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Abstract 
 

 In the industrialized world the need for liquid fuel is growing every day. Although 

new technologies have allowed the attainment of previously untapped fossil fuels these 

practises are unsustainable and harmful to the environment. Part of the solution to ease 

the fuel burden is through renewable fuels derived from microalgae as they are a carbon 

neutral source of fuel. The aim of this research was to assess if algae derived from 

municipal wastewater sources could be potential biofuel feedstocks by assessing their 

growth and fatty acid accumulation. When comparing wastewater derived algae to culture 

collection strain there was no significant difference (p>0.05) in terms of growth rates 

under photoautotrophic and mixotrophic conditions. The strain Botrydiopsis B2N under 

mixotrophic (14mM glucose) possessed the highest growth rate (2.7x104 cells·L-1·day-1) 

of all the strains tested under the various conditions. It was noted that under mixotrophic 

growth (14mM glucose) non-axenic algae accumulated significantly higher 

concentrations of neutral lipids compared to the same algal strains under axenic 

conditions. The result of which is thought to be caused by bacteria creating a nutrient 

deprived media causing the algae to become stressed and accumulate fatty acids. Under 

mixotrophic growth (14mM glucose and 3mM acetate) the organic carbon in the media 

appeared to shift the composition of fatty acids in most cases increasing the likelihood of 

an even blend of saturated to unsaturated fatty acids. 
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Chapter 1. General Introduction  
 

 Global energy demands have been on the rise since as early as the industrial 

revolution. From approximately 1971 to 2010 the energy consumption of the world has 

been 2.2% per year (Goldemberg and Prado, 2013). Of this energy consumption the 

world uses 4.4 billion tonnes of petroleum per year to make electricity, power 

automobiles, and to fuel industries (Roddy, 2013). The result of burning petroleum 

products some of which are fossil fuels causes the release of carbon dioxide. The excess 

carbon dioxide as a result of anthropogenic sources in the atmosphere has caused changes 

globally. For example oceans have begun to acidify and warm which has affected the 

development of marine life (Padilla-Gamino et al., 2013). Whole ecosystems are also 

being affected as the change in climates and overall global temperature has caused some 

insects to switch their feeding onto endangered plant species due to delayed or 

accelerated emergence (Liu et al., 2011).  

 

1.1 State of Fuels 
 

1.1.1 Atmospheric Carbon Dioxide Levels 
 

Atmospheric carbon dioxide (CO2) has been steadily increasing over the last 

century, reaching the highest concentration (400 ppm) in human history just recently 

(NOAA, 2013). The excess carbon dioxide worldwide has led to a 1.31⁰C increase in 

temperature globally (Huber & Knutti, 2012). The reason for this is that carbon dioxide 

absorbs infrared radiation from the earth and directs it back towards the surface (Seinfeld, 
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2011). Carbon dioxide is a naturally occurring compound that is also a greenhouse gas 

(GHG), other gases that can absorb infrared light include methane, nitrous oxide, and 

ozone, however CO2 is the largest contributor of this warming effect (Huber & Knutti, 

2012). Ice core samples have been used to document the rise in temperature as a result of 

increasing CO2. Before the industrial revolution CO2 levels where at 280 parts per million 

(ppm) whereas levels now have reached 400 ppm (Seinfeld, 2011). The dramatic increase 

in atmospheric CO2 levels is largely linked to fossil-fuel burning (Seinfeld, 2011). 

 

1.1.2 First Generation Biofuels 
 

In 2008 fossil fuels accounted for 88% of global energy consumption, a figure 

thought to increase with growing economic progress as well as depleting reserves 

(Brennan and Owende, 2010). The need for sustainable and carbon neutral fuel like 

bioethanol from corn or biodiesel from palm plants is important, to reduce the reliance on 

foreign sources of oil and the GHG levels are not further impacted. This led nations 

around the world to consider renewable sources of fuel that could offset the dependence 

on non-renewable sources like fossil fuels. The renewable sources of few were almost 

always derived from biological sources and were deemed biofuels.   

First generation biofuels refers to renewable liquid fuel typically derived from 

soy, palm, animal fat, and waste cooking oil (Gong and Jiang, 2011). Biofuels are thought 

to remedy the issues with conventional fossil fuels as they are capable of sequestering 

atmospheric CO2 (Singh et al., 2011). This is achieved through the act of photosynthesis 

where light absorbed by the chlorophyll results in oxidation-reduction reaction in which 

oxygen and water are produced  resulting in the formation of reduced carbon compounds 
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from the CO2 first absorbed by the plant (Whittingham, 1952). Additionally since most 

biofuels are based off of plants like corn and soy they are renewable sources of energy as 

they can be regrown after harvest. Also the liquid form of the fuel means that the energy 

is stored chemically giving biofuels the advantage over other renewable sources of 

energy (solar, tidal, wind) since this fuel type can be easily integrated into current 

machinery (Amaro et al., 2011; Singh and Gu, 2010).  

Global production of biodiesel rose from a level of zero in 1991 to approximately 

2 billion gallons in 2006 (Birur et al., 2007).  Canada has been slow to adopt biofuel 

production but there are projects in place that attempt to use biomass from western 

Canadian forests as a source of solid, liquid, and gaseous fuels. Biomass from forests has 

been shown to produce charcoal, methanol, and hydrogen. The current practice of 

biomass mitigation after logging is to collect the residue forest scraps and burn them to 

prevent forest fires (Sarkar et al., 2011; Kumar et al., 2003). A reason why Canadian 

efforts at biofuel production are not predominant is due to unfavourable climate and 

lower solar energy levels available for growth (Park et al., 2012). 

Although land based biofuels claim to be carbon neutral (emissions are offset by 

carbon dioxide sequestered during growth) that statement is often false as there are other 

obscured effects that would result if the world switched to land based fuels. There are 

three major concerns that limit the viability of terrestrial biofuels: 1) reduction in 

biodiversity 2) destruction of arable land, and 3) negative environmental impacts.  

If first generation biofuels do not to interfere with current arable land used for 

crop production, then new areas would have to be converted for agricultural purposes. 

This proves to be another unsuitable course of action as it will lead to loss of natural 
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ecosystems as well as the biodiversity associated with the area (Smith et al., 2009). 

Clearing of rainforests, peat lands, savannas, as well as grassland in Brazil, Southeast 

Asia, and the United States (the current leaders in biofuel production) would actually 

result in a carbon debt (Smith et al., 2009). It has been estimated that this conversion of 

land could potentially release approximately 3.8 billion mega-tons of carbon dioxide into 

our atmosphere (Koh and Ghazoul, 2008). The release of the carbon dioxide is due to the 

fact that soil and plant matter actually store carbon within their mass and act as a carbon 

sink. A popular practise in the tropical areas in the world is through slash and burn in 

which the natural vegetation is cut down and burnt for monoculture plantations (Ewel et 

al., 1981).  The result of combusting the organic plant matter results in the emission of 

carbon dioxide. Removal of the native vegetation in the 1930s aided in causing the dust 

bowl in which the native soil dried out and was aerosolized due to poor land management 

practices (Cook et al., 2009).  

The negative environmental impacts associated with terrestrial biofuels typically 

deal with the practises implemented to maintain high yields. The most common methods 

are uses of fertilizers and pesticides which each have negative environmental 

implications. Typically manure is used as a low cost fertilizer however the environmental 

impacts that result are acidification, emission of greenhouse gases (from the manure), and 

eutrophication as excess nitrates and phosphates enter receiving waters (De Vries et al., 

2012; Prapaspongsa et al., 2010). The great lakes in Canada and the United states have 

experienced nutrient enrichment via the initial European settlement from 1850 to 1940, 

then phosphorus input came from detergent use and intense agricultural development 

until the 1970s (Han et al., 2012; Richards et al., 2002).  
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The issue with the increase in nutrient loads into water systems promotes algal 

blooms, and these blooms have been increasing in Ontario water systems (Winter et al., 

2011).  Additionally not only are the algal blooms increasing in frequency but the 

dominating species throughout almost all cases is cyanobacteria. The reason that 

cyanobacteria are of concern is due to their ability to produce cyanotoxins which can 

inhibit protein synthesis resulting in genetic damage to cells (Graham et al., 2009). This 

would pose a threat to the organisms occurring within the affected ecosystem either by 

reducing their fitness or by killing the species indirectly.  

Pesticides like organophosphates and organochlorines are also of environmental 

concern due to their persistence in the environment and their ability to bioamplify, 

bioaccumulate, and induce acutely toxic effects (Dau et al., 2001, Karami-Mohajeri and 

Abdollahi, 2010). Pesticides like organophosphates are harmful to non-target organisms 

since they lack specificity. During the 1980s there were a large number of bee deaths 

reported after aerial spraying with organophosphorous compounds (Fletcher and Barnett, 

2003). Additionally there appears to be a lack of research into the environmental fate of 

the pesticides. Approximately over 2000-3000 chemicals on the market have insufficient 

ecotoxicity and toxicity data, and from what is available only 75% have minimal risk 

assessment (Ragnarsdottir, 2000).  

Lastly biofuels when compared to their fossil fuel counterparts do possess 

drawbacks (Table 1). Although the environmental impacts of biofuels like ethanol, 

hydrogen or biodiesel are much lower than their fossil fuel counterparts they are often 

more expensive, require engine modifications to use and generally do not contain as 

much energy content thus requiring more fuel to attain the same level of performance.
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Table 1: Overview of structure, cost, and challenges in production of fossil fuels like gasoline and diesel compared to their renewable 
sources (Table adapted from U.S. Department of Energy, 2013) 

   Gasoline  Ethanol  Hydrogen  Diesel  Biodiesel 

Chemical Structure  C4 to C12 CH3CH2OH H2 C8 to C25 Methyl esters of C12 to C22

Fuel Material (feedstock) 
Non‐renewable 
Crude Oil 

Corn, grains, 
agricultural waste 

Electrolysis of 
water, by 
product of 
microbes 

Non‐renewable 
Crude Oil 

Animal fat, oil from: palm, soy, 
algae 

Gasoline Gallon Equivalent  100% 
1 gallon of E85 = 73% to 
83% 

1 kg of H2 = 
100% 

1 gallon of diesel 
= 113% 

1 gallon = 103% (only 93% when 
compared to Diesel) 

Energy Content (Lower heating 
value) 

116090 Btu/gal  76330 Btu/gal  51595 Btu/lb  128450 Btu/gal  119550 Btu/gal 

 
Energy Content (Higher 
heating value) 

124340 Btu/gal  84530 Btu/gal  61013 Btu/lb  137380 Btu/gal  127960 Btu/gal 

Challenges 
Nearly 2/3 is 
imported 

Special hosing and 
conversions to existing 
engines may be 
required 

Often require 
valuable 
precious 
metals 

Nearly 2/3 is 
imported 

More expensive to convert to a 
useable fuel 

Emissions 

Carbon Monoxide, 
Hydrocarbons, 
Nitrogen Oxides, 
Carbon Dioxide, 
Sulfur Dioxide 

Reduction in emissions 
from burning, but 
increased Carbon 
dioxide emissions from 
processing 

Hydrogen, 
water 

Carbon 
monoxide, 
Nitrogen oxides, 
Sulfur Dioxide, 
Diesel 
particulate 
matter 

Increased nitrogen oxides,  no 
sulfur dioxide emissions 
(reduction in all other emissions) 

Cost per gallon (US dollars)  1.9A  2.5A  1.18/kgB   0.95C  1.8C 

A: Goldemberg, 2007 B: Sarkar and Kumar, 2009 C: Haas et al., 2006
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1.2 Second Generation Biofuels 
 

Despite the advantages of using biofuels, the associated negative implications have 

greatly diminished their economic viability due to reduction of biodiversity, pesticide use 

and eutrophication. However, the biofuel sector has moved to other feedstocks and 

processes. These are known as “second generation’ biofuels and algae (micro- and 

macro-) are being investigated as an important source of these fuels.   

 

1.2.1 Overview of Algae 
 

 Algae can be classified as photosynthetic eukaryotes that lack leaves, roots, and 

organs characteristic of higher plants (Parker et al., 2008). The three main classifications 

are green algae (Chlorophyta), red algae (Rhodophyta), and diatoms (Bacillariophyta). 

Additionally algae can be autotrophic in which they require carbon dioxide, salts, and 

light to perform photosynthesis; heterotrophic algae do not perform photosynthesis so an 

organic source of nutrients is required (Brennan and Owende, 2010).  

Algae are typically aquatic organisms responsible for a majority of the oxygen 

present on earth today and are responsible for the evolution of eukaryotic organisms 

(Chapman, 2013). The aquatic algae and cyanobacteria actually account for 

approximately half of the global carbon fixation (Sasso et al., 2012; Field et al., 1998). 

Fixing carbon is highly important since algae convert sunlight into organic carbon 

making them the base of aquatic food webs. A large majority of algae are aquatic based 

organisms, and carbon dioxide diffuses 10 000 times more slowly into water over air. 

Algae have adapted by developing carbon concentrating mechanisms which enhances 
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carboxylation efficiency of ribulose bisphosphate carboxylase oxygenase, this allows 

inorganic carbon (CO2) to be fixed to carbon (Graham et al., 2009, Thoms et al., 2001).  

 Algae as a simple yet ancient group of organisms have allowed scientists to 

address issues in ecology, evolution, cell biology, biogeochemistry, and as models for 

higher plants (Sasso et al., 2012). For example the edible seaweed Eisenia bicyclis has 

been shown to protect retinal ganglion cells from oxidative damage. Cells treated with the 

algal cellular extract showed a reduction in apoptosis and resembled healthy non-treated 

cells (Kim et al., 2012). This research aims to aid treatment in glaucoma patients as it is a 

neurodegenerative disease similar to the degenerative effects induced with N-methyl-D-

asparate.  

 Since algae are capable of doubling their biomass several times a day. It has 

attracted attention to their potential use for biofuel production. Some strains can actually 

accumulate up to about fifty percent of their mass in lipids or triacyglycerides alone 

(Singh et al., 2011). 

 

1.2.2 Algal Growth Mechanisms 
 

Photoautotrophic growth is defined as growth utilizing solar energy to convert 

CO2, water, and inorganic nutrients into oxygen and complex sugars (Benedict, 1978). 

Algae which grow strictly in this manner are known as obligate photoautotrophs and have 

adapted their cellular functions to the fluctuation in the day: night cycle (Benedict, 1978, 

Price et al., 1998). Algae like plants and animals require nitrogen and phosphorus for 

production of DNA or to make energy for cellular functions. Certain algae can be found 

in waters that are low or high in nitrogen and phosphorus, or in conditions that fluctuate 



   

9 
 

between the extremes (Chu, 1943). When algae become deficient in either nitrogen or 

phosphorus it decreases cellular division, chlorophyll, and protein contents but increase 

the levels of carbohydrates and lipids (Amaro et al., 2011, Csavina et al., 2011). Research 

by Singh and Kumar (1992) demonstrated a 1.6-fold increase in lipid content of 

Botryococcus-spp. under nitrogen limitation versus nitrogen supplementation. Zachleder 

et al. (1988) discovered that Chlorococcal alga (Scenedesmus) when grown in phosphorus 

deprived media perform no net RNA, DNA, or protein synthesis therefore cellular 

division halted.  

Certain algal strains also possess the ability to grow mixotrophically through the 

use of an organic carbon source (glycerol, glucose, or acetate) in addition to light 

exposure (El-Sheekh et al., 2012). Mixotrophic algae are found in nutrient poor 

environmental conditions and eutrophic areas, additionally the ability to use organic 

carbon sources provides a competitive advantage over strict photoautotrophs 

(Subashchandrabose et al., 2013). Chlorella protothecoides grown photoautotrophically 

followed by growth in glucose resulted in a 69% higher lipid yield (Singh et al., 2011). 

Research by Yan et al. (2012) demonstrated that the cyanobacteria Synechococcus sp. PC 

7942 displayed energy conversion efficiencies (ATP production) under photoautotrophic, 

glucose mixotrophic, and acetate mixotrophic cultures were 4.59%, 5.86%, 6.60% 

respectively.  

Heterotrophic growth is defined as the use of dissolved organic compounds for 

growth in the absence of light (Droop, 1974). Most algae when presented with light 

exposure usually will preferentially perform photosynthesis over uptake of organic 

carbon, only when growing under low light conditions for an increased duration will lead 
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to uptake of organic matter (Markager and Sand-Jensen, 1990). The advantage over 

photoautotrophic growth is a higher density culture, ease of harvest and lack of 

photoinhibition (reduction in light to algal cells in the center due to higher cell density 

surrounding them), but the associated production costs are higher due to the use of 

organic carbon sources (Kim & Hur, 2013). Azma et al. (2011) found Tetraselmis suecica 

when grown photoautotrophically only reached a concentration of 8.40 g·L-1 while under 

heterotrophic growth was 28.88 g·L-1. Research by Liu et al. (2011) demonstrated that 

Chlorella zofingiensis not only experienced an increase in lipid yield under heterotrophic 

growth versus photoautotrophic growth but also accumulated more fatty acids that can be 

used for biofuel potential.  

