and calcium is represented by a pink circle. The arrows represent the proteolytic conversion of 

inactive to active form of protease. Adapted from Riddel, J., Aouizerat, B., Miaskowski, C., & 

Lillicrap, D. (2007). Theories of Blood coagulation. Journal of Pediatric Oncology Nursing, 24, 

123-131. 

Figure 1.1B Regulation of coagulation and fibrinolysis. The blood coagulation process is 

initiated by tissue factor (TF) and mediated by the protease thrombin. Fibrinolysis is affected by 

the protease plasmin that is acitivated by tissue plasminogen activator (t-PA). Plasmin further 

degrades fibrin to D-Dimer. The fibrinolysis process is also controlled by α2-antiplasmin and 

plasminogen activator inhibitor (PAI-1). The inhibitors of blood coagulation cascade are tissue 

factor pathway inhibitor (TFPI), Antithrombin (AT III), Activated protein C (Act C) and protein 

S (S). Adapted from McGraw-Hill. (2005). Normal Hemostasis. Hematology in Clinical practice 

4th edition (Chapter 27). 

Retrieved from: 

http://www.drugswell.com/winow/+%20b20/Hematology%20in%20Clinical%20practice-

2005/III%20-%20Disorders%20of%20Hemostasis/27%20-%20Normal%20Hemostasis.htm 
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Factor IXa (FIXa). The two proteases from the downstream cascade, Factor Xa (FXa) and 

thrombin activate Factor VIII (FVIII) to Factor VIIIa (FVIIIa) and Factor V (FV) to activated 

Factor Va (FVa) by positive feedback reactions. FVIIIa along with FIXa in the presence of Ca2+ 

on a negatively charged phospholipid provided by damaged cell membranes forms the tenase 

complex, which is comprised of FXIa, FX and FVIIIa, and then converts FX to FXa. FXa 

activity proceeds along the common pathway (Riddel et al., 2007). 

The extrinsic pathway is stimulated by tissue factor (TF) released from subendothelial cells upon 

endothelial damage. In addition, activated monocytes and smooth muscle cells are also able to 

express TF in a process regulated by cytokines and inflammatory mediators (Delvaeye & 

Conway, 2009). Experimental evidence now indicates that the extrinsic pathway is a more 

significant pathway for fibrin clot formation than the intrinsic pathway (Delvaeye & Conway, 

2009). This is based on the notion that humans deficient in contact factors, FXII, FXI, kininogen 

or kallikrein, do not suffer from severe bleeding (Monroe and Hoffmann, 2005). FVIIa, when 

bound to TF on a cell membrane, is a potent activator of the common pathway, which can then 

activate FX to FXa. Conversely, FVIII/FVIIIa and FV/FVa in the uncomplexed or free form 

have no activity alone.   

The common pathway begins with protease FXa from either the intrinsic, extrinsic or both 

pathways. Initially, FX is capable of converting prothrombin (FII) to thrombin (FIIa). Once a 

small amount of thrombin is generated, it further activates FV and FVIII by positive feedback 

reactions in order to amplify its own generation. FXa together with FVa as a co-factor, Ca2+, and 

an anionic phospholipid membrane forms the prothrombinase enzyme complex, which converts 

prothrombin to thrombin. FVa alone increases the rate of conversion of prothrombin to thrombin 

by 1000-fold primarily by increasing the catalytic efficiency or Kcat of FXa (Mann & Kalafatis, 
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2003). Thrombin catalyzes the proteolysis of soluble fibrinogen to insoluble fibrin monomers 

that trap red blood cells and platelets. At the same time, thrombin also activates FXIII to FXIIIa 

which crosslinks fibrin monomers to form a mesh-like and more stable fibrin clot.  

1.2 Regulation of Blood Coagulation  

The regulation of blood coagulation has been described previously by Norris (Norris L A., 

2003). Hemostasis involves a balance of blood coagulation and fibrinolysis. If either of these 

process is out of balance, it may lead to either excessive vascular thrombosis or a bleeding 

disorder. The coagulation cascade, as described above, is regulated at different steps by 

anticoagulant proteins and co-factors such as tissue factor plasminogen inhibitor (TFPI), 

antithrombin (AT-III), and activated protein C (Act C). TFPI, released from the endothelial 

layer, inhibits the tissue factor-FVIIa complex of the extrinsic pathway. Antithrombin (AT-III) 

irreversibly binds to and inactivates proteases the FIXa, FXa, TF-VIIa. Antithrombin binds to 

thrombin forming thrombin-Antithrombin (T-AT-III) complex in a process accelerated by 

heparin, which is rapidly cleared from the circulation. Protein C (Prot C) is activated by the 

thrombin-thrombomodulin complex to activated protein C (Act C), which in presence of protein 

S (S) then inhibits FVIIIa and FVa, respectively (Norris, L.A., 2003). Fibrinolysis is mediated by 

the protease plasmin derived from plasminogen by urokinase plasminogen activator (uPA) or 

tissue plasminogen activator (tPA). Plasmin converts fibrin to fibrin degradation products 

(FDPs)/ D-Dimer, which halt the coagulation process by interfering with thrombin generation 

and platelet aggregation.  Fibrinolysis is regulated and controlled by α2-antiplasmin and to some 

extent by α2- macroglobulin, antithrombin, α1 antitrypsin, and C1-inactivator. Figure 1.1B 

describes the regulation of blood coagulation. 
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1.3 Coagulation Factor V 

FV was discovered by the Norwegian haematologist, Paul Owren, in 1943 during World War II 

(Owren, 1947). After a long controversy, FV was purified and isolated from bovine plasma in 

1979 (Nesheim et al., 1979). Isolation and characterization of FV led to the paradigm of a 

membrane-bound clotting process (Kane et al., 1987). FV deficiency results into the 

haemorrhagic condition while the overactiviation of FVa (FV Leiden), associated with the 

common genetic risk factor, that results into the venous thrombosis (Mann & Kalafatis, 2003). 

Approximately 80% of FV in humans is found in human plasma at a concentration of 20-40nM 

with a Mr of 330,000Da and about 20% of FV is present in platelet α-granules. The liver is the 

main site of synthesis of FV (Tracy et al., 1982; Mann et al., 1981).  The gene for FV spans 

80kbp and is located on chromosome 1 at q21-25 and contains 25 exons (Cripe et al., 1992). A 

6.8kb mRNA is transcribed to give rise to a 2224 amino acid product having a 28 amino acid 

signal sequence. The mature FV protein is comprised of three domains organised as A1-A2-B-

A3-C1-C2 as described in Figure 1.2A. The A domains are homologous to FVIII and the copper 

binding protein, ceruloplasmin (Mann et al., 1984) while the C domain is similar to the slime 

mold protein, discoidin (Jenny et al., 1987). The B domain of FV has a Mr 150,000Da and is 

poorly conserved amongst species. The inactive procofactor is activated to FVa upon cleavage 

by thrombin at Arg709, Arg1018 and Arg1545 (Krishnaswamy et al., 1989). FVa is comprised 

of a heavy chain (A1-A2), having Mr 105,000Da and a light chain (A3-C1-C2) having Mr 

74,000Da. After dissociation from the B domain, both the heavy and light chains are held 

together non-covalently and stabilised by Ca2+, which in turn penetrates the phospholipid 

membrane of the damaged endothelium or the surface of activated platelets via the C2 domain  
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Figure 1.2A Factor (F) V. FV is comprised of an A domain represented in red; B domain in 

purple; and C domain in yellow. Thrombin highlighted in white box converts inactive FV to 

active FV (FVa). After activation, the B domain of FVa is replaced by calcium represented as 

Ca2+. The N- terminal (NH2) is represented by the heavy chain (left side)  and the C-terminal 

(COOH) by the to light chain (right side) of FV and FVa. 

Figure 1.2B FVarole in prothrombinase complex. FVa has a light chain represented in the 

small yellow circle and a heavy chain in the large red circle. FVa, bound to the phospholipid 

membrane, is represented in pink by a light chain. FVa acts as a cofactor and brings together the 

FII (substrate), represented in light blue, and FXa (protease) represented in green, via heavy 

chain. The complex is referred to as prothrombinase. Factor II (II) is converted to its active form 

Factor IIa (IIa) (thrombin) and dissociates from the prothrombinase as represented in panel B.  

Modified from Mann, K., & Kalafatis, M. (2003). FactorV: a combination of Dr. Jekyll and Mr 

Hyde. The American Society of Haematology, 101, 20-30. 
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(Kim et al., 2000) and associates with FXa to form the prothrombinase complex, described in 

Figure 1.2B. After thrombin activation of FV to FVa, the Km for prothrombin activation 

decreases by 2 orders of magnitude and the Kcat of FXa increases by 3 orders of magnitude, 

resulting in an overall enhancement of prothrombin activation of prothrombin by 5 orders of 

magnitude (Mann & Kalafatis, 2003) compared with FXa alone. FV possesses both anticoagulant 

and procoagulant properties. Down regulation of FV/FVa and FVIII/FVIIIa is accomplished by 

activated protein C (APC), protein S (PS) and thrombomodulin. APC inactivates FVa by 

cleavage at Arg 506, Arg 306 and Arg 679. APC cleavage of FVa at Arg 506 causes partial 

inactivation and subsequent cleavage at Arg 306 results in complete inactivation. Plasma FV can 

also be degraded by APC when bound to phospholipid membrane by cleaving at Arg 306, Arg 

506, Arg679 and Lys994 (Mann & Kalafatis, 2003). FV and FVa can act as a cofactor during the 

inactivation of FVIIIa by APC. Plasmin also cleaves and inactivates FV at Lys 309, Lys310, Arg 

313 and Arg 348 (Mann & Kalafatis, 2001). 

1.4 Coagulation and the Innate Immune System 

The coagulation process and immune system are co-regulated as indicated by comparative 

studies of invertebrate and vertebrate defense systems. The horse shoe crab has coagulation 

factors C and G which are serine protease zymogens, converted to coagulin after activation, they 

also possess bacterial agglutination and microbicidal activities. Hence, the vertebrate blood 

coagulation process has evolved as part of innate immune system as underscored by this defense 

mechanism in horseshoe crab which is the oldest living arthropod fossil (Krem & Di Cera, 

2002). In addition, in vivo and in vitro evidence has shown study showing that the FXIIIa in the 

common pathway cross-links bacteria to fibrin and provides additional time for the immune 

system to clear bacteria from the site of infection in humans (Loof et al., 2011). Thus, bacterial 
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infection activates the coagulation pathway and the fibrin clot has a ‘barrier function’ by 

restricting pathogen growth, survival and transmission (Levi et al., 2004). 

Thrombin plays a central role in mediating the interations between pathogen recognition and its 

destruction as a part of the innate immune system. Thrombin induces the host inflammatory 

response through endothelial, mural, epithelial, adipocyte and immune cells (Delvaeye& 

Conway, 2009). Thrombin also directly affects the complement pathway by activating C3, C5 

and the lytic membrane complex (C5b-9), and recruits activated leukocytes to destroy the 

invading pathogen (Delvaeye& Conway, 2009). 

Gram negative bacteria have been associated with sepsis, during which endotoxin/LPS from 

bacterial cells binds to toll-like receptor 4 (TLR4) of macrophages and dendritic cells leading to 

the overproduction of proinflammatory cytokines such as TNF-α, IL-1, IL-6, and IL-8 (Park et 

al., 2010). These cytokines induce mononuclear cells to express tissue factor and this result in 

widespread blood clotting, ischemia and multiple organ dysfunction syndromes (Levi et al., 

2004). With improper regulation, an inflammatory response derived from complement activation 

propagates more blood coagulation, which in turn promotes more inflammation.  

The propogation of inflammation leads to the excessive coagulation and organ damage. In the 

final stage, this process may cycle out of control and results in cell apoptosis or necrosis, which 

and may contribute to immunoparalysis and superinfection (Faix J, 2013). This 

immuosuppressed condition is often difficult to treat and is associated with disseminated 

intravascular coagulation (DIC), multiple organ failure, and a high mortality rate (Annane et al., 

2005).  
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1.5 Bacteria and Coagulation  

Besides minimizing blood loss and maintaining hemostasis, the coagulation process protects the 

body against bacterial infection by immobilizing and trapping the pathogen within the fibrin clot 

which permits targeted immune cell-mediated destruction (Levi et al., 2004). Hence, the 

coagulation system plays a significant role in host-pathogen interactions.  Local thrombus 

formation serves as a first line of defence against microbial invasion. Sepsis is caused by 

bacterial infection of the blood, while the severe and uncontrolled septic condition results into 

multiple organ failure, low blood pressure, rapid heart rate and altered mental state of septic 

shock (Reinhart et al., 2013). During sepsis or septic shock, the coagulant/anticoagulant balance 

is disturbed leading to excessive thrombosis or bleeding. The main pathogens responsible for 

septic shock are gram negative bacteria (25-30%), gram positive bacteria (30-50%), fungi (1-

3%), and parasites (1-3%) and Viruses (2-4%) (Tsiotou et al., 2005). Viruses promote secondary 

bacterial infections. It has been shown recently that in response to bacterial sepsis, neutrophils 

secrete micro-vesicle (MVs), derived from opsonized particles which decreases bacterial survival 

and limits pathogen transmission (Timár et al., 2012). Studies have recently shown that blood 

coagulation, which is a part of innate immune response, immobilises and kill Streptococcus 

pyogenes within the fibrin matrix mediated by FXIIIa, a highly conserved transglutaminase 

(Loof et al., 2011). This is also underscored by the fact that FXIII deficient mice show the higher 

indicies of infections from bacteria compared to wild type animals (Loof et al., 2011). 

In view of the above described information, bacteria have evolved to express and release 

proteases which degrade not only fibrin, but other coagulation factors that mediate clot formation 

(Delvaeye & Conway 2009). For instance, Streptocooccus pyrogenes, Staphylococcus aureus, 

Yersinia pestis, Haemophilus influenza, Salmonella typhimurium, Neisseria meningitidis, and 
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Borrelia burgdorferi rely on host plasminogen (tPA/uPA) to activate plasmin which dissolves 

the fibrin clot barrier and causes more infection at sites distant from the site of infection. Wild-

type mice have a greater mortality rate from Yersinia pestis infection compared to plasminogen-

deficient mice (Levi et al., 2004). Eventually, this process allows the pathogen to remove the 

fibrin barrier surrounding the local site of infection and thereby facilitates pathogen 

dissemination and survival. Other studies have demonstrated that OmpT from E. coli, PgtE from 

Salmonella enterica, Pla from Yersinia pestis degrade antimicrobial pepides (AMPs) during the 

host immune response. OmpT is 50-70% similar at the amino acid level to Pla and PgtE of the 

Omptin family (Hritonenko & Stathopoulos, 2007). Pla and PgtE have also been associated with 

cleavage of serum components and affect complement activation (Ramu et al., 2007; Riley et al., 

1983).  OmpT from enterohemorrhagic (EHEC) cleaves and inactivates human LL-37, the 

precursor of a human cationic antimicrobial peptide (Thomassin et al., 2011). Also EspP from 

EHEC strain has been shown to cleave and inactivate C3/C3b and C5 of the complement 

pathway (Orth et al., 2010).  

1.6 Outer Membrane Vesicles 

Outer membrane vesicle (OMV) production is conserved among prokaryotes and eukaryotes 

(Rompikuntal. P K, MD Dissertation, 2012). It was recently shown that eukaryotic human cells 

secrete microvesicles (MVs) in response by invasion of gram negative bacteria. Gram negative 

bacteria such as Escherichia coli secrete OMVs (Annane et al., 2005) which are enriched with 

lipopolysaccharide (LPS) and outer membrane proteins and are potent stimulators of  production 

of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β (Kuehn et al., 2005).  
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OMVs are round, 20-200nM in diameter and are comprised of LPS, protein, lipid, DNA, and 

RNA (Kuehn & Kesty, 2005). OMV production follows a "Type IV" mechanism of gram 

negative pathogens to release a large cargo of lipid and proteins into the extracellular 

environment. OMVs harbour outer membrane proteins but lack inner membrane proteins (Kuehn 

et al. 2005). 

E. coli secrete OMVs as a means of communication among the bacterial community to exchange 

protein, plasmid, antibiotics resistant protein, phage DNA, toxins, and other virulent factors. 

OMVs modulate the host immune response, survival, colonization and growth within the 

competitive environment to facilitate host cell destruction (Park et al., 2010). OMVs were also 

shown to protect hyper-vesiculating E. coli from destruction within the host by nullifying the 

effect of antimicrobial peptides (AMPs) such as polymyxin-B and colistin and T4 bacteriophage 

infections; which are usually outer membrane stressors to gram negative bacteria (Manning and 

Kuehn, 2011). OMVs contain outer membrane proteins which assist in adhesion of bacterial cells 

to host epithelial cells and manipulate the host immune response (Kuehn & Kesty, 2005). OMVs 

have been referred to as "bacterial bombs" that penetrate deep inside host tissues to sites that are 

not easily accessible by larger cells (Kuehn & Kesty, 2005). OMVs from E. coli injected 

intraperitoneally into mice cause 95% mortality with 25µg of OMV protein in 24 hours and 

100% mortality with 50µg of OMV protein in 36 hours (Park et al., 2010). 

OMVs are produced more commonly in pathogenic bacteria than non-pathogenic cells 

(Horstman & Kuehn, 2002). Enterotoxigenic E. coli (ETEC) associated traveller diseases in 

developing countries produce 10-fold more OMVs in the presence of antibiotics (such as 

polymixinB and colistin) than a E. coli K12 laboratory strain (Manning and Kuehn, 2011). LPS 

serotype, oxygen stress, availability of iron, and presence of antibiotics within the host 
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environment impact production, composition and toxicity of OMVs. E. coli, V.cholerae, and 

B.melitensis have a maximum rate of vesicle production at the end of log growth phase and 

OMVs are abundant at the site of cell division (Chatterjee & Das 1967, Hoekstra et al., 1976; 

Gamazo & Moriyn, 1987). As shown in Figure 1.3, the link between the peptidoglycan layer and 

the outer membrane may serve as the site of vesiculation and these sites are influenced by cell 

division. There are two other pathways of OMV production as described elsewhere 

(Rompikuntal P K, MD Dissertation, 2012) where either peptidoglycan generates fragments 

which are ultimately exported out of the cell by turgor pressure or by a quorum sensing 

molecule, described for Pseudomonas aeruginosa, on the outer membrane which interacts with 

Mg2+ and disrupts salt bridges that leads to vesicle budding, as described in Figure 1.3.  

OMVs induce the host response of pattern recognition receptor (PRR) expression and other toll-

tike receptors through a nucleotide binding domain containing protein (NOD)-like receptor 

(Rompikuntal P K, MD Dissertation, 2012). This in turn activates various cytokines (TNF, IL-

1B, IL-6) and chemokines (MCP-1 and IL-8) in response to infections (Faix. J., 2013). These 

processes trigger tissue factor expression and eventually lead to an enhanced high inflammatory 

response (Levi et al., 2004). The imbalance in blood coagulation and fibrinolysis blocks blood 

flow and vessels and then results in wide spread blood clotting which then finally leads to organ 

necrosis, multiple organ failure and finally death (Zeerleder et al., 2005). OMV production is 

cytotoxic, induces bacterial survival and promotes invasion within the host cell for colonization. 

