
i

Distributed Policy-Based Management

Framework for Wireless Sensor Networks

By

Nidal Qwasmi

A thesis submitted in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

In

Electrical and Computer Engineering

 Faculty of Engineering and Applied Science

At

University of Ontario Institute of Technology (UOIT)

Oshawa, Canada

June 2014

© Copyright by Nidal Qwasmi, 2014

ii

CERTIFICATE OF APPROVAL

iii

ABSTRACT

Policy-Based Management Systems (PBMS) are becoming a critical component

of any information technology environment, due to their ability to abstract hardware

complexity from their users. Policy-based systems exist in such areas as data center

management, security, privacy, and computer network management. The Wireless Sensor

Network (WSN) is no exception, although implementation of policy-based management

in a WSN is still in its infancy. Wireless Sensor Networks (WSNs) are particularly

challenging due to many characteristics, such as a working environment that makes

maintenance and support a challenge; a deployment scale of hundreds, if not thousands,

of nodes; and constrained hardware resources. Memory, processing, and battery power

are limited, making WSNs capable of handling only applications with limited resource

requirements. Consequently, the implementation of policy-based management

applications on WSNs has to tackle these characteristics of WSNs and take these

limitations into consideration during the design phase. Therefore, due to hardware

resource constraints, policy-based management applications on WSNs can store only a

limited number of policies in the local memory of a sensor node and must recycle them

when additional policies are required. This recycling process creates communication

overhead on the network and requires a policy deployment mechanism. The

communication overhead will logically reduce the lifetime of the sensor's batteries, and

the policy's deployment mechanism dictates system limitations and capabilities. To tackle

these challenges, a new distributed policy-based management framework named

TinyPolicy has been devised, which can store, locate, access, and execute any policy in

the WSN. This new framework uses a newly created policy deployment mechanism

named PolicyP2P, which is designed to make the distributed policy-based management

system more robust against node failure, eliminate the threat of single points of failure,

and improve policy availability. More importantly, it will increase the total number of

policies that can be deployed in the WSN, which will result in more manageable

constraints or tasks.

Keywords: Distributed systems, Policy management, Distributed policy management,

Wireless Sensor Network (WSN), PolicyP2P, TinyPolicy.

iv

DEDICATION

I dedicate my thesis work to my beloved family, who have believed in me and

supported me throughout the process.

v

ACKNOWLEDGMENTS

A special thanks to Dr. Ramiro Liscano, my advisor, for his patience and support

throughout the entire process. I also wish to thank my committee members, Dr. Khalil

El-Khatib and Dr. Shahram Heydari, for agreeing to serve on my thesis committee and

for their valuable expertise and precious time. Finally, I would like to acknowledge and

thank the University of Ontario Institute of Technology (UOIT) for allowing me to

conduct my research and providing remarkable support.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

LIST OF EQUATIONS .. xii

ACRONYMS AND ABBREVIATIONS .. xiii

SYMBOLS .. xv

Chapter 1 Background .. 1

1.1 Introduction .. 1

1.2 Motivational challenges ... 2

1.3 Thesis objectives .. 6

1.4 Thesis contributions ... 7

1.5 Outline .. 8

Chapter 2 Related work .. 9

2.1 Distributed policy-based management ... 15

2.2 Policy-based management for WSN .. 16

2.3 Policy structure and protocol.. 23

2.4 P2P algorithms in WSN ... 24

Chapter 3 TinyPolicy: A Distributed Policy Framework ... 27

3.1 Software components ... 29

3.2 Data repositories ... 30

3.3 Modified policy structure ... 32

3.4 Multiple policies ... 33

Chapter 4 Policy management in TinyPolicy ... 35

4.1 Policy creation algorithm ... 36

4.2 Policy modification and deletion.. 38

4.3 Policy execution ... 39

4.4 Policy retention algorithm .. 41

vii

4.5 Multiple policies ... 42

Chapter 5 Bloom filter .. 43

5.1 Bloom filter implementation .. 44

5.2 Bloom filter analysis .. 45

5.3 Hashing algorithms .. 46

5.4 Bloom filter evaluation... 49

Chapter 6 PolicyP2P – A Policy Overlay Network .. 53

6.1 Determining policy key .. 55

6.2 Distributed Policy Addressing ... 58

6.3 PolicyP2P algorithm ... 59

6.4 Policy lookup.. 61

6.5 Network formation ... 61

6.6 Node joining the network ... 65

6.7 Node leaving the network .. 66

6.8 Network structure maintenance .. 68

Chapter 7 Complexity analysis of TinyPolicy .. 72

7.1 Network formation messages ... 74

7.2 Overhead messages .. 75

7.3 Policy administration message ... 77

7.4 Data analysis .. 83

Chapter 8 Validation of TinyPolicy through implementation in TinyOS......................... 89

8.1 Policy management tool (Policy IDE) ... 99

8.2 Thesis validation .. 101

8.3 Increase the ability to support more policies in a WSN 102

8.4 Improve robustness of the distributed policy framework for WSNs 108

8.5 Streamline the policy distribution processes .. 115

8.6 Framework limitations and constraints .. 119

Chapter 9 Conclusions and Future Work .. 125

References ... 129

Appendixes ... 135

Appendix A Policy management tool (Policy IDE) interface 136

viii

Appendix B Mathematical Model Data .. 147

Appendix C Publications ... 160

ix

LIST OF FIGURES

FIGURE 1 OBLIGATION POLICY .. 10

FIGURE 2 AUTHORIZATION POLICY .. 11

FIGURE 3 POLICY-BASED MANAGEMENT SYSTEM ARCHITECTURE 18

FIGURE 4 LAYERED FUNCTIONAL ARCHITECTURE OF WSNS .. 20

FIGURE 5 A SELF-MANAGED CELL WITH SELF-HEALING SERVICES (GRAY BOXES) 20

FIGURE 6 FINGER2 ARCHITECTURE .. 22

FIGURE 7 DISTRIBUTED POLICY FRAMEWORK .. 29

FIGURE 8 FINGER2 POLICY STRUCTURE .. 32

FIGURE 9 TINYPOLICY POLICY STRUCTURE .. 33

FIGURE 10 COMPLEX POLICY STRUCTURE .. 34

FIGURE 11 POLICY CHAIN .. 34

FIGURE 12 POLICY CREATION PROCESS ... 37

FIGURE 13 POLICY CREATION GUI .. 37

FIGURE 14 POLICY MODIFICATION AND DELETION PROCESS .. 39

FIGURE 15 POLICY EXECUTION PROCESS .. 41

FIGURE 16 POLICY RETENTION PROCESS ... 42

FIGURE 17 BLOOM FILTER ANALYSIS FOR A SAMPLE SIZE OF 1,024 MEMBERS 50

FIGURE 18 BLOOM FILTER ANALYSIS FOR A SAMPLE SIZE OF 18,000 MEMBERS 51

FIGURE 19 POLICY KEY .. 57

FIGURE 20 POLICY STORAGE EXAMPLES .. 59

FIGURE 21 POLICYP2P ... 60

FIGURE 22 OVERLAY NETWORK FOR POLICY-BASED SYSTEMS ... 62

FIGURE 23 TREE STRUCTURE FOR THE OVERLAY NETWORK ... 63

FIGURE 24 MESSAGE SEQUENCE FOR A NEW NODE JOINING THE WSN 64

FIGURE 25 MESSAGE SEQUENCE FOR A JOIN REQUEST TO AN EXISTING WSN 66

FIGURE 26 MAINTENANCE REQUEST PROCESS.. 68

FIGURE 27 MAINTENANCE REQUEST ACTIVITIES .. 70

FIGURE 28 MONITORING POLICY REQUEST FLOWCHART .. 71

FIGURE 29 RE-JOIN RESPONCE MESSAGE .. 76

FIGURE 30 TOTAL NUMBER OF MAINTENANCE MESSAGES .. 77

FIGURE 31 TOTAL NUMBER OF ADMINISTRATIVE MESSAGES .. 79

FIGURE 32 PERCENTAGE OF TOTAL FORMATION TIME .. 84

FIGURE 33 POLICY LOADING PERFORMANCE .. 85

FIGURE 34 BLOOM FILTER PERFORMANCE WITH MISSING POLICIES RATE OF 30% 86

FIGURE 35 CENTRAL AND DISTRIBUTED POLICY REPOSITORY PERFORMANCE 88

FIGURE 36 DEVELOPMENT ENVIRONMENT ... 91

FIGURE 37 PHYSICAL SETUP ... 92

x

FIGURE 38 MODULE DIAGRAM ... 96

FIGURE 39 COMPONENTS DIAGRAM 1/2 ... 97

FIGURE 40 COMPONENTS DIAGRAM 2/2 ... 98

FIGURE 41 IDE ARCHITECTURE ... 100

FIGURE 42 POLICY EXECUTION STEP 1 ... 103

FIGURE 43 POLICY EXECUTION STEP 2 ... 105

FIGURE 44 POLICY EXECUTION STEP 3 ... 106

FIGURE 45 POLICY EXECUTION STEP 4 ... 107

FIGURE 46 OVERLAY NETWORK FORMATION STEP 1 .. 109

FIGURE 47 OVERLAY NETWORK FORMATION STEP 2 .. 111

FIGURE 48 OVERLAY NETWORK FORMATION STEP 3 .. 112

FIGURE 49 NODE FAILURE CASE ... 114

FIGURE 50 LOADING FIRST POLICY 108F .. 117

FIGURE 51 LOADING SECOND POLICY 208F .. 118

FIGURE 52 NETWORK TOPOLOGY LIMITATION ... 120

FIGURE 53 COMPILATION ERROR WHEN POLICY REPOSITORY SIZE REACHED 1928 120

FIGURE 54 COMPILATION EXPERIMENT WITH DIFFERENT POLICY REPOSITORY SIZE 122

FIGURE 55 COMPILATION ERROR WHEN NODE REPOSITORY SIZE REACHED 10922 122

FIGURE 56 COMPILATION EXPERIMENT WITH DIFFERENT NODE REPOSITORY SIZE............ 123

xi

LIST OF TABLES

TABLE 1 POLICY TYPES AND EXAMPLES .. 13

TABLE 2 CODE SIZE BREAKDOWN OF SIMAPP ... 23

TABLE 3 PROCESSING DELAYS... 23

TABLE 4 CENTRALIZED VERSUS DISTRIBUTED POLICY REPOSITORY 27

TABLE 5 POLICY MANAGEMENT MESSAGES .. 35

TABLE 6 ADVANTAGES OF USING BLOOM FILTER ... 43

TABLE 7 HASHING ALGORITHMS COMPARISON ... 48

TABLE 8 EXPERIMENTAL RESULTS FOR 1,024 MEMBERS ... 51

TABLE 9 EXPERIMENTAL RESULTS FOR 18,000 MEMBERS ... 52

TABLE 10 NETWORK MESSAGES .. 54

TABLE 11 OVERLAY NETWORK VERSUS PHYSICAL NETWORK .. 55

TABLE 12 OVERLAY NETWORK SIZE ... 63

TABLE 13 NETWORK MESSAGE SIZES .. 72

TABLE 14 NETWORK PERFORMANCE FOR WSN WITH 20 NODES 80

TABLE 15 NETWORK PERFORMANCE FOR HETEROGENEOUS WSN WITH 20 NODES 82

TABLE 16 PROGRAM SIZE IN BYTES ... 94

TABLE 17 POLICY REPOSITORY MAXIMUM LIMIT EXPERIMENT 121

TABLE 18 NODE REPOSITORY MAXIMUM LIMIT EXPERIMENT ... 123

TABLE 19 CONTRAST BETWEEN TINYPOLICY AND FINGER2 ... 127

xii

LIST OF EQUATIONS

(1)… .. 31

(2) … ... 31

(3) … ... 46

(4) … ... 46

(5) … ... 46

(6) … ... 47

(7) … ... 56

(8) … ... 74

(9) … ... 74

(10) … ... 74

(11) … ... 75

(12) … ... 75

(13) … ... ……77

(14) … ... 78

(15) … ... 78

(16) … ... 79

(17) … ... 79

(18) … ... 80

(19) … ... 80

xiii

ACRONYMS AND ABBREVIATIONS

 CNMS: Cognitive Network Management System

 DMTF: Distributed Management Task Force

 DHT: Distributed Hash Table

 Finger/Finger2: Policy-based platform for Wireless Sensor Network

 GUI: Graphical User Interface

 IETF: Internet Engineering Task Force

 IoT: Internet of Things

 LPDP : Local Policy Decision Point

 MANET: Mobile Ad hoc Network

 NGN: Next Generation Networks

 P2P: Peer-to-Peer

 PBM: Policy-Based Management

 PBMS: Policy-Based Management System

 PCIM: Policy Core Information Model

 PDP: Policy Decision Point

 PDA: Personal Digital Assistant

 PEP: Policy Enforcement Point

 Policy Key (Policy-ID): Identification data of a policy in PBM systems. It is

imperative to locate any particular policy within the network.

 PolicyP2P: The PolicyP2P software component consists of all algorithms that are

required by the overlay network to operate. PolicyP2P is an algorithm created by

this research to find the closest matching node ID to the policy key.

 QoS: Quality of Service

 QoE: Quality of Experience

 SensorML: Sensor Model Language

 TinyPolicy: A framework for distributed policy-based management, presented in

this thesis

 VM: Virtual Machine

xiv

 WBAN: Wireless Body Area Network

 WSN: Wireless Sensor Network

xv

SYMBOLS

 : concatenation

 : modulo operator; same as “mod”

 not existence qualifier (there does not exist); same as “ ”

 element of

 not an element of

 almost equal to

 logical and

 summation

 : total number of policies in the local policy repository

 : total number of policies in the local policy repository of node number i

 : policy number j on node number i

 : overlay address of node number i

 : overlay address of leaf node number j of parent node number i

 : transmission speed

 : length in bytes of the overlay address

 : overlay tree level number

 : a specific number of bits which represents nodes in one level of the overlay

tree structure

 : total number of leaf nodes (children) per parent node

 big O notation, to express the time complexity of an algorithm

1

Chapter 1 Background

In this chapter, the motivational challenges and thesis objectives are discussed,

followed by the contributions of this thesis and an outline of the chapters.

1.1 Introduction

Sensors are becoming part of our daily life, finding their way into such fields as

environmental, medical, and military. Many examples of such applications are

presented in Gutiérrez et al. [1] Wireless sensor networks (WSNs) collect sensing data

from the surrounding environment. Each WSN contains a number of sensors, each of

which is responsible for monitoring one or more events. Therefore, it is likely that a

WSN will contain different types of sensors from various manufacturers. As a result, a

WSN usually works in a heterogeneous environment where sensors are incompatible

with different hardware and software standards and from different manufacturers. Even

though certain types of sensors may overcome some of these problems, this usually

proves complex and costly[2]. To overcome some of these challenges and to conceal

the complexity of the underlying network devices from the human operator, researchers

have considered Policy-Based Management (PBM) platforms a viable solution [3], [4].

WSNs pose particular challenges due to such characteristics as the working

environment (such as in animal habitats, underwater, on volcanoes, and inside the

human body) which complicates maintenance and support, and limited hardware

resources, particularly memory, processing and battery power, which require software

with minimum power and memory usage [5]. Consequently, the administration of

WSNs is becoming a challenge [5], due to the working environment and heterogeneous

sensors on different systems. These characteristics naturally constrain the capabilities of

the applications that run on the WSN. Policy-Based Management (PBM) as an

implementation on WSNs is no different, and these limitations should be taken into

consideration when designing any solution for WSNs. Due to these limitations, as

2

shown by Zhu et al. [6], devices in a WSN with the Finger platform installed can store a

limited number of policies in their memory and recycle them when required. The

number of policies in the WSN is directly related to the number of constraints that can

be created on the WSN, which logically equal the number of governing functions that

can be performed. Therefore, the more policies the WSN can accommodate, the more

governing functions (constraints) the users of the WSN can create.

1.2 Motivational challenges

The sensors' harsh and unrestricted work environment requires sensor nodes to be

small and inexpensive, with limited sensing, computation and wireless transmission

capabilities [7]. A typical sensor device (such as Iris Mote, Mica, MicaZ, TelosB,

TMote Sky, and Sentilla JCreate) is equipped with an 8- or 16-bit CPU running at 4-8

MHz, 2-10 kB RAM, 30-128 kB flash memory [1], [8], and a radio transmission rate up

to 250 kbps with a range of a few hundred meters [9]. Further improvements in

operating conditions may come from the use of energy efficient 32-bit CPUs and from

research efforts to invent a renewable energy sensor by harvesting energy or to create

an energy-free sensor by using ambient RF as the only source of power [10]. Still, to

keep cost and power consumption as low as possible, sensor nodes remain resource

constrained compared to a smartphone or tablet. The resource-constrained nature of the

sensor devices and their heterogeneous working environments suggest that resource

sharing and policy-based management would be an ideal solution for such

environments.

Prior research and real world experience support our claim that resource sharing

and policy-based management are an ideal solution for WSNs. In the health care

domain [11], the Wireless Body Area Network (WBAN), a type of WSN, can provide

an affordable and proactive health care system to monitor patient health conditions.

This solution can save lives, improve the quality of life, and reduce health care costs by

reducing hospital stays. Major challenges for WBANs listed by Movassaghi et al. [11]

in an extensive survey of the state of the art in WBANs include the following:

3

 Today, sensor nodes are still constrained by limited resources, due to several

factors. The sensor nodes are small in size, which limits hardware

enhancement. The WBAN area (the human body) is, of course, limited in size

too, which has a huge influence on the acceptable size of the sensor node.

Economic forces are another factor; nodes must cost as little as possible.

 Accessing implanted settings and replacing implanted nodes can be quite

difficult. The difficulties of replacing nodes and altering their behaviors make

it important to find alternatives to physical access to the implanted nodes.

 Network physical area size is limited to human body size, for which large size

devices are unsuited and which rule out the use of larger size sensor nodes

with greater capabilities.

 The size of each sensor node has to be as small as possible, due to the limited

physical size of the WBAN.

Our work overcomes most of the previously listed challenges in WBANs, because

TinyPolicy is based on two main concepts. The first concept is resource sharing, which

overcomes the sensor's resource limitations and the need for larger size sensors. The

second concept is controlling the sensor behavior by policy rather than by

reprogramming the node, which avoids physical replacement of the node.

In the agriculture domain, Gutiérrez et al. [1] developed an automated irrigation

system to reduce the waste of water used for agriculture crops. The system consists of a

distributed WSN to monitor soil moisture and temperature, actuators to control the

irrigation system, and a gateway unit to handle sensor information. The system

monitors such environmental parameters as soil moisture and temperature by using

sensors deployed in plant root zones. Researchers in [1] resolve the energy constraints

by using photovoltaic panels to recharge AA 2000-mAh Ni-MH CycleEnergy batteries,

and resolve the need to reprogram sensor nodes due to changes in thresholds by

frequently sending the sensing data to a centralized unit which has more capabilities.

The TinyPolicy framework can assist in this case by enabling the control of thresholds

directly on the sensor node by using policies to avoid unnecessary transmission of data

4

to a central node, which may reduce energy consumption. In addition, the TinyPolicy

framework can enhance system reliability by using a distributed approach rather than a

central node, which creates a single point of failure in the system.

In the natural science domain, scientists rely on WSNs to help address previously

insoluble scientific questions. For example, Naumowicz et al. [12] successfully

designed and deployed a WSN to monitor seabirds on Skomer Island, a UK National

Nature Reserve. The complexity of reprogramming the WSN software proved to be a

big disadvantage; they had to rely on a computer science team to do this work for them,

which resulted in delays and distracted the natural scientists from their core goals. (A

new approach to programming the WSN is currently being investigated.) A policy-

based system, such as TinyPolicy, would be a good alternative way to handle such

cases, as the behavior of the WSN would be controlled by policies rather than by

reprogramming the sensor's firmware.

In the civil engineering domain, Kim et al. [13] designed, implemented, deployed

and tested a WSN for Structural Health Monitoring (SHM) on the 4200 ft long main

span and the south tower of the Golden Gate Bridge (GGB), the largest WSN

deployment for SHM to date. Limited RAM on each sensor node proved to be an

obstacle to resolving the packet size issue. The TinyPolicy framework can help deal

with memory limitation by sharing memory resources with other capable sensors in the

WSN. The trade-off here is between freeing more local memory and increasing

transmission activities, but the actual trade-off numbers need to be investigated.

Due to memory capacity limitations, a sensor device may hold a limited number

of policies at any given time, which may not always be sufficient. These limitations

may severely restrict the management capabilities and number of tasks that can be

performed on the device and on the WSN as a whole. Therefore, dynamic deployment

of policies is necessary to utilize node resources efficiently and to execute the required

policies accurately.

The architectures of many existing and proposed policy-based WSN platforms

rely on local policy repositories on the nodes to access any required policy. (Some of

5

these architectures are discussed in more detail in Chapter 2 Related work) This type of

architecture raises many serious issues, particularly the issue of network dynamism and

robustness, since it creates node silos, which can communicate with the network

gateway but do not communicate or share resources with other nodes in the network. In

addition, it may cause longer disruptions to node service, because a defective node will

need to be replaced with an exact replica in order to resume service.

Moreover, this architecture creates serious administrative overhead during the

deployment of new policies or the replacement of a defective node, because the

administrator needs to create an exact replica of the defective node with all applicable

policies stored on it. Furthermore, the administrator has to make sure that the new

policies have been deployed successfully on the targeted node, which also adds extra

overhead to the task.

WSN implementation dictates the required number of nodes and policies. Kim et

al. [13] studied the Golden Gate Bridge (GGB) where 64 nodes are distributed over

4200ft bridge body. Each sensor monitors ambient vibrations and strong motion. Major

requirements of this system as mentioned in [13] are signals quality (such as noise floor

of the system, installation error, and temperature variation), sampling rate, time

synchronization, multi-hop routing, and reliably dissemination (such as data lost and

blockage of hopping). Hence, the total number of parameters is eight parameters each

of which required five policies in average (such as authorization, installation, max, min,

and acceptable range policy). Therefore, each node needs at least 40 policies

(exceeding the local policy repository capacity in Finger2 platform). Hence, the total

number of policies for this system is 2,560 policies (40 policies per node multiplied by

64 nodes).

6

1.3 Thesis objectives

The goal of this thesis is to specify a fully distributed policy-based framework for

WSNs. This new framework will meet the following objectives when compared to a

conventional non-distributed policy platform:

Increase the ability to support more policies in a WSN.

Due to the nature of limited resources on the sensor node memory as discussed by

Zhu et al. [6], it is quite possible for a policy-based WSN network to have more

policies than the sensor node capacity. The number of policies in the WSN is directly

connected to the number of constraints that can be created on the WSN, which logically

equals the number of functions that can be performed on the WSN. Therefore, the more

policies the WSN can accommodate, the more management functions (constraints) the

users of the WSN can perform.

Improve the robustness of the distributed policy framework for a WSN.

The existing architecture creates node silos, which can only communicate with the

network gateway but do not communicate with other nodes in the network. Our

framework creates a structured peer-to-peer (P2P) overlay network, in which all nodes

can share resources and which has a maintenance mechanism to maintain the network

structure.

Streamline the policy distribution processes.

As shown in [6], [14], [15], the architectures of many existing or proposed policy-

based WSN platforms rely on a local policy repository on each node to access any

required policy. This type of architecture creates serious administrative overhead during

the deployment of new policies or replacement of a defective node, because the

network operator needs to push all applicable policies to the targeted node before

deploying it in the WSN. In our framework, the new node will pull all required policies

from other nodes in the network after they are deployed into the WSN; no human

intervention will be needed.

7

1.4 Thesis contributions

The primary contributions of this thesis are the following:

1. Designing a novel framework for a fully distributed policy-based system.

Details are discussed in Chapter 3 TinyPolicy: A Distributed Policy

Framework.

1.1 Developing a new distribution technique for policies in a WSN by

creating a new policy-centric P2P algorithm named PolicyP2P. Details

are discussed in section 6.3.

1.2 Introducing and analyzing a new implementation for a Bloom filter in the

areas of WSN and policy-based systems. Details are discussed in Chapter

5 Bloom filter.

1.3 Introducing a new approach for constructing a policy key by using a

sensor's data rather than by using arbitrary numbers as in other existing

systems and platforms. Details are discussed in section 6.1.

2. Creating a new tool for policy debugging and testing, named Policy IDE. This

new tool allows the users to test and debug the newly created policy in a

simulation environment through a simple GUI. Details are discussed in

Chapter 8 Validation of TinyPolicy through implementation in TinyOS and

Appendix A Policy management tool (Policy IDE) interface.

3. As a contribution to the WSN research community, our work was used as a

basis for other open source projects, such as [16] and [17], which inspire other

researchers abroad.

4. Publications related to our work are listed in Appendix C Publications.

8

1.5 Outline

This thesis consists of nine chapters and is organized in the following way:

Chapter 1 Background covers the thesis background, motivations, objectives, and

contributions. Chapter 2 Related work discusses different knowledge areas and related

work. This chapter is divided into four sections, each dealing with a separate

knowledge area. Chapter 3 TinyPolicy: A Distributed Policy Framework discusses the

TinyPolicy framework and architecture design. Chapter 4 Policy management in

TinyPolicy discusses policy management algorithms in TinyPolicy; these algorithms

deal with policy creation, modification, deletion, execution, retention, and the handling

of multiple policies. Chapter 5 Bloom filter describes the Bloom filter analysis,

implementation, and evaluation, and its value for the framework. Chapter 6 PolicyP2P

– A Policy Overlay Network discusses the PolicyP2P software component, which

consists of all algorithms that are required by the overlay network to operate. Chapter 7

Complexity analysis of TinyPolicydiscusses the results of the complexity analysis of

the overlay network. Chapter 8 Validation of TinyPolicy through implementation in

TinyOS discusses the implementation and evaluation of the framework. It also

introduces the Policy Management Tool, which provides great assistance in managing

the policy-based environment (create, delete, enable and disable a policy, and trigger an

event), and in debugging and testing policy execution. Chapter 9 Conclusions and

Future Work briefly summarizes this research and proposes future work and

improvements.

9

Chapter 2 Related work

Various knowledge areas were studied in this research, such as distributed policy-

based management, policy-based management for WSNs, policy structure, and protocol

and P2P algorithms for WSNs.

Many of the existing or proposed policy-based WSN platforms rely on a local

policy repository on the sensor node to access any required policy [6], [14], [15]. This

type of architecture raises many serious issues; particularly the issue of network

dynamism and robustness, since it creates node silos that can only communicate with

the network gateway but do not communicate or share resources with other nodes in the

network. Moreover, this architecture creates administrative overhead during the

deployment of new policies or the replacement of a defective node, because the

administrator needs to know exactly which policies apply to which nodes, the address

of the targeted node, and how to create an exact replica of the defective node.

Moreover, the administrator of the existing architecture has to make sure that the new

policies have been deployed successfully to the targeted node, which also adds extra

overhead to the task. Our new framework can avoid this additional overhead by

deploying the new policy to a hosted node that has been mathematically selected, rather

than deploying it directly on the targeted node. The targeted node can access the new

policy from the hosted node when it is required or from the Root if the deployment of

the new policy on the hosted node was not successful.

Policy is defined as a constraint on the system behaviors, which can be expressed

using natural language or mathematical notation. However, neither of these two

approaches is ideal for computer systems [18]. Natural language is commonly used to

write real-life policies, but it typically lacks clarity and precision [18]. Mathematical

notation, on the other hand, has extreme clarity and precision, though it suffers from

limited ability to express constraints and is difficult to understand [4]. Policy-based

systems try to strike a balance between these two approaches by creating a policy

language that can fulfill the requirements of the targeted system. Hence, policy

10

languages are declarative and not procedural; they express constraints on system

behaviors but do not specify how these constraints ought to be enforced [19].

Policy-based systems use many existing expressive languages for specifying

policies. Policy languages include XACML (eXtensible Access Control Markup

Language) from OASIS [20], Ponder2 from Imperial College in London [21], PDL

(Policy Description Language) from Bell [22], CQL (CIM Query Language) from

DMTF [23], and CIM-SPL (Simple Policy Language CIM) from DMTF. However,

they are not appropriate for WSNs due to resource constraints in the sensor node. Some

of these constraints are memory, computational power, and limited wireless signal

range. In fact, frequently changing network topology, limited wireless signal range, and

limited resources are considered the most challenging issues in designing a policy

system for WSNs [24].

The most notable initiative in dealing with this issue of policy language was

Finger2, an embedded policy system for wireless sensor nodes, which was a simplified

and scaled-down version of Ponder2 [15]. Finger2 uses the PonderTalk [21] object-

oriented policy language because of its simplicity, and it can efficiently exchange

messages between objects. PonderTalk is a slightly modified version of Smalltalk [25]

that was created at the Department of Computing in Imperial College, London [26].

PonderTalk has two types of policies, Obligation policies and Authorization policies.

Obligation policies monitor events, apply conditions, and trigger actions [26]. Figure 1

shows the syntax of the obligation policy.

Policy := root/factory/ecapolicy create.

Policy event: myEvent;

condition: [:arg | bool-expression];

action: [:arg | statements]

Figure 1 Obligation Policy

As shown in Figure 1, the obligation policy structure consists of the following

parts:

 Policy ID (policy name): A unique identification number or string that

identifies the policy.

11

 Policy Event: An identification number or string that identifies the unique

event associated with the policy.

