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ABSTRACT

Policy-Based Management Systems (PBMS) are becoming a critical component
of any information technology environment, due to their ability to abstract hardware
complexity from their users. Policy-based systems exist in such areas as data center
management, security, privacy, and computer network management. The Wireless Sensor
Network (WSN) is no exception, although implementation of policy-based management
in a WSN is still in its infancy. Wireless Sensor Networks (WSNs) are particularly
challenging due to many characteristics, such as a working environment that makes
maintenance and support a challenge; a deployment scale of hundreds, if not thousands,
of nodes; and constrained hardware resources. Memory, processing, and battery power
are limited, making WSNs capable of handling only applications with limited resource
requirements. Consequently, the implementation of policy-based management
applications on WSNs has to tackle these characteristics of WSNs and take these
limitations into consideration during the design phase. Therefore, due to hardware
resource constraints, policy-based management applications on WSNs can store only a
limited number of policies in the local memory of a sensor node and must recycle them
when additional policies are required. This recycling process creates communication
overhead on the network and requires a policy deployment mechanism. The
communication overhead will logically reduce the lifetime of the sensor's batteries, and
the policy's deployment mechanism dictates system limitations and capabilities. To tackle
these challenges, a new distributed policy-based management framework named
TinyPolicy has been devised, which can store, locate, access, and execute any policy in
the WSN. This new framework uses a newly created policy deployment mechanism
named PolicyP2P, which is designed to make the distributed policy-based management
system more robust against node failure, eliminate the threat of single points of failure,
and improve policy availability. More importantly, it will increase the total number of
policies that can be deployed in the WSN, which will result in more manageable

constraints or tasks.

Keywords: Distributed systems, Policy management, Distributed policy management,
Wireless Sensor Network (WSN), PolicyP2P, TinyPolicy.
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Chapter 1 Background

In this chapter, the motivational challenges and thesis objectives are discussed,

followed by the contributions of this thesis and an outline of the chapters.

1.1 Introduction

Sensors are becoming part of our daily life, finding their way into such fields as
environmental, medical, and military. Many examples of such applications are
presented in Gutiérrez et al. [1] Wireless sensor networks (WSNs) collect sensing data
from the surrounding environment. Each WSN contains a number of sensors, each of
which is responsible for monitoring one or more events. Therefore, it is likely that a
WSN will contain different types of sensors from various manufacturers. As a result, a
WSN usually works in a heterogeneous environment where sensors are incompatible
with different hardware and software standards and from different manufacturers. Even
though certain types of sensors may overcome some of these problems, this usually
proves complex and costly[2]. To overcome some of these challenges and to conceal
the complexity of the underlying network devices from the human operator, researchers

have considered Policy-Based Management (PBM) platforms a viable solution [3], [4].

WSNs pose particular challenges due to such characteristics as the working
environment (such as in animal habitats, underwater, on volcanoes, and inside the
human body) which complicates maintenance and support, and limited hardware
resources, particularly memory, processing and battery power, which require software
with minimum power and memory usage [5]. Consequently, the administration of
WSNs is becoming a challenge [5], due to the working environment and heterogeneous
sensors on different systems. These characteristics naturally constrain the capabilities of
the applications that run on the WSN. Policy-Based Management (PBM) as an
implementation on WSNs is no different, and these limitations should be taken into

consideration when designing any solution for WSNs. Due to these limitations, as



shown by Zhu et al. [6], devices in a WSN with the Finger platform installed can store a
limited number of policies in their memory and recycle them when required. The
number of policies in the WSN is directly related to the number of constraints that can
be created on the WSN, which logically equal the number of governing functions that
can be performed. Therefore, the more policies the WSN can accommodate, the more

governing functions (constraints) the users of the WSN can create.

1.2 Motivational challenges

The sensors' harsh and unrestricted work environment requires sensor nodes to be
small and inexpensive, with limited sensing, computation and wireless transmission
capabilities [7]. A typical sensor device (such as Iris Mote, Mica, MicaZ, TelosB,
TMote Sky, and Sentilla JCreate) is equipped with an 8- or 16-bit CPU running at 4-8
MHz, 2-10 kB RAM, 30-128 kB flash memory [1], [8], and a radio transmission rate up
to 250 kbps with a range of a few hundred meters [9]. Further improvements in
operating conditions may come from the use of energy efficient 32-bit CPUs and from
research efforts to invent a renewable energy sensor by harvesting energy or to create
an energy-free sensor by using ambient RF as the only source of power [10]. Still, to
keep cost and power consumption as low as possible, sensor nodes remain resource
constrained compared to a smartphone or tablet. The resource-constrained nature of the
sensor devices and their heterogeneous working environments suggest that resource
sharing and policy-based management would be an ideal solution for such

environments.

Prior research and real world experience support our claim that resource sharing
and policy-based management are an ideal solution for WSNs. In the health care
domain [11], the Wireless Body Area Network (WBAN), a type of WSN, can provide
an affordable and proactive health care system to monitor patient health conditions.
This solution can save lives, improve the quality of life, and reduce health care costs by
reducing hospital stays. Major challenges for WBANSs listed by Movassaghi et al. [11]

in an extensive survey of the state of the art in WBANSs include the following:



e Today, sensor nodes are still constrained by limited resources, due to several
factors. The sensor nodes are small in size, which limits hardware
enhancement. The WBAN area (the human body) is, of course, limited in size
too, which has a huge influence on the acceptable size of the sensor node.

Economic forces are another factor; nodes must cost as little as possible.

e Accessing implanted settings and replacing implanted nodes can be quite
difficult. The difficulties of replacing nodes and altering their behaviors make

it important to find alternatives to physical access to the implanted nodes.

e Network physical area size is limited to human body size, for which large size
devices are unsuited and which rule out the use of larger size sensor nodes

with greater capabilities.

e The size of each sensor node has to be as small as possible, due to the limited

physical size of the WBAN.

Our work overcomes most of the previously listed challenges in WBANSs, because
TinyPolicy is based on two main concepts. The first concept is resource sharing, which
overcomes the sensor's resource limitations and the need for larger size sensors. The
second concept is controlling the sensor behavior by policy rather than by

reprogramming the node, which avoids physical replacement of the node.

In the agriculture domain, Gutiérrez et al. [1] developed an automated irrigation
system to reduce the waste of water used for agriculture crops. The system consists of a
distributed WSN to monitor soil moisture and temperature, actuators to control the
irrigation system, and a gateway unit to handle sensor information. The system
monitors such environmental parameters as soil moisture and temperature by using
sensors deployed in plant root zones. Researchers in [1] resolve the energy constraints
by using photovoltaic panels to recharge AA 2000-mAh Ni-MH CycleEnergy batteries,
and resolve the need to reprogram sensor nodes due to changes in thresholds by
frequently sending the sensing data to a centralized unit which has more capabilities.
The TinyPolicy framework can assist in this case by enabling the control of thresholds

directly on the sensor node by using policies to avoid unnecessary transmission of data



to a central node, which may reduce energy consumption. In addition, the TinyPolicy
framework can enhance system reliability by using a distributed approach rather than a

central node, which creates a single point of failure in the system.

In the natural science domain, scientists rely on WSNs to help address previously
insoluble scientific questions. For example, Naumowicz et al. [12] successfully
designed and deployed a WSN to monitor seabirds on Skomer Island, a UK National
Nature Reserve. The complexity of reprogramming the WSN software proved to be a
big disadvantage; they had to rely on a computer science team to do this work for them,
which resulted in delays and distracted the natural scientists from their core goals. (A
new approach to programming the WSN is currently being investigated.) A policy-
based system, such as TinyPolicy, would be a good alternative way to handle such
cases, as the behavior of the WSN would be controlled by policies rather than by

reprogramming the sensor's firmware.

In the civil engineering domain, Kim et al. [13] designed, implemented, deployed
and tested a WSN for Structural Health Monitoring (SHM) on the 4200 ft long main
span and the south tower of the Golden Gate Bridge (GGB), the largest WSN
deployment for SHM to date. Limited RAM on each sensor node proved to be an
obstacle to resolving the packet size issue. The TinyPolicy framework can help deal
with memory limitation by sharing memory resources with other capable sensors in the
WSN. The trade-off here is between freeing more local memory and increasing

transmission activities, but the actual trade-off numbers need to be investigated.

Due to memory capacity limitations, a sensor device may hold a limited number
of policies at any given time, which may not always be sufficient. These limitations
may severely restrict the management capabilities and number of tasks that can be
performed on the device and on the WSN as a whole. Therefore, dynamic deployment
of policies is necessary to utilize node resources efficiently and to execute the required

policies accurately.

The architectures of many existing and proposed policy-based WSN platforms

rely on local policy repositories on the nodes to access any required policy. (Some of



these architectures are discussed in more detail in Chapter 2 Related work) This type of
architecture raises many serious issues, particularly the issue of network dynamism and
robustness, since it creates node silos, which can communicate with the network
gateway but do not communicate or share resources with other nodes in the network. In
addition, it may cause longer disruptions to node service, because a defective node will

need to be replaced with an exact replica in order to resume service.

Moreover, this architecture creates serious administrative overhead during the
deployment of new policies or the replacement of a defective node, because the
administrator needs to create an exact replica of the defective node with all applicable
policies stored on it. Furthermore, the administrator has to make sure that the new
policies have been deployed successfully on the targeted node, which also adds extra

overhead to the task.

WSN implementation dictates the required number of nodes and policies. Kim et
al. [13] studied the Golden Gate Bridge (GGB) where 64 nodes are distributed over
42001t bridge body. Each sensor monitors ambient vibrations and strong motion. Major
requirements of this system as mentioned in [13] are signals quality (such as noise floor
of the system, installation error, and temperature variation), sampling rate, time
synchronization, multi-hop routing, and reliably dissemination (such as data lost and
blockage of hopping). Hence, the total number of parameters is eight parameters each
of which required five policies in average (such as authorization, installation, max, min,
and acceptable range policy). Therefore, each node needs at least 40 policies
(exceeding the local policy repository capacity in Finger2 platform). Hence, the total
number of policies for this system is 2,560 policies (40 policies per node multiplied by

64 nodes).



