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Abstract

Ultrasonic imaging for a multi-layer medium is a common challenge in seismology,

medical diagnosis, and non-destructive testing. One application for multi-layer imag-

ing is ultrasonic immersion test where the material under test and transducer array

are immersed in water. The main imaging challenge in immersion test (or in any

multi-layer medium) is that since the sound wave propagates with different speeds

in different layers, the homogeneity assumption is not valid. Thereby calculating the

sound travel time for the backscattered received signal is complicated. In this dis-

sertation, we propose a new approach to model the array received signals in order to

image the material under test.

In the first approach, we propose a distributed reflector modeling approach to

characterize the interface between water and the solid as well as any crack inside the

solid test sample. This approach relies on incoherently distributed reflector modeling.

A distributed reflector can be modeled as infinitely many point sources located close

to each other. We use distributed reflector modeling in order to estimate the shape of

the reflectors. To do so, we present our data model in a two-dimensional coordinate

system, and then develop a covariance fitting based approach to parametric estimation

of the shape of the interface between the two media and that of a crack inside the

test material. Numerical computer simulations show the accuracy of the proposed

approach. However the proposed approach is a parametric localization method which

needs the repetition of the ultrasonic test.

In the second approach we present a data model to use for image reconstruction

of a multi-layer medium without need to repeat the ultrasonic experiment. In this

ix



x

approach, we also use the spatially distributed source to model the interfaces between

the layers of a multi-layer medium. Then, based on the Huygens principle, we develop

a new array spatial signature for all the points inside a multi-layer medium. This

new array spatial signature can be used in existing imaging techniques including the

conventional beamforming technique, the MUSIC method, and the Capon algorithm

in order to image a multi-layer medium. These aforementioned three algorithms are

traditionally applied for a homogeneous medium where the sound velocity is constant

in the material under test. Numerical simulations as well as experimental data show

that the distributed reflector modeling outperforms other approaches such as rooted

mean square velocity.

In the third approach, to reduce the execution time for the imaging process, we

develop a Fourier-based imaging technique to estimate the scattering coefficient of

the points inside the second layer of a two-layer medium in order to obtain an image

of the region of interest. First, we use an approximation of the proposed data model

for the array backscattered signals due to the scattering of the point scatterers inside

the second layer of the material under test. Seeking the similarity with the definition

of Fourier transform, we propose a Fourier-based imaging algorithm, for imaging the

second layer of the material under test. In this proposed algorithm, the execution time

is considerably reduced compared to the three aforementioned imaging algorithms.

This proposed algorithm can be used in an online imaging process.
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Chapter 1

Introduction

1.1 Overview

Non-destructive testing (NDT) is a quality control method which includes a wide

range of non-invasive techniques to inspect the integrity of materials, components, and

structures without causing any damage to them. Examination of industrial materials

assures safety and reliability, helps the troubleshooting process, and prevents early

replacement of components or shutting down systems. Extending the useful lifetime of

components in industry and preventing unnecessary and expensive exchanges increase

the revenue by saving time and reducing the maintenance costs. By extending the

useful lifetime of the materials, NDT also helps protecting the environment which is

one of the main challenges of the world in the 21th century. Therefore, non-destructive

tests are used in a variety of industrial applications such as power plants, automotive,

pipelines, airplanes, and constructions.

Non-destructive testing methods include a wide range of techniques such as elec-

tromagnetic tests, laser tests, radiographic tests, and ultrasonic tests. In this disser-

tation, we focus on ultrasonic testing. Ultrasonic imaging is a common method to

inspect materials for flaw detection and thickness measurement in both industry and

1
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in medical diagnosis. Ultrasonic imaging uses high-frequency sound waves to detect

any discontinuity inside the material under test. Ultrasonic inspection is attractive

for NDT because it only needs to access one side of materials for conducting the ultra-

sonic test. Moreover, it is highly accurate in localizing the scatterers and estimating

the size and the shape of the flaws inside metallic materials.

Sensor array processing and multiple input multiple output (MIMO) utilizes mul-

tiple sensors or antennas to facilitate the localization process by providing spatial

diversity. MIMO signal processing has widely been applied in the area of wireless

communication to increase the reliability and data rate, compared to the traditional

single transmitter receiver techniques [1, 2]. MIMO has also been recently used in

radar imaging, materializing the concept of MIMO radar. In MIMO radar, mul-

tiple antennas are used to transmit high-frequency electromagnetic waves towards

targets and to receive the signal backscattered from the targets. These received sig-

nals are recorded and processed to obtain an image of the targets. Moreover, MIMO

has applications in sonar imaging to localize ships and submarines or to extract the

information regarding the sea bed. More recently, multiple ultrasonic sensors are

used to obtain more accurate image of the material under test for NDT applications.

There are a significant volume of literature on the array signal processing techniques

for applications in radar, sonar, biomedical engineering, and wireless communication.

These techniques include robust adaptive beamforming [3,4], distributed source mod-

eling [5–7], MIMO signal processing for imaging [8], vector sensor processing [9–12],

wide-band array processing [13–15], and cross-polarization imaging [16]. Compared

to the other applications, array signal processing in NDT has gained less attention

in the literature. There are certain array processing techniques and modeling which
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appear to be a better fit in NDT applications. One of these techniques is distributed

source modeling which is investigated in this dissertation.

1.2 Motivation

Since 1980s, ultrasonic phased arrays have been drastically used for non-destructive

testing in industry and medical diagnosis [17–24]. The diversity provided by different

positions of transmitters and receivers in an array of transducers facilitates local-

izing scatterers inside the material under test. Traditionally, ultrasonic arrays are

used to emulate a monolithic transducer with a larg aperture. Independent trans-

mission circuits for each transducer of the array enable different transducers to fire

with different time delays. Therefore, the probing sound wave can be focused on each

point in the region of interest (ROI) to generate a real time image [17]. However, in

many NDT applications, the targets are static and we can take advantage of off-line

post-processing methods. To do so, the data corresponding to all combinations of

transmitter and receiver transducers are collected in a matrix and are used in off-line

post-processing [19]. There are several efficient post-processing algorithms, which are

widely used in NDT, in case of ultrasonic contact test for a homogenous medium. In a

homogenous medium, the sound wave propagates with a constant speed inside the en-

tire medium [18,20]. However, these algorithms can not be used for non-homogenous

materials since the sound speed is not constant during the entire propagation path.

One example of non-homogenous materials is a multi-layer medium consisting of par-

allel layers with different sound speeds. One application for multi-layer imaging is

ultrasonic immersion test where the material under test and the transducer array are
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immersed in water. Immersion test provides a consistent coupling between the mate-

rial under test and the transducer array, while moving the transducers. Therefore, the

immersion test is often used in NDT, when the surface of the material under test is

rough and providing a consistent and uniform couplant between the transducer array

and the test sample in a contact test is not possible. However, the main challenge

in immersion test (or any multi-layer medium) is that the assumption of constant

speed is not valid, thereby calculating the sound travel time for the backscattered re-

ceived signal is complicated. This motivates us to develop a new model for multi-layer

imaging.

1.3 Objective and Methodology

In traditional array signal modeling, it is usually assumed that sources (or reflectors)

are point sources (or point reflectors) located at the far field of the sensors. However,

in applications, such as radar, sonar, wireless communications, and non-destructive

testing, reflectors are distributed in space. One example of these distributed reflec-

tors in NDT is the interfaces between layers in a multi-layer medium. Assuming

these interfaces as point reflectors could cause a major error in localizing a target

inside the material under test. Therefore, the distributed reflector modeling is more

appropriate than point reflector modeling for multi-layer imaging. In order to pro-

vide superior imaging capabilities, we aim to investigate and properly develop this

distributed source modeling for multi-layer imaging which immersion ultrasonic test

is one example of it. Using this model, we aim to obtain a higher quality image of a

multi-layer medium.

A distributed reflector can be modeled as multiple point reflectors located close to
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each other. Distributed reflectors can be modeled either as incoherently distributed

(ID) reflectors or as coherently distributed (CD) reflectors. The backscattered signals

arriving from different points of a CD reflector are fully correlated, while backscattered

signals arriving from different points of an ID reflector are uncorrelated. For example,

radio waves reflected by the layers of troposphere or a signal reflected from different

points of a rough surface are uncorrelated [5]. In most aforementioned literature on

distributed source localization, the main goal is to estimate the parameters of reflector

spatial distribution including central direction of arrival and angular spread of the

reflected signal. However, the spatial distribution of these signals may not provide

much information about the shape of the reflector. However in this dissertation, we

use distributed reflector modeling in order to estimate the shape of the reflectors.

In the first approach, we focus on the immersion ultrasonic test when the material

under test has a rough surface and rough crack shape. Then, we model the upper

surface of the test material and any crack inside the test sample as ID reflectors. We

then take advantage of repeating the ultrasonic test and aim to propose a covariance

fitting based approach to localize and characterize a crack inside the test sample.

This is a parametric localization approach, and based on a known shape for the

reflector, estimates the parameters of the shape of the reflector. However, applying

the covariance fitting approach needs the repetition of the ultrasonic test.

In the second approach, we aim to image a multi-layer medium based on the dis-

tributed source model for the interfaces between the layers without need to repeat

the ultrasonic test. There are some imaging algorithms including phase shift migra-

tion (PSM) and multi-layer omega-k (MULOK) which have been applied for imaging

multi-layer materials in NDT; however, other frequency domain approaches, such as
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the conventional beamforming technique, the multiple signal classification (MUSIC)

method, and the Capon algorithm, are not applicable when the sound velocity is not

constant in the material under test [25, 26]. Moreover, the PSM and MULOK algo-

rithms have been proposed for synthetic aperture focusing scenarios and to the best of

our knowledge, they have not been applied for the case when an array of transducers

is used. Then, we aim to propose a model that is applicable for frequency-domain

imaging algorithms in a multi-layer medium when a transducer array is utilized. To

do so, we model the interfaces between layers of a multi-layer medium as spatially

distributed sources consisting of infinite number of point sources. Then, we use this

model to develop a new array spatial signature for all the points inside a multi-layer

medium. This new array spatial signature can be used in existing imaging tech-

niques including the conventional beamforming technique, the MUSIC method, and

the Capon algorithm in order to image multi-layer materials. These algorithms tradi-

tionally are applied for a homogeneous medium where the sound velocity is constant

in the medium [27–30]. To the best of our knowledge, these algorithms have not been

used for imaging a multi-layer medium.

In the third approach, we aim to reduce the execution time of the imaging pro-

cess. To do so, first, we use an approximation of the proposed data model for the

array backscattered signals due to the scattering of the point scatterers inside the

second layer of the material under test. Then, we propose a Fourier-based imaging

algorithm, for imaging the second layer of the material under test. Note that the

approach of [20] is proposed only for imaging a homogeneous materials and our pro-

posed algorithm is not a simple extension of the wavenumber algorithm of [20]. In

this proposed algorithm, the execution time is considerably reduced compared to the
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three aforementioned imaging algorithms and it can be used in an online imaging

process.

1.4 Summary of Contributions

The contribution of our work can be summarized as follows

• We developed a data model for reflector localization for a scenario where the

reflectors are located in an environment which is different from the environment

where the array is located. To the best of our knowledge, this is the first attempt

to consider such a scenario and to model the array signal in this case.

• We estimate the shape of the reflectors as apposed to estimate their center angle

and angular spread which is the trend in the available literature. To do so, we

apply a covariance fitting method to the scenario explained above.

• We develop a new array spatial signature, based on the distributed source mod-

eling, for all the points inside a multi-layer medium. This new array spatial

signature can be used in existing imaging techniques, which are traditionally

applied for a homogeneous medium, in order to image multi-layer materials.

• We develop a new Fourier-based imaging algorithm to estimate the scattering

coefficient of all the points in the ROI in order to obtain an image of a multi-

layer medium. This algorithm can be used in an online imaging process.

1.5 List of Publications

Below is the list of publications corresponding to this dissertation:
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• N. Moallemi and S. ShahbazPanahi, “New Algorithm for second layer ultrasonic

array imaging,” to be submitted to IEEE Trans. Signal Process.

• N. Moallemi and S. ShahbazPanahi, “A New Model for Array Spatial Signature

with Applications in Non-destructive Ultrasonic Multi-layer Array Imaging,”

submitted to IEEE Trans. Signal Process., received major revision recommen-

dation, revised and resubmitted on Sep. 2014.

• N. Moallemi and S. ShahbazPanahi, “A distributed reflector localization ap-

proach to ultrasonic array imaging for non-destructive testing application,”

IEEE Trans. Signal Process., vol. 62, pp. 3863-3873, Aug. 2014.

• N. Moallemi, S. ShahbazPanahi, “Immersion Ultrasonic Array Imaging Using a

New Array Spatial Signature in Different Imaging Algorithms” in proceedings

of IEEE Asilomar Conference on Signals, Systems, and Computers, Nov. 2014.

• N. Moallemi, S. ShahbazPanahi, “Multi-layer Ultrasonic Imaging for Non-destructive

Testing Applications” in proceedings of International Ultrasonics Symposium,

Chicago, Illinois, USA, pp. 53-56, Sep. 2014.

• N. Moallemi, S. ShahbazPanahi, “Ultrasonic Array Imaging for Immersion Non-

Destructive Testing,” in proceedings of Sensor Array and Multichannel Signal

Processing Workshop, Coruna, Spain, pp. 185-188, Jun. 2014.

1.6 Outline of Dissertation

In this dissertation we focus on imaging a multi-layer medium for NDT applications

using distributed source modeling. Based on this model, we develop a new array
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spatial signature to image a multi-layer medium. The remainder of this dissertation is

organized as follows: In Chapter 2, we present a review on recent studies on imaging

techniques for ultrasonic NDT. We also provide a literature review on distributed

source localization methods. In Chapter 3, we provide the result of covariance fitting

approach for localizing a crack under the weld for an immersion ultrasonic test. In

Chapter 4, we develop an array spatial signature for a multi-layer medium based on

Huygens principle. To show the accuracy of this model, we conduct an immersion

ultrasonic test and image the material under test (which is the second layer in a two-

layer medim) with different existing imaging techniques using our new array spatial

signature. In Chapter 5, we have discussed the details of our proposed Fourier-based

imaging algorithm which can be used in an online imaging process. The conclusions

and future works are provided in Chapter 6.



Chapter 2

Background and Literature Review

In this chapter, the recent studies in related area to this dissertation are discussed and

their advantages and disadvantages are reviewed. In section 2.1, a breif introduction

on ultrasonic test in NDT application is explained. In section 2.2, we review the recent

literature on ultrasonic NDTmethods and challenges. In section , a brief survey on the

array processing techniques for localizing distributed sources is presented. Although

distributed source model in practise is more appropriate than the point source model,

distributed source localization is a new research area and the papers in this field is

mostly have been published in this decade.

2.1 Ultrasonic Test Overview

The objective of an ultrasonic test including industrial inspection and medical diagno-

sis is to obtain an image of the material under test in order to localize or characterize

any discontinuity inside the material under test. To conduct an ultrasonic test, an

ultrasonic transducer is used to convert an electric pulse into a high-frequency acous-

tic wave. Propagating wave in solid material scatters by any discontinuity inside the

10
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material including any flaws, defects and side walls. Another transducer or the same

one is used to convert the backscattered sound wave into electrical signal. Common

ultrasonic testing configurations are depicted in Fig. 2.1. In pulse-echo configuration,

one single transducer is used to transmit and receive the ultrasound wave while in

pitch-catch configuration, different transducer is used for receiving backscattered sig-

nal. Therefore, the pitch catch configuration is suitable for localizing angled cracks.

Through-transmission configuration needs two sides of the material under test and

detects cracks when it does not receive any signal.

Figure 2.1: Ultrasonic test configuration. (a) Pulse-echo. (b) Pitch-catch (c)

Through-transmission.

The received signal is sampled and quantized and stored in a digital computer.

This received signal contains information about the location, shape and the strength
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of the scatterers. Digital signal processing has a key role in extracting information

from the received signal such as range, direction of arrival, and speed of propagation.

2.2 Ultrasonic Array Imaging

Array processing is a branch of signal processing which deploys an array of sensors

to detect the presence and/or to estimate the parameters of signals propagating in a

medium. Array processing has variety of applications in radar, sonar, wireless com-

munication, seismology, and biomedical diagnosis. One of the the applications of

advanced array processing is NDT, where an array of ultrasonic transducers is used

for flaw detection and imaging inside solid structures. Larger coverage area without

need for reconfiguration, improving sensitivity, and reducing the time for conducting

the test, are some of the advantages of using transducer array compared to a conven-

tional single-element transducer. The ultrasonic arrays in NDT have different array

geometries which are designed for different industrial applications. In this disserta-

tion, we focus on uniform linear array; however, the proposed model can be extended

to other array geometries. The maximum array size, which is currently used in NDT,

is limited to 256 elements based on today’s computer computing power and electronic

size. Traditionally, ultrasonic arrays are used to emulate a monolithic transducer with

a larger aperture. Independent transmission circuits for each transducer of the array

enable different transducers to fire with different time delays. Therefore, the probing

sound wave can be focused on each point in the ROI to generate a real time image [17].