 Condition: An expression that the policy engine evaluates to trigger the

associated action.

 Action: The task to be performed if the condition in the policy is positive.

The second type of policy is the authorization policy, which is used to authorize

access to secured resources [26]. Figure 2 shows the syntax of the authorization policy.

Policy := root/factory/authpolicy

subject: root/personnel/nurse/ward1

action: “getrecord”

target: root/patient/ward1

focus: “t”

Figure 2 Authorization Policy

As shown in Figure 2, the authorization policy structure consists of the following

parts:

 Policy ID (policy name): A unique identification number or string that

identifies the policy.

 Subject: An object that has the permission. In this example, it is the nurse in

Ward1.

 Action: The transaction type (task to be performed). In this example, it is get

patient medical record.

 Target: An object that the permission is given about. In this example, it is the

patient in ward 1.

 Focus: This field shows which object the policy is intended to protect. In this

example, it is the target (patient in ward 1).

The WSN environment is constrained due to limited resources, such as energy,

memory, and processing power. Such limitations affect the number of applicable

12

languages that can efficiently operate with it. In addition to the limitations of the

operating environment, the selection of language is further limited by the fact that the

language needs to work efficiently to exchange messages between managed objects and

be able to handle the policy structure and operations.

In policy-based management systems, alternatives to policy languages to

transform a policy into a physical implementation include the following:

 Transformation using static rule: A system expert creates a static mapping

between the high-level policy and low-level implementation. For example,

suppose a service provider has a policy to provide a specific level of service

based on the user's company. This policy could be translated to: if user from

subnet 10.10.3.0/24 then reserve 20 Mbps and use encryption 128 bits [18].

 Transformation using policy table lookup: The system stores a table of

policies used by the system [27]; the administrator queries the table with a set

of configuration parameters to obtain a set of goals that can be achieved for

those parameters [18].

 Transformation using Case-Based Reasoning: A use case database or history

of the system behavior [28] is employed to transform high-level policies or

goals into low-level configuration parameters and vice versa [18].

Agrawal et al. [18] provided a convincing classification of different policy types

that links the definitions to the system's various states and behaviors. The

classifications consist of the following:

 Configuration constraint policy: This type defines configuration constraints,

such as allowable, minimum, and maximum values for configuration

attributes. Examples:

o Maximum number of threats for application server is 50

o Virtual memory size should be less than two times the size of physical

memory

13

 Metric (Goal) constraint policy: This type defines metric constraints, such as

upper or lower bound on a metric. Examples:

o Keep CPU utilization below 50%

o Directory lookup should be completed in less than one second

 Action policy: This type requires the system to perform certain actions when a

particular event or change in system status has occurred. Examples:

o If CPU utilization exceeds 70% then allocate additional server

o If system temperature exceeds 95° C then shut down the system

 Alert policy: This type is similar to the action type, except that in this type, the

action is a notification message sent to another entity. Examples:

o If users did not access their email accounts in more than 6 months,

notify them by email

o If the system goes down, notify the administrator

This classification was for wired network environments. Nevertheless, it can be

valid for the wireless sensor network environment as well. Table 1 presents a mapping

of Agrawal's policy type classifications to WSNs.

Table 1 Policy Types and Examples

Policy Type Description
Policy Examples

Wire Network DPBM-WSN

Configuration Define

configuration

constraints, such

as allowable,

minimum,

maximum values

for configuration

 Maximum

number of threats

for application

server is 50

 Virtual memory

size should be

 Increase/decrease the

timing event frequency

 Increase/decrease the

sensing rate

14

attribute less than two

times the size of

physical memory

Metric Define metric

constraints,

such as upper

or lower bound

on a metric

 Keep CPU

utilization below

50%

 Directory lookup

should be

completed in less

than one second

 Increase the sensing rate

by 10% if the difference

between the last two

readings is 20%

 Decrease the

transmission rate by

20% if battery level is

less than 10%

Action Require the

system to

perform certain

actions when a

particular event

or change in

system status

has occurred

 If CPU

utilization

exceeds 70%

then allocate

additional server

 If system

temperature

exceeds 95° C

then shut down

the system

 If the sensing data

storage exceeds 90%

utilization then switch to

another storage node

 If parent node is not

accessible then try to

join another parent node

Alert Similar to the

action type

except that in

this type, the

action is a

notification

message sent to

another entity

 If users did not

access their email

accounts for

more than 6

months, notify

them by email

 If the system

goes down,

notify the

administrator

 If battery level is below

10%, notify the

administrator

 if policy storage is 90%

utilized, notify the

administrator

15

2.1 Distributed policy-based management

Distributed mechanisms have been used to resolve resource constraints in many

knowledge areas, such as distributed computing, distributed file systems, distributed

learning, and distributed manufacturing. There has been a great deal of research on

distributed policy-based management of types of networks other than WSNs. These

initiatives include the following.

The Madeira project [29] is a research project to develop solutions to Next

Generation Networks (NGN) challenges. This project uses a fully distributed policy-

based network management framework, which exploits the peer-to-peer paradigm.

Researchers justify the use of policy-based and peer-to-peer approaches in the Madeira

project as compensation for the lack of flexibility, dynamism, and autonomy that the

NGN paradigm requires. Madeira achieves these objectives by developing an overlay

mesh network of distributed management elements. Each management element will be

responsible for managing a subset of the network independently from other subsets of

the network. The approach adapted by the Madeira project is similar to that in this

thesis, in that both use the policy-based management concept supported by an overlay

network structure.

Galani et al. [30] researched a policy-based framework as a feasible solution for

the Future Internet. Authors defined the Future Internet (FI) as a powerful network with

heterogeneous technologies, low expectation of Quality of Service (QoS)/Quality of

Experience (QoE), and evolving business models. All these characteristics combine to

create a highly complex network and service management environment based on

business objectives, which cannot be handled by traditional network management and

thus creates a need for autonomic management behavior. A policy management

framework was specified to overcome the challenges of the highly diverse,

decentralized, and dynamic Future Internet.

VanderHorn et al. [31] introduced the Cognitive Network Management System

(CNMS). CNMS is a research initiative for complex Mobile Ad hoc Networks

(MANETs). It provides a real-time policy-based management framework that aims to

16

mitigate the need for centralized network management, provide automated management

by providing reasoning and enforcing mechanisms for network resources, reduce

human intervention, and increase network reliability. The authors achieve these

objectives by utilizing a lightweight policy-based framework, which is able to adapt at

runtime to unpredictable network conditions by creating and enforcing new learned

policies. A learned policy is a new policy created by a cognitive node to mitigate

unpredictable network conditions. Learned policies can be distributed to other nodes to

manage similar network conditions.

2.2 Policy-based management for WSN

Sensor nodes are designed to work in harsh and unrestricted environments for an

extended period. Therefore, the cost of these sensors has to be low, which may restrict

such capabilities as memory and computational power. Hence, sensors need to be

updated from time to time due to resource constraints or changes in the operational

environment. The conventional way to reprogram the sensors is to take the sensors

from the field and reprogram them [1], [11], [12]. This approach has proven hectic and

problematic. Another approach is to reprogram the sensors over the air by sending the

new code through a transmission protocol. This approach has the disadvantage of

depleting the sensor node energy. Finally, researchers have investigated policy-based

management as an alternative way to reprogram and manage sensors.

Lee et al. [32] investigate different approaches to sensor node reprogramming.

The two known methods for reprogramming are manual and over-the-air. In manual

reprogramming, the sensor node code is updated through physical access to the node.

This has proven to be tedious and time-consuming. In over-the-air reprogramming, the

code is disseminated over the air to all sensor nodes in the WSN. The drawbacks of this

method are network congestion and energy depletion. The large number of transmission

activities creates network congestion, while energy depletion results from nodes

receiving a large amount of network traffic to update their code.

Lee et al. [32] proposed a novel approach to managing the process of over-the-air

reprogramming by categorizing the different possible cases of node reprogramming

17

based on the node's execution characteristics. The proposed approach creates a profile

(policies) for each case to reduce the negative impact on the WSN. The simulation

results show impressive improvement over other reprogramming techniques, but this

approach did not eliminate the negative impact of over-the-air reprogramming on the

WSN, nor did it reduce energy depletion or the need for node reprogramming. Our

work eliminates the negative impact of over-the-air reprogramming by reducing the

need for this process through controlling the node behavior by policy programming,

which requires significantly less transmission of data compared to full code

reprogramming. Our work also reduces energy depletion by significantly reducing the

transmitted data size.

Jacquot et al. [33] proposed a new approach to WSN management named

LiveNCM, which stands for “LiveNode Noninvasive Context-aware and modular

Management.” It is a new approach to WSN management systems in which a

configurable modular architecture is enabled to fit to an application and provide

traditional administrative functionalities. In addition, it introduces two new concepts to

WSN management. The first concept is noninvasive context awareness to deduce the

network node status from current processing messages, which consequently reduces

network traffic and energy consumption. The second concept is the estimator model,

which is the possibility of computing some predictable values. Therefore, nodes can

only send data outside the predicted range. In this way, the node will preserve energy

and reduce the amount of transmitted data, as is demonstrated by some impressive

simulation results in this work.

Zhang et al. [5] proposed a network management architecture as depicted in

Figure 3. The proposed architecture is based on fault, configuration, accounting,

performance, and security management components. The basic idea behind the

proposed architecture is to form hierarchical clusters, which communicate with their

cluster nodes and another superior sink node. Each node in the network is capable of

performing cluster head as well as cluster child functionalities.

18

Figure 3 Policy-based management system architecture

There are many challenges associated with this architecture. First, forming and

maintaining the cluster structure would pose a significant communication overhead on

the network, due to the amount of information that must be exchanged between the

cluster head and its children.

Second is the size of the software that the architecture is proposed to have on each

sensor node, which is expected to be larger than the average sensor's memory capacity.

As shown in Figure 3, the architecture is proposed to have the following software

components, which are enormously larger than any other existing policy-based

framework for WSNs:

1. Policy management component (Policy Decision Point (PDP), Compile-time

conflict resolve, and Runtime conflict resolve)

2. Fault and Performance management

3. Configuration management

Policy Management Tool Policy Definition

New policies-updatesNETWORK MANAGEMENT SYSTEM

Compile-time conflict resolver

Policy Decision Point

Run-time

conflict resolver

Policy

Repository

Policy Management

Fault and

PERF

Actions

Correlation

Engine

Admission

control

Monitor

Fault performance

management

Config

actions

Config

audit

Intrusion

detection

Security

Actions

Config management Security management

Device adapters Device adapters Device adapters

19

4. Security management

5. Quality of Service (QoS) management

Third is the policy repository. Given the predicted large size of the software that

needs to reside on each sensor node, it is unlikely that a lot of memory would be left to

store the policies, and thus our proposal for a dynamic and distributed repository

becomes a necessity for such an architecture.

The fourth challenge is multiple policies execution. Zhang et al. [5] did not

discuss this topic and provides no information on how the system would handle such an

issue. Multiple policies execution is necessary in some cases where an event requires

triggering multiple policies in sequence.

Fifth, the setup and administration of such an architecture would be a significant

task and would require a highly skilled professional to set up and manage.

Bourdenas et al. [15] proposed a self-managed cell (SMC) framework for a WSN.

The authors argued the need for self-managed architecture, which is due to the

complexity of sensor network applications and the fact that users are not expected to

have high technical skills. The authors came to this conclusion from the cases they

investigated in their research, which ranged from health care to environmental

monitoring applications.

Typically, sensor networks are structured in three distinct layers as shown in

Figure 4. The bottom layer is sensing, where actual sensing events are captured; the

middle layer is analysis, where sensing events are processed for making decisions; the

upper layer is dissemination, where collaboration with other network resources takes

place. The other part shown in Figure 4 is the self-healing extension proposed by the

authors.

20

Figure 4 Layered functional architecture of WSNs

Figure 5 depicts the proposed SMC architecture, with the gray boxes representing

self-healing services and the white boxes representing the core SMC services.

Figure 5 A Self-managed cell with self-healing services (gray boxes)

Event

propagation

Decision fusion

Feature fusion

Feature

extraction

Sampling

management

d
is

s
e

m
in

a
ti
o

n
a

n
a

ly
s
is

s
e

n
s
in

g
Node

management

Domain

validation

Fault masking /

correction

Sensor fault

detection

WSN Core
Self-healing

Extensions

Event Bus

Monitoring

Service

Fault

Detection

Discovery

Service

Fault

Handling

Configuration

Services

Policy

Management
Resource

Adapters

Managed

Resources

policies structure

features

21

Policies are the means to control the behavior of the node. Bourdenas et al.

proposed two types of policies. First is obligation policy: Event-Condition-Action

(ECA) rules, which can express system behavior in an event-driven model. Second is

authorization policy: controlling resource access or services by other nodes.

As shown in Figure 5, managed objects (nodes) are generating events, which can

then communicate with the Policy Service through the Event Bus. Actions, on the other

hand, are operations executed by managed objects, which also communicate through

the Event Bus. To implement the proposed architecture, Bourdenas et al. developed the

Starfish framework, which consists of the following components:

 Finger2: An embedded policy system for sensor nodes.

 SML: A module library to simplify the programming of sensor nodes. It

provides basic functions and tools used in sensing applications. These include

sensor sampling, feature extraction facilities, timers for scheduling of events,

and network primitives for exchange of messages among nodes.

 Starfish editor: A client-side graphical user interface for managing policies,

missions, and roles on sensor nodes.

Figure 6 shows how the Finger2 architecture handles events as well as actions.

The Authorization Manager checks the Event first to authenticate the source. After

authenticating the source, the event is passed to the Obligation Manager/Event

Manager, which searches the local repository for applicable policies. Applicable

policies are then forwarded to the embedded Virtual Machine (VM) for execution. In

some cases, the VM consults with the Authorization Manager to permit remote events

triggered by the requested action.

22

Figure 6 Finger2 architecture

Finger2 is the only policy engine for WSNs in the academic domain. Finger2 has

been a basis for our work.

Zhu et al. [6] developed a simple TinyOS application, SimApp, making use of

Finger. This application implements an event source of acceleration, and two actions,

which toggle the red light and the green light. The application components consist of

one obligation policy, which is the green light toggled when the acceleration is larger

than a given threshold, and one authorization policy, which is controlling access to the

red light action. The authors present their experimental results in [14]. Table 2 shows

the experimental results for code size and Table 3 shows the processing delays of the

experiment. These results are used as a benchmark for our work. The work done by Zhu

et al. in [6] was studied as a guide to building our new framework environment, and its

experimental results are contrasted with theirs.

Event

Manager

modulespolicies

Virtual

Machine

Obligation

Manager

Auth.

Manager
network

AuthI

ActionIPredicateI

EventSourceI

23

Table 2 Code Size Breakdown of SimApp

Component ROM (KB) RAM (KB)

Finger(with authentication) 20.65 2.35

Finger (without authentication) 4.99 0.53

Comm. 8.08 0.49

Basics 2.55 0.04

Total (w/o) 15.62 1.06

Total (w) 31.28 2.88

Table 3 Processing Delays

Operation Delay

Obligation Interp. 62 μs

Authorization Interp. 81 μs

Public Encrypt. 9530 ms

Public Decrypt. 5281 ms

Symmetric Encrypt 150 μs

Symmetric Decrypt 90 μs

2.3 Policy structure and protocol

A policy-based management system has to have a viable policy structure that can

facilitate the management of sensors. Researchers have investigated the policy structure

from various perspectives. Some researchers have studied the policy structure as a data

entity, and others have investigated the need for a dedicated protocol to transport

policies.

Ayari et al. [34] proposed a novel approach for Distributed Policy-Based

Management in Mobile Ad-hoc Network (MANET). The proposed approach consists of

three main parts: policy structure, policy-based framework, and Distributed Policy

Management Protocol (DPMP). Policy structure contains the following segments:

24

Name (policy identification), Time (policy enforcement time), Group (one of four

predefined policy groups), Role (an attribute that is used to select one or more policies),

Scope (the policy target), On (trigger field for policy execution), If (policy condition of

type Boolean), and Then/Do (task to execute).

The proposed protocol is vulnerable to deadlock and infinite circulation of

messages in the network, as it is missing a time to live flag, which can be used to avoid

such situations. The number of hops, which can be used to avoid sending messages to

unwanted domains, is another piece of information that is missing from the proposed

protocol.

In the policy structure, Ayari et al. did not discuss a case in which multiple

policies need to be executed due to an event. In addition, it would be useful if the

architecture had a field for the policy priority or execution sequence. Another issue

concerns the purpose of the “enforcement time” field. It is not clear what they mean by

policy enforcement time, since in practice it would be impossible to predict when the

event would occur. Moreover, the length of the actual policy is too large to be

applicable to wireless sensor networks or even to ad hoc networks. Ayari et al. also

restricted the role of the Local Policy Decision Point (LPDP) to make local decisions,

communicate with monitors, and interact with other LPDPs to distribute policies for

non-configured nodes. This thesis expands the role of the LPDP to process and acquire

the requested policies from remote nodes. (See Chapter 3.) Finally, Ayari et al. did not

discuss the process of creating and administering the policies, which might be

challenging and require human intervention. Their research was in a different domain

than WSN, but it can be modified for the domain of WSN.

2.4 P2P algorithms in WSN

A fully distributed policy-based management approach was used to implement

our framework. The use of hashing and P2P algorithms was fundamental. This section

presents some prior research on P2P algorithms.

Thanh et al. [35] surveyed routing using distributed hash tables (DHTs), identified

various algorithms, and compared them for energy efficiency, scalability, and data

25

storage/lookup efficiency. Algorithms that could be used in our new proposed

framework are Geographic hash table (GHT) [36], Chord for sensor networks (CSN)

[37], Virtual Ring Routing (VRR) [38], Topology-based Distributed Hash Table (T-

DHT) [39], Cell Hash Routing (CHR) [40], and ScatterPastry [41]. The authors

concluded that ScatterPastry scored highest in all categories: scalability, energy

efficiency, and data storage/lookup efficiency. The GHT, CSN, and VRR algorithms

were on a par, followed by T-DHT and finally CHR.

Al Sukkar et al. [42] researched P2P systems in the domain of data-centric storage

in a WSN. The authors proposed an algorithm for efficient data-centric storage in a

WSN without the support of any physical location information system. The proposed

algorithm supplies a unique temporary node address for every node in the WSN, based

on its current relative location in the WSN. The node address will have a tree structure,

where each node may have a parent and children.

The other part of their research was the routing algorithm, which works similarly

to Pastry [43]. The routing algorithm requires each node to have information about the

first hop neighbors and forwarding requests based on the longest node address

matching the data object hash number. The work by Al Sukkar et al. [42] inspired our

work in many ways, but it differs in several aspects as well. The first aspect is the

problem that they were trying to solve. Al Sukkar et al. proposed a solution to resolve

WSN content management, while our work tries to solve WSN network management.

The second aspect involves their incorporating information about the relative (not

physical) location of the sensor node in the address allocation, while our work

incorporates a sensor's local information, such as the overlay address and Event ID

number. The third aspect involves the routing algorithm. Al Sukkar et al. dictated a

specific routing algorithm, while our work does not.

Gutierrez et al. [44] proposed to use a P2P network with a WSN to create a

programming abstraction to ease the development of WSN applications. The

abstraction relies on the feedback loop as a way to design the components of the

abstraction and define their self-managing behavior. Feedback loops allow one to

26

model different types of systems, especially self-managing systems. This type of

system consists of the following four components:

 Subsystem: The main software component

 Monitor: A software agent that monitors the Subsystem

 Correcting agent: A software agent that receives information from the Monitor

and decides on appropriate corrective actions

 Enforcement agent: A software agent that applies the corrective actions to the

Subsystem

This research has demonstrated other benefits of using a P2P overlay network that

simplifies software development for a WSN by abstracting the underlying network

complexity. Some of the limitations in the existing works are: addressing a specific

type of WSN as in [42], using arbitrary numbers for node or policy identification,

limited the number of available policies to the node local repository capacity, relying

on a human intervention in administrating policies in the system. On the other hand,

this research addresses the WSN management in general and overcome all limitations

mentioned earlier.

27

Chapter 3 TinyPolicy: A Distributed Policy Framework

In conducting this work, the existing policy-based management platform named

Finger/Finger2 [6], [14], [15] was studied and used as a basis on which to build a new

framework supporting distributed policy management. A fully distributed policy-based

framework for WSNs was designed and built.

A framework for WSNs can be designed either with a central policy repository

approach in which all nodes look up a policy in a Root node in the network, or with a

fully distributed approach in which there are multiple repositories and copies of a

policy in the WSN. The contrast between the two designs is summarized in Table 4.

Table 4 Centralized versus Distributed Policy Repository

Centralized policy repository Fully distributed policy repository

Reliability: Less reliable; a node cannot

get a policy from any other node

Reliability: More reliable; a node can

get a policy from multiple sources (two

to three sources)

Load Distribution: Policies are

concentrated in the Root node. The more

policies exist in the WSN, the more

overhead the Root node will incur.

Load Distribution: Policies are

uniformly distributed among all WSN

nodes. Policy management overhead is

distributed among different nodes.

Resilient: The loss of the Root node will

disrupt system operation.

Resilient: The system will keep

operating even with the loss of hosted

nodes.

Performance: Unpredictable; all nodes

have to get the policies from one particular

node, no matter how far it is from the

requesting nodes.

Performance: Predictable; through

hashing function selection and

adjustment, policy distribution can be

controlled to store policies closer to

their targeted node.

28

Node alive inspection: Not supported Node alive inspection: Embedded

ability to inspect for node alive status.

(Responsiveness)

The architecture of the system was inspired by other work, notably Ayari et al.

[34] This system architecture consists of four main components:

 Local policy repository for storing policies locally on the node

 LPDP (Local Policy Decision Point) for logical evaluation of the policies

 PEP (Policy Enforcement Point) for locally executing policies

 Monitor for tracking local and neighboring node information

Ayari restricted the role of the LPDP to making local decisions, communicating

with the monitor, and interacting with other LPDPs to distribute policies for non-

configured nodes. In our work, the architecture capabilities are expanded by using such

mechanisms as Peer-to-Peer (P2P) communication, overlay network, tree-structure

network, shared resources, and autonomic behavior.

Our framework consists of four main software components as shown in Figure 7.

The main four software components are: Monitor, Local Policy Decision Point (LPDP),

Policy Enforcement Point (PEP), and PolicyP2P. Moreover, the framework includes

five data repositories (see section 3.2) to support system operations.

29

Figure 7 Distributed policy framework

3.1 Software components

As shown in Figure 7, the main software components of our framework are the

following:

 C1. Monitor: Responsible for monitoring and updating Bloom filter values on

the sensor network as well as on the local sensor node. The Monitor is also

responsible for acquiring any necessary policy from any other remote sensor

node, based on a request from PolicyP2P. The Monitor will also watch the

30

most frequently used policies in the local sensor node and store them in the

Local Policy Repository.

 C2. Local Policy Decision Point (LPDP): Responsible for making local

decisions based on applicable policies, which are to be enforced by the Policy

Enforcement Point (PEP). The decision made by the LPDP is based on

policies stored in the local policy repository or acquired by the PolicyP2P

component. LPDP will first try to get the policy from the local policy

repository. If the policy does not exist there, LPDP will check the Bloom filter

to validate the existence of the policy within the sensor network. LPDP will

then decide whether to pass the request to PolicyP2P or declare the policy

does not exist.

 C3. Policy Enforcement Point (PEP): Responsible for enforcing the policy

decision (Action) provided by LPDP.

 C4. PolicyP2P: Responsible for maintaining the location of different policies

within the sensor network. When a particular policy does not exist in the local

repository, the PolicyP2P will issue a request to the Monitor to acquire the

targeted policy from a remote node.

3.2 Data repositories

Our framework includes five data repositories to support system operations, as

shown in Figure 7. The data repositories are the following:

DS1. Bloom Filter: The main objective of the Bloom filter is to inquire whether

an element is a member of a given set. The purpose of the Bloom filter is to provide

assurance on whether a policy exists on the sensor network. This process prevents any

unnecessary policy inquiry transactions on the sensor network, which results in faster

decision processing and preservation of sensor node energy.

DS2. Policy Repository: A data structure to store policy content. The policy

repository will have limited capacity and will be able to hold a predetermined number

31

of policies. The Monitor will update the Policy Repository based on the discretion of

PolicyP2P or by monitoring policy usage. The capacity of the repository is a design

choice that can be changed during development, but it can be mathematically calculated

as in (1), by dividing the available memory size after uploading the program to the

sensor's node memory by the actual size of the policy.

 (1)

To illustrate the previous equation, a Mica or IRIS sensor is used in this example.

The sensor device has a memory size of 128 kB, the policy size in this thesis

framework is 29 bytes, and the TinyPolicy program size is 30 kB. Hence, the

theoretical maximum repository capacity would be calculated as in (2). However, not

all the available memory can be used for the policy repository; part of the available

memory should be reserved for the storage of program and operating system variables.

 (2)

DS3. Node repository: A data structure used by PolicyP2P to store nearby node

overlay addresses. The PolicyP2P algorithm uses this table to forward the request

within the sensor network.

DS4. Event List: A data structure to store all possible events for the local sensor

node. It can be populated at compile time or at runtime.

DS5. Action List: A data structure to store all possible actions for the local sensor

node. It can be populated at compile time or at runtime.

32

3.3 Modified policy structure

Our work employed the policy structure and protocol used by Finger/Finger2, but

with some modifications. Our new framework requires some modifications, mainly to

the policy structure: the policy key and some other fields required by the new

framework, as shown in Figure 9. Figure 8 shows the policy structure used in Finger2,

while Figure 9 shows the modified policy structure.

Figure 8 Finger2 policy structure

The main modifications to the policy structure involved the Type, Frequency, and

Policy ID fields, as shown in Figure 9. The first modification to the structure added two

new fields, Type and Frequency. These two new fields are very important for the policy

retention algorithm, since it tracks the policy type and its frequency of use. (A more

detailed discussion of the policy retention algorithm is in Chapter 4 Policy management

in TinyPolicy.) The policy retention algorithm will use the Type field to distinguish

between local policies (policies needed by a local sensor) and hosted policies (policies

required by remote nodes). The second modification was the doubling in size of the

Policy key (policy ID) field. This change was necessary for the PolicyP2P algorithm to

work, as it needs the Policy key to be in the same number space as the Node ID. This is

because Node ID is of type int16_t; hence, the Policy key has to be of the same type

and size for the PolicyP2P algorithm to work. The PolicyP2P algorithm is discussed in

detail in Chapter 6 PolicyP2P – A Policy Overlay Network.

Policy
(structure)

Enabled
boolean

Policy_ID

uint8_t

PredicaID

Uint8_t

EventID

int

ActionID

uint8_t

preArgDesc

uint8_t

actArgDesc

uint8_t

predicateArgs

uint16_t

actionArgs

uint16_t

33

Figure 9 TinyPolicy policy structure

3.4 Multiple policies

The need to execute multiple policies per event is a major issue and can be

resolved in different ways. The most common approaches to resolve the multiple

policies issue employ a complex policy structure or policy chain. The difference

between the two approaches is that the complex policy structure uses a compound

policy structure to accommodate all required policies. In this approach, the multiple

policies structure is actually a repetitive structure of a single policy structure but with

different labels. On the other hand, the policy chain is a daisy chain of single policy

structures, each with an extra field for the address of the next policy in the chain.

Complex policy structure: In this approach, the policy structure consists of more

than one simple term (policy condition) as shown in Figure 10. The policy framework

needs to accommodate this change by modifying its process execution accordingly.

Policy
(structure)

Enabled
boolean

Type
boolean

Frequency
uint8_t

Policy_ID

uint16_t

PredicaID

Uint8_t

EventID

int

ActionID

uint8_t

preArgDesc

uint8_t

actArgDesc

uint8_t

predicateArgs

uint16_t

actionArgs

uint16_t

34

Figure 10 Complex policy structure

Policy chain: In this approach, multiple policies are connected together in a daisy

chain called a policy chain, as shown in Figure 11.

Figure 11 Policy chain

Next Block

Acc
ep

t

Reject

Block # Next Block

Acc
ep

t

Reject

Block # Next Block

Acc
ep

t

Reject

Block #

Policy #1

Policy ID: My_PolicyID {

Policy Event: myEvent{
Block Name: block#1{

Condition: my_condition;

Then: Accept
Else: Reject

}
Block Name: block#2{

Condition: my_condition;

Then: Accept
Else: Reject

}
}

}

Next

A
cc

ep
t

Reject

Policy # Next

A
cc

ep
t

Reject

Policy # Next

A
cc

ep
t

Reject

Policy #

Policy ID: My_PolicyID {

Policy Event: myEvent{

Condition: my_condition;

Then: Accept

Else: Reject

}

Next Policy: My_Next_PolicyID

}

35

Chapter 4 Policy management in TinyPolicy

The following algorithms were created to support policy management in this

thesis framework:

 Policy creation: Defines the steps for new policy creation and storage. The

flowchart for policy creation is shown in Figure 12.

 Policy modification and deletion: Defines the steps for modification or

deletion of a policy. The flowchart for policy modification and deletion is

shown in Figure 14.

 Policy execution: Defines the steps for policy execution. The flowchart for

policy execution is shown in Figure 15.

 Policy retention: Defines the steps required to retain or recycle the unwanted

policies in the node repository. The flowchart for policy retention is shown in

Figure 16.