1.3 Thesis objectives

The goal of this thesis is to specify a fully distributed policy-based framework for
WSNs. This new framework will meet the following objectives when compared to a

conventional non-distributed policy platform:

Increase the ability to support more policies in a WSN.

Due to the nature of limited resources on the sensor node memory as discussed by
Zhu et al. [6], it is quite possible for a policy-based WSN network to have more
policies than the sensor node capacity. The number of policies in the WSN is directly
connected to the number of constraints that can be created on the WSN, which logically
equals the number of functions that can be performed on the WSN. Therefore, the more
policies the WSN can accommodate, the more management functions (constraints) the

users of the WSN can perform.

Improve the robustness of the distributed policy framework for a WSN.

The existing architecture creates node silos, which can only communicate with the
network gateway but do not communicate with other nodes in the network. Our
framework creates a structured peer-to-peer (P2P) overlay network, in which all nodes
can share resources and which has a maintenance mechanism to maintain the network

structure.

Streamline the policy distribution processes.

As shown in [6], [14], [15], the architectures of many existing or proposed policy-
based WSN platforms rely on a local policy repository on each node to access any
required policy. This type of architecture creates serious administrative overhead during
the deployment of new policies or replacement of a defective node, because the
network operator needs to push all applicable policies to the targeted node before
deploying it in the WSN. In our framework, the new node will pull all required policies
from other nodes in the network after they are deployed into the WSN; no human

intervention will be needed.



1.4 Thesis contributions

The primary contributions of this thesis are the following:

1. Designing a novel framework for a fully distributed policy-based system.
Details are discussed in Chapter 3 TinyPolicy: A Distributed Policy

Framework.

1.1 Developing a new distribution technique for policies in a WSN by
creating a new policy-centric P2P algorithm named PolicyP2P. Details

are discussed in section 6.3.

1.2 Introducing and analyzing a new implementation for a Bloom filter in the
areas of WSN and policy-based systems. Details are discussed in Chapter

5 Bloom filter.

1.3 Introducing a new approach for constructing a policy key by using a
sensor's data rather than by using arbitrary numbers as in other existing

systems and platforms. Details are discussed in section 6.1.

2. Creating a new tool for policy debugging and testing, named Policy IDE. This
new tool allows the users to test and debug the newly created policy in a
simulation environment through a simple GUI. Details are discussed in
Chapter 8 Validation of TinyPolicy through implementation in TinyOS and
Appendix A Policy management tool (Policy IDE) interface.

3. As a contribution to the WSN research community, our work was used as a
basis for other open source projects, such as [16] and [17], which inspire other

researchers abroad.

4. Publications related to our work are listed in Appendix C Publications.



1.5 Outline

This thesis consists of nine chapters and is organized in the following way:
Chapter 1 Background covers the thesis background, motivations, objectives, and
contributions. Chapter 2 Related work discusses different knowledge areas and related
work. This chapter is divided into four sections, each dealing with a separate
knowledge area. Chapter 3 TinyPolicy: A Distributed Policy Framework discusses the
TinyPolicy framework and architecture design. Chapter 4 Policy management in
TinyPolicy discusses policy management algorithms in TinyPolicy; these algorithms
deal with policy creation, modification, deletion, execution, retention, and the handling
of multiple policies. Chapter 5 Bloom filter describes the Bloom filter analysis,
implementation, and evaluation, and its value for the framework. Chapter 6 PolicyP2P
— A Policy Overlay Network discusses the PolicyP2P software component, which
consists of all algorithms that are required by the overlay network to operate. Chapter 7
Complexity analysis of TinyPolicydiscusses the results of the complexity analysis of
the overlay network. Chapter 8 Validation of TinyPolicy through implementation in
TinyOS discusses the implementation and evaluation of the framework. It also
introduces the Policy Management Tool, which provides great assistance in managing
the policy-based environment (create, delete, enable and disable a policy, and trigger an
event), and in debugging and testing policy execution. Chapter 9 Conclusions and
Future Work briefly summarizes this research and proposes future work and

improvements.



Chapter 2 Related work

Various knowledge areas were studied in this research, such as distributed policy-
based management, policy-based management for WSNs, policy structure, and protocol

and P2P algorithms for WSNs.

Many of the existing or proposed policy-based WSN platforms rely on a local
policy repository on the sensor node to access any required policy [6], [14], [15]. This
type of architecture raises many serious issues; particularly the issue of network
dynamism and robustness, since it creates node silos that can only communicate with
the network gateway but do not communicate or share resources with other nodes in the
network. Moreover, this architecture creates administrative overhead during the
deployment of new policies or the replacement of a defective node, because the
administrator needs to know exactly which policies apply to which nodes, the address
of the targeted node, and how to create an exact replica of the defective node.
Moreover, the administrator of the existing architecture has to make sure that the new
policies have been deployed successfully to the targeted node, which also adds extra
overhead to the task. Our new framework can avoid this additional overhead by
deploying the new policy to a hosted node that has been mathematically selected, rather
than deploying it directly on the targeted node. The targeted node can access the new
policy from the hosted node when it is required or from the Root if the deployment of

the new policy on the hosted node was not successful.

Policy is defined as a constraint on the system behaviors, which can be expressed
using natural language or mathematical notation. However, neither of these two
approaches is ideal for computer systems [18]. Natural language is commonly used to
write real-life policies, but it typically lacks clarity and precision [18]. Mathematical
notation, on the other hand, has extreme clarity and precision, though it suffers from
limited ability to express constraints and is difficult to understand [4]. Policy-based
systems try to strike a balance between these two approaches by creating a policy

language that can fulfill the requirements of the targeted system. Hence, policy



languages are declarative and not procedural; they express constraints on system

behaviors but do not specify how these constraints ought to be enforced [19].

Policy-based systems use many existing expressive languages for specifying
policies. Policy languages include XACML (eXtensible Access Control Markup
Language) from OASIS [20], Ponder2 from Imperial College in London [21], PDL
(Policy Description Language) from Bell [22], CQL (CIM Query Language) from
DMTF [23], and CIM-SPL (Simple Policy Language CIM) from DMTF. However,
they are not appropriate for WSNs due to resource constraints in the sensor node. Some
of these constraints are memory, computational power, and limited wireless signal
range. In fact, frequently changing network topology, limited wireless signal range, and
limited resources are considered the most challenging issues in designing a policy

system for WSNs [24].

The most notable initiative in dealing with this issue of policy language was
Finger2, an embedded policy system for wireless sensor nodes, which was a simplified
and scaled-down version of Ponder2 [15]. Finger2 uses the PonderTalk [21] object-
oriented policy language because of its simplicity, and it can efficiently exchange
messages between objects. PonderTalk is a slightly modified version of Smalltalk [25]
that was created at the Department of Computing in Imperial College, London [26].
PonderTalk has two types of policies, Obligation policies and Authorization policies.
Obligation policies monitor events, apply conditions, and trigger actions [26]. Figure 1

shows the syntax of the obligation policy.

Policy := root/factory/ecapolicy create.
Policy event: myEvent;
condition: [:arg | bool-expression];
action: [:arg | statements]

Figure 1 Obligation Policy

As shown in Figure 1, the obligation policy structure consists of the following

parts:

o Policy ID (policy name): A unique identification number or string that

identifies the policy.
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e Policy Event: An identification number or string that identifies the unique

event associated with the policy.

e Condition: An expression that the policy engine evaluates to trigger the

associated action.
e Action: The task to be performed if the condition in the policy is positive.

The second type of policy is the authorization policy, which is used to authorize

access to secured resources [26]. Figure 2 shows the syntax of the authorization policy.

Policy := root/factory/authpolicy
subject: root/personnel/nurse/ward1
action: “getrecord”

target: root/patient/wardl

focus: “t”

Figure 2 Authorization Policy

As shown in Figure 2, the authorization policy structure consists of the following

parts:

o Policy ID (policy name): A unique identification number or string that

identifies the policy.

e Subject: An object that has the permission. In this example, it is the nurse in

Wardl.

e Action: The transaction type (task to be performed). In this example, it is get

patient medical record.

e Target: An object that the permission is given about. In this example, it is the

patient in ward 1.

e Focus: This field shows which object the policy is intended to protect. In this

example, it is the target (patient in ward 1).

The WSN environment is constrained due to limited resources, such as energy,

memory, and processing power. Such limitations affect the number of applicable
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languages that can efficiently operate with it. In addition to the limitations of the

operating environment, the selection of language is further limited by the fact that the

language needs to work efficiently to exchange messages between managed objects and

be able to handle the policy structure and operations.

In policy-based management systems, alternatives to policy languages to

transform a policy into a physical implementation include the following:

Transformation using static rule: A system expert creates a static mapping
between the high-level policy and low-level implementation. For example,
suppose a service provider has a policy to provide a specific level of service
based on the user's company. This policy could be translated to: if user from

subnet 10.10.3.0/24 then reserve 20 Mbps and use encryption 128 bits [18].

Transformation using policy table lookup: The system stores a table of
policies used by the system [27]; the administrator queries the table with a set
of configuration parameters to obtain a set of goals that can be achieved for

those parameters [18].

Transformation using Case-Based Reasoning: A use case database or history
of the system behavior [28] is employed to transform high-level policies or

goals into low-level configuration parameters and vice versa [18].

Agrawal et al. [18] provided a convincing classification of different policy types

that links the definitions to the system's various states and behaviors. The

classifications consist of the following:

Configuration constraint policy: This type defines configuration constraints,
such as allowable, minimum, and maximum values for configuration

attributes. Examples:
o Maximum number of threats for application server is 50

o Virtual memory size should be less than two times the size of physical

memory

12



o Metric (Goal) constraint policy: This type defines metric constraints, such as

upper or lower bound on a metric. Examples:

o Keep CPU utilization below 50%

o Directory lookup should be completed in less than one second

e Action policy: This type requires the system to perform certain actions when a

particular event or change in system status has occurred. Examples:

o If CPU utilization exceeds 70% then allocate additional server

o If system temperature exceeds 95° C then shut down the system

e Alert policy: This type is similar to the action type, except that in this type, the

action is a notification message sent to another entity. Examples:

notify them by email

o If users did not access their email accounts in more than 6 months,

o If the system goes down, notify the administrator

This classification was for wired network environments. Nevertheless, it can be

valid for the wireless sensor network environment as well. Table 1 presents a mapping

of Agrawal's policy type classifications to WSNSs.