It was recently shown that Vibrio cholerae has VrrA gene which regulates OMV production by 

controlling the expression of OmpA. Interestingly, OmpA mutant secretes a large number of 

OMVs (Rompikuntal. P K, MD Dissertation, 2012). However, the overall mechanisms 

underlying OMV production in E. coli are poorly understood.   
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Figure 1.3 Model of Outer Membrane Vesicles Biogenesis. There are three different proposed 

models for OMV production in gram negative bacteria.  

Model 1: OMVs are produced when a linkage between the peptidoglycan layer (In blue) and 

outer membrane is absent.  

Model 2: The peptidoglycan layer generates excessive fragments (Represented by blue 

particles), which are not transported back to the cytoplasm but are secreted as OMVs. 

Model 3: The outer membrane has quorum sensing molecules (Represented by a purple line) 

which interact with Mg2+ ions (Represented by a pink dot) and forms OMVs by ionic repulsion 

in Pseudomonas aeruginosa.  

Adapted from Mashburn-Warren, L.M., and Whiteley, M. (2006). Special delivery: vesicle 

trafficking in prokaryotes. Molecular Microbiology. 61, 839-846. 
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E. coli secrete OMVs in association with Shiga toxin (Stx) 1 and 2 (Yokoyama et al., 2000), 

Cytolysin A (ClyA) (Wai et al., 2003), heat-labile enterotoxin (LT) (Horstman &Kuehn, 2000), 

α-haemolysin (Balasalobre et al. 2003) and LPS, which is cytotoxic to human cells. E. coli 

0157:H7 secrete OMVs with Stx 1 which is 98% identical at the amino acid level to Shiga toxin 

from Shigella dysenteriae and Stx 2 which is 56% identical at the amino acid level to Stx1 (Kim 

et al., 2010). Stx 1 and 2 are transported through a Twin arginine translocator (Tat) to the 

periplasmic space and then sorted or packaged by an unknown (protein) factor (Choi & Lee, 

2004).  

OMV associated proteases OmpT (37kDa) and/or EatA (110kDa), as shown in Figure 1.5B, have 

recently been purified, and identified by LC mass spectrometry (Tilley D, MSc. Thesis, 2011) as 

being responsible for inactivating FV upon addition to normal human plasma. These proteases 

from E. coli reduced FV activity by up to 80% in normal human plasma.  

OMVs can be used as a vaccine and provide a promising future for treating different bacterial 

diseases (Rompikuntal P K, MD Dissertation, 2012; Kim et al., 2013).  

1.7 Bacterial Outer membrane protease T 

The outer membrane protein temperature regulated protease (OmpT) is an outer membrane 

associated protease that is temperature regulated with protein expression higher at 37oC than 

25oC (Manning & Reeves, 1976). OmpT is found in both pathogenic and non-pathogenic strains 

of E. coli. OmpT has a vase-shaped structure embedded in the outer membrane in a 10 stranded 

antiparallel β-barrel structure and is 70Å in length (Fig 1.4B). OmpT has an absolute requirement 

for rough LPS as a co-factor for its proteolytic activity (Yun et al., 2008; Kukkonen et al., 2004; 

Kramer et al., 2002) which is present in the outer membrane. The LPS binding sites are present 
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at Arg 175, Arg 138, Lys 226, Glu136 and Tyr134 (Kramer et al., 2001). The detailed structure 

of OmpT is described in Figures 1.4A and 1.4B. OmpT has five negatively charged surface loops 

(L1, L2, L3, L4 and L5) exposed to the extracellular space and four short intracellular 

periplasmic turns (T1, T2, T3 and T4). OmpT generally cleaves its protein substrates between 

dibasic residues. OmpT has specific cleavage site at P1 position for positive charged amino acid 

(Arg and Lys) and is less stringent at P1’ position for either a positive or negatively charged 

amino acid (such as Arg, Lys, Val, Gly, and Ala) (Dekker et al., 2001). The active site is present 

on extracellular loops as a catalytic dyad: Asp 83 and Asp 85 are on one side and His 212 and 

Asp 210 on the other side of the loop, respectively. The Asp/His catalytic dyad uses water as a 

nucleophile to cleave its substrate by a novel catalytic mechanism that is different from other 

aspartic proteases (Vandeputte-Rutten et al., 2001). 

OmpT expression is higher in a lower concentration of glucose (0.02%) and lower in a higher 

concentration of glucose (2%) in M9 Minimal media (Yang et al., 2011). Approximately 83% of 

E. coli isolates from urinary tract infections (UTIs) express the OmpT gene while 67% of faecal 

isolates express the protease (Lundrigan et al., 1992). OmpT inactivates antimicrobial peptides 

secreted by epithelial cells as part of subverting the host innate immune response (Stumpe et al., 

1998) suggesting that OmpT is a virulence factor that supports tissue destruction within the host. 

OmpT permits bacterial adhesion to host cells during infections (Hritonenko et al., 2007) and has 

been shown to cleave and inactivate tissue factor pathway inhibitor (TFPI) which would enhance 

the coagulation process and contribute to hemostatic imbalances that accompany bacterial 

infections (Yun et al., 2008). In addition, OmpT can also cleave and activate plasminogen to 

plasmin, albeit inefficiently compared to Pla from Yersinia pestis (Grodberg et al., 1988) and 

thereby facilitate the uropathogenic E. coli cell (UPEC) pathogenesis upon infection of the 
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urinary tract. However, shortly after, plasmin would be inhibited by α2-antiplasmin to levels that 

are insufficient for persistence of the infection (Lundrigan et al., 1992). One study has shown 

that OmpT is a poor activator of plasminogen and was not able to cause fibrinolysis (Haiko et 

al., 2009). Similary, Streptokinase/SK (resistant to α-antiplasmin) from Streptococcus pyrogenes 

(Li et al., 1999), Staphylokinase/SAK (sensitive to α-antiplasmin) from Staphylococcus aureus 

(Esmon et al. 1998) aspartase from Haemophilus influenza (Sjostrom et al., 1997) all engage the 

host plasminogen system to promote lysis of fibrin to facilitate pathogen dissemination and 

survival within the host environment. This study also showed that pro-matrix metalloproteinase-

9 (MMP-9) was converted to its active form and responsible for cleaving the collagen tissue 

barrier that would immobilized cells. Collagen was cleaved by Pla protease from Yersinia pestis 

and PgtE of Salmonellae enterica, but not by OmpT of E. coli (Haiko et al., 2009). In the case of 

plasminogen activation, two different studies showed contradictory results; stating that OmpT 

does (McCarter et al.,2004) or does not (Haiko et al., 2009) activate plasminogen. This thesis 

will shed further light on OmpT in activation of the host plasminogen system.  

The importance of FV in the immune defence towards microbial pathogens is underscored by the 

observation that compared to wild type mice, mice deficient in either plasma or platelet FV 

displayed increased mortality upon infection with Streptococcus pyrogenes (Sun et al., 2009). 

This result is consistent with dose-dependent inactivation of FV in both the baboon sepsis model 

(Samis et al. 2007) and recent studies by Tilley (MSc Thesis, 2011) describing OmpT 

inactivation of FV. 

OmpT from the pathogenic strain of E. coli O86a:K61 has been reported to cleave and inactivate 

FV and FVa (Tilley D, MSc Thesis, 2011) used in a baboon model of E. coli infections (Samis et  
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Figure 1.4 Structure of OmpT protease. OmpT has 10 antiparallel stranded β-barrel structures 

(Panel A) and a vase-shaped structure (Panel B) embedded in the outer membrane of E. coli. The 

amino acids are shown in the grey and white boxes. OmpT has five extracellular surface loops at 

the top, designated by L1, L2, L3, L4, and L5 and four periplasmic turns at the bottom, 

designated as T1, T2, T3, and T4 respectively (Panel A). The surface exposed loops have 

catalytic sites represented by H212 and D210 on one side and D83 and D85 on the other side 

(Panel B). The LPS binding sites (Red, white and yellow beaded structure) are represented on the 

left side as R175, R138 and R136 (Panel B). Adapted from Vandeputte-Rutten, L., Kramer, R. 

A., Kroon, J., Dekker, N., Egmond, M.R., & Gros, P., (2001). Crystal structure of the outer 

membrane protease OmpT from Escherichia coli suggests a novel catalytic site. The EMBO 

Journal, 20(18), 5033-5039. 
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al., 2007). Hence, the aim of this research was to further characterize the effect of OmpT on FV 

and coagulation and examine its potential role in the pathogenesis of EHEC infections. 

1.8 Study Rationale 

Sepsis is responsible for increased morbidity and mortality as it progresses from a systemic 

inflammatory response syndrome (SIRS), to acute renal failure, adult respiratory distress 

syndrome, and eventually septic shock and DIC (Rangel et al., 1998). Sepsis is caused by 

pathogenic compounds such as endotoxin (Lipopolysaccharide, LPS) which triggers the immune 

response and leads to microvascular thrombosis, multiple organ failure and DIC (LaPierre, 

2010). The death rate from severe sepsis is 25-30% (Bernard et al., 2001) and from septic shock 

is 40-70% (Annanne et al., 2005). Every 300 in 100,000 people in North America suffer from 

sepsis related death and chronic diseases. Sepsis is the 13th most common cause of death in the 

United States with 75,000 new cases per year (LaPierre, 2010). 

E. coli secrete OMVs as a part of a virulence mechanism that modulates inflammatory and 

clotting systems, exaggerates the host immune response and results in systemic inflammation 

and multiple organ failure (Park et al., 2010). Bacterial proteases enhance the synthesis of host 

proinflammatory mediators such as TNF-α and IL-6 and cause the activation of platelets and 

resultant DIC in humans (Riedemann et al., 2003). Pathogenic E. coli infections are a common 

cause of chronic diarrhoea, haemolytic uremic syndrome, haemorrhagic colitis and urinary tract 

infections (Joseph, 2011). These disorders in humans often occur in the presence of high 

molecular weight Serine protease autotransporters of Enterobacteriaceae (SPATEs) (Dautin, 

2010). EspP has been shown to cleave FV and pepsin and may be responsible for haemorrhagic 

colitis (Brunder et al., 1997). Although SPATEs such as EspC, EspP, Pet, Pic and Sat but not 
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Tsh and SepA, have been shown to cleave FV (Dutta et al., 2002), proteolytic inactivation of FV 

was not demonstrated because FV activity assays were not performed. 

E. coli O86a:K61 is the major contributor to infantile diarrhoea in humans and diarrhoeal 

diseases in wild birds (Ragione et al., 2002). It is also present in cattle (Blanco et al., 1993), pigs 

(Alex et al., 1995) and horses (Holland et al., 1996) where it causes significant diarrhoeal 

diseases and financial losses. E. coli infection has been associated with death and diarrhoea in 

children in developing countries (Egile et al., 1997). ETEC is the major cause of diarrhoea in 

young children and is responsible for 300,000-500,000 deaths annually in developing countries 

(WHO, 2006).  

EHEC was identified in 1982 (O’Brien et al.) and causes watery diarrhoea, hemolytic uremic 

syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). It usually affects people of 

all ages but young children and elderly patients develop severe symptoms and in most cases 

pregnant women and immune-compromised patients are at high risk. The symptoms include: 

bloody diarrhoea, severe stomach cramps, vomiting, nausea, renal damage, anemia, dehydration, 

disruption of red blood cells, depletion of platelets (thrombocytopenia), impaired kidney 

function, fever, and neurologic impairment (Brandt et al., 1990; Karmali et al., 1985; O`Brien & 

Mohawk, 2010).  

EHEC was shown to secrete OMVs harbouring the Shigatoxin-1 (Stx-1) and Shigatoxin-2 also 

known as Shiga-toxin producing E. coli (STEC) and deliver toxins to host cells and contribute to 

pathogenesis causing life threatening diseases (O`Brien & Mohawk, 2010). According to the 

Food and Drug Administration (FDA), the mortality rate of E. coli infectons with TTP is as high 

as 50% in elderly patients. About 15% of hemorrhaghic colitis victims may develop HUS which 
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leads to permanent loss of kidney function. Recently, the Centre for Diseases Control and 

Prevention (CDC) estimated that nearly 265,000 cases of EHEC/STEC infections occur every 

year with 2000 hospitalizations in the United States. EHEC is a major contributor to infections 

from contaminated food in North America and is currently a major world-wide health problem.   

1.9 Preliminary Studies 

Using an experimental E. coli 086a:K61 infection model in baboons, there was a dose-dependent 

cleavage and inactivation of FV that was proportional to the amount of bacteria infused (Samis et 

al., 2007). Plasmin, NE, APC, and protease(s) from E. coli JM109 lysates or culture supernatants 

were tested for their ability to cleave and inactivate FV upon addition to normal baboon 

plasma.The results are shown in Figure 1.5. The cleavage and inactivation of FV in normal 

baboon plasma was most consistent with the action of plasmin or protease(s) from E. coli JM109 

lysates or culture supernatants as assessed by immunoblotting (Samis, unpublished 

observations).  

Neutrophil elastase (NE) has been reported to initially activate FV and inactivate the activated 

product (Samis et al., 1997). During systemic inflammation, microbial infection triggers the 

release of proinflammatory mediators and NE. NE and proinflammatory mediators damage 

endothelial cells which induces the expression of tissue factor. Tissue factor activates the 

extrinsic pathway and further enhances coagulation and supresses fibrinolysis resulting in DIC 

(Russell et al., 2006). 

During Escherichia coli O86a:K61 induced sepsis in baboons, there was a dose-dependent 

relationship between the extent of FV inactivation and the amount of pathogenic E. coli infused 

(Samis et al., 2003). Although the host neutrophil elastase (NE) and/or plasmin were candidate 
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Figure 1.5 Cleavage and inactivation of FV during experimental sepsis and upon addition 

of proteases to normal baboon plasma. Normal baboon plasma (NBP) was untreated (Control) 

or taken from baboons or infused with Low, Medium (Med), and Lethal (Leth) doses of E. coli 

086a:K61 after 6h. Also shown is NBP to which was added different concentrations (M, final 

concentration) of neutrophil elastase (NE), Plasmin (Pln), activated protein C (APC) or E. coli 

JM109 lysate (Lys) or supernatant (Sup) fractions and incubated for 20min at room temperature. 

The samples were electrophoresed by SDS-PAGE and immunoblotted for FV. The molecular 

weight of intact FV (330kDa) and cleaved/inactivated FV (250kDa) are shown to the left of the 

panel. (Samis, unpublished observations). Panel B describes the two protease associated with 

OMVs OmpT and EatA (shown on right) from E. coli O86a:K61 which was shown to cleave and 

inactivate FV from 330kDa to 250kDa, as determined by Tilley et al. (2011).    

 

 

 

 

 

 

 

 

 



   

  27   
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 

A 

B 



   

  28   
   

proteases for mediating FV inactivation during experimental sepsis in the baboon model, a 

secreted bacterial protease may have been responsible for the effects observed. Recently, Tilley 

(MSc. Thesis, 2011) demonstrated that E. coli O86a:K61 released OMVs which possessed an 

associated protease activity that inactivated both purified FV and FVa in normal human plasma. 

The proteolytic activity vs. FV/FVa was purified by approximately 1000-fold from E. coli 

OMVs by tangential flow filtration (TFF), sucrose density ultracentrifugation and Sephadex G-

100 size exclusion chromatography. LC mass spectrometry identified 2 major proteins in the 

purified material as the proteases: OmpT and EatA as described in Figure 1.5B (Hospital for Sick 

Children, Toronto, ON) (Tilley, MSc Thesis, 2011). The FV microplate coagulation assay was 

used to show that this proteolytic activity associated with OMVs released by E. coli inactivated 

FV by up to 80% in normal human plasma. OMV associated proteolytic activity also prolonged 

the clot time of whole human blood as well as the prothrombin time (PT) and activated partial 

prothrombin time (aPTT) of normal human plasma (Tilley, MSc. Thesis, 2011).  

The following are the biochemical characteristics of E. coli O86a:K61 OMV associated OmpT 

and EatA as determined by Tilley (MSc Thesis, 2011): 

1) OmpT and EatA inactivate and hydrolyze FV/FVa as determined by microplate activity 

assay and immunoblotting, respectively. 

2) OmpT and EatA prolong the clot time of whole blood initiated with tissue factor. 

3) OmpT and EatA prolong the PT and aPTT clot times of human plasma. 

4) OmpT and EatA activity in OMVs is heat stable at 60-70oC vs FV/FVa in human plasma. 

OmpT and EatA inactivation of FV/FVa in human plasma is inhibited by 90% by the addition of 

purified alpha-1 protease inhibitor (A1PI); but only by 10-20% by serine protease inhibitors 
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(Phenylmethylsulfonylflouride, PMSF). The above information provides the rationale for the 

following hypotheses: 

1.10 Hypotheses 

1) OmpT does not affect the growth of E. coli in liquid culture. 

2) The EHEC OmpT may be involved in determining the production and/or composition of 

OMVs.  

3) EHEC cellular and OMV associated OmpT inactivates FV to attenuate blood coagulation.  
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In view of the above, this research will focus on the characterization of EHEC OmpT to 

determine its role in the coagulation process and in the pathogenesis of E. coli infections. The 

following are the research objectives of this thesis:  

1.11 Research Study Aims 

1) Characterization and cloning of OmpT from E. coli O86a:K61 to determine its effect on 

FV/FVa. 

2) To determine the effect of OmpT on the growth of EHEC in nutrient rich (LB) vs nutrient 

limited media (Minimal A media). 

3) To determine the effect of OmpT on the cell size of EHEC by Digital microscopy.  

4) To charaterize the EHEC genetic locus of OmpT by polymerase chain reaction (PCR) 

and OmpT protein expression in cells and OMVs by Immunoblotting.  

5) To determine the effect of OmpT from EHEC and OMVs on FV in normal human plasma 

versus plasminogen-deficient plasma. 

6) To determine the effect of EHEC OmpT on FV in normal human plasma by 

immunoblotting. 

7) To determine the effect of OmpT from EHEC cells and OMVs on the activated partial 

prothrombin time (aPTT) and Prothrombin time (PT) in normal human plasma.  

8) To determine the effect of OmpT from EHEC cells and OMVs on the activity of other 

coagulation factors in normal human plasma. 
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2.1 Bacterial Strains and Growth Conditions 

The three bacterial strains of EHEC (Wild type; ompT deletion mutant (∆ompT); and ompT 

over-expressing strain from a multicopy plasmid (pEHompT)) used in this work have been 

characterized in a previous study (Thomassin et al., 2012). EHEC were grown at 37oC with 

aeration at 200rpm in an orbital shaker (Eppendorf, Happauge, NY) in either Luria Bertani (LB) 

broth or Minimal A Media (60mM K2HPO4, 33mM KH2PO4, 7.5mM ammonium sulphate, 

1.7mM trisodium citrate, pH7.0 with 0.2% (w/v) glucose, 0.006 % (w/v) tryptone, 1mM 

MgSO4). Liquid growth media was supplemented with chloramphenicol (30µg/ml) for EHEC 

(pEHompT). E. coli O157:H7∆ompT was created by deleting the OmpT gene based on sacB 

gene based allelic exchange. E. coli O157:H7∆ompT(pEHompT) was created by transforming 

the pACYC184 multicopy plasmid (NEB England Biolabs Ltd., Pickering, ON, Canada) with the 

cloned OmpT gene under the control of its own promoter (Thomassin et al., 2012). 

2.2 Freezer stock of bacterial strains 

The bacterial strains were generously provided by Dr. Herve Le Moual from McGill University 

(Montreal, QC). The strains were streaked on a LB agar plate with/without chloramphenicol 

(30µg/ml) and subcultured into LB broth. The frozen stocks were prepared by mixing a 1 ml 

overnight culture into glycerol to achieve a final concentration of 15%. The samples were pre-

frozen on dry ice and stored at -80oC. The frozen stock of OmpT construct/pUC18 in DH5α and 

BL21(DE3) cells were prepared in a similar manner and stored at -80oC. 