Some popular algorithms for real time imaging include plane B-scan, focused B-scan

and sector B-scan [18]. In each of these methods, a group of the transducers is used
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to fire simultaneously in order to generate the desired focused wave.

In many NDT applications, the targets are static and we can take advantage of off-

line post-processing methods. To do so, the data corresponding to all combinations

of transmitter and receiver transducers are collected in a matrix (see Fig. 2.2) which

is used in off-line post-processing [19]. This method of storing data is known as full

matrix capture (FMC).

When the material under ultrasonic test is homogenous, the sound wave prop-

agates with a constant speed in the medium. However, in some applications, the

material under test is non-homogenous i.e., the sound speed is not constant during

the entire medium. This non-uniform motion of sound in the material under test is a

main challenge in imaging a non-homogenous medium.

b

TX2

RX5

b

Target regrion

TX RX

Figure 2.2: Full matrix capture.

2.2.1 Ultrasonic Imaging for a Homogenous Medium

The data, which is collected by the FMC method, can be used to emulate the focused

wave on each point in the ROI by applying delay and sum beamforming (DAS). In [18],

a time-domain post-processing algorithm, known as total focusing method (TFM), is
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proposed for a uniform linear array based on delay and sum beamforming. To image

the ROI, we need to assign a relative intensity to each pixel point in the ROI. For

this purpose, the ROI is covered with a sufficiently fine grid. The relative intensity

of each point in the ROI, based on TFM algorithm can be written as summation

of all delayed received signals using the sound travel times corresponding to the

backscattered sound wave from that point to each transducer. the summation is

carried over all combinations of transmitter-receiver pair in the array of transducers.

Therefore, TFM uses maximum of the available information. The TFM method can

be effectively implemented. The only limitation is execution time. In [19], a vectorized

version of TFM has been proposed. This algorithm is more accurate to obtain the

information about the orientation of angled cracks compared to TFM.

In [20], a frequency-domain algorithm is proposed as a wavenumber algorithm.

Wavenumber algorithm is based on DAS beamforming in frequency domain, however,

this algorithm uses Stolt mapping method to reduce the computational complexity

of the implementation. In [21], two methods have been proposed. These methods

performs compensation in both spatial and temporal space based on minimum mean

square error(MMSE) criterion and maximum a posteriori(MAP) estimation approach.

The performance of the linear MMSE and non-linear MAP estimators shows higher

temporal and lateral resolution compared to DAS beamforming method. They ef-

fectively suppress the effect of side lobes and grating lobes. In all these algorithms,

the sound speed is assumed to be constant in the material under test. In the next

subsection, a brief review on ultrasonic imaging algorithms for multi-layer medium is

provided.
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2.2.2 Ultrasonic Imaging for a Multi-layer Medium

There are several efficient post-processing algorithms, which are widely used in NDT,

in case of ultrasonic contact test for a homogenous medium [18, 20]. However, these

algorithms can not be used for non-homogenous materials since the sound speed is

not constant during the entire propagation path. One example of non-homogenous

materials is a multi-layer medium consisting of parallel layers with different sound

speeds. One application for multi-layer imaging is ultrasonic immersion test where the

material under test and the transducer array are immersed in water. The immersion

test is often used in NDT, when the surface of the material under test is rough and

providing a consistent and uniform couplant, between the transducer array and the

test sample in contact test, is not possible. However, the main imaging challenge in

immersion test (or any multi-layer medium) is that the assumption of constant speed

is not valid, thereby calculating the sound travel times for the backscattered received

signals is complicated.

Despite all challenges of imaging a multi-layer medium, several algorithms have

been proposed in seismology, biomedical and NDT [25, 26, 31–36]. In [31], a method

is proposed for imaging material under immersion test (two-layer medium). In this

method, it is needed to use a transducer which can be focused on the surface of the

material under immersion test. The focal point of the transducer plays the role of

a virtual source for the material under test (second layer); then, the immersion test

can be treated as a contact test. However, in this method, the size of the transducer,

which determines the transducer focal point, depends on the depth of the first layer.

In [32] and [33], an approximate solution for determining sound travel time in a
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multi-layer medium is proposed using Taylor series based on the concept of root-mean-

squared (RMS) velocity. The RMS velocity is calculated by averaging the velocities

in all layers using a normal incident beam. This method is used in seismology where

the sound velocity between seismic layers are small [33]. This technique has also

been used in medical ultrasound test since the sound velocity differences between

tissue layers are not high [34]. In [35], an RMS velocity based approach is used for

calculating sound travel time in synthetic aperture focusing technique (SAFT) for an

immersion ultrasonic test. However, this approach has not been used in immersion

NDT applications, since the sound travels with two significant different velocities in

water and the solid material under immersion test.

Another algorithm, which is applicable for imaging a multi-layer medium with

parallel interfaces, is phase shift migration (PSM), which has been originally proposed

for seismic waves in [36]. In the PSM algorithm, the sound wave at each depth

in the material under test is extrapolated to different depth by multiplying with a

complex exponential factor , e(jkz(c)∆z) in frequency domain. Here, ∆z is the difference

between two depth, and kz(c) is wavenumber which is a function of the sound speed,

c. Since the sound speed is a function of depth in a multi-layer medium, kz(c) can

be recalculated when the wave extrapolated for a different layer with different sound

speed. In [25], the PSM algorithm has been investigated for an immersion ultrasonic

test in a synthetic aperture focusing scenario, i.e., when a single transducer is used to

emulate an array by repeating the test in different positions. The results shows that

the PSM algorithm can be implemented in a computationally effective way to obtain

a high resolution image of a multi-layer medium or objects immersed in water.
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In [26], an imaging algorithm, known as multi-layer Omega-k (MULOK), is pro-

posed, which is a combination of PSM and the wavenumber (ω-k) algorithm to image

a multi-layer medium for synthetic aperture focusing scenario. As it is mentioned in

the previous subsection, wavenumber algorithm, which is based on Stolt migration

algorithm, is effectively applicable for imaging a homogenous or single-layer medium.

However, the sound speed is assumed to be constant in Stolt algorithm. In MU-

LOK algorithm, the Stolt algorithm is used for imaging each layer of a multi-layer

medium, and the PSM algorithm is used to extrapolate from each layer to another

one. This algorithm has less computational complexity comparing to PSM in terms

of execution time. These two algorithms (PSM and MULOK) have been applied for

imaging multi-layer materials in NDT; however, othetr frequency domain approaches,

such as the conventional beamforming technique, the MUSIC method, and the Capon

algorithm, are not applicable when the sound velocity is not constant in the mate-

rial under test. Moreover, the PSM and MULOK algorithms have been proposed for

synthetic aperture focusing scenarios and to the best of our knowledge, they have not

been applied for the case when an array of transducers is utilized.

2.3 Distributed Source Localization

In most literature on signal processing localization, it is frequently assumed that

sources or reflectors are point objects located at far-field of the sensors’ location.

Based on this mathematical assumption several localization techniques has been pro-

posed including conventional beamforming, MUSIC, ESPRIT and Capon [27–29].

However, in most application such as radar, sonar, wireless communication, medical
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diagnosis and non-destructive testing, sources or reflectors are distributed in space.

For example in sonar application, the backscattered received signal by seabed is a

superposition of plane waves reflected from continuum of directions. Such situation is

also can be observed in the radio receivers when the transmitted signal propagates in

tropospheric or ionospheric layers. Multi path signals in indoor wireless communica-

tion are also been reflected by spatially distributed reflectors [5]. In non destructive

testing, cracks to be localized are distributed is space and we need to find the size

and the shape of them. In addition, in a multi-layer medium, the interfaces between

layers compared to the size of the transducer cannot be considered as a point reflector.

One example for multi-layer medium in NDT is immersion ultrasonic test where the

interface between water and material under test has the shape of the upper surface

of the test sample.

A distributed reflector can be modeled as multiple point sources located close to

each other. Distributed reflectors can be modeled either as incoherently distributed

(ID) reflectors or as coherently distributed (CD) reflectors. The backscattered signals

arriving from different points of a CD reflector are fully correlated, while backscat-

tered signals arriving from different points of an ID reflector are uncorrelated. For

example, radio waves reflected by the layers of troposphere or a signal reflected from

different points of a rough surface are uncorrelated [5]. One of the first results on

distributed source localization was published in [37], where a distributed source is

modeled as a collection of finite number of point sources, and then MUSIC and ES-

PRIT algorithms are used to localize these point sources. However, the number of

these point sources are limited by the number of sensors. In [38], dispersed signal
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parametric estimation (DISPARE) algorithm has been proposed to estimate the di-

rection of arrival of multiple spatially distributed sources when the number of sources

are known. This algorithm is based on weighted projection of eigenvectors of the array

signal covariance matrix onto the quasi-noise subspace. This method is more effective

than MUSIC if the sources are highly spread. Another early methods for distributed

source localization is called distributed source parameter estimator, which is an ex-

tended version of MUSIC algorithm and is applicable to both CD and ID sources [5].

In [6], the ESPRIT algorithm has been used to estimate the source parameters includ-

ing their central angle and angular extension of the sources. The method of [6] can

be applied to both CD and ID sources. In [7], a covariance fitting approach has been

developed to estimate the parameters of several distributed sources. Taylor series

based approximation of the array covariance matrix is used to express this matrix in

terms of the central and noncentral moments of the source angular power densities.

This algorithm can be applied to multiple ID sources and it has low computational

complexity because it does not need an exhaustive search unlike other parametric lo-

calization algorithms. In [39], a generalized Capon estimator has been developed for

localization of multiple ID sources. This parametric technique estimates the central

angle and angular spread of the sources using a 2-dimensional search. It is shown

that the performance of this method outperforms the root-MUSIC based method

of [40] and the DISPARE method of [38]. In [41], certain properties of the covariance

matrix of array signal in case of ID sources and the properties of generalized array

steering vector in case of CD sources are used to improve the generalized MUSIC

algorithm presented in [5] and generalized Capon algorithm presented in [39]. In [42],

a maximum likelihood estimation (MLE) algorithm has been proposed for parametric
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estimation of distributed sources. Among parametric estimation methods proposed

for distributed source localization, MLE shows a good performance, however, the

computational cost for the method is prohibitively high.

In most algorithms for distributed source localization, the main goal is to estimate

the parameters of reflector spatial distribution including central direction of arrival

and angular spread of the reflected signal. However, the spatial distribution of these

signals may not provide much information about the shape of the reflector. however

in this dissertation, we use distributed reflector modeling in order to estimate the

shape of the reflectors.



Chapter 3

Distributed Reflector Localization

for Immersion Test

One of the applications of advanced array processing is in immersion ultrasonic test.

Due to large acoustic impedance mismatch between air and solids, a couplant liquid

between transducers and the test sample is needed. The couplant could be a thin

layer of oil or glycerin, in the case of contact ultrasonic test, or water, in the case of

immersion ultrasonic test, where both transducers and the test sample are immersed

in water. Immersion test provides a consistent coupling while moving the transduc-

ers, especially for test samples with uneven surfaces. However, the sound travels with

two different speeds in water and solid material under test. Moreover, the interface

between water and the solid material under test, i.e., the upper surface of the test

sample, is distributed in space. Therefore, assuming this surface as a point reflector

could cause a major error in localizing a crack inside the material under test. In this

chapter, we propose a new approach to model the interface between water and solid

as well as any crack inside the solid test sample. This approach relies on incoherently

distributed reflectors modeling. In this chapter, we assume the case where the mate-

rial under test has a rough surface and rough crack shape. Then, we model the upper

21
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surface of the test material and any crack inside the test sample as ID reflectors.

In most aforementioned literature on distributed source localization, the main

goal is to estimate the parameters of reflector spatial distribution including central

direction of arrival and angular spread of the reflected signal. However, the spatial

distribution of these signals may not provide much information about the shape of

the reflector. In this chapter, we aim to use distributed reflector modeling in order

to estimate the shape of the reflectors. To do so, we develop a fitting based approach

for parametric estimation of the shape of the interface between two media and that

of a crack inside the test material.

The remainder of this chapter is organized as follows. In Section 3.1, we present

our data model for the received signal due to the reflection from the upper surface

of the test sample. Then, we propose a covariance fitting-based approach to estimate

the parameters of the shape of this surface. In Section 3.2, we present a data model

for the received signal corresponding to a spatially distributed crack inside the test

sample. Then, we use the same approach to localize and estimate the parameters of

the shape of the crack. In Section 5.5, we use computer simulation to examine the

accuracy of the proposed approach.

3.1 Upper Surface Reflection

3.1.1 Data Model

We consider a uniform linear array (ULA) of k ultrasonic transducers, which are used

to obtain an ultrasonic image of a solid test sample immersed in water. To simplify
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Figure 3.1: Upper surface reflection.

the problem of interest, it is a common practice to assume that the length of the

transducers is much larger than the depth of the sample [18,19]. Indeed, the basic idea

in 2-dimensional imaging using a 1-dimensional linear array relies on the assumption

that in a 2-dimensional model, all quantities are invariant in the third dimension. Our

results can be extended in a straightforward manner to a 3-dimensional setup, when a

2-dimensional array is utilized for 3-dimensional volumetric imaging. Each transducer

can serve either as a transmitter or as a receiver of ultrasonic waves; however, at each

time instance, each transducer can either transmit or receive signal. The immersed

sample is assumed to be located in the near field of the array. We model the upper

surface of the test sample and any crack inside the sample as distributed reflectors

consisting of an infinite number of point reflectors. At each time slot, one of the

transducers transmits a probing signal, while other transducers receive the signal

reflected from the test sample. One application for this model is in localization of

a crack under a weld on a metallic sample which is immersed in water. The system

setup and the upper surface reflection of the test sample is depicted in Fig. 3.1. We

assume that the reflection coefficients of the reflecting points on the upper surface of
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the test sample and those of the points on any crack inside the test sample are random

variables. We repeat the ultrasonic test N times. In each test, each transducer fires

a probing signal and all transducers receive and record the signals reflected from the

sample. Thus, we have k2 received signals in each test. In the ith experiment, when

the nth transducer, located at (x̃n, ỹn), is transmitting the probing signal ϕ(t), the

received signal at the mth transducer, located at (x̃m, ỹm), due to the reflection from

the upper surface of the test sample, is given by

p̂(i)nm(t) =

∫

y=C(x)

h(t; x̃n, ỹn, x, y) ⋆ ϕ(t) ⋆ h(t; x̃m, ỹm, x, y) si(x, y) dx (3.1.1)

where h(t; x̃n, ỹn, x, y) is the temporal impulse response corresponding to the signal

propagation from/to the nth transducer located at (x̃n, ỹn) to/from a hypothetical

point reflector located at (x, y) which resides on the upper surface of the test sample,

described as y = C(x), si(x, y) is the random reflection coefficient of this point reflec-

tor in the ith experiment, and ⋆ represents the continuous-time convolution integral.

We model si(x, y) as a zero-mean real uniform random variable. We assume that the

upper surface consists of infinitely many hypothetical point reflectors and all of them

reflect the probing signal back to the array. The integral notation
∫

y=C(x)

in (3.1.1)

means that the integration is taken over the length of the upper surface of the test

sample in the x direction along the curve y = C(x). Note that y = C(x) describes

the upper surface of the test sample. We assume that the temporal impulse response

h(t; x̃n, ỹn, x, y) can be represented as

h(t; x̃n, ỹn, x, y) = a(x̃n, ỹn, x, y) δ(t− τ(x̃n, ỹn, x, y)) (3.1.2)

where a(x̃n, ỹn, x, y) is the amplitude attenuation factor when the signal travels from/to

the nth transducer located at (x̃n, ỹn) to/from a hypothetical point reflector located
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at (x, y) on the upper surface of the sample, τ(x̃n, ỹn, x, y) is the delay of propagation

between the nth transducer located at (x̃n, ỹn) and a hypothetical point reflector lo-

cated at (x, y), and δ(·) is the Dirac delta function. More specifically, we can write

a(x̃n, ỹn, x, y) and τ(x̃n, ỹn, x, y) as

a(x̃n, ỹn, x, y) ,
1

√

(x− x̃n)2 + (y − ỹn)2
(3.1.3)

τ(x̃n, ỹn, x, y) ,

√

(x− x̃n)2 + (y − ỹn)2

c
(3.1.4)

where c is the velocity of the ultrasonic wave in the medium (water in this case). The

frequency representation of (3.1.1) is written as

p(i)nm(ω) =

∫

y=C(x)

gw(ω; x̃n, ỹn, x, y) φ(ω) gw(ω; x̃m, ỹm, x, y) si(x, y) dx (3.1.5)

where p
(i)
nm(ω) is the frequency-domain representation of the received signal at the

mth transducer, when the nth transducer is transmitting the probing signal ϕ(t)

(with frequency-domain representation of φ(ω)) and gw(ω; x̃n, ỹn, x, y) is the frequency

response of the propagation in water between the nth transducer, located at (x̃n, ỹn),

and a hypothetical point reflector, located at (x, y). Note that gw(ω; x̃n, ỹn, x, y) can

be found by taking the Fourier transform of (3.1.2). Thus, we can write

gw(ω; x̃n, ỹn, x, y) = a(x̃n, ỹn, x, y) e
−jωτ(x̃n,ỹn,x,y). (3.1.6)

Using (3.1.6), we can express (3.1.5) as

P (i)
nm(ω) =

∫

y=C(x)

a(x̃n, ỹn, x, y) e
−jωτ(x̃n,ỹn,x,y) φ(ω) a(x̃m, ỹm, x, y) e

−jωτ(x̃m,ỹm,x,y) si(x, y) dx.

