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Abstract  

Large-scale failure resulting from natural disasters or intentional attacks is now 

considered a serious risk for communication network infrastructure. In these events, 

simultaneous damages in several links and nodes may cause substantial loss of 

information, which can be very costly for governments, subscribers and businesses. The 

impact of natural disasters generally is probabilistic in nature. Geographical 

characteristics and the distance of the components to the centre of the disaster may 

change the failure probability. Considering the probabilistic failure feature in natural 

disasters and the possible vast area coverage, we aim to develop a probabilistic dynamic 

model to protect data from failure and maintain undisrupted network services in large-

scale failure scenarios.  For this purpose, we develop a preventive protection model, 

which is able to estimate the potential destruction of all the network components in 

different locations. Using this information, the proposed model has a holistic view of the 

failure probabilities for the different paths to make a decision to reroute traffic from the 

endangered routes through the more reliable paths prior to the failure. As the proposed 

model protects data before failure, the size of damaged traffic will decrease and fewer 

connections need to be restored. The proposed preventive model is able to adjust 

rerouting decision parameters in a dynamic way by considering the disaster expansion 

and available network resources at each decision interval. Our findings show that the 

proposed preventive protection model significantly reduces the average number of 

disrupted connections and successfully decreases the required network restoration time. 

The performance of the proposed model has been examined in software defined 

networking (SDN), which is one of the emerging technologies in communication 
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networks. We studied the performance of a SDN controller instructed with a considerable 

amount of data flow updates and the best method of applying preventive rerouting is 

indicated.   
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Chapter 1: Introduction 

Over the last few years, the exponential growth of network services has provided 

connectivity for hundreds of millions of systems, devices and users. The original purpose 

of the Internet for remote system access has expanded with emerging important 

applications such as social networking, e-commerce, voice over IP and many more, 

making it part of our daily lives. Many of those applications such as online banking and 

online trading are time-sensitive and critical to businesses and governments. The 

widespread and growing online demand reveals the importance of having a fast 

communication network to provide high quality data transport at minimum time. To 

achieve this target, data transfer in the Internet backbone is mainly relying on fiber optic 

technology because of features that make it an ideal platform for this purpose. The current 

optical technology allows transferring a massive amount of data (up to 100 Gbps) in each 

lightpath [1]. Besides the widespread fiber optic connections on land, the world‟s 

continents are connected together using submarine communication cables to transfer huge 

amounts of data all over the world (Figure1). The combination of all these mediums 

together forms the backbone of Internet infrastructure in large-scale geographical areas.  

 

Figure1. Long-haul submarine cable maps.  
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Several factors such as accidental cable cuts, natural disasters or explosions can cause 

damage to physical links. Such damage may affect lightpaths carried by the link and 

result in substantial losses of information that can be catastrophic, affecting banking, 

business operations, health care, air lines and more. As a result, industry and the public 

who rely on the Internet infrastructure require a high degree of reliability in the backbone 

network. A resilient network should be able to provide and maintain an accepted level of 

service and operation continuity in face of failures.  

1.1 Background and Motivation  

Network failure recovery has been the subject of many research efforts in the past 

three decades and several models have been proposed to address this issue.  Most studies 

regarding network resiliency in the past focused primarily on network restoration in cases 

of single or double failures. However with ever-increasing reliance on network-based 

services in today‟s society, the issue of network resilience in large-scale failure scenarios 

has started to gain a great deal of attention. Natural disasters such as earthquakes or 

power outages may cover a vast area and the impact of such disasters on the physical 

communication infrastructure would cause large-scale network service failures. In this 

event, simultaneous damages to several links and nodes may cause substantial loss of 

data, which can be very costly for governments, subscribers and businesses. For example, 

the Taiwan earthquake in December 2006 [2]  resulted in several simultaneous undersea 

cable cuts, causing a major communication disruption in parts of Asia for several weeks. 

Another research project studied network service disruption and its consequent effects 

after Hurricane Katrina – one of the most destructive Atlantic hurricanes ever [3]. This 

study measured the impact of Hurricane Katrina by analyzing network services disruption 
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caused by the disaster. For this reason, survivability of critical infrastructure systems and 

continued, undisrupted network operations in the presence of large-scale failures has 

become a major concern for communication network operators. 

Although IP routing protocols are able to compute alternative paths and reroute traffic 

in failure scenarios, they are too slow for carrier-grade restoration. To reduce required 

network restoration time and reroute traffic as fast as possible, recovery approaches 

should be applied to the network backbone, where routing mostly relies on methods such 

as Multiprotocol Label Switching (MPLS) or Wavelength-Division Multiplexing (WDM) 

lightpaths. In this research we assumed, without loss of generality, an MPLS-based 

network, however this model is applicable to many other connection-based or flow-based 

routing protocols such as software defined network SDN, which we discuss in further 

detail later in this thesis 

While there have been a number of studies on large-scale failures in communication 

networks, most of these works have taken a static view of failures. A common assumption 

among previous studies is that the failures are independent and consecutive failures will 

not happen at the same time [4-7]. However, the above assumption is not valid in large-

scale failure scenarios. For instance in natural disasters such as earthquakes or large-scale 

power outages, failure may cover a vast geographic area. These types of failures are 

geographically correlated, where the failure event usually starts from an epicentre and 

expands during a limited time across the region. Figure 2 shows an example of regional, 

dynamically expanding large-scale failures. The failure risk of a network component in 

these events depends on the distance of the component to the epicentre and also the 

intensity of the disaster. In this situation, simultaneous failures in network components 

can happen in the vicinity of the epicentre.  The impact of natural disasters is probabilistic 
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in nature. 

 

Figure 2. Large-scale regional failure. 

Geographical characteristics and the distance of the components to the centre of the 

disaster may change the failure probability. This means that the failure risk for different 

components may not be equal and therefore the failure model should take into account the 

likelihood of component failure. Considering the probabilistic nature of failures and the 

wide area vulnerable to disasters in large-scale failure scenarios, we need a restoration 

framework that provides guidelines to network operators and supplies appropriate 

solutions to reduce the damaging effects of disasters.  

The lack of reported results in large-scale failure scenarios motivated us to examine 

network survivability issues in backbone networks with a dynamic probabilistic model 

that not only considers the time-varying dynamics of regional disasters (for example the 

expanding impact zone of earthquake as it spreads), but also takes into account the 

probabilistic nature of failures resulting from such events. To develop such an approach, 

the first step is to answer an essential question as to how to fortify the network to 

withstand failures caused by disasters. To answer this question, we will provide the 
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detailed problem statements and the targeted objectives in the next sections.   

1.2 Problem Statement 

Damaged critical infrastructures in the regions affected by natural disasters or nuclear 

explosions require fast recovery action to restore the disrupted services. Since the failures 

caused by disasters do not follow a deterministic pattern, the damage may be different 

from one to another. This characteristic reveals a need for dynamic methods to protect 

network services and prevention of data destruction corresponding to the severity of 

disasters. In any proposed solution, it should be considered that network components in 

the impact range would not all necessarily become nonfunctional, and that failures may 

happen with different probabilities.  In this situation, the problem is to develop a dynamic 

network protection model based on a set of initial information such as regional 

geographical data and disaster intensity, which should be able to evaluate the risk of 

disruption continuously and dynamically and take appropriate actions  

To address this issue, the proposed model should be able to use information derived 

from the network to calculate the probability of failure for each network components and 

reach a pattern that can be used to determine the degree of vulnerability to the ongoing 

disaster in each network region. This kind of model should not rely merely on static 

information such as earthquake prone zones, but should take into account dynamic 

information such as disaster impact epicentre location and its velocity of expansion as the 

disaster is unfolding. We believe the typical disaster expansion times – from between 20-

80 seconds for earthquakes [8] to longer times for hurricanes and other natural disasters – 

would give sufficient time to at least salvage some endangered network connections 

before they are disrupted. Eventually, a clear decision can be employed to reroute traffic 
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of the endangered locations through more reliable paths with less failure probability and 

protect them against upcoming failures. Thus the number of network components 

involved with transferring data that are going to be destroyed by the disaster will be 

reduced and the size of the affected traffic will be minimized. 

An appropriate decision making approach to detect endangered or safe areas in the 

network topology should consider network infrastructure availability at the time of study. 

Based on available resources on the network, decision parameters should be able to adjust 

themselves to provide adequate levels of protection without extra burdens on network 

performance. Along with disaster expansion and changes in the network topology, the 

above parameters should be adaptable in tune of network requirements.  By decreasing 

the size of affected traffic, fewer flows will be damaged that would need recovery. Fewer 

flow failures means less restoration time and decreasing network disruption time, which 

is one of the most important objectives in designing a resilient network. 

Furthermore, the emerging SDN technology shows a clear lack of an effective 

protection method in large-scale failure scenarios. Our approach is particularly suitable 

for SDN networks as there are included features such as central network controller and 

OpenFlow protocol, which can facilitate implementation of proactive flow rerouting as a 

result of data flow risk analysis. Implementing the proposed approach as a specific 

software (application) for disaster events to instruct the controller to apply protection 

policies and proactive rerouting patterns may improve network resiliency in large-scale 

failure scenarios.  
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1.3 Methodology 

 Given the described shortcomings of current protection approaches, the selected 

method should be able to protect network flows in large-scale failure scenarios. The 

proposed method in this research is capable of calculating failure probability for network 

components in a disaster zone. Based on this ability, the proper action to protect high risk 

flows will be taken. Our proposed algorithm can be implemented in a manner that 

coincides with widespread destruction and damage to the network as well as likelihood of 

future damages and adapts itself to improve network resiliency in large-scale failure 

scenarios. To evaluate the effectiveness of the proposed algorithms, the selected methods 

are simulated on real-world topologies using MATLAB software. The focus of this 

research is to reduce the number of disrupted connections and decrease the required 

restoration time rather than evaluating network efficiency in a packet level view. 

MATLAB is fully capable of studying the aforementioned metrics with high precision 

and is therefore a suitable tool to simulate our proposed methods. In simulation models, 

network performance is evaluated at discrete time intervals and at each inspection time, 

the deviation of metrics such as the number of disrupted connections and the required 

restoration time are investigated. To evaluate such metrics, topological properties at each 

inspection interval time are taken into account to update involved parameters in the 

simulated algorithm by MATLAB.  
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1.4 Research Objectives 

The main goal of designing a survivable model in large-scale failure scenarios is to 

maintain the network service undisrupted. To achieve this goal we are looking to meet 

these objectives: 

 Design and develop a probabilistic preventive protection technique to protect 

information by rerouting traffic from endangered locations prior to the failure in 

large-scale failure scenarios.  

 Develop a probabilistic failure model to calculate the failure probability, 

considering wave-like behaviour as a common attribute among disasters.  

 Conduct sensitivity analysis with regard to risk decision parameters assignment in 

a preventive model and examine network behaviour under different values. 

 Design and develop a self-adaptive mechanism to adjust risk parameters 

dynamically in tune with network requirements and resources availability and 

validate the proposed model by simulating real-world networks. 

 Study network performance such as restoration time and disruptive connections in 

deterministic and probabilistic large-scale failure scenarios and provide a 

comparison to show how the selected failure model can affect network 

performance. Design a preventive protection model for SDN architecture to 

enhance network protection in large-scale failure scenarios and study the proposed 

protection approach in an experimental test-bed. 
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1.5 Research Contributions 

Our contributions in this thesis are as follows: 

 A comprehensive study of network protection in large-scale failure scenarios is 

provided. Protection approach considering deterministic and probabilistic failures in 

different disaster scenarios have been studied and network performance for each 

protection approach is evaluated. 

 A wave-like model to estimate failure probability for network components in 

disaster scenarios is developed. The proposed model is able to determine risk failure 

probability for links and nodes in the network that encounter a disaster.  

 A proactive approach to prevent damage of endangered traffic in a disaster zone is 

elaborated. Considering this approach as a main contribution in this thesis, the 

proposed preventive protection model is able to protect high risk flows using a 

dynamic proactive mechanism to reroute traffic through safe areas prior to failure. 

 Risk decision parameters associated in preventive protection model are examined 

and an analysis for different risk decision parameter assignments is provided.  

 An automated approach to assign risk parameters for a preventive model is 

developed. In this way, the proposed protection model is able to adjust rerouting 

risk parameters based on the required level of protection and the potential risk 

failure in each interval inspection.   

 A proactive protection model in large-scale failure scenarios for an SDN network is 

designed and an experimental model to study network performance through 

instructing the controller with a considerable number of required preventive 

rerouting is developed. 
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1.6 Thesis outline 

In chapter two we present an extensive study of previous works in network protection 

and failure recovery. The reviewed literature is studied under four different categories; 

deterministic failure models, probabilistic failure models, enhancing network resiliency 

using topological parameters and proposed recovery approaches in SDN.  Chapter three 

explains network protection and failure models. In this chapter, the effect of probabilistic 

approach on the network and restoration mechanism is explained and a model to assign 

failure probability in wave-like disasters is examined. Network performance using several 

simulation models studies the effect of deterministic and probabilistic failure in different 

disaster scenarios. In chapter 4, we present a preventive protection model to enhance 

network resiliency in large-scale failure scenarios. Rerouting strategy and risk decision 

parameters are discussed in this chapter and the performance of the proposed model is 

evaluated under different failure scenarios. Chapter 5 investigates the effect of risk 

parameters adjustment on network performance and provides a procedure to study an 

extensive range of possibilities in risk decision parameters adjustment and the effect of 

each model on network is evaluated. In chapter 6, we improve the preventive protection 

model by providing a self-adaptive approach to keep network decision adaptable with 

network conditions. We describe a model that adjusts risk decision parameters 

dynamically in tune with network requirements. Design a protection model in SDN 

network using the preventive protection mechanism is discussed in Chapter 7 and the 

controller performance in response time to update a number of considerable data flow 

paths is evaluated. Chapter 8 concludes the research and presents possible future works.   
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Chapter 2:  Literature review 

To improve the stability of a network and enhance network resilience, it is necessary to 

increase the ability of the network to cope with failures, which is commonly termed 

“network survivability”. For this purpose, many approaches have been proposed in the 

literature over the past three decades. We focus primarily on network survivability in 

large-scale failure cases.  

In general, the prior work can be grouped into two different aspects of spreading 

failures and outcome damages in the network. One approach is a deterministic view of 

failures in which all network components in the affected region will become definitely 

inoperative and will not have any chance of maintaining functionality. In the other 

approach, a probabilistic destruction view is applied in which a network component has a 

chance to survive the disaster and continue operation. Depending on how failure 

behaviour is considered, the proposed method to improve network protection may be 

different. Both approaches have provided valuable results and will be reviewed in the 

following.   

As software defined networking (SDN) is an emerging technology and of interest to 

researchers in both academia and industry, we have dedicated a separate subsection to 

review and discuss some recent works in SDN and its contribution to network 

survivability.  

2.1 Network resiliency with deterministic failure view 

A number of restoration methods and recovery time studies in large-scale scenarios 

have been presented in the literature. Path restoration performance in large-scale failure 

scenarios have been studied in [9]. In that work, a basic regional large-scale failure model 
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was developed and network capacity requirements and failure notification time were 

analyzed using simulation.  The authors noted that in a highly mesh network, a fairly 

small extra spare capacity in the network could provide a high ratio of restoration for 

affected demands in regional large-scale failures. The study used a circular impact with 

fixed radius as a model for regional failures. 

Categorizing links in a Shared Risk Link Group (SRLG) is an attempt to provide a 

measure of failure dependency into the scenarios. The SRLG model attempts to group 

together links or nodes that share common failure risks. Such risks can be shared ducts, 

power sources, or geographical area. SRLG disjoint path pairs is an approach to improve 

network resiliency by reducing the risk of a backup path failure. In this case, there is no 

bandwidth sharing between protection paths. The proposed models intend to solve a min 

sum problem [10, 11]. 

In [12] the authors considered one type of shared resource called “region.” All links in 

a region belong to one SRLG and failure in this region causes failure of all of the links. 

The authors applied this approach to model the impact of earthquakes. The divided 

regions in the network topology were mapped to the different seismic zones. The seismic 

map was used in the SRLG assignment and each zone formed its own risk. Because 

individual seismic zones were large, the authors expected an earthquake to affect one 

region only, and they divided each zone to have multiple SRLGs. This method was 

applied to minimize the number of shared SRLGs between the working and backup paths, 

using a seismic map of an earthquake as an example of a natural disaster scenario that 

created large-scale correlated component failures. However, pre-planned protection 

methods required a substantial amount of spare capacity in case of large-scale failure. 

In studying the damage levels caused by large-scale failures, packet delivery ratio is 
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one of the metrics to evaluate degradation of network performance. The authors in [13] 

showed that increasing the number of impacted network devices in a large-scale failure 

scenario and deterministically eliminating them significantly decreases the ratio of the 

number of packets sent from the source to the packets received on the destination side. 