 Multiple policies: Defines the steps required to execute multiple policies for

a single event.

In order to manage policy operations, this thesis framework uses network message

number 0x28. This message has a parameter specifying the policy's transaction type.

Table 5 lists the possible values for this parameter.

Table 5 Policy Management Messages

Message Name Description

LOAD_POLICY Load policy: Issued by the Root to load

a policy

REMOVE_POLICY Remove policy: Issued by the Root to

remove a policy

36

ENABLE_POLICY Enable policy: Issued by the Root to

enable a policy

DISABLE_POLICY Disable policy: Issued by the Root to

disable a policy

GET_POLICY Get policy: Issued by any node to

request a policy

SEND_POLICY Send policy: Issued by any node to

send the requested policy

TRIGGER_EVENT Trigger event: Issued by any node to

trigger an event on any other node

RELOAD_POLICY Reload policy: Issued by any parent

node to forward a policy to one of its

predecessors

The remaining sections of this chapter will discuss these algorithms in more

detail.

4.1 Policy creation algorithm

The new policy creation process starts by using the policy management tool,

Policy IDE, on a computer that is connected to the Root node. The user creates a policy

through the GUI of Policy IDE, as shown in Figure 13 and discussed in detail in

Appendix A Policy management tool (Policy IDE) interface. The steps for policy

creation are illustrated in Figure 12. After the policy is created using Policy IDE, the

node (Root) updates the local Bloom filter array and broadcasts the array to the rest of

the WSN nodes. To store the newly created policy in the WSN, the Root uses the

PolicyP2P software component to hash the policy ID and compute the remote target

node address for the node that will host the new policy.

37

Figure 12 Policy Creation process

Figure 13 Policy creation GUI

38

4.2 Policy modification and deletion

The policy modification and deletion process is illustrated in Figure 14. The

process starts by checking if the policy exists in the local repository. If the policy does

not exist in the local repository, the process is directed to the policy creation process as

described in section 4.1. If the policy is an existing policy, the process checks the

operation type. The operation type is either deletion or modification. If the operation

type is deletion, the Root deletes the policy from the local repository and broadcasts the

deletion request to the rest of the WSN; the other nodes then remove the targeted policy

from their local repositories. The next step in policy deletion is to re-create the

BLOOM_FILTER array based on the Root local policies remaining in the local policy

repository. Finally, the Root broadcasts the new BLOOM_FILTER to the rest of the

WSN nodes, which replace the old BLOOM_FILTER array on the other nodes.

For the policy modification process, there is no need to perform any changes on

the BLOOM_FILTER array as this process intends to change only the policy content.

Therefore, the policy creation authority (Root) retrieves the targeted policy from the

Root's local repository, and the user can use a GUI similar to the one depicted in Figure

13 to modify the targeted policy. After the policy modification operation is completed,

the Root broadcasts a deletion request to the other nodes, which remove the targeted

policy from their local repositories. The purpose of broadcasting the deletion request is

to make sure that only one version of the modified policy exists in the WSN. Finally,

the Root sends the modified policy to the targeted node using PolicyP2P.

39

Figure 14 Policy modification and deletion process

4.3 Policy execution

The policy execution process is shown in Figure 15. Each policy is associated

with an event on the sensor node. The policy execution process of the associated policy

starts when the sensor node triggers the associated event. First, the policy execution

process constructs the policy key, which is the concatenation of Node ID, Event ID, and

sequence number (sequence starts with 0) as shown in (7). The value of this

concatenated data is then hashed using a proper hashing function. The generated hash

value is the new policy key, which will be used throughout the rest of the algorithm.

The algorithm then moves to check if the policy exists in the local policy repository. If

the policy exists then two tasks are executed. The first task determines if there is more

than one policy (multiple policies/chain of policies) associated with this event. The

40

algorithm examines that by incrementing the sequence number and submitting a new

task for policy execution with the new policy key. The second task enforces the policy

by evaluating the condition in the policy and applying the required action if it is a valid

policy.

If the policy is not found in the local policy repository, the process will check the

BLOOM_FILTER to validate the existence of the policy within the WSN. If the

BLOOM_FILTER test is negative then no further action is required and the execution

is stopped. However, if the BLOOM_FILTER is positive then PolicyP2P calculates the

remote node address, after which the Policy Execution Process sends a policy request to

obtain the policy from the targeted node. If the targeted node provides the required

policy then the process posts a new task for policy lookup with an increment to the

sequence number to verify whether it is a single policy or multiple policies. After that,

the algorithm enforces the acquired policy.

The targeted node could fail to provide the required policy for many different

reasons: energy depletion, hardware error, communication error, or software error, just

to name a few. In this case, the local node sends the request to the Root. If the Root

provides the required policy then the same previous two tasks are executed. However, if

the Root does not provide the required policy then the local node stops the execution

and ends the process, because the policy does not exist.

As discussed previously, the local node might receive policies from remote nodes.

In such cases, the local node would store the policies in the local node policy repository

for future uses, based on the discretion of the policy-retention algorithm.

41

Figure 15 Policy execution process

4.4 Policy retention algorithm

The purpose of this algorithm is to keep the frequently used policies in the local

policy repository. Every time the node receives a request to load a policy, this

algorithm is triggered to check if the repository is full. If the repository is not full then

no action is necessary. However, if the policy repository is full then the algorithm

searches for a foreign policy that has the lowest frequently used rate. (Foreign policy is

defined as a policy that has been hosted in the current node based on the discretion of

the PolicyP2P algorithm.) The targeted policy is then replaced with the new policy.

Figure 16 shows the detailed steps of the algorithm.

42

Figure 16 Policy retention process

4.5 Multiple policies

For this research, to resolve the need for multiple policies, the policy chain

approach was chosen instead of the complex structure approach. As discussed in

Chapter 6 PolicyP2P – A Policy Overlay Network, the policy key (policy ID) consists

of three pieces of data as shown in Figure 19. For each triggered event, the node starts

the policy execution with sequence number equal to zero; then it increments it by one

until the BLOOM_FILTER test is negative, as shown in Figure 15. The node checks

each new policy against its local policy repository. If the policy exists, the node

executes it; otherwise, the node performs the BLOOM_FILTER test to save time and

energy.

43

Chapter 5 Bloom filter

The policy structure may vary depending on the system and application

requirements, but the most important part of any policy structure is the policy key (ID).

The policy key plays a crucial role in any policy-based system, because it is used

throughout the network to locate the targeted policy. For this reason, Chapter 6

PolicyP2P – A Policy Overlay Networkdiscusses a policy key that is based on the

sensor's local data. This effective policy key is used by the Bloom filter to inquire about

the existence of any policy within the network before wasting sensor node energy

looking up a policy that may not exist in the network. It is possible to design the system

without the Bloom filter. However, the contrast between the two designs is summarized

in Table 6.

Table 6 Advantages of Using Bloom Filter

With Bloom filter Without Bloom filter

Assurance: Provides assurance of policy

existence

Assurance: Provides no assurance

of policy existence

Lookup time: Policy is guaranteed to be

found, so lookup time is not wasted

Lookup time: Policy is not

guaranteed to be found, so lookup

time may be wasted

Alert tool: A supported tool to alert the

administrator about defective nodes

Alert tool: Cannot provide

information about defective nodes.

Transmission time: Saving around 0.002

second (2000 μs) of transmission time per

missing policy (more simulation data is in

Appendix B Mathematical Model Data).

Transmission time: Wasting 0.002

second (2000 μs) of transmission

time per missing policy (more

simulation data is in Appendix B

Mathematical Model Data).

Overhead time: Overhead time is

computation time of 0.000126 s (126 μs),

Overhead time: No computation

time overhead.

44

from the evaluation data shown in section

5.4.

5.1 Bloom filter implementation

Bloom [45] introduced for the first time the concept of using a hashing function

technique to trade-off between space and time with some allowable error. The Bloom

Filter, as it was named later, is an elegant data structure that validates the existence of

an object in the domain space with no false negatives and an acceptable rate of false

positives. It has been widely used to resolve resource constraints in various knowledge

areas, including distributed computing, distributed file systems, distributed learning,

and distributed manufacturing. There are some implementations of Bloom filters in

WSNs in content-based routing [46][47]. In addition, the Bloom filter has many other

implementations in databases, computer networks, social networks, and cryptography.

Our work implements the Bloom filter technique to inquire about the existence of any

policy within the network before expending sensor node energy on looking up a policy

that may not exist in the network. No changes to the Bloom filter algorithm were made.

However, a significant analysis was performed to choose balanced parameters for the

algorithm that are appropriate for the WSN environment.

Adam Kirsch et al. [48] researched the benefits of using fewer hashing functions

to build the Bloom filter array. The authors proved formally that only two hashing

functions are necessary to use the Bloom filter array without any loss in the asymptotic

false positive probability. Their proposed method uses two hashing functions and

 to generate k number of new hashing functions in the form of

 , where i is between 0 and k - 1.

Due to resource constraints in the sensor node, the proposed method in [48]

should prove valuable in WSNs.

Prosenjit Bose et al. [49] studied the false-positive rate in the Bloom filter

analysis provided by Bloom [45]. The authors claim that Bloom's analysis is inaccurate,

because it underestimates the false-positive rate. They provided a new analysis, but the

45

difference in rates between the two analyses is negligible and applies only to certain

specific cases.

5.2 Bloom filter analysis

In order to use the Bloom filter, it is necessary to determine the values of many

inputs, such as the optimal filter array size, the ideal number of hashing functions,

hashing function algorithms, and the acceptable maximum rate of false positives. The

following analysis should answer these questions satisfactorily.

Consider a set of n members, and an array

of m members (bits) with an initial value of zero for all members (bits). H is a set of

independent hash functions , each with output range between 1 and

m. For optimal results, k has to be calculated by the following formula [48]:

To add member index a to the set A, each bit at positions

in array A is set to 1. Any bit may be set to 1 many times. To check for membership of

item , all bits at positions in array A have to be equal to 1.

It is still possible that the conclusion is wrong (called a false positive), but the

probability of the false positive can be controlled by selecting an optimal number of

hashing functions as well as the size of the Bloom filter array. Thus, it is certainly true

that b if any bit of in array A is equal to zero. This

observation is true, because for the member to be a valid member, it has to set all

applicable bits in the array to 1. If any bit is zero then it is not a valid member.

The Bloom filter promises to be an effective algorithm; however, it raises many

questions, including the following:

 What is the optimal filter array size?

 What is the performance of the membership test?

 What is the acceptable maximum rate of false positives?

46

 What are the trade-offs in servicing the filter?

 What is the acceptable trade-off between the actual member lookup test and

the membership test?

To decide on the optimal filter size, assume n keys have been added to the filter F

with size m (bits) using k number of hash functions. Then the probability that a

particular bit still has the value of zero is

 . The probability of a false positive

in this case is given in (3) [48].

 (3)

Prosenjit Bose et al. [49] claimed that (3) is inaccurate and underestimates the

false-positive rate, but the difference in rates between the two analyses is negligible and

applies only to certain specific cases. (3) can be simplified to (4) as explained in [48].

 (4)

It can be inferred that the optimal number of hash functions is .

Thus, the filter size m (bits) can be obtained using (5).

 (5)

5.3 Hashing algorithms

Due to hardware resource limitations, hashing algorithms in the sensor node need

to be lightweight (code size and computation), independent, uniformly distributed, and

to require minimal computational power. Our work adapts the proposed method in [48]

which is based on selecting two hashing functions and as a base to

47

generate k more new hashing functions in the form of (6), where i is between 0 and k -

1.

 (6)

Moreover, section 5.4 shows that intersection of the false-positive probability

curve with the hashing function line is between 1 and 2 for both test samples of sizes

1,024 and 18,000 members, which may support the finding of Kirsch et al. [48]

However, this conclusion is derived only from visual inspection of the chart, which

needs analysis and validation.

There are many known hashing functions. However, our work required a hashing

function that is lightweight, independent, and uniformly distributed, requiring minimal

computational power. For that purpose, potential hashing functions can be shortlisted as

follows:

 Additive hash: The simplest hashing algorithm, with weak performance. The

algorithm adds the values of the characters in a string.

 XOR hash: A simple algorithm, with less than average performance. The

algorithm XORs the values of the characters in a string.

 Rotating hash: Similar to XOR hash but with multiple XOR operations. This

algorithm has minimally acceptable performance.

 Bernstein hash
1
: The algorithm adds the characters of a string and multiplies

the result by a constant value of 33. The performance results were not great,

which led to the creation of a modified algorithm called Modify Bernstein.

The new algorithm was the same, except it replaced the addition operation

with XOR.

1
 This algorithm was created by Dan Bernstein.

48

 Shift-Add-XOR hash: A very efficient algorithm for all types of data. It is

similar to rotating hash, except it replaces the multiplication with addition and

chooses a different constant number for rotation. More detailed information

about this algorithm can be found in [50].

 One-at-a-Time hash
2
: This algorithm performs very well. It consists of

multiple shift, addition, and XOR operations.

 FNV series
3
: This algorithm is a series of XORs and multiplications. It has

some weaknesses, such as collisions and sensitivity to zero values, which

make it unsuitable as a cryptographic hash function.

Table 7, reproduced from [51] and [52], provides a comparison of some hashing

algorithms. The size-1000 column represents the smallest hash table size greater than

1,000 entries. The Collision column represents the number of collisions that occurred

when hashing 38,470 English words to 32-bit values. For this research, based on the

results in Table 7, one-at-a-time and Shift-Add-XOR (similar to the rotating algorithm

but with better performance) hashing algorithms were chosen for Bloom filter usage.

Table 7 Hashing Algorithms Comparison

2
 This algorithm was created by Bob Jenkins.

3
 FNV refers to the creators' names: Glenn Fowler, Landon Curt Noll, and Phong Vo.

Name size-1000 Speed Collision

Additive 1,009 5n+3 37,006

Rotating 1,009 6n+3 24

One-at-a-Time 1,024 9n +9 0

Bernstein 1,024 7n +3 4

Pearson 1,024 12n+5 0

CRC 1,024 9n+3 1

Generalized 1,024 9n+3 0

Universal 1,024 52n+3 0

Zobrist 1,024 10n+3 1

MD4 1,024 9.5n+230 1

49

5.4 Bloom filter evaluation

The Bloom filter plays a major role in the policy execution process. Without the

Bloom filter, a sensor node would have no knowledge of which policies are available in

the network. Before starting this experiment, it was necessary to define some necessary

environment parameters: Bloom filter size, member's sample size, number of hashing

functions, and the hashing algorithm. To find reasonable values for the Bloom filter

size and the number of hashing functions, Bloom filter analysis was conducted as

shown in Chapter 5 Bloom filter. Performance can be further enhanced by using the

proposed method in [48] to apply more hashing functions to reduce the false positive

probability.

To decide on the member's sample size, the assumption here is that a reasonable

member's sample size is 1,024 members (policies), based on the fact that a conventional

policy platform can accommodate up to 20 policies on each node. Therefore, 1,024

members (policies) divided by 20 policies/node equals about 51 nodes. That is

considered a reasonable size for a wireless sensor network. At the other end of the

spectrum, the assumption of having 18,000 members (policies) will translate to 900

nodes (18,000/20 = 900), which is considered the largest single wireless sensor network

implemented to date.

Figure 17 shows the analysis of the sample size of 1,024 members. It shows that

the intersection between the false positive curve and hashing functions number line lies

between 1 and 2 hashing functions, with a probability of false positives between 0.2

and 0.4. The graph also shows that the Bloom filter array size is around 300 bytes.

50

Figure 17 Bloom filter analysis for a sample size of 1,024 members

Figure 18 shows the analysis of the sample size of 18,000 members. It shows that

the intersection between the false positive and hashing functions number line lies

between 1 and 2 hashing functions, with a probability of false positives between 0.2

and 0.4. The graph also shows that the Bloom filter array size is around 5,225 bytes.

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

1
3

7
5

1
3

8

2
0

0

2
6

3

3
2

5

3
8

8

4
5

0

5
1

3

5
7

5

6
3

8

7
0

0

7
6

3

8
2

5

8
8

8

F
a

ls
e

P
o

si
ti

v
e

p
ro

b
a

b
il

it
y

N
u

m
b

er
 o

f
H

a
sh

in
g

 F
u

n
ct

io
n

s

Array Size (Bytes)

Bloom Filter Analysis for a sample size of 1024 members

k(n) (number of hashing functions) false positive propapility

51

Figure 18 Bloom filter analysis for a sample size of 18,000 members

To conduct the simulation experiment, Tinyos-NesC [53] was used to code the

hashing algorithm on the MicaZ platform. Avrora simulation software [54] was used to

simulate the experiment. The other assumption here is that the policy ID consists of 36

characters (“0123456789abcdefghijklmnopqrstuvwxyz”). The experimental results for

1,024 members are shown in Table 8.

 Table 8 Experimental Results for 1,024 Members

Hashing

Algorithm

Name

Time

(μs)
Cycle μJ/Cycle

Energy

Consumption

(μJ)

Members
Total Time

(μs)

Energy

Consumption

(μJ)

One_At_a Time 51 176 0.0031 0.5419 1,024 52,224 554.8913

SAX 75 165 0.0031 0.5080 1,024 76,800 520.2106

Total 126 341 0.0031 1.0499 1,024 129,024 1,075.1020

The experimental results for 18,000 members are shown in Table 9. The resulting

values in both tables include running the hashing algorithm and updating the Bloom

filter. These two tables clearly show that the amount of resources the Bloom filter will

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

2
5

7
0

0

1
,3

7
5

2
,0

5
0

2
,7

2
5

3
,4

0
0

4
,0

7
5

4
,7

5
0

5
,4

2
5

6
,1

0
0

6
,7

7
5

7
,4

5
0

8
,1

2
5

8
,8

0
0

9
,4

7
5

1
0

,1
5

0

1
0

,8
2

5

1
1

,5
0

0

1
2

,1
7

5

1
2

,8
5

0

F
a

ls
e
 P

o
si

ti
v

e
 p

r
o

b
a

b
il

it
y

n
u

m
b

e
r
 o

f
H

a
sh

in
g

 F
u

n
c
ti

o
n

s

Array size (Byte)

Bloom Filter Analysis for a sample size of 18000 members

k(n) (number of hashing functions) false positive probability

52

need from a sensor node will be insignificant. For each lookup or update transaction,

the sensor node will spend 126 μs and use 1.05 μJ of energy. In the first case of 1,024

members (policies), the total time needed is 129,024 μs, and the total energy consumed

is 1,075.1 μJ.

Table 9 Experimental Results for 18,000 Members

Hashing

Algorithm Name

Time

(μs)
Cycle μJ/Cycle

Energy

Consumption

(μJ)

Members
Total Time

(μs)

Energy

Consumption

(μJ)

One_At_a Time 51 176 0.0031 0.5419 18,000 918,000 9,753.9492

SAX 75 165 0.0031 0.5080 18,000 1,350,000 9,144.3274

Total 126 341 0.0031 1.0499 18,000 2,268,000 18,898.2766

In the second case where 18,000 members (policies) were needed, the total time

was 2,268,000 μs and the total energy consumption was 18,898.285 μJ.

The Bloom filter has been widely used in many application domains, especially in

database management systems. This experiment shows how the Bloom filter can assist

a policy-based management framework for a WSN to inspect the existence of a policy

within the WSN with little computation time, minimal energy utilization, and limited

traffic.

As shown earlier, each lookup or update transaction in the Bloom filter expends

126 μs and consumes 1.0499 μJ. It is known that each AA alkaline long-life battery

produces 9,360 J. If each node has two such batteries then it can hypothetically execute

(2 * 9360 J / 1.0499 μJ/transaction) ≈ 18 billion transactions. These numbers show that

the additional overhead of the Bloom filter transactions on any sensor node will be

insignificant.

53

Chapter 6 PolicyP2P – A Policy Overlay Network

This thesis uses the name PolicyP2P for the overlay network developed to support

distributed policies in WSNs (or resource constraint devices). PolicyP2P is a collection

of algorithms that are required by the overlay network component of TinyPolicy.

PolicyP2P includes the following algorithms:

 Policy lookup and search: This algorithm defines the steps required to search

and find any required policy.

 Network formation: This algorithm defines the steps required to build a new

overlay network.

 Node joining the network: This algorithm defines the steps required to handle

a new node joining the overlay network.

 Node leaving the network: This algorithm defines the steps required to handle

an existing node leaving the overlay network.

 Network maintenance and recovery: Due to the nature of WSNs, a node may

join or leave the network abruptly, which may disconnect the overlay tree

structure and create orphan parents. This algorithm defines a mechanism to

recover and maintain the healthy tree structure of the overlay network.

 Bloom Filter: A Bloom filter is a compact data structure used to support a

decision-making process on membership of a data item in a set of data items.

This work uses a Bloom filter to inquire about the existence of a given policy

within the network before expending sensor node energy on looking up a

policy that may not exist.

The PolicyP2P algorithm, which has been inspired by the Pastry algorithm [55], is

an algorithm created to find the longest Node ID that matches the policy key. In other

words, it makes a decision on which policy key belongs to which Node ID within the

54

WSN. When the policy does not exist in the local repository, PolicyP2P issues a request

to the Monitor software component to acquire the targeted policy from a remote node.

The only similarity between Pastry and PolicyP2P is in using the longest matching

mechanism of the object hash code with the hosting node ID; no code, table structure,

or other artifacts have been reused from any implementation of Pastry. The PolicyP2P

algorithm builds an overlay network on top of the WSN as shown in Figure 22. The

overlay network structure is in a form of a tree structure as shown in Figure 23. In order

for PolicyP2P to operate, it uses the following network messages as shown in Table 10.

Table 10 Network Messages

Message Name Description

AM_REQUEST_MSG Policy Request: Issued by any

node to request a policy

transaction

AM_RESPONSEMSG Policy Response: Issued by a

targeted node in response to a

policy request

AM_HELLO_MSG Hello Message: Issued by a new

node when it is joining the overlay

network

AM_HELLO_RESP_MSG Hello-Response: Issued by the

parent node in response to a

previously received HELLO

message

AM_HELLO_ACKMSG Hello-Acknowledgment: Issued

by a newly joined node to confirm

its new address

AM_REJOIN_MSG Rejoin: Issued by a newly joined

node to request all existing

predecessor nodes to reconnect

AM_MAINT_MSG Maintenance: Issued by the Root

node to remove the defective node

55

address from the parent node

repository

AM_BF_MSG Bloom filter: Issued by the Root

node to send Bloom filter array

It is possible to design the WSN framework without an overlay network.

However, the contrast between these two designs is summarized in Table 11.

Table 11 Overlay Network versus Physical Network

Overlay network Without overlay network

Topology: Provides new information

about network topology, as neighboring

nodes are expected to be linked to each

other, giving an abstract picture of the

network topology.

Topology: Provides no information about

network topology.

Content management: The overlay

structure provides a new ability to

control the flow of sensing data using

policies. Using policies, sensing data

may be directed to a target node that is

closer to the source node.

Content management: Cannot be done

without foreknowledge of nearby nodes.

Peer-to-Peer connection: The overlay

network establishes a distance proximity

relationship between nodes. Thus, nodes

can communicate with each other in a

meaningful context.

Peer-to-Peer connection: Nodes cannot

communicate with each other in a

meaningful context.

6.1 Determining policy key

In many conventional policy-based systems, the policy key is an arbitrary

number, devoid of meaning. It will not provide any helpful information to the user; on

56

the contrary, it will add extra overhead to the process by requiring some kind of

database to maintain the relationships between policy keys and applicable nodes,

events, and should multiple policies be needed, the order of policies. In this thesis, the

policy key is a system-generated number, which provides information about the

targeted node address, event, and the order of policies in the policy chain.

The policy key plays a crucial role in our framework. The key indexing used for

the policies is an important part of how PolicyP2P looks up the policy in a node's

repository. The policy key also has implications for network traffic, because nodes will

broadcast a message for each missing policy, which will generate unwanted traffic in

the WSN. For this research, therefore, the policy key was built based on local data

within the sensor node.

Thus, the policy key consists of three parts, which are Node ID, Event ID, and a

sequence number. As shown in (7), these combined data are then hashed and the

modulus of the largest possible node ID number is computed. The probability that a

policy's hosted node will be identical to the targeted node depends on two issues: The

strength of the hashing function and the size of the WSN, as fewer nodes would tend to

increase this probability.

 (7)

As shown in Figure 19, NodeID is matching the local node overlay ID number;

Event ID is matching the Event ID value in the Event List data repository; and seqNum

is the serial number of the policy, a value between 0 and 255. The first part of the

policy key is the NodeID, which is two bytes long, similar to the local network NodeID

number. The second part is the Event ID, which is one byte long. The first character

represents the event category, and the second byte represents the event sequence

number within the sensor node. Hence, the maximum number of event categories is

 , and the total number of events per category is also , and so the total

number of possible event combinations is .

57

Figure 19 Policy key

 The third part of the policy key is seqNum, which is one byte long. seqNum

represents the policy sequence number within the chain of applicable policies (event

category). The total number of possible different policies is ; hence, every

event may have up to 256 different policies applicable to it.

Based on policy key definition in this research, it should be no two policies with

the same key and should be no one policy key applicable to more than one node. In

some cases, it is possible to have one policy applicable to multiple nodes. The

alternative solutions in this case is either to have a multiple copies of the same policy

for each node or have a generic policy which applicable to multiple nodes. This

research implements the first approach (multiple copies of the same policy) because the

other alternative requires changes on the policy structure to store the applicable node

addresses as well as creating a mechanism to be able to execute the generic policies

which adding more complexity to the framework with little benefits in return.

Policy Key = NodeID || EventID || SeqNo

NodeID, EventID, and SeqNo are sensor dependent information and can be locally accessed from from

the sensor. Thus the sensor can identify the policy ID locally without the need to reached out to any other

sensor.

EventID is 2 characters long (1 byte)

from x0 to 0xFF. The first character

represents the event category such as

(T= Temperature=1), the second

character is a hexadecimal number

representing the sequence number of

possible events in the sensor. This

number represents 24 Categories * 24

Event Seq. = 256 combinations

SeqNo is 2 characters long (1

byte) from 0x0-0xff representing

the policy sequence within the

chain of applicable policies to the

EventID. This number represents

28 = 256 different policies which

means that every Event may have

up to 256 different policies

applicable to it

For the purpose of executing multiple policies (group policy), policy execution will start with sequence

number (seq) equal to zero, and then increment the number by 1; each time, the sensor node will check

the Bloom filter to validate the policy.

NodeID is 3 characters long

(2 bytes) from x0 to 0xFFF.

Each byte represents one

level in the tree-structure

overlay network.

58

6.2 Distributed Policy Addressing

Each policy in the system will have a policy key to facilitate the search and

lookup operation in the system. The Root node is the only node that should create new

policies. The node then uses a hashing function(s) to hash the policy key, which will

have the same address space as the Node ID. Consequently, the node will forward the

policy to the closest matching Node ID in the next level. If there is a closer matching

Node ID in the lower level, then the node in the upper level will forward the policy to

the other closest matching Node ID in the lower level. This process continues until

there is no closest matching Node ID.

Figure 20 shows two policy storage examples for policy keys 0x1190 and 0x3119.

The two policies are created by the Root node, and copies of them are forwarded to the

closest matching node addresses in the Root node repository. In the first example, the

policy key is 0x1190, and the closest matching Node ID in the network is 0x1100.

Since the system is not centralized, the Root node has no knowledge of the existence of

node 0x1100. Therefore, the Root node forwards the policy to the closest matching

Node ID in its node repository (successor list). The closest matching Node ID in this

case is 0x100. Afterward, Node ID 0x100 checks its successor list and forwards the

policy to the closest matching node in its successor list, which is node 0x110.

The second example is for policy key 0x3119. Figure 20 shows that the closest

Node ID is 0x3110. However, the system is not centralized, and Root has no knowledge

of the existence of node 0x3110. Therefore, the Root node forwards the policy to the

closest matching Node ID in its node repository (successor list). The closest matching

Node ID is 0x300. Afterward, Node ID 0x300 checks its successor list and forwards the

policy to the closest matching node in its successor list, node 0x3100. Node ID 0x3100

then checks its successor nodes list to find that Node ID 0x3110 has the Node ID with

the closest match to policy key 0x3119. A copy of the policy is then forwarded to Node

ID 0x3110 and saved in that node's local policy repository.

59

Figure 20 Policy storage examples

6.3 PolicyP2P algorithm

The input to the PolicyP2P algorithm is a hashed policy key as shown in Figure

21. The algorithm checks the leftmost hexadecimal digits against the corresponding

digits in the Node ID. If they match, then the current node is the targeted Node ID, and

the policy would be stored in the current Node ID or accessed from it. If there is no

match, then the process checks the node repository to find if there is a matching node

within the current node's children. If a match is found in the node repository then the

current node sends the policy request to the remote node. If no match is found then the

current node continues checking the leftmost length – 1 digits of the policy key with the

current Node ID. If there is a match then the policy is stored in the current node. If

there is no match then the process checks if the current address is the Root. If the

current node is the Root, then the policy is stored in it; if not, the policy is not stored.