(3.1.7)

Using matrix notation, we can express (3.1.7) as

P(i)(ω) =

∫

y=C(x)

φ(ω) Gw(ω; x, y) si(x, y) dx. (3.1.8)
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Here, P(i)(ω) is a k × k matrix whose (n,m)th element is P
(i)
nm(ω) and Gw(ω; x, y) is

a k × k matrix which is defined as

Gw(ω; x, y) , gw(ω; x, y) g
T
w(ω; x, y) (3.1.9)

where we have used the following definition:

gw(ω; x, y) , [gw(ω; x̃1, ỹ1, x, y) gw(ω; x̃2, ỹ2, x, y) ... gw(ω; x̃k, ỹk, x, y)]
T .(3.1.10)

Vectorizing both sides of (3.1.8) and taking the measurement noises into account

yields

p(i)(ω) = vec(P(i)(ω)) =

∫

y=C(x)

φ(ω) v(ω; x, y) si(x, y) dx+ ν(i)(ω) (3.1.11)

where vec(·) is the vectorization operator, ν(i)(ω) is a k2 × 1 complex vector repre-

senting all the corresponding measurement noises at the receivers at frequency ω, and

v(ω; x, y) is a k2 × 1 complex vector, which is defined as

v(ω; x, y) , vec (Gw(ω; x, y)) . (3.1.12)

Assuming that the noise and the reflection coefficients of the reflector points are

statistically independent random variables and that the noise is zero-mean, we show

in the appendix, that the covariance matrix of p(i)(ω) can be written as

R(ω) , E{p(i)(ω)(p(i)(ω))H} = σ2
νI+ (3.1.13)

=

∫∫

y=C(x)
y′=C(x′)

|φ(ω)|2v(ω; x, y) vH(ω; x′, y′) ̺(x, y, x′, y′) dx dx′

where we have used (3.1.11) in the second equality, σ2
ν is the variance of the received

noises, E{·} stands for the statistical expectation, and

̺(x, y, x′, y′) , E{si(x, y) s
∗

i (x
′, y′)}. (3.1.14)
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We model the upper surface as an incoherently distributed (ID) reflector, meaning

that the signals reflected by different points of this surface are uncorrelated. There-

fore, we can write

̺(x, y, x′, y′) = ρ(x, y) δ(x− x′) δ(y − y′) (3.1.15)

where ρ(x, y) is the reflection correlation density for a point reflector located at (x, y)

on the upper surface and it is only defined for y = C(x). Using (3.1.15), the covariance

matrix R(ω) in (3.1.13) can be expressed as

R(ω) =

∫

y=C(x)

V(ω; x, y) ρ(x, y) dx+ σ2
νI (3.1.16)

where

V(ω; x, y) , |φ(ω)|2 v(ω; x, y) vH(ω; x, y). (3.1.17)

In the next section, we use this model to develop a covariance fitting based method

to estimate the parameters that describe the shape of the upper surface of the test

sample.

3.1.2 Estimating the Shape of the Upper Surface

The upper surface of the test sample has two effects: i) it produces a strong interfer-

ence signal in the backscattered received signal, and ii) its shape determines the array

spatial signature of every point inside the material under test. Therefore, to localize

a crack inside the test sample, we need to know the shape of the upper surface of

the test sample. In this section, using the proposed data model, we aim to find the

shape of the upper surface of the test sample. To do so, we approximate the upper
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surface with a parametric function and estimate the parameters of this function. For

example, in a simple case, if the upper surface is a flat plane, the parameter which

has to be estimated is the y coordinate of this plane. In a more complicated scenario,

we can approximate the upper surface of the test sample as L piece-wise continuous

functions, where the lth piece is described by y = Cl(x), for (l − 1)∆x ≤ x ≤ l∆x,

where ∆x is the length of each segment on the x axis. Therefore, we can write the

covariance matrix expressed in (3.1.16) as

R(ω) =

L
∑

l=1

l∆x
∫

(l−1)∆x

V(ω; x, Cl(x))ρ(x, Cl(x))dx+ σ2
νI. (3.1.18)

We assume that Cl(x) can be described using a parameter vector ϑl. For example,

if we consider a linear parametrization for each segment, the parameters, to be esti-

mated, are the slope and the y coordinate of the center of each line segment. Let us

define the parameter vector ϑ as

ϑ , [ϑ1 ϑ2 ... , ϑL]
T (3.1.19)

where ϑl is a vector containing the parameters which describe Cl(x). The main idea

here is to estimate all parameter vectors {ϑl}
L
l=1 using a covariance fitting approach.

That is, we estimate the parameters of the shape of the upper surface of the test

sample by fitting the analytical covariance matrix with the sample covariance matrix

provided by the measurement data. This leads us to solving the following optimization

problem:

min
ϑ

∑

ω∈Ω

‖R̂(ω)−R(ω)‖2. (3.1.20)
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Here, Ω is the bandwidth of the probing signal and R̂(ω) is the sample covariance

matrix of the received signals at frequency ω and it is obtained as

R̂(ω) = 1/N

N
∑

i=1

p(i)(ω) p(i)(ω)H (3.1.21)

where N is the number of experiments and p(i)(ω) is the received signal vector mea-

sured in the ith experiment.

In order to solve (3.1.20), we need to calculate R(ω), as in (3.1.16), for different pa-

rameters of the presumed shape of the upper surface. To do so, we assume a known

distribution for s(x, Cl(x)), for example, a uniform distribution where its variance can

be obtained from ρ(x, y). Therefore, assuming a known distribution for the random

reflection coefficients of the points on the upper surface of the test sample, and a

parametric function for the shape of the upper surface, the aim is to solve (3.1.20) to

estimate the unknown parameters of this function.

To solve (3.1.20), we resort to exhaustive search. Indeed, this problem is highly non-

convex and does not seem to be amenable to computationally effective algorithms.

However, in most NDT applications, the processing is carried out in an off-line man-

ner. In the next section, we assume that the shape of the upper surface has already

been estimated using the algorithm presented in this section, and we aim to localize

a crack inside the test sample.
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3.2 Reflection from a Crack inside the Sample

3.2.1 Data Model

In this section, we aim to localize a crack inside the test sample. To do so, we

model both the upper surface of the sample and a crack inside the sample as spatially

distributed reflectors consisting of infinite point reflectors. The model is depicted

in Fig. 3.2. We assume that the nth transducer located at (x̃n, ỹn) is transmitting

the probing signal ϕ(t) and the mth transducer located at (x̃m, ỹm) is receiving the

corresponding backscattered signal. In this case, every point on the upper surface

reflects a portion of the signal back to the transducer array, while refracting another

portion of the probing signal into the test sample. As described in the previous

section, we repeat the experiment N times. In the ith experiment, the frequency-

domain received signal at an arbitrary point located at (x2, y2) on the crack inside the

sample, due to the signals refracted by all the points on the upper surface, is given

by

z
(i)
2 (ω; x2, y2) =

∫

y1=C(x1)

gw(ω; x̃n, ỹn, x1, y1)φ(ω)f
(i)
12 (x1, y1) gs(ω; x1, y1, x2, y2)dx1 (3.2.1)

where gw(ω; x̃n, ỹn, x1, y1), as defined earlier, is the frequency response corresponding

to signal propagation in water from/to the nth transducer located at (x̃n, ỹn) to/from

a hypothetical point reflector located at (x1, y1) that resides on the upper surface of

the test sample, described as y1 = C(x1), gs(ω; x1, y1, x2, y2) is the frequency response

corresponding to signal propagation in solid from/to the point (x1, y1) on the upper

surface of the sample to/from the point (x2, y2) on the crack, and f
(i)
12 (x1, y1) is the
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(x̃m, ỹm)(x̃n, ỹn)b bbb b b b b b b

x

y

Figure 3.2: Crack reflection.

random refraction coefficient of the point (x1, y1) for refraction from water (Medium

1) into the solid (Medium 2) in the ith experiment. In (3.2.1), the integration is taken

over y1 = C(x1) which is the function describing the upper surface of the test sample.

The received signal z
(i)
2 (ω; x2, y2) is reflected back by all the point reflectors on

the crack towards the upper surface of the sample. At a hypothetical point (x3, y3)

on the upper surface of the sample, the received signal, which is a superposition of

all the signals reflected by point the point reflectors on the crack, can be written as

z
(i)
3 (ω; x3, y3) =

∫∫

y2=T (x2)
y1=C(x1)

gw(ω; x̃n, ỹn, x1, y1)φ(ω)f
(i)
12 (x1, y1)gs(ω; x1, y1, x2, y2)

si(x2, y2)gs(ω; x2, y2, x3, y3)dx1dx2 (3.2.2)

where y2 = T (x2) is the function describing the crack inside the sample and si(x2, y2)

is the reflection coefficient of a hypothetical point reflector, located at (x2, y2) on

the crack, in the ith experiment. At any point (x3, y3) on the upper surface of the
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test sample, the signal z
(i)
3 (ω; x3, y3) is refracted back to the array. We can write the

received signal at the mth receiving transducer as

P̃ (i)
nm(ω) =

∫∫∫

y3=C(x3)
y2=T (x2)
y1=C(x1)

gw(ω; x̃n, ỹn, x1, y1)φ(ω)f
(i)
12 (x1, y1)gs(ω; x1, y1, x2, y2)×

si(x2, y2)gs(ω; x2, y2, x3, y3)f
(i)
21 (x3, y3) gw(ω; x̃m, ỹm, x3, y3)dx1dx2dx3. (3.2.3)

where f
(i)
21 (x3, y3) is the random refraction coefficient of the point (x3, y3) for the

refraction from the solid (Medium 2) into water (Medium 1) in the ith experiment.

We can write (4.1.1) in the matrix form as

P̃(i)(ω) =

∫∫∫

y3=C(x3)
y2=T (x2)
y1=C(x1)

φ(ω)B(ω; x1, y1, x2, y2, x3, y3)γi(x1, y1, x2, y2, x3, y3)dx1dx2dx3 (3.2.4)

where P̃(i)(ω) is a k × k matrix whose (n,m)th element is P̃
(i)
nm(ω) and

γi(x1, y1, x2, y2, x3, y3) , f
(i)
12 (x1, y1)si(x2, y2)f

(i)
21 (x3, y3) (3.2.5)

B(ω; x1, y1, x2, y2, x3, y3) , b(ω; x1, y1, x2, y2)b
T (ω; x3, y3, x2, y2) (3.2.6)

b(x1, y1, x2, y2) , [gw(ω; x̃1, ỹ1, x1, y1)gs(ω; x1, y1, x2, y2) (3.2.7)

gw(ω; x̃2, ỹ2, x1, y1)gs(ω; x1, y1, x2, y2) ... gw(ω; x̃k, ỹk, x1, y1)gs(ω; x1, y1, x2, y2)]
T .

Vectorizing both sides of (3.2.4) and taking received noises into account, we can write

the vector of frequency-domain signals received by all transducers as

p̃(i)(ω) = vec(P̃(i)(ω)) = ν(i)(ω)+ (3.2.8)
∫∫∫

y3=C(x3)
y2=T (x2)
y1=C(x1)

φ(ω)u(ω; x1, y1, x2, y2, x3, y3)γi(x1, y1, x2, y2, x3, y3)dx1dx2dx3
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where ν(i)(ω) is a k2 × 1 vector collecting all the corresponding measurement noises

and

u(ω; x1, y1, x2, y2, x3, y3) , vec(B(ω; x1, y1, x2, y2, x3, y3)). (3.2.9)

Then, as shown in the appendix, the covariance matrix of P̃(i)(ω) can be written as

R̃(ω) = E{p̃(i)(ω)(p̃(i)(ω))H} = σ2I+
∫∫∫

y3=C(x3)
y2=T (x2)
y1=C(x1)

∫∫∫

y′3=C(x′

3)
y′2=T (x′

2)
y′1=C(x′

1)

|φ(ω)|2u(ω; x1, y1, x2, y2, x3, y3)u
H(ω; x′1, y

′

1, x
′

2, y
′

2, x
′

3, y
′

3)×

E(γi(x1, y1, x2, y2, x3, y3)γ
∗

i (x1, y1, x2, y2, x3, y3))dx
′

1dx
′

2dx
′

3dx1dx2dx3 (3.2.10)

where σ2
ν is the noise variance. We further assume that three random variables

f
(i)
12 (x1, y1), f

(i)
21 (x3, y3), and si(x2, y2) are mutually independent random variables for

any (x1, y1), (x2, y2), and (x3, y3). We can then simplify R̃(ω) as

R̃(ω) =

∫∫∫

y3=C(x3)
y2=T (x2)
y1=C(x1)

∫∫∫

y′3=C(x′

3)
y′2=T (x′

2)
y′1=C(x′

1)

|φ(ω)|2u(ω; x1, y1, x2, y2, x3, y3)u
H(ω; x1, y1, x2, y2, x3, y3)×

̺12(x1, y1, x
′

1, y
′

1)̺c(x2, y2, x
′

2, y
′

2)̺21(x3, y3, x
′

3, y
′

3)dx
′

1dx
′

2dx
′

3dx1dx2dx3 + σ2I

(3.2.11)

where

̺12(x1, y1, x
′

1, y
′

1) , E(f
(i)
12 (x1, y1)f

(i)∗
12 (x′1, y

′

1)) (3.2.12)

̺21(x3, y3, x
′

3, y
′

3) , E(f
(i)
21 (x3, y3)f

(i)∗
21 (x′3, y

′

3)) (3.2.13)

̺c(x2, y2, x
′

2, y
′

2) , E(si(x2, y2)s
∗

i (x
′

2, y
′

2)). (3.2.14)

Assuming that the reflectors are incoherently distributed reflectors [5], we can write

̺12(x1, y1, x
′

1, y
′

1) = ρ12(x1, y1)δ(x1 − x′1)δ(y1 − y′1) (3.2.15)
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̺c(x2, y2, x
′

2, y
′

2) = ρc(x2, y2)δ(x2 − x′2)δ(y2 − y′2) (3.2.16)

̺21(x3, y3, x
′

3, y
′

3) = ρ21(x3, y3)δ(x3 − x′3)δ(y3 − y′3). (3.2.17)

where ρc(x2, y2) is the reflection correlation density for a hypothetical point reflector

located at (x2, y2) on the crack, ρ12(x1, y1) is the refraction correlation density for a

hypothetical refracting point located at (x1, y1) on the upper surface of the sample

and ρ21(x3, y3) is the refraction correlation density for a hypothetical refracting point

located at (x3, y3) on the upper surface of the sample. Using (3.2.15), (3.2.16), and

(3.2.17), we can write (3.2.11) as

R̃(ω) =

∫∫∫

y3=C(x3)
y2=T (x2)
y1=C(x1)

|φ(ω)|2U(ω; x1, y1, x2, y2, x3, y3)β(x1, y1, x2, y2, x3, y3)dx1dx2dx3 + σ2I

(3.2.18)

where

β(x1, y1, x2, y2, x3, y3) , ρ12(x1, y1)ρc(x2, y2)ρ21(x3, y3) (3.2.19)

U(x1, y1, x2, y2, x3, y3) , u(x1, y1, x2, y2, x3, y3)u
H(x1, y1, x2, y2, x3, y3). (3.2.20)

In the next subsection, we use this data model to localize a crack inside the test

sample.

3.2.2 Localizing a Crack inside the Sample

In this subsection, assuming that we have estimated the shape of the upper surface of

the test sample, we aim to use a covariance fitting based method to find the location

and the shape of a crack inside the test sample. To localize the crack inside the

sample, we need to find the parameters describing the function y2 = T (x2). To do so,
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we assume a parametric function for the shape of the crack (such as a line or a hole)

and estimate the parameters of this shape (such as slope and the y coordinate of the

center of the line or the center and radius of the hole). Let us define ξ , (ξ1, ξ2, ...ξl)

as the parameter vector for the crack1. We assume a known distribution for the

variables f
(i)
12 (x, y) , f

(i)
21 (x, y) and si(x, y). Then, the variances of the random variables

f12(x2, y2), f21(x1, y1), and s(x3, y3) are determined by reflection/refraction correlation

densities ρc(x2, y2), ρ12(x1, y1), and ρ21(x3, y3), respectively. Therefore, the covariance

fitting problem can be written as

min
ξ

∑

ω∈Ω

‖ ˆ̃R(ω)− R̃(ω)‖2, (3.2.21)

where ˆ̃
R(ω) is the sample covariance matrix obtained from the received signals due

to the reflection of the crack inside the test sample which is defined as

˜̂
R(ω) = 1/N

N
∑

i=1

p̃(i)(ω) (p̃(i)(ω))H . (3.2.22)

Here, N is the number of experiments and p̃(i)(ω) is the received signal vector

measured in the ith experiment. Note that the array received signals includes the

backscattered signal from the upper surface and the backscattered signal reflected

by the crack inside the test sample. While solving (3.2.21), we assume that we have

already eliminated the signal backscattered from the upper surface of the test sample.

