
Playing Is Creating with PlayTIME:

Introducing and Evaluating a Tangible UI-Based

Interactive Scenario Prototyping System

by

Daniel Stephen Buckstein

A Thesis Submitted in Partial Ful�llment

of the Requirements for the Degree of

Master of Science

in

Computer Science

The Faculty of Science

University of Ontario Institute of Technology

February 2015

© Daniel Stephen Buckstein, 2015

Contents

Abstract ix

Acknowledgements x

1 Introduction 1
1.1 Overview . 1
1.2 Objectives . 2
1.3 Thesis Outline . 4
1.4 Summary . 5

2 Related Works 6
2.1 Introduction . 6
2.2 The Game Design Process . 6
2.3 Prototyping . 9

2.3.1 Physical Prototypes . 11
2.3.2 Digital Prototypes . 12
2.3.3 Summary of Prototypes . 14

2.4 Human-Computer Interaction . 14
2.5 Tangible & Natural User Interfaces 16
2.6 Augmented Reality . 18
2.7 Tangible AR . 19
2.8 Summary . 20

3 Designer Actions Study 22
3.1 Introduction & Motivation . 22

3.1.1 TimeSplitters: Future Perfect 23
3.2 Method . 26

3.2.1 Session Overview . 26
3.2.2 Video Analysis . 27

3.3 Results . 28
3.3.1 Demographics . 28
3.3.2 Post-Study Questionnaire . 31
3.3.3 Screen Capture & Video Recordings 32

3.4 Discussion . 34
3.4.1 Participants . 34

i

3.4.2 Development Process . 34
3.4.3 Previewing . 36
3.4.4 Logic Operations . 37
3.4.5 Questionnaires & Feedback . 38
3.4.6 Notebook . 39

3.5 Summary . 40

4 PlayTIME 42
4.1 Introduction . 42
4.2 Traditional Scenario Design . 42

4.2.1 Physical Prototypes . 42
4.2.2 Digital Prototypes . 43
4.2.3 Bridging the Gap . 44

4.3 Tangible Interactive Media Environment 45
4.4 PlayTIME . 46

4.4.1 System Overview . 47
4.4.2 Development Pipeline . 47
4.4.3 Asset Development Stations 50
4.4.4 Design Stations . 53

4.5 Implementation Details . 58
4.5.1 Unused Features . 61

4.6 Summary . 66

5 User Evaluation of PlayTIME: Study Design 67
5.1 Introduction & Motivation . 67

5.1.1 Important De�nitions . 68
5.1.2 Assigned Tasks . 69
5.1.3 Hypotheses . 69

5.2 Method . 71
5.2.1 Session Overview . 71
5.2.2 Experimental Setup . 72

5.3 Demographics . 76
5.3.1 Overview . 76
5.3.2 Expertise . 80
5.3.3 Techniques . 81
5.3.4 Features . 82

5.4 Summary . 83

6 User Evaluation of PlayTIME: Results & Implications 84
6.1 Overview . 84
6.2 Data Analysis Methods . 84

6.2.1 Signi�cance Testing . 85
6.2.2 Organization of Data . 85
6.2.3 Survey Collection & Analysis 86
6.2.4 Video Capture & Analysis . 88

ii

6.2.5 Scene Analysis . 89
6.3 Results . 90

6.3.1 Summary of Data Collected 90
6.3.2 Post-Condition Questionnaires 91
6.3.3 Post-Study Questionnaire . 99
6.3.4 Performance & Time . 99
6.3.5 Scenes . 108

6.4 Extended Results . 110
6.4.1 Extended Performance & Time 111
6.4.2 Extended Scenes . 111

6.5 Discussion . 120
6.5.1 PANAS & Emotions . 120
6.5.2 CSUQ & Usability . 123
6.5.3 Ease of Use & Preference . 124
6.5.4 Activity Time Overview . 124
6.5.5 Level Construction & Usability 131
6.5.6 Creativity Support & Preference 142

6.6 Summary . 146
6.6.1 Usability . 146
6.6.2 Creativity . 146
6.6.3 Enjoyment & Fun . 147
6.6.4 Conclusion . 147

7 Conclusions 148
7.1 Hypotheses . 148

7.1.1 Discussion of Hypotheses . 150
7.2 Limitations & Future Work . 150

7.2.1 Augmented Reality . 150
7.2.2 Studies & User Evaluations 151
7.2.3 Future Evaluations . 154

7.3 Summary . 156
7.4 Concluding Remarks . 156

References 158

Appendices 169

A Designer Actions Study Materials 169
A.1 Activity Materials . 169

B Designer Actions Study Data 176
B.1 Questionnaires . 176
B.2 Design Process . 180
B.3 Feedback . 183

iii

C PlayTIME User Study Materials 191
C.1 Activity Materials . 191

D PlayTIME User Study Data 200
D.1 Questionnaires . 200

D.1.1 Post-Condition . 205
D.1.2 Post-Study . 208

D.2 Feedback . 209
D.3 Observed User Actions . 216

D.3.1 PlayTIME . 216
D.3.2 Unity . 221

E Chapter 6 Complementary Material 226
E.1 Additional Tables & Figures . 226
E.2 Factors Hindering Creativity . 235

iv

List of Figures

2.1 Schell's Game Design Process . 8
2.2 Paper Prototype . 12
2.3 Unity Editor . 13
2.4 Fiducial Marker . 19

3.1 TSFP Mapmaker 3D Preview . 24
3.2 TSFP In-Game Preview . 24
3.3 TSFP Logic Editor . 25
3.4 TSFP Mapmaker Menu . 25
3.5 Designer Actions Developer Roles . 28
3.6 Designer Actions Developer Tools . 29
3.7 Designer Actions Design Process . 29
3.8 Designer Actions Features . 30
3.9 Designer Actions Post-Study Ratings 31
3.10 Designer Actions Time Spent . 32
3.11 In-Editor Designs . 35
3.12 Notebook Sketch . 39

4.1 Digital Prototype . 43
4.2 Overview of Media . 45
4.3 PlayTIME Development Pipeline . 48
4.4 Data Translation for Engines . 49
4.5 PlayTIME Asset Development Stations 50
4.6 PlayTIME Painter . 51
4.7 PlayTIME Modeller . 51
4.8 PlayTIME Sculptor . 52
4.9 PlayTIME Design Stations . 53
4.10 PlayTIME Wand . 54
4.11 PlayTIME Kinect Animation . 55
4.12 PlayTIME Omni Animation . 55
4.13 PlayTIME Scenario Mapping . 56
4.14 PlayTIME Current Implementation 59
4.15 PlayTIME AR Markers . 60
4.16 Unused Tile Editor . 62
4.17 Unused Real-Time Preview . 63
4.18 First-Person Shooter Behaviours . 63

v

4.19 Communication Protocol A . 65
4.20 Communication Protocol B . 65

5.1 PlayTIME Study Scene Overview . 70
5.2 PlayTIME Study Setup . 72
5.3 PlayTIME Study Workspace . 73
5.4 PlayTIME Study Monitors . 73
5.5 PlayTIME Study Camera . 74
5.6 PlayTIME Study Map . 74
5.7 PlayTIME Study Observer Controls 75
5.8 PlayTIME Study Roles . 77
5.9 PlayTIME Study Tools . 78
5.10 PlayTIME Study Techniques . 79
5.11 PlayTIME Study Features . 79

6.1 PlayTIME Study Data . 90
6.2 PlayTIME PANAS Over Time . 92
6.3 PlayTIME PANAS Averages . 92
6.4 PlayTIME Study CSUQ Averages . 94
6.5 PlayTIME Study CSI Averages . 98
6.6 PlayTIME Ease of Use Averages . 100
6.7 PlayTIME Study Time Distributions 102
6.8 PlayTIME Study Feature Distributions: PlayTIME 103
6.9 PlayTIME Study Feature Distributions: Mouse 104
6.10 PlayTIME Study C Button Usage . 105
6.11 PlayTIME Study Mouse Clicks . 105
6.12 PlayTIME Study Mouse Navigation 105
6.13 PlayTIME Task Deviation Averages 109
6.14 PlayTIME Study Extended Time Dist. 113
6.15 PlayTIME Extended Feature Distributions: PlayTIME 114
6.16 PlayTIME Extended C Button . 117
6.17 PlayTIME Study Extended Time Dist. 118
6.18 PlayTIME Task Deviation Averages 119
6.19 PlayTIME Marker Confusions . 130
6.20 Deletion with Unity Menu . 134
6.21 PlayTIME Selection Confusions . 137
6.22 PlayTIME Manipulation with Marker 138
6.23 Unity Move Tool . 140
6.24 Unity Assets Organization . 141
6.25 PlayTIME Study Task Deviation Comparison 145

A.1 TSFP GameCube Control Layout . 172

E.1 PlayTIME Study CSUQ Questions 228
E.2 PlayTIME Study CSI Questions . 229
E.3 PlayTIME Study Ease of Use Questions 230

vi

E.4 PlayTIME Preference Averages . 231
E.5 PlayTIME Study Preference Questions 231
E.6 PlayTIME Object Placement with Mouse 232
E.7 PlayTIME Manipulation with Marker 233
E.8 PlayTIME Manipulation with Mouse 234
E.9 PlayTIME Study In-Game Bug 1 . 236
E.10 PlayTIME Study In-Game Bug 2 . 236

vii

List of Tables

2.1 Low- and High-Fidelity Prototypes 9

3.1 Designer Actions Time Distributions 33
3.2 Designer Actions Event Frequency . 33

6.1 PlayTIME Study PANAS Signi�cance 93
6.2 PlayTIME Study CSUQ Signi�cance 95
6.3 PlayTIME Study CSI Signi�cance . 98
6.4 PlayTIME Study Post-Study Signi�cance 100
6.5 PlayTIME Study Time Distributions 101
6.6 PlayTIME Study Performance Signi�cance 106
6.7 PlayTIME Study Features Signi�cance 107
6.8 PlayTIME Study Scenes Overview 109
6.9 PlayTIME Study Scenes Signi�cance 110
6.10 PlayTIME Study Extended Time Dist. 112
6.11 PlayTIME Study Extended Performance Sig. 115
6.12 PlayTIME Study Extended Features Sig. 116
6.13 PlayTIME Study Extended Scenes Overview 117
6.14 PlayTIME Study Extended Scenes Sig. 119
6.15 Fitts's Law with the Mouse . 132

E.1 PlayTIME Performance Sig. Comparison 227
E.2 PlayTIME Scenes Sig. Comparison 227

viii

Abstract

With traditional game prototyping activities, physical and digital game prototyping

tasks are commonly separate, often requiring iteration between the two and di�erent

personnel to complete physical and digital tasks. In this thesis, we present PlayTIME:

a Tangible Interactive Media Environment for Game-Play, as a means to narrow the

gap between digital and non-digital game design techniques. The system is designed

to allow game designers to focus on physical prototyping while the computer digital-

izes real-world actions into a playable digital game. The current PlayTIME imple-

mentation uses Tangible User Interfaces to facilitate speci�c functionalities in Unity,

a widely-used game engine. We hypothesized that using PlayTIME would improve

the game design experience for users. To test our hypotheses, we ran a user study

to evaluate the usability, creativity support and enjoyment of PlayTIME against the

usability, creativity support and enjoyment of Unity alone. We found that PlayTIME

had a signi�cant e�ect on usability, but both qualitatively and quantitatively did not

show results better than Unity alone. We found that PlayTIME had an insigni�-

cant e�ect on creativity support. Finally, we found that users enjoyed PlayTIME

signi�cantly more than Unity, citing that it is novel and makes design feel more like

play.

Keywords: tangible user interface; tangible interaction; video game;

game prototyping; game design; game editor; simulation; simulation de-

sign; interactive scenario; collaborative design; augmented reality

ix

Acknowledgements

This is basically the only non-scienti�c part of this thesis, so please allow me to be

brie�y personal and preface the document with a shout-out to those who helped me

through my MSc experience.

First, I'd like to thank the academy for having me here. I am, of course, referring

to the University of Ontario Institute of Technology (UOIT), where I spent four

years in the undergraduate Game Development and Entrepreneurship program before

pursuing a Master's degree. I have had the pleasure of watching the school grow

over the past six and a half years, but more speci�cally I was able to spend time

with many wonderful people in the Faculty of Business and Information Technology

(FBIT), namely those associated with the Game Development and Entrepreneurship

program. The support I have had is just perfect.

The next group of people I would like to thank belong to the Games and Media

Entertainment Research (GAMER) Lab, where I had the privilege of working since its

conception while I was still an undergrad. I would like to name a few people for their

contributions: a thousand thanks to Michael Gharbharan for working on PlayTIME

directly and doing an amazing job at it; thanks to Harrison Andrews for helping me

with some of the earlier development; thanks to Saad Khattak for being the best

programmer and teaching me a great portion of what I know; thanks to Sedona

Parnham for providing the artistic talent (she knows too well that we programmers

simply cannot art); thanks to everyone at Gamer House for letting me stay over while

I ran my study; thanks to Ken Finney for giving me my �rst job at his company;

thanks to Dr. Bill Kapralos and Dr. Lennart Nacke for all the reference letters I've

bugged you about; and many thanks to Jessica Clarke for being a supportive academic

advisor... and the best graduate program coordinator ever!

Maximum thanks and a standing ovation go out to my thesis supervisor, Dr.

Andrew Hogue. We �rst met when I was new at UOIT and I couldn't wait to show

o� some stu� I had been working on. Dr. Hogue taught me many things about

programming for games, and he has always been around to help when needed. I have

x

always been awestruck and utterly overwhelmed by the ambitions and innovative

ideas of Dr. Hogue; we shall coin this collection of awesomeness "The Hogueverse."

He also tolerated my too-many-revisions per-chapter, and thousands of questions, for

which I am extremely grateful. Through the hilarious times, and the not-so-hilarious

times, Dr. Hogue has always treated me well and we managed to pull through as a

team.

I would also like to thank the various sources of funding throughout my MSc:

NSERC, SSHRC and PVLabs. I was also awarded the Ontario Graduate Scholarship

last year which was a great help.

Last and most importantly, I would like to thank my family. My parents have

had the biggest impact on my education for putting me through school and for telling

me that I could do whatever I wanted to do in life. They were always there for

support and o�ered assistance in the �rst few years of post-secondary life, while I

transitioned to living away from home and becoming independent... okay, mostly

independent. I'll also give a shout out to my brother for not pestering me any more.

He'll never admit it, but he secretly missed me while I lived away from home. While

living in Oshawa, it was sometimes di�cult to make the trip home to visit everyone,

grandparents included, so I hope everyone can appreciate the time I've invested in

what I hope is a creative future.

Happy reading!

- Daniel S. Buckstein

xi

Chapter 1

Introduction

1.1 Overview

Creating compelling interactive scenarios is a fundamentally di�cult problem for

content creators (i.e. video game developers, virtual reality simulation designers, �lm

producers, etc.). Traditionally, designers of such products use developer tools, for

example the game engine Unity 3D [1], to develop games and prototype new ideas.

Another common technique for designing games involves paper prototyping, during

which designers implement and simulate their scenarios using non-digital media and

physical objects, thus creating a primitive conceptual proof of how the digital version

should behave. Although these methods allow designers to collaborate and produces

immediate non-digital results, there is still a gap between the prototype and a working

digital product that will take a considerable amount of e�ort. Design is a creative and

iterative process requiring an environment to facilitate designers' needs to prototype

their ideas quickly and �exibly.

The problem: current methods of digital game prototyping, using computer-based,

traditionally independent keyboard and mouse workspaces, are not naturally con-

ducive to a collaborative atmosphere. Furthermore, iterative design can be very time

consuming since both digital and non-digital prototyping methods must often be re-

visited before a �nal decision is made. The traditional iterative design techniques

leave a large gap between initial idea formulation stages and the digitalization pro-

cess. By adding playfulness to the act of creation and design, we hypothesize that

a tangible, hands-on approach to interactive scenario design that autonomously digi-

talizes real-world activities can create meaningful design experiences. Such a solution

would encourage collaboration and move us towards creatively narrowing the gap

between digital and non-digital, solving issues that exist in the traditional computer-

1

based and paper prototyping-based design work �ows bringing digital products into

fruition earlier in the development cycle. As a means to solve this problem, we in-

troduce PlayTIME: a Tangible Interactive Media Environment for Game-Play.

PlayTIME focuses on the design of games and other interactive media. TIME on its

own is a conceptual framework for collaborative production tools across multimedia

disciplines, with current plans for games and �lm.

Instead of using traditional computer-based development, TIME software will con-

sist of a variety of stations that use Tangible User Interfaces (TUIs), also known as

graspable user interfaces [2]. These are physical objects that a user can manipu-

late. The computer recognizes simple attributes of tangible interfaces such as their

positions or orientations, or more complex attributes such as gestures and actions per-

formed with them. Being physical objects, TUIs a�ord to be carried between work

stations for designers to interact with in di�erent stages of creation, enabling simple

sharing of information and collaboration. It also facilitates hands-on, playful design

and creation. Such systems would support the digitalization of physical objects and

gestures, thereby helping merge both digital and non-digital design tasks.

1.2 Objectives

The overall objective of PlayTIME is to integrate a set of development tools into

a multidisciplinary framework that can be used by designers to rapidly and collab-

oratively prototype their ideas, by sharing the resources and skills involved with

developing a simulation or game.

Augmented Reality (AR) [3] [4] is an emerging technology in game development

and is becoming more popular for driving gameplay that interfaces with the real world,

as it can be used to overlay the real world with a simulated environment while special

patterns are tracked relative to the viewer. Since �duciary AR markers are a popular

technology used for tracking position and orientations, and for storing information,

the current version of PlayTIME uses �duciary AR markers to represent information

about the game assets and resources.

In this thesis we present the current software prototype of the PlayTIME system.

The software prototype demonstrates the use of tangible AR as a tool for designing

and prototyping video game scenarios. The ultimate goal of this thesis is to determine

if PlayTIME is on the right track using these technologies. We present a user study in

which content designers from a variety of creative backgrounds evaluate PlayTIME, an

extension of an existing game engine editor, Unity 3D, with the use of the editor alone.

The system is used to determine whether the use of tangible interfaces, tracked by the

2

computer using AR tags, has a positive impact on scenario design. We evaluate the

system by having users complete a design task with it. The e�ectiveness of the system

will be determined by its ability to aid designers in the rapid prototyping of interactive

scenarios, while demonstrating the desired results in the game environment.

My1 primary contributions described in this thesis are (1) the design of the TIME

and PlayTIME frameworks; (2) design and implementation of the current imple-

mentation of PlayTIME, whose interactions are digitalized, supporting collaborative

physical prototyping while simultaneously producing a digital product; and, most im-

portantly, (3) designing and conducting a user study that will ultimately guide future

development of the PlayTIME system.

In this thesis I present PlayTIME as a starting point in narrowing the physical-

digital design gaps, and how it performs against an existing prototyping tool.

We have formulated a set of hypotheses around the user study, and there we use a

variety of statistical tests to discover evidence that supports or rejects the hypotheses.

We are hoping that the use of PlayTIME has an e�ect on the following main areas:

1. Usability:

Hypothesis: The use of PlayTIME will have a signi�cant e�ect on the perfor-

mance of developers completing the assigned task.

Hypothesis: This e�ect will be in PlayTIME's favour.

The Computer System Usability Questionnaire (CSUQ) [5] [6], or the Post-

Study System Usability Questionnaire (PSSUQ) [5] [7] is used to qualitatively

determine if the system is usable. Screen capture software is also used to record

the actions performed during the activities, helping us pinpoint the exact areas

of struggle. We track the users' actions to see if they are making sense of the

system. The study provides us with feedback on how we may be able to improve

the system's design using tangible AR interfaces. We ask some questions while

analysing the data to help us evaluate the performance of the system: Does the

use of AR-based tangible objects provide designers with a conductive and �uid

prototyping experience? Can it improve the quality of their designs? Does it

compare positively with the traditional approaches?

1"My" contributions are explicitly stated here, but since PlayTIME is a collection of many
components under construction by several people, it is only fair to acknowledge the collaborative
e�ort put towards developing PlayTIME. Therefore, the use of "we" or "our" throughout the thesis
refers to the inclusion of others who are involved with developing PlayTIME and related projects,
including virtual sculpting, FilmTIME (see Chapter 4 for details).

3

2. Creativity:

Hypothesis: The use of PlayTIME will have a signi�cant e�ect on users' creative

output.

Hypothesis: This e�ect will be in PlayTIME's favour.

The Creativity Support Index (CSI) [8] [9] [10] questionnaire is used to rate a

set of creativity-related metrics. The CSI indicates whether PlayTIME provides

users with a conductive development environment. We also score the output of

each activity to determine how participants deviate from the instructions they

are given, which is a potential indicator of creativity.

3. Enjoyment and fun:

Hypothesis: The use of PlayTIME will have a signi�cant e�ect on users' emo-

tions and will positively a�ect users' enjoyment of the activity.

Hypothesis: This e�ect will be in PlayTIME's favour.

The study makes use of the Positive and Negative A�ect Schedule (PANAS)

[11], an emotion-rating questionnaire, to measure positive and negative emotions

before and after each part of the study. This helps us directly understand users'

emotional change through the activity with and without PlayTIME, thereby di-

rectly revealing its emotional impact. Feedback at the end of the study directly

asks about enjoyment, which we can relate back to their positive and negative

emotions. Enjoyment is also discussed as part of the CSI questionnaire.

1.3 Thesis Outline

In Chapter 2, we discuss related works in game design, prototyping, tangible user

interfaces, augmented reality and human-computer interaction (HCI).

Chapter 3 presents an evaluation of an existing and uncommon development tool:

the mapmaker feature built into the game TimeSplitters: Future Perfect [12]. The

study was conducted to gain insight on how people with some expertise in a variety of

game development disciplines use an unfamiliar scenario-building system to complete

a simple game design task.

Chapter 4 introduces the conceptual design for a new collaborative game produc-

tion environment called PlayTIME. The conceptual framework is discussed, including

the roles of the people who would use the system. The current implementation of

PlayTIME, a plugin for an existing editor, is also discussed. The system uses AR-

based tangible interfaces as control.

4

Chapters 5 and 6 present the key study in which a diverse group of scenario-driven

developers evaluate the current implementation of PlayTIME by using it to complete

a level design task given an existing project. The study discusses our �ndings about

the interfaces used and identi�es the actual uses for each system, complete with time

distributions for each feature.

Chapter 7 discusses the limitations of the current system and future directions.

1.4 Summary

In this thesis, we introduce PlayTIME, a conceptual framework for a tangible-based

prototyping work �ow, and its current implementation. We then present a user study

that evaluates the current implementation. From this study we hope to �nd evidence

that PlayTIME is usable in its current state, supports creativity, and is fun. We

conclude with guidelines for future development based on our �ndings from the study.

5

Chapter 2

Related Works

2.1 Introduction

This chapter contains background research in pertinent areas: game design, game pro-

totyping, tangible user interfaces, augmented reality, and some principles of human-

computer interaction. The focus of this chapter is game prototyping. We explain

traditional game prototyping techniques and identify how these are supported by the

di�erent areas. This information is important to this thesis since its focus is game

and simulation scenario prototyping using tangible user interfaces.

2.2 The Game Design Process

In Rules of Play by Salen and Zimmerman [13], a game is de�ned as "a system in

which players engage in an arti�cial con�ict, de�ned by rules, that results in a quan-

ti�able outcome." Salen and Zimmerman de�ne a game designer as a particular kind

of designer who designs game play : the "rules and structures that result in an expe-

rience for players." Iterative design is de�ned as "a method in which design decisions

are made based on the experience of playing a game while it is in development." In

essence, the practice involves a steady re�nement of concepts and ideas by implement-

ing an idea, testing it out, learning from the successes and failures of each attempt,

making relevant modi�cations and repeating the process. Iterative design revolves

around prototyping and testing, which are fundamental to the core of this thesis.

Salen and Zimmerman focus on the central theme of meaningful play. The authors

provide two de�nitions of meaningful play. The �rst de�nition is:

"Meaningful play in a game emerges from the relationship between player

action and system outcome; it is the process by which a player takes ac-

tion within the designed system of a game and the system responds to the

6

action. The meaning of an action in a game resides in the relationship

between action and outcome." (p.34)

This descriptive de�nition states that there should be a signi�cant relationship be-

tween the actions taken by players in a game and the outcome within the game

environment. The second de�nition for meaningful play is:

"Meaningful play occurs when the relationships between actions and out-

comes in a game are both discernible and integrated into the larger context

of the game. Creating meaningful play is the goal of successful game de-

sign." (p.34)

This evaluative de�nition identi�es the aforementioned actions and outcomes that are

perceptible to players and integrated into the larger context of the game itself; the

actions and outcomes must be involved with the game, a complex system.