 

1.2.3 Algal Lipid Biosynthesis 
 

Fatty acid synthesis has been characterized in both plants and bacteria allowing the 

algal synthetic pathway to be theoretically deduced by homologous analysis. In the 

chloroplast fatty acids are biologically synthesized by a type II fatty acid synthase (FAS) 

which elongates a growing fatty acid chain by two carbons (Blatti et al., 2013). The first 

step in the fatty acid biosynthesis pathway utilizes the enzyme acetyl-CoA carboxylase 

forming malonyl-CoA from acetyl-CoA and CO2 (Ohlrogge and Browse, 1995). Fatty 

acid synthesis is achieved through a complex mechanism but has been simplified in 

Figure 1. The process is broken up into five main reaction points:1) An attachment stage 

in which acetyl-CoA binds to the acyl carrier protein (ACP) which already has a malonyl-

CoA attached, 2) The condensing reaction binds malonyl-CoA to acetyl-CoA causing the 

CoA group and a CO2 molecule from the malonyl-CoA to be generated, 3) Next is the 
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reduction stage where the carbonyl group is reduced by NADPH forming an alcohol 

group on the molecule (β-hydroxy-acyl-ACP) attached to ACP, 4) The molecule is 

dehydrated forming a water molecule and a double bond to form on the fatty acid chain, 

5) NADPH then converts to NADP+ to remove the double bond thereby allowing for 

further chain elongation (White et al., 2005). 

 

1.3 Algal Biofuels 
  

1.3.1 Algal Biofuels vs. Terrestrial Biofuels (Second Gen vs. First Gen) 
 

 Only about one percent (14 million hectares) of the world’s arable land is 

currently used for biofuel production including both first generation and second 

generation biofuel production (Brennan and Owende, 2010). This means to replace all 

current fossil fuels utilization of vast amounts of farmland, pesticides, and fertilizers 

would need to be used. As stated before (First Generation Biofuels) this would have 

many negative impacts, for terrestrial crops like corn it would take approximately an area 

of 1000 miles by 1000 miles to displace all the gasoline consumption in the United States 

(Dismukes et al. 2008). On the contrary algal derived biofuels could displace all the 

gasoline for the U.S in a fraction of the land requirement. Even at sub-par production the 

potential area required is roughly equal to that of the corn crop production in the United 

States during 2006 (Dismukes et al. 2008).  

When compared to terrestrial biofuel crops algae have a 6-12 times greater yearly 

energy production over corn or switchgrass (Sandefur et al., 2011). Additionally the 

production of microalgae is non-seasonal, meaning that yields are not limited to one to
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Figure 1: Simplified fatty acid synthesis diagram: 1) Attachment phase, 2) Condense phase, 3) Reduction phase, 4) Dehydration phase, 
5) Reduction phase. This cycle has the ability to repeat after step five further elongating the carbon chain 
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two harvests per year (da Silva et al., 2009). This is due to the fact that algae have the 

inherent ability to double their biomass during their exponential growth phase, sometimes 

even doubling in as little as three and a half hours (Chisti, 2007; Singh et al., 2011). 

Additionally algae are not limited to only one fuel derivative. Based on the processing 

that is undertaken like direct combustion, pyrolysis, or chemical conversion the biomass 

can be converted to fuels like hydrogen, oil, or even raw electricity (Brennan et al., 2010; 

Tsukahara and Sawayama, 2005). The advantage of using fuel like biodiesel is the fact 

that it can be integrated into current diesel engines and can reduce emissions or 

particulate matter, SOx, CO, and hydrocarbons (Smith et al., 2009; Sheehan et al., 1998). 

Bioethanol fuels cannot be easily incorporated into current gasoline engines and actually 

require modifications to the intake manifold, fuel lines, fuel-filtering system, the 

compression ratio also needs to be altered along with the catalytic converter (Agarwal, 

2006).  

 

1.3.2 Bioreactors vs. Open Pond Systems 
 

 Open pond systems are typically referred to as raceway ponds due to their 

construction resembling a circular racetrack (Chisti, 2007; Brennan and Owende, 2010). 

The ponds themselves can be built out of concrete or be as low cost as compacted earth 

lined with a waterproof white plastic (Brennan and Owende, 2010). Although the open 

pond systems are cheap, easy to operate and can meet large scale demands they do have 

drawbacks. One issue is that these systems require natural sunlight to function and an 

issue with that is seasonal variation. Grobbelaar et al. (1996) demonstrated the influence 

of longer dark cycles and the frequency of light and dark cycles through a pulse 
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mechanism, which showed that longer dark cycles led to a decrease in photosynthetic 

rates. Therefore in order for open pond systems to achieve maximum efficiency they 

would have to be constructed in areas where light fluctuations are minimal year round.  

Another issue is that since the system is exposed to the surrounding environment 

contamination can happen. Often times non-target strains like Chlorella or tolerant strains 

like Spirulina will be able to outcompete the alga being used in culture; this requires the 

strains to be grown in batch or semi-batch modes which require reseeding of the ponds 

with new growth media (Del Campo et al., 2007; Borowitzka, 1999). 

 There is another cost effective open pond system which employs the use of a 

translucent barrier to prevent contamination from the surrounding environment. The 

semi-closed system typically utilizes plexiglass as it allows the species being grown to 

remain dominant, extends the growing season (acts like a greenhouse), and lastly if 

heated can provide a year round growing season (Singh and Sharma, 2012). 

 The issues inherent to open pond systems can actually be reduced or completely 

removed when using a closed system. This is due to the fact that since the system is 

closed foreign contaminants can be managed, cells can be irradiated more effectively 

through man made lighting, and carbon dioxide as well as inorganic nutrient levels can be 

adjusted effectively (Sforza et al., 2012). Additionally since the system is closed 

photobioreactors can actually reduce water loss through evaporation, increase cell 

concentrations, and since contamination is highly reduced the algae can be used for 

biopharmaceuticals (Singh and Sharma, 2012).  

 Many closed system variations exist such as vertical column, flat panel, and 

tubular photobioreactors (PBRs) (Singh and Sharma, 2012). Although the design and 



   

15 
 

structuring of a closed system is always being modified and altered to optimize the best 

mixing and light penetration for optimal growth.  

 Vertical column PBRs typically implement large cylinders to increase the surface-

volume ratio and limit the overall height to four meters to ensure gas transfer is optimal 

(Wang et al., 2012). The design and construction actually allows the reactor to limit photo 

inhibition (reduction in light penetration due to high cell density) as the radial mixing of 

fluid causes cells in the darker core to be continuously moved to the well-lit perimeter of 

the column (Miron et al. 2002). This is done through the gentle bubbling of carbon 

dioxide up from the base of the column and allowing gravity to pull the cells within the 

medium back down. Typically the headspace or ‘freeboard’ is in place to aid in gaseous 

transfer of oxygen out of the system.  

 Flat panel PBRs are of a similar construction to that of a window pane or sheet 

like structure (Singh and Sharma, 2012). Turbulence within the housing is achieved via 

the pumping of liquid while airlift flat panel PBRs use compressed air to mix the medium 

(Wang et al., 2012). The panels are often cost effective as they can be constructed from 

transparent materials like glass, plexiglass, or even polycarbonate (Singh and Sharma, 

2012).  When comparing the flat panel PBR to the vertical column PBR research has 

shown that biomass productivity to be 1.7 times higher in the flat panel model which is 

attributed to the highly organized mixing of the bioreactor (Degen et al., 2001). 

 Tubular PBRs are the most common design which uses an array of transparent 

tubes that can be conformed into straight, bent, or spiral shapes. The tubular design 

differs only slightly when compared to the previous two PBRs. There is still a transparent 

tube to allow algal growth, along with a pump to ensure even mixing, but the difference 



   

16 
 

here is that since the tubes are typically allocated in a horizontal fashion they require a 

degassing column to provide gas exchange and cooling (Wang et al., 2012). This 

degassing column is necessary to prevent overheating since the absorption of light is 

greatly increased.  

 An issue with closed systems is that they rely heavily on a large capital 

investment to start up the production process. A Dutch company AlgaeLink N.V. offers 

algal cultivation systems that are 300 and 1200m2 which sell for €144,000 and €194,000 

(~$200- and $300-thousand CDN) (Holtermann and Madlener, 2011). A life cycle 

assessment performed by Stephenson et al. (2010) demonstrated the fossil fuel energy 

input and global warming potential of biodiesel derived from Chlorella vulgaris was 85 

and 78% lower than that of fossil fuel derived diesel, while tubular bioreactors are 362 

and 273% greater. This is extrapolated to be the result of electrical input required for 

mixing and lighting as well as gaseous fuel burning for heating the solution to optimal 

temperature.  

 

1.3.3 Culture Conditions and Lipid Optimization 
 

Culture conditions are often dependant on the algal strain being studied as each 

strain has certain regimes for optimal growth. For example Cho et al. (2007) discovered 

that Chlorella ellipsoidea had the highest growth rate at a temperature of 25ᵒC. 

Additionally research by Sheehan et al. (1998) found that of 300 strains collected from 

Utah and Colorado only 15 were able to grow at temperatures ≥30ᵒC. Even considering 

light exposure regimes will result in different responses based on the algal strains being 

utilized (Price et al. 1998). The light exposure experiments performed by Price et al. 
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(1998) revealed that the non-coccolith forming species all performed better when 

provided with a 14:10 light dark ratio while select strains (Emiliania huxleyi 88E, 

Cyclococcolithus leptoporus, and Cricosphaera carterae) actually performed better under 

continuous lighting.  

 Like terrestrial plants algae also require an input of carbon dioxide, this can either 

be from the atmosphere or through an external bubbling source. When treated with CO2 

enriched air (750 and 1600ppm CO2), Hypnea spinella experienced enhanced growth by 

85.6% and 63.2% (Suarez-Alvarez et al., 2012). External sources such as flue gas from 

smokestack emissions are being utilized for algal growth production. Chen et al. (2012) 

discovered that utilizing pressurized carbon dioxide-rich flue gas (500mm Hg) from the 

Dalin coal-fired power plant in southern Taiwan resulted in a carbon dioxide fixation rate 

of 2,234 kg per year.  

 Lipid content (triglyceride concentration) within cells can be altered through 

changing the available nutrients present in the medium. Research by Mujtaba et al. (2012) 

found that Chlorella vulgaris increased lipid content from 14.5% in fresh media to 24.6% 

in nitrate depleted media, corollary to this when nitrate levels were kept at a steady state 

the lipid content remained at 14-16%.  This starvation of the cell however needs 

additional time being required to attain maximum lipid concentration due to slower 

growth rates and will additionally lead to lower biomass production since cellular 

division slows or halts upon starvation (Das et al. 2011).  The starvation can be offset by 

adding in a sugar substrate to change the photoautotrophic culture to a mixotrophic 

culture. Das et al. (2011) demonstrated that with addition of glycerol fatty acid methyl 
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ester (FAME) content increased by 30%, allowing for increased biomass and lipid 

content of the culture.  

 Changes to algal lipid composition (types of fatty acids: triglycerides vs. 

glycolipids) can also be induced by temperature stress. It is believed that changes in 

Temperature results in changes in the lipid profile of the cellular membrane to protect 

cellular functions (Somerville, 1995). There is a wide variation as some strains exhibit 

changes in lipid content with decreasing temperature while others increase lipid content 

with increasing temperature. Another proposed method is to use pH-based stress to 

induce lipid accumulation. Stress via pH has not been significantly researched but it is 

thought to be easier to implement and scale up over nutrient or temperature stress 

(Skrupski et al., 2012). Gardner et al. (2011) demonstrated that pH change induced lipid 

accumulation in both Scenedesmus and Coelastrella strains. Differences of incremental 

pH change vs. static pH change have also been investigated. Three strains FGP5, OS1-3, 

and OS4-2 isolated from Alberta and Saskatchewan Canada accumulated oil under these 

varying conditions. The strain FGP5 accumulated oil in quantities of 18% of its dry 

weight (double that over normal conditions) in both incremental and constant pH stress, 

however OS1-3 and OS4-2 accumulated 47 and 45% oil per dry weight when pH was 

incrementally changed over control (constant pH stress resulted in slightly higher yields) 

(Skrupski et al., 2012).  

 Although lipid alteration can be achieved by changing the growth conditions the 

algae are being exposed to, genetic manipulation can be used to increase yields. By 

combining UV mutagenesis with flow cytometry sorting, researchers isolated cells which 

displayed enhanced lipid content in Isochrysis affinis galbana, in which the fatty acid 



   

19 
 

content ranged from 262 mg total fatty acids (gC)-1 to 409 mg total fatty acids (gC)-1 

without affecting maximum growth rate (Bougaran et al., 2012). Increasing the gene 

expression of Acetyl CoA Carboxylase led to no increased lipid production indicating 

that direct manipulation of the fatty acid synthesis pathway may not be possible (Gong 

and Jiang, 2011). 

1.4 Water Requirements 
 

1.4.1 Fresh Water Issues 
 

 By the year 2025 it is predicted that two out of every three persons in the world 

could be residing in regions without access to drinking water (Mehanna et al., 2010). The 

seriousness of this issue is not only due to human consumption of surface and 

groundwater sources but also due to the increase in global temperatures. Sandstrom 

(1995) showed that a 15% reduction in precipitation due to climate change resulted in a 

40-50% reduction in aquifer water recharge. The need for water for human consumption 

is already dire in parts of the world and this issue is further strained as farmers will 

require more water for the production of crops. Currently the consumption for crops is 

roughly 2700 km3 of drinking water, this number is projected to increase to 4000 km3 of 

water required by 2050 (Chinnasamy et al., 2010). This is disturbing for the future of 

algal biofuels as large scale cultivation of algae would require approximately 1.5 million 

liters of water per hectare, if grown in open ponds the evaporation loss would be 7-11 

million liters of water per hectare per year (Chinnasamy et al. 2010). A viable alternative 

is to utilize water that cannot be put forth for drinking or farming purposes.  
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1.4.2 Wastewater 
 

 After industry or farming operations consume fresh water, the discharged 

wastewater enters surface waters, contributing to eutrophication or contamination of local 

ecosystems (Foley et al., 2012). Eutrophication is often the result of excess nitrogen and 

phosphorus concentrations. Nitrogen and phosphorous concentrations can be 10-100 

mg/L in municipal wastewater and >1000 mg/L in agricultural wastewater (de la Noue et 

al., 1992). This will result in algal blooms that will alter dissolved oxygen levels or 

release toxins which can decrease species richness. Li-Na et al. (2011) found a reduction 

in molluscs from 83 species and 7 subspecies in the 1940s to only 16 species and one sub 

species in the early 1990s as a result of phosphorus accumulation in Lake Dianchi in 

China. This is achieved due to hypoxia developing in which the rate of oxygen use 

exceeds the rate of replenishment. A large hypoxic dead zone that is well documented is 

formed around the Louisiana shelf in the Gulf of Mexico and is the result of increased 

transport of nutrients from anthropogenic sources such as fertilizers, sewage, and 

livestock-derived runoff (Osterman et al., 2009). In 1995 two scientists reported 44 dead 

zones globally but in 2004 the United Nations Environment Programme reported there 

are 150 recurring and permanent dead zones as the result of hypoxia (WWF, 2005). 

The concept of recycling wastewater for other uses is not a new idea as the 

ancient Greeks (300-500 BCE) actually had public toilets which drained into piping that 

carried the waste away from the city to agricultural fields where it was used as a fertilizer 

for crops (Lofrano & Brown, 2010). Wastewater poses an interesting avenue for algal 

biofuels as the high levels of nitrogen and phosphorus provide ideal nutrient levels for 

algal growth. 
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 Sandefur et al. (2011) has actually shown that algal strains utilizing wastewater 

discharge were able to alter phosphorus concentrations from 0.165 mg/L to 0.095 mg/L 

and nitrogen from 9.20 mg/L to 7.56 mg/L. Additionally when algae are grown in farm 

effluent like piggery wastewater An et al. (2003) showed that the wastewater containing 

788 mg/L NO3 had a removal of 80% of the NO3 content using Botryococcus braunii. A 

paper by Amaro et al. (2011) outlined the fact that marine and fresh water species of 

microalgae can possess oil levels between 20-50%. This makes the option for using 

naturally occurring algal strains derived from wastewater treatment plants more alluring 

as they do not have to be cultivated over multiple generations to select the highest 

productivity phenotype as their environmental stressors have been doing the isolation. 

 

1.5 Knowledge Gaps 
 

Although the use of wastewater is not a novel idea, since research has shown that 

algae are effective at removing nitrogen and phosphorus (Sandefur et al., 2011) from 

waste effluent much has yet to be considered. Few researchers isolate naturally occurring 

algal species from the effluent being studied. Typically the algae isolated are from lakes, 

rivers, or naturally occurring water bodies (Zhou et al. 2011, Park et al. 2012, Liu et al. 

2012). Abou-Shanab et al. (2011) showed microalgae derived from naturally occurring 

sources ranged anywhere from 21 to 58% lipid content. Although this supports the 

validity of using environmentally isolated strains it does not verify if those strains are 

more effective lipid producers over laboratory strains. Lastly Zhou et al. (2011) has stated 

that only a few strains in the Chlorella genus and Scenedesmus genus have actually been 
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analyzed for their ability to grow in wastewater. This indicates there is a lack of testing of 

various algal strains.   

Most research on the topic of using algae grown in wastewater typically sterilizes 

the algae to remove bacteria from the solution through either filter sterilization, 

application of antibiotics, or through chlorination (Zhou et al., 2011, Chinnasamy et al. 

2010, Liu et al. 2012). In doing this the natural algal bacterial interaction is no longer 

present which may impact not only growth but lipid accumulation. 