Note that to solve (3.2.21), we need to use the knowledge of the shape of the upper

surface which we have already estimated in Subsection 3.1.2.

Remark: The algorithm we use in this work is exhaustive search and the degrees

of freedom is equal to the number of unknown parameters used to characterize the

1It appears that an appropriate model for a crack inside a test sample is a piece-wise linear
function [19].
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surfaces of interest. In particular, in the covariance fitting problem (3.1.20), which

is used to estimate the shape of the upper surface, the number of the degrees of

freedom is equal to the length of parameter vector ϑ. In the covariance fitting problem

(3.2.21), which is used to estimate the shape of the crack, the number of the degrees of

freedom is equal to the length of the parameter vector ξ. Note that the computational

complexity of covariance fitting is high in this particular application. However, this

approach is amenable to parallel processing which significantly reduces the processing

time. Indeed, signal processing for NDT applications is often done off-line using

parallel processors and/or grid computing. Hence, the computational complexity of

covariance fitting is indeed affordable in NDT industries.

3.3 Simulation Results

In this section, we present the results of our numerical simulations to examine the

accuracy of the proposed approach for reflector localization in an ultrasonic immersion

non-destructive test. It is worth mentioning that in our simulation results, we assume

that the measurements contain reflection from both the upper surface and from the

crack. Then, we use time gating to separate the upper surface reflection form the

crack reflection. Note that the reflection from the crack depends not only on the

crack geometry but also on the shape of the upper surface. However, the upper

surface reflection does not depend on the crack geometry, and hence, time gating the

upper surface reflections will provide us with a set of signals which do not depend

on the crack geometry, and thus, these signals can be used to determine the shape

of this surface. In other words, we are estimating the shape of the upper surface in
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the presence of the crack and use the so-obtained estimate to extract the shape of

the crack. Note that alternating between estimating the shape of the upper surface

and estimating the shape of the crack does not help to improve the quality of the

estimates as the time-gated signals corresponding to the upper surface reflection do

not depend on the shape of the crack. Processing the measurements as they are, i.e.,

without time gating, with the aim to simultaneously estimate the parameters of the

upper surface and those of the crack, is another approach. However, such an approach

would result in a higher dimensional search space as compared to the search space for

each set of the upper surface or the crack parameters. Moreover, in such an approach,

the computational complexity associated with computing the covariance matrix for

each value of the concatenated parameter vector is prohibitively high. We assume

that a uniform linear array of k = 16 omnidirectional ultrasonic transducers is used

for testing a welded steel sample, as depicted in Fig. 3.3. The aim is to localize a

crack under the weld inside the solid material. To do so, the first step is to estimate

the knowledge of the shape of the upper surface of the test sample because we need

this shape to find the array spatial signature for any point inside the test sample.

In the second step, we use the estimated shape of the upper surface in our data

model, to find the location and the parameters of the shape of a crack inside the test

sample. We assume that the array has an element pitch (the distance between the

center of two adjacent transducers) of e = 0.63 mm. The array and the sample are

parallel to the x axis, and the array is located on the x axis with the first transducer

being located at x = 0 mm and y = 0 mm. The sample and the array probe are

immersed in water. In order to simulate the data for the model proposed, we use an

exponential sinusoidal function φ(t) = et
2
cos(2πft) as the probing signal with the
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center frequency of 3.5 MHz [43]. The frequency bins are chosen symmetrical with

respect to the center frequency 3.5 MHz. The distance between adjacent frequencies

is chosen 45 KHz, regardless of the size or type of the defect.

test sample
water

(xu, yu)

b bbb b b b b b b

b

y0

(xc, yc)

r

e

b

x

y

upper surface

Figure 3.3: A weld on a solid test sample.

We model the shape of the upper surface of the test sample as a piece-wise continu-

ous function consisting of the line segment, described as y = 30 mm for 0 ≤ x ≤ 1 mm;

a circular arch (for the weld cap) with its center located at (xu, yu) = (5, 27) mm

and a radius ofr = 5 mm for 1 mm ≤ x ≤ 9 mm; and another line segment,

y = 30 mm for 9 mm ≤ x ≤ 10 mm. The parameters which have to be estimated

are the center and the radius of the circle and the y-coordinate of the interface which

are shown as xu, yu, r and y0, respectively. Here, the parameter vector is given by

ϑ = [xu yu r y0]
T , and thus, the number of the degrees of freedom is 4. In Fig. 3.4,

we have plotted the root mean square error (RMSE) of the parameter estimates in mil-

limeters versus the number of snapshots, where signal-to-noise-ratio (SNR) is 10 dB.

The SNR is defined the ratio of the array received signal power to the noise power at

the receiver. In this figure, we have used 20 frequency bins in the optimization prob-

lem (3.1.20). This figure shows that using only 150 snapshots results in very small
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value of RMSE for the case of SNR = 10 dB. The RMSE curve reaches 0.05 mm (our

search grid size) for the number of snapshots more than 150 because the RMSE of

the parameter estimates cannot get smaller than our grid size. In Fig. 3.5, we observe

the effect of the number of frequency bins used in the optimization problem. This

figure shows the RMSE of the parameter estimates versus SNR for different numbers

of frequency bins. In order to obtain the sample covariance matrix for this figure, 150

statistically independent snapshots are produced. As shown in this figure, using more

frequency bins results in smaller values for detection SNR threshold. We can observe

that for estimating the parameters of the shape of the upper surface, using only one

frequency bin yields very small error around 0.22 mm in the case of SNR = 4 dB.

In the second step of this simulation, after estimating the parameters of the upper

surface, we use the estimated upper surface parameters to localize a crack under the

weld. To do so, we assume that the crack is a line whose center point and slope have

to be estimated. The length of the crack is chosen to be 0.5 mm which is, according

to the guideline and the model recommended in [44], is an appropriate value for the

minimum crack size. Longer cracks can then be modeled using a piece-wise linear

function with minimum length of each piece being equal to 0.5 mm. The crack is a

line segment with a length of 0.5 mm and a slope of α = 1, and its center point is

located at xc = 2 mm and yc = 0.25 mm. Here, the parameter vector for parameter-

izing the shape of the crack is given by ξ = [xc yc α]T and thus the number of the

degrees of freedom is 3. In Fig. 3.6, we show the RMSE of the estimated parameters

of the crack inside the test sample versus number of snapshots for SNR = 10 dB.

The plot shows that 2000 snapshots are needed in order to have a minimum possi-

ble value for RMSE. This minimum RMSE depends on the search grid size and the
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RMSE of the upper surface parameters estimation. In Fig. 3.7, we observe the effect

of the number of frequency bins, which have been used in the optimization problem

in (3.2.21), for localizing the crack. In order to obtain the sample covariance matrix

for this figure, N = 2000 statistically independent snapshots are produced. This

figure shows the RMSE of the estimated parameters versus SNR for different number

of frequency bins. We observe that only one frequency bin results in a good RMSE

value comparing to the case of using 20 frequency bins in the optimization problem

which has more computational complexity.

In Fig. 3.8, we compare the performance of our proposed method with that of the

root mean squared (RMS) velocity based method of [32]. The latter method approxi-

mates the array measurements with a data model which corresponds to a single-layer

homogenous medium, where the sound propagation velocity is approximated as the

weighted average of the squared value of the sound propagation velocities in the two

layers. In this averaging, the weight of the squared value of the velocity in each layer

is the ratio of normal incidence one-way travel time in that layer to total normal

incidence one-way travel time. Using the so-called RMS velocity, the travel time cor-

responding to each potential point reflector in the second layer is calculated as the

ratio of the distance traveled by the wave to the RMS velocity. As can be seen from

Fig. 3.8, our method significantly outperforms the RMS velocity based method.

In Fig. 3.9, assuming the same array configuration and the same test setup as

the previous example, we show an example where the true shape of the crack is

an arch, while we approximate it with a piece-wise function consisting of two line

segments. This figure shows clearly that even with a discrepancy between the true

and the presumed crack shape, our proposed algorithm is capable of obtaining a good
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Figure 3.4: The RMSE of the estimated parameters of the shape of the upper surface

of the test sample versus the number of snapshots for SNR=10 dB.

approximation for the crack shape.

3.4 Conclusions

In this chapter, we proposed a covariance fitting approach to localize reflectors in a

water immersion non-destructive test, where an ultrasonic array is used. To do so,

we modeled the sound reflectors inside the material under test as incoherently dis-

tributed reflectors consisting of an infinite number of point reflectors. These reflectors

include the interface between water and a solid material under ultrasonic test and any

crack inside the test sample. In order to localize a crack inside the test sample in this

immersion test, the knowledge of the shape of the upper surface of the test sample

is required as this shape determines the array spatial signature of the points inside
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Figure 3.5: The RMSE of the estimated parameters of the shape of the upper surface
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Figure 3.6: The RMSE of the estimated parameters of the crack inside the test sample

versus the number of snapshots for SNR = 10 dB.
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Figure 3.7: The RMSE of the estimated parameters of the crack inside the test sample

versus SNR for different number of frequency bins.
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Figure 3.9: Estimation of a curved crack by approximating it with two piece-wise

linear segments; SNR=10 dB.

the test sample. Therefore, we proposed a distributed reflector modeling approach

to characterize the interface between water and a solid test sample as well as any

crack inside the solid test sample. Our approach relies on the so-called incoherently

distributed reflector modeling, where a distributed reflector can be modeled as in-

finitely many point sources located close to each other. Using such a modeling, we

presented our data model in a two-dimensional coordinate system, and then devel-

oped a covariance fitting based approach to estimate the parameters of the shape of

the interface between the two media and those of the shape of a crack inside the test

material. Our numerical experiments show that our proposed approach yields a lower

root mean squared error for the parameter estimates, compared to a state-of-the-art

method, called root mean squared velocity technique.

The approach provided in this chapter relies on the repetition of the ultrasonic
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experiment. In the next chapter, we use the distributed source modeling for the

interfaces between the layers of a multi-layer medium in order to develop a new array

spatial signature. Then we explain how this new array spatial signature can be used

in the existing imaging algorithms.



Chapter 4

A New Array Spatial Signature

Model

In this chapter, we aim to image a multi-layer medium. To do so, we model the

interfaces between layers of a multi-layer medium as spatially distributed sources

consisting of infinite number of point sources [5–7,37–39]. Then, we use this model to

develop a new array spatial signature for all the points inside a multi-layer medium.

This new array spatial signature can be used in existing imaging techniques including

beamforming, MUSIC, and Capon in order to image multi-layer materials. These

algorithms traditionally are applied for a homogeneous medium where the sound

velocity is constant in the medium [27–30].

The remainder of this chapter is organized as follows. In Section4.1, we present

our data model for the array received signal using the concept of spatially distributed

source modeling. First, in Subsection4.1.1, we model the array received signal cor-

responding to the reflection of the points located in the second layer of a two-layer

material under ultrasonic test. In Subsection4.1.2, we extend the proposed model

for the backscattered signal corresponding to the point reflectors located in the l-th

layer of a multi-layer material under ultrasonic test. In Section4.2, we use the array

46
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spatial signature model, developed in Subsection4.1.1, in some existing imaging al-

gorithms including beamforming, MUSIC, and Capon in order to image the second

layer of the material under test. In Section5.4, we use computer simulation as well as

experimental data, to examine the accuracy of the proposed model.

4.1 Data Model

4.1.1 Two-layer Medium

We consider a uniform linear array of k ultrasonic transducers which are used to

image a two-layer test sample with the aim to detect flaws (such as cracks) inside

the second layer. The sound propagation speed in each layer is different from that

in the other layer. Each transducer can transmit and receive ultrasonic waves. To

conduct an ultrasonic test, all transducers transmit a sound wave, one after another.

When one transducer transmits the sound wave, all transducers, including the one

transmitting, receive the signal backscattered from the test sample. We assume that

there is enough time delay between firing different transducers in order to avoid

any undesired interference. Fig. 4.1 shows the configuration of the ultrasonic test

setup and a typical wave propagation path corresponding to the reflection from a

point scatterer located in the second layer of the test sample. Assuming such a test

setup, we derive a frequency-domain model for transducer measurements. Further,

we assume that the probing signal is a narrow-band signal with center frequency ω.

In practice, the ultrasonic probing signal is a wide-band signal with center frequency

around 2− 10MHz. In Section 4.2.4, we will discuss how this model can be used in a

wide-band scenario.
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Transducer arraybb

Figure 4.1: A typical propagation path for the signal backscattered from a point

scatterer inside the second layer of a two-layer test sample.

We assume that the material under test consists of two layers with two different sound

velocities. In case of a contact test, the transducer array is placed on the surface of the

first layer of a two-layer solid test sample and a thin layer of gel is used as a couplant

between the array and the first layer of the test sample. In an immersion ultrasonic

test, the ultrasonic array and a solid test sample are immersed in a liquid such as

water. In this case, the first layer of the material under test is the liquid and the

second layer is the solid test sample. We note that in both cases, the first discontinuity

in the wave propagation path occurs at the interface between the two layers. This

interface reflects part of the propagating sound wave back to the transducer array and

refracts the other portion of the sound wave into the second layer, thereby playing

the role of a (distributed) source, which emits ultrasonic waves towards the points

inside the second layer. Indeed, this interface is a continuous surface spread in space,

and thus, we model it as a spatially distributed source consisting of infinite number of
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point sources [5–7,37–39]. We also assume that the length of the transducers is much

larger than the depth of the test sample and derive our data model in a 2-dimensional

coordinate system. The idea of 2-dimensional imaging using a 1-dimensional linear

array is a common practice in ultrasonic NDT, where all quantities are assumed

to be invariant in the third dimension [18, 19]. Our data model can be expressed

for 3-dimensional volumetric imaging, when a 2-dimensional array is utilized. In

this section, our goal is to derive a data model for the array signal measurements

corresponding to backscattering from the point scatterers inside the second layer of

the test sample. To develop such a model, we assume that a hypothetical point

scatterer is located at the coordinate (x, y) inside the second layer of the material

under test. Fig. 4.1 shows the sound path corresponding to this point scatterer and

two arbitrary refracting points on the interface between the two layers. We assume

that the n-th transducer located at (x̃n, ỹn) is transmitting the sound wave. The

transmitted sound wave is the response of the transmitting transducer to the probing

signal ψ(t) (with frequency domain representation Ψ(ω)). This transmitted sound

wave is refracted into the second layer of the test sample, by all the points on the

inter-layer interface. Then, this wave is scattered by the point scatterer located at

(x, y) inside the second layer of the material under test back towards the interface.

At the interface, the sound wave is refracted, back towards the transducer array. This

backscattered sound wave is received by all transducers. The received signal at the

receiving transducer is the response of the receiving transducer to the received sound

wave from all the points on the interface.

It is worth noting that there are two equivalent approaches to tackle the problem of

refraction of a non-planar (for example spherical or cylindrical) wave at the interface
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between two media with two different velocities. The first approach is the Weyl’s

decomposition which leads to the Weyl’s integral. The main idea in the Weyl approach

is to represent the incident wave as a superposition of infinite number of plane waves.

To do so, the incident wave is expressed, using inverse (spatial) Fourier transform,

as a Fourier integral of infinite number of plane waves. Then, Snell’s law can be

used to model the refraction of each of these plane waves. That is, each plane wave

is refracted according to Snell’s law. Also, each of these plane waves in the Weyl’s

integral is required to be multiplied by a transmission coefficient described by Snell’s

law when traveling from one medium to another one [45]. It is worth mentioning that

when using Weyl’s approach, spcial attention has to be paid to the concept of critical

angle.

The second approach relies on Huygens-Fresnel principle. According to this prin-

ciple, a wave field on a surface can determine the wave field off that surface. More

specifically, each point on the surface can be viewed as a source of a secondary

wave. The superposition of these secondary sources on the surface determines the

strength of the wave at any point off that surface. This formulation leads to the

Rayleigh-Sommerfeld integral. In this work we use the Huygen’s principle to write

the Rayleigh-Sommerfeld integral over the interface between the two media in our

test setup.