Table 1 Policy Types and Examples

Policy Examples
Policy Type Description
Wire Network DPBM-WSN
Configuration | Define » Maximum > Increase/decrease the

configuration number of threats timing event frequency
constraints, such for application > Increase/decrease the
as allowable, . .

server 1s 50 sensing rate

minimum,
maximum values

for configuration

» Virtual memory

size should be
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attribute

less than two
times the size of

physical memory

Metric Define metric Keep CPU Increase the sensing rate
constraints, utilization below by 10% if the difference
such as upper 50% between the last two
or lower bound Directory lookup readings is 20%
on a metric should be Decrease the

completed in less transmission rate by
than one second 20% if battery level is
less than 10%

Action Require the If CPU If the sensing data
system to utilization storage exceeds 90%
perform certain exceeds 70% utilization then switch to
actions when a then allocate another storage node
particular event additional server If parent node is not
or change in If system accessible then try to
system status temperature join another parent node
has occurred exceeds 95° C

then shut down
the system

Alert Similar to the If users did not If battery level is below
action type access their email 10%, notify the
except that in accounts for administrator

this type, the
action is a
notification
message sent to

another entity

more than 6
months, notify
them by email
If the system
goes down,
notify the

administrator

if policy storage is 90%
utilized, notify the

administrator
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2.1 Distributed policy-based management

Distributed mechanisms have been used to resolve resource constraints in many
knowledge areas, such as distributed computing, distributed file systems, distributed
learning, and distributed manufacturing. There has been a great deal of research on
distributed policy-based management of types of networks other than WSNs. These

initiatives include the following.

The Madeira project [29] is a research project to develop solutions to Next
Generation Networks (NGN) challenges. This project uses a fully distributed policy-
based network management framework, which exploits the peer-to-peer paradigm.
Researchers justify the use of policy-based and peer-to-peer approaches in the Madeira
project as compensation for the lack of flexibility, dynamism, and autonomy that the
NGN paradigm requires. Madeira achieves these objectives by developing an overlay
mesh network of distributed management elements. Each management element will be
responsible for managing a subset of the network independently from other subsets of
the network. The approach adapted by the Madeira project is similar to that in this
thesis, in that both use the policy-based management concept supported by an overlay

network structure.

Galani et al. [30] researched a policy-based framework as a feasible solution for
the Future Internet. Authors defined the Future Internet (FI) as a powerful network with
heterogeneous technologies, low expectation of Quality of Service (QoS)/Quality of
Experience (QoE), and evolving business models. All these characteristics combine to
create a highly complex network and service management environment based on
business objectives, which cannot be handled by traditional network management and
thus creates a need for autonomic management behavior. A policy management
framework was specified to overcome the challenges of the highly diverse,

decentralized, and dynamic Future Internet.

VanderHorn et al. [31] introduced the Cognitive Network Management System
(CNMS). CNMS is a research initiative for complex Mobile Ad hoc Networks

(MANETS). It provides a real-time policy-based management framework that aims to
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mitigate the need for centralized network management, provide automated management
by providing reasoning and enforcing mechanisms for network resources, reduce
human intervention, and increase network reliability. The authors achieve these
objectives by utilizing a lightweight policy-based framework, which is able to adapt at
runtime to unpredictable network conditions by creating and enforcing new learned
policies. A learned policy is a new policy created by a cognitive node to mitigate
unpredictable network conditions. Learned policies can be distributed to other nodes to

manage similar network conditions.

2.2 Policy-based management for WSN

Sensor nodes are designed to work in harsh and unrestricted environments for an
extended period. Therefore, the cost of these sensors has to be low, which may restrict
such capabilities as memory and computational power. Hence, sensors need to be
updated from time to time due to resource constraints or changes in the operational
environment. The conventional way to reprogram the sensors is to take the sensors
from the field and reprogram them [1], [11], [12]. This approach has proven hectic and
problematic. Another approach is to reprogram the sensors over the air by sending the
new code through a transmission protocol. This approach has the disadvantage of
depleting the sensor node energy. Finally, researchers have investigated policy-based

management as an alternative way to reprogram and manage sensors.

Lee et al. [32] investigate different approaches to sensor node reprogramming.
The two known methods for reprogramming are manual and over-the-air. In manual
reprogramming, the sensor node code is updated through physical access to the node.
This has proven to be tedious and time-consuming. In over-the-air reprogramming, the
code is disseminated over the air to all sensor nodes in the WSN. The drawbacks of this
method are network congestion and energy depletion. The large number of transmission
activities creates network congestion, while energy depletion results from nodes

receiving a large amount of network traffic to update their code.

Lee et al. [32] proposed a novel approach to managing the process of over-the-air

reprogramming by categorizing the different possible cases of node reprogramming
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based on the node's execution characteristics. The proposed approach creates a profile
(policies) for each case to reduce the negative impact on the WSN. The simulation
results show impressive improvement over other reprogramming techniques, but this
approach did not eliminate the negative impact of over-the-air reprogramming on the
WSN, nor did it reduce energy depletion or the need for node reprogramming. Our
work eliminates the negative impact of over-the-air reprogramming by reducing the
need for this process through controlling the node behavior by policy programming,
which requires significantly less transmission of data compared to full code
reprogramming. Our work also reduces energy depletion by significantly reducing the

transmitted data size.

Jacquot et al. [33] proposed a new approach to WSN management named
LiveNCM, which stands for “LiveNode Noninvasive Context-aware and modular
Management.” It is a new approach to WSN management systems in which a
configurable modular architecture is enabled to fit to an application and provide
traditional administrative functionalities. In addition, it introduces two new concepts to
WSN management. The first concept is noninvasive context awareness to deduce the
network node status from current processing messages, which consequently reduces
network traffic and energy consumption. The second concept is the estimator model,
which is the possibility of computing some predictable values. Therefore, nodes can
only send data outside the predicted range. In this way, the node will preserve energy
and reduce the amount of transmitted data, as is demonstrated by some impressive

simulation results in this work.

Zhang et al. [5] proposed a network management architecture as depicted in
Figure 3. The proposed architecture is based on fault, configuration, accounting,
performance, and security management components. The basic idea behind the
proposed architecture is to form hierarchical clusters, which communicate with their
cluster nodes and another superior sink node. Each node in the network is capable of

performing cluster head as well as cluster child functionalities.
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Figure 3 Policy-based management system architecture

There are many challenges associated with this architecture. First, forming and
maintaining the cluster structure would pose a significant communication overhead on

the network, due to the amount of information that must be exchanged between the

cluster head and its children.

Second is the size of the software that the architecture is proposed to have on each
sensor node, which is expected to be larger than the average sensor's memory capacity.
As shown in Figure 3, the architecture is proposed to have the following software

components, which are enormously larger than any other existing policy-based

framework for WSNs:

1. Policy management component (Policy Decision Point (PDP), Compile-time

conflict resolve, and Runtime conflict resolve)

2. Fault and Performance management

3. Configuration management
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4. Security management
5. Quality of Service (QoS) management

Third is the policy repository. Given the predicted large size of the software that
needs to reside on each sensor node, it is unlikely that a lot of memory would be left to
store the policies, and thus our proposal for a dynamic and distributed repository

becomes a necessity for such an architecture.

The fourth challenge is multiple policies execution. Zhang et al. [5] did not
discuss this topic and provides no information on how the system would handle such an
issue. Multiple policies execution is necessary in some cases where an event requires

triggering multiple policies in sequence.

Fifth, the setup and administration of such an architecture would be a significant

task and would require a highly skilled professional to set up and manage.

Bourdenas et al. [15] proposed a self-managed cell (SMC) framework for a WSN.
The authors argued the need for self-managed architecture, which is due to the
complexity of sensor network applications and the fact that users are not expected to
have high technical skills. The authors came to this conclusion from the cases they
investigated in their research, which ranged from health care to environmental

monitoring applications.

Typically, sensor networks are structured in three distinct layers as shown in
Figure 4. The bottom layer is sensing, where actual sensing events are captured; the
middle layer is analysis, where sensing events are processed for making decisions; the
upper layer is dissemination, where collaboration with other network resources takes
place. The other part shown in Figure 4 is the self-healing extension proposed by the

authors.
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Figure 5 depicts the proposed SMC architecture, with the gray boxes representing

self-healing services and the white boxes representing the core SMC services.
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Policies are the means to control the behavior of the node. Bourdenas et al.
proposed two types of policies. First is obligation policy: Event-Condition-Action
(ECA) rules, which can express system behavior in an event-driven model. Second is

authorization policy: controlling resource access or services by other nodes.

As shown in Figure 5, managed objects (nodes) are generating events, which can
then communicate with the Policy Service through the Event Bus. Actions, on the other
hand, are operations executed by managed objects, which also communicate through
the Event Bus. To implement the proposed architecture, Bourdenas et al. developed the

Starfish framework, which consists of the following components:
e Finger2: An embedded policy system for sensor nodes.

e SML: A module library to simplify the programming of sensor nodes. It
provides basic functions and tools used in sensing applications. These include
sensor sampling, feature extraction facilities, timers for scheduling of events,

and network primitives for exchange of messages among nodes.

e Starfish editor: A client-side graphical user interface for managing policies,

missions, and roles on sensor nodes.

Figure 6 shows how the Finger2 architecture handles events as well as actions.
The Authorization Manager checks the Event first to authenticate the source. After
authenticating the source, the event is passed to the Obligation Manager/Event
Manager, which searches the local repository for applicable policies. Applicable
policies are then forwarded to the embedded Virtual Machine (VM) for execution. In
some cases, the VM consults with the Authorization Manager to permit remote events

triggered by the requested action.
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Finger2 is the only policy engine for WSNs in the academic domain. Finger2 has

been a basis for our work.

