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MODULATION OF CORTICOSPINAL EXCITABILITY DURING ARM CYCLING IN 
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Amita Raj 

Abstract  

Animal studies have shown that the basic pattern for locomotor activities are 

generated via neural networks found in the spinal cord, referred to as central 

pattern generators (CPGs) (Grillner, 1981). In humans, accumulating research 

evidence suggests that primates, including man, have a similar locomotor centre as 

animals that controlled by CPGs (Petersen et. al., 1998). It’s indicative that CPGs are 

sufficient to enable locomotion in quadrupeds; however a more extensive cortical 

input is involved in the production of locomotion and/or cycling in humans (Zehr et. 

al 2004). Advanced methods such as transcranial magnetic stimulation (TMS) and 

transmastoid electrical stimulation were implemented to examine supraspinal and 

spinal excitability, and bridge the gap between animal and human research. 

Therefore, this thesis set out to determine changes in corticospinal excitability in 

biceps brachii during different motor outputs, including those generated by spinal 

CPGs. 

The major findings from the present study suggest that corticospinal excitability is 

enhanced, in biceps brachii, during the initiation of the flexion phase of arm cycling 

when compared to an intensity matched contraction. The results also proposed that 

spinal mechanisms are the dominant factors which drive task- and phase-dependent 

modulation of corticospinal excitability during arm cycling.  
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Introduction  

Recent work in adult decerebrate cats have demonstrated that spinal motoneurone 

excitability is enhanced throughout rhythmic and alternating motor outputs 

generated by spinal circuitry, referred to as central pattern generators (CPGs) 

(Krawitz et al. 2001; Power et al. 2010). Whether similar changes in motoneurone 

excitability occur in humans during motor outputs driven in-part by spinal CPGs is 

not well-understood. While in humans it is generally accepted that spinal CPGs 

contribute to locomotion and cycling, it is also thought that these motor outputs rely 

more on input from the cortex than quadrupeds whereby spinally generated motor 

outputs are possible. The primary objective of this research project is to determine 

whether motoneurone excitability is enhanced throughout arm cycling, a motor 

output generated in part by a spinal CPG. Because CPG-mediated motor outputs in 

humans also rely on supraspinal input, we will also assess changes in cortical 

excitability. The brain is known to influence motor output through descending 

connections terminating in the spinal cord. The main descending pathway activated 

during voluntary movement is the corticospinal tract. The following sections  

discuss the role of the structures involved in the motor pathway involved in human 

movement. The sections also review changes in the electrical properties of spinal 

motoneurones during motor output in recent animal studies. This is followed by a 

discussion of changes in corticospinal excitability in humans during different motor 

outputs, including those generated by spinal CPGs. 

 

Neuroanatomy 

The primary motor cortex initiates voluntary movement through descending 

connections found in the spinal cord. The lateral corticospinal tract originates from 

the motor cortex and is the main pathway activated during movement. This section 

discusses the role of the main structures that enable movement in the human body.  

 

I. The Primary Motor Cortex 

The primary motor cortex (M1) lies in Brodmann area 4 and is located anterior to 

the central sulcus in the precentral gyrus. The primary motor cortex contains a 
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somatotopic representation of the different body parts called the motor homunculus 

(Latash, 2007). The body parts on the cortex are proportional not to their size, but 

rather to the complexity of the movements that they can perform (Snell, 2009). 

Hence, the areas for the hand and face are especially large compared with those for 

the rest of the body.  The main role of the primary motor cortex is to generate neural 

impulses that pass down to the spinal cord and control the execution of movement. 

The primary motor cortex contains large output cells (Betz cells) which sends an 

axon down the corticospinal tract to synapse onto the interneuron and 

motoneurone found in the spinal cord (Latash, 2007). 

 

II. The Corticospinal Tract 

The corticospinal tract contains about one million axons, half of which originate 

from the motor cortex (Latash, 2007). The corticospinal tract is made up of two 

separate tracts: the lateral corticospinal tract and the anterior corticospinal tract, 

which decussates (cross over to the other side of the body) at the level of the 

medulla (Snell, 2009). Since the cross over takes place at the brainstem, most of the 

axons from right hemisphere travel on the left side of spinal cord and innervate 

muscles of the left limb, while most axons that form a tract from the left hemisphere 

travel on the right side of the spinal cord and innervate muscles of right limb 

(Magill, 2007). The lateral corticospinal tract is the largest and the most central part 

of the corticospinal tract and is responsible for the control of the distal musculature. 

On the other hand, the anterior corticospinal tract is responsible for the control of 

the proximal musculature (Purves et. al. 2004). In the spinal cord, the upper 

motoneurone from motor cortex synapses onto the lower motoneurone in the 

anterior horn, which which innervates multiple skeletal muscles involved in 

movement (Snell, 2009). 

 

Neural Control of Locomotion: Animals to Humans 

Animal studies have found that spinal networks known as central pattern 

generators (CPGs) contribute to the control of locomotion (Sherrington, 1910). 

Based on these findings, researchers were able to translate animal-model of 

https://en.wikipedia.org/wiki/Cortical_homunculus
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locomotion to humans and found the involvement of subcortical circuits in 

locomotor-like activities, but with a greater input from cortex (Porter and Lemon, 

1993).  

 

I. Changes in spinal motoneurone properties during rhythmic motor output 

in the cat 

The electrical properties of spinal motoneurones are modulated quickly and 

reversibly when going from a resting state to motor output. These changes include a 

hyperpolarization of the voltage threshold (Vth) for action potential initiation and a 

reduction in the amplitude of the afterhyperpolarization (AHP). Vth is the 

membrane potential at which the inward sodium (Na+) current outweighs the 

outward potassium (K+) current an action potential is initiated (Gardiner, 2011). 

AHP is the prolonged hyperpolarization period of a neurone's action potential which 

is facilitated by calcium-activated potassium channel (Gardiner, 2011). 

 

Power, McCrea and Fedirchuk (2010) examined changes in motoneurone Vth, AHP 

amplitude, and the emergence of voltage-dependent depolarizations during 

ipsilateral scratch in both spinal intact and acutely spinalized decerebrate cats. 

Some significant results show a decrease or hyperpolarization of Vth and an 

increase in motoneurone excitability during fictive scratch following a spinal 

transection at C1, which disconnected all descending input from the brainstem. This 

supports the role of central pattern generators (CPG) found in rhythmic movements 

in many invertebrate and vertebrate species.  

 

AHP limits how fast a motoneurone can fire, and its removal from an action 

potential event gives the nerve impulses a higher firing rate by bringing the spikes 

closer together. The second state-dependant change shown in the study by Power 

and colleagues (2010) was a decrease in AHP amplitude, which enabled high firing 

rates during scratch or rhythmic activity in decerebrate cats.  
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II. Corticospinal excitability during rhythmic motor output 

The initiation of motor output is characterized by changes in the excitability of many 

structures within the central nervous system. In humans, accumulating research 

evidence suggests that primates, including man, have similar locomotor centre as 

animals that controlled by CPGs (Petersen et. al., 1998). It’s indicative that 

subcortical circuits are sufficient to enable locomotion in quadrupeds; however a 

more extensive cortical input is involved in the production of locomotion and/or 

cycling in humans (Zehr et. al., 2004).  