Therefore, the received signal at the m-th transducer, located at (x̃m, ỹm), corre-

sponding to the backscattering from the point scatterer located at (x, y) inside the
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second layer, can be written as

Pnm(ω; x, y) =

+∞
∫∫

−∞

φ(ω)Bn(ω; x1, y1)g1(ω; x̃n, ỹn, x1, y1) f12(ω, x1, y1, x, y) g2(ω; x1, y1, x, y)

s(x, y) g2(ω; x2, y2, x, y) f21(ω, x2, y2, x̃m, ỹm) g1(ω; x̃m, ỹm, x2, y2)Bm(ω; x2, y2)dx1dx2

(4.1.1)

where Bn(ω; x1, y1) is the beam-pattern gain of the n-th transducer element towards

a point located at (x1, y1) on the interface. Note that Bn(ω; x1, y1) depends on the

type and the shape of the transducer. Also, g1(ω; x̃n, ỹn, x1, y1) is the frequency re-

sponse of the linear time invariant (LTI) system which models the signal propagation

in the first layer from/to the n-th transducer located at (x̃n, ỹn) to/from a hypothet-

ical point located at (x1, y1) which resides on the interface between the two-layers,

g2(ω; x1, y1, x, y) is the frequency response of the LTI system which models the signal

propagation in the second layer of the test sample from/to the point (x1, y1) on this

interface to/from the point scatterer located at (x, y) inside the second layer, and

s(x, y) is the scattering coefficient of the hypothetical point scatterer located at (x, y)

inside the second layer. Also, f12(ω, x1, y1, x, y) is the transmission coefficient from

Layer 1 into Layer 2 from point (x1, y1) on the interface toward the point located

at (x, y) inside the second layer, and f21(ω, x2, y2, x̃m, ỹm) is the transmission coeffi-

cient from Layer 2 into Layer 1, from the point located at (x2, y2) on the interface

toward the m-th transducer located at (x̃m, ỹm). Based on Huygens-Fresnel principle,

f12(ω, x1, y1, x, y) and f21(ω, x2, y2, x̃m, ỹm) can be written as [46]

f12(ω, x1, y1, x, y) =
jω|y − y1|

4πc2d(x1, y1, x, y)
(4.1.2)

f21(ω, x2, y2, x̃m, ỹm) =
jω|y2 − ỹm|

4πc1d(x̃m, ỹm, x2, y2)
(4.1.3)
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where d(x1, y1, x, y) is the distance between a hypothetical point located at (x1, y1)

on the interface between the two-layers, and a hypothetical point scatterer located

at (x, y) inside the second layer. Also d(x̃m, ỹm, x2, y2) is the distance between the

m-th transducer, located at (x̃m, ỹm), and a point located at (x2, y2), on the interface

between the two-layers.

We also need to emphasize that, assuming that all the transducers are identical,

we define φ(ω) as

φ(ω) = Ψ(ω)HT (ω)HR(ω) (4.1.4)

where Ψ(ω) is the narrow-band probing signal at frequency ω, HT (ω) is the frequency

response of the transmitting transducer , and HR(ω) is the frequency response of the

receiving transducer. We can write (4.1.1) as

Pnm(ω; x, y) = s(x, y)φ(ω) un(ω; x, y)vm(ω; x, y) (4.1.5)

where un(ω; x, y) and vm(ω; x, y) are the frequency responses of the LTI systems

which model the propagation of the sound wave along the transmission path (the

path from the transmitting transducer to a hypothetical scatterer located at (x, y) )

and the reception path (the path from a hypothetical scatterer located at (x, y) to

the receiving transducer), respectively, i.e.,

un(ω; x, y) ,

+∞
∫

−∞

Bn(ω; x1, y1)g1(ω; x̃n, ỹn, x1, y1)f12(ω, x1, y1, x, y)g2(ω; x1, y1, x, y)dx1

(4.1.6)

vm(ω; x, y) ,

+∞
∫

−∞

Bm(ω; x2, y2)g1(ω; x̃m, ỹm, x2, y2)f21(ω, x2, y2, x̃m, ỹm)g2(ω; x2, y2, x, y)dx2.

(4.1.7)
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In our data model, we assume that the material under test is a lossless and non-

dispersive material. We also assume that the transducers and the defects inside the

material under test are long in the third dimension. Hence, we model the frequency

responses g1(ω; x̃n, ỹn, x, y) and g2(ω; x1, y1, x, y) as

g1(ω; x̃n, ỹn, x1, y1) = a1(x̃n, ỹn, x1, y1) e
−jωτ1(x̃n,ỹn,x1,y1) (4.1.8)

g2(ω; x1, y1, x, y) = a2(x1, y1, x, y) e
−jωτ2(x1,y1,x,y). (4.1.9)

where

a1(x̃n, ỹn, x, y) ,
1

√

d(x̃n, ỹn, x1, y1)
(4.1.10)

τ1(x̃n, ỹn, x, y) ,
d(x̃n, ỹn, x1, y1)

c1
(4.1.11)

a2(x1, y1, x, y) ,
1

√

d(x1, y1, x, y)
(4.1.12)

τ2(x1, y1, x, y) ,
d(x1, y1, x, y)

c2
. (4.1.13)

Here, d(x̃n, ỹn, x1, y1) is the distance between the n-th transducer, located at (x̃n, ỹn),

and a point located at (x1, y1), on the interface between the two-layers, d(x1, y1, x, y)

is the distance between the point located at (x1, y1), on the inter-layer interface, and

the point scatterer located at (x, y), inside the second layer, c1 is the speed of sound

in the first layer, and c2 is the speed of sound in the second layer. Note that in

(4.1.10) and (4.1.12), we ignore a constant factor which ensures that a1(x̃n, ỹn, x, y)

and a2(x1, y1, x, y) are dimensionless. Indeed such a constant will not affect the per-

formance of the forthcoming imaging schemes. We can write (4.1.5) as

Pnm(ω; x, y) = s(x, y) φ(ω)Unm(ω; x, y) (4.1.14)

where Unm(ω; x, y) is the (n,m)-th element of the k× k matrix U which is defined as
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U(ω; x, y) , u(ω; x, y) vT (ω; x, y) (4.1.15)

u(ω; x, y) , [u1(ω; x, y) u2(ω; x, y) ... uk(ω; x, y)]
T . (4.1.16)

v(ω; x, y) , [v1(ω; x, y) v2(ω; x, y) ... vk(ω; x, y)]
T . (4.1.17)

Here, u(ω; x, y) is a k × 1 vector of array spatial signature, at frequency ω, corre-

sponding to the transmitting transducers at the hypothetical point scatterer located

at (x, y), inside the second layer, and v(ω; x, y) is a k × 1 vector of array spatial

signature, at frequency ω, corresponding to the receiving transducers at the hypo-

thetical point scatterer located at (x, y), inside the second layer. The new array

spatial signatures u(ω; x, y) and v(ω; x, y), can be used in different algorithms to im-

age the second layer of the material under test. Note that Pnm(ω; x, y) in (4.1.14) is

the received signal corresponding to the backscattering from only one scatterer point

located at (x, y) in the second layer. The received signal due to the backscattering of

all point scatterers inside the second layer of the test sample can be written as

Pnm(ω) = φ(ω)

n2
∑

i=1

Unm(ω; x̂i, ŷi) s(x̂i, ŷi) (4.1.18)

where n2 is the number of scatterer points inside the second layer and (x̂i, ŷi) is the

location of the i-th scatterer point inside the second layer. To consider all k2 received

signals in the presence of noise, we can collect all the received signals in a matrix

form as

P(ω) = φ(ω)

n2
∑

i=1

U(ω; x̂i, ŷi) s(x̂i, ŷi) + ν(ω) (4.1.19)

where P(ω) is a k× k matrix whose (n,m)-th element is Pnm(ω), and ν(ω) is a k× k

matrix whose (n,m)-th element is the received noise at the m-th transducer, when

the n-th transducer is transmitting the the sound wave.
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4.1.2 Multi-layer Medium

In this section, we aim to extend our data model presented in Section 4.1.1, for the

a multi-layer test sample. We consider a test sample consisting of l layers under

ultrasonic test. Each layer has a different sound velocity. The goal is to derive a

data model for the reflection of the point reflectors located at the l-th layer of the

material under teat. Assuming a uniform linear array of k ultrasonic transducers.

The test is conducted as it is explained in Section 4.1.1. We consider the interfaces

between the layers as spatially distributed sources refracting the probing signals into

the lower layers. We model these interfaces as infinitely many point sources. We

assume that there is a point reflector located at (x, y) inside the l-th layer of the

test sample. A typical sound path for the reflection of this point reflector is depicted

in Fig. 4.2. We assume that the nth transducer located at (x̃n, ỹn) is transmitting

the probing signal φ(ω), and the mth transducer located at (x̃m, ỹm) is receiving the

signal back-scattered by the test sample. The signal received at the mth transducer

corresponding to the point reflector at (x, y) inside the l-th layer, can be written as

P (l)
nm(ω; x, y) = γ(x, y) φ(ω)u(l)n (ω; x, y)u(l)m (ω; x, y) (4.1.20)

where γ(x, y) is defined as

γ(x, y) , f12f21f23f32 ...f(l−1)lfl(l−1) s(x, y). (4.1.21)

Here, fij is the refraction coefficient from Layer i into Layer j, s(x, y) is the reflection

coefficient of the point reflector located at (x, y), and u
(l)
n (ω; x, y) and u

(l)
n (ω; x, y) are

the frequency responses, corresponding to the transmission and reception paths and
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Figure 4.2: Reflection of a point reflector inside the lth layer of the test sample.

they are defined as

u(l)n (ω; x, y) ,

∫

yl−1=Cl−1(xl−1)

...

∫

y2=C2(x2)

∫

y1=C
(n)
1 (x1)

g1(ω; x̃n, ỹn, x1, y1)

g2(ω; x1, y1, x2, y2) ...g(l)(ω; xl−1yl−1, x, y)dx1dx2dxl−1 (4.1.22)

u(l)m (ω; x, y) ,

∫

yl−1=Cl−1(xl−1)

...

∫

y2=C2(x2)

∫

y1=C
(m)
1 (x1)

g1(ω; x̃m, ỹm, x1, y1)

g2(ω; x1, y1, x2, y2) ...g(l)(ω; xl−1yl−1, x, y)dx1dx2dxl−1. (4.1.23)

Note that for the sake of simplicity in the multi-layer model, we assumed that the

transmission coefficients are constant and the transducers are omni-directional. We

can rewrite (4.1.20) as

P (l)
nm(ω; x, y) = γ(x, y) φ(ω)U (l)

nm(ω; x, y) (4.1.24)
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where U
(l)
nm(ω; x, y) is the (n,m)th element of the k×k matrix U(l)(ω; x, y), is defined

as

U(l)(ω; x, y) , u(l)(ω; x, y) (u(l)(ω; x, y))T (4.1.25)

u(l)(ω; x, y) , [u
(l)
1 (ω; x, y) u

(l)
2 (ω; x, y) ... u

(l)
k (ω; x, y)]T . (4.1.26)

Note that P
(l)
nm(ω; x, y) is the received signal corresponding to the reflection of only

one reflector point in the l-th layer located at (x, y). However, the received signal is

due to reflections from the superposition of all reflector points inside the l-th layer of

the test sample. Therefore, the received signal corresponding to all point reflectors

in the l-th layer can be written as

P (l)
nm(ω) = φ(ω)

nl
∑

i=1

U (l)
nm(ω; x̂i, ŷi) γ(x̂i, ŷi) (4.1.27)

where nl is the number of reflector points in the l-th layer and (x̂i, ŷi) is the location

of the ith reflector point inside the l-th layer. To consider all k2 received signals in

the presence of noise, we can collect all the received signals in a matrix form as

P(l)(ω) = φ(ω)

rl
∑

i=1

U(l)(ω; x̂i, ŷi) γ(x̂i, ŷi) + ν (4.1.28)

where P(l)(ω) is a k × k matrix whose (n,m)th element is P
(l)
nm(ω)and ν is a k × k

matrix whose (n,m)th element is the received noise at the mth transducer when the

nth transducer is transmitting the probing signal.

4.2 Algorithms

In this section, we aim to image the second layer of the material under test using

the data model, we developed in Subsection 4.1.1. To image the region of interest,
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we need to assign a relative intensity to each pixel point in the image. For this pur-

pose, the region of interest is covered with a sufficiently fine grid. Then, we apply

some existing imaging algorithms including the conventional beamforming, MUSIC,

and Capon for imaging the second layer of a multi-layer medium using our proposed

array spatial signature. MUSIC and Capon algorithms originally have been devel-

oped for a homogeneous medium where the sound velocity is uniform in the medium.

The conventional beamforming algorithm has been applied for imaging a multi-layer

medium in synthetic apertures focusing test scenario using the concept of RMS veloc-

ity known as multi layer delay and sum MDAS method. However, in this section, we

aim to image a multi-layer medium when using a uniform linear array of transducers.

4.2.1 Conventional Beamforming

In this subsection, we use the conventional beamforming technique to image the sec-

ond layer of a two-layer medium. To do so, we need to estimate the backscattering

strength of each point in the ROI [29]. Assuming the narrow-band model for the array

measurements developed in the previous section, we use the conventional beamform-

ing method to estimate the backscattering strength of a hypothetical point scatterer,

located at (x, y) in the second layer of the test sample, as

ICB(ω; x, y) =
∣

∣tr{P(ω)UH(ω; x, y)φ∗(ω)}
∣

∣

2
(4.2.1)

where ICB(ω; x, y) is the conventional beamforming-based estimate of the backscat-

tering strength of a hypothetical point scatterer, located at (x, y) in the second layer,

at frequency ω, (·)H is the Hermitian operator, (·)∗ is the conjugate operator, tr{·} is

the trace of a matrix, and U(ω; x, y) is defined in (4.1.15) as the array spatial signa-

ture matrix for a hypothetical point scatterer, located at (x, y). The idea behind the
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conventional beamforming algorithm in (4.2.1) is to compensate the phase delay of

the signal corresponding to the transmission path (the path between the transmitter

and scatterer point) and the reception path (the path between the scatterer point

and the receiver). Note that by using U(ω; x, y) in (4.2.1), we are considering all

possible wave propagation paths between the transmitters and the receivers using a

distributed source modeling for the inter-layer interface.

4.2.2 Capon Algorithm

In this subsection, we use our new array spatial signature vector introduced in (4.1.16),

in conjunction with the Capon algorithm for imaging the second layer of a two-layer

material under test. The Capon method exploits the second order statistics of the

received signals, i.e., it relies on the covariance matrix of the array received signals

[29]. Using the narrow-band model for the array spatial signature in (4.1.17), we

introduce the Capon-based estimate of the backscattering strength of a hypothetical

point scatterer, located at (x, y), as

IC(ω; x, y) =
1

vH(ω; x, y)R−1(ω)v(ω; x, y)
(4.2.2)

where IC(ω; x, y) is the Capon-based estimate of the backscattering strength of a

hypothetical point scatterer, located at (x, y) in the second layer, at frequency ω,

v(ω; x, y) is the array spatial signature vector, at frequency ω, corresponding to the

receiving transducers defined in (4.1.17), and R(ω) is the sample covariance matrix

of the array signal measurements. In the absence of true covariance matrix, we use

the sample covariance matrix defined as

R(ω) =
1

k

k
∑

n=1

pT
n (ω) p

∗

n(ω). (4.2.3)
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Here, pn(ω) is the n-th row of the received signal matrix P(ω). Indeed, pn(ω) is

the array received signal vector corresponding to the transmission of the n-th trans-

ducer. In fact, in (3.1.13), we consider each row of the full matrix data P(ω), as

one independent snapshot for determining the sample covariance matrix required for

the Capon algorithm. Note that he number of snapshots is limited to the number of

array elements. Also, we implicitly assume that the scatterers are sources that emit

the sound wave at the same time instant [47]. Therefore, in (4.2.2), we use v(ω; x, y)

which is a vector containing the spatial signatures of the receiving transducers for a

hypothetical point scatterer, located at (x, y) inside the second layer. Moreover, by

using v(ω; x, y) in (4.2.2), we are taking into account the affect of the sound wave

refraction from all the points on the inter-layer interface between the two layers.

4.2.3 MUSIC Method

The MUSIC method is an eigen-decomposition approach for source localization [27].

Similar to the Capon algorithm, this method relies on the sample covariance matrix

of the array signals measurement. Assuming the narrow-band model for the array

spatial signature given in (4.1.17), we introduce the MUSIC-based estimate of the

backscattering strength of a hypothetical point scatterer, located at (x, y), as

IM(ω; x, y) =
1

vH(ω; x, y)En(ω)EH
n (ω)v(ω; x, y)

(4.2.4)

where IM(ω; x, y) is the MUSIC-based estimate of the backscattering strength of a

hypothetical point scatterer, located at (x, y), at frequency ω, En(ω) is a k× (k−ns)

matrix collecting all the noise subspace eigenvectors of the sample covariance matrix

R(ω) which is defined in (3.1.13), and ns is the signal subspace dimension. Note
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that, similar to the Capon algorithm, we implicitly assume that the scatterers are

sources that emit the sound wave at the same time instant [47]. Therefore, in (4.2.2),

we use v(ω; x, y) which is a vector containing the spatial signatures of the receiving

transducers for a hypothetical point scatterer, located at (x, y) inside the second

layer. Moreover, in order to apply the MUSIC algorithm, the dimension of the signal

subspace ns, is needed. In case of a spatially distributed scatterer, the signal subspace

can occupy the whole observation space, rendering the noise subspace degenerate.

Therefore, we use the notion of effective signal subspace dimension for ns, and it

is defined as the number of significant eigenvalues of the sample covariance matrix.

Thus, we consider ns as an integer parameter which has to be chosen by user, in order

to increase the quality of the image.