The Art of Game Design [14] provides close-up examinations ("lenses") of one

hundred attributes of a game and associates these with the principles of game de-

sign. Schell provides an overview of game design, and the process of creating a game

beginning with what makes a designer and �nishing with the business side of games.

Salen and Zimmerman's approach bridges game design theory with actual practice.

In contrast, Schell leans towards the practical end of the spectrum, providing readers

with many tips and tricks to enhance their design process. Schell paints a picture of

just how complicated the game design process is, seen in Figure 2.1.

Challenges for Game Designers [15] is a book of non-digital design exercises that

describes a hands-on approach to game design. The reader is provided with tips

and practices for developing di�erent genres of games, and is challenged to imple-

ment various board games and card games to practice the design activities described.

Challenges for Game Designers focuses on non-digital exercises to explore game de-

sign and game prototyping without immediately thinking about going digital. This

trains designers to be able to iterate with their designs more e�ciently before writing

any code. This is a key contribution to game design because it thoroughly explains

how non-digital games serve as feasible prototypes for digital games later on (see

section 2.3 for details on digital and non-digital prototypes).

Fullerton [16] [17] et al [18] describe the concept of play-centric design, which is a

design process that consistently involves the player in the design process and focuses

on the player experience. This concept is an improvement on iterative design and

involves prototyping and testing with actual players. In [18] and [19], play-centric

design is applied to real game projects in development.

7

Figure 2.1: The complete game design process from [14] (p.463). Image copyright
©Jesse Schell.

8

2.3 Prototyping

A prototype can be de�ned as "a limited representation of a design that allows users

to interact with it and to explore its suitability" [20]. In the context of game design, a

prototype can be some representation of the �nal game that has limited functionality,

but is still usable and re�ects the essence of the �nal game. Prototyping enables

content designers to visualize and simulate what they want the product to do. There

are di�erent methods of prototyping, but there are ultimately two general categories of

prototypes: low-�delity and high-�delity prototypes. In [21], the �delity of a prototype

is de�ned as "a measure of how authentic or realistic a prototype appears to the user

when it is compared to the actual service." Low-�delity prototypes are not meant

to look like the �nal product or accurately represent the �nal product. They are

preliminary, exploratory designs that use a variety of di�erent materials. Low-�delity

prototypes are distinguishable from the �nal game, whereas high-�delity prototypes

are more functional and behave much like the game is expected to behave. Low-

�delity prototypes are commonly referred to as paper prototypes (see section 2.3.1).

A high-�delity prototype is generally computer-based, interactive and includes

some implementation of the system design. Thus, a high-�delity prototype may often

be referred to as a software prototype. There are also methods that are considered

low-�delity but still assume a software prototype is used. For example, with Wizard

of Oz prototyping [20] [22] [23], a user interacts with the system as they normally

would; however, all of the responses are controlled by the "wizard," an unseen human

operator controlling all of the system outcomes according to the user's input. Thus, it

is possible to simulate an interface or system with a computer but without an actual

working prototype.

Type Advantages Disadvantages

Low-�delity Lower development cost Limited error checking

Evaluate multiple design concepts Poorly-detailed speci�cation for code

Useful communication device Facilitator-driven

Address screen layout issues Limited utility after requirements established

Useful for identifying market requirements Limited usefulness for usability tests

Proof-of-concept Navigational and �ow limitations

High-�delity Complete functionality More expensive to develop

Fully interactive Time-consuming to create

User-driven Ine�cient for proof-of-concept designs

Clearly de�nes navigational scheme Not e�ective for gathering requirements

Use for exploration and testing

Look and feel of the �nal product

Serves as a living speci�cation

Marketing and sales tool

Table 2.1: Advantages and disadvantages of low- and high-�delity prototypes [24].

9

In [24], Rudd et al present considerations for using both low- and high-�delity

prototypes, and even goes as far as summarizing the advantages and disadvantages

of each approach (Table 2.1).

In [25], Rettig identi�es several issues with high-�delity prototyping:

� High-�delity prototypes take too long to build

� Evaluators get caught up in speci�c details rather than the high concept or

mechanics of the system

� Developers resist changes; instead of focusing on a functional software proto-

type, they would be less hesitant to modify paper and pen mock-ups

� High-�delity prototypes can set unrealistic expectations

� Bugs in software prototypes can halt production; with low-�delity it's just paper

High-�delity prototypes are more useful for selling an idea or showing something more

closely representative of the �nal product. One of the major bene�ts of low-�delity

prototyping is that it is less costly than high-�delity prototyping [21] [24] [26] [27] [28].

There has been some discussion on whether low-�delity prototyping is, in fact,

more appropriate on paper or if a computer should be used. A user study of two dif-

ferent systems comparing both paper- and computer-based low-�delity prototypes [29]

concluded that the results are similar (the same quantity and quality of criticisms),

but users prefer to use a computer. In [26], a di�erent experiment was conducted to

compare two di�erent versions of the same interface design: one version on paper and

one on the computer. The purpose of the study was to identify usability problems

using the two implementations. Using heuristic evaluation, the study concluded that

the paper prototype was better for identifying minor issues such as inconsistencies,

whereas the computer version was better for identifying major problems as it closely

represented the experience of the �nal product. In [30], another study compares

low- and high-�delity prototypes for multi-touch, multi-user interfaces on tabletop

surfaces.

Much of our knowledge in game prototyping is derived from principles, such as

those described above, in user interface design and human-computer interaction (sec-

tion 2.4). In [15], Brathwaite and Schreiber de�ne a prototype in the context of game

design:

"A prototype is a playable early version of the game or part of the game

constructed by the designer to assist in understanding and enhancing the

player experience. It may be done with software ('digital prototype') or

10

with physical materials as a tabletop game ('physical prototype' or 'paper

prototype')." (p.12)

Their challenges would serve as feasible low-�delity prototypes for video games. An

interactive demo using cubes and spheres in the place of high-polygon, animated

models would be high-�delity because it is playable on a computer and not made of

paper and other materials.

A study is discussed in [31] and [32] during which 27 people with game design ex-

perience were interviewed to gain a better understanding of the role of prototyping in

real design environments. Common responses showed that prototyping is an e�ective

communication tool that allows designers to validate their ideas and goals.

In the game design context, low- and high-�delity prototypes ultimately align with

physical and digital prototypes respectively.

2.3.1 Physical Prototypes

A low-�delity prototype for games may be referred to as a physical or paper prototype.

With physical and paper prototyping, the designer uses everyday materials, such as

paper, index cards and pens to sketch and simulate the �ow of how a game works.

Even acting out scenarios is considered physical prototyping and can be helpful [16].

Early prototypes are not meant to look pretty [13], hence they are prepared using

primitive materials.

In [33], Snyder provides a widely-accepted de�nition for paper prototyping in the

context of usability testing:

"Paper prototyping is a variation of usability testing where representative

users perform realistic tasks by interacting with a paper version of the

interface that is manipulated by a person 'playing computer,' who doesn't

explain how the interface is intended to work." (p.4)

Snyder's de�nition can be applied to game design since it explains that a paper pro-

totype is a physical, paper-based imitation of a system that may eventually become

digital. Paper prototyping is a common technique used to map out interactive sce-

narios such as games and simulations, in the areas of level design, game play design

and user interface design. Paper prototyping is very common in human-computer

interaction (see section 2.4), from which many principles of game design are derived.

Designers decide on how a player will interact with the pieces, how the pieces interact

with each other, what the pieces do, how these things interact with the environment,

etc. Paper is useful because it is easily manipulated and can be drawn on and folded.

11

Figure 2.2: This image shows an example of a physical game prototype. The level
uses paper for the �oor, which a�ords to be written on. Lego bricks were also used
to build walls.

To increase the �delity of the prototype slightly, designers will typically use physical

everyday objects to determine and simulate behaviours of game objects. Designers

often prepare hand-drawn maps of a game environment and use anything they can

�nd to represent game pieces. Lego bricks can be used to build obstacles, plastic mini

army soldiers can represent characters, small toys can re�ect other interactive objects.

From miscellaneous toys to o�ce supplies, designers can collect mostly anything to

develop a low-�delity, physical prototype of the game. Physical objects o�er freedom

in the earlier stages of design so designers can �gure out how things will behave.

Figure 2.2 shows an example of a physical prototype.

The focus of [16] is play-centric design, described above, which emphasizes the

need for paper prototyping. The low-�delity nature allows designers to focus on the

game play and mechanics instead of technology.

Paper prototyping is also involved with the process of iterative design. Salen and

Zimmerman report that paper-based games (whether prototypes or board games) are

more involved with iterative design than digital prototypes [13].

2.3.2 Digital Prototypes

Since its �rst release in 2005, Unity 3D [1] (referred to throughout this thesis as just

'Unity,') has become one of if not the most popular game engine for developers of

12

Figure 2.3: This image of Unity shows the editor's layout. The scene is shown in the
centre, with all of the selected object's editable properties on the right panel. Assets
are shown in the bottom panel.

today. It is most popular within the independent developer community for its low

cost and expansive tool set. Unity provides its users with a simple interface that

allows everything to be clicked-and-dragged into place, with editable text �elds used

to change values. Furthermore, one of its strongest features is the ability to preview

the current state of the game in-development at any time. Similar to modifying real

objects and re�ecting their behaviours in an engine, designers can move things around

in Unity easily and immediately check how these changes a�ect the game's playability.

Figure 2.3 shows Unity's layout with primitive models used in a digital prototype.

Other game engines with integrated editors exist, such as Unreal Engine [34],

CryEngine [35] and GameMaker: Studio [36], each supporting similar features and

interfaces. Editors allow designers to visualize their creations while they create, and

preview the game in-development to see that it works. Developers interested in using

and extending existing technologies and providing users with additional functionalities

(see Chapter 4) have created tools for prototyping within popular game engines [37].

Other digital prototyping tools, such as Designscape [32], also exist.

Game Jams (one- or two-day game development sessions) have recently become a

popular practice for students and developers to work in teams and produce a working

game. The Global Game Jam [38] has been held annually since 2009 and encourages

participants world-wide to rapidly prototype games according to a theme. Musil

13

et al [39] explain that game jams can be practical in producing working software

prototypes since the rules and overall structure of a game jam prove bene�cial in

other software development areas.

2.3.3 Summary of Prototypes

To summarize prototyping, both non-digital, or physical, and digital prototypes have

their bene�ts and drawbacks. Game engines and tools are di�cult to develop, and

developing them takes a long time. Even gameplay programming can be di�cult:

developers must learn whatever technology they want to use to produce their game.

Code bugs can also be di�cult and time-consuming to track down and �x. Physical

prototyping is ultimately bene�cial because physical objects do what we want them

to do: we understand how tangible things will behave when we move them, and this

is supported by our spatial awareness and reasoning. Physical prototypes often use

cheap and accessible materials that we can easily manipulate in space, allowing game

designers to quickly and easily express and experiment with their ideas. One downside

of non-digital prototyping is that physical objects are not autonomous and do not

have any aspect of spatial or arti�cial intelligence, which is where digitalization helps.

In the context of this thesis, we are trying to narrow the gap between digital

and non-digital by reaping the bene�ts of non-digital while maintaining feasible pro-

totypes, thereby narrowing the gap between the two. The gap exists because the

technology and processes that we are used to in digital prototyping constrain the

creative process, whereas with non-digital tools anything can be modi�ed, promoting

creative freedom and playfulness.

2.4 Human-Computer Interaction

Many of the principles used in game design stem from one of the largest �elds in com-

puter science: human-computer interaction (HCI). The Association for Computing

Machinery (ACM) de�nes HCI as "a discipline concerned with the design, evalua-

tion and implementation of interactive computing systems for human use and with

the study of major phenomena surrounding them" [40]. HCI research focuses on the

science and psychology of how humans interact with computers.

A signi�cant part of HCI research is in the domain of user interfaces. A user

interface (UI) is a program or system that allows a user to control, manipulate or

interact with the computer (see section 2.5 for more on di�erent kinds of interfaces).

A lot of UI research looks at the creation and evaluation of interfaces. Nielsen focuses

on heuristic evaluations of interfaces [41] [42] [43] [44]. In essence, heuristic evaluation

14

is de�ned as having a person or group of people identify the strengths and weaknesses

of an interface according to a set of established principles for interface design. Nielsen

and Molich have shown that people are not able to identify errors as well individually;

heuristic evaluation works much better when working in groups [41]. The original nine

principles for heuristic evaluation ("heuristics") are introduced in [45]:

� Simple and natural dialogue

� Speak the user's language

� Minimize user memory load

� Be consistent

� Provide feedback

� Provide clearly marked exits

� Provide shortcuts

� Good error messages

� Prevent errors

This simpli�cation provides a practical contrast to the hundreds of guidelines

originally found in [46]. These nine heuristics were later revised into the ubiquitous

ten usability heuristics for interface design that are still heavily referenced today [47].

These heuristics, summarized below, are important and widely accepted principles

for the design of new interfaces and systems:

Visibility of system status

Inform users what is going on at all times.

Match between system and real world

Use terms that users can understand, instead of highly technical jargon; infor-

mation appears to be natural and logical.

User control and freedom

Users make mistakes in their selections; the system should o�er a clearly-labelled

quick way to undo mistakes.

Consistency and standards

Use consistent language and terminologies.

Error prevention

Instead of having users worry about �xing errors, prevent errors from occurring

in the �rst place by removing system components that are prone to errors.

15

Recognition rather than recall

Reduce users' memory load by displaying their options and actions; they should

not have to memorize all of the functionalities of the system, but rather be able

to recognize them when seen. Recognition is easy, recall is hard [48]. This is a

frequently-addressed issue in UI research.

Flexibility and e�ciency of use

Speed up the interactions.

Aesthetic and minimalist design

Focus on including relevant information only; irrelevant information can block

out the important stu� and create clutter.

Help users recognize, diagnose, and recover from errors

If an error should occur, it should be clear and descriptive, and o�er a solution

to �x or revert the problem.

Help and documentation

Provide references for users that can descriptively and clearly guide them with

their tasks.

There is another usability-related topic that will be discussed brie�y in Chapter 5.

Fitts's law [49] describes the time needed to reach an on-screen target, such as a

button, text box or scroll bar, as a function of the distance to and size of the target.

In [50], MacKenzie discusses Fitts' law in the context of HCI research and design and

suggest ways to extend the theorem. In [51], MacKenzie and Buxton further discuss

extending Fitts' law by applying it to two-dimensional tasks, including diagonal target

approaches.

Usability heuristics are the most important HCI factor in this thesis because

ultimately they help identify drawbacks of PlayTIME. PlayTIME itself is relevant to

HCI because, as the concept should be able to help us achieve design goals in di�erent

media domains, it may be used for exploring user interfaces for websites and other

systems. Furthermore, we are directly discussing the use of tangible user interfaces

as a means of allowing game designers to interact with the computer.

2.5 Tangible & Natural User Interfaces

A tangible user interface (TUI) uses physical objects to "represent and control com-

putational abstractions" [52]. In other words, a tangible interface is a physical object

whose interactions are mapped to a virtual object; when manipulated, it allows the

16

user to work with the system. The most familiar example of a TUI would be the

mouse, whose position on a desk or surface maps to the position our operating sys-

tem's cursor on the screen. It is a hand-held pointer that o�ers direct manipulation

of the cursor. The study described in Chapter 5 makes use of the mouse. Another

straightforward example of a TUI would be the pen used on a drawing tablet. The

tablet itself is a metaphor for the drawing surface, and the user holds a pen that

behaves as a pointer on the surface; when the pen contacts the tablet it behaves as

a mouse click. This is incredibly useful for artists using programs such as Photo-

shop. Using the tablet pen in real life represents a symbolic interaction with a virtual

paintbrush. Sometimes the tablet is sensitive to pressure, which adds an entirely new

dynamic to the interaction.

Di�erent tangible interfaces make more sense in di�erent scenarios. For example:

both the mouse and a drawing tablet could be used to create a picture in Photoshop

or Microsoft Paint, but it would be more appropriate to use the tablet since it better

re�ects the act of drawing.

In [2], tangible interfaces are introduced as graspable user interfaces. The authors

use "bricks" as the model tangible object, which directly maps to some virtual object

on a display. Graspable UI takes advantage of two-handed interactions, our spatial

awareness and caching, and simultaneous control and manipulation of position and

orientation. To evaluate the performance of bricks as graspable UI, the authors

conducted simple user studies that allowed them to observe how people interact with

these brick objects, allowing them to develop a "vocabulary" of actions that are

a�orded by using bricks. These same actions were mapped to a physical representation

of the virtual objects that the graspables would manipulate: a stretchable square

made of foam core. Next, mock-ups using Lego bricks and prototyping software

helped visualize what graspable interactions would look like. A prototype of the

bricks and display were prepared to test interactions with graspable UI, and �nally

a commercial application was modi�ed to enable the use of bricks and testing of

graspable UI "in the real world."

The concept of graspable UI was later developed into Ishii and Ullmer's tangible

bits [53]. The core goals of tangible bits are to (1) transform surfaces in a real

(architectural) space into active interfaces between the physical and virtual worlds; (2)

"couple bits and atoms" by mapping graspable objects to the digital information that

pertains to them; and (3) use ambient media, such as light and sound, as background

interfaces for human periphery. Essentially, the world itself can be e�ectively evolved

into an interface with the use of tangibles.

17

In [54], the authors expand on tangible bits and explicitly compare TUI represen-

tations against graphical representations. They also present a variety of "genres" of

TUI applications.

Tangible interfaces have also been shown to enhance collaboration and foster col-

laborative activities, which is particularly important for this thesis [55].

A Natural User Interface (NUI) can be de�ned as "a user interface designed to

reuse existing skills for interacting appropriately with content" [56]. In essence, we

as humans are naturally skilled with our bodies, arms, hands, �ngers, etc. Natural

and gestural interfaces use our physical features and movements to interact with the

system and its content. Sometimes there are no buttons, in the case of Microsoft's

Kinect [57] [58], which uses hand gestures to simulate pressing virtual buttons, foot

gestures to simulate kicking a ball, and full-body actions to perform other tasks.

Devices like the Leap Motion [59] focus only on hands and �ngers. Sony's PlayStation

Move [60] and Nintendo'sWiimote [61] are hand-held motion controllers whose spatial

positions and orientations are tracked by the system; therefore our hands' motions in

space are symbolic to the system.

2.6 Augmented Reality

Augmented Reality (AR) is a technology that superimposes virtual media (video

and/or audio) in a computer program or simulation on to some video feed of real

world and real objects. In [62], it is stated that AR supplements reality instead

of completely replacing it, as virtual environments do. Typically, AR applications

run a video feed from a webcam or built-in camera (in the case of mobile devices).

Using software such as ARToolKit [63], each frame of the video feed is processed

and scanned for recognized patterns. ARToolKit tracks the thick black borders on

�ducial markers (Figure 2.4). If a pattern on a marker is recognized, its position

and orientation are calculated relative to the camera and returned to the application

for use in graphics, physics, or anything else that may require 3D transformation

data. If a device has a gyroscope, this can also be used to determine the orientation

of the camera. Optimization algorithms, such as a Kalman �lter [64], can be used

to estimate the change in a virtual object's transformation over time and return the

optimal pose. Other tracking methods for AR include Parallel Tracking and Mapping

(PTAM) [65], which does not use markers and instead uses feature recognition in a

sequence of images (video) to determine where the viewer is located in the world.

18

Figure 2.4: An example of a �ducial marker, by itself on the left and in-use on the
right. The pattern is recognized by ARToolKit and a transformation is computed
based on the pose of the marker as it appears in the frame. A virtual object is then
superimposed on top of the image.

2.7 Tangible AR

AR has been widely recognized for its usefulness in collaborative environments [66]

[67] [68] [69] [70] [71] [72] [73] [74]. The bene�t of collaboration is probably why AR

software is a popular tool for developing TUIs; this is an important theme throughout

this thesis. Many researchers use AR as a mapping tool for tangible interfaces.

Mark Billinghurst introduced the MagicBook, which uses markers on a real book

with printed text to overlay virtual scenes on the pages [66] [67]. In [75], students

prototyped tangible interfaces for a variety of applications by attaching �ducial mark-

ers to movable parts; the markers were tracked and their orientations were used to

determine system states. In [76], the authors discuss designing tangible interfaces

using AR, and identify special actions that users can perform with AR markers, such

as shaking. The article bases a lot of its content on a demo called "Shared Space" [3],

with which the authors conducted a user study. The users were pleased with the pre-

sented system, but there were shortcomings with tracking and in the event of marker

occlusion.

Tangible tiles are described in [77] as hexagons with tiny infra-red markers at-

tached to the corners. The tiles are used to augment the board game Settlers of

Catan, which uses hexagonal tiles. Tangible tiles are a TUI that are used much like

AR markers, and su�er the same drawbacks, such as occlusion. They can be tracked

over time, and their movements and interactions with other tiles are symbolic to the

system.

19

There have been many tangible tabletop games built using AR technology. In [78],

a game called Art of Defense is introduced. The game uses hexagonal AR markers to

represent the locations of virtual objects. The authors found that the tangible layout

allowed players to use spatial reasoning and communication.

A digital prototyping tool kit known as ToyVision is introduced in [79]. ToyVision

uses �duciary markers to track a variety of tangible objects that, when interacting

with each other, establish game play. The tool kit is used to prototype a game in [80].

This is extremely valuable to PlayTIME since one of the goals is to be able to have

object interactions represent symbolic in-game logic.

Kaltenbrunner et al [81] introduce their system, called reactTIVision, a framework

designed for the construction of tabletop TUIs. The tangible parts are amoeba-shaped

AR markers.

Osmo [82] harnesses both tangible interfaces and more AR technology on iOS

devices to provide children with hands-on, playful, tabletop-based exercises in spatial

awareness and problem solving. The three main uses for Osmo are: "Tangram," a

digitalization of the classic dissection puzzle, with which users can build and explore

simple objects and solve puzzles in-application; "Newton," which identi�es lines and

other objects on the table and converts interprets them as virtual physical objects;

and "Words," with which users show physical tiles with letters on them to describe

a photograph. Osmo is extremely relevant because it demonstrates how tangible

objects, in general as opposed to AR-based, can be used to represent information

that is interpreted by a digital application. It also demonstrates tangibles' abilities

to be used in spatial and creative tasks.

castAR [83] is a new virtual reality and augmented reality technology that uses

glasses with micro-projectors to create a personal virtual reality experience. The

technology has demonstrated the use of RFID technology to register virtual meanings

to physical objects, thereby utilizing TUIs to play and create games.

Tangible user interfaces and augmented reality together are relevant to PlayTIME

since �duciary patterns were chosen as the computer's method of recognizing tangible

objects and allowing us, as designers, to interact with the computer in ways that are

more symbolic to being a designer.

2.8 Summary

In this chapter, we provided a brief overview of game design and prototyping tech-

niques both within and outside of gaming contexts. We explain that low-�delity and

physical prototypes are useful for being low-cost and very easily manipulable, whereas

20

high-�delity and digital prototypes are built for higher-quality, marketable versions

of the product. We also discuss some of the technologies that can be used to perform

physical prototyping tasks. Tangible interfaces work well for prototyping since they

can be picked up and moved around. Positions and orientations of objects can be

tracked using AR software. Using AR to de�ne a tangible interface system has been

shown to work well for gaming and prototyping activities. Prototyping is relevant to

this thesis since the system being developed aims to digitalize the process of physical

prototyping.

21

Chapter 3

Designer Actions Study

3.1 Introduction & Motivation

Prior to developing PlayTIME and related interactive tools, we conducted a prelimi-

nary user study to understand the actions developers take when using a constrained

and minimal development environment. The study invited users, new to a design

tool, to provide feedback about the system, for example: what they liked, what they

disliked, which features they found themselves using the most and what was used the

least. They were assigned a level design task to complete within a time limit, during

which they planned out a level to build for an existing game and used the features of

the system to construct it.

The study was exploratory in nature, so there was no initial hypothesis. The

expected outcomes included feedback from each participant on their experience us-

ing the provided interface, as well as a measurement of the time participants spent

performing speci�c tasks and using di�erent features of the system during the study.

This study was important because the survey results, performance analysis and feed-

back would ultimately serve as guidelines for the design of a new interactive scenario

development tool using a tangible interface. The results indicate what actions design-

ers want to do while developing a level and how long they perform these actions. The

study was ultimately intended to help guide the development of a new prototyping

system by giving us solid understanding of the needs of potential users of the system.