2.3 List of bacterial strains used  

The following EHEC strains, listed in Table 2.1, were provided by Dr. Herve Le Moual (McGill 

University, Montreal, Canada).  The wild type refers to E. coli O157:H7 strain; ∆OmpT refers to 
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an OmpT deletion mutant of EHEC and pEHOmpT refers to an OmpT deletion mutant 

reconstituted with OmpT overexpression from a plasmid (pACYC 184) driven by the 

enterohemorrhagic promoter. The abbreviation wild type, ∆OmpT, and pEHOmpT for E. coli 

O157:H7 strains will be used in all sections.  

Table 2.1 Bacterial strains used in this study 

 E. coli strains* Genotype/Description References 

1 E. coli O157:H7 Wild type EHEC O157:H7 Riley et al., 1983 

2 EHEC ∆OmpT EDL933 ∆OmpT Thomassin et al., 2012

3 EHEC ∆OmpT (pEHOmpT) EDL933 ∆OmpT mutant 
expressing OmpT from pEHOmpT 

Thomassin et al., 2012

*EHEC strains were provided by Dr. Herve Le Moual. 

 

2.4 Cloning of OmpT Gene from E. coli O86a:K61  

2.4a Media and Growth Condition 

DH5α/BL21(DE3) cells were grown in LB medium and incubated overnight at 37oC with 

200rpm agitation in an orbital shaker (Eppendorf, Happauge, NY). The concentration of 

ampicillin in LB media was 100µg/ml in order to maintain the plasmid within the cells.  

2.4b Extraction of genomic DNA from E. coli O86a:K61 and Plasmid DNA from DH5αcells 

The genomic DNA was isolated from E. coli O86a:K61 by an alkaline lysis method (Sambrook 

and Russel, 2001). The plasmid DNA (pUC18) was extracted using an EZ-spin column Plasmid 

DNA MiniPrep Kit from Biobasic (Biobasic Inc., Markam, ON, Canada) according to the 

manufacturer’s instructions.  
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2.4c Polymerase Chain Reaction for amplification of the OmpT gene 

The genomic DNA of E. coli O86a:K61 has not been previously sequenced. Hence, the forward 

and reverse primer for the OmpT gene was designed from the coding region based on the 

sequences from five different E. coli strains. The primers were flanked by the restriction sites to 

facilitate directional gene cloning after PCR amplification. The forward and reverse primers 

were designed according to % GC content and length were:                                                                                     

5’-GGATCCATGCGGGCGAAACTTCTGGGAATAGTCCTGACAACCCCTATTGCG-3’ and                         

5’-AAGCTTTTAAAAGGTGTACTTAAGACCAGCAGTAGTGATGAAGTTATAGTT-3’, 

respectively. The OmpT gene was amplified using genomic DNA of E. coli O86a:K61 as a 

template. The final concentration of genomic DNA was 80ng in a 25µl PCR reaction and the 

annealing temperature (Ta) was calculated based on the equation: 4 (G+C) + 2(A +T) -5 (oC).            

Primers (0.4 µM), MgCl2 (2.5mM), buffer (1x), deoxyribonucleotide triphosphates (dNTPs) 

(0.2mM), and Taq DNA polymerase (0.025U/ml) were used according to the manufacturer’s 

instructions (Promega, Madison, WI, USA) in a total reaction volume of 25µl. The following 

conditions were used for OmpT gene amplification: denaturation at 94oC for 2 minutes; 

denaturation at 94oC for 30 seconds; and annealing Ta at 62oC for a total 30 cycles; with 72oC 

elongation for 1 minute; 72oC final elongation for 10 minutes and 8oC for final hold until the 

tubes were removed from the thermal cycler (MJ Research, Ramsey, MN). The PCR product was 

run on a 1.0% (w/v) agarose gel to confirm the amplification and size of the DNA with respect to 

the no template DNA control. Similarly, the above PCR method was followed to amplify and 

charaterize the OmpT gene locus in the three EHEC strains. 

 



   

  35   
   

2.4d Gel Extraction procedure of PCR product from E. coli O86a:K61 

The PCR product was gel purified using the EZ- Spin Column Gel Extraction Kit (Biobasic Inc., 

Markham, ON) as described in the manufacturer’s protocol. The gel containing the DNA was 

incubated at 56oC for 10 minutes and then transferred to a silica membrane containing column. 

The sample was centrifuged and washed twice with 80% (v/v) ethanol. The DNA was isolated 

with elution buffer (2.0mM Tris-HCl, pH 8.0) and stored at -20oC. 

2.4e Polishing of the PCR Product 

The PCR product was polished with a T4 DNA polymerase (3U/µl) (NEB England Biolabs Ltd., 

Pickering, ON, Canada) at 12oC for 20 minutes and the enzyme was heat inactivated at 75oC for 

15 minutes. The enzyme has 3’-5’ exonuclease activity, in order to remove 3’ overhangs and to 

fill-in 5’ overhangs to finally create a blunt-ended product for ligation.  

2.4f Restriction digestion and de-phosphorylation of vector and ligation of OmpT gene 

pUC18 plasmid was digested with a Sma-I according to the manufacturer’s instructions (NEB 

England Biolabs Ltd., Pickering, ON). Briefly, the restriction digestion of pUC18 with Sma-I 

(0.5U/µl) was carried out at 25oC in a water bath for 4 hours. Thereafter, pUC18 was 

dephosphorylated with antarctic phosphatase (5 units/µl) (New England Biolabs Ltd., Pickering, 

ON) at 37oC for 15 minutes and finally the enzyme was heat inactivated at 65oC for 5 minutes. 

The DNA concentration (OD260) of plasmid (pUC18) and insert (OmpT) was determined using a 

microplate reader (Molecular Devices, Sunnyvale, CA). The insert (ng) was calculated with 

respect to vector size (kb) and concentration (ng), based on the equation: Insert (ng) = [Vector 

(ng) x size of the insert (kb)/size of the vector (kb)]. The ligation was carried out with varying 

amounts of vector (Sma-I digested pUC18)  to insert (PCR product) ratios (1:3, 1:5, 1:10, 1:15) 
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in a 5x polyethylene glycol ligation buffer (250mM Tris HCl pH 7.6, 50mM MgCl2, 5mM 

Dithiothreitol (DTT), 25% (w/v) Polyethylene glycol PEG 4000) and T4 DNA ligase incubated 

for 16 hours at 16oC according to the manufacturer’s instructions (NEB England Biolabs Ltd., 

Pickering, ON). Restriction digestion with HindIII and BamHI was conducted to verify the 

insertion of the OmpT gene into pUC18 vector.  

2.4g Preparation of Competent Cells and Transformations 

The competent cells were prepared by the CaCl2 treatment method (Sambrook and Russel, 

2001). Briefly, an overnight culture (1%) was subcultured into 50ml LB media with aeration at 

37oC in an orbital shaker at 200 rpm (Eppendorf, Happauge, NY) and was grown to an optical 

density 600nm (OD600nm) of 0.5. The culture was then chilled on ice for 15 min. The cells were 

pelleted for 10 min at 4660 x g at 4oC. The cells were re-suspended with 50 ml of cold 0.1M 

CaCl2 and then incubated on ice for 30 min. The cells were centrifuged (Fisher Thermo 

Scientific, Wilmington, DE) at 4000 rpm for 10 min at 4oC and resuspended into 5ml of 0.1 M 

CaCl2 in 15% glycerol and stored at -70oC.  DNA (0.1-0.01ng) was transformed into 100µl of 

cells by heat shock to determine the transformation efficiency. Briefly, competent cells stored at 

-70oC were thawed on ice for 5 min. The cells were heat shocked at 42oC for 45 seconds and re-

incubated on ice for 1 min and recovered in 250 µl LB broth. The cells were then incubated with 

DNA in an orbital shaker at 200 rpm (Eppendorf, Happauge, NY) at 37oC for 1 hr. The cells 

were plated on LB agar/ampicillin plates and incubated (Fisher Scientific, Ottawa, ON) for 16 

hours at 37oC. Transformants were screened based on a blue-white selection method using X-gal 

and IPTG (Sambrook and Russel, 2001). LacZ gene in pUC18 produces β-galactosidase which 

converts X-gal (substrate) in the presence of IPTG (activator) to form blue colonies. If the          



   

  37   
   

β-galactosidase gene is interrupted by the insertion of another gene (i.e. OmpT), this would lead 

to the formation of white colonies.   

2.4h Directional Cloning and Sequencing of Insert in Cloning Vector 

The DNA in the cloned vector was digested with HindIII and BamHI and directionally cloned 

into a BamHI/HindIII digested pUC18 vector. The presence of the expected 1kbp insert was 

confirmed by restriction digestion and DNA sequencing by the dideoxy chain termination 

method at McGill University (Genome Québec Innovation Centre, Montreal, QC) (Figures 3.1E 

and 3.2A). The sequence of the OmpT gene is shown in Figure 3.2A. The cloned vector (OmpT 

construct) and pUC18 vector was transformed into BL21 (DE3) competent cells (OmpT deficient 

strain). The cloning procedures are shown schematically in Figure 2.1. 

2.4i E. coli O86a:K61 OmpT Sequence Analysis  

The OmpT DNA sequence analysis was performed by the Basic Local Alignment Search 

Tool/BLAST (National Centre of Biotechnology Information, Bethesda, MD), multiple sequence 

analysis (EMBL-European Bioinformatics Institute, Cambridge, UK), DNA translate tool 

(Expasy) and the reverse complement tool (Gene Infinity, San Diego, CA). 

2.5 Preparation of Reagents and Materials  

2.5a Preparation of Dialysis Tubing 

The cellulose ester dialysis tube (Spectra/Por®, VWR Scientific, PA) was boiled in 1.9mM 

disodium EDTA and 6.6mM sodium bicarbonate for 5 minutes and then washed with distilled 

water. Subsequently, the tubing was boiled for 3 x 5 minutes and washed with distilled water. 

The dialysis tubing was stored in 15% (v/v) ethanol at 4oC.  



   

  38   
   

Figure 2.1 Cloning of OmpT Gene in E. coli O86a:61. This figure represents cloning of the 

OmpT gene from E. coli O86a:K61 upon its amplification by PCR, restriction digestion of 

pUC18 with SmaI, blunt end cloning, directional cloning and finally transformation of the 

genetic construct into E. coli BL21(DE3) cells (OmpT deficient strain). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

  39   
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 
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2.5b Preparation of Prothrombin Time reagent 

The thromboplastin/prothrombin time (PT) reagent (Trinity Biotech, Wicklow, Ireland) was 

reconstituted with 7 ml of HBS (20mM HEPES, 150mM NaCl, pH7.4) buffer per vial. The 

reagent was dialysed with 12-14 kDa molecular weight cut off (MWCO) dialysis tubing (VWR 

Scientific, PA) for 12-14 hours with stirring at 4oC. The PT reagent was stored in aliquots at         

-80oC. 

2.5c Preparation of FV- Deficient Plasma 

The method for the preparation of FV-deficient human plasma was modified from Bloom et al. 

(Bloom et al., 1979). The blood was donated by healthy volunteer. The blood was collected in 

syringe containing a 1:9 volume ratio of 3.2% (w/v) sodium citrate to whole blood. The tubes 

containing the blood were mixed gently and then centrifuged at 4660 x g for 15 min at room 

temperature. The plasma was isolated and mixed with solid sodium EDTA to achieve a 5mM 

final concentration and pH of 7.4. The plasma was then incubated at 37oC for 8 hours. The PT 

coagulation assay was measured to confirm the clot time increased from 12-13 seconds before 

EDTA addition to 100-130 seconds after EDTA treatment. The FV deficient plasma was 

dialysed (75mm, 12-14 MWCO; VWR Scientific, PA) against 4L of 20mM HEPES, 150mM 

NaCl, pH7.5 (HBS) for 12-14 hours at 4oC. The plasma was aliquoted and stored at -80oC until 

use.     

2.6 Preparation of Outer Membrane Vesicles from E. coli O157:H7 

Wild type EHEC, EHEC ∆ompT, and EHEC ∆ompT(pEHompT) were grown in 10 ml Minimal 

media (60mM K2HPO4, 33mM KH2PO4, 7.5mM ammonium sulphate, 1.7mM trisodium citrate, 

pH7.0) with 0.2% (w/v) glucose, 0.006 % tryptone, 1mM MgSO4, with/without chloramphenicol 
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(30µg/ml) with aeration at 37oC in an orbital shaker at 200rpm (Eppendorf, Happauge, NY). The 

cultures were then subcultured into 1L of fresh minimal media and incubated at 37oC without 

agitation in an incubator (Fisher Scientific, Ottawa, ON) for 16-24 hours to reach an OD600nm 

of 0.5. The cultures were centrifuged at 10,000 x g at 4oC. The supernatants were filtered through 

0.22 µm vacuum filters (Starstedt, Montreal, QC) to eliminate any remaining bacteria. The pH of 

the culture supernatants was adjusted to 7.4 and concentrated by approx. 33-fold (1L to 30ml) 

with a 100kDa molecular weight cutoff  (MWCO) membrane (Pall Life Sciences, Ann Arbor, 

MI) using a tangential flow filtration (TFF) Capsule (Minimate, Pall Life Sciences, Ann Arbor, 

MI) at room temperature. The supernatants were further concentrated by 3-fold (30ml to 10ml) 

using 100kDa centrifugal filters (Millipore, Mississauga, ON) at 4660 x g at 4oC for 10mins. 

Outer membrane vesicles (OMVs) were pelleted by ultra centrifugation at 150,000 x g (Hitachi 

Koki Co, Hitachinaka, Japan) at 4oC for 1.5h and the pellets were resuspended in 250µl of HBS, 

pH 7.4. The OMVs were stored in aliquots in tightly sealed cryovials at -80oC and 

thawed/refrozen samples were not used for study. 

2.7 Preparation of Cell Lysates 

E. coli cells were grown in 50ml of Minimal media to an OD600nm of 0.50 and centrifuged 

(Fisher Thermo Scientific, Wilmington, DE) at 10,000 x g for 30 minutes at 4oC. The pellets 

were resuspended in 5ml of HBS, pH 7.4 and sonicated on ice at setting #7 for 10 mins using a 

Dismembranator (Fisher Thermo Scientific, Wilmington, DE). Aliquots of the cell lysates were 

stored in tightly capped cryovials -70oC and thawed/refrozen samples were not used for study. 
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2.8 Bicinchoninic Acid Protein Assay 

The protein concentration of EHEC OMVs and cell lysates were determined using the 

bicinchoninic acid (BCA) protein assay using bovine serum albumin (BSA, Fisher Thermo 

Scientific, Nepean, ON) as the standard according to the manufacturer’s instructions. The 

absorbance of standards and samples were read at 562nm using a microplate reader (SpectroMax 

Plus, Molecular Devices, Sunnyvale, CA) corrected with HBS, pH 7.4 as a control. Standard 

curves of Absorbance at 562nm vs BSA protein concentration were used to interpolate the 

protein concentrations of the OMV and cell lysate preparations using Sigma Plot 12.0 (San Jose, 

CA). 

2.9 Effect of OmpT Expression on Bacterial Growth in Liquid Culture 

Wild type EHEC, EHEC ∆ompT, and EHEC ∆ompT (pEHompT) were grown in 5ml of either 

LB broth or Minimal A Media with/without chloramphenicol (30µg/ml) overnight at 37oC with 

aeration at 200 rpm in an orbital shaker (Eppendorf, Happauge, NY).  The cultures were 

subcultured with 1% (v/v) of overnight culture inoculated into 50ml of fresh LB broth or 

minimal media and further incubated at 37oC with aeration at 200rpm. The OD600nm of culture 

aliquots were measured using a UV/Vis spectrophotometer (Thermoscientific, Wilmington, DE) 

every hour for 12-15 hours. The OD600nm versus incubation time (in hours) of the E. coli 

strains in different media was plotted using Sigma plot 12.0 (San Jose, CA). Statistical analysis 

of the growth curves was performed using ANOVA (Sigma Plot 12.0, San Jose, CA) with 

significance set at p ≤ 0.05. The same procedure was repeated for BL21(DE3)OmpT, 

BL21(DE3)pUC18, and Bl21(DE3) cells as a control in both LB and Minimal A media. 
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2.10 Transmission Electron Microscopy  

OMVs were prepared as described above. Copper grids (Glider grids, 200 mesh copper Electron 

Microscopy Sciences, Hatfield, PA) were loaded with 10µl of the OMV preparations and 

incubated for 1 minute to allow the grid to adsorb the specimen. Then, excess volume was 

removed by blotting on filter paper. The copper grids were then floated on a drop of 2% (w/v) 

uranyl acetate on parafilm for 30 seconds; blotted with filter paper and then air dried for 1 min at 

room temperature. Specimens were examined with a transmission electron microscope (TEM; 

FEI Company, model Technai 20, Hillsboro, Oregon; HV = 200.0kV; Mount Sinai Hospital, 

Toronto, ON) at 100,000 x magnification. The numbers and dimensions of OMV preparations 

from the three EHEC strains were measured using Magnification software (Orbicule Inc, 

Belgium). Number of OMVs/TEM field and OMV size distributions of the three EHEC strains 

were plotted and analyzed for significant differences using Sigma Plot 12.0 (San Jose, CA). 

2.11 Digital Microscopy  

The three different EHEC strains were stained with the Gram-staining procedure (Mahon et al., 

2011). Briefly, cells were smeared on dry and cleaned slides and stained with crystal violet 1% 

(w/v) for 1minute and gently rinsed with distilled water (0.22µm filtered). The cells were stained 

with Gram’s iodine 1% (w/v) for 1min and excess stain rinsed with distilled water. Specimens 

were then decolorized with 95% (v/v) ethanol and rinsed with distilled water. The specimens 

were counter stained with safranin 1% (w/v) for 1-2 min and excess stain removed with distilled 

water. The cells were observed by Digital Microscopy (DM; Keyence Corporation, Osaka, 

Japan) at 4000 x magnification and photographed using an attached camera unit (VHX-1100). 

The cell size (Length and Width) was measured using digital microscope software (VH-M100 
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XY measurement and VHX-H1M1 measurement) for at least 500 different cells from each of the 

three EHEC strains (wild type EHEC, ∆ompT EHEC, ∆ompT pEHompT EHEC). The cell sizes 

were compared and analysed using Student’s t-tests in Sigma Plot 12.0 with significance set at    

p ≤ 0.05. 

2.12 Determination of Viable E. coli Cell Number by the Spread Plate Technique 

The three different EHEC strains were grown in 10ml of Minimal A media (60mM K2HPO4, 

33mM KH2PO4, 7.5mM ammonium sulphate, 1.7mM trisodium citrate, pH7.0 with 0.2% (w/v) 

glucose, 0.006 % (w/v) tryptone, 1mM MgSO4) with/without chloramphenicol (30µg/ml). The 

cultures were subcultured into 50ml of fresh Minimal A media with 1 % overnight culture 

volume and OD600nm was measured at different times by spectrophotometer (Thermo 

Scientific, Wilmington, DE) for specific ODs (0.1, 0.2, 0.3, etc.). The culture at specific 

OD600nm was diluted 10-fold serially in Minimal A media and the cells were plated on LB/agar 

plates with/without chloramphenicol in duplicate and incubated at overnight 37oC. The cfu/ml 

was calculated based on the equation: cfu/ml = # of colonies/(dilution factor x volume of sample 

plated). The plates having 20-200 cells were counted and cfu/ml calculated for each the strain at 

specific OD600 values and the procedure is described schematically in Figure 2.2. The growth 

rate constant and generation time was calculated for three different EHEC strains according to 

Todar K, 2008. 