The authors examined three area-based failure scenarios named scaling circle, moving 

circle, and scaling polygon. The failure scenarios were simulated using the NS-3 network 

simulator [14]. The authors introduced a regional large-scale scenario called “scaling 

circle” to model electromagnetic pulse attacks. The failure of components started from a 

centre and expanded with a constant velocity in every simulation time. The results 

showed how the type and strength of the impact, such as the number of damaged network 

equipment and the coverage of the affected area in large-scale failure directly affects 

network performance. The authors simulated scaling circle by expanding the failure 

impact radius and calculating the lost aggregate packet delivery ratio (PDR). In this study 

it was assumed that as the impact radius increased, all nodes and links within the impact 

area are failed. PDR was computed and the relationship between the PDR drop and the 

number of failed links and nodes in the circle was studied.  

Assessing network vulnerability was studied in [15] and failures were modeled as a 

line segment or disk shape. This study indicated the most vulnerable locations in the 

network where disasters could have maximum damage and degrade network efficiency 

significantly. The authors employed a polynomial-time algorithm to identify the worst-

case line segment and circular cut where any network components intersected by the 

failure would be destroyed.  

A design for survivable networks with multi-path routing was developed in [16]. The 

authors developed an end-to-end protection switching called self-protecting multi-path, 
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which used several disjoint paths to carry traffic between the source and destination. This 

approach allowed for load distribution in failure events. In the proposed model, if the 

network failure affected a partial path, only traffic on the affected path should be 

rerouted. In the normal situation, the traffic was distributed according to a load balancing 

function through available parallel paths that might have different lengths. In a failure 

event, another load balancing function redistributed the traffic of the affected path among 

the other available working paths. The authors measured required spare capacity and 

showed that the proposed model improved network resiliency with less extra capacity 

requirement in failure scenarios. The proposed load balancing function was optimized by 

minimizing the maximum link utilization of all protected failure scenarios [17].  

Connection availability can be considered an important metric to calculate Quality of 

Service (QoS) in a survivable network [7]. The authors assumed that different 

connections may have different availability requirements, which are typically based on 

the agreement between a service provider and a customer. Considering this requirement, 

they developed a dynamic connection provisioning for single-failure scenarios, where 

network component failures might happen independently. The proposed model based on 

Service Level Agreement (SLA) requirement provided three service models: no 

protection, shared-path protection, or dedicated protection to an incoming connection. 

The authors mentioned that maximizing backup-sharing could decrease the value of the 

cost function but could also decrease connection availability. To address this issue they 

limited backup sharing to improve availability.  

Random regional failure was modeled as a disk shape cut to study network 

survivability in geographically correlated failure scenarios in [18]. The authors developed 

a model based on region-disjoint, self-protecting, multipath routing based on a load 
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balancing mechanism. The proposed model sets up two or more working paths in an 

MPLS network and route traffic with a different ratio between them. The available spare 

capacity in each working path could be used to backup each other in failure scenarios. 

Numerical results studied in two real network topologies, the U.S network and NFSNET, 

and a comparison was provided for three different disjoint routing models: multiple node-

disjoint paths routing, multiple region-disjoint paths routing, and self-protecting multi 

region-disjoint paths routing. Network throughput as a metric of network efficiency was 

studied in multipath routing in both protected and unprotected forms. 

Multiple region fault models were studied in [19] for connectivity issues in a wireless 

environment. The authors mentioned that failures in a network could be considered 

locally and they developed a model based on region-disjoint paths. The maximum 

number of region-disjoint paths and minimum region cut were found by two heuristic 

algorithms. The authors employed region-based connectivity as a new metric in [20] to 

involve the concept of locality in network fault-tolerance ability and extended the 

resiliency study from single-region failure to multiple regions.  

Authors in [21] proposed a measurement of network resiliency to develop a model in 

computer network management. The proposed resilience factor considers network 

topology aspects such as number of redundancies and also the amount of traffic losses in 

failure scenarios. The proposed metric can be used by network managers to support 

decision making regarding the design of a new network or improve the performance of 

the operational network. The proposed model was simulated in the Brazilian National 

Research Network (RNP), and by employing a resilience factor, they analyzed how 

changes in the topology affect the network and its traffic.   

 A path restoration solution with quality of service consideration and label constraints 
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in MPLS networks was developed in [22]. The authors considered constraint based 

routing (CBR), which is a combination of shortest path first algorithm and network 

resource information such as link capacity or available bandwidth. The proposed model 

maximized network operation in different classes of traffic in both 1+1 and 1:1 protection 

mechanisms. In 1:1 method, low priority traffic (in this case best effort) was routed 

through the backup path prior to the failure events. The optimization problem in this 

article considered traffic engineered Label Switched Paths (LSPs). 

MPLS fault management consists of three methods: global backup, reverse backup and 

local backup. Some factors in quality of services such as packet loss, restoration time and 

resource consumption could be considered to select an appropriate recovery method in an 

MPLS network [23]. In different scenarios with varying traffic classes based on Diffserv, 

different weights can be assigned to the packet loss, restoration time, and resource 

consumption. A function of these parameters was employed to compute and recommend 

the best backup protection approach. 

Path diversification is a mechanism to achieve maximum flow reliability between 

source and destination nodes using a diversity measure [24]. The idea of using path 

diversification is extended to develop the path geo-diversification approach [25]. The 

proposed model considered geographical diversity of physical network topology to route 

traffic. The main objective in this research is to route the traffic around the endangered 

area by determining vulnerable locations in the network and estimating the disaster 

boundaries. The authors assumed that there is available exact information about the 

damage or some sort of estimation. To select an alternative path with acceptable distance 

as the backup path, the proposed algorithm considered different possibilities. If the 

disaster boundary is known, traffic would be routed through a path outside the challenge 
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area. If only an estimate of the disaster location is available, an ack request field which is 

added to the routing header, will be employed to route traffic through the nearest 

geographically diverse path. If there is no estimation about disaster and only occurrence 

of disaster just been notified, the ack request is set to true for all the packets sent out for 

next-hop acknowledgment.  

The above approach is improved by providing two heuristics for solving the path 

geodiversity problem [26] and reduce the complexity of the proposed model in [25]. The 

WayPoint Shortest Path (iWPSP) algorithm selects viewpoints with a specific distance to 

a middle node on the shortest path between source and destination and employs Dijkstra‟s 

algorithm to find the geodiverse path. In the Modified Link Weight (MLW) heuristic, the 

algorithm modifies the link weights and using Dijkstra‟s algorithm determines the 

geodiverse path. The distance value d would be provided as a user value, and during the 

disaster events, users can modify d based on determined disaster models to pass traffic 

around disaster zone.  In a simulated model, it is assumed that the disaster zone is 50 km 

and the proposed model can reroute traffic outside the danger zone. The results of PDR 

and delay compared to standard OSPF.  

Backup path selection in our proposed model compared to [25, 26] is independent of 

user interaction, alternative paths for traffic rerouting are selected dynamically, and 

adjustable protection parameters are provided based on the network status at each time. 

Additionally, our proposed model only considers the epicentre as a starting point for the 

disaster, dynamically monitors disaster expansion, and is not limited to a pre-assigned 

disaster boundary. Estimating a boundary for natural disasters with varieties in destructive 

power and damage behaviour may be hard or infeasible.  The probabilistic time-varying 

approach that is taken in our proposed model distinguishes it from the above research 
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when it needs to consider network components as operational or faulty.    

Routing instability caused by multiple failures in large-scale failure challenges can 

lead to shortest path first throttling and a longer convergence time. Multi-Topology 

Routing (MTR)  has been employed as a solution to mitigate failure effects caused by 

large-scale events [27]. Using MRT extension in OSPF, pre-determined virtual topologies 

are used to reroute traffic in failure events and isolate the affected part of the network. 

The authors developed two MRT-based algorithms called Geographic Coverage MTR 

(gcMTR), which creates a set of topologies to provide coverage across the network and 

Geographic Targeted MTR (gtMTR) to generate virtual topologies using pre-knowledge 

of likely disaster events. Another proposed algorithm in this study was developed to 

detect a geographical challenge and select a topology for traffic rerouting.   

In the above approach, for each vulnerable location in the network, a topology will be 

generated assuming a specific radius for each potential disaster. In the generated 

topology, link weights for the vulnerable area are increased to keep the shortest path tree 

away from that disaster area. Thus, geographical challenges have less impact, such as 

OSPF routing convergence delay time. The authors considered deterministic failures 

within a fixed pre-determine radius for the challenge area. The results indicated that if the 

selected topology radius is bigger than the event size, it could reroute traffic around the 

vulnerable area. However, for an event size larger than the selected topology radius, the 

proposed algorithm was not able to reroute traffic to a suitable distance outside the 

vulnerable area.  Although IP routing protocols are able to compute alternative paths and 

reroute traffic in failure scenarios, they are too slow for large-scale failure cases. The 

proposed preventive protection model in this thesis is not limited to a disaster boundary in 

order to reroute traffic out of a danger zone as it adjusts itself in tune with disaster 
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expansion through a probabilistic dynamic approach. The proposed recovery approach is 

also suitable for the network backbone, where routing mostly relies on methods such 

MPLS or WDM for fast recovery. 

Dedicated path protection as a solution in survivable elastic optical network (EON)  

was studied in [28]. Routing and spectrum allocation in dedicated path protection was 

formulated in Integer Linear Programing (ILP) problem and two metaheuristic 

optimization algorithms based on Tabu search were developed to address optimal solution 

in large size networks. 

In geographic routing, each node determines its location and the destination location to 

send packets without knowledge of network topology. Failure in a network may cause a 

dead end problem in geographic routing. To  address this issue  in geometric routing, 

recovery mechanisms are discussed in [29]. Tree-based greedy embedding was 

considered in this research and connection availability of geometric routing evaluated for 

a single failure problem. Component availability is another metric that has been used to 

study network performance and it is defined as the probability that a component is 

operational at any random time.   

A developed model in multiple link failures using link-based restoration with MPLS 

Fast Re-route (FRR) is discussed in [30]. Three approaches to improve network 

protection in multiple failures are proposed such as: a collection of spanning trees where a 

spanning tree is added for each possible edge failure, parallel edges that create a backup 

path for each edge, and disjoint spanning cycles. The proposed network designs can 

address multiple failures by adding a small number of edges to the current topology 

without causing disconnection or congestion. 

 It is a common assumption in deterministic failure models that network components 
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will fail with certainty as long as the failure event occurs. However, natural disasters in 

most large-scale failure events are probabilistic in nature. 

2.2 Network resiliency with probabilistic failure view 

Probabilistic failure models can be used to design a survivable network using pre-

planned backup paths with minimum mutual failure probability [31]. Joint failure 

probability can be minimized by formulating the backup path selection as an Integer Non-

Linear Problem (INLP). As explained earlier, a pre-planned protection mechanism could 

be costly and may be infeasible in the case of large-scale failures. 

Improved network survivability in overlay networks was studied in [32]. A model was 

developed to find a backup route with the minimum joint path failure probability with the 

working path. Although it is possible that the selected backup path is disjointed from the 

working path in overlay layer, they may share some physical links. The authors assumed 

that overlay link failure probabilities are small and employed exponential physical link 

failure models. They calculated overlay link failure probability based on independent 

physical link failure probabilities and the backup path routing problem was formulated as 

an Integer Quadratic Programming (IQP).    

Identifying vulnerable network locations in the event of probabilistic failure scenarios 

can be used to redesign connectivity or add extra capacity to improve network resiliency. 

To assess vulnerable locations in the network, failure probability can be calculated using 

a grid partitioned-based model as in [33]. In a related study in network vulnerability [34], 

regional failure events such as earthquakes or floods were modeled as random line-

segment cuts. The authors applied geometrical probability theory to develop a grid 

partitioned-based estimation model to locate vulnerable network parts and developed a 



21 

 

model to determine single and pairwise link failure probabilities. 

Survivability in layered networks in the event of a failure in the physical layer and its 

effect on the logical links as multiple failures was discussed in [35]. The authors 

developed a polynomial-time approximation algorithm for the failures and eliminated 

resampling for different values of link failure probabilities. Random failures were 

assumed for physical links with low-failure probability. The proposed model, however, 

did not sufficiently model the impact of a large-scale failure event in which failure 

probability can be considerably high in the epicentre. 

Correlated link failures with a probabilistic approach were presented in [36]. The 

authors developed a model to study stochastic disasters, considering that they could be 

spatially correlated. Failure correlation may be used to assign higher failure probability in 

specific areas to implement more failure events. The main contribution of this model was 

to identify vulnerable network locations.  

Probabilistic geographical failure has been discussed in [37]. The authors studied 

probabilistic approaches and developed algorithms considering pre-computed protection 

plans. The proposed model makes it possible to indicate the vulnerable locations in the 

network. However, the pre-planned protection scheme is infeasible in cases of large-scale 

failure.  

A number of different network failures and their impacts were studied in [38]. The 

authors introduced a taxonomy of the variety of network challenges and developed a 

framework to evaluate the effect of different failure scenarios such as probabilistic 

uncorrelated random failures in non-malicious problems and deterministic failure in 

large-scale scenarios. The framework simulates different challenge scenarios using NS3 

to evaluate network performance.  
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In [24], path diversification was employed to design and evaluate survivable networks. 

The proposed algorithm was able to select a set of alternative paths with different 

diversities while meeting performance constraints.  The authors also explained a measure 

of diversity that takes into account physical distance as opposed to a measure that solely 

relies on node or link disjointness. For this purpose, several networks were studied with 

different ranges of effective path diversity (EPD) thresholds. The metric in this study to 

indicate the level of topology survivability was flow robustness while it was computed 

with increasing link and node failure probability. The authors improved network 

resiliency by applying a path diversification scheme. The proposed model was simulated 

in different topologies and the results were used to evaluate the network survivability 

degree. 

For a selected set of paths between the source and destination, path diversities were 

aggregated and shown as the effective path diversity [39]. The average of effective path 

diversity of all node pairs within the graph was considered as a metric for total graph 

diversity and employed to estimate network survivability in case of simultaneous failure 

of nodes and links in probabilistic failure scenarios. The authors simulated a probabilistic 

failure model using 51 failure probabilities evenly distributed over the range of 0-0.5. The 

failure probability incremented until the range of all values was complete. Using the 

proposed metric, connected nodes in each failure scenario were computed.    

A risk-based model was studied in [40]. The authors developed a model to design 

survivable networks based on managing risk. The main goal of this study was to spend a 

fixed budget in the best part of the network to enhance network resiliency. Different risk 

management based approaches for survivable network design were proposed. 

Network survivability with prioritizing connections in restoration and protection 
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approaches was studied in [41]. The authors proposed a model that does not transfer all of 

the data flow to the backup path during a failure event but only reroutes high priority 

traffic through available resources. They considered a differentiated recovery mechanism 

taking into account different priorities. This approach was able to increase the recovery 

ratio of traffic with higher priorities. The failures were generated with a random 

distribution function and only single failures were assumed at each time. 

Considering prior knowledge regarding link failure probability, end-to-end path failure 

probability can be computed. With this knowledge, it is possible to select working and 

backup paths with the minimum joint path failure probability. Using risk minimization 

and employing traffic engineering, a path pair protection can be developed in multi-

failure scenarios [42].  

Network protection in WDM networks for the case of multiple link failure was 

discussed in [43]. The authors proposed a protection mechanism by developing two 

algorithms for path selection and connection unavailability determination. The protection 

scheme was developed by providing a list of protection paths while having optimum load 

balancing in the network.   

 

2.3 Enhancing network resiliency using topological parameters 

Node and link betweenness are among the parameters that are of concern to network 

researchers to evaluate network performance or estimate network vulnerability. Authors 

in [13] showed that selecting links and nodes with higher betweenness in an intentional-

failure scenario had a higher impact on the network efficiency compared to random links 

and nodes failure. Failures in a few nodes with high node betweenness could reduce 



24 

 

network efficiency significantly. 

Betweenness centrality and resistance distances can be used in the design and control 

of communication networks [44]. A weighted random-walk path criticality routing 

algorithm may be able to select the best backup path with minimum total cost in a shared 

backup protection approach. Betweenness centrality and its relationship to random walks 

were discussed in [44] to develop the proposed routing algorithm.    

Assessing network vulnerability and detecting vulnerable locations in the network for 

further improvement has also been a goal in the research on network resiliency in the face 

of failures [15, 36, 45, 46]. A metric to study network vulnerability using normalized 

average edge betweenness as a vulnerable index is discussed in [46] and the vulnerability 

of several networks was studied using this metric.  

Betweenness centrality can also be employed to assess network vulnerability for 

random damage or malicious attack in a complex network [47]. The authors introduced 

link-based multi-scale vulnerability with integrating power and link betweenness for 

complex networks. The proposed approach was employed for link placement in a network 

that produces the maximum resistance in case of malicious attack 

Node and link betweenness and other centrality metrics can be used to develop a 

framework to analyze the robustness of multilevel networks [48]. The authors discussed 

the impact of removing network components (nodes and links) on network performance 

and flow robustness.  