The study was designed to tell us what features are most important for a design

interface, what features will be used and the time it takes to use them.

The design tool used for this experiment was the mapmaker feature in TimeSplit-

ters: Future Perfect, described in detail in the next section (3.1.1). It was selected for

its extensive selection of objects with prede�ned behaviours that can be placed into

22

the world with the press of a button. Furthermore, the mapmaker supports interactive

preview modes, which users could use to view their level during development.

3.1.1 TimeSplitters: Future Perfect

TimeSplitters: Future Perfect ("TSFP") is a �rst-person shooter game that involves

time travel [12]. The game was developed by Free Radical Design and published by

Electronic Arts in 2005. For this study, the selected tool is the mapmaker feature

built-into the game. The mapmaker gives users the creative freedom to build a

story level with objectives and logic that features their favourite weapons, items and

characters from the game's main story. The editor also facilitates other game modes

that are typically found in �rst-person games, such as team death match, capture the

�ag, domination, last man standing, and many more. Furthermore, users can preview

their level in the preferred game mode at any time.

The TSFP mapmaker has two preview tools: an in-game interactive play-through,

and an in-editor 3D view of the level. The 3D view is instantly accessible by pressing

a single button, and exited just as easily. This view displays a texture-less layout of

the map, showing how tiles are laid out in the world. The user can make changes

to the tiles and immediately see the 3D representation of the map. However, it

is unfortunately not interactive and does not display the objects and items in the

world; it only shows how the tiles are arranged, and this view cannot be rotated or

scaled. Furthermore, since the editor is multi-�oored, higher �oors may occlude lower

ones, which makes viewing di�cult in some cases. For this, the user must start an

interactive preview. Figure 3.1 shows an example of the 3D view. This feature could

be considered a lower-�delity representation of the level due to its limitations.

The interactive preview is a compiled, playable representation of the map. It is

the actual output of the level design, a demo of the game itself: TimeSplitters, taking

place within the level created in the editor, as seen in Figure 3.2. With this feature,

the user can preview exactly how their level will behave when played by others. Upon

starting the interactive preview, the game is compiled into a playable version of the

level. The level is then loaded and then the user temporarily exits the editor and

plays through the game. This preview can be quit at any time and the user will

be returned to the editor. This feature provides users with a higher-�delity look at

the level. See section 3.4.3 for more information about the participants' use of the

preview features.

Aside from building the level, there is also a logic editor that can be used to make

things happen within the game. The user can create and select 'triggers' (events

23

Figure 3.1: The 3D preview in the mapmaker. It only displays the tile arrangement;
none of the items or interactive parts of the level can be seen.

Figure 3.2: In-game screen-shot of TSFP. The player is caught reloading while in a
�re �ght with an enemy character!

24

Figure 3.3: The logic editor's tree layout. In this image the logic for the very beginning
of the game and the win-condition are shown. Blue boxes are triggers and green boxes
are actions. The orange boxes represent events with linked triggers and actions.

Figure 3.4: The items menu in the mapmaker. The user can scroll through a variety
of items, represented by icons, and see what the object looks like in the world. Here
a green teleport is selected in the menu on the left and displayed on the right.

25

that cause something to happen) and 'actions' (events that happen as a result of

something else) to prepare simple and complex game events. In essence, this is a

graphical interface to simulate programming or scripting. The main menu for logic

editing is a collapsible tree that displays events and their related triggers and actions.

In the map itself, all objects associated with logic operations are marked with a blue

dot. Broken logic items are clearly marked with a red exclamation mark; the user

receives a warning if a preview is started with un�xed logic issues. Figure 3.3 shows

the editor's logic tree.

The editor provides users with a constrained grid-based environment in which

they can place tiles, items, enemies and quickly connect objects together to create

simple logic operations. There are many objects that have pre-determined behaviours

that only need to be placed in the map by the user, all categorized and arranged in

scrollable menus (Figure 3.4). This system was ultimately chosen as it facilitates

basic map editing and creation abilities in a simple interface.

3.2 Method

3.2.1 Session Overview

The goal of the study was to observe what actions would be performed by game

designers when provided with an unfamiliar game creation tool. To facilitate this,

they were asked to complete a task using TSFP's mapmaker feature; they were allowed

full creative freedom, constrained only by the content of the mapmaker itself.

Participants began the study by reading and signing an informed consent form

which provided them with a description of the study (REB �le 13-022; see Ap-

pendix A.1). They then �lled out the demographics questionnaire in which they

described their experience and expertise in di�erent disciplines of game and simula-

tion design, and experience using a variety of game development-related tools. Partic-

ipants were then introduced to the development tool used for the experiment. They

were allowed to try the editor for a few minutes before the experiment began. They

were provided with a written description of a task they were required to complete in

the editor with only a few constraints:

� The game genre is �rst-person shooter

� The player will only have �ve minutes to play through the level

� The level must have a puzzle mechanic

26

� The player must collect crystals; you must place one or more crystals within

the map

� You have doors, keys, switches and other objects to help you build a compelling

puzzle mission

The participants were provided with an image of the control scheme for the editor.

They were also given a list of the editor's features which they were allowed and not

allowed to use to complete their task. A notebook turned to a blank page was left

beside these materials; they were not instructed to use the notebook but it was there

if they wanted to plan out their levels.

A simple template map was provided to all participants in the TSFP mapmaker.

The starting layout had a few tiles in the grid, a starting point, one enemy, an

example switch-controlled door, one crystal, and incorporated logic for the winning

condition (collectibles picked up) and the losing condition (in-game time limit exceeds

�ve minutes). They were instructed to build from the starting layout, adding to it,

removing from it and changing it however they felt necessary to complete the task.

See Appendix A.1 for the complete task description and all of the supplementary

materials provided to participants for this study.

Participants were allotted 45 minutes to build the level and were informed if they

violated the constraints they were given. They were also allowed to ask for help as

needed. Throughout the study, each participant's progress was recorded via screen

capture software, and the participants themselves were recorded on video. At the

end of the session, each participant �lled out a survey in which they described their

experience, rated the features that they used and discussed their favourite and least

favourite features and moments of the experiment.

3.2.2 Video Analysis

After the study, determining the actions performed and time spent by participants

required analysis and coding of the video recordings. For each participant, the �rst

video analysed was the recording of the participant. Each time they picked up the

notebook to either make a drawing or reference it, the action was recorded with the

duration of the drawing or reference.

Next, the same process was used on the screen capture video for a set of pre-

determined key actions. Every time a participant started doing a new task, the

time of this switch was recorded, thus giving us the total duration and frequency of

the actions. For a list of the key actions monitored in the video analysis and their

statistics, see section 3.3.3.

27

Figure 3.5: A bar graph of self-reported pro�ciencies in a variety of game develop-
ment disciplines. The data represents the mean 'expertise' in each of the listed �elds.
The error bars represent one standard deviation in either direction from the mean.
This was consistently selected for error bars throughout the thesis to re�ect the over-
all variance or dispersion of the data. Larger error bars indicate widely-spread or
inconsistent data, whereas small error bars re�ect agreement between samples.

3.3 Results

3.3.1 Demographics

Fifteen participants were selected to take part in the experiment. The only require-

ment for participation was that the potential participant must have had some expe-

rience in any kind of game development, with strengths in any of the common game

development disciplines (programming, animation, design, etc.). Most of the partici-

pants were studying game development. The average age of participants was 24 years

old. The average game development experience was approximately 4.5-6.5 years; this

accounts for any time associated with developing games, including studying. Only

one of the �fteen participants had previously used mapmaker.

Participants were asked about their expertise in a variety of common roles in game

and simulation development. Figure 3.5 displays the average self-reported expertise

in various roles, with error bars to represent one standard deviation. Expertise was

selected using a Likert scale with the following ranks:

0=Not applicable; 1=Beginner; 2=Competent; 3=Intermediate; 4=Advanced;

5=Expert

28

Figure 3.6: A bar graph of self-reported pro�ciency using a variety of game devel-
opment tools. The orange bars represent the mean pro�ciency using each tool, and
the blue bars represent the mean frequency of use with each tool. The error bars
represent one standard deviation from the respective mean.

Figure 3.7: Here are some of the tactics that may be used while designing a level. The
graph shows how many people use each of the listed tactics during their individual
design process.

29

Figure 3.8: Here is a list of features that one might �nd in a popular game development
editor. The bars in this graph represent the mean importance of each feature to the
participants. The error bars represent one standard deviation from the mean.

Next, participants described their expertise using popular tools for game devel-

opment. Figure 3.6 shows the participants' self-reported pro�ciency using a variety

of development tools, as well as how often they use each tool on average. Pro�ciency

was measured using the same scale as above, whereas frequency was measured with

a di�erent Likert scale:

0=Not applicable; 1=Never; 2=Rarely; 3=Occasionally; 4=Often; 5=Always

Note that the participants were informed that their rating of each tool is in the

domain of game development and not just general use. Most participants preferred

using Microsoft Visual Studio as a programming development environment and Unity

3D was the preferred game engine.

Participants were then asked to choose from a list of design tactics and practices

they used frequently while designing games. A list of these practices can be found in

Figure 3.7 with the number of participants that do each practice.

The participants were provided with a variety of features they may �nd in a

popular game engine. They were asked to rank the importance of these features. The

average ratings can be found in Figure 3.8 with the following scale:

30

Figure 3.9: The ratings of a variety of features used in the TSFP mapmaker. The bars
represent the mean rating for each feature. The error bars represent one standard
deviation from the mean. Additionally, the response count (N) is displayed for the
features that did not receive a valid response from all participants.

1=Not important; 2=Slightly important; 3=Moderately important; 4=Very im-

portant; 5=Essential

Finally, the participants were asked to describe their design processes. Their

detailed responses can be found in Appendix B.2.

3.3.2 Post-Study Questionnaire

The post-study questionnaire asked participants to rate their experiences with the

di�erent features within the TSFP mapmaker. The scale used for each feature is:

1=Hate; 2=Dislike; 3=Neutral; 4=Like; 5=Love

The results from this part of the post-questionnaire can be found in Figure 3.9.

In this bar graph, each feature is listed with the number of valid ratings out of the

�fteen participants (N). The bars represent the mean rating for each feature. The

error bars represent one standard deviation in either direction of the mean for each

31

Figure 3.10: Percentage of time spent performing di�erent design tasks, both within
and outside of the editor. The bars represent the mean rating for each feature. The
error bars represent one standard deviation from the mean. Additionally shown is
the number of participants who used the feature.

feature. A response was deemed valid if the participant claimed to have used the

feature (did not answer 'Did Not Use' when �lling out the questionnaire), and this

claim was con�rmed in the evaluation of the participant's screen capture and video

recordings. A rating was excluded if the participant said they did not use the feature

or the videos did not show them using the feature at any point during the session.

3.3.3 Screen Capture & Video Recordings

Each participant was recorded on video, and their design session was recorded using

screen capture software. Analysis of the videos (section 3.2.2) gave a clear indication

of how each participant spent the time allotted to them to complete their task. The

average percentage of time spent doing di�erent activities can be seen in Figure 3.10,

shown in further detail in Table 3.1. Table 3.2 shows the average event frequencies and

durations. The list of activities includes actions observed in-editor, such as placing

objects, and those observed of the participants themselves, such as drawing in the

notebook that was provided to them (see section 3.4.6 for details about the notebook).

32

Feature N Mt M%

Object placement & menu navigation 15 34m 20s 61.87
Playing in-game interactive preview 15 7m 25s 13.73

Creating and con�guring logic operations 4 4m 20s 7.61
Changing object properties & settings 15 4m 03s 7.42

Drawing in notebook 9 3m 17s 5.97
Loading & unloading interactive preview 15 3m 02s 5.42

Using in-editor 3D preview 5 2m 01s 3.69
Familiarizing with interface 15 1m 34s 2.85

Directly linking objects together 10 47.7s 1.45
Referring to notebook 7 28.3s 0.95

Idling & thinking 15 15.0s 0.45

Table 3.1: This table summarizes how participants in the designer actions study
spent their time using di�erent features and doing di�erent tasks. The table shows
the number of participants, out of �fteen, who did each of the listed tasks (N), as
well as the mean time spent on these tasks per-session in minutes and seconds (Mt)
and as a percentage of the total time per-session (M%).

Feature N Md Mo

Object placement & menu navigation 15 1m 35s 21
Creating and con�guring logic operations 4 1m 34s 2

Playing in-game interactive preview 15 1m 28s 5
Drawing in notebook 9 59.3s 3

Changing object properties & settings 15 18.9s 12
Directly linking objects together 10 17.0s 2

Using in-editor 3D preview 5 9.6s 12
Referring to notebook 7 6.4s 4

Table 3.2: This table shows the frequency of events occurring during the study. The
columns are the number of participants who did each of the listed tasks (N), the
mean duration of the events in minutes and seconds (Md), and the average number
of times the events occurred (Mo).

33

3.4 Discussion

3.4.1 Participants

As seen in Figure 3.5, the role of Systems Designer had the highest levels of reported

competence, with the smallest deviation (M=3.6, SD=0.71). The systems designer

is the person responsible for coming up with and prototyping game mechanics and

rules. The role of Level Designer had the second-highest average competence (M=3.0,

SD=1.15).

Of the 15 participants, 14 were students and likely had not spent time doing

professional development in any of the creative disciplines mentioned in the ques-

tionnaire. It would have been useful to be able to evaluate the reported competence

values in the context of professional game development.

3.4.2 Development Process

Each participant would start by playing through the template map they were given

using the interactive preview, and then learning how to use and navigate the editor.

Users would consistently scroll through the di�erent menus and see what items and

tools they had at their disposal. After coming up with initial ideas, participants

spent time scrolling through the tile menu and building the map, or the shape of the

traversable game world. Level types varied between complex multi-�oor mazes and

large open spaces with walls as obstacles.

Once they had the basic map of their level done, participants moved on to placing

items, enemies and other interactive objects throughout the world. Although the

instructions said one or more crystals could be placed, participants often used just

the one that was provided in the template map, and it was placed in some area of

the map shortly after the study began. Some examples of level layouts created by

di�erent participants can be found in Figure 3.11.

Table 3.1 shows that an average of 34 minutes, 20 seconds, or 61.87% of partic-

ipants' time was spent editing tiles, placing objects and navigating menus, making

this most-used action. It was di�cult to distinguish between these tasks since par-

ticipants �ipped between viewing menus and placing objects very rapidly. Table 3.2

shows that each time a participant began selecting and placing objects, this lasted

for approximately 1 minute 35 seconds and happened an average of 21 times.

We can conclude that since object selection and placement has the highest of all

time-related statistics, it is the most time-consuming feature. It should therefore be

34

Figure 3.11: Some di�erent map designs, showing tile layouts and placement of in-
teractive objects. The crystals (required) and other objects connected to game logic
are marked with a blue dot.

35

considered a high-priority feature of design interfaces, and it is important for such

interfaces to save time doing this process.

3.4.3 Previewing

All participants used the in-game preview and discussed its usefulness. One of the

most important takeaways is that the interactive preview feature had the highest

ratings in the post-study questionnaire (M=4.8, SD=0.4). The second-highest ratings

were for the quality of the interactive preview (M=4.2, SD=0.83) (Figure 3.9). In

Table 3.1, we see that the feature was also the second most time-consuming, with

an average of 7 minutes 35 seconds per session, or 13.73% of the total time spent

in the game itself. One downside reported by most participants is the load time for

the in-game preview. TSFP reloads the entire level each time a preview is started,

so the user must wait for approximately sixteen seconds before being able to see the

game they have created. Furthermore, upon ending the preview it takes another

�fteen seconds to unload the map and return the editor. For the participants who

previewed many times, this wait time accumulated and became frustrating. The

average time per session spent waiting to switch to and from preview mode was 3

minutes 2 seconds, which amounted to an average of 5.42% of the allotted time. This

time accounts for the time it took for the participant to initiate the preview through

the main menu, the preview's load time and the unload time. If we add the time

spent in-game and the time spent loading and unloading, then the average total time

spent using the interactive preview feature was 10 minutes 37 seconds, or 19.15% of

the total time. These measurements show that participants made excellent use of

the interactive preview. They also collectively agree that it was an invaluable feature

of the editor. The time measurements are consistent with the participants' written

responses, which described the previewing ability as extremely helpful.

The duration of the session as a whole was extended by the time previewing the

levels to accommodate for the long and accumulating preview load time. It was

recorded how many times a participant used each of the previews and for how long

each preview lasted. As seen in Table 3.2, participants used the interactive preview

an average of 5 times per session, with an average preview duration of 1 minute 28

seconds. Generally, this was enough time for participants to navigate through the

level to the part they wanted to test, see if it worked and then return to editing.

Those who used the 3D view did so much more frequently but, due to its limited

functionality, and being extremely low-�delity compared to the interactive mode, they

did not use it for long. Table 3.2 shows that the 3D view was used an average of 12

36

times per session, with each use lasting 9.6 seconds. Only �ve participants actually

used the feature at any point in the session. Most of the people who did not use

the 3D view reported the interactive load time as an annoyance and frequently used

the interactive preview just to move around their maps without any objects, or to

see how the tiles were laid out. The hindrance of loading times could have been

prevented if they had used the 3D view since it is mainly useful for seeing how the

tiles are laid out. It is possible that they simply did not pay close attention to the

control layout reference sheet that all participants were provided with, which labels

the 3D view mapping, and therefore did not realize the feature existed. Alternatively,

maybe these participants would rather be more immersed in their creation and the

3D view would not be su�cient; however this came at the cost of repeatedly loading

and unloading the level.

Based on the feedback regarding previews, and given that it was the most time-

consuming feature behind the actual construction of the level, we can conclude that

some sort of preview tool is absolutely necessary for PlayTIME. This will be an

important guideline for the development of a new design tool because users like the

ability to make sure that what they are doing is correct and that it will work as

expected. Without this ability, users would be left only to assume that their levels

work and will not be able to �nd out until actually fully building and packaging the

level. In Chapter 4, we discuss the planned features of PlayTIME, including the

networked preview feature.

The need for previewing is re�ected in many other software products for many

di�erent artistic industries. In gaming, engine editors such as Unity have a single

button that compiles the current scene so that the designer can interact with it.

Professional �lm software allows editors to move video and audio clips around in a

graphical timeline with the ability to playback the scene in another window. Digital

artists using Photoshop can preview their work by simply looking at the canvas. A

preview generally lets someone know whether development is on the right track or if

changes must be made.

3.4.4 Logic Operations

The third most time-consuming feature was the logic editor. In Table 3.1, we see

that it was used an average of 4 minutes 20 seconds per session, or 7.61% of the

total time. Table 3.2 shows that it was only used an average of twice per-session for

approximately 1 minute 34 seconds. Only four participants used the feature, but it

took up a lot of time because of its complexity. The small number of users and large

37

amount of time spent using the logic editor suggests that it was too complicated to

use in a limited time.

TSFP has a simpli�ed version of this feature: the ability to directly link objects

together. For example, a switch can be placed, and the object controlled by the switch

can be selected through its properties menu without touching the logic editor. The

tables show that ten participants used direct linking for an average of 47.7 seconds

per session, or 1.45% of the total time, an average of twice per session with each use

lasting 17 seconds. One of the drawbacks of direct linking is that it only links one

input with one output, or one trigger with one action. For example, a switch can

be pressed and it will open a door, or close another door, but not both. For more

complex operations involving multiple triggers and actions, participants turned to the

logic editor.

3.4.5 Questionnaires & Feedback

Another trend that can be observed is the consistency of feedback about the logic

components of the editor. In fact, the results for all participants who used the logic

features were almost identical. The users that did use logic generally agreed that it

was easily understood. The feedback suggests that logic should be kept simple and

be prede�ned for each item.

The next highest set of ratings we can see is the selection, placing and changing of

items and their properties. When a user places an item in the world, it is important

to be able to change the object's behaviours. In TSFP mapmaker, all items provided

have prede�ned functionality and uses in the world. In Unity, this concept is called

a 'Prefab' (prefabricated object); the idea is that the item is set-up and ready for

use even before it is placed in the world. A user has the freedom to change the

way an item behaves by opening its property editor and making adjustments to the

provided values and options. This is a common feature in game editors such as TSFP

mapmaker and Unity as it allows users to reuse the same assets without having to

recon�gure their behaviours every time one is to be placed. Assets should be prepared

with a few key behaviours so that designers using such a tool can create objects with

some variance; not too many such that game objects become too complicated but not

too few such that they are too similar. When designing a level editor, it is important

to consider the fundamental idea of what each object is and what it will be used for.

Another feature that participants provided generally positive feedback for was the

ability to edit their maps on multiple �oors instead of just one planar level, with the

ability to see through the tiles to the �oor below. One of the constraints of real

38

Figure 3.12: Pages in the notebook depicting puzzle designs by two di�erent partici-
pants.

paper prototyping is that designers are restricted to a table or desk, which is a single

surface. Potential solutions to multiple-�oor problems would require a 3D map or

multiple �oor maps, which would take up space and may cause issues when working

on di�erent pieces of the map at the same time. A prototyping framework should

have a 3D map or some preview of space in general so designers can see how things

a�ect each other in space.

Overall the participants reported that they had a good experience working with

the TSFP mapmaker and provided considerable feedback and constructive criticism.

For more detailed questionnaire responses, see Appendix B.3.

3.4.6 Notebook

One piece of data collected was in a notebook that was added to the study to allow

preliminary paper sketches before using the editor (Figure 3.12). Since part of the

study was evaluating the actions performed by designers and the choices they make,

a notebook turned to a blank page was left on a table in front of the participant.

They were not instructed to use the notebook and it was not mentioned unless the

participant asked if they were allowed to use it. Pen-and-paper sketches re�ect a

common practice in level design, as discussed in section 2.3; we wanted to see how

many people would use this technique to assist with the design of their maps.

Watching the video recordings showed which participants used the notebook and

when. Nine of the participants used a page to draw out their maps and take notes

on their puzzle ideas before creating the level in the editor. As seen in Table 3.1, the

39

average time spent drawing in the notebook was 3 minutes 17 seconds, or 5.97% of

the total time. Typically the notebook was used at the very beginning of the session

and once more later on. Out of the nine people who used the notebook, only seven

actually referred back to it while building the level. Participants referred to their

page an average of four times after the initial drawing. The time spent referring to

the notebook averaged 28 seconds per session, or 0.95% of the total time.

Some of the �nal designs incorporated elements of the levels originally planned

in the notebook. Most of the sketches were incomplete or very limited, so it was

di�cult to tell if the �nal levels accurately matched intended designs. It is di�cult to

conclude whether participants found the notebook useful since, unfortunately, there

was no question regarding the notebook in the post-study questionnaire. However,

after each session some verbal questions were asked concerning the notebook. Most

participants reported that they found it somewhat useful; in the end they improvised

most of their designs in-editor. When the people who did not use the notebook were

asked why not, they stated they either did not notice it or were unsure if they were

allowed to use it.

3.5 Summary

By running the designer actions experiment, we have learned about what experienced

designers like and dislike about unfamiliar prototyping software. More importantly for

PlayTIME, the study has shown which actions taken by designers are most prominent

in a basic level-building exercise. TSFP's mapmaker provided the participants with an

unfamiliar, constrained design tool set whose features will be re�ected in PlayTIME.

The experience has provided us with feedback, ratings and time measurements

about features that will help guide the development of PlayTIME. We also learned

about which features will be substantial and those that will be helpful. The three

most important features used by all participants in this study were object placement,

previewing and changing object properties.

We learned that users collectively spent the most time selecting objects from

menus and placing them in the world: as evidenced by the performance statistics,

an average of 61.87% of their time was spent picking objects from a menu of pre-

built assets and placing them in the scene. Therefore object placement is the most

important requirement for level design in PlayTIME; this is how the interactive world

is actually constructed. Users spent an average of 19.7% of their time previewing

their level; this includes the long preview loading times. It was also rated highest,

on average, when asked about feature preferences. Therefore the ability to preview

40

with PlayTIME will be necessary. There are some planned methods of previewing

for PlayTIME to satisfy this requirement, but whatever system that PlayTIME is

paired with, whether it is Unity or another editor-based engine, must have a way to

preview e�ciently. Third, users collectively spent 7.42% of their time modifying the

parameters of pre-de�ned object behaviours. Therefore objects in PlayTIME must

have simple properties and behaviours that can be changed to interact with the game

environment in di�erent ways and enable creative ways to use these objects.

From running the study we gained a perspective on how users experience an

unfamiliar game development tool. Our �ndings were used to guide the development

of PlayTIME, described in Chapter 4.