 2.13 Activated Partial Thromboplastin Time Coagulation Assay 

Citrated normal human plasma (NHP; 30µl; Precision Biologicals, Halifax, NS) (30µl) was 

incubated with 30µl of OMVs (0.25µg, 0.5µg, 1.0µg and 2.0 µg protein) or with 30µl whole E. 

coli cells (107, 108, 109, and 1010 cells) or HBS, pH 7.4 as a control at room temperature for 30  
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Figure 2.2 Spread plate technique to determine the cell concentration in cfu/ml of EHEC. 

The spread plate technique was performed to determine the cfu/ml of the three EHEC strains. 

The cells were cultuered in Minimal A media 12-14 hours at 37oC with aeration at 200 rpm. The 

culture was then subcultured into the fresh Minimal A media and absorbance at 405 (nm) was 

recorded at regular intervals (0.1, 0.2, 0.3, etc.). The culture was serially diluted by 10-fold and 

aliquots were duplicated and incubated 12-14 hours at 37oC. The plates having 20 to 200 

colonies were counted and the cfu/ml was determined as # of colonies/(dilution factor x volume 

of sample plated). The standard curves of cfu/ml vs. OD600nm for the different strains were 

plotted using Sigma Plot 12.0.  
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  47   
   

minutes or 1hour. The activated partial thromboplastin time (aPTT) assay was performed in 

microplate reader (SpectraMax Plus, Molecular Device, Sunnyvale, CA). Fibrin clot formation 

was initiated with 30 l aPTT reagent (bioMerieux, Durham, NC). The samples were mixed for 

5 seconds and incubated in the plate reader for 5 minutes and 30l of 25mM CaCl2 was added to 

initiate fibrin formation. The samples were shaken for 5 seconds and the absorbance at 405nm 

was measured every 5 seconds for 6 minutes at absorbance 405nm in a microplate reader 

(SpectraMax Plus, Molecular Devices, Sunnyvale, CA). The clot time was determined as the 

time after CaCl2 addition to reach the half maximal increase in absorbance at 405nm achieved 

during the fibrin clot formation event. 

2.14 Prothrombin Time Assay 

Citrated normal human plasma (NHP; Precision Biologicals, Halifax, NS) (30µl) was incubated 

with 30µl OMVs (0.25µg, 0.5µg, 1.0µg and 2.0 µg protein) or with 30µl whole E. coli cells 

(107,108,109, and 1010 cells) or HBS, pH 7.4 as a control at room temperature for 30 minutes or 1 

hour. The prothrombin time (PT) assay was performed in a microplate reader (SpectraMax Plus, 

Molecular Devices, Sunnyvale, CA). Fibrin clot formation was initiated with 60µl each of 

thromboplastin reagent (Trinity Biotech, Wicklow, Ireland) and 25mM CaCl2. The samples were 

shaken for 2 seconds and the absorbance at 405nm was measured every 5 seconds for 6 minutes 

with a microplate reader (SpectraMax Plus, Molecular Devices, Sunnyvale, CA). The clot time 

was determined as the time after CaCl2 addition to reach the half maximal increase in absorbance 

at 405nm achieved during the fibrin clot formation event.  
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2.15 FV Coagulation Assay with OMVs and Lysates 

Citrated normal human plasma (NHP, Precision Biologicals, Halifax, NS) was diluted 5x-fold in 

HBS, pH 7.4 and incubated with OMVs (1µg) or HBS, pH 7.4 as a control at room temperature 

for 30 minutes. For cell lysates, the cells were grown to an OD600 of 0.5. NHP was finally diluted       

20-fold and analysed with the FV assay. The FV assay was performed in a microplate reader 

(SpectraMax Plus, Molecular Devices, Sunnyvale, CA) as described by Tilley et al. (2012). 

Briefly, FV deficient plasma (50l) was mixed with treated NHP samples and clot formation was 

initiated with thromboplastin/prothrombin time (PT) reagent (50l). The samples were mixed for 

10 seconds and 50µl of 25 mM CaCl2 was added to initiate fibrin formation. The absorbance was 

read at 405nm every 6 seconds for 6 minutes in a microplate reader (SpectraMax Plus, Molecular 

Devices, Sunnyvale, CA). The clot time was defined as the time after CaCl2 addition to reach the 

half maximal increase in absorbance at 405nm. The three important parameters can be 

determined from the graph and compared between the samples as shown in Figure 2.3. The clot 

time was defined as the time to reach the half maximal absorbance increases after CaCl2 

addition. The initial rate of fibrin clot formation (mUnits/minute) was defined as the rate of 

increase of absorbance at 405nm during the initial 5-6 time points of fibrin clot formation. The 

extent of clot formation was defined as the difference between the maximal and minimal 

absorbance at 405nm during fibrin clot formation. 

2.16 FV Coagulation Assay with whole EHEC cells 

Wild type EHEC, EHEC ∆ompT, and EHEC ∆ompT (pEHompT) cells were grown in 5ml of 

Minimal A media overnight at 37oC with aeration at 200rpm. The cells were subcultured into    

50 ml fresh Minimal media and grown to an OD 600nm of 0.5. The cells were centrifuged at  
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Figure 2.3 Fibrin Clot formation in normal human plasma using the kinetic microplate FV 

activity assay. The FV activity assay was performed by measuring the change of absorbance at 

405 nm over time in the kinetic FV microplate assay (Tilley et al., 2011). The graph represents 

the clot formation event using 20-fold diluted NHP. The x-axis represents the time for clot 

formation (in minutes) and the y-axis represents the change in absorbance at 405 nm. The first 

two red arrows represent the half maximum increase in absorbance (24.26sec) at 405nm. The 

second line in red represents the initial rate of clot formation for the first five time points (535.4 

milliUnits/minute with r2 of 0.969).  The third line with two sided arrows in red represents the 

extent of clot formation or the difference between the maximal and minimal absorbance at 

405nm during fibrin clot formation. 
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10,000 x g at 4oC for 30 minutes. The cell pellets were resuspended in HBS, pH 7.4 in different 

volumes to give 1010 cells/ml which was further diluted 10-fold to 109 cells/ml. Normal Human 

Plasma (NHP, 30 µl of 5-fold diluted; Precision Biological, Halifax, NS) in HBS, pH 7.4, was 

treated with 109cells/ml at room temperature for 1 hour. The samples were diluted in HBS, pH 

7.4 20-fold with respect to plasma and cells were pelleted in a microcentrifuge (Thermo Electron 

Corporation, Waltham, MA) at 17,000 x g for 5 minutes at 4oC. The supernatants were then 

assayed in the FV coagulation microplate assay as described above. 

2.17 Effect of cellular and OMVs associated OmpT on other coagulation and fibrinolytic 

factor activities in normal human plasma 

The standard curves of FI, FII, and FX were generated in the same manner as the FV standard 

curves as mentioned earlier. Different dilutions of NHP (0-fold to 1024-fold) in HBS, pH7.4 

were assayed with factor deficient FI (Affinity Biologicals, Ancaster, ON), or FII or FX deficient 

(Geroge King Biomedical, Overland Park, KS, USA) human plasma by monitoring the change in 

absorbance at 405nm for 6 minutes for every 5 seconds. In order to perform the coagulation 

factor activity assays, 30 µl of 5-fold diluted Normal Human Plasma (NHP, Precision Biological, 

Halifax, NS) in HBS, pH 7.4, was treated with 109cells/ml for 1 hour or 1µg protein from the 

OMVs from the three EHEC strains for 30 minutes at room temperature. The samples were then 

diluted 20-fold with respect to plasma except for the Fibrinogen (FI) assay which was diluted 2-

fold with repect to plasma and the cells were pelleted before performing activity assays as 

described above. Factor deficient (fibrinogen, FII, and FX) plasma (50l) was mixed with the 

samples and then clot formation was initiated with thromboplastin/prothrombin time (PT) 

reagent (50l). The samples were mixed for 10 seconds and 50µl of 25 mM CaCl2 was added to 

initiate fibrin formation. The absorbance was read at 405nm every 6 seconds for 6 minutes in a 
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microplate reader (SpectraMax Plus, Molecular Device, Sunnyvale, CA). The clot time was 

defined as the time after CaCl2 addition to reach the half maximal increase in absorbance at 

405nm. In the case of the FV standard curve and activity assay, plasminogen (PLG)-deficient 

plasma (Affinity Biological, Ancaster, ON) was used instead of NHP and assayed using FV-

deficient plasma in the FV activity assay as described above. 

2.18 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

EHEC OMVs (75-80 ng) were added to an equal volume of 2x Loading Dye (2xLD: 0.025% 

bromophenol blue, 12.5% glycerol, 2% SDS, 5% mercaptoethanol, 10mM HEPES, pH 7.4, 

75mM NaCl). Cells were normalised to an OD600 of 0.5 in Minimal A media and the cell pellets 

from 1 ml culture aliquots were dissolved in 100µl of 2xLD. All samples were heated at 95oC for 

5 minutes and loaded in 4-20% polyacrylamide Criterion gradient gels (BioRad, Mississauga, 

ON) along with 5-20 µl of prestained molecular weight markers. The gels were electrophoresed 

in 25mM Tris, 192mM glycine, 0.1% SDS, pH-8.3 at constant voltage (150V) for 1.5 hours at 

room temperature. The gels were either stained with Coomassie Brilliant Blue or silver. 

2.19 Coomassie Brilliant Blue Staining 

After electrophoresis, the gels were submerged into Coomassie Brilliant Blue stain (0.0016% 

(w/v) Coomassie brilliant blue, 5% (v/v) glacial Acetic acid, 7.5% (v/v) ethanol) for 

approximately 16 hours at room temperature with agitation. Thereafter, the gels were destained 

in 15% (v/v) methanol, and 3% (v/v) glycerol for at least 1 hour at room temperature with 

agitation and then stored at 4oC until photography. 
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2.20 Silver Staining 

All the solutions were made prior to carrying out the staining procedure. The procedure was a 

modification of the method of Merril et al., 1981. The gel was gently removed and submerged 

into 200 ml prefix solution (50% methanol, 10% ethanol, 40% water). The gel was then 

microwaved for 1.5 minutes at 50% power. While heating, the gel was shaken for 30 seconds for 

every 1.5 minutes. The prefix solution was decanted and replaced with 200 ml of water, then 

heated in a microwave for 2 minutes at 50% power with frequent shaking. The gel was then 

incubated in water with agitation for 2 minutes at room temperature. The water was decanted, 

replaced with 200 ml of 100µM DTT, and heated for 2 minutes at 50% power with frequent 

shaking. The gel was incubated with the DTT solution with agitation for 2 minutes at room 

temperature. The DTT solution was discarded and replaced with 0.1% (w/v) silver nitrate in 

water and heated for 1.5 minutes at 50% power with frequent shaking. The gel was washed twice 

with 200 ml distilled water. The water was decanted and replaced with a 200 ml developer 

solution (3% (w/v) sodium carbonate, 0.05% (v/v) formaldehyde) and agitated until all the 

protein bands were clearly visible. The reaction was stopped with 2.3M citric acid for 1 minute. 

The gel was again washed with distilled water and stored in 0.03% (w/v) carbonate at 4oC until 

photography. 

2.21 Western Blotting 

2.21a) Western Blotting for FV in Human Plasma 

For this assay NHP (30µl; Precision Biologicals, Halifax, NS) was treated with 1 µg of OMV 

protein or 109 cells/ml from wild type EHEC, EHEC ∆ompT, and EHEC ∆ompT (pEHompT) 

and incubated for various times (0 min, 20 min, 1 hour, 1.5 hours, 2 hours) at room temperature. 
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At different times, 60 µl of sample was removed and diluted 2x-fold further with HBS, pH 7.4. 

For whole cells, the cells were centrifuged at 17,000 x g for 5 minutes at 4oC and the supernatant 

fractions recovered. Samples of NHP treated with OMVs or cells (120l) were concurrently 

analyzed with the FV microplate coagulation assay (50µl; See above) and Western blotting 

(50µl). For Western blotting, the samples (50µl) were diluted 6x-fold further in 2x Loading dye 

(2xLD: 0.025% bromophenol blue, 12.5% glycerol, 2% SDS, 5% mercaptoethanol, 10mM 

HEPES, 75mMNaCl) and heated at 95oC for 5 minutes. For sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE), 40µl of samples (0.33µl of NHP) were 

electrophoresed in 4-20% polyacrylamide gradient Criterion gels (BioRad, Mississauga, ON) 

along with 10-20l prestained molecular weight markers (BioRad, Mississauga, ON) in 25mM 

Tris, 192mM glycine, 0.1% SDS, pH-8.3 at constant voltage (150V) for 1.5 hours at room 

temperature. The gel was gently removed and electroblotted onto polyvinylidene fluoride 

(PVDF) membranes (Millipore, Etobicoke, ON) at 35 V (Constant voltage) in 25mM Tris, 

192mM glycine, 0.05% SDS, 10% (v/v)methanol, pH 8.3 with gentle stirring overnight for 16 

hours at 4oC. The membrane was blocked with phosphate buffered saline (PBS, 14mM NaCl, 

1.5mM KH2PO4, 10mM NaHPO4, 2.5mM KCl, pH 7.4) containing 2% (w/v) BSA for 1 hour 

with agitation at room temperature. The membrane was washed 4x in PBS-Tween (14mM NaCl, 

1.5mM KH2PO4, 10mM NaHPO4, 2.5mM KCl, 0.1% (v/v) Tween-20, pH 7.4) for 5 minutes 

each with agitation at room temperature. The membrane was incubated with sheep anti-human 

FactorV-IgG (30,000-fold dilution; Haematologic Technologies, Burlington, VT) in 5% (w/v) 

non-fat milk powder in PBS-Tween for 1 hour with shaking at room temperature. The membrane 

was washed 4x in PBS-Tween at room temperature for 5 minutes each with gentle shaking. The 

membrane was then incubated with donkey anti-sheep-IgG conjugated with horseradish 
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peroxidase (21,000-fold diluted; Jackson Immunochemicals, West Grove, PA) in 5% (w/v) non-

fat milk powder in PBS-Tween for 1 hour with agitation at room temperature. The membrane 

was washed 4x in PBS-Tween for 5 minutes each at room temperature and once with distilled 

water for 5 minutes at room temperature. The membrane was then exposed to 10ml each of 

enhanced chemiluminescence (ECL) solutions 1 and 2 (Perkin Elmer, Waltham, MA) reagents 

for 1 minute at room temperature. The membrane was wrapped in Saran wrap and exposed to 

XOMAT film (Kodak, Toronto, ON) with an intensifying screen for various times (30seconds, 1 

minute, 2 minutes or 5 minutes) at room temperature. The film was developed in an automated 

developer (Kodak X-OMAT 1000A, Toronto, ON) and the image scanned with a Hewlett-

Packard Scanjet 4750c scanner (Mississauga, ON).   

2.21b) Western Blotting with Cro-P Antibody 

The Western blotting procedure for cell lysates or OMVs from wild type EHEC, EHEC ∆ompT, 

and EHEC ∆ompT (pEHompT) using the rabbit anti-Cro-P antibody (74% identical with OmpT 

at amino acid level) was performed as described by Thomassin et al. (2012). For preparing 

whole cell lysates, the cell numbers were normalised to OD600- 0.5. Briefly, cell cultures (1ml in 

Minimal A media with an OD600 of 0.50) were centrifuged for 5 mins at 13,000 x g at room 

temperature and the cell pellets resuspended in 100l of 2x Loading dye (2xLD; 62.5mM Tris 

pH6.8, 12.5% glycerol, 2% SDS, 0.025 % bromophenol blue, 2% mercaptoethanol).  OMVs 

were resuspended into equal volumes of 2x LD. Both sets of samples were heated at 95oC for 5 

minutes and electrophoresed (0.0036-0.18ug of OMV protein in 20µl sample or 1.0g protein in 

7.5l for the cell lysates) in 10% polyacrylamide gels under denaturing conditions (Sambrook 

and Russell, 2001) along with 10-20l of prestained molecular weight standards (BioRad, 
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Mississauga, ON) in 25mM Tris, 192mM glycine, 0.1% SDS, pH-8.3 for 40 minutes at 80V and 

90 minutes at 100V. The gel was gently removed and electroblotted onto a polyvinylidene 

fluoride (PVDF) membrane (Millipore, Etobicoke, ON) at 35 V (Constant voltage) in 25mM 

Tris, 192mM glycine, 0.05% SDS, 10% methanol, pH 8.3 with gentle stirring for 16 hours at 

4oC. The membrane was blocked with Tris-Buffered Saline-Tween (TBS-Tween; 20mM Tris, 

500mM NaCl, 0.025% (v/v) Tween-20, pH 7.4) containing 5% non-fat dry milk powder for 1 

hour at room temperature with shaking. The blot was washed 3x in TBS-Tween with gentle 

shaking for 5 minutes each at room temperature. The blot was incubated overnight at 4oC with a 

rabbit polyclonal anti-Cro-P antibody (1:10,000 dilution, McGill University, Montreal, QC) in 

TBS-Tween containing 5% (w/v) non-fat dry milk. The blot was washed with 3x in TBS-Tween 

for 5 minutes each at room temperature and transferred to goat anti-rabbit IgG conjugated with 

horseradish peroxidase (1:5,000 dilution, Sigma-Aldrich, St Louis, MO) in TBS-Tween 

containing 5% non-fat dry milk and incubated for 1 hour at room temperature with gentle 

shaking. The blot was washed 3x in TBS-Tween, 1x with distilled water for 5 minutes each at 

room temperature and then exposed to 10ml each of ECL reagents 1 and 2 (Perkin Elmer, 

Waltham, MA) for 1 minute at room temperature. The membrane was wrapped in Saran wrap 

and exposed to a XOMAT film (Kodak, Toronto, ON) with an intensifying screen for 30 seconds 

at room temperature. The film was developed in an automated developer (Kodak X-OMAT 

1000A, Toronto, ON) and an image scanned into a Hewlett-Packard Scanjet 4750c scanner 

(Mississauga, ON). The density of the individual protein species was determined by 

densitometry using Corel Photo Paint Software (Ottawa, ON). 
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2.22 Statistical Analysis 

All the statistical analysis was performed by SigmaPlot Version 12.0 (San Jose, CA). The 

analysis was performed by one-way analysis of variance (ANOVA; Kruskal-Wallis test; Holm-

Sidak test; Tukey’s test) and the Student’s t-test. Statistical significance was set as p <0.05. 
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Results Section A 

3.1 Cloning and characterization of OmpT gene from E. coli O86a:K61  

The OmpT protein from E. coli O86a:K61 was shown to cleave and inactivate FV in human 

plasma to attenuate blood coagulation as a part of innate immune response (Tilley D, M.Sc. 

thesis, 2011). In order to further characterize OmpT from this strain of E. coli, the OmpT gene 

was cloned.  