4.2.4 Wide-band Consideration

In ultrasonic tests, the probing signal is wide-band. In the previous section, we

presented our data model for a narrow-band probing signal. This data model can be

used for a wide-band scenario as explained in the sequence. Using Fourier transform

of the array signal measurements, we can decompose the wide-band array signals into

narrow-band signals, and apply any of the three methods, proposed in the previous

subsections, to estimate the backscattering strength of the points inside the second

layer, at each frequency in the signal band-width. We can then, average the so-

obtained narrow-band estimates, over different frequencies. Hence, we introduce the

wide-band estimate of the backscattering strength of a point scatterer located at

(x, y), using the conventional beamforming technique, the Capon algorithm, and the
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MUSIC method, respectively as,

ICB(x, y) =
∑

ωi∈Ω

ICB(ωi; x, y) (4.2.5)

IC(x, y) =
∑

ωi∈Ω

IC(ωi; x, y) (4.2.6)

IM(x, y) =
∑

ωi∈Ω

IM(ωi; x, y). (4.2.7)

Here Ω is a set of all frequencies in the signal band-width, ICB(x, y), IC(x, y), and

IM(x, y) are estimates of the backscattering strength of a hypothetical point scat-

terer, located at (x, y), using all frequencies in the band-width, corresponding to the

conventional beamforming technique, the Capon algorithm, and the MUSIC method,

respectively. To obtain an image of the ROI, we introduce ICB(x, y), IC(x, y), and

IM(x, y) as the relative intensity of a point, located at (x, y) in the ROI, correspond-

ing to the conventional beamforming-based, Capon-based, and MUSIC-based imaging

techniques, respectively.

4.2.5 Multi-layer

In (4.1.22), the computational complexity for imaging of the l-th layer increases expo-

nentially as the number of layers increases. To calculate the u
(l)
n (ω; x, y) for any point

inside the l-th layer using u
(l−1)
n (ω; x(l−1), y(l−1)), we can use the following recursive

equation:

u(l)n (ω; x, y) ,

∫

y1=Cl−1(xl−1)

u(l−1)
n (ω; x(l−1), y(l−1))g(l)(ω; xl−1yl−1, x, y)dxl−1 (4.2.8)

Having u
(l−1)
n (ω; x(l−1), y(l−1)) for the points located on the interface of the (l − 1)-th

and the lth layers, during the processing for the imaging of the (l − 1)th layer, we

need to calculate the one dimensional integration in (4.2.8) for the points in the l-th



63

layer in order to image the l-th layer. Therefore, starting imaging process from the

second layer, for the lower layers, the computational complexity remains the same.

4.3 Experimental Results

In this section, we aim to evaluate the performance of our data model in imaging

the second layer of a two-layer medium. To do so, we conducted an immersion

ultrasonic test where a metallic test sample and a uniform linear array of ultrasonic

transducers were immersed in water. The sound wave propagates in water with speed

c1 = 1500 m/s, while the sound propagation speed in steel is c2 = 6300 m/s. The

test configuration is depicted in Fig. 4.3, where the test sample is a steel block with

several side-drilled holes. The distance between the array probe and the test sample

is d0 = 9.5 mm. We used a uniform linear array of k = 64 ultrasonic transducers with

an element pitch1 of 0.60 mm. The transducers have a rectangular shape. The beam-

pattern of the n-th transducer, located at (x̃n, ỹn), at a hypothetical point located at

(x1, y1) on the interface between two layers is given by

Bn(ω; x1, y1) = sinc

(

l ω |x̃n − x1|

2π c1 d(x̃n, ỹn, x1, y1)

)

(4.3.1)

where l is the width of the transducers along the x-axis and is chosen as l = 0.6 mm.

The ultrasonic array probe is parallel to the x-axis and the upper surface of the test

sample. The first transducer is assumed to be located at x = 0 mm and y = −9.5 mm.

Each transducer is stimulated with the same probing signal one after the other, while

all of the transducers (including the one transmitting) receive the wave backscattered

from the solid test sample. We allow enough time between firing of subsequence

1The element pitch is the distance between the center of two adjacent ultrasonic transducers.
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Figure 4.3: Immersion test configuration.

transducers, to avoid undesired interferences between the received signals. All the

4096 received signals are sampled, quantized, saved in a digital computer for post-

processing. A time-domain sample received signal is shown in Fig. 4.4. The probing

signal is a wide-band signal. The center frequency of the probing signal is 5 MHz.

We have used Fourier transform to decompose the received signals into narrow-band

components. We choose the efficient band-width to be 5MHz which is spread over

200 frequency bins. Then, we have used (4.2.5), (4.2.6), and (4.2.7) to image the

ROI using the conventional beamforming technique, the MUSIC method, and the

Capon algorithm, respectively. For all images, the ROI is the area between the lines

y = 5 mm, y = 40 mm, x = 0 mm, and x = 40 mm, and includes three holes. All the

images have been normalized to their maximum values (brightest pixel in the image).

To apply the conventional beamforming imaging technique of (4.2.5), we need to

use (4.1.15) to calculate the array spatial signature matrix U(ω; x, y) for all points in

the ROI, and also to obtain the φ(ω). To obtain φ(ω), we extracted its time-domain

representation, ϕ(t), from the signal backscattered by the back-wall of the test block.
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To do so, we compute the round travel time of the normal sound beam from the

transducer array to the backwall of the test sample and back to the transducer array.

Then, we have chosen 150 samples which are received after this time in the signal

P32,32(t). This back-wall reflected signal is shown in Fig. 4.5. Then, φ(ω) is produced

using Fourier transform of ϕ(t). To apply the Capon algorithm of (4.2.6) and the

MUSIC method of (4.2.7), we use the receiving transducers array spatial signature

v(ω; x, y) in (4.1.17) for all points in the region of interest.
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Figure 4.4: Sample received signal.

To show the accuracy of our proposed data model, we compare the performance

of the three aforementioned imaging algorithms, when our proposed array signature

is used in these three algorithms, with the case when the array spatial signature is

modeled based on the root mean squared (RMS) velocity method of [32] and [33]. In

the RMS velocity based method, the sound velocity is approximated using a weighted
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Figure 4.5: Back-wall reflection signal.

average of root mean squared of sound velocity in all the layers. The weights are

calculated using the travel time of the normal sound beam in each layer [32]. The

RMS velocity method has been used to modify the SAFT technique for immersion

ultrasonic imaging in [35]. We now explain how we can apply this method in the three

aforementioned algorithms, when an array of transducers is used. Using the so-called

RMS velocity, the array spatial signature matrix for a point scatterer located at (x, y)

in the second layer, is provided as

UR(ω; x, y) , uR(ω; x, y) u
T
R(ω; x, y) (4.3.2)

where

uR(ω; x, y) , [a(x̃1, ỹ1, x, y) e
−jωτR(x̃1,ỹ1,x,y) ... a(x̃n, ỹn, x, y) e

−jωτR(x̃n,ỹn,x,y)]. (4.3.3)

Here, the following definition is used

τR(x̃n, ỹn, x, y) ,
d(x̃n, ỹn, x, y)

cR
(4.3.4)



67

where cR is the so-called RMS velocity which is obtained using the method of [32].

Therefore the narrow-band estimate of the scattering coefficient of a point scatterer

located at (x, y) in the second layer, based on RMS velocity method, using the con-

ventional beamforming technique, the Capon algorithm, and the MUSIC method can

be written respectively as

IRCB(ω; x, y) =
∣

∣tr{P(ω)UH
R (ω; x, y)φ

∗(ω)}
∣

∣

2
(4.3.5)

IRC (ω; x, y) =
1

uH
R (ω; x, y)R

−1(ω)uR(ω; x, y)
(4.3.6)

IRM(ω; x, y) =
1

uH
R (ω; x, y)En(ω)EH

n (ω)uR(ω; x, y)
. (4.3.7)

Then, the RMS-velocity-based image corresponding to the conventional beamforming

technique, the Capon algorithm, and the MUSIC method, are introduced respectively

as

IR
CB(x, y) =

∑

ωi∈Ω

IRCB(ωi; x, y) (4.3.8)

IR
C (x, y) =

∑

ωi∈Ω

IRC (ωi; x, y) (4.3.9)

IR
M(x, y) =

∑

ωi∈Ω

IRM(ωi; x, y). (4.3.10)

Figs. 4.6 show the image of the test sample obtained using the conventional beam-

forming technique of (4.2.5), and Fig. 4.8 presents the image when the conventional

beamforming technique of (4.3.8) is used. We have also shown the corresponding

images in three-dimensional plots in Figs. 4.7 and 4.9. Comparing Figs. 4.6 and 4.7

with Figs. 4.8 and 4.9, respectively, we observe that the conventional beamforming

image of (4.2.5) has prominent peaks. Also, in the RMS velocity based image the

peak corresponding to the middle hole is relatively smaller than the corresponding

peak of the image obtained using (4.2.5). To compare our proposed model for array
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spatial signature with the one using the RMS velocity method in terms of root mean

squared error (RMSE), we provide the RMSE plot versus the SNR. To do so, we have

added a zero-mean Gaussian noise with different powers, corresponding to different

values of SNR, to the raw data. Note that here the SNR is defined as the power

of the additive noise to the power of the backscattered signal at the receiving trans-

ducer. We reconstruct the image using the data contaminated with additive noise

and calculate the RMSE of the location of the peak which corresponds to the hole

located at the middle of the ROI. The RMSE is calculated based on the assumption

that the true the location of the peak in the image is the one which is obtained from

the original data (without additive noise). Fig. 4.18 shows the RMSEs for the hole

location estimate obtained using the conventional beamforming technique of (4.2.5)

and that obtained using the RMS velocity based method of (4.3.8). This figure clearly

shows the superiority of the proposed array spatial signature model compared to the

RMS velocity based method, when these models are usedin conventional beamform-

ing algorithm.

Fig. 4.10 shows the image of the test sample obtained using the Capon algorithm of

(4.2.6). Fig. 4.12 shows the image of the test sample obtained Capon algorithm of

(4.3.9). We have also shown the corresponding images in three-dimensional plots in

Figs. 4.11 and 4.13. As can be seen from these figures, the Capon-based image, which

rely on the RMS velocity method, i.e., Figs. 4.12 and 4.13 have detected the three

holes, however the brightness of the left and the right holes are significantly lower

compared to the same brightness of the corresponding holes in Figs. 4.10 and 4.11

which are obtained using our proposed array spatial signature. Fig. 4.19 compares the

RMSE of the location estimate for the hole, located in the middle of the ROI, using
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the images obtained from (4.2.6) and (4.3.9). This figure clearly shows the superiority

of the proposed array spatial signature model compared to the RMS velocity based

method, when these models are used in the Capon based imaging approach. Fig. 4.14

shows the image of the test sample obtained using the MUSIC based imaging method

of (4.2.7). Fig. 4.16 shows the image of the test sample obtained by using the MUSIC

based imaging technique of (4.3.10). We have also shown the corresponding images

in three-dimensional plots in Figs. 4.15 and 4.17. Fig. 4.20 compares the RMSE of

the location of the hole, located in the middle of the ROI, for the two aforementioned

MUSIC based methods. These images show that the performance of the MUSIC

method is superior when this method relies on our proposed model for the array spa-

tial signature as compared to the case when the RMS velocity method is used.

We have compared the performance of our proposed array spatial signature model in

conjunction with three algorithms with the the corresponding cases, when the RMS

velocity concept is used in these algorithms. Theses images clearly show that the per-

formance of the three algorithms when they rely on our model for the array spatial

signature is superior to the performance of these algorithms when they are using the

RMS velocity method. The RMSE plot for all the three algorithms also confirm the

accuracy of our proposed model for the array spatial signature.
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Figure 4.6: Conventional beamforming image of (4.2.1).

Figure 4.7: Three dimensional plot of (4.2.1).
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Figure 4.8: Conventional beamforming image based on RMS velocity concept.

Figure 4.9: Three dimensional plot for conventional beamforming based on RMS

velocity concept.
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Figure 4.10: Capon image of (4.2.2).

Figure 4.11: Three dimensional plot of (4.2.2).
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Figure 4.12: Capon image based on RMS velocity concept.

Figure 4.13: Three dimensional plot for the Capon technique based on RMS velocity

concept.
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Figure 4.14: MUSIC image of (4.2.4).

Figure 4.15: Three dimensional plot of (4.2.4).
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Figure 4.16: MUSIC image based on RMS velocity concept.

Figure 4.17: Three dimensional plot for the MUSIC technique based on RMS velocity

concept.
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Figure 4.18: The RMSE for conventional beamforming method.
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Figure 4.19: The RMSE for Capon method.
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Figure 4.20: The RMSE for MUSIC method.

4.4 Conclusions

In this chapter, in order to image a two-layer medium, we modeled the interfaces

between the two layers as a spatially distributed source, which consists of infinite

number of point sources. Based on this type of modeling, we presented a new model

for array spatial signature for all the points inside a two-layer medium, and used this

new model in imaging techniques including the conventional beamforming technique,

the MUSIC method, and the Capon algorithm, in order to image a two-layer medium.

These algorithms traditionally are applied for a homogeneous medium where the

sound velocity is constant in the material under test, however in a two-layer medium

the sound velocity is different in each layer. For examining the accuracy of our

proposed model with experimental data, we used the data for an immersion ultrasonic

test of a steel block and imaged the steel block as the second layer of a two-layer

medium. We also compared the accuracy of our model for array spatial signature
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with that of the RMS velocity based method.

Our simulation results and experimental tests show that using our proposed model

in conjunction with the conventional beamforming imaging technique, as well as along

with the MUSIC and Capon imaging methods results in a superior performance com-

pared to the case when the RMS velocity based method is used in these imaging

techniques. However, The computational complexity and therefore the execution

time is high for an online imaging process. In the next chapter, we propose a Fourier-

based imaging algorithm which has a lower computational complexity and it can be

used in an online imaging process.



Chapter 5

A Fourier-based imaging algorithm

for Second layer of a two-layer

medium

In the previous chapter, based on the Huygens principle, we have modeled the inter-

faces between layers of a two-layer medium as secondary spatially distributed sources

consisting of infinite number of point sources. Then, we use this model to develop

a new array spatial signature for all points inside a two-layer medium. This new

array spatial signature can be used in imaging techniques including the conventional

beamforming technique, the MUSIC method, and the Capon algorithm in order to

image two-layer materials.

All three algorithms are able to image the region of interest precisely based on our

proposed array spatial signature, however, the execution time is still high for online

image processing. In this chapter, we also model the interface between two layers

as spatially distributed source which refract the probing sound wave into the lower

layers. However, herein the goal is to propose a Fourier-based imaging algorithm for

the second layer of the material under test. In this algorithm, the execution time is

79
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considerably reduced comparing to the aforementioned three algorithms.

5.1 Data Model

We consider a two-layer solid object which is under ultrasonic test using a one-

dimensional uniform linear array of M ultrasonic transducers. We assume that each

layer is a homogeneous medium with a constant sound velocity; however, the sound

velocity in each layer is different from that in the other one. Each transducer trans-

mits a sound wave and all the other transducers (including the one transmitting)

receive the backscattered sound wave from the test sample. The M2 time domain

received signals is sampled in time and stored in a N ×M ×M tensor where N is the

number of time samples. The goal is to develop a data model for the backscattered

signals with the aim to use it for imaging the second layer of the material under test.

We assume that the upper surface of the test sample, the interface between the layers,

and the back wall of the test sample are parallel planes (i.e., multi-layer material with

parallel interfaces). The center of the two-dimensional Cartesian coordinate system is

assumed to be in the middle of the second layer of the material under test, as shown

in Fig. 5.1. The width of the first layer in y direction is d1 and the width of the

second layer in y direction is 2d2. We present our data model in a two-dimensional

coordinate system, assuming that the ultrasonic transducers, the test sample, and the

defects are infinitely long in the third dimension. This model can easily be extended

for three-dimensional volumetric imaging scheme where a two-dimensional uniform

array is employed. All the transducers in the array are assumed to be identical and

the beam pattern gain of the n-th transducer located at (u,−d1 − d2), at frequency



81

Layer 1

(x, y)

(v,−d1 − d2)(u,−d1 − d2)

x axis

y
ax

is

b

Layer 2
(x′,−d2) (x′′,−d2)

Array bb

d1

d2

d2

L2L2

Figure 5.1: A hypothetical point scatterer inside second layer of a two-layer medium.

ω toward the point located at (x, y) is is denoted as B(ω; u,−d1 − d2; x, y).

We model the interface between the two layers as a spatially distributed source. As-

suming a two-dimensional model, this interface can be modeled as a line consisting of

infinite number of point sources [48]. At each point on the interface, the propagating

sound wave is refracted into the second layer, therefore, each point on the interface

acts as a point source for all the points inside the second layer. Let us assume that

there is a point scatterer located at (x, y) inside the second layer of the test sample,

and the transducer located at coordinate (u,−d1 − d2) is firing the probing sound

wave. This sound wave is refracted by all the points on the interface between the two

layers into the second layer. Then, any point scatterer scatters the sound wave back

towards the interface. This backscattered sound wave is refracted into the first layer
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by all the points on the interface, and the transducer array measures the superposi-

tion of all these refracted signals. Therefore, at frequency ω, the backscattered signal

received by the transducer located at coordinate (v,−d1 − d2) due to the scattering

of a point scatterer, located at (x, y) in the second layer is denoted by px,y(ω; u, v)

and it can be written as [20]

px,y(ω; u, v) = φ(ω)f12 f21

+∞
∫∫

−∞

B(ω; u,−d1 − d2; x
′,−d2)B(ω; v,−d1 − d2; x

′′,−d2, )

s(x, y) gf(ω; x
′ − u, d1)gs(ω; x− x′, y + d2)gs(ω; x− x′′, y + d2)gf(ω; x

′′ − v, d1)dx
′dx′′.