 

Evidence from transcranial magnetic stimulation (TMS) studies show some direct 

role from the motor cortex by examining the ankle muscles during treadmill 

walking, and thus suggesting that there is a relative involvement of supraspinal 

mechanisms to the motor pattern of human leg movement (Capaday et al. 1999; 

Christensen et al. 2001; Petersen et al. 1998). Subthreshold TMS during cycling and 

static contraction provided evidence that the motor cortex actively drives the 

motoneurones of the leg muscles examined during cycling (Sidhu et. al. 2011).  

Previous work by Peterson & colleagues (2001) has shown the activation of 

intracortical inhibitory circuits followed by EMG suppression via weak magnetic 

stimulation. This decreases excitability of cortical cells and reduces output from the 

motor cortex during walking. Subthreshold TMS during cycling evoked suppression 

of background EMG during cycling in the lower limb muscles and inhibition 

occurred 10 ms after facilitation which lasted for 7 ms (Sidhu et. al. 2011). On 

average, the amplitude of EMG suppression was greater during static contractions 

compared with that during cycling. If the surpraspinal centers were not involved in 

the production of muscle activity during cycling, then subthreshold TMS would have 

no effect on that background EMG. In addition to examining the role of the 

supraspinal centers in the production of lower limb cycling, Sidhu et. al. (2011) also 

examined spinal excitability. Responses from the motor cortex, motor evoked 

potentials (MEPs), and cervicomedullary junction, cervicomedullary motor evoked 

potentials (CMEPs), were modulated similarly during cycling. This suggests that the 

observed changes in the MEPs were  driven mainly by changes at the spinal level 
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(Sidhu et. al, 2011). However, there were subtle differences between normalized (to 

EMG) MEP vs. CMEP sizes prior to the EMG burst. Thus, it is possible that the 

excitability of cortical neurons increases briefly prior to start of the burst, but this 

was difficult to see with the methods and temporal resolution of the analysis used in 

the study (Sidhu et. al. 2011). There were also showed muscle dependent changes in 

the major thigh muscles (ie. rectus femoris, vastus lateralis, and biceps femoris). 

Cortical excitability increased prior to muscle activation in vastus lateralis, but not 

in rectus femoris and biceps femoris, which shows intermuscle differences in phase-

dependent changes in corticospinal excitability during locomotion (Sidhu et. al. 

2011).  

 

Given that the cortex has more monosynaptic connections with the motoneurones 

controlling upper limb musculature as compared to the lower limb, it may be that 

the corticospinal control of upper limb musculature is very different than those in 

the legs. Zehr et. al. (2004) examined the role of the motor cortex and reflex 

pathways in the generation of rhythmical motor output in the FCR during cycling 

and suggested that CPGs contribute to the control of rhythmic arm movement.  For 

example, Carroll et. al. (2006) found decreased corticospinal excitability (i.e. 

decrease MEP and H-reflex amplitude) during the flexion phase of rhythmic arm 

movement when compared to a tonic contraction. Carroll et. al. (2006) suggested 

that the decrease in MEPs during arm cycling was due to spinal mechanisms, and 

that alternative circuits (e.g., CPGs or spinal reflex pathways) provide a 

proportionally greater contribution to the control of rhythmic arm movements than 

of tonic contraction in humans.  They also found a facilitation of spinal reflexes, 

shown via subthreshold TMS, during tonic contraction but not during arm cycling 

which shows task-dependent changes of corticospinal excitability.   

 

III. Task- and state-dependent changes 

Motoneurones show little to no excitability during a resting state when compared to 

a state (ie. movement) in which motoneurones can be readily activated to initiate 

and maintain muscle contraction. In animals, Vth hyperpolarization and AHP are 
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state-dependent changes in motoneurone excitability in induced motor output (i.e. 

scratch and stance). In decerebrate cats, motoneurone excitability is enhanced 

during rhythmic motor outputs such as locomotion via the hyperpolarization of Vth 

and decrease in AHP, which are both important in motoneurone recruitment in 

locomotion (Dai et al. 2002; Krawitz et al. 2001, Power et. al. 2010). In neonatal rat, 

evidence show reduced motoneuronal AHP during locomotion, independent to 

supraspinal influences, suggesting the activation of spinal cord locomotor circuits 

(Schmidt, 1994). Thus, these observed state-dependent changes that alter 

motoneurone excitability during fictive scratch and locomotion are also proven to 

be task-dependent.  

 

Similar results have been discerned in humans, using non-invasive techniques such 

as magnetic stimulation of the motor cortex and electrical stimulation of the 

transmastoid process. Changes in corticospinal excitability, with contributions from 

the motor cortex, during upper and lower body cycling demonstrate a greater 

excitability during rhythmic movement of the major limbs tested (Carroll et. al. 

2006). In the study by Carroll et. al. (2006), there was a decrease in corticospinal 

excitability during the flexion phase of rhythmic arm movement, and a facilitation of 

spinal reflexes, shown via subthreshold TMS, during tonic contraction but not 

during arm cycling (Carroll et. al. 2006), which shows task-dependent changes of 

corticospinal excitability. Additionally, evidence from task- and phase-dependency 

of reflexes in arm muscles during cycling suggest that CPG networks contribute to 

the control of rhythmic arm movement, either by directly acting on the 

motoneuronal pools or indirectly via interneuronal reflex networks (Zehr et. al. 

2004). 

  

Studying Corticospinal Excitability: Translation from animal to human 

research 

Animal studies were originally done to examine basic alternating extensor-flexor 

rhythm underlying locomotion that is generated by a local network found in the 

spinal cord, referred to as central pattern generators (CPGs) (Grillner, 1981). 
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However, little was known about the central control of human locomotion, but 

accumulating evidence suggests that primates, including man, have similar 

locomotor centre that are a lot more difficult to activate pharmacologically and 

electrically (Petersen, Christensen and Nielsen, 1998). Advanced methods such as 

transcranial magnetic stimulation (TMS) and electrical stimulation at the 

cervicomedullary junction were implemented to evaluate corticospinal excitability, 

and build a bridge between animal and human research. 

 

I. Transcranial Magnetic Stimulation 

In 1985, Anthony Barker and colleagues successfully completed a transcranial 

magnetic stimulation (TMS) study, a non-invasive method that activates the human 

motor cortex through the skull (Barker, Jalinous, and Freeston, 1985). The magnetic 

stimulation of the motor area occurs by a rapid discharge of current elicited through 

a coil placed over the scalp, which generates a magnetic field oriented perpendicular 

to the coil (Rothwell, Thompson, Day, Boyd and Marsden, 1991). The rapidly 

changing magnetic field then induces stimulation of the interneurons, neural tissue 

in the brain, that synapse onto the neurons of the motor cortex. The magnetic coil 

then causes depolarization of the neurons to activate the descending pathway 

involved in motor output of the specific muscle being stimulated.  

 

There are different types of magnetic coils that produce different magnetic field 

patterns. A round coil is the original TMS coil; a figure-eight coil, also known as a 

butterfly coil, results in a focal pattern of activation; a double-cone coil conforms to 

shape of head which is useful for deeper stimulation; and a four-leaf coil is used for 

focal stimulation of peripheral nerves. During a TMS study, a figure-eight coil is 

known to be an ideal one as it activates more superficial muscles. This coil consists 

of two separate round coils placed side-by-side with the currents being discharged 

in opposite directions. The stimulated electric fields add up so the maximal current 

are at the junction between the two coils (Centre for Cognitive Neuroimaging, 

2012). However, the study in this thesis used a round coil. 
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TMS of the motor cortex induces D-waves (direct) or I-waves (indirect). D-waves 

represent the direct stimulation of the corticospinal axons at either the initial 

segment of the neuron or at the proximal internodes in the subcortical white matter. 