41

Chapter 4

PlayTIME

4.1 Introduction

This chapter introduces PlayTIME: a Tangible InteractiveMedia Environment for

Game-Play. It is a conceptual development environment and work �ow for designing

interactive content.

The goal of PlayTIME is to utilize tangible user interfaces to complete game design

tasks that would otherwise be done using traditional computer-based methods, while

simultaneously fostering collaboration and teamwork. The system aims to merge

forms of physical design and prototyping with digital design and prototyping.

In this chapter, we brie�y discuss traditional scenario design techniques, including

both physical and digital design spaces. We then discuss the conceptual framework

including PlayTIME, its proposed features and components, and the current design

and implementation of PlayTIME.

4.2 Traditional Scenario Design

4.2.1 Physical Prototypes

In Chapter 2, we introduced physical prototyping and paper prototyping as common

methods of preliminary game design. The process of building a paper prototype

involves collecting everyday materials and using them to map out a scenario. The

scenario is guided by the rules of the game. This design process is extremely �exible

because the objects can be easily picked up, handled and replaced to suit the needs of

the designer. This allows people responsible for designing game play to test mechanics

in di�erent situations. Paper prototypes are non-digital versions of the �nal digital

game that may be played like board games.

42

Figure 4.1: An example of a digital prototype being constructed in Unity. This view
shows a maze of stone and wood blocks.

With this comparison, non-digital game design often becomes a simulation of how

the game is to be played; the act of physically playing with everyday tangible objects

and testing game ideas with these objects e�ectively simulates creating and designing

the game. Playing and creating primitive forms of interactive content are similar

processes, so it is possible to treat the process of design more like play.

After re�ning some of the rules for a game, responsibilities are handed o� to

developers who specializes in digital prototyping to build a digital representation of

the game. Paper prototyping is often revisited to develop new pieces of the game and

its rules.

4.2.2 Digital Prototypes

Most of the available software in the domain of digital game development provides

the user with a graphical interface with many adjustable �elds. Editors are often

built on an integrated game engine that gives both high-level and low-level access to

game play elements such as physics, animation and graphics. The graphical editor

allows designers to simply click-and-drag objects into place without actually editing

any code. Some of the most popular game engines with editors that behave in this

fashion are Unity [1], Unreal [34] and CryEngine [35]. This is only a small sample of

the many digital game development tools that are used in the industry today.

43

Figure 4.1 shows an example of a digital prototype being constructed in Unity's

editor. In this example, we can see that a basic world layout exists, but it is di�cult

to describe what the game rules are. Object behaviours are controlled by scripts and

simply moving them in the editor does not have any e�ect on the game play. Editors

such as Unity rely on mouse-based actions, such as clicking and dragging to bring

digital assets from storage into the game environment. They also provide text �elds

for users to type values into.

As we learned from the designer actions study described in Chapter 3, the ability

to preview is a most desirable feature in a digital game editor. One of the problems

with today's editors is the inability to simultaneously build a level and preview it.

For example, Unity allows users to hit a play button and this will start a preview.

However, to further develop the scene, users must stop the preview, continue working,

and start a new preview when the scene is ready. Unity allows work to be done while

the preview is running in a separate window, but changes made in this state are not

saved as part of the actual scene and will be reverted upon ending the preview. This

can lead to extra work since designers must write down experimental values or �nd an

editor extension to save the changes made while in preview mode. The reversion of the

scene state can also be very frustrating to new users who are not aware that stopping

the preview undoes all changes. To summarize, it can be di�cult to build and run

a digital prototype. In contrast, developing and manipulating a paper prototype can

represent actual game play and testing.

4.2.3 Bridging the Gap

There is a clear divide between physical and digital game prototyping. In traditional

design practices, the act of creating a paper prototype creates a version of the game

that is entirely separate from the �nal product. Paper prototyping creates a tangible

version of the game that designers can use to re�ne mechanisms and rules, but these

designs still need to be handed o� to programmers to create the digital version. Even

with strategies like iterative design, both physical and digital prototypes must be

re�ned and revisited separately. The system discussed in this chapter aims to bridge

the gap between physical and digital prototyping by automating the digitalization

of physical prototyping. This way, designers can practice the earlier stages of design

and this carries directly over to a working digital version of the game.

44

Figure 4.2: An overview of di�erent types of media.

4.3 Tangible Interactive Media Environment

The system proposed in this thesis ultimately digitalizes the practices of physical

prototyping of interactive content and media. In other words, a designer physically

creates their environment while their actions are interpreted by a digital editor that

creates the digital version of their design. Since physical interactions can be digitally

interpreted using tangible user interfaces, we call this type of system a Tangible

Interactive Media Environment, or TIME.

TIME is a conceptual development framework that can be applied to di�erent do-

mains of media. The motivation behind TIME is to be able to bring visions of digital

media to life. Figure 4.2 shows examples of di�erent types of media. Tangible inter-

action could be useful in the creation of interactive media spanning simulations and

games, web design, user interfaces, and more. The framework can also help directors

and producers of non-interactive domains, such as �lm and animation, realize their

visions. This may be extremely helpful in the cinematography department, where

planning out camera movements relative to the scene plays a big part in production.

Literature is also shown in the diagram. Although books and magazines are physical

media, the TIME framework may also be useful for authors to represent their ideas

in real life and get past the hurdle of writer's block.

45

4.4 PlayTIME

The core theme of this thesis is based on an implementation of TIME in the domain

of game design and prototyping. Here we introduce PlayTIME: a class of TIME

systems used speci�cally for developing gameplay. The goal of the system is to allow

game designers and interactive scenario creators to utilize tangible objects to build

a digital version of their vision. The di�erent components of PlayTIME will be re-

sponsible for digitalizing physical actions such those taken while building and playing

a paper prototype, and natural body interactions. Stations will be specialized in

di�erent game design activities, and will determine relevant meanings of actions and

tangible objects.

One of the visions of PlayTIME is to foster the collaborative nature of game

design by allowing people of di�erent disciplines to work on their respective tasks

while sharing all assets in a common project. Assets created at di�erent stations

will be usable, manipulable and replaceable at di�erent stages in the development

pipeline. Furthermore, stations that use assets from others should not be hindered

by an incomplete resource. Another goal of PlayTIME is to support stand-in objects

and facilitate on-demand updates between stations.

For example, a character can be created by the modeller, passed on to the animator

to be given an idle stance, and �nally added to a scene by the scenario designer. A

simple cube or cylinder can be used in the character's place while it is being initially

created. The proposed stations and the development pipeline are described in detail

in section 4.4.1.

One of the problems with today's digital development work �ow is that people

spend a lot of time in front of computer, using a mouse and keyboard. Tasks are

often delegated from the initial physical designers to team members who specialize in

building digital prototypes. When complete, PlayTIME should be a valuable tool that

unites every stage of design with actual development, from initial paper prototyping,

play testing and iteration to a playable digital product. The primary vision is to work

towards a collaborative work �ow that allows us to treat the process of developing a

game more like experimental play. With this mindset, playing is creating . Game

designers, and later creators of other media, will bene�t from the collaborative and

productive environment described in the following sections.

46

4.4.1 System Overview

The concept of PlayTIME is a collaborative game design environment made up of

stations that facilitate di�erent aspects of game creation. We aim to provide devel-

opers with exciting hands-on and natural ways to apply their skills towards a project

in an integrated development environment.

The stations of PlayTIME are grouped into two general categories: asset devel-

opment and design. Asset developers, or artists, are responsible for putting together

the raw resources used in production. Traditionally, creating resources such as mod-

els, animations and textures is a very time-consuming process using a mouse and

keyboard. Existing TUIs, such as tablets, help artists simulate painting digitally.

One of the goals of PlayTIME is to use more technologies across game development

disciplines to ease the process of asset creation.

Designers use the available assets provided by the artists to create and experiment

with game mechanics, and build the game's world and interactions. Essentially, the

designers work together to arrange the raw resources and build the actual game.

Tangible user interfaces (TUIs) and natural user interfaces (NUIs), discussed in

Chapter 2, are used to allow physical interactions with a system. TUI-based systems

use physical objects to interface with a system or application, and NUI-based systems

interpret movements and gestures that are symbolic to the system. With PlayTIME,

the plan is to leverage tangible and natural technologies at each station, straying away

from the traditional mouse and keyboard and providing developers with a conductive

and comfortable environment.

4.4.2 Development Pipeline

Figure 4.3 provides a graphical view of the relationships of the PlayTIME stations

within the development pipeline. This is a map of how data �ows throughout the

entire PlayTIME system, from initial resource creation to the �nal output built using

a game engine.

At the heart of the entire operation is the PlayTIME server. The server keeps

track of all the stations' outputs and listens for data requests. This is the main

centre for collaboration; all digital communications between stations happen through

the server. This way, all stations have access to whatever data they need, whenever

they need it. Details on the communication protocol between stations can be found

in section 4.5.1.

Development with PlayTIME begins with the asset developers (section 4.4.3), who

create the raw art and resources to be used in the game. The resources are sent to

47

Figure 4.3: An overview of the PlayTIME development pipeline. This system diagram
shows the groups of developers involved with game production and how assets go from
initial creation to being used in the �nal product built with a game engine.

the server, where they are stored as-is or converted to a data format that can be read

by other stations. The data is made available to design stations (section 4.4.4), where

it is used to construct pieces of the game world. The game world, scenarios, logic,

behaviours, etc. are packed up and sent back to the server. At this point, we can see

that the server knows all about the game, its environment and its resources to form

an organized, collaborative and shareable game development project.

Parallel to development, PlayTIME is also designed to have real-time streaming

of the data into existing game engine interfaces. While assets are being created

and added to scenes, the game is being assembled into its �nal form. This enables

48

Figure 4.4: A close-up of the data translation process, bringing PlayTIME asset and
scene data into a game engine.

developers to preview the game as its parts are being worked on. The streaming

service is responsible for frequently asking the server if anything new has happened:

asset revisions, scene changes and behaviour modi�cations are all in the streamer's

interests. If the streamer detects a relevant update, or if the server says it is time for

an update, then it will pass data to connected engine-based PlayTIME projects via

data translators designed for each engine.

Unity, for example, allows users to create DLLs with external code, and a script

to access these external functionalities; this is called a plugin. A data translator will

generally be an extension or plugin for an existing game engine. Figure 4.4 shows

some of the steps in the data translation process, which happens per engine.

The incoming data is received by a function designed to decode the information

and �gure out what it is. It's job is to answer questions such as, "What piece of

data did I just receive? Is it a model? Is it a texture? Is it a scene update?" Once

the data is understood, it needs to �gure out what to do with it. If a scene change

happens, for example, if an object was placed in the map, then the data will be an

49

Figure 4.5: A close-up of the asset development stations of PlayTIME.

encoded description of what happened. An example of this in English could be: "A

barrel was added at position (320, 240), rotated 90 degrees." After interpreting this,

the plugin is responsible for telling the engine to add a barrel model or its stand-in to

the scene. If the barrel model is updated, then the already-placed barrel will change

its appearance as the updated asset is received. An updated asset, such as the barrel

model, can simply be saved on the computer in a format that the engine understands

and is currently using to represent the object in the scene, if it exists.

The result of these processes is a scene �le or set of scene �les that are editable

and preview-able within a game engine.

4.4.3 Asset Development Stations

The following roles are responsible for developing the raw content to be used in

the �nal product, which is a collaborative e�ort between all the roles. These team

members are the artists. See Figure 4.5 for a graphical overview of these stations.

The Painter

PlayTIME's Painters will be responsible for drawing 2D textures to be applied to

models in the game world. A Painter may also be responsible for drawing environ-

ments and landscapes. Digital artists often use a tablet because it digitally simulates

drawing on paper with a pen.

50

Figure 4.6: The Painter uses various input devices to draw pictures. On the left is
a Cintiq tablet with art in Photoshop, and on the right is a touch table with some
scribbles in MS Paint.

Figure 4.6 shows a Painter using a 24-inch Wacom Cintiq pen tablet [84], which

provides the digital artist with a large, adjustable drawing space. Painters may also

use a touch table, a NUI that uses �nger presses and movements as inputs. Tablets

like the Cintiq are e�ective TUIs since they o�er a clear pen-and-paper metaphor, and

they often have buttons to change the properties and dynamics of virtual paintbrush.

A table with multiple touch inputs also allows multiple people to paint simultaneously.

A model of the Cintiq exists that allows both pen and �nger touches to be used.

The Modeller

Figure 4.7: The Modeller uses Lego bricks to construct a primitive 3D model.

51

The Modeller will use tangible toys and objects, such as Lego bricks, to construct

primitive models of objects to be used in the game. Figure 4.7 is a concept sketch

of the Modeller using Lego bricks. When ready, the rough models can be digitalized

using a 3D scanner and passed forward to the Sculptor to touch it up.

Tangible toys like Lego bricks a�ord to be assembled freely, taken apart and

replaced quickly. They are inexpensive, numerous and easily acquired. Furthermore,

having a wide variety of bricks means the size and complexity of a model will not be

an issue.

The Sculptor

Figure 4.8: The Sculptor virtually re�nes a model using hand gestures tracked by
Kinects.

When the Modeller completes a rough design for an object to be placed in the

world, it is time to make the model look pretty. The Sculptor's responsibilities include

smoothing out the rugged models and applying �ne details. The gestures tracked by

devices like the Kinect and Leap Motion allow the Sculptor to simulate clay sculpt-

ing. Projects linked to PlayTIME [85] [86] [87]discuss algorithms that make virtual

sculpting possible. The works emphasize the use of VR technologies, such as the

Oculus Rift [88], and NUIs, such as the Leap Motion and touch screens, to provide

users of the system with a virtual stereoscopic 3D view of the model.

52

Figure 4.9: A close-up of the design stations of PlayTIME.

The Puppeteer

Just as a real puppeteer may tie strings to their �ngers and use their digits to con-

trol the movements of a marionette, PlayTIME's Puppeteers will do their work in a

similar fashion. Devices like the Leap Motion are capable of tracking hand and �nger

movements; this makes simulating string pulls possible. The Puppeteer will use these

gestural inputs to manipulate a character's skeletal structure, designing animations

for the characters in-game.

4.4.4 Design Stations

The following team members are responsible for assembling the game using the re-

sources described above. They focus on the rules of the game, the layout of the world

and behaviours of objects within. See Figure 4.9 for a graphical overview of these

stations.

The Behaviour Wizard

Objects in any game development pipeline must be open to new behaviours, other-

wise it would be di�cult to explore new game mechanisms and create new designs.

Typically, game engines allow some form of programming or scripting for a coder to

apply new, custom behaviours and properties to an object. The role of PlayTIME's

53

Figure 4.10: Behaviours and object linking can be applied by waving a 'wand' between
objects.

Behaviour Wizard is analogous to the game play programmer. This team member's

job is to create new behaviours by performing symbolic actions using tangible ob-

jects. For example, if a character is to follow a path, the Wizard can show the system

how this works by holding a marker and tracing out the path that the character is

to follow; the character will then replicate this path in-game. The Wizard can also

determine how objects in the world are to interact with other objects by moving a

marker between the objects to link them; each object will have a set of interaction

options which can be selected when linking with another object.

One way of implementing behaviour linkage would be to use a custom 'wand'

controller with either a �duciary marker, or existing hardware like the PlayStation

Move. Figure 4.10 depicts a wand being used to link a skeletal animation with a

mesh; this adds an animation behaviour to the model so that it can be more lifelike

in-game. In the left image, the user points the wand towards a posed or animated

skeleton to select it, with an unbound character waiting in its default pose (T-pose).

On the right, the user has gestured the selected skeleton towards the character, thus

binding the mesh ('skin') to the skeleton ('bones'); the character can now assume

any pose or animation related to the skeleton. The Wizard metaphor comes from the

gesture of waving a wand between objects, and how linking objects with PlayTIME

will be so easy it will seem like magic!

The Gesture Actor

While the Puppeteer is responsible for some animations, making complex movements

can be a full-body task. The Gesture Actor is responsible for playing out motions and

gestures that may be seen in a game, such as �ghting moves or walking and running.

54

Figure 4.11: A Kinect is used to capture full-body gestures to create animation
sequences.

Figure 4.12: The Virtuix Omni treadmill can be used to get the feel of �rst-person
movements within the world.

Figure 4.11 shows an actor recording a punch using a Kinect, while a virtual character

simulates the same move on the display. The actor may also tune player movements

within the world using the Virtuix Omni [89], a treadmill that tracks the position of

the user's feet, while seeing the world in a �rst-person perspective using the Oculus

Rift [88] (Figure 4.12).

55

The Camera Pilot

The Camera Pilot is the team cinematographer. This person is responsible for set-

ting up camera movements within the scene for in-game cutscenes and cinematics.

Markerless AR technologies like PTAM [65] can be used to keep track of the camera's

movements in a real environment, while simultaneously showing a digitalized path

within the virtual world. The Pilot is similar to the Wizard, but the role specializes

in the �lm aspects of game development.

The Scenario Mapper

Figure 4.13: Scenario Mappers lay out objects in a game world using a touch table.
An in-game preview of the world is displayed on a screen.

The Scenario Mapper is responsible for building the game world. The tasks per-

formed by this role are analogous to the entire physical prototyping process; this

station is the focus of this thesis, and the basis for the development of other stations.

Using a �at tabletop surface with touch input, people in this role take existing

models or stand-ins and place them in the game world. The digital assets are rep-

resented by tangible objects with AR markers attached. These tangible objects are

moved around to suit the needs of the game mechanisms and rules of the game. This

56

is where the true meaning of 'PlayTIME' lies: while the designers play around with

the physical objects, the object states are digitalized and the game is created. This

station is also geared towards collaborative work, where multiple designers can share

the tabletop space and develop the world together. Figure 4.13 depicts the vision for

this station: two designers stand over a table display and discuss the placement of

objects in the world. While developing, an fully playable in-game preview is displayed

in the background. One goal of PlayTIME is to have the preview of the game update

in real-time as the scene is developed.

AR markers are useful for tracking the position and rotation of the object, and

they can also be used to encode information, such as what the object actually is. For

example, the marker representing a basic model can be placed and moved around. If

the model is edited, the representation of the model in the scene and in the preview

can be automatically updated to the newer version without halting development.

Another responsibility of the Scenario Mapper is to apply behaviours and compo-

nents to objects within the world. An example of a behaviour application is once a

path has been traced, it can be passed to multiple characters who should follow the

same path. Components include things like textures and animations; these can be

taken from storage once the respective artists create the assets and applied directly

to models using the wand interface discussed in The Behaviour Wizard.

One of PlayTIME's long term goals is to be able to simply place a marker next to

an asset, alerting the server that this marker now holds the data for that asset. The

marker can then be transferred to any station and use freely.

Scenario Mappers in the Current Implementation

The current implementation of PlayTIME is limited to a prototype of the Scenario

Mapper station. As discussed below, we have prepared a speci�c scenario based on

an existing project; this skips the entire resource development pipeline and brings us

right to the �nal assembly, allowing us to focus on one role.

A Scenario Mapper working on the existing project uses AR markers with pre-

de�ned meanings related to the game elements: one marker represents the player

token, which is necessary for players down the line to be able to control an avatar

in-game; two other markers represent di�erent enemies that can be placed; another

marker assigns a speci�c behaviour to enemies; and another marker modi�es a speci�c

parameter of the behaviour.

The current functionalities provided to Scenario Mappers facilitate the primary

needs identi�ed in Chapter 3: placing objects, previewing, and modifying behaviours.

57

4.5 Implementation Details

The main focus of the current implementation is the scenario design station, operated

by Scenario Mappers, which will make the most use of tangible objects to position

objects in the world and manipulate their behaviours. The current implementation

also explores parts of the behaviour-building and cinematography stations.

We implemented a prototype data translator (plugin) for Unity that encapsulates

ARToolKit [63] for marker detection. The plugin operates through an editor-extension

script: Unity allows special scripts to override the way its editor behaves. This allows

AR to be operated in real-time without having to run the game. AR markers are

directly assigned to a�ect existing assets within the Angry Bots project. The markers

are printed out and attached to wooden blocks to make them easy to handle. Moving

markers in the real world causes their assigned objects to be manipulated in the

digital version, in the editor. Thus, we have created a tangible user interface for

AR-controlled Unity interactions.

Figure 4.14 shows the plugin being used within the Angry Bots project in Unity.

The top image shows the editable scene within Unity with all of the adjustable param-

eters such as position, rotation and scale: the properties a�ected by moving tangible

AR markers. The bottom window shows a preview of the game running simultane-

ously. When the play button is pressed, editing mode stops and the game can be

played. The plugin also projects a semi-transparent image the AR-tracking camera's

view on to the scene. This is intended to help the use see how their physical actions

will a�ect the scene. The transparent red border shows the user the limits of the area

their camera can see.

The scenario used for the current implementation is a modi�ed version of a Unity

sample project called Angry Bots [90], a fully-operational project freely provided by

the developers of Unity. This project gives users a detailed exploration grounds to

learn about Unity objects and scenario design within the editor. It is a package

complete with an expansive level in a game with fully textured models, working be-

haviours and a scene layout. Having these pre-compiled assets makes testing di�erent

interactions within Unity possible. We have modi�ed and reduced the scope of the

original Angry Bots project allowing future users, the Scenario Mappers, to focus on

a small portion of the game world.

For the purposes of this thesis and the experiment in Chapter 5, we have imple-

mented only a few key features of Unity using the new AR-based TUI. A selection of

58

(a
)
T
h
e
p
re
v
ie
w

w
in
d
ow

u
se
d
to

d
is
p
la
y
th
e
P
la
y
T
IM

E
v
ie
w
.

A
tr
a
n
sp
a
re
n
t
ov
er
la
y
o
f
th
e
ca
m
er
a
's

cu
rr
en
t
fr
a
m
e
sh
ow

s
u
se
rs

h
ow

th
e
re
a
l
w
o
rl
d
a
li
g
n
s
w
it
h
th
e
v
ir
tu
a
l
w
o
rl
d
.
T
h
e
re
d
b
o
rd
er

in
d
ic
a
te
s

th
e
a
re
a
th
a
t
is
b
ey
o
n
d
th
e
A
R

d
et
ec
ti
o
n
ca
m
er
a
's
v
is
io
n
.

(b
)
T
h
e
ed
it
o
r
v
ie
w
,
w
h
ic
h
fo
ll
ow

s
th
e
a
ct
iv
e
m
a
rk
er
,
in

th
is

ca
se

th
e
sp
id
er

p
la
ce
m
en
t
m
a
rk
er
.
T
h
e
se
le
ct
io
n
m
a
rk
er

is
a
ls
o
v
is
ib
le
.

F
ig
u
re

4.
14
:
A

d
u
al

v
ie
w
of

th
e
cu
rr
en
t
im
p
le
m
en
ta
ti
on

of
P
la
y
T
IM

E
's
ta
n
gi
b
le
in
te
ra
ct
io
n
w
it
h
A
R
in

U
n
it
y.

T
h
e
u
se
r
se
es

th
e
P
la
y
T
IM

E
v
ie
w
on

th
e
le
ft
an
d
U
n
it
y
's
ed
it
or

on
th
e
ri
gh
t.

H
er
e,
a
sp
id
er

is
b
ei
n
g
p
la
ce
d
at

th
e
ce
n
tr
e
of

ea
ch

v
ie
w
.
T
h
e

re
d
b
or
d
er

sh
ow

s
P
la
y
T
IM

E
u
se
rs

th
e
ar
ea

w
it
h
in

th
e
ca
m
er
a'
s
�
el
d
of

v
ie
w
,
an
d
a
tr
an
sp
ar
en
t
ov
er
la
y
of

re
al
it
y
sh
ow

s
u
se
rs

h
ow

th
ei
r
ac
ti
on
s
co
in
ci
d
e
w
it
h
th
e
v
ir
tu
al
w
or
ld

in
U
n
it
y
's
ed
it
or
.

59

Figure 4.15: A collage of the markers used in the current implementation. From top
to bottom: buttons to simulate mouse clicks and key presses ("Con�rm" and "Back");
selection and camera pan; the object placement markers (player spawn, �ying buzzer
enemy and exploding spider enemy); AI behaviour application and modi�cation for
spiders; move selected object, and camera AR calibration.

60

core game elements can be placed and manipulated within the game world. Here is

a list of the current functionalities of the Unity PlayTIME extension:

Select/deselect object The user can 'point' to an object using a marker to select

it for manipulation.

Move selection With an object selected, the user can change its position and ori-

entation.

Press buttons Some AR markers behave as buttons: waving your hand over them

simulates a click of the mouse or key press.

