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Abstract

The reality of the constant emergence of new threats justifies the necessity to protect

network assets and mitigate the risks associated with attacks. In this context, elim-

inating faulty network entities in the distributed environment such as cloud of the

clouds and smart grids catches the attention of the researchers. Among all threats,

black hole is a severe and pervasive one which models a network site that disposes

any incoming data without leaving any trace of such distraction. Black hole search

is the process that leverages mobile agents to locate black holes in a fully distributed

way.

In this paper, we first review the state-of-the-art research in this area by cat-

egorizing the research results based on the adopted network models, being either

synchronous or asynchronous. Most of the existing works focus on locating a single

black hole. As for multiple black holes, the problem becomes even more complex.

For the study of multiple black hole search, we introduce a new attack model

that involves not only multiple faulty nodes in the network (a type of black hole),

but also a gray virus that can again infect a previously repaired faulty node. Under

such a model, the multiple faulty node search problem becomes more complex and

realistic. We analyze the proposal model and identify key observations about the

multiple faulty node search/location problem. We introduce one-stop and multi-stop

gray virus and study the faulty node repair and black hole search problem.

We first propose solutions that use a token model to solve the problem caused by
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a multi-stop gray virus in an asynchronous arbitrary network topology. Also under

the token model, we then present solutions for the problem caused by this one-stop

gray virus in an asynchronous ring network. Apart from the token model, we continue

to study the problem caused by the one-stop virus using a whiteboard model, more

particularly, with only one whiteboard in the homebase node in an asynchronous ring

network

After proposing the new model and our algorithms, we conclude some future work

on both single and multiple black holes search. We also highlight some open problems

on the one-stop and multi-stop gray virus.
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Chapter 1

Introduction, Motivation, and

Contribution

1.1 Introduction

Over the past few decades, as network-based services have become prevalent, so

has the need for effective diagnosis of all-too-frequent network anomalies and faults.

Among these, a black hole is a severe and pervasive problem. A black hole models

a computer that is accidentally off-line or a network site in which a resident process

(e.g., an unknowingly-installed virus) deletes any visiting agents or incoming data

upon their arrival without leaving any observable trace [31]. For example, in a cloud,

an accidentally offline or malfunctioning computer node that causes loss of essen-

tial data for cloud users or a cloud system would immediately turn this node into a

black hole which would compromise the quality of the cloud service. Moreover, any

undetectable crash failure of a site in an asynchronous network transforms that site

into a black hole. Web search engines use web crawlers, which can traverse the web

by following hyper-links and storing downloaded pages, to collect data into a large

database that is later indexed for efficient execution of user queries [70]. However,

when a web crawler visits a crashed site (a black hole) and is eliminated, not only
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the information of the current site but also all the previous collected indexing data

will not be available. If the crashed site cannot be located, the web crawlers which

execute the same protocol may all die in the black hole and no index data can be

updated to the database of the web search engine. Consequently, effective detection

of a black hole is a critical issue for the successful deployment of services in computer

networks.

A mobile agent is an abstract and autonomous software. As such, these agents are

versatile and robust in changing environments, and can be programmed to work in co-

operative teams. Such team members may have different complementary specialties,

or be duplicates of one another [54]. For the black hole search problem, one or a team

of identical agents are used to perform the task. These agents have limited computing

capabilities and bounded storage. They all obey an identical set of behavioural rules

(referred to as the “protocol”), and can move from node to neighbouring node. Also,

these agents are anonymous (i.e., do not have distinct identifiers) and autonomous

(i.e., each has its own computing and bounded memory capabilities). By virtue of

these merits, they are always adopted to locate the black holes in computer networks.

There are several advantages of using mobile agents, such as they can reduce the net-

work load, overcome network latency, encapsulate protocols, execute asynchronously

and autonomously, and adapt dynamically [64]. To locate the black hole, there are

two commonly used methods: a central controller is dedicated to send Ping messages

constantly, or forcing each node to send a heartbeat message to the central controller

periodically, each of which costs large network traffic. On the other hand, the only

traffic caused by black hole search is on mobile agents’ traveling during their search.

Specifically, black hole search is a task that allows a team of mobile agents to

collaborate with each other to locate black holes within finite time, and eventually

leaves at least one agent surviving and knowing all the edges leading to the black

holes [38]. Many distinct uses of mobile agents to locate a single black hole in a
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computer network have been studied in different contexts [7, 17, 20,29,44,60].

In practice we usually abstract a network into a graph G(V,E) where nodes in V

represent computer hosts and edges in E represent network links. As for the agents,

most studies leverage anonymous agents (aka identical agents) for black hole search

where these mobile agents are indistinguishable from each other (no identification or

signature on the agents). The agents also follow the same routing protocol to identify

and report any black hole. Moreover, for comparison purposes, some recent results

with regard to different types of malicious hosts are also discussed.

Flocchini et al. [51] surveyed the black hole search problem and defined the model

of asynchronous and synchronous networks in 2006. This survey also introduced the

black hole search problem as a special case of exploring and mapping an unknown

environment. In their survey [65], Markou et al. discussed previous research papers

which identifyed hostile nodes. In this survey, the authors focused on synchronous

special trees, arbitrary trees, and arbitrary graphs. Meanwhile, they also briefly

mentioned co-located agents in asynchronous rings using a whiteboard model. Later,

Zarrad et al. [73] briefly introduced and classified the black hole search problem in

synchronous and asynchronous networks without detailed assumptions.

At the very early stage, a large body of existing literature on unknown graph

exploration problems always assumes that the underlying network graph does not

contain any other types of malicious entities [3]. As the studies continue, more and

more attention is drawn to the security issues on graph exploration which is also

called dangerous graph search and includes detecting and locating black holes (as one

type of malicious hosts), malicious agents, or faulty links [18].
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1.2 Motivation

In reality, many computer faults/virus cannot be completely removed by anti-virus

software. After a repair, a previously infected node may still be more vulnerable

than the normal ones, and can be easily reinfected, for example, with fast spreading

worms mentioned in [72], such as W32/CodeRed, Linux/Slapper, W32/Blaster or

Solaris/Sadmind, a host can be exploited only if the system has a vulnerability known

a priori. Such virus behaviour is commonly referred to as vulnerability dependency.

In cloud computing, the term vulnerability refers to the flaws in a system that allow

an attack to be successful [56]. This vulnerability security issue has been widely

discussed in research work such as [4, 19,55].

For instance, a hacker injects into a computer host a virus that can delete any

incoming data, which may later be removed by an anti-virus agent. However, after

repair, an unknown vulnerability remains on the host that enables the hacker’s next

attack. Cooper et al. [21] first introduced a type of a weaker black hole, called a

hole, which also eliminates any incoming data, however, can be repaired by the first

encountering agent. With the vulnerability dependency, the hacker can inject even

more powerful virus and turns the target host into a black hole at some point in

time. Since the hacker may attack the host for any period, the duration of the host

being a black hole can vary from instant to permanent. Under this attack model, we

introduce a Faulty Node Repair and Dynamically Spawned Black Hole Search problem

(Repair and Search problem for brevity).

When a black hole is repairable, we call it a faulty node. To repair the fault, there

is a cost, for example, part of the content of an agent is a repair kit, so that after

repair the agent can no longer continue to explore the network [21].

In this new attack model, as with the holes mentioned above, a faulty node can

eliminate any incoming data and can be repaired by an encountering agent at the
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expense of its life. If one or more agents simultaneously enter a faulty node, one

agent will die after repairing the fault, and all other agents die immediately.

After this repair, the repaired node behaves like a normal one, however, it can be

again infected by a gray virus. A gray virus (GV for brevity) is a piece of malicious

software which can infect (due to the vulnerability of a repaired node) a repaired

node by residing in it and turning it into a black hole; it has no destructive power

on a normal node or link. After infecting a vulnerable node (a faulty node which has

been repaired), a GV that can no longer travel to other nodes is called a one-stop

gray virus, otherwise, a multi-stop gray virus. As faulty nodes are harmful but can

be repaired, part of the mobile agents’ task should be repairing all the faulty nodes.

The agents then need to locate the black holes that are infected by the GV s.

Comparing to the traditional black hole, the timing of the presence of the GV

infected black hole is finite but unpredictable. Contrary to the traditional black hole

search in which all agents start in a network with one and only one back hole known

a priori, in our proposed new attack model, a repaired faulty node can be infected

and turned into a black hole any time while the agents traverse the network to try to

repair the faulty nodes. This detail that the black hole can appear at any arbitrary

time drastically changes the nature of the black hole search problem in asynchronous

networks (i.e., The time that an agent takes for every action (sleep or transit) is

finite but unpredictable [51].). The scenarios are significantly more complex than the

traditional black hole search, especially with the presence of multiple faulty nodes

which eliminate agents and consequently need to be repaired.

In addition, another difference between a faulty node and a black hole is that a

faulty node can eliminate only one agent while a black hole can eliminate multiple

agents. The co-existance of multiple faulty nodes and a black hole further increases

the difficulty of repairing faulty nodes and black hole search. We use the following

case study to illustrate why an algorithm for traditional black hole search is not
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suitable in our new attack model.

N
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N

N

N
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HB
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1 2
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Figure 1: 1. A traditional black hole search algorithm terminates when an agent
explores n− 1 nodes (nodes N1 to N2). 2. No agent can pass nodes F1 and F2

since faulty nodes are treated as black holes, so that no agent can explore n− 1
nodes. F: Faulty node, N: Normal node, R: Repaired node, A: Agent

To locate a black hole in traditional black hole search in asynchronous network,

there is a commonly used technique called cautious walk (details in Section 2.2);

a first agent has to leave a dangerous mark (a token/whiteboard messages) on the

node before the black hole and enter it. When a second agent sees the mark, it

will not enter the same node. This technique is used to minimize the loss of mobile

agents. A traditional black hole search algorithm terminates when all nodes in the

network have been explored except one, and this only unexplored one is the black

hole. However, with multiple faulty nodes in the network in our new attack model,

even when an agent can leave unlimited information on any node it visited (e.g., using

a new technique that we introduced in Section 4.2), a traditional algorithm cannot

solve the Repair and Search problem. This is because in traditional black hole search

algorithms, there is no mechanism to distinguish a black hole from faulty nodes, thus,
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all agents will treat a faulty node the same way as a black hole according to all pure

black hole search algorithms. Namely, no other agent except for the one that died in

it will further enter into a black hole. Since there are multiple faulty nodes that are all

treated as black holes, no agent is able to explore (n− 1) nodes in the given network

(see Figure 1). Hence even adding extra communication capability and unlimited local

memory storage on each node in the network, none of the existing black hole search

algorithms can locate and repair all faulty nodes as well as locate the re-infected black

hole. We further use one of the best black hole search algorithms in asynchronous

ring network proposed by Flocchini et al. [43] to illustrate this observation in Section

3.2.2.

1.3 Contributions

First of all, we have conducted an extensive literature review of the black hole search

problem which was submitted to Journal of Parallel and Distributed Computing.

This comprehensive literature review first includes all commonly used assumptions,

classifications, and cost analysis metrics, which appears in Chapter 2. Following this

in Chapter 3, we collect, classify, and analyse all papers which focus on single black

hole search, multiple black hole search (MBHS), and other types of malicious hosts.

Secondly, after reviewing the existing research work, we introduce a new attack

model that involves not only multiple faulty nodes in the network (a type of black

hole), but also a gray virus that can again infect a previously repaired faulty node.

Under such a model, the repair and search problem becomes more complex and re-

alistic. We analyze the proposal model and highlight key observations regarding this

problem. We introduce one-stop and multi-stop gray virus and study the faulty node

repair and black hole search problem.

Thirdly, we propose solutions to solve the problem caused by a multi-stop gray
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virus in an asynchronous arbitrary network topology using a token model. We con-

clude that k > b agents ( k is unknown a priori) are necessary and sufficient to repair

and locate b faulty nodes in the network. Since the exist of a multi-stop gray virus

may make the repair and search problem the same as the MBHS problem which is

unsolvable without additional assumptions, we use this algorithm as an introduction

of the multi-stop gray virus and identify some key observations for the impact of this

virus.

Most importantly, we study the one-stop GV under the token model in an asyn-

chronous ring network. We conclude that b + 9 agents can repair all faulty nodes as

well as locate the black hole that is infected by the one-stop GV . Due to the nature of

the dynamically spawned black hole, the Repair and Search problem becomes much

more complex.

Lastly, after the studies using the token model, we propose a solution to solve the

problem in an asynchronous ring network with only one whiteboard in the homebase

node. We conclude that using our proposed algorithm, b + 4 agents can complete

the repair and search task within finite time. Our algorithm works even when the

number of faulty nodes b is unknown. We provide not only theoretical proof but also

simulation results which can further support the correctness of this algorithm.

In addition, we also further pinpoint some future work on the study of black hole

search, as well as for the problem of repair and search. We collect some remarkable

future work mentioned in publications, and further analyze and classify some other

future work by single black hole search, multiple black hole search and open problems

with different types of agents. Particularly, we determine open problems with one-

stop and multi-stop gray virus.
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1.4 Thesis Organization

In Chapter 2, we will introduce the commonly used assumptions and complexity

analysis metrics. We then have a comprehensive literature review in Chapter 3. The

definitions, models, and assumptions for our algorithms are introduced in Chapter 4.

We will present the algorithms for the repair and search problem using a token model

in Chapter 5, and using a whiteboard model in Chapter 7.

Finally, in Chapter 8, we conclude this paper in Section 8.1 and offer future work

on both single and multiple black hole search problem as well as other types of agents

in Section 8.2.



Chapter 2

Background Introduction - Commonly

Used Assumptions in Black Hole Search

Because none of the existing algorithms is omnipotent to solve the black hole search

problem under any condition, it is crucial to collect all the assumptions that are made

in the existing research and study the impact of each. In this section, we introduce a

list of assumptions that are commonly used to solve the black hole search problem.

First of all, existing research assumes that the agents’ initial wake-up nodes are

safe; otherwise, all the agents may die before even starting the graph exploration, ren-

dering the problem unsolvable. We further observe: unless the agents are extremely

fortunate, namely, happen to explore all nodes in a graph except the black hole, in

order to systematically identify a black hole, we must expect at least one agent to

go in a black hole and somehow leave a hint to the other agents before it dies, which

allows the other surviving agents to know the location of the black hole. All the

remaining assumptions are listed in Table 2. We provide a detailed explanation of

each of these assumptions in the following paragraphs.

10
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Table 2: Assumptions that are frequently used in literature

Network
synchronization

Communication
model

Agent
starting
location

Network knowledge

Synchronous
network

Pure token Co-located No knowledge (e.g.
unknown)

Asynchronous
network

Enhanced
token

Dispersed Edge-labelled (e.g.
sense of direction)

Whiteboard Network topology
(e.g. ring)

Face-to-face Complete knowl-
edge (e.g. map)

2.1 Network Synchronization

2.1.1 Synchronous Network

Synchronous network means that in the network all the agents initially wake up at the

same time, and it takes unitary amount of time (time unit) for an agent to traverse

a link or explore a node (aka having a global clock). After each time unit, an agent

must decide whether to move to a neighbouring node, to stay at a current node,

or to terminate the algorithm. As such the complexity of the agent’s algorithm in

synchronous networks can be measured in terms of the number of time units.

In synchronous networks, a time-out mechanism has been introduced to enforce

the time synchronization [17,23–25,59]. Such a mechanism allows us to easily identify

which agents died in the black hole. Suppose a team of agents should meet at a node

u after m time units, after this time-out, all other agents know that those who do not

show up in node u died in the black hole.

Using the time-out mechanism, we can locate the black hole without even knowing

the network size n (number of nodes) if there is only one black hole known a priori
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in the network. For example, 2 agents, a and b, are at a safe node u, and agent a

moves to the neighbouring node v and returns while agent b waits at node u. As

each move takes 1 time unit, if agent a does not come back to node u after 2 units,

then agent b knows that agent a is dead and node v is the black hole. Once agent b

knows the location of the black hole, the algorithm can terminate immediately even if

there are remaining unexplored nodes in the network. The same results follow when

there are multiple black holes in the network. Furthermore, with this mechanism, it

is also possible to know whether or not a black hole exists. More specifically, if all

the n nodes in the network have been explored after a predefined time-out, we can

conclude that there is no black hole in this network, providing n is known in advance.

Following this observation, Klasing et al. [60] and Czyzowicz et al. [23] solve the black

hole search problem by assuming that there is at most one black hole (there is one or

no black holes in the network).

2.1.2 Asynchronous Network

Unlike the synchronous networks, there is no global clock mechanism in asynchronous

networks. As such, the agents could initially wake up at different times. The time

that an agent takes for every action (sleep or transit) is finite but unpredictable [51].

Therefore, it is impossible to distinguish whether an agent died in a black hole or

is stuck in a slow link/node in the network since the latter takes an unpredictable

amount of time [69]. As a result, the only way to locate a black hole in an asyn-

chronous network is to explore the entire network [51]. Consequently, the network

size n and the number of black holes b must be known in advance in order to count

the total number of explored nodes (single or multiple black hole search); only when

at least n − b nodes are explored, the algorithm may terminate. For the remainder

of the paper we focus on single black hole search and discuss the multiple black hole

search problem separately in Section 3.3.
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2.2 Communication Model

Since the location of the black hole is unknown, regardless of the network synchro-

nization, an agent may die at any time during its exploration. As we have mentioned

at the beginning of Section 2, in order to systematically identify a black hole, a team

of agents are used to locate the black holes. Hence, collaboration between agents be-

comes necessary and essential. For collaboration, the agents are usually assumed to

communicate with each other in four communication models summarized in [17, 66].