 

1.6 Purpose 
 

 The purpose of this research was to determine if there are microalgae strains from 

municipal wastewater systems that can serve as candidates for feedstock in biofuel 

production. The rationale behind this is that microalgae from wastewater effluent would 

be tolerant of wastewater conditions and also effective at removing nitrogen and 

phosphorus from wastewater. This was accomplished by the following objectives: 

1. Isolate algal strains from municipal wastewater 

2. Grow algal isolates under photoautotrophic, mixotrophic, and heterotrophic 

conditions to assess metabolic capacity 

3. Analyze the lipid content and composition of each strain under varying conditions 

4. Assess if bacterial presence or absence changes the lipid content/composition, or 

growth 

5. Verify whether the culture collection strains or algal isolates from wastewater 

treatment plants are more effective lipid producers 
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I hypothesized that the environmentally isolated strains would outperform the culture 

collection strains under the various growth conditions. I theorize heterotrophic growth 

would yield the best lipid content and biomass; in addition the presence of bacteria would 

also greatly improve the growth and lipid accumulation of all the strains isolated. 
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Chapter 2. Isolation and Growth Characteristics of Wastewater Algae 
 

2.1 Introduction 
 

  Currently the largest collection of freshwater algae resides at the University of 

Coimbra, Portugal maintaining over 4000 strains with only a few hundred strains studied 

for their chemical contents (Duong et al., 2012). This means that environmentally isolated 

algae may have untapped potential for uses in the biofuel sector.  There is need for high 

lipid yield and high biomass production of algae which if perfected would ultimately lead 

to an increase in production. As stated previously lipid production can be induced by 

various means but lipid production under normal growth needs to be determined before 

considering growth under adverse conditions (Lim et al., 2012). For biofuel production to 

be successful, strains need to be productive, tolerant of the local climate/growth medium 

and possess the desired end products (Mutanda et al., 2011).  Yang et al. (2000) stated 

that to improve the overall efficiency of an algal culture the growth media and light 

intensity have to be optimized first.  

 A multitude of methods exist for isolating microalgae: single cell isolation, agar 

plate isolations, atomized cell spray technique, dilution techniques, gravimetric isolation, 

and more advanced techniques such as flow cytometry (Andersen, 2005). Single cell 

isolation involves the transfer of a singular cell using a Pasteur pipette. Agar plate 

isolations utilizes spread plate methods or pour plates methods to grow single colonies 

directly on or inside the agar. Atomized cell spraying forces algal cells through a small 

opening scattering cells onto agar plates. Dilution involves reducing the initial inoculum 

to a small enough amount to ensure a single cell is all that remains at the end of the 
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process. Gravimetric isolation involves the use of gravity to settle algal cells based on 

size (larger heavier cells sink to the bottom while smaller lighter cells stay towards the 

top). Flow cytometry enables the sorting of cells based on intracellular components or 

based on outer cellular characteristics through the use of a laser.  

 

2.2 Materials and Methods 
 

2.2.1 Strain Collection and Isolation 
 

Wastewater samples were collected from three municipal wastewater treatment 

plants: Nonquon River Lagoons Wastewater Pollution Control Plant (Port Perry, ON), 

Corbett Creek Water Pollution Control Plant (Whitby, ON), and Woodward Avenue 

Wastewater Treatment Plant (Hamilton, ON). Six one-liter Nalgene bottles were used to 

collect samples of raw effluent after secondary treatment (after biological treatment) and 

before final treatment (before chlorination). The samples were then placed into a cooler 

and stored at 4ᵒC until enrichment cultures were prepared. Once the samples were ready 

to be processed 100mL of raw effluent was placed into sterile Erlenmeyer flasks for both 

stages of the wastewater treatment. Triplicate flasks were then placed on a light table 

(12:12 light cycle) to encourage algal growth in effluent.  

 Once growth was established and confirmed via either naked eye or microscopic 

examination, 5 mL of the sample was transferred to a 250 mL Erlenmeyer flask 

containing either autoclaved BG 11 (Rippka et al., 1979) or CHU 10 (Stein, 1973) 

medium as a first step. After growth was established in media the sample was subcultured 

by transferring 5 mL of the old culture to the new medium and allowed to grow for two 



   

26 
 

weeks. This process was repeated two successive times to ensure the strength of the algal 

culture in lab conditions (Andersen, 2005). Isolations of the consortium was undertaken 

by serial dilutions and transferring 100 µL of diluted culture to 1.5% agar for spread 

plating. Once single colonies were formed they were transferred with the use of a flame 

sterilized loop to a well in a 24 microwell plate containing 1 mL of either medium. When 

growth was present and unialgal cultures were confirmed microscopically via the Evos 

XL core inverted LCD microscope, the cultures that were unialgal were then transferred 

to fresh media.  Algal isolates were identified through the use of dichotomous keys and 

various online algal databases. Before any experimentation each culture was re-assessed 

for unialgal status to ensure only the presence of single strain. All chemicals were 

purchased from Sigma Aldrich (Canada).  

 Reference strains were obtained from the Canadian Phycological Culture 

Collection (CPCC). Scenedesmus acutus – CPCC strain 10, isolated by P.M. Stokes from 

Boucher Lake, Falconbridge, ON, Canada, June 1970. The strain is copper and nickel 

tolerant. Chlorella kesslerii – CPCC strain 266, isolated by R. Pratt pre-1946, location 

unknown other than freshwater habitat in USA. Originally deposited as C. vulgaris but 

later identified as C. kesslerii by Kessler and Huss, 1992. Relatives: UTEX 263, CCAP 

211/11h, SAG 211-11h, ATCC 11468. 

 

2.2.2 Growth Conditions 
 

Algae were grown in an environmental growth chamber (Algaetron Photon 

System Instruments, Czech Republic) with a built in shaker table. Growth conditions in 
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the literature varied greatly: Park et al. (2012) used 175 rotations per minute (rpm) at 

22°C and an illumination of 75µmol photons m-2 s-1. Kirkwood et al. (2003) used no 

shaking, 26°C, 46.3µmol photons m-2 s-1 as well as 8µmol photons m-2 s-1. Da Silva et al. 

(2009) stirred the solution with a bubbler at 25°C and 150µmol photons m-2 s-1. Csavina 

et al. (2011) used 300 rpm, 25°C, and 10 µmol photons m-2 s-1. Based on the wide range 

of literature values, I set my growth experiments at 200 rpm and 150 µmol photons m-2 s-

1. A temperature of 22°C was used to match the ambient temperature in the lab to 

minimize any variations encountered when sampling.  

 To assess which condition would be optimal for growth and fatty acid 

accumulation all three growth conditions were tested (photoautotrophic, mixotrophic, and 

heterotrophic). For the photoautotrophic conditions, all organics were removed from the 

BG 11 media (citric acid, ferric ammonium citrate, and sodium EDTA) and the iron was 

replaced with ferric chloride similar to the method described by Kirkwood et al. (2003). 

The mixotrophic conditions utilized the organic reduced medium from the 

photoautotrophic trials with the addition of either glucose (14mM) or acetate (3mM). 

Additionally the heterotrophic trials utilized the same medium as the mixotrophic trials 

with the exception of being placed in a box to eliminate light from illuminating the 

culture.  

 Cultures for experimentation were grown in 50 mL Erlenmeyer flasks in 

triplicate. To standardize the growth, implementation of an exponential phase algal 

inoculum (~day 5 of growth) was used over a specific cellular density. The reasoning for 

this was we wanted to ensure the algal strains were in early exponential growth similar to 

the method described by Kirkwood et al. (2003). During the growth cycle for each strain 
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under each growth regime cell counts were performed via a Bright-Line Haemocytometer 

slide (Hausser Scientific) and the absorbance was taken via the Genesys 10S UV-Vis 

Spectrophotometer (Thermo Scientific) every day of the experiment to establish growth 

rates. Standard curves for each strain was developed based on cellular counts and optical 

density readings. This was done to ease in future experiments for determining cellular 

density. The experiments lasted a total of seven days.  

 

2.2.3 Statistical Analysis 
 

 Growth rates for each strain under each of the three conditions were calculated 

based on the exponential growth slope determined by linear regression analysis using MS 

Excel 2010. An Analysis of Variance (ANOVA) was performed on the growth rate data 

using Sigma Plot 12 to determine significant differences between treatments. A Shaprio-

Wilk test was performed to determine if the data were normally distributed and all 

pairwise multiple comparisons were performed with the Holm-Sidak method. An alpha of 

0.05 was used to determine the overall statistical significance of each of the treatments. A 

Two way ANOVA was also performed to assess the differences between each strain in 

comparison to the culture collection strains (the data was Ln transformed).  

Growth rates for each strain were input into the Paleontological Statistics (PAST) 

programme for Cluster analysis using the Bray-Curtis similarity measure.  
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2.3 Results 
 

2.3.1 Strain Collection and Isolation 
 

  In order to study the fatty acid profiles and growth characteristics of the algae 

isolated from municipal wastewater first the proper medium needed to be chosen. A 

comparison between CHU10 and BG11 media showed that after 5-10 days of growth that 

algae grown in CHU10 started to exhibit a yellow colour while BG11 resembled healthy 

algae green in colour (Figure 2). 

 

Figure 2: Algae grown in CHU10 and BG11 media over the course of 10 days 

 

 After comparing both CHU10 and BG11 media to the concentration of 

phosphorus and nitrogen derived from the wastewater treatment plants it was determined 

that the concentrations for CHU10 were much too low (see Table 2). The concentration 

for BG11 in terms of phosphorus was acceptable however the total nitrogen was not. The 

nitrogen concentration needed to be reduced by a factor of ten to bring the concentration 
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down to a level that more closely resembled wastewater conditions. This nitrogen 

overloading was also noted by Kirkwood et al. (2003), where the nitrogen concentration 

was also reduced by a factor of 10.  

 

Table 2: Comparison of total nitrogen and phosphorus concentrations derived from the 
wastewater treatment plants to the concentrations found in the growth media 

Average Effluent Concentrations per year  Media Type 

Plant 1  Plant 2  CHU 10  BG11 

Total P 
(mg/L) 

Total N 
(mg/L) 

Total P 
(mg/L) 

Total N 
(mg/L) 

Total P 
(mg/L) 

Total N 
(mg/L) 

Total P 
(mg/L) 

Total N 
(mg/L) 

3.66  31.74  3.69  27.60  1.80  6.80  5.00  250.00 

*The data derived from the wastewater treatment plants is kept confidential; therefore the location just 
appears as plant 1 and plant 2. 
 

  From the consortium of algae grown in wastewater strains were isolated from 

each site via spread plate methods. Table 3 provides a list of all the isolates, the media 

used to isolate each strain, and the sample site. There was a much higher presence of both 

Chlorella and Scenedesmus strains across all wastewater treatment plants.  

 

2.3.2 Growth Conditions 
 

  Each strain was tested under photoautotrophic, mixotrophic, and heterotrophic 

growth. Utilizing the growth data over the seven day experiment growth rates were 

calculated and plotted to compare the treatments to one another see Figures 2-23. The 

major finding was only a few select strains (Chlorella kessleri, Chlorella 19CC, 

Scenedesmus 39CC, and Dictyochloris F2.2N) could tolerate the heterotrophic 

conditions, all of the remaining strains had a low or negative growth rate. The 

Scenedesmus strain which possessed the highest growth rate was under mixotrophic 
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growth conditions. The growth rate for S3N under 3mM acetate mixotrophic conditions 

reached a rate of 4.12±0.57x103 cells·L-1·day-1. While the lowest growth rate was found 

in the heterotrophic growth. S1B, S4N, and S6H all had negative growth rates under 

heterotrophic growth. The Chlorella strains overall possessed the second highest growth 

rate of any strains tested with the maximum growth rate of 1.72±0.29x104 cells·L-1·day-1 

for C4C under 14mM glucose mixotrophic conditions. The tolerance under heterotrophic 

growth was much higher as only two strains (C2H and C3N) could not grow sufficiently 

under heterotrophic conditions. The highest growth rate of any of the strains was B2H 

possessing a growth rate of 2.7±0.14x104  cells·L-1·day-1 under 14mM glucose 

mixotrophic conditions. However the Botrydiopsis strains possessed low growth rates or 

led to cell death under heterotrophic conditions. Ellipsoidon displayed the highest growth 

under 14mM glucose mixotrophic conditions with a growth rate of 4.87±0.59x103  

cells·L-1·day-1 for strain E2C. Again under heterotrophic conditions the growth was 

significantly (p<0.05) lower than that of photoautotrophic growth or mixotrophic growth. 

Dictyochloris showed to have the highest growth rate under 14mM glucose heterotrophic 

conditions with a rate of 1.65±0.22x104 cells·L-1·day-1 which was significantly (p<0.05) 

greater than growth under photoautotrophic or mixotrophic growth. The Microcystis 

strain actually had the highest growth rate under photoautotrophic conditions with a rate 

of 9.53±2.27x102 cells·L-1·day-1 which was significantly different than the negative/low 

growth rate under heterotrophic conditions.  

 

 To assess the performance of each strain in relation to the culture collection 

strains the growth rates were Ln transformed and each wastewater strain was compared to 
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both Scenedesmus acutus (S1B) and Chlorella kesslirii (C1U) (Table 3). What can be 

noted was that under both photoautotrophic growth and mixotrophic growth (3mM 

Acetate) there were no significant differences (p>0.05) except for strain C2H. Under 

mixotrophic growth (14mM Glucose) again C2H is significantly (p≤0.05) lower in 

growth when compared to both C1U and S1B, but in addition M1H, S6H, and S4N are 

also significantly lower. All remaining strains display no significant differences. Under 

heterotrophic growth (14mM Glucose) C1U displayed one of the highest growth rates 

resulting in significant differences among S2N, S3N, M1H, S6H, S4N, S5N, B1N, C3N, 

E1N, S7H, S8C, S9C, C2H, E3N, and even S1B. The growth under heterotrophic 

conditions (3mM Acetate) also yielded similar results as only D1N, S3N, C5C, E2C, and 

S9C were the only strains which were not significantly different (p>0.05) when compared 

to C1U and S1B.  

Under each of the conditions the strains with the highest growth rates were 

selected as potential strains for biofuel feedstocks and analyzed for significance in 

relation to the other wastewater strains.  

1) Photoautotrophic: C6C with a growth rate of 6.19±0.21x103 cells·L-1·day-1 

which was significantly different (p≤0.05)  in growth only to C3N and C2H 

2) Mixotrophic (14mM glucose): B2H with a growth rate of 2.7±0.14x104 

cells·L-1·day-1 which was significantly different (p≤0.05) in growth to S4N, 

C2H, S6H, M1H, S5N, C3N, S7H, S8C, and S3N. 

3) Mixotrophic (3mM acetate): D1N with a growth rate of 8.59±1.07x103 

cells·L-1·day-1 which was significantly different (p≤0.05) in growth to S6H, 

S4N, and C2H. 
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4) Heterotrophic (14mM glucose): D1N with a growth rate of 1.65±0.22x104 

cells·L-1·day-1 which was significantly different (p≤0.05)  in growth to S4N, 

S6H, M1H, E3N, C2H, B1N, C3N, S3N, S2N, S5N, E1H, S7H, S9C, S8C, 

B2H, E2C.  

5) Heterotrophic (3mM acetate): C6C with a growth rate of 3.8±1.79x103 cells·L-

1·day-1 which was significantly different (p≤0.05)  in growth to S4N, B2H, 

C2H, E3N, S2N, C3N, C4C, S7H, S6H, B1N, M1H, S5N, S8C, E1H, S3N, 

E2C, S1B. 

 

Based on the growth rate data a cluster analysis was performed to look at the 

similarities in growth patterns among strains (Figure 25). A tentative pattern of percent 

similarities does form typically among the Scenedesmus and Chlorella strains. 

Interestingly enough the Microcystis M1H and Ellipsoidon E3N two taxonomically and 

morphologically dissimilar algal strains possessed very similar growth patterns under 

photoautotrophic, mixotrophic, and heterotrophic growth. Also C2H a Chlorella strain 

possessed no similarity to any of the other Chlorella strains. Additionally E1H was very 

similar to S2N as was C3N to S7H. 
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Table 3: The algal strains isolated from each sample site along with the initial media used to isolate, the attributed strain ID and if the 
algal strain could be classified as axenic. N/A= Not Applicable 

Algal strain  Isolating Medium  Treatment stage  Sample site  Strain ID  Axenic 

Scenedesmus acutus Unknown  N/A  Boucher Lake, ON  S1B  Y 
 
Scenedesmus F3.6N 

 
CHU 10  Final Treatment 

 
Nonquon  S2N  Y 

 
Scenedesmus F4.3N 

 
CHU 10  Final Treatment 

 
Nonquon  S3N  Y 

 
Scenedesmus S1.2N 

 
CHU 10  Secondary Treatment 

 
Nonquon  S4N  N 

 
Scenedesmus F4.3*N 

 
CHU 10  Final Treatment 

 
Nonquon  S5N  Y 

 
Scenedesmus M2.2H 

 
BG 11  Secondary Treatment 

 
Hamilton  S6H  Y 

 
Scenedesmus M3.3H 

 
BG 11  Secondary Treatment 

 
Hamilton  S7H  Y 

 
Scenedesmus 18CC 

 
CHU 10  Secondary Treatment 

 
Corbett Creek  S8C  N 

 
Scenedesmus 39CC 

 
CHU 10  Secondary Treatment 

 
Corbett Creek  S9C  N 

 
Chlorella kesslirii 

 
Unknown  N/A 

 
Unknown (USA)  C1U  Y 

 
Chlorella F2.4H 

 
BG 11  Final Treatment 

 
Hamilton  C2H  N 

 
Chlorella S4.3N 

 
CHU 10  Secondary Treatment 

 
Nonquon  C3N  Y 
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Chlorella 03CC 

 
CHU 10  Secondary Treatment 

 
Corbett Creek  C4C  N 

 
Chlorella 04CC 

 
CHU 10  Secondary Treatment 

 
Corbett Creek  C5C  N 

 
Chlorella 19CC 

 
CHU 10  Secondary Treatment 

 
Corbett Creek  C6C  N 

 
Botrydiopsis S4.2N 

 
CHU 10  Secondary Treatment 

 
Nonquon  B1N  Y 

 
Botrydiopsis F1.3H 

 
BG 11  Final Treatment 

 
Hamilton  B2H  N 

 
Ellipsoidon F2.3H 

 
BG 11  Final Treatment 

 
Hamilton  E1H  Y 

 
Ellipsoidon 23CC 

 
CHU 10  Secondary Treatment 

 
Corbett Creek  E2C  N 

 
Ellipsoidon F3.3N 

 
CHU 10  Final Treatment 

 
Nonquon  E3N  N 

 
Dictyochloris F2.2N 

 
CHU 10  Final Treatment 

 
Nonquon  D1N  Y 

 
Microcystis M2.3H 

 
BG 11  Secondary Treatment 

 
Hamilton  M1H  N 
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Figure 3: Chlorella kessleri tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Samples were run in 
triplicate under each condition simultaneously in the algaetron 
growth chamber. 