Level 1

Level 0 Root 000

Branch 100 Branch 200 Branch 300

Level 2 Leaf

110

Leaf

120

Leaf

130

Leaf

210
Branch 310

Leaf

320

Level 3

Leaf

311

Policy-ID
1190

Policy-ID
1190

Policy-ID
3119

Policy-ID
3119

Policy-ID
3119Policy-ID

1190

Policy-ID
1190

Branch F00

Branch

FF0

Leaf

F10

Leaf

FFF

Leaf

FF1

1

2

1

2

3
1

2

60

Figure 21 PolicyP2P

61

6.4 Policy lookup

Any node in the WSN can initiate a policy lookup request. The node that initiates

the lookup request will hash the policy key and forward the request to the closest

matching Node ID in level L - 1 (L is the targeted policy key level). Then the searching

process starts from that level using the PolicyP2P algorithm. If for any reason the

policy does not exist then a new policy request is sent to the Root by the initiating node.

Figure 20 shows a policy lookup example (dashed lines between node 311 and

110) for policy key 1190. Node ID 311 initiates the request and forwards it to Node ID

110, since it is the Node ID in level L – 1 that is closest to the requested policy key

1190. When the request reaches Node ID 110, the node checks its policy repository and

sends the requested policy to Node ID 311. If Node ID 110 has a child with Node ID

119 and the policy does not exist on Node ID 110 then the lookup request will be

forwarded to node 119.

6.5 Network formation

To implement a fully distributed system, the approach of this thesis is to build an

overlay network on top of the WSN as shown in Figure 22. The overlay network

structure is in the form of a tree structure with an implementation-specific number of

levels. Level zero is at the top of the tree structure representing the Root node, while

the lowest level is at the bottom of the tree structure representing the leaf nodes as

shown in Figure 23. Any node will be able to communicate with any other node in the

network; however, for a policy lookup transaction, the source node needs to send the

request to a specific node (based on the policy key hash value) in level L - 1, where L is

the targeted policy key level. The assumption here is that the number of available nodes

will always be less than the maximum number of nodes that the network can

accommodate. Therefore, the probability of finding a Node ID that matches a requested

policy key is higher with a shorter address, and most likely, the parent node in level

L - 1 will have a copy of the required policy.

62

Figure 22 Overlay network for policy-based systems

As shown in Figure 23, at any given moment in the system's life cycle, each node

is either a Root, Parent, or Leaf node. Root is the first node started in the WSN that has

one or more successors but no predecessor, and there is only one Root node in the WSN

at any given time. A Parent node has a predecessor and one or more successors. A Leaf

node has a predecessor but no successors.

Sensor Network

Sensor Overlay Network

63

Figure 23 Tree structure for the overlay network

In our research, a three-level tree structure was chosen for the implementation.

The reason is that it can accommodate up to 3,616 nodes as illustrated in Table 12 that

is larger than the largest WSN that has been implemented to date of 900 nodes.

Moreover, the largest number of policies in the system depends on the policy key,

which should be in the same numbering space as the node ID. The network size in

TinyPolicy framework is a design choice, which depends on the total number of levels

in the network. Each level in the network can have nodes where n is the level

number from 0 to n. the total number of nodes that can be accommodated in the

network is calculated by adding up all nodes in all levels. Table 12 illustrates the

calculation for a three level network, which has been implemented in this research.

Table 12 Overlay Network Size

 Number of nodes

Level 0 (Root node) 1

Level 1 15

Level 1

Level 0 Root 000

Branch 100 Branch 200 Branch 300

Level 2 Leaf

110

Leaf

120

Leaf

130

Leaf

210
Branch 310

Leaf

320

Level 3
Leaf

311

Branch F00

Leaf

FF0

Leaf

F10

Leaf

FFF

Leaf

FF1

Level L
Leaf

FFF..L

Leaf

311..L

64

Level 2 (15*15) 225

Level 3 (15*15)*15 3375

Total 3616

The overlay network starts being formed when the first node (Root) in WSN

operates; then the tree structure starts being formed by each new node joining the

WSN. Each new node starts its operation within the WSN by broadcasting a “Hello”

message to all nodes in its range and requesting a Node ID for itself. All other

(available) nodes respond by assigning and sending a new Node ID to the new node

(successor). The new node accepts the first arriving Node ID and acknowledges the

assigned Node ID to the originator (predecessor). The other nodes that send a Node ID

to the new node will have the status of the previously given Node ID as “unconfirmed”

in their node repositories and can reuse this address for other nodes in future requests.

Figure 24 illustrates the message sequence for a new node joining the WSN.

Figure 24 Message sequence for a new node joining the WSN

In this implementation, Node ID is a data field two bytes (16 bits) in length

(0x0000 - 0xFFFF). The overlay network address uses only the first three characters

(12 bits) for the Node ID. Each character in the Node ID address represents one level of

the tree. As shown in Figure 23, Level 0 has only one node, which is the Root node

New Node Existing Node

Hello(0)

Hello(New Node ID)

Ack(New Node ID)

65

with address 0x0000. Level 1 uses the first character from the left to represent nodes at

that level. Therefore, the available address space for this level is from 0x1000 to

0xF000, which represents 15 available addresses. The second and third levels will use

the second and third characters respectively. However, the third level nodes cannot

generate any new Node IDs. Therefore, no new nodes can join the network through any

of the third level nodes; the new nodes have to get their Node IDs from other nodes at

higher levels.

6.6 Node joining the network

A new node joining an existing WSN has to broadcast a “hello” message to all

nodes within its range. All nodes within the range respond with a newly generated

Node ID for the newly joining node. The value of the newly generated Node ID is

different, based on the parent tree level and parent Node ID. The new node overlay

address is the first Node ID address received by the new node. Accordingly, the node

that generated the Node ID address is the new node's predecessor. Consequently, the

predecessor receives an acknowledgment of the overlay address from the new node and

updates the status of the Node ID in its node repository to “confirm.” Figure 25 shows

the message sequence for a new node joining an existing WSN. Furthermore, the

predecessor copies all related policies (based on the new Node ID) in its repository to

the new node. As shown in Figure 25, the new node schedules a request to broadcast a

rejoin message (after it confirms its new Node ID) to maintain the tree structure and to

avoid keeping any orphan leaves or parents in the overlay network. Existing nodes that

are within the address space of the new parent will acknowledge the rejoin message to

the new parent node; accordingly, the new parent node will update its node repository

with these new addresses.

66

Figure 25 Message sequence for a join request to an existing WSN

6.7 Node leaving the network

A node may leave the network (overlay tree) deliberately or abruptly. This action

has a small effect on the system. Only policies stored on the departed node or its

successors will be partially unavailable, but the system will recover the missing policies

from predecessor nodes or from the Root node, depending on the capacity of the

affected nodes' policy repositories. When a node leaves the WSN for any reason, if that

node has any successors then the subtree becomes an orphan tree. In this case, the

system takes no immediate action. However, the Root node issues a maintenance

request to maintain network reliability, with the first request to it to access any policy

New Node Node#1

Hello(0)

Response (New AM Node ID)

Acknowledg (New Node ID)

Node#2 Node#3

Hello(0)

Hello(0)

Response (New AM Node ID)

Response (New AM Node ID)

Rejoin (Node AM ID)

Rejoin (Node AM ID)

Rejoin (Node AM ID)

Acknowledg (AM node ID)

67

that should have been accessed from any other existing node in the network.

Consequently, the Root node issues a maintenance request to its child that is

responsible for hosting the affected policy. The maintenance request will then spread

downward through the whole parent tree until it hits the defective node, removing the

defective node from the node repository of its parent. The orphan parent will keep

operating (as a disjointed parent) and serving related policy requests until a new node

replaces the departed node (parent). At that time, the new node will rejoin the original

tree because it will have been given the same node ID as the departed node. After

joining the original tree network, the new node will broadcast a rejoin message, which

requests all existing children to rejoin this new parent node.

The maintenance request process depends on the failure node level in the tree as

shown in Figure 26. If the Root was the departed node, then the network takes no

immediate action. In this case, the network will stay active but with some degradation

due to the missing nodes on the Root node. The network immediately recovers from

this failure once a new Root node replaces the departed node. The new Root rejoins the

tree by broadcasting a re-join message. All other nodes at the next level (Level 1)

respond to the new Root node. Consequently, the Root updates its node repository and

reestablishes its connection to all of its predecessors. If the defective node is at Level

1, then the network takes no immediate action. Instead, it waits for the first policy

request to the defective node. The node requesting the policy will get no response from

the defective node; accordingly, the node will send another request to the Root. The

Root will compare the policy key with its node repository. If a match is found then the

Root will send a maintenance request to the related node. If the Root gets no response,

then Root will remove the Node ID from its node repository. This situation will create

an orphan tree, as the affected node will cause a subtree to become disconnected from

the main tree. The network will keep functioning normally with some degradation

related to the missing node on the defective node, but the tree will immediately recover

from this once a new node replaces the departed node. The new replacement node will

rejoin the tree by broadcasting a re-join message. All other nodes with Level 2

addresses will respond to the new node. Consequently, the new node will update its

node repository and reestablish its connection to all of its predecessors. The process for

68

node failure in levels 2 through L is the same, except for the total number of necessary

maintenance request messages. Figure 26 illustrates the process for node failure at all

levels, while Figure 27 shows the maintenance request activities.

Figure 26 Maintenance request process

6.8 Network structure maintenance

Nodes in WSNs are prone to failure due to environmental and hardware

limitations. Nodes may fail for a variety of reasons, such as energy depletion,

communication errors, or hardware failures. Node failure creates a phenomenon of an

Level 1

Level 0

 No immediate action is required

 The tree will keep functioning normally except for maintenance requests and some missing

policies stored on the Root.

 When a new node replaces the defective Root then it broadcasts a re-join message

 Children will re-connect to the new Root.

Level L-1

Level L

 Root will send a maintenance request to the applicable Level 1 node

 If NOT successful Root updates the node status to un-used in its node repository table

 The first node joins the root will be given the first un-used address.

 The new node will broadcast a “re-join” message

 Children will try to re-connect with their new parent.

 Root will send a maintenance request to the applicable Level 1 node

 If successful, Level 1 node sends a maintenance request to the Next Level node and continue

until Level L-1 is reached.

 If NOT successful, Level L-2 will update the node status to Un-used in its repository table

 The first node joins the parent will be given the first un-used address.

 The new node will broadcast a “re-join” message

 Children will will re-connect with their new parent.

 Root will send a maintenance request to the applicable Level 1 node

 If successful, Level 1 node sends a maintenance request to the Next Level node and continue

until Level L is reached.

 If NOT successful, Level L-1 will update the node status to Un-used in its repository table

 The first node that joins the parent will be given the first un-used address.

69

orphan tree. An orphan tree is a parent of a larger tree, which was disconnected from

the main tree due to the failure of a node. This phenomenon may affect system

performance, but it will not affect system operation or functionality. Although the

system takes no immediate action in response to node failure, it will recover from this

situation by issuing maintenance requests to the predecessor nodes of the departed

node. The maintenance request will update the status of the defective node (change the

failure node address to “available”) in its parent node's repository, which will then

allow a new node to replace the defective node. Figure 27 illustrates the maintenance

request activities.

The maintenance request is triggered by the monitoring policy request algorithm,

which is illustrated in Figure 28. The system handles the maintenance request by

monitoring the policy requests to the Root that are initiated by nodes. For each policy

request to the Root, Root will assess if other nodes should have serviced the request.

Root determines that by comparing the policy key in the request with the Node IDs in

its node repository. If a match is found then Root sends a maintenance request to the

affected node at the next level (Level 1). The maintenance request will keep going

downward until it reaches the parent of the defective node.

70

Figure 27 Maintenance request activities

The complete algorithm for monitoring policy requests is illustrated in Figure 28.

The algorithm relies on analyzing the policy ID and checking it against the node IDs in

its local node repository. If the algorithm finds a match between the policy ID and node

ID, then a new maintenance request is issued to the new matched node ID. The logic

behind this process is that each policy should be stored on the node whose ID is the

longest match to its policy ID. For example, if a node ID starts with 1 then all policy

IDs that have the same number should be accessed from that node before it requests the

targeted policy from the Root.

Maintenance request

L
ev

el
 L

-1
L

ev
el

 1
L

ev
el

 L
R

o
o
t

Is node

ID alive?

Receive policy

lookup request

Send policy to

the requested

node

Send maintenance

request to applicable

node (policy ID)

should policy be

accessed from other

node?

Yes

No

End

Yes

End

Node is not

responding.

Corrective

action is neededRequest policy ID

from Parent Node

should policy

be accessed from

other node?

Yes

No

Send maintenance request to

applicable node (policy ID)

Deactivate Node

ID from repository

Deactivate Node

ID from repository

No
Is node

ID alive?
Yes

No

End

Send maintenance request to

applicable node (policy ID)

Deactivate Node ID

from repository

Request policy ID

from Parent Node

should policy

be accessed from

other node?

Yes

Is node

ID alive?
NoYes

Request policy ID

from Parent Node
End

No

71

Figure 28 Monitoring policy request flowchart

Monitoring policy request

L
e

v
e

l
3

L
e

v
e

l
2

L
e

v
e

l
1

R
o

o
t

No

No

Yes

Yes

Check Node repository

for matching node

End

Request policy ID

from Parent Node

Receive Maintenance

request

Send maintenance request

to applicable node (policy

ID)

End

Is Policy ID

digit_1<>0
Is matching

address found
Yes

No

Is Policy ID

digit_1=current

node digit_1?

Is Policy ID

digit_2<>0?

No

Yes

Check Node

repository for

matching node

Is matching

address found
Yes

Send maintenance

request to lower

node

Check Policy

repository for

matching policy

Is matching

Policy found

Yes

No

Receive

Maintenance

request

Is Policy ID

digit_2=current

node digit_2

Yes

No

End

Is Policy ID

digit_3<>0
Yes

No

Check Node repository for

matching node
Is matching

address found
Yes

Send maintenance

request to lower

node

No End

policy ID

Check Policy repository

for matching policy

Is matching

Policy found
No

Request policy ID from

Parent Node

Yes

No End

policy ID

Receive Maintenance

request

Is Policy ID

digit_3=current

node digit_3

Yes

Check Policy repository for

matching policy
Is matching

Policy found
Request policy ID

from Parent Node
No

Yes

End No

72

Chapter 7 Complexity analysis of TinyPolicy

There are many different tools and techniques for evaluating distributed network

applications. The most common types of tools are Traffic Measurement, Simulation

framework [56], and Mathematical framework. This thesis describes the dynamics of

the overlay network elements with a mathematical model to perform a quantitative

analysis of message complexity [57]. Our model is highly scalable as it provides fast

results for “what if” analyses to evaluate network performance. However, the

complexity of the model increases as the number of network elements increases.

The main objectives of this thesis are to increase the ability to support more

policies in WSNs, to improve robustness of the distributed policy framework for

WSNs, and to streamline the policy distribution processes. Therefore, our focus is to

validate and evaluate the overlay network along with its related algorithms. The main

objective of this chapter is to perform a quantitative analysis of message complexity

[57] for the overlay network. Table 13 lists the network messages used in our

framework.

Table 13 Network Message Sizes

Message Name Description

Message

Number

(Hex)

Message

Size (Bytes)

AM_REQUEST_MSG Policy Request: Issued by

any node to request a

policy transaction

0x28 29

AM_RESPONSE_MSG Policy Response: Issued by

targeted node in response

to a policy request

0x29 1

73

AM_HELLO_MSG Hello Message: Issued by a

new node when it is joining

the overlay network

0x38 2

AM_HELLO_RESP_MSG Hello-Response: Issued by

the parent node in response

to a previously received

HELLO message

0x39 6

AM_HELLO_ACK_MSG Hello-Acknowledgment:

Issued by a newly joined

node to confirm its new

address

0x3a 4

AM_REJOIN_MSG Rejoin: Issued by newly

joined node to request all

existing predecessor nodes

to reconnect

0x48 2

AM_MAINT_MSG Maintenance: Issued by

the Root node to remove

the defective node address

from the parent node

repository

0x49 4

For this model, a sensor network consists of a limited set of identical

nodes where . Each policy has to be stored in a node's local policy

repository. Each node stores a limited set of policies P =

 There is one special node in the network, which is referred to as Root. Node is

assumed to have the capability of storing a virtually unlimited set of policies .

Each node has an overlay address of length bytes. A specific number of bits

of the overlay address represent one level of the overlay tree structure. At any given

time, a node can be either a parent with overlay address or a leaf with overlay

address where . Parent node with overlay address can have a limited

74

number of leaf nodes with overlay address where the leaf number is and is the

node number. The leaf node's overlay address has to be within the domain of its parent

overlay address
 where the child level number in the overlay tree

structure is . All nodes have the same rate of transmission .

7.1 Network formation messages

The overlay network starts being formed with the startup of the Root node. Each

consecutive node has to broadcast a Hello message to join the network and wait for a

response with an overlay address from neighboring nodes. Once a response arrives, the

new node has to issue an Acknowledgment message to the parent node. Since all nodes

except Root have to broadcast one Hello message, the expected total number of Hello

messages (THM) can be calculated in (8), which is of a linear complexity

or .

THM (8)

All neighboring nodes have to respond to the new node with a Hello-Response

message. At least two nodes are required to have one Hello-Response message;

therefore, the expected total number of Hello-Response messages (THRM) can be

calculated in (9), which has a complexity of

 or .

 (9)

After a Hello-Response message arrives with the overlay address, the new node

has to acknowledge the new overlay address by responding with one Acknowledgment

message to the new parent node. Thus, the expected total number of Acknowledgment

messages (TAM) is given in (10), which is of a linear complexity or .

 (10)

75

Finally, the total number of messages required to form an overlay network is the

total of equations (8), (9), and (10).

7.2 Overhead messages

The overlay network has to maintain its tree structure. Therefore, some of the

network messages are for maintaining the overlay structure; these include Re-Join, Re-

join response, and maintenance messages.

Re-Join message

Each node, including the Root node, has to broadcast Re-join messages to re-

establish relationships with child nodes if it has been previously disconnected for any

reason. Hence, the total number of Re-join messages (TRM) is given in (11), which is

of a linear complexity or .

 (11)

Re-join response message

Responses to a Re-join message will only come from legitimate children that fall

within the assigned domain space of the issuing (parent) node. Hence, the total number

of Re-join response messages (TRRM) is given in (12). During the formation of a new

network, the total number of Re-join response messages should be zero, because the

new joining node would always be a child node, not a parent node.

 (12)

Formula (12) plotted in Figure 29 Error! Reference source not found.and data table is

in Appendix B Mathematical Model Data. The data table shows various network sizes

76

ranging from 2 nodes to 25 nodes with a 3-level overlay tree structure. Each node has a

local policy repository with a capacity of 20 entries, which means that each node can

have a maximum of 20 policies in its memory. Analysis data shows number of nodes,

Re-join message (number of messages, bytes and time), Re-join response message

(number of messages, bytes and time). The chart trend shows that the formula has a

liner complexity until the point where the number of nodes equal or greater than the

capacity of the node repository then the formula complexity becomes constant.

Figure 29 Re-join responce message

Maintenance message

Maintenance messages help the overlay network maintain a healthy structure. The

maintenance messages are initiated by Root as a result of servicing a policy that it

should not have serviced. This situation indicates that there is a missing policy or

defective node and that maintenance service is required. Thus, Root requests all nodes

in the affected parent to update the status of their associated (child) nodes. The number

of maintenance messages issued depends on the level of the affected node. If the

affected node is , where v is the level of defective node i, then the total number of

maintenance messages (TMM) is given in (13).

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

M
e

ss
a

g
e

Node

Re-join Responce message

Number of Node Rejoin Response Message Number of Messages

77

 (13)

Formula (13) plotted in Figure 30 and data table is in Appendix B Mathematical Model

Data. The data table shows various network sizes ranging from 2 nodes to 200 nodes

with a 3-level overlay tree structure. Each node has a local policy repository with a

capacity of 20 entries. Analysis data shows number of nodes, policy repository size,

network total policies, network tree levels, and number of maintenance messages. The

chart trend shows that the formula has a liner complexity.

Figure 30 total number of maintenance messages

7.3 Policy administration message

The operations of policy administration are: Load, Remove, Enable, Disable, Get,

Send, and Reload. The Load operation requests the system to issue one message to

store the policy in the targeted node. However, the targeted node may issue consecutive

requests if the targeted node has a longer matching node address in its repository.

Therefore, the total number of policy load messages (TPLM) is given in (14).

0

2000

4000

6000

8000

10000

12000

2 5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

M
e

ss
a

g
e

Node

Number of Mainenance messages for three levels tree
structure and twenty policy repository

78

 (14)

Formula (14) is similar in complexity to formula (13), which plotted in Figure 30. The

chart trend shows that the formula has a liner complexity.

The system will broadcast an administrative message for Remove, Enable, and

Disable. Therefore, the maximum possible number of messages (TADM) is given in

(15).

 (15)

Formula (15) plotted in Figure 31 and data table is in Appendix B Mathematical Model

Data. The data table shows various network sizes ranging from 2 nodes to 200 nodes

with a 3-level overlay tree structure. Each node has a local policy repository with a

capacity of 20 entries. Analysis data shows number of nodes, policy repository size,

network total policies, network tree levels, and total number of administrative

messages. The chart trend shows that the formula has a liner complexity.

79

Figure 31 Total number of administrative messages

The number of messages for Get depends on the level of the targeted node. The

system tries to get the policy from the targeted node. If the policy does not exist then

the targeted node searches the repositories of its children for addresses matching the

required policy. The Get message is forwarded to the child node if a match is found;

otherwise, the requesting node has to get the policy from the Root. Hence, the total

number of Get messages (TGMT) is given in (16) if the policy exists in the target node.

The total number of Get messages (TGMC) is given in (17) if the policy exists in a

child of the targeted node. The total number of Get messages (TGMR) is given in (18)

if the policy exists in the Root node.

 (16)

 (17)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

M
e

ss
ag

e

Node

Total Number of administrative messages

80

 (18)

Formula (16), (17), and (18) are similar in complexity to formula (15), which plotted in

Figure 31. The chart trend shows that the formula has a liner complexity.

The system responds with only one message if the targeted policy exists in the

node's repository. Hence, the total number of policy response messages (TPRM) is

given in (19).

 (19)

Formula (19) is similar in complexity to formula (15), which plotted in Figure 31. The

chart trend shows that the formula has a liner complexity.

In our mathematical model, all equations have a complexity that is constant,

linear, or quadratic in input size n. To illustrate the mathematical model by example, let

us assume a WSN with 20 sensor nodes and a 4-level overlay tree structure, with each

node's local policy repository capable of storing up to 20 policies. The formation

activities of the network are shown in Table 14.

Table 14 Network Performance for WSN with 20 Nodes

Message type Equation # Number

of

Messages

Message

Size

(bytes)

Total

Message Size

(bytes)

New network formation:

Hello

Hello response

Acknowledgment

Rejoin

(8)

(9)

(10)

(11)

19

190

19

20

2

6

4

2

38

1,140

76

40

81

Rejoin response (12) 0
4
 6

5
 0

Policy administration:

Load

(14)

400-1200

29

11,600-34,800

The total number of messages required for overlay network formation is

19 (Hello) + 190 (Hello response) + 19 (Acknowledgment) + 20 (Rejoin) = 248. The

total size of the data consumed for overlay network formation is the total size of all

required network messages, which is bytes. Loading

all policies in the network requires between 400 and 1200 messages, which translates

into a data size between 11,600 and 34,800 bytes. Therefore, the total data size for

forming the overlay network and loading all policies into the network is between

11,600 + 1,294 = 12,894 and 34,800 + 1,294 = 36,094 bytes. If each sensor node has a

transmission rate of 250 kbps or 250 kbps/8 bits = 31,250 bytes/s, then the time

required for one node to handle the overlay network formation and policy loading is

between

 and

 . Since there are 20 nodes in the network, if

we assume that they will share the load equally, then the time required by the network

is between

 and

 .

Heterogeneous network is a network with different node’s resource limitations.

Heterogeneous network affects the formation process by influencing only the number

messages for the Hello-Response and the Rejoin-Rresponse messages. Nodes that are

more restricted are expected to issue less number of these messages as they quickly

reach their full repository capacity. The other impact of the heterogeneous network is

the network topology as it is expected for nodes to be clustered around the higher

capacity node. Therefore, restricted nodes should have fewer children than the more

capable nodes.

4
 No orphan nodes must exist at the startup of a new network.

5
 The re-join message and the Hello response message are the same size

82

The following example illustrates the impact of a heterogeneous network. Let us

assume a WSN with 20 nodes and 4-levels overlay tree structure. Five of the sensor

nodes have enough memory capacity to store fifteen entries for each node and policy

repository. Five other nodes can store up to ten entries for each node and policy

repository. Five more nodes have a capacity of five entries for each node and policy

repository. The remaining five nodes have limited capacity of two entries for each node

and policy repository. The formation activities of the network are shown in Table 15.

Table 15 Network Performance for heterogeneous WSN with 20 Nodes

Message type Equation # Number

of

Messages

Message

Size

(bytes)

Total Message

Size (bytes)

New network formation:

Hello

Hello response

Acknowledgment

Rejoin

Rejoin response

(8)

(9)

(10)

(11)

(12)

19

105

19

20

0
6

2

6

4

2

6
7

38

630

76

40

0

Policy administration:

Load

(14)

160-480

29

4,640 – 13,920

The total number of messages required for overlay network formation is

19 (Hello) + 105 (Hello response) + 19 (Acknowledgment) + 20 (Rejoin) = 163. In this

example, we have less Hello response messages than the previous example

(heterogeneous WSN) because after each two new nodes joining the network one of the

five very limited resource nodes will reach its capacity and stop issue any farther Hello

response messages. The total size of the data consumed for overlay network formation

6
 No orphan nodes must exist at the startup of a new network.

7
 The re-join message and the Hello response message are the same size

83

is the total size of all required network messages, which is

 bytes. Loading all policies in the network requires between 160 and 480 messages,

which translates into a data size between 4,640 and 13,920 bytes. Therefore, the total

data size for forming the overlay network and loading all policies into the network is

between 4,640 + 784 = 5,424 and 13,920 + 784 = 14,704 bytes. If the transmission rate

is 250 kbps or 250 kbps/8 bits = 31,250 bytes/s for each sensor, then the time required

for one node to handle the overlay network formation and policy loading is between

 and

 .

7.4 Data analysis

This discrete mathematical model analyzes the complexity of significant elements

of the overlay network. The mathematical model can be expanded to include more

network elements, which will require adding proper statistical models. However, our

goal was to focus on analyzing the complexity of just the overlay network, isolating the

impact of other network elements. Our analysis has yielded data on overlay network

formation, policy loading, and the Bloom filter, as well as data on how the performance

of the central policy repository approach compares with that of the distributed policy

repository approach. Detailed results from our mathematical model are provided in

Appendix B Mathematical Model Data.

Network formation performance

Results of our analysis of network formation are provided in Appendix B

Mathematical Model Data. The table shows various network sizes ranging from 2 nodes

to 200 nodes. Each node has a leaf table with a capacity of 16 entries, meaning that

each parent node can have a maximum of 16 children. Data from our analysis show the

number of messages, bytes, and time (in seconds) of all types of messages required for

network formation: Hello, Response, Acknowledgment, and Rejoin. Figure 32

illustrates that Response messages consumed 37.5% of total network formation time for

a network of 2 nodes, increasing to 98.7% for a larger network of 200 nodes. The

percentage of time declined significantly for all other types of overlay network

84

messages. Hello messages declined from 12.5% to 0.33%. Acknowledgment messages

declined from 25% to 0.66%. Finally, Re-join messages declined from 25% to 0.33%.

Figure 32 Percentage of total formation time

Policy loading performance

Analysis data for policy loading performance are provided in Appendix B

Mathematical Model Data. The table shows various network sizes ranging from 2 nodes

to 200 nodes with a 3-level overlay tree structure. Each node's local policy repository

has a capacity of 20 entries, meaning that each node can have a maximum of 20

policies in its memory. Data from our analysis show the number of messages, bytes,

and time (in seconds) of all types of required messages (Get and Response) to load

policies into the network for P2P algorithm usage and into the local node for local node

usage. The table shows the minimum, maximum, and average performance of each

category. Figure 33 illustrates that the best-case performance (minimum time required)

for policies loading into the network is 33% of the total time versus 67% for loading

policies into the local node, a difference of 34%. This difference declined to 14% in the

worst-case performance (maximum time required), with 43% of the total time for

loading policies into the network versus 57% for loading policies into the local node.

This decline is caused by the increase in time required to load policies into the network

0

20

40

60

80

100

120

2 5 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

P
e

rc
e

n
t

Node

Percentage of total formation time consumed by each message type

Hello Message Response Message Acknowledgment Message Rejoin Message

85

from 33% to 43%, a 10% increase. On the other side, the time required to load policies

into the local node declined from 67% to 57%, a 10% decrease. The best-case

performance (Min) assumes that the Root will only need to store the policies on one of

the first level nodes, while the worst-case performance (Max) assumes that policies

have to travel all the way down to the lowest level (third level is assumed for this

analysis). The other difference is that loading policies into the local node as the best-

case performance assumes that the policy always exists on the targeted node, while the

worst-case performance assumes that the process searches the targeted node and then

an applicable child, and it finally accesses the policy from the Root node. The

performance can be improved by using different network message structures for policy

lookup and access. At present, the system uses the same network message structure for

both policy lookup and access. Using a shorter message structure for policy lookup can

significantly improve the performance of loading policies into the local node.