They are the pure token model, enhanced token model, whiteboard model, and face-to-

face model. Communication is usually used to minimize the number of agents that

died in the black hole(s). To this end, at most one agent should be allowed to enter

the same node at the same time; that is, the first encountering agent should somehow

inform the later ones of which node is under exploration, consequently considered

dangerous. This will prevent other agents entering a dangerous node. More specifi-

cally, Cautious Walk is a commonly used technique in black hole search algorithms.

This procedure is first introduced by Dovrev et al. [31] to minimize the number of

agents that died in the black hole. At any point in time during the exploration, a

port of a node can be classified as unexplored - no agent has ever passed through this

port; dangerous - an agent left via this port but no agent has returned through it;

and safe - an agent has left and returned through this port. In the cautious walk,

ports are marked differently in different communication models. No agent leaves via

a dangerous port. Consequently, if node v is a black hole, at most one agent will die

via port p.

2.2.1 Whiteboard Model

In general, all mobile agents are invisible to each other even when they meet in the

same node, let alone exchange direct information. In the whiteboard model introduced
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by Dobrev et al. [31], each node has a bounded amount of storage where information

can be written and read by the agents. All incoming agents can access a white-

board in a node in a mutual exclusion way and communicate with each other via

reading/writing on a whiteboard.

When executing cautious walk, an agent leaves a node u to a neighbouring node

v via an unexplored port p. It marks port p dangerous by writing on the whiteboard

of node u; after visiting node v, the agent immediately returns to node u to change

the nodes on the whiteboard from dangerous to safe.

2.2.2 Pure Token Model

In the pure token model, each agent has a limited number of tokens which can be

placed on or picked up at a node in the course of searching. An agent places a token

at its current node to indicate that the next node is dangerous. It should be noted

that the agents may need extra tokens to express this message: which node is the

next node because a node may have several neighbouring nodes adjacent to it. The

pure token model can be considered as a special whiteboard model with O(1)-bit

memory on each node (assuming at the same time, only a constant number of tokens

can be placed at a node). The tokens which can be picked up from a node and

placed on another are defined as movable tokens. In contrast, Chalopin et al. [16]

define unmovable tokens as those that cannot be picked up once placed on a node. If

not specified, the tokens mentioned in this paper are movable and also identical by

default.

2.2.3 Enhanced Token Model

Due to the limitations of the pure token model (e.g. limited number of messages

that can be expressed using a constant number of pure tokens), many research efforts
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[29,38,40] enhance the pure token model in order to increase the information carried

out by the tokens. In the enhanced token model, the tokens can be left at not only

the center of a node, but also the ports of a node. As the number of locations to hold

the tokens increases, the memory footprint on each node also increases. Usually, the

memory footprint is set to O(log n) bits in the whiteboard model, O(log ∆) in the

enhanced token model, and O(1) in the pure token model, where n is the network

size and ∆ is the maximum node degree in the network graph1 [17].

When executing cautious walk under this model, an agent marks a port as dan-

gerous by placing a token at this port before moving to the next node. Upon its

return, this agent will pick up the token to show that this port is no long dangerous.

Similar to the whiteboard model, no agent will leave via a port, on which a token

is left [38]. In the whiteboard model, the messages once written may be available

for multiple access by different agents for a long time, before they are modified, if it

happens). In token model, especially the moveable token model, in order to consume

a minimal number of tokens, agents usually reuse tokens in different nodes to deliver

different messages. This is why communication is usually much more complex in the

token model (especially the moveable tokens) than in the whiteboard model.

2.2.4 Face-to-Face Model

Since agents may never meet in an asynchronous network due to their unpredictable

moving and computing speed as well as wake up time, the face-to-face model is

only considered in synchronous networks. In the face-to-face model, agents move

through the network in synchronous steps and communicate only when they meet

at a node [20]; no other communication method, such as whiteboard or token, is

available. The three communication models mentioned above all require memories on

1Note, if not specified otherwise, n and ∆ with the same meaning are used throughout this survey
paper.
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nodes. However, the face-to-face model does not require this.

2.3 Agent Starting Location

Another area of concern that significantly affects the black hole search solutions is

the agent starting location. Since at least 2 agents are necessary to locate the black

hole, the agents could start at the same node or different nodes.

• Co-located agents: all the agents initially wake up at the same node, and this

node is referred to as homebase;

• Dispersed agents: the agents wake up at different nodes. The node, in which an

agent wakes up is its homebase. Dispersed agents are also occasionally referred

to as scattered agents. In this paper, we use the former through out.

In both cases, the homebases are assumed to be safe. Otherwise, the black hole

search problem will be unsolvable.2 Moreover, each dispersed agent only knows its

own homebase. There is no communication between the dispersed agents upon waking

up, which is different from the co-located case where the communication between the

agents upon waking up can lead to guaranteed coordination [69].

In synchronous networks, if the face-to-face model is adopted, in order to guarantee

face-to-face communication between agents, only co-located agents are used to solve

the black hole search problem. This is because if the agents are dispersed there is a

possibility that all will die in the black hole before they even meet.

2All agents would die immediately upon waking up if their homebases are black holes.
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2.4 Network Knowledge

The network knowledge of the agents considerably affects both the design and com-

plexity of the black hole search solution. This knowledge includes some if not all3 of

the following: network size, network topology, network direction, edge-labelling and

sense of direction.

2.4.1 Network Size

Network size is the total number of nodes in the network (denoted by n in this paper).

As mentioned before, if the agents do not know the number of nodes, the black hole

search problem is unsolvable in an asynchronous network. In addition, the problem

is also unsolvable in the asynchronous network if the number of black holes is not

known.

2.4.2 Network Topology

Network topology is the topological structure of the graph (e.g., a ring network).

Many algorithms are particularly designed for certain network topologies, for example,

in [41] (see earlier version in [39]), Dobrev et al. provide a protocol called shadow

check which only works on ring networks. Ring network is a fundamental network

topology in the black hole search field since it can be a group of many other networks,

such as torus, hypercube, and complete network.

When the agents have no topology knowledge, at least ∆ + 1 agents are needed in

any generic solution (∆ denotes the maximal node degree) for asynchronous networks,

even if the agents are given the network size and the maximum node degree [51]. If

the black hole is a node with ∆ degree, there are ∆ ports leading to the black hole

that have to be marked as dangerous ports. Since one agent dies for per dangerous

3An unrealistic case where the black hole search problem becomes much less complex.
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port marking and at least one agent has to survive to eventually report the black hole

location, at least ∆ + 1 agents are necessary. However, this situation is different in

synchronous networks. With the time-out mechanism, only 2 agents are sufficient.

2.4.3 Network Direction

Network direction refers to whether a graph is directed or undirected (e.g. bi-

directional). Although the results of exploration of directed graphs emerged since

1990s (e.g. [11, 12, 52]), the first study dealing with the black hole search was pub-

lished by Czyzowicz et al. [22] in 2010. Most commonly used techniques such as

the previously mentioned cautious walk can only be used in undirected graphs. As

for the directed graphs, the cautious walk technique does not apply due to the uni-

directional links. Hence, some agents have to enter potentially dangerous links, re-

sulting in the need for as many as 2d agents [22] (d denotes the indegree of the black

hole node). Unless specified, the network graphs studied in this paper are mainly

undirected. [22, 61, 62] are three papers that study the black hole search problem in

directed graphs.

2.4.4 Edge-labelling and Sense of Direction

An edge-labelled graph is one where at each node x, there is a distinct label associated

with each one of its ports and the incident link of each port. Let λx(x, z) denote the

label associated at x with the link (x, z) ∈ E, and λx denote the overall injective

mapping at x. The set λ = {λx|x ∈ V } of those mappings is called a labelling and

we shall denote by (G, λ) the resulting edge-labelled graph. The nodes of G can

be anonymous (e.g., without unique names) [36]. When visiting a node in an edge-

labelled network, an agent can distinguish the ports in this node. However, this is

not the case in an edge unlabelled network.
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Table 3: Relationships between network direction and sense of direction

Directed
Graph

Undirected Graph

Edge
Unlabelled

Edge-labelled

Arbitrariely Labelled Consistently Labelled

Un-oriented, Oriented, Un-oriented,

No Sense Sense of No Sense

of Direction Direction of Direction

Sense of direction applies when in an edge-labelled undirected graph, if from any

given node u, it is possible to determine whether or not different paths from node u

will end in the same node. More precisely, in order to obtain the sense of direction,

a consistent coding function and a consistent decoding function should be defined in

the system [50]. For example in a ring network, the ring is considered to have a sense

of direction when all the ports are consistently labelled as left and right (i.e., all ports

going in the clockwise direction are labelled left) [16]; a ring with such a sense of

direction is called an oriented ring. If the labelling of the two ports at a node in this

ring is arbitrary, namely, there is no common understanding of left and right, we say

that there is no sense of direction in this ring which is called an un-oriented ring.

We further clarify the relationships between the network direction and the sense

of direction in Table 3.

2.4.5 Complete Knowledge

Complete knowledge is defined as that the agents know the network size, the topology

type and sense of direction (e.g., torus with consistent and systematic “N-S-E-W”

labelling). Sometimes, agents are equipped with a network map (beyond containing

all the network knowledge, this map can also be used to mark the explored nodes

during a black hole search.) [28]. In this situation, the black hole search problem
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becomes much less complex, but it is also in fact a less unrealistic model.

2.5 Commonly used Cost Analysis Metrics

In order to compare different black hole search solutions, researchers conduct com-

plexity analyses on the costs of their solutions. The following are the most frequently

measured costs:

• Number of agents: the minimal number of agents used to solve the black hole

search problem.

• Number of agent moves: the total number of moves performed by all agents

from wake up till the black hole is located.

• Number of tokens: the minimal number of tokens used by each agent or the

entire agent team in order to locate the black hole.

• Memory footprint of agents: the memory overhead of agents. Usually, in the

token models the agents are designed with a small memory footprint (e.g., an

agent can only carry a constant number of tokens at any point in time [15,16]),

while some other agents may have a very large memory footprint (e.g., the

agents can carry a network map [43,59]).

• Memory footprint of nodes: the memory overhead of each node in the network.

For example, a O(log n)-bits whiteboard is sufficient for all the algorithms in

[7, 27]. Similarly, the black hole search under the pure token model may need

O(1)-bit to use tokens [16]. However, when considering token models, it make

more sense to measure the number of tokens rather than the memory footprint of

nodes. Thus, memory overhead is mainly considered in the whiteboard model.

• Time cost: the time cost in synchronous networks is the total number of time

units used from when algorithm starts until the black hole is found. In an

asynchronous network, a move of each agent costs finite but unpredictable time.
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Therefore it is impossible to measure time. However, some research [6, 7, 31]

assumes a unitary time delay to each move, which enables the calculation of time

complexity. Such a measure is referred to as ideal time. Under this assumption,

time cost is almost the same as the number of agent moves.

Beyond measures of complexity, correctness evaluations are also a common

component of black hole search papers. Most papers use mathematical proof

[7, 15, 23, 29, 44, 45, 60], while only a few conduct simulations and use the experi-

ment results to demonstrate the connectedness [26, 69]. Shi et al. [69] present their

simulation results for three proposed algorithms after theoretical proofs. D’Emidio

et al. [26] simulate and compare their own algorithms, and further analyse which one

performs better.



Chapter 3

Literature Review

3.1 Black Hole Search in Synchronous Networks

Since no one used the enhanced token or the whiteboard model in synchronous net-

works, in this section, we overview the black hole search solutions in synchronous

networks based on the agent communication models, the agent starting locations, as

well as the network knowledge. We organize the research studies into three subsec-

tions as shown in Figure 2.

Figure 2: The organization structure of black hole search in synchronous networks

22
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3.1.1 Communication Models

Face-to-Face Model

The face-to-face model is only possible in synchronous networks. In this model, the

agents that are in the same node can communicate an unlimited amount of messages.

Using the face-to-face model associated with the time-out mechanism, the black hole

can be located in any network with just 2 co-located agents (as described in Section

2.1.1). [23–25,58–60] all consider the problem of finding the most efficient (in terms of

time cost) solution for the black hole search under the same assumption: 2 co-located

agents searching for a black hole in an edge-labelled undirected synchronous network.

Chalopin et al. [16] study the problem using a hybrid communication model, namely,

agents can carry and place a bounded number of pure tokens and can communicate

with each other when they meet on a node. Since [16] focuses more on the impact of

the tokens, we discuss the detail of this study in the section on the pure token model

(Section 3.1.1).

Czyzowicz et al. [24] show the aforementioned optimal black hole search problem is

NP-hard, and propose a 9.3-approximation algorithm for it. Klasing et al. [60] prove

that this problem is not polynomial-time approximation within any constant factor

less than 389
388

(unless P=NP), and give a 6-approximation algorithm. In both [60]

and [24], each agent carries a network map and starts from the same node. The

difference is that the algorithm proposed by [24] can solve the problem when there

is one and only one black hole in the network while the solution in [60] can detect

whether there is a black hole (note, as previously mentioned, this is only possible in

a synchronous network) and locate the black hole when present.

In [23, 25], Czyzowicz et al. present a 5
3
-approximation algorithm in an arbitrary

tree without a map. This result demonstrates the impact of network knowledge: the

knowledge of specific network topology reduces not only the time complexity but
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also the memory footprint of each agent. The authors introduce algorithms for two

“extreme” classes of trees; one is the class of lines and the other is the class of trees

in which all internal nodes have at least 2 children. The algorithm in [59] follows a

natural approach of exploring the network graph via a spanning tree. Later, Klasing et

al. [59] probe that this approach cannot lead to an approximation ratio bound better

than 3
2
. Furthermore, [59] provides a 33

8
-approximation algorithm for an arbitrary

network with the help of a network map. This result is a direct improvement from

the 7
2
− approximation algorithm presented in [58].

Pure Token Model

Chalopin et al. [15, 16] ( [16] see a full version in [17]) and Markou et al. [66] focus

on locating the black hole using a minimum number of agents and tokens, while the

agents have O(1) memory size and carry O(1) pure tokens. Most importantly, the

goal is achieved without the agents knowing n or k, where n is the number of nodes

in the network and k is the number of agents. The authors consider both movable

and unmovable tokens in ring [16] and torus [15,66] respectively.

Chalopin et al. [16] consider the black hole search problem with agents that have

hybrid communication capabilities: they can communicate with each other face-to-

face when they are in the same node and can also carry either movable or unmoveable

tokens. When using the movable tokens, 3 agents, each of which carries only 1 token,

are necessary and sufficient for both oriented and un-oriented rings. In contrast, using

unmovable tokens needs 4 agents, each with 2 tokens, for oriented rings and 5 agents,

each with 2 tokens, when exploring un-oriented rings.

Expressing messages using unmoveable tokens is equivalent to writing messages

on whiteboards with constant memory. At first glance, such a model should be more

powerful (as the whiteboard model) than the moveable token model. Interestingly,

the results show that using unmovable tokens is more costly than that using movable
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tokens in terms of the number of agents and the number of tokens. In addition, more

agents are necessary for un-oriented rings than for oriented rings.

In addition to rings, Chalopin et al. [15] also study the oriented torus under the

same assumptions: dispersed agents, pure token model, and face-to-face communica-

tion. They prove that the black hole search problem is unsolvable in torus in three

scenarios: 1) when the number of agents and unmovable tokens are constant in an

oriented torus; 2) when using 2 dispersed agents in any synchronous torus, even if the

tokens are movable and the agents have unlimited memory; 3) when using 3 agents

with constant memory and 1 movable token each. Finally, they show that at least 3

agents, each with 2 movable tokens, are necessary and sufficient to solve the problem

in any oriented torus.

Markou et al. study the black hole search problem in [66] under the same assump-

tions as [15] but in an un-oriented torus. The authors discuss four cases of un-oriented

tori, from totally un-oriented to semi-oriented (without an agreement on the orienta-

tion in the horizontal or vertical axis). The authors prove that constant number of

agents and tokens cannot solve the black hole search problem in all un-oriented tori

using unmovable tokens. The authors further discussed the use of movable tokens.

They prove that the problem is also unsolvable when using any constant number of

dispersed agents with 1 movable token each. The authors then offer algorithms with

5 agents and 3 tokens each in all semi-oriented tori. Finally, they conjecture that at

least 5 agents and at least 2 movable tokens each would be able to locate the black

hole in a totally un-oriented torus. However, formal proofs of the correctness and

complexity are not provided.

3.1.2 Agent Starting Locations

When all agents wake up in the same node, the coordination and communication

are guaranteed to these co-located agents. This renders the graph exploration much
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easier. Some researchers [23–25,58–60] choose to study the problem using co-located

agents, others choose to use the dispersed agents [15–17,66].

Co-located Agents

All existing papers that adopt the face-to-face communication model also unani-

mously choose to use the co-located agents. This is because it is possible that all the

dispersed agents may die before they even meet each other.

Since it is proven that 2 co-located synchronous agents are sufficient, all of the

following studies [23–25, 58–60] focus on finding algorithms for the black hole search

problem (see details in Section 3.1.1) to improve the time cost. It is important to

note that with only 2 co-located agents, whether the agents are anonymous or not is

irrelevant here as one agent can definitely distinguish the other when they meet.