Move editor camera The view of the scene in the editor can be changed by moving

a marker that controls the camera.

Technical calibration The user may need to �x the AR tracking if the camera is

bumped. This feature uses an AR marker to correct the tracking.

Player placement The user can place a starting position for the player. This is the

location in the world where the player will begin the game.

Enemy placement Angry Bots has three types of enemies; we allow two of the

simpler ones to be placed in the world without any behaviours.

Apply enemy behaviour An enemy behaviour is attached to an enemy object us-

ing a gesture similar to waving the Behaviour Wizard's wand.

Modify enemy behaviour To test the ability to change a behaviour ('code') once it

has been applied to an object, one of the enemies' attack radius can be modi�ed

by sliding a marker closer to or farther from the enemy.

The markers used for these actions can be seen in Figure 4.15.

Since the purpose of this thesis is to evaluate the feasibility of tangible interaction

for PlayTIME, the current implementation supports tangible placement of objects

in a digital environment. The focus is on the scenario design portion of the overall

project, described above, which we decided would be simple enough to appropriately

determine the feasibility and usefulness of TUIs for the overall system.

4.5.1 Unused Features

Tile-Based Editor

A tile-based level editor was started to allow designers to assemble a rough layout of

the game world using tangible AR blocks to represent tiles. This grid-based system

was designed after TSFP's Mapmaker (described in Chapter 3) and would, similar

61

Figure 4.16: An example of the tile editor. Placed tiles are white, with automatically-
generated walls in red.

to TSFP, feature a small, pre-constructed set of tiles and interactive objects. The

design was experimental and ultimately put aside in favour of Angry Bots, a game

world that is already stable and comes with a variety of features. Figure 4.16 shows

an early implementation of the editor. The tiles placed are white, and the walls at the

edge of the map would be automatically generated and marked with red. The system

was also designed to facilitate some of the data streaming functionalities discussed in

section 4.4.2. The goal was to have the level data sent at-will to a custom, primitive

game framework designed to render models and support �rst-person exploration of

the level. This was intended to be considered a low-�delity software prototype since

it would lack detail and behaviours, but still allow the designer to put together a

rough level and experiment with object placement.

PlayTIME's Preview Tool

Built in-tandem with the tile editor was a custom preview tool, designed to accommo-

date a real-time updating version of the level designed in the tile editor. The vision

for this tool was intended to be live display seen in Figure 4.13 (Scenario Mapper), so

scenario creators could see their scene in action as they create it. Figure 4.17 shows

the �rst-person preview, a low-�delity representation of a portion of a level built with

the tile editor. The grid is projected in transparent yellow, walls are represented with

green rectangles, and stand-in objects are in the distance.

62

Figure 4.17: The low-�delity digital prototype of the world created using the tile
editor.

Figure 4.18: Another game prototype developed to test behaviours in PlayTIME.
The game operated as a �rst-person shooter.

63

A di�erent version of the preview was developed to test behaviours. In Figure 4.18,

a working �rst-person shooter prototype can be seen with a working pistol object and

enemies tracking and shooting at the player. These features were built as prototypes

for speci�c features that will eventually be a part of PlayTIME. They hold potential

for future development of PlayTIME.

Communication Protocol

The networking and communication protocol between the server and stations was

designed using RakNet [91]. This design is not used in the current PlayTIME pro-

totype as there are not enough stations developed to pose a need for the protocol.

However, this design has been planned and experimented with for future development

of PlayTIME and its stations.

The managers were designed to always behave the same way, which introduces and

justi�es the need for listeners. A listener's job is to receive and interpret commands

from a manager, and route them to the correct receiver; the manager always directs

messages to the currently-attached listener. Therefore there were di�erent versions

of each listener, each sharing the same basic functionalities, to accommodate local or

remote messaging. Depending on the station each machine was intended to run, a

di�erent version of the PlayTIME station was compiled to delegate tasks cleanly and

e�ciently.

The server manager is responsible for receiving the data from the stations and

storing it on its machine. This program is essentially the brain of the entire opera-

tion as its job is to know about everything going on in PlayTIME at all times: the

resources and assets, the scenes, the stations currently in operation, and which AR

tags currently being used.

Station managers are responsible for overseeing the operations at each station.

The few use-cases that were started using this system were programmed to perform

speci�c tasks appropriate to the station. One case was a prototype of the scenario

station, which used AR tracking to position primitive objects.

The client manager behaved more as a middleman between the server and the

station. One client interface existed per each section, and was either built into the

station's code as part of the local machine (Figure 4.19), or run on a separate computer

for dedicated AR processing (Figure 4.20). The separate-machine layout was designed

to allow an extra machine to be strictly committed to detecting AR tags, processing

its meaning and sending the result to the station manager to be utilized for station

activities.

64

Figure 4.19: The original server-station communication model. The station and client
'middleman' run in the same program on the same computer.

Figure 4.20: The alternative communication model. The station and client run on
separate machines, allowing the client code to perform dedicated AR detection.

65

4.6 Summary

In this chapter we introduced PlayTIME, a conceptual framework for designing games

and interactive scenarios. We discussed the structure of the proposed system and its

components. An overview of the current implementation is provided as it will be used

to evaluate the e�ectiveness of tangible interfaces.

PlayTIME is currently in a primitive state capable of evaluating the feasibility

of tangible interfaces for some of the design stations. Some features exist for other

purposes, but have been put aside as they are not directly involved with the evalu-

ative study. Many of the features for the asset development stations have yet to be

developed and are being worked on in parallel research projects. The current system

prototype will play an important role in decision-making for the rest of the system

later on.

In Chapters 5 and 6, we present a usability study evaluating the current implemen-

tation of PlayTIME, namely the Scenario Mapper station, as it is used to complete a

level design task. We identify usability issues, as well as the creative potential of the

system. We also investigate whether provides users with an enjoyable prototyping

experience.

66

Chapter 5

User Evaluation of PlayTIME: Study

Design

5.1 Introduction & Motivation

In this chapter, we use the current implementation of PlayTIME to determine if

tangible interaction provides suitable interface for a game design environment. Par-

ticipants took on the role of Level Designer to build a prototype level using the Angry

Bots project in Unity. The outcomes of this study will ultimately provide guidelines

for the development of new tangible interfaces to bridge the gap with the traditional

computer, keyboard and mouse-based interfaces for game development and prototyp-

ing.

This study evaluates users' experiences of preparing an interactive scenario using

two di�erent systems: (1) PlayTIME integrated into the Angry Bots project, and (2)

Unity's editor as-is, with a speci�c set of features allowed to align with the capabili-

ties of PlayTIME. For this study, the systems were paired with a physical interface:

PlayTIME was controlled using "paddles" with AR markers on them (the markers

are described in section 4.5), and Unity was controlled using only the mouse. We will

take a close look at di�erent sets of data that will help us understand aspects of the

systems used.

From this study, we hope to learn whether the current version of PlayTIME is

a suitable starting point for future implementations to be used for di�erent stations

of the TIME framework. In this chapter, we discuss everything learned by inviting

unfamiliar users to complete a design task using the current PlayTIME implemen-

tation. We will also discuss what parts of the system must be changed for future

implementations.

67

5.1.1 Important De�nitions

"Conditions"

The activities themselves may be referred to as the "Conditions." This is the primary

independent variable of the study. The study had a within-subjects design; each

participant ran both conditions. The two conditions, or levels, are referred to as the

"activities," named after one system paired with one tangible interface: PlayTIME

with AR paddles (referred to as condition P) and Unity with the mouse (referred to

as condition U). We are most concerned with the e�ect of the condition on the results.

The main confounding factor we are investigating for each condition is the system, so

either PlayTIME or Unity.

"Order"

Since this was a within-subject study, the results for each condition were balanced by

alternating the order in which the activities were presented to the participants. The

"Activity Order" is the secondary independent variable, analysed separately from the

conditions. Those who completed the activity with PlayTIME �rst are referred to

as "P-�rst" or "PlayTIME-�rst," and those who started with Unity are referred to

as "U-�rst" or "Unity-�rst." The levels are P-�rst or U-�rst, and exactly half of the

participants were assigned to each activity order.

When referring to speci�c participants, their unique participant ID number will

be used, which includes their number in sequence and their starting activity. For

example: Participant 01-P was participant number 1 and started with PlayTIME;

Participant 02-U was participant number 2 and started with Unity.

"Groups"

The study had a total of 50 participants. The �rst 30 participants will be referred

to as "Group 1." Participants in Group 1 were the �rst population to complete the

study, but their results are not associated with survey data.1 Because of this, a

second, smaller set of participants were recruited to provide us with a set of complete

data. The last 20 participants will be referred to as "Group 2" or the "surveys-only"

group. Any combination of the two groups will be referred to as "both groups."

In the interest of avoiding the assumption that the surveys from the 20 participants

in Group 2 are representative of all 50 participants, we provide two sets of results in

1 On October 31, 2014 we discovered that the server hosting the survey collection software had
been mysteriously corrupted and was rendered inaccessible to anyone. The survey results from
Group 1 were truly irrecoverable. Remember to back up your data, kids!

68

Chapter 6: the distinct population that had complete data (Group 2 or surveys-only),

and the super-population of all participants, only where applicable.

5.1.2 Assigned Tasks

The activity was to be completed by each participant using two systems (the con-

ditions), with the same data collected for each. The activity was completed using

PlayTIME as an extension of Unity (condition P) using AR paddles for control, and

the second system was Unity on its own (condition U), using the mouse for control

without any keyboard. Half of the participants were �rst introduced to PlayTIME,

and the other half were �rst introduced to Unity; the order swap was done to balance

the data between the conditions.

The task was broken down into a small set of sub-tasks, which were the same for

each condition:

1. Place the Player object as close to the marker as possible (X in the map, red

square in Unity)

2. Place 2 Buzzers each in zones 1, 2 and 3 (see map)

3. Place 1 Spider each in zones 1, 2 and 3

4. Place 7 spiders anywhere in zone 4

5. Place 2 spiders anywhere in zone 5

6. Ensure all the spiders have AI behaviours attached

7. Change the attack radius of at least 4 spiders anywhere

Figure 5.1 shows the detailed map, labelling the speci�c zones and names of the

areas.

5.1.3 Hypotheses

By conducting the activities using each system, we hope to �nd di�erences between

the two across a broad set of metrics. Here we revisit the hypotheses discussed in

Chapter 1:

1. On usability : The use of PlayTIME will have a signi�cant e�ect on the

performance of the users, and this e�ect will be in PlayTIME's favour.

2. On creativity : The use of PlayTIME will have a signi�cant e�ect on the users'

creative output., and this e�ect will be in PlayTIME's favour.

3. On enjoyment and fun : The use of PlayTIME will have a signi�cant e�ect

on the users' emotions and will positively a�ect users' enjoyment of the activity, and

this e�ect will be in PlayTIME's favour.

The metrics used to �nd evidence of the hypotheses are outlined in section 6.2.

69

Figure 5.1: A map of the level provided to participants. Zones 1, 2 and 3 are referred
to as "the patio." Zone 4 is "the main room" and zone 5 is "the balcony." The areas
not labelled by zones are "extra" rooms, and users were permitted to place enemies
in these locations.

70

5.2 Method

5.2.1 Session Overview

Participants began the study by reading and signing an informed consent form which

provided them with a description of the study (REB �le 14-014; see Appendix C.1).

They then �lled out the demographics questionnaire in which they described their

experience and expertise in di�erent disciplines of game and simulation design, and

experience using a variety of game development-related tools.

Next, they were briefed on their role and task in the study: they were acting as

Scenario Mappers, or level designers in general terms, and they would be required to

build a simple level prototype in an existing game using two systems and interfaces.

Both conditions required participants to complete the same activity, consisting of a

small set of tasks which they could do in any order and preview as necessary.

All participants were given a step-by-step walk-through of their �rst system (con-

dition), and provided with printed instructions in case they needed reference during

the activity. Participants were not informed of the time limit unless they explicitly

asked. They would be allowed 20 minutes to complete the activity, excluding preview

time, with a warning at 15 minutes. The timer was paused while previews were run

so the measured time included only what was spent building the level.

After being briefed on the system, participants were allowed �ve minutes to be-

come acquainted with the system (if needed). Each participant then completed the

activity starting with a default Unity scene.

Upon completing the activity to the satisfaction of the participant, or upon reach-

ing the time limit, video capture was stopped, the current Unity scene was saved, and

a pre-loaded online survey was administered. Each participant completed the post-

condition questionnaire, and then was briefed on the second condition: those who

started with PlayTIME were introduced to the Unity editor in the same fashion, and

vice-versa. The activity was then repeated: trying out the new system, completing

the assigned task, and �lling out an online survey on the second system. After the

second survey, a third and �nal survey was administered. This questionnaire looked

at the ease of use and preference of both systems at the same time, and allowed

participants to provide free-form feedback.

The average session time, from sitting down to look at the informed consent form,

to completing the �nal survey, was 87 minutes. All of the materials provided and

used during the experiment can be found in Appendix C.1.

71

Figure 5.2: An overview of the study setup showing the di�erent components. Pic-
tured here are �ve di�erent components of the setup: (1) the workspace complete
with AR paddles; (2) the dual-monitor setup used to display the activity systems; (3)
the setup used to hold the camera in place; (4) a map of the scenario to be worked
on; and (5) the notes that were provided to the participants (observer section not
pictured).

5.2.2 Experimental Setup

Figure 5.2 shows an overview of the di�erent parts of the experimental setup. Par-

ticipants were repeatedly informed that they were not allowed to change any part

of the setup, at any time, for any reason. This was to keep a uniform setup for all

participants.

The numbered items in the above image are described below.

1. Work area

Figure 5.3 shows the paddles that were used to operate PlayTIME. Each paddle

consisted of an AR marker which would be recognized by the system to perform a

speci�c task, and a handle for manipulation. As discussed later in this chapter, the

handles proved to be invaluable due to the sensitivity of the markers themselves.

The mouse can be seen towards the top-centre of the screen; this was the method

of control for the Unity activity. The workspace was outlined with duct tape. This

was an indication as to what the camera could see during the PlayTIME activity;

anything outside this area would not be visible to the PlayTIME system.

72

Figure 5.3: A look at the space participants had to work (labelled as (1) in Figure 5.2).
Here we see the AR paddles used to control PlayTIME. The mouse is near the top.
The duct tape represents the area visible to the camera.

Figure 5.4: The dual monitor display setup for the study (labelled as (2) in Figure 5.2).
Here, PlayTIME is enabled and is operated on the left monitor, while the right
monitor provides an alternate view of the active marker within the scene.

73

Figure 5.5: The camera rig used to help PlayTIME track AR markers (labelled as
(3) in Figure 5.2). The camera was suspended approximately 60cm above the centre
of the workspace using a wood plank attached to a pair of tripods.

Figure 5.6: A view of the level map on the wall (labelled as (4) in Figure 5.2). The
map showed the "zones" that enemies were to be placed in and was less detailed than
the map seen in Figure 5.1. Extra areas in the map were identi�ed to participants.

74

Figure 5.7: The reference sheets (labelled as (5) in Figure 5.2) and observer control
setup. This image shows one set of reference sheets for each activity, but only the one
pertaining to the current condition was made available. The observer setup allowed
�uent control over the activity, primarily to avoid having to switch seats while toggling
between surveys and activities. This also came in handy when system-related bugs
emerged.

2. Monitors

Figure 5.4 shows the display setup: participants were provided with two side-by-

side monitors. The left monitor was dedicated to the PlayTIME system and game

previews. During the PlayTIME and AR activity (cond. P), the left monitor showed

a top-down view of a portion of the level; users could change the current view using

the camera pan marker (described later).

When a preview was started, the PlayTIME system was suspended and the left

monitor switched to the in-game view, allowing users to play through the level they

had been working on. When a preview was terminated, the left view would switch

back to PlayTIME and the system would resume operation. Each participant was

informed that the left view would be the primary view for PlayTIME.

The right monitor always showed Unity's editor. PlayTIME used this to follow

any marker that was currently visible, providing users with a secondary view of what

they were working on. The right monitor was used primarily for the Unity and mouse

activity (cond. U), and during this condition the left monitor was inactive during

development time and used only for previews.

75

3. Camera

Figure 5.5 shows the rig that was created to �x the camera at approximately 60cm

above the work area: a wooden plank was zip-tied to a pair of tripods, and the camera

was attached to the plank and adjusted to its permanent position. Participants

were informed that they were not allowed to touch the camera as it would throw o�

calibration for future sessions. The camera stayed in roughly the same position for all

sessions, giving all participants the same view of the desk, and allowing PlayTIME

to operate without needing to recalibrate.

4. Map

Figure 5.6 shows the map of the level. The map was pinned to the wall of the

experiment area and remained in the same place for all sessions. The map outlined

di�erent areas of the level (zones) where participants were to place a number of

enemies. A detailed map can be seen in Figure 5.1; this di�ers from the map that

participants were given, which only showed the zones, but did not give the areas

names. The player start position was also marked more clearly with a large X.

5. Reference sheets and observer controls

Towards the right of Figure 5.7, the information sheets that participants were allowed

to reference are shown; these sheets described the features of the current system and

how to use them. Only the reference pages for the current condition were shown.

These pages were the subject of some of the post-condition survey questions discussed

later, pertaining to information.

Located just behind the participant, the observer controls were convenient for

changing activities and surveys without having the participant move. This also pro-

vided a quick way for the experimenter to �x any issues that could possibly occur.

Also, the experimenter had a notebook that was used to take note of any interesting

happenings or quotes by the participant.

5.3 Demographics

Here we present and discuss the information collected about the participants.

5.3.1 Overview

For the �rst run of the study, participants were recruited from a population of game

development students, specializing in a variety of disciplines. The target demographic

was later changed to include people from a wider population: we included students

with backgrounds in the creative domains of �lm, animation and games, focusing

76

Figure 5.8: The average pro�ciency of the participants in a variety of creative roles.
They have been sorted by the number of responses per role. The error bars represent
one standard deviation from the mean.

on people who considered themselves novice or competent in their �eld. This sec-

tion presents information about the participants from Group 2. The average age of

the participants was 21.1 years old (SD=2.3 years), with an average of 2.6 years of

experience (SD=1.7 years) working in their �eld.

Similar to the demographics questionnaire in Chapter 3, participants were asked

to rate their pro�ciency in di�erent roles (Figure 5.8), with new types of creative roles

added for this demographic.

To describe expertise, participants picked a value from a �ve-point scale, with

descriptions provided directly in the survey (see Appendix C for complete surveys):

0=No answer (assigned to blank responses); 1=Beginner; 2=Competent; 3=In-

termediate; 4=Advanced; and 5=Expert

Participants also picked their pro�ciency and frequency of use for a variety of

creative tools (Figure 5.9). This used the same expertise scale as above and a di�erent

�ve-point scale to describe frequency of use:

77

Figure 5.9: The average pro�ciency and frequency of use using a variety of creative
tools. They have been sorted by the number of responses per tool. The error bars
represent one standard deviation from the mean. Tools marked with an asterisk were
subject to a common participant confusion, explained in the text.

0=No answer (assigned to blanks); 1=Never; 2=Rarely; 3=Occasionally; 4= Of-

ten; and 5=Always

Since all tools were to be rated only in the context of the creative domains prac-

tised by the participants, the tools marked with an asterisk might have confused some

people; for example, we may all use pens and paper all the time, but how often do we

use this as a tool speci�cally for game development or animation? This was clari�ed

for all participants, but the numbers for these tools may be skewed towards general

use instead of focusing on scenario prototyping in multimedia.

Participants were then asked to identify techniques used when building proto-

types or scenarios for their line of work, whether it be games, �lm or animation

(Figure 5.10). Finally, participants gave their opinions on the usefulness of di�erent

78

Figure 5.10: Common scenario design and prototyping techniques. This was a yes-
or-no question; the chart displays the number of participants who answered yes to
each metric, ranked by order.

Figure 5.11: The average ratings of a variety of features, sorted by average importance
rating, with the number of responses for each at the base of each bar. These features
are commonly found in creative software.

79

features commonly found in creative, multimedia-related software (Figure 5.11). The

importance of the features were rated using a �ve-point scale:

0=No answer (assigned to blanks); 1="I could do without it"; 2=Slightly impor-

tant; 3=Moderately important; 4=Very important; 5=Essential

Some of these features would later be seen by the participants during the Unity

activity, and most of the features are highly accessible for scenario design and proto-

typing tasks in a variety of software.

5.3.2 Expertise

Most participants claimed to have experience as level designers (N=15, M=2.2, SD=

0.909); these would have come from the game development population. The artists

are clustered towards the top since the study was catered towards more artistic do-

mains. On contrast, few people from this group had experience in the programming

disciplines.2

All participants had some experience with Photoshop, which supports the high

presence of artists (M=3.6, SD=1.241). Pen and paper and MS Paint were also

rated highly since they can be used for art, and Maya was highly-rated by the people

specializing in 3D art and design.

The game designers preferred game engines with editors, such as Unity (N=10,

M=2.6, SD=1.281) and Unreal (N=7, M=3.43, SD=0.728). During condition B using

Unity, participants who already had moderate experience with the editor were upset

with the signi�cant pruning of the features they were allowed to use. For example:

participants 39-U and 43-U had already known that all it took to rotate the camera

was a single right click-and-drag, and proceeded to do it even though they were

instructed not to; the Unity editor camera was positioned in a way that matched

PlayTIME's camera, which could not be rotated.

Another example: participant 41-U had attached AI to one spider and proceeded

to duplicate the object several times to avoid having to repeat the placement and AI

attachment steps. Unity's quick duplication a�ordance was known to the participant,

who had ignored its restriction, and favourable over the timely process of navigating

through folders and placing assets directly; this resulted in 76 seconds of observer

intervention time to correct the duplicated objects and have the participant re-do

these actions by following the rules. The �rst few duplications had gone unnoticed

2The surveys from Group 1 would have shown the opposite: that most people were programmers
and few were artists. Of the 50 people who participated, there was an even distribution of skills.

80

by the observer, who had been writing down notes, but the actions were reverted and

repeated correctly.

For future studies like this one, the target demographic should strictly include

people who are signi�cantly inexperienced with any of the tools used in the study.

This will prevent any noticeable deviation in experience and result in a more uniform

performance across participants. Furthermore, with this practise, participants should

not have any expectations entering the study and would therefore remain patient and

curious, following a design process uniform with other participants, instead of trying

to exploit the system or wanting to use features that they are told not to. Vast design

tools, such as Unity, should be left open to discovery, instead of having someone spoil

the surprise and say that certain things are not allowed.

In their feedback, some of the participants suggested that PlayTIME might be

better suited towards a younger demographic:

"...PlayTIME feels more like a toy; I can see kids using it then sending

levels to their friends or building full games using pre-made objects."

- Participant 48-M

"...PlayTIME was just cool. I was like a kid discovering a toy for the

�rst time."

- Participant 41-M

For evaluating a tool speci�cally built on the concept of playing, building and

creating, perhaps it would be worthwhile to target children or adolescents as the

demographic. We know that children love to play and explore, so they would be

suitable for play-based research, especially if the assigned task required them to be

openly creative. If someone should evaluate future implementations of PlayTIME or

other TIME tools, the requirements should be simple yet imaginative such that the

�nal outcome could be reached easily by a child.

5.3.3 Techniques

Of the 20 participants, 19 found that writing or drawing on paper would be useful

for prototyping. Although whiteboards placed second (N=12), it is likely that paper

was more agreeable since it is more accessible. We are surrounded by pens and paper

in our daily lives, whereas we may not have direct access to a whiteboard if we are at

home or away from work. Thinking was the third most popular technique (N=12),

and drawing maps was the fourth (N=11).

81

Activities such as writing, drawing, sketching and "sitting around and thinking"

are common tasks that we do in our daily lives to help us plan our activities and

�gure out what we are trying to accomplish. Therefore these are not necessarily de-

sign techniques that require a certain degree of expertise in a given discipline. The

remaining techniques in the questionnaire were practised by less than half of the

participants. Perhaps the high presence of non-game development personnel means

that the importance of prototyping techniques was undervalued by the general pop-

ulation. The animators would more likely focus on the �nal production instead of

a pre-visualization or perhaps they simply do not see the two as similar: a pre-

visualization is as important for a �lm or animation as a low-�delity prototype is

important to a game.

5.3.4 Features

Similar to the TimeSplitters study in Chapter 3, having the ability to preview was

extremely important and this was generally agreed upon by all participants (M=4.4,

SD=0.583). Having learned from the TSFP Mapmaker's extremely slow preview load

and unload times, Unity was a good choice to ensure a quick transition to and from

the in-game preview. The custom level editor brie�y described in Chapter 4 also

learned from TSFP, and would have also accommodated fast and dynamic preview

times, but that feature was not attainable for this study.