Alternatively, I-waves represent the trans-synaptic activation of corticospinal 

neurons, following D-waves at intervals of approximately 1.5ms, labeled as I1, I2, 

and I3 waves, which is in order of their latency (Rothwell, 1997). Patton and 

Amassian (1954) suggested that I-waves reflect repetitive firing of pyramidal tract 

neurones due to excitatory postsynaptic potentials found in a reverberating 

neuronal circuit in the motor cortex. Furthermore, Philips (1987) added that the 

effectiveness of I-waves is synchronized by the tendency of pyramidal neurones to 

fire repetitively at high frequency during sustained depolarizing inputs. Latencies of 

I-waves are longer than D-waves and are thus thought to appear via trans-synaptic 

activation of pyramidal tract neurons within the motor cortex. Rothwell (1997) 

stated that I-waves are more commonly evoke during TMS, whereas D-waves are 

more readily activated by transcranial electrical stimulation, which involves the 

direct activation of corticospinal fibers.  

 

Marsden, Merton & Morton (1983) first demonstrated that electrical stimulation of 

the motor cortex in man produces a muscle twitch followed by a silence of EMG 

activity. Cortical silent period (SP) corresponds to the suppression of muscle activity 

for a short period after a muscle response to TMS. Other studies using transcranial 

electrical and magnetic stimulation in hand muscles to examine the physiological 

mechanisms associated with silent period have demonstrated that the silent period 

is comprised of both a cortical and spinal component.  The first part of the silent 

period (50-60 ms) is due to descending inhibitory influences, whereas inhibitory 

mechanisms in the motor cortex contributes to most of the suppression in the 

ongoing voluntary EMG activity (Rothwell, 1997).   

 

The homunculus has an overrepresentation of the upper limb and hand region of 

the body, and is therefore often used in TMS experiments. The descending lateral 

corticospinal tract is a collection of axons that travel between the cerebral cortex of 
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the brain and the spinal cord. When TMS evokes the area of the motor cortex that 

controls the muscle studied, it sends a stimulus down the motor pathway, activating 

the corticospinal tract. Following this neural activity, an action potential is 

discharged which produces a motor evoked potential (MEP) in the muscle, which is 

the electrical activity of the muscle generated by the nervous system following a 

TMS.  

 

The MEP can be recorded using electromyography (EMG) which helps measure the 

peak-to-peak amplitude of the response at the optimal site for the muscle, and thus 

provides an indication of cortical excitability. If the peak-to-peak amplitude has 

decreased, we can say the excitability anywhere in the pathway (brain, spinal or 

muscle) reduced. If MEP amplitude increased, the excitability anywhere in the 

pathway from the cortex (cortical, spinal or muscle) increased. 

 

II. Transmastoid Electrical Stimulation 

In 1980, Merton and Morton developed the first noninvasive technique to activate 

the motor cortex via a transcranial high-voltage electrical stimulus, and thus 

enabling researchers to examine the role of significant motor pathways. 

Additionally, Ugawa et. al. 1991 established that motor responses could be induced 

in muscles by passing an electrical pulse either across the spinal cord between 

electrodes on the mastoid process, or along the spinal cord between electrodes in 

the midline over the skull and upper cervical vertebrae. Stimulating the 

cervicomedullary junction evokes large, short latency motor responses, because the 

axons at the level of the pyramidal decussation are more susceptible to stimulation 

(Taylor and Gandevia, 2004).  The review by Taylor and Gandevia in 2004, studied 

CMEPs for the following reasons: 

1) To provide an intermediate site of stimulation, 

2) To examine directly the behavior of the corticospinal pathway and the 

motoneurone pool,  

3) To determine whether changes in the cortically evoked motor evoked potential 

(MEP) are cortical or spinal in origin. 
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Stimulation at the cervicomedullary junction elicits a single volley in the descending 

axons which activates motoneurones of the chosen muscle synaptically and 

produces a short-latency excitatory response (Taylor, 2006). In order to determine 

which descending motor tracts were activated by subcortical stimulation, Ugawa et. 

al. (1991) conducted a series of collision experiments. The responses from right 

hand muscle (first dorsal interosseous) were recorded after electrical stimulation 

was elicited at the brainstem as well as the left motor cortex, with both shocks given 

simultaneously during a voluntary contraction of the muscle. The cortical response 

was seen to be suppressed due to the collision of the descending cortical volley with 

an antridromic volley from the stimulation at the brainstem. The researchers used 

small transcranial electrical stimulus which mainly evokes a single descending 

volley, therefore the collision of the impulses indicates that the responses to both 

these stimuli travel in the same axons (Taylor, Petersen, Butler and Gandevia, 2002). 

A study done in 1991 by Thompson, Day and Crockard, deduce that the first 

descending volley is recorded at latencies about 1.9 to 2.1 milliseconds at the 

pyramidal decussation which lies at the cervicomedullary junction. In the collision 

experiment, stimulation at the motor cortex produced descending volleys in the 

pyramidal tract that reached the brainstem level after 1.8 milliseconds; with the 

brainstem shock given 0.2 milliseconds after the first descending volley passed the 

site of stimulation. As the cervicomedullary stimulation and transcranial electrical 

stimulation were delivered at this interstimulus interval, the antidromic volley 

collided with the cortical stimulation and occluded the response completely (Taylor, 

2006). When the cortical shock was given 3 milliseconds before the brainstem, the 

brainstem stimulus would have occurred 1.2 milliseconds after transmission of the 

cortical volley. The absolute refractory period of the pyramidal tract axons would be 

over, and the brainstem stimulus would evoke a second descending volley. The EMG 

response was greatly facilitated, probably by temporal summation of the two 

synaptic inputs (one volley from the cortical stimulus and the other from the 

brainstem) at the level of the spinal motoneurones (Ugawa, et. al, 1991). Thus, 

proving that electrical stimulation at the cervicomedullary junction activates the 

corticospinal tract. 
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Furthermore, Taylor (2006) highlighted that in biceps, a single motor unit response 

show narrow peaks which are similar in width to those elicited by stimulation of Ia 

afferent and are consistent with monosynaptic activation. In 2002, Petersen and 

colleagues tested the theory of monosynaptic response to the stimulation of the 

corticospinal tract of the human biceps by looking at latency changes of CMEP 

between rest and contraction. During a contraction, the conduction velocity of 

descending axons increase which would decrease the latency, activating the 

motoneurones earlier than those at rest. However, Petersen et. al. (2002), found 

minimal changes in latency between rest and contraction CMEP which suggested 

that only one synapse in involved in the fastest pathway from the site of stimulation 

to the motoneurone. As CMEPs primarily produce a monosynaptic response to the 

stimulation of corticospinal axons, it allowed researchers to examine motoneurones 

during and after tasks that involve strong voluntary contractions. The discovery of 

CMEPs can enable researchers in the motor control field to study brief or long-

lasting changes in motoneurone excitability, and help identify any changes taking 

place in the motor pathway.  

 

CMEPs can be recorded using electromyography (EMG) which helps to measure the 

peak-to-peak amplitude of the response at the optimal site for the muscle, and thus 

provides an indication of spinal motoneurone excitability. A decrease in CMEP 

amplitude sets a less excitable spinal or muscle state, whereas an increase in CMEP 

amplitude shows the excitability anywhere in the pathway from the cortex to the 

muscle increased.  