Dispersed Agents

To extend the results of 2 co-located synchronous agents, Chalopin et al. [15–17] and

Markou et al. [66] study the problem using dispersed agents under the pure token

model (see details in Section 3.1.1). Contrary to the case of co-located agents, all

these papers focus on the minimal number of dispersed agents and tokens they use,

rather than the time complexity and agent moves. Beyond assuming that the network

size is unknown a priori, another challenge here is that the pure tokens are used for

the agents to communicate. Since tokens can be placed only at a node, not its ports,

this makes the coordination among the team of dispersed agents much more complex.

For example, in a torus, even when an agent sees a token at a node, it still cannot

know from which node the previous agent left.
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3.1.3 Network Knowledge

Further to the previous discussion, network topology is another component that signif-

icantly affects the algorithms and complexities. From the previous mentioned papers

that study rings [16, 17] and study torus [15, 66], it is obvious that more agents and

tokens are needed in torus than rings under the same assumption. Therefore, network

topology not only affects the complexity of the network, but also affects the number

of agents and the number of tokens necessary and sufficient to solve the black hole

search problem. Another instance is that with a map of an arbitrary network, [59]

gives a 33
8
-approximation algorithm, when [25] gives a 5

3
-approximation algorithm

without a map but knowing the topology is a tree. It is clear here that knowing the

topology makes the algorithm much faster than having a map but not knowing the

topology.

A sense of direction is an additional property adding to an edge-labelled graph.

Without edge-labelling, an agent could not distinguish the edges incident to a node,

and thus a whole part of the graph could be unreachable during an exploration.

Since the sense of direction offers not only a consistent edge-labelling, but also a

guaranteed method of systematic exploration of the entire graph, studies under the

same assumptions, other than the existence of a sense of direction, show a great dif-

ference. For example, compared to the study on un-oriented ring and torus networks

in [16, 17, 66], results from oriented ring and torus networks in [15–17] demonstrate

the power of a sense of direction.

In [66], Markou et al. discuss their solutions and results under different network

knowledge of the given torus: 1) the agents have no agreement on anything regarding

the orientation; 2) the agents perceive orthogonal links but they do not agree on

which link; 3) the agents agree which link is horizontal and which is vertical, but

there is no consensus on the orientation of each link; and 4) the agents agree which
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link is horizontal and which is vertical and they also agree on the orientation in one

of the links. Except for 1), all the other three types are called semi-oriented.

When the tokens are unmoveable, it cost 5 agents to locate the black hole in un-

oriented rings rather than 4 agents in oriented ones. When the tokens are movable,

with 3 agents and 2 tokens each, the problem can be solved in all oriented tori; while

using 5 agents, each with 3 tokens, the problem is only solved in semi-oriented tori.

It is clear that un-oriented networks need more agents and tokens to solve the black

hole search problem than oriented networks.

3.2 Black Hole Search in Asynchronous Networks

Unlike the case in the synchronous network, the black hole search problem in asyn-

chronous network is much more complex and more significant in practice. In this

section, we overview the state of the art in the asynchronous networks based on the

agent communication models, the agent starting locations, as well as the topological

knowledge (see summary in Figure 3).

Figure 3: The structure of black hole search in asynchronous networks
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3.2.1 Communication Models

In the asynchronous networks, agents may wake up at different times and die in the

black hole before they even meet each other. Thus, face-to-face communication is not

of great use to solve the black hole search problem. As such, we overview the results

in the token and whiteboard models.

Pure Token Model

Flocchini et al. [43] (see full version [44]) first prove that the pure token model is

as powerful as the whiteboard model and maintains the same complexity with the

whiteboard model in an arbitrary network if each of the co-located agents carries a

map. Flocchini et al. also show that 2 co-located agents, each with 1 token, can

locate the black hole in a ring topology using a technique called ping-pong. In this

specific case, when the network topology is known, the agents can achieve the goal

without using a map. Additionally, they further demonstrate that this ping-pong

technique can also be applied to an arbitrary network if a corresponding network

map is available to each agent. In the latter case, it costs Θ(n log n) moves to locate

the black hole.

It is well known that ∆ + 1 agents are necessary to locate the black hole when the

topology of an asynchronous network is unknown regardless of the number of tokens

used. With the same number of agents and O(1) tokens in total, it is sufficient to

locate the black hole when each agent has a network map available. Balamohan et

al. study whether ∆ + 1 agents, each with O(1) tokens can still locate the black hole

in an unknown network in [5]. They prove that in order to keep the total number of

tokens used to O(1), ∆ + 1 agents are not sufficient. They thus present a protocol

that uses ∆+2 agents, each of which carrys 3 tokens to locate a black in an unknown

network. It is important to note that the black hole search in asynchronous networks
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are studied only in the co-located agents case when pure tokens are used.

Enhanced Token Model

Due to the limitations of the pure token model, Dobrev et al. [29, 38, 40, 41] and Shi

et al. [68] use the enhanced token model to further improve the move and agent cost.

In all these studies, each agent can carry and most importantly can place in the

same node more than 1 token at any time. With these characteristics, Dobrev et al.

[39,41] introduce an algorithm to locate the black hole in an un-oriented ring network

with dispersed agents. Obviously, coordinating dispersed agents is significantly more

complex than using co-located agents. The proposed algorithm demonstrates that

using O(1) enhanced tokens enables the black hole search in asynchronous networks

using dispersed agents. In their paper [38], Dobrev et al. demonstrate that the move

cost of O(kn + n log n) [39, 41] can be reduced to O(n log n) by using 2 co-located

agents with O(1) tokens per agent, when the orientation of the ring is known.

Apart from the ring networks, Shi et al. [68] (see full version in [69]) prove that

2 co-located agents, each with O(1) tokens, can locate the black hole in Θ(n) moves

for hypercube, torus and complete networks. While using dispersed agents, 3 agents

and 7 tokens in total, a black hole can be located within Θ(n) moves in an oriented

torus. When the number of agents increases to k(k > 3) and 1 token per agent,

the moves become O(k2n2). This result is interesting. It shows that if the number

of dispersed agents in a torus increases, the communication between these agents

becomes significantly more complicated. This is reflected in the increase of the move

cost.

Moreover, for an arbitrary unknown network graph with known n, Dobrev et al.

[29] present an algorithm using ∆+1 agents and one token per agent and O(∆2M2n7)

moves to locate the black hole. Here M is the total number of edges of the graph.

This result has been improved by the same authors in [30] to O(∆2M2n5) moves.
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In contrast, under the same assumption in the whiteboard model, the cost of the

algorithm is ∆ + 1 agents and Θ(n2) moves. For arbitrary unknown network graphs,

the cost complexities of the enhanced token model are significantly greater than those

of the whiteboard model [29]. However, when the network maps are available to the

agents, the complexities of the enhanced token model can be reduced to the same

cost as in the whiteboard model [38].

Whiteboard Model

In both types of token models, agents can only express very limited messages. This

is why the whiteboard model is still the most popular agent communication model

and has been studied by [6, 7, 22,27,28,31–33,35–37,53].

In addition to presenting solutions to the black hole search in asynchronous ar-

bitrary networks [32, 36, 37], Dobrev et al. [33] solve a multiple agents rendezvous

problem in spite of a black hole in a ring network. In their paper, the final goal of the

agents is not only to locate the black hole but also to collect all survived dispersed

agents in one node. The authors offer a protocol that can rendezvous k agents in

Θ(n) time units. When k is unknown, this protocol is also a solution to the black

hole search problem. In terms of the time complexity in rings, Dobrev et al. [31, 35]

show that at least 2n− 4 time units (assuming the unitary traversing and exploring

time unit) are needed in the worst case and give an algorithm, achieving it by n− 1

co-located agents. Apart from the time complexity, the authors also prove that 2

agents are necessary and sufficient and present an algorithm to locate the black hole

in O(n log n) moves, regardless whether the agents are co-located or dispersed, but

the orientation of the ring must be known a priori. If the ring is un-oriented, 3 dis-

persed agents are necessary and sufficient. Apart from rings, Dobrev et al. [27] (full

version [28]) also present a general strategy to locate the black hole in O(n) moves

by using 2 co-located agents for some other common interconnected networks, such
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as cube-connected cycles, wrapped butterflies, star graphs, chordal rings, hypercubes,

tori of restricted diameter, and in multidimensional meshes.

Based on Dobrev’s work, Balamohan et al. [6] prove that 3n log3 n−O(n) moves

are necessary in an asynchronous ring when 2 co-located agents are used. As for

the time complexity, Balamohanet al. [7] improve the algorithm of [31] to solve the

problem in an average of 7
4
n − O(1) time units when n − 1 agents are used and 2

extra time units are required in the worst case. The authors also propose another

algorithm to locate the black hole in 3
2
n−O(1) time units on average, using 2(n− 1)

agents without increasing the time complexity in the worst case.

While all the above studies only consider the case of undirected graphs, Czyzowicz

et al. [22] study the black hole search in directed graphs. They show that at least 2d

agents are necessary in the worst case, where d is the indegree of the black hole. If a

planar graph with a planar embedding is known to the agents, 2d agents are needed,

and 2d+ 1 agents are sufficient.

3.2.2 Agent Starting Locations

As we have discussed in the synchronous networks, when the homebases of the agents

are dispersed, the black hole search problem is more complex compared to the cases

when all agents wake up in the same node. This is even more so in the asynchronous

network case. Unlike synchronous networks when all agents may wake up at different

times, coordinating all such agents in order to locate the black hole with minimal

resource cost is a challenge. For example, 2 co-located agents suffice to solve the

problem in a complete network in Θ(n) moves in [69]; while using dispersed agents

costs O(n2) moves.
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Co-located Agents

The co-located agent model is frequently used in the literature. Among those white-

board based studies, [6, 7, 22, 28, 31, 32, 36, 37, 53] adopt this model. Similarly, for

the token-based research, [5, 29, 30, 38, 43, 44, 68, 69] also choose to solve the problem

under this model. Among the papers, [6,7,31,38,43,44] delve into the ring networks,

while [6, 7, 31] study time complexity. [7] offers an algorithm which improves the av-

erage time from [31]. Moreover, [38, 43, 44] only use 2 agents, and [38] studies the

enhanced token model, while [43,44] investigate the pure token model.

When the agents are initially co-located, they can establish many agreements

before the exploration. This can greatly help the coordination between the agents and

eventually reduce the resource costs. For example, in a ring network, when the agents

are co-located, the orientation is no longer important. This is because when there

are only two directions, the agents can certainly make an agreement at the beginning

of the exploration on what is right and left. Furthermore, solving the problem using

co-located agents in a ring without network maps is the same as having each agent

carry a network map. The situation is different while using dispersed agents; they

are not equivalent unless the orientation of the ring is known.

The following example described in [43, 44] illustrates how a pair of co-located

agents can locate the black hole using such an agreement: 2 agents each with one

token start to explore the ring using cautious walk; one goes right and the other goes

left. However, only one agent at a time is allowed to explore. To ensure this, one

agent must first steal the token from the other before its own exploration as stealing

is possible because, during cautious walk, a token has to be placed before the agent

goes to the next node. After stealing, the agent without a token cannot continue

exploration and has to go back to look for a token, then keep repeating until one

agent dies. For example, suppose the right agent goes first. Before the left agent
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starts, it first goes right and steals the token of the right agent, and then goes left

for exploring. Once the right agent finds its token has gone, it goes left and steals

a token from the left agent, and then goes right again. Repeating this process can

ensure that only one agent dies in the black hole, and the surviving one knows the

location of the dead agent.
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Figure 4: When using the ping-pong technique, after agents A1 and A2 both die
in faulty nodes, this algorithm stops (Picture 1). If 2 more agents A3 and A4

enter the ring, this technique is stacked again when A4 dies in R2 (Picture 2).
F: Faulty node, N: Normal node, R: Repaired node, A: Agent

For the study of our new attack model, Figure 4 shows an instance of using the

above mentioned ping-pong technique [43,44] to solve the Repair and Search problem.

Agents A1 and A2 leave the homebase in 2 directions and they have to steal each

other’s token after each move to make sure there is only one agent entering the black

hole. This suffices in the traditional black hole search where there is only one harmful

node, however, with multiple faulty nodes in our new attack model, both agents A1

and A2 may enter faulty nodes, thus, this algorithm is stacked when the 2 agents
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both die.

Another issue of the ping-pong technique is that there is no method to distinguish

a black hole from a faulty node, even with our new technique double cautious walk

(in Section 4.2). Regardless the number of tokens an agent can leave on a node or a

port, since an agent will not enter a node which is marked as dangerous, this node

will block all the later agents. Therefore, there will be no agents passing nodes R1 or

R2 ( Picture 2 in Figure 4), so that no agents can explore the rest of the network.

Even if more agents A3 and A4 continue to explore the network (not possible

when using ping-pong technique as the tokens of A1 and A2 will block A3 and A4.

Assuming with some changes to the algorithm, these agents can pass R1 and R2), it is

possible that when A4 moves to steal A3’s token, the previously faulty node R2 which

repaired by A2 turns in to a black hole and deletes A4. Since no agent will steal A3’s

token after A4 dies, A3 has to wait at node N2 permanently. This again prove that a

traditional black hole search algorithm cannot solve the Repair and Search problem,

even with the double cautious walk technique, whiteboard on each node, or minor

changes to the algorithm.

Dispersed Agents

The dispersed agents have been adopted by the research based either on the white-

board model [31,33,35,53] or on the enhanced token model [40,41,68,69]. So far, no

one has attempted to solve the problem using dispersed agents carrying pure tokens.

The reason for this might be that it is unlikely to achieve the goal using the same or

fewer pure tokens than the enhanced tokens when the agents are dispersed.

Glaus et al. [53] study the black hole search problem without the knowledge of

incoming links in an un-oriented unknown graph using the whiteboard model, while all

other research assumes that when an agent enters a new node, the agent automatically

knows through which port it enters.
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Both Shi et al. [68] and Dobrev et al. [31] study the problem using both co-located

and dispersed agents. While [68] considers agent moves in hypercube, torus, and

complete networks, [31] measures agent moves and time complexity in ring networks.

Dobrev et al. [40] solve the black hole search problem using an algorithm called

Pair Elimination in oriented ring networks. The agents are initially dispersed in the

ring and each endowed with O(1) enhanced tokens. This algorithm is to let all the

agents try to form pairs as soon as they wake up. All the paired agents will eliminate

all the single agents they meet. Each pair has a level. A pair increases its level

each time it eliminates another agent. When two pairs meet, the higher level pair

always eliminates the lower level pair. Between pairs of the same level, the right

pair eliminates the left pair. Eventually only one pair will survive, and one of the

two agents forming that pair will locate the black hole. Compared to the co-located

case that each agent carries only 1 pure token, pair elimination requires 4 tokens for

each agent even when they use the enhanced token model in the dispersed case. This

is because the communication/coordination among dispersed agents is significantly

more complex than the co-located case.

3.2.3 Network Knowledge

Most research efforts (e.g. [7,38,40,43,44]) also assume the agents have knowledge of

incoming links, which means that when an agent enters a node, the information on

which port leads back can be given to it. However, Glaus et al. [53] study arbitrary,

unknown distributed systems without the knowledge of incoming links, and present

a lower bound on the size of the optimal solution, showing that at least d2+d
2

+ 1

co-located agents are necessary and sufficient to locate the black hole. Here d denotes

the number of links leading into the black hole (node degree of the black hole).

In an un-oriented network, all ports which lead to a black hole should be marked

as dangerous, hence ∆ + 1 agents are necessary. However, in an oriented network,
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the number of agents which are dead in the black hole can be reduced by limiting the

agents to only entering a node in certain directions. For example, as the ports of a

torus are labelled as north, south, east, and west, Shi et al. [69] assume an agent can

only enter a node from the west and come out from the east, or enter from the north

and come out from the south. With this assumption, only 3 agents are necessary.

However, when the agents are allowed to enter a node from all four directions, at

least 5 agents are necessary.

Dobrev et al. [34] prove that without any knowledge, ∆+1 agents are needed and

the cost is Θ(n2). However, with the sense of direction but lack of information of the

network topology, only 2 agents are sufficient to maintain the same cost. The main

idea of the algorithm is described as follows: the two agents start from the homebase

hb and construct a spanning tree of the explored nodes (visited by one agent) at hb;

an agent searches the tree, and if there is a node with unexplored ports, the agent

goes to explore the node and makes all ports explored using cautious walk; after this,

it comes back to hb and adds the node to the tree as an explored node; before the

agent leaves the homebase, it leaves a navigational instruction for the other agent;

when the number of explored nodes becomes n− 1, the algorithm terminates.

We also observe that the knowledge of the network topology (e.g., ring, hypercube,

torus, complete, tree and arbitrary networks) has great impact on the black hole

search results. Balamohan et al. [6, 7], Chalopin et al. [16] and Dobrev et al. [31, 35,

38, 40] propose algorithms based on ring networks, while [5, 27, 28, 32, 34, 37, 43, 44]

search the black hole in arbitrary networks. In particular, Shi et al. [69] design

algorithms for hypercube and torus networks with co-located agents, and for torus

and complete networks with dispersed agents. In contrast, Dobrev et al. [27] (full

version [28]) present a general strategy that allows 2 agents to locate the black hole

with O(n) moves in some common interconnected networks.