Figure 33 Policy loading performance

Bloom filter performance

Results from our analysis of Bloom filter performance are provided in Appendix

B Mathematical Model Data. The table shows various network sizes ranging from 2

0

10

20

30

40

50

60

70

Min Max average

P
e

rc
e

n
t

Policy loading performance

Time required to load policies into Hosted node Time required to load policies into Targeted node

86

nodes to 200 nodes with a 3-level overlay tree structure. Each node's local policy

repository has a capacity of 20 entries, meaning that each node can have a maximum of

20 policies in its memory. Data from our analysis show the total number of policies,

number of messages, bytes, and time (in seconds) required to look up policies. The

table shows the minimum, maximum, and average performance of each category.

Finally, the table shows the amount of time saved by using the Bloom filter, assuming

that the rate of missing policies is 30%. Figure 34 illustrates that the time required to

look up all policies in the best-case performance (Min) is almost equal to the total time

saved by the Bloom filter under the worst-case performance (Max). From the table, one

can also deduce that the average saving of the Bloom filter is 60% in the best-case

performance and 20% in the worst-case performance of looking up all policies.

Figure 34 Bloom filter performance with missing policies rate of 30%

Central policy repository performance

In a system with a central policy repository, the Root node functions as the only

policy repository in the network. Since there is no central policy repository system to

evaluate, TinyPolicy was modified to resemble central repository system operation. The

table in Appendix B Mathematical Model Data shows various network sizes ranging

from 2 nodes to 200 nodes with a 3-level overlay tree structure. Each node's local

0

0.5

1

1.5

2

2.5

3

3.5

4

40 100 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Se
co

n
d

s

Number of policies

Bloom filter performance with missing policies rate of 30%

Time saved by using Bloom filter in worst-case performance (Max)

Time required to lookup policies in best-case performance (Min)

87

policy repository has a capacity of 20 entries, meaning that each node can have a

maximum of 20 policies in its memory. Data from our analysis show central policy

repository size (Root), total number of policies, number of messages, number of bytes,

and time (in seconds) required to load policies into the local node repository using the

central repository approach. Finally, the table shows the amount of time required to

load the same number of policies using the distributed policy repository approach. The

data shows that the central policy repository system may perform 150% faster than the

distributed repository approach, as shown in Figure 35. However, the central policy

repository system will not provide the benefits of the distributed system, such as

reliability by having multiple policy repositories and multiple copies of the same policy

in the WSN. Load distribution is another benefit of the distributed approach. In the

centralized approach, policies are concentrated on the Root node; the more policies that

exist in the WSN, the more overhead the Root node will incur. In the distributed

approach, the load is uniformly distributed among all WSN nodes. Resiliency is another

benefit of the distributed system, as the network will keep operating even with the loss

of many hosted nodes, whereas the central repository approach will not be able to

deliver any policies if the Root fails. A more detailed discussion of the benefits of the

distributed repository approach is provided in Chapter 3 TinyPolicy: A Distributed

Policy Framework.

88

Figure 35 Central and distributed policy repository performance

0

2

4

6

8

10

12

14

16

18

20

2 5 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Se
co

n
d

s

Number of node

Performance comparison between central and distributed policy
repository

Central policy repository Distributed policy repository

89

Chapter 8 Validation of TinyPolicy through

implementation in TinyOS

Our work was greatly inspired by a policy-based platform called Finger/Finger2

developed by Bourdenas et al. [6], [14], [15] However, significant design and

implementation changes were made to it to accommodate the premises of this thesis.

The working process of our research was as follows:

1. Acquire the Finger2 source code from the original author but without the

security component, which is unrelated to this research as the security issue is

out of our scope.

2. Analyze the Finger2 architecture and design. The current architecture of

Finger2 does not support distributed policies. Therefore, major modifications

are required that are discussed in Chapter 3 TinyPolicy: A Distributed Policy

Framework.

3. Create a new debugging tool to facilitate the simulation process, and test the

policy execution in the simulation environment.

4. Simulate the Finger2 platform using the TOSSIM simulator [58].

5. Simulate the new framework using the selected simulation software. Capture,

analyze, and comment on the new framework simulation results.

6. Develop simulation scenarios. (As discussed in section 8.2, various scenarios

were created to validate specific objectives.)

7. Analyze and compare the capabilities of the distributed policy system and

Finger2.

The development environment for this research consisted of the following

software:

90

1. The underlying network, assumed to be a single hub network using Box-Mac

2 protocol [59]. Figure 37 illustrates the physical network setup.

2. Ubuntu version 7.04 operating system (Linux-like operating system) [60].

3. TinyOS version 2.1.0 operating system [53].

4. nesC programming language [53].

5. TOSSIM simulation software [53].

6. Eclipse Integrated Development Environment (IDE) [61] Build id:

20100218-1602. Figure 36 shows more detailed information about the

software installed on Eclipse.

7. Python programming language [62] version 2.5.1.

8. Yeti plug-in for tinyOS [63] version 2.

9. GTK multi-platform toolkit for creating graphical user interfaces [64].

91

Figure 36 Development environment

Figure 37 illustrates the physical network setup, which consists of a number of

sensor nodes and one Root node connected to a computer through a USB cable. The

Administrator can use the computer to communicate with the Root and any other sensor

node in the network.

92

Figure 37 Physical setup

The policy-based framework of this thesis is running on the TinyOS platform

version 2.1.0, which is an open-source operating system for wireless sensor networks

[53]. The engineering design process for the TinyOS platform requires the developer to

specify and link the needed software components for the system during development.

The developer is required to “wire” these components together to establish static links

among them. This “wiring” permits the invocation and handling of methods and events

provided by a component. These relationships can be depicted in a components diagram

that illustrates the interaction of these objects and their interconnections as shown in

Figure 39 and Figure 40. A module diagram is a type of diagram that depicts the

relationships between different modules (packages) of the system as shown in Figure

38.

Our framework is divided into two parts as shown in Figure 38. The first part is

the policy management part, which is responsible for administering, controlling,

monitoring, and executing policies in the node. The central point of this part is the

ObligationManagerP module, which represents the Policy Decision Point (PDP) in the

USB

Root
Node

93

IETF/DMTF policy architecture model [18]. The policy management part consists of

the following main modules:

ObligationManagerP: The policy decision point (PDP) of the engine that is

responsible for interpreting policies. Based on the module's decision, actions

may be triggered by forwarding the process to the ActionRepositoryP module.

 PolicyRepositoryP: Maintains local policies and provides access to policies

when required.

 EventManagerP: Intercepts internal and external events and forwards them to

ObligationManagerP for analysis and decisions.

 ActionRepositoryP: Stores all available actions and executes any actions that

may be required by the PDP ObligationManagerP.

 PredicateRepositoryP: Stores all available predicates (logical operations) and

helps interpret policy conditions when needed by the PDP

ObligationManagerP.

 HashingP: Stores the Bloom filter array and performs any hashing request.

 RequestHandlerP: Receives external policy requests and forwards them to

EventManagerP to take an appropriate action.

The second part is the node management for the overlay network, which is

responsible for forming, administering, and maintaining the overlay network nodes. As

illustrated in Figure 38, node management consists of the following main modules:

 RequestNodeHandlerP: Receives all overlay network communications and

takes appropriate actions accordingly.

 DemoAppP: Performs the startup tasks and initiates the process of forming the

overlay network.

94

 NodeRepositoryP: Performs the repository initialization process and

maintains information about the current node's children.

Figure 39 and Figure 40 are the component diagrams for the framework. They

illustrate the interaction between the framework's objects and their interconnections. It

is useful to show all components in the system, both operating system components and

user-created components. In addition, a management tool, Policy IDE, was created to

help administer, test, and debug policies. More information about this tool is provided

in Chapter 8 Validation of TinyPolicy through implementation in TinyOS.

The new features of our fully distributed policy-based framework come with an

expected overhead in program size and performance, compared with conventional

policy management systems like Finger/Finger2. Table 16 shows that the program size

of our new system is 29.3 kB, compared with 12.4 kB for the Finger2 system. This

increase was mainly due to the new functionalities of the overlay network and other

P2P-associated algorithms. Although the program size is roughly double that of

Finger2, it is still within the normal limit for wireless sensor nodes; a Mica or IRIS

device has 128 kB of in-system programmable flash memory and 4 kB of in-system

programmable EEPROM. The TinyOS operating system divides any compiled program

into two parts for ROM and RAM memory. ROM includes the code and initialized

data, while RAM includes both initialized and uninitialized data but not stack data.

Table 16 Program Size in Bytes

 RAM (Bytes) ROM (Bytes) Total (Bytes)

Finger 2 913 11,534 12,447

TinyPolicy 6,994 22,308 29,302

It is misleading to think that the difference in code size of 16,855 byte (29,302-

12,447) can be used to store more policies on the sensor node because the increase in size

is divided into two types of memories that are ROM and RAM as shown in Table 16. The

95

framework uses 10,774 byte (22,308 - 11,534) more in ROM memory, which can be used

only for code and initialized data. Therefore, we cannot use this memory space for data

storage such as more policies. On the other hand, the framework uses 6,081 (6,994 – 913)

byte more in RAM memory. RAM memory can be used for data storage such as policies.

However, if the Bloom filter size of 5.5K byte is deducted from that increase then the

actual size increase is 581 byte, which is equal to 20 policies (581 byte / 29 byte per

policy).

96

Figure 38 Module diagram

M: Module E: External C: Class T: Task

97

Figure 39 Components diagram 1/2

1

98

Figure 40 Components diagram 2/2

2

99

8.1 Policy management tool (Policy IDE)

The policy management tool is part of the IETF/DMTF policy architecture model

[18]. This part of the architecture could not be omitted from our research as had been

originally planned. During development, it proved to be a necessity for debugging,

testing, and validating policy code. The capability for policy code debugging and

validation does not exist in the current policy-based applications development

environment. Developers must use other methods, such as static analysis, batch scripts,

and emulators or simulators to perform debugging and testing through tedious and

complex manual tests. The other alternative was to leverage the scope of the policy

management tool to include debugging and policy testing capabilities. Clearly, the best

choice was to develop a policy management tool that meets the following requirements,

as shown in Figure 13:

 Integrated with the current development environment (for our work, this was

Eclipse [61], TOSSIM [53], TinyOS [53], nesC [53], and Python [62]).

 User friendly with a Graphical User Interface (GUI).

 Manage policy operations.

 Control policy-based application simulation environments.

 Interactively test policy code.

 Interactively debug policy code.

 Provide real-time debugging and testing data during the policy testing and

debugging process.

Figure 41 illustrates the architecture of the policy management tool in the

simulation environment. However, it has been modified to work in the sensor's physical

environment, as demonstrated by the Finger2IPv6 project [16], or even in the

client/server environment, as demonstrated by the TOSServ project [17]. A more

detailed explanation and examples of this tool can also be found in [65]. In our work,

100

TOSSIM connects to the Policy IDE through a communications channel that is created

by packet injection. A Java message interface supports the passing of messages and the

creation of network packets. Messages carry control instructions for the policy-based

application, such as create, delete, enable, or disable policies. Messages can also invoke

wired events or other overlay network events, such as join, re-join, or maintenance.

Figure 41 IDE architecture

The user interface of this tool was built with a GUI based on Python and GTK

[64], which has supporting backend classes for the construction of packet fields

required by policy-based applications. Messages are sent via Java to TOSSIM and then

through its packet handler to the destination sensor mote. The sensor mote provides

debugging and test data to the tool through a dedicated communication channel, which

writes to a text file. It is possible for a developer to create many different

communication channels and dedicate each one for a specific purpose, such as testing,

debugging, or alert data. This approach would be very useful to separate different types

of feedback messages and easily monitor policy execution. To display the text file

content on the tool, the GTK text widget is pre-linked at development time to the

TOSSIM

Sensor Mote

Policy-Based

Application

Packet Handler

Message

Interface

Debugging

Data

Policy Management Tool

Python GUI

(GTK)

Python Control

Code

Java massaging

Message

Interface

Text File

101

targeted text file. After every simulation command, updated data will display in the text

widget. A detailed description and illustration of this tool is in Appendix A Policy

management tool (Policy IDE) interface.

8.2 Thesis validation

This thesis has validated its objectives by collecting data using simulation,

observation, and analysis techniques. Our work employed the TOSSIM [53] software

simulator and the AVRORA [54] software emulator. These tools are open-source

software and specially designed for embedded systems and WSNs. The main advantage

of using these tools is that no additional changes need to be made to the code to execute

it in both the simulation environment and on a physical sensor node.

 This thesis validated its objectives using the following approaches:

Increase the ability to support more policies in a WSN.

Increasing the number of policies for any sensor node implies an increase in

management capabilities. To validate this objective, our research used the TOSSIM

simulation software to monitor the mechanism of acquiring policies by sensor nodes,

given the fact that the policies are now distributed.

Improve robustness of the distributed policy framework for a WSN.

Simulation scenarios were created to show the communication activities among

WSN nodes to form the overlay network. In addition, this showed how the network

works to maintain its overlay network structure.

Streamline the policy distribution processes.

To validate this objective, the new distribution process was analyzed and

compared with the existing process. A contrast table was created to summarize and

contrast the two approaches. Moreover, a simulation case was created to show the

policy's deployment process and policy key generation.

102

8.3 Increase the ability to support more policies in a WSN

Increasing the number of policies for any sensor node implies an increase in

management capabilities. To validate this objective, our research used the TOSSIM

simulation software to monitor the mechanism of acquiring policies by sensor nodes,

given the fact that the policies are now fully distributed.

In this section, simulation results are used to illustrate the policy execution

algorithm as shown in Figure 15. This simulation case consists of four sensor nodes: the

Root node and three child nodes. After the network formation process, a new policy for

event “Timer” on sensors 1, 2, and 3 is loaded into the network. All new policies are

added to node 0 (Root) because it is considered the policy creation authority for the

whole network. A load new policy request is injected into node 1000; the simulation

results for the load new policy command and policy execution afterward are shown in

Figure 42, Figure 43, Figure 44, and Figure 45.

The Bloom filter plays a major role in the policy execution process. Without the

Bloom filter, a sensor node would have no knowledge of which policies are available in

the network. Figure 42 demonstrates a similar case in which a node is not able to locate

applicable policies in the network due to an outdated Bloom filter value. Therefore, the

next step in the simulation after loading the new policy is to transfer the Bloom filter to

the targeted nodes, as shown in Figure 43.

103

Figure 42 Policy execution step 1

In
je

c
tin

g
 re

q
u

e
s
ts

 to
 a

d
d

 s
a

m
e

 p
o

lic
ie

s
 to

n
o

d
e

 1
0

0
0

, 2
0

0
0
, 3

0
0

0
R

e
c
e

iv
in

g
 a

n
d

 lo
a

d
in

g
 p

o
lic

y
 ID

 0
a
9
b

 b
y

n
o

d
e

 0

Policy ID

P
o

lic
y
 e

x
e

c
u

tio
n

 b
e

fo
re

 u
p

d
a

tin
g

B
lo

o
m

F
ilte

r
AMPacket Type: 40

Delivering Message <fingerIIRequestMsg>

 [source=0x1000]

 [target=0x0]

 [request=0x0]

 [seq=0x0]

 [context.policyId=0x0]

 [context.oblPolicy.policyId=0x0]

 [context.oblPolicy.predicateId=0x7]

 [context.oblPolicy.eventId=0x6]

 [context.oblPolicy.actionId=0x1]

 [context.oblPolicy.preArgDesc=0x2]

 [context.oblPolicy.actArgDesc=0x0]

 [context.oblPolicy.predicateArgs=0x7 0x0 0x0]

 [context.oblPolicy.actionArgs=0x2 0x0 0x0 0x0]

 [context.evt.eventId=0x0]

 [context.evt.args=0x0]

 to node 0 at 49032125187

DEBUG (0): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 0, TOS_Node_id= 0,

source=4096, target=0000, request=0.

DEBUG (0): RequestHandler: Pkt: args=0000 : predict Seq=0007 oblPolicy.PolicyID= 0000

context.policyId=0000 oblPolicy.ActionID= 0001 oblPolicy.preArgDesc= 0002

oblPolicy.actArgDesc= 0000 predicateArgs0=0007 predicateArgs1=0000 predicateArgs2=0000

DEBUG (0): RequestHandler: Pkt: actionArgs0=0002 actionArgs1=0000 acionArgs2=0000

acionArgs3=0000

DEBUG (0): Hashing.one_at_atime bv size=4800 key=bfaa4b1c base=12c0

DEBUG (0): Hashing.one_at_atime key size=4

DEBUG (0): one_at_atime hash value=4059

DEBUG (0): Hashing.sax bv size=4800 key=00000000 base=12c0

DEBUG (0): Hashing.sax Shift-Add-XOR hash value=1830

DEBUG (0): Hashing.one_at_atime bv size=4800 key=bfaa4b1c base=12c0

DEBUG (0): Hashing.one_at_atime key size=4

DEBUG (0): one_at_atime hash value=4059

DEBUG (0): RequestHandler: Pkt: eventid=6 : predict Seq=7 oblPolicy.PolicyID= 0fdb

context.policyId=0fdb predicateArgs0=0007 predicateArgs1=0000 predicateArgs2=0000

DEBUG (0): PolicyRepository-GetPolicy policID=0fdb

DEBUG (0): PolicyRepository-GetPolicy ==Policy Not Found== policID=0fdb

DEBUG (0): PolicyRepository-GetPolicy policID=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0a9b

eventId=0006 actionId=0001 predicateArgs[0]=7 predicateArgs[1]=0 predicateArgs[2]=0

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0fdb

eventId=0006 actionId=0001 predicateArgs[0]=7 predicateArgs[1]=0 predicateArgs[2]=0

DEBUG (1): EventManagerP: InternEvt::evt(eid:6, args:5,5,5)

DEBUG (1): ObligationManagerP: EventSourceI::evt(eid:6,args[0]:5,args[1]:5,args[2]:5)

DEBUG (1): PolicyRepositoryP:PolicyAccessI: GetPoliciesByEvent(eventid=6)

policykey=10000600 node_addres=1000

DEBUG (1): Hashing.one_at_atime bv size=4800 key=bfaa4a08 base=12c0

DEBUG (1): Hashing.one_at_atime key size=4

DEBUG (1): one_at_atime hash value=4059

DEBUG (1): PolicyRepositoryP:PolicyAccessI: GetPoliciesByEvent(eventid=6) policykey=0fdb

DEBUG (1): hashingP- checkBloomFilter Value key=bfaa4a08 base=12c0

DEBUG (1): Hashing.sax bv size=4800 key=00000000 base=12c0

DEBUG (1): Hashing.sax Shift-Add-XOR hash value=1830

DEBUG (1): hashingP- checkBloomFilter Value FALSE key=bfaa4a08 intKey=bfaa4a08

104

The framework (TinyPolicy) considers node 0 as the Root of the overlay network

and policy creation authority for all other nodes in the overlay network. Therefore, node

0 should always have all required policies, which implies that the Root node is a node

connected to a computer or has enough power and memory to handle the required tasks

as shown in Figure 37. Figure 43 shows the process of injecting a request to transfer the

Bloom filter from node 0 (Root) to node 1000 (child). Figure 43 also shows the result

of the process of converting the Bloom filter from a vector data structure to an array

data structure so it can be embedded in a network packet to transfer it to another node.

After the targeted node (node 1000) receives the updated value of the Bloom

filter, it can then check for applicable policies within the overlay network. This case

can be observed by comparing the results in Figure 43 and Figure 44. In Figure 43, the

Bloom filter check is negative; in Figure 44, it is positive. This difference in policy

execution result is due solely to the updated value of the Bloom filter in node 1000. In

Figure 44, the Bloom filter check is positive, but the required policy does not exist in

the local policy repository for node 1000. Therefore, node 1000 requests the missing

policy from a remote node. The targeted address of the remote node is calculated based

on the policy ID. Hence, the targeted address for the remote node is node 0, because

the policy ID is 0fdb and node 0 is the closest matching address for that number. Thus,

node 1000 requests the missing policy from node 0. When node 0 receives the request,

it fetches its local policy repository and sends the requested policy to the requesting

node (node 1000) as shown in Figure 44.

105

Figure 43 Policy execution step 2

 parent ID: 0

child ID: 4096

AMPacket Type: 80

Delivering Message <fingerIIBloomMsg>

 [source=0x0]

 [target=0x1000]

 [request=0x1]

 [bloomArray=0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

0x0

In
je

c
tin

g
 re

q
u

e
s
t to

u
p

d
a

te
 B

lo
o

m
F

ilte
r

Target node #

1000(HEX)

DEBUG (0): RequestBFReceiver- BloomFilter Msg type=0050

DEBUG (0): hashingP- readBloomFilter Value

DEBUG (0): send sendBloomFilter Command

DEBUG (0): REquestNodeHandler- sendBloomFilter array bit number 216 value=64

DEBUG (0): REquestNodeHandler- sendBloomFilter array bit number 228 value=64

DEBUG (0): REquestNodeHandler- sendBloomFilter array bit number 230 value=64

DEBUG (0): REquestNodeHandler- sendBloomFilter array bit number 339 value=8

DEBUG (0): REquestNodeHandler- sendBloomFilter array bit number 507 value=8

DEBUG (0): REquestNodeHandler- sendBloomFilter array bit number 546 value=1

DEBUG (0): sendBloomFilter array loop= 216 value=64 bloomF=64

DEBUG (0): sendBloomFilter array loop= 228 value=64 bloomF=64

DEBUG (0): sendBloomFilter array loop= 230 value=64 bloomF=64

DEBUG (0): sendBloomFilter array loop= 339 value=8 bloomF=8

DEBUG (0): sendBloomFilter array loop= 507 value=8 bloomF=8

DEBUG (0): sendBloomFilter array loop= 546 value=1 bloomF=1

DEBUG (0): sendBloomFilter packet size=673

DEBUG (0): sendBloomFilter-Node am bloom messgae sent from ID=0000 TO node=1000

DEBUG (1): RequestBFReceiver- BloomFilter Msg type=0050

DEBUG (1): receiver bloomFilter BF size=600 packet size=673 loop= 216 request array=64

bloomFilter array value=64

DEBUG (1): receiver bloomFilter BF size=600 packet size=673 loop= 228 request array=64

bloomFilter array value=64

DEBUG (1): receiver bloomFilter BF size=600 packet size=673 loop= 230 request array=64

bloomFilter array value=64

DEBUG (1): receiver bloomFilter BF size=600 packet size=673 loop= 339 request array=8

bloomFilter array value=8

DEBUG (1): receiver bloomFilter BF size=600 packet size=673 loop= 507 request array=8

bloomFilter array value=8

DEBUG (1): receiver bloomFilter BF size=600 packet size=673 loop= 546 request array=1

bloomFilter array value=1

DEBUG (1): hashingP- copyBloomFilter

DEBUG (1): BV size= 4800, array bit number 1734 value=1

DEBUG (1): BV size= 4800, array bit number 1830 value=1

DEBUG (1): BV size= 4800, array bit number 1846 value=1

DEBUG (1): BV size= 4800, array bit number 2715 value=1

DEBUG (1): BV size= 4800, array bit number 4059 value=1

DEBUG (1): BV size= 4800, array bit number 4368 value=1

DEBUG (1): receiver Hashing.copyBloomFilter call was successful

R
e

c
e

iv
in

g
 B

lo
o

m
F

ilte
r b

y
 N

o
d

e
 #

 1
0

0
0

outgoing array

values

incoming array

values

Bloomfilter bits

values

6

1

106

Figure 44 Policy execution step 3

DEBUG (1): timer:EvtTimer.fired:signal Off.evt

DEBUG (1): EventManagerP: InternEvt::evt(eid:6, args:9,9,9)

DEBUG (1): ObligationManagerP: EventSourceI::evt(eid:6,args[0]:9,args[1]:9,args[2]:9)

DEBUG (1): PolicyRepositoryP:PolicyAccessI: GetPoliciesByEvent(eventid=6)

policykey=10000600 node_addres=1000

DEBUG (1): Hashing.one_at_atime bv size=4800 key=bfaa4a08 base=12c0

DEBUG (1): Hashing.one_at_atime key size=4

DEBUG (1): one_at_atime hash value=4059

DEBUG (1): PolicyRepositoryP:PolicyAccessI: GetPoliciesByEvent(eventid=6) policykey=0fdb

DEBUG (1): hashingP- checkBloomFilter Value key=bfaa4a08 base=12c0

DEBUG (1): Hashing.sax bv size=4800 key=00000000 base=12c0

DEBUG (1): Hashing.sax Shift-Add-XOR hash value=1830

DEBUG (1): Hashing.one_at_atime bv size=4800 key=bfaa4a08 base=12c0

DEBUG (1): Hashing.one_at_atime key size=4

DEBUG (1): one_at_atime hash value=4059

DEBUG (1): hashingP- checkBloomFilter Value TRUE key=bfaa4a08 intKey=bfaa4a08

DEBUG (1): PolicyRepository-GetRemotePolicy send Policy Request Command

DEBUG (1): PolicyRepository-GetRemotePolicy policy am messgae sent from ID=1000 to

node=0000 policyID=0fdb

P
o

lic
y
 e

x
e

c
u

tio
n

 a
fte

r u
p

d
a

tin
g

 B
lo

o
m

F
ilte

r

Bloomfilter value

is TRUE

DEBUG (0): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 0, TOS_Node_id=

0, source=4096, target=0000, request=4.

DEBUG (0): RequestHandler: Pkt: args=000f : predict Seq=0000 oblPolicy.PolicyID= 0fdb

context.policyId=0fdb oblPolicy.ActionID= 0000 oblPolicy.preArgDesc= 0000

oblPolicy.actArgDesc= 0000 predicateArgs0=0000 predicateArgs1=0000 predicateArgs2=0000

DEBUG (0): RequestHandler: Pkt: actionArgs0=0000 actionArgs1=0000 acionArgs2=0000

acionArgs3=0000

DEBUG (0): RequestHandler: GET_POLICY source=1000 target=0000

DEBUG (0): PolicyRepository-GetPolicy policID=0fdb

DEBUG (0): PolicyRepository-SendPolicy send Policy Command

DEBUG (0): PolicyRepository-GetPolicy policID=0fdb

DEBUG (0): PolicyRepository-SendPolicy PolicyID=0fdb

DEBUG (0): PolicyRepository-SendPolicy PolicyID=0fdb oblPolicyId=0fdb tmpPolicy-

>policyId=0fdb

DEBUG (0): PolicyRepository-SendPolicy PolicyID=0fdb oblPolicyId=0fdb tmpPolicy-

>policyId=0fdb

DEBUG (0): PolicyRepository-SendPolicy policy am messgae sent from ID=0000 to node=1000

PolicyID=0fdb

DEBUG (1): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 4096,

TOS_Node_id= 1, source=0, target=1000, request=5.

DEBUG (1): RequestHandler: Pkt: args=000f : predict Seq=0007 oblPolicy.PolicyID= 0fdb

context.policyId=0fdb oblPolicy.ActionID= 0001 oblPolicy.preArgDesc= 0002

oblPolicy.actArgDesc= 0000 predicateArgs0=0007 predicateArgs1=0000 predicateArgs2=0000

DEBUG (1): RequestHandler: Pkt: actionArgs0=0002 actionArgs1=0000 acionArgs2=0000

acionArgs3=0000

DEBUG (1): PolicyRepository-GetPolicy policID=0fdb

DEBUG (1): PolicyRepository-GetPolicy ==Policy Not Found== policID=0fdb

DEBUG (1): PolicyRepository-GetPolicy policID=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 1110

eventId=0006 actionId=0001 predicateArgs[0]=7 predicateArgs[1]=0 predicateArgs[2]=0

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0fdb

eventId=0006 actionId=0001 predicateArgs[0]=7 predicateArgs[1]=0 predicateArgs[2]=0

N
o

d
e

 #
0

 re
s
p

o
n

d
 b

y
 s

e
n

d
in

g
 th

e
 p

o
lic

y
 to

n
o

d
e

 #
1

request for policy ID 0fdb sent to Node #0

Receive the request

Search local repository

Send the policy to Node #1

N
o

d
e

 #
1

 re
c
e

iv
e

d
 th

e
 n

e
w

 p
o

lic
y

Receive the new policy

Search local repository

Load policy to repository

107

After the requested policy arrives at the targeted node (node 1000), the node

checks its local policy repository to load the new policy if it does not exist, or

overwrites it if it already exists. Following the loading of the new policy, the node

triggers the applicable event to execute the new policy as shown in Figure 45. The new

policy is then evaluated as shown in Figure 45.

The policy evaluation process has two main parts. The first part is the predicate

evaluation, where the conditions of the policy are analyzed and evaluated. The second

part is the action evaluation, where the target actions of the policy are analyzed and

trigger the desired action by passing the execution to the targeted action component

module. The result of the policy execution simulation is shown in Figure 45.