Node betweenness and other node centrality parameters can be employed to design 

heuristics for node removal strategies to efficiently determine and remove important 

nodes from a complex network to minimize network performance [49]. This approach is 

commonly used in a situation when the objective is to eliminate specific nodes in a 
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complex network such as disease or criminal organizations. 

In a cascade failure, damage in one part of the network can lead to failure of the other 

successive parts. Authors in [50] examined vulnerability in power grids network in the 

case of cascading failures. The proposed model in this approach employed an extended 

betweenness metric, which is a combination of power-flow with network structure to 

define the load of power grid to analyze network stability. By simulating selective attack 

strategies the vulnerability of different grid networks were evaluated.  

Optimizing a current network or improving the design of future networks requires an 

understanding of the impact of network challenges. The framework presented in [38] is a 

simulation-based approach to study network performance in face of failures. In this 

approach, critical nodes and links are determined using nodes degree connectivity and 

links and nodes betweenness centrality. The authors argued that the impact of failures on 

the network is influenced by the period of disaster, the number of network components in 

the impact zone and the importance of damaged parts.  

Node betweenness can be used to specify the average loaded traffic on a node. A 

connected link to the node with high betweenness needs more capacity to deal with more 

encounter traffic. Considering link capacity as the bandwidth of the link, the effect of the 

traffic utility and utilization ratio of bandwidth was examined under random and 

intentional attacks in complex network in [51]. 

Network management in complex networks can be improved by quickly locating the 

fault point in the network. Authors in [52] discussed that in the event of failure on a node 

with higher betweenness, the possibility of failure occurring on the other nodes within the 

shortest path of the failed node is higher. The proposed algorithm based on node 

betweenness centrality acts faster in fault locations compared to other classical 
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algorithms. 

Network criticality is defined as the ratio of random-walk betweenness of a node or 

link to its weight, which shows the same value for all links or nodes in the network. This 

factor can be used as a metric to evaluate network robustness [53]. A shared backup path 

selection approach based on using weighted random-walk path criticality routing can be a 

solution to address network survivability issues. In this case, a path with minimum effect 

on the network criticality is considered as a robust path that can be a good candidate for 

the primary or backup path [53]. 

A measurement to evaluate network robustness under multiple failure scenarios is 

discussed in [54]. Random and targeted attacks were examined to determine the level of 

network robustness. Several metrics were selected to form targeted attacks such as node 

degree, betweenness centrality, clustering coefficient and spreaders. The results indicated 

that some networks are more robust based on the selected attack parameter than other 

networks. A lower betweenness centrality value in some simulation models indicates less 

centrality for the network components and decreases vulnerability on targeted attacks.  

 

2.4 Network resiliency in software defined networking (SDN) 

Software defined networking technology is considered one of the latest approaches in 

network developments. Here, we study some recent protection approaches and proposed 

methods using this technology. Network resiliency has been studied in several different 

ways, such as improvement in fast notification to the controller, development in dynamic 

restoration, or pre-planned protection mechanisms.  

A comparison of the current forwarding algorithm in POX controller [55] has been 
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discussed in [56]. Evaluating current forwarding algorithms in POX controller can help 

network researchers study SDN reliability issues with better understanding. In the case of 

failures, adjacent nodes to the failed link are able to detect the failure and find another 

link in parallel of the failed link to transfer traffic through. If a secondary link is not 

available, the adjacent nodes try to find a common node in their adjacency list to reroute 

traffic. Traffic received by the common node is then sent to the destination. It is possible 

that a common node cannot be found in their adjacency list. At that point, the adjacent 

nodes to the failed link try to find a path with a two-hop distance between each other, 

where each hop is connected directly to each adjacent node. The selected path temporarily 

transfers traffic to provide protection against packet loss until the controller determines 

the shortest path and establishes it. Monitoring link status in POX controller is done by a 

discovery module that sends and monitors link layer discovery protocol (LLDP) packets. 

The authors mentioned that the recovery process with this mechanism consumes about 4-

5 seconds [56].   

SDN Controller is responsible for processing LLDP messages in a restoration 

mechanism. Although increasing the LLDP interval may speed up the recovery process, it 

can increase overload on the controller significantly [57]. To accelerate the recovery 

process without increasing the burden on the controller, it is possible assign this job to 

OpenFlow switches [57]. In this case, probe packets are sent from the tunnel entry point 

(source node) to the destination in each path. If the destination node fails to receive the 

probe packets, it is possible that some nodes or links in the path will face problems. In the 

proposed mechanism, the destination node switches to an alternative path that is selected 

from table group entries.    

In another approach, backup paths for each single failure scenario are determined and 
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upon the failure event, the flow is transferred through the computed backup path [58].  

Working and backup paths are assigned different priorities in this approach. To keep pre-

established backups path alive and prevent them from deletion by the controller as unused 

paths, renew packets are designed to be periodically sent through these paths. The pair 

nodes involved to detect failure will remove flow entry from the failed link from the 

switch by an auto-reject mechanism and transfer flow to the backup path. If the failed link 

is physically repaired, the adjacent switches inform controller by sending port status 

messages. 

Adding recovery action to OpenFlow switches using the group table concept is 

proposed in [59]. Group table includes group entries to perform different actions. A 

protection mechanism is implemented in each group entry. Each group entry has an action 

bucket with alive status. If one action bucket is indicated as unavailable, the next 

available bucket executes the appropriate actions. The status of each bucket is determined 

through port state monitoring or bidirectional forwarding detection (BFD). The proposed 

approach could apply to fast recovery in failure events without involving the controller.  

The above studies respond to failure events through a reactive approach and are mainly 

focused on a single link failure scenario. Our objective in this research is to develop a 

proactive protection approach with pre-knowledge of potential failures that may affect a 

part of network. The proposed model is not limited to a single failure problem and can 

improve network resiliency in large-scale failure scenarios such as natural disasters or 

power outages. Considering SDN technology and its features, preventive protection 

model [60]is fully appropriate and consistent within this concept.  

Previous research shows a lack of a comprehensive model capable of taking 

topological properties of the disaster zone into account and dynamically adjusting the 
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protection approach to enhance the network resiliency level. Although in probabilistic 

protection approaches failure probability of network components is employed to develop 

a protection model, this factor has not been used to improve network resiliency against 

upcoming failures. Moreover, in most probabilistic failure research the method of 

determining failure probabilities for network components is not dynamic. The studied 

literature also does not provide an efficient protection model capable of adapting its 

strategy in a proactive and dynamic way, considering changes on the network topology 

caused by failures. The literature also shows a shortage of proactive models that can 

reduce network damage simultaneously with the development of regional devastation. In 

addition, previous studies do not provide an approach to predict the upcoming damage on 

network components caused by large-scale disasters. 

Considering these shortcomings of previous studies, we aim to enhance the network 

resiliency level by developing a dynamic, proactive and predictive protection model. 
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Chapter 3: Network protection and failure models 

3.1 Background  

Several models in the past three decades have been proposed for network failure 

recovery [61-64]. The proposed techniques can be roughly divided into two main 

categories [6]: protection methods where an alternative disjoint path is pre-established 

along with the primary path to reroute traffic in case of failure, and dynamic restoration 

methods where an alternative route is established after detecting a failure. A data path 

from source to destination node in a network may consist of several links.  Both dynamic 

restoration and protection techniques can be applied to improve link or path failure 

recovery.  

In a pre-planned link protection, for each link in the primary path, a backup path with 

enough resources is considered. In a dynamic link restoration approach, the end nodes of 

the failed link participate to discover a route around the failed link.  

In a path protection scheme, end-to-end backup path for each connection (from source 

to destination nodes) is determined and adequate resources are allocated. It is also 

possible to share the allocated resources among backup paths. In an end-to-end dynamic 

path restoration mechanism, the source and destination nodes of each connection 

participate to calculate and establish a backup route once a failure is detected. In this case 

we will have a complete traffic rerouting between the origin and destination nodes.    

Dynamic restoration methods are more efficient to utilize network resources and 

applicable in different failure scenarios. However, pre-planned protection methods are 

faster than dynamic restoration methods as the backup paths are pre-established and 

restoration is guaranteed. All possible failure scenarios should be considered when 
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allocating adequate network resources for each one (required more cost). Path and link 

protection methods are illustrated in Figure 3. 

 

Figure 3. Path and link protection. 

 

In the case of single failure scenarios, recovery is possible using pre-planned disjoint 

backup paths; however this approach may not be feasible in dynamic large-scale failure 

scenarios. Although establishing several disjoint backup paths may enhance the 

probability that at least one of the paths survives, it significantly increases the total cost of 

additional network resources required for network survivability. This issue is studied in 

[65]  and  an analysis of multiple failure restorability for pre-planned link protection is 

provided. Therefore, in large-scale failure scenarios, our focus is on a dynamic response 

that allows us to salvage as much traffic as possible and reroute the affected traffic using 

the available paths in the post-failure network. Considering the characteristics of the 

large-scale failure, the restoration technique could be an appropriate approach to enhance 

network resiliency. 

We recall here, in general, disasters can be modeled in two different aspects of 

spreading failures and outcome damages in the network; a deterministic view of failures 

or a probabilistic view.  

This thesis considers the destruction produced by a natural disaster as expanding 
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dynamically and gradually decreasing to zero. Our focus is therefore on probabilistic 

failure models, which are more realistic compared to deterministic failure approaches. In 

this regard, we explain the network model and associated failure probabilities for the 

network components in this chapter. We will also study the restoration mechanism as a 

dynamic approach that is able to protect data flow when the network encounters an 

unpredictable probabilistic phenomenon such as natural disasters. In order to provide a 

model to assign possible failure probability for network components, we will study 

earthquake destructive behaviour, which has the strongest destruction effect among 

natural disasters. In the rest of this chapter, we will provide a comprehensive study of 

network protection by examining deterministic and probabilistic failure models.      

3.2  Our network model 

In this section, we explain our network model and the method to estimate the 

probability of failure in large-scale failure scenarios and describe characteristics of 

network components that are involved in a failure scenario. The proposed model also will 

be employed to study the restoration mechanism and explain a method to compute 

required restoration time.  

3.2.1 Network and failure probability model 

To model an impacted network by a disaster, we assume that the range of the disaster 

follows a circular pattern that expands with time. Besides the affected nodes and their 

connected links, some crossing links may be affected too while their end nodes remain 

intact. Here we describe how the dynamic failure probability is calculated in our model.  

 We consider a network graph G= (V,E) where V is a set of nodes and E is a set of 

links. A link from node i to node j is represented by    . A crossing link    
  is considered 
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as a link where the end nodes     are out of the impact area but parts of the link    
   have 

been impacted. In a time-varying model, the failure probability tends to vary with time. 

Let the impact radius at        be     We denote failure probability of link         as 

  
  (  )        and for node      as   

  (  )       .  

In this thesis,    for a node is the distance   from the epicentre at time  . We assume 

that the impact radius increases with time, which is a valid model for disasters such as 

earthquake or nuclear explosion. To compute probability failure for a link (            
  ), 

the minimum Euclidean distance from the epicentre to the link is   . Figure 4 shows an 

example that illustrates crossing links and nodes within the impact area.  

 

 

Figure 4. Network with crossing link and an impacted node. 

In Figure 4, node A is connected to link L1. Impact radius at      is Ra and at      

is extended to Rb. Node A is impacted at      . The failure probability for Node A and 

the connected link can be shown as   (    ). This failure probability is applied to link L1 

for further end-to-end path failure probability in the preventive routing model. The 

crossing link L2 between node B and C has been affected at       at the distance 
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      from the epicentre. 

The closest point of the link to the disaster epicentre has been used in calculation of the 

failure probability of the crossing link. In this example, the failure probability of the 

crossing link, L2, can be shown as   (    ).  

We define the set   as failure events caused by expanding the impact radius. Each 

failure event   ( ( ))    occurs at t and once a failure event happens, node      may 

fail with probability  
  (  )       . We assume that   

  (  )     if ni is outside the 

impact range    and all nodes and links outside of the impact area remain in working 

status. At each simulation time step, a probabilistic engine will determine whether each 

node will fail or not. We further assume that all connected links to a failed node will be 

failed and unable to carry network traffic, as they have lost one end node. Network 

restoration will be applied to the new network topology after removing all failed links and 

nodes.   

An important difference between the single failure restoration approach and large-scale 

scenarios is that in the latter, the post-failure demand matrix is different from the original 

demand matrix, because demands from/to failed nodes should be removed from the 

matrix as they become un-routable [9].  

Given that the area affected by natural disasters may have a great extent, the selected 

strategy to cope with the problem is different with single or double failure scenarios. On 

the other hand, we assume that the proposed protection model is applicable to backbone 

networks where the transmission media is mostly relay on fiber optics. As this technology 

can handle substantial amounts of traffic, the required capacity for data transfer is not a 

concern. We also emphasize here that, in a large-scale failure scenario, full restoration 
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(100%) of all network demand is infeasible because some demand originates from or 

destined for nodes that are damaged and thus are no longer in the network. Removing 

demands of the damaged nodes in the network actually releases extra capacity for 

rerouting other connections. However the required spare capacity may be different in 

each large-scale failure scenario, corresponding to the severity of the damage. 

To simulate disaster models and evaluate the performance of our proposed approach, 

we assume some possible failure probabilities in selected distances away from the 

epicentre. Selecting values for the probability of failure are such that to simulate a model, 

close to natural disasters behaviour.  The assigned value to failure probability parameters 

can also be replaced with any other desired values.  

3.3 Travelling wave concept in failures 

One of the main factors in creating large-scale failures in communication networks is 

an earthquake, which has the highest destructive effect among natural disasters. The 

destruction caused by an earthquake is due to the release of energetic waves that decrease 

gradually over time. In this section, the characteristics of the generated waves by 

earthquakes are studied in order to provide a model to compute failure probabilities of 

network components. In the proposed model, impact ranges and failure probabilities vary 

with time. Considering the similarity of damage among nuclear explosions, earthquakes, 

hurricanes or floods, the proposed model can be calibrated or extended to identify 

required resources to provide the expected level of reliability.   

3.3.1 Destructive wave attributes  

Waves travel through space and time and transfer energy from one place to another. 

The released energy of natural disasters or nuclear attacks can generally be modeled as a 
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travelling wave, where energy decreases as the wave expands.  

Travelling waves can be grouped as transverse or longitudinal. In a transverse wave, 

the medium displacement is perpendicular to the direction of propagation of the wave and 

causes the medium to move up and down. A type of seismic wave called secondary wave 

or shear wave is known as a transverse wave. In a longitudinal wave, the movement in the 

medium is in the same direction to the motion of the wave, which means that the wave is 

seen as the motion of the compressed region. Seismic waves called P-type and explosion 

waves are examples of longitudinal waves. Figure 5 shows transverse and longitudinal 

waves. 

 

Figure 5. Transverse and longitudinal waves. 

A one-dimensional wave equation with amplitude y  can be shown as [66]: 

 , sin( )y x t A kx t                                                                                                    (1) 

In equation (1), A is the maximum amplitude of the wave and x is the space coordinate. 

k is defined as the wave number, which is 
2

k



  and   is the wavelength.  t is the time 

coordinate and   is the angular frequency which is 2 f  .  
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Total energy (kinetic and potential) carried by one wavelength in a travelling wave is: 

2 21

2
E A                            (2)   

 is the mass per unit length.                

As v f , the associated power carried by the wave is:    

2 21

2
P A v                                                                                                              (3)

    

We model a large-scale failure scenario by assuming that the failure starts from an 

epicentre with the highest degree of damage, and expands across the region at a constant 

velocity during a limited time. Destructive energy in the earthquake originates in an 

underground point, which is called the focus. An epicentre is the point on the earth‟s 

surface, directly above the focus. The released energy at the epicentre propagates through 

the surface and causes failure. Figure 6 shows the seismic waves and the epicentre.  

 

 

Figure 6.  Seismic waves and epicentre. 
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3.3.2 Failure probability estimation  

The damage caused by the earthquake depends on the amount of the initial wave 

energy. As the seismic waves travel farther away from the epicentre, the amplitude of the 

waves decrease because of geometric spreading. The geographical area also has a 

damping capacity known as material damping. A combination of them can be shown as 

following:  

     (    ⁄ )     (     )                   (4) 

   and    are amplitudes of motion at distances           from the source.   is the 

attenuation coefficient and depends on the type of material through which the wave 

passes. n is the power depending on the type of wave (can be 0.5,1 or 2) [67].  

Considering (2), the relationship between wave energy and amplitude is      which 

can be employed to calculate the associated energy at the specific location in the impact 

area. 