 

 

 

 

 

 

Figure 5: Dictyochloris F2.2 Nonquon tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 

 

 

 

 

 

Figure 4: Scenedesmus actus tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Data was ln transformed 
to ensure normal distribution. Samples were run in triplicate under 
each condition simultaneously in the algaetron growth chamber. 

 

 

 

 

 

 

Figure 6: Scenedesmus F3.6 Nonquon tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 
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Figure 7: Scenedesmus FT4.3* Nonquon tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Data was ln 
transformed to ensure normal distribution. Samples were run in 
triplicate under each condition simultaneously in the algaetron 
growth chamber. 

 

 

 

 

 

Figure 9: Scenedesmus S1.2 Nonquon tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 

 

 

 

 

 

Figure 8: Scenedesmus FT4.3 Nonquon tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Samples were run in 
triplicate under each condition simultaneously in the algaetron growth 
chamber. 

 

 

 

 

 

 

Figure 10: Ellipsoidon S3.3 Nonquon tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 
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Figure 11: Botrydiopsis S4.2 Nonquon tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Data was ln transformed to 
ensure normal distribution. Samples were run in triplicate under each 
condition simultaneously in the algaetron growth chamber. 

 

 

 

 

 

 

Figure 13: Botrydiopsis F1.3 Hamilton tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Data was log transformed to 
ensure normal distribution. Samples were run in triplicate under each 
condition simultaneously in the algaetron growth chamber. 

 

 

 

 

 

Figure 12: Chlorella S4.3 Nonquon tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Data was log transformed to 
ensure normal distribution.  Samples were run in triplicate under each 
condition simultaneously in the algaetron growth chamber. 

 

 

 

 

 

 

Figure 14: Ellipsoidon F2.3 Hamilton tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 
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Figure 15: Chlorella F2.4 Hamilton tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. There was no 
significant difference found between any of the treatments. Samples 
were run in triplicate under each condition simultaneously in the 
algaetron growth chamber. 

 

 

 

 

 

 

Figure 17: Microcystis M2.3 Hamilton tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Samples were run in 
triplicate under each condition simultaneously in the algaetron growth 
chamber. 

 

 

 

 

 

Figure 16: Scenedesmus M2.2 Hamilton tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 

 

 

 

 

 

 

Figure 18: Scenedesmus M3.3 Hamilton tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 
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Figure 19: Chlorella 03 Corbett Creek tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Data was transformed by 
taking the square root of the raw data to ensure normal distribution. 
Samples were run in triplicate under each condition simultaneously in 

the algaetron growth chamber. 

 

 

 

 

 

Figure 21: Scenedesmus 18 Corbett Creek tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic growth. 
Significant differences are denoted by different letters. Samples were 
run in triplicate under each condition simultaneously in the algaetron 
growth chamber. 

 

 

 

 

 

Figure 20: Chlorella 04 Corbett Creek tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Data was ln transformed to 
ensure normal distribution. Samples were run in triplicate under each 
condition simultaneously in the algaetron growth chamber. 

 

 

 

 

 

 

Figure 22: Chlorella 19 Corbett Creek tested under the three conditions 
photoautotrophic, mixotrophic, and heterotrophic growth. Significant 
differences are denoted by different letters. Samples were run in 
triplicate under each condition simultaneously in the algaetron growth 
chamber. 
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Figure 23: Ellipsoidon 23 Corbett Creek tested under the three 
conditions photoautotrophic, mixotrophic, and heterotrophic 
growth. Significant differences are denoted by different letters. 
Samples were run in triplicate under each condition 
simultaneously in the algaetron growth chamber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Scenedesmus 39 Corbett Creek tested under the 
three conditions photoautotrophic, mixotrophic, and 
heterotrophic growth. Significant differences are denoted by 
different letters. Samples were run in triplicate under each 
condition simultaneously in the algaetron growth chamber.

0

1000

2000

3000

4000

5000

6000

7000
C

el
l g

ro
w

th
 r

at
e 

(c
el

ls
/L

/d
ay

)

Photo Mixo 14mM
Glucose

Mixo 3mM
Acetate

Hetero 14mM
Glucose

Hetero 3 mM
Acetate

0

500

1000

1500

2000

2500

C
e

ll 
gr

o
w

th
 r

a
te

 (
ce

lls
/L

/d
a

y)

Photo Mixo 14mM
Glucose

Mixo 3mM
Acetate

Hetero 14mM
Glucose

Hetero 3 mM
Acetate

a 

b b 

b b 

a 

b 
b b 

a 



   

42 
 

Table 4: The Ln growth rate (cells·L-1·day-1) of algal strains under the various conditions: 
P= Photoautotrophic, M=Mixotrophic, and H= Heterotrophic where G= glucose and 
A=Acetate. Each strain had each condition run at the same time with an n=3.  

Strain ID  Growth Rates 

   P  M 14mMG  M 3mMA  H 14mMG  H 3mMA 

C1U  7.43±0.05ab  7.55±0.26ab  7.85±0.15ab 8.84±0.08a  7.41±0.11a 

S1B  6.97±0.06ab  7.33±0.04ab  6.88±0.25ab 0.00±0.00b  4.74±0.23b 

D1N  7.98±0.07ab  8.91±0.11ab  9.04±0.13ab  9.69±0.13a  6.95±0.14ab

S2N  7.16±0.24ab  7.64±0.24ab  7.11±0.08ab  3.02±1.75b  1.34±1.34c 

S3N  6.43±0.12ab  6.88±0.20ab  8.09±0.06ab  2.34±1.26b  4.36±0.15ab

M1H  6.79±0.29ab  2.74±1.51c  5.93±0.42ab  0.00±0.00b  3.28±1.66b 

S6H  5.49±0.15ab  2.04±1.11c  5.13±0.29ab  0.00±0.00b  2.46±1.29b 

S4N  5.42±0.14ab  0.00±0.00c  5.55±0.40ab  0.00±0.00b  0.00±0.00c 

S5N  5.82±0.18ab  4.93±2.47ab  8.30±0.14ab  3.10±1.76b  3.39±1.70b 

B1N  8.60±0.04ab  8.01±0.11ab  8.37±0.05ab  1.75±1.75b  2.65±1.33b 

C3N  5.36±0.46ab  5.83±0.04ab  5.84±0.07ab  2.18±1.46b  1.44±0.79c 

E1H  7.60±0.13ab  7.60±0.14ab  7.32±0.08ab  4.07±0.17c  4.04±0.51b 

S7H  5.89±0.18ab  6.24±0.37ab  6.18±0.25ab  4.11±0.28c  2.30±1.18b 

C4C  7.68±0.04ab  9.72±0.16ab  8.77±0.10ab  8.59±0.11ab  1.48±1.48b 

C5C  7.34±0.08ab  9.55±0.06ab  8.64±0.20ab  8.79±0.11a  6.57±0.08ab

S8C  6.92±0.08ab  6.69±0.18ab  6.83±0.25ab  4.72±0.23c  3.47±0.29b 

C6C  8.73±0.04ab  9.93±0.09ab  8.51±0.16ab  9.46±0.14a  8.04±0.44a 

E2C  7.28±0.51ab  8.47±0.12ab  7.50±0.17ab  5.74±0.18a  4.48±0.20ab

S9C  5.45±0.23ab  7.52±0.13ab  7.34±0.21ab  4.59±0.17c  5.60±0.28ab

B2H  8.65±0.13ab  10.22±0.05ab 8.93±0.20ab  5.73±0.32a  0.00±0.00c 

C2H  1.98±0.37c  1.00±1.00c  1.77±1.07c  0.00±0.00b  0.54±0.54c 

E3N  6.75±0.14ab  5.55±0.30ab  6.35±0.18ab  0.00±0.00b  1.13±1.13c 
Significant differences are denoted by superscript letters, all wastewater derived strains are compared to 
culture collection strains found in bold. 
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Figure 25: Cluster analysis of strains using the Bray‐Curtis similarity measure to provide percent similarity to visually 

depict how similar strains are based on their growth patterns under photoautotrophic, mixotrophic, and 

heterotrophic conditions.
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2.4 Discussion 
 

2.4.1 Strain Collection and Isolation 
 

 The strains that were isolated from this study were Dictyochloris, Scenedesmus, 

Microcystis, Botrydiopsis, Ellipsoidon, and Chlorella. The reason why more strains were 

not found was due to two reasons: The first is the fact that laboratory conditions are not 

always representative of the natural habitat the algae are derived from so the algal 

population of certain strains may die off and be populated by a strain that can tolerate 

varying conditions, secondly these algae are the strains that have been selected for by the 

abiotic and biotic conditions of the wastewater environment (Wilkie et al., 2011).  

2.4.2 Growth Conditions 
 

The Chlorella strains were found in high amounts across the three sample sites. 

This may be due to their natural tolerance to low oxygen conditions (Shanthala et al., 

2009). Park et al. (2012) commented that both Scenedesmus and Chlorella are among the 

most commonly isolated species from wastewater treatment waters (Table 3), which 

explains their high prevalence in all the sample sites. The composition of the algal 

community in the treatment plant is subject to changes depending on the time samples are 

taken however. It has been shown in the Hamilton harbour that the composition of algae 

can change from chlorophytes (Scenedesmus), to diatoms (Fragilaria), to cyanobacteria 

(Microcystis) just based on seasonal changes alone (Gudimov et al., 2010). Since most of 

the industrial scale operations are open pond systems this poses a problem (Borowitzka, 
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1999). This also shows the importance of sampling period as different algal strains can be 

found during different seasons. 

The growth data provided a picture of how the media itself can influence changes 

in growth (Figure 3-24). As was seen across almost all strains the inclusion of either 

glucose or acetate improved the growth rate. This is not uncommon as mixotrophic 

medium for Nannochloropsis sp. increase the growth rate from 27 mg/L/day to 87 

mg/L/day with the application of glucose (Das et al., 2011). Yan et al. (2012) actually 

demonstrated that the addition of either glucose or acetate actually increased the energy 

conversion efficiencies over the photoautrophic growth. The idea is that media 

supplement with organic carbon sources experiences less biomass loss during the dark 

phase (Brennan and Owende, 2010). 

 Heterotrophic growth was also assessed to see if it would be a viable method for 

future biofuel production. Miao and Wu (2006) demonstrated that C. protothecoides 

grown heterotrophically possessed lipid content four times higher than photoautotrophic 

cells. It is also stated that select algae can achieve higher biomass production under 

heterotrophic conditions reaching upwards of 4-20 g/L/day (Shen et al., 2010). This effect 

was not seen in the strains that were isolated from the wastewater systems. Only 

Chlorella kessleri C1U, Chlorella C6C, Scenedesmus S9C, and Dictyochloris D1N were 

able to tolerate the heterotrophic growth conditions. It is not surprising that the Chlorella 

strains performed so well during heterotrophic growth as Chlorella protothecoides, 

Chlorella vulgaris, and Chlorella regularis all demonstrate the ability to grow 

heterotrophically (Xu et al., 2006; Griffiths, 1970; Endo et al., 1977). Dictyochloris was 

discovered to possess the ability to grow heterotrophically by Parker et al. in 1961. Also 
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Scenedesmus obliquus has been found to be able to survive when supplied external 

carbon sources under heterotrophic growth (El-Sheekh et al., 2013). In most cases under 

heterotrophic growth the initial algal inoculation either ‘crashed’ resulting in cell death or 

showed little to no growth. This is due to the fact that algae derived from naturally 

occurring water bodies have adapted their cellular processes to daily light fluctuations 

and are therefore unable to grow strictly heterotrophically (Price et al., 1998). Since the 

cellular densities were so low by day seven it was decided that heterotrophic trials not be 

pursued as the cultivation of cells for fatty acid analysis would require consuming the 

whole sample preventing any additional sampling.  

  The highest growth rate achieved was from Botrydiopsis with a rate of 

2.74±0.14x104 cells·L-1·day-1 which proves difficult to compare this strain to literature as 

research into this strain is highly limited. Most research into Botrydiopsis covers the 

zoosporogenesis or the carbon dioxide concentrating mechanism found within this strain 

(Lokhorst and Segarr, 1989; Beardall and Entwisle, 1984). Comparisons were made to 

the culture collection strains (Table 4). The most interesting fact was during growth under 

photoautotrophic and mixotrophic (3mM acetate and 14mM glucose) the least amount of 

statistically significant differences (p>0.05) was denoted. What this translates to is that 

the strains isolated from wastewater treatment plants under these conditions are 

comparable to culture collection strains further increasing the validity of utilizing 

naturally occurring strains. The strains with the highest growth rates were also analyzed 

and it was found that the Dictyochloris D1N and Chlorella C6C strains possessed the 

highest rates under not one but two different growth conditions. This fact increases the 
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versatility and usefulness of these strains as they are not strictly limited to one growth 

condition like B1N.  

The cluster analysis (Figure 25) revealed very similar metabolic profiles based on 

photoautrophic, mixotrophic, and heterotrophic growth for Microcystis M1H and 

Ellipsoidon E3N. The Microcystis strain had a high growth rate and distinct growth 

characteristics under the varying growth conditions. The similar growth pattern of the 

Ellipsoidon cannot be explained as there is very little research that has been performed 

with this particular strain. The research that has been performed has typically been 

centered on the usefulness of the bioactive compounds for treating the replication of 

haemorrhagic septicaemia virus and African swine fever virus (Fabregas et al., 1999). 

Ultimately the subsequent information derived about this strain will provide the basis for 

not only growth characteristics in various media but will also provide lipid fingerprint 

through the fatty acid analysis. The strain C2H which was a Chlorella strain appeared to 

be distinct from all other algae even the others of the Chlorella identified. However Post 

et al. (2004) showed that two different ecotypes of Chlorella vulgaris were isolated from 

wastewater oxidation ponds one with a rapid growth rate and the other a slower growth 

rate due to the use of different metabolic pathways. A similar outcome may be occurring 

here as C2H was the strain with the lowest growth overall of the algal isolates (Table 4).  
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Chapter 3. Fatty Acid Content and Profiles of Wastewater Algae 
 

3.1 Introduction 
 

3.1.1 Algal Harvesting Techniques 
 

 A large obstacle facing algal biofuel production is the biomass collection of the 

algae for processing. This step is complicated by the fact that algal cultures are typically 

grown in an aqueous environment. Since microalgae have a small diameter and a surface 

charge, harvesting requires a substantial proportion of energy which can range as high as 

2500 kWh·m3 (Brentner et al., 2011). This actually accounts for a large proportion of the 

total algal production cost which can be as high as 30% (Singh and Dhar, 2011). The 

most common methods for algal recovery are centrifugation, filtration, and flocculation.  

 Centrifugation uses gravitational force to spin the solid matter contained in the 

aqueous culture to the bottom. The overall size of the cells will affect how much force is 

required to push the cells out of the water, larger colonial cells will settle more readily 

than their smaller single celled counterparts (Singh and Dhar, 2011). Utilizing a 

centrifuge method for recovery is rapid but energy intensive as well since power 

estimates range from 0.3 to 8 kWh per m3 (Grima et al., 2003).  

 Filtration involves the use of very small pores that prohibit the algae from passing 

through. Membrane filtration is typically cheaper and less energy intensive than 

centrifuges (Rickman et al., 2012). The drawback is that filtration is often prone to 

fouling which is essentially the pores becoming blocked. This is typically caused by 

shearing of the microalgal cells due to the high pressure or vacuum conditions used to 
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collect the algae, this releases smaller particles and dissolved organic matter which clogs 

the pores (Bilad et al., 2012).  

 Flocculation is typically used in conjunction with centrifugation to aid in reducing 

the overall energy burden of the process. Microalgae carry negative cell surface charge 

and addition of chemicals (typically metal salts) eliminates this charge (Singh and Dhar, 

2011). This causes the algae to clump and settle out of water more easily when 

centrifuged. Research performed by Beach et al. (2012) showed that addition of chitosan 

(material derived from crustacean exoskeletons) resulted in 95% recovery of algae versus 

only 25% recovery when using traditional ferric sulfate.  