 

III. Nerve stimulation  

M-wave is a muscle or motor response, which indicates the strength of peripheral 

excitability, a measure from nerve to muscle. It represents the electrical event in 

muscle fibers which is from the neuromuscular junction to the action potential 

propagation along sarcolemma and t-tubules. When the corticospinal tract is 

stimulated at the pyramidal junction, it elicits a motor evoked potential response 
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from the muscle being studied. However, since the stimulus travels down the 

descending tract to the peripheral nerves of the muscle, the excitability seen could 

either be at the spinal or muscle level. Taking muscle or peripheral excitability into 

account, CMEPs are made relative to muscle response to see if the change in 

excitability was in spinal or muscle. 

 

IV. Electromyography (EMG) 

EMG an experimental technique concerned with the development, recording and 

analysis of myoelectric signals that are formed by physiological variations in the 

state of muscle fiber membranes (Konrad, 2005). The basic signal is a measure of 

changes in electrical potential across the muscle fiber. A resting membrane potential 

is ≈ -90mv and with sufficient stimulation, the potential inside cell rises to ≈ 30-

40mv. The change in action potentials from multiple fibers in a motor unit are 

simultaneously recorded using EMG. The small biological electrical activity from the 

muscle goes to an amplifier which amplifies that signal which then goes through an 

A-to-D board that translates amplitude and polarity of a sampled signal into a digital 

format, ie. turns biological signal into digital so the computer can read it (Konrad, 

2005). 

 

Significance of the study 

The results of this study will provide evidence as to the role of supraspinal and 

spinal mechanisms in generating rhythmic upper-body motor output in humans. It 

is essential to understand the mechanisms that help alter or produce motor output 

and further investigate the regulation of spinal CPGs during various movements. 

Ultimately, the understanding and knowledge built on spinal networks and 

movement will enable researchers to develop rehabilitation interventions for spinal 

cord injuries.  
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Abstract 
 
The purpose of the current study was to examine corticospinal contributions to 

upper-limb muscle activity during arm cycling in humans. Motor evoked potentials 

(MEPs) in response to transcranial magnetic stimulation and cervicomedullary 

evoked potential (CMEPs) in response to transmastoid electrical stimulation were 

used to examine task- and phase-dependent modulation of corticospinal excitability 

between arm cycling and tonic contraction. Responses from the biceps brachii 

muscle were compared between arm cycling and tonic contraction at three different 

positions (i.e. 3, 6 and 12 o’clock, relative to a clock face), while participants 

generated equal amounts of muscle activity. Average MEP and CMEP responses for 

both tasks were made relative to M-wave. When compared to an intensity matched 

tonic contraction, both MEPs and CMEPs were significantly larger during arm 

cycling at the 3 o’clock position (MEPs: P = 0.033; CMEPs: P = 0.007) which 

corresponds to the end of the extension and beginning of the flexion phase of arm 

cycling. MEPs and CMEPs were also similarly modulated at all positions while arm 

cycling. The data indicate that transmission through the corticospinal pathway is 

enhanced during the initiation of the flexion phase of arm cycling due in part to 

enhanced spinal excitability. Because MEPs and CMEPs were modulated similarly 

throughout arm cycling, it appears that spinal mechanisms are the dominant factors 

driving the phase-dependent modulation of corticospinal excitability. 
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Introduction  

Animal studies have demonstrated that the basic pattern for locomotor activities is 

generated via neural networks found in the spinal cord, referred to as central 

pattern generators (CPGs) (Grillner, 1981). In humans, indirect evidence suggests 

that CPGs play a role in locomotor-like activities (locomotion or cycling) (Zehr et. al. 

2004). Although decerebrate preparations in cats indicate that subcortical circuits 

are sufficient to enable locomotion in quadrupeds, a more extensive cortical input is 

involved in the production of locomotion (Porter and Lemon, 1993, as discussed in 

Petersen et. al. 2003) and/or cycling in humans (Zehr et. al 2004).  

 

Evidence from transcranial magnetic stimulation (TMS) studies show some direct 

role for the motor cortex in the generation of rhythmic motor output like cycling 

(Sidhu et. al. 2011). For example, Sidhu et. al. (2011) demonstrated that 

subthreshold TMS during cycling evoked suppression of background EMG in the 

lower limb muscles. This means that subthreshold TMS activates an intracortical 

inhibitory circuit which projects to and inhibits the motor cortical neurones, 

resulting in the suppression of the EMG signal. If the surpraspinal centers were not 

involved in the production of muscle activity during cycling, then subthreshold TMS 

would have no effect on that background EMG. In addition to examining the role of 

the supraspinal centers in the production of lower limb cycling, Sidhu et. al. (2011) 

also examined spinal excitability. They used transmastoid stimulation to examine 

phase and muscle dependent changes of corticospinal excitability in the major thigh 

muscles (ie. rectus femoris, vastus lateralis, and biceps femoris). Responses from the 

motor cortex (MEPs) and cervicomedullary junction (CMEPs), both absolute and 

normalized to background EMG, were modulated similarly across all phases of 

cycling, with MEPs mainly driven by changes at the spinal level. In contrast, there 

was an increase in cortical excitability prior to muscle activation in vastus lateralis, 

but not in rectus femoris and biceps femoris, which shows intermuscle differences 

in phase-dependent changes in corticospinal excitability during locomotion (Sidhu 

et. al. 2011). Thus, supraspinal centers are directly involved in the generation of 
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cycling and that spinal factors dominate phase-dependant modulation of 

corticospinal excitability.  

 

Given that the cortex has more monosynaptic connections with the motoneurones 

controlling upper limb musculature as compared to the lower limb and that 

corticospinal excitability of lower limb muscles appears to be muscle dependent, it 

may be that the corticospinal control of upper limb musculature is very different 

than those in the legs. Zehr and colleagues (2004), have studied extensively the role 

of the motor cortex and reflex pathways in the generation of rhythmical motor 

output in the FCR during cycling. They suggest that CPG networks contribute to the 

control of rhythmic arm movement, either by directly acting on the motoneuronal 

pools or indirectly via interneuronal reflex networks (Zehr et. al. 2004). For 

example, corticospinal excitability is decreased during arm cycling in the FCR 

muscle when compared to a tonic contraction, suggesting that reflex and CPG 

networks contribute to the control of rhythmic arm movement (Carroll et. al. 2006). 

There was a decrease in corticospinal excitability (i.e. decrease MEP amplitude) 

during the flexion phase of rhythmic arm movement, and a facilitation of spinal 

reflexes, shown via subthreshold TMS, during tonic contraction but not during arm 

cycling (Carroll et. al. 2006), which shows task-dependent changes of corticospinal 

excitability.   

  

Unlike the study by Sidhu et al. (2011), a direct measure of motoneurone excitability 

was not made using transmastoid stimulation. Instead, Carroll et. al. (2006) 

indirectly measured motoneurone excitability by examining the H-reflex pathway. 

Changes in the H-reflex pathway (i.e. H-reflex amplitude) however can be due to 

changes in either motoneuronal and/or pre-motoneuronal excitability. This is an 

important distinction given that recent work in the adult decerebrate cat indicates 

the spinal motoneurone excitability is altered during rhythmic motor output, void of 

any descending influence (Power et al. 2010). 
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The purpose of the current study was to examine corticospinal contributions to 

bicep brachii activity during arm cycling in humans, using transmastoid electrical 

stimulation and transcranial magnetic stimulation.   