Figure 45 Policy execution step 4

DEBUG (1): EventManagerP: ExternEvt::evt(6, 7)

DEBUG (1): ObligationManagerP: EventSourceI::evt(eid:6,args[0]:7,args[1]:0,args[2]:0)

DEBUG (1): PolicyRepositoryP:PolicyAccessI: GetPoliciesByEvent(eventid=6)

policykey=10000600 node_addres=1000

DEBUG (1): Hashing.one_at_atime bv size=4800 key=bfaa4998 base=12c0

DEBUG (1): Hashing.one_at_atime key size=4

DEBUG (1): one_at_atime hash value=4059

DEBUG (1): PolicyRepositoryP:PolicyAccessI: GetPoliciesByEvent(eventid=6) policykey=0fdb

DEBUG (1): hashingP- checkBloomFilter Value key=bfaa4998 base=12c0

DEBUG (1): Hashing.sax bv size=4800 key=00000000 base=12c0

DEBUG (1): Hashing.sax Shift-Add-XOR hash value=1830

DEBUG (1): Hashing.one_at_atime bv size=4800 key=bfaa4998 base=12c0

DEBUG (1): Hashing.one_at_atime key size=4

DEBUG (1): one_at_atime hash value=4059

DEBUG (1): hashingP- checkBloomFilter Value TRUE key=bfaa4998 intKey=bfaa4998

DEBUG (1): policy[0] -- pid: 4368, evt: 6, enabled: 1

DEBUG (1): policy[1] -- pid: 4059, evt: 6, enabled: 1

DEBUG (1): ObligationManagerP: PolicyAccessI::PolicyRetrieved(policyID:4059,

predicateArgs:7)

DEBUG (1): ObligationManagerP: NormaliseArgs: out[0]=7:desc=2,mask=1,ctx[in[i]]=0,in[i]=7

DEBUG (1): ObligationManagerP: NormaliseArgs: out[1]=7:desc=2,mask=2,ctx[in[i]]=7,in[i]=0

DEBUG (1): ObligationManagerP: NormaliseArgs: out[2]=0:desc=2,mask=4,ctx[in[i]]=7,in[i]=0

DEBUG (1): PredicateRepositoryP: PredicateAccessI.Evaluate(7, args[0]=7, args[1]=7,

args[2]= 0)

DEBUG (1): ObligationManagerP: NormaliseArgs: out[0]=2:desc=0,mask=1,ctx[in[i]]=0,in[i]=2

DEBUG (1): ObligationManagerP: NormaliseArgs: out[1]=0:desc=0,mask=2,ctx[in[i]]=7,in[i]=0

DEBUG (1): ObligationManagerP: NormaliseArgs: out[2]=0:desc=0,mask=4,ctx[in[i]]=7,in[i]=0

DEBUG (1): ObligationManagerP: NormaliseArgs: out[3]=0:desc=0,mask=8,ctx[in[i]]=7,in[i]=0

DEBUG (1): ActionRepositoryP.Trigger(1, args[0]=2, args[1]=0, args[2]= 0)

DEBUG (1): led.Toggle action performed (ctx:[2, 0, 0])

DEBUG (1): ActionRepositoryP.Trigger-case #1 (Act_led_Toggle) with led Number 2

P
o

lic
y
 e

x
e

c
u

tio
n

 a
fte

r th
e

 re
m

o
te

 p
o

lic
y
 a

c
q

u
ire

d

b
y
 th

e
 re

q
u

e
s
te

d
 n

o
d

e

Trigger the event after loading the new policy

Check bloomfilter for the policy

Access policy from

local repository

Evaluate the policy

Execute the policy action

108

8.4 Improve robustness of the distributed policy framework for WSNs

The dynamism and robustness of the WSN was improved by creating an overlay

network. The overlay network allows all nodes in the WSN to connect in a tree-

structured form. This new structure has the following advantages:

1. Nodes in the new structure are able to know more about another node's

relationship with the rest of the WSN nodes. Using the node ID, other nodes

can calculate the ID of the parent and possible child nodes of a targeted node,

which can help mitigate the risk of node errors, such as missing data or a

defective node. Any node can use this approach to find a missing policy at the

parent node instead of requesting it from the Root. In this case, the node needs

to know the address of the defective node, which can easily be calculated from

the policy key.

2. Nodes can join and leave the WSN without affecting the availability of any

policy, because there are multiple copies of each policy distributed on

different nodes within the WSN.

3. In the new structure, WSN operation will not be disrupted by any node

leaving the network, regardless of whether the node left the WSN in an

orderly or abrupt fashion. Missing nodes will not affect the operation or the

functionality of the network, because the WSN is now decentralized and

policies are distributed on multiple nodes. However, some performance

degradation may occur depending on the departed node's role, as discussed in

section 6.7.

4. The network can automatically discover and replace defective nodes by

monitoring the policy request to the Root and assigning the defective node

address to a new node, as discussed in section 6.8.

5. A new node does not have to pre-load all applicable policies into its

repository. The node acquires all applicable policies from the network during

operation and only when they are needed, as shown in section 7.2.

109

To validate this objective, two simulation scenarios were created. The first

scenario shows the communication activities between WSN nodes to form the overlay

network, while the second scenario shows node failure activities. The first scenario, for

overlay network formation, starts by booting the Root node and initializing its node

repository, as illustrated in Figure 46.

Figure 46 Overlay network formation step 1

The node's repository initialization process includes setting up the repository

array with all available node IDs that can be allocated to new child nodes later, as

illustrated in Figure 46. Each new child node joins the network by broadcasting a Hello

message. All nearby nodes will respond to the new node with a Hello Response

message. The response message includes the new node ID, which has been issued by

the parent node to the new child node. The node ID has been issued, but the status of

that ID is still unconfirmed at the parent node repository. The status of the new node ID

will be confirmed only when the parent node receives the Hello Response message

Node No. :0 will start at:43

Node No. :1 will start at:200000043

Node No. :2 will start at:400000043

DEBUG (0): timer:Boot.booted: call EvtTimer.startPeriodic(TIMER_PERIOD)

DEBUG (0): Node am new ID=0

DEBUG (0): PolicyLoader: booting...loading policy for timer.fire event

DEBUG (0): DemoApp: AMControl stared now

DEBUG (0): HelloSendI.postMsg- post Hello Msg

DEBUG (0): NodeRepository table INInode nodeIncrBase (HEX)=1000

DEBUG (0): NodeRepository table INI node i=0000, address=1000, conf=0

DEBUG (0): NodeRepository table INI node i=0001, address=2000, conf=0

DEBUG (0): NodeRepository table INI node i=0002, address=3000, conf=0

DEBUG (0): NodeRepository table INI node i=0003, address=4000, conf=0

DEBUG (0): NodeRepository table INI node i=0004, address=5000, conf=0

DEBUG (0): NodeRepository table INI node i=0005, address=6000, conf=0

DEBUG (0): NodeRepository table INI node i=0006, address=7000, conf=0

DEBUG (0): NodeRepository table INI node i=0007, address=8000, conf=0

DEBUG (0): NodeRepository table INI node i=0008, address=9000, conf=0

DEBUG (0): NodeRepository table INI node i=0009, address=a000, conf=0

DEBUG (0): NodeRepository table INI node i=000a, address=b000, conf=0

DEBUG (0): NodeRepository table INI node i=000b, address=c000, conf=0

DEBUG (0): NodeRepository table INI node i=000c, address=d000, conf=0

DEBUG (0): NodeRepository table INI node i=000d, address=e000, conf=0

DEBUG (0): NodeRepository table INI node i=000e, address=f000, conf=0

Nodes starting time

Node repository

has been

initialized in

Node# 0

110

from the new child node. The full communication process is illustrated in Figure 47.

After the relationship between the parent and child node is established and the child

node ID is configured in the new node, the child node broadcasts a Re-Join message to

request reconnection of possibly existing successor nodes. This step is not important

for forming a new tree, but it is important when the new node is replacing an old

defective node. It will help reconnect parts of the tree that were disconnected by the

departure of defective nodes. Results from a simulation of this process are shown in

Figure 48, which illustrates the process of establishing join and Re-join relationships.

111

Figure 47 Overlay network formation step 2

DEBUG (1): timer:Boot.booted: call EvtTimer.startPeriodic(TIMER_PERIOD)

DEBUG (1): Node am new ID=1

DEBUG (1): PolicyLoader: booting...loading policy for timer.fire event

DEBUG (1): DemoApp: AMControl stared now

DEBUG (1): HelloSendI.postMsg- post Hello Msg

DEBUG (1): send HelloMsg Task

DEBUG (1): sendHelloMsg-Node am Hello messgae sent from ID=0001

DEBUG (0): RequestHelloReceiver-HELLO Msg type=0038

DEBUG (0): HELLO Msg Received from Node =0001

DEBUG (0): HELLO Msg Received from child =0001

DEBUG (0): sendHelloRespMsg- start

DEBUG (0): sendHelloRespMsg- Queue size is=0001

DEBUG (0): sendHelloRespMsg- Msg Tyep from the queue =0038

DEBUG (0): sendHelloRespMsg- AMSend

DEBUG (0): sendHelloRespMsg- slot.nodadd=1000, child_nodeID=0001 , TOS_NODE_ID=0000

DEBUG (0): sendHelloRespMsg-Node am Hello resp messgae sent from ID=0000 TO ID=0001

DEBUG (1): nodeAMSend.sendDone- AMsend error number=0

DEBUG (1): RequestHelloRespReceiver- HELLO Msg type=0039 source=0000

DEBUG (1): RequestHelloRespReceiver- child_AM_Node_ID=1000, dest=0001, TOS=0001

DEBUG (1): NodeRepository table INInode nodeIncrBase (HEX)=0100

DEBUG (1): NodeRepository table INI node i=0000, address=1100, conf=0

DEBUG (1): NodeRepository table INI node i=0001, address=1200, conf=0

DEBUG (1): NodeRepository table INI node i=0002, address=1300, conf=0

DEBUG (1): NodeRepository table INI node i=0003, address=1400, conf=0

DEBUG (1): NodeRepository table INI node i=0004, address=1500, conf=0

DEBUG (1): NodeRepository table INI node i=0005, address=1600, conf=0

DEBUG (1): NodeRepository table INI node i=0006, address=1700, conf=0

DEBUG (1): NodeRepository table INI node i=0007, address=1800, conf=0

DEBUG (1): NodeRepository table INI node i=0008, address=1900, conf=0

DEBUG (1): NodeRepository table INI node i=0009, address=1a00, conf=0

DEBUG (1): NodeRepository table INI node i=000a, address=1b00, conf=0

DEBUG (1): NodeRepository table INI node i=000b, address=1c00, conf=0

DEBUG (1): NodeRepository table INI node i=000c, address=1d00, conf=0

DEBUG (1): NodeRepository table INI node i=000d, address=1e00, conf=0

DEBUG (1): NodeRepository table INI node i=000e, address=1f00, conf=0

DEBUG (1): RequestHelloRespReceiver- new AM address has been set up for

child_AM_Node_ID=1000

DEBUG (1): sendHelloAckMsg- start

DEBUG (1): sendHelloAckMsg- Queue size is=0001

DEBUG (1): sendHelloAckMsg- Ack HelloMsg Task

DEBUG (1): sendHelloAckMsg- send Ack HelloMsg Task

DEBUG (1): sendHelloAckMsg- send Ack HelloMsg source=1000, Dest=0000 address=1000

DEBUG (1): sendHelloAckMsg- Node am Hello Ack messgae sent from ID=1000 TO ID=0000

DEBUG (0): nodeRespAMSend.sendDone- AMsend error number=0000

Hello message Broadcast

Hello message received by node# 0

Node # 0 allocate node ID

1000 to the new node

New ID (1000) received by

new node and the local

node repository initialized

accordingly

New ID (1000) sends Acknowledgment message to

the new parent (0000)

DEBUG (2): timer:Boot.booted: call EvtTimer.startPeriodic(TIMER_PERIOD)

DEBUG (2): Node am new ID=2

DEBUG (2): PolicyLoader: booting...loading policy for timer.fire event

DEBUG (2): DemoApp: AMControl stared now

DEBUG (2): HelloSendI.postMsg- post Hello Msg

DEBUG (2): send HelloMsg Task

DEBUG (2): sendHelloMsg-Node am Hello messgae sent from ID=0002

DEBUG (0): RequestHelloAckReceiver- HELLO Msg type=003a

DEBUG (0): RequestHelloAckReceiver- HELLO ACK child_AM_Node_ID=1000

DEBUG (0): NodeRepositoryP:EnableNodeID Node -- nid: 4096

DEBUG (0): NodeRepository node i=0000, address=1000, conf=1

DEBUG (0): NodeRepository node i=0001, address=2000, conf=0

DEBUG (0): NodeRepository node i=0002, address=3000, conf=0

DEBUG (0): NodeRepository node i=0003, address=4000, conf=0

DEBUG (0): NodeRepository node i=0004, address=5000, conf=0

DEBUG (0): NodeRepository node i=0005, address=6000, conf=0

DEBUG (0): NodeRepository node i=0006, address=7000, conf=0

DEBUG (0): NodeRepository node i=0007, address=8000, conf=0

DEBUG (0): NodeRepository node i=0008, address=9000, conf=0

DEBUG (0): NodeRepository node i=0009, address=a000, conf=0

DEBUG (0): NodeRepository node i=000a, address=b000, conf=0

DEBUG (0): NodeRepository node i=000b, address=c000, conf=0

DEBUG (0): NodeRepository node i=000c, address=d000, conf=0

DEBUG (0): NodeRepository node i=000d, address=e000, conf=0

DEBUG (0): NodeRepository node i=000e, address=f000, conf=0

Status for node 1000 has

been confirmed in parent

node (0000) repository table

Hello message broadcast

from new node # 2

112

Figure 48 Overlay network formation step 3

DEBUG (1): sendHelloAckAMSender- AMsend error number=0

DEBUG (1): send RejoinMsg Task

DEBUG (1): sendRejoinMsg-Node am Rejoin messgae sent from ID=0001

DEBUG (0): RequestHelloReceiver-HELLO Msg type=0038

DEBUG (0): HELLO Msg Received from Node =0002

DEBUG (0): HELLO Msg Received from child =0002

DEBUG (1): RequestHelloReceiver-HELLO Msg type=0038

DEBUG (1): HELLO Msg Received from Node =0002

DEBUG (1): HELLO Msg Received from child =0002

DEBUG (1): sendHelloRespMsg- start

DEBUG (1): sendHelloRespMsg- Queue size is=0001

DEBUG (1): sendHelloRespMsg- Msg Tyep from the queue =0038

DEBUG (1): sendHelloRespMsg- system is busy try again

DEBUG (0): sendHelloRespMsg- start

DEBUG (0): sendHelloRespMsg- Queue size is=0001

DEBUG (0): sendHelloRespMsg- Msg Tyep from the queue =0038

DEBUG (0): sendHelloRespMsg- AMSend

DEBUG (0): sendHelloRespMsg- slot.nodadd=2000, child_nodeID=0002 , TOS_NODE_ID=0000

DEBUG (0): sendHelloRespMsg-Node am Hello resp messgae sent from ID=0000 TO ID=0002

DEBUG (1): sendHelloRespMsg- start

DEBUG (2): nodeAMSend.sendDone- AMsend error number=0

DEBUG (0): RequestRejoinReceiver- Msg type=0048

DEBUG (0): RequestRejoinReceiver- Parent_AM_Node_ID=1000

DEBUG (2): RequestRejoinReceiver- Msg type=0048

DEBUG (2): RequestRejoinReceiver- Parent_AM_Node_ID=1000

DEBUG (1): nodeRejoinAMSend.sendDone- AMsend error number=0

DEBUG (2): RequestHelloRespReceiver- HELLO Msg type=0039 source=0000

DEBUG (2): RequestHelloRespReceiver- child_AM_Node_ID=2000, dest=0002, TOS=0002

DEBUG (2): NodeRepository table INInode nodeIncrBase (HEX)=0100

DEBUG (2): NodeRepository table INI node i=0000, address=2100, conf=0

DEBUG (2): NodeRepository table INI node i=0001, address=2200, conf=0

DEBUG (2): NodeRepository table INI node i=0002, address=2300, conf=0

DEBUG (2): NodeRepository table INI node i=0003, address=2400, conf=0

DEBUG (2): NodeRepository table INI node i=0004, address=2500, conf=0

DEBUG (2): NodeRepository table INI node i=0005, address=2600, conf=0

DEBUG (2): NodeRepository table INI node i=0006, address=2700, conf=0

DEBUG (2): NodeRepository table INI node i=0007, address=2800, conf=0

DEBUG (2): NodeRepository table INI node i=0008, address=2900, conf=0

DEBUG (2): NodeRepository table INI node i=0009, address=2a00, conf=0

DEBUG (2): NodeRepository table INI node i=000a, address=2b00, conf=0

DEBUG (2): NodeRepository table INI node i=000b, address=2c00, conf=0

DEBUG (2): NodeRepository table INI node i=000c, address=2d00, conf=0

DEBUG (2): NodeRepository table INI node i=000d, address=2e00, conf=0

DEBUG (2): NodeRepository table INI node i=000e, address=2f00, conf=0

DEBUG (2): RequestHelloRespReceiver- new AM address has been set up for child_AM_Node_ID=2000

DEBUG (2): sendHelloAckMsg- start

DEBUG (2): sendHelloAckMsg- Queue size is=0001

DEBUG (2): sendHelloAckMsg- Ack HelloMsg Task

DEBUG (2): sendHelloAckMsg- send Ack HelloMsg Task

DEBUG (2): sendHelloAckMsg- send Ack HelloMsg source=2000, Dest=0000 address=2000

DEBUG (2): sendHelloAckMsg- Node am Hello Ack messgae sent from ID=2000 TO ID=0000

DEBUG (0): nodeRespAMSend.sendDone- AMsend error number=0000

DEBUG (0): RequestHelloAckReceiver- HELLO Msg type=003a

DEBUG (0): RequestHelloAckReceiver- HELLO ACK child_AM_Node_ID=2000

DEBUG (0): NodeRepositoryP:EnableNodeID Node -- nid: 8192

DEBUG (0): NodeRepository node i=0000, address=1000, conf=1

DEBUG (0): NodeRepository node i=0001, address=2000, conf=1

DEBUG (0): NodeRepository node i=0002, address=3000, conf=0

DEBUG (0): NodeRepository node i=0003, address=4000, conf=0

DEBUG (0): NodeRepository node i=0004, address=5000, conf=0

DEBUG (0): NodeRepository node i=0005, address=6000, conf=0

DEBUG (0): NodeRepository node i=0006, address=7000, conf=0

DEBUG (0): NodeRepository node i=0007, address=8000, conf=0

DEBUG (0): NodeRepository node i=0008, address=9000, conf=0

DEBUG (0): NodeRepository node i=0009, address=a000, conf=0

DEBUG (0): NodeRepository node i=000a, address=b000, conf=0

DEBUG (0): NodeRepository node i=000b, address=c000, conf=0

DEBUG (0): NodeRepository node i=000c, address=d000, conf=0

DEBUG (0): NodeRepository node i=000d, address=e000, conf=0

DEBUG (0): NodeRepository node i=000e, address=f000, conf=0

DEBUG (2): sendHelloAckAMSender- AMsend error number=0

DEBUG (2): send RejoinMsg Task

DEBUG (2): sendRejoinMsg-Node am Rejoin messgae sent from ID=0002

DEBUG (0): RequestRejoinReceiver- Msg type=0048

DEBUG (0): RequestRejoinReceiver- Parent_AM_Node_ID=2000

DEBUG (1): RequestRejoinReceiver- Msg type=0048

DEBUG (1): RequestRejoinReceiver- Parent_AM_Node_ID=2000

DEBUG (2): nodeRejoinAMSend.sendDone- AMsend error number=0

Re-join message broadcast by node 0001

Hello message received from new node

(0002) by Node # 0 and 1. node #1 could

not send Hello response message because

the transmission system is busy

Node # 0 allocate node ID 2000 to the new

node

Re-join message frome node 1000 has

been received by node 0 and 2

New ID (2000) received by

new node and the local

node repository initialized

accordingly

New ID (2000) sends Acknowledgment message to

the new parent (0000)

Status for node 2000 has

been confirmed in parent

node (0000) repository table

113

The second simulated scenario depicts a failure of a hosted policy node. In this

case, a node that has hosted a policy fails, and the targeted node tries to get the policy

from another node. As illustrated in Figure 49, node 3 with overlay address 3000

requires policy ID 1110. Node 3000 searches its local policy repository but does not

find the policy. It then checks its Bloom filter array and confirms that the policy ID

1110 exists in the network. Consequently, node 3000 sends a request to the hosted

policy node to get the policy. In this simulated scenario, node ID 1110 (the hosted

policy node) is defective and does not acknowledge the request. Therefore, node 3000

sends another request to node 0 (Root). The next part of the simulation output in Figure

49 illustrates the communication between the Root node and the targeted node (node ID

3000) to acquire the required policy. The rest of the simulation output in Figure 49

illustrates the execution steps for the acquired policy on the targeted node (node 3000).

114

Figure 49 Node failure case

DEBUG (3): policyAMSend.sendDone- NOT Acknowledged then add code to send the policy request to the root

DEBUG (3): PolicyRepository-GetRemotePolicy send Policy Request Command

DEBUG (3): PolicyRepository-GetRemotePolicy policy am messgae sent from ID=3000 to node=0000 policyID=1110

DEBUG (0): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 0, TOS_Node_id= 0

DEBUG (0): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 0, TOS_Node_id= 0, source=12288, target=0000,

request=4.

DEBUG (0): RequestHandler: Pkt: args=0011 : predict Seq=0000 oblPolicy.PolicyID= 1110 context.policyId=1110 oblPolicy.ActionID=

0000 oblPolicy.preArgDesc= 0000 oblPolicy.actArgDesc= 0000 predicateArgs0=0000 predicateArgs1=0000 predicateArgs2=0000

DEBUG (0): RequestHandler: Pkt: actionArgs0=0000 actionArgs1=0000 acionArgs2=0000 acionArgs3=0000

DEBUG (0): RequestHandler: GET_POLICY source=3000 target=0000

DEBUG (0): PolicyRepository-GetPolicy policID=1110

DEBUG (0): PolicyRepository-SendPolicy send Policy Command

DEBUG (0): PolicyRepository-GetPolicy policID=1110

DEBUG (0): PolicyRepository-SendPolicy policy am messgae sent from ID=0000 to node=3000 PolicyID=1110

DEBUG (3): policyAMSend.sendDone- AMsend error number=0

DEBUG (3): policyAMSend.sendDone- Acknowledged

DEBUG (3): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 12288, TOS_Node_id= 3

DEBUG (3): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 12288, TOS_Node_id= 3, source=0, target=3000, request=5.

DEBUG (3): RequestHandler: Pkt: args=0011 : predict Seq=0007 oblPolicy.PolicyID= 1110 context.policyId=1110 oblPolicy.ActionID= 0001

oblPolicy.preArgDesc= 0002 oblPolicy.actArgDesc= 0000 predicateArgs0=0003 predicateArgs1=0000 predicateArgs2=0000

DEBUG (3): RequestHandler: Pkt: actionArgs0=0002 actionArgs1=0000 acionArgs2=0000 acionArgs3=0000

DEBUG (3): PolicyRepository-GetPolicy policID=1110

DEBUG (3): PolicyRepository-GetPolicy ==Policy Not Found== policID=1110

DEBUG (3): PolicyRepository-GetPolicy policID=0000

DEBUG (3): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 1110 eventId=0006 actionId=0001 predicateArgs[0]=3

predicateArgs[1]=0 predicateArgs[2]=0

DEBUG (3): hashingP- checkBloomFilter Value TRUE key=bff7de78 intKey=bff7de78

DEBUG (3): policy[0] -- pid: 4368, evt: 6, enabled: 1

DEBUG (3): ObligationManagerP: PolicyAccessI::PolicyRetrieved(policyID:4368,

predicateArgs:3)

DEBUG (3): ObligationManagerP: NormaliseArgs: out[0]=3:desc=2,mask=1,ctx[in[i]]=2,in[i]=3

DEBUG (3): ObligationManagerP: NormaliseArgs: out[1]=3:desc=2,mask=2,ctx[in[i]]=3,in[i]=0

DEBUG (3): ObligationManagerP: NormaliseArgs: out[2]=0:desc=2,mask=4,ctx[in[i]]=3,in[i]=0

DEBUG (3): PredicateRepositoryP: PredicateAccessI.Evaluate(7, args[0]=3, args[1]=3, args[2]=

0)

DEBUG (3): ObligationManagerP: NormaliseArgs: out[0]=2:desc=0,mask=1,ctx[in[i]]=0,in[i]=2

DEBUG (3): ObligationManagerP: NormaliseArgs: out[1]=0:desc=0,mask=2,ctx[in[i]]=3,in[i]=0

DEBUG (3): ObligationManagerP: NormaliseArgs: out[2]=0:desc=0,mask=4,ctx[in[i]]=3,in[i]=0

DEBUG (3): ObligationManagerP: NormaliseArgs: out[3]=0:desc=0,mask=8,ctx[in[i]]=3,in[i]=0

DEBUG (3): ActionRepositoryP.Trigger(1, args[0]=2, args[1]=0, args[2]= 0)

DEBUG (3): led.Toggle action performed (ctx:[2, 0, 0])

DEBUG (3): ActionRepositoryP.Trigger-case #1 (Act_led_Toggle) with led Number 2

DEBUG (3): one_at_atime hash value=4368

DEBUG (3): hashingP- checkBloomFilter Value TRUE key=bff7dee8 intKey=bff7dee8

DEBUG (3): PolicyRepository-GetRemotePolicy send Policy Request Command

DEBUG (3): PolicyRepository-GetRemotePolicy policy am messgae sent from ID=3000 to node=1110 policyID=1110

115

8.5 Streamline the policy distribution processes

To validate this objective, the new distribution process was analyzed and

compared with the existing process. A table was created to summarize and contrast the

two approaches.

Table 19 contrasts an existing policy-based platform (Finger2) with our

framework (TinyPolicy). Policy deployment in TinyPolicy is dynamic and

mathematically calculated, based on the policy's ID. With this approach, the new

framework relieves the administrator of the burden of specifying a targeted node for

every policy in the system. The new framework not only creates a fully distributed

policy system but also creates a backup repository system which all nodes can access as

a last resort to find missing policies. The deployment process always starts from node 0

(Root), which is the policy creation authority. Two simulation experiments have been

conducted to load two new policies as shown in Figure 50 and Figure 51 respectively.

The result of the first simulation experiment is shown in Figure 50. It starts by injecting

a load policy message into node 0 (Root). Node 0 (Root) stores the new policy in its

local policy repository and then checks its node repository for the longest matching

node ID. Node 0 finds that node 1000 is the node ID that is closest to policy key 108f.

Therefore, node 0 sends a copy of the new policy to the matched node, which is node

1000. The result of the second simulation experiment is shown in Figure 51. It starts by

injecting a load policy message into node 0. Node 0 stores the new policy in its local

policy repository and then checks its node repository for the longest matching node ID.

Node 0 finds that node 2000 is the closest node ID to policy number 208f. Therefore,

node 0 sends a copy of the new policy to the matched node, which is node number

2000.

The system must have only one policy creation authority, which is responsible for

creating new policies and acting as a last resort for any missing policies. Any node has

the capability to create new policies. However, the policy creation authority is assumed

to be the backup policy repository for the whole system as well. Therefore, it must be

the only node in the network acting as policy creation authority and repository backup.

116

It is possible to have multiple policy creation authorities in the network, but there

would have to be a process to synchronize them to ensure they always have identical

replicas of the policy repository. Node 0 has to have adequate resources to store all

system policies, which may not be the case for other sensor nodes. There are several

approaches to resolving this issue. One approach is to have the needed resources on the

node itself, which means node 0 should have more resources than do the rest of the

nodes in the network. Another approach is to connect node 0 to a computer through a

USB connection as shown in Figure 37. Node 0 can then use the computer as a policy

repository for all the nodes in the network.

117

Figure 50 Loading first policy 108f

AMPacket Type: 40

Delivering Message <fingerIIRequestMsg>

 [source=0x0]

 [target=0x0]

 [request=0x0]

 [seq=0x0]

 [context.policyId=0x108f]

 [context.oblPolicy.policyId=0x108f]

 [context.oblPolicy.predicateId=0x7]

 [context.oblPolicy.eventId=0x5]

 [context.oblPolicy.actionId=0x1]

 [context.oblPolicy.preArgDesc=0x2]

 [context.oblPolicy.actArgDesc=0x0]

 [context.oblPolicy.predicateArgs=0x3 0x0 0x0]

 [context.oblPolicy.actionArgs=0x2 0x0 0x0 0x0]

 [context.evt.eventId=0x8f]

 [context.evt.args=0x10]

DEBUG (0): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 0, TOS_Node_id= 0, source=0, target=0, request=0.

DEBUG (0): RequestHandler: Pkt: args=1287 : predict ID=7 PolicyID= 108f

DEBUG (0): PolicyRepository-GetPolicy policID=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 108f eventId=0005 actionId=0001

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- pid: 108f, evt: 0005, enabled: 0001

DEBUG (0): RequestHandler: closest Node ID=1000

DEBUG (0): PolicyRepository-RequestLoadPolicy target=1000 pid=108f

DEBUG (0): PolicyRepository-RequestLoadPolicy send Policy Command

DEBUG (0): PolicyRepository-reqLoadPolicy Task send Policy Command

DEBUG (0): PolicyRepository-GetPolicy policID=108f

DEBUG (0): PolicyRepository-reqLoadPolicy pid=108f policID=108f

DEBUG (0): PolicyRepository-RequestLoadPolicy policy am messgae sent from ID=0000 to Node=1000

DEBUG (1): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 4096, TOS_Node_id= 1, source=0, target=4096, request=0.