Zhu et al. [6] developed a simple TinyOS application, SimApp, making use of
Finger. This application implements an event source of acceleration, and two actions,
which toggle the red light and the green light. The application components consist of
one obligation policy, which is the green light toggled when the acceleration is larger
than a given threshold, and one authorization policy, which is controlling access to the
red light action. The authors present their experimental results in [14]. Table 2 shows
the experimental results for code size and Table 3 shows the processing delays of the
experiment. These results are used as a benchmark for our work. The work done by Zhu
et al. in [6] was studied as a guide to building our new framework environment, and its

experimental results are contrasted with theirs.
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Table 2 Code Size Breakdown of SimApp

Component ROM (KB) RAM (KB)
Finger(with authentication) 20.65 2.35
Finger (without authentication) 4.99 0.53
Comm. 8.08 0.49
Basics 2.55 0.04
Total (w/0) 15.62 1.06
Total (w) 31.28 2.88

Table 3 Processing Delays

Operation Delay
Obligation Interp. 62 us
Authorization Interp. 81 us
Public Encrypt. 9530 ms
Public Decrypt. 5281 ms
Symmetric Encrypt 150 ps
Symmetric Decrypt 90 ps

2.3 Policy structure and protocol

A policy-based management system has to have a viable policy structure that can
facilitate the management of sensors. Researchers have investigated the policy structure
from various perspectives. Some researchers have studied the policy structure as a data
entity, and others have investigated the need for a dedicated protocol to transport

policies.

Ayari et al. [34] proposed a novel approach for Distributed Policy-Based
Management in Mobile Ad-hoc Network (MANET). The proposed approach consists of
three main parts: policy structure, policy-based framework, and Distributed Policy

Management Protocol (DPMP). Policy structure contains the following segments:
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Name (policy identification), Time (policy enforcement time), Group (one of four
predefined policy groups), Role (an attribute that is used to select one or more policies),
Scope (the policy target), On (trigger field for policy execution), If (policy condition of
type Boolean), and Then/Do (task to execute).

The proposed protocol is vulnerable to deadlock and infinite circulation of
messages in the network, as it is missing a time to live flag, which can be used to avoid
such situations. The number of hops, which can be used to avoid sending messages to
unwanted domains, is another piece of information that is missing from the proposed

protocol.

In the policy structure, Ayari et al. did not discuss a case in which multiple
policies need to be executed due to an event. In addition, it would be useful if the
architecture had a field for the policy priority or execution sequence. Another issue
concerns the purpose of the “enforcement time” field. It is not clear what they mean by
policy enforcement time, since in practice it would be impossible to predict when the
event would occur. Moreover, the length of the actual policy is too large to be
applicable to wireless sensor networks or even to ad hoc networks. Ayari et al. also
restricted the role of the Local Policy Decision Point (LPDP) to make local decisions,
communicate with monitors, and interact with other LPDPs to distribute policies for
non-configured nodes. This thesis expands the role of the LPDP to process and acquire
the requested policies from remote nodes. (See Chapter 3.) Finally, Ayari et al. did not
discuss the process of creating and administering the policies, which might be
challenging and require human intervention. Their research was in a different domain

than WSN, but it can be modified for the domain of WSN.

2.4 P2P algorithms in WSN

A fully distributed policy-based management approach was used to implement
our framework. The use of hashing and P2P algorithms was fundamental. This section

presents some prior research on P2P algorithms.

Thanh et al. [35] surveyed routing using distributed hash tables (DHTs), identified

various algorithms, and compared them for energy efficiency, scalability, and data
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storage/lookup efficiency. Algorithms that could be used in our new proposed
framework are Geographic hash table (GHT) [36], Chord for sensor networks (CSN)
[37], Virtual Ring Routing (VRR) [38], Topology-based Distributed Hash Table (T-
DHT) [39], Cell Hash Routing (CHR) [40], and ScatterPastry [41]. The authors
concluded that ScatterPastry scored highest in all categories: scalability, energy
efficiency, and data storage/lookup efficiency. The GHT, CSN, and VRR algorithms
were on a par, followed by T-DHT and finally CHR.

Al Sukkar et al. [42] researched P2P systems in the domain of data-centric storage
in a WSN. The authors proposed an algorithm for efficient data-centric storage in a
WSN without the support of any physical location information system. The proposed
algorithm supplies a unique temporary node address for every node in the WSN, based
on its current relative location in the WSN. The node address will have a tree structure,

where each node may have a parent and children.

The other part of their research was the routing algorithm, which works similarly
to Pastry [43]. The routing algorithm requires each node to have information about the
first hop neighbors and forwarding requests based on the longest node address
matching the data object hash number. The work by Al Sukkar et al. [42] inspired our
work in many ways, but it differs in several aspects as well. The first aspect is the
problem that they were trying to solve. Al Sukkar et al. proposed a solution to resolve
WSN content management, while our work tries to solve WSN network management.
The second aspect involves their incorporating information about the relative (not
physical) location of the sensor node in the address allocation, while our work
incorporates a sensor's local information, such as the overlay address and Event 1D
number. The third aspect involves the routing algorithm. Al Sukkar et al. dictated a

specific routing algorithm, while our work does not.

Gutierrez et al. [44] proposed to use a P2P network with a WSN to create a
programming abstraction to ease the development of WSN applications. The
abstraction relies on the feedback loop as a way to design the components of the

abstraction and define their self-managing behavior. Feedback loops allow one to
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model different types of systems, especially self-managing systems. This type of

system consists of the following four components:
e Subsystem: The main software component
e Monitor: A software agent that monitors the Subsystem

e Correcting agent: A software agent that receives information from the Monitor

and decides on appropriate corrective actions

e Enforcement agent: A software agent that applies the corrective actions to the

Subsystem

This research has demonstrated other benefits of using a P2P overlay network that
simplifies software development for a WSN by abstracting the underlying network
complexity. Some of the limitations in the existing works are: addressing a specific
type of WSN as in [42], using arbitrary numbers for node or policy identification,
limited the number of available policies to the node local repository capacity, relying
on a human intervention in administrating policies in the system. On the other hand,
this research addresses the WSN management in general and overcome all limitations

mentioned earlier.
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Chapter 3 TinyPolicy: A Distributed Policy Framework

In conducting this work, the existing policy-based management platform named
Finger/Finger2 [6], [14], [15] was studied and used as a basis on which to build a new
framework supporting distributed policy management. A fully distributed policy-based

framework for WSNs was designed and built.

A framework for WSNs can be designed either with a central policy repository
approach in which all nodes look up a policy in a Root node in the network, or with a
fully distributed approach in which there are multiple repositories and copies of a

policy in the WSN. The contrast between the two designs is summarized in Table 4.

Table 4 Centralized versus Distributed Policy Repository

Centralized policy repository Fully distributed policy repository
Reliability: Less reliable; a node cannot Reliability: More reliable; a node can
get a policy from any other node get a policy from multiple sources (two

to three sources)

Load Distribution: Policies are Load Distribution: Policies are
concentrated in the Root node. The more uniformly distributed among all WSN
policies exist in the WSN, the more nodes. Policy management overhead is
overhead the Root node will incur. distributed among different nodes.

Resilient: The loss of the Root node will Resilient: The system will keep

disrupt system operation. operating even with the loss of hosted
nodes.
Performance: Unpredictable; all nodes Performance: Predictable; through

have to get the policies from one particular | hashing function selection and
node, no matter how far it is from the adjustment, policy distribution can be

requesting nodes. controlled to store policies closer to

their targeted node.
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Node alive inspection: Not supported

Node alive inspection: Embedded
ability to inspect for node alive status.

(Responsiveness)

The architecture of the system was inspired by other work, notably Ayari et al.

[34] This system architecture consists of four main components:

e Local policy repository for storing policies locally on the node

e LPDP (Local Policy Decision Point) for logical evaluation of the policies

e PEP (Policy Enforcement Point) for locally executing policies

e Monitor for tracking local and neighboring node information

Ayari restricted the role of the LPDP to making local decisions, communicating
with the monitor, and interacting with other LPDPs to distribute policies for non-
configured nodes. In our work, the architecture capabilities are expanded by using such

mechanisms as Peer-to-Peer (P2P) communication, overlay network, tree-structure

network, shared resources, and autonomic behavior.

Our framework consists of four main software components as shown in Figure 7.
The main four software components are: Monitor, Local Policy Decision Point (LPDP),

Policy Enforcement Point (PEP), and PolicyP2P. Moreover, the framework includes

five data repositories (see section 3.2) to support system operations.
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Figure 7 Distributed policy framework

3.1 Software components

As shown in Figure 7, the main software components of our framework are the

following:

e (1. Monitor: Responsible for monitoring and updating Bloom filter values on
the sensor network as well as on the local sensor node. The Monitor is also
responsible for acquiring any necessary policy from any other remote sensor

node, based on a request from PolicyP2P. The Monitor will also watch the
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most frequently used policies in the local sensor node and store them in the

Local Policy Repository.

C2. Local Policy Decision Point (LPDP): Responsible for making local
decisions based on applicable policies, which are to be enforced by the Policy
Enforcement Point (PEP). The decision made by the LPDP is based on
policies stored in the local policy repository or acquired by the PolicyP2P
component. LPDP will first try to get the policy from the local policy
repository. If the policy does not exist there, LPDP will check the Bloom filter
to validate the existence of the policy within the sensor network. LPDP will
then decide whether to pass the request to PolicyP2P or declare the policy

does not exist.

C3. Policy Enforcement Point (PEP): Responsible for enforcing the policy
decision (Action) provided by LPDP.

C4. PolicyP2P: Responsible for maintaining the location of different policies
within the sensor network. When a particular policy does not exist in the local
repository, the PolicyP2P will issue a request to the Monitor to acquire the

targeted policy from a remote node.

3.2 Data repositories

Our framework includes five data repositories to support system operations, as

shown in Figure 7. The data repositories are the following:

DS1. Bloom Filter: The main objective of the Bloom filter is to inquire whether

an element is a member of a given set. The purpose of the Bloom filter is to provide

assurance on whether a policy exists on the sensor network. This process prevents any

unnecessary policy inquiry transactions on the sensor network, which results in faster

decision processing and preservation of sensor node energy.