 

Methods 

Participants 

Twelve healthy men; aged 20 – 23 years without any known neurological deficits, 

participated in the experiment, which consisted of two conditions – arm cycling and 

tonic contraction. All participants signed a consent form and completed TMS safety 

checklist prior to commencing the experiment. Participants with any known 

contraindications to magnetic stimulation were excluded from the study. The data 

collected was confidential and stored via a coded system, making the data 

anonymous.  

 

Experimental Set-up 

Both conditions, cycling and tonic contraction were performed on the same arm 

cycle ergometer (Monark Rehab Trainer 881 E) as shown in fig. 1. The participants 

were instructed to sit upright with their shoulders at the same level as the axis of 

rotation of the crank and slightly away from the ergometer with their hands 

gripping on the handles. A brace was worn to restrict movement at the right wrist 

joint. The position of the right arm was specified relative to a clock face (12, 3 and 6 

o’clock). For example, in fig. 1, the right arm is at 12 o’clock. Stimulation of the 

motor cortex and corticospinal tract were elicited at each of the three positions 

during cycling and at an intensity matched to that of a tonic contraction. 
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Transmastoid 
electrical 

stimulation 
(CMEP) 

Electrical 
stimulation at 

Erb’s point 
(Mwave) 

 

 

General Procedures 

Max Muscle Response  

Mmax was determined at rest by increasing the stimulation intensity gradually until 

the size of M-wave failed to increase with further increases in intensity. The level of 

intensity was then increased by 20% and 5 M-max were elicited at this 

supramaximal intensity. Peak-to-peak amplitude was measured from the average of 

5 frames. MEPs and CMEPs were made equal to 5 to 10% of M-max to standardize 

the data for different individuals and to target the same pool of motoneurones.  

Max EMG Cycle 

Participants wore a wrist support on the right arm and cycled at 60RPM for 60 

seconds (3 frames – 20 seconds each frame) with the erogometer set at 75W. Peak-

Transcranial 
Magnetic 

Stimulation 
(MEP) 

Fig. 1: Schematic illustration of the experimental setup 
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to-peak amplitude of the 6 bursts (between 6 and 12 seconds) from the second 

frame was measured. A visible horizontal line was set equal to 20% of the EMG cycle 

amplitude to normalize MEP and CMEP sizes to background EMG, as variations in 

EMG activity across the rhythmic activity could account for any phase-dependant 

changes. The participants then performed an isometric contraction against a force 

transducer while having their transmastoid process and motor cortex stimulated. 

Once MEPs and CMEPs were equal to either 5 or 10% of M-max, we used that 

stimulus intensity for the cycling and tonic experiments.  

Arm Cycling 

Participants cycled at 60RPM with the ergometer set at 25W. TMS and transmastoid 

electrical stimulation were delivered 10 times and nerve stimulation was delivered 

5 times, pseudo-randomly at each 3 position (i.e. 3, 6 and 12 o’clock). 10 frames 

with MEPs and CMEPs, and 5 frames with M-wave, were tagged and averaged to 

measure peak-to-peak amplitude and the mean background EMG (50 ms prior to 

stimulation) for the tonic experiment. 

Tonic Contraction 

A visible horizontal line, equal to the mean EMG of cycling for each position (i.e. 3, 6 

and 12 o’clock), was set on the screen. Participants contracted at this line, with their 

arms at each position to match the intensity produced during cycling for the biceps 

muscle. Same stimulus paradigms and intensities from the cycling experiment were 

used. All stimulated frames for MEP, CMEP and M-wave were tagged and averaged 

to measure the peak-to-peak amplitude.   

 

Electromyography (EMG) 

EMG signals were recorded from the right biceps brachii using pairs of Ag-AgCl 

surface electrodes (MeditraceTM 130 ECG conductive adhesive electrodes) placed 2 

cm apart (centre to centre). Ground electrodes were placed on medial and lateral 

epicondyles. Thorough skin preparation for all recording electrodes included 

removal of dead epithelial cells with abrasive (sand) paper around the designated 

areas followed by cleansing with an isopropyl alcohol swab. An inter-electrode 

impedance of < 5 kOhms was obtained prior to recording to ensure an adequate 
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signal-to-noise ratio. Data was collected on-line at 2 KHz for off-line analysis using 

the CED 1401 interface and the Signal 4 (Cambridge Electronic Design Ltd., 

Cambridge, UK) software program. Signals were amplified (CED 1902) and filtered 

using a 3-pole Butterworth with cutoff frequencies of 10-1000 Hz. 

 

Transcranial Magnetic Stimulation (TMS) 

Stimulation of the left motor cortex was applied at vertex using a Magstim 200 

stimulator (Magstim, Dyfed, UK), equipped with a round coil. To locate vertex, the 

distances from nasion to inion, and from tragus to tragus were measured and marks 

were placed halfway directly over the scalp for both measurements. The 

intersection for both marks was defined as vertex. The coil was held parallel to the 

floor for the remainder of the study. Stimulation intensity varied subject to subject 

and ranged from 20 to 45% MSO. The same stimulation intensity was used for both 

conditions in each subject.  

 

Transmastoid electrical stimulation  

The cathode surface electrode was placed on the left side, just below the mastoid 

process in the “groove”, while the anode was placed on the right side. The stimulator 

(model DS7AH, Digitimer Ltd, Welwyn Garden City, UK) pulse duration was set to 

100 µs and stimulation intensity ranged from 130 to 220 mA. 

 

Nerve Stimulation 

The cathode surface electrode was placed on Erb’s point, while the anode was 

placed on the acromion process, with the stimulator (model DS7AH, Digitimer Ltd, 

Welwyn Garden City, UK) pulse duration set at 200 µs. Stimulation intensity ranged 

from 120 to 300 mA. 

 

Measurements  

Average peak-to-peak amplitude was calculated for MEPs, CMEPs and Mwave to 

study changes in supraspinal, spinal and peripheral excitability for both tasks at the 

three phases (12, 3 and 6 o’clock). The average rectified EMG, 50 ms prior to the 
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stimulus, was calculated to measure the background EMG to determine the muscle 

contraction for arm cycling and tonic contraction at all angles. Data was analyzed 

using Signal 4 software (CED, UK).  

 

Statistical analysis 

A two-way repeated-measures ANOVA using IBM SPSS Statistics Version 19 was 

used to determine whether statistical significant differences occurred in MEP, 

CMEP, M-wave, and background EMG amplitudes between cycling and tonic 

contraction conditions at each arm position (i.e., 3, 6, and 12 o’clock). Separate 

paired t-tests were utilized to determine changes in excitability for each arm 

position between arm cycling and intensity matched tonic contraction. Statistical 

significance was set at a p-value at p < 0.05. 

 

Results 

Background EMG 

Background EMG for bicep brachii at 3 arm positions (i.e. 3, 6 and 12 o’clock) was 

measured 50 ms prior to stimulus artifact (i.e. before the stimulus was delivered) 

for arm cycling and tonic contraction to examine the intensity of the muscle 

contraction when MEPs and CMEPs were elicited. Differences in background EMG 

would indicate that the amount of effort to produce a given contraction was more or 

less than the other condition. It was important to ensure that the intensity of the 

muscle contractions during both conditions were similar because MEPs and CMEPs 

are drastically altered based on background activity of the neuromuscular system 

(i.e. small increases in background EMG would substantially increase the amplitude 

of evoked potentials).  