In an arbitrary network, Dobrev et al. [32,34] prove that: in the whiteboard model,
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the black hole search problem can be solved with ∆+1 agents in Θ(n2) moves without

network maps; this move complexity can be kept by using only 2 agents when there is a

sense of direction. With the complete knowledge of the network, 2 agents are sufficient

and the cost can be reduced to Θ(n log n). In their other paper [36], Dobrev et al.

present a universal protocol that locate the black hole using at most O(n + d log d)

moves with 2 agents each carrying a network map. Here d is the diameter of the

network. Still using 2 agents, the same authors [37] present a strategy which can

locate the black hole in O(Σ
k

i=1|Ci| log |Ci|) moves, here C = C1, C2, ..., Ci..., Ck is an

open vertex cover by cycles of a 2-connected graph. 1 These results show that having

a network map or the sense of direction can significantly reduce the cost complexity.

3.3 Multiple Black Hole Search

Most existing papers study the single black hole search problem. This is due to the

nature of the black holes, that is, they delete any incoming agents without leaving

any observable trace. Therefore, if a network contains more than one black hole,

the network may be disconnected. For example, Figure 5 illustrates a ring network

containing 3 black holes that disconnected the ring into 3 sub-graphs. Unless there are

enough agents starting at the desired locations, locating multiple black holes cannot

be guaranteed. In order to find multiple black holes, there are roughly three different

ways, each with different assumptions and capabilities:

3.3.1 Best Effort Approach

The best effort approach tries to find as many black holes as possible, if not all. In

a synchronous network, as we discussed earlier in Section 2.1, finding out whether

1An open vertex cover by cycles (C) is defined as a set of simple cycles that each vertex of G is
covered by a cycle from C and the connectivity graph of these cycles (where each cycle is represented
by a vertex, and 2 vertices are connected if the corresponding cycles share an edge) is connected.
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Figure 5: A ring network that is disconnected by multiple black holes (solid circles
represent black holes). Consequently, an agent cannot explore the disconnected
portion of the original ring network.

there is a black hole is rather trivial due to the time-out mechanism. When a network

contains more than one black hole, the network may be disconnected. As such, some

nodes may never be explored. In this case, finding all the black holes is impossible.

Alternatively, Cooper et al. offer a solution to finding all the possible black holes

(observe that a node can be identified as a black hole or as a safe node only if it can

be reached following a path of safe nodes).

Cooper et al. [20] start studying the multiple black hole search problem in syn-

chronous networks using the face-to-face model. The authors tackle the problem

assuming that k co-located agents know the topology of the whole network including

the size n and number of black holes b. They conclude that any exploration algorithm

needs Ω(n/k+Db) steps in the worst case to solve a multiple black hole search problem,

while Db is the diameter of the network with at most b nodes deleted. Cooper et al.

provide a general algorithm which performs the exploration in O(
n
k
logn

log logn
+ bDb) steps

in an arbitrary network with network maps available to the agents, where b 6 k/2.

In the case when b 6 k/2, bDb = O(
√
n) and k = O(

√
n), Cooper et al. give a refined

algorithm which performs the exploration in asymptotically optimal O(n/k) steps.
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3.3.2 Variants of Black Hole Search

In a regular black hole search, the existence of a black hole is persistent. Namely, it

will not be affected by the arrival of any incoming agent. However, Cooper et al. [21]

solve the multiple black hole search problem by changing the behaviour of the regular

black hole. A faulty node is a weaker black hole which can be repaired by the first

encountering agent, and once the fault has been repaired, the node will permanently

behave as a normal one. Hence, when a network contains more than one faulty node,

the agents are still able to explore the whole graph. If more than one agent enters

the same faulty node at the same time, only one will repair the faulty node and die

while the others can continue their explorations.

The agents used in [21] know the topology of the whole network, move syn-

chronously, use the face-to-face model, and are initially co-located at the same node.

With a network map, first, the whole network is divided into some equal parts of size

O(D), where D is the diameter of the network. Therefore, an agent should spend

O(D) time to explore one part. Moreover, all the agents start from the same home-

base, and each agent explores one part. After O(D) time, if an agent returns to

the homebase, it implies that the explored portion of the graph contains no faulty

node. However, if one agent does not show up on time, it is assumed to be dead

in a faulty node, and its explored part is still marked as unsafe and needs further

exploration. When all surviving agents come back to the homebase, they will start to

explore the remaining parts of the network until there is no unsafe part. Eventually,

the faulty node repair problem can be solved within O(n
k

+ D log f
log log f

) time steps, where

f = min(n
k
, n
D

), assuming that the number of faulty nodes is at most k/2. However,

in [21], because the face-to-face model leaves no mark on the nodes, once an agent

dies, the other agents cannot know where it died. Therefore, after the repairing algo-

rithm, the agents can only repair all the faulty nodes but are not able to locate the
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repaired nodes.

D’Emidio et al. [26] study the same problem under the same condition as [21] with

the change of one assumption: if more than one agent enters the same faulty node

at the same time, all agents die. To make the problem more realistic, the authors

consider another scenario by introducing a new number r: if one agent enters a faulty

node u, all agents within distance r from u will disappear along with the faulty node.

D’Emidio et al. first prove that the faulty node repair problem is NP-hard even when

b = k = 1, where b is the number of faulty nodes and k is the number of agents.

Second, when r = 0 which means the agents die only when they physically enter

a faulty node, using a simple variation of the algorithm described above, the faulty

node repair problem can be solved in Θ( n
k−b

+ D log f
log log f

), and k > b must be true in

any condition. Otherwise, all agents will die. Third, for any r > 0, the faulty node

repair problem requires Ω(n) time steps in the worst case. Fourth, when r = 1, the

faulty node repair problem can be solved in Θ(n) time steps, and the authors provide

two strategies for this bound. Finally, the authors report their experimental results

to show their correctness.

Flocchini et al. [45,48] solve the multiple black hole search problem via a subway

model using co-located agents with the whiteboard model, and the number b of black

holes is known to the agents. The authors use carriers (the subway trains) to transport

agents (the passengers) from node to node (subway stops), and the carriers move

asynchronously in a directed graph. When a carrier enters a node, the agents can

either get off from the carrier and explore the node, or stay on the carrier to go

to another node. In a regular black hole search, any incoming data will be deleted

including the carrier. However, in this subway model, the black holes no longer affect

the carriers and can only eliminate the agents. At the homebase, there is a white

board that is used to record all explored, unexplored and dangerous nodes. Initially,

all nodes are recorded as unexplored except the homebase. Once an agent chooses
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to explore a node, the node will be marked dangerous until the agent comes back

and marks it as explored. Finally, except for b nodes, all the other nodes have been

explored, the algorithm terminates and the b dangerous nodes are the black holes.

In [45, 48], when k = r + 1 agents are used (here r is the number of carrier stops

at black holes), the number of carrier moves is O(k · n2
C · lR + nC · l2R). Here nC is

the number of subway trains, and lR is the length of the subway route with the most

stops.

Under the same assumption and keeping the same carrier moves as [45,48] , Floc-

chini et al. [47] solve the same problem with dispersed agents. Instead of having a

whiteboard at the homebase the authors put the whiteboard on the carriers, thus, an

agent only has to come back to the carriers to update its exploration information.

3.3.3 An Additional Assumption

As Figure 5 shows, it is impossible to visit the nodes which are disconnected from

the main graph populated with agents. Thus it is also impossible to locate the black

holes in the disconnected part. Hence, some papers add an assumption that the graph

remains interconnected when the black holes have been removed.

Flocchini et al. add this assumption in their paper [46]:“after deleting all the

black holes, the network still remains interconnected”. It is obvious that without

this assumption, it is impossible to locate all the black holes in any given network.

Beyond a multiple black hole search, Flocchini et al. complicate the entire process

by adding link deletion during the computation. An edge failure is locally detectable

at an incident node only in the sense that, if information about that edge (identified

by its port number) is written on the whiteboard, an agent can notice the absence of

an edge with such a port number; otherwise, if no information is written, it is likely

that an edge never existed. Under this assumption, the authors present an algorithm

to solve the dangerous graph exploration with link deletions in an arbitrary unknown
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graph with asynchronous dispersed agents using the whiteboard model.The algorithm

can correctly solve the link deletion problem within finite time by marking all safe

edges as such, and marking as dangerous every port that is on a safe node leading to

a black hole or to a black edge. The total number of moves performed by the agents

is at most O(k2 · ns + ns ·m+ k · ns ·D), where k is the number of agents, ns is the

number of safe nodes, and m is the number of edges or links.

By assuming that the graph is strongly connected after all black holes have been

removed, Kosowski et al. [61,62] find out that O(d ·2d) co-located agents are sufficient

to solve the black hole search problem on a directed graph with arbitrarily large

n, where the network is synchronous and d is the number of edges leading to the

black holes. This bound is nearly tight: beyond showing that at least 2d agents

are required in most of the cases, the authors also provide a general strategy which

requires O(d · 2d) agents. Furthermore, the authors show that when d = 2, 4 agents

are always sufficient in synchronous networks. However, in asynchronous networks,

at least 5 agents are required when d = 2. In addition, 2 agents are required when

d = 1 in both synchronous and asynchronous networks.

3.4 Other Types of Malicious Hosts

Beyond studying the traditional black hole and its variants, e.g. repairable black

holes introduced in [21] by Cooper et al. and the new subway model presented by

Flocchini et al. in [45, 48], other types of malicious hosts have also been studied.

Chalopin et al. [18] study a rendezvous of mobile agents in a network with faulty

links. In this model, some of the edges in the graph are dangerous for the agents

such that any agent that attempts to traverse such an edge (from either direction)

simply disappears, without leaving any trace. Notice that if all the edges incident to

a node u are faulty, then node u can never be reached by any agent, and such a node
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is equivalent to a black hole.

Kralovivc et al. [63] study a periodic data retrieval problem which is equivalent

to periodic exploration in fault-free networks, and to a black hole location problem

when there is only one black hole in the network. The aim of the periodic data

retrieval problem is to infinitely deliver the data from any non-faulty node to the

homebase (a node which collects all data) many times. They consider a ring network

which contains one malicious host that can behave in an arbitrary way, except that

it cannot change the internal state of an agent (i.e. contents of its local variables),

nor create an agent with a given state.

Cai et al. [14] consider the problem of a black virus which also deletes any incoming

agent, but unlike the black hole which is defined as a static host, a black virus moves

from node to node, thus potentially increasing the number of dangerous nodes. In

addition, unlike the black hole, which can only be located but not removed, the black

virus would be destroyed when it enters a node which contains an anti-viral system

agent. Thus, the only way to remove the black virus is to surround it by anti-viral

system agents and force it to move to the neighbouring nodes which already contain

at least one anti-viral system agent. Related to the black virus, some theoretical

work has focused on an intruder capture problem (aka. graph decontamination): an

intruder (a harmful agent) moves through the network infecting the nodes; the task

is to remove the intruder from the network using mobile agents. Unlike the black

virus, the intruder can only infect the nodes but not the agents. This problem has

been extensively studied in [10,13,49].

Black hole attack [2, 9, 71] is also a research topic that is related to black hole

search. The networks in black hole attack are different from those in black hole

search. In black hole search, the networks are static, while in black hole attack, the

networks can be MANET (Mobile Ad-Hoc network), wireless network, mobile and

other dynamic networks. In MANET, the network topology is only formed once one
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node needs to send a data package. Khari et al. [57] survey security attacks as well

as secured routing protocols in MANET and offer a definition of black hole attack.

In addition to black hole attack, the survey mentions a variation of black hole attack

called grey hole attack [1, 8, 67] A black hole will delete any incoming data packages

whereas a grey hole only deletes part of the packages.



Chapter 4

Model, Assumptions and Techniques

4.1 Model and Assumptions

The network is abstracted into an edge-labelled undirected graph G = (E, V ), where

E denotes the edges, V denotes the network nodes (e.g., computer hosts) and n

(n = |V |) denotes the number of nodes in G. For any u ∈ V and v ∈ V , (u, v) ∈ E

represents the link from neighbouring nodes u to v. The links obey a FIFO rule; that

is, the agents do not overtake each other when travelling over the same link in the

same direction.

Let Vf ⊆ V denote a set of faulty nodes, and b (b < n) denote the number of

faulty nodes in the network. A faulty node deletes any incoming data. However, it

can be repaired by the first visiting agent. After repair, a faulty node behaves like

a normal node and is referred to as a repaired node. However, unlike a real normal

node that is never a faulty node, a repaired node can be infected by a gray virus and

consequently turned into a black hole. If one or more agents simultaneously enter a

faulty node, one agent will die after repairing the fault, and all other agents will die

immediately.

A gray virus (GV for brevity) is a piece of malicious software, which can infect a

repaired node by residing in it and turning it into a black hole (agents cannot repair

46
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a black hole); it has no destructive power on a normal node or link. There are two

types of GV s: multi-stop and one-stop. A multi-stop GV can move from node to

node or reside in a node for any duration, regardless of whether the node is normal,

faulty, or repaired; if the node is normal or faulty, nothing will be changed; if the node

is repaired, it will become a black hole until the GV leaves. After the GV leaves, a

repaired node behaves like a normal one and may be reinfected. Unlike the multi-stop

GV s, a one-stop GV can no longer move around once it infects a repaired node; that

is, it turns the repaired node into a permanent black hole.

Let A denote a set of k ( k ≥ 2) identical agents in the network. These agents

have limited computing capabilities and bounded storage1, obey the same set of be-

havioural rules (the “protocol”), and can move from node to neighbouring node. We

make no assumptions on the amount of time required by an agent’s actions (e.g., com-

putation, or movement) except that it is finite; thus, the agents are asynchronous.

All agents initially wake up in the same node hb ( hb ∈ V ) which is referred to as

their homebase and is assumed to be safe (e.g. not a faulty node or black hole).

Unlike Cooper et al. [21] who solve the MBHS problem in synchronous networks

with the advantage of the time-out mechanism, in this paper we aim at solving the

repair and search problem in an asynchronous network where every agent’s move and

computation cost a finite but unpredictable amount of time. In [21], the goal of the

agents is only to repair all the faulty nodes without reporting their locations, when

the network map is given in advance. In this thesis, we define the Faulty Node Repair

and Dynamically Spawned Black Hole Search (Repair and Search for brevity) problem

as the following: uses a team of mobile agents to repair all the faulty nodes in the

entire network, and finally has at least one surviving agent which knows the location

of the black hole(s) infected by gray virus.

1The storage is only enough to keep track the number of moves it has performed during the
exploration of a new node.
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Furthermore, Cooper et al. assume if two or more agents enter a faulty node at

the same time, only one dies for the repair while the others can continue exploration.

We consider a more challenging model that is after repairing a faulty node, all agents

die if they simultaneously enter this faulty node.

In this thesis, we use two communication models to solve the Repair and Search

problem in an asynchronous network: the enhanced token model and whiteboard

model. Under the enhanced token model, we first solve the Repair and Search problem

caused by a multi-stop GV in Chapter 5. We then provide solutions to the problem

caused by a one-stop GV in Chapter 6 using a new technique double cautious walk.

After these 2 algorithms, we offer a solution using only one whiteboard in the entire

network in Chapter 7, and it does not need the cautious walk or double cautious walk

technique.

4.2 A New Technique: Double Cautious Walk

With Tokens

Double Cautious Walk With Tokens : an agent A (see Figure 6) marks a port in node

u as dangerous by placing a token at this port before moving to the next node v. Once

arriving at node v, the agent marks the entering port as dangerous by placing another

token at the port and immediately returns to node u. Upon its return, this agent will

pick up the first token in node u to show that this port is no longer dangerous and

move again to node v. While arriving, the agent picks up the second token on the

port through which this agent enters v. We call this port its entering port and the

other port its exiting port.

Since the one-stop GV may appear and infect a vulnerable node at any point in

time, a previously safe but vulnerable node u where an agent started the first step
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Step 1

Step 2

Step 3

Step 4

Exiting port Entering port

Figure 6: Double Cautious Walk with tokens: Agent A puts a token at node u and
moves to v (Step 1). Agent A puts a token at v and immediately returns to
u (Step 2). Upon return, A picks up a token and again moves to v (Step 3).
Upon arriving, A picks up a second token (Step 4).

of a double cautious walk may be infected and become a black hole. This sudden

change leads to the elimination of this agent while it returns to a previously safe node

u during its double cautious walk (Step 2 in Figure 6). This is why the cautious

walk with tokens [38] is no longer sufficient in terms of minimizing agent loss. In the

new double cautious walk with tokens, even if an agent dies in the black hole while

returning, it leaves a token at the second node, thus, further prevents extra agent

loss.

During an exploration, some agents die after repairing faults, while some may die

in a black hole. When an agent sees one token at a port, it knows that another agent

is exploring the next node, but it cannot know whether the next node is a repaired

node or a black hole. This agent needs to leave a second token at that port before

entering the next node. If the next node is a black hole, the port which leads to

the black hole will have two tokens on it since both agents died in it. Otherwise,

if the next node becomes a repaired node after the previous agent dies, this agent

will eventually pick up its first double cautious walk token. Thus, this mechanism
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distinguishes the black hole from a repaired node. An agent will never leave via a

port with two tokens ( a 2-token port ) unless it is the same port, via which it just

entered a node.

The characteristic of the GV that can infect a repaired node at any time has

significantly complicated the Repair and Search problem. For a link (u, v), it is

possible that 2 agents, A and B, enter via port p1 sequentially (not simultaneously

due to the FIFO rule) after each putting down 1 token; this leaves 2 tokens on port

p1 (see Figure 7). Both agents A and B proceed to node v and leave 2 tokens in total

on p2.