By expanding the impact area, the destructive energy of the disaster decreases and as a 

result, we assume that the probability of failure is reduced with distance. Based on energy 

loss behaviour, the failure probability for each component (link or node) is modeled as: 

( / )
( , )

x v
Pf x v e


                              (5) 

where   is defined as decay rate and can be considered as a decrement parameter based 

on energy reduction behaviour and v is the wave velocity.  Each failure event     
 
may 

occur at distance x, from the epicentre by traveling wave with assumed constant velocity 

v.  Once a failure event,    happens, node i VN   may fail with the probability failure in 

(5).       

According to the given explanations of the travelling wave properties and considering 
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that the released energy in a destructive natural phenomenon decreases exponentially with 

increasing distance, we assume an exponential decay model to calculate failure 

probabilities of network components in this research rather than using normal (or 

Gaussian) distribution or a predefined list of values. 

3.4  Restoration Mechanism and disruption time 

We use an MPLS-like model for implementation of the restoration mechanism here, 

because of its relevance and applicability to backbone networks. MPLS provides a set of 

protocols for managing and controlling the core network that has been considered as a 

suitable solution for QoS management in IP network. MPLS improves traffic engineering 

by integrating layer 2 and 3 of Open System Interconnection (OSI) model. Label 

switching, the main part of MPLS design, is able to execute fast packet forwarding. Label 

Switching Router (LSR) by employing Label Distribution Protocol establishes Label 

Switching Path (LSP).On the edge of the network,  Ingress LSR (I-LSR) picks up 

unlabeled packets adds labels to them  and forwards them through LSP [68].  

Restoration time in MPLS-based networks has been studied in [69]. The authors 

discussed recovery time in MPLS networks in both protection and restoration methods. In 

this thesis, we consider a dynamic restoration scheme in MPLS-based network, where the 

backup path is setting up after failure detection.  

 
Figure 7. MPLS recovery cycle model[70]. 
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The recovery scheme can be accomplished by adjacent nodes to the failure, or by the 

source node of the flow. Authors in [70] have  provided an MPLS recovery cycle model 

(Figure 7).  The recovery cycle model is composed of five separate time slots. 

Fault Detection time (T1) is the amount of the time needed by adjacent nodes for 

failure detection. Hold-off time (T2) is a pre-determined time assigned to the lower layer 

protection to wait prior to MPLS-based recovery action and can be set to zero. During 

notification time (T3), the source node of each flow receives the failure notification 

message and I-LSR starts recovery operation in (T4). Traffic will be rerouted during 

traffic recovery time (T5). Once the recovery operation is finished, the destination nodes 

receive the traffic again. The total restoration time is T1+T2+T3+T4+T5.   

In this research, without loss of generality, we assume that the notification delay can 

be negligible for the adjacent nodes to the failed link. When the source node receives the 

failure notification message, it calculates a new path and sets up a new Label Switching 

Path (LSP) by the signaling protocol.  Two types of messages employed in the signaling 

are Path messages and Reserve (Resv) messages. We consider the network disruption 

time as: 

 Notification time (∑         
 
   )   Path messages delay(∑         )

 
     

Reserve messages (∑         )
 
   .                                                                              (6) 

Here,     is propagation delay on link       and      is processing delay on node Ni 

  V, n is the number of nodes on the path between the nodes that detects the failure and 

the source node and m is the number of nodes between the source node of the flow and 

the destination node. In a large-scale failure scenario, we need to restore several failures 

at the same time. In this case, restoration time can be computed as an average or 
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maximum required time to recover the network.  

 

Figure 8. Global restoration mechanism  in an MPLS network [69]. 

Figure 8 shows an example of a dynamic restoration scheme in an MPLS network.  In 

this example, node A detects a failure on the adjacent link and sends a failure notification 

message to the source LSR.          

        

3.5 Performance evaluation: probabilistic vs. deterministic failures 

We evaluated the efficiency of the proposed model in large-scale failure scenarios 

under several different scenarios, in order to provide a meaningful comparison between 

deterministic versus probabilistic as well as static versus dynamic methods. 

We first provide a comparison between deterministic and probabilistic large-scale 

failures with an assumption that failure probability is constant throughout the disaster 

expansion. We later show how the change from this constant probability model to our 

dynamic probabilistic model affects the performance. This model evaluates network 

performance between these different approaches. The model is simulated using 

MATLAB and applied to the European network COST-239 (Figure 9). The network 

consists of 11 nodes with an average nodal 7 and 26 links. Using a coordinate vector as in 

[9] the geographical location is determined and an adjacency matrix indicates the 

X
Source

LSR
Destination

LSRWorking path

 

n=3

 m=5

Restoration path

failure notification msg

A



42 

 

connection between nodes.  

 

Figure 9. COST-239 network topology. 

A unit end-to-end demand matrix is considered for each pair of nodes. A weighted 

shortest path algorithm is used to route each demand. The working capacity of a link is 

defined as the sum of all demands routed through that link [9]. To simplify our analysis 

and without loss of generality, we assume that the epicentre is always one of the network 

nodes and we compute the average result for all the nodes. The maximum impact range 

studied in this model is 500 km. 

We studied large-scale failure models with constant failure probability in two different 

scenarios. In the first scenario, we assumed a constant failure probability for the entire 

disaster duration and each involved node and link in the impact area face a certain 

probability of failure. The model is simulated in four different failure probabilities: 20%, 

40%, 60% and 80%. The simulation models parameters are summarized in Table 1. 
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Table 1. Disaster model with constant failure probability in entire disaster region 

  Distance from the epicentre (km) 

Simulation 

Model 

 

Epicentre 

Under  

100 

km 

100 

to 

200 

Km 

200 

to 

300 

km 

300 

to 

400 

km 

400 

to 

500 

km 

Case 1 

Failure 

probability 

100% 80% 80% 80% 80% 80% 

Case 2 100% 60% 60% 60% 60% 60% 

Case 3 100% 40% 40% 40% 40% 40% 

Case 4 100% 20% 20% 20% 20% 20% 

 

If the network is partitioned, the traffic flows from one partition to another cannot be 

restored. By expanding the impact range in each interval, the algorithm determines nodes 

and links within the impact area. 

In the second scenario, we assumed a constant failure probability limited to a 

geographical area with a fixed reduction in failure probability between the regions.  We 

considered a decrement rate in the range of 15%, 20%, 25% and 30% and employed it to 

reduce the failure probability for each 100 km of disaster expansion. This model aims to 

simulate a situation where the failure probability decreases with distance by expanding 

through the regions. Table 2 summarizes the failure probability parameters. All the other 

parameters in this model are the same as the parameters in the simulation model when the 

failure probability is constant across the entire impacted region. 
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Table 2. Disaster model with the limited geographical constant failure probability and fixed reduction 

rate 

Simulation 

Model 

Reduction 

rate 

 

Distance from the epicentre (km) 

Epicentre 

Under  

100 

km 

100 

to 

200 

km 

200 

to 

300 

km 

300 

to 

400 

km 

400 

to 

500 

km 

Case 1 15% 

F
ai

lu
re

 p
ro

b
ab

il
it

y
 100% 85% 70% 55% 40% 25% 

Case 2 20% 100% 80% 60% 40% 20% 0 

Case 3 25% 100% 75% 50% 25% 0 0 

Case 4 30% 100% 70% 40% 10% 0 0 

 

3.5.1 Performance results 

In this section, we present the results obtained from modeling large-scale failure 

scenarios with deterministic and probabilistic damage patterns and provide a comparison 

between them. In order to evaluate network performance in each failure scenario, we 

studied several important metrics such as the number of failed network components and 

the percentage of the lost demands.  

We also computed the required network restoration time in each failure scenario. 

Figure 10 illustrated the studied performance metric when the failure probability is 

constant throughout the failure model.   
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Figure 10. Simulation results with constant failure probability in the entire impacted area.  

Figure 11 shows the results for a fixed reduction in failure probability for each 
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distance. 

 

 

 

Figure 11. Simulation results with constant failure probability with fixed distance reduction. 
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Next we analyze the results obtained for each of the above simulation models and 

explain network performance. 

3.5.2 Performance analysis and discussion 

Figure 10 shows the results obtained for a simulation model with a constant failure 

probability across the entire impacted area. As can be seen, the average number of 

damaged network components in the deterministic failure scheme is significantly 

different from the probabilistic failure approaches especially when the failure probability 

decreases. The simulation results show that there can be a difference of 25% in the lost 

demands with the probabilistic failure model compared to the deterministic failure model. 

This difference in the lost demands indicates how considering a failure probability with 

different values can affect the obtained results. The results also show the difference in the 

required restoration time between the deterministic and probabilistic failure models with 

different failure probability values. In all cases, deterministic failure model needs more 

restoration time. 

In Figure 11, we present the results obtained by simulating disaster models with a 

constant probability of failure in a limited geographical area with a fixed reduction 

between regions. As can be seen, the average number of damaged network components 

and also the average percentage of the lost demands are directly affected by changing the 

probability of failure. In a failure model, a greater reduction in the probability of the 

failure leads to a fewer number of network components being damaged. This difference 

also can be seen clearly in the amount of the lost demands, when the failure probability 

reduces faster through the impact area.  

By looking at the required restoration time, the deterministic failure model and the 
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probabilistic failure model with less reduction value almost show the same average 

restoration time. With an increasing reduction rate in the failure probability, the 

difference between deterministic and probabilistic failure models shows significant 

changes. 

3.6 Performance evaluation: wave-like probability failure models 

We improved the proposed model by computing the failure probability of each impact 

expansion based on energy reduction behaviour. Decay rate is the employed parameter to 

compute failure probability. We assume a disaster‟s wave travels with a constant velocity 

v and the probability of the failure will be reduced with decay rate . 

We applied our model to the European network COST-239. Dijkstra‟s algorithm is 

employed to route the demand for each link through the shortest path. We simulate the 

proposed model for each node as the epicentre and a constant failure expansion velocity 

of 10 km/s. We assumed the impact radius would expand at the rate of about 10 km/s, up 

to maximum 500 km at a constant speed. 

We assumed an earthquake-like model for disasters. The propagation velocity of the 

waves in an earthquake depends on geographical characteristics and earth materials which 

can be up to 8.5 km/s [71]. We used the propagation velocity of 10 km/s as the worst-case 

scenario. This range of impact is assumed to be a circle which the radius R , at ( )time t s  

is ( )R r km and at ( )time t T s  is 10 ( )R r T km  . 

In order to implement a proactive approach, we assume a natural disaster early 

warning system is in place, or that the first failure is detected by the network itself. We 

assume full disruption/failure at the epicentre. As the disaster typically spreads in seconds 

to minutes while our rerouting algorithm can operate within tens to a couple of hundreds 

http://en.wikipedia.org/wiki/Signal_velocity
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of milliseconds, there is enough time to prevent paths from upcoming damages. 

Three different scenarios have been studied: fast, medium, and slow decay. We 

assumed failure probability in the fast decay model is 40%, 60% in the medium decay 

model, and 80% in the slow decay model when 100 km away from the epicentre. As we 

explained earlier the selected values of decay rates aim to model the failure probability in 

such a way that the model is built like an earthquake. Using exponential decay, the energy 

reduction is faster compared to a linear approach through the region.  The proposed 

model is not limited to the selected values for the decay rate and can be examined with 

any other values. The decay rate in each failure probability scenario is calculated and 

shown in Table 3.  

Table 3. Decay rates for probability of failures 

Decay rate Failure probability in 100 km far away 

from the  epicentre 

0.01783 (slow decay) 80% 

0.05108 (medium decay) 60% 

0.09163 (fast decay) 40% 

 

The average number of failed network components, required restoration time and the 

percentage of the lost demands are the metrics that are studied in this simulation model. 

3.6.1 Performance results 

Here, we present results of modeling failure probability using wave-like attributes 

(Figure 12). The studied metrics are the number of failed network components, the 

average of lost demands and also the delay time required for network restoration. The 

results include three different decay rates compared with a disaster scenario using a 

deterministic failure approach.   
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Figure 12. Simulation results in large-scale failure model with wave-like failure probability. 
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3.6.2 Performance analysis and discussion  

Figure 12 shows the results obtained by simulating a large-scale damage model with 

wave-like failure probability. The three different scenarios show that in the case with a 

higher probability of failure, the number of affected network components and the average 

percentage of the lost demands caused by the damage are higher. The lost demands in the 

probabilistic approaches may be significantly less than deterministic failure models and 

are highly dependent on the speed at which wave energy decays. 

In the fast decay model, the probability of failure reduces significantly as the disaster‟s 

wave spreads through the region. It means network components at a distance from the 

epicentre have a greater chance of survival. The fewer number of damaged network 

devices leads to time savings and less delays in the restoration mechanism.  

3.7 Concluding remarks 

In this chapter, we studied network performance using two different views of failure; 

deterministic and probabilistic. For each failure approach, we examined several different 

scenarios through simulation models. A deterministic failure model is compared to two 

probabilistic failure models, where the failure probability is considered fixed throughout 

all the disaster scenarios for all components. We then studied another model where the 

failure probability is considered to be fixed only for a specific region and the value 

changes for the next understudy region with a fixed value reduction. Our main goal was 

to study several different models to give a comprehensive view of the difference between 

deterministic and probabilistic failure models and their outcomes in network performance 

for disaster scenarios.  

We have extended the view of probabilistic failure by considering a wave-like model. 
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In the proposed model, failure probabilities follow a time-varying model and change as 

the disaster spreads. The proposed model is inspired by earthquake behaviour, which 

starts from an epicentre and expands through the region where it loses its energy and 

destructive power as it is expanding. The studied model would give a more realistic 

failure possibility in a network when it is treated with disasters.  
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Chapter 4: Preventive protection model 

Natural disasters are among the main destructive factors in large-scale failure 

scenarios. While each proposed protection model (chapter 2) using dynamic or pre-

planned protection mechanisms deals with some aspects of large-scale failure 

management in communication networks, there is still no comprehensive solution that 

takes the unique features of major disaster scenarios into account; namely the facts that 

these events are dynamic and the situation on the ground changes rapidly. The impact 

range of a disaster event expands with time and simultaneous probabilistic failures occur 

during the impact. Most solutions take static post-event approaches in which either the 

network must be significantly overdesigned to be able to cope with the immediate impact 

of a disaster, or use restoration efforts that take too long to respond to changes in network 

conditions as the disaster impact spreads. The dynamic behaviour of natural disasters and 

their probabilistic failure pattern indicates a need for a dynamic probabilistic protection 

approach to address the issue and reduce the number of disrupted connections in the 

network.   

Our objective here is to propose a proactive approach that would allow network 

operators to salvage as much backbone traffic as possible while the disaster event is still 

in effect. Our technique is predictive, dynamic and probabilistic at the same time. As 

opposed to previous studies, which used static failure probabilities, our technique builds a 

dynamic probabilistic model and updates it as the impact of failure (e.g., earthquake) 

spreads. Our technique is also proactive, for example it evaluates the reliability of paths in 

real time during the disaster impact period and makes preventive rerouting decisions 

based on the risk level.  
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4.1 Proactive time-varying protection concept  

Here, we present a novel preventive protection method, which would be appropriate 

for dynamic disaster scenarios such as earthquakes, nuclear explosions or hurricanes. The 

proposed method can be used to increase the resilience level of the network by employing 

preventive rerouting.  

We recall from the study of previous works that most of the developed models in 

large-scale failure events focused on indicating the vulnerable parts of the network for 

further improvement and not developing a real-time solution in case of disasters. To keep 

network functionality at an accepted level, it seems necessary to mitigate disaster effects 

in the current working network. The core concept of the preventive protection model is to 

reroute high-risk connections prior to failure to reduce the number of disrupted 

connections in disasters scenarios. 

4.1.1 Compute end-to-end path failure probability 

The preventive protection method is probabilistic and dynamic. In order to implement 

a proactive approach, we assume a natural disaster early warning system or that first 

failure detection by the network is in place and the network management system is able to 

receive notification of the occurrence of a disaster, as well as continuing reports about 

how it expands. For the purpose of this work we use an earthquake disaster model; i.e., a 

disaster impact area that starts from an epicentre and expands with time. 

Once a network failure is detected, an exponential decaying rate for failure probability 

is computed based on the level of intensity of the disaster and the available background 

knowledge of the geographical characteristics of the area. This factor can be employed to 

calculate failure probability for each component in the network. This model has been 



55 

 

presented in [72] and has been discussed in Chapter 3.  

Although we employed an exponential decay model to compute the failure probability 

for each network component in this study, any other approach capable of estimating 

failure probability can be used in this model. It makes the proposed model applicable in 

any large-scale failure scenario such as nuclear explosion or natural disasters whenever 

the failure probability for the network components can be estimated (theoretical or 

empirical).  

We assume that a single link can survive the impact with a probability of     
  (  ).  

Each path in the network may consist of several links. The regional dependence between 

the failures of links and nodes in an area is included in calculating individual probabilities 

of failure, as we explained in Chapter 3. Once the probabilities are determined, we can 

assume that failure events happen independently. With the above knowledge, end-to-end 

path failure probability is computed as: 

   ( , ) 1 1 ( )
ij

ij

f i j f t

e E

P path P R


                                                                                (7) 

For example in Figure 13, failure probability for a link between node A and B is 

shown as ( , )f A BP  and the probability that this link survives the failure is  ( , )1 f A BP . 