Previewing was trumped only by the importance of saving your work (M=4.7,

SD=0.458). This metric received a relatively even distribution of Very Important

and Essential ratings (4 and 5) across all disciplines, which demonstrates the univer-

sal need for saving, and possibly obsessively making backups. Although the saving

responses from 3D artists blended in with the other disciplines, it is important to note

that one of the most popular 3D modelling and animation tools, Autodesk Maya, is

highly prone to crashes loss of work. This happens so frequently that it has become

part of pop culture in the animation and game development communities.3

Object placement and manipulation has the third-highest ratings (N=17, M=

4.176, SD=0.706). This is important to this study since object placement formed the

basis of the activity in the study: creating a fun and winnable level in the Angry

Bots world. Spiders and buzzers were required to "win," with behaviour attachment

only present to make the scenario more interesting; it would not have been fun if

the enemies could not attack the player, thereby adding challenge to the game. The

features pertaining to "objects with properties" (N=18, M=4.056, SD=0.705) and

3http://cdn.meme.am/instances/55741538.jpg

82

"characters with properties" (N=18, M=3.889, SD=0.809) were also up there; this

relates to the AI behaviours that could be manipulated to give each object or character

in the level its own e�ect within the world.

The fourth most important feature was having control over the camera (N=20,

M=4.1, SD=0.995), which also proved to be necessary during the experiment. Overall,

the features were generally highly-rated, but it is interesting to see that the features

that participants found most important were directly involved with the study. The

exact uses of the features during the study are discussed further in section 6.5.5.

5.4 Summary

In this chapter we introduced the study used to evaluate PlayTIME. We discussed

the experimental design and setup, and the participants. The target audience for the

study consisted of people in creative domains, such as �lm, animation and games.

We had a variety of expertise across all participants, but most of the experience

leaned towards visual arts and animation. The results of the study are presented in

Chapter 6.

83

Chapter 6

User Evaluation of PlayTIME:

Results & Implications

6.1 Overview

In Chapter 5 we introduced the user study evaluating the current implementation

of PlayTIME. The study aims to �nd signi�cant di�erences between PlayTIME, as

an extension of Unity, and Unity on its own in three areas: usability, creativity, and

enjoyment. We presented an overview of the study and its procedure, and discussed

the users that participated. Here we introduce the data analysis procedures and then

we present the results of the study. Finally, we discuss the implications of the results.

6.2 Data Analysis Methods

Many measurements were made over the course of the study. Surveys were used

to answer questions pertaining to system usability, creativity, and feelings or a�ect.

A screen capture video of each session was used to identify the many uses of each

system and time measurements of the di�erent uses and tasks completed. The �nal

scenes from each activity were used to explore the participants' creativity. Participant

feedback was examined to look for common preferences for the systems.

The main question was whether the system used had an e�ect on the results.

Therefore the main independent variable was one of two conditions: (1) PlayTIME

controlled using the AR paddles, or (2) Unity's editor controlled using the mouse. A

secondary question was whether the order each participants used the systems made a

di�erence. Therefore it was important to separate the data and do secondary analyses

on the same metrics within the P-�rst and U-�rst groups.

84

The appropriate sample size, mean, median and standard deviation were calcu-

lated for each data set. The raw data were compared between the di�erent groups to

detect signi�cant di�erences.

6.2.1 Signi�cance Testing

For signi�cance testing, three �exible methods for non-parametric data were used: the

Kruskal-Wallis one-way analysis of variance by ranks [92] (referred to as the "KW"

test) was used to analyse the e�ects of both the condition and the activity order; the

Wilcoxon Signed-Rank test [93] ("WSR") the e�ect of the conditions only (cond. P

data against cond. U data); and the Mann-Whitney-Wilcoxon rank-sum test [93] [94]

("MWW"), also called the Mann-Whitney U test, was used to analyse the e�ect of

the activity order (P-�rst data against U-�rst data).

A p-value was collected for each metric, denoting the signi�cance of the e�ects,

telling us how much the data from each set di�ered from the other sets. For all

p-values, the signi�cance level was α = 0.05. Therefore, a p-value less than the sig-

ni�cance level (p < α) was considered statistically signi�cant, meaning the condition

or order had a strong impact on the tested data set, and the data was noticeably

di�erent between groups. All signi�cance testing was done using R [95], which has

existing functions for KW, WSR and MWW.

The Wilcoxon Signed-Rank test and the Mann-Whitney-Wilcoxon test often had

trouble computing precise p-values when data from separate groups were tied, and the

signed rank test alone required an equal number of samples from each of the groups

being compared. Furthermore, the Wilcoxon Signed-Rank test assumes that data are

paired; therefore it was only useful for comparing data from the activity conditions

where participants provided one full set of results for each condition. The Mann-

Whitney-Wilcoxon test assumes that data are not paired; therefore it was useful for

comparing equivalent data of the P-�rst and U-�rst groups. The strongest test was

the Kruskal-Wallis test, which ran consistently without errors. Therefore all p-values

from Kruskal-Wallis tests take priority; the others were used for extra support.

6.2.2 Organization of Data

For the condition tests, each data set was analysed in three parts. First, the complete

sets of data, balanced by the alternating order, were compared for signi�cance ("all").

Second, the data sets for each condition within the P-�rst group were compared.

Finally, the data sets for each condition within the U-�rst group were compared.

This within-groups split allowed analysis with and without the need for balancing.

85

Each population tells us explicitly about the e�ect of the conditions, and the split

groups also implicitly tell us about the e�ect of order.

For the order tests, the data was analysed in two parts. First, the PlayTIME

data from P-�rst was compared against the Unity data from P-�rst. Second, the

PlayTIME data from U-�rst was compared against the Unity data from U-�rst. The

data was tested as a combination of PlayTIME and Unity data (i.e. all P-�rst vs.

all U-�rst), however nearly all of the tests returned highly insigni�cant results, since

the data sets coming from each condition are very di�erent; it simply does not make

sense to combine di�erent data.1 Therefore the unique data sets from each condition

were kept isolated, and this explicitly tells us about the e�ect that order had on the

results from each condition independently.

6.2.3 Survey Collection & Analysis

Surveys were built and hosted on SurveyMonkey.com [96]. The four survey web

pages were loaded and minimized before each session to avoid wasting time during

the session.

All post-condition questionnaires used Likert scales [97] to directly rate the inter-

faces presented during the study. For usability of the systems and satisfaction using

the systems, we used the Computer System Usability Questionnaire (CSUQ) [5] [6],

which may also be referred to as the Post-Study System Usability Questionnaire

(PSSUQ) [5] [7]; the di�erence is simply a slight change of wording. This is a

nineteen-question survey that provides a general assessment of a system's usabil-

ity. CSUQ/PSSUQ are far more detailed than the three-question After-Scenario

Questionnaire (ASQ) [98] [99], which summarizes user satisfaction in three questions.

CSUQ/PSSUQ improves on the System Usability Scale (SUS) questionnaire [100]

because it avoids errors by caused by confusion between a�rmative and negative re-

sponses [101] [102]. It also provides more categories of metrics: system usefulness,

information quality, interface quality and overall satisfaction; SUS only provides met-

rics in usability and learning ability [103]. Other popular surveys exist, such as the

Questionnaire for User Interface Satisfaction (QUIS) [104], but the questions are not

suited for this experiment.

Usability is one of the most important and frequently sought-after attributes of

systems designed in both the domains of HCI and game design. It was critical to

select a qualitative measurement that would quickly and simply provide an overview

1 The combined-data tests that returned signi�cant results were on the same metrics for which
both of the other order tests returned highly signi�cant results. The p-values for combined data tests
have since been deleted.

86

of PlayTIME's usability. CSUQ was selected over other questionnaires because it

provides users with a chance to evaluate the system as a whole, and since its strictly-

a�rmative wording makes it easier to understand than other questionnaires, namely

the SUS [101] [102].

We used the Creativity Support Index (CSI) [8] [9] [10] questionnaire to determine

how participants felt about the systems' abilities to support creativity and expression,

immersion, enjoyment, exploration, producing desired results and collaboration. As

explained in [8]:

"Each agreement statement is answered on a scale of `Highly Disagree' (1)

to `Highly Agree' (10). In deployment, the factor names are not shown,

and the participant does not see the statements grouped by factor." (p.21:6)

The CSI result is a single score ranging from 0 to 100, which is analogous to a percent-

age grade. Two minor errors were made with our execution of the CSI questionnaire.

Randomization was disabled, so the responses stayed grouped by factor, but the fac-

tor names were not shown. Also, our responses were limited to the same seven-point

Likert scale used for the other questionnaires, ranging from Strongly Disagree (1) to

Strongly Agree (7). This error was corrected by applying a simple linear function to

all data points:

x′ = 1.5x− 0.5

where x is a data point in the range [1,7], transformed by the function into x′ within

the range [1,10], used to compute the �nal score. This �x resulted in having a �nal

score correctly ranging from 0 to 100 instead of a faulty score ranging from 0 to 70.

Since PlayTIME is designed to support collaboration, creative expression, and

enjoyability, it was important to �nd a qualitative measurement that could explain

how well PlayTIME supported these areas. CSI was selected since it includes these

key factors in its score calculation. The CSI is a relatively new metric in systems

research, useful for summarizing how well a system supports a variety of creativity-

related attributes in a single score.

To measure how participants felt while completing the assigned tasks, we used the

Positive and Negative A�ect Schedule (PANAS) questionnaire [11], a widely accepted

measure of positive and negative emotions. In this experiment, the questionnaire

speci�ed that participants were to answer based on how they felt momentarily at the

end of each condition, producing two separate scores between 10 and 50: positive

a�ect and negative a�ect. The former provides a measure of strong positive emotions

(e.g. excited, interested), and the latter measures negative emotions (e.g. distressed,

87

hostile). A high positive score indicates a state of well-being at the time of the test,

and a high negative score indicates the opposite. A PANAS questionnaire was added

to the end of the demographic survey so that we could see how the emotions changed

through each condition.

It was important to evaluate a�ect since it would be useful to describe the en-

joyment of the systems. Since one of the hopes for PlayTIME is to have it add

playfulness to game design, making the process feel less like work and more like play,

it was important to determine how participants were feeling throughout the experi-

ment. PANAS was selected because of its popularity across various scienti�c �elds.

Its reliability and usefulness are validated in [11] and [105].

In the post-study questionnaire, a Single Ease Question (SEQ) [106] [102] asked

participants to rate the ease of use for each feature used and tasks performed under

both conditions; the individual SEQ responses were averaged into a single ease of

use score per-system. Next, participants directly selected their preference between

the two interfaces for completing speci�c tasks. The preference scores were given

a weight of +1 if the AR paddles were picked and -1 if the mouse was picked, and

the average for all rated features determined whether each participant leaned more

towards the AR paddles or the mouse as the preferred input.

6.2.4 Video Capture & Analysis

During each session, the participant's activities were captured using the screen capture

software Camtasia Studio [107]. For analysis, we measured and annotated the time

spent performing a wide variety of tasks using each system, and the distribution of

time spent using each feature in the experiment. We will explain how much time users

spent completing tasks correctly and incorrectly, and the time spent doing nothing

at all or recovering from system errors.

The performance annotations were done by hand, with each change of action

measured within one �fth of a second. Actions and their start time were recorded in

a Microsoft Excel spreadsheet with the start time. The end time of each action was

programmed to copy the start time of the next, thus producing a duration for every

action (similar to the statistics described in Chapter 3). Special cases observed in the

PlayTIME recordings were modi�ed by hand (see section. Later, each duration was

logged in a master spreadsheet that had a list of all participants along the X axis and

all observed actions along the Y axis. Durations were summed to produce complete

time measurements for all observed actions for all participants.

88

To achieve an accurate representation of participant actions using each system,

it was important to note the many possible correct and incorrect uses to which they

were exposed. Existing video annotation software may have helped, but despite the

time it took to translate the videos by hand, we were able to identify 130 actions

that occurred while using PlayTIME, and 80 actions that occurred while using Unity,

across all participants.

6.2.5 Scene Analysis

The Unity scenes created by participants allow us to tell how far they deviated from

the instructions they were given. The scenes were analysed because they may con-

tribute to the creativity aspect of their development. The Manhattan distance [108]

was used to measure the deviation of each scene from the exercise that the partici-

pants were assigned. Di�erent components of the scene were assigned weights based

on importance: enemy placements were assigned a weight of 1, AI attachment and

manipulation were assigned a weight of 0.5 (since the ability to have AI was dependent

on the number of spiders present), and the player token was assigned a weight of 0

since the instructions restricted its placement. The formula used to score each scene

was a weighted Manhattan distance, or a measure of how much the �nal outcome

deviated from the assigned task:

d =
n∑

i=1

wi|pi − xi|

where i is a factor in the task list, wi is the weight of each factor, pi is the partici-

pant's count for each factor, and xi is the expected count for each factor in the task

description. The formula describes the absolute number of di�erences between a par-

ticipant's data and the expected values, with a weight factor included to denote the

importance of potential deviations. A participant who followed the task description

exactly received a score of zero. If the participant deviated from the instructions by

adding one extra buzzer enemy, their score would be 1. Removing an enemy from one

area and placing it elsewhere would yield a score of 2. Modifying the AI of one more

spider than what was asked would add 0.5, etc. This analysis provides a measur-

able value to describe creativity, since a higher score may imply that the participant

wanted to complete the task in a way that was not already determined for them.

This metric contributed to the analysis of creativity since it ultimately re�ects the

placement choices made by participants, measuring how closely they decided to follow

the task. This metric is discussed further in sections 6.3.5, 6.4.2 and 6.5.6.

89

Figure 6.1: A graphical overview of the data collected during the study.

6.3 Results

6.3.1 Summary of Data Collected

There were 20 participants with a complete set of data throughout the study. This

section presents those 20 complete samples from Group 2 alone. Section 6.4 presents

the performance and scene data from all participants, including all 20 samples from

Group 2 and the portions collected from Group 1.

All core data collected during the study is represented graphically in Figure 6.1.

Additional complementary �gures may be found in Appendix E.

Surveys & Feedback

A set of questionnaires administered after using each system gave users the chance to

rate their experiences. The surveys include a pre-study demographics questionnaire,

a set of scienti�c questionnaires after each condition (the same for each condition),

and a post-study ratings questionnaire. The survey data presented in this chapter

comes from Group 2 only, for a total of 20 samples. The surveys from Group 1 were

corrupted and therefore unusable.

At the end of the post-study questionnaire each participant was given the op-

portunity to provide comments and feedback based on what they liked and did not

like about the systems, their preference, and whether their �rst activity helped their

second. The surveys and notable comments provided by participants are discussed

throughout section 6.5 where appropriate.

90

Videos

The screen recordings a�orded us a detailed performance analysis, and an overview of

the distribution of activity time for each participant. For the Unity activity, only the

20 videos from Group 2 were examined because they were associated with the survey

data. All PlayTIME videos form Group 2 were analysed along with 20 from Group

1, for a total of 40 samples. The Group 2 results are presented in section 6.3.4, and

the results from all participants are presented in section 6.4.1.

Scenes

The Unity scenes saved after each activity show the �nal results of both conditions

for all participants and may yield important information pertaining to creativity. All

of the scenes were analysed for di�erences, yielding a total of 50 samples for each

condition. The scenes from Group 2 are presented in section 6.3.5, and the results

from all participants are presented in section 6.4.2.

6.3.2 Post-Condition Questionnaires

PANAS Questionnaire

The Positive and Negative A�ect Schedule (PANAS) [11] questionnaire, administered

before the study and after each activity, describes the conditions' e�ects on the par-

ticipants' emotions. During the questionnaire, a set of 20 emotions (10 positive and

10 negative) are shown to the participant, who is asked to rate their momentary

experience with each emotion using a �ve-point Likert scale:

1=Very slightly or not at all; 2=A little; 3=Moderately; 4=Quite a bit; and

5=Extremely

The positive emotion ratings are added up for a positive a�ect score ranging from

10 to 50, and the same is done for the negative emotion ratings.

Figure 6.3 shows the average overall PANAS scores and changes at each time of

measurement. Table 6.1 shows all of the p-values retrieved from statistical testing of

the PANAS data.

The average a�ect scores for the P-�rst and U-�rst groups can be seen as progres-

sions over the entire study in Figure 6.2.

CSUQ

The Computer System Usability Questionnaire (CSUQ) [5] [6] was administered after

each activity using a seven-point Likert scale for each question:

91

(a) PlayTIME-�rst (b) Unity-�rst

Figure 6.2: The average PANAS scores, ranging from 10 to 50, as a progression over
the duration of the study for the PlayTIME-�rst and Unity-�rst participants. The
error bars represent one standard deviation from the mean.

(a) Pre- and post-condition averages

(b) Average change through conditions

Figure 6.3: The average PANAS scores for all participants between both groups. The
error bars represent one standard deviation from the mean.

92

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Positive a�ect change through condition 0.02532 0.0005718 0.2864
Positive a�ect after condition 0.2907 0.2559 0.8792
Negative a�ect change through condition 0.3621 0.5296 0.02289
Negative a�ect after condition 0.2808 0.1205 0.9626

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Positive a�ect change through condition 0.01238 0.004003
Positive a�ect after condition 0.5447 0.5191
Negative a�ect change through condition 0.04701 0.9681
Negative a�ect after condition 0.01674 0.155

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity

All P-�rst U-�rst
Positive a�ect change through condition 0.04362 0.005889 0.5738
Positive a�ect after condition 0.03465 0.02826 0.8314
Negative a�ect change through condition 0.5254 0.4403 0.04983
Negative a�ect after condition 0.04143 0.05791 0.8501

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
Positive a�ect change through condition 0.01377 0.00451
Positive a�ect after condition 0.5702 0.544
Negative a�ect change through condition 0.05159 1
Negative a�ect after condition 0.01864 0.1675

Table 6.1: This table shows the statistical p-values from the PANAS questionnaire
data. Values less than 0.05 are considered statistically signi�cant and are boldfaced.
Values less than 0.01 are considered extremely signi�cant and are shown in red. No-
table values greater than 0.05 are italicized.

93

(a) CSUQ/PSSUQ average scores for the PlayTIME activity

(b) CSUQ/PSSUQ average scores for the Unity activity

Figure 6.4: The average CSUQ/PSSUQ scores for all participants between both
groups. The error bars represent one standard deviation from the mean.

94

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Overall CSUQ score 0.208 0.1615 0.7052
System usability 0.03021 0.05327 0.2714
Information quality 0.4472 0.3245 0.8492
Interface quality 1 0.5689 0.5946

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Overall CSUQ score 0.6227 0.2114
System usability 0.4952 0.3245
Information quality 0.7616 0.3823
Interface quality 0.9093 0.1822

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity

All P-�rst U-�rst
Overall CSUQ score 0.04572 0.01367 0.386
System usability 0.009305 0.005666 0.3135
Information quality 0.06072 0.102 0.4002
Interface quality 0.9055 0.6224 0.37

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
Overall CSUQ score 0.6497 0.2256
System usability 0.5194 0.3434
Information quality 0.7906 0.4034
Interface quality 0.9395 0.195

Table 6.2: The p-values for the CSUQ results. Statistically signi�cant values are
boldfaced, and those less than 0.01 are shown in red. Notable values greater than
0.05 are italicized.

95

1=Strongly disagree; 2=Disagree; 3=Slightly disagree; 4=Neither agree nor dis-

agree; 5=Slightly agree; 6=Agree; and 7=Strongly agree

The questions were presented as follows:

Q1 (Sys1): Overall, I am satis�ed with how easy it is to use this system.

Q2 (Sys2): It is simple to use this system.

Q3 (Sys3): I can e�ectively complete my work (the assigned tasks and scenarios)

using this system.

Q4 (Sys4): I am able to complete my work quickly using this system.

Q5 (Sys5): I am able to e�ciently complete my work using this system.

Q6 (Sys6): I feel comfortable using this system.

Q7 (Sys7): It was easy to learn to use this system.

Q8 (Sys8): I believe I became productive quickly using this system.

Q9 (Info1): The system gives error messages that clearly tell me how to �x prob-

lems.

Q10 (Info2): Whenever I make a mistake using the system, I recover easily and

quickly.

Q11 (Info3): The information (on-screen messages, documentation) provided with

this system is clear.

Q12 (Info4): It is easy to �nd the information I needed.

Q13 (Info5): The information provided for the system is easy to understand.

Q14 (Info6): The information is e�ective in helping me complete the tasks and

scenarios.

Q15 (Info7): The organization of information on the system screens is clear.

Q16 (Inter1): The interface of this system is pleasant.

Q17 (Inter2): I like using the interface of this system.

Q18 (Inter3): This system has all the functions and capabilities I expect it to have.

Q19 (Overall19): Overall, I am satis�ed with this system.

The Sys responses were averaged to get the system usability score, the Info re-

sponses gave the information quality score, and the Inter responses gave the interface

quality score. The average of all responses gave the overall score, giving four CSUQ

96

scores per participant. Figure 6.4 shows the average scores for both conditions, for

all groups of participants. The per-question breakdown of the CSUQ results can be

found in Figures E.1a for PlayTIME and E.1b for Unity. Table 6.2 shows the CSUQ

signi�cance test results.

CSI

For the Creativity Support Index (CSI) [8] [9] [10] questionnaire, participants rated

their agreement with 12 statements using the same Likert scale as above. The ques-

tions were presented as follows, without showing the factor names:

Q1 (Collaboration 1): The system would allow other people to work with me

easily.

Q2 (Collaboration 2): It would be really easy to share ideas and designs with

other people using this system.

Q3 (Enjoyment 1): I would be happy to use this system on a regular basis.

Q4 (Enjoyment 2): I enjoyed using the system.

Q5 (Exploration 1): It was easy for me to explore many di�erent ideas, options,

designs, or outcomes, using this system.

Q6 (Exploration 2): The system was helpful in allowing me to track di�erent

ideas, outcomes, or possibilities.

Q7 (Expression 1): I was able to be very creative while doing the activity inside

this system.

Q8 (Expression 2): The system allowed me to be very expressive.

Q9 (Immersion 1): My attention was fully tuned to the activity, and I forgot

about the system that I was using.

Q10 (Immersion 2): I became so absorbed in the activity that I forgot about the

system that I was using.

Q11 (Results worth e�ort 1): I was satis�ed with what I got out of the system.

Q12 (Results worth e�ort 2): What I was able to produce was worth the e�ort

I had to exert to produce it.

Each response was adjusted to be within the correct range, and weighted by

comparing their preferences between the factors in the questionnaire, resulting in a

score from 0 to 100. The factors corresponding to the above questions are:

97

Figure 6.5: The average CSI scores for all participants between both groups, for both
activities. The error bars represent one standard deviation from the mean.

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
CSI score 0.4092 0.5964 0.5204

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
CSI score 0.5964 0.3845

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity

All P-�rst U-�rst
CSI score 0.1977 0.3223 0.5073

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
CSI score 0.6229 0.4055

Table 6.3: The p-values for the CSI questionnaire results.

98

Collaboration: The system would support working with other people.

Enjoyment: People enjoyed using the system.

Exploration: The system allowed the discovery of new possibilities.

Expressiveness: The system supports creativity and self-expression.

Immersion: The system supports concentration and immersion in the work.

Results worth e�ort: People got what they wanted by using the system; it sup-

ports time well-spent.

A CSI score of 0 indicates a system that is not conductive at all, and a score of 100

means that the system supports one or more of the questionnaire's factors extremely

well (discussed further in section 6.5.6). Figure 6.5 shows the average CSI scores for

both conditions, for all groups of participants, with the per-question breakdown in

Figures E.2a for the PlayTIME activity and E.2b for the Unity activity. Table 6.3

shows the p-values from signi�cance testing.

6.3.3 Post-Study Questionnaire

For the post-study questionnaire, participants were asked to rate each of the features

they used during the experiment using a single ease question (SEQ) presented as a

seven-point Likert scale for each question:

0=No answer (blanks); 1=Very di�cult; 2=Di�cult; 3=Slightly di�cult; 4= Nei-

ther easy nor di�cult; 5=Slightly easy; 6=Easy; and 7=Very easy

Figure 6.6 shows the average ease of use rating for both activities, with Figure E.3

showing the per-question breakdown. Figure E.4 shows the average preference ratings,

with the average ratings for each question in Figure E.5. Table 6.4 shows the p-values

of all the signi�cance tests for the post-study questionnaire.