 

3.1.2 Identification of Lipid Bodies Within Algal Cells 
 

  Traditional methods for identifying or even quantifying neutral lipids typically 

involve time consuming methods of extraction, purification, and concentration (Sitepu et 

al. 2012). The term neutral lipids simply refers to the polarity of the fatty acid within the 

cell, unlike hydrophobic or hydrophilic fatty acids neutral lipids carry no charge. Neutral 

lipids are primarily composed of triacylglycerols, steryl esters, and wax esters 

(Athenstaedt and Daum, 2006). Overall the lipid content of the algal cells is the key 

factor in determining the value a strain possess for biofuel production. Methods like 

gravimetric determination and chromatography exist for determining lipid contents the 

methods as stated before are time consuming and sometimes require use of organic 

solvents like chloroform (Doan and Obbard, 2011). An alternative method is using in vivo 

fluorometric techniques to identify the lipids in the algal cells either microscopically or 

spectrofluorometrically. The most common dye use is a lipid-selective fluorescent dye 
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known as Nile Red which only produces yellow-gold fluorescence when the dye interacts 

with neutral lipid globules (Feng et al., 2013; Doan and Obbard, 2011). The reason for 

this is Nile Red is a lipid soluble dye that penetrates into intracellular neutral lipid 

globules (Doan and Obbard, 2011).  

 

3.1.3 Lipid Extraction Methods and Transesterification 
 

 Typically after harvesting of the algal cells occurs the process of gaining access to 

fatty acids needs to be undertaken thereby separating the algae from the valuable lipids. 

There exist three well known methods that are currently implemented to extract oil from 

algal cells: pressing, solvent extraction, and supercritical fluid extraction (Demirbas, 

2011).  Other methods have been attempted such as sonication, microwaving, and 

autoclaving but are less common than the first three (Prabakaran and Ravindran, 2011). 

 Pressing as the name suggests utilizes mechanical cell disruption through 

rupturing the cell wall or forcing the algae through a small hole which results in shearing 

ultimately releasing the oil (Mercer and Armenta, 2011). Bead beating also falls into this 

category as it induces direct disruption of cells through fine beads that rub against the 

cells shearing or tearing them open (Lee et al., 2010). These methods are often used as it 

reduces chemical contamination of cells and actually improves lipid extraction 

(Viswanathan et al., 2012).  

 Solvent extraction typically uses organic solvents such as a combination of 

chloroform and methanol to completely extract the oils present within the algae, this is 

problematic since chloroform is toxic and the technology is only used at the laboratory 

scale (Yao et al., 2012). The downside to using solvent extraction often requires the algal 
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biomass to be completely dry. If the cells are still wet limited extraction of lipids can 

occur since the algal cells are surrounded by water preventing solvents from penetrating 

the cell wall (Samori et al., 2013).  

New research utilizing dimethyl ether as a solvent has proven to have advantages 

such as the high affinity it has for oily chemicals, it can mix partially with water, and is a 

safe extraction solvent for use in the food industry (Kanda et al., 2013). The ability to mix 

partially with water is especially attractive as this ability would allow for lipid extraction 

with wet biomass reducing the cost of drying the algae. Alcohols have also been 

considered as another solvent for extraction as the oil solubility can be changed by 

varying the temperature and water content in the alcohol, this allows for ease of oil 

recovery as when the mixture is cooled the oil will separate into a distinct phase (Yao et 

al., 2012).  

Supercritical fluids are typically gases that a put under enough pressure that they 

are at an interface between liquid and gas causing them to act much like solvents 

(Hardardottir and Kinsella, 1988). This is an alternative to traditional solvent extractions 

as the process avoids contaminating the final product, mass transfer is enhanced due to 

the liquid/gas like properties, and the degree in which single chemicals are solvated can 

be accomplished through adjusting the pressure and temperature (Couto et al., 2010). 

The sample in which fluids are to be extracted from (in the case of algae fatty 

acids) is placed into the extraction column. Typically CO2 is used as the supercritical 

fluid which travels to the feed valve and preheats in the mixture vessel. This then flows 

through the bottom inlet to the extraction column where the desired product is solvated 

out of the original mixture. The mixture then exits from the top outlet to the extract 
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collector where the CO2 can be exhausted off or condensed and recollected for further 

use.  

Research by Halim et al. (2011) shows that in eighty minutes of supercritical fluid 

extraction with CO2 resulted in more lipid yield over traditional hexane (solvent) 

extraction over five and a half hours.  However research performed by Santos et al. 

(2012) indicates that using a supercritical fluid reactor resulted in considerably lower 

yields over solvent extraction but the extraction time was much lower only being ten 

minutes.  

Once the fatty acids are extracted from the cells the process of transforming them 

into biodiesel can occur. The transformation process is referred to as transesterification 

by which the fatty acids (also known as triglycerides) are converted into methyl esters or 

more commonly referred to as biodiesel (Demirbas, 2011). Essentially triglycerides are 

combined with methanol to produce glycerine and methyl esters. The reaction typically 

sits in equilibrium and as a result methanol is used in excess to drive the reaction to 

produce the biodiesel. This excess methanol can be recovered later and reused for 

subsequent process of future triglycerides (Demirbas, 2011). 

 

3.2 Materials and Methods 
 

3.2.1 Antibiotic Treatment of Algal Isolates 
 

In order to test for fatty acids the algal strains needed to be purified to axenic 

strains to limit background fatty acids derived from bacteria. This was accomplished 

through the application of streptomycin and penicillin following the methods outlined by 
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Droop (1967). The procedure utilizes six test tubes run in parallel in which the antibiotic 

concentration greatest at tube one and decreasing by half in each subsequent tube. The 

pure antibiotic was filter sterilized before being added to tube one. A 2 mg sample of 

streptomycin was used as streptomycin can inhibit algae at concentrations ranging from 

0.5 to 150 mg/L (Kviderova and Henley, 2005). Additionally to the streptomycin 75 mg 

of penicillin was added as penicillin and streptomycin both possess different modes of 

action providing us with a broader spectrum of bacterial treatment. Penicillin is a beta-

lactam which interferes with cell wall synthesis while streptomycin is a protein synthesis 

inhibitor. To verify axenic status after 24 hours of incubation in the antibiotic media a 1 

mL aliquot of each dilution was transferred to 1.5% agar containing peptone via pour 

plate method. The plates were then placed on the light table and monitored over the 

course of 48 hours for bacterial growth. If no growth was visible on the plates 

microscopic examination was performed to verify axenic status. If a sampled failed to 

achieve axenic status the procedure was repeated.  

To ensure standardization among all the algal strains the absorbance of each 

culture was taken to obtain a cellular density, which was then input into the following 

formula to standardize the cellular density to x105cells·L-1: 

݈ܽݑܿ݋݊݅	݈݈݁ܥ ൌ 	
ሺܸ݁݉ݑ݈݋	݂݋	ܽ݅݀݁݉	݊݅	ݐݏ1	ܾ݁ݑݐ	 ∗ ሻݎ݋ݐ݂ܿܽ	݊݋݅ݐݑ݈݅ܦ	 ∗ ݈ܽݐ݋ݐ	݁݉ݑ݈݋ܸ

ݕݐ݅ݏ݊݁݀	ݎ݈ܽݑ݈݈݁ܥ
 

*Volume total is how much media you want to reside in each test tube along with the 

addition of algal transfer.  

 Antibiotics were purchased from Bioshop (Canada) and peptone was purchased 

from Sigma Aldrich (Canada). 
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3.2.2 Quantification of Neutral Lipids  
 

A calibration curve utilizing triolein was calculated relating the fluorescence 

response to the concentration of triolein in solution. This standard curve (Appendix A 

Figure 1) was used to quantify the lipids of each strain. A small subsample (~1.5mL) of 

algae from the growth samples were stored in -20ᵒC for examination under the staining of 

Nile Red dye as it was a high throughput method. Research by Stigum (2012) showed 

that Nile Red fluorescence emissions do not change with freezing algal samples. Methods 

from Chen et al., (2009), Feng et al. (2013), and Sitepu et al., (2012) were attempted for 

determination of neutral lipids but fluorescence under the defined protocols was not 

observed. Due to the constrains of the filter set available in the lab I decided to 

troubleshoot the issue and discovered an excitation of 590 and emission of 640 

nanometers worked best due to the strong fluorescent response of the Nile Red at these 

wavelengths. The Nile Red was dissolved in HPLC grade acetone at a concentration of 

500 µg/mL, and was stored in complete darkness in a vial covered in tinfoil to prevent 

photodegradation. In a black opaque 96 microwell plate 150 µL of algal sample was 

aliquoted into the wells in triplicate along with triplicate blanks. Following the addition 

of the algae to the wells 9 0µL of Nile Red was added to the treatment wells to dye the 

algal cells. The microwell plate was covered and incubated in darkness at room 

temperature for 10 minutes to ensure penetration of the dye into the cells. After 

incubation, the plate was immediately analyzed with the Synergy HT microwell plate 

spectrophotometer under the fluorescence function. All chemicals and standards were 

purchased from Sigma Aldrich (Canada). 
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3.2.3 Lipid Extraction for Analysis of Fatty Acid Methyl Esters 
 

The growth experiments were re-run in the absence of bacteria in the Algaetron 

growth chamber under the conditions listed in the previous section titled Growth 

Conditions. The lipid extraction procedure followed was a direct FAME synthesis in 

O’Fallon et al. (2007). In short, 6-7 mL of algae with a cellular density typically above 

x105 cells/mL was collected at day seven of the experiment in Kimax screw-cap tubes. 

These samples were centrifuged using a the Sorval ST 16 centrifuge (Thermo Scientific) 

at 1690 g force for 5 minutes. The supernatant was discarded and the samples were stored 

in -20°C until freeze dried.  

 Once freeze dried (typically 24-48 hours) samples could be processed. The first 

addition was 0.7 mL of 10 N KOH in water along with 6.3 mL of MeOH. The tubes were 

incubated in 55°C water bath for 1.5 hours followed by hand shaking every 20 minutes. 

Once this step was complete samples were cooled using a cold water bath allowing for 

the addition of 0.58 mL of 24 N H2SO4 in water. A precipitate formed that needed to be 

mixed via shaking. Again the sample was incubated in 55°C water bath for 1.5 hours with 

hand shaking every 20 min.  

 The tubes were cooled a final time in the cold water bath and 3 mL of hexane was 

added followed by vortexing the sample. Once all samples were mixed they were placed 

in the centrifuge and spun at 1690 g force for 5 min to ensure proper phase separation. A 

900 µL sample of the hexane layer (top layer) was extracted and placed into GC vials 

followed by addition of 100 µL of the 1000 ppm nanodecanoic acid methyl ester in 

hexanes (C 19 standard). Each vial was capped and placed in -20°C until analyzed via gas 

chromatography mass spectrometry. 
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3.2.4 Gas Chromatography Mass Spectrometry Analysis 
 

The fatty acids derived via the lipid extraction method was determined by capillary 

Agilent J&W GC column (30 m·0.25 mm·0.25 µm) installed in a Varian 450 gas 

chromatograph. The initial oven temperature was 135°C held for 4 min followed by an 

increase to 250°C at a rate of 4°C ·min-1, followed by a hold at this temperature for 10 

min. The front injector was 250°C and held for 20 min, the middle was 110°C for 1 min, 

and the rear injector was held at 180°C for 20 min.  A mixture of Helium and Nitrogen 

was used as the carrier gas with a split ratio of 10:1 at a flow rate of 1mL·min-1 for 3.5 

min then shut off. The retention times of each sample were analyzed via the Varian 240-

MS IT Mass-Spectrometer via an electron impact ion trap mass spectrometer. The 

standards used for analysis were carbon chain 8 to carbon chain 24 (C8-C24) along with a 

Bacterial Acid Methyl Ester (BAME) fatty acid mix. Fatty acids were identified through 

the use of MS workstation through comparing their retention times to known fatty acid 

methyl standards. Each chromatograph was then analyzed manually and any peaks that 

were above the background noise threshold were library searched to determine if the peak 

was an associated fatty acid. All standards were purchased from Sigma Aldrich (Canada). 

 

3.2.5 Statistics 
 

Fatty acid concentration for each strain under each of the three conditions was 

calculated based on the calibration curve for triolein determined by linear regression 

analysis using MS Excel 2010. This data was coupled with the cellular density data 

known for each sample and input into Sigma Plot 12. For strains that had an axenic and 
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non-axenic result the conditions were compared to each other through Sigma Plot 12 to 

assess if the differences were statistically significant. 

For each strain the peak areas of fatty acids identified in the FAME analysis were 

center-standardized prior to statistical analyses using the Paleontological Statistics 

(PAST) programme. Principal Component Analysis (PCA), were run to visualize 

similarity in FAME profiles of each strain. A PCA is computed by determining the 

covariance of vectors to their individual values, this allows the measurement of how 

much the dimensions (x, y, z, etc.) in an ordination plot differ from each other (Jeong et 

al., 2008) PCA axis scores were regressed against fatty acid concentrations to determine 

the most important fatty acids contributing to the variation in each axis. Peak areas were 

also exported to MS Excel 2010 and the percent relative fatty acid composition was 

calculated by dividing each fatty acid by total fatty acid measured. 

 

3.3 Results 
 

3.3.1 Antibiotic Treatment of Algal Isolates 
 

Application of antibiotic treatment resulted in, nine of the 20 strains being 

classified as axenic, (Table 3) Culture collection strains Chlorella kessleri and 

Scenedesmus actus were axenic prior to and throughout experimentation. A second 

culture of all axenic strains was kept prior to application of antibiotics to enable 

comparison of axenic and non-axenic conditions. The strains classified as ‘non-axenic 

strains’ had the application of antibiotics but the result was one of two scenarios: either 

the antibiotics proved ineffective at killing the bacteria or the antibiotics prevented algal 
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growth after application (Table 3). The antibiotic concentration was increased for both 

penicillin and streptomycin individually and in combination resulting in no change. 

Additionally the incubation time was increased from 24 hours to 48 hours resulting in 

again no net change.  

 

3.3.2 Quantification of Neutral Lipids 
 

Under photoautrophic conditions the algal strains treated with antibiotics showed 

that eight out of the nine strains had a greater neutral lipid concentration over the 

reference strains from the culture collection (Figure 26). Additionally axenic strains C3N 

and S7H exhibited very high neutral lipids in relation to their overall cellular density. The 

axenic strain E1H although appears to have a very high neutral lipid concentration in 

relation to cellular density actually had a cellular density too low to be detected 

spectrophotometrically so a zero value was assigned. This was due to the absorbance 

value falling outside of the range of detection on the growth curve for that particular 

strain. Algal strain B1N with bacteria had a very high cell density over the antibiotic 

treatment but a lower neutral lipid concentration with the opposite occurring for axenic 

S7H. Interestingly the strain E1H increased in cellular density in the presence of bacteria 

however the two strains S4N and C2H had cellular densities too low to be detected 

spectrophotometrically. As explained earlier this was not surprising as C2H possessed the 

lowest growth rate of any algal strains studied meaning the cellular density would not be 

large enough to be detected spectrophotometrically.  

When growing the algal strains under mixotrophic conditions with 14mM 

glucose, most strains exhibited an increase in neutral lipid concentration over culture 
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collection strains, with the exception of S8C, E2C, S9C, C2H, and E3N (Figure 27). 

Several strains had neutral lipid concentrations above 200 µg·mL-1 including: axenic 

S6H, E1H, S7H, and non-axenic S2N, and C5C. All other strains had a greater neutral 

lipid concentration when treated with antibiotics. The most interesting ratio was found in 

strain M1H which had a cellular density of ~580 cells·L-1 and a neutral lipid 

concentration of ~165 µg·mL-1 which is a high lipid concentration for such a low cellular 

density. 

Growth in 3mM acetate under mixotrophic conditions revealed that only the 

following strains had a lower neutral lipid concentration over the culture collection 

strains: C5C, S8C, E2C, S9C, and E3N (Figure 28). Although strains E2C, S9C, and E3N 

appear to have neutral lipid concentrations of zero this is only because their fluorescence 

values fell outside of the limits of detection meaning that their concentrations cannot be 

accurately measured but are less than 3.5 µg·mL-1.  

To assess the influence of bacteria the nine strains that resulted in axenic strains 

were tested also under non-axenic conditions. It can be seen (Appendix A Table 1) that 

S2N under photoautotrophic conditions is the only strain which displays no statistically 

significant difference (p>0.05) between axenic and non-axenic trials. Under 

photoautotrophic conditions axenic algae which possessed higher neutral lipid content 

which was significantly different (p≤0.05) compared to their non-axenic counterpart 

were: S6H, S5N, B1N, and C3N. The opposite results were seen in the following strains 

D1N, S3N, E1H, and S7H. Mixotrophic growth (14mM glucose) in which non-axenic 

algae had higher neutral lipid content found to be significantly different (p≤0.05) 

compared to their axenic counterpart were: D1N, S2N, S3N, and B1N. The opposite 
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Figure 26: Cellular density of each strain under photoautotrophic conditions in comparison to the neutral lipid concentration measured 
via Nile Red dye. A axenic algal cells, B is non-axenic. Strains have been abbreviated by a letter designation C=Chlorella, 
S=Scenedesmus, D=Dictyochloris, B= Botrydiopsis, E= Ellipsoidon, and M=Microcystis. Measurements were taken in triplicate for 
both the cellular density and Nile Red measurements. 
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Figure 27: Cellular density of each strain under mixotrophic conditions (14mM glucose) in comparison to the neutral lipid 
concentration measured via Nile Red dye. A axenic algal cells, B is non-axenic. Strains have been abbreviated by a letter designation 
C=Chlorella, S=Scenedesmus, D=Dictyochloris, B= Botrydiopsis, E= Ellipsoidon, and M=Microcystis. Measurements were taken in 
triplicate for both the cellular density and Nile Red measurements. 
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Figure 28: Cellular density of each strain under mixotrophic conditions (3mM acetate) in comparison to the neutral lipid concentration 
measured via Nile Red dye. A axenic algal cells, B is non-axenic. Strains have been abbreviated by a letter designation C=Chlorella, 
S=Scenedesmus, D=Dictyochloris, B= Botrydiopsis, E= Ellipsoidon, and M=Microcystis. Measurements were taken in triplicate for 
both the cellular density and Nile Red measurements. 
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results were found for: S6H, S5N, E1H, S7H and C3N. Under mixotrophic growth (3mM 

acetate) axenic algae which possessed higher neutral lipid content which was 

significantly different (p≤0.05) compared to their non-axenic counterpart were: S3N, 

S6H, B1N, E1H, and S7H. The opposite results were seen for the following non-axenic 

algal strains: D1N, S2N, S5N, and C3N. 