The nucleotide sequence of E. coli O86a:K61 is not presently known. Hence, the forward and 

reverse primers were designed based on a consensus sequence of five different E. coli strains (E. 

coli O157:H7, E. coli O55:H7, E. coli O103:H2, E. coli K-12, and E. coli O127:H6). The OmpT 

gene was amplified using genomic DNA from E. coli O86a:K61 as a template and no DNA 

template was used as a control by the polymerase chain reaction (PCR) as described in Figure 

3.1A. For the cloning process, pUC18 was isolated and digested with SmaI (Figure 3.1 B) for 

blunt end cloning. The OmpT gene was polished with T4 DNA polymerase (Figure 3.1B) to 

remove or fill up overhangs and pUC18 was dephosphorylated for efficient blunt cloning (Figure 

3.1B). The OmpT gene was ligated into the pUC18 vector with various vector:insert ratios as 

shown in Figure 3.1C. The OmpT gene was then cloned into the pUC18 vector and transformed 

into E. coli DH5α cells. The cloned vector, having the OmpT gene, was selected based on blue 

white screening as shown in Figure 3.1D (Sambrook & Russel, 2001). The recombinant vector 

was digested with HindIII and BamHI to confirm the insertion of the OmpT gene into the pUC18 

vector (Figure 3.1E). Further, the recombinant vector was digested with HindIII and BamHI for 

directional cloning into the HindIII and the BamHI digested pUC18 vector and finally 

transformed into E. coli BL21 (DE3). 
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Figure 3.1 Cloning of OmpT gene from E. coli O86a:K61. The OmpT gene was amplified 

using genomic DNA from E. coli O86a:K61 as a template using PCR. Lane 1 was the DNA 

marker (0.5µg/µl, New England Biolabs Ltd., Pickering, ON); lane 2 had the OmpT gene 

amplified from genomic DNA and lane 3 contained the no template control (Panel A). pUC18 

(undigested in lane 2) was digested with Sma-I (lane 3), and dephosphorylated with Antarctic 

phosphatase (lane 4) as shown in Panel B. The OmpT gene product was polished with T4 DNA 

polymerase (Panel B) is shown in lane 6, and unpolished product shown in lane 5 (Panel B). The 

vector (pUC18) and insert (OmpT gene) was ligated using different ratios: 1:3 (lane 2, 3, 4, 5, 6, 

7), 1:5 (lanes 8, 9), 1:10 (lanes 10, 11), 1:20 (lanes 12, 13) and 1:50 (lanes 14, 15) with a DNA 

marker lane in the outer wells (lanes 1 and 16) as shown in Panel C. The OmpT gene was cloned 

into the pUC18 vector and selected based on the blue white screening (Panel D).The OmpT 

construct was isolated from the white colonies and pUC18 from the blue colonies and then 

sequentially digested with BamHI and HindIII to confirm the insertion of the OmpT gene (Panel 

E). pUC18 (lane 2) was digested with HindIII (lane3), BamHI (lane 4), and HindIII & BamHI 

(lane 5). The OmpT construct (lane 9) was digested with HindIII (lane 6), BamHI (lane 7), and 

HindIII & BamHI (lane 8) with DNA marker added to the outer two wells (lanes 1, and 10).  
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The PCR amplification and insertion of the OmpT gene into the pUC18 vector was confirmed by 

two methods: restriction digestion and sequencing by the dideoxy chain termination, as shown in 

Figure 3.1E and 3.2A, respectively. There are also LPS binding sites at Arg 175, Arg 138, Lys 

226, Glu 136 and Tyr 134 (Kramer et al., 2001) as shown in Figure 3.2B. The gene encoding the 

active sites and LPS binding sites were compared to genes from different E. coli strains which 

displayed no significant differences as verified by multiple comparison analyses, at both the 

nucleotide and amino acids levels. Hence, the active and LPS binding sites of the OmpT gene 

from E. coli O86a:K61 are similar to the OmpT gene from different E. coli strains. OmpT 

cleaves its substrate at a highly specific P1 position at arginine/lysine and less stringently at P1’ 

positions having arginine/ lysine/ valine/ glycine/alanine (McCarter et al. 2004). OmpT is a vase-

shaped β-barrel structure, 70Å long as shown in Figure 1.4B. OmpT is embedded in the 

membrane along with lipopolysaccharide (LPS) which permits the proper orientation of the 

proteolytic active sites (Asp 83 & Asp 85, His 212 &Asp 210) allowing them to extend facing 

the extracellular environment as shown in Figure 3.2B. Based on cleavage specificity between 

dibasic residues, there are 12 different potential OmpT cleavage sites in human FV.   

3.2 OmpT Sequence Analysis from E. coli O86a:K61  

The sequence analysis was performed using the Basic Local Alignment Search Tool (BLAST; 

National Centre of Biotechnology Information, Bethesda, MD). The OmpT gene of E. coli 

O86a:K61 was compared against gene sequence from different E. coli strains at the nucleotide 

and protein levels, and the result of this comparison is described below in Table 3.1. The OmpT 

gene from E. coli O86a:K61 was compared to the same locus in different strains for conservative 

and non-conservative changes. There were no conservative and non-conservative changes found 
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Figure 3.2 OmpT nucleotide and amino acid sequence in E. coli O86a:K61.The OmpT gene 

was sequenced by the dideoxy chain termination method at McGill University, QC (Panel A). 

The gene has an initiation codon ATG and a termination codon TAA. As shown in Panel B, the 

first 10 amino acids form the signal sequence (not underlined) and the remaining is mature 

amino acid sequence (underlined) that result in a total of 318 amino acids (Panel B). The active 

sites are a catalytic dyad, Asp83-Asp85 and His 212-Asp210, highlighted in turquoise blue, 

(Panel B). The five amino acids that form the LPS binding sites are shown in grey boxes as LPS. 

The L1-L5 extracellular folds are highlighted in pink and the T1-T4 periplasmic folds are 

highlighted in yellow. The active sites, LPS binding sites, and extracellular and periplasmic folds 

(Panel B) were adapted from Kramer, Vandeputte-Rutten, Roon, Dekker, Egmond, & Gros, 

(2001). Identification of essential acidic residues of outer membrane protease OmpT supports a 

novel active site. FEBS Letters. 505(3), 426-430. 
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in the OmpT DNA sequence of E. coli O86a:K61compared to the other E. coli strains in both 

LPS binding sites and the active sites.  

Table: 3.1 Sequence analysis of OmpT from E. coli O86a:K61 with other bacterial strains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Characterization of OmpT genetic locus in EHEC strains   

The OmpT gene was amplified using genomic DNA from wild type and ∆OmpT, and plasmid 

DNA from pEH OmpT using PCR. The 1 kbp product of the OmpT gene was present in the wild 

type EHEC and pEHOmpT, but not in the ∆OmpT strain as shown in the gel image of Figure 

3.3. 
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Figure 3.3 PCR amplification of OmpT gene locus in EHEC. The presence of the OmpT gene 

locus in the wild type, ∆OmpT, and pEHOmpT was determined by PCR. The OmpT gene was 

present as a 1 kbp product as shown in Figure 3.4A (lane 2 and lane 6) in comparison to the 

DNA marker lane (lane 1). The OmpT gene was present in the wild type (lane 2) and pEHOmpT 

(lane 6) but not in ∆OmpT (lane 4) with respect to the no template control for all strains (lanes 3, 

5, 7). 
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3.4 Effect of OmpT on the growth of EHEC and E. coli BL21(DE3) in nutrient-rich and 

nutrient-limited media 

The effect of OmpT was studied on the growth of EHEC and E. coli BL21(DE3) in nutrient rich 

(LB media) and nutrient-limited medium (Minimal A media), as shown in Figure 3.4. The 

growth of the different strains was compared using ANOVA (Analysis of variance - Holm-Sidak 

method). The growth curve of EHEC in LB media indicated that there was no significant 

difference between the growth of wild type, ∆OmpT, and pEHOmpT (p=0.142, p>0.05) in 

nutrient rich liquid media. The growth curve of EHEC in Minimal A Media indicated that 

pEHOmpT displayed significantly reduced growth compared to the wild type and ∆OmpT 

(p<0.001). Conversely, the OmpT-containing BL21 (DE3) strain in LB media, grew significantly 

less than BL21 (DE3) and BL21(DE3) with pUC18 (p<0.001). BL21(DE3) growth was 

enhanced compared to the pUC18 strain (p<0.001). Also, BL21 (DE3) pUC18 and Bl21(DE3) 

with the OmpT construct from E. coli O86a:K61 grew significantly slower compared to 

BL21(DE3) cells in Minimal A media (p<0.001). The results indicated that over expression of 

OmpT retards growth significanlty in both EHEC under nutrient limiting condition and 

BL21(DE3) under both nutrient rich and limiting conditions.  

3.5 Growth rate constant and Generation time of EHEC 

 The generation time or doubling time is the average time required for the cells to increase in 

number by two-fold. The rate of increase in cell number is inversely proportional to the number 

of cells present at any time. The generation time and growth rate constant was calculated from 

the equations: A) Growth Rate constant = (log10Nt – log10No) / log102; and B) Generation time = 

time (min) / growth rate index (µ). The growth rate constant and the generation time were 

calculated from the graph of log of viable cell number (cfu/ml) versus time (minutes) required 
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Figure 3.4 Growth curves of EHEC and E. coli BL21 (DE3) in LB media and Minimal 

media. The growth curves in LB media and Minimal A media for EHEC are shown in Figures 

3.4A and 3.4B, respectively. The growth curves of E. coli BL21(DE3) in LB and Minimal media 

are shown in Figure 3.4C and 3.4D, respectively. The graphs illustrate the optical density at 

600nm (OD600 nm) versus growth time (in hours) and were plotted using the non linear 

regression model (Sigma Plot, Version 12) which indicated the strong relationship between these 

variables for all three strains studied (r2 ~ 0.99). In Panel A and B, the closed triangle refers to 

wild type EHEC; crossed mark refers to ∆OmpT; and closed circle refers to pEHOmpT. In Panel 

C and D, the closed triangle refers to BL21(DE3); the closed circle refers to  BLl21(DE3) with 

pUC18; and crossed mark refers to BL21(DE3) with the OmpT construct from E. coli O86a:K61.  
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for cell growth. The growth rate constant and generation time for the EHEC strains is shown in 

Table 3.3. The pEHOmpT had a decreased growth rate and increased generation time compared 

to the wild type and ∆OmpT. There was no significant difference in the growth rate and 

generation time between the wild type and ∆OmpT strains. This result is consistent with the 

growth curve of the wild type, ∆OmpT and pEHOmpT in Minimal A media, where pEHOmpT 

grew significantly slower than the wild type and ∆OmpT strains (p<0.001). 

Table 3.2 Growth rate and generation time of EHEC. 

EHEC strains Growth Rate constant, minutes Generation Time, minutes 

Wild type 57.3 43.6 

∆OmpT 45.6 54.6 

pEHOmpT 35.4 70.3 

 

 

3.6 OmpT effect on EHEC Outer Membrane Vesicle production. 

The OMVs from EHEC were isolated using a standard protocol as described in detail in the 

Methods section. The OMVs from different strains of EHEC E. coli strains were observed with 

transmission electron microscopy (TEM) at 100,000 x magnification and at a 200 kV 

accelerating voltage. Wild type EHEC produced a significantly larger number of OMVs than 

∆OmpT, shown by the arrow in Figure 3.5A (p<0.001). ∆OmpT produced significantly less 

OMV as shown in Figure 3.5B. However, the pEHOmpT strain produced significantly more 

OMVs compared to the wild type (p<0.001, Figure 3.5C). pEHOmpT produced  
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Figure 3.5 Transmission Electron Microscopic analysis of EHEC outer membrane vesicles. 

The OMVs were observed at 100,000 x magnification at 200kV accelerating voltage. The wild 

type produced approximately 60-80 OMVs per field area (Panel A); ∆OmpT produced few 

OMVs (Panel B) and pEHOmpT produced a large number of OMVs, approximately 2000-3000 

per field area (Panel C). The OMVs are shown by black arrows in all Panels.  
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Figure 3.6 Outer membrane vesicles production from EHEC strains. The OMVs were 

measured by Macnification software (Orbicule Inc, Belgium). The graph illustrates the number 

of OMVs secreted (No. of OMVs) for each of the three EHEC strains. The black bar refers to the 

wild type, white bar to ∆OmpT and grey filled bar to pEHOmpT EHEC strain, respectively.                 

* p<0.001 
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Figure 3.7 Size distributions of outer membrane vesicles from EHEC. The OMVs were 

measured by Macnification software (Orbicule Inc, Belgium). The graph illustrates the different 

size range of OMVs (nm) and number of OMVs (No. of OMVs) for the wild type (Panel A), 

∆OmpT (Panel B) and pEHOmpT (Panel C) EHEC strains, respectively. The black bar refers to 

the wild type, white bar to ∆OmpT and grey filled bar to pEHOmpT, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

  77   
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

Size, nm

N
o

. 
o

f 
O

M
V

s

0

10

20

30

40

50

60

0-
20

20
-4

0

40
-6

0

60
-8

0

80
-1

00

10
0-

12
0

12
0-

15
0

15
0-

20
0

B

Size, nm

N
o

. 
o

f 
O

M
V

s

0

1

2

3

4

5

0-
20

20
-4

0

40
-6

0

60
-8

0

80
-1

00

10
0-

12
0

12
0-

15
0

15
0-

20
0

C

Size, nm

N
o

. 
o

f 
O

M
V

s

0

10

20

30

40

1000

2000

3000

4000

0-
20

20
-4

0

40
-6

0

60
-8

0

80
-1

00

10
0-

12
0

12
0-

15
0

15
0-

20
0

Figure 3.7 



   

  78   
   

approximately 40-fold more OMVs than the wild type, and approximately 300-fold more OMVs 

than ∆OmpT and these differences were highly significant (p<0.001, Figure 3.6). Compared to 

the wild type cells, the pEHOmpT produced a 50-fold greater number of smaller sized OMVs 

(20-40nm) and a significantly larger number of 40-60nm, and 60-80nm of OMVs and these 

differences were also significant (p<0.001, Figure 3.7A and 3.5 C). Compared to ∆OmpT, 

pEHOmpT produced a 1250-fold greater number of smaller sized OMVs (20-40 nm) and a larger 

number of 40-60nm, and 60-80nm of OMVs and these differences were also significant 

(p<0.001, Figure 3.7 B and 3.7C). Compared to ∆OmpT cells, wild type cells produced a 

significantly larger number of different sized OMVs such as 0-20nm, 20-40nm, 40-60nm, 80-

100nm, 100-120nm of OMVs (p<0.05, Figure 3.7A and 3.7B). TEM analyses indicated that 

change in OmpT gene expression has profound effect on the size and number of OMVs produced 

by EHEC.  

3.7 Cell dimension analysis of EHEC 

The EHEC strains were stained with a standard Gram-staining procedure (Mahon et al., 2011) 

and observed with a Digital microscope at 4000 x magnification. The cells were photographed 

and measured with at least 500 different cells for each of the three strains using VH-M100 XY 

measurement and VHX-H1M1 measurement. The length range of OMVs in wild type cells was 

0.74-2.67µm; in ∆OmpT was 0.69-2.37µm; and in pEHOmpT was 0.87-2.54µm. The average 

length of the wild type cells (1.44µm + 0.33µm), ∆OmpT (1.47µm + 0.28µm) and pEHOmpT 

(1.47µm + 0.30µm) indicated that there was no significant difference between the three strains 

(p=0.191; p.0.05; Figure 3.8A and 3.8C). The width range of the wild type was 0.39-1.31µm; 

∆OmpT was 0.45-1.28µm; and pEHOmpT was 0.44-1.17µm. The average width of the wild type  
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Figure 3.8 Digital Microscopy analyses of EHEC. The three EHEC strains were stained by 

Gram-staining (Mahon et al., 2011). The cells were observed under a Digital Microscope (DM; 

Keyence Corporation, Osaka, Japan) at 4000 x magnification to determine the length and width. 

Figure 3.6 describes the length (Panel A), width (Panel B) and size comparison of the wild type, 

∆OmpT, and pEHOmpT (Panel C and D) EHEC cells. Image of the LB agar plates with wild 

type (left), ∆OmpT (centre), and pEHOmpT (right) EHEC strains (Panel E). The black bar refers 

to the wild type, white bar to ∆OmpT and grey filled bar to pEHOmpT, respectively (Panels A 

and B). 
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was 0.79µm + 0.14µm; ∆OmpT was 0.84µm + 0.14µm; and pEHOmpT was 0.81µm + 0.11µm; 

indicating that the ∆OmpT cells had a significantly larger width compared to the wild type and 

pEHOmpT (p<0.001). Also pEHOmpT was wider than the wild type cells (p<0.05) as described 

in Figure 3.8 B and 3.8D. This indicates that the OmpT overexpression and deletion had a 

significant effect on the cell width but not the length of EHEC. 

3.8 Analysis of OmpT protein expression in EHEC cell lysates and outer membrane 

vesicles. 

Immunoblotting was conducted as per the procedure optimised by Dr. Herve Le Moual and co-

workers (Thomassin et al., 2012. The immunoblotting was performed with EHEC OMVs and 

cell lysates using a Cro-P antibody (74% identical to OmpT at the amino acid level) to determine 

the OmpT expression in these two environments. As shown in Figure 3.9, OmpT is expressed in 

the wild type and pEHOmpT whole cell lysates and OMVs, but not in cell lysates and OMVs 

from ∆OmpT. Table 3.4 illustrates the OmpT band density in cell lysates and OMVs from 

EHEC. The density was calculated based on the equation: (Background intensity – Mean 

Intensity) x Number of Pixels. The relative density (i.e fold expression) is the ratio of either 

∆OmpT or pEHOmpT density relative to the wild type density. The densitometry analysis 

indicated that the OmpT is expressed approximately 5-fold higher in pEHOmpT cell lysate than 

the wild type and approximately 50-fold greater in pEHOmpT OMVs than wild type. Negligible 

OmpT protein expression was observed in both cell lysates and OMVs from the ∆OmpT strain. 

3.9  Protein composition of E. coli O157:H7 cell lysates and outer membrane vesicles. 

The method for silver staining was modified from the Merril et al., 1981. Silver staining was 

performed with cell lysates and OMVs from the three EHEC strains (Figure 3.10A and B).  
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Figure 3.9 Immunoblotting for OmpT in EHEC cell lysates and outer membrane vesicles. 

The immunoblotting was performed with the wild type, ∆OmpT and pEHOmpT of EHEC whole 

cell lysates and OMVs. The whole cell lysates were prepared by growing EHEC to 0D600 of 0.5 

(1ml culture, centrifuge at 17,000 x g for 5 minutes 4oC), resuspended and heated in 100µl of 2x 

LD at 95oC for 5 minutes; loaded on 4-20% polyacrylamide and electrophoresed at 150V 

constant voltage. The protein was electroblotted onto a PVDF membrane and proteins were 

detected with primary antibody (anti-Cro-P antibody) and secondary antibody (Goat anti-rabbit 

IgG with conjugated HRP). The wild type, ∆OmpT, pEHOmpT cell lysates are shown in lane 1, 

lane 2, and lane 3, respectively; Wild type OMVs in lane 4 (0.09µg), and lane 5 (0.018µg),         

∆OmpT OMVs in lane 6 (0.09µg) and lane 7 (0.018µg); and pEHOmpT OMVs in lane 8 

(0.0036µg), and lane 9 (0.009µg). The OmpT protein expression in the wild type and pEHOmpT 

is indicated by a filled arrow at approximately 35kDa and cross-reactive bands by asterisks. 
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Table 3.3 Densitometric analysis of EHEC cell lysates and outer membrane vesicles OmpT. 

This Table describes the OmpT density of the bands in the immunoblotting image (Figure 3.7). 