A

B

C

D

p1 p2
u v

Figure 7: During a double cautious walk, after visiting nodes u and v, two agents A
and B die in a previously visited node u that is now a gray virus infected black
hole.

In traditional black hole search, any node from which an agent comes is safe.

Therefore, when the 2 agents return to node u via link (u, v), they know that nodes u

and v are safe. They will be able to safely return to their previous nodes regardless of

the number of tokens left on the entering port. However, with a GV in the network,

a previously visited node is no longer guaranteed to be safe. It is possible that the

previously visited node u of agents A and B has been turned into a black hole. In

this situation, both sets of 2 tokens on ports p1 and p2 will remain forever. This

situation becomes more complex when there is one or more agent(s) traversing the

ring in opposite directions (e.g., agents C and D in Figure 7).



Chapter 5

Repair and Search in the Presence of a

Multi-stop Gray Virus in Arbitrary

Networks Using Tokens

5.1 More on Model and Assumptions

In the network, ∆ is the maximal node degree of G, and for each node u ∈ V , all

the ports are randomly but distinctly labelled as 1, 2, 3, ..., ∆. All agents have no

network topology knowledge a priori. Each agent is endowed with a limited number

of tokens which can be put on or picked up from a port or the centre of a node.

Any token on a node is visible to all agents on the same node. Since the agents are

invisible to each other, thus, the only way to exchange information is through the use

of tokens. All agents know n and b. As minimally one agents die in a faulty node in

order to repair it, at least b + 1 agents are required to allow one surviving agent to

report the locations of the repaired nodes (potential GV infected nodes).

It is important to note that in an asynchronous network, a GV ’s moving speed is

unpredictable. This leads to a crucial observation:

Observation 1 When a multi-stop GV moves much faster than the agents, from

51
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the agents’ point, it could be the case that all the repaired nodes appear to be black

holes. Consequently, the Repair and Search problem becomes unsolvable without any

additional assumption (same as the MBHS problem: some parts of the network may

become disconnected).

We assume there is only one multi-stop GV in the network and it can only appear

after all faulty nodes have been repaired and all repaired nodes have been located. A

repaired node cannot be turned into a black hole while there is an agent in the node.

We offer an algorithm which can repair all the faulty nodes with a minimal number

of agents, and construct a map of the unknown network with all the repaired nodes

marked.

5.2 Solution and Algorithms

5.2.1 Overview

In this algorithm, each agent independently explores the graph and constructs its

own map. Through out the execution of this algorithm, the Cautious walk with token

technique which introduced in [68] is used: When executing cautious walk under this

model, an agent marks a port as dangerous by placing a token at this port before

moving to the next node. Upon its return, this agent will pick up the token to show

that this port is no longer dangerous [38]. No more than one agent can put or pick

up tokens at the same place at the same time.

When an agent builds its map, a node can be as follows:

• completed - all its neighbouring nodes have been explored;

• incomplete - the agent has visited it but some of its neighbouring nodes remain

unexplored (it has unexplored ports);
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• repaired - a repaired node;

• suspected - suspected to be a repaired node but not yet proved.

In addition to the nodes, a port can be

• unexplored - if the agent has never left via the port

• explored- if the agent left via the port

• suspected - suspected to lead to a repaired node. Let sp denote the number of

suspected ports.

When entering a node (including wakes up at hb), the agent first numbers the

node from 1 to n (hb is node 1) and explores all its neighbours. If the agent survives,

it moves to an incomplete neighbour via the port with the smallest port number or

to the incomplete node with smallest number; for example, if port 1 of node v leads

to a completed node while port 2 leads to an incomplete node, the agent leaves via

port 2, and if all ports of node v lead to completed nodes, the agent moves to the

incomplete node with the smallest number. This process should be repeated until all

n nodes have been explored, or the agent dies in a faulty node.

If the agent finishes the entire graph exploration, it moves from the largest node

to the smallest ( hb is the smallest ) and marks all suspected ports in its map. If the

number of suspected nodes is equal to b, the algorithm terminates. The agent finally

arrives at hb. If there is no token in the centre of hb, the agent puts two tokens in

the centre and waits for another agent to pick up one; the agent again goes to count

and check the suspected nodes and returns to hb after rechecking; while returning,

the agent puts a second token in the centre of hb; the algorithm terminates when the

number of suspected nodes is equal to the number of faulty nodes. If there is one

token in the centre, the agent waits until the number of tokens becomes two and picks
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up one, and then becomes inactive. If there are two tokens in the centre, the agent

picks up one and becomes inactive.

N1

1

(s)
1

1

1

3

1

1

2

2

1

2

2

2

2

3

3

3
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4N2
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N5

N6

15
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Figure 8: An agent moves to the next node through the smallest incomplete port
(route 14). For example, an agent visits N6 and N4, and only adds N6 as a new
node since N4 has already been added into its map during previous exploration
of this node via another route

5.3 Correctness and Complexity Analysis

Lemma 2 All the agents follow the same path, thus, only b agents die as a result of

repairing the faulty nodes.

Proof. When building its map, the agent chooses a neighbour or a next node

without considering the tokens on the node and only concerning the port numbers.

Since all the agents wake up at the same node hb and the port numbers do not change,

all the agents will make the same decision on each node, thus, follow the same path.

As all the agents follow the same path and no more than one agent can enter a faulty

node at the same time through the same port, only 1 agent dies in each faulty node.

Therefore, only b agents die as a result of repairing the faulty nodes.

Lemma 3 b + 1 agents are necessary and sufficient to repair all the b faulty nodes

and locate all the repaired nodes.
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Proof. Clearly, to repair b faulty nodes, b agents are necessary. In order to report

the locations of the repaired nodes, at least 1 agent has to survive and return to

hb. Therefore, b + 1 agents are necessary. As proven, only b agents die in Lemma

2 and all faulty nodes have been repaired, the extra 1 agent will finish the graph

exploration and know the locations of all the repaired nodes. Hence, b+ 1 agents are

also sufficient.

Lemma 4 Only one agent can put 2 tokens at hb, and count the number of repaired

nodes. The algorithm can terminate within finite time.

Proof. Assume agent X is the first agent which puts two tokens in the centre

of hb. By the time X puts the two tokens, the other agent can only pick up one.

While there is only one token left, an agent has to wait until X puts a second one.

Therefore, no other agent can put tokens in the centre except X. Agent X is the

only agent that counts the number of suspected nodes, and finally updates only b

suspected nodes to repaired nodes.

Within finite time, all the survived agents will finish the entire graph exploration

and return to hb. By the time all agents return to hb, only the dead agents have

tokens left on suspected ports, and only the b agents have died. Therefore, sp = b,

and the algorithm terminates.

Lemma 5 In the worst case, the repair and locate task can finish within O(kn∆)

moves in total.

Proof. Step 1: when k = b+ 1

As in Lemma 2, b agents die in the faulty nodes. This leaves only one agent A to

finish the entire graph exploration. Therefore, when A finishes exploring the entire

network, there are b suspected nodes. When the agent returns to hb, the algorithm

terminates. During an exploration, an agent needs at most 2∆ moves to explore every
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new node. For k agents to explore at most n nodes each, the worst case total number

is 2kn∆. During the counting step, in the worst case, the surviving agent A needs to

traverse the entire network to count the number of suspected nodes. The moves for

this step is n. In summary, the total moves are 2kn∆ + n when k = b+ 1.

Step 2: assuming the total number of moves is at most 2kn∆ + kn + (k − b)n +

2(min(n, k)− b)n when k = b + i, we want to prove that the total number of moves

is at most 2kn∆ + kn+ (k − b)n+ 2(min(n, k)− b)n, when k = b+ i+ 1.

Again, as proven in Lemma 2, b agents die in the faulty nodes. This leaves k − b

surviving agents that can finish exploring the entire network. During an exploration,

an agent needs at most 2∆ moves to explore every new node. For k agents to explore

at most n nodes each, the worst case total number is 2kn∆. When one of the surviving

agent A finishes exploring the entire network, it moves back to hb. When the agent

returns to hb, it waits for the next surviving agents to come back and proceeds to a

counting step upon the arrival of each proceeding surviving agents. (k − b)n moves

are taken by k−b agents coming back from the last node in the network to hb. During

the counting step, in the worst case, a surviving agent A needs to traverse the entire

network to count the number of suspected nodes. The counting agent needs at most

2(sp− b)n moves. As sp < min(n, k), (sp− b)n < (min(n, k)− b)n. In summary, it

costs at most 2kn∆ + kn+ (k − b)n+ 2(min(n, k)− b)n moves.

Hence, in the worst case, the repair and search task can finish within O(kn∆)

moves in total.

Theorem 6 After O(kn∆) moves, b+1 agents are necessary and sufficient to repair

and locate b faulty nodes in an arbitrary unknown network.



Chapter 6

Repair and Search in the Presence of a

One-stop Gray Virus in Ring Networks

Using Tokens

6.1 More on Model and Assumptions

We study the one-stop GV under almost the same assumptions as the multi-stop GV

case. Since a one-stop GV can only infect one vulnerable node, one and only one

vulnerable node will become infected and turn into a black hole. Another difference

between the two sets of assumptions is that we study the Repair and Search problem

caused by the one-stop GV in an un-oriented ring network with n nodes. In an un-

oriented ring, the agents are not able to agree on a common sense of direction [41]

(e.g. the Left direction to one agent might be the Right to another agent). All agents

initially locate at homebase hb and know the network topology is a ring.

Observation 7 If the one-stop GV appears after all faulty nodes have been repaired,

the Repair and Search problem becomes a faulty node repair problem and a single black

hole search problem with all the possible locations of the black hole known a priori.
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In this case, the Repair and Search problem is even easier than a traditional single

black hole search problem. We are interested in studying the scenario in which a one-

stop GV may appear and infect a repaired node at any time that is no later than all

the faulty nodes have been repaired. Contrary to the traditional black hole search

that has one black hole before the search starts, having a black hole that appears at

a random time significantly increases the difficulty and complexity of the task. We

will further explain this observation later in this section. We offer an algorithm that

can repair all the faulty nodes, and locate the GV within finite time.

6.2 Algorithm Pair-Block

6.2.1 General Description

An agent, A1, wakes up at homebase hb and randomly chooses one direction to explore

the ring using the double cautious walk. If A1 is blocked by a 2-token port on node

Nx, A1 marks Nx as left-block in its memory. A1 also memorizes whether there is any

token in the centre of this left-block. A1 reverses direction and continues exploration

until blocked by another 2-token port on node Ny; A1 remembers Ny as its right-

block. An agent is said to be Blocked when there are 2 or more tokens on the exiting

port of a node in its current exploration direction. A1 counts the distance between

the left-block and right-block. If the distance is n− 2, the algorithm terminates and

the only unexplored node is the infected black hole; if the distance is smaller than

n− 2, A1 executes the following:

If there is no token in the centre of either the left-block nor the right-block, A1 puts

2 tokens in the centre of the right-block ( 2-token-centre node ). A1 then returns to

look for its left-block until it arrives at its left-block or is blocked by another 2-token

port. For the later case, the new node becomes the new left-block of A1. A1 puts 1
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token in the centre of its left-block and waits. All other details of this procedure can

be found in Procedure 2.

S
A

Right-block

Left-block

Figure 9: The simplest situation: there are no other agents between the left-block
and right-block of agent A

If the left-block is not beside a black hole, at least 1 token at the 2-token port will

disappear. When A1 sees 1 token is gone, it looks for its right-block to pick up the

2 tokens in the centre. A1 then returns to its left-block and continues its exploration

(see all situations in Procedure 4).

Another scenario could be that another agent A2 picks up 1 token from the 2-

token port of the right-block, if this right-block is not beside a black hole. When A2

sees 2 tokens in the centre left by A1, A2 picks them up and becomes a sender . The

sender goes to a 1-token-centre node (e.g., left-block of A1), and drops the extra 2

tokens in the centre to inform A1. After this, A2 reverses its direction and continues

its previous exploration. When A1 sees 3 tokens in the centre, A1 picks up all the

tokens and goes to its right-block to continue exploration. Such exploration continues

until one agent finds there are n− 1 nodes between its left and right blocks.
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Detailed Explanation

Procedure “Pair-Block” An agent wakes up at hb and randomly chooses one

port to explore the ring using the double cautious walk. When the agent returns to

pick up its token during cautious walk, if it sees 2 tokens in the centre, it becomes a

sender and sends the extra tokens to a 2-token port with 1 token in the centre. If an

agent does not become a sender, it will meet a pair of left-block and right-block, and

then either wait at its left-block, terminate the algorithm, or execute Procedure 2.

In addition, clear memory means the agent deletes the information about left-block

and right-block. After memory is cleared, an agent will memorize other nodes with

2-token ports as new left-block or right-block.

Algorithm 1 Pair-Block
1: Wake up at hb. Choose one port to explore the ring using double cautious walk.
2: loop
3: if Blocked by a port has more than 2 tokens during exploration then
4: Execute the same as being blocked by a 2-token port.
5: end if
6: if See 2 tokens in the centre when returning during double cautious walk then
7: Pick up the 2 extra tokens in the centre. Become a sender.
8: if Blocked by a 2-token port with one token in the centre then
9: Put 2 tokens in the centre. Reverses direction. Clear memory.

10: else if Blocked by a 2-token port then
11: Reverses direction. Delete the 2 extra tokens. Clear memory.
12: end if
13: end if
14: Continue exploration until blocked by a 2-token port. Mark this node left-block.
15: Reverse direction and continue exploration until blocked by another 2-token port.

Mark this node right-block.
16: Count the distance d of left-block and right-block.
17: if d = 0 then
18: Wait until any 2-token port has fewer than 2 tokens. Leave through that port

and continue exploration. Clear memory.
19: else if 0 < d < n− 2 then
20: Execute GoBack.
21: else if d = n− 2 then
22: Terminate the algorithm.
23: end if
24: end loop
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Procedure “GoBack” To execute this procedure, an agent has met its left-block

and is currently at its right-block. Let Cl and Cr denote the number of tokens in the

centre of its left-block and right-block respectively. The agent puts i (i = 0, 1) token

or picks up 1 token to make Cl = 1&Cr = 2. The agent then waits at its left-block.

An agent may meet no/one/two tokens in the centre of its left-block and right-block.

Exchange names means to exchange the names of its left-block and right-block; for

example, nodes Nx and Ny are left and right blocks, respectively, so that after name

exchange, Ny becomes left-block and Nx is right-block. All possibilities of Cl and Cr

and actions 1 & 2 that an agent will take in these situations are shown in Table 4.

Algorithm 2 GoBack
1: if Cl + Cr = 0 then
2: Put 2 tokens in the centre of right-block. i = 1. Execute GoToOne.
3: else if Cl = 0&Cr = 1 then
4: Go to left-block
5: if Arrive left-block and the 2-token port still has 2 tokens then
6: Put 2 tokens in the centre of left-block. Exchange names. i = 0. Execute

GoToOne.
7: else if Arrive left-block and the 2-token port has fewer than 2 tokens then
8: Clear memory.
9: else if Blocked by a 2-token port before left-block then

10: Update this node as left-block. Exchange names. Execute GoBack.
11: end if
12: else if Cl = 0&Cr = 2 then
13: i = 1. Execute GoToOne.
14: else if Cl = 1&Cr = 0 then
15: Put 2 tokens in the centre of right-block. i = 0. Execute GoToOne.
16: else if Cl = 1&Cr = 1 then
17: Put 1 token in the centre of right-block. i = 0. Execute GoToOne.
18: else if Cl = 1&Cr = 2 then
19: i = 0. Execute GoToOne.
20: else if Cl = 2&Cr = 0 then
21: Put 1 token in the centre of right-block. Exchange names. Execute WaitToFind.
22: else if Cl = 2&Cr = 1 then
23: Exchange names. Execute WaitToFind.
24: else if Cl = 2&Cr = 2 then
25: Pick up 1 token in the centre of right-block. Exchange names. Execute Wait-

ToFind.
26: end if



62

Table 4: Number of tokens on nodes left-block and right-block. T: token. C: the
centre.

Combi-nations Cl Cr Action 1 Action 2

1 0 0 Put 2T in C of
right-block. Go
to left-block

Put 1T in C of left-
block and wait.

2 0 1 Go to left-block.
Put 2T in C of
left-block

Go to right-block.
Wait.

3 0 2 Go to left-block Put 1T in C of left-
block. Wait.

4 1 0 Put 2T in C of
right-block

Go to left-block.
Wait.

5 1 1 Put 1T in C of
right-block

Go to left-block.
Wait.

6 1 2 Go to left-block Wait.

7 2 0 Put 1T in C of
right-block

Exchange names.
Wait.

8 2 1 Exchange
names. Wait.

9 2 2 Pick up 1T in C
of right-block

Exchange names.
Wait.

Procedure “GoToOne” The agent is currently at its right-block and needs to

move to its left-block. It may arrive at its left-block successfully or meet another 2-

token port. There are three main situations that may happen and should be discussed

whenever an agent moves from its left-block to its right-block .

1. A1 arrives at its left-block, and the 2-token port still has 2 tokens.

2. A1 arrives at its left-block, and the 2-token port has fewer than 2 tokens.

3. A1 is blocked by a 2-token port with no/one/two tokens in the centre before
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arriving at its left-block.