(5.1.1)

Here, φ(ω) is the probing signal at frequency ω, f12 is the transmission coefficient from

Layer 1 into Layer 2, f21 is the transmission coefficient from Layer 2 into Layer 1,

s(x, y) is the real-valued scattering coefficient of a hypothetical point scatterer located

at (x, y) inside the second layer, B(ω; u,−d1−d2; x
′,−d2) is the beam pattern gain of

the source transducer, located at (u,−d1 − d2), towards a point located at (x′,−d2)

on the interface at frequency ω, and B(ω; v,−d1 − d2; x
′′,−d2, ) is the beam pattern

gain of the receiving transducer, located at (v,−d1 − d2), towards a point located at

(x′′,−d2) on the interface at frequency ω. Also, gf(ω; x
′−u, d1) is the Green function

corresponding to the propagation of sound wave in the first layer from the source

transducer, located at (u,−d1−d2), to a point located at (x′,−d2) on the interface at

frequency ω, gs(ω; x−x
′, y+d2) is the Green function corresponding to the propagation

of sound wave in the second layer from a point located at (x′,−d2) on the interface

to a hypothetical point scatterer located at (x, y) inside the second layer at frequency

ω, gs(ω; x − x′′, y + d2) is the Green function corresponding to the propagation of

sound wave in the second layer from a hypothetical point scatterer located at (x, y)

inside the second layer to a point located at (x′′,−d2) on the interface at frequency
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ω, and gf(ω; x
′′ − v, d1) is the Green function corresponding to the propagation of

sound wave in the first layer from a point located at (x′,−d2) on the interface to the

receiving transducer located at (v,−d1 − d2) at frequency ω. The Green functions in

the first and second layers can be written respectively as [20]

gf(ω; x, y) =
−j

4π

+∞
∫

−∞

exp
(

−jkxx− jy
√

k2f − k2x

)

√

k2f − k2x

dkx (5.1.2)

gs(ω; x, y) =
−j

4π

+∞
∫

−∞

exp
(

−jkxx− jy
√

k2s − k2x

)

√

k2s − k2x
dkx. (5.1.3)

Here, kf , ω/cf and ks , ω/cs are the wave numbers in Layers 1 and 2, respectively,

and cf and cs are the corresponding sound velocities in Layers 1 and 2.

Note that the exact value of the transmission coefficient f12 depends an the location

of the refracting point on the interface and the location of the hypothetical point scat-

terer. Also, the transmission coefficient f21 depends on the location of the refracting

point on the interface and the location of the receiving transducer [49]. The exact

values of the transmission coefficients f12 and f21 can be calculated using Huygen’s

principle as in Chapter 4. However, the computational complexity of the proposed

approach in Chapter 4, is high and increases the execution time of the imaging algo-

rithms. To reduce the computational complexity and therefore the execution time,

we assume that the transmission coefficients f12 and f21 are constant values across

the interface between the two layers. With this assumption, we aim to propose an

imaging algorithm for an online second layer ultrasonic test.

The backscattered signal px,y(ω; u, v) in (5.1.1) depends on the probing signal φ(ω),

and the transducers beam-pattern gains B(ω; u,−d1− d2; x
′,−d2) and B(ω; v,−d1 −
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d2; x
′′,−d2, ). We assume that the probing signal is an impulse and that the trans-

ducers are omni-directional, i.e,

B(ω; u,−d1 − d2; x
′,−d2) = 1 (5.1.4)

B(ω; v,−d1 − d2; x
′′,−d2, ) = 1 (5.1.5)

ϕ(t) = δ(t) (5.1.6)

where ϕ(t) is the time domain representation of φ(ω). Alternatively, in practice, these

effects can be compensated in the preprocessing steps [20]. Therefore, (5.1.1) can be

written as

px,y(ω; u, v) = f12 f21

+∞
∫∫

−∞

s(x, y) gf(ω; x
′ − u, d1)

gs(ω; x− x′, y + d2)gs(ω; x− x′′, y + d2)gf(ω; x
′′ − v, d1)dx

′dx′′. (5.1.7)

Note that px,y(ω; u, v) is the received signal due to the scattering of only one point

scatterer inside the second layer. Therefore, the backscattered signal, received at

the transducer located at (v,−d1 − d2) due to the scattering of all potential point

scatterers in the ROI, can be written as

p(ω; u, v) = f12 f21

+∞
∫∫

−∞

+∞
∫∫

−∞

s(x, y)gf(ω; x
′ − u, d1)

gs(ω; x− x′, y + d2)gs(ω; x− x′′, y + d2)gf(ω; x
′′ − v, d1)dx

′dx′′dxdy (5.1.8)

Note that s(x, y) may be non-zero only for those points in the ROI which reflect the

sound wave.
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5.2 Fourier Mapping

In this section, we use the data model in (5.1.8) to develop a relationship between

the Fourier representation of the measured data p(ω; u, v) and the the Fourier repre-

sentation of the image s(x, y), for all the points in the ROI.

Using (5.1.2) and (5.1.3), we can write (5.1.8) as

p(ω; u, v) = f12 f21

+∞
∫∫

−∞

+∞
∫∫

−∞

s(x, y)
1

(4π)4





+∞
∫

−∞

exp
(

−jk1(x
′ − u)− jd1

√

k2f − k21

)

√

k2f − k21

dk1



×





+∞
∫

−∞

exp
(

−jk2(x− x′)− j(y + d2)
√

k2s − k22

)

√

k2s − k22
dk2



×





+∞
∫

−∞

exp
(

−jk3(x− x′′)− j(y + d2)
√

k2s − k23

)

√

k2s − k23
dk3



×





+∞
∫

−∞

exp
(

−jk4(x
′′ − v)− jd1

√

k2f − k24

)

√

k2f − k24

dk4



 dx′dx′′dxdy. (5.2.1)
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We now rewrite (5.2.1) as

p(ω; u, v) =
f12 f21
(4π)4

+∞
∫∫

−∞

exp
(

jk1u+ jk4v − jd1

(√

k2f − k21 +
√

k2f − k24

))

√

k2f − k21

√

k2f − k24




+∞
∫∫

−∞

exp(−jx′k1 − jx′′k4)





+∞
∫∫

−∞

exp(jx′k2 + jx′′k3)

exp
(

−jd2

(

√

k2s − k22 +
√

k2s − k23

))

√

k2s − k22
√

k2s − k23





+∞
∫∫

−∞

s(x, y)

exp

(

−jx(k2 + k3)− jy

(

√

k2s − k22 +
√

k2s − k23

))

dxdy

]

dk2dk3

]

dx′dx′′
]

dk1dk4

(5.2.2)

Let S(kx, ky) denote the two-dimensional Fourier transform of s(x, y), that is

S(kx, ky) ,

+∞
∫∫

−∞

s(x, y) exp (−jxkx − jyky) dxdy. (5.2.3)

Using (5.2.3), we can write

+∞
∫∫

−∞

s(x, y) exp

(

−jx(k2 + k3)− jy(
√

k2s − k22 +
√

k2s − k23)

)

dxdy =

S

(

k2 + k3,
√

k2s − k22 +
√

k2s − k23

)

. (5.2.4)

Now, we use (5.2.4) to write (5.2.2) as

p(ω; u, v) =
f12 f21
(4π)4

+∞
∫∫

−∞

exp
(

jk1u+ jk4v − jd1

(√

k2f − k21 +
√

k2f − k24

))

√

k2f − k21

√

k2f − k24




+∞
∫∫

−∞

exp(−jx′k1 − jx′′k4)





+∞
∫∫

−∞

exp(jx′k2 + jx′′k3)

exp
(

−jd2

(

√

k2s − k22 +
√

k2s − k23

))

√

k2s − k22
√

k2s − k23
S

(

k2 + k3,
√

k2s − k22 +
√

k2s − k23

)

dk2dk3] dx
′dx′′] dk1dk4 (5.2.5)
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To simplify (5.2.5), we define Z(w, k2, k3) as

Z(ω; k2, k3) ,
exp

(

−jd2(
√

k2s − k22 +
√

k2s − k23)
)

√

k2s − k22
√

k2s − k23
S

(

k2 + k3,
√

k2s − k22 +
√

k2s − k23

)

(5.2.6)

Therefore, we have the following relationships between Z(w, k2, k3) and its two-

dimensional inverse Fourier transform which is denoted as z(w, x′, x′′):

z(ω; x′, x′′) ,
1

2π

+∞
∫∫

−∞

exp(jx′k2 + jx′′k3)Z(ω; k2, k3)dk2dk3 (5.2.7)

Z(ω; k2, k3) ,

+∞
∫∫

−∞

exp(−jx′k2 − jx′′k3)z(ω, x
′, x′′)dx′dx′′. (5.2.8)

Using (5.2.6), we can write (5.2.5) as

p(ω; u, v) =
f12 f21
(4π)4

+∞
∫∫

−∞

exp
(

jk1u+ jk4v − jd1

(√

k2f − k21 +
√

k2f − k24

))

√

k2f − k21

√

k2f − k24




+∞
∫∫

−∞

exp(−jx′k1 − jx′′k4)





+∞
∫∫

−∞

exp(jx′k2 + jx′′k3)Z(ω; k2, k3)dk2dk3





dx′dx′′] dk1dk4. (5.2.9)

Then using (5.2.7), we can write (5.2.9) as

p(ω; u, v) =
f12 f21
2(4π)3

+∞
∫∫

−∞

exp
(

jk1u+ jk4v − jd1

(√

k2f − k21 +
√

k2f − k24

))

√

k2f − k21

√

k2f − k24




+∞
∫∫

−∞

exp(−jx′k1 − jx′′k4)z(ω; x
′, x′′)dx′dx′′





dk1dk4. (5.2.10)
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Based on the definition in (5.2.8), we can write

Z(ω; k1, k4) =
1

2π

+∞
∫∫

−∞

exp(−jx′k1 − jx′′k4)z(ω, x
′, x′′)dx′dx′′. (5.2.11)

Therefore, using (5.2.11), we can write (5.2.10) as

p(ω; u, v) =
f12 f21
2(4π)3

+∞
∫∫

−∞

exp
(

jk1u+ jk4v − jd1

(√

k2f − k21 +
√

k2f − k24

))

√

k2f − k21

√

k2f − k24

Z(ω; k1, k4)dk1dk4. (5.2.12)

Then, seeking the similarity with the definition of inverse Fourier transform, we write

(5.2.12) as

p(ω; u, v) =
1

2π

+∞
∫∫

−∞

exp(jk1u+ jk4v)





f12 f21 Z(ω; k1, k4) exp
(

−jd1

(√

k2f − k21 +
√

k2f − k24

))

4(4π)2
√

k2f − k21

√

k2f − k24



 dk1dk4.

(5.2.13)

We now define P (ω; k1, k4) as the two-dimensional Fourier transform of p(ω; u, v) as

P (ω; k1, k4) ,
1

2π

+∞
∫∫

−∞

exp(−jk1u− jk4v)p(ω; u, v)dk1dk4. (5.2.14)

Using (5.2.13) and (5.2.14), we can write

P (ω; k1, k4) =
f12 f21 Z(ω; k1, k4) exp

(

−jd1

(√

k2f − k21 +
√

k2f − k24

))

4(4π)2
√

k2f − k21

√

k2f − k24

. (5.2.15)

Therefore, Z(ω; k1, k4) can be written as

Z(ω; k1, k4) =
4(4π)2

√

k2f − k21

√

k2f − k24 P (ω; k1, k4)

f12 f21 exp
(

−jd1

(√

k2f − k21 +
√

k2f − k24

)) . (5.2.16)
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Using (5.2.16) and (5.2.6), we can write

S

(

k1 + k4,
√

k2s − k21 +
√

k2s − k24

)

= H(ω; k1, k4) (5.2.17)

where

H(ω; k1, k4) =

P (ω; k1, k4)
√

k2f − k21

√

k2f − k24
√

k2s − k21
√

k2s − k24

exp
(

−jd2(
√

k2s − k21 +
√

k2s − k24)
)

exp
(

−jd1

(√

k2f − k21 +
√

k2f − k24

)) (5.2.18)

In the next section, we show how this data model in (5.2.17) and (5.2.18) can be used

to obtain s(x, y) from the P (ω; k1, k4). Note that, in this data model we have ignored

noise.

5.3 Imaging Algorithm

In this section, we aim to present an algorithm for imaging the second layer of a two-

layer medium using the data model we obtained in the previous section. To do so,

we first compute the three-dimensional Fourier transform of the time-domain array

received signals denoted by p̃(t, u, v) to obtain P (ω; k1, k4), where k1 and k4 are the

spatial frequency associated with the source transducers location, u, and the receiving

transducers location, v, respectively.

In the second step, using the following equations

kx =k1 + k4 (5.3.1)

ky =
√

k2s − k21 +
√

k2s − k24, (5.3.2)

we can write (5.2.17) as

S(kx, ky) = H(ω; k1, k4), (5.3.3)
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which shows how we can obtain S(kx, ky) from H(ω; k1, k4). The transformation in

(5.3.3) shows how the three-dimensional data H(ω; k1, k4) can be transformed into the

two-dimensional Fourier represent S(kx, ky) of the image s(x, y). To apply this trans-

formation, we hold k1 constant and for each constant k1, we can estimate the S(kx, ky).

We denote the estimate of the S(kx, ky) corresponding to the k1, as Ŝ(kx, ky|k1) and

it can be written as

Ŝ(kx, ky|k1) = H(ω; k1, k4)|k4=kx−k1
ω=kscs

(5.3.4)

where we have used the following

ks =
±
√

(

k4y + 2 (k21 + k24) k
2
y + k41 + k44 − 2k21k

2
4

)

2ky
. (5.3.5)

Indeed, Ŝ(kx, ky|k1) is an estimate of S(kx, ky) corresponding to a given value of k1.

To eliminate the affect of noise on the image, we take average of Ŝ(kx, ky|k1) over all

the values of k1 as

S̃(kx, ky) =

∫ +∞

−∞

Ŝ(kx, ky|k1)dk1 (5.3.6)

where S̃(kx, ky) is the average of all estimate values of S(kx, ky) over all the values of

k1. As we assumed that s(x, y) is real, the S̃(kx, ky) for the negative values of ky can

be written as

Ŝ(kx,−ky) = Ŝ∗(−kx, ky) ky > 0 (5.3.7)

where ∗ is the conjugate operator. Now, having S(kx, ky) for all the values of kx and

ky, we take two-dimensional inverse Fourier transform of Ŝ(kx, ky) to obtain ŝ(x, y)

which is introduced as the image of the ROI.
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5.4 Simulation and Experimental Results

In this section, we evaluate the accuracy of our proposed data model and the pre-

sented imaging algorithm for the second layer of a two-layer medium. As mentioned

earlier, one of the applications of two-layer imaging is immersion ultrasonic test. In

an immersion ultrasonic test, the ultrasonic transducers and the test sample are im-

mersed in a liquid such as water, thereby coupling the probing sound wave from a

transducer to the material under test. We conducted an immersion ultrasonic test

using a uniform linear array of ultrasonic transducers. The ultrasonic array is placed

in water above a steel test sample. The ultrasonic array probe is parallel to the up-

per surface of the test sample. The center of the array is assumed to be located at

x = 0 mm and y = 27.5 mm. The test configuration is depicted in Fig 5.1. The

distance between the array probe and the test sample is d1 = 9.5 mm which is filled

by water. When one of the transducers fires a probing sound wave, the sound wave

propagates in two homogeneous materials including water and steel. the goal is to

image the steel test sample which acts as the second layer of a two-layer medium.

Each transducer has a rectangular shape, and is 0.6 mm wide (in x direction)

and 10 mm long (in z direction). Therefore, the transducers are long enough (i.e.,

10 mm ≫ 0.6 mm) to be considered as long linear sources which produce cylindrical

sound waves. The distance between the center of any two adjacent transducers (ele-

ment pitch) is 0.6 mm which provides an active aperture of 38.4 mm. The material

under test is a steel block with five drilled-sided-holes. The test sample is a homoge-

neous medium with a width of 160 mm (in x direction) and a height of 36 mm (in y

direction), and a length of 20 mm (in z direction). The holes are drilled all the way

through the length of the test sample (in z direction). We assume that the holes are
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Figure 5.2: Test configuration.

long linear secondary sources which produce backscattered cylindrical sound waves.

The holes are considered as defects to be localized using ultrasonic immersion test.

The velocity of the longitudinal sound wave inside the test sample was measured to

be approximately 6300 m/s. Also, the velocity of the sound wave in water is assumed

to be 1480 m/s. The ultrasonic transducer array consists of M = 64 elements.

The ultrasonic transducers produce longitudinal sound wave, and we have ignored the

production of shear wave in the mode conversion phenomenon. Each transducer fires

a probing sound wave toward the test sample through the water, and other trans-

ducers receive the backscattered sound wave from the test sample. There is enough

time delay between the firing of each transducer to avoid any undesired interference

between firing subsequence transducers. The 4096 time-domain received signals are

sampled with appropriate sampling frequency and stored in a 64 × 64× 5000 tensor

for post-processing. The sampling frequency is Fs = 100 MHz and number of samples

N is 5000. A typical time-domain sample of a received signal is shown in Fig. 5.3. To

avoid multi-path interferences signals, we process only the first 2400 samples of all
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Figure 5.3: A typical time-domain sample of a received signal.

the received signals. Also, the first 1400 samples corresponding to the propagation

of the sound wave in the first layer are replaced with zero, as depicted in Fig. 5.4.