The density was obtained using Corel Photo Paint (Ottawa, ON). The comparison between the 

densities of OmpT (in the wild type and pEHOmpT) is described as the fold-expression per µg of 

protein. The relative density refers to the ratio of OmpT density of the pEHOmpT strain with 

respect to the wild type strain.  
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 EHEC strains Relative 
density 

Lysates wild type (1µg) 1.00 

 ∆ OmpT (1µg) 0.00 

 pEHOmpT (1µg) 3.08 

OMVs wild type (0.18ug) 1.00 

 wild type (0.09ug) 1.00 

 ∆ OmpT(0.18ug) 0.00 

 ∆ OmpT(0.09ug) 0.00 

 pEHOmpT(0.0036ug) 44.90 

 pEHOmpT (0.009ug) 20.45 

Table 3.3 Densitometric Analysis of OmpT Expression in EHEC 
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There were no large differences in protein composition of the cell lysates from the three different 

EHEC strains (Figure 3.10A). However, the silver staining of the gel of the OMVs from EHEC 

strains showed that the wild type produced a greater number of proteins (Approximately 60-80) 

with stainable lipid compared to ∆OmpT and pEHOmpT (Figure 3.10B). On the other hand, 

there are fewer proteins (approximately 30-40) present with low stainable lipid in OMVs from 

∆OmpT. There was one major protein present at 37kDa (OmpT) with approximately 4-5 other 

proteins in pEHOmpT with low stainable lipid levels. Silver staining analysis revealed that lane 

1 and lane 8 has stainable lipid in the region between 10-20 kDa and 40-200 kDa indicating the 

presence of Lipid A and O antigen polysaccharide of rough LPS as described by others (Haurat 

et al., 2011). Staining in the region 40-200 kDa was absent in ∆OmpT and pEHOmpT, but the 

region between10-20 kDa was staining prominently in pEHOmpT but was barely detectable in 

∆OmpT. This indicates that alterations in OmpT gene expression in EHEC not only profoundly 

altered OMV biogenesis, but resulted in changes in the lipid and protein content of OMVs as 

well. There are two different possibilities; either the OmpT gene is directly involved lipid and 

protein sorting in OMVs or is indirectly controling the expression of another gene which is 

involved in determing the OMV composition. The mechanism of sorting protein and lipid into 

OMVs remains to be elucidated.  
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Figure 3.10 Protein profile of EHEC cell lysates and outer membrane vesicles. Lanes 1 and 

14 in Panel A refer to the molecular size protein ladder (BioRad, Mississauga, ON). The wild 

type lysate was loaded in lane 2 (6.9µg), lane 3 (1.34µg), lane 4 (0.69µg), and lane 5 (0.34µg); 

∆OmpT lysate in lane 6 (6.9µg), lane 7 (1.34µg), lane 8 (0.69µg) and lane 9 (0.34µg); 

pEHOmpT lysate in lane 10 (6.9µg), lane 11 (1.34µg), lane 12 (0.69µg) and lane 13 (0.34µg). 

The cell lysates from EHEC strain cell lysates (50ml of culture grown to OD600-0.50, centrifuged 

at 10,000 x g, 30 minutes, 4oC and resuspended in 5ml of HBS, pH7.4) was sonicated at setting 

#7 for 10 minutes on ice and mixed with 2x loading dye, and boiled for 5 minutes. The samples 

were loaded on a 4-20% polyacrylamide gel and electrophoresed at 150V, constant voltage 

(Panel A). The OMVs from EHEC strains were prepared from the culture supernatant 

concentrating by 33-fold using tangential flow filtration and further 3-fold by centrifugal 

filtration, and then pelleted by ultracentrifugation. In Panel B, the protein ladder was loaded in 

lane 1; the wild type OMVs in lane 2 (370 ng), and lane 3 (75 ng); ∆OmpT OMVs in lane 4     

(75 ng), and lane 5 (15 ng); pEHOmpT OMVs in lane 6 (80ng) and lane 7 (40ng). OMVs in the 

supernatant fractions from wild type (lane 8), ∆OmpT (lane 9) and pEHOmpT (lane 10) are also 

shown in Panel B.  Each sample was loaded on the 4-20% polyacrylamide gel and 

electrophoresed at 150V, constant voltage (Panel B).  The gels were stained with silver staining 

according to Merril et al., 1981.   
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Results Section B 

3.10  Determination of the EHEC cell number by spread plate technique 

EHEC cell numbers were determined by a spread plate technique. It is important to determine the 

specific cell number at OD600 of 0.5 to ensure that the same numbers of cells were used for the 

FV assay, prothrombin time (PT) assay, activated partial thromboplastin time (aPTT) assay and 

Western blotting. The standard curves for each of the three EHEC strains are shown in         

Figure 3.11. 

3.11  Determination of protein concentration by BCA assay  

The protein content of the OMVs and lysates from the three EHEC strains were determined by 

BCA assay. BSA was used as a standard and was diluted serially by 2-fold to construct standard 

curves. The standard curves were plotted using Sigma Plot 12.0 as shown in Figure 3.12. The 

standard curve was used to determine the protein concentration in EHEC OMVs and cell lysates 

as shown in Table 3.5. This result indicated that the amount of protein produced by the wild type 

OMVs was 2-fold higher than the level of protein produced in the OMVs from the ∆OmpT 

strain. The pEHOmpT had a protein content in OMVs that was 7-fold higher than ∆OmpT and  

4-fold higher than the wild type. The protein concentration is important since it ensures that the 

same amount of protein is used for performing different assays as mentioned above. 

3.12  Prothrombin Time and Activated Partial Thromboplatin Time assay with whole cells 

and outer membrane vesicles 

The PT and aPTT assays measure the activity of different factors involved in extrinsic and  
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Figure 3.11 Standard curves of EHEC strains cell numbers. The spread plate technique was 

performed to generate the standard curves for wild type, ∆OmpT and pEHOmpT. The graphs 

show the log of bacteria (cfu/ml) and log of optical density at 600nm (OD600 nm). The graph 

displayed the linear relationship between these two variables (r2 ~ 0.99). Panel A shows the 

graph for the wild type; Panel B for ∆OmpT; and Panel C for pEHOmpT, respectively. 
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Figure 3.11 
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Figure 3.12 BCA assay to determine the protein concentration of EHEC cell lysates and 

outer membrane vesicles. Serial dilutions of BSA were used as a standard protein for preparing 

the standard curve. The standard curve was used to determine the unknown protein concentration 

of OMVs and cell lysates from the three EHEC strains. The graph shows the optical density at 

562 nm (OD562 nm) and the BSA concentration (µg/ml). Table 3.4 describes the protein 

concentration (µg/ml) for OMVs (ultracentrifuged pellet and supernatant) and cell lysates from 

the wild type, ∆OmpT, and pEHOmpT EHEC strains.  
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Figure 3.12 

 

 

 

 

 

 

Table 3.4 Protein concentration of outer membrane vesicle and cell lysates from EHEC 

strains 

EHEC 

 strains 

Ultra Centrifuged 

Pellet 

(µg/ml) 

Ultra Centrifuged 

Supernatant 

(µg/ml) 

Cell Lysates 

(µg/ml) 

Wild type 75.46 + 20.21 16.30 + 6.83 134.6 + 10.00 

∆OmpT 35.14 + 24.37 16.00 + 3.15 135.57 + 29.00 

pEHOmpT 271.09 + 163.99 42.85 + 11.96 133.7 + 19.44 
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intrinsic coagulation pathways, respectively. Normal human plasma (NHP, diluted 5-fold in 

HBS, pH 7.4) was treated with varying numbers of cells (107,108, 109, & 1010) or OMVs 

(0.25µg, 0.5µg, 1.0µg and 2.0µg of protein) to determine the effect on the PT and aPTT clot 

times. As shown in Figure 3.13A, 3.13B, 3.14A, and 3.14B, there was dose-dependent 

prolongation of PT and APTT clot time with increasing amounts of OMVs and whole cells. The 

effect of OMVs on the PT clot time is comparatively more prominent with the pEHOmpT than 

the wild type and ∆OmpT (p<0.05), but the difference between the wild type and ∆OmpT was 

not significant (p>0.05). Moreover, the pEHOmpT strain has significantly prolonged PT clot 

time compared to the wild type, ∆OmpT and HBS control (p<0.05), but the difference between 

the wild type and ∆OmpT was not significant (p>0.05). The effect of whole cells on the PT clot 

time was considerably more prolonged with pEHOmpT compared to the wild type and ∆OmpT 

(p<0.05), but there was no significant difference between the wild type and ∆OmpT (p>0.05). 

On the other hand, the wild type and ∆OmpT have a similar effect on aPTT clot times. The aPTT 

clot times effect is prolonged with the pEHOmpT compared to the HBS control (p<0.05) but the 

difference between the three strains was not significant (p>0.05). Strikingly, a maximum clot 

time prolongation effect with pEHOmpT was demonstrated with 2.0µg of OMVs and 1010 cells, 

when there was no clotting observed with normal human plasma in the aPTT assay. These results 

showed that OmpT associated with whole EHEC cells and OMVs prolonged both PT and APTT 

clot times. The specific coagulation factors that are inactivated in the intrinsic and extrinsic 

pathways will need to be determined in future studies to demonstrate OmpT cleavage specificity 

for individual coagulation factors. 
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Figure 3.13 Prothrombin Time assay with OmpT associated with EHEC whole cells and 

OMVs. The PT measures the activity of factors involved in the extrinsic pathway. The PT assay 

was performed with various concentrations of OMVs (0.25µg, 0.5µg, 1.0µg, and 2.0µg protein) 

and cells (107,108, 109, and 1010 cells/ml) from the three EHEC strains. The graphs illustrate time 

for clot formation and EHEC strain (Wild type, ∆OmpT and pEHOmpT) used. The white bar 

represents 0.25µg, the light grey bar is for 0.5µg, the grey bar for 1.0µg, the black bar for 2.0 µg, 

while the stippled bar represents HBS control in the Panels A. The white bar represents 107 cells, 

the light grey bar is for 108 cells, the grey bar for 109 cells, the black bar for 1010 cells, while the 

stippled bar represents HBS control in the Panels B. 
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Figure 3.14 Activated partial thromboplastin time assay with OmpT associated with EHEC 

whole cells and outer membrane vesicles. The aPTT measures the activity of factors involved 

in the intrinsic pathway. The aPTT assay was performed with various concentrations of OMVs 

(0.25µg, 0.5µg, 1.0µg, & 2.0µg of protein) and cells (107,108, 109, &1010). The graphs illustrate 

time for clot formation and EHEC strain (Wild type, ∆OmpT and pEHOmpT) used. The white 

bar represents 0.25µg, the light grey bar is for 0.5µg, the grey bar for 1.0µg, the black bar for 2.0 

µg, while the stippled bar represents HBS control in the Panels A. The white bar represents 107 

cells, the light grey bar is for 108 cells, the grey bar for 109 cells, the black bar for 1010 cells, 

while the stippled bar represents HBS control in the Panels B. 
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3.13  Factor V Coagulation Activity Assay 

Based on the results from previous experiments, it was shown that there was dose-dependent 

cleavage and inactivation of FV/FVa in baboon sepsis model when the baboons were infused 

with increasing doses of E. coli O86a:K61 (Samis et al., 2007). It was later proved that the 

OmpT protease from E. coli O86a:K61 was responsible for the FV/FVa inactivation observed 

(Tilley D, M.Sc. thesis, 2011). An attempt to further characterize the OmpT inactivation effect 

on FV was conducted by employing a genetic approach using whole cells and OMVs from wild 

type, an OmpT gene deletion and an OmpT overexpressing strain. The FV activity standard 

curve of log clot time (seconds) versus log activity (U/ml) was prepared by serially diluting NHP 

in HBS, pH 7.4. The standard curve was utilised to determine the FV activity (U/ml) of NHP 

treated samples and controls. The FV activity in NHP is defined as 1 Unit of activity in 1 ml of 

NHP. The concentration of FV in human plasma is approximately 20-40nM (Mann et al., 1981). 

The FV activity standard curve is illustrated in Figure 3.15. Table 3.6 refers to the FV 

inactivitation percent/µg of protein when NHP was treated with 1 µg of OMVs. This table 

indicates that the OMVs from the wild type strain inactivated FV by approximately 40%, 

∆OmpT by 5-10% and pEHOmpT by 95%. The pEHOmpT inactivates FV at a significantly 

higher rate than the wild type and ∆OmpT (p<0.001) and inactivation by the wild type was 

significantly higher than ∆OmpT (p<0.05). Since the OMVs were not completely pelleted by 

ultracentrifugation, 1 µg of OMV protein in the supernatant fractions was also analysed for their 

effect on FV. The same effect with OMVs in supernatant was demonstrated: the wild type 

inactivated FV by 30% and pEHOmpT by 95%, but the effect was completely abolished by 

∆OmpT when compared to the HBS control. The significance levels observed for the FV 

inactivation (p<0.05) in the pelleted OMVs were the same as those for the OMVs in the  
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Figure 3.15 Factor V standard curve using FV-1 stage microplate assay and effect of EHEC 

OMVs and cells on FV. The FV standard curve was created based on the method used by Tilley 

et al., 2011. The NHP was diluted (0-fold to 512-fold) and assayed using a FV-1 stage 

microplate assay. As shown in Figure 3.15A, the standard curve plots log FV activity (U/ml) vs 

log clot time (seconds). The graph was plotted using Sigma Plot 12.0 and indicated a strong 

linear relationship between these two variables (r2- 0.98). The graph in Figure 3.15B illustrates 

the effect of OMVs on NHP treated with OMVs from wild type, ∆OmpT, pEHOmpT. The black 

bar refers to the OMVs from the wild type, the white bar to OMVs from ∆OmpT, the grey filled 

bar to OMVs from pEHOmpT and the stippled filled bar to HBS. The difference is significant 

between pEHOmpT OMVs and the wild type OMVs (p<0.001), pEHOmpT OMVs and ∆OmpT 

OMVs (p<0.001), and the wild type OMVs and ∆OmpT OMVs (p<0.05). The difference is 

significant between pEHOmpT cells and the wild type cells (p<0.05), pEHOmpT cells and 

∆OmpT cells (p<0.001), and the wild type cells and ∆OmpT cells (p<0.001).  * p<0.001, ** 

p<0.05.  
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Figure 3.15 
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Table 3.5 FV inactivation by EHEC outer membrane vesicles. The Table indicates the FV 

activity % remaining and FV inactivation %/µg of protein using the OMVs from EHEC wild 

type, ∆OmpT and pEHOmpT. OMVs, present in pellet and supernatant, were used for assaying 

FV from NHP in the FV activity assay. The NHP was treated with 1µg of OMVs for 30 minutes 

or 109 cells/ml for 1 hour at room temperature and the FV activity (U/ml) remaining was 

determined from the standard curve in Figure 3.15A. 
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Table 3.5 

EHEC strain  FV activity 

(Percent activity 

remaining) 

FV inactivation 

(Percent inactivation 

/µg of protein) 

Wild type (OMVs) 62.67 + 9.62 
 

37.33 + 9.62 
 

∆OmpT (OMVs) 88.19 + 7.36 
 

11.81 + 7.36 

pEHOmpT (OMVs) 4.63 + 1.35 
 

95.37 + 1.35 

Wild type (Supernatant/OMVs) 73.39 + 7.27 
 

26.61 + 7.27 

∆OmpT(Supernatant/OMVs) ~100% No inactivation 

pEHOmpT(Supernatant/OMVs) 6.70 + 1.00 
 

93.30 + 1.00 

Wild type (cells) 

∆OmpT (cells) 

pEHOmpT (cells) 

24.17 + 3.54 
 
87.05 + 12.66 
 
4.56 + 0.16 
 

75.83 + 3.54 
 
12.94 + 12.66 
 
95.44 + 0.16 
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supernatant fractions. 

3.14 Time-dependent inactivation of FV by FV activity assay and immunoblotting 

The time-dependent OmpT inactivation of FV was assessed by the FV activity assay and 

concurrently with the same sample by immunoblotting. NHP was treated with 1 µg of EHEC 

OMVs protein or 109 cells for various times (20 minutes, 1 hour, 1.5 hours, and 2.0 hours). As 

shown in Figures 3.16 and 3.17, the FV was cleaved by pEHOmpT cells and OMVs from       

330 kDa to 250 kDa in NHP at room temperature and inactivated by 80% in 20 minutes and 95% 

in 2 hours; significantly higher activity than the EHEC wild type and ∆OmpT cells and OMVs 

(p<0.05). The wild type cells and OMVs inactivated FV by 60% in 2 hours under the same 

conditions and the FV inactivation effect was abolished with EHEC ∆OmpT cells and OMVs 

(p<0.05). The inactivation of FV by OmpT from OMVs and cells from the wild type and 

pEHOmpT EHEC strains correlated well with its cleavage by immunoblotting. 

3.15 OmpT inactivation of FV in normal and plasminogen deficient human plasma  

There are at least two possible explanations for the OmpT dependent inactivation of FV in NHP: 

direct or indirect. Experiments were carried out to determine whether the effect of OmpT from 

EHEC cells and OMVs was by OmpT directly or indirectly by activating plasminogen to 

plasmin. OmpT may render FV inactive either directly by itself or indirectly by activating 

plasminogen to plasmin. Different studies conducted with OmpT showed that OmpT does 

activate plasminogen to plasmin (McCarter et al., 2004; Lundrigan & Webb, 1992) while another 

study showed OmpT was a poor plasminogen activator (Haiko et al., 2009). These possibilities 

were tested by measuring FV inactivation with the cells and OMVs from the different EHEC  
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Figure 3.16 Effect of EHEC outer membrane vesicles OmpT on FV in normal human 

plasma. NHP was treated with 1µg of OMVs for 30 minutes at room temperature and a 60 µl 

aliquot of NHP was withdrawn at different times and 30µl of treated NHP was utilised for FV 

activity assay. The other aliquot of NHP was diluted further and 0.33µl was added to 2x loading 

dye and heated at 95oC for 5 minutes and samples loaded on 4-20% polyacrylamide SDS-PAGE 

gel (Bio-Rad Criterion Gel, Mississauga, ON) and electrophoresed for 1.5 h at 150V. The FV 

inactivation in the FV activity assay correlated with its cleavage by immunoblotting for different 

times (20 minutes, 1 hour, 1.5 hours and 2 hours). Panel A depicts the NHP treated with OMVs 

from wild type cells which inactivated FV by 60% and FV was cleaved from 330kDa to 250kDa 

on the blot. Panel B depicts the NHP treated with OMVs from ∆OmpT cells which did not 

inactivate FV and was similar to the HBS control. Panel C depicts the NHP treated with OMVs 

from pEHOmpT cells which inactivated FV by 80% in 20 minutes and 90% in 2 hours which 

correlated well with FV cleavage from 330kDa to 250kDa and 150kDa on the blot. The black bar 

refers to the OMVs from wild type, the white bar to the ∆OmpT, and the grey filled bar to 

pEHOmpT EHEC strains. 
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Figure 3.17 Effect of EHEC cell OmpT on FV in normal human plasma. NHP was treated 

with 109 cells, 60 µl of NHP was withdrawn at different times (20 minutes, 1hour, 1.5 hours and 

2 hours) and then diluted, and centrifuged at 17,000 x g, 4oC. From the centrifuged sample, 30µl 

NHP was utilised for the FV activity assay and another aliquot of the treated NHP was diluted 

further (0.33µl) added to 2x Loading dye, heated at 95oC for 5 minutes, samples loaded on 4-

20% polyacrylamide SDS-PAGE gel (Bio-Rad Criterion Gel, Mississauga, ON) and 

electrophoresed for 1.5 h at 150V. FV inactivation in the FV activity assay correlated well with 

its cleavage by immunoblotting for different times (20 minutes, 1 hour, 1.5 hours and 2 hours). 