 

Average MEP and CMEP responses of 12 participants for both rhythmic and tonic 

contraction conditions were made relative to M-wave to control for individual 

differences (absolute MEP peak-to-peak amplitude over absolute M-wave peak-to-

peak amplitude).  
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Fig. 2: Individual MEP and CMEP responses during cycling and tonic. The left column presents 
MEP responses, and the right column presents CMEP responses. The dashed trace corresponds to 
rhythmic movement, and the solid trace corresponds to intensity matched tonic contraction. Fig. 6 
displays larger MEP and CMEP responses for arm cycling in comparison to tonic contraction at 3 and 
6 o’clock. However, the intensity of the contraction is larger during cycling at the 6 o’clock at the 
cortical level, as shown in fig. 3. In contrast, when comparing CMEPs during arm cycling and tonic 
contraction, the values were statistically insignificant at 6 o’clock (p = 0.196), as shown in fig. 6. MEPs 
and CMEPs were statistically significant at the 3 o’clock position (P = 0.007*) which ascribes to a 
larger response during cycling. Lastly, the size of MEP and CMEP responses at the 12 o’clock position 
was similar and statistically insignificant at both cortical and spinal levels (p = 0.688; p = 0.223).  
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Fig. 3: Group supraspinal background EMG. For MEPs, the intensity of the 
muscle contraction were the same during cycling and tonic at the 3 and 12 o’clock 
position (p=0.449; p=0.102, respectively), but was larger for cycling at the 6 o’clock 
position (p=0.046*). Thus, we were unable to compare supraspinal excitability for 
cycling and tonic contraction at the 6 o’clock position, as shown in fig. 3. Asterisks 
denote statistically significant differences between arm cycling and tonic 
contraction conditions. 

 

Fig. 4: Group spinal background EMG. For CMEPs, the intensity of the muscle 
contraction were the same during cycling and tonic at 3, 6 and 12 o’clock (p= 
0.132; p= 0.775; p= 0.603, respectively), and were therefore able to compare spinal 
excitability for the two tasks at each arm position, as shown in fig. 4. 
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Task-dependent Changes in Corticospinal Excitability 
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Fig. 5: Group task-dependant supraspinal changes. MEPs were larger at 3 
o’clock during arm cycling when compared to tonic contraction (p = 0.001*). At 6 
o’clock, MEPs were larger during cycling and were also statistically significance (p 
= 0.002*) but the background EMG was larger for cycling at this phase, which may 
explain the large response for the cycling condition. The size of MEPs was similar 
between arm cycling and tonic contraction at the 12 o’clock position (p = 0.688). 
Asterisks denote statistically significant differences between arm cycling and 
tonic contraction conditions. 
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Fig. 6: Group task-dependant spinal changes. CMEPs were larger during arm 
cycling when compared to tonic at 3 o’clock and were statistically significant (p = 
0.007*) at this phase. The size of CMEPs was similar between arm cycling and tonic 
contraction at the 6 and 12 o’clock position (p = 0.196; p = 0.223, respectively). 
Asterisks denote statistically significant differences between arm cycling and tonic 
contraction conditions. 
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Phase-dependent 
 

 
 
Fig. 7: Individual MEP and CMEP responses during cycling. The left column presents MEP 
responses, and the right column presents CMEP responses. Both figures demonstrate similar 
modulation of supraspinal and spinal excitability across all phases (i.e. 3, 6 and 12 o’ clock) during 
cycling. When looking at the 3 phases, at 3 o’clock, the size of MEPs and CMEPs are at a medium size, 
largest at the 6 o’clock position and smallest at the 12 o’clock position. 
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Discussion 

This study used transmastoid electrical stimulation and transcranial magnetic 

stimulation, to examine corticospinal contributions to the bicep brachii muscle 

during arm cycling in humans. Responses elicited by transcranial magnetic 

stimulation (TMS) could be due to for changes in  cortical or spinal excitability as it 

is a measure of the corticospinal tract as a whole. An increase in MEP amplitude 

during cycling could therefore be due to changes at the supraspinal or spinal level. 

Because CMEP amplitude increased along with MEP amplitude, the results suggest 

that an enhanced spinal excitability contributed to the increase in MEP amplitude. 

Our findings suggest that spinal mechanisms are the dominant factors driving task- 

and phase-dependant modulation of corticospinal excitability during arm cycling. 

 

Supraspinal Excitability is Enhanced During Arm Cycling 

When compared to an intensity matched tonic contraction, motor evoked potentials 

were significantly larger during arm cycling at the 3 o’clock position (MEPs: p = 

0.033) which corresponds to the end of the extension and beginning of the flexion 

phase of arm cycling. Previous work by Carroll et. al. (2006), found a decrease in 

MEPs (i.e. supraspinal excitability) at 6 o’clock during arm cycling in the FCR muscle 

when compared to a tonic contraction. Using a similar experimental paradigm, the 

present study demonstrated an increase in MEP amplitude of the biceps brachii at 

the 3 o’clock position during arm cycling as compared to an intensity-matched tonic 

contraction. One of the differences between the study by Carroll et. al (2006) and 

the present study was the muscle investigated. Carroll et. al. (2006) examined the 

FCR muscle while the current study examined the biceps brachii. Biceps brachii flex 

the arm, whereas the FCR flex the wrist. Thus, it may be that corticospinal 

excitability is muscle-dependant as in the lower limb. For example, Sidhu et. al. 

(2011) demonstrated an increase in cortical excitability prior to muscle activation in 

vastus lateralis, but not in rectus femoris or biceps femoris.  
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Spinal Motoneurone Excitability is Enhanced During Arm Cycling 

Carroll et. al. (2006) demonstrated a decrease in H-reflex amplitude at the 6 o’clock 

position in the FCR during arm cycling when compared to a tonic contraction. In the 

present study, we demonstrated an increase in CMEP amplitude at the 3 o’clock 

position in the bicep brachii during arm cycling when compared to a tonic 

contraction.  

 

H-reflexes measures the efficacy of synaptic transmission as the stimulus travels in 

afferent (Ia sensory) fibers through the motoneurone pool of the corresponding 

muscle to the efferent (motor) fibers (Brooke et. al., 1997).  Thus, a reduction in H-

reflex amplitude could be due to a decrease in afferent input to the motoneurone 

pool via presynaptic inhibition or a decrease in motoneurone excitability. In 

contrast, we used electrical transmastoid stimulation, which activates the 

descending corticospinal tract which has been shown to have a large monosynaptic 

connection to the bicep motoneurone pool. Corticospinal axons are also free from 

presynaptic inhibition. Thus, transmatoid stimulation has been suggested to be a 

method suitable for directly assessing motoneurone excitability (Taylor and 

Gandevia, 2004). Thus, barring in the intermuscle differences in spinal excitability 

(i.e. FCR vs. biceps brachii), the decrease in H-reflex amplitude demonstrated by 

Carroll et. al. (2006) may have been mainly due to reduced afferent input to the 

motoneurone pool. The present work suggests that the spinal motoneurone 

excitability is increased during cycling. Transmission in the afferent pathway was 

not examined. Enhanced motoneurone excitability during cycling is similar to the 

results demonstrated fictive scratch in the adult decerebrate cat (Power et al. 

2010).They demonstrated  a hyperpolarization of the voltage-threshold for action 

potential initiation and a decrease in afterhyperpolarization amplitude (i.e. 

enhanced of motoneurone excitability) (Power et. al. 2011). These changes in 

motoneurone properties were the opposite that occurred in the same motoneurone 

during stance, a tonic contraction. If the same changes that occur in spinal 

motoneurones during scratch in cat occur during arm cycling in humans, it could 

account for the increased CMEP amplitude during cycling. For example, a lowering 



 
35 

of the voltage-threshold in the motoneurone pool would allow more motoneurones 

to be activated by the transmastoid stimulation, thus increasing CMEP amplitude.  