6.3.4 Performance & Time

The most data was collected while watching the recordings of participants completing

the activities. This data is also where the most statistically signi�cant di�erences

occurred. A total of 130 actions were observed across all participants during the

PlayTIME activity, and 80 during the Unity activity.

Table 6.5 shows the average time spent throughout the full activities. Figure 6.7a

graphically illustrates the breakdown of the activity into three categories of tasks:

completing the assigned task ("construction time"); appearing not to be doing any-

thing at all ("activity idle time;" this is discussed further in section 6.5.5); or stop-

ping editing for a couple of minutes to test the level in its current state ("previewing

99

Figure 6.6: The average overall ease of use (EoU) ratings for both activities. The
error bars represent one standard deviation from the mean.

Kruskal-Wallis test:
PlayTIME vs. Unity
All P-�rst U-�rst

Ease of use 0.0222 0.01902 0.2723

Kruskal-Wallis test:
P-�rst vs. U-�rst
All PlayTIME Unity

Ease of use 0.4723 0.01108
Preference 0.6228

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity
All P-�rst U-�rst

Ease of use 0.01173 0.005859 0.3223

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst
All PlayTIME Unity

Ease of use 0.496 0.01235
Preference 0.6498

Table 6.4: The p-values for the post-study questionnaire results. Statistically signi�-
cant values are boldfaced, and those less than 0.01 are shown in red.

100

Average Times: Overall Activity
PlayTIME (N=20) Unity (N=20)

Attribute All P-�rst U-�rst All P-�rst U-�rst
Activity time 16:57 21:18 12:35 12:37 9:20 15:53
Construction time 9:41 11:44 7:38 7:31 6:32 8:29
Activity idle 4:54 6:28 3:20 2:00 1:13 2:47
Previewing time 3:08 4:25 2:01 3:26 1:58 4:36
Preview count 2 2 1 2 1 3
Preview users 15 7 8 18 8 10

Average Times: Level Construction
PlayTIME (N=20) Unity (N=20)

Construction task All P-�rst U-�rst All P-�rst U-�rst
Object placement 3:46 4:14 3:19 2:03 1:51 2:16
Object deletion :14 :16 :10 :13 :08 :17
Add AI behaviour :46 :45 :47 :42 :44 :41
Sel. and desel. 2:19 2:53 1:45 :47 :38 :56
Pan camera 2:03 2:38 1:28 1:24 1:07 1:40
Object movement :43 :52 :32 :47 :31 1:08
Manip. AI :55 1:11 :39 1:13 1:05 1:21
Deletion users 15 10 5 7 3 4
Movement users 11 6 5 18 10 8
Correct usage time 8:45 10:38 6:52 6:29 5:37 7:21
User error time :27 :32 :22 :25 :17 :33

Table 6.5: A list of the average times spent doing di�erent tasks during the activities.
The values are approximated in minutes:seconds. The table also shows how many
participants used features, if not everyone.

101

(a
)
T
h
e
av
er
a
g
e
ti
m
e
d
is
tr
ib
u
ti
o
n
s
fo
r
th
e
th
e
fu
ll
a
ct
iv
it
y
d
u
ra
ti
o
n
.

P
a
rt
ic
ip
a
n
ts

w
er
e
ei
th
er

b
u
il
d
in
g
(c
o
n
st
ru
ct
io
n
),

id
li
n
g
o
r

p
re
v
ie
w
in
g
.
T
h
e
m
ea
n
to
ta
l
a
ct
iv
it
y
ti
m
e
fo
r
ea
ch

g
ro
u
p
is
p
ri
n
te
d
a
t
th
e
b
a
se

o
f
ea
ch

b
a
r.

(b
)
T
h
e
av
er
a
g
e
d
is
tr
ib
u
ti
o
n
o
f
co
n
st
ru
ct
io
n
ti
m
e
d
o
in
g
sp
ec
i�
c
ta
sk
s
th
a
t
ca
n
b
e
eq
u
a
ll
y
co
m
p
a
re
d
b
et
w
ee
n
th
e
tw

o
a
ct
iv
it
ie
s.

T
h
e

m
ea
n
co
n
st
ru
ct
io
n
ti
m
e
is
p
ri
n
te
d
a
t
th
e
b
a
se

o
f
ea
ch

b
a
r.

F
ig
u
re

6.
7:

T
h
e
av
er
ag
e
ti
m
e
d
is
tr
ib
u
ti
on
s
fo
r
th
e
ac
ti
v
it
ie
s.

T
h
e
b
ar
s
re
p
re
se
n
t
th
e
av
er
ag
e
p
er
ce
n
ta
ge

of
ti
m
e
sp
en
t.

S
h
ow

n
h
er
e
ar
e
th
e
av
er
ag
es

fo
r
b
ot
h
ac
ti
v
it
ie
s,
fo
r
al
l
p
ar
ti
ci
p
an
t
gr
ou
p
s.

102

F
ig
u
re

6.
8:

A
ve
ra
ge

ti
m
e
d
is
tr
ib
u
ti
on
s
u
si
n
g
th
e
d
i�
er
en
t
fe
at
u
re
s
of

P
la
y
T
IM

E
.
T
h
e
n
u
m
b
er

of
p
ar
ti
ci
p
an
ts

fr
om

ea
ch

gr
ou
p

w
h
o
u
se
d
th
e
fe
at
u
re

is
p
ri
n
te
d
at

th
e
b
as
e
of

ea
ch

b
ar
.

103

F
ig
u
re

6.
9:

A
ve
ra
ge

fe
at
u
re

ti
m
e
d
is
tr
ib
u
ti
on
s
fo
r
th
e
U
n
it
y
ac
ti
v
it
y.

104

Figure 6.10: Usage of PlayTIME's C marker, or placement button. The average total
time using the C button is printed at the base of each bar.

Figure 6.11: The average number of mouse clicks for each group of participants. The
total clicks are printed at the base of each bar.

Figure 6.12: The average time distributions for navigating through Unity's assets
folders during the Unity activity. The average total times are printed at the base of
each bar.

105

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Total activity time 0.02149 0.0001571 0.2265
Construction time 0.02149 0.00194 0.4963
Activity idle time 3.49E-05 0.0002122 0.06964
Previewing time 0.3565 0.1478 0.006482
Total correct usage, % of constr. time 0.0001699 0.006502 0.01261
Total user error, % of constr. time 0.2914 0.7055 0.0821

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Total activity time 0.0001571 0.005159
Construction time 0.0001571 0.2568
Activity idle time 0.01017 0.008151
Previewing time 0.1704 0.004058
Total correct usage, % of constr. time 0.4963 0.8206
Total user error, % of constr. time 0.8206 0.0821

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity

All P-�rst U-�rst
Total activity time 0.06958 0.001953 0.1934
Construction time 0.04844 0.001953 0.4316
Activity idle time 0.0003223 0.001953 0.08398
Previewing time 0.3838 0.1073 0.01367
Total correct usage, % of constr. time 0.0004826 0.001953 0.06445
Total user error, % of constr. time 0.08255 1 0.01953

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
Total activity time 1.08E-05 0.003886
Construction time 1.08E-05 0.2799
Activity idle time 0.008931 0.006841
Previewing time 0.1826 0.004571
Total correct usage, % of constr. time 0.5288 0.8534
Total user error, % of constr. time 0.8534 0.08921

Table 6.6: The p-values for performance. Statistically signi�cant values are bold-
faced, values less than 0.01 are shown in red, and other notable values are italicized.

106

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Total object placement time 1.92E-05 0.0005041 0.02334
Total object deletion time 0.01528 0.001542 0.9341
Total object con�guration time 0.675 0.9397 0.7054
Total selection and deselection time 6.26E-06 0.0003791 0.006502
Total time navigating game world 0.09351 0.004072 0.2567
Total object movement time 0.08501 0.704 0.06379
Total property tuning time 0.1231 0.9397 0.06964

Object placement % 0.0009665 0.0963 0.004072
Object deletion % 0.02238 0.002005 0.804
Object con�guration % 0.02655 0.001499 0.8798
Select and deselect % 8.52E-07 0.0006697 0.0003811
World navigation % 0.7455 0.1124 0.1736
Object movement % 0.02329 0.2247 0.06379
Property tuning % 0.0006537 0.02334 0.01556

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Total object placement time 0.0821 0.427
Total object deletion time 0.007679 0.4247
Total object con�guration time 0.6501 0.65
Total selection and deselection time 0.02837 0.1508
Total time navigating game world 0.01014 0.1306
Total object movement time 0.3416 0.4488
Total property tuning time 0.104 0.7624

Object placement % 0.04937 0.7055
Object deletion % 0.03973 0.4247
Object con�guration % 0.04937 0.06964
Select and deselect % 0.8206 0.4057
World navigation % 0.0821 0.2265
Object movement % 0.6344 0.4961
Property tuning % 0.4963 1

Table 6.7: The p-values for the comparable features tracked through performance
analysis. Statistically signi�cant values are bold-faced, values less than 0.01 are shown
in red, and other notable values are italicized.

107

time"). Table 6.6 shows the signi�cance values comparing the time distributions for

each activity.

The preview and activity idle times were subtracted from the total activity time,

giving us the construction time metric, during which the features of each system

were used to complete the activity. Figure 6.7b illustrates the average distribution

of feature usage during the construction time. It is important to note here that

while using PlayTIME only it was possible for users to have multiple features active

simultaneously; therefore the bars represent normalized time distributions for the

purpose of showing each feature's usage compared against the others. There were

7 features or tasks that participants did to build the level. The "other" category

cannot be compared since this included features that did not have a close equivalent

in the other system. Table 6.7 shows the signi�cance values comparing the use of

these features or tasks for each activity.

The overall time spent using each feature was broken down further into how it was

used. Features were either used correctly by the participant, used incorrectly (mis-

takes or user error); visible but not being used ("feature idle;" di�ers from activity

idle), or misinterpreted by the system, thereby causing extra errors that were not the

user's fault ("system error"). There were two types of system errors: the markers sim-

ply did not respond due to failed AR detection, or the marker was partially occluded

by the user. It would not be fair to count the latter as a user error because generally

it was no more than the very tip of their �nger that was blocking a tiny part of the

marker; this is a limitation of the AR technology since it was apparently sensitive.

Figure 6.8 shows the features' average usage distributions for the PlayTIME activity,

and Figure 6.9 shows the distributions for the Unity activity.

The features that were not directly and con�dently comparable were categorized

as other. For PlayTIME, this included the use of the C marker, used to place ob-

jects. Figure 6.10 shows the average usage of the C marker. For Unity, clicking

was a frequent action that did not have a direct PlayTIME counterpart. The aver-

age distribution of correct, incorrect and extra or unnecessary clicks can be seen in

Figure 6.11. Finally, Unity's editor required folder navigation to place things in the

scene. The average distribution of navigation time can be seen in Figure 6.12. The

"other" features are discussed in section 6.5.5.

6.3.5 Scenes

The �nal outcome of each activity, a Unity scene �le, was used to compare each

participant's activity outcomes with the expected activity outcome, or the instructions

108

Figure 6.13: The average Manhattan scores for both activities, for each participant
group. The total sample size is 20.

Enemy Placement (Group 2)
PlayTIME Unity

P-�rst U-�rst Total P-�rst U-�rst Total
Placement attribute count count count count count count
Exact match with
activity description 1 1 2 0 2 2
Level was winnable 9 10 19 10 10 20
Extra buzzers on patio 1 2 3 0 0 0
Fewer buzzers on patio 0 0 0 0 0 0
Buzzers in main room 1 1 2 0 3 3
Buzzers on balcony 1 0 1 1 2 3
Buzzers in extra rooms 2 1 3 1 3 4
Extra spiders on patio 0 1 1 1 0 1
Fewer spiders on patio 1 0 1 0 0 0
Extra spiders in main room 2 0 2 1 0 1
Fewer spiders in main room 3 2 5 3 2 5
Extra spiders on balcony 0 0 0 0 0 0
Fewer spiders on balcony 1 0 1 0 0 0
Spiders in extra rooms 3 3 6 3 3 6

Table 6.8: This table shows some of the di�erent ways users in the surveys-only group
placed objects throughout the scene. The values in the table represent the number
of participants who had placed enemies in the speci�ed location.

109

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Weighted Manhattan score 0.5758 0.7315 0.7599

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Weighted Manhattan score 0.9696 0.9089

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity

All P-�rst U-�rst
Weighted Manhattan score 0.876 1 0.7349

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
Weighted Manhattan score 1 0.9392

Table 6.9: The p-values for the scene Manhattan scores.

they were given; it was ultimately decided that this would serve as an indication of

creativity.

Figure 6.13 shows the average Manhattan scores computed for each activity. The

results of the signi�cance tests can be found in Table 6.9. The scores were calculated

speci�cally based on the participants' deviations from the task description. This

means that the only factor involved was the areas on the map; the speci�c hiding

places of enemies were not accounted for when computing the scores. Table 6.8 shows

how participants placed their enemies in the level, with the main areas contributing

to the Manhattan scores. A few notable examples of speci�c placements are also

shown and contribute to creativity despite not being considered in the scores. All of

the results are discussed in section 6.5.6.

6.4 Extended Results

This section presents the data collected from all participants from both Group 1 and

Group 2 and compares these results with those from only Group 2. The data sets

that are di�erent from those described above are the videos and the scenes. A total of

60 videos were analysed for performance statistics: 20 Unity activity recordings from

Group 2 alone, and 40 PlayTIME activity recordings from all of Group 2 and some

of Group 1. Additionally, a total of 100 Unity scenes were reviewed for indications of

creativity: 50 PlayTIME scenes and 50 mouse scenes.

110

6.4.1 Extended Performance & Time

A total of 40 videos were analysed for PlayTIME and 20 were analysed for Unity.

This section presents the results for the larger PlayTIME sample-size, or the whole

population; the mouse results are the same as those in section 6.3.4.

The exact time averages can be found in Table 6.10. Figure 6.14a shows the

average time spent through the full activities, broken down again into construction

time, activity idle time and preview time. Table 6.11 shows the signi�cance values

comparing the time distributions for each activity for this larger PlayTIME population

compared with the same mouse population.

Figure 6.14b shows the feature usages for this population compared with the data

analysed for the Unity activity. Table 6.12 shows the signi�cance values comparing

the use of these features.

Figure 6.15 shows the features' average usage distributions for the larger Play-

TIME population, and Figure 6.16 shows the average usage of the C marker.

20 vs. 40 Participants

Here we compare the direct e�ect of population size on the e�ects of condition and

order. We used the KW test and the MWW test to compare the p-values from the

smaller population of 20, within Group 2 alone, with the p-values from the larger

population of 50, accounting for all performance data from both groups. This was a

last minute decision to see if changing the sample size to acquire the extended results

had a direct impact on the signi�cant test outcomes.

The tests agree that comparing data with di�erent population sizes had an in-

signi�cant e�ect on the outcome of the other tests. This means that the results were

relatively similar when comparing the 20 PlayTIME data sets with the 20 Unity sets,

and when comparing the 40 PlayTIME data sets with the 20 Unity data sets. Fig-

ure 6.17 clearly illustrates this by comparing the time distributions from Group 2

alone with the distributions from both Group 1 and Group 2. The p-values for the

e�ect of changing the population size on performance analysis are shown in Table E.1.

6.4.2 Extended Scenes

For the extended scene data, the scenes from all participants of both Group 1 and

Group 2 were examined, and a Manhattan score computed for each, yielding 50

samples for each activity. Figure 6.18 shows the average Manhattan scores computed

for each activity across the whole population. The results of the signi�cance tests can

be found in Table 6.14. Table 6.13 shows the enemy placements for this population.

111

Average Times: Overall Activity
PlayTIME (N=40) Unity (N=20)

Attribute All P-�rst U-�rst All P-�rst U-�rst
Activity time 15:09 18:00 12:17 12:37 9:20 15:53
Construction time 8:28 9:38 7:18 7:31 6:32 8:29
Activity idle 4:20 5:21 3:19 2:00 1:13 2:47
Previewing time 2:49 3:45 1:57 3:26 1:58 4:36
Preview count 2 2 1 2 1 3
Preview users 33 16 17 18 8 10

Average Times: Level Construction
PlayTIME (N=40) Unity (N=20)

Construction task All P-�rst U-�rst All P-�rst U-�rst
Object placement 3:15 3:33 2:58 2:03 1:51 2:16
Object deletion :13 :15 :10 :13 :08 :17
Add AI behaviour :46 :43 :48 :42 :44 :41
Sel. and desel. 2:07 2:22 1:53 :47 :38 :56
Pan camera 1:37 2:01 1:13 1:24 1:07 1:40
Object movement :33 :40 :25 :47 :31 1:08
Manip. AI :44 :52 :38 1:13 1:05 1:21
Deletion users 29 15 14 7 3 4
Movement users 21 11 10 18 10 8
Correct usage time 7:41 8:44 6:37 6:29 5:37 7:21
User error time :27 :29 :25 :25 :17 :33

Table 6.10: A list of the average times spent doing di�erent tasks during the activities
for the extended population. The values are approximated in minutes:seconds.

112

(a
)
T
h
e
av
er
a
g
e
ti
m
e
d
is
tr
ib
u
ti
o
n
s
fo
r
th
e
th
e
fu
ll
a
ct
iv
it
y
d
u
ra
ti
o
n
.

(b
)
T
h
e
av
er
a
g
e
d
is
tr
ib
u
ti
o
n
o
f
co
n
st
ru
ct
io
n
ti
m
e
d
o
in
g
sp
ec
i�
c
ta
sk
s
th
a
t
ca
n
b
e
eq
u
a
ll
y
co
m
p
a
re
d
b
et
w
ee
n
th
e
tw

o
a
ct
iv
it
ie
s
fo
r

th
e
sa
m
e
p
o
p
u
la
ti
o
n
s.

F
ig
u
re

6.
14
:
T
h
e
ex
te
n
d
ed

av
er
ag
e
ti
m
e
d
is
tr
ib
u
ti
on
s,
co
m
p
ar
in
g
th
e
40

an
al
y
se
d
sa
m
p
le
s
fo
r
th
e
P
la
y
T
IM

E
ac
ti
v
it
y
w
it
h
th
e

20
fr
om

th
e
U
n
it
y
ac
ti
v
it
y.

T
h
e
b
ar
s
re
p
re
se
n
t
th
e
av
er
ag
e
p
er
ce
n
ta
ge

of
ti
m
e
sp
en
t.

113

F
ig
u
re

6.
15
:
F
ea
tu
re

ti
m
e
d
is
tr
ib
u
ti
on
s
fo
r
th
e
ex
te
n
d
ed

P
la
y
T
IM

E
p
er
fo
rm

an
ce

sa
m
p
le
s
(4
0)
.
T
h
e
to
ta
l
n
u
m
b
er

of
u
se
rs

fo
r

ea
ch

fe
at
u
re

is
p
ri
n
te
d
at

th
e
b
as
e
of

ea
ch

b
ar
.

114

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Total activity time 0.05573 0.0001082 0.1236
Construction time 0.1725 0.01553 0.3116
Activity idle time 4.02E-06 1.62E-05 0.05852
Previewing time 0.3301 0.03401 0.001314
Total correct usage, % of constr. time 5.96E-05 0.004868 0.005578
Total user error, % of constr. time 0.4148 0.7581 0.1869

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Total activity time 4.42E-05 0.005159
Construction time 0.006294 0.2568
Activity idle time 0.00117 0.008151
Previewing time 0.01079 0.004058
Total correct usage, % of constr. time 0.5518 0.8206
Total user error, % of constr. time 0.4989 0.0821

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
Total activity time 1.34E-05 0.003886
Construction time 0.005618 0.2799
Activity idle time 0.0008358 0.006841
Previewing time 0.01122 0.004571
Total correct usage, % of constr. time 0.5648 0.8534
Total user error, % of constr. time 0.5117 0.08921

Table 6.11: The p-values for extended performance analysis. Statistically signi�cant
values are bold-faced, values less than 0.01 are shown in red, and other notable values
are italicized.

115

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Total object placement time 4.56E-05 0.0005091 0.02783
Total object deletion time 0.01228 0.01163 0.3396
Total object con�guration time 0.5674 0.895 0.895
Total selection and deselection time 8.48E-07 0.0001292 0.002775
Total time navigating game world 0.4902 0.01375 0.0585
Total object movement time 0.007796 0.1808 0.02301
Total property tuning time 0.001305 0.07838 0.007276

Object placement % 0.000202 0.03111 0.003689
Object deletion % 0.01345 0.015 0.2557
Object con�guration % 0.1282 0.003689 0.5674
Select and deselect % 4.50E-09 4.29E-05 2.41E-05
World navigation % 0.9625 0.1236 0.09457
Object movement % 0.0008567 0.04024 0.0109
Property tuning % 4.34E-06 0.0006002 0.002775

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Total object placement time 0.2036 0.427
Total object deletion time 0.2624 0.4247
Total object con�guration time 0.8817 0.65
Total selection and deselection time 0.1298 0.1508
Total time navigating game world 0.001063 0.1306
Total object movement time 0.4396 0.4488
Total property tuning time 0.194 0.7624

Object placement % 0.1298 0.7055
Object deletion % 0.6818 0.4247
Object con�guration % 0.1105 0.06964
Select and deselect % 0.6263 0.4057
World navigation % 0.01383 0.2265
Object movement % 0.647 0.4961
Property tuning % 0.8077 1

Table 6.12: The p-values for the extended comparable features tracked through per-
formance analysis. Statistically signi�cant values are bold-faced, values less than 0.01
are shown in red, and other notable values are italicized.

116

Figure 6.16: Average usage of PlayTIME's C button for the extended PlayTIME
performance samples (40). The average time spent using the C button is printed at
the base of each bar.

Enemy Placement (full population)
PlayTIME Unity

P-�rst U-�rst Total P-�rst U-�rst Total
Placement attribute count count count count count count
Exact match with
activity description 5 5 10 5 9 14
Level was winnable 23 25 48 25 25 50
Extra buzzers on patio 1 3 4 0 0 0
Fewer buzzers on patio 1 0 1 0 0 0
Buzzers in main room 2 1 3 1 4 5
Buzzers on balcony 1 0 1 1 3 4
Buzzers in extra rooms 2 1 3 1 3 4
Extra spiders on patio 0 1 1 1 0 1
Fewer spiders on patio 1 0 1 0 0 0
Extra spiders in main room 2 2 4 1 0 1
Fewer spiders in main room 4 4 8 4 3 7
Extra spiders on balcony 0 0 0 0 0 0
Fewer spiders on balcony 1 0 1 0 0 0
Spiders in extra rooms 4 5 9 4 4 8

Table 6.13: This table shows some of the di�erent ways users in the full population,
Groups 1 and 2, placed objects throughout the scene.

117

(a
)
C
o
m
p
a
ri
n
g
th
e
av
er
a
g
e
ti
m
e
d
is
tr
ib
u
ti
on

s
fo
r
th
e
tw

o
P
la
y
T
IM

E
a
ct
iv
it
y
p
o
p
u
la
ti
o
n
s
(4
0
v
s.

2
0)
.

(b
)
C
o
m
p
a
ri
n
g
th
e
av
er
a
g
e
co
n
st
ru
ct
io
n
ti
m
e
d
is
tr
ib
u
ti
o
n
s
fo
r
th
e
P
la
y
T
IM

E
a
ct
iv
it
y
p
o
p
u
la
ti
o
n
s.

F
ig
u
re

6.
17
:
C
om

p
ar
in
g
al
l
40

an
al
y
se
d
sa
m
p
le
s
fo
r
th
e
P
la
y
T
IM

E
ac
ti
v
it
y
w
it
h
on
ly

th
e
20

th
at

w
er
e
as
so
ci
at
ed

w
it
h
su
rv
ey
s.

118

Figure 6.18: The average extended Manhattan scores for both activities, for each
participant group. The total sample size is 50.

Kruskal-Wallis test:
PlayTIME vs. Unity

All P-�rst U-�rst
Weighted Manhattan score 0.4689 0.8068 0.5681

Kruskal-Wallis test:
P-�rst vs. U-�rst

PlayTIME Unity
Weighted Manhattan score 0.703 0.9216

Wilcoxon Signed-Rank test:
PlayTIME vs. Unity

All P-�rst U-�rst
Weighted Manhattan score 0.8166 0.6767 0.856

Mann-Whitney-Wilcoxon test:
P-�rst vs. U-�rst

PlayTIME Unity
Weighted Manhattan score 0.7103 0.9295

Table 6.14: The p-values for the extended scene Manhattan scores.