DEBUG (1): RequestHandler: Pkt: args=1287 : predict ID=7 PolicyID= 108f

DEBUG (1): PolicyRepository-GetPolicy policID=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 108f eventId=0005 actionId=0001

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (1): PolicyRepositoryP:Load Policy -- pid: 108f, evt: 0005, enabled: 0001

DEBUG (1): RequestHandler: closest Node ID=0000

DEBUG (0): policyAMSend.sendDone- AMsend error number=0

Inject network packet to

load a policy ID 0x108f

Node 0 (AM address 0000) received policy# 108f

 N
o

d
e

 0
 (A

M
 a

d
d

re
s
s
 0

0
0

0
) lo

a
d

e
d

 th
e

 p
o

lic
y
 to

 th
e

lo
c
a

l re
p

o
s
ito

ry

Node 0 find a closest matching node to policy# 108f,

which is node #1 (AM address 1000)

Node 1 (AM address 1000) find no closest matching node to policy# 108f,

 N
o

d
e

 1
 (A

M
 a

d
d

re
s
s
 1

0
0

0
) lo

a
d

e
d

 th
e

 p
o

lic
y

to
 th

e
 lo

c
a

l re
p

o
s
ito

ry

Node 1 (AM address 1000) received policy# 108f

118

Figure 51 Loading second policy 208f

AMPacket Type: 40

Delivering Message <fingerIIRequestMsg>

 [source=0x0]

 [target=0x0]

 [request=0x0]

 [seq=0x0]

 [context.policyId=0x208f]

 [context.oblPolicy.policyId=0x208f]

 [context.oblPolicy.predicateId=0x7]

 [context.oblPolicy.eventId=0x4]

 [context.oblPolicy.actionId=0x2]

 [context.oblPolicy.preArgDesc=0x2]

 [context.oblPolicy.actArgDesc=0x0]

 [context.oblPolicy.predicateArgs=0x3 0x0 0x0]

 [context.oblPolicy.actionArgs=0x2 0x0 0x0 0x0]

 [context.evt.eventId=0x8f]

 [context.evt.args=0x20]

DEBUG (0): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 0, TOS_Node_id= 0, source=0, target=0, request=0.

DEBUG (0): RequestHandler: Pkt: args=1031 : predict ID=7 PolicyID= 208f

DEBUG (0): PolicyRepository-GetPolicy policID=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 108f eventId=0005 actionId=0001

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 208f eventId=0004 actionId=0002

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (0): PolicyRepositoryP:Load Policy -- pid: 208f, evt: 0004, enabled: 0001

DEBUG (0): RequestHandler: closest Node ID=2000

DEBUG (0): PolicyRepository-RequestLoadPolicy target=2000 pid=208f

DEBUG (0): PolicyRepository-RequestLoadPolicy send Policy Command

DEBUG (0): PolicyRepository-reqLoadPolicy Task send Policy Command

DEBUG (0): PolicyRepository-GetPolicy policID=208f

DEBUG (0): PolicyRepository-reqLoadPolicy pid=208f policID=208f

DEBUG (0): PolicyRepository-RequestLoadPolicy policy am messgae sent from ID=0000 to Node=2000

DEBUG (2): RequestHandler: Pkt recieved Pkt: Am type= 40, Am Packet add= 8192, TOS_Node_id= 2, source=0, target=8192, request=0.

DEBUG (2): RequestHandler: Pkt: args=1031 : predict ID=7 PolicyID= 208f

DEBUG (2): PolicyRepository-GetPolicy policID=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 208f eventId=0004 actionId=0002

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- policy list after insertion pid: 0000 eventId=0000 actionId=0000

DEBUG (2): PolicyRepositoryP:Load Policy -- pid: 208f, evt: 0004, enabled: 0001

DEBUG (2): RequestHandler: closest Node ID=0000

DEBUG (0): policyAMSend.sendDone- AMsend error number=0

Inject network packet to load a policy ID 0x208f

Node 0 (AM address 0000) received policy# 208f

 N
o

d
e

 0
 (A

M
 a

d
d

re
s
s
 0

0
0

0
) lo

a
d

e
d

 th
e

 p
o

lic
y
 to

 th
e

lo
c
a

l re
p

o
s
ito

ry

Node 0 find a closest matching node to policy# 208f,

which is node #2 (AM address 2000)

Node 2 (AM address 2000) received policy# 208f

 N
o

d
e

 2
 (A

M
 a

d
d

re
s
s
 2

0
0

0
) lo

a
d

e
d

 th
e

 p
o

lic
y

to
 th

e
 lo

c
a

l re
p

o
s
ito

ry

Node 2 (AM address 2000) find no closest matching node to policy# 208f,

119

8.6 Framework limitations and constraints

During simulation and implementation, the framework exhibited some limitations

and constraints which may restrict its features and operations. However, these

limitations can be overcome by modifying the network setup or making changes to the

system's code. Following are a list of the main limitations and constraints.

Network topology: The network topology plays a major role in getting a node ID.

Each node has a limited number of addresses that can be given to a new node joining

the network. In some cases where nodes are clustered in a very small area, the parent

node can exhaust all its available addresses and reject any new join requests, as

illustrated in Figure 52. The limitation is that the new node keeps getting the reject

message from the parent node as long as the closest node to it is a parent node whose

node repository is full. In such cases, one solution is to move the new node away from

that parent node so it can get the new address from another parent node. Another

solution is to increase the node repository capacity in the system, which may require a

code change in the system to increase the address space, increase the overlay tree

levels, or both.

120

Figure 52 Network topology limitation

Capacity of repositories: The framework uses repositories to store the node

overlay address and policy. An array structure is used to implement policy and node

repositories. There are naturally some hardware and software limitations on how large

these repositories can be for a sensor node. During simulation, it appears that

compilation for TOSSIM has more relaxed rules than compilation for a mote. To

determine limitations on policy repository capacity, a number of compilation trials for

TOSSIM and a mote were conducted. The program was successfully compiled for

TOSSIM simulation and a Micaz mote with a large repository size of 20,000 policies

and a 15-node repository capacity. However, the program did not compile for a Micaz

mote with a repository size of 1,928 policies and a 15-node repository capacity, as

shown in Figure 53.

Figure 53 Compilation error when policy repository size reached 1928

(22): sendHelloAckMsg- Node am Hello Ack messgae sent from ID=f000 TO ID=0000

DEBUG (0): nodeRespAMSend.sendDone- AMsend error number=0000

DEBUG (0): RequestHelloAckReceiver- HELLO Msg type=003a

DEBUG (0): RequestHelloAckReceiver- HELLO ACK child_AM_Node_ID=f000

DEBUG (0): NodeRepositoryP:EnableNodeID Node -- nid: 61440

DEBUG (0): NodeRepository node i=0000, address=1000, conf=1

DEBUG (0): NodeRepository node i=0001, address=2000, conf=1

DEBUG (0): NodeRepository node i=0002, address=3000, conf=1

DEBUG (0): NodeRepository node i=0003, address=4000, conf=1

DEBUG (0): NodeRepository node i=0004, address=5000, conf=1

DEBUG (0): NodeRepository node i=0005, address=6000, conf=1

DEBUG (0): NodeRepository node i=0006, address=7000, conf=1

DEBUG (0): NodeRepository node i=0007, address=8000, conf=1

DEBUG (0): NodeRepository node i=0008, address=9000, conf=1

DEBUG (0): NodeRepository node i=0009, address=a000, conf=1

DEBUG (0): NodeRepository node i=000a, address=b000, conf=1

DEBUG (0): NodeRepository node i=000b, address=c000, conf=1

DEBUG (0): NodeRepository node i=000c, address=d000, conf=1

DEBUG (0): NodeRepository node i=000d, address=e000, conf=1

DEBUG (0): NodeRepository node i=000e, address=f000, conf=1

DEBUG (0): sendHelloRespMsg-Node array is FULL or has not been initialized

DEBUG (23): send HelloMsg Task

DEBUG (23): sendHelloMsg-Node am Hello messgae sent from ID=0017

DEBUG (0): HELLO Msg Received from Node =0017

N
o

d
e

 0
 h

a
s

 a
 fu

ll n
o

d
e

 re
p

o
s

ito
ry

L
a

s
t n

o
d

e
 w

a
s

 ID
 2

2
 (1

6
 H

e
x
)

Node 23 (17 Hex) send Hello message

Node 0 received the Hello message

Node 0 can not give a new

address

//opt/tinyos-2.1.0/tos/system/BitVectorC.nc(DemoAppC.BitVectorC):78: warning: non-atomic read

/opt/tinyos-2.1.0/tos/system/BitVectorC.nc(DemoAppC.BitVectorC):83: warning: non-atomic r/w

../src/core/PolicyRepositoryP.nc:70: error: size of array 'PolicyRepositoryP$policies' is too large

121

A number of compilation attempts were conducted to determine the maximum

policy repository limit. The experimental results are shown in Table 17, and Figure 54

illustrates the result of the compilation experiments for the policy repository limitation.

Table 17 Policy Repository Maximum Limit Experiment

Policy Repository size ROM size RAM size

20 22592 7006

40 22592 7346

60 22592 7686

80 22592 8026

100 22592 8366

200 22600 10066

300 22600 11766

400 22600 13466

1000 22600 23666

1900 22600 38966

1910 22600 39136

1920 22600 39306

1925 22600 39391

1926 22600 39408

1927 22600 39425

1928 error error

122

Figure 54 Compilation experiment with different policy repository size

To determine limitations on node repository capacity, a number of compilation

trials for TOSSIM and a mote were conducted. The program was successfully compiled

for TOSSIM simulation and a Micaz mote with a large repository size of 20,000 nodes

and a 20-policy repository capacity. However, the program did not compile for a Micaz

mote with a repository size of 10,922 nodes and a 20-policy repository capacity, as

shown in Figure 55.

Figure 55 Compilation error when node repository size reached 10922

Several attempts were made to get the maximum node repository limits. The

experimental results are shown in Table 18, and Figure 56 illustrates the summary

result of the compilation experiments for the policy repository limits.

5000

8000

11000

14000

17000

20000

23000

26000

29000

32000

35000

38000

2
0

4
0

6
0

8
0

1
0

0

2
0

0

3
0

0

4
0

0

1
0

0
0

1
9

0
0

1
9

1
0

1
9

2
0

1
9

2
5

1
9

2
6

1
9

2
7

Compilation experiment with different policy
repository size

RAM size ROM size

/opt/tinyos-2.1.0/tos/system/BitVectorC.nc(DemoAppC.BitVectorC):78: warning: non-atomic read

/opt/tinyos-2.1.0/tos/system/BitVectorC.nc(DemoAppC.BitVectorC):83: warning: non-atomic r/w

../src/core/NodeRepositoryP.nc:39: error: size of array 'NodeRepositoryP$nodes' is too large

123

Table 18 Node Repository Maximum Limit Experiment

Node Repository size ROM size RAM size

15 22592 7006

30 22592 7051

60 22592 7141

120 22592 7321

240 22592 7681

500 22598 8461

1000 22598 9961

2000 22598 12961

4000 22598 18961

8000 22598 30961

10000 22598 36961

10900 22598 39661

10920 22598 39721

10921 22598 39724

10922 22598 39727

10923 error error

Figure 56 Compilation experiment with different node repository size

5000

8000

11000

14000

17000

20000

23000

26000

29000

32000

35000

38000
1

5

3
0

6
0

1
2

0

2
4

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

1
0

0
0

0

1
0

9
0

0

1
0

9
2

0

1
0

9
2

1

1
0

9
2

2

Compilation experiment with different Node
repository size

RAM size ROM size

124

Network size: This thesis implementation chose a three-level tree structure, which

can accommodate up to 3,616 nodes as illustrated in Table 12. A larger network size

would require a change to the overlay address space. Another option is to increase the

number of tree levels in the overlay network.

Race condition: This case appears when two or more motes try to acquire the

same node ID. The system recovers from this condition by allowing only nodes with

unique addresses to be in the overlay tree. The other node has to be restarted but it will

not affect the system operation if it stays on, as it becomes a duplicate node in the

network.

Unsuccessful acknowledgment of the node ID: This case appears when a node

fails to send an acknowledgment of its new address to its parent node or the parent node

fails to receive it. The system recovers from this condition by allowing only nodes with

unique addresses to be in the overlay tree. Thus, the new node has a valid node ID, but

it is not part of the overlay network, and its address will be given to the first new node

joining the network.

125

Chapter 9 Conclusions and Future Work

Policy-based systems exist in various implementation domains, such as data

center management, security, privacy, and computer network management. In the

future, policy-based systems are expected to play an even more important role in the

Internet of Things (IoT), due to their great ability to abstract hardware complexity from

a system's users. Policy-based management will help WSNs resolve the challenging

issues of governing and controlling embedded devices. For these existing and future

implementation domains, there is a need to innovate a new policy-based engine that is

lightweight, dynamic, decentralized yet well connected, and capable of handling

numbers of policies beyond a device's local physical capacity. Another benefit of such a

model is that it will push the most widely used policies onto the device as opposed to

leaving them on the gateway node, as it is the case in existing systems.

A new distributed policy framework for WSNs was successfully created and

tested. The new framework supports many new features, such as dynamically

distributed policies by mathematically calculating the policy key using a hashing

algorithm, building an overlay network with a tree structure over a WSN, decentralized

policy-based managing which does not rely entirely on a central or local policy

repository and yet is well connected and dynamic, just to name a few. Our first

objective was to extend the WSN management functionalities beyond conventional

policy management systems like Finger/Finger2 by increasing the number of policies

that can be individually stored in any sensor node. Section 8.3 shows a simulation case

where a node with a policy missing from its local policy repository can still access the

missing policy from remote nodes within the WSN. This case confirms that the number

of policies available for any sensor node has been increased beyond the sensor's

physical capacity to the maximum capacity of the whole WSN.

The overlay network provides information about the topology of the WSN, since

new nodes will normally connect to a nearby node, which provides the approximate

node location and distance from other nodes. The topology information of the WSN can

126

also be used for administrative purposes, such as using policies to direct the flow of

sensing data to a targeted node that is closer to the source node. The overlay network

over the WSN also improves distributed policy system dynamism and robustness,

which allows nodes to establish P2P connections and find required objects (policies)

mathematically without a centralized repository index system. Likewise, under the new

system, policies become more accessible, and their availability improves, due to the

fact that policies are now dynamically distributed and can be located mathematically

within the WSN.

Moreover, if for any reason a hosted node becomes defective, policies can be

retrieved from other nodes. Finally, the new policy framework conceals the complexity

of administering the policy distribution process from the users by creating a dynamic

mechanism for hosting and looking up a required policy within the WSN with minimal

user intervention.

Many new algorithms and modified versions of existing algorithms have been

implemented in this new framework, particularly those related to hashing and Bloom

filter algorithms. The Bloom filter has been widely used in various domains, especially

database management systems. Section 5.4 shows that the Bloom filter can help the

policy framework check the existence of a policy within the WSN with little

computation time, minimal energy, and limited traffic.

While policy-based management enhances the autonomous behavior of WSNs, it

adds to the complexity of the debugging process. To meet this challenge, a new tool,

Policy IDE, was developed to control the simulation environment for the WSN in

conjunction with a graphical user interface and packet injection mechanism. As a result,

interactive simulations, granular unit testing, interactive debugging, and execution

tracing are feasible for policy-based applications. This augments and streamlines the

policy development process in particular, by enabling developers to develop, deploy,

and test policies before they are used in production environments and on hardware

sensor motes. As discussed in Chapter 8 Validation of TinyPolicy through

implementation in TinyOS, these new features come with an expected overhead in

127

program size and performance, compared with conventional policy management

systems like Finger/Finger2.

This thesis applies the concept of sharing node resources to achieve the

framework objectives. Table 19 shows the contrast between Finger2 (the existing

platform) and TinyPolicy (the new framework of this thesis) for implementing a policy-

based platform in WSN.

Table 19 Contrast Between TinyPolicy and Finger2

Attribute TinyPolicy Finger2

Max. Number of

policies

The total capacity of the

WSN network

20 per node

Policy Storage Fully distributed Local/node

Policy Key System-generated number Arbitrary number

Policy Deployment
Mathematically calculated

(auto)

Targeted-manual

Network Type Overlay network Physical network

Node Deployment

Nodes with similar

functionalities are

exchangeable

Nodes with similar

functionalities are

exchangeable if they are

pre-loaded with all

applicable policies

Node Failure/policy

availability

Policies will be available

from other nodes

N/A

Node Failure/policy

access performance

Relatively slower N/A

Application domain

Framework can be used for

content-based applications

With significant changes, it

may be used for content-

based applications

128

Further improvements and enhancements to the framework are possible. Two

topics for future research are the following:

TinyPAST: A software component to be built on top of PolicyP2P. It will be

responsible for replicating local policies on multiple remote nodes. TinyPAST will

increase system persistence and overcome the problem of nodes leaving the network

with no prior warning.

TinySCRIBE: Another software component to be built on top of PolicyP2P. It

will be responsible for creating, participating, communicating, and maintaining the

necessary topics (events) on the local node. With TinySCRIBE, it will be possible to

create more complex policy cases in which various events on various remote nodes may

collaborate through a series of executing policies to achieve desired results.

129

References

[1] J. Gutiérrez, J. F. Villa-medina, A. Nieto-garibay, and M. Á. Porta-gándara,

“Automated Irrigation System Using a Wireless Sensor Network and GPRS

Module,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 166–176, 2014.

[2] N. Matthys and W. Joosen, “Towards policy-based management of sensor

networks,” Proc. 3rd Int. Work. Middlew. Sens. networks - MidSens ’08, pp. 13–

18, 2008.

[3] W. Han, Z. Fang, and L. T. Yang, “Collaborative Policy Administration,” IEEE

Trans. PARALLEL Distrib. Syst., vol. 25, no. 2, pp. 498–507, 2014.

[4] J. Strassner, Policy-based Network Management: Solutions for the Next

Generation. San Francisco: Morgan Kaufmann, 2004, p. 516.

[5] W. Zhang and H. Xu, “A Policy Based Wireless Sensor Network Management

Architecture,” 2010 Third Int. Conf. Intell. Networks Intell. Syst., pp. 552–555,

Nov. 2010.

[6] Y. Zhu, S. L. Keoh, M. Sloman, E. Lupu, Y. Zhang, N. Dulay, and N. Pryce,

“Finger: An efficient policy system for body sensor networks,” in Mobile Ad Hoc

and Sensor Systems, 2008. MASS 2008. 5th IEEE International Conference on,

2008, pp. 428–433.

[7] S. Misra and A. Jain, “Policy controlled self-configuration in unattended wireless

sensor networks,” J. Netw. Comput. Appl., vol. 34, no. 5, pp. 1530–1544, Jul.

2011.

[8] J. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol for

network programming at scale,” Proc. 2nd Int. Conf. Embed. networked Sens.

Syst., 2004.

[9] P. Baronti, P. Pillai, V. Chook, S. Chessa, a Gotta, and Y. Hu, “Wireless sensor

networks: A survey on the state of the art and the 802.15.4 and ZigBee standards,”

Comput. Commun., vol. 30, no. 7, pp. 1655–1695, May 2007.

[10] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith, “Ambient

Backscatter : Wireless Communication Out of Thin Air,” SIGCOMM Comput.

Commun. Rev., vol. 43, no. 4, pp. 39–50, 2013.

[11] S. Movassaghi, S. Member, M. Abolhasan, and S. Member, “Wireless Body Area

Networks : A Survey,” Commun. Surv. Tutorials, IEEE, vol. pp, no. 99, pp. 1–29,

2014.

130

[12] T. Naumowicz, R. Freeman, H. Kirk, B. Dean, M. Calsyn, A. Liers, A. Braendle,

T. Guilford, and J. Schiller, “Wireless Sensor Network for Habitat Monitoring on

Skomer Island,” in Local Computer Networks (LCN), 2010 IEEE 35th Conference,

2010, pp. 882–889.

[13] S. Kim, S. Pakzadt, D. Cullert, J. Demmel, G. Fenvest, S. Glasert, and M. Turon,

“Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks,” in

Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International

Symposium on, 2007, pp. 254–263.

[14] Y. Zhu, S. L. Keoh, M. Sloman, E. Lupu, N. Dulay, and N. Pryce, “An Efficient

Policy System for Body Sensor Networks,” 2008 14th IEEE Int. Conf. Parallel

Distrib. Syst., vol. 1, pp. 383–390, Dec. 2008.

[15] T. Bourdenas, M. Sloman, and E. C. Lupu, “Self-healing for pervasive computing

systems,” Archit. dependable Syst. VII. Springer Berlin Heidelb., vol. VII, pp. 1–

25, 2010.

[16] “Finger2IPv6 project.” [Online]. Available: http://tinyos.stanford.edu/tinyos-

wiki/index.php/Finger2IPv6. [Accessed: 02-Feb-2014].

[17] “TOSServ project.” [Online]. Available: http://tinyos.stanford.edu/tinyos-

wiki/index.php/TOSServ. [Accessed: 02-Feb-2014].

[18] D. Agrawal, Policy Technology for self-managing systems, 1st ed. IBM Press,

2009.

[19] M. S. Siddiqui and S. H. Ahmed, “Policy-based network management in a

machine-to-machine (M2M) network,” 2012 15th Int. Multitopic Conf., pp. 387–

393, Dec. 2012.

[20] OASIS, “OASIS (Organization for the Advancement of Structured Information

Standards).” [Online]. Available: http://www.oasis-open.org/. [Accessed: 02-Feb-

2014].

[21] R. Kamal, M. S. Siddiqui, H. Rim, and C. S. Hong, “A policy based management

framework for machine to machine networks and services,” in 2011 13th Asia-

Pacific Network Operations and Management Symposium, 2011, pp. 1–4.

[22] J. Lobo, R. Bhatia, and S. Naqvi, “A Policy Description Language,” in AAAI,

1999, pp. 291–298.

[23] DMTF, CIM Query Language Specification, 1.0.0 ed. DMTF, 2007.

[24] C. Han, R. Kumar, and R. Shea, “A dynamic operating system for sensor nodes,”

Proc. 3rd Int. Conf. Mob. Syst., pp. 163–176, 2005.

131

[25] A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1983.

[26] K. Twidle, N. Dulay, E. Lupu, and M. Sloman, “Ponder2: A Policy System for

Autonomous Pervasive Environments,” 2009 Fifth Int. Conf. Auton. Auton. Syst.,

pp. 330–335, 2009.

[27] M. S. Beigi, S. Calo, and D. Verma, “Policy transformation techniques in policy-

based systems management,” Proceedings. Fifth IEEE Int. Work. Policies Distrib.

Syst. Networks, 2004. POLICY 2004., pp. 13–22, 2004.

[28] S. Srinivasan, V. Sapra, M. Studies, and N. Delhi, “Integration of Rule based and

Case based Reasoning System to Support Decision Making,” pp. 106–108, 2014.

[29] R. Marin, J. Vivero, P. Leitner, M. Zach, and C. Fahy, “A Distributed Policy

Based Solution in a Fault Management Scenario,” in Global Telecommunications

Conference, 2006. GLOBECOM ’06. IEEE, 2006, pp. 1–5.

[30] a. Galani, N. Koutsouris, K. Tsagkaris, P. Demestichas, B. Fuentes, C. G.

Vazquez, and G. Nguengang, “A policy based framework for governing Future

networks,” 2012 IEEE Globecom Work., pp. 802–806, Dec. 2012.

[31] N. VanderHorn, B. Haan, M. Carvalho, and C. Perez, “Distributed policy learning

for the Cognitive Network Management System,” 2010 - Milcom 2010 Mil.

Commun. Conf., pp. 435–440, Oct. 2010.

[32] S. H. Lee, L. Choi, Y. Nah, S. Hong, and J.-A. Jun, “Policy-Based

Reprogramming for Wireless Sensor Networks,” 2010 13th IEEE Int. Symp.

Object/Component/Service-Oriented Real-Time Distrib. Comput. Work., pp. 194–

203, 2010.

[33] A. Jacquot, J.-P. Chanet, K. M. Hou, X. X. Diao, and J.-J. Li, “A New Approach

for Wireless Sensor Network Management: LiveNCM,” 2008 New Technol. Mobil.

Secur., no. Table I, pp. 1–6, Nov. 2008.

[34] M. Ayari, F. Kamoun, and G. Pujolle, “Towards Autonomous Mobile Ad Hoc

Networks: A Distributed Policy-Based Management Approach,” 2008 Fourth Int.

Conf. Wirel. Mob. Commun., pp. 201–206, 2008.

[35] V. V. Thanh, H. N. Chan, B. P. Viet, and T. N. Huu, “A survey of routing using

DHTs over Wireless Sensor Networks,” Technology, no. Icita, pp. 978–981, 2009.

[36] S. Ratnasamy, S. Shenker, I. Icsi, B. Karp, D. Estrin, and U. C. B. Eecs, “Data-

Centric Storage in Sensornets with GHT , A Geographic Hash Table,” Mob.

Networks Appl., 2003.

132

[37] M. Ali and Z. a. Uzmi, “CSN: a network protocol for serving dynamic queries in

large-scale wireless sensor networks,” Proceedings. Second Annu. Conf. Commun.

Networks Serv. Res. 2004., pp. 165–174, 2004.

[38] M. Caesar, M. Castro, and E. Nightingale, “Virtual ring routing: network routing

inspired by DHTs,” ACM SIGCOMM, 2006.

[39] O. Landsiedel, K. a. Lehmann, and K. Wehrle, “T-DHT: Topology-based

Distributed Hash Tables,” Fifth IEEE Int. Conf. Peer-to-Peer Comput. (P2P

2005), no. 2, pp. 143–144, 2005.

[40] F. Araujo, L. Rodrigues, J. Kaiser, and C. Mitidieri, “CHR: A Distributed Hash

Table for Wireless Ad Hoc Networks,” 25th IEEE Int. Conf. Distrib. Comput. Syst.

Work., no. June 2005, pp. 407–413.

[41] A. A.-B. Al-Mamou and H. Labiod, “ScatterPastry: An Overlay Routing Using a

DHT over Wireless Sensor Networks,” 2007 Int. Conf. Intell. Pervasive Comput.

(IPC 2007), pp. 274–279, Oct. 2007.

[42] G. Al Sukkar, H. Afifi, and S.-M. Senouci, “Lightweight and Distributed

Algorithms for Efficient Data-Centric Storage in Sensor Networks,” 2007 Fourth

Annu. Int. Conf. Mob. Ubiquitous Syst. Netw. Serv., pp. 1–3, 2007.

[43] A. Rowstron and P. Druschel, “Pastry : Scalable , decentralized object location and

routing for large-scale peer-to-peer systems,” Design, no. November 2001, 1892.

[44] G. Gutiérrez, B. Mejías, P. Van Roy, D. Velasco, and J. Torres, “WSN and P2P: A

Self-Managing Marriage,” 2008 Second IEEE Int. Conf. Self-Adaptive Self-

Organizing Syst. Work., pp. 198–201, Oct. 2008.

[45] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[46] B. F. Content-delivery-as-a-service, Y. Jin, Y. Wen, W. Zhang, and S. Member,

“Content Routing and Lookup Schemes using Global,” vol. 8, no. 1, pp. 268–278,

2014.

[47] C. Jardak and J. Riihij, “Analyzing the Optimal Use of Bloom Filters in Wireless

Sensor Networks Storing Replicas,” pp. 1–6, 2009.

[48] A. Kirsch and M. Mitzenmacher, “Less Hashing , Same Performance : Building a

Better Bloom Filter,” pp. 187–218, 2008.

[49] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid,

and Y. Tang, “On the false-positive rate of Bloom filters,” Inf. Process. Lett., vol.

108, no. 4, pp. 210–213, Oct. 2008.

133

[50] M. V. Ramakrishna and J. Zobel, “Performance in practice of string hashing

functions,” in Proc. of the Fifth International Conference on Database Systems for

Advanced Applications, 1997, pp. 215–223.

[51] B. Jenkins, “Dr. Dobb’s Journal.” [Online]. Available:

http://www.drdobbs.com/database/algorithm-alley/184410284?pgno=5.

[Accessed: 02-Feb-2014].

[52] B. Jenkins, “Bob Jenkins.” [Online]. Available:

http://burtleburtle.net/bob/hash/doobs.html. [Accessed: 02-Feb-2014].

[53] P. Levis and D. Gay, TinyOS Programming. Cambridge: Cambridge University

Press, 2009.

[54] B. L. Titzer, D. K. Lee, J. Palsberg, and A. Background, “Avrora : Scalable Sensor

Network Simulation with Precise Timing,” pp. 477–482, 2005.

[55] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A Survey and

Comparison of Peer-to-Peer Overlay Network Schemes,” no. March, 2004.

[56] E. Egea-López, J. Vales-Alonso, A. S. Martínez-Sala, P. Pavón-Mariño, and J.

García-Haro, “Simulation tools for wireless sensor networks,” in Proceedings of

the International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS05)., 2005, p. 24.

[57] S. Kim, J. Chung, and S. Member, “Message Complexity Analysis of Mobile Ad

Hoc Network Address Autoconfiguration Protocols,” vol. 7, no. 3, pp. 358–371,

2008.

[58] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM : Accurate and Scalable

Simulation of Entire TinyOS Applications.”