Algorithm 3 GoToOne
1: if Arrive left-block and the 2-token port still has 2 tokens then
2: Put i token in the centre of left-block. Execute WaitToFind.
3: else if Arrive left-block, and the 2-token port has fewer than 2 tokens then
4: Go to right-block.
5: if Arrive at right-block and see two tokens in the centre then
6: Pick up all tokens in the centre. Reverse direction. Clear memory.
7: else if Arrive at right-block then
8: Reverse direction. Clear memory.
9: else if Blocked by a 2-token port with 2 tokens in the centre then

10: Pick up all tokens in the centre. Reverse direction. Clear memory.
11: else if Blocked by a 2-token port then
12: Reverse direction. Clear memory.
13: end if
14: else if Blocked by a 2-token port with no tokens in the centre then
15: Put 1 token in the centre, update this node as left-block. Execute WaitToFind.
16: else if Blocked by a 2-token port with 1 token in the centre then
17: Update this node as left-block. Execute WaitToFind.
18: else if Blocked by a 2-token port with 2 tokens in the centre then
19: Pick up 1 token. Update this node as left-block. Execute WaitToFind.
20: end if

Procedure “WaitToFind” An agent has met its right-block and now waits at its

left-block. The agent waits until 1 token on the exiting port is gone or Cl = 3. For

the former case, the agent looks for the 2 tokens in the centre of its right-block. For

the later case, the agent picks up all 3 tokens and goes to its right-block to continue

exploration.

6.3 Correctness and Complexity Analysis

Lemma 8 Minimally b+ 2 agents are necessary to repair all faulty nodes and locate

the black hole in an asynchronous ring network.

Proof. Since there are b faulty nodes in the ring network and 1 agent can only repair

1 faulty node, b agents are needed. To distinguish the black hole from the repaired
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Algorithm 4 WaitToFind
1: Wait.
2: if 1 token on the exiting port is gone. then
3: Go to right-block.
4: if Blocked by a 2-token port with 2 tokens in the centre then
5: Pick up 2 tokens in the centre. Return to left-block.
6: else if Blocked by a 2-token port or arrive right-block. then
7: Return to left-block.
8: end if
9: if Arrive at left-block and there is 1 tokens in the centre then

10: Pick up the token in the centre. Clear memory.
11: else if Blocked by a 2-token port. then
12: Reverse direction. Clear memory.
13: else
14: Clear memory.
15: end if
16: else if 1 token in the centre becomes 3 then
17: Pick up all 3 tokens in the centre. Go to right-block and clear memory.
18: end if

nodes, at least one agent has to enter the black hole and die, thus, b + 1 agents are

required. To report the locations of the faulty nodes and the black hole, at least 1

agent has to survive, hence, b+ 2 agents are necessary.

Lemma 9 b+9 agents are sufficient to report all repaired faulty nodes and locate the

black hole in a ring network.

Proof. Since there are b faulty nodes in the ring network and 1 agent can only

repair 1 fault, b agents are necessary to repair all faulty nodes. In order to distinguish

the black hole from the repaired nodes, each port which leads to the black hole will

have 2 tokens, each of which was left by one agent. Because there is already 1 token

left from the previous faulty node repair, 3 more tokens from three different agents will

be needed. At least 1 agent has to survive and report the locations, thus, minimally

b+ 4 agents are required to repair all the faulty nodes and locate the black hole that

may appear at any random point in time.
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If two agents simultaneously enter the same faulty node, they both die. Since the

agents travelling on the same link in the same direction obey the FIFO rule, maximum

2 agents (one from each direction) can enter the same faulty node and simultaneously

die. If 2 agents meet from different directions, all faults from their common homebase

hb to the meeting node have been repaired. Therefore, in the ring network, there is

only one black hole and no faulty nodes after this meeting, so that one more agent is

needed in this situation and b+ 5 agents are necessary.

As a GV can infect a repaired node at any time, it is also possible that node v

turns into a black hole while an agent is returning to v after picking up its first token

( Step 3 in Figure 6), which makes the agent die in the black hole without leaving

any trace in the network. For a repaired node, 1 agent has already died for repairing

it and left 1 token on a port that leads to this repaired node, so that 3 more agents

can enter node v and die.

A

B

C

D

u v
p1 p2

E

F

G

H

p3 p4

Figure 10: At most 8 agents die in the black hole

Assume agents A and B travel in the opposite direction as agents C and D. They

left their first cautious walk tokens on port p1 and p2, respectively. While agents A

and B are moving towards node v, node v becomes infected and turned into a black

hole, so that agents A and B will immediately die when they arrive at node v. Agents

C and D will also die in node v after they leave their second cautious walk tokens on

port p1. None of these 4 agents can return to pick up their tokens on port p1 (see

Figure 10). According to Line 4 in Procedure 1, all agents treat such a port the same
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as a 2-token port.

If node v can be turned into a black hole, it is a repaired node, so that there has

been an agent H who died for repairing it. Since agent H immediately dies after

arriving at a faulty node, it cannot leave its second double cautious walk token, thus,

it leaves only 1 token on port p4. If agents G, E, and F die in the same situation

as agents A, C, and D, there will be 2 and 4 tokens on port p3 and p4 respectively.

In summary, 7 agents die in the black hole and 1 agent dies for fault repair. This is

true even if agents A, B, and G die while returning after picking up their first token

instead of moving towards node v, because the second cautious walk tokens left on

port p1 by agents C and D, as well as the 2 tokens on port p4 by agents E and F ,

will remain and block other agents. Since regularly only agents A, B, G, and H die

in the black hole, 4 extra agents die in this situation, which requires more agents than

the above situation where only 3 agents die without leaving any trace. These two

situations cannot happen in the same network. Therefore, b + 9 agents are required

in total.

Lemma 10 Algorithm Pair-Block can correctly repair all faulty nodes and locate the

black hole.

Proof. For any port with 2 or more tokens, there are three situations in which

the agents which left these tokens: all active agents, only one dead agent (for fault

repair), at least two dead agents. For the first two cases, all active agents will return

to pick up their tokens and leave at most 1 token on the port, so that the port can

only temporarily block other agents. Since all links obey the FIFO rule, a port with

2 or more dead agents leads to a black hole. An agent will be permanently blocked

by such a port in one direction, hence, it can only explore the ring in the opposite

direction and either die or arrive at the other side of the black hole. If an agent has
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been blocked by 2 ports that lead to the black hole, it has visited n − 1 nodes and

located the black hole.

Lemma 11 In the worst case, the Repair and Search task can finish within O(kn2)

(k > b+ 9) moves in total.

Proof. As proved in Lemma 9, in the worst case all accidents happen and leave

only 1 surviving agent. As there is a black hole in the network and each port that

leads to the black hole will have at least 2 tokens, the surviving agent will be blocked

by the two ports and the distance is n− 2, thus, the algorithm is terminated.

For any agent, one move of cautious walk needs 3 actual moves. According to

Procedure 1 lines 14 and 15, forming a pair of left-block and right-block needs up to

2 ∗ 3(n − 2) moves. Also in Procedure 1 or Procedure 4, removing a pair may also

need up to 2 ∗ 3(n− 2) moves. If every exploration of a new node by an agent creates

a pair of left and right blocks, up to (2 ∗ 3 + 2 ∗ 3) ∗ (n − 2) ∗ n moves are required.

Furthermore, if this happens to every agent, a total of 12 ∗ k ∗ n ∗ (n− 2) moves are

required to form and remove a pair of blocks for all agents. Hence, O(kn2) moves are

required to repair all faulty nodes and locate the black hole in the worst case.

Theorem 12 After O(kn2) (k > b + 9) moves, b + 9 agents are sufficient to repair

and locate b faulty nodes and the black hole infected by a one-stop gray virus at a

random time.



Chapter 7

Repair and Search in the Presence of a

One-stop Gray Virus in Ring Networks

Using only one Whiteboard

7.1 More on Model and Assumptions

The Repair and Search problem is studied in an anonymous ring network with a one-

stop GV in this chapter. The agents know the network topology is a ring a priori.

All agents execute the same protocol and know the number of nodes n, however

have no knowledge about the number of faulty nodes b. A whiteboard [31] (e.g.

shared memory) in the homebase is the only means of communication between agents.

This whiteboard available in hb can be accessed in fair mutual exclusion. No other

communication methods (e.g., a whiteboard on other nodes or agents which can sense

or talk to each other when they meet in the same node) are otherwise available.

It is known that in an un-oriented ring, there is no agreement on a common sense

of direction among the agents [31] (e.g. the Left direction to agent a1 might be the

Right of another agent a2). But, since all agents are co-located and can access the

whiteboard, the agents can agree on the clockwise direction of the ring even if the ring

68
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is un-oriented. Therefore, with the help of this whiteboard in the common homebase,

all agents know that the clockwise direction is the left of the ring, and the counter-

clockwise direction is the right of the ring. In order to ease the understanding of the

algorithm description, N0, N1, ... Nn−1 are used to refer to the nodes of the ring

sequentially in left direction starting from the homebase hb.

7.2 Algorithm Dynamically Spawned Black Hole

Search

7.2.1 General Description

When an agent A wakes up at hb, it first checks the whiteboard. If the whiteboard

is blank, agent A initializes the whiteboard as shown in Table 5. Agent A puts a

leaving mark (?) in the cell of First Agent for node N1, and then goes to visit node

N1 which is the node 1 step away from hb in the left direction. Upon its arrival, agent

A returns to hb immediately. Once A returns to hb, agent A changes the leaving mark

to a returned mark (
√

) (Table 6 shows an example). This agent immediately clears

its memory and acts as a newly waking up agent.

By repeating this process, agent A explores nodes N2, N3, ..., Ni that are 2, 3, ..., i

steps away from hb in the left direction. Other agents such as B may wake up any

time during A’s exploration. Upon waking up, agent B sees a leaving mark for node

Ni, it knows that A has either died after exploring a faulty node, was eliminated by

a black hole, or is still doing its normal exploration on node Ni. Agent B then goes

to node Ni to confirm the status of agent A. B puts a leaving mark under Second

Agent on node Ni. Upon its arrival, agent B returns to hb immediately and changes

the leaving mark into a returned mark. By the time agent B returns, agent A may

have returned, which means node Ni is not a faulty node. Since we assume that all
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links and nodes are FIFO, agent B can return before agent A only when agent A has

died after repairing a faulty node. B can then conclude that node Ni is a repaired

faulty node. In this situation, B will change the leaving mark (?) of A into a died

mark (×) (see Scenario S5 in Table 7).

When another agent C wakes up, it observes from the node list on the whiteboard

in hb that two agents have left in the left direction, it immediately starts exploring the

ring in right direction to visit node Nn−1, Nn−2, ..., Nn−j. This is because if the black

hole has already appeared, going into the opposite direction will avoid unnecessary

loss of agents. When the Fourth Agent D wakes up before agent C returns from

node Nn−j and there are still two leaving agents in the left direction, agent D goes to

node Nn−j in the right direction and returns to hb immediately. If there are 2 agents

leaving in each of the two directions, then the Fifth Agent, after waking up, will wait

at hb until at least one agent comes back from either of the two directions. All agents

start again executing the above mentioned procedures in a FIFO fashion until every

node in the network has at least one agent returned from it. After this point, we

know that all faulty nodes have been repaired. In addition, each such repaired node

is indicated on the whiteboard with a returned mark (
√

) under the Second Agent

column and a died mark (×) under the First Agent column on a node.

At this moment, the only work left is to identify the black hole that is one of the

repaired nodes which is newly infected by the GV . Obviously if there is only one

repaired node, it is the black hole. When there is more than one repaired node, the

remaining task can be achieved by letting one agent A visit in the left direction and

another agent B visit in the right direction all nodes one by one. Upon checking each

node, either agent A or agent B needs to return to hb and update the whiteboard.

When all but one of the repaired nodes have been checked by an agent, the remaining

node is the black hole. It is important to notice that this is the simplest situation

that may happen, that is, the black hole does not appear and eliminates agents on
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Table 5: Homebase Whiteboard Initial State

Node List First
Agent

Second
Agent

Third
Agent

Fourth
Agent

Repaired
Node List

N1

N2

...

Ni−1

Ni

...

Nn−j

Nn−j+1

...

Nn−2

Nn−1

their way returning to hb. It is possible that an agent dies in a newly spawned (i.e.

infected by a GV ) black hole on its way returning to hb from exploring a new node,

say Nx. If two agents visiting Nx died this way, it leads to the scenario in which Nx

appears (on the whiteboard) to have no agent returned from it, even though it is not

the black hole. We discuss the details of procedures Find the Meeting Node and Black

Hole Search in the following subsections.

7.2.2 Procedure “Homebase Initialization”

When an agent wakes up at homebase hb, if the whiteboard is blank, this agent

initializes the whiteboard as shown in Table 5. Recall that N0, N1, ... Nn−1 denote

the nodes of the ring in clockwise direction, hb is node N0, and for description purpose,

we say that the clockwise direction is the left of the ring.

Each agent may write three kinds of notes in the whiteboard. An agent writes a
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leaving mark ? when it leaves for a node as well as the direction it leaves using l (left)

or r (right). When an agent returns to its homebase, it changes its leaving mark ?

into a returned mark
√

along with the direction from which it has left hb. When a

second agent returns before its first agent, apart from changing its own leaving mark

? to a returned mark
√

, it also changes the ? of the first agent to a died mark ×.

Table 6 shows an example of how an agent indicates its leave ?(l/r) and return
√

(l/r)

notes.

Table 6: An example of how agents indicate their status.

Node List First Agent Second Agent

N1

√
(l)

N2 ×
√

(l)

...

Ni ?(l) ?(l)

...

Nn−2 ?(r)

Nn−1

√
(r) ?(r)

Algorithm 5 Procedure Homebase Initialization
1: wake up
2: if whiteboard is blank then
3: initialize the whiteboard to Table 5
4: end if
5: execute Procedure NEW NODE EXPLORATION

7.2.3 Procedure “New Node Exploration”

After the First Agent initializes the whiteboard in hb upon waking up or each time an

agent returns to hb after exploring a new node, it starts a new task. It goes through

the node list from the top to the bottom. The agent may find a node:
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1. unexplored, that is a node that has no mark on the whiteboard (i.e. the row of

the node in Table 5 is empty); or

2. repaired, that is a node has a × under the column before the column with a
√

(i.e. the Second Agent returned but the first one did not. See Scenario S5 in

Table 7); or

3. safe, that is a non-faulty node that has a
√

under the First Agent column (i.e.

the First Agent has returned. See Scenario S2, S4 and S6 in Table 7); or

4. unknown, that is a node that has a ? under under the First Agent column or

both First and Second Agent columns. (i.e. both agents have left but no agent

ever returned. See Scenarios S1 and S3 in Table 7).

The status of a node is considered to be known if it is either safe or repaired. In

Scenario S5, the First Agent is confirmed to be dead as soon as the Second Agent

exploring the same node returns. This Second Agent will turn the ? mark left by the

First Agent into a ×. In Scenarios such as S1, S3 and S4, the ? mark can only indicate

that an agent has left to explore a node, but whether it is dead remains unknown.
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Table 7: Agents leaving and returning to the homebase Scenarios as marked on the
whiteboard

Scen-
arios

First Agent Second Agent Targeted node is No. of status un-
known agents

S1 ? (l/r) Unknown 1

S2
√

(l/r) Safe 0

S3 ? (l/r) ? (l/r) Unknown 2

S4
√

(l/r) ? (l/r) Safe 1

S5 ×
√

(l/r) Repaired node 0 (1 died)

S6
√

(l/r)
√

(l/r) Safe 0

?: a status unknown agent that left to explore a node.
×: an agent died either in a black hole or after repairing a faulty node.√

: an agent that has returned to hb

While scanning the nodes list in the whiteboard, an agent A counts the number

of status unknown agents pd until it finds an unexplored node Ni. It determines the

next step accordingly. If A cannot find an unexplored node, the agent will finish

searching the whole list and execute Procedure Find The Meeting Node.

• When pd = 0, the agent goes to the next unexplored node Ni.

• When pd = 1, there are two possibilities:

1. When node Ni−1 is in Scenario S1, the agent goes to node Ni−1; or

2. When node Ni−1 is in Scenario S4, the agent goes to node Ni.

• When pd = 2, there are also two possibilities:

1. When node Ni−1 is in Scenario S3; or

2. When nodes Ni−1 and Ni−2 are in Scenarios S1 and S4 respectively.
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In both cases, A restarts the search from bottom to top of the node list and also

counts the number pd2 of status unknown agents until it finds an unexplored

node Nn−j. If n− j > i, A executes the following:

1. When pd2 = 0, A goes to node Nn−j.

2. When pd2 = 1, there are two possibilities:

(a) When node Nn−j+1 is in Scenario S1, A goes to node Nn−j+1; or

(b) When node Nn−j+1 is in Scenario S4, A goes to node Nn−j.

3. When pd2 = 2, A waits at hb until pd < 2 or pd2 < 2, then execute

Procedure New Node Exploration again.

It is important to know that when n − j = i, node Ni is the last unexplored node.

Once Ni is explored, it becomes a meeting node (this will be explained in the next

subsection).

7.2.4 Procedure “Find the Meeting Node”

This procedure gets executed when an agent A searches for a new task at hb and

finds that all nodes have been explored. Agent A starts counting the number of

status unknown nodes. Agent A executes Procedure Black Hole Search when there

are no more unknown nodes in the node list. Otherwise, agent A counts the number

of status unknown agents pd in the entire list and executes the following:

1. When pd > 4, A waits at hb.

2. When pd = 4 and the 4 status unknown agents are not on the same node, A

waits at hb.