 

Figure 13. Failure probabilities for links. 

The end-to-end path failure probability in Figure 13 for the source node A to 

destination node C can be illustrated as follows if the path passes through node B: 

A B C

D E

Pf(A,B) Pf(B,C)

Pf(A,D)

Pf(D,E)

Pf(E,C)
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  (   )
     ((  (  (   )))  (  (  (   )))) .                                               

Or if data is sent through nodes D and E: 

  (   )
       ((  (  (   )))  (  (  (   )))  (  (  (   )))) .                              

4.1.2 k-shortest paths failure probabilities computation 

Depending on the network topology and epicentre of the disaster, several alternative 

paths from the source to the destination may be available for each affected connection. In 

this step, the existing k-shortest paths are computed and the outputs are sorted with the 

shortest path first. For each source node i and destination node j we may have a group of 

shortest paths as: 

1 2( , ) , ( , ) ,..., ( , )kpath i j path i j path i j  

Using equation (7), we can calculate the end-to-end probability of failure for each path 

as:       ( , ) ( , ) ( , )1 2
, ,...,f i j f i j f i j k

P path P path P path  

The calculated failure probability for each shortest path from source node i to 

destination node j will be further employed in preventive rerouting strategy.  

Figure 14 is an illustrative example of an expandable disaster model. There are several 

paths available between nodes A and B, two of which are highlighted. Failure 

probabilities are illustrated in different colours for each impact radius and decrease as the 

impact expands. The path k1 utilizes links 1 and 2 and the alternative path k2 consists of 

links 3 and 4.  
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Figure 14. Network with expandable failure and k-shortest paths. 

4.2 Preventive rerouting strategy  

The main strategy for data flow protection in the preventive protection model is to 

reroute traffic of endangered paths before failure and as a result reducing the number of 

disrupted connections. The paths that are close to the epicentre are considered high risk 

and their traffic should be rerouted through the other paths with further distance to the 

epicentre. As the destructive power of natural disaster waves decreases with distance 

from the centre of the incident, the proposed preventive rerouting strategy and switching 

traffic to an alternative path between source and destination nodes may reduce traffic 

damage probability.  

A group of shortest paths may be available for each source and destination nodes with 

different end-to-end failure probabilities for this purpose. To reroute traffic through more 

reliable paths, preventive protection models employ risk threshold parameters to decide 

how to reroute traffic through more reliable routes. For example, in Figure 12, links 1 and 

2 in path k1 pass through the area nearest to the impact centre, which results in a higher 
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end-to-end path failure probability. In the proposed method, based on the defined 

thresholds, we assume the appropriate action is to switch demands from A to B through 

path k2 (links 3 and 4), which has a lower end-to-end failure probability.    

4.2.1  Preventive decision parameters 

Having different paths with different failure probabilities gives us a holistic view of 

the intensity of the approaching failure in the network. We may anticipate that a path with 

a higher failure probability would be more fragile in the face of expanding disaster and 

traffic through this path is in danger. To address this issue, the proposed model should be 

able to distinguish at-risk paths and make an appropriate decision to switch traffic 

through more reliable paths. 

Here we define two decision making parameters; upper threshold (   ) and lower 

threshold (   ). We denote the lower threshold as            and the upper threshold 

as          . Paths with an end-to-end failure probability higher than     are 

considered endangered paths with data flows that need to be protected. We apply     to 

define a „safe zone‟ for the paths with a lower end-to-end probability of failure, therefore 

having more chances to survive. 

4.2.2  Pre-failure protection 

Figure 15 illustrates an example of the preventive rerouting mechanism and protecting 

traffic passing through an endangered link prior the failure. 
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Figure 15. Preventive rerouting prior to failure. 
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failure probability: 

a)  ( , )
1

Lof i jP path T  

In this situation, the first computed shortest path has a lower failure probability than 

the lower threshold. We assume this path falls in the safe zone and has a good chance of 

surviving the approaching damage. This path can therefore be considered reliable for 

passing traffic flows and no rerouting is required. This path can also be selected as a 

reliable backup path for preventive rerouting.  

b)  ( , )
1

Upf i jP path T  

The end-to-end probability of failure is higher than the upper threshold, which means 

that the path is more likely to fail in the future (i.e., a path in the „danger zone‟) and an 

upcoming damage can disrupt this connection. The proper action is to find another 

shortest path in the lower threshold zone and reroute traffic flows through it prior to 

failure so that they will not be disrupted once the disaster impact area reaches this path. If 

the preventive method could not find a path in the lower threshold zone, any path with a 

lower failure probability than the current path will be selected to reroute the traffic. 

c)  ( , )
1

Up Lof i jT P path T   

In this scenario, the first found shortest path remains as the working path. We keep this 

path as a working path but will not use it as a safe backup route for others. If this path 

fails, the preventive protection model tries to reroute its traffic through the path in the safe 

zone. The process of the preventive protection model is summarized in Figure 16. 
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Figure 16. Preventive protection model. 

The difference between upper threshold and lower threshold can be chosen by the 

network designer based on the desired level of survivability and the available resources in 

the network. 

In all of the above scenarios, if the number of available k-shortest paths is one, it is 

considered to be the best candidate path. Having several shortest paths is directly related 

to the network topology and the failure intensity. In highly damaged networks, more links 

and nodes will fail and as a result, less network resources will be available to reroute 

traffic. 

4.3   Performance evaluation 

To evaluate the performance of the preventive protection model, we adopt the 

following metrics: 

a) The Number of Disrupted connections: Any disruption in network operation can lead 

to loss of data and impact network performance. To ensure continued system operation in 

the case of a disaster, a dynamic path restoration mechanism tries to reroute demand of 

the disrupted connection through a backup path. The proposed model aims to decrease the 

number of disrupted connections to improve network survivability. 

b) Network Disruption time: Disrupted connections need time to be recovered. We use 
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the Multiprotocol Label Switching (MPLS) service time model for our computation, as it 

provides a good model for connection-oriented backbone services. 

c) Number of preventive rerouted connections: In the proposed method, we apply the 

upper and lower threshold to compute substitute paths with a desired level of the end-to-

end failure probability. 

 An implementation of our preventive protection scheme can be summarized as 

following: 

---------------------------------------------------------------------------------------------------------------------------- 

Preventive protection scheme 

----------------------------------------------------------------------------------------------------------------------------- 

While Impact radius < maximum radius  

    Compute impact area  

         For all components within impact area: 

                 Determine failure probability 

                    Fail/not fail each network component (using a loaded coin-toss   probability model) 

                    Remove failed nodes and links from the network 

                    Compute end-to-end path failure for each demand 

                    Based on upper and lower threshold: 

                           Reroute failed demands to the preventive paths 

                           Reroute likely to fail demands to the preventive paths  

                    Calculate number of disrupted connections 

                    Calculate network disruption time 

                    Calculate number of preventive rerouted connections 

         End For; 

        Wait for notification about expansion of impact radius 

 End while; 

--------------------------------------------------------------------------------- 
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The computed worst case time complexity of the proposed algorithm for the number of 

links |E|  and nodes |V|  is O(|V
3
|) which is polynomial and feasible to achieve.  

The process to calculate alternative paths and reroute traffic prior to failure works in 

the background and does not interfere with the current traffic flow in the network. 

However, it will increase the network processing overhead during the computing process. 

The above metric is directly related to how the values of the upper and lower thresholds 

are adjusted. It can be utilized to improve network performance based on the available 

resources and the expected resilience level. 

In preventive rerouting procedures, when the substitute path with the acceptable level 

of end-to-end failure probability is computed and established, the traffic of the current 

working path is switched. We assume that the switching time is negligible, therefore this 

operation allows the traffic between the two nodes to flow continuously. 

To evaluate network performance and validate the observed results, four real-world 

network topologies; Cost239, TeliaSonera, Sprint and Level 3 (Figure 9 and Figures 17, 

18, 19) with different nodal degrees are employed to simulate the proposed model. 

 

 

Figure 17. Level3 network. 
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Figure 18. Sprint network 

 

Figure 19. TeliaSonera network 

We study the network performance for each network topology in four different 

scenarios. In each scenario we simulate the proposed model with different threshold 

ranges to illustrate how the selected upper and lower threshold can affect network 

performance. 

In our simulations, we compared our results with the deterministic failure scenario, 

which is the scenario used in prior large-scale failure analysis, e.g. in [9] in order to 

provide a view into the impact of considering probabilistic failures and probabilistic 

countermeasures on the overall robustness of the network. Table 4 shows the selected 

topologies to simulate the proposed model.  
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Table 4. Real world topologies specifications 

Network Coverage Nodes Links Avg. Node 

Degree 

Cost239 Europe 11 26 4.7 

TeliaSonera U.S. 16 29 3.6 

Sprint U.S. 28 76 5.4 

Level 3 U.S. 38 376 19.7 

 

In each simulation scenario, we chose one node of the network as the epicentre, and 

then we simulated each scenario 50 times in order to collect sufficient sample data for 

statistical analysis. Each case was run in four different scenarios as shown in Table 5 and 

shows the selected thresholds ranges in each scenario. 

Table 5. Selected threshold ranges for simulation model. 

Scenario1 Upper threshold = 50% 

Lower threshold = 25% 

Scenario2 Upper  threshold = 75% 

Lower threshold = 25% 

Scenario3 Upper threshold = 75% 

Lower threshold = 50% 

Scenario4 Upper threshold = 80% 

Lower threshold = 40% 
 

The network performance for each topology was studied for 40 seconds as assumed 

disaster duration. The probability failure in this study is computed with the Decay rate 

(φ)= 0.01783. 

4.3.1 Performance results 

Each figure in this part includes the results obtained from the dynamic path restoration 

mechanism as well as our proactive protection approach to show the effectiveness of the 

preventive protection model. The results have been computed as an average value among 

all the nodes and illustrated with the corresponding time of the disaster duration. For each 
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simulated topology, we illustrate the following parameters: 

 average number of disrupted connections 

 average network disruption time (ms)  

 number of preventive rerouted connections.  

We assumed that the disaster duration is about 40s and the proposed model is 

simulated in four different threshold ranges. 
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Figure 20. COST-239 network performance. 

Figure 20 shows the obtained results in European network COST-239. 
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Figure 21. Sprint network performance. 

Figure 21 illustrates performance network for the Sprint network.  
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Figure 22. TeliaSonera network performance. 

In Figure 22 we show the obtained results in TeliaSonera network. 
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Figure 23. Level3 network performance. 

  And finally we show the results for the Level3 network in Figure 23.  

4.3.2 Performance analysis and discussion  

We assume the duration of a natural disaster is about 40 seconds, at which point its 

destructive energy reaches zero and the disaster ends. As we considered that the disaster 

propagates with a constant speed of 10 km/s, it covers an area with a radius of 400 

kilometers, which is a considerable geographical area. In our simulation model, the 

network performance of the affected area in different discrete time intervals is 

investigated.   

The proposed preventive protection model was successful in reducing the average 

number of disrupted connections in all of the studied topologies regardless of how the 

threshold ranges are selected. The results among different threshold ranges indicate that 

the selected range has a direct effect on the network performance. In this case, a 

preventive protection model with a lower value for the upper threshold (Upper threshold 

= 50%) saved more connections compared to the other scenarios because the proposed 

model identified more endangered connections and protected them prior to the failure.      
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The selected threshold range in the proposed model determines the required rerouted 

connections to increase the network protection level. The results revealed that to provide 

better protection more connections need to be routed (Upper threshold = 50%), which 

means more overload on the network. Based on the available network resources and the 

desired protection level, an appropriate threshold range can be considered 

The other performance metric studied in this research was the network disruption time. 

The results show the preventive protection model could significantly decrease the average 

network disruption time in all simulated topologies. The selected threshold range in each 

scenario provides a different level of improvement, which can be employed by network 

designers to acquire the desired level of resilience. 

4.4  Concluding remarks 

The proposed preventive protection approach is a novel mechanism to improve 

network protection and demonstrates the ability to enhance network resiliency in large-

scale disaster events. Determination of endangered flow paths can be used to switch their 

traffic through reliable paths prior to failure. This approach can save connections against 

upcoming damage and reduce the number of disrupted connections in the network. To 

indicate endangered and safe paths two parameters (upper threshold and lower threshold) 

are employed in traffic rerouting and risk determination. A proper adjustment in threshold 

parameters can lead to enhanced network protection in failure events. The network 

performance as a result of applying the proposed preventive approach was studied for 

different failure scenarios among a variety of real-world network topologies. The results 

showed that the proposed model was able to reduce network disruption and improve 

network performance significantly under large-scale failure scenarios.  
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Chapter 5: Risk parameters adjustment 

The preventive protection scheme essentially implements some important components of 

a risk management system for backbone networks. The general framework of risk 

management in communication networks has been described in detail in [73]. It identifies 

four aspects of risk management: risk framing, risk assessment, risk response and risk 

monitoring. The preventive protection algorithm mainly deals with risk assessment and 

response. For risk monitoring, we assume some kind of a natural disaster early warning 

system, such as alarms from a network of sensors or first failure detection by the network 

nodes, is in place. We further assume that the network management system is able to 

receive notification of the occurrence of failures and continuing reports about how they 

expand.  

For risk assessment in this work we use an earthquake disaster model; i.e. a disaster 

impact area that starts from an epicentre and expands with time. The idea in preventive 

protection is to assess the failure probability for each network component such as a link 

or node using mathematical models in each decision interval[60]. The current risk model 

is limited to using the relative power of the earthquake wave to evaluate the probability of 

failure. Our review indicates that more comprehensive models for the impact of such 

disasters on telecommunication equipment do not yet exist. Also, while the focus of our 

work is on regional and geographically-contained disasters, the proposed response 

methods can also be employed in other types of large-scale failures, such as cyber-

attacks, provided that proper risk assessment models are developed for such cases. 

To mitigate risk failures in a communication network, we should consider the 

relationship between risk and vulnerability. Applying protection to vulnerable flows 
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against upcoming threats may reduce the size of damage. In this case high risk flows that 

are vulnerable to damage should be transferred to a safe area based on the selected risk 

thresholds. The essential factors influencing the preventive protection model are decision 

rerouting parameters that specify high-risk and safe zones in the impacted network. Once 

the end-to-end failure probabilities for the k- shortest paths between each pair of nodes 

are calculated, the preventive protection scheme reroutes the endangered traffic. This 

decision is based on the chosen upper threshold that indicates the high risk zone. 

Although one may expect that selecting a low value for upper threshold would give 

better protection, it also requires more rerouting, which means more bandwidth overhead 

and higher restoration delays. 

The importance of adjusting decision parameters, their impact on network 

performance, and the provided level of protection motivated us to conduct a 

comprehensive study on this matter.  

In this section, we develop a procedure to parameterize rerouting decision factors in a 

preventive protection model to study the effect of different risk threshold values on 

network performance.  

5.1 Initialization risk parameters procedure 

The assigned value to the upper risk threshold indicates the endangered zone and based 

on this parameter, the preventive protection model will predict upcoming failure for the 

traffic passing through this area as the disaster expands. By changing the upper risk 

threshold factor, the extent of the high risk area will be changed. We recall that the lower 

risk threshold represents the safe area and traffic through this area has a higher chance to 

survive.  
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In order to study the effect of the risk threshold parameters on network performance, 

we initialize the upper risk threshold parameter to the highest acceptable value 

(predefined). This initial value implies the minimum number of preventive rerouting, 

because by decreasing the upper risk threshold, more and more traffic flows will have to 

be rerouted. By reducing a predefined fixed value of upper risk threshold, the lower risk 

threshold will be computed and assigned. By increasing the difference between the upper 

and lower threshold values, we expect that the endangered traffic will be transferred 

through a safer area and therefore protect against failure. Obviously, a more secure area 

should be further away from the epicentre, which means a longer path for the data flow.  

The proposed procedure will start with the highest assigned upper risk threshold value 

and the computed lower risk threshold. At each decision interval (determined by changes 

in network conditions, predefined intervals, or based on expected expansion of failure 

impact range), the probabilistic failures for network paths are calculated and a simulation 

analysis of the number of preventive rerouted and disrupted connections is conducted. 

Results for each decision interval are recorded and depicted as a trend for all studied steps 

to give a comprehensive view of the impact of adjusted risk thresholds parameters on 

traffic protection and network performance.  

After examining all the possibilities for the upper risk threshold parameter and 

recording the obtained results for each decision interval, the proposed procedure increases 

the difference value between the thresholds and repeats all of the previous steps to obtain 

new results that depict a new trend for further study. We increase the distance between 

the thresholds to assess how these differences may affect network efficiency when the 

preventive model tries to reroute traffic through safer areas. 