The probing signal is a wide-band signal with a center frequency of 5 MHz. The

Fourier transform of the sample signal is depicted in Fig. 5.5. To suppress the noise,

the high frequency components are replaced with zero, as depicted in Fig. 5.6. In the

other words, we filter the signal using a low pass filter. In Fig. 5.7(a), we have

shown the image of the material under test using our proposed imaging algorithm.

The three-dimensional version of this image is shown in Fig. 5.7(c). The ROI is the

area between the lines x = −40 mm, and x = 40 mm, and y = −18 mm, y = 18 mm

corresponding to the steel test sample according to the coordinate system in Fig 5.2.

All the images have been normalized to their maximum values (brightest pixel in the

image). The three prominent peaks belong to Holes A, B, and C which are shown in

Fig 5.2.
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Figure 5.4: Time-gated sample signal used for the proposed algorithm.
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Figure 5.5: Fourier representation of the time-gated sample signal.
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Figure 5.6: High-frequency-filtered sample signal.

We also image the steel block (the second layer of the two-layer medium of water

and steel) using the single-layer wavenumber algorithm of [20]. To do so, we have

chosen the part of signal corresponding to the propagation of the sound in the steel

block using time gating. To this end, the time samples between 1400 and 2400 have

been chosen. The sample time-gated signal is depicted in Fig. 5.8. Using the single

layer wavenumber algorithm of [20], in Fig. 5.7(b), we have shown the image of the

steel test sample. The three-dimensional version of this image is shown in Fig. 5.7(d).

The peaks in Fig. 5.7(a) and Fig. 5.7(c) based on our proposed algorithms are more

prominent in comparison to peaks in Fig. 5.7(b) and Fig. 5.7(d) based on single-layer

wavenumber algorithm using time-gating. To better compare these two approaches,

we have shown the images of Holes A, B, and C in Fig. 5.9 which clearly show that

our proposed algorithm outperforms the single-layer wavenumber algorithm.
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(a) Image of the ROI based on the proposed

algorithm.
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(b) Image of the ROI based on the single-

layer wavenumber algorithm.

(c) Three-dimensional plot based on the pro-

posed algorithm.

(d) Three-dimensional plot based on the

single-layer wavenumber algorithm.

Figure 5.7: A comparison between our proposed algorithm and the single-layer

wavenumber algorithm.
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Figure 5.8: Sample signal used in the single-layer wavenumber algorithm.

The performance of the proposed algorithm in terms of the cut-off frequency in the

low-passe filter (or equivalently the number frequency bins chosen from the Fourier

representation of the signal) is investigated in Fig 5.10. We can see from these images

that as we increase the number of frequency bins or the cut-off frequency, the peaks

are more prominent.

To compare our proposed mothod with the one using the single-layer wavenumber

algorithm in terms of root mean squared error (RMSE), we provide the RMSE plot

versus the SNR. To do so, we have added a zero-mean Gaussian noise with different

powers, corresponding to different values of SNR, to the raw data. Note that here the

SNR is defined as the power of the additive noise to the power of the backscattered

signal at the receiving transducers. We reconstruct the image using the data con-

taminated with additive noise and calculate the RMSE of the location of the peaks.

The RMSE is calculated based on the assumption that the true location of the peak
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wavenumber algorithm.
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wavenumber algorithm.
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(e) Image of hole C based on the proposed
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(f) Image of hole C based on the single-layer

wavenumber algorithm.

Figure 5.9: Images of the Holes A, B, and C using our proposed algorithm and for

the single-layer wavenumber algorithm.
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in the image is the one which is obtained from the original data (without additive

noise). Fig. 5.11 shows the RMSEs for the holes location estimate obtained using

the proposed method and that obtained using the single-layer wavenumber algorithm

of [20]. This figure clearly shows the superiority of the proposed method compared

to the single-layer wavenumber algorithm.

We also compare the performance of the Fourier-based algorithm proposed in this

chapter with the performance of the algorithms of Chapter 4 when they use our new

array spatial signature. Fig. 5.12 shows the RMSEs for the holes location estimates

obtained using the proposed algorithm in this chapter and those obtained by using

our proposed array spatial signature in the different imaging algorithms including the

conventional beamforming technique of (4.2.1), the MUSIC method of (4.2.4), and

the Capon algorithm of (4.2.2). This figure shows that the RMSE of the conventional

beamforming technique and the MUSIC method is better than the Fourier-based algo-

rithm. The Capon algorithm also performs better in the low SNR regions. However,

the execution time for the Fourier-based algorithm is the superiority of the proposed

method compared to the algorithms of Chapter 4. For the algorithms of Chapter 4,

we need to calculate two integration over the upper surface of the test sample for

each point in the ROI. Also, note that for the conventional beamforming technique of

(4.2.1), the MUSIC algorithm of (4.2.4), and the Capon method of (4.2.2), we need

to calculate the scattering coefficient of each point in the ROI, and we have to repeat

that for each frequency bin. However, in the Fourier-based algorithm, we do the Stolt

mapping of (5.3.4). This mapping is computationally simple, thus justifying the low

computational complexity of the Fourier-based algorithm.
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(a) Image of the ROI using 1320 frequency

bins.

(b) Three-dimensional image of ROI using

1320 frequency bins.
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(c) Image of the ROI using 1350 frequency

bins.

(d) Three-dimensional image of ROI using

1350 frequency bins.
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Figure 5.10: Image of the ROI using our proposed algorithm for different number of

frequency bins.
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Figure 5.11: The RMSE curve versus SNR for the proposed algorithm and that for

the single-layer wavenumber algorithm.
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5.5 Conclusions

In this chapter, we used an approximation of the proposed data model for backscat-

tered received signal. Then, we proposed a Fourier-based imaging algorithm for the

second layer of the material under test. In this algorithm, the execution time is con-

siderably reduced compared to the aforementioned three algorithms in the previous

chapter and it can be used in an online imaging process.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we considered the problem of multi-layer ultrasonic imaging us-

ing an array of ultrasonic transducers. Ultrasonic imaging for a multi-layer medium

is a common challenge in seismology, medical diagnoses, and non-destructive testing

(NDT). One of the applications of multi-layer imaging is ultrasonic immersion test

where the material under test and the transducer array are immersed in water. The

main imaging challenge in immersion test (or any multi-layer medium) is that since

the sound wave propagates with different speeds in different layers of a multi-layer

medium, such a medium cannot be assumed homogenous. As a result, calculating

the sound travel time for the received signal due to backscattering from such a non-

homogenous medium is not as straightforward as in the case of homogenous materials.

To tackle this problem, first we modeled the interfaces between the layers of a multi-

layer medium as spatially distributed sources. Based on this model, we established

three different approaches.

In the first approach, we considered the problem of immersion ultrasonic test. In such
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a test scenario, the upper surface of the test sample has two effects, i) it produces

a strong interference signal in the backscattered received signal, and ii) its shape

determines the array spatial signature of every point inside the material under test,

thereby causing difficulties in the flaw detection and imaging. Hence, in immersion

NDT, the knowledge of the shape of the upper surface of the test sample is required

to achieve a precise localization of a crack inside the test sample. In this approach,

we proposed a distributed reflector modeling approach to characterize the interface

between water and a solid test sample as well as any crack inside the solid test sam-

ple. This approach relies on the so-called incoherently distributed reflector modeling,

where a distributed reflector can be modeled as infinitely many point sources located

close to each other. Using such a modeling, we developed a covariance fitting based

approach to estimate the parameters of the shape of the interface between the two

media and those of the shape of a crack inside the test material. Our numerical ex-

periments show that our proposed approach yields a lower root mean squared error

for the parameter estimates, compared to a state-of-the-art method, called root mean

squared velocity technique. However the proposed approach is a parametric localiza-

tion method which needs the repetition of the ultrasonic test.

In the second approach we present a new model for the array spatial signature which

is applicable for frequency-domain algorithms for imaging a two-layer medium when

there is no need to repeat the ultrasonic test. To do so, we modeled the interface

between the two layers as a spatially distributed source which consists of an infinite

number of point sources. Then, based on Huygens principle, we developed a new

array spatial signature for any point inside the second layer of a two-layer medium.

This new array spatial signature can be used for multi-layer ultrasonic imaging in
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frequency-domain imaging techniques including the conventional beamforming tech-

nique, the MUSIC method, and the Capon algorithm which are traditionally proposed

for a homogeneous medium where the sound velocity is constant in the material under

test. Numerical simulations as well as experimental data show the accuracy of the

proposed model.

In the third approach, to reduce the execution time of the imaging process, we de-

veloped a Fourier-based imaging algorithm to estimate the scattering coefficient of

all the points inside the second layer of a two-layer medium in order to obtain an

image of the ROI. First, we use an approximation of the proposed data model for

the array backscattered signals due to the scattering of the point scatterers inside

the second layer of the material under test. Seeking the similarity with the definition

of Fourier transform, we propose a Fourier-based imaging algorithm, for imaging the

second layer of the material under test. In this proposed algorithm, the execution

time is considerably reduced compared to the three aforementioned algorithm and it

can be used in an online imaging process.

6.2 Future Work

There are two interesting topics to consider as possible future work.

• Application of the Weyl decomposition for multi-layer imaging is one possible

topic which can be investigated. In most literature, sound waves are assumed

to be plane waves at the interface between the layers of a multi-layer medium.

However in many applications of ultrasonic testing, the sensors are located at a

finite distance from the targets. Therefore, one has to consider the problem of
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spherical or cylindrical wave reflection and refraction. To tackle the problem of

wave refraction at the interface between two layers with two different velocities,

one approach is to use Weyl decomposition [45]. The main idea in Weyl ap-

proach is to represent the spherical wave as a superposition of plane waves whose

reflection and refraction at the interface between the two can be explained by

Snell’s law. This decomposition is done by using the spatial Fourier transform.

Also, each of the plane waves, in the Weyl integral, is required to be multiplied

by the transmission coefficient when traveling from one layer to another. based

on this approach, one can obtain a new model for array spatial signature and

use that in different imaging algorithms.

• Another interesting topic is to modify the wavenumber algorithm for imaging

a cylindrical pipe structure under immersion ultrasonic test. Pipeline imaging

has many applications in industry including inspection of water pipelines, gas

pipelines, and power plants [23]. Traditionally, radiography has been used for

pipeline imaging by putting a film in placed inside the pipe. Since the inner

side of the pipe is not accessible in many applications, the radiography is not

implementable and the ultrasonic imaging technique is used lieu of radiography.

Due to uneven surface of pipes, immersion test is preferred for pipe inspection.

Therefore multi-layer imaging techniques are needed for imaging a pipe under

immersion test. Wavenumber algorithm is an efficient approach in terms of

execution time, however, this method has restrictions in terms of the geometry

of the material under test and the test setup. These assumptions are tied with

the definition of Fourier transform. Therefore, to extend the proposed algorithm

for ultrasonic pipe imaging, we need to modify the presented data model.



Appendix A

Derivations

A.1 Deriving (3.1.13) and (3.1.16)

Here, we show the derivation of the covariance matrix of p(i)(ω), i.e., R(ω) as shown

in (3.1.13). To do so, we can write

R(ω) = E{p(i)(ω)(p(i)(ω))H} =

E

















∫

y=C(x)

φ(ω) v(ω; x, y) si(x, y) dx+ ν(i)(ω)













∫

y=C(x)

φ(ω) v(ω; x, y) si(x, y) dx+ ν(i)(ω)







H









. (A.1.1)
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We can now expand (A.1.1) as

R(ω) =

∫∫

y=C(x)
y′=C(x′)

|φ(ω)|2v(ω; x, y) vH(ω; x′, y′) E(si(x, y) s
∗

i (x
′, y′)) dx dx′

+

∫∫

y=C(x)
y′=C(x′)

|φ(ω)|2v(ω; x, y) vH(ω; x′, y′) E(si(x, y) ν
(i),H(ω)) dx dx′

+

∫∫

y=C(x)
y′=C(x′)

|φ(ω)|2v(ω; x, y) vH(ω; x′, y′) E(νi(ω) s
∗

i (x
′, y′)) dx dx′

+E(νi(ω) ν
(i),H(ω)) (A.1.2)

Using the assumption that the noise and the reflection coefficients of the reflector

points are independent and that the noise is zero-mean, i.e.,

E(si(x, y) ν
(i),H(ω)) = 0 (A.1.3)

E(ν(i)(ω) s∗i (x
′, y′)) = 0, (A.1.4)

we can write (A.1.2) as

R(ω) =

∫∫

y=C(x)
y′=C(x′)

φ(ω)φ∗(ω)v(ω; x, y) vH(ω; x′, y′) ̺(x, y, x′, y′) dx dx′ + σ2
νI (A.1.5)

where σ2
ν is the variance of the received noise and

̺(x, y, x′, y′) , E(si(x, y) s
∗

i (x
′, y′)). (A.1.6)

As we model the upper surface as an ID reflector, signals arriving from different points

of this surface are uncorrelated. Therefore, we can write

̺(x, y, x′, y′) = ρ(x, y) δ(x− x′) δ(y − y′) (A.1.7)
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where ρ(x, y) is the reflection density of a point reflector located at (x, y) on the upper

surface and it is defined only for the surface y = C(x). Using (A.1.7), the covariance

matrix R(ω) in (3.1.13) can be expressed as

R(ω) =

∫

y=C(x)

V(ω; x, y) ρ(x, y) dx+ σ2
νI (A.1.8)

where

V(ω; x, y) , |φ(ω)|2 v(ω; x, y) vH(ω; x, y). (A.1.9)

A.2 Deriving (3.2.10)

The covariance matrix of p̃(i)(ω) can be written as

R̃(ω) = E{p̃(i)(ω)(p̃(i)(ω))H} =

E















































ν(i)(ω) +

∫∫∫

y1=C(x1)
y2=C(x2)
y3=C(x3)

φ(ω)u(ω; x1, y1, x2, y2, x3, y3)γi(x1, y1, x2, y2, x3, y3)dx1dx2dx3

































ν(i)(ω) +

∫∫∫

y1=C(x1)
y2=C(x2)
y3=C(x3)

φ(ω)u(ω; x1, y1, x2, y2, x3, y3)γi(x1, y1, x2, y2, x3, y3)dx1dx2dx3

















H





























.

(A.2.1)
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We can expand (A.2.1) as

R̃(ω) =
∫∫∫

y1=C(x1)
y2=C(x2)
y3=C(x3)

∫∫∫

y′1=C(x′

1)
y′2=C(x′

2)
y′3=C(x′

3)

|φ(ω)|2u(ω; x1, y1, x2, y2, x3, y3)u
H(ω; x′1, y

′

1, x
′

2, y
′

2, x
′

3, y
′

3)

E(γi(x1, y1, x2, y2, x3, y3)ν
(i),H(ω))dx′1dx

′

2dx
′

3dx1dx2dx3

+

∫∫∫

y1=C(x1)
y2=C(x2)
y3=C(x3)

∫∫∫

y′1=C(x′

1)
y′2=C(x′

2)
y′3=C(x′

3)

|φ(ω)|2u(ω; x1, y1, x2, y2, x3, y3)u
H(ω; x′1, y

′

1, x
′

2, y
′

2, x
′

3, y
′

3)

E(ν(i)(ω)γ∗i (x1, y1, x2, y2, x3, y3))dx
′

1dx
′

2dx
′

3dx1dx2dx3

+

∫∫∫

y1=C(x1)
y2=C(x2)
y3=C(x3)

∫∫∫

y′1=C(x′

1)
y′2=C(x′

2)
y′3=C(x′

3)

|φ(ω)|2u(ω; x1, y1, x2, y2, x3, y3)u
H(ω; x′1, y

′

1, x
′

2, y
′

2, x
′

3, y
′

3)

E(γi(x1, y1, x2, y2, x3, y3)γ
∗

i (x1, y1, x2, y2, x3, y3))dx
′

1dx
′

2dx
′

3dx1dx2dx3

+ E(ν(i)(ω) ν(i),H(ω)). (A.2.2)

Using the assumption that the noise and the reflection/refraction coefficients of the

reflecting/refracting points are statistically independent, we can use

E(γi(x1, y1, x2, y2, x3, y3)ν
(i),H(ω)) = 0 (A.2.3)

E(ν(i)(ω)γ∗i (x1, y1, x2, y2, x3, y3)) = 0, (A.2.4)



111

to write (A.2.2) as

R̃(ω) = E{p̃(i)(ω)(p̃(i)(ω))H} = σ2I+ (A.2.5)
∫∫∫

y1=C(x1)
y2=C(x2)
y3=C(x3)

∫∫∫

y′1=C(x′

1)
y′2=C(x′

2)
y′3=C(x′

3)

|φ(ω)|2u(ω; x1, y1, x2, y2, x3, y3)u
H(ω; x′1, y

′

1, x
′

2, y
′

2, x
′

3, y
′

3)

E(γi(x1, y1, x2, y2, x3, y3)γ
∗

i (x1, y1, x2, y2, x3, y3))dx
′

1dx
′

2dx
′

3dx1dx2dx3.
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