DS2. Policy Repository: A data structure to store policy content. The policy

repository will have limited capacity and will be able to hold a predetermined number
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of policies. The Monitor will update the Policy Repository based on the discretion of
PolicyP2P or by monitoring policy usage. The capacity of the repository is a design
choice that can be changed during development, but it can be mathematically calculated
as in (1), by dividing the available memory size after uploading the program to the

sensor's node memory by the actual size of the policy.

available memory = sensor's total memory size - program size

1)

available memory

maximum policy repository capacity = - -
potcyrep y capacity policy size

To illustrate the previous equation, a Mica or IRIS sensor is used in this example.
The sensor device has a memory size of 128 kB, the policy size in this thesis
framework is 29 bytes, and the TinyPolicy program size is 30 kB. Hence, the
theoretical maximum repository capacity would be calculated as in (2). However, not
all the available memory can be used for the policy repository; part of the available

memory should be reserved for the storage of program and operating system variables.

98 kB * 1024 o
128 kB — 30 kB = 98 kB ==> —— ——— = 3460 Policies )

DS3. Node repository: A data structure used by PolicyP2P to store nearby node
overlay addresses. The PolicyP2P algorithm uses this table to forward the request

within the sensor network.

DS4. Event List: A data structure to store all possible events for the local sensor

node. It can be populated at compile time or at runtime.

DSS5. Action List: A data structure to store all possible actions for the local sensor

node. It can be populated at compile time or at runtime.
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3.3 Modified policy structure

Our work employed the policy structure and protocol used by Finger/Finger2, but
with some modifications. Our new framework requires some modifications, mainly to
the policy structure: the policy key and some other fields required by the new
framework, as shown in Figure 9. Figure 8 shows the policy structure used in Finger2,

while Figure 9 shows the modified policy structure.

Policy | Enabled

(structure) | boolean

Policy ID]PredicalD] EventID | ActionID [preArgDesc actArgDescI predicateArgs | actionArgs
uint8 t | Uint8 ¢ int uintS t uint8 t uint8 t uintlo6 t uintlo6 t

Figure 8 Finger2 policy structure

The main modifications to the policy structure involved the Type, Frequency, and
Policy ID fields, as shown in Figure 9. The first modification to the structure added two
new fields, Type and Frequency. These two new fields are very important for the policy
retention algorithm, since it tracks the policy type and its frequency of use. (A more
detailed discussion of the policy retention algorithm is in Chapter 4 Policy management
in TinyPolicy.) The policy retention algorithm will use the Type field to distinguish
between local policies (policies needed by a local sensor) and hosted policies (policies
required by remote nodes). The second modification was the doubling in size of the
Policy key (policy ID) field. This change was necessary for the PolicyP2P algorithm to
work, as it needs the Policy key to be in the same number space as the Node ID. This is
because Node ID is of type intl6 t; hence, the Policy key has to be of the same type
and size for the PolicyP2P algorithm to work. The PolicyP2P algorithm is discussed in
detail in Chapter 6 PolicyP2P — A Policy Overlay Network.
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Policy ID[PredicalD] EventID | ActionID |preArgDesc actArgDescI predicateArgs | actionArgs
uintl6 t | Uint8 t int uintS t uintS t uintS t uintlo6 t uintlo6 t
Figure 9 TinyPolicy policy structure
3.4 Multiple policies

The need to execute multiple policies per event is a major issue and can be

resolved in different ways. The most common approaches to resolve the multiple

policies issue employ a complex policy structure or policy chain. The difference

between the two approaches is that the complex policy structure uses a compound

policy structure to accommodate all required policies. In this approach, the multiple

policies structure is actually a repetitive structure of a single policy structure but with

different labels. On the other hand, the policy chain is a daisy chain of single policy

structures, each with an extra field for the address of the next policy in the chain.

Complex policy structure: In this approach, the policy structure consists of more

than one simple term (policy condition) as shown in Figure 10. The policy framework

needs to accommodate this change by modifying its process execution accordingly.
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Policy ID: My_PolicyID {
Policy Event: myEvent{
Block Name: block#1{
Condition: my_ condition;
Then: Accept
Else: Reject

}
Block Name: block#2{
Condition: my_condition;

Then: Accept
Else:Reject

}

Figure 10 Complex policy structure

Policy chain: In this approach, multiple policies are connected together in a daisy

chain called a policy chain, as shown in Figure 11.

s S S
e < S
Policy # @ Policy # @ Policy # @
2, 2. 2,
*/00{ \/00[ %,

Policy ID: My PolicyID {
Policy Event: myEvent{
Condition: my_condition;
Then: Accept
Else: Reject

b
Next Policy: My Next PolicylD

}

Figure 11 Policy chain



Chapter 4 Policy management in TinyPolicy

The following algorithms were created to support policy management in this

thesis framework:

e Policy creation: Defines the steps for new policy creation and storage. The

flowchart for policy creation is shown in Figure 12.

e Policy modification and deletion: Defines the steps for modification or
deletion of a policy. The flowchart for policy modification and deletion is

shown in Figure 14.

e Policy execution: Defines the steps for policy execution. The flowchart for

policy execution is shown in Figure 15.

¢ Policy retention: Defines the steps required to retain or recycle the unwanted
policies in the node repository. The flowchart for policy retention is shown in

Figure 16.

e Multiple policies: Defines the steps required to execute multiple policies for

a single event.

In order to manage policy operations, this thesis framework uses network message
number 0x28. This message has a parameter specifying the policy's transaction type.

Table 5 lists the possible values for this parameter.

Table 5 Policy Management Messages

Message Name Description
LOAD_POLICY Load policy: Issued by the Root to load
a policy

REMOVE_POLICY | Remove policy: Issued by the Root to

remove a policy
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ENABLE_POLICY

Enable policy: Issued by the Root to

enable a policy

DISABLE_POLICY

Disable policy: Issued by the Root to
disable a policy

GET_POLICY

Get _policy: Issued by any node to

request a policy

SEND POLICY

Send _policy: Issued by any node to
send the requested policy

TRIGGER_EVENT

Trigger event: Issued by any node to

trigger an event on any other node

RELOAD_POLICY

Reload policy: Issued by any parent
node to forward a policy to one of its

predecessors

The remaining sections of this chapter will discuss these algorithms in more

detail.

4.1 Policy creation algorithm

The new policy creation process starts by using the policy management tool,
Policy IDE, on a computer that is connected to the Root node. The user creates a policy
through the GUI of Policy IDE, as shown in Figure 13 and discussed in detail in
Appendix A Policy management tool (Policy IDE) interface. The steps for policy
creation are illustrated in Figure 12. After the policy is created using Policy IDE, the
node (Root) updates the local Bloom filter array and broadcasts the array to the rest of
the WSN nodes. To store the newly created policy in the WSN, the Root uses the

PolicyP2P software component to hash the policy ID and compute the remote target

node address for the node that will host the new policy.
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Figure 12 Policy Creation process
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Figure 13 Policy creation GUI
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4.2 Policy modification and deletion

The policy modification and deletion process is illustrated in Figure 14. The
process starts by checking if the policy exists in the local repository. If the policy does
not exist in the local repository, the process is directed to the policy creation process as
described in section 4.1. If the policy is an existing policy, the process checks the
operation type. The operation type is either deletion or modification. If the operation
type is deletion, the Root deletes the policy from the local repository and broadcasts the
deletion request to the rest of the WSN; the other nodes then remove the targeted policy
from their local repositories. The next step in policy deletion is to re-create the
BLOOM FILTER array based on the Root local policies remaining in the local policy
repository. Finally, the Root broadcasts the new BLOOM FILTER to the rest of the
WSN nodes, which replace the old BLOOM_FILTER array on the other nodes.

For the policy modification process, there is no need to perform any changes on
the BLOOM_FILTER array as this process intends to change only the policy content.
Therefore, the policy creation authority (Root) retrieves the targeted policy from the
Root's local repository, and the user can use a GUI similar to the one depicted in Figure
13 to modify the targeted policy. After the policy modification operation is completed,
the Root broadcasts a deletion request to the other nodes, which remove the targeted
policy from their local repositories. The purpose of broadcasting the deletion request is
to make sure that only one version of the modified policy exists in the WSN. Finally,

the Root sends the modified policy to the targeted node using PolicyP2P.
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Figure 14 Policy modification and deletion process

4.3 Policy execution

The policy execution process is shown in Figure 15. Each policy is associated
with an event on the sensor node. The policy execution process of the associated policy
starts when the sensor node triggers the associated event. First, the policy execution
process constructs the policy key, which is the concatenation of Node ID, Event ID, and
sequence number (sequence starts with 0) as shown in (7). The value of this
concatenated data is then hashed using a proper hashing function. The generated hash
value is the new policy key, which will be used throughout the rest of the algorithm.
The algorithm then moves to check if the policy exists in the local policy repository. If
the policy exists then two tasks are executed. The first task determines if there is more

than one policy (multiple policies/chain of policies) associated with this event. The
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algorithm examines that by incrementing the sequence number and submitting a new
task for policy execution with the new policy key. The second task enforces the policy
by evaluating the condition in the policy and applying the required action if it is a valid

policy.

If the policy is not found in the local policy repository, the process will check the
BLOOM FILTER to validate the existence of the policy within the WSN. If the
BLOOM _ FILTER test is negative then no further action is required and the execution
is stopped. However, if the BLOOM_FILTER is positive then PolicyP2P calculates the
remote node address, after which the Policy Execution Process sends a policy request to
obtain the policy from the targeted node. If the targeted node provides the required
policy then the process posts a new task for policy lookup with an increment to the
sequence number to verify whether it is a single policy or multiple policies. After that,

the algorithm enforces the acquired policy.

The targeted node could fail to provide the required policy for many different
reasons: energy depletion, hardware error, communication error, or software error, just
to name a few. In this case, the local node sends the request to the Root. If the Root
provides the required policy then the same previous two tasks are executed. However, if
the Root does not provide the required policy then the local node stops the execution

and ends the process, because the policy does not exist.