Panel A depicts the NHP treated with the wild type cells which inactivated FV by 60% and 

resulted in FV cleavage from 330kDa to 250kDa. Panel B depicts the NHP treated with ∆OmpT 

cells which did not inactivate FV and was equivalent to the HBS control. Panel C depicts the 

NHP treated with pEHOmpT cells which inactivated FV by 80% in 20 minutes and 90% in 2 

hours which was correlated with FV cleavage from 330kDa to 250kDa. The black bar refers to 

the wild type, the white bar to the ∆OmpT, and the grey filled bar to pEHOmpT EHEC strains. 
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Figure 3.18 OmpT inactivation of FV in plasminogen-deficient human plasma versus 

normal human plasma. The FV standard curve was constructed with various concentrations of 

FV in Plasminogen (PLG) deficient human plasma (0-fold to 1024-fold in HBS) in the FV 

activity assay (Tilley et al., 2011). In Panel A, the graph illustrates log FV activity (U/ml) versus 

log of time for clot formation (seconds). The data was plotted using the linear regression model 

which indicated a strong relationship between these two variables (r2 = 0.969).  The NHP and 

PLG-deficient treated plasma were treated with OmpT from EHEC OMVs (Panel B) or cellular 

associated OmpT (Panel C) from the three EHEC strains used. The graph illustrates the FV 

activity remaining and EHEC strains (wild type, ∆OmpT and pEHOmpT) and the HBS control. 

The black bar refers to the result for PLG-deficient treated plasma and the white bar refers to 

NHP treated plasma with OMVs and cellular associated OmpT from the three EHEC strains 

used. 
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Figure 3.18 
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strains using normal human plasma or plasminogen (PLG) deficient human plasma with the FV 

activity assay. The PLG-deficient plasma has all the clotting factors except plasminogen, which 

after activation to plasmin is involved in the fibrinolysis pathway. Further, plasmin has been 

shown to cleave and inactivate FV (Omar & Mann, 1979; Hoover-Plow, 2010). The FV activity 

standard curve for PLG-deficient plasma was plotted in the same manner as NHP as described in 

Figure 3.18 A. Finally, the plasma was treated with 1µg of EHEC OMVs or 109 EHEC cells and 

FV activity assay was performed. The data was plotted using Sigma Plot 12.0, as described in 

Figure 3.18B and 3.18C.  Cellular and OMV OmpT from the wild type cells inactivated FV in 

PLG-deficient human plasma to levels similar to those in NHP. pEHOmpT cellular and OMV 

OmpT inactivated FV in PLG deficient plasma (80-90%) approximately to the same level as the 

FV in NHP (approx. 80-90%). Strikingly, FV inactivation was completely abolished with 

∆OmpT cellular and OMV OmpT in both PLG-deficient plasma and NHP. Hence, cells and 

OMVs OmpT can inactivate FV directly in NHP without the involvement of the 

plasminogen/plasmin system. 

3.16 Effect of OmpT from EHEC on other coagulation factors  

 In order to determine the effect of OmpT on other coagulation factors involved in extrinsic and 

common pathways, different coagulation factor deficient plasma were utilised to establish the 

standard curves and activity assays. The activity of different factors was defined similarly as for 

FV (1 ml of NHP has 1 Unit of coagulation factor activity). The calibration curves of the 

different coagulation factors were performed in the same way as for the FV activity standard 

curve. The activity assays for different coagulation factors were as follows. 
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i) Fibrinogen coagulation factor assay The PT-based fibrinogen assay was modified based on  

the method used by Mackie et al. 2003. The standard curve of fibrinogen (FI) is shown in Figure 

3.19. The concentration of fibrinogen in normal human plasma is 2-4mg/ml (6-12µM) (Grannis, 

1970). It was observed that there was no clot formation after reaching the threshold value with 8-

fold diluted NHP. Therefore, the standard curve was plotted with four points (0-, 2-, 4-, and 8-

fold diluted NHP). The fibrinogen activity assay was performed with 2-fold diluted NHP (30µl) 

treated with 1 µg OMVs/109 cells (30µl). As shown in Figure 3.19B and 3.19C, there was no 

significant inactivation with the wild type and ∆OmpT cellular and OMV associated OmpT, but 

the pEHOmpT cells and OMVs inactivated fibrinogen by approximately 40-50%. The fibrinogen 

inactivation difference is significant between the wild type, ∆OmpT, and pEHOmpT whole cells 

as well as HBS control (p< 0.05). There was a significant difference in fibrinogen inactivation by 

pEHOmpT OMVs compared to the wild type, ∆OmpT OMVs and HBS control (p<0.05). This 

suggests that over expression of OmpT in EHEC cells and OMVs can inactivate fibrinogen 

significantly. 

ii) Prothrombin coagulation factor assay: The prothrombin concentration in normal human 

plasma is approximately100µg/ml (1400nM) (Butenas & Mann, 2002).  A standard curve was 

plotted using 2-fold serially diluted NHP and assayed using prothrombin (FII) deficient plasma 

as for the FV and fibrinogen microplate assays. The graph for the FII standard curve is as shown 

in Figure 3.20. The FII was not inactivated by OMVs from wild type and ∆OmpT, but FII was 

inactivated by 40% by pEHOmpT OMVs. The wild type and pEHOmpT OMVs inactivated FII 

by 20% andOMVs from ∆OmpT inacitvated FII in NHP by 10%.There was no significant 

difference in the FII inactivation with EHEC cells (p=0.216) and OMVs (p=0.175) compared to 

the HBS control. 
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Figure 3.19 Fibrinogen calibration curve and activity assay with EHEC whole cells and 

OMVs. Due to the sensitivity of the assay, the fibrinogen standard curve was assayed with four 

different concentrations of NHP (0-fold to 8-fold in HBS) using fibrinogen deficient plasma 

based on the PT-based coagulation assay. In Panel A, The graph illustrates log fibrinogen 

activity (U/ml) versus log of time for clot formation (seconds). The data was plotted using the 

linear regression model which indicated a strong relationship between these two variables          

(r2 = 0.84).  The NHP was treated with OmpT from EHEC OMVs (Panel B) and cells (Panel C). 

The graph shows the FI activity remaining and EHEC strains (Wild type, ∆OmpT and 

pEHOmpT) and HBS control. The black bar denotes the wild type, the white bar the ∆OmpT 

strain, the grey filled bar pEHOmpT strains, while the stippled filled bar represents the HBS 

control. 
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Figure 3.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

L
o

g
 C

lo
t 

ti
m

e
, 

s
e

c
o

n
d

s

Log FBG activity, U/ml

r^2 = 0.84
f = yo +a*x
yo = 1.1114
a = - 0.2836

A 

E. coli O157:H7 strains

F
I A

c
ti

vi
ty

,U
/m

l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Wild type OmpT pEHOmpT HBS

E. coli O157:H7 strains

F
I A

c
ti

vi
ty

, 
U

/m
l

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

OmpTWildtype pEHOmpT HBS

CB 



   

  115   
   

Figure 3.20 Prothrombin calibration curve and activity assay with EHEC whole cells and 

OMVs. The prothrombin standard curve was assayed with varying concentrations of NHP       

(0-fold to 1024-fold in HBS) using prothrombin deficient plasma based on the PT-based 

coagulation assay. In Panel A, the graph illustrates log FII activity (U/ml) versus log of time for 

clot formation (seconds). The data was plotted using the linear regression model which indicated 

a strong relationship between these two variables (r2= 0.9943). The NHP was treated with the 

OmpT from OMVs (Panel B) and the cellular associated OmpT (Panel C) from the three EHEC 

strains used. The graph describes the FII activity remaining and EHEC strains (Wild type, 

∆OmpT and pEHOmpT) and HBS control. The black bar refers to the wild type, the white bar to 

the ∆OmpT, the grey filled bar to the pEHOmpT strain while the stippled filled bar represents 

the HBS control. 
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Figure 3.20 
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iii)  Factor X coagulation factor assay: The Factor X (FX) microplate assay was performed as 

described previously for the other coagulation factors. The standard curve for FX is as shown in 

the Figure 3.21A. The normal concentration of FX is approximately10µg/ml (170nM) (Butenas 

& Mann, 2001). NHP was treated with 1 µg of EHEC OMVs or109 EHEC cells and remaining 

FX activity was determined with of the PT-based fibrin clot formation assay. As shown in 

Figures 3.21B and 3.21C, there was no significant difference in FX activity between the wild 

type and pEHOmpT cellular (p= 0.375, p>0.05) and OMVs associated OmpT (p= 0.375, p>0.05) 

compared to the effect of cells and OMVs from ∆OmpT and the HBS control. The EHEC cell 

and OMV OmpT did not significantly target FX for inactivation with any of the three strains 

used. 
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Figure 3.21 Factor X calibration curve and activity assay with EHEC cells and outer 

membrane vesicles. The Factor X (FX) standard curve was assayed with varying concentrations 

of NHP (0-fold to 1024-fold diluted in HBS, pH 7.4) using FX deficient plasma based on the PT-

based coagulation assay. In Panel A, the graph shows log of FX activity (U/ml) versus log of 

time for clot formation (seconds). The data was plotted using the linear regression model which 

displayed a strong relationship between these two variables (r2=0.989).  NHP was treated with 

OmpT from EHEC OMVs (Panel B) and EHEC cells (Panel C). The graph illustrates the FX 

activity remaining and EHEC strains (wild type, ∆OmpT and pEHOmpT) and the HBS control. 

The black bar refers to wild type, the white bar to the ∆OmpT, the grey filled bar to pEHOmpT 

strains while the stippled filled bar refers to the HBS control.  

 

 

 

 

 

 

 

 

 



   

  119   
   

Figure 3.21 
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Discussion  

Previous research has shown in a baboon sepsis model with E. coli O86a:K61 that there was a 

dose-dependent cleavage and inactivation of plasma FV (Samis et al., 2007). Immunoblotting 

indicated that the FV was cleaved and inactivated from 330kDa to 250kDa in the baboon sepsis 

model which was consistent with proteolytic action of plasmin, neutrophil elastase, or a secreted 

protease from E. coli O86a:K61. It was later shown that a secreted protease from E. coli 

O86a:K61 was capable of cleaving and inactivating FV in human and baboon plasma. The 

protease was purified from culture supernatant of E. coli O86a:K61 and identified as OmpT by 

Tilley D (Masters Thesis, 2011).  

In order to further analyse the effect of E. coli O86a:K61 OmpT on the blood coagulation 

process, the OmpT gene was blunt-end cloned into pUC18 vector, directionally cloned using 

BamH1 and HindIII into the same vector and then the construct was transformed into E. coli 

BL21 (DE3) cells. The OmpT gene insert was characterized by restriction digestion and 

sequenced by the dideoxy chain termination method. The sequence of the OmpT gene of E. coli 

O86a:K61 was compared with the omptin protease from other bacterial strains indicating that the 

OmpT gene from E. coli O86a:K61 was 90-99% identical at both the nucleic acid and amino 

acid levels to the OmpT gene of other E. coli strains. The OmpT gene from E. coli O86a:K61 

was 47% similar to Pla protease gene from Yersinia pestis and 57% similar to SopA gene of 

Shigella flexneri. There were no significant changes at the amino acid level found in the 

conservative and non-conservative replacement/alterations that can alter the LPS binding and the 

active sites which can alter the activity of OmpT toward its protein substrates.  

A research collaboration with Dr. Herve Le Moual (Associate Professor, Department of 

Microbiology, McGill University, Montreal, PQ), was established to study the effect of OmpT 
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on the coagulation process using a genetic approach with defined EHEC strains. This involved 

the use and comparison of the effect of EHEC wild type, an OmpT deletion mutant and an OmpT 

overexpression strains on the human blood coagulation system. These EHEC strains were also 

used to determine the effect of OmpT on the EHEC growth in liquid culture and OMV 

composition and biogenesis. In addition, these same EHEC strains were used for experiments to 

characterize the effect of cellular and OMV associated OmpT on FV and other coagulation 

factors.  

The presence of the OmpT gene locus in EHEC strains was confirmed by PCR from wild type 

and pEHOmpT, but not from the ∆OmpT strain. In addition, the presence of the OmpT protein 

was confirmed using a Cro-P antibody by the immunoblotting in OMVs and cell lysates from the 

wild type and pEHOmpT and its absence from cell lysate OMVs from ∆OmpT. The results from 

these experiments were consistent with the EHEC strains constructed and characterized by 

Thomassin et al. 2012. These studies were also done to validate the approach employed for 

future experiments. 

Gram-negative bacterial infections are a leading cause of severe sepsis and death worldwide, 

particularly in developing countries (Galdiero et al., 2012). Gram-negative bacteria, such as E. 

coli, have been treated with antibiotics, but this micro-organism has evolved to become antibiotic 

resistant (Johnson et al., 2005) and multi-drug resistant as well (Tadesse et al., 2012). It was 

recently shown that children have developed a significantly increased rate of HUS from E. coli 

O157:H7 infection when treated with antibiotics (Wong et al., 2012) which can also induce the 

expression of Shiga toxins (Zhang et al., 2000). E. coli is commonly found in humans, animals, 

water, and food and is responsible for causing extra intestinal infections, gastroenteritis, urinary 

tract infections, meningitis, peritonitis, and septicemia (Baum & Marre, 2005). E. coli uses 
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several virulence factors to evade the host immune system such as LPS and associated proteases. 

Virulence factors such as LPS and proteases can potentially target the blood coagulation system 

which is a part of host innate immune response (Galdiero et al., 2012). LPS alone is toxic, 

damages tissue and is responsible for septic shock resulting in septicemia during the host innate 

immune response. LPS can also induce a host inflammatory response which prevents the bacteria 

from being phagocytosed by neutrophils (Todar, 2008). There have been discoveries made with 

LPS and its involvement in sepsis, but the proteases associated with it have not yet been explored 

(Galdiero et al., 2012). In the present study, the OmpT protease, whose biological function 

remains unknown, was studied in detail and found to have on the OMVs biogenesis and 

composition and coagulation system as well. The effect of OmpT on the blood coagulation 

system needs to be further investigated and explored in future work to have a better 

understanding of how this secreted protease may alter this host system which is an effector arm 

of the innate immune response.  

E. coli is ubiquitously found in the environment.  EHEC is resistant to harsh environments and 

normally grows on any living or non-living surface (Davis and Kendall, 2012). The doubling 

time of E. coli was 20-30 minutes in LB media and 45-60 minutes to several hours in Minimal A 

media depending upon the concentration of glucose supplied in the media (Stanley et al., 1998). 

The effect of OmpT on the growth of E. coli was determined in this thesis by using EHEC and 

BL21(DE3) in LB and Minimal A media. Cells were grown to OD600 of 0.15 in Minimal A 

media and up to OD600 of 3.0 in LB media, respectively. The reason for less growth in Minimal 

A media is that this media has a limited amount of nutrients such as glucose necessary for cell 

growth. Result in this thesis have shown that that OmpT over expression significantly impaired 

the growth of EHEC in Minimal media and BL21(DE3) in both LB and Minimal media 
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(p<0.001). There are two possible reasons for OmpT over expression retarding cell growth. The 

first may be that given OmpT is an outer membrane protein, its higher than normal level 

expression may be toxic to cells. This observation is consistent with other studies which indicate 

that the overexpression of membrane proteins leads to the accumulation of protein aggregates 

such as chaperones, proteases, periplasmic proteins, and cytoplasmic proteins (Choi & Lee, 

2004). Such event would hinder the AcO-pta pathway for ATP production and the TCA cycle to 

reduce the energy metabolism for ATP production (Wagner et al., 2008). Secondly, OmpT over-

expression into mRNA may compete with the other cellular protein's mRNA for translation 

which is essential for cell growth. This possibility is consistent with a study conducted that 

measured the growth of E. coli and indicated that 30% of proteins are replaced by overexpressed 

protein that down regulated translation (Dong et al., 1995). Eventually, the ribosomes may be 

destroyed, which ultimately would lead to the cessation of cell growth. At the same time, the 

rRNA level would also decrease and mRNAs would compete for the ribosomes. This would in 

turn affect the growth (Dong et al., 1995). This possibility was consistent with the generation 

time and growth rate constant as described here: EHEC pEHOmpT had a growth rate that 

decreased by 1.6-fold and generation time that increased by 1.6-fold compared to the wild type. 

EHEC pEHOmpT decreased the growth rate by 1.3-fold and increased the generation time by 

1.3-fold compared with ∆OmpT. There was no significant difference in the growth rate and 

generation time between the EHEC wild type and ∆OmpT deletion mutant strains in nutrient 

poor media.  

Plating of the EHEC strains on LB agar demonstrated differences in the resultant colony size. 

The ∆OmpT strain formed a larger colony compared to the wild type and pEHOmpT. The size of 

E. coli was further studied using Digital microscopy and indicated that there was no significant 
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difference between the length of the three strains (p>0.05). However, the EHEC ∆OmpT strain 

had a larger width than the wild type and pEHOmpT (p<0.001) and the pEHOmpT EHEC strain 

had a significantly larger width than the wild type (p<0.05). 

It has been shown previously that E. coli 086a:K61 secretes outer membrane vesicles (OMVs) 

that attenuate the blood coagulation process (Tilley et al., Masters thesis, 2011). It was shown in 

the present study that EHEC strains can secrete OMVs in the extracellular milieu of Minimal A 

media. The OMVs from the three EHEC strains were subjected to SDS-PAGE and silver staining 

to assess their protein and lipid composition. The results indicated that the OMVs from the 

EHEC wild type strain had more proteins (approximately 80) and stainable lipid than OMVs 

from the ∆OmpT and pEHOmpT strains. The lipid is required as LPS for OmpT as a co-factor 

and for proteolytic activity (Vandeputte-Rutten et al., 2001). OMVs from EHEC ∆OmpT had a 

lower number of proteins (approximately 40) and low stainable lipid compared to the wild type. 

However, OMVs from EHEC pEHOmpT had an even lower number of proteins (approximately 

5-10) and low stainable lipid content. This result indicated that alteration in OmpT expression 

alters both the protein and lipid composition of OMVs. Other studies have shown that the 

overexpression of protein inhibits the production of other cellular proteins due to the competition 

of mRNAs for translation (Dong et al., 1995). This may explain, in part, how OmpT was the 

main protein expressed in OMVs from pEHOmpT. A 37kDa protein was present in OMVs of the 

wild type and pEHOmpT strain, but not in OMVs from ∆OmpT.  

OMVs production from E. coli is induced by stressful growth conditions, T4 infection, the stress 

response to antibiotics treatment, internal stress such as production of misfolded proteins, and 

overexpression of periplasmic proteins (Loeb & Kilner, 1979; McBroom and Kuehn, 2007; Kulp 

& Kuehn, 2010).  In the present study, E. coli was grown in Minimal A liquid media with a 



   

  126   
   

limited supply of nutrients, thereby inducing the production of OMVs in the EHEC wild type and 

pEHOmpT. It was shown here by TEM that the wild type EHEC produced 60-80 OMVs per 

field; and OMV production was enhanced with the EHEC pEHOmpT strain, which produced 

2000-3000 OMVs per field. OMV production was significantly reduced with the EHEC ∆OmpT 

strain which produced approximately 5-10 OMVs per field. The wild type EHEC strain produced 

a significantly larger number of different sized ranges of OMVs than ∆OmpT (p<0.05).  