Here we recall that to reroute traffic through the safe zone it is necessary that a 



75 

 

preventive protection model is able to find a path in this area, otherwise the endangered 

data will be rerouted through any available path with a probability of failure lower than 

the current path or leave the flow untouched. Given this circumstance, even with an 

increasing difference between the thresholds, the proposed model may not be able to pass 

information through better routes. We show the steps of the proposed procedure for 

threshold adjustment operation in Figure 24.  

 

Figure 24. Thresholds adjustment flowchart. 
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In the illustrated flowchart,    is the assigned difference between upper and lower risk 

thresholds. Different protection scenarios can be modeled by assuming a fixed upper 

threshold and increasing    to compute and assign a lower threshold.     is a decremental 

factor to initialize the upper threshold in each successive step by reducing the upper 

threshold to a new value in each simulation scenario. This parameter can be adjusted 

based on the number of required failure scenarios and the expected data results for further 

process.   

5.2 Risk mitigation effectiveness  

Rerouting traffic prior to failure is a fundamental aspect of increasing the protection 

level in the preventive model. Using this approach, the number of disrupted connections 

decrease and the provided resiliency level improves. Upon failure detection, the proposed 

model is triggered to transfer information while the disaster expands. Since the preventive 

rerouting process occurs in the background, it does not interfere with network operation; 

however it may increase the network overload with the rerouting procedure.  

Given that failures in a natural disaster scenario follow a probabilistic pattern, it is 

important to decide which paths are in danger and require immediate protection and also 

how to determine more reliable paths to reroute the endangered traffic. It should be noted 

that routing traffic through longer paths will increase delays and may lead to increased 

costs. The selected backup routes should provide the required protection level while 

adding the least cost to the network. It is also important to mention that rerouting 

connections with a low failure probability and have a higher chance to survive the disaster 

only increases unnecessary overhead on the network. To address these issues, the proper 

values must be assigned to the upper and lower thresholds, which can affect network 
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performance significantly.  

In summary, the objective of the adjustment threshold procedure is to achieve the 

minimum number of required rerouting that would provide an acceptable disruption ratio. 

If the expected disruption ratio is still too high, the upper threshold is lowered in steps 

until the desired disruption levels are achieved.  

It should be noted that as the failure model in our research follows a probabilistic 

pattern, the results of each failure scenario may be different. To address this issue, each 

failure scenario will be studied under several simulation runs.  

5.3 Performance evaluation 

In this section, we evaluate the performance of the thresholds adjustment procedure by 

modeling different large-scale failure scenarios.  The disaster failure in our work has been 

modeled as a circular region whose radius expands with a constant velocity (rough model 

for an earthquake). The network components in an impact area can be nodes and their 

connected links or part of links. We assume that the failure probability of a node is the 

same as its connected link. The closest part of each impacted link by the disaster has been 

used to calculate the failure probability of the link. 

At any time, all network components outside the impacted area will be considered in 

an operational status, while those in the impacted area may fail with a dynamically 

calculated probability using a travelling wave model as in [60, 74]. The closest part of 

each impacted link by the disaster has been used to calculate the failure probability of the 

link. We assume that the failure probability of a node is the same as its connected link.  

We assume that if a node fails, all its connected links are failed and cannot transfer data. 

Obviously, full restoration of all flows in a large-scale failure scenario is infeasible. The 
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reason is that if the source/destination nodes of a flow fail, that flow cannot be rerouted.  

We assume sufficient capacity for rerouting exists in the network. Capacity optimization 

in large-scale scenarios is still under research.   

We chose TeliaSonera US L3 Network with 16 nodes and 29 links for our simulations 

[75]. We consider end-to-end unit demand between each pair nodes to generate traffic 

flows. To model the disasters, we assume that the epicentre is always at one of the 

network nodes. 

We simulate disaster scenarios for each node (16 nodes) and compute the average 

result for 100 simulation runs to allow accurate statistical analysis. The simulation 

scenarios are presented in Table 6.  

Table 6. Threshold differences range and upper and lower thresholds value in each scenario 

    :upper threshold,      :lower threshold 

   Initialization steps 

T
h

re
sh

o
ld

  
 D

if
fe

re
n

ce
 

R
a
n

g
e 

10%     95% 90% 85% 80% ... 25% 20% 15% 10% 

    85% 80% 75% 70% ... 15% 10% 5% 0 

20%     95% 90% 85% 80% ... 35% 30% 25% 20% 

    75% 70% 65% 60% ... 15% 10% 5% 0 

30%     95% 90% 85% 80% ... 45% 40% 35% 30% 

    65% 60% 55% 50% ... 15% 10% 5% 0 

40%     95% 90% 85% 80% ... 55% 50% 45% 40% 

    55% 50% 45% 40% ... 15% 10% 5% 0 

 

To simulate the proposed model we use predefined values for initializing the risk 

thresholds by considering a fixed difference between them. In each step, we deduct 5% 
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from the upper threshold to simulate a new failure scenario with updated threshold values. 

The simulation steps are terminated when the lower threshold value reaches zero. After 

simulating all steps in the predefined range, we expand the difference between the 

thresholds to simulate a new failure scenario. By expanding the distance between the 

thresholds, we evaluate the efficiency of the proposed model in four different rerouting 

decision models. By increasing the difference between thresholds in each failure scenario, 

the preventive model tries to find a backup path further away from the epicentre with a 

lower end-to-end path failure probability.  

The predefined assigned values in our model will cover a vast range of upper and 

lower thresholds with slightly different thresholds in each simulation step. Eventually, the 

obtained results for all steps are illustrated as a trend for further processing and analysis.    

5.3.1 Performance results 

Here we present the performance results of the proposed threshold adjustment 

procedure. We study the number of disrupted connections in the impacted network as an 

important metric to indicate the provided level of resiliency. The average number of 

disrupted connections for all nodes in different thresholds ranges (starting with the 

highest upper threshold) are computed and illustrated as a graph. In each simulation 

model, we assigned a fixed value to the threshold difference (i.e., 10%) and decrease the 

upper threshold slightly in each successive step to model different failure scenarios. The 

obtained results in each step have been depicted with a specific symbol on the graph. 

After simulating all steps in the selected range, the gap between the thresholds will be 

expanded to model a new failure scenario.  

Figure 25 illustrates the results of the adjustment algorithm on the average number of 
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disrupted connections. The graph shows four different failure scenarios with different 

distance values between upper and lower thresholds. The yellow line in the graph 

illustrates the average result for all the curves.  

 

Figure 25. Threshold adjustment results 

The rerouted traffic may increase network overload due to damaged links for 

preventive purposes. We therefore consider preventive rerouting as a metric for each 

failure scenario. To study this metric in each failure scenario, we assigned a fixed value to 

the threshold gaps and simulated failures through successive steps of a predefined range 

of upper thresholds. The studied upper thresholds in each scenario start with the highest 

value and decreases gradually to cover all the upper thresholds in the range. The average 

number of preventive rerouting for all nodes in each failure scenario is computed and 

illustrated as a graph.  

By increasing the distance value between risk thresholds, a new failure scenario has 

been modeled and the results recorded. In this study, we simulated the proposed 

procedure in four different failure scenarios. The assigned fixed value to the distance 
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between the upper and lower risk thresholds are based on Table 6 (10%, 20%, 30% and 

40%).  

The results in Figure 26 show the average number of preventive rerouting connections 

in four different threshold adjustment scenarios. 

 

Figure 26. Preventive rerouting in different threshold ranges. 

The studied network topology (TeliaSonera US L3 Network) contains 16 nodes 

(cities). Considering the assumption that the epicentre can be located in each city, we 

examined different failure scenarios and network performance was studied in each 

scenario (Figure 27). The results obtained for each node (epicentre) indicate the 

efficiency of applying a preventive model and the improved performance compared to the 

dynamic restoration approach.  

The studied metrics in each node are the average number of disrupted connections 

(preventive and dynamic restoration) and the average number of preventive rerouting. 

The average results have been calculated by performing 50 simulation model runs with 

the upper risk threshold of 70% and lower threshold of 60%. For each city (node) in the 
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network, three metrics were calculated and the performance results are illustrated in 

Figure 27.  

 

Figure 27. Network performance for upper threshold= 70%. 

5.3.2 Result analysis and discussion  

As can be seen in Figure 25, there is a sharp reduction at around 70% of the upper 

threshold value, after which the graph decreases gradually. We can conclude that in 

general there is a trade-off point after which further reduction in the upper threshold 

increases the number of reroutings without significantly contributing to network 

robustness. The results in Figure 26 show the average number of preventive rerouting 

connections in four different threshold adjustment scenarios.  

The results show that different scenarios converge when the upper threshold is equal to 

50%. It shows that preventive rerouting can reach a point where the lower threshold at 

any value gives the same results. The reason can be the lack of available paths with a 

lower failure probability less than the lower threshold. In this situation, the preventive 

protection model reroutes the endangered or disrupted connections to any path with a 

lower failure probability, which is not necessarily in the safe zone. 
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Figure 26 reveals that the upper threshold in the preventive protection model is the 

main contributing factor in determining the number of preventive rerouted connections 

and future disruptions. It is the main decision parameter for network operators. Once they 

choose an acceptable level of robustness (disruptions under large-scale failure scenarios), 

they can adjust the upper threshold to achieve that level with minimal rerouting 

operations.  

In Figure 27 we show network performance when the upper threshold is assigned to 

70% with lower threshold equal to 60%. As can be seen, the preventive protection model 

was successful in reducing the number of disrupted connections based on the selected 

thresholds. In the proposed model, disrupted connections are connections that are able to 

re-establish after failure. In this example, if an epicentre is located in Miami or Seattle, 

both the classical restoration method and preventive protection model are not able to 

restore the damaged connections, which implies that all demands have been lost. The 

results in Figure 27 also show that the performance of the preventive protection model in 

some nodes within the selected range of thresholds is significant. The geographical 

location of these nodes and the available path in the vicinity of the epicentre can affect 

preventive protection performance. 

5.4 Concluding remarks 

In this chapter, we provided a method to refine the parameters of a preventive 

protection scheme in a dynamic and proactive manner with the goal of reducing the 

number of disrupted connections in large-scale scenarios. We showed why adjusting 

threshold parameters in this model have an important effect on protecting data flows prior 

to failure. We developed an algorithm to regulate decision-making probabilistic 
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parameters employed in preventive rerouting. The proposed algorithm analyzes network 

performance in different threshold ranges and records the results for each threshold value. 

The results obtained for different threshold scenarios can be processed by network 

operators to make decisions on how to adjust threshold parameters. The proposed 

approach showed that selecting the upper threshold plays the most important role in the 

protection decision making process. 
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Chapter 6: Self-adaptive failure mitigation 

Here we recall, from the previous discussions that appropriate traffic protection against 

a time-varying destructive phenomenon serves to prevent damage before it occurs. In this 

case, the level of risk for traffic routes should be evaluated and the flow should be 

rerouted to more reliable paths prior to failure. The high-risk paths can be identified based 

on appropriate decision parameters in a preventive protection scheme as an effective 

dynamic probabilistic solution to address large-scale failure scenarios.  

In this section we develop a self-adapting preventive approach to improve the re-

tuning decision parameters. The proposed approach dynamically adjusts decision 

parameters to provide an appropriate level of protection while the impact domain of the 

natural disaster expands through the region and increases the risk of failure for network 

components. 

To develop the proposed model we consider topological properties in disaster domain 

such as network components centrality. In this regard, node and link betweenness are 

among the parameters that are of concern to network researchers to evaluate network 

performance or estimate network vulnerability. We determine the impact of such decision 

factors on the performance of risk-based proactive rerouting. 

A disaster event usually occurs for a limited time in a specific region and damages 

network components in a manner that can be considered probabilistic [72]. Proper 

protective actions must consider network topology and traffic flow characteristics in the 

disaster zone as well as the impact of failure on network performance. Protective actions 

must also be able to adapt dynamically with the damage spreading through the region as 

the disaster range and impact zone expands. The topological properties of the network 
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may be different in each interval decision time based on how many links or nodes fail. 

Therefore, a careful examination of the relationship between the topology of the network 

and the impact of the disaster on network operation could provide us with insights into 

how to adjust decision parameters according to dynamic conditions of the network. 

By improving the employed approach to initialize rerouting threshold parameters from 

a fixed and predefined manner to a dynamic and adaptive way, we could enhance the 

proposed preventive model to act as a perfect protection model in large-scale failure 

scenarios. Adding adaptation features to the protection model makes it appropriate for 

protecting data flows in an efficient way that facilitates network management.      

 In the following we examine a few important topological parameters that play a role in 

the network protection decision-making process. 

6.1 Network components centrality 

The strategic importance of some nodes or links in a network can be more than other 

network components. A node is important in this context if its removal affects the 

efficiency of the preventive protection. The importance of a node or link may increase the 

criticality of the paths that are using those components. One way to study the importance 

of nodes or links in a network is to evaluate its betweenness centrality. With the 

assumption that data between the source and destination takes the shortest path, our 

interest is to evaluate the importance of the network components using betweenness 

centrality. Freeman [76] discussed the importance of node betweenness, which counts the 

fraction of shortest paths passing a given node. The node betweenness for node v V  

can be shown as: 
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( )
( )

,

vsdbc v
sds d Vs d




 
 

                                                         (8) 

where s and d are the source and destination nodes of the flow, ξsd is  the total number of 

available shortest paths between s and d and ξsd(v) is the number of shortest paths 

between s and d  that pass through node v. 

Betweenness can also be applied to links by defining edge betweenness, which is the 

fraction of the shortest paths between two nodes that run along that link [77]. Edge 

betweenness for a link in a path between the source s and destination d can be illustrated 

by, 

( )
( )

, ,

lsdbc l
sds d Vs d l G




 
  

                                                                                            (9) 

where ξsd(l) is the number of shortest paths through link l for the data flow between the 

node s and d.   

A failure event may change the relative importance of network components. A low 

betweenness centrality indicates a link that is not carrying much traffic flow. However it 

is possible that, due to changes in the network topology because of link or node failures, 

the shortest paths between pair nodes change as the disaster impact area expands. In this 

case a link that was previously determined to have low betweenness in the former 

topology may become part of the shortest paths in the post-failure topology and as a result 

receives a higher betweenness centrality. In this case, adaptive protection should consider 

paths using this link as risky paths for further action. Considering the dynamic changes in 

the network topology and the importance of adjusting the preventive threshold, we 

propose a new risk threshold parameter in the next section. 
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6.2 Preserving strategic importance links 

The destruction produced by a natural disaster expands dynamically, and over time the 

destructive energy gradually decreases to zero. The damage caused by natural disasters 

can therefore be depicted through a time-varying probabilistic failure model, which is 

more realistic compared to deterministic failure approaches. The seismic gap method may 

be employed for long-term earthquake forecasting. The assumption is that large 

earthquakes happen more or less regularly in the region and time because of the gradual 

accumulation stress and sudden release by failure [78]. However, they are not capable of 

identifying the exact location, severity of the disaster and the possible size of the 

vulnerable area. 

It should also be noted that the characteristic of the impacted area by the disaster has a 

significant effect on the damage rate. For example, the rate of damage of an earthquake in 

a crowded city may be higher than the same disaster in an uninhabited place such as the 

middle of a desert due to the existence of facilities such as residential communication 

networks, power grids and similar infrastructure.  

The above facts highlight the need for network disaster-protection approaches that are 

proactive and able to respond dynamically to changes on the ground as the impact range 

of the disaster spreads or moves. Such schemes should be able to predict the future risk 

posed to network traffic flows in real time and to take precautionary action, in e.g., 

rerouting high risk flows to low risk regions to minimize the chance of service 

disruptions. The most important question in designing proactive risk-based schemes is to 

develop decision factors for calculating the risk in real time and determining appropriate 

action based on the perceived risk. 



89 

 

6.2.1 Preventive Rerouting Threshold 

To improve the efficiency of preventive protection methods and to make them 

adaptable with network conditions, we merge upper and lower risk thresholds to one 

decision parameter called Preventive Rerouting Threshold (PRT). Any path with a failure 

probability higher than PRT is considered to be an endangered path and its traffic is 

rerouted through any available path with a failure probability less than PRT. If the model 

is unable to find a path under PRT, the best available path with the least failure 

probability is then selected to reroute the data. 

By determining the failed nodes and links in each inspecting interval as the disaster 

impact area expands, we obtain an updated topological status of the network. This 

information is used to recompute the PRT and adjust the decision parameters adaptive to 

network conditions. The main contributions of the adaptive model are as follow: 

 Decision parameters in preventive protection models will be initialized by 

network operators [60], however assigning value to PRT in an automated way 

can improve network management. PRT is computed based on the strength of 

the disaster, regional characteristics and network topology properties in the 

impacted area. The computed PRT based on the above knowledge is used in the 

protection approach. 

 PRT is updated as a disaster expands through the region and considering the 

network status in each interval. Adjusting PRT in each decision interval leads to 

an updated PRT in tune with the needs of network protection. 