As discussed previously, the local node might receive policies from remote nodes.
In such cases, the local node would store the policies in the local node policy repository

for future uses, based on the discretion of the policy-retention algorithm.
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Figure 15 Policy execution process

4.4 Policy retention algorithm

The purpose of this algorithm is to keep the frequently used policies in the local
policy repository. Every time the node receives a request to load a policy, this
algorithm is triggered to check if the repository is full. If the repository is not full then
no action is necessary. However, if the policy repository is full then the algorithm
searches for a foreign policy that has the lowest frequently used rate. (Foreign policy is
defined as a policy that has been hosted in the current node based on the discretion of
the PolicyP2P algorithm.) The targeted policy is then replaced with the new policy.
Figure 16 shows the detailed steps of the algorithm.
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4.5 Multiple policies

For this research, to resolve the need for multiple policies, the policy chain
approach was chosen instead of the complex structure approach. As discussed in
Chapter 6 PolicyP2P — A Policy Overlay Network, the policy key (policy ID) consists
of three pieces of data as shown in Figure 19. For each triggered event, the node starts
the policy execution with sequence number equal to zero; then it increments it by one
until the BLOOM_FILTER test is negative, as shown in Figure 15. The node checks
each new policy against its local policy repository. If the policy exists, the node
executes it; otherwise, the node performs the BLOOM_FILTER test to save time and

energy.
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Chapter 5 Bloom filter

The policy structure may vary depending on the system and application
requirements, but the most important part of any policy structure is the policy key (ID).
The policy key plays a crucial role in any policy-based system, because it is used
throughout the network to locate the targeted policy. For this reason, Chapter 6
PolicyP2P — A Policy Overlay Networkdiscusses a policy key that is based on the
sensor's local data. This effective policy key is used by the Bloom filter to inquire about
the existence of any policy within the network before wasting sensor node energy
looking up a policy that may not exist in the network. It is possible to design the system

without the Bloom filter. However, the contrast between the two designs is summarized

in Table 6.

Table 6 Advantages of Using Bloom Filter

With Bloom filter

Without Bloom filter

Assurance: Provides assurance of policy

existence

Assurance: Provides no assurance

of policy existence

Lookup time: Policy is guaranteed to be

found, so lookup time is not wasted

Lookup time: Policy is not
guaranteed to be found, so lookup

time may be wasted

Alert tool: A supported tool to alert the

administrator about defective nodes

Alert tool: Cannot provide

information about defective nodes.

Transmission time: Saving around 0.002
second (2000 ps) of transmission time per
missing policy (more simulation data is in

Appendix B Mathematical Model Data).

Transmission time: Wasting 0.002
second (2000 ps) of transmission
time per missing policy (more
simulation data is in Appendix B

Mathematical Model Data).

Overhead time: Overhead time is

computation time of 0.000126 s (126 ps),

Overhead time: No computation

time overhead.
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from the evaluation data shown in section

5.4.

5.1 Bloom filter implementation

Bloom [45] introduced for the first time the concept of using a hashing function
technique to trade-off between space and time with some allowable error. The Bloom
Filter, as it was named later, is an elegant data structure that validates the existence of
an object in the domain space with no false negatives and an acceptable rate of false
positives. It has been widely used to resolve resource constraints in various knowledge
areas, including distributed computing, distributed file systems, distributed learning,
and distributed manufacturing. There are some implementations of Bloom filters in
WSNs in content-based routing [46][47]. In addition, the Bloom filter has many other
implementations in databases, computer networks, social networks, and cryptography.
Our work implements the Bloom filter technique to inquire about the existence of any
policy within the network before expending sensor node energy on looking up a policy
that may not exist in the network. No changes to the Bloom filter algorithm were made.
However, a significant analysis was performed to choose balanced parameters for the

algorithm that are appropriate for the WSN environment.

Adam Kirsch et al. [48] researched the benefits of using fewer hashing functions
to build the Bloom filter array. The authors proved formally that only two hashing
functions are necessary to use the Bloom filter array without any loss in the asymptotic
false positive probability. Their proposed method uses two hashing functions h; (x) and

h,(x) to generate k number of new hashing functions in the form of
9i(x) = hy(x) + ih,(x), where i is between 0 and & - 1.

Due to resource constraints in the sensor node, the proposed method in [48]

should prove valuable in WSNs.

Prosenjit Bose et al. [49] studied the false-positive rate in the Bloom filter
analysis provided by Bloom [45]. The authors claim that Bloom's analysis is inaccurate,

because it underestimates the false-positive rate. They provided a new analysis, but the
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difference in rates between the two analyses is negligible and applies only to certain

specific cases.

5.2 Bloom filter analysis

In order to use the Bloom filter, it is necessary to determine the values of many
inputs, such as the optimal filter array size, the ideal number of hashing functions,
hashing function algorithms, and the acceptable maximum rate of false positives. The

following analysis should answer these questions satisfactorily.

Consider a set S = {54, 5y, **, S, } of n members, and an array A = {ay, a,, =+, A}
of m members (bits) with an initial value of zero for all members (bits). H is a set of
independent hash functions H = {hy, h,, -*-, hy}, each with output range between 1 and

m. For optimal results, & has to be calculated by the following formula [48]:

k = In 20m/m

To add member index a to the set 4, each bit at positions h,(a), h,(a), ..., hi(a)
in array A4 is set to 1. Any bit may be set to 1 many times. To check for membership of
item b € S, all bits at positions h;(b), h,(b), ..., hi(b) in array 4 have to be equal to 1.
It is still possible that the conclusion is wrong (called a false positive), but the
probability of the false positive can be controlled by selecting an optimal number of
hashing functions as well as the size of the Bloom filter array. Thus, it is certainly true
that b € S if any bit of hy(b), h,(b),..., hi(b) in array 4 is equal to zero. This
observation is true, because for the member to be a valid member, it has to set all

applicable bits in the array to 1. If any bit is zero then it is not a valid member.

The Bloom filter promises to be an effective algorithm; however, it raises many

questions, including the following:
e What is the optimal filter array size?
e What is the performance of the membership test?

e What is the acceptable maximum rate of false positives?
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e What are the trade-offs in servicing the filter?

e What is the acceptable trade-off between the actual member lookup test and

the membership test?

To decide on the optimal filter size, assume # keys have been added to the filter F

with size m (bits) using k& number of hash functions. Then the probability that a
particular bit still has the value of zero is (1 — %)kn. The probability of a false positive
in this case is given in (3) [48].

k

(1 — (1 — %)kn> ~ (1 — ekn/myk 3)

Prosenjit Bose et al. [49] claimed that (3) is inaccurate and underestimates the
false-positive rate, but the difference in rates between the two analyses is negligible and

applies only to certain specific cases. (3) can be simplified to (4) as explained in [48].

k = In2m/n) 4)

It can be inferred that the optimal number of hash functions is k = in 20%/™),

Thus, the filter size m (bits) can be obtained using (5).

5.3 Hashing algorithms

Due to hardware resource limitations, hashing algorithms in the sensor node need
to be lightweight (code size and computation), independent, uniformly distributed, and
to require minimal computational power. Our work adapts the proposed method in [48]

which is based on selecting two hashing functions h;(x) and h,(x) as a base to
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generate £ more new hashing functions in the form of (6), where i is between 0 and & -

1.

gi(x) = hy(x) +ihy(x) (6)

Moreover, section 5.4 shows that intersection of the false-positive probability
curve with the hashing function line is between 1 and 2 for both test samples of sizes
1,024 and 18,000 members, which may support the finding of Kirsch et al. [48]
However, this conclusion is derived only from visual inspection of the chart, which

needs analysis and validation.

There are many known hashing functions. However, our work required a hashing
function that is lightweight, independent, and uniformly distributed, requiring minimal
computational power. For that purpose, potential hashing functions can be shortlisted as

follows:

e Additive hash: The simplest hashing algorithm, with weak performance. The

algorithm adds the values of the characters in a string.

e XOR hash: A simple algorithm, with less than average performance. The

algorithm XORs the values of the characters in a string.

® Rotating hash: Similar to XOR hash but with multiple XOR operations. This

algorithm has minimally acceptable performance.

e Bernstein hash': The algorithm adds the characters of a string and multiplies
the result by a constant value of 33. The performance results were not great,
which led to the creation of a modified algorithm called Modify Bernstein.
The new algorithm was the same, except it replaced the addition operation

with XOR.

" This algorithm was created by Dan Bernstein.
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o Shift-Add-XOR hash: A very efficient algorithm for all types of data. It is
similar to rotating hash, except it replaces the multiplication with addition and

chooses a different constant number for rotation. More detailed information

about this algorithm can be found in [50].

o One-at-a-Time hash’: This algorithm performs very well. It consists of

multiple shift, addition, and XOR operations.

o FNV series’: This algorithm is a series of XORs and multiplications. It has
some weaknesses, such as collisions and sensitivity to zero values, which

make it unsuitable as a cryptographic hash function.

Table 7, reproduced from [51] and [52], provides a comparison of some hashing

algorithms. The size-1000 column represents the smallest hash table size greater than
1,000 entries. The Collision column represents the number of collisions that occurred
when hashing 38,470 English words to 32-bit values. For this research, based on the
results in Table 7, one-at-a-time and Shift-Add-XOR (similar to the rotating algorithm

but with better performance) hashing algorithms were chosen for Bloom filter usage.

Table 7 Hashing Algorithms Comparison

Name size-1000 Speed Collision

Additive 1,009 5n+3 37,006
Rotating 1,009 6n-+3 24
One-at-a-Time 1,024 9n +9 0
Bernstein 1,024 Tn +3 4
Pearson 1,024 12n+5 0
CRC 1,024 On+3 1
Generalized 1,024 9n+3 0
Universal 1,024 52n+3 0
Zobrist 1,024 10n+3 1
MD4 1,024 | 9.5n+230 1

* This algorithm was created by Bob Jenkins.
3 FNV refers to the creators' names: Glenn Fowler, Landon Curt Noll, and Phong Vo.
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5.4 Bloom filter evaluation

The Bloom filter plays a major role in the policy execution process. Without the
Bloom filter, a sensor node would have no knowledge of which policies are available in
the network. Before starting this experiment, it was necessary to define some necessary
environment parameters: Bloom filter size, member's sample size, number of hashing
functions, and the hashing algorithm. To find reasonable values for the Bloom filter
size and the number of hashing functions, Bloom filter analysis was conducted as
shown in Chapter 5 Bloom filter. Performance can be further enhanced by using the
proposed method in [48] to apply more hashing functions to reduce the false positive

probability.