However, the EHEC pEHOmpT strain produced an even larger number of different sizes of 

OMVs compared to the wild type (p<0.001). The experiments indicated that change in OmpT 

expression had a profound effect on OMV production and composition in EHEC strains used 

here. OmpT gene deletion not only decreased OMV production but decreased protein and lipid 

composition as well. OmpT gene over expression profoundly increased OMV production but 

decreased the protein composition and stainable lipid too.  

 The OMV production in EHEC strains was consistent with another study which showed that the 

vesiculation process was activated by an envelope stress pathway, by disrupting the 

peptidoglycan layer or by the outer membrane protein linking to the peptidoglycan layer (Kulp & 

Kuehn, 2010). In addition, immunoblotting showed that the OmpT was indeed present in the cell 

lysates and OMVs of the EHEC wild type and pEHOmpT strains but not in the EHEC ∆OmpT 

strain. It has been also shown that EHEC produced OMVs that were found in association with 

Shiga toxin I and II (Yokohama et al., 2000). OMV associated with Shiga toxin I and II was 

potent and cytotoxic that resulted in cell death (Kim et al., 2010). Besides being toxic to cells, 

OMVs may also serve as a protective shield against antimicrobial peptides and phage infections 

(Manning & Kuehn, 2011). A recent study has shown that OMVs without outer membrane 

proteins can be utilised as a vaccine for bacterial sepsis or E. coli infections, but this was 
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disadvantageous in that it posed a high risk of systemic inflammatory response syndrome (SIRS) 

when injected in higher doses and became toxic due to the presence of pattern recognition 

molecules. It is challenging to make a vaccine with this approach because E. coli expresses 

different types of outer membrane proteins (Kim et al., 2013; Rompikuntal. P K, 2012). 

Four to five different sized outer membrane proteins ranging from 10 to 35kDa are found 

associated with the LPS in gram negative bacteria (Galdiero et al., 2012). It was also shown in 

another study that unidentified outer membrane proteins of apparent molecular weight of 5-9, 18 

and 35kDa associated with LPS and are shed into human serum (Binkley, 1945). However, other 

studies identified more than 200 proteins associated with OMVs from Gram-negative bacteria 

such as porins (PorA, PorB, OprF), murein hydrolases (Met, SLT), multidrug efflux pumps (Mtr, 

Mex, TolC), ABC transporters (LamB, FadL), protease/chaperone proteins (DegQ, SurA), and 

motility proteins (FliC, PilQ) (Chatterjee & Chaudhuri, 2012). The research outlined here has 

discovered that OmpT, a protease with apparent molecular weight of 33.5kDa was found in 

association with OMVs released from EHEC. However, different studies showed that OMVs 

when detected by mass spectrometry do contain the cytoplasmic proteins when OMVs were 

collected from cells grown to stationary phase (Lee et al., 2007). Conversely, OMVs did not 

contain the cytoplasmic and inner membrane protein from a Tol/Pal mutant of E. coli (Berlanda 

Scorza et al., 2008). However, the present study has shown that the OmpT was present in whole 

cells as well and OMVs of the EHEC wild type and pEHOmpT but not ∆OmpT when cells were 

collected from the mid-log phase of growth in liquid media.  

OmpT is an outer membrane protein, with active sites are facing the outer leaflet of the outer 

membrane. It requires LPS as a co-factor for proteolytic activity which determines the 

orientation of active sites and results in substrate cleavage between the dibasic amino acid 
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residues (Vandeputte-Rutten et al., 2001). LPS along with outer membrane proteins are 

comparatively more toxic and potent compared to the effect of LPS alone as shown in animal 

sepsis models (Galdiero et al., 2012). One study has shown that E. coli BL21(DE3) with 

pET28a+OmpT when incubated with antimicrobial peptide (LL-37) was not affected compared 

to the BL21(DE3) with pET28a alone indicating that OmpT showed increased resistance in       

E. coli Bl21(DE3) growth in the presence of antimicrobial peptide (Shi-lei et al., 2010). In 

addition, outer membrane proteins affect the hemodynamics, blood coagulation, body 

temperature, cellular and humoral immunities, proliferation of B lymphocytes and macrophages, 

and release of endogenous mediators which leads to tissue pathology, severe sepsis, DIC and 

multiple organ failure (Levi et al., 2004; Galdiero et al., 2012). However, the precise function of 

OmpT associated with OMVs and bacterial cells remains to be elucidated.  

The reason for using whole cells and OMVs for coagulation assays in this research is that the 

OmpT is present in the outer membrane of both structures would be expected to have access to 

coagulation factors in blood borne systemic infections. Thus, the OMVs and cells from EHEC 

were utilised to determine the effect of OmpT on blood coagulation.  In the present study, the 

concentration of 107-109 cells/ml and 0.25-2 µg of OMVs were utilised to assess the effect on FV 

and also on other coagulation factors. The same concentrations of bacteria are attainable in the 

severe sepsis patient (Yun et al., 2009) and 1-5µg of OMVs would be constitutively secreted by 

E. coli during sublethal septicimia (Park et al., 2010). 

It was shown that the EHEC pEHOmpT cellular and OMV associated OmpT showed a 

significant prolongation of the PT and aPTT clot times compared to the cells and OMVs from the 

wild type and ∆OmpT strains. The EHEC pEHOmpT cellular (1010cells) and OMV (2µg of 

protein) associated OmpT completely abolished the clot formation in the aPTT assay which has 
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not been reported previously. Similarly, another study has shown prolonged PT and aPTT in 

neonatal diarrhoeic calves with DIC infected from E. coli infection (Gokce et al., 2006) and in 

septic condition in humans (Chandrashekar, 2011). Another study has shown that LPS can also 

prolong the PT and APTT in chickens (Pliszczak-Krol et al., 2012). On the other hand, 

Streptococcus pyogenes can prolong the APTT clot time but does not affect the PT when injected 

into mice (Loof et al., 2011). Therefore, it is concluded that E. coli and other micro-organisms 

could target specific coagulation factors for inactivation.  Initially, coagulation factors, such as 

fibrinogen, FII, FV, and FX, involved in the common pathway were tested for cleavage and 

inactivation using microplate based clotting assays. These factors were examined initially 

because they belong to both the intrinsic and extrinsic pathways. The effect of E. coli cell and 

OMV associated OmpT on coagulation factors involved in the intrinsic and extrinsic pathways 

will need to be tested in future studies.  

The kinetic microplate-based FV activity assay is a novel, fast, economical, simple, high quality, 

has high throughput, and requires small sample volumes (Tilley et al., 2011). In addition, the 

same microplate PT-based coagulation assay was implemented for analysing the effect of EHEC 

cell and OMV OmpT on coagulation factors of the common pathway such as FI, FII, and FX. 

Finally, FV inactivation by EHEC cell and OMV associated OmpT was compared between NHP 

and PLG-deficient human plasma.  

The FV microplate assay was performed with OmpT associated with OMVs and cells from 

EHEC strains. The normal concentration of FV in human plasma is 20-40nM (Mann & Kalafatis, 

2011), and one unit/ml of human plasma corresponds to approximately 20nM (Tracy et al., 

1982).  The threshold value of FV required for clot formation is 1nM (Mann, 2000). In order to 

perform the FV assay, normal human plasma was diluted 20-fold to a final concentration of       
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1-2nM FV which is sufficient for a clot formation event. The FV was inactivated by 40%/µg of 

protein with OMVs and cells from the EHEC wild type (0.4-0.8nM of FV remaining) and 90-

95%/µg of protein with OMVs and cells from the EHEC pEHOmpT strain (0.05-0.1nM of FV 

remaining), which was significantly higher than OMVs and cells from EHEC ∆OmpT strain (5-

10%/µg of protein) (p<0.05). This finding is consistent with FV inactivation below 1-5% (0.2-

1nM of FV), which would significantly delay the thrombin generation in NHP (Mann, 2000). As 

the OMVs were not completely pelleted from the culture supernatants by ultracentrifugation, the 

supernatant fraction were also studied for their effect on FV in human plasma using the FV 

microplate assay. Similarly, the FV in human plasma was significantly inactivated by the 

supernatant fractions after ultracentrifugation by approximately 40%/µg of EHEC wild type 

OMVs, 90%/µg of EHEC pEHOmpT OMVs and this effect was completely abolished with EHC 

∆OmpT OMVs (p<0.05). Hence, a similar inactivation effect on FV in human plasma was 

observed with the OMVs in pelleted and supernatant fractions. OMVs from the pelleted fractions 

had a higher concentration of protein than those in the ultracentrifuged supernatants and were 

employed for all the other experiments.  

There was no significant difference in the extent of clot formation between the EHEC cells and 

OMVs from the wild type, ∆OmpT and pEHOmpT, although the EHEC pEHOmpT cells and 

OMVs also decreased the initial rate of fibrin formation compared to the EHEC cells and OMVs 

from the wild type and ∆OmpT. These findings are in complete agreement with FV inactivation 

as shown in the baboon sepsis E. coli model from Samis et al. (2007). It was shown that FV 

deficient mice demonstrated increased mortality with streptococcal infection compared to the FV 

Leiden mutation mice or the wild type control mice (Sun et al., 2009). Moreover, the plasma 

concentration of FV in mice is 4.6-fold higher (92nM) than in humans with this condition (Mann 
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2000); therefore, mice deficient in FV demonstrate increased mortality compared to the humans 

which show a severe bleeding tendency and a hemorrhagic condition (Yang et al., 2000). One 

study has shown that FV is also targeted for cleavage and inactivation by culture supernatant 

fractions of Acinetobacter baumannii clinical isolates (Tilley et al., 2012) indicating that the FV 

in plasma is also targetted by different bacteria to evade this part of the host immune response. 

Also, FV is a critical regulator of thrombin generation and fibrin clot formation (Mann & 

Kalafatis, 2011); its over-activation leads to thrombosis and deficiency results in a bleeding 

disorder. It was also shown previously that the EspP from E. coli O157:H7 can cleave FV in 

human plasma (Brunder et al., 1997), but FV activity assay were not performed to determine the 

effect on FV function. In the work reported here, there was no significant FV inactivation with 

EHEC OMVs and cells from the ∆OmpT strain, indicating other proteases from EHEC did not 

have a inactivation effect on FV in NHP.  

FV cleavage by OmpT was also demonstrated by immunoblotting. NHP was treated with either 

EHEC OMVs or whole cells. EHEC cellular and OMV associated OmpT from the EHEC wild 

type inactivated FV by 60% in 2 hours and pEHOmpT inactivated FV by 95% in 2 hours. No FV 

was inactivation was observed by EHEC cells and OMVs from ∆OmpT. The FV was cleaved 

from 330kDa to 250kDa by EHEC cellular and OMV OmpT from the wild type and pEHOmpT 

strains and pEHOmpT cells cleaved the 250kDa species further to a 150kDa product. These 

results are consistent with the findings from the baboon sepsis E. coli model which showed a 

dose-dependent inactivation of FV (Samis et al., 2007) and also with studies conducted for FV 

inactivation using culture supernatant of E. coli 086a:K61 by Tilley et al. (2011). Thus, these 

results show collectively that OmpT, either on the outer cell membrane or as a part of OMVs, 

specifically targets FV for inactivation to attenuate blood coagulation in order block fibrin 
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formation to enhance pathogen growth and spread. It was shown in the present study that EHEC 

secretes OMVs as a part of virulence mechanism to attenuate the blood coagulation process by 

OmpT dependent inactivation of FV in human plasma.  

The coagulation pathway is also controlled by plasmin, a protease involved in the fibrinolysis 

pathway. The function of plasmin is to dissolve fibrin barrier to fibrin degradation production 

(FDPs) to restore normal blood flow after injury. However, FDPs interfere with thrombin 

generation (Weitz et al., 1998) and plasmin interferes with clot formation by inactivating FV, 

FVIII, FIX, and FX as described by Hoover-Plow (2010). Thus, it was not clear whether EHEC 

OmpT was directly inactivating FV or indirectly inactivating FV by activating plasminogen to 

plasmin. OmpT has been shown by others to be a plasminogen activator (McCarter et al., 2004) 

that contradicts another observation made by a different study which showed that OmpT was a 

poor plasminogen activator (Haiko et al., 2009). Hence, the involvement of plasmin was 

examined by comparing the inactivation of FV by EHEC cells and OMVs using PLG deficient 

human plasma and NHP. FV was inactivated with EHEC cells and OMVs in the PLG-deficient 

plasma to similar levels observed in NHP. However, EHEC ∆OmpT cells and OMVs did not 

inactivate FV in both NHP and PLG deficient plasma and the FV inactivation effect was 

enhanced with pEHOmpT whole cells and OMVs over and above that observed with wild type 

EHEC cell and OMVs. There was no significant difference in the resultant FV activity by EHEC 

cells and OMVS associated OmpT with both PLG-deficient plasma and NHP. Therefore, this 

data indicates that OmpT does not utilise host plasmin for an indirect inactivation effect on FV. 

Inactivation by OmpT EHEC cell and OMV is direct and does not involve the host plasminogen 

system. This finding is consistent with the observation made by Haiko et al. (2009) which 

showed that OmpT is a poor plasminogen activator. The OmpT inactivation of  FV reported here 
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is different from the actions of  plasminogen activator (Pla) protease from Yersinia pestis 

(Sodeinde et al., 1992), streptokinase (SK) from Streptoccocus pyrogenes (Sun et al., 2004), and 

staphylokinase from Staphylococcus aureus (Esmon & Mather, 1998) which all down regulate 

fibrin formation by activating host plasminogen to plasmin.  

OmpT protease activity versus other coagulation factors (Fibrinogen, FII, & FX) involved in the 

common pathway was also examined here. The OMVs and cellular associated OmpT from wild 

type EHEC did not inactivate fibrinogen, while OmpT in OMVs and cells from pEHOmpT 

inactivated fibrinogen by approximately 40-50%. This suggests that the pEHOmpT may also 

inactivate the fibrin barrier directly when it is highly expressed without using the host 

plasminogen system. This finding is consistent with the observation that Bacteroides fragilis can 

reduce the fibrin barrier using a putative fibrinogen binding protein (BF-FBP) as virulence factor 

for dissemination and during clinical infection (Houstan et al., 2010). However, FII and FX were 

not significantly inactivated by the OmpT from OMVs and cells from the EHEC wild type, 

∆OmpT and pEHOmpT (p>0.05). Thus under the condition used here, EHEC cell and OMV 

OmpT can specifically target and inactivate FV and to some extent fibrinogen when the OmpT 

gene is highly expressed. 
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Conclusion 

In summary, EHEC is a Gram-negative bacterium that can cause sepsis in humans. OmpT is 

involved in OMVs biogenesis and production and its altered expression alters OMV lipid and 

protein composition as well. The EHEC pEHOmpT had a slower growth rate constant and longer 

generation time and grew significantly slower than the EHEC wild type and ∆OmpT strain in the 

Minimal A liquid media, but the difference in growth between strains was not significant in the 

LB nutrient rich media. The OmpT gene was present in the wild type and pEHOmpT but not in 

the ∆OmpT strain. In addition, OmpT protein expression was consistent with the presence or 

absence of the genetic locus: OmpT protein was expressed in the EHEC wild type and 

pEHOmpT in cell lysates and OMVs, but not in the EHEC cell and OMVs from the ∆OmpT 

strain. The fact that the OmpT can prolong the PT and aPTT clot time implies that it attenuates 

the blood coagulation system by targeting and inactivating clotting factors involved in the 

extrinsic and intrinsic pathways, respectively. The results indicate that OmpT is a potent 

virulence factor associated with the outer membrane of EHEC which can attenuate blood 

coagulation by inactivating FV and to some extent fibrinogen, but not the other factors such as 

FII or FX of the common pathway. The OMVs and cellular associated OmpT from the EHEC 

wild type inactivated FV by 60% in two hours and the effect was enhanced with OMVs and cells 

from the EHEC pEHOmpT strain which inactivated FV by 90% in two hours. Virtually no 

inactivation was observed with the cells and OMVs from EHEC ∆OmpT strain. OmpT renders 

FV inactive by cleaving it from 330kDa to 250kDa as revealed by immunoblotting. In addition, 

OmpT does not inactivate FV indirectly by engaging and activating the host plasminogen 

system. The functional effect of OmpT from the EHEC strains used here on the coagulation 

process needs to be investigated in future studies. 
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Impact and Significance of the Research 

EHEC express OmpT proteolytic activity as a part of the OMVs or as a part of the outer 

membrane protein in whole cells to overcome the fibrin barrier function to evade the host innate 

immune response. Since FVa is a critical factor responsible for the prothrombinase complex 

mediated generation of fibrin, OmpT inactivation of FV would be expected to attenuate the 

coagulation process to maximize pathogen growth, survival, and transmission. This research 

provides in-depth knowledge of how EHEC evades the host innate immune response by 

specifically targeting coagulation factors such as FV and to some extent Fibrinogen (FI) for 

inactivation, but not other factors (FII, and FX). This research will lead to a greater 

understanding of E. coli virulence in humans and to the development of new vaccines, 

antimicrobial drug targets, diagnostic techniques, and treatments to combat EHEC infections of 

humans in the future. 
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Chapter 5 

 

Future Directions 
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1) The effect of EHEC OmpT (Whole cells and OMVs) may be studied with the factors 

involved in intrinsic pathway of coagulation such as FVIII, FIX, FXI, FXII, prekallikrein 

and high molecular weight kininogen. Since FXIII is involved in the cross-linking of 

fibrin, it could be can also be analysed to determine whether it is also susceptible to 

inactivation by cellular and OMV associated EHEC OmpT. 

2) The effect of OmpT (Whole cells and OMVs) may be studied in whole blood. The effect 

of OmpT on clot formation in whole blood could be assessed upon addition of defined 

amounts of protease to citrated human blood for various times at room temperature. 

Then, either thromboplastin and CaCl2 (25mM) or the aPTTreagent and CaCl2 would be 

added to assess the time for clot formation via the extrinsic and intrinsic pathways, 

respectively. These experiments would address whether EHEC cells and OMV associated 

OmpT significantly alters the time for clot formation in whole human blood. Such 

information would provide the basis for protease functional inactivation of the 

coagulation system in a relevant biological fluid containing blood cells. 

3) The effect of EHEC OmpT (Whole cells and OMVs) on fibrin clot formation and clot 

lysis in human plasma could also be studied in future work. Thrombin and CaCl2 or 

thrombin, CaCl2 and a tissue plasminogen activator (tPA) could be added to determine 

the effect of EHEC OmpT on clot formation and clot degradation, respectively. The 

initial rate and extent of fibrin formation and degradation could also be evaluated as part 

of this work in the future. 

4) The effect of EHEC OmpT on thrombin generation in human plasma using fluorescently 

tagged prothrombin with whole cells and OMVs from the three EHEC strains could also 
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be explored in future work. This approach could be also used as a rapid screening assay 

to measure thrombin generation with OMVs and cells different EHEC strains.  

5) The proteins present in the OMVs from the three EHEC strains could also be determined 

by comparative proteomic analysis with 2 dimensional electrophoresis gel and mass 

spectrometry. 

6) The lipid composition in the OMVs from the three different EHEC strains could also be 

determined by using gas chromatography in combination with mass spectrometry 

identification and quantification. 

7) A long term goal for this research is to identify and charaterize different proteases from 

the other micro-organisms such as viruses and fungi and determine their effect on the 

blood coagulation system. 
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