 Adapting the protection model with network conditions helps to dynamically 

determine high-risk paths in each decision interval. It is possible that some 
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routes, which are considered to be safe paths in the previous interval, are 

detected as endangered paths with the updated PRT in the new interval and have 

to be rerouted prior to failure. This property eliminates the need for the lower 

threshold to determine the safe zone.  

The proposed model protects endangered paths by rerouting them through the safe 

zone that is dynamically determined in each decision interval. The process to compute 

and assign PRT parameter in the protection model is explained next. 

6.2.2 Self-adapting rerouting parameters 

A disaster may affect a limited geographical area. Rerouting traffic through paths 

outside the hazard zone is a static protection approach. The drawback of such static 

approaches is that rerouting all connections out of the disaster area is costly. In particular, 

considering that the impact range of the disaster is dynamically expanding, a static 

rerouting approach would have to be very conservative; i.e. predict the maximum possible 

range of the impact area and reroute all paths to the farthest regions outside this range, 

which would result in extremely long backup paths that would consume far more 

resources than the shortest paths.   

On the other hand, failures in large-scale scenarios follow a probabilistic pattern and 

each network device has a chance to survive the disaster. In this case, there is no need to 

transfer data from links with low failure probabilities with the intention of safeguarding 

their information. Additionally, traffic flow priorities can also be considered; i.e. high 

priority flows can be rerouted while flows with low priority or low probability of failure 

can be left for the next interval decision. 

An appropriate solution to calculate PRT is to consider failure probability and the 
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strategic importance of links. Figure 28 shows a disaster zone and the affected links and 

nodes. Each link in the disaster area contains a failure probability and an edge 

betweenness centrality. The end-to-end path failure probability in a network is greater 

than or equal to the minimum failure probability of the associated links[60]. If a link has a 

high failure probability we might argue that any path using that link is at risk. In this case, 

the failure probability of a link in the disaster zone can be used to assess upcoming path 

failure probability. 

 

Figure 28. Disaster zone and network topological properties. 

To evaluate the strategic importance of a link, we compute the value of link 

betweenness for each link in the disaster zone. Link betweenness centrality and link 

failure probability are used to assign a damage risk rate to a link for further protection 

action as follows: 

( ) ( )
l fP l bc l                             (10) 

Here, δl is the damage risk rate of link l with betweenness centrality bc(l) and failure 

probability Pf (l). δl can be used to  decide whether data passing the link in the disaster 
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zone needs protection or not. To apply path protection, Pf (l) of the chosen δl can be a 

candidate value for the threshold parameters to indicate the endangered zone. Paths with 

an end-to-end failure probability more than the determined Pf (l)  should be rerouted prior 

to failure.    

The most endangered link in the disaster zone indicates with    (   ). This value may 

be obtained from a high rate of Pf (l) or bc(l) or both (equation 4). In this case, a high Pf (l) 

value is not a good candidate for the risk threshold parameter because a high threshold 

value forces the preventive rerouting scheme to leave more paths intact as they are below 

the protection threshold. The lack of inadequate protection to overlooked high-risk paths 

may lead to increase disrupted connections in the network. 

   (   ) made of a low failure probability indicates a link in the disaster zone with a 

good chance of surviving the disaster and connections using this link may remain  

undisrupted. Assigning low Pf (l) value of    (   ) as a threshold parameter may cause 

unnecessary preventive rerouting and impose extra unnecessary protection for paths with 

a high chance of surviving the damage.  

To adjust an appropriate rerouting threshold capable of protecting endangered paths 

with less extra overhead on the network, we employ the average failure probability 

adapted from the highest and lowest link damage risk rate in the disaster zone. To 

compute the risk threshold parameter in each interval decision, we consider the maximum 

and minimum calculated link damage risk rate and determine the associated failure 

probability. The average of the determined failure probabilities is employed by the 

proposed model to adjust the rerouting decision factor, PRT: 

( (max( )) (min( )))
f l f l

PRT Avg P P  
                                                        (11) 
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Changes in topology, resulting from failures due to the impact of the disaster, may 

alter betweenness centrality for the remaining links, which needs to be recomputed for the 

post-failure topology in each interval decision. The new betweenness value is used to 

update the PRT and keep the decision parameter adaptive with the network status. We 

show the procedure of calculating PRT in the following algorithm: 

 PRT adjustment algorithm 

 

BEGIN 

1: for all      

2:  ( )   Calculate failure probability 

3:  ( )   Calculate edge betweenness centrality 

4: ( )     ( )    ( ) 

5: end for 

6: while impact radius < max disaster zone 

7:            (     ( )) = failure probability of   max  ( )       

8:      (min    ( )  ) = failure probability of   min  ( ) 

9:          (   (     ( )) ,    (min   ( ))) 

10:        if impacted components= failed 

11:            remove failed links and nodes 

12:                         ( )             

13:                    ( )               

14:                                    

15:         end if 

16:  expand impact radius   

17: end while 

END 

 

The computed worst case time complexity for the self-adaptive protection algorithm in 

a network consists of |E| links and |V| nodes is O(|V
3
|) which is polynomial and  feasible. 

In the next section, we evaluate the performance of the proposed model and present our 

numerical results and analysis. 
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6.3 Performance evaluation 

We evaluate the efficiency of the proposed approach by conducting a simulation of 

various failure scenarios. The selected network topologies are the European Reference 

Network (ERnet) with 37 nodes, 57 links and a mean nodal degree of 3.08 and North-

American Reference Network (NARNet) with 39 nodes, 60 links and a mean nodal 

degree of 3.07, which are used in [79] to study dynamic survivable routing in a 

Multiprotocol Label Switching (MPLS) network. The other applied simulation parameters 

are the same. 

 

Figure 29. Real-world network topologies: North-American Reference Network (NARNet) [79]. 

 

Figure 30. Real-world network topologies: European Reference Network (ERNet) [79]. 
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Figures 29 and 30 show the network topologies employed to study self-adaptive 

protection. The topologies in our study are undirected graphs. The disaster is modeled in a 

circular shape with a radius that expands with time. We simulate the disaster duration for 

50 seconds. 

We model end-to-end unit demand for each pair of nodes to simulate traffic in the 

network. The possibility of a disaster can be located in any part of the network. To 

evaluate the efficiency of the proposed model, we simulate the disaster events in several 

random places in two real-world network topologies.  

Here the obtained results of two random locations of each network are illustrated with 

the information provided in Table 7.  

Table 7. Disaster geographical locations 

Network Geographical coordinates 

ERNET 
latitude = 47.9 N, longitude =5.3 E 

latitude = 48.4 N, longitude =9.6 E 

NARNET 
   latitude = 37.5N, longitude = 88.6W 

     latitude = 40.82N, longitude =80.9 W 

 

6.3.1 Performance results 

Figure 31 presents the results of adaptive protection for disaster events in these four 

locations. The studied parameter is the average number of disrupted connections, which is 

computed during the disaster scenario (50s). The results illustrate a comparison between 

adaptive and reactive protection methods for the studied metric.   
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Figure 31. Number of disrupted connections in large-scale failure scenarios. 

Figure 32 is a comparison between fixed thresholds protection (upper threshold 75%, 

lower threshold 50%) and the adaptive protection model. 
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Figure 32.  Network performance with fixed and adaptive threshold assignment. 

The assigned thresholds in the above performance study are chosen as examples and 
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can be changed to any other values for further examination. The selected parameter to 

investigate network performance for reactive and proactive protection approach is the 

average number of disrupted connections during the disaster event (50s). The results are 

provided for two random locations in the European reference network and two random 

locations in the North-American reference network. Each graph represents reactive 

protection with pre-assigned thresholds and a self-adaptive approach where thresholds 

change dynamically. Figure 33 demonstrates changes in PRT value in the adaptive 

protection approach while the disaster expands through the region.  

 
Figure 33. Threshold adjustment with disasters expansion. 

The studied parameters are the average PRT values in percentage, for each decision 

interval (each 10 second). Four random locations in two real-world topologies have been 

studied with this metric and results are obtained for disaster duration that is assumed to be 

about 50s.    

The results for preventive protection rerouting for the disaster locations in ERNet and 

NARNet networks are depicted in Figure 34. 
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Figure 34. Preventive protection rerouting. 

The metric in this study is the average number of preventive rerouting during the 

disaster scenario (50s). Selected random locations are the same as previous studies as we 

mentioned earlier.  

The obtained results with 95% confidence interval for the interval of ( ̅       
 

√ 
) are 

presented in Table 8. Here,  ̅is the sample mean value,   is the standard deviation and n 

is the sample size. The interval value less than 10
-6

 is shown as zero in the table. 

 

 

Failure event duration (s)

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
p
e
re

v
n
ti
v
e
 r

e
ro

u
ti
n
g

European Reference Network (ERNet)

10 20 30 40 50
0

50

100

150

200

250

300

350

Disaster locations
Latitude=47.9 N,Longitude=5.3 E
Latitude=48.4 N,Longitude=9.6 E

Failure event duration (s)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
p

e
re

v
n

ti
v
e

 r
e

ro
u

ti
n

g

North-American Reference Network (NARNet)

10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

Disaster locations
Latitude=37.5 N, Longitude =88.6 W
Latitude=40.8 N, Longitude =80.9 W



101 

 

Table 8. Obtained results with Confidence Level of 95.0%. 

Network 

Confidence Level(95.0%) in each inspection interval in second 

10s 20s 30s 40s 50s 

 
ERNet  

Adaptive 
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s 

No 

Failure 

1.76 ± 

0.186 

11.88 ± 

2.018 

16.34± 

3.278 

26.02 ± 

7.061 

lat  = 48.4N 

lon =9.6 E 
 

No 

Failure 

2.22 ± 

0.377 

21.24 ± 

3.294 

29.8 ± 

4.470 

39.54 ± 

7.087 

ERNet 

Fixed thresholds 

lat = 47.9 N 
lon =5.3 E 

 

No 
Failure 

5.28 ± 
0.559 

33.6 ± 
6.008 

51.58 ± 
8.268 

76.98 ± 
10.664 

lat  = 48.4N 

lon =9.6 E 
 

No 

Failure 

3.90 ± 

0.594 

30.96± 

4.433 

47.36± 

5.294 

57.74 ± 

6.043 

NARNet 
Adaptive 

 

 
 

lat = 37.5N 
lon =88.6W 

 

No 
Failure 

No 
Failure 

13.05± 
4.909 

30.95± 
8.990 

39.15± 
9.789 

lat  = 40.82N 

lon =80.9 W 
 

No 

Failure 

No 

Failure 

No 

Failure 

10.4±  

2.362 

37.1±  

3.511 

NARNet 
Fixed thresholds 

 

 
 

lat = 37.5N 
lon =88.6W 

 

No 
Failure 

No 
Failure 

24.3 ± 
6.098 

87.65± 
14.106 

110.95 ± 
18.306 

lat  = 40.82N 

lon =80.9 W 
 

No 

Failure 
9.86± 1.964 

11.45 ± 

1.660 

41.75 ± 

3.719 

79 ± 

 15.844 

ERNet  
Adaptive 
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0.56± 

0 

0.56± 

0 

0.49 ± 

0.00759 

0.46 ± 

0.01691 

0.37± 

0.01730 

lat  = 48.4N 

lon =9.6 E 
 

0.43 ± 

0 

0.43 ± 

0 

0.43 ± 

0 

0.35 ± 

0.02274 

0.28 

±0.02075 

NARNet 

Adaptive 

 
 

 

lat = 37.5N 

lon =88.6W 
 

0.32 ± 

0 

0.32 ± 

0 

0.32 ± 

0 

0.38 ± 

0.01080 

0.37 ± 

0.03133 

lat  = 40.82N 

lon =80.9 W 
 

0.60 ±  
0 

0.60 ±  
0 

0.53 ± 
0.01460 

0.52 ± 
0.01234 

0.31 ± 
0.01897 

ERNet 

Adaptive 
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 141± 

 0 

143.64 ± 

0.279 

174.24 ± 

2.907 

194.94 ±  

6.589 

235.58 ± 

8.000 

lat  = 48.4N 

lon =9.6 E 
 

190 ± 
 0 

192.22 ± 
0.377 

212.66 ±  
3.617 

286.14 ± 
11.223 

314.54 ± 
8.0399 

NARNet 
Adaptive 

 
 

 

lat = 37.5N 

lon =88.6W 
 

322 ± 

 0 

322 ±  

0 

339.15 ± 

5.984 

357.75 ± 

10.801 

367.2 ± 

12.837 

lat  = 40.82N 

lon =80.9 W 
 

    182 ± 

 0 

189.5± 

2.079 

190.5 ± 

1.714 

204.65 ± 

6.339 

365 ± 

40.940 

 

6.3.2 Result analysis and discussion  

As can be seen in Figure 31, the number of disrupted connections in the adaptive 

protection model for all failure scenarios is reduced significantly compared to the reactive 

restoration approach. The fewer number of disrupted connections translates to more 
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reliability in the network. Because of the long distances among nodes and links in the 

North-American Reference Network topology compared to the European Reference 

Network, it may take time for the disaster to impact network components. During this 

gap, the impacted network may not experience a disruption in connections. 

We have provided a comparison for self-adaptive protection approach, where the 

threshold parameter can adjust itself based on network requirements and topology 

properties with a reactive protection model with pre-assigned threshold ranges (Figure 

32). The selected parameters in the fixed threshold approach are upper threshold (75%), 

lower threshold (50%). The results indicate that the adaptive protection model improves 

network efficiency by reducing the number of disrupted connections compared to the 

fixed thresholds approach. As the self-adaptive protection model is able to adjust itself 

with network conditions, the ultimate protection would be applied against failure 

scenarios. As can be seen, disruption in the network could be significantly reduced during 

disaster events in the self-adaptive protection approach.  

In Figure 33, the behaviour of PRT in different inspection intervals is depicted. PRT 

can adjust itself in combination with the network status in each decision interval time 

based on an updated network topology in each interval decision and by considering the 

disaster area to provide better protection. This can explain why PRT in each failure 

scenario follows a different pattern. The results indicate that if the network requires more 

protection and the self-adaptive approach determines that more paths are in danger and 

should be rerouted through more reliable paths, the threshold parameters change 

reactively to accomplish this requirement. On the other hand, the proposed protection 

approach is also able to increase the PRT value to reduce the number of required 

rerouting when it is determined that network protection can be enhanced with less 
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preventive rerouting.  The results for preventive protection rerouting for the disaster 

locations are depicted in Figure 33. Based on the rerouting decision parameter‟s value and 

topological properties in the disaster area, the number of preventive rerouting paths to 

improve network protection may be different. The results presented in Figure 34 are 

directly related to the assigned PRT value and also the number of failed paths that need 

traffic transferred through more reliable paths.  

6.4 Concluding remarks 

In this chapter we improved the preventive protection model and made decision 

rerouting parameters adaptable with network conditions. We considered the strategic 

importance of the link in the network or link betweenness centrality and failure 

probability for endangered links to indicate the potential damage risk to each link 

involved in the impact area. Using the average failure probability of the maximum and 

minimum computed link damage risks, the proposed protection model calculated and 

assigned the rerouting decision parameters to reroute data prior to failure. As the disaster 

may change the network topology, the decision parameter has to be updated in each 

interval decision according to network conditions. 
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Chapter 7: Design preventive protection in SDN network 

Distinctive features in SDN provide flexibility for network developers to improve new 

experiments in a much more efficient way. In this chapter we design a protection model 

in SDN technology and explain the implementation steps in detail. We also study the 

required time to reroute the considerable number of data flows in SDN Openflow 

switches and examine the impact of a large topology on the controller when it needs to 

interact with extensive required data flow updates. 

7.1 SDN architecture overview 

Separating control plane and data plane in communication networks motivated 

network developers to introduce Software Defined Networking (SDN). Control plane 

handles the logic of traffic transmission such as data routing decisions or desired access 

policies. Data plane is involved in traffic forwarding based on the defined logic in the 

control plane.  Decoupling of these two important cores in an operational network can 

lead to enhance flexibility for network developers to experiment new ideas independent 

of the implemented hardware. Controlling the entire network from a central point, using 

developed software in tune with network requirements, may improve network 

performance efficiently and reduce debugging or reconfiguration efforts. 

Flow tables in switches and routers can be programmed using OpenFlow protocol. The 

defined configurations and desired policies in the controller are transferred to the 

OpenFlow switches through a secure channel [80]. Figure 35 shows the connection 

between controller and switches through OpenFlow protocol. Using OpenFlow protocol, 

OpenFlow controller instructs OpenFlow switches to update their flow table entries to 

accomplish appropriate actions [80]. 
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Figure 35. OpenFlow interaction 

Along with developments in communication technology, providing a reliable 

connection is always important for service providers and subscribers. In this regard, 

network reliability is one of the main concerns for network designers and SDN 

developers. Network resiliency In SDN technology has been studied in several aspects 

such as improvement in fast notification to the controller or development in dynamic 

restoration or pre-planned protection mechanisms which have been discussed in chapter 2 

(literature review). 