 

3.3.3 Gas Chromatography Mass Spectrometry Analysis 

 
Gas chromatography (GC) revealed diverse fatty acid profiles for each strain 

under photoautotrophic, mixotrophic 14mM glucose, and mixotrophic 3mM acetate 

conditions. A principle component analysis was performed (see Figure 29-31) to assess 

the variation in lipid composition among strains. This is achieved by the fact that PCA 

analysis takes the smallest number of components that account for the most variation in 

the data and display it in terms of a biplot.  Under photoautrophic treatment (Figure 29) 

axenic strains (those with asterisks) clustered together suggesting that they possessed 

very little variation in fatty acid profiles. 

Additionally B2H, B1N, S7H, S6H, and E1H all possessed dissimilar FAME 

profiles based on their position relative to other strains on the biplot. Ultimately 29.51% 

of the variation in the data set can be explained by component 1 while 20.93% of the 

variation can be explained by component 2. This in turn means that 50.44% of the 

variation in the data can be described by this plot. In order to assess the separation of data 

points along the principle component axis for each different fatty acid they were 

compared to the principle component axis scores. Any of the fatty acids with an R2 value 
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above 0.5 was considered to be an important fatty acid for determining differences 

between the algal strains (Table 5). Based on the data the fatty acids that determine 

variation among the samples is linoleic acid methyl ester, oleic acid methyl ester (cis), 

palmitic acid methyl ester, 12-methyltetradecanoic acid methyl ester, erucic acid methyl 

ester, and behenic acid methyl ester.  

When the strains were tested under 14mM glucose mixotrophic conditions a more 

abundant fatty acid profile was detected overall (Figure 30). Additionally like the 

photoautotrophic results a majority of the strains clustered together notably the axenic 

strains. There were two strains that were very different than the rest S9C and S6H based 

on their overall location on the biplot. A few additional strains that deviated from the 

centralized cluster were B1N, C4C, D1N* and S6H*. Based on the PCA 58.86% of the 

variation in the data set can be explained by this plot. To assess the separation of data 

points along the principle component axis for each different fatty acid the R2 values were 

assessed as they were under photoautotrophic conditions. Table 6 displays the major fatty 

acids that determined the variation among the samples.  

When the media conditions were 3mM acetate mixotrophic growth the fatty acid 

profile changed comparatively to that of the glucose, resembling the photoautotrophic 

results in terms of the fatty acids detected (Figure 31). Although the number of fatty acids 

detected appears to be the same as those from the photoautotrophic results the actual fatty 

acids detected are very different. Axenic algal strains under acetate conditions displayed a 

more diverse set of fatty acids as S3N*, S2N* and D1N* are different than other axenic 

algae in terms of fatty acid composition. 

However M1H, C4C, and E3N all appear to be very different in terms of fatty 
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Figure 29: A principle component analysis of fatty acid methyl esters in algal strains grown under photoautotrophic conditions. Fatty 
acids are denoted by the blue lettering and algal strains are indicated by their alpha numeric coding. The asterisk that follows the strain 
lettering denotes axenic algal strains. 
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Figure 30: A principle component analysis of fatty acid methyl esters in algal strains grown under 14mM glucose mixotrophic 
conditions. Fatty acids are denoted by the blue lettering and algal strains are indicated by their alpha numeric coding. The asterisk that 
follows the strain lettering denotes algal strain treated with antibiotics.  
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Figure 31: A principle component analysis of fatty acid methyl esters in algal strains grown under 3mM acetate mixotrophic 
conditions. Fatty acids are denoted by the blue lettering and algal strains are indicated by their alpha numeric coding. The asterisk that 
follows the strain lettering denotes algal strain treated with antibiotics. 
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acid profiles when compared to the majority of strains. From the PCA results 55.13% of 

the variation in the data set can be explained in this plot. To assess the separation of data 

points along the principle component axis for each different fatty acid the R2 values were 

assessed. The results from Table 7 do in fact support the fatty acids with the longest 

vectors found in Figure 31 are the most significant fatty acids.  

 

Table 5: Regression coefficients from linear regression analysis of principle component 
axis scores and fatty acid concentrations under photoautotrophic conditions. Only 
statistically significant coefficients are reported (p≤0.05).  

PC 1 

Fatty acid  Letter Designation  R2 

linoleic acid methyl ester  G  0.8 

oleic acid methyl ester (cis)  H  0.7 

palmitic acid methyl ester  I  0.92 

PC 2 

Fatty acid  Letter Designation  R2 

12‐methyltetradecanoic acid methyl ester  A  0.72 

erucic acid methyl ester  E  0.86 

PC 3 

Fatty acid  Letter Designation  R2 

behenic acid methyl ester  D  0.62 
R2= Regression Coefficient 
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Table 6: Regression coefficients from linear regression analysis of principle component 
axis scores and fatty acid concentrations under mixotrophic (14mM glucose) conditions. 
Only statistically significant coefficients are reported (p≤0.05).  

PC 1 

Fatty acid  Letter Designation  R2 

arachidic acid methyl ester  I  0.94

linoleic acid methyl ester  N  0.88

myristic acid methyl ester  P  0.96

oleic acid methyl ester (cis)  Q  0.95

palmitic acid methyl ester  S  0.98

palmitoleic acid methyl ester  T  0.94

stearic acid methyl ester  V  0.96

PC 2 

Fatty acid  Letter Designation  R2 

13‐methyltetradecanoic acid methyl ester  A  0.94

14‐methylpentadecanoic acid methyl ester  B  0.93

15‐methylhexadecanoic acid methyl ester  C  0.94

9,10‐methylene‐hexadecanoic acid ME  H  0.94

margaric acid methyl ester  O  0.94

pentadecanoic acid methyl ester  U  0.94

PC 3 

Fatty acid  Letter Designation  R2 

3‐hydroxydodecanoic acid methyl ester  F  0.94

3‐hydroxytetradecanoic acid methyl ester  G  0.94

capric acid methyl ester  K  0.94
R2= Regression Coefficient 
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Table 7: Regression coefficients from linear regression of principal components axis 
scores and fatty acid concentrations under 3mM acetate mixotrophic conditions. Only 
statistically significant coefficients are reported (p≤0.05). 

PC 1

Fatty acid  Letter Designation  R2

linoleic acid methyl ester E 0.76

oleic acid methyl ester (cis) F 0.87

palmitic acid methyl ester G 0.81

PC 2

Fatty acid  Letter Designation  R2

arachidic acid methyl ester A 0.76

14‐methylpentadecanoic acid methyl ester H 0.74

 R2= Regression Coefficient 
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 The diverse fatty acid composition for each strain is presented in Appendix A 

Tables 2-7. The results demonstrate that although lipids were detected and could be 

quantified by means of Nile Red fluorescence. Some strains displayed zero values for the 

fatty acids being screened. This was a common occurrence not only in the axenic strains 

but in the non-axenic strains as well. Additionally this commonality was seen across all 

the various growth conditions. Since Nile Red looks a neutral lipids and screening 

through mass spectrometry is selecting specific fatty acids this result was not unexpected. 

 The main differences in fatty acid profiles can be seen not only in comparing 

axenic to non-axenic strains but also by viewing the ratio of saturated fatty acids to 

unsaturated fatty acids. Table 8-13 display the various growth conditions as well as the 

grouping of strains based on their axenic status. The results from the photoautotrophic 

trials for axenic/non-axenic strains (Table 8) shows the fatty acid content for 

approximately half of the strains is 100% saturated fatty acids. When the non-axenic 

(Table 8-9) strains were tested about seven out of twenty strains had 100% saturated fatty 

acids. An additional seven out of the twenty strains had a mixture of saturated to 

unsaturated fatty acids. The remaining strains also had no detectable fatty acids. The only 

strains that can be compared between axenic and non-axenic status (Table 8) are S2N, 

S6H, and S5N. Only S6H exhibited a change in fatty acid saturation when tested with the 

presence of bacteria.  

Under the 14 mM glucose mixotrophic conditions (Table 10) S2N*, S6H*, and 

C3N* all had purely saturated fatty acids while S5N* had 100% unsaturated fatty acids. 

Additionally C1U* and D1N* possessed an almost even split of saturated to unsaturated 

fatty acids. The remaining strains displayed no fatty acid profiles. However under non-
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axenic conditions the level of unsaturated fatty acids in comparison to saturated fatty 

acids increases with strains D1N, B1N, E1H, (Table 10) and C4C (Table 11) reaching an 

almost 50/50 ratio. The strain S5N (Table 10) which possessed 100% unsaturated fatty 

acids under axenic conditions displayed 86% saturated fatty acids and 14% unsaturated 

fatty acids. While S6H possessed (Table 10) 100% saturated fatty acids under axenic 

conditions the ratio split to 63% saturated 37% unsaturated under non-axenic conditions. 

When testing the algal isolates under 3 mM acetate mixotrophic conditions (Table 

12) over half of the strains fatty acids could not be detected while S1B* and D1N* were 

the only two strains which displayed a mixture of saturated and unsaturated fatty acids. 

While C1U*, S2N*, and S3N* all possessed 100% saturated fatty acids. For the strains 

that could be classified as both non-axenic and axenic there was no change in fatty acid 

saturation (Table 12). For the purely non-axenic strains (Table 13) 10/20 strains 

possessed 100% saturated fatty acids while 6 strains displayed mixtures between 

unsaturated and saturated fatty acids. The remaining four strains possessed no fatty acid 

profile.
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Table 8: Percent saturation of fatty acids for axenic/non-axenic algae under 
photoautotrophic growth conditions 
Strain  Total saturated %  Total unsaturated % 

C1U*  ‐ ‐

S1B*  100 ‐

D1N*  ‐ ‐

D1N  ‐ ‐

S2N*  100 ‐

S2N  100 ‐

S3N*  100 ‐

S3N  ‐ ‐

S6H*  100 ‐

S6H  86.42 13.57

S5N*  100 ‐

S5N  100 ‐

B1N*  ‐ ‐

B1N  78.91 21.09

C3N*  ‐ ‐

C3N  45.73 54.27

E1H*  ‐ ‐

E1H  66.34 33.66

S7H*  ‐ ‐

S7H  87.81 12.19
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Table 9: Percent saturation of fatty acids for non-axenic algae under photoautotrophic 
growth conditions 

Strain  Total saturated %  Total unsaturated % 

M1H  ‐ ‐

S4N  71.25 28.75

C4C  100 ‐

C5C  100 ‐

S8C  100 ‐

C6C  100 ‐

E2C  ‐ ‐

S9C  ‐ ‐

B2H  62.88 37.12

C2H  100 ‐

E3N  ‐ ‐

 
 
Table 10: Percent saturation of fatty acids for axenic/non-axenic algae under 14mM 
glucose mixotrophic growth conditions 
Strain  Total saturated % Total unsaturated % 

C1U*  45.86 54.14
S1B*  ‐ ‐
D1N*  56.18 43.82
D1N  51.31 49.69

S2N*  100 ‐
S2N  ‐ ‐

S3N*  ‐ ‐
S3N  93.24 6.76

S6H*  100 ‐
S6H  63.12 36.88

S5N*  ‐ 100
S5N  85.61 14.39

B1N*  ‐ ‐
B1N  59.26 40.74

C3N*  100 ‐
C3N  100 ‐

E1H*  ‐ ‐
E1H  47.91 52.09

S7H*  ‐ ‐
S7H  ‐ ‐
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Table 11: Percent saturation of fatty acids for non-axenic algae under 14mM glucose 
mixotrophic growth conditions 
Strain  Total saturated %  Total unsaturated % 

M1H  100 ‐

S4N  100 ‐

C4C  45.29 54.71

C5C  9.59 90.41

S8C  100 ‐

C6C  79.7 20.3

E2C  100 ‐

S9C  89.98 10.02

B2H  89.19 10.81

C2H  ‐ ‐

E3N  100 ‐

 

Table 12: Percent saturation of fatty acids for axenic/non-axenic algae under 3mM 
acetate mixotrophic growth conditions 
Strain  Total saturated %  Total unsaturated % 

C1U*  100 ‐
S1B*  88.89 11.11
D1N*  59.93 40.07
D1N  ‐ ‐
S2N*  100 ‐
S2N  ‐ ‐
S3N*  100 ‐
S3N  100 ‐
S6H*  ‐ ‐
S6H  100 ‐
S5N*  ‐ ‐
S5N  76.94 23.06
B1N*  ‐ ‐
B1N  100 ‐
C3N*  ‐ ‐
C3N  69.03 30.97
E1H*  ‐ ‐
E1H  66.66 33.34
S7H*  ‐ ‐
S7H  ‐ ‐
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Table 13: Percent saturation of fatty acids for non-axenic algae under 3mM acetate 
mixotrophic growth conditions  

Strain  Total saturated %  Total unsaturated % 

M1H  100 ‐

S4N  100 ‐

C4C  67.15 32.85

C5C  100 ‐

S8C  100 ‐

C6C  94.5 5.41

E2C  100 ‐

S9C  ‐ ‐

B2H  100 ‐

C2H  64.11 35.89

E3N  100 ‐

 

 

3.4 Discussion 

	

3.4.1 Antibiotic Treatment of Algal Isolates	
 

Penicillin is a beta-lactam antibiotic that inhibits peptidoglycan synthesis of 

prokaryotic cell walls. The antibiotic streptomycin is an aminoglycoside antibiotic that 

blocks protein synthesis (Kviderova and Henley, 2005). Application of a combination of 

these antibiotics was an attempt at broad-spectrum treatment of algal strains. However, 

the application of antibiotics only caused half of the algal strains to be purified to axenic 

status. The presence of bacterial contamination in the remaining samples (Table 3) can be 

explained through the prevalence of antibiotic resistance. Research by Akter et al. (2012) 

revealed that 24 E.coli isolates derived from hospital wastewater were resistant to β-

lactams (ampicillin, cefalexin, ceftazidine, cloxacillin,), fluoroquinolone (ciprofloxacin), 



   

77 
 

and tetracycline (doxcyclin). This also means that the antibiotic resistance could be found 

in the municipal wastewater tested in this study as antibiotics including amoxicillin, 

ampicillin, penicillin G, ceftazidime, ceftriaxone (β-lactams) tetracycline, and 

doxycycline (tetracyclines) have been extracted from wastewater treatment plants in 

Romania (Opris et al., 2013). Not only are the antibiotics detected in the wastewater but 

ampicillin resistance genes in bacteria have been found to increase in urban wastewater as 

well as wastewaters receiving hospital discharges in Germany (Volkmann et al., 2004; 

Rizzo et al., 2013). Samples from Hebei Province in China discovered that bacteria 

isolated from a wastewater treatment plant and downstream of the plant possessed high 

resistance to beta-lactam antibiotics such as penicillin (Li et al., 2009). The bacteria also 

may avoid exposure to the antibiotics completely as homogenous mixtures of bacteria can 

attach to the surface of algal cell or reside in their mucilage thereby preventing exposure 

to the bacteria completely (Fisher et al., 1998). Bacteria can also evade the effects 

antibiotics by entering the stationary phase or by slowing growth therefore preventing the 

effects of both penicillin and streptomycin (Tuomanen et al., 1986). 

 The unialgal culture may in fact represent a natural algal-bacterial consortium 

formed between microalgae and their bacterial counterparts (Subashchandrabose et al., 

2011). Disruption of this natural symbiotic relationship could actually have side effects as 

the mutualistic benefits have been cut off for the algae. For example when bacteria are 

grown with Thalassiosira rotula (a diatom) bacterial isolates promoted growth under 

different media conditions (Grossart and Simon, 2007). Additionally Abed (2010) 

discovered co-culturing the bacteria Pseudomonas with the cyanobacterium 

Synechocystis led to an eight fold increase in cyanobacterial biomass. Ideally the algal 
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bacterial symbiotic relationship is beneficial as the molecular oxygen produced by algae 

through photosynthesis is used as an electron acceptor by bacteria which then degrade 

organic matter in wastewater, ultimately releasing carbon dioxide as a waste product but 

further fueling algal photosynthesis (Subashchandrabose et al., 2011). It also may be in 

fact impossible to eliminate bacteria completely from some strains as it has been 

demonstrated in Volvox carteri contained endosymbiotic bacteria which occur within the 

cytoplasm as well bacteria can escape antibiotic exposure through refuge within the 

mucilage (Cole, 1982). 