To decide on the member's sample size, the assumption here is that a reasonable
member's sample size is 1,024 members (policies), based on the fact that a conventional
policy platform can accommodate up to 20 policies on each node. Therefore, 1,024
members (policies) divided by 20 policies/node equals about 51 nodes. That is
considered a reasonable size for a wireless sensor network. At the other end of the
spectrum, the assumption of having 18,000 members (policies) will translate to 900
nodes (18,000/20 = 900), which is considered the largest single wireless sensor network

implemented to date.

Figure 17 shows the analysis of the sample size of 1,024 members. It shows that
the intersection between the false positive curve and hashing functions number line lies
between 1 and 2 hashing functions, with a probability of false positives between 0.2

and 0.4. The graph also shows that the Bloom filter array size is around 300 bytes.
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Bloom Filter Analysis for a sample size of 1024 members
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Figure 17 Bloom filter analysis for a sample size of 1,024 members

Figure 18 shows the analysis of the sample size of 18,000 members. It shows that

the intersection between the false positive and hashing functions number line lies

between 1 and 2 hashing functions, with a probability of false positives between 0.2

and 0.4. The graph also shows that the Bloom filter array size is around 5,225 bytes.
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Bloom Filter Analysis for a sample size of 18000 members
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Figure 18 Bloom filter analysis for a sample size of 18,000 members

To conduct the simulation experiment, Tinyos-NesC [53] was used to code the

hashing algorithm on the MicaZ platform. Avrora simulation software [54] was used to

simulate the experiment. The other assumption here is that the policy ID consists of 36

characters (“0123456789abcdefghijklmnopqrstuvwxyz”). The experimental results for
Table 8.

1,024 members are shown in

Table 8 Experimental Results for 1,024 Members

Hashing . Energy . Energy
. Time . Total Time .
Algorithm ws) Cycle wJ/Cycle Consumption | Members ) Consumption
s us
Name () ()

One_At a Time 51 176 0.0031 0.5419 1,024 52,224 554.8913
SAX 75 165 0.0031 0.5080 1,024 76,800 520.2106
Total 126 341 0.0031 1.0499 1,024 129,024 1,075.1020

The experimental results for 18,000 members are shown in Table 9. The resulting

values in both tables include running the hashing algorithm and updating the Bloom

filter. These two tables clearly show that the amount of resources the Bloom filter will
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need from a sensor node will be insignificant. For each lookup or update transaction,
the sensor node will spend 126 ps and use 1.05 pJ of energy. In the first case of 1,024
members (policies), the total time needed is 129,024 ps, and the total energy consumed

is 1,075.1 wl.

Table 9 Experimental Results for 18,000 Members

Energy Energy
Hashing Time ) Total Time )
) Cycle w/Cycle Consumption Members Consumption
Algorithm Name (us) (us)
() ()

One_ At _a Time 51 176 0.0031 0.5419 18,000 918,000 9,753.9492
SAX 75 165 0.0031 0.5080 18,000 1,350,000 9,144.3274
Total 126 341 0.0031 1.0499 18,000 2,268,000 | 18,898.2766

In the second case where 18,000 members (policies) were needed, the total time

was 2,268,000 ps and the total energy consumption was 18,898.285 pJ.

The Bloom filter has been widely used in many application domains, especially in
database management systems. This experiment shows how the Bloom filter can assist
a policy-based management framework for a WSN to inspect the existence of a policy
within the WSN with little computation time, minimal energy utilization, and limited

traffic.

As shown earlier, each lookup or update transaction in the Bloom filter expends
126 ps and consumes 1.0499 pJ. It is known that each AA alkaline long-life battery
produces 9,360 J. If each node has two such batteries then it can hypothetically execute
(2 #9360 J / 1.0499 pJ/transaction) ~ 18 billion transactions. These numbers show that
the additional overhead of the Bloom filter transactions on any sensor node will be

insignificant.
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Chapter 6 PolicyP2P — A Policy Overlay Network

This thesis uses the name PolicyP2P for the overlay network developed to support
distributed policies in WSNs (or resource constraint devices). PolicyP2P is a collection
of algorithms that are required by the overlay network component of TinyPolicy.

PolicyP2P includes the following algorithms:

o Policy lookup and search: This algorithm defines the steps required to search

and find any required policy.

e Network formation: This algorithm defines the steps required to build a new

overlay network.

e Node joining the network: This algorithm defines the steps required to handle

a new node joining the overlay network.

e Node leaving the network: This algorithm defines the steps required to handle

an existing node leaving the overlay network.

e Network maintenance and recovery: Due to the nature of WSNs, a node may
join or leave the network abruptly, which may disconnect the overlay tree
structure and create orphan parents. This algorithm defines a mechanism to

recover and maintain the healthy tree structure of the overlay network.

e Bloom Filter: A Bloom filter is a compact data structure used to support a
decision-making process on membership of a data item in a set of data items.
This work uses a Bloom filter to inquire about the existence of a given policy
within the network before expending sensor node energy on looking up a

policy that may not exist.

The PolicyP2P algorithm, which has been inspired by the Pastry algorithm [55], is
an algorithm created to find the longest Node ID that matches the policy key. In other

words, it makes a decision on which policy key belongs to which Node ID within the
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WSN. When the policy does not exist in the local repository, PolicyP2P issues a request
to the Monitor software component to acquire the targeted policy from a remote node.
The only similarity between Pastry and PolicyP2P is in using the longest matching
mechanism of the object hash code with the hosting node ID; no code, table structure,
or other artifacts have been reused from any implementation of Pastry. The PolicyP2P
algorithm builds an overlay network on top of the WSN as shown in Figure 22. The
overlay network structure is in a form of a tree structure as shown in Figure 23. In order

for PolicyP2P to operate, it uses the following network messages as shown in Table 10.

Table 10 Network Messages

Message Name Description

AM_REQUEST MSG Policy Request: Issued by any

node to request a policy

transaction

AM_RESPONSEMSG Policy Response: Issued by a

targeted node in response to a

policy request

AM_HELLO MSG Hello Message: Issued by a new

network

AM_HELLO_RESP_MSG | Hello-Response: Issued by the

parent node in response to a
previously received HELLO
message

AM_HELLO _ACKMSG | Hello-Acknowledgment: Issued

by a newly joined node to confirm

its new address

AM_REJOIN_MSG Rejoin: Issued by a newly joined
node to request all existing

predecessor nodes to reconnect

AM_MAINT_MSG Maintenance: Issued by the Root

node to remove the defective node
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I

address from the parent node

epository

AM_BF_MSG

Bloom filter: Issued by the Root

node to send Bloom filter array

It is possible to design the WSN framework without an overlay network.

However, the contrast between these two designs is summarized in Table 11.

Table 11 Overlay Network versus Physical Network

Overlay network

Without overlay network

Topology: Provides new information
about network topology, as neighboring
nodes are expected to be linked to each
other, giving an abstract picture of the

network topology.

Topology: Provides no information about

network topology.

Content management: The overlay
structure provides a new ability to
control the flow of sensing data using
policies. Using policies, sensing data
may be directed to a target node that is

closer to the source node.

Content management: Cannot be done

without foreknowledge of nearby nodes.

Peer-to-Peer connection: The overlay
network establishes a distance proximity
relationship between nodes. Thus, nodes
can communicate with each other in a

meaningful context.

Peer-to-Peer connection: Nodes cannot

communicate with each other in a

meaningful context.

6.1 Determining policy key

In many conventional policy-based systems, the policy key is an arbitrary

number, devoid of meaning. It will not provide any helpful information to the user; on

55



the contrary, it will add extra overhead to the process by requiring some kind of
database to maintain the relationships between policy keys and applicable nodes,
events, and should multiple policies be needed, the order of policies. In this thesis, the
policy key is a system-generated number, which provides information about the

targeted node address, event, and the order of policies in the policy chain.

The policy key plays a crucial role in our framework. The key indexing used for
the policies is an important part of how PolicyP2P looks up the policy in a node's
repository. The policy key also has implications for network traffic, because nodes will
broadcast a message for each missing policy, which will generate unwanted traffic in
the WSN. For this research, therefore, the policy key was built based on local data

within the sensor node.

Thus, the policy key consists of three parts, which are Node ID, Event ID, and a
sequence number. As shown in (7), these combined data are then hashed and the
modulus of the largest possible node ID number is computed. The probability that a
policy's hosted node will be identical to the targeted node depends on two issues: The
strength of the hashing function and the size of the WSN, as fewer nodes would tend to

increase this probability.

policy Key = H(nodelD || eventID

(7
| seqNum) % Max(nodelD)

As shown in Figure 19, NodelD is matching the local node overlay ID number;
Event ID is matching the Event ID value in the Event List data repository; and seqNum
is the serial number of the policy, a value between 0 and 255. The first part of the
policy key is the NodelD, which is two bytes long, similar to the local network NodelD
number. The second part is the Event ID, which is one byte long. The first character
represents the event category, and the second byte represents the event sequence
number within the sensor node. Hence, the maximum number of event categories is
2% = 16, and the total number of events per category is also 2* = 16, and so the total

number of possible event combinations is (2% * 2*) = 256.
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Policy Key = _NodelD || EventID || SegNo

NodelD is 3 characters long . SeqNo is 2 characters long (1
(2 bytes) from x0 to OXFFF. EventID is 2 characters long (1 byte)
from x0 to OXFF. The first character

represents the event category such as | the policy sequence within the
(T: Temperature:])’ the second chain of applicable policies to the
character is a hexadecimal number EventID. This number represents
representing the sequence number of |28 = 256 different policies which
possible events in the sensor. This
number represents 24 Categories * 24
Event Seq. = 256 combinations

byte) from 0x0-0xff representing
Each byte represents one

level in the tree-structure
overlay network.

means that every Event may have
up to 256 different policies

applicable to it

NodeID, EventID, and SeqNo are sensor dependent information and can be locally accessed from from
the sensor. Thus the sensor can identify the policy ID locally without the need to reached out to any other
Sensor.

For the purpose of executing multiple policies (group policy), policy execution will start with sequence
number (seq) equal to zero, and then increment the number by 1; each time, the sensor node will check

the Bloom filter to validate the policy.