 

Although the findings from the current study were different from the study done by 

Carroll et. al (2006), both studies determined that the change in MEPs during arm 

cycling was driven mainly by changes at the spinal level. Consequently, the data 

from the current study indicate that spinal mechanisms are the dominant factors 

driving task-dependent modulation of corticospinal excitability during arm cycling 

which is consistent with the suggestion that spinal circuits contribute to the control 

of rhythmic arm cycling. 

 

Phase-Dependent Modulation of Corticospinal Excitability 

When comparing the 3 phases during arm cycling, at 3 o’clock, the size of MEPs and 

CMEPs are at a medium size, largest at the 6 o’clock position and smallest at the 12 

o’clock position (fig. 7). This indicates that both supraspinal and spinal excitability 

were modulated similarly across phases during cycling. This is in agreement with 

the findings of Sidhu et. al. (2011). They suggested that the modulation of 

corticospinal excitability during lower limb cycling in humans was generated in 

large part to the changes in the excitability in the spinal factors. Sidhu et. al. (2011) 

found that the MEP and CMEP responses (absolute and normalized to background 

EMG) were modulated similarly in the leg muscles. Increased MEP amplitude could 

be at the supraspinal or spinal level. Because CMEP amplitude is increased along 

with MEP amplitude, this suggests that an enhanced spinal excitability contributed 

to an increase in MEP amplitude. 

 

Conclusion 

The present study used transmastoid electrical stimulation, a direct method to 

evaluate spinal motoneurone excitability, and transcranial magnetic stimulation to 

examine corticospinal contributions to bicep brachii activity during arm cycling. Our 

data indicate that corticospinal excitability is enhanced, in biceps brachii, during the 

initiation of the flexion phase of arm cycling when compared to an intensity 
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matched tonic contraction. The results also demonstrate similar modulation of 

MEPs and CMEPs throughout arm cycling across all phases (i.e. 3, 6 and 12 o’clock).  

The results from this study suggest that spinal mechanisms are the dominant factors 

driving task- and phase-dependent modulation of corticospinal excitability during 

arm cycling which is consistent with the proposition that spinal circuits contribute 

to the control of rhythmic arm cycling.  
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Appendix 1: Magnetic Stimulation safety checklist 

Please answer the following questions by checking off either YES or NO 
 

Questions Yes No 

1) Do you suffer from epilepsy, or have you ever had an epileptic seizure?   

2) Does anyone in your family suffer from epilepsy   

3) Do you have any metal implant(s) in any part of your body or head? 
(Excluding tooth fillings) 

  

4) Do you have an implanted medication pump?   

5) Do you wear a pacemaker?   

6) Do you suffer any form of heart disease?   

7) Do you suffer from reoccurring headaches?   

8) Have you ever had a skull fracture or serious head injury?   

9) Have you ever had any head surgery   

10) Are you pregnant?   

11) Do you take any medication? 
*Note if taking medication, check list for contraindicated medication on next 
page. 

  

12) Do you suffer from any known neurological or medical conditions?   

 
Comments: ________________________________________________________________________________ 
 
________________________________________________________________________________ 
 
 
 
Name:  ______________________________ 
 
Signature:  ____________________________ 
 
Date:  _____________________________ 
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Medications contraindicated with magnetic stimulation 
1) Tricyclic antidepressants 

Name Brand 
Amitriptyline (& 

butriptyline) 
Elavil, Endep, Tryptanol, Trepiline 

Desipramine Norpramin, Pertofrane 
Dothiepin hydrochloride Prothiaden, Thaden 

Imipramine (& 
dibenzepin) 

Tofranil 

Iprindole - 
Nortriptyline Pamelor 

Opipramol Opipramol-neuraxpharm, Insidon 
Protriptyline Vivactil 

Trimipramine Surmontil 

Amoxapine 
Asendin, Asendis, Defanyl, Demolox, 

Moxadil 
Doxepin Adapin, Sinequan 

Clomipramine Anafranil 
 
2) Neuroleptic or Antipsychotic drugs 

A. Typical antipsychotics 
• Phenothiazines: • Thioxanthenes: 

o Chlorpromazine (Thorazine) o Chlorprothixene 
o Fluphenazine (Prolixin) o Flupenthixol (Depixol and Fluanxol) 
o Perphenazine (Trilafon) o Thiothixene (Navane) 
o Prochlorperazine (Compazine) o Zuclopenthixol (Clopixol and 
Acuphase) 
o Thioridazine (Mellaril) • Butyrophenones: 
o Trifluoperazine (Stelazine) o Haloperidol (Haldol) 
o Mesoridazine o Droperidol 
o Promazine o Pimozide (Orap) 
o Triflupromazine (Vesprin) o Melperone 
o Levomepromazine (Nozinan) 
 

B. Atypical antipsychotics 
• Clozapine (Clozaril) 
• Olanzapine (Zyprexa) 
• Risperidone (Risperdal) 
• Quetiapine (Seroquel) 
• Ziprasidone (Geodon) 
• Amisulpride (Solian) 
• Paliperidone (Invega) 

 
C.  Dopamine partial agonists 

• Aripiprazole (Abilify) 
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D. Others 

• Symbyax -A combination of olanzapine and fluoxetine used in the 
treatment of bipolar depression. 

• Tetrabenazine (Nitoman in Canada and Xenazine in New Zealand and 
some parts of Europe 

• Cannabidiol One of the main psychoactive components of cannabis 
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Appendix 2: Consent Form 

Title of Research Study: Modulation of Corticospinal Excitability During Rhythmic 
Motor Output in Humans 
 
This study (# REB 12-008) has been reviewed by the University of Ontario 
Research Ethics Board and has been approved as of September 17th, 2012. 
 
You are invited to participate in a research study. It is up to you to decide whether 
to be in the study or not. Before you decide, you need to understand what the study 
is for, what risks you might take and what benefits you might receive. This consent 
form explains the study. Please read this form carefully, and feel free to ask any 
questions you might have. If you have any questions about your rights as a 
participant in this study, please contact the Compliance Officer at 905 721 8668 ext 
3693 or compliance.uoit.ca. 
 
Principal Investigator: Amita Raj 
                   Grad Student 
                              Faculty of Health Sciences 

          University of Ontario Institute of Technology 
                                       2000 Simcoe St. North 
                                       Oshawa, ON L1H 7K4 
                                       Phone: (416) 997-5533  
                                       Email: amita.raj@uoit.ca 
 
Co-Investigators:      Kevin Power 
         Assistant Professor 

       School of Health Kinetics and Recreation 
       Memorial University of Newfoundland 
       St. John's, NL A1C 5S7 
       P.O. Box 4200 
       Tel (709) 864-7275 
       kevin.power@mun.ca 

 
      Bernadette Murphy 
      Director of Health Sciences & Head Kinesiology 
      Faculty of Health Sciences 
      University of Ontario Institute of Technology  
      2000 Simcoe St North 
      Oshawa, ON, L1H 7K4 
      (905) 721-8668 Ext. 2778 
      bernadette.murphy@uoit.ca 

 
 
 
 

mailto:amita.raj@uoit.ca
mailto:kevin.power@mun.ca
mailto:bernadette.murphy@uoit.ca
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1) Introduction/Background:  
The motor cortex is the region of the brain that is involved in the planning, control 
and execution of movement. The axons of the motor cortex descend to the spinal 
cord to relay information to its motor neurons which are directly connected to the 
muscles, allowing them to contract. Thus, Sherrington (1906) identifies spinal 
motoneurones as the “final common path”, and states that they the ultimate units 
that enable movement.  
  