 

3.4.2 Quantification of Neutral Lipids 
 

The strains S4N, C2H, and E1H* all exhibited zero values for their cellular 

densities which can be explained based on their calibration graphs, the 

spectrophotometric values taken for these strains lie outside the limits of detection. Since 

the spectrophotometric value fell outside of this limit an accurate cell density cannot be 

attributed so a value of zero was attributed to eliminate bias. Under photoautotrophic 

growth there was an even split between which condition produced a greater concentration 

of neutral lipids per cell per liter. This made determining the effect of bacteria on algae 

difficult to determine under photoautotrophic conditions.  

Under mixotrophic growth (14mM glucose) axenic algae possessed a higher 

neutral lipid concentration which relates back to the fact that there is a lack of stress in 

one system over the other. The algal systems containing bacteria possess a natural system 

in which the bacteria are utilizing the organic content in the media (Subashchandrabose et 

al., 2011). The presence of bacteria can actually cause a deficiency in available nutrients 
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for the algae. Liu et al. (2011) discovered that when glucose is added to the growth media 

it stimulates bacterial growth reducing availability of nutrients to the algae. A similar 

result was also discovered with Scenedesmus obliquus when grown with a natural 

bacterial community resulted in limitation of phosphorus and nitrogen at the plateau of 

the growth cycle (Daufresne et al., 2008).  It is well known that when algae are stressed 

by their system it triggers the accumulation of neutral lipids (Saha et al., 2013).  Much of 

the research to make algal biofuels feasible involves growing algae under conditions with 

abundant nutrients increasing the overall biomass followed by a shift to a nutrient poor 

medium (nitrogen or phosphorus depleted) to trigger the accumulation of fatty acids 

(Ratha et al., 2013).  

When analyzing the mixotrophic (3mM acetate) growth conditions only four out 

of the nine strains displayed non-axenic algae possessing higher neutral lipid 

concentrations over the axenic algae. The higher level of neutral lipids found in the 

axenic algae does not make sense as the bacteria would consume the organic carbon 

before the algae could uptake it. Wright and Hobbie (1966) who demonstrated that radio 

labelled glucose and acetate is less than 10% of the total uptake even if the algal biomass 

is orders of magnitude greater than the bacteria. As previously stated the competitive 

inhibition induced through resource consumption by the bacteria produces nutrient 

deprived conditions for the algae. Unfortunately the axenic algae of five out of the nine 

strains displays higher neutral lipid content which cannot be explained based on current 

results. This can be explained through the photoassimilation of acetate by algae mainly is 

allocated to the lipids. This was proven by Ihlenfeldt and Gibson (1977) who 

demonstrated that cyanobacteria Synechococcus and Aphanocapsa distributed acetate 
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from the growth media to lipid portions of their cells. Chlorella vulgaris has been shown 

to incorporate acetate into the glycerol fractions of its cell (glycerol is the alcohol 

compound that links fatty acids together in algae) (Neilson and Lewin, 1974).  Due to the 

lack of the bacteria in these situations it allowed for untapped organic carbon that could 

be utilized by the algae to increase their neutral lipid concentrations.  

It should be noted that there are limitations and benefits associated with utilizing 

Nile Red for the determination of neutral lipids. The dye only produces a yellow-gold 

fluorescence when bound to neutral lipids and not glycol- or phospholipids increasing the 

selectivity of the dye (Doan and Obbard, 2011). The fluorescence intensity can be 

affected by factors like emission wavelength, dye concentration, cell density and staining 

time; all conditions which must be optimized for each individual algal strain (Feng et al., 

2013).  Additionally it should be noted that Nile Red typically exhibits a stronger 

fluorescence intensity when bound to unsaturated fatty acids than saturated fatty acids 

(Fowler et al., 1987). Chen et al. (2009) has even stated that Nile Red is inefficient for 

some green algal species due to the impermeability of the cell wall. Although the Nile 

Red protocol is not ideal for all the strains it has provided information when comparing 

not only the differences found within the different growth conditions but the differences 

found between the algal strains that were both axenic and non-axenic. 

 

3.4.3 FAME Profiles of Wastewater Algae 
 

Typically when algae are assessed for potential as a biofuel feedstock it involves a 

labour intensive process to identify the significant fatty acids or individual strains that 

differ from the larger collection of strains. This can make screening larger quantities of 
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algal strains difficult as trends such as which fatty acid is most significant may be 

overlooked or missed when displaying the breakdown of the fatty acid composition as 

percent relative fatty acid. Utilizing a Principle Component Analysis based on the fatty 

acids measured by gas chromatography mass spectrometry allowed for a visual 

examination of the important fatty acids driving the variation in FAME profiles among 

strains. For example, under photoautotrophic conditions there is tight clustering of axenic 

algae indicating the fatty acid profiles they possesses are highly similar. Under the 

photoautotrophic conditions B2H, S7H, S6H, and B1N were all distributed further away 

in the biplot from the remaining strains suggesting a unique fatty acid profile. Also when 

the vectors are displayed this would allow researches a rapid visual examination of 

potential strains for future experimentation as strains high in specific fatty acids can 

quickly be located. The PCA can also provide valuable insight into which fatty acids are 

significant in determining the differences between strains.  

This rapid analysis of the fatty acid data also displays trends for both the acetate 

and glucose mixotrophic conditions. Under the 14 mM glucose media two strains (S6H* 

and S9C) displayed distinct fatty acid compositions that were largely separated from 

other algal strains on the biplot. With the correlation of fatty acid variables to principle 

components axis scores the difference that exist from growth condition to growth 

condition can be elucidated. For example there are a greater number of significant fatty 

acids found in 14 mM glucose mixotrophic growth over that of photoautotrophic and 

3mM acetate mixotrophic growth. This result was also seen by Wang et al. (2012) in 

which total lipid content and lipid productivity was found to be 2.8-4.6 times greater with 

glucose than that of control while starch and sodium acetate had no significant difference 
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compared to the control. Although Laliberte and Noue (1993) reported that utilizing 

acetate under mixotrophic growth actually caused lower lipid percentages but an increase 

in protein in Chlamydomonas humicola. This matches the results we found as 

photoautotrophic growth resulted in a more diverse set of fatty acids over acetate and 

glucose containing the most diversity in overall fatty acids. Another advantage this 

method of observation offers is that the PCA data can identify which fatty acids are 

responsible for the variation among strains.  

Analyzing the strains under the three different conditions showed that under 

antibiotic treatments there was a slight shift in fatty acid composition. For example under 

photoautotrophic conditions S6H when axenic possessed 100% saturated fatty acids but 

when non-axenic the saturated fatty acids shifted down to 86%. A similar result was 

noted with C. vulgaris and C. sorokiniana when grown with the bacterium A. brasilene 

which caused the variation in fatty acids to change from five to eight different fatty acids 

with increasing amounts of unsaturation (de-Bashan et al., 2002). However S3N and S5N 

experienced no change in saturation under axenic or non-axenic trials. This cannot be 

explained presently other than the fact that saturation and unsaturated fatty acids can vary 

from species to species even when grown under the same growth conditions. Gatenby et 

al. (2003) demonstrated that N. oleoabundans, P. tricornutum, and B. grandis all grown 

under the same conditions and in the same media had varying profiles, as N. 

oleoabundans had higher unsaturated fatty acids while P. tricornutum had C 16 saturated 

and mono-unsaturated fatty acids and B. grandis contained high percentages of C 18 

polyunsaturated fatty acids.   
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Findings in the literature show that adding glucose to solution changes the lipid 

composition, significantly increasing oleic acid concentration over photoautotrophic 

grown algae (Sunja et al., 2011). This was as also found in my experiments, where the 

number of strains with C 19:2 changed from five under photoautotrophic conditions to 

nine under 14 mM glucose mixotrophic conditions. Additionally Cherisilp and Torpee 

(2012) have confirmed that algae grown under mixotrophic conditions using glucose 

showed an overall increase in lipid content over photoautotrophic growth and 

heterotrophic growth. Under 14 mM glucose mixotrophic conditions S6H and S5N 

experienced changes in saturation, as S6H under axenic conditions possessed 100% 

saturated fatty acids while S5N possessed 100% unsaturated fatty acids. S6N experienced 

a shift to unsaturated fatty acids under non-axenic conditions while S5N shifted more 

towards saturated fatty acids under non-axenic conditions. The finding for S5N follows 

what was reported by Wang et al. (2012) as they demonstrated that under glucose growth, 

fatty acid unsaturation decreased for C. kessleri. Metabolically this makes sense that the 

degree of unsaturated fatty acids is lower in the presence of bacteria, as the bacteria may 

be utilizing the glucose before the algae can. Research performed by Wright and Hobbie 

(1966) have demonstrated that when bacteria are present with algae their uptake of 

glucose was higher than that of algae even when the algal biomass is orders of magnitude 

greater than the bacterial biomass. Similar results have also been found showing that 

bacteria preferentially uptake dissolved glucose over carbon sources that are released 

from algae (Kisand and Tammert, 2000). 

Two strains (D1N and C3N) did not experience changes in their fatty acid profiles 

under 14 mM glucose mixotrophic growth under axenic or non-axenic conditions. This 
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can be explained by the fact that some strains of algae lack the capabilities to uptake 

organic carbon sources. Dunaliella tertiolecta actually could not utilize glucose even 

when incubating whole cells in the media and the lack of the ability to growth 

mixotrophically is attributed to membrane impermeability (Kwon and Grant, 1971). 

Additionally this lack of change can be attributed to the fact that these strains utilize 

organic glucose differently. For example Wan et al. (2011) demonstrated that N.oculata 

CCMP 525 increased in protein content with little effect to lipid productivity while the 

strain C.sorokiniana significantly increased in both protein and lipid content. This further 

illustrates the importance of phycoprospecting as individual strains of algae do not grow 

or accumulate fatty acids the same ways as other strains.  

Under 3 mM acetate mixotrophic growth there was no difference in fatty acid 

saturation from axenic to non-axenic cultures. The only strain in which fatty acids were 

detected in both axenic and non-axenic cultures was S3N and like under photoautotrophic 

growth the saturation did not change. As stated previously depending on the growth 

media certain strains can utilize the organic carbon and some strains cannot. The results 

were very similar to the photoautotrophic results in the amount of strains which possessed 

100% saturated fatty acids versus those with unsaturated fatty acids.  

Although not entirely conclusive by our results bacteria are of importance as they 

release transparent exopolymer particles that cause the algal cells to aggregate together 

and sink out of solution (Grossart et al., 2006). This will aid in scaling the algae for 

biofuel production up to the industrial scale as collecting algae out of water requires large 

amounts of energy and can cost up to 30% of total cost for processing (Brentner et al., 

2011; Singh and Dhar, 2011). Additionally the lack of fatty acids being registered by the 
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mass spectrometer El-Sheekh et al. (2012) actually showed that the production of lipid by 

algae depends on the specific algal species, culture conditions, and concentration of the 

reducing sugar. Additionally saturation of fatty acids can be altered by what season algae 

are cultivated during, further demonstrating the importance of not only temperature but 

light exposure to the algal cells (Olofsson et al. 2012).  The reason why some strains have 

their fatty acids detected by Nile red dye but not mass spectrometry can be explained by 

the specific lipids being screened for. For example, one study that looked at Anabaena 

doliolum, Anacystics nidulans, and Chlorella vulgaris showed that the two blue green 

algae A.doliolum and A.nidulans possessed only glycolipids while C.vulgaris had 

glycolipids and significant amounts of neutral and phospholipids (Sakthivel et al. 2011). 

The most predominant fatty acid across all three growth conditions was C17 

which is ideal for a biofuel feedstock. Hu et al. (2008) actually states that fatty acids 

possessing carbon chain lengths from 16 to 18 units are ideal precursors for biodiesel 

production. Not only does carbon chain length provide a basis for deriving biodiesel but 

specifically the saturation versus unsaturation provides characteristics that make the fuel 

more versatile. Biodiesel derived from microalgae with more saturation provide a higher 

cetane number (CN), would have lower NOx emissions, and have shorter ignition delay 

time (Cherisilp and Torpee, 2012).  This comes at a cost since when temperatures are 

lowered; saturated fatty acids tend to form a solid due to their high melting point (Dogan 

and Temur, 2013). Unsaturated fatty acids require less heating and are often liquids at 

room temperature, however the higher the presence of double bonds the more prone the 

fuel is to producing NOx emissions (Gopinath et al., 2010). Gopinath et al. (2010) 
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actually states that having a 50/50 blend of saturated and unsaturated fatty acids produces 

better thermal efficiency and reduces NOx emissions.  

Based on the parameters of saturated and unsaturated fatty acids it makes sense to 

select algal strains that have a relatively equal mixture of both. Therefore under 

photoautotrophic conditions the top three candidates are C3N, E1H, and B2H. Under 

mixotrophic conditions utilizing 14mM glucose, D1N, B1N, E1H, and C4C have promise 

as biofuel feedstock. Under mixotrophic growth utilizing acetate, D1N*, C3N, E1H, and 

C2H should be selected. It should be noted that of all the strains selected the best ratios 

were found in those that possessed the resident bacterial community indicating to 

researchers the added benefit of having non-axenic cultures. To maintain axenic cultures 

of algae requires the input of large amounts of time for screening cultures and re-

screening to ensure cultures do not become contaminated. Additionally large amounts of 

money need to be spent on antibiotics to keep the algae axenic. This provides industrial 

start-up companies an added cost savings as non-axenic algae will provide a better fatty 

acid profile over axenic algae.  
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Chapter 4: General Conclusion 
 

The objective of this research was ultimately to assess the potential of naturally 

occurring algae derived from municipal wastewater treatment plants for their potential as 

a biofuel feedstock. This was accomplished by first isolating and purifying algae from the 

raw effluent obtain from the three treatment plants: Nonquon River Lagoons Wastewater 

Pollution Control Plant (Port Perry, ON), Corbett Creek Water Pollution Control Plant 

(Whitby, ON), and Woodward Avenue Wastewater Treatment Plant (Hamilton, ON). 

This was followed by analysing the growth patterns under different media conditions 

along with assessing the fatty acid composition and amount under these varying growth 

parameters. As a consequence of not attaining axenic status for all of my strains, I was 

able to investigate the effect of naturally occurring bacteria on the lipid production in 

algal culture.  

Through the course of the experiment 20 algal isolates were discovered falling 

into one of six genera: Chlorella, Scenedesmus, Dictyochloris, Botrydiopsis, Ellipsoidon, 

and Microcystis. Additionally a proper rationale for the choice of media was made by 

analyzing the composition of the naturally occurring levels of nitrogen and phosphorus 

found in wastewater a step often unreported or overlooked by much of the published 

research. It was discovered that growth of most of these strains under heterotrophic 

conditions could not result in a great enough biomass for future analysis of fatty acid 

content as the cellular density was much too low. When comparing the culture collection 

strains Scenedesmus acutus and Chlorella kesslirii to the wastewater derived strains it 

was discovered there was very little statistically significant differences found in the 

growth rates under photoautotrophic and mixotrophic (14mM glucose and 3mM acetate) 
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conditions. The most profound change was noted under heterotrophic conditions but this 

was explained as the culture collection Chlorella kesslirii is a strain that has been proven 

to grow under heterotrophic conditions. Additionally two distinct strains Dictyochloris 

D1N and Chlorella C6C were discovered to be strains with the highest growth rates 

under two different conditions. This further increases their potential as biofuel feedstock 

as they are not limited to one growth condition further promoting their versatility. The 

highest growth rate of all the strains was found to be from Botrydiopsis with a rate of 

2.7±0.14x104 cells·L-1·day-1. The lack of research into this strain provides future avenues 

of research.  

The difficulty of utilizing wastewater algae was the fact that half the strains being 

worked with could not be purified of bacterial contamination. This was due to the fact 

that antibiotic resistant bacteria are found throughout municipal and medical wastewater 

sources indicating that the consortium associated with the algal strains had innate 

resistances to both penicillin and streptomycin. Additionally bacteria can harbor on algae 

or within their mucilage escaping the effects of the antibiotics all together. Under 

photoautotrophic conditions it was difficult to determine the effect of bacteria on the 

algae but the effect became evident under mixotrophic growth (14mM glucose). As the 

bacteria are present in the system they consume the freely available organic and inorganic 

compounds creating a nutrient deprived condition. The lack of nutrients induces stress on 

the algae causing the strains to accumulate neutral lipids. The opposite effect was seen 

with acetate but the higher neutral lipid content can be explained through how algae 

utilize photoassimilation of acetate directly into their fatty acid stores. Since bacteria 

outcompete algae for free organic carbon the axenic algae have access to acetate in the 
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media and assimilate it into their cells. This process results in a higher neutral lipid 

content under axenic conditions.  

It should be noted that the use of principle component analysis should be 

implemented when screening large numbers of algal strains. Not only can the PCA depict 

which fatty acids are generally more abundant in a certain strain but it can also display 

similarity among strains. This data however should always be coupled with a breakdown 

of percent relative fatty acids in order to display the levels of saturated, monounsaturated, 

or polyunsaturated fatty acids. Both saturated and unsaturated fatty acids have 

disadvantages and advantages but it has been stated that a 50/50 blend would allow for 

the benefits of both to be present while reducing the drawbacks.  