Figure 19 Policy key

The third part of the policy key is seqNum, which is one byte long. seqNum
represents the policy sequence number within the chain of applicable policies (event
category). The total number of possible different policies is 28 = 256; hence, every

event may have up to 256 different policies applicable to it.

Based on policy key definition in this research, it should be no two policies with
the same key and should be no one policy key applicable to more than one node. In
some cases, it is possible to have one policy applicable to multiple nodes. The
alternative solutions in this case is either to have a multiple copies of the same policy
for each node or have a generic policy which applicable to multiple nodes. This
research implements the first approach (multiple copies of the same policy) because the
other alternative requires changes on the policy structure to store the applicable node
addresses as well as creating a mechanism to be able to execute the generic policies

which adding more complexity to the framework with little benefits in return.
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6.2 Distributed Policy Addressing

Each policy in the system will have a policy key to facilitate the search and
lookup operation in the system. The Root node is the only node that should create new
policies. The node then uses a hashing function(s) to hash the policy key, which will
have the same address space as the Node ID. Consequently, the node will forward the
policy to the closest matching Node ID in the next level. If there is a closer matching
Node ID in the lower level, then the node in the upper level will forward the policy to
the other closest matching Node ID in the lower level. This process continues until

there is no closest matching Node ID.

Figure 20 shows two policy storage examples for policy keys 0x1190 and 0x3119.
The two policies are created by the Root node, and copies of them are forwarded to the
closest matching node addresses in the Root node repository. In the first example, the
policy key is 0x1190, and the closest matching Node ID in the network is 0x1100.
Since the system is not centralized, the Root node has no knowledge of the existence of
node 0x1100. Therefore, the Root node forwards the policy to the closest matching
Node ID in its node repository (successor list). The closest matching Node ID in this
case is 0x100. Afterward, Node ID 0x100 checks its successor list and forwards the

policy to the closest matching node in its successor list, which is node 0x110.

The second example is for policy key 0x3119. Figure 20 shows that the closest
Node ID is 0x3110. However, the system is not centralized, and Root has no knowledge
of the existence of node 0x3110. Therefore, the Root node forwards the policy to the
closest matching Node ID in its node repository (successor list). The closest matching
Node ID is 0x300. Afterward, Node ID 0x300 checks its successor list and forwards the
policy to the closest matching node in its successor list, node 0x3100. Node ID 0x3100
then checks its successor nodes list to find that Node ID 0x3110 has the Node ID with
the closest match to policy key 0x3119. A copy of the policy is then forwarded to Node
ID 0x3110 and saved in that node's local policy repository.
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Figure 20 Policy storage examples

6.3 PolicyP2P algorithm

The input to the PolicyP2P algorithm is a hashed policy key as shown in Figure
21. The algorithm checks the leftmost hexadecimal digits against the corresponding
digits in the Node ID. If they match, then the current node is the targeted Node ID, and
the policy would be stored in the current Node ID or accessed from it. If there is no
match, then the process checks the node repository to find if there is a matching node
within the current node's children. If a match is found in the node repository then the
current node sends the policy request to the remote node. If no match is found then the
current node continues checking the leftmost length — 1 digits of the policy key with the
current Node ID. If there is a match then the policy is stored in the current node. If
there is no match then the process checks if the current address is the Root. If the

current node is the Root, then the policy is stored in it; if not, the policy is not stored.
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6.4 Policy lookup

Any node in the WSN can initiate a policy lookup request. The node that initiates
the lookup request will hash the policy key and forward the request to the closest
matching Node ID in level L - 1 (L is the targeted policy key level). Then the searching
process starts from that level using the PolicyP2P algorithm. If for any reason the

policy does not exist then a new policy request is sent to the Root by the initiating node.

Figure 20 shows a policy lookup example (dashed lines between node 311 and
110) for policy key 1190. Node ID 311 initiates the request and forwards it to Node ID
110, since it is the Node ID in level L — 1 that is closest to the requested policy key
1190. When the request reaches Node ID 110, the node checks its policy repository and
sends the requested policy to Node ID 311. If Node ID 110 has a child with Node ID
119 and the policy does not exist on Node ID 110 then the lookup request will be
forwarded to node 119.

6.5 Network formation

To implement a fully distributed system, the approach of this thesis is to build an
overlay network on top of the WSN as shown in Figure 22. The overlay network
structure is in the form of a tree structure with an implementation-specific number of
levels. Level zero is at the top of the tree structure representing the Root node, while
the lowest level is at the bottom of the tree structure representing the leaf nodes as
shown in Figure 23. Any node will be able to communicate with any other node in the
network; however, for a policy lookup transaction, the source node needs to send the
request to a specific node (based on the policy key hash value) in level L - 1, where L is
the targeted policy key level. The assumption here is that the number of available nodes
will always be less than the maximum number of nodes that the network can
accommodate. Therefore, the probability of finding a Node ID that matches a requested
policy key is higher with a shorter address, and most likely, the parent node in level

L - 1 will have a copy of the required policy.
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Sensor Overlay Network

Figure 22 Overlay network for policy-based systems

As shown in Figure 23, at any given moment in the system's life cycle, each node
is either a Root, Parent, or Leaf node. Root is the first node started in the WSN that has
one or more successors but no predecessor, and there is only one Root node in the WSN
at any given time. A Parent node has a predecessor and one or more successors. A Leaf

node has a predecessor but no successors.
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Figure 23 Tree structure for the overlay network

In our research, a three-level tree structure was chosen for the implementation.
The reason is that it can accommodate up to 3,616 nodes as illustrated in Table 12 that
is larger than the largest WSN that has been implemented to date of 900 nodes.
Moreover, the largest number of policies in the system depends on the policy key,
which should be in the same numbering space as the node ID. The network size in
TinyPolicy framework is a design choice, which depends on the total number of levels
in the network. Each level in the network can have 15" nodes where n is the level
number from 0 to n. the total number of nodes that can be accommodated in the
network is calculated by adding up all nodes in all levels. Table 12 illustrates the

calculation for a three level network, which has been implemented in this research.

Table 12 Overlay Network Size

Number of nodes
Level 0 (Root node) 1
Level 1 15
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Level 2 (15*15) 225
Level 3 (15*%15)*15 3375
Total 3616

The overlay network starts being formed when the first node (Root) in WSN
operates; then the tree structure starts being formed by each new node joining the
WSN. Each new node starts its operation within the WSN by broadcasting a “Hello”
message to all nodes in its range and requesting a Node ID for itself. All other
(available) nodes respond by assigning and sending a new Node ID to the new node
(successor). The new node accepts the first arriving Node ID and acknowledges the
assigned Node ID to the originator (predecessor). The other nodes that send a Node ID
to the new node will have the status of the previously given Node ID as “unconfirmed”
in their node repositories and can reuse this address for other nodes in future requests.

Figure 24 illustrates the message sequence for a new node joining the WSN.

New Node Existing Node

Hello(0)

Hello(New Node ID)

Figure 24 Message sequence for a new node joining the WSN

In this implementation, Node ID is a data field two bytes (16 bits) in length
(0x0000 - 0xFFFF). The overlay network address uses only the first three characters
(12 bits) for the Node ID. Each character in the Node ID address represents one level of

the tree. As shown in Figure 23, Level 0 has only one node, which is the Root node
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with address 0x0000. Level 1 uses the first character from the left to represent nodes at
that level. Therefore, the available address space for this level is from 0x1000 to
0xF000, which represents 15 available addresses. The second and third levels will use
the second and third characters respectively. However, the third level nodes cannot
generate any new Node IDs. Therefore, no new nodes can join the network through any
of the third level nodes; the new nodes have to get their Node IDs from other nodes at

higher levels.

6.6 Node joining the network

A new node joining an existing WSN has to broadcast a “hello” message to all
nodes within its range. All nodes within the range respond with a newly generated
Node ID for the newly joining node. The value of the newly generated Node ID is
different, based on the parent tree level and parent Node ID. The new node overlay
address is the first Node ID address received by the new node. Accordingly, the node
that generated the Node ID address is the new node's predecessor. Consequently, the
predecessor receives an acknowledgment of the overlay address from the new node and
updates the status of the Node ID in its node repository to “confirm.” Figure 25 shows
the message sequence for a new node joining an existing WSN. Furthermore, the
predecessor copies all related policies (based on the new Node ID) in its repository to
the new node. As shown in Figure 25, the new node schedules a request to broadcast a
rejoin message (after it confirms its new Node ID) to maintain the tree structure and to
avoid keeping any orphan leaves or parents in the overlay network. Existing nodes that
are within the address space of the new parent will acknowledge the rejoin message to
the new parent node; accordingly, the new parent node will update its node repository

with these new addresses.
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Figure 25 Message sequence for a join request to an existing WSN

6.7 Node leaving the network

A node may leave the network (overlay tree) deliberately or abruptly. This action
has a small effect on the system. Only policies stored on the departed node or its
successors will be partially unavailable, but the system will recover the missing policies
from predecessor nodes or from the Root node, depending on the capacity of the
affected nodes' policy repositories. When a node leaves the WSN for any reason, if that
node has any successors then the subtree becomes an orphan tree. In this case, the
system takes no immediate action. However, the Root node issues a maintenance

request to maintain network reliability, with the first request to it to access any policy
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that should have been accessed from any other existing node in the network.
Consequently, the Root node issues a maintenance request to its child that is
responsible for hosting the affected policy. The maintenance request will then spread
downward through the whole parent tree until it hits the defective node, removing the
defective node from the node repository of its parent. The orphan parent will keep
operating (as a disjointed parent) and serving related policy requests until a new node
replaces the departed node (parent). At that time, the new node will rejoin the original
tree because it will have been given the same node ID as the departed node. After
joining the original tree network, the new node will broadcast a rejoin message, which

requests all existing children to rejoin this new parent node.

The maintenance request process depends on the failure node level in the tree as
shown in Figure 26. If the Root was the departed node, then the network takes no
immediate action. In this case, the network will stay active but with some degradation
due to the missing nodes on the Root node. The network immediately recovers from
this failure once a new Root node replaces the departed node. The new Root rejoins the
tree by broadcasting a re-join message. All other nodes at the next level (Level 1)
respond to the new Root node. Consequently, th