2) Purpose: 
The purpose of this study is to examine motoneurone excitability in the cortex and 
spinal cord during rhythmic upper-body movement in humans. 
 
3) Description of the study procedures: 
The participants will undergo the following procedures during each experiment: 

a) Trial Session: 
A short trial session to familiarize participants with the testing procedures 
(i.e. nerve stimulation, force production and magnetic stimulation) at 
different intensities.   

b) Experiment session: 
This will be randomized to examine motoneurone excitability during 
rhythmic upper-body movement through the following recordings: 

i. Electrical stimulation of the nerve that activates the muscles to record 
the muscle response.  

ii. Magnetic stimulation of the motor cortex to record the muscle 
response from the brain.  

iii. Electrical stimulation at the cervicomedullary junction (back of the 
neck close to the bottom of the skull) that will activate the spinal cord 
and present activity of the muscle. 

Muscular responses from the biceps and triceps will be assessed throughout 
different phases of the rhythmic movement – i.e. arm position at 12, 6, and 3 o’clock 
during upper body cycling. 
 
4) Potential Benefits: 
Participants will just have the benefit of learning more about the function of their 
nervous system.  The scientific community will benefit by learning more about the 
role of the spinal cord in movement.  This is has important potential applications for 
spinal cord injury rehabilitation. 
 
5) Potential Risk or Discomforts: 
Surface EMG techniques used have low risks such as skin irritation from an alcohol 
swab or electrode gel which can be managed by cleansing the area and applying 
anti-histamine cream. 
These reactions are very uncommon and have never lasted more than a few hours, 
however if a reaction persists we advise you to seek medical attention.    
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Magnetic stimulation of the cortex and cervicomedullary junction may cause mild 
discomfort and twitching of the neck muscles, causing a jerky movement of the 
individual’s head. If however you feel that the stimulation is painful, it will be 
stopped immediately. Some people may also experience nausea or a mild headache. 
Both these reactions are uncommon and not serious. If you experience any of these 
effects for longer than 24 hours after the experiment please contact the principal 
investigator. 
 
Nerve stimulation will be used to test the excitability of the nerve-muscle 
connection. The stimulation will cause a twitching of the muscle and mild 
discomfort, but is not painful. The stimulation may cause delayed muscle soreness, 
similar to that following exercise, but is not serious in nature. 
 
6) Storage of Data: 
Data will be stored on a password protected hard drive accessible only to the study 
investigators. 
 
7) Confidentiality: 
All data collected will be confidential and stored via a coded system, making the data 
anonymous. 
 
8) Right to Withdraw: 
You are free to withdraw from the study at any time without prejudice.  There will 
be no academic or personal consequences associated with the withdrawal. 
Participants will have no effect on their grades or performance in any course, or 
experience any conflict of interest. 
 
9) Debriefing and Dissemination of Results: 
The data from this research will be submitted to scientific conferences and peer 
reviewed journals. At the completion of the study, you will be sent a summary of the 
research findings and any place where the data has been published. All published 
data will be coded so that your data is not identifiable. 
 
10) Questions: 
Thank you very much for your time and for making this study possible. If you have 
any questions or wish to know more please contact: 

Amita Raj 
Grad Student 

University of Ontario Institute of Technology 
Faculty of Health Sciences 

2000 Simcoe St. North 
Oshawa, Ontario L1H 7K4 

Phone: (416) 997-5533 
Email: amita.raj@uoit.ca 
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Signature Page 
Please read the following before signing the consent form and remember to keep a 
copy for your own records. 
 
Title of Research Study: Modulation of Corticospinal Motoneurone Excitability 
During Rhythmic Motor Output in Humans 
 
Name of principal investigator: Amita Raj 
 
To be filled out and signed by the participant. Please check as appropriate. 
 
I have read the consent [and information sheet].     Yes { } No { } 
I have had the opportunity to ask questions/to discuss this study.  Yes { } No { } 
I have received satisfactory answers to all of my questions.   Yes { } No { } 
I have received enough information about the study.    Yes { } No { } 
I have spoken to Amita Raj or a qualified member of the study team.  Yes { } No { } 
I understand that I am free to withdraw from the study    Yes { } No { } 

 at any time  
 without having to give a reason  
 without prejudice 

 
I understand that it is my choice to be in the study    Yes { } No { } 
I agree to take part in this study.       Yes { } No { } 
 
 
____________________________________   __________________________ 
Signature of participant     Date 
 
 
____________________________________  __________________________ 
Signature of witness       Date 
 
 
To be signed by the investigator: 
I have explained this study to the best of my ability. I invited questions and gave 
answers. I believe that the participant fully understands what is involved in being in 
the study, any potential risks of the study and that he or she has freely chosen to be 
in the study. 
 
 
____________________________________  __________________________ 
Signature of investigator      Date 
 
Signing this form gives us your consent to be in this study. It tells us that you 
understand the information about the research study. When you sign this 
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form, you do not give up your legal rights. Researchers or agencies involved in 
this research study still have their legal and professional responsibilities 
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Appendix 3: Statement of Confidentiality for Student PI and Research 

Assistants 

Title: Modulation of Corticospinal Excitability During Rhythmic Motor Output 
Humans 

 

Name (please print): 

_____________________________________ 

PLEASE READ  

An important part of conducting research is having respect for privacy and 

confidentiality.  Respect for human dignity also implies the principles of respect for 

privacy and confidentiality.  In many cultures, privacy and confidentiality are 

considered fundamental to human dignity.  Thus, standards of privacy and 

confidentiality protect the access, control and dissemination of personal information.  

In doing so, such standards help to protect mental or psychological integrity.  Further, 

they are consonant with values underlying privacy, confidentiality and anonymity.  

[Tri-Council Policy Statement on Ethical Conduct for Research Involving Humans, 

1998]. 

Out of respect for human dignity and people’s right to privacy we ensure our 

research participants both anonymity and confidentiality.  There will be no 

individual information used to prevent any form of recognition. During data 

collection, participant names will be replaced with numeric codes, and will be stored 

on a password encrypted computer and/or external hard drive for back up. The 

findings of this study may be presented at conferences and also in peer-reviewed 

publications. As the data is coded in a manner that ensures confidentiality, and 

prevents any identification of the individuals who participated in the study. 

In signing below you are agreeing to respect the participant’s right to privacy and 

that of other people possibly identified through the data collection and/or analysis 

process. As a Co-Student PI, or a Research Assistant, all information shall not be 

shared in a public environment or with friends or family members to respect the 

confidentiality and anonymity rights that the participants deserve.  The study and 

its participants are to be discussed only during research meetings. 

In signing below you are indicating that you understand the following: 
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 I understand the importance of providing anonymity and confidentiality to 
research participants; 

 I understand that while I do not know the name of the participant, the raw 
data may contain references to the individual and/or other individuals.  I 
understand that this information is to be kept confidential; 

 I understand that the raw data are not to be discussed outside of research 
meetings; 

 I understand that data files (electronic and hard copy) are to be secured at 
all times (i.e., not left unattended). Further, data files will be stored as 
outlined in the Letter of Information and Consent approved by the UOIT 
Research Ethics Board.   

In signing my name below, I agree to the above statements and promise to 

ensure the participants in this study anonymity and confidentiality. 

 

Signature:  

_____________________________________________________Date:______________ 

 

 

 