3. When pd = 4 and the 4 status unknown agents are marked on the same node,

A starts Procedure Black Hole Search immediately.
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Algorithm 6 New Node Exploration
1: loop
2: clear previous memory and search the node list from top to bottom
3: if an unexplored node Ni is found then
4: count the number pd of status unknown agents
5: else if no unexplored node is found in the whole node list then
6: execute Procedure FIND THE MEETING NODE
7: end if
8: if pd = 0 then
9: put a ?(l) in First Agent column and go to node Ni

10: else if pd = 1 and node Ni−1 is in Scenario S1 then
11: put a ?(l) in Second Agent column and go to node Ni−1

12: else if pd = 1 and node Ni−1 is in Scenario S4 then
13: put a ?(l) in First Agent column and go to node Ni

14: else if pd = 2 then
15: search from bottom to top of the node list and count the number pd2 of status

unknown agents until an unexplored node Nn−j is found
16: if pd2 = 0 then
17: put a ?(r) in First Agent column and go to node Nn−j

18: else if pd2 = 1 and node Nn−j+1 is in Scenario S1 then
19: put a ?(r) in Second Agent column and go to node Nn−j+1

20: else if pd2 = 1 and node Nn−j+1 is in Scenario S4 then
21: put a ?(r) in First Agent column and go to node Nn−j

22: else if pd2 = 2 then
23: wait at hb until pd < 2 or pd2 < 2. Execute Procedure NEW NODE EX-

PLORATION
24: end if
25: end if
26: upon arriving, return to hb immediately
27: upon returning, change own ?(l/r) into

√
(l/r)

28: if the current agent is the Second Agent and the First Agent is ? then
29: change the ? of the First Agent to ×
30: end if
31: end loop
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4. When pd < 4 and there are no nodes in Scenario S1:

• If all status unknown agents are not on the same node and one node has

both ?(l) and ?(r), A goes to the same node as the Third Agent;

• If all status unknown agents are on the same node, A puts a ? in the empty

slot of its own agent column, then goes to that node.

Furthermore if only one status unknown agent is marked going in the left di-

rection, A leaves in the left direction; if two status unknown agents are already

marked going in the left direction, A leaves in the right direction.

5. When pd < 4 and there is only one node that is in Scenario S1, A’s decision

will be based on whether this node can be reached without passing through any

other status unknown agent.

• If this node can be reached by A in the same direction as the first visiting

agent to this node, A leaves in the same direction;

• If this node can only be reached in the opposite direction as the first visiting

agent to this node, A leaves in the opposite direction;

• If this node cannot be reached, A waits at hb.

6. When pd < 4 and there is more than one node in Scenario S1:

• If only one of these nodes can be reached without passing through a status

unknown agent, A goes to the reachable node;

• If more than one of these nodes can be reached, A goes to the node that

can be reached in the left direction.

A immediately returns to hb after reaching the destination node. Upon arriving in

hb, A changes its own ? to
√

. If A sees a ? in the Third Agent column after changing,
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A also changes the Third Agent’s ? into × and writes “Last” in the repaired node

column on this row and executes Procedure Black Hole Search. If A is the Third

Agent returning and sees its ? has been changed, it starts executing Procedure Black

Hole Search without changing the whiteboard. 1

7.2.5 Procedure “Black Hole Search”

As detailed in Procedure Find the Meeting Node, an agent A will only start executing

Procedure Black Hole Search when A sees that all nodes’ statuses are known (either

safe or repaired) or all nodes’ statuses are known save for one. In this latter scenario,

according to line 10 in Procedure Find the Meeting Node, four ?s are on that node.

Agent A continues this task by marking all repaired nodes in Table 5. A then

searches the Third Agent column:

1. If there are 2 status unknown agents in this column, A wait at hb until one of

them returns;

2. If there is only 1 status unknown agent, A searches this column from top to

bottom until it finds an empty cell. If the empty cell is above the status unknown

agent, A puts a ?(l) in the cell, and then goes to the node. Otherwise A leaves

in the right direction after putting down a ?(r). A returns to hb immediately

after visiting this node. It changes the ? to a
√

.

3. If there is only 1 status unknown agent and no empty cell in the Third Agent

column, the node with the only status unknown agent is the black hole.

1In Algorithm Find the Meeting Node, wait at hb: the agent waits at hb until another agent
returns and changes the whiteboard. A node can be reached: this node can be reached without
passing a status unknown agent.
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Algorithm 7 Find the Meeting Node
1: loop
2: search the node list from top to bottom and count pd
3: if every node is known to be safe or repaired then
4: execute BLACK HOLE SEARCH
5: end if
6: if pd > 4 or pd = 4 and the 4 ? are not on the same node then
7: wait at hb and execute MEETING NODE
8: else if pd = 4 and the 4 status unknown agents are on the same node then
9: execute BLACK HOLE SEARCH

10: else if pd < 4 and no node is in Scenario S1 then
11: if all status unknown agents are not on the same node then
12: if a node has both ?(l) and ?(r) then
13: put a ? in the Third Agent column
14: else
15: wait at hb and execute MEETING NODE
16: end if
17: else if all status unknown agents are on the same node then
18: put a ? in the Third/Fourth Agent column
19: end if
20: if there is only one ?(l) in total then
21: change own ? into ?(l)
22: else if two ?(l) in total then
23: change own ? into ?(r)
24: end if
25: else if pd < 4 and only one node is in Scenario S1 then
26: if this node can be reached in the same direction as the First Agent then
27: go to this node in the same direction as the First Agent
28: else if this node can be reached in the opposite direction as the First Agent

then
29: go to this node in the opposite direction as the First Agent
30: else if this node cannot be reached then
31: wait at hb and execute MEETING NODE
32: end if
33: else if pd < 4 and more than one node is in Scenario S1 then
34: if only one can be reached then
35: go to the reachable node
36: else if more than one can be reached then
37: go to the node that can be reached from left
38: end if
39: end if
40: upon arriving, return to hb immediately
41: if hb is reached and the cell of the Third Agent for the same node is ? then
42: change the third ?(l/r) into ×, mark this node “Last”
43: end if
44: change own ?(l/r) into

√
(l/r)

45: end loop
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Algorithm 8 Black Hole Search
1: search the repaired node list
2: if the list is blank then
3: mark all repaired nodes in the list
4: end if
5: while the black hole has not been located do
6: search the Third Agent column
7: if there are 2 ? in this column then
8: wait at hb until an agent returns
9: else if there is 1 ? in this column then

10: search this column from top to bottom until an empty cell is found
11: if the empty cell is above the ? then
12: go left to the node, upon arriving, return to hb immediately
13: else if the empty cell is below the ? then
14: search this column from top to bottom until an empty cell is found, go to

the node
15: else if an empty cell cannot be found then
16: the black hole is determined to be the node with ?
17: end if
18: else if there is no ? in this column then
19: search this column from top to bottom until an empty cell is found, go to the

node
20: end if
21: end while
22: ALGORITHM TERMINATES
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7.3 Correctness and Complexity

Lemma 13 Minimally b+2 agents are necessary to repair all faulty nodes and locate

the black hole in an asynchronous ring network.

Proof. Since there are b faulty nodes in the ring network and 1 agent can only repair

1 faulty node, b agents are needed. To distinguish the black hole from the repaired

nodes, at least one agent has to enter the black hole and die, thus, b + 1 agents are

required. To report the locations of the faulty nodes and the black hole, at least 1

agent has to survive, hence, b+ 2 agents are necessary.

Lemma 14 There can be no more than 4 status unknown agents as long as at least

one node is unexplored. At least 1 of these 4 agents will return to hb.

Proof. In the homebase hb, as long as an agent A can find an unexplored node in

the node list, it always needs to explore a new node (by executing Procedure New

Node Exploration) before it executes any other procedure.

An agent A always searches the node list from top to bottom first, if one or

zero agents have left in the left direction, A will also leave in the left. Otherwise it

searches the node list from bottom to top. Hence, there will never be more than 2

status unknown agents leaving in the left direction. When A searches from bottom to

top of the node list, A may leave in the right direction if one or zero agents have left

in the right. If A finds 2 agents have left in both left and right directions, A will wait

at hb until Table 5 is changed by a returned agent (see Line 14 and 22 in Procedure

New Node Exploration). Consequently, there will never be an occasion in which any

agent will leave hb when there are two ?s on each side of it. Hence, there cannot be

more than 4 status unknown agents as long as at least one node is unexplored.

We now want to prove that at least 1 of these 4 agents will return to hb eventually.

It is trivial to observe that all the explored nodes are in one or two consecutive
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sections in a ring: when there are no unexplored nodes remaining in the ring, all

explored nodes are in one consecutive section; otherwise, the two sections of explored

nodes are separated at each end by hb and a consecutive section of unexplored nodes.

We call these two sections the left part and the right part. When there are 4 status

unknown agents in the network, it can only be the case that 2 are in the left part and

2 in the right part. According to our assumption that there is only one gray virus

at any point in time during the execution of this algorithm and that once this GV

infects a faulty or repaired node, it cannot move again, we know that at most one

faulty node gets infected and turns into a black hole. Therefore, once the black hole

appears, it can only exist either in the left part, or in the right part.

Clearly if the black hole has not appeared yet, the two second-agents (1 on each

side) in both parts will return to hb traversing through the section of the ring with

consecutive explored nodes while the two first-agents (1 on each side) may die after

repairing faulty nodes. If the black hole is in the left part, the second-agent in the

right part will return while the first-agent may die after repairing a faulty node and

the two agents in the left part may die in the black hole. Similarly, if the black hole

is in the right part, the second-agent in the left part will return while the other three

may die. In summary, no matter when the black hole appears and no matter where

the black hole is, as long as there is an unexplored node, at least 1 of the 4 status

unknown agents will return to hb.

Lemma 15 At most 5 status unknown agents coexist when there is at least one status

unknown node. At least 1 of these 5 status unknown agents will return to hb.

Proof. As mentioned in Lemma 14, when 2 status unknown agents are exploring

in the same direction, they must be either aiming to explore the same node or two

neighbouring nodes. More specifically, these one or two nodes must also be next to an

unexplored node. That is, all status unknown agents must be consecutively located
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next to either the left part or the right part of unexplored nodes section. According

to Procedure New Node Exploration lines 14 and 22, only when there are fewer than

4 status unknown agents which exist in the network, a newly waking up agent will

decide accordingly to go to the last unexplored node. After this agent has left, there

are no more unexplored nodes in Table 5 and at most 4 status unknown agents exist

in the ring at this moment. Since all previously status unknown agents can only be

located at either or both edges of the left and right parts of the explored nodes, all

status unknown agents should be on continuous nodes after this agent leaves for the

last unexplored node.

As proven in Lemma 14, if there are 4 status unknown agents, at least 1 will

return to hb. The same situation applies to the last unexplored node, when there

are 4 status unknown agents that are not on the same node. At least 1 of them will

finally return to hb when there is no unexplored node, given there is only one black

hole.

Furthermore, according to Procedure Find The Meeting Node lines 3, 4, 10 and

11, Procedure Black Hole Search can be executed when either all nodes’ statuses are

known or when 4 status unknown agents are on the same node. This latter case is

where the Fifth Agent is needed in the network. In all other cases, a newly waking

up agent waits at hb. Consequently, it will never be the case that a fifth ? shows up

in the whiteboard when the 4 existing status unknown agents are on different nodes.

Therefore, at most 4 status unknown agents exist when they are not on the same

node.

When 4 status unknown agents are on the same node, if this node is not a black

hole, at least 1 agent will return to hb. In Procedure Find the Meeting Node lines

27 to 40, when there is a node in Scenario S1, a second agent will go to this node, so

that eventually there will be no nodes left in Scenario S1. Regardless of the direction

in which the two first agents have left to a node, the third and fourth agents will take
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the opposite direction (see Procedure Find the Meeting Node lines 21 to 25). This

ensures that 2 agents leave in the left direction and 2 leave in the right towards the

same node. Again, because there is only one black hole, at least 1 of the 4 status

unknown agents will return to hb when this node is not a black hole.

It is possible that this node is a black hole, so that none of the 4 agents can

return. Now Procedure Black Hole Search gets executed when a new agent enters the

network. It goes to check each node as the fifth status unknown agent. If the node

with 4 status unknown agents is the black hole, the Fifth Agent will survive because

it will never enter a node with a ? in the column of Third Agent (see Lines 15 and

16 in Procedure Black Hole Search). If this node is not a black hole, the Fifth Agent

may die, however, at least 1 agent on this node will survive. Therefore, at least 1 of

the 5 status unknown agents will return to hb.

Lemma 16 All faulty nodes will be repaired within finite time.

Proof. If a faulty node Nx has not been repaired, its status shown in the whiteboard

in hb must be either unexplored or unknown, that is the exploring agent either died

after repairing a faulty node or in a back hole or has not returned to hb yet. If Nx is

unexplored, according to Line 3 in Procedure New Node Exploration, an agent will

explore Nx and any other unexplored node before it executing any other procedure

that can lead to the termination of the algorithm.

If Nx is a status unknown node, it can be either in Scenario S1 or S3. When Nx

is in Scenario S1, according to linse 10-13 in Procedure New Node Exploration, it is

either the case that the First Agent returns to hb after exploring Nx and marks this

node safe in the whiteboard; or a Second Agent will explore Nx and consequently

change the marking in the whiteboard into Scenario S3.

When Nx is in Scenario S3, it may become S4-safe, S5-repaired, S6-safe, or stay

S3-unknown. As proven in Lemma 14, there can be at most 4 status unknown agents
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when they are not on the same node. In other words, at most 2 nodes may be in

Scenario S3. When 2 nodes are in Scenario S3, at least one agent will return to hb,

since there is only one black hole. This returning agent will change one of the two

Scenario S3 nodes. Consequently, at most 1 node remains in Scenario S3.

For this last unknown node, a third and a fourth agent will go to this node

according to Line 15 to 25 in Procedure Find the Meeting Node. As proven in

Lemma 15, as long as this node is not a black hole, one of the 4 agents will return to

hb. If this node is the black hole, it must have been a repaired node first. Therefore,

we conclude that all faulty nodes will be repaired within finite time.

Lemma 17 Procedure Black Hole Search locates the black hole correctly.

Proof.

Procedure Black Hole Search gets executed in two only conditions: 1) all nodes

have known status, 2) only one node is unknown and it has 4 status unknown agents.

In the former case, according to Line 18 to 20 in Procedure Black Hole Search, each

new agent or a newly returned (to hb) agent simply leaves to check each node one by

one, and the last repaired node that has no agent returned is the black hole. In the

latter case, the Fifth Agent is needed to continue the black hole search. As previously

proven in Lemma 15, at least 1 of these 5 status unknown agents will return to hb. If

the returning agent is this Fifth Agent, it will continue checking another node until

it returns to hb and notices that there is only one repaired node with no agent has

returned. If the returning agent is one of the 4 agents that were marked on the last

status unknown node, according to Line 44 in Procedure Find the Meeting Node, the

status of this unknown node becomes known and is marked “Last”. Consequently,

this latter case is turned into the former case, and the black hole is located.

Lemma 18 b+ 4 agents suffice to repair all faulty nodes and locate the black hole in

a ring network using only one whiteboard in the homebase.
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Proof. To repair b− 1 faulty nodes, b− 1 agents are necessary and sufficient. In the

worst case, the last unknown node is the black hole and all 4 status unknown agents

die in it, and one more agent is needed to perform the Procedure Black Hole Search.

In other cases, as proven in Lemma 15, at least 1 of these 5 agents will return to hb

and finally locate the black hole. Therefore, (b− 1) + 5 = b+ 4 agents suffice.

Lemma 19 In an arbitrary network that contains b faulty nodes and one one-stop

GV , b+ 2 agents are necessary to repair all faulty nodes and locate the black hole.

Proof. b agents are required to repair all b faulty nodes and 1 extra agent has to

die in the black hole in order to locate it, while 1 agent needs to survive and report.

Therefore, b + 2 agents are necessary to repair all faulty nodes and locate the black

hole.

Lemma 20 Our algorithm can locate at least b−1 repaired nodes when b is unknown.

All repaired nodes can be located when b is known.

Proof. Since Procedure Black Hole Search can only be executed when all nodes are

known to be safe/repaired or only one node remains unknown, at the beginning of

this procedure, b or b − 1 repaired nodes can be marked in the repaired list. If only

b− 1 repaired nodes have been marked, the last unknown node will either be marked

“last” by a returning agent or be located as the black hole. If it is marked “last”, the

node remains unknown until the algorithm terminates; if it is the black hole, it is a

repaired node before it turns to be a black hole.

In the case that b is known, we can certainly know whether the “last” node is a

faulty node or not by comparing b with the number r of repaired nodes. If r = b− 1,

the “last” node is a repaired node; if r = b, the “last” is a safe node.
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Lemma 21 All faulty nodes can be repaired and the black hole can be located within

O(n2) moves.

Proof. In the worst case, the b faulty nodes are the nodes from Nn−1 to Nn−b and each

node in the ring has been visited by 2 agents in Procedure New Node Exploration.

Therefore, it costs 2 ∗ 2 ∗ (1 + 2 + 3 + 4 + · · · + (n − 1)) = 2(n − 1)(n − 2) moves.

The last unknown node may be explored by 4 agents in Procedure Find the Meeting

Node. Hence, at most 4 ∗ 2(n − 1) moves are performed. In Procedure Black Hole

Search, each node needs to be visited again which costs 2(n − 1)(n − 2) moves. In

total, 4 ∗ (n− 1)(n− 2) + 4 ∗ 2(n− 1) = O(n2) moves are needed.