When selecting the best biofuel candidate it is difficult to decide as once again 

there are trade-offs between fatty acid content and composition. For the highest yields the 

following should be pursued: 

1) photoautotrophic conditions 

 axenic Chlorella *S4.3N (C3N) 

  axenic Scenedesmus* M3.3H (S7H) 

 Scenedesmus M2.2H (S6H) 

 Chlorella S 4.3N (C3N)  

2) 14 mM glucose mixotrophic conditions 

 Microcystis M2.3H (M1H) 

 Scenedesmus F3.6N (S2N)  

3) 3 mM acetate mixotrophic conditions  

 Dictyochloris F2.2N (D1N)  
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 Scenedesmus F3.6N (S2N)  

For an even blend of saturated to unsaturated fatty acids should be considered: 

1) photoautotrophic conditions  

 Chlorella S4.3N (C3N) 

  Ellipsoidon F2.3H (E1H) 

 Botrydiopsis F1.3H (B2H) 

2) 14 mM glucose mixotrophic conditions  

 Dictyochloris F2.2N (D1N) 

  Botrydiopsis S4.2N (B1N) 

  Ellipsoidon F2.3H (E1H) 

  Chlorella 03CC (C4C)  

3) 3 mM acetate mixotrophic conditions 

 axenic Dictyochloris F2.2N (D1N*) 

 Chlorella S4.3N (C3N) 

 Ellipsoidon F2.3H (E1H)  
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Chapter 5: Future Directions 
 

The future directions for this work are very diverse as this project has merely 

established a foundation for further work. As the most novel findings of this research was 

first isolating naturally occurring algae from wastewater treatment plants and second the 

way in which naturally occurring bacterial communities influence fatty acid composition 

this in particular needs to be confirmed and pursued by other researchers. To date a vast 

majority of research into algal biofuels treats the algae with antibiotics and it has been 

demonstrated in this study that the fatty acid composition can change with bacterial 

presence.  

 A new method of neutral lipid quantification should also be pursued as there have 

been reported issues with the specific calibration of not only the wavelengths used to take 

readings but the specificity of concentration of dye, incubation time, and permeability. 

Other options do exist such as gravimetric determination and a new dye known as 

BODIPY.  

 Growth did not appear to be an issue in this study however few strains could 

tolerate heterotrophic growth. Perhaps the strains that did not experience detrimental 

growth rates under dark conditions could be analyzed for their fatty acid content and 

composition. Trials were discontinued as not enough strains exhibited enough growth 

under these conditions. Perhaps by comparing these strains to strains that are known to be 

effective at heterotrophic growth new results can be attained. 

 This experiment was only conducted under a strict set of growth conditions. The 

variability of increasing or decreasing temperature as well as light intensity may alter the 

lipid profile and may enhance growth of the feedstock further. Additionally to this the 
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experiment was conducted at a lab scale with small volumes meaning that further work 

needs to be done at the lab scale with larger volumes and eventually at pilot scale 

bioreactors.  

 Lastly since these strains are derived from wastewater treatment plants it would 

be highly beneficial to test their growth and lipid characteristics when grown in effluent. 

Not only is this research a future avenue but it is imperative that these naturally occurring 

algal communities be considered for their potential as biofuel feedstocks.
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Appendix A 
 

Figure A1: Calibration curve of triolein in relation to the absorption units detected 
spectrofluorometrically 
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Table A1: Assessment of significant differences between axenic and non-axenic algal strains in terms of neutral lipid content. Significant differences 
(p≤0.05) are denoted by superscript lettering (same letters = no significant difference, different letters= significant differences).  

Strain ID  Neutral Lipid content per cell (µg∙cell‐1∙L‐1) 
   Photo  14mM G  3mM A 

D1N*  106.0±0.2x102a  24.7±0x102a 23.5±0.0x102a

D1N  151.0±1.2x102b  28.1±0x102b 28.6±0.1x102b

S2N*  352.0±2.3x102a  195.0±0.2x102a 170.0±1.3x102a

S2N  356.0±1.7x102a  420.0±4.9x102b 296.0±1.0x102b

S3N*  261.0±1.2x102a  188.0±2.1x102a 67.6±0.2x102a

S3N  373.0±10.2x102b  245.0±0.5x102b 103.0±0.7x102b

S6H*  288.0±30.0x102a  232000.0±17200.0x102a 743.0±16.1x102a

S6H  2480.0±390.0x102b  1490.0±292.0x102b 415.0±12.7x102b

S5N*  405.0±45.0x102a  276.0±0.5x102a 105.0±0.3x102a

S5N  155.0±13.4x102b  160.0±0.3x102b 84.2±0.4x102b

B1N*  144.0±1.0x102a  292.0±0.2x102a 96.7±0.2x102a

B1N  10.5±0.4x102b  305.0±1.0x102b 24.3±0.0x102b

C3N*  4770.0±98.9x102a  3650.0±255.0x102a 4440.0±122.0x102a

C3N  1840.0±46.6x102b  1540.0±34.8x102b 977.0±17.8x102b

E1H*  0.0±0.0x102a  33000.0±182.0x102a 6740.0±26.4x102a

E1H  533.0±5.0x102b  414.0±0.4x102b 209.0±0.2x102b

S7H*  1450.0±388.0x102a  1200.0±2.8x102a 582.0±7.5x102a

S7H  329.0±91.3x102b  366.0±0.9x102b 335.0±2.2x102b
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Table A2: Photoautotrophic trial of axenic algal strains displaying percent relative fatty acids in terms of their carbon chain short 
form. Algal strains appear as their short form designation. Lipids are further broken down into saturated, monounsaturated and 
polyunsaturated percentages. 

Fatty Acid  Algal Strain 

   C1U*  S1B*  D1N*  S2N*  S3N*  S6H*  S5N*  B1N*  C3N*  E1H*  S7H* 

C 15  0  70  0  0  0  100  0  0  0  0  0 

C 17  0  0  0  0  0  0  100  0  0  0  0 

C 19:1 (cis)  0  0  0  0  0  0  0  0  0  0  0 

C 19:2  0  0  0  0  0  0  0  0  0  0  0 

C23  0  30  0  100  0  0  0  0  0  0  0 

C 23:1  0  0  0  0  0  0  0  0  0  0  0 

C 25  0  0  0  0  100  0  0  0  0  0  0 

TS%  ‐  100  ‐  100  100  100  100  ‐  ‐  ‐  ‐ 

TM%  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

TP%  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

TN 
113.3±11.
8 

36.6±42.
9 

94.0±3.
5 

155.3±9.
3 

132.6±2.
0 

187.1±10.
4 

170.6±13.
3 

180.8±6.
9 

164.9±8.
5 

203.5±6.
1 

208.1±13.
3 

TS%= Total Saturated%, TM%= Total Monounsaturated%, TP%=Total Polyunsaturated%, TN=Total Neutral lipids (measured in 
µg·mL-1) 
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Table A3: Photoautotrophic trial of non-axenic algal strains displaying percent relative fatty acids in terms of their carbon chain short 
form. Algal strains appear as their short form designation. Lipids are further broken down into saturated, monounsaturated and 
polyunsaturated percentages. 

Fatty 
Acid  Algal Strain 

   D1N  S2N  S3N  S6H  S5N  B1N  C3N  E1H  S7H  M1H  S4N  C4C  C5C  S8C  C6C  E2C  S9C  B2H  C2H  E3N 

C 15  0.00  0.00 
100.0

0 
0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  62.88  0.00  0.00 

C 17  0.00  0.00  0.00  86.42 
100.0

0 
78.9  45.73  66.34  87.81  0.00  57.44  100 

100.0
0 

100.0
0 

100.0
0 

0.00  0.00  0.00  100  0.00 

C 19:1 
(cis) 

0.00  0.00  0.00  7.35  0.00  13.7  54.27  33.66  0.00  0.00  28.75  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C 19:2  0.00  0.00  0.00  6.23  0.00  7.38  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C23  0.00 
100.0

0 
0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  13.81  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

C 23:1  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  12.19  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  37.12  0.00  0.00 

C 25  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 

TS%  ‐ 
100.0

0 
100.0

0 
86.42 

100.0
0 

78.9  45.73  66.34  ‐  ‐  71.25  100 
100.0

0 
100.0

0 
100.0

0 
‐  ‐  62.88  100  ‐ 

TM%  ‐  ‐  ‐  7.35  ‐  13.7  54.27  33.66  12.19  ‐  28.75  ‐  ‐  ‐  ‐  ‐  ‐  37.12  ‐  ‐ 

TP%  ‐  ‐  ‐  6.23  ‐  7.4  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

TN 
101.9
±13.9 

191.1
±6.5 

124.1
±12.4 

137.1
±15.7 

107.0
±10.4 

34.9
±36 

142.8
±10.3 

133.2
±11.0 

126.9
±13.9 

138.8
±17.5 

174.0
±5.9 

82.1
±9.7 

144.5
±11.1 

155.3
±6.7 

167.8
±4.3 

71.8
±44 

71.8
±44 

134.9
±14.5 

41.8
±41 

105.3
±49.8 

TS%= Total Saturated%, TM%= Total Monounsaturated%, TP%=Total Polyunsaturated%, TN=Total Neutral lipids (measured in 
µg·mL-1) 
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Table A4: 14mM Glucose mixotrophic trial of axenic algal strains displaying percent relative fatty acids in terms of their carbon chain 
short form. Algal strains appear as their short form designation. Lipids are further broken down into saturated, monounsaturated and 
polyunsaturated percentages. 

Fatty Acid  Algal Strain 

C1U*  S1B*  D1N*  S2N*  S3N*  S6H*  S5N*  B1N*  C3N*  E1H*  S7H* 

C11  0.0  0.0  0.0  0.0  0.0  50.7  0.0  0.0  0.0  0.0  0.0 

C13  0.0  0.0  9.7  0.0  0.0  3.2  0.0  0.0  0.0  0.0  0.0 

C 14  0.0  0.0  0.0  0.0  0.0  26.2  0.0  0.0  0.0  0.0  0.0 

C15  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  37.5  0.0  0.0 

C16  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 17  45.9  0.0  46.5  71.4  0.0  19.5  0.0  0.0  62.5  0.0  0.0 

C18  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 19   0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 19:1 
(cis) 

42.8  0.0  28.6  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C19:1 
(trans) 

0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 19:2  11.4  0.0  15.2  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C21  0.0  0.0  0.0  0.0  0.0  0.5  0.0  0.0  0.0  0.0  0.0 

C23  0.0  0.0  0.0  28.6  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 23:1  0.0  0.0  0.0  0.0  0.0  0.0  100.0  0.0  0.0  0.0  0.0 

TS%  45.9  ‐  56.2  100.0  ‐  100.0  ‐  ‐  100.0  ‐  ‐ 

TM%  42.8  ‐  28.6  ‐  ‐  ‐  100.0  ‐  ‐  ‐  ‐ 

TP%  11.4  ‐  15.2  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

TN  0.0±6.0  99.1±1.5  112.7±2.0  176.3±2.6  126.9±8.7  220.0±2.5  192.2±4.4  174.0±1.5  178.6±7.6  237.6±7.9  245.5±4.4 

TS%= Total Saturated%, TM%= Total Monounsaturated%, TP%=Total Polyunsaturated%, TN=Total Neutral lipids (measured in 
µg·mL-1) 
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Table A5: 14mM Glucose mixotrophic trial of non-axenic algal strains displaying percent relative fatty acids in terms of their carbon 
chain short form. Algal strains appear as their short form designation. Lipids are further broken down into saturated, monounsaturated 
and polyunsaturated percentages. 

Fatty 
Acid  Algal Strain 

D1N  S2N  S3N  S6H  S5N  B1N  C3N  E1H  S7H  M1H  S4N  C4C  C5C  S8C  C6C  E2C  S9C  B2H  C2H  E3N 

C11  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C13  0.0  0.0  0.0  0.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  9.2  0.0  0.0 

C 14  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C15  0.0  0.0  0.0  1.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  2.5  0.0  0.0  0.0 

C16  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  2.5  0.0  0.0  0.0 

C 17  51.3  0.0  93.2  58.8  85.6  59.3  100.0  47.9  0.0  100.0  0.0  45.3  9.6 
100.
0 

79.7 
100.
0 

44.4  80.0  0.0 
100.
0 

C18  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  40.6  0.0  0.0  0.0 

C 19   0.0  0.0  0.0  3.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 19:1 
(cis) 

33.2  0.0  0.0  34.0  14.4  35.9  0.0  47.5  0.0  0.0  0.0  43.0  0.0  0.0  20.3  0.0  10.0  10.8  0.0  0.0 

C19:1 
(trans) 

0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  90.4  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 19:2  15.5  0.0  6.8  2.9  0.0  4.8  0.0  4.6  0.0  0.0  0.0  11.7  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C21  0.0  0.0  0.0  0.1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C23  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  100.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 23:1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

TS%  51.3  ‐  93.2  63.1  85.6  59.3  100.0  47.9  ‐  100.0  100.0  45.3  9.6 
100.
0 

79.7 
100.
0 

90.0  89.2  ‐ 
100.
0 

TM%  33.2  ‐  ‐  34.0  14.4  35.9  ‐  47.5  ‐  ‐  ‐  43.0  90.4  ‐  20.3  ‐  10.0  10.8  ‐  ‐ 

TP%  15.5  ‐  6.8  2.9  ‐  4.8  ‐  4.6  ‐  ‐  ‐  11.7  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

TN 
117.3±
2.5 

238.2
±37.5 

136.6±
1.5 

167.2
±6.5 

124.6±
4.0 

129.7
±7.5 

163.8±
2.5 

162.1
±1.5 

183.7
±4.4 

165.5
±4.0 

143.4
±20.2 

117.8
±6.5 

229.7
±52.2 

92.8
±6.9 

123.5±
2.6 

48.6
±7.1 

48.6
±7.1 

115.0±
4.5 

0.0±
6.7 

91.7
±12.
4 

TS%= Total Saturated%, TM%= Total Monounsaturated%, TP%=Total Polyunsaturated%, TN=Total Neutral lipids (measured in 
µg·mL-1) 
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Table A6: 3mM mixotrophic trial of axenic algal strains displaying percent relative fatty acids in terms of their carbon chain short 
form. Algal strains appear as their short form designation. Lipids are further broken down into saturated, monounsaturated and 
polyunsaturated percentages. 

Fatty 
Acid  Algal Strain 

C1U*  S1B*  D1N*  S2N*  S3N*  S6H*  S5N*  B1N*  C3N*  E1H*  S7H* 

C 17  100.0  88.9  56.3 100.0 94.6 0.0 0.0 0.0 0.0 0.0 0.0

C 19:1 
(cis) 

0.0  11.1  22.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 19:2  0.0  0.0  17.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C21  0.0  0.0  0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0

C23  0.0  0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 23:1  0.0  0.0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

C 25  0.0  0.0  3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TS%  100.0  88.9  59.9 100.0 100.0 ‐ ‐ ‐ ‐ ‐ ‐

TM%  ‐  11.1  22.2 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

TP%  ‐  ‐  17.8 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

TN  48.6±20.8  51.4±2.3  116.7±3.4  178.6±4.6  134.3±3.0 213.2±4.9  187.1±4.1  179.7±3.4 167.8±6.0  241.0±2.6  237.0±6.7

TS%= Total Saturated%, TM%= Total Monounsaturated%, TP%=Total Polyunsaturated%, TN=Total Neutral lipids (measured in 
µg·mL-1) 
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Table A7: 3mM mixotrophic trial of non-axenic algal strains displaying percent relative fatty acids in terms of their carbon chain short 
form. Algal strains appear as their short form designation. Lipids are further broken down into saturated, monounsaturated and 
polyunsaturated percentages. 

Fatty 
Acid  Algal Strain 

D1N  S2N  S3N  S6H  S5N  B1N  C3N  E1H  S7H  M1H  S4N  C4C  C5C  S8C  C6C  E2C  S9C  B2H  C2H  E3N 

C 17  0.0  0.0  100.0  100.0  76.9  100.0  69.0  61.0  0.0  0.0  100.0  67.2 
100.
0 

100.
0 

94.6 
100.
0 

0.0 
100.

0 
64.1  79.1 

C 19:1 
(cis) 

0.0  0.0  0.0  0.0  23.1  0.0  31.0  33.3  0.0  0.0  0.0  23.6  0.0  0.0  0.0  0.0  0.0  0.0  35.9  0.0 

C 19:2  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  9.2  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C21  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  20.9 

C23  0.0  0.0  0.0  0.0  0.0  0.0  0.0  5.7  0.0  100.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

C 23:1  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  5.4  0.0  0.0  0.0  0.0  0.0 

C 25  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 

TS%  ‐  ‐  100.0  100.0  76.9  100.0  69.0  66.7  ‐  100.0  100.0  67.2 
100.
0 

100.
0 

94.6 
100.
0 

‐ 
100.

0 
64.1 

100.
0 

TM%  ‐  ‐  ‐  ‐  23.1  ‐  31.0  33.3  ‐  ‐  ‐  23.6  ‐  ‐  5.4  ‐  ‐  ‐  35.9  ‐ 

TP%  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  9.2  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

TN 
125.2±
7.8 

216.0±
2.0 

136.6±
6.5 

113.3±
6.9 

134.3±
6.4 

121.8±
2.6 

155.3±
4.0 

140.0±
0.6 

171.2±
3.4 

155.3±
3.2 

172.9±
2.6 

143.4±
4.9 

23.6
±58 

55.9
±6.5 

70.7
±8.4 

0.0±
18.2 

0.0±
18.2 

69.0
±7.7 

87.2
±10 

0.0±
5.0 

TS%= Total Saturated%, TM%= Total Monounsaturated%, TP%=Total Polyunsaturated%, TN=Total Neutral lipids (measured in 
µg·mL-1
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