In the literature, the main effort is to respond to failure events through a reactive 

approach and is mainly focused on single link failure scenarios. Here, our objective is to 

examine a proactive protection approach in SDN technology using pre-knowledge of 

potential failures that may affect a part of the network. The proposed model is not limited 

to a single failure problem and can improve network resiliency in large-scale failure 

scenarios such as natural disasters or power outages. Considering SDN technology and its 

features, our previous study of a preventive protection model is [60] fully appropriate and 

consistent with this concept. In the next section we explain our proposed model to 

mitigate disaster effects using SDN technology. We apply a preventive protection 

mechanism to SDN technology to design a new model that is able to address failure 

issues caused by disasters. 
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Flow Entries
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7.2 Disaster protection in SDN paradigm 

The available capabilities in SDN technology such as centralized controller, 

programmability and separation of data and control planes are the features that make this 

technology appropriate to develop a proactive protection mechanism in natural disaster 

scenarios. To improve network protection, the proposed model programs and manages 

data plane using OpenFlow protocol based on flow patterns in the controller. An 

application on top of the controller defines flow paths for each source and destination and 

decides how data should be routed in a disaster event. The controller inserts flow entries 

instructed by the disaster protection application and updates the routing table in each 

OpenFlow switches. Without SDN features, managing preventive rerouting and applying 

it proactively would be difficult or even infeasible in disaster scenarios. 

To improve network resiliency in case of natural disasters, the corresponding disaster 

protection application processes the received disaster‟s information and sends necessary 

protection decisions to the controller before a disaster can destroy the entire network.  We 

assume an earthquake-like model in our study, where the velocity propagation can be up 

to 8.5 km/s depending on geographical characteristics and earth materials [71]. This 

indicates that the disaster mitigation application and the SDN controller have a sufficient 

time to decide and apply desired protection policies, prior to damage of substantial parts 

of the communication infrastructure. 

The proposed protection model acts in a proactive way, which makes it distinctive 

from reactive protection mechanisms in failure scenarios. In a proactive protection 

mechanism, rerouting decisions are undertaken before a connection is disrupted. In 

contrast, reactive protection in current SDN technology responses to failures after fault 
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detection and during a time consuming process reroutes traffic through computed backup 

paths. Consequently, the delay between failure detection and traffic restoration results in 

packet loss. Although in preventive protection mechanism some expected reliable backup 

paths may fail as the applied method is probabilistic, the proposed model is able to save a 

significant number of connections against upcoming damage. 

7.2.1 Disaster mitigation application 

The disaster mitigation application is responsible for processing the received data 

regarding the disaster event. This information can be obtained by sensors designed to 

detect the occurrence or possible occurrence of natural disasters. The obtained 

information may include the area and severity of the disaster. Disaster detection or early 

warning and OpenFlow improvements to generate and send appropriate packets with 

disaster information are not considered in this thesis and need further research. In this 

chapter, we assume a disaster mitigation application is able to receive this information. 

The proposed application listens to the controller and, once a disaster event is detected, 

the application starts to process the received disaster data. Based on the provided 

information which is included structural conditions of the disaster area and its severity, 

the mitigation application computes the failure probability for each of the network 

components. According to the distance of the network components (node or link) to the 

epicentre, we may have different failure probabilities for each network component. This 

information will be used to calculate end-to-end path failure probability between each 

source and destination nodes. Considering this information, the proposed application is 

able to determine more reliable paths with less failure probability and send instructions 

regarding the new paths to the controller. Accordingly, the controller updates flow tables  
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Figure 36. SDN preventive protection steps 
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for selected OpenFlow switches with new paths and endangered traffic is rerouted 

through more reliable paths.  

 In Figure 36 we show the process of the preventive protection in SDN. Figure 36-a 

illustrates that a disaster sensor detects a possibility of a disaster and sends messages to 

the controller, which then triggers an event and notifies the preventive protection 

application. In Figure 36-b, the corresponding application processes the received data and 

computes reliable paths and sends the policy back to the controller. Afterward, the 

controller injects new paths and updates OpenFlow switches based on the indicated 

policy. Figure 36-c shows that while the disaster expands, the traffic of the endangered 

path is rerouted through more reliable paths determined by the preventive protection 

application.  At a moment of the endangered link failure  (Figure 36-d), its traffic has 

been already moved through new paths and the endangered traffic is therefore protected 

against failure. By expanding the disaster, if any link or node is damaged, the preventive 

mitigation application is notified and the traffic of the lost link is rerouted through a 

reliable path. The contributions of the proposed approach in a natural disaster conditions 

are: 

 Proactive protection approach reroutes traffic of the endangered path prior to 

failure. In this way, the amount of lost information will be reduced. In contrast, 

current reactive restoration mechanisms in SDN restore traffic once the controller 

has been informed and backup paths are determined along with updating routing 

tables in OpenFlow switches. This process comes with delay which may cause 

packet loss.   

 In the reactive restoration approach, backup paths are calculated by the controller, 

usually using shortest path algorithm. Since the controller has no knowledge of the 
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disaster spreading, the assigned backup path may also be damaged by the disaster 

expansion. In the proactive protection model, traffic is rerouted through more 

reliable paths with a lower failure probability thus giving them a chance of survival, 

even with disaster expansion.  

 The proactive protection model is able to improve network resiliency in multi-

failure events as it follows a probabilistic pattern and the provided protection is 

based on the available network infrastructure (post-failure topology). This feature 

perceives the proposed preventive model from a predefined backup path protection 

method. There is a possibility that in the predefined protection approach, working 

and backup paths are both damaged with disaster expansion. On the other hand, pre-

determining a backup path for a failure situation of a probabilistic nature is very 

hard or infeasible. 

7.2.2 Performance study  

We evaluate the efficiency of SDN controller by study failures in European Reference 

Network (ERnet) with 37 nodes and 57 links and a mean nodal degree of 3.08. Each city 

in the topology represents a node in our study, which is considered as an OpenFlow 

switch. We simulate the disaster duration for 50 seconds for a random place, around the 

east of France (longitude = 47.9 N, latitude=5.3 E). To study the performance of 

protection in SDN network, we consider an off-line running of the preventive model and 

instruct the controller using the obtained results. Table 9 shows the required preventive 

rerouting from the time that the disaster is detected and then for each 10s interval.  
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Table 9. Instructed number of preventive rerouting to the controller 

Interval  
Detecting 

disaster 
10s 20s 30s 40s 

Number of 

rerouted paths 
141 3 14 11 79 

 

The details of the implementation for the experimental test-bed are provided in 

Appendix section. Figure 37 shows an overview of SDN test-bed implementation.  

 

Figure 37. SDN Controller and OpenFlow vSwitches 

At the time that a disaster is detected or the possibility of a disaster is predicted, an 

extensive amount of rerouting is required until the end of the disaster event. In this case, 

the controller should update a considerable number of paths. As the common way to 

interact between API and the controller is through http connection, we examine different 

ways to instruct the controller. To evaluate performance, the required time to add data 

flow updates is computed. Following approaches are studied to interact with the 

controller:  
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 Single thread, single socket, Single thread, multi socket 

 Multi thread, single socket, Multi thread, multi socket 
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Figure 38. Controller response time in different interaction ways 

 

Figure 38 shows the required time to update the OpenFlow switches flow table using 

different approaches. In the first approach, single thread single socket, each required 

update is sent to the controller sequentially. A considerable number of requested data 

flow updates in the first interval are processed through a time consuming process. By 

decreasing the number of data flow updates, we can see that the consumed time to update 

OpenFlow virtual switches flow tables decreases. To improve the controller response time 

and accelerate the process, we implemented the request in the form of single thread multi 

socket. The results are the same as the previous approach and indicate that the controller 
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is the same as the single thread and single socket approach. By using multi thread to 

instruct the controller to apply data flow updates, we can see that the response time 
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Figure 39. OVS direct interaction. 

To reduce the required time to add new paths, we extend our experience to install 

flows directly to the OpenFlow switches. This extension can be improved as embedded 

part in the OpenFlow controller as a separate module, specified for disaster recovery. 

The results presented in Figure 39 shows that direct interaction with OpenFlow 

switches can improve the required time considerably. This improvement can be 

considered for further OpenFlow protocol development to instruct OpenFlow virtual 

switches without involving controllers and quickly updates data flow tables. 
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Chapter 8: Conclusion and future works 

Network survivability as an important factor to provide reliable communication in 

large-scale failure scenarios was the main focus of this research. Through this thesis, we 

provided an extensive study of network survivability in large-scale failure scenarios in 

both deterministic and probabilistic approaches. We developed an approach considering 

destructive wave energy behaviour in a time-varying, large-scale failure scenario to 

compute probability of failures for network components in disaster area. We extended the 

time-varying probabilistic model and introduced a novel preventive protection approach 

to enhance network resiliency in large-scale failure scenarios. The developed scheme 

applied end-to-end path failure probabilities and used switching parameters, called upper 

and lower thresholds, to reroute endangered traffic through more reliable paths. The 

results indicate that the proposed model was able to decrease the average network 

disruption time as well as the average number of disrupted connections. Both improved 

parameters are important to enhance the level of resilience and ensure undisrupted data 

delivery in the network. We provided a method to refine the parameters of a preventive 

protection scheme in a dynamic and proactive manner with the goal of reducing the 

number of disrupted connections in large-scale scenarios. We showed why adjusting 

threshold parameters have an important effect to protect data flows prior to failure and 

studied the influence of them on network performance. We proposed an algorithm to 

analyze network performance in different threshold ranges and discussed how parameter 

value assignments can affect network performance and the provided protection level.  To 

improve the preventive protection model and make decision rerouting parameters 

adaptable with network conditions, we considered the strategic importance of the link in 
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the network or link betweenness centrality in addition to failure probability for 

endangered links. These two parameters employed to indicate the potential damage risk to 

each link involved in the impact area. Using the average failure probability of the 

maximum and minimum computed link damage risks, the proposed protection model 

calculated and assigned the rerouting decision parameters in an automated way. As the 

disaster may change the network topology, the proposed approach was to be able to 

update decision parameters in each interval inspection according to network conditions. 

Considering software defined networking as an emerging technology, we designed an 

approach to improve network protection in large-scale failure scenarios in SDN network. 

The performance of the SDN controller to apply an extensive number of data flow 

updates through different http interaction ways was studied. 

At this point, our proposed model can successfully increase the required level of 

network resiliency and apply protection in large-scale failure scenarios. The proposed 

model can be improved considering several aspects for further studies.  

Future research in large-scale failure scenarios includes developing an optimization 

model to reduce the number of preventive rerouting paths while providing the maximum 

network resiliency. By optimizing the decision parameters, network resiliency in large-

scale failure scenarios can be improved while decreasing the added overhead on the 

network caused by extra required preventive rerouting.  

Although the preventive protection model is distinct from the failure probability 

estimation process and capable of improving network protection as long as the failure 

probability of network components are provided, an enhanced process to determine 

failure probability for each specific disaster scenario such as earthquakes, hurricanes, etc., 

can  be considered as a significant improvement in future studies. This improvement can 
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be considered as a collaborative effort between IT developers and experts in the study of 

the disruptive behaviour of natural disasters to estimate the possible failure probability for 

network components with enhanced accuracy.  

Taking into account the SDN technology, develop a disaster mitigation application 

specified to address failures in large-scale disaster scenarios can be an important 

development in future. Embedding the preventive protection model in OpenFlow protocol 

to reduce external application interaction with the controller can be a solution to provide 

carrier-grade network reliability.  

Security features also can be considered as a further development in different parts of 

the proposed preventive model such as receiving secure messages regarding the disaster 

information and securely applying threshold parameters. 
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Appendix 

Experimental test-bed and implementation details 

 
We discuss several ways to deploy interaction between API and the controller as 

following: 

a) Single thread, single socket 

The first approach is to add the requested flows through REST API and sends requests 

one at a time. In this situation, we have same socket (IP address + port) for all requests. 

For the experimental model in this study we use a web access to the controller.  

b) Single thread, multiple sockets 

The selected controller in this experiment (OpenDaylight) does not allow us to use 

different ports to establish http connections.  To create multiple sockets one solution is to 

use same port with different IP addresses. To have several IP addresses in the controller, 

we are allowed to increase the number of ethernet cards in the virtual machine (VM) up to 

10. Since one of these connections will be dedicated to the Internet for any required 

update, the rest can be used for adding several IP addresses and create load balancing in 

the controller.  For this purpose, we assign different IP address to each ethernet card. By 

running the API, at each time one IP address will be selected and the request will be sent 

to the controller.  

c) Multiple Threads, Single Socket 

Rather than running each request sequentially, the other solution is create new thread 

for each HTTP request and let that request run in its own thread until it has completed.  

d) Multiple Threads, Multiple Socket 

This solution is a combination of the previous scenarios, trying a mix of multi-
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threading and multiple sockets. 

To simulate the disaster event we implemented this model in virtual test-bed which we 

explain in following.  

Experimental evaluation has been implemented on a Dell CS24-T4 server with 32GB 

memory, 12 Intel Xeon CPUs with 2.133 GHZ frequency on 925 GB hard drive capacity. 

The test-bed is implemented in virtual platform.  Hypervisor in the platform is VMware 

ESX-i. To distribute the physical server and create more virtual machines with load 

balancing among them, we added another ESX-i server to the cluster in the VMware 

vCenter.  Each virtual machine has been configured with CentOS 6.5 and OpenVSwitch  

(OVS)  2.1.2. acts as a node of the chosen topology. 

 Each OVS VM has 2GB memory with 11 GB allocated hard disk.  To be able to test 

ping between source and destination, each OVS VM needs to have a host connected to it. 

In order to configure a host for each OVS VM, we created another VM and assigned a 

bridge port (i.e., br10) of OVS to have connection to the host. Tiny Core Linux is the best 

option to have a light operation system in this extra layer of virtualization. Tiny Core 

Linux operating system can run well on only 17 MB hard space and 128 MB RAM. In 

our experimental test-bed, we configure Tiny Core Linux OS on top of the CentOS using 

VirtualBox with 128 MB memory and 256 MB disk space. This extra configuration adds 

another layer of virtualization and complexity to the system. The controller in the 

experimental model is configured with OpenDaylight software running on one of the 

CentOS VMs. The selected IP address scheme for this experiment is 10.10.0.0/16. Table 

8 shows the IP addresses distribution among VMs.    
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Table10. IP addresses scheme in experimental test bed. 

Device Name IP  Address(s) Description 

OpenDaylight 

Controller 

 

10.10.0.100 
 

 

OpenVSwitches 

(nodes) 
10.10.X.0 

 

“X” refers to the switch number 

Hosts 10.10.X.10 
 

“X” refers to the switch number 

Physical server 10.10.0.1  

Desktop PC 10.10.0.2  

 

As the OVS is a software switch, it should be installed on top of the existing system. It 

also should be able to tie to physical port using bridge. The bridge acts as a middle 

interface between the OVS software and the physical ethernet port. For example in each 

OVS we create a bridge called br0 and attached its port to the physical ethernet port. The 

associated IP address will be assigned to br0 and not to the ethernet port. To make 

possible that two OVSs interact to each other and keep configuration persistence, we need 

an overlay link between them such as generic routing encapsulation (GRE) tunnel. The 

GRE tunnel will be configured in another bridge (i.e., br0) and makes up link between 

two switches. 

By adding IP addresses to the OVSs and configure GRE tunnels among them, upon 

loading OpenDaylight, the graphical interface of the controller shows the nodes and links 

via a http connection. 

By looking at the topology, we can see some adjacent nodes are located far away from 

each other.  In this case, sending a packet from a source to the destination with 

considerable distance will cause propagation delay. To apply this delay, we have 
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calculated the actual distance between adjacent nodes (cities) in ERnet topology using 

google map distance tool with an acceptable approximation.  

To simulate propagation delay for each link we use traffic control (TC) module in 

Linux, however this module is not awareness of software bridges (i.e., br0, br1, etc.) 

employed by OVSs. TC properties should be applied to the physical port (i.e., eth0) 

directly. The problem with this is that if we configure our entire overlay GRE tunnels that 

connect to various switches on top of this port, then any delay configuration on the 

physical port will be applied to all GRE tunnels, resulting in each tunnel having the same 

delay value which is in contrast with our goal.    

To address this issue, TC should be applied directly to each physical port. In Linux 

VM we are able to extend ethernet ports to maximum 10, means that we can connect each 

OVS to maximum 10 other switches. Here we recall that, based on the selected topology, 

maximum OVS connections are 6 and this feature can fulfill our requirements by adding 

extra physical ports to each Linux VM. For each added physical port, we create an 

individual bridge and then configure tunnels among switches with different source and 

destination IP addresses. In this way, we are able to apply delay to each physical port and 

simulate propagation delay. 

 