Theorem 22 Algorithm Dynamically Spawned Black Hole Search (DSBHS) can re-

pair all faulty nodes and locate the black hole with b + 4 co-located agents in O(n2)

moves using only one whiteboard in the homebase.

7.4 Simulation Results

In this section, we present the experimental results obtained from a series of Java

simulations of this algorithm. The experiment is done in a ring network with only

one whiteboard in the homebase node which can only be accessed when the agents are

in the homebase. All agents start from this homebase and execute the same protocol

as described above. For the number of faulty nodes, we use a variable (faulty posb)

to present the possibility that whether or not a node in the experimental network is

faulty. This possibility varies with 20%, 30%, and 40%. Thus, at the beginning of the

exploration, the agents do not know the number of faulty nodes or their locations.

In addition to the possibility of a node is faulty or normal, whether a repaired node

becomes a black hole is also under a certain percentage. This follows the behaviour

of the GV that a repaired node can be infected at any time during the exploration.

Hence, even ourselves do not know the location of the black hole until it is generated.
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Figure 11: The Relationship between Number of Moves and Nodes

To make the implementation more realistic, the distance of each link between two

neighbouring nodes are randomly designed, which is more similar to the feature of an

asynchronous network; that is, the time an agent spends on a link is unpredictable

but finite. The implementation has a task scheduler, which will wake up a sleeping

agent after a certain amount of time. However, since there is a possibility that the

agent becomes active or keep sleep, the task scheduler may fail to wake up a sleeping

agent. This makes the simulation obey the rule that the time an agent sleeps is

unpredictable in an asynchronous network.

Our simulation sets consist of 20 to 100-node networks. The execution of a sim-

ulation is considered to be successful if the location of the black hole is correctly

marked on the homebase whiteboard. Otherwise, the simulation is counted as a fail-

ure. Since our algorithm guarantee to correctly locate the black hole, there is no such

failure in all executions. For each successful simulation, we count the total number

of moves that are used to repair all faulty nodes and locate the black hole. All data

is calculated from 100 independent successful runs of each setting with random gen-

erated faulty nodes and a black hole. For each faulty posb = 20%, 30%, 40% and
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n = 20, 30, 40, ..., 90, 100, we provide 100 independent runs which are 2700 runs in

total. All these results show that b + 4 agents are sufficient to finish the repair and

search task. Additionally, there is a 14.8% possibility that the task can be finished

using only b+ 3 agents or fewer.

Figure 11 illustrates the average move results as well as the lower and upper

bound of the total number of moves for each setting. Results confirm that O(n2)

moves suffice to repair all faulty nodes and locate the black hole in all simulations.

It is obviously shown in Figure 11 that the larger the network is, the more moves are

necessary for the task to complete.

We further analyze whether the number of faulty nodes will affect the number of

moves. Figures 12 and 13 show that as the number of faulty nodes increases, the total

number of moves also has a slight increase. However, the same as above mentioned,

the increase is not continuous and obvious. Thus, we can only conclude the number

of faulty nodes does not have a direct effect to the number of moves.

The theoretical analysis and simulation results can both prove that, all faulty

nodes can be repaired and the black hole can be located with b + 4 agents in O(n2)

moves using only one whiteboard in the homebase. Furthermore, this simulation
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study can further prove the correctness of the algorithm. It should be noticed that,

our algorithm requires no knowledge of the number b of faulty nodes. Specifically,

when b is known, our algorithm can additionally locate all repaired nodes.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In Chapter 1, we first investigate the state of the art of the black hole search problem

using mobile agents under various network setups. We then introduce a compre-

hensive list of assumptions that are frequently used in different black hole search

studies in Chapter 2. These assumptions are network synchronization, including

synchronous and asynchronous networks, communication models, agent starting lo-

cations, and topological knowledge. Such a complete list of assumptions captures all

facets of variability in black hole search. We also study the complexity measures and

evaluation methods of all surveyed research studies.

In Chapter 3, we classify all the selected studies into two categories according

to their network synchronization model, namely, black hole search in synchronous

networks and in asynchronous networks. We analyze and compare in detail the studies

under each of these categories and conclude the impact of each assumption on the

solutions and their cost complexity. We further discuss multiple black hole search,

and additionally introduce some other types of malicious hosts.

Following the literature review, the models and assumptions for the algorithms

studied in this paper are introduced in Chapter 4. We then present a new attack model

91



92

containing both faulty nodes and gray virus that can repeatedly infect a repaired

faulty node in Chapter 5. We introduce the faulty node repair and search problem

caused by a multi-stop GV using the enhanced token model, present an algorithm

that can repair all the faulty nodes and locate all the possible locations of the GV ,

and construct a map of the unknown network with all repaired nodes marked. It is

important to note that in an asynchronous network, the speed of a GV is unknown

and could be much faster than the speed of the mobile agents. Consequently, it could

be the case that all vulnerable nodes (previously repaired faulty nodes) appear to be

black holes to the mobile agents. Even with enough mobile agents, it is impossible to

locate all black holes a within finite time since we cannot differentiate the case that

an agent died in a black hole or was just stuck in a slow link. We further prove the

correctness of the algorithm and offer its complexity analysis. Our algorithm shows

that b + 1 agents are necessary and sufficient to repair and locate b faulty nodes in

an arbitrary unknown network within O(kn∆) moves.

Also using the token model, we then present an algorithm that can repair all faulty

nodes and locate a black hole that is infected by a one-stop GV in a ring network. We

further analyze how the appearance of the GV changes the network behaviour; that is,

one of the previously visited nodes, unexplored nodes and even the the current node

of an agent may suddenly be infected by a GV and turned into a black hole. This

drastic and dramatic network behaviour change significantly increases the difficulty

and complexity of the solution to the traditional black hole search that contained

a black hole among the unexplored nodes since the start. We introduce the new

technique of double cautious walk with tokens, which can mark both the previously

visited and unexplored dangerous nodes. This technique guarantees the minimal loss

of mobile agents. We then present solutions for the problem caused by this one-stop

GV in an asynchronous ring network. We conclude that b + 9 agents can complete

the repair and search task in O(kn2) moves.



93

After discussing the solutions with tokens, in Chapter 7, we offer a solution to

the problem caused by this one-stop GV in an asynchronous ring network with only

one whiteboard in the entire network. Our algorithm even works when the number of

faulty nodes are not known a priori. We first theoretically analyze the correctness of

this algorithm and offer simulation results to further prove that, using O(n2) moves,

b+4 agents can repair all faulty nodes as well as locate the black hole that is infected

by a one-stop GV .

Finally, after investigating possible combinations of the list of assumptions that

we have collected, we also identify some potential open research issues in this field.

8.2 Further Analysis and Future Work

In this section, we analyze all the reviewed studies and highlight some future work

for:

• single black hole search in both synchronous network (Section 8.2.1) and asyn-

chronous network (Section 8.2.1) and

• multiple black hole search (Section 8.2.2) and

• black hole search using different types of agents (Section 8.2.3) and

• faulty node repair and black hole search for one-stop and multi-stop GV s (Sec-

tion 8.2.4).

8.2.1 Further Analysis and Future work for Single Black Hole

Search

In this subsection, we list all possible combinations of different assumptions and orga-

nize all the single black hole search studies under each such combination. The results
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can be found in Tables 8 and 9. We then further analyze the remaining combina-

tions/open problems not yet studied and identify some future research possibilities.

Single black hole search in Synchronous Networks

Single black hole search in synchronous networks is not studied as often as in asyn-

chronous networks, which is a more realistic model. As shown in Table 8, the pure

token model is only used with dispersed agents (Combinations 1 − 3 in Table 8).

These 4 papers only study the minimal number of agents and tokens required to solve

the black hole search problem without offering any specific algorithm or complexity

analysis. Hence, finding the agent moves as well as the time cost can be further

studied. Additionally, only ring and torus have been studied under the pure token

model with a focus on the number of agents and tokens used. Studying the problem

in other topologies, such as hypercube or mesh, needs to be further studied. We

have observed from the results for black hole search in asynchronous networks, when

agents are co-located, it always costs fewer moves than the scenarios when the agents

are dispersed. Studying the problem using co-located agents under the pure token

model in a synchronous network will further prove this observation. In asynchronous

arbitrary networks, it is proven that the pure token model can keep the same com-

plexity with the whiteboard model while having a network map. Whether it is the

same in synchronous networks also needs to be studied.

One of the several advantages of solving the black hole search problem in syn-

chronous networks versus in asynchronous networks is the possibility of using face-

to-face communication. The combinations of face-to-face communication and the use

of whiteboards or tokens usually lead to further reduction on both time costs and

agent moves. For example, [16, 17] study both oriented and un-oriented rings with-

out knowing the network size under the pure token model with the assumption that

the agents can also communicate with each other when they meet. However, in the
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Table 8: Existing work on black hole search in synchronous networks. PT: pure
token; FTF: face-to-face; CL: co-located; DIS: dispersed

Com-
bina-
tion

Commu-
nication
model

Agent
starting
location

Network knowledge Paper

1 PT DIS Unknown n, ori-
ented torus

[15]

2 PT DIS Unknown n, un-
oriented torus

[66]

3 FTF +
PT

DIS Unknown n,
oriented or un-
oriented ring

[16,17]

4 FTF CL tree [23,25]

5 FTF CL Complete Knowl-
edge

[24,58–60]

face-to-face model, the agents leave no marks on nodes. Consequently, it is possible

that all dispersed agents could die in the black hole before they even meet with each

other. Therefore, it is of very little interest to study the problem using the dispersed

agents with face-to-face communication.

Czyzowicz et al. [25] study the black hole search in synchronous networks without

using network maps. They tackled the problem in tree networks using the face-to-face

model and the co-located agents. There is thus a need for further investigation of

the minimum time complexity required for other commonly studied topologies, such

as hypercube, or complete network. Finding the time optimal algorithm for an arbi-

trary unknown graph using co-located agents and only the face-to-face communication

should be studied. Additionally, in some conditions, face-to-face communication may

lead to higher number of agent moves. For example, let 2 co-located agents explore

the ring network in different directions. In the case of letting them communicate

with each other (about their partial exploration results) face-to-face, the agents must
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come back to the homebase after every move; in the token models, the agents’ last

safe location is marked by token(s) (e.g. using cautious walk). Agents can first divide

the ring into 2 parts, then each explore one part. After n
2

time steps the survived

agent goes to look for the other and find out the location of the black hole. Hence,

studying the problem under the same setup instead using the whiteboard and token

models is also of interest.

Single Black Hole Search in Asynchronous Networks

We do not include edge-labelling in our discussion because it is widely adopted in the

field. Since network size must be known a priori in asynchronous networks, we do

not further mention n in this subsection. Again, when using the co-located agents to

explore a ring, whether or not the ring is oriented does not affect the move cost of

the algorithm. Therefore, we also do not discuss them separately here. As ring is a

special topology, the sparsest bi-connected graph, we list it separately in Table 9.

Glaus et al. [53] study the black hole search problem without the knowledge of

incoming links in an unknown un-oriented arbitrary network. Under these assump-

tions, Glaus et al. solve the problem when both the agents and the network nodes

have distinct IDs. Whether under the same assumptions with an anonymous network

and agents, the Repair and Search problem is still solvable remains to be an open

problem. Furthermore, if we change an asynchronous network to synchronous, white-

board to tokens, or dispersed agents to co-located, the nature of the complexity is

another issue. Balamohan et al. identify an open problem in their paper [7]: whether

or not an algorithm that uses n− 1 co-located agents (using the whiteboard model)

to locate the black hole in 3
2
n−O(1) time (average case) and 2(n−1) time (the worst

case) exists.

Dobrev et al. consider a very difficult condition, namely, no topology knowledge

is assumed in [30] (Combination 8 in Table 9), and their algorithm locates the black
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hole in O(∆2M2n5), using the enhanced token model with ∆ + 1 co-located agents.

Under the same conditions, solving the problem in the whiteboard model only costs

Θ(n2) moves. The question raised is whether we can find a solution for the problem

using the enhanced token model without any topology knowledge with a lower move

cost. In addition, relaxing the topology knowledge assumption (Combinations 9− 10

in Table 9) may also help reduce the move cost when solving the proposed problem.

Moreover, only ring, hypercube, torus, and complete network have been studied under

the enhanced token model. Studying the problem under the same assumptions in

other topologies is another future direction.

The pure token model is introduced and studied in [5, 43, 44]. Using two agents

[43,44] can locate the black hole in Θ(n log n) moves in an arbitrary network with the

help of network maps. Whether increasing the number of agents can further reduce

the moves or not, whether known a special topology the moves can be reduced, and

whether the problem is solvable in an arbitrary unknown graph can also be studied

in the future. Furthermore, as the pure token model is only studied using co-located

agents, the case of dispersed agents remains an open problem.

8.2.2 Future Work for Multiple Black Hole Search

For the multiple black hole search problem, Cooper et al. [21] and D’Emidio et al. [26]

solve a weaker black hole model where an agent can repair a black hole by sacrificing

its life. In these two papers, the authors also assume that each agent carries a network

map of the given synchronous network. An interesting direction for further research is

to consider the case when the topology of the network is not known or only partially

known in a priori. This new black hole repair model also opens research avenues

to asynchronous networks. Furthermore, in asynchronous networks, this repairing

problem should be studied in the whiteboard model or the two types of token models.

D’Emidio et al. [26] assume that if an agent enters and repairs a black hole, all
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agents within a distance r of the black hole will disappear along with it. The authors

only solve the problem when r = 0 and r = 1, thus, the case r > 1 could also be a

future direction.

Flocchini et al. [48] solve the black hole search problem in a subway model in

an asynchronous network using the whiteboard model and co-located agents. These

initial results prompt us to think what would be the impact on the complexities

of the solutions if we change the whiteboard model to other communication models

and/or change the asynchronous network to synchronous. For example, in the subway

system, it usually takes the same amount of time for a carrier to travel between two

stations. This can be modelled as a synchronous network. In terms of communication,

assuming there is no whiteboard available and the cell phone network does not work

in subways, the agents can only communicate with each other when they meet in

the same subway station or in the same carrier. Even in the case that each of the

agents has an available WalkyTalky, which functions only when two are within a

short distance, it can still be seen as a face-to-face model. In addition, [48] considers

a directed graph and measures the carrier moves which are different from the agent

moves. Hence, whether an undirected graph will help to reduce the carrier move

complexity, as well as the total move cost of the agents both remain open problems.

8.2.3 Open Problems with Different Types of Agents

After discussing the different possible combinations of the assumptions on the black

hole search problem, we now go through a different type of agent that can be used to

solve the problem. Like the memory consumption in each network node, the mobile

agents should also have a memory limitation. Usually, the agents are endowed with

unlimited memory so that they can carry a network map or build a map during the

network exploration. An agent endowed with very limited memory has been intro-

duced by Flocchini et al. [42]. An agent is referred to as being oblivious when all the
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information contained in the workspace is cleared at the end of each computing cycle.

In other words, the agents are memoryless, having no memory of any past actions

and computations. Each computation is based solely on what has been determined

in the current computing cycle. For example, the agents used in [42] are oblivious

and asynchronous. They can view the environment but are unable to communicate

with each other. Using such oblivious agents should be an interesting direction that

requires further investigation. Obviously, the absence of memory in each agent can

be compensated by using a whiteboard or tokens.

8.2.4 Future Work for One-stop and Multi-stop GV

As we mentioned in the observations, without any additional assumptions, the Repair

and Search problem becomes a MBHS problem and remains unsolvable in an asyn-

chronous network. As future work, instead of assuming that the GV appears only

after all the repaired node have been located, other assumptions can also be added

to make the problem solvable in the presence of multi-stop gray virus in an arbitrary

unknown network topology. For example, a multi-stop GV can only move to another

node after deleting at least one agent instead of being able to move at any point in

time. Furthermore, if one or more GV s may show up at any time, what would be the

impact of one-stop GV s vs. the multi-stop ones? In addition, solving the problem in

a synchronous network could also be a future direction.

For the one-stop GV , apart from ring networks, other common networks or arbi-

trary networks could also be a further concern. As in our algorithms, it is possible

that 2 agents enter the same faulty node and die simultaneously. An algorithm that

can avoid this problem could also reduce the number of agents used. Also, apart

from the enhanced token and whiteboard model, other communication models such

as face-to-face or pure token may also be considered.
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Table 9: Existing work on black hole search in asynchronous networks. WB: white-
board; ET: enhanced token; SD: sense of direction; NT: network topology

Com-
bina-
tion

Commu-
nication
model

Agent
start-
ing
loca-
tion

Network knowl-
edge

Paper

1 WB CL No knowledge [22,32,34,53]

2 WB CL NT [27,28]

3 WB CL SD and no NT [32,34]

4 WB CL ring [6, 7, 31, 35]

5 WB CL Complete Knowl-
edge

[27, 28, 32, 34, 36,
37]

6 WB DIS un-oriented ring [31,33,35]

7 WB DIS oriented ring [31,33,35]

8 ET CL No Knowledge [29,30]

9 ET CL oriented ring [38]

10 ET CL SD and NT [68,69]

11 ET DIS SD and NT [68,69]

12 ET DIS oriented ring [40]

13 ET DIS un-oriented ring [39,41]

14 PT CL ring [43,44]

15 PT CL Complete Knowl-
edge

[43,44]

16 PT CL No Knowledge [5]
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