[59] D. Moss, N. Wilmot, and P. Levis, “BoX-MACs : Exploiting Physical and Link

Layer Boundaries in Low-Power Networking,” Comput. Syst. Lab. Stanford Univ.,

2008.

[60] B. A. I. Housani, B. Mutrib, and H. Jaradi, “The Linux Review - Ubuntu Desktop

Edition - version 8 . 10,” in Current Trends in Information Technology (CTIT),

2009 International Conference on the, 2009, pp. 1–6.

[61] I. Trends, “Java IDE,” Computer (Long. Beach. Calif)., vol. 38, no. 7, pp. 16–18,

2005.

[62] G. Lindstrom, “Programming with Python,” IT Prof., vol. 7, no. 5, pp. 10–16, Sep.

2005.

134

[63] S. Nellen, “Eclipse Plugin for TinyOS Debugging,” Distributed Computing Group-

Computer Engineering and Networks Laboratory (TIK), 2009.

[64] M. Ilavsk and R. Jakˇ, “Interactive Evolution of Graphical User Interface with Gtk

Toolkit,” in Cognitive Infocommunications (CogInfoCom), 2011 2nd International

Conference on, 2011, pp. 1–6.

[65] N. Qwasmi, D. Smullen, and R. Liscano, “Integrated Development Environment

for Debugging Policy-based Applications in Wireless Sensor Networks,” Procedia

Comput. Sci., vol. 21, no. 2013, pp. 225–233, 2013.

135

Appendixes

136

Appendix A Policy management tool (Policy IDE) interface

The policy management tool's GUI consists of eight tabs as shown in Figure A.1.

Each tab is designed to perform a specific task. The first tab is the Simulation Variables

tab. In this tab, the user enters the simulation variables, which currently control only the

number of nodes required for the simulation. At present, this screen only controls the

number of nodes, but it is possible to include more simulation parameters, such as noise

and links, which control the network topology. The simulation starts after entering the

number of nodes and pressing the apply button. From then on, the number of nodes

cannot be modified, and so the apply button disappears from the screen. If the number

of nodes needs to be changed, the simulation must be restarted.

Figure A.1 PMT-Simulation Variables

The second tab is the Load Policy tab. Here, the user can create a policy and load

it into a specific mote based on the PolicyP2P algorithm. In this tab, the user provides

137

all required parameters to create a policy. The message type is a predefined number for

the network packet type designated to perform specific tasks. The Load Policy task uses

message type 40. The Policy Targeted node and Message Targeted node fields are for

providing the mote network address. As shown in Figure A.2, there are two fields for

both the Policy Targeted node and the Message Targeted node. The reason is that each

mote has two different addresses: The first is the network physical address and the

second is the overlay network address (AM address). The intention here is to give users

more flexibility by using either of the two addresses. The Sequence field is a numeric

field representing the value of the policy sequence field in the policy key as shown in

Figure 19. The Predicate field is a selection menu for predefined predicates: equals, less

than, greater than, etc. The Predicate is used to validate the condition in the policy by

comparing the parameter in the policy with the value provided by the triggered event.

The output of the menu selection is a numerical representation of the selected

operation. A list of available predicates is shown in Figure A.3. The Event ID field is a

selection menu for a preset list of available Event IDs. The output of the menu selection

is a numerical representation of the selected event. A list of available events is shown in

Figure A.4. The Action ID field is a selection menu for a preset list of available action

IDs. The output of the menu selection is a numerical representation of the selected

action. A list of available actions is shown in Figure A.5. The Predicate Description

field is a numeric field representing the order of parameters in the condition statement.

The Action Arg. Description field is a numeric field to control the parameter for the

required action. Predicate Args and Action Args provide arguments for the predicate

and action inputs respectively.

138

Figure A.2 PMT-Load Policy

139

Figure A.3 Predicate list

Figure A.4 Event list

140

Figure A.5 Action list

The third tab is the Remove Policy tab, as shown in Figure A.6. Here, the user can

remove (delete) a policy from any targeted mote. In this tab, the user provides all

required parameters to remove a policy. The Message Type is a preset value for the

network packet type designated to perform specific tasks. The Remove Policy task uses

network message type 40. The Source Node and Target Node fields are for providing a

mote network address. As shown in Figure A.6, there are two fields for both the source

node and target node. The reason is that each mote has two different addresses: The

first is the network physical address and the second is the overlay network address (AM

address). The intention here is to give users more flexibility by using either of the two

141

addresses. The Policy ID field is a numeric field representing the hashed value of a

policy key as shown in Figure 19.

Figure A.6 PMT-Remove Policy

The fourth tab is the Enable Policy tab. Here, the user can enable a policy in any

targeted mote. In this tab, the user provides all required parameters to enable a policy.

The enable policy task uses network message type 40. The Source and Target fields are

for providing a mote network address. As shown in Figure A.7, the Source Node and

Target Node each have two fields, so the user can provide either the network physical

address or the overlay network address (AM address). The Policy ID field is a numeric

field representing the hashed value of a policy key as shown in Figure 19.

142

Figure A.7 PMT-Enable Policy

The fifth tab is the Disable Policy tab. Here, the user can disable a policy in any

targeted mote. In this tab, the user provides all required parameters to disable a policy.

The Disable Policy task uses network message type 40. The Source and Target fields

are for providing a mote network address. As shown in Figure A.8, the Source Node

and Target Node each have two fields, so the user can provide either the network

physical address or the overlay network address (AM address). The Policy ID field is a

numeric field representing the hashed value of a policy key as shown in Figure 19.

143

Figure A.8 PMT-Disable Policy

The sixth tab is the Trigger Event policy tab. Here, the user can trigger an event in

any targeted mote. In this tab, the user provides all required parameters to trigger an

event. The Trigger Event task uses network message type 40. The source and target

fields are for providing a mote network address. As shown in Figure A.9, the Source

Node and Target Node each have two fields, so the user can provide either the network

physical address or the overlay network address (AM address). The Event ID field is a

selection menu for a preset list of available Event IDs. The output of the menu

selection is a numerical representation of the selected event. A list of available events is

shown in Figure A.4.

144

Figure A.9 PMT-Trigger Event

The seventh tab is the Overlay Network Messages (Hello) tab. In this tab, the user

can inject various overlay network messages, such as hello, re-join, BLOOM_FILTER,

and maintenance messages into any targeted mote. As shown in Figure A.10, the user

provides all required parameters to inject overlay network messages. Overlay network

messages use various predefined message types, such as 56 for hello messages, 57 for

Hello-Response messages, 58 for Hello-Acknowledgment messages, 72 for Re-Join

messages, 73 for maintenance messages, and 80 for BLOOM_FILTER messages. The

Source TOS Node ID and Target TOS Node ID fields are for providing a mote network

physical address. The Parent AM Node ID and Child AM Node ID fields are numeric

fields to provide the overlay network addresses for the source and destination motes.

145

Figure A.10 PMT-Overlay Network Messages

The last tab is for log data. In this tab, the user can display all testing and

debugging data provided by the mote through the TOSSIM environment. This text

widget is linked to a text file at compilation time. The text file is updated by the

TOSSIM software through a dedicated communication link with the motes.

146

Figure A.11 PMT-Log Data

147

Appendix B Mathematical Model Data

Network formation performance

The Network formation data table shows various network sizes ranging from 2 nodes to 200 nodes. Each node has a

leaf table with a capacity of 16 entries, which means that each parent node can have a maximum of 16 children. Data from

our analysis shows the number of messages, the number of bytes, and the time (in seconds) of all required messages for

network formation; these are Hello, Response, Acknowledgment, and Re-join.

Network formation data

Number
of Node

Number
of Leaf
Node

Hello Message Response Message Acknowledgment Message

Number
of
Messages

Number
of Bytes

Time (s)
Number
of
Messages

Number
of Bytes

Time (s)
Number
of
Messages

Number
of Bytes

Time (s)

2 16 1 2 0.000064 1 6 0.000192 1 4 0.000128

5 16 4 8 0.000256 10 60 0.00192 4 16 0.000512

10 16 9 18 0.000576 45 270 0.00864 9 36 0.001152

20 16 19 38 0.001216 190 1140 0.03648 19 76 0.002432

30 16 29 58 0.001856 435 2610 0.08352 29 116 0.003712

40 16 39 78 0.002496 780 4680 0.14976 39 156 0.004992

50 16 49 98 0.003136 1225 7350 0.2352 49 196 0.006272

60 16 59 118 0.003776 1770 10620 0.33984 59 236 0.007552

148

70 16 69 138 0.004416 2415 14490 0.46368 69 276 0.008832

80 16 79 158 0.005056 3160 18960 0.60672 79 316 0.010112

90 16 89 178 0.005696 4005 24030 0.76896 89 356 0.011392

100 16 99 198 0.006336 4950 29700 0.9504 99 396 0.012672

110 16 109 218 0.006976 5995 35970 1.15104 109 436 0.013952

120 16 119 238 0.007616 7140 42840 1.37088 119 476 0.015232

130 16 129 258 0.008256 8385 50310 1.60992 129 516 0.016512

140 16 139 278 0.008896 9730 58380 1.86816 139 556 0.017792

150 16 149 298 0.009536 11175 67050 2.1456 149 596 0.019072

160 16 159 318 0.010176 12720 76320 2.44224 159 636 0.020352

170 16 169 338 0.010816 14365 86190 2.75808 169 676 0.021632

180 16 179 358 0.011456 16110 96660 3.09312 179 716 0.022912

190 16 189 378 0.012096 17955 107730 3.44736 189 756 0.024192

200 16 199 398 0.012736 19900 119400 3.8208 199 796 0.025472

Number
of Node

Number
of Leaf
Node

Re-join Message Total network formation messages

Number
of
Messages

Number
of Bytes

Time (s)
Number
of
Messages

Number
of Bytes

Time (s)

2 16 2 4 0.000128 5 16 0.000512

5 16 5 10 0.00032 23 94 0.003008

10 16 10 20 0.00064 73 344 0.011008

20 16 20 40 0.00128 248 1294 0.041408

30 16 30 60 0.00192 523 2844 0.091008

40 16 40 80 0.00256 898 4994 0.159808

50 16 50 100 0.0032 1373 7744 0.247808

60 16 60 120 0.00384 1948 11094 0.355008

70 16 70 140 0.00448 2623 15044 0.481408

149

80 16 80 160 0.00512 3398 19594 0.627008

90 16 90 180 0.00576 4273 24744 0.791808

100 16 100 200 0.0064 5248 30494 0.975808

110 16 110 220 0.00704 6323 36844 1.179008

120 16 120 240 0.00768 7498 43794 1.401408

130 16 130 260 0.00832 8773 51344 1.643008

140 16 140 280 0.00896 10148 59494 1.903808

150 16 150 300 0.0096 11623 68244 2.183808

160 16 160 320 0.01024 13198 77594 2.483008

170 16 170 340 0.01088 14873 87544 2.801408

180 16 180 360 0.01152 16648 98094 3.139008

190 16 190 380 0.01216 18523 109244 3.495808

200 16 200 400 0.0128 20498 120994 3.871808

Policy loading performance

The table shows various network sizes ranging from 2 nodes to 200 nodes with a 3-level overlay tree structure. Each

node has a local policy repository with a capacity of 20 entries, which means that each node can have a maximum of 20

policies in its memory. Analysis data shows the number of messages, the number of bytes, and the time (in seconds) of all

required messages (Get and Response) to load policies into the network for P2P algorithm usage and into the local node for

local node usage. The table shows the minimum, maximum, and average performance of each category.

150

Policy loading performance data

Nodes
Policy
repository
size

Network
total
policies

Number of messages
required to load policies into

network

Number of bytes required to
load policies into network

Time required to load policies
into network (s)

 Min Max Average Min Max Average Min Max Average

2 20 40 40 120 80 1160 3480 2320 0.03712 0.11136 0.07424

5 20 100 100 300 200 2900 8700 5800 0.0928 0.2784 0.1856

10 20 200 200 600 400 5800 17400 11600 0.1856 0.5568 0.3712

20 20 400 400 1200 800 11600 34800 23200 0.3712 1.1136 0.7424

30 20 600 600 1800 1200 17400 52200 34800 0.5568 1.6704 1.1136

40 20 800 800 2400 1600 23200 69600 46400 0.7424 2.2272 1.4848

50 20 1000 1000 3000 2000 29000 87000 58000 0.928 2.784 1.856

60 20 1200 1200 3600 2400 34800 104400 69600 1.1136 3.3408 2.2272

70 20 1400 1400 4200 2800 40600 121800 81200 1.2992 3.8976 2.5984

80 20 1600 1600 4800 3200 46400 139200 92800 1.4848 4.4544 2.9696

90 20 1800 1800 5400 3600 52200 156600 104400 1.6704 5.0112 3.3408

100 20 2000 2000 6000 4000 58000 174000 116000 1.856 5.568 3.712

110 20 2200 2200 6600 4400 63800 191400 127600 2.0416 6.1248 4.0832

120 20 2400 2400 7200 4800 69600 208800 139200 2.2272 6.6816 4.4544

130 20 2600 2600 7800 5200 75400 226200 150800 2.4128 7.2384 4.8256

140 20 2800 2800 8400 5600 81200 243600 162400 2.5984 7.7952 5.1968

150 20 3000 3000 9000 6000 87000 261000 174000 2.784 8.352 5.568

160 20 3200 3200 9600 6400 92800 278400 185600 2.9696 8.9088 5.9392

170 20 3400 3400 10200 6800 98600 295800 197200 3.1552 9.4656 6.3104

180 20 3600 3600 10800 7200 104400 313200 208800 3.3408 10.0224 6.6816

190 20 3800 3800 11400 7600 110200 330600 220400 3.5264 10.5792 7.0528

200 20 4000 4000 12000 8000 116000 348000 232000 3.712 11.136 7.424

151

Nodes
Policy

repository
size

Network
total

policies

Number of messages required
to load policies into local node

(Get and Response)

Number of bytes required to
load policies into local node

Time required to load policies
into local node (s)

 Min Max Average Min Max Average Min Max Average

2 20 40 80 160 120 2320 4640 3480 0.07424 0.14848 0.11136

5 20 100 200 400 300 5800 11600 8700 0.1856 0.3712 0.2784

10 20 200 400 800 600 11600 23200 17400 0.3712 0.7424 0.5568

20 20 400 800 1600 1200 23200 46400 34800 0.7424 1.4848 1.1136

30 20 600 1200 2400 1800 34800 69600 52200 1.1136 2.2272 1.6704

40 20 800 1600 3200 2400 46400 92800 69600 1.4848 2.9696 2.2272

50 20 1000 2000 4000 3000 58000 116000 87000 1.856 3.712 2.784

60 20 1200 2400 4800 3600 69600 139200 104400 2.2272 4.4544 3.3408

70 20 1400 2800 5600 4200 81200 162400 121800 2.5984 5.1968 3.8976

80 20 1600 3200 6400 4800 92800 185600 139200 2.9696 5.9392 4.4544

90 20 1800 3600 7200 5400 104400 208800 156600 3.3408 6.6816 5.0112

100 20 2000 4000 8000 6000 116000 232000 174000 3.712 7.424 5.568

110 20 2200 4400 8800 6600 127600 255200 191400 4.0832 8.1664 6.1248

120 20 2400 4800 9600 7200 139200 278400 208800 4.4544 8.9088 6.6816

130 20 2600 5200 10400 7800 150800 301600 226200 4.8256 9.6512 7.2384

140 20 2800 5600 11200 8400 162400 324800 243600 5.1968 10.3936 7.7952

150 20 3000 6000 12000 9000 174000 348000 261000 5.568 11.136 8.352

160 20 3200 6400 12800 9600 185600 371200 278400 5.9392 11.8784 8.9088

170 20 3400 6800 13600 10200 197200 394400 295800 6.3104 12.6208 9.4656

180 20 3600 7200 14400 10800 208800 417600 313200 6.6816 13.3632 10.0224

190 20 3800 7600 15200 11400 220400 440800 330600 7.0528 14.1056 10.5792

200 20 4000 8000 16000 12000 232000 464000 348000 7.424 14.848 11.136

152

Nodes

Policy

repository

size

Network total

policies

Total number of messages

required to load policies (net and

local)

Total number of bytes required to load

policies (net and local)

Total time required to load

policies (net and local) (s)

 Min Max Average Min Max Average Min Max Average

2 20 40 120 280 200 3480 8120 5800 0.11136 0.25984 0.1856

5 20 100 300 700 500 8700 20300 14500 0.2784 0.6496 0.464

10 20 200 600 1400 1000 17400 40600 29000 0.5568 1.2992 0.928

20 20 400 1200 2800 2000 34800 81200 58000 1.1136 2.5984 1.856

30 20 600 1800 4200 3000 52200 121800 87000 1.6704 3.8976 2.784

40 20 800 2400 5600 4000 69600 162400 116000 2.2272 5.1968 3.712

50 20 1000 3000 7000 5000 87000 203000 145000 2.784 6.496 4.64

60 20 1200 3600 8400 6000 104400 243600 174000 3.3408 7.7952 5.568

70 20 1400 4200 9800 7000 121800 284200 203000 3.8976 9.0944 6.496

80 20 1600 4800 11200 8000 139200 324800 232000 4.4544 10.3936 7.424

90 20 1800 5400 12600 9000 156600 365400 261000 5.0112 11.6928 8.352

100 20 2000 6000 14000 10000 174000 406000 290000 5.568 12.992 9.28

110 20 2200 6600 15400 11000 191400 446600 319000 6.1248 14.2912 10.208

120 20 2400 7200 16800 12000 208800 487200 348000 6.6816 15.5904 11.136

130 20 2600 7800 18200 13000 226200 527800 377000 7.2384 16.8896 12.064

140 20 2800 8400 19600 14000 243600 568400 406000 7.7952 18.1888 12.992

150 20 3000 9000 21000 15000 261000 609000 435000 8.352 19.488 13.92

160 20 3200 9600 22400 16000 278400 649600 464000 8.9088 20.7872 14.848

170 20 3400 10200 23800 17000 295800 690200 493000 9.4656 22.0864 15.776

180 20 3600 10800 25200 18000 313200 730800 522000 10.0224 23.3856 16.704

190 20 3800 11400 26600 19000 330600 771400 551000 10.5792 24.6848 17.632

200 20 4000 12000 28000 20000 348000 812000 580000 11.136 25.984 18.56

153

Bloom filter performance

The table shows various network sizes ranging from 2 nodes to 200 nodes with a 3-level overlay tree structure. Each

node has a local policy repository with a capacity of 20 entries, which means that each node can have a maximum of 20

policies in its memory. Analysis data shows network total number of policies, number of messages, number of bytes, and

time (in seconds) required to look up policies. The table shows the minimum, maximum, and average performance of each

category. Finally, the table shows the amount of time saved by using Bloom filter, assuming that the rate of missing policies

is 30%.

Bloom filter data

Nodes
Policy
repository
size

Network
total
policies

Number of messages
required to look up a
policy

Number of bytes required
to look up a policy

Time required to look
up policies (s)

Time saved by using
Bloom filter with
policy missing rate
of 30% (s)

 Min Max Avg. Min Max Avg. Min Max Avg. Min Max Avg.

2 20 40 40 120 80 1160 3480 2320 0.04 0.11 0.07 0.01 0.03 0.02

5 20 100 100 300 200 2900 8700 5800 0.09 0.28 0.19 0.03 0.08 0.06

10 20 200 200 600 400 5800 17400 11600 0.19 0.56 0.37 0.06 0.17 0.11

20 20 400 400 1200 800 11600 34800 23200 0.37 1.11 0.74 0.11 0.33 0.22

30 20 600 600 1800 1200 17400 52200 34800 0.56 1.67 1.11 0.17 0.50 0.33

40 20 800 800 2400 1600 23200 69600 46400 0.74 2.23 1.48 0.22 0.67 0.45

50 20 1000 1000 3000 2000 29000 87000 58000 0.93 2.78 1.86 0.28 0.84 0.56

60 20 1200 1200 3600 2400 34800 104400 69600 1.11 3.34 2.23 0.33 1.00 0.67

70 20 1400 1400 4200 2800 40600 121800 81200 1.30 3.90 2.60 0.39 1.17 0.78

80 20 1600 1600 4800 3200 46400 139200 92800 1.48 4.45 2.97 0.45 1.34 0.89

90 20 1800 1800 5400 3600 52200 156600 104400 1.67 5.01 3.34 0.50 1.50 1.00

154

100 20 2000 2000 6000 4000 58000 174000 116000 1.86 5.57 3.71 0.56 1.67 1.11

110 20 2200 2200 6600 4400 63800 191400 127600 2.04 6.12 4.08 0.61 1.84 1.22

120 20 2400 2400 7200 4800 69600 208800 139200 2.23 6.68 4.45 0.67 2.00 1.34

130 20 2600 2600 7800 5200 75400 226200 150800 2.41 7.24 4.83 0.72 2.17 1.45

140 20 2800 2800 8400 5600 81200 243600 162400 2.60 7.80 5.20 0.78 2.34 1.56

150 20 3000 3000 9000 6000 87000 261000 174000 2.78 8.35 5.57 0.84 2.51 1.67

160 20 3200 3200 9600 6400 92800 278400 185600 2.97 8.91 5.94 0.89 2.67 1.78

170 20 3400 3400 10200 6800 98600 295800 197200 3.16 9.47 6.31 0.95 2.84 1.89

180 20 3600 3600 10800 7200 104400 313200 208800 3.34 10.02 6.68 1.00 3.01 2.00

190 20 3800 3800 11400 7600 110200 330600 220400 3.53 10.58 7.05 1.06 3.17 2.12

200 20 4000 4000 12000 8000 116000 348000 232000 3.71 11.14 7.42 1.11 3.34 2.23

155

Central policy repository performance

In a system with a central policy repository, the Root node functions as the only policy repository in the network. Since

there is no central policy repository system to evaluate, the TinyPolicy system was modified to resemble central repository

system operation. The analysis data table shows various network sizes ranging from 2 nodes to 200 nodes with a 3-level

overlay tree structure. Each node has a local policy repository with a capacity of 20 entries, which means that each node can

have a maximum of 20 policies in its memory. Analysis data shows central policy repository size (Root), network total

number of policies, number of messages, number of bytes, and time (in seconds) required to load policies into the local node

repository using the central repository approach. Finally, the table shows the amount of time (in seconds) required to load the

same number of policies using the distributed policy repository approach.

Performance data: Central vs. distributed repository approach

Nodes

Policy

repository

size

Network

total

policies

Number of messages

required to load policies

into local node (Get and

Response)

Number of bytes

required to load policies

into local node

Time required to

load policies into

local node (s)

Average Time required to load

policies into node's local

repository using distributed

policy repository (s)

2 40 40 80 2320 0.07424 0.1856

5 100 100 200 5800 0.1856 0.464

10 200 200 400 11600 0.3712 0.928

20 400 400 800 23200 0.7424 1.856

30 600 600 1200 34800 1.1136 2.784

40 800 800 1600 46400 1.4848 3.712

50 1000 1000 2000 58000 1.856 4.64

60 1200 1200 2400 69600 2.2272 5.568

156

70 1400 1400 2800 81200 2.5984 6.496

80 1600 1600 3200 92800 2.9696 7.424

90 1800 1800 3600 104400 3.3408 8.352

100 2000 2000 4000 116000 3.712 9.28

110 2200 2200 4400 127600 4.0832 10.208

120 2400 2400 4800 139200 4.4544 11.136

130 2600 2600 5200 150800 4.8256 12.064

140 2800 2800 5600 162400 5.1968 12.992

150 3000 3000 6000 174000 5.568 13.92

160 3200 3200 6400 185600 5.9392 14.848

170 3400 3400 6800 197200 6.3104 15.776

180 3600 3600 7200 208800 6.6816 16.704

190 3800 3800 7600 220400 7.0528 17.632

200 4000 4000 8000 232000 7.424 18.56

Formula (12) Re-join Response Message

Number
of Node

Re-join Message Re-join Response Message
Number
of
Messages

Number
of Bytes

Time
(second)

Number
of
Messages

Number
of Bytes

Time
(second)

2 2 4 0.000128 2 12 0.000384

3 3 6 0.000192 3 18 0.000576

4 4 8 0.000256 4 24 0.000768

5 5 10 0.00032 5 30 0.00096

6 6 12 0.000384 6 36 0.001152

7 7 14 0.000448 7 42 0.001344

157

8 8 16 0.000512 8 48 0.001536

9 9 18 0.000576 9 54 0.001728

10 10 20 0.00064 10 60 0.00192

11 11 22 0.000704 11 66 0.002112

12 12 24 0.000768 12 72 0.002304

13 13 26 0.000832 13 78 0.002496

14 14 28 0.000896 14 84 0.002688

15 15 30 0.00096 15 90 0.00288

16 16 32 0.001024 16 96 0.003072

17 17 34 0.001088 16 96 0.003072

18 18 36 0.001152 16 96 0.003072

19 19 38 0.001216 16 96 0.003072

20 20 40 0.00128 16 96 0.003072

21 21 42 0.001344 16 96 0.003072

22 22 44 0.001408 16 96 0.003072

23 23 46 0.001472 16 96 0.003072

24 24 48 0.001536 16 96 0.003072

25 25 50 0.0016 16 96 0.003072

Formula (13) Maintenance messages

node
policy

repository
size

network
total

policies

Network
tree
levels

Number of
Maintenance
messages

2 20 40 3 60

5 20 100 3 240

10 20 200 3 540

158

20 20 400 3 1140

30 20 600 3 1740

40 20 800 3 2340

50 20 1000 3 2940

60 20 1200 3 3540

70 20 1400 3 4140

80 20 1600 3 4740

90 20 1800 3 5340

100 20 2000 3 5940

110 20 2200 3 6540

120 20 2400 3 7140

130 20 2600 3 7740

140 20 2800 3 8340

150 20 3000 3 8940

160 20 3200 3 9540

170 20 3400 3 10140

180 20 3600 3 10740

190 20 3800 3 11340

200 20 4000 3 11940

Formula (15) administrative messages

node
policy

repository
size

network
total

policies

Network
tree
levels

Total Number
of
administrative
messages

2 20 40 3 40

159

5 20 100 3 100

10 20 200 3 200

20 20 400 3 400

30 20 600 3 600

40 20 800 3 800

50 20 1000 3 1000

60 20 1200 3 1200

70 20 1400 3 1400

80 20 1600 3 1600

90 20 1800 3 1800

100 20 2000 3 2000

110 20 2200 3 2200

120 20 2400 3 2400

130 20 2600 3 2600

140 20 2800 3 2800

150 20 3000 3 3000

160 20 3200 3 3200

170 20 3400 3 3400

180 20 3600 3 3600

190 20 3800 3 3800

200 20 4000 3 4000

160

Appendix C Publications

 Nidal Qwasmi, Daniel Smullen, Ramiro Liscano, “Integrated development

environment for debugging policy-based applications in wireless sensor

networks,” in proc., 4th Int. Conf. Emerging Ubiquitous Systems and Pervasive

Networks (EUSPN-2013), October 21-24, 2013, Niagara Falls, Ontario, Canada.

 Nidal Qwasmi, Khalil El-Khatib, Ramiro Liscano, Julie Thorpe (2013), “Privacy

Policy Negotiation Architecture for Pervasive Computing Environments,”

ThinkMind digital Library 55-60, in proc., 3rd Int. Conf. Advanced Collaborative

Networks, Systems, and Applications (COLLA 2013), Nice, France, July 21 - 26,

2013, ISBN: 978-1-61208-287-5.

 Nidal Qwasmi, Ramiro Liscano, “Bloom filter Supporting Distributed Policy-

Based Management in Wireless Sensor Networks,” Procedia Computer Science,

Volume 19, 2013, Pages 248-255, ISSN 1877-0509.

 Poster presentation at Consortium for Software Engineering Research (CSER)

2012 titled “Framework For Distributed Policy-Based Management in Wireless

Sensor Network,” November 4, 2012, Markham, Ontario, Canada.

 Nidal Qwasmi, Ramiro Liscano, “Framework for Distributed Policy-Based

Management in Wireless Sensor Networks to Support Autonomic Behavior,” 3rd

Int. Conf. Ambient Systems, Networks and Technologies (ANT-2012), Procedia

Computer Science, Volume 10, 2012, Pages 232-239.

 Nidal Qwasmi, Ramiro Liscano, “Distributed Policy-Based Management for

Wireless Sensor Networks,” Procedia Computer Science, Volume 10, 2012,

Pages 1208-1212, ISSN 1877-0509.

 Nidal Qwasmi, “Policy-Based Management in Wireless Sensor Networks to

Support Autonomic Behavior,” presentation of paper, UOIT 3rd Annual Graduate

Student Research Conference, April 2012.

 Nidal Qwasmi, Fayyaz Ahmed, Ramiro Liscano, “Simulation of DDOS Attacks

on P2P Networks,” Proc. 2011 IEEE Int. Conf. High Performance Computing

and Communications (HPCC ’11), 610-614, Banff, Canada. September 2-4, 2011.

 Mukhtaj S Barhm, Nidal Qwasmi, Faisal Z Qureshi et al., “Negotiating Privacy

Preferences in Video Surveillance Systems,” Proc. 24th Int. Conf. Industrial

Engineering and Other Applications of Applied Intelligent Systems (IEA-AIE

2011), 511-521, 2011.

 As a contribution back to the WSN research community, our research was used as

a basis for other open source projects, such as [15] and [16], which inspired many

other researchers abroad.