119

20 vs. 50 Participants

Changing the population size from 20 while analysing the scenes from Group 2, to 50

while analysing the scenes from both Group 1 and Group 2 had a signi�cant e�ect on

the condition and order's e�ects. This e�ect is discussed in section 6.5.6. The exact

p-values representing the e�ect of this change are shown in Table E.2.

6.5 Discussion

6.5.1 PANAS & Emotions

Before the study, the average positive a�ect score was 29.25 (SD=7.354) and the

average negative a�ect score was 12.85 (SD=3.103). Through the PlayTIME ac-

tivity, the average overall positive a�ect change was +2.95 points (score M=33.45,

SD=8.084), and the average overall negative a�ect change was -0.85 points (score

M=11.45, SD=1.962). Through the Unity activity, the average overall positive a�ect

change was -1.5 points (score M=30.45, SD=8.273), and the average overall negative

a�ect change was -1.25 points (score M=10.7, SD=0.9).

Positive A�ect

In Figure 6.2a, we see that the average positive a�ect change was +5.4 points through

the PlayTIME activity (score M=34.9, SD=7.739) and -5.5 points through the Unity

activity (score M=29.4, SD=9.276). Figure 6.2b shows that for the Unity-�rst group,

the average positive a�ect change was +2.5 points through the Unity activity (score

M=31.5, SD=6.975) and +0.5 points through the PlayTIME activity (score M=32,

SD=8.161).

We can see that the order of the activities had a statistically signi�cant e�ect on

the positive a�ect change through both activities, which means the activities them-

selves had a di�erent impact on positive feelings depending on the activity order.

The KW p-value testing order through the PlayTIME activity is 0.01238; this is

agreed upon by the MWW p-value of 0.01377. This signi�cance is visualized by the

trend lines in Figure 6.2, which clearly show the di�erences between the emotions of

the participants who did the PlayTIME activity �rst and those who did the Unity

activity �rst. Both groups had an increase in positive a�ect through the PlayTIME

activity, but the P-�rst group shows a much steeper slope. Testing order through

the Unity activity, the KW p-value of 0.004003 and the MWW p-value of 0.00451

both indicate extreme signi�cance. The trend lines show that the P-�rst group had

a negative change in positive a�ect, but the U-�rst group had a positive change

120

through the Unity activity. The complete change of direction through this activity

would explain the extreme signi�cance.

Looking at the positive a�ect change through both conditions, we notice that the

activities themselves had a signi�cant impact on the positive a�ect changes. The

steep and always-positive changes through the PlayTIME activity are quite di�erent

from the negative and �at slopes through the Unity activity. The KW p-value for

all 20 participants is 0.02532, and for the P-�rst group only the p-value is 0.0005718.

However, the test did not �nd a signi�cant di�erence in the positive a�ect change

between conditions for the U-�rst group.

Despite the signi�cance of the change in positive a�ect through the activities,

the raw positive a�ect scores are not signi�cantly impacted by the order or by the

activities. The WSR test found that changing the condition had a signi�cant e�ect

on the positive a�ect scores, but the KW test does not agree (Table 6.1). These tests

were double checked using R.

Negative A�ect

Figure 6.2a shows the P-�rst group's average negative a�ect change was -1.8 points

through the PlayTIME activity (score M=12.4, SD=2.245) and -1.4 points through

the Unity activity (score M=11, SD=1). Figure 6.2b shows the U-�rst group's

average negative a�ect change was -1.1 points through the Unity activity (score

M=10.4, SD=0.663) and +0.1 points through the PlayTIME activity (score M=10.5,

SD=0.922).

While the U-�rst group's positive a�ect changes are not signi�cantly impacted by

the activities, their negative a�ect changes were. The KW test returned a p-value of

0.02289 for this group, and the WSR test returned 0.04983.

Once again, the activity order had a notable e�ect: the KW p-value for negative

a�ect through the PlayTIME activity is 0.04701, with the MWW p-value not quite

there but still close (0.05159). The trend lines demonstrate this as well: for the P-

�rst group, negative a�ect decreased quite a bit through the PlayTIME condition,

but increased slightly for the U-�rst group, staying basically the same through the

activity. The slope di�erences would explain why there is signi�cance through the

PlayTIME activity but not through the Unity activity; these slopes are basically the

same.

It also appears that the order had an e�ect on the raw negative a�ect scores from

the PlayTIME activity only. The KW p-value is 0.01674 and the MWW p-value is

0.01864. On the trend lines we see that the average negative a�ect scores for the

121

PlayTIME activity are di�erent between the two groups, but the scores for the Unity

activity are very close.

For the activities' impact on raw negative a�ect scores, the WSR test found slight

signi�cance for all participants, but the KW test does not agree (Table 6.1).

Discussion

The PANAS questionnaire was a simple and fun way to measure the emotional impact

of the study activities on the participants. The PlayTIME activity caught partici-

pants' interest the moment they �gured out what it would be used for, sometimes

before they were briefed, and overall participants reported that their positive emotions

had increased signi�cantly during the activity. Furthermore, their negative emotions,

which were low to begin with, had generally decreased. In contrast, the Unity ac-

tivity generally had a much smaller or opposite e�ect on the positive a�ect scores.

Although this measure does not contribute to system usability, the consistently pos-

itive emotions tell us something about PlayTIME that is important for users: it is

fun. Perhaps seeing and using this novel technique for scenario design was exciting

and enjoyable for users because it felt like play.

Some of the participants commented on this in the feedback portion of the post-

study questionnaire:

"I enjoyed PlayTIME more... It also made it seem more like playing a

game to create a game; I was almost more interested in making [my game]

than playing it."

- Participant 50-P

"It was far more interesting to be using technologies that I'd never used

before, whereas I am almost always using just a mouse and keyboard, or

as in this case, a mouse alone."

- Participant 45-P

"PlayTIME was de�nitely more enjoyable because it felt like I was playing

a game as opposed to working."

- Participant 43-M

"It was like playing rather than working."

- Participant 41-M"

This is great for scenario designers, since one of PlayTIME's purposes is to have

game development feel more interactive by treating it like play. To see people agreeing

122

with this purpose, that PlayTIME was indeed playful and fun, means it is doing its

job at making game design more conductive.

6.5.2 CSUQ & Usability

Here we discuss the qualitative aspect of usability: How did participants respond

to what they did during the study? The self-reported survey metrics tell us how

participants received the systems they were given to complete their activities and

how well they thought the systems worked.

Overall, the P-�rst group gave slightly higher ratings, as seen in Figure 6.4 and

Figure E.1, but the activity order did not have a signi�cant impact on the results

(Table 6.2). For the PlayTIME responses, the interface quality of the AR paddles

received the highest ratings across all participants (M=5.283, SD=1.221). The mouse

received similar ratings (M=5.283, SD=1.217), but as discussed above, these ratings

were regarding the mouse itself and not Unity's GUI as they should have been. As

well, the interface quality metric was based on just 3 questions. Overall the condition's

e�ect on the interface ratings were not at all signi�cant (KW p=1, WSR p=0.9055).

More importantly, the system usability scores were generally good and were av-

eraged over 8 of the questions. For PlayTIME, the overall system usability score

averaged 5.069 (SD=1.166) and for Unity the overall average was 5.688 (SD=1.228).

The system usability results between conditions were signi�cantly di�erent (KW

p=0.03021, WSR p=0.009305). The e�ect was more signi�cant on the P-�rst group,

but the statistical tests found di�erent signi�cance levels (KW p=0.05327, WSR

p=0.005666).

Interestingly, the lowest of all CSUQ ratings were consistently from Q9, regarding

error messages. For PlayTIME the overall scores for Q9 averaged 2.7 (SD=1.382)

and for Unity the scores averaged 2.85 (SD=1.74). Errors occurred often, and were

frequently repeated, because neither system provided any indication that something

had gone wrong in the �rst place. In some cases, users would commit an error and

not realize until they visited that location in the map 5 minutes later. For example:

with PlayTIME, objects were frequently left selected while working on a completely

di�erent area of the level, and an accidental or intentional occlusion of the B marker

would cause the o�-screen objects to be deleted. The exact user error statistics are

explored below in the screen capture and performance discussion, but the point is

that users learned by correcting their mistakes. They were also allowed to ask for

help when things got too frustrating, in which case the observer would describe the

necessary steps to correct the error.

123

This goes back to two of Nielsen's usability heuristics: error prevention, and

error recognition, diagnosis and recovery [45] [47]. Based on the user responses and

performance, as we will see below, both of the systems do a poor job at letting

users know when an error has occurred. Furthermore, the fact that some people

overlooked errors for several minutes, or never discovered their mistakes at all, tells

us that PlayTIME has an opportunity to satisfy these heuristics. Speci�c errors are

discussed per-feature in section 6.5.5.

6.5.3 Ease of Use & Preference

The ease of use questions in the post-study survey looked at the usability of the

interfaces used for each activity: PlayTIME's AR paddles and the mouse for Unity.

Figure E.3 shows the overall ease of use scores per-group and the breakdown of the

scores.

The overall average ease of use rating for PlayTIME is 5.422 (SD=0.959) and

the average rating for Unity is 6.089 (SD=0.603). A statistically signi�cant e�ect

was found on the overall scores due to the condition, for the whole population, by

both the KW test (p=0.0222) and by the WSR test (p=0.01173). The e�ect was

also signi�cant within the P-�rst group (KW p=0.01902, WSR p=0.005859). The

activity order had a highly-signi�cant e�ect on the ease of use scores from the U-�rst

group, as shown by the KW test (p=0.01108) and by the MWW test (p=0.01235).

The reason for the highly signi�cant results is simply because we are so familiar with

the mouse.

The overall average preference rating was -0.13 (SD=0.43), indicating a preference

for the mouse over the AR paddles. Since preference was a direct comparison between

the conditions, the scores were not tested against the activities themselves, only

activity order, which yielded no signi�cance.

The actual factors rated in the ease of use and preference questionnaires are dis-

cussed throughout section 6.5.5.

6.5.4 Activity Time Overview

The screen captures were extremely helpful with identifying problems with the in-

terfaces. Since the surveys do not tell us much about the interface limitations, as

discussed above, the performance statistics provide most of the identi�cation of users'

troubles completing the study. The screen capture presents us with raw, quantitative

usability facts: What did the participants do during the study?

124

Table 6.5 shows the overall activity times for the surveys-only group, and Ta-

ble 6.10 shows the times for the full population. These distributions are visualized in

Figures 6.7a and 6.14a respectively.

The overall average activity time for the surveys-only PlayTIME population was

16:57 (mm:ss). For the full population, the activity time was 15:09. The average

Unity time was 12:37.

The overall averages were balanced by order: for PlayTIME Group 2, the P-�rst

average was 21:18 and the U-�rst average was 12:35. For the full population, the

P-�rst average was 18:00 and the U-�rst average was 12:17. For the Unity activity,

the P-�rst average was 9:20 and the U-�rst average was 15:53.

The fact that all of the PlayTIME numbers were generally higher by several

minutes is a clear indication that the condition had a signi�cant e�ect on the outcome.

This is agreed upon by the p-values: the KW test returned 0.02149 for both the

overall activity time and construction time, and 0.0001571 for activity time in the

P-�rst group and 0.00194 for construction time.

The signi�cance values testing condition also implicitly tell us that order had an

e�ect, given that the p-values in the U-�rst group were obviously higher. With the

exception of previewing time and total user error time, which remained basically the

same for all groups, notice how the P-�rst group had consistently high signi�cance

compared to U-�rst. This is likely because the activity times for the people who ran

PlayTIME �rst were quite far apart, whereas the people who ran Unity �rst had less

of a di�erence between their times. Notice how the participants' �rst activity always

had longer times. This is a clear indication that order had a signi�cant e�ect on the

activity time as a whole and in parts, as shown by the P-values for both activities.

The KW test returned 0.0001571 for PlayTIME and 0.005159 for Unity; these indicate

extremely high signi�cance. The feedback leads us to a very logical explanation for

this.

The �nal question in the post-study survey was "Did doing the �rst activity help

you complete the second activity in any way?" All participants reported that the order

had a de�nite impact on their results. For Group 1 this was asked verbally at the end

of the study and all participants said yes. Those who cited reasons generally agreed

that the reason was simple: since they had already done the activity once, they were

able to skip the learning process for the task and just complete the activity, which

they had memorized; the learning curve for the system itself may have still been an

issue.

125

The main reason cited in the participants' responses was that the �rst activity

helped them prepare for the second; they learned the activity itself, what they were

required to do, the level layout, placement locations, design, etc. (summarized here

as "the task"). To quote a few responses, participant 48-U said that "[The order] let

me know what needed to go where," meaning that they had the task and level layout

memorized from their �rst activity. Participant 50-P similarly said "Knowing what

I was supposed to do already is about it," which means the same thing. This was

the most common response, explicitly coming from 13 participants in Group 2 and

everyone from Group 1 (which was written in notes since it was verbal). Another 5

participants did not directly state the memorization or familiarity factor but implied

it in their responses; for example, 49-P said "I understood everything with the mouse,

it was simply [a matter of] remembering it and applying it to PlayTIME." Another

participant, 46-U said "The �rst activity (in Unity) refreshed knowledge from past

experiences with [Unity]... the second activity was more intuitive and user-friendly."

The remaining two participants just said "Yes," which just says that order a�ected

them for some reason.

Participant 39-U had an interesting response: "Doing the �rst activity did give

me an advantage in the second activity; however, it was mitigated by the fact that

I needed to learn a new system in order to complete the task." This is interesting

because it implies familiarity but also acknowledges the challenge of having to use a

new system; perhaps the advantage of order was balanced by the learning curve of

the second activity. This makes sense since the activity times for the people who ran

PlayTIME �rst are so far apart, whereas the people who ran Unity �rst have similar

activity times. Since users were already familiar with Unity and the mouse, those

who ran that activity �rst were only hindered by the task, and by the time they got

to their second activity they were familiar with the task and their time was a�ected

by the learning curve of PlayTIME. In contrast, those who ran PlayTIME �rst had

to deal with both the task and the unfamiliarity of the new system; so when they got

to Unity they were familiar with both the task and the system, which increased their

times dramatically.

This can be demonstrated simply by taking the di�erences between activity times

for corresponding groups: The P-�rst PlayTIME average time was 21:18 (Group

2 only). If we subtract that group's average Unity time of 9:20, we are left with

an average di�erence of 11:58 between their two activities. Likewise for the U-�rst

group, 15:53 for Unity subtract 12:35 for PlayTIME gives us an average di�erence

of only 3:18. This di�erence alone emphasizes the e�ect of order, but we see it with

126

construction time as well: For P-�rst the di�erence (computed the same way) is 5:12,

while for U-�rst the construction time di�erence is only 51s. Tables 6.5 and 6.10

clearly show that all tasks took longer on average for participants' �rst activity, and

therefore this justi�cation for the signi�cance of order carries through all discussion

sections below. The e�ect that order had on the completion of tasks will not be

discussed in detail past this point.

Most of the results pertain to time measurements for the individual features. Sec-

tion 6.3.4 only summarizes the data using bar charts for time averages and tables for

the main activity details and signi�cance test results. Construction, idle, previewing

and feature times are discussed separately in further detail below.

Previewing Time

Previewing was not included in the construction time because we were concerned with

the level construction. Since previewing was restricted to the use of both mouse and

keyboard, the feature did not make use of the system interfaces in a similar fashion

and therefore it would not have been fair to the data if previews had been included.

Still it is important to note the di�erences. In Group 2 alone, the average overall

previewing time was 3:08 for PlayTIME and 3:26 for Unity. The whole population

overall average for PlayTIME was 2:49. Split into groups, the surveys-only PlayTIME

averages were 4:25 for P-�rst and 2:01 for U-�rst. For Unity, the averages were 1:58

for P-�rst and 4:36 for U-�rst. The averages for the whole population in PlayTIME

were 3:45 for P-�rst and 1:57 for U-�rst. In the surveys-only group, 15 participants

used previewing and 33 from the full population for PlayTIME. For Unity 18 people

used the preview feature.

The p-values show that condition had a signi�cant e�ect within groups only (not

overall), and this implicitly tells us that the activity order had a signi�cant e�ect; the

p-values for order explicitly show us that the order had a signi�cant e�ect. Similar to

the overall activity times, the preview times were noticeably higher for each activity

within the group that did that activity �rst, and there were also more previews. A

logical reason for this signi�cance is that having done the experiment already had

given users the experience with the task that they needed to trust the quality of their

design, and the preview itself. There simply was not as much of a need to preview by

the time they got to the second activity.

Another brie�y notable di�erence with previewing is the time it took to load. Pre-

view load and unload times were an issue in the TimeSplitters study (approximately

15 seconds both ways) and this bothered some participants. Unity was chosen as the

127

editor for the current implementation of PlayTIME for its quick preview feature, but

PlayTIME hindered this feature.

The average time per-preview for all previews was about 1:23 for the PlayTIME

activity and 1:18 for the Unity activity, or about 94% of PlayTIME's previewing

time. However, the average time per-load for all previews was about 9.7 seconds for

PlayTIME and 6.2 seconds for Unity alone, which is 64% of PlayTIME's load time.

Furthermore, the average time per-unload was about 8.5 seconds for PlayTIME and

3.7 seconds for Unity, which is 43% of PlayTIME's unload time.

A small portion of the load and unload durations was the time it took to press

"play" button for both starting and stopping. However, the wait time was really

impacted by the actual preview load and unload times. The reason for this is because

the PlayTIME system was programmed to terminate while a preview was running.

The low-level details are not important, but because of the way Unity handles its

previews, PlayTIME was required to tap into this process so that AR would not

interfere with the preview; the markers were not needed for the game, only for devel-

opment. Therefore the AR detection system was shut down, disabling the camera.

The AR markers were unloaded. In preview state PlayTIME was completely deacti-

vated. When the play button was clicked to end the preview, the inverse occurred:

PlayTIME was completely rebooted and the Unity scene was restored to its develop-

ment state. In contrast, Unity on its own did not have to worry about the operation

so it just started and stopped the preview as it would normally.

The shorter load and unload times that generally occur with Unity make the engine

a good choice for rapid previewing; we have already emphasized the need for a good

preview tool so that users are able to validate their work. However, future iterations

of PlayTIME and other TIME tools will need to �nd a way to use previewing features

from di�erent engines without slowing down their natural pace.

Activity Idle Time

After accounting for the time spent previewing, the next thing that was done to �nd a

way to balance construction time was analysing the activity idle time: this is the time

in which participants were not visibly doing anything productive. With PlayTIME

this meant that no markers were visible in-frame. In Unity alone it means that the

cursor had stopped moving entirely or was moving very slightly.

The conditions and the activity order both had signi�cant e�ects on the time

spent idling. For order, the reason is that for their second activity participants did

128

not need to think about the task as much, discussed in a similar manner regarding

the overall activity time and construction times.

The signi�cance of the conditions' e�ect on idle time is essentially undeniable,

with a KW p-value of 3.49e-5 overall for the surveys-only group and a p-value of

4.02e-6 for the full population. The surveys-only p-values were 0.0002122 for P-�rst

and 0.06964 for U-�rst, indicating near-signi�cance. The full population p-values

were 1.62e-5 for P-�rst and 0.05852. The di�erences between the P-�rst and U-�rst

signi�cance can be explained using the same logic as the activity times, but strictly

for condition, the reasons for the e�ect on idle time are di�erent from the reasons for

the order e�ect.

Although the participants were not visibly active during this time, this is not to

say they were not doing anything at all. For both activities, some of the idle time was

spent reading the task description and planning construction, or thinking. A lot of

the idle time for PlayTIME was the time they spent searching through the markers

and �guring out what they needed to do. This comes back to the unfamiliarity of

the system: users were not quickly able to �gure out what they needed because they

did not recognize the paddles. Through observation we learned that three major

components of the system contributed heavily to user confusion.

First, the AR paddles were not labelled on either side, instead relying purely on

memorization of icons and their meanings and functions. Furthermore, users would

also often leave paddles �ipped over on the table, blank side up, until they needed to

be used; this meant that the users who did this had neither the names nor the icons

to help them recognize which paddle was assigned to which function. PlayTIME's

learning curve and the unlabelled paddles clearly violate Nielsen's recognition over

recall heuristic. Users frequently had to search for the marker they needed or look

at the information sheet that was provided. The paddles themselves must be clearly

labelled for future implementations using either a large, simple name (e.g. "PAN

CAMERA") or explicit descriptions of the functions placed on the handles (e.g. "Use

this to MOVE THE CAMERA").

Some of the markers were labelled, but this did not help on account of the second

confusion: the markers were upside-down relative to the user. The bottom edge of

the marker was towards the monitors while the top had the paddle handle. This was

because during the development of the PlayTIME system, the camera was rotated

this way and the markers followed so that they would not be upside down relative

to what the AR system was detecting. This was an unjusti�able action; both the

129

(a) Camera pan (b) Object movement (c) AI manipulation

Figure 6.19: The AR paddle icons that were most commonly confused by participants.

camera and the markers should have been rotated 180 degrees and a simple rotation

applied to the AR detection's output to �x the values within the editor.

Finally, some of the icons themselves represented on the markers were similar and

therefore commonly confused. The markers that were frequently confused can be seen

in Figure 6.19. There were too many unique confusions that occurred between these

markers; here we overview what they were.

With Unity alone, using the middle mouse button to trigger a camera pan resulted

in a hand icon taking the place of the cursor. When they wanted to pan the camera,

users who were familiar with Unity ignored the fact that the camera paddle had a

camera icon on it (Figure 6.19a) and they went for the icon they already knew: the

manipulation paddle (Figure 6.19c). Furthermore, other users associated the object

movement paddle with camera pan as well because it does give the impression that

it is made to move something. The manipulation paddle and the movement paddle

(Figure 6.19b) were also frequently confused. The marker confusions tell us there were

issues with Nielsen's matching between system and reality heuristic: the PlayTIME

icons did not match the Unity icons they were interfacing with. In essence, the AR

markers did not faithfully represent the functions that they were made for.

Most of the activity idle time was wasted time, spent �guring out how to use the

system instead of using it. The sheer amount of idle time all together violates a third

heuristic: �exibility and e�ciency of use; the system was slow and ine�cient.

When asked about the systems' strengths and weaknesses in the post-study sur-

vey, participants reported the ine�ciency in their feedback. Here are a few notable

quotations about speed and e�ciency:

"...If my goal was to be as e�cient as possible, PlayTIME was substan-

tially slower than the mouse, which I am more accustomed to."

- Participant 43-U

130

"Mouse: e�cient... PlayTIME: takes longer, a little harder to give com-

mands."

- Participant 38-U

"PlayTIME pros: ...being able to physically place objects. PlayTIME

cons: Time consuming, not e�cient (took time to get used to controls and

time everything correctly). Mouse pros: Familiarity and e�ciency; I have

used a mouse my entire life, so the controls made sense."

- Participant 34-P

To summarize, we learned that future implementations of PlayTIME and other

TIME systems can better satisfy Nielsen's heuristics by presenting more appropriate

recognition of the tools. The tangible objects must clearly label what they do, and

their icons, or other visual representation such as a small 3D toy or model, must

be precisely representative of what it means within the system. Fixing these prob-

lems will speed up interactions and ultimately reduce time wasted, allowing users to

produce their scenarios quickly and smoothly.

6.5.5 Level Construction & Usability

Table 6.5 shows the distribution of construction time for the surveys-only group, and

Table 6.10 shows the times for the full population. These distributions are visualized

in Figures 6.7b and 6.14b respectively. The observed distribution of usage for each

feature can be found in Figure 6.8 for the surveys-only PlayTIME activity, Figure 6.9

for the Unity activity, and Figure 6.15 for the full population's PlayTIME activity.

For PlayTIME, the overall average construction time was 9:41 for the surveys-only

group, and 8:28 for the full population. For Unity, the overall average construction

time was 7:31. Since construction time scaled with activity time, the e�ects of condi-

tion and order and reasons are similar to those described above regarding the overall

activity time. This is also indicated by the similar KW p-values: 0.02149 for all par-

ticipants regarding condition, 0.00194 indicating high signi�cance in the P-�rst group

only, and no signi�cance in the U-�rst group.

The construction time all together was the time spent completing speci�c tasks by

using the systems' features. The performance for each task was evaluated in terms of

the time spent using these features: the features were used correctly ("correct usage");

the users made errors while using the features, indicating struggle ("user error"); the

users paused while using features ("feature idle"); or the system's limitations caused

a problem that was not entirely the user's fault ("system error").

131

Error Users Count Time Average Average
occur/user time/occur

Nav. to wrong folder 6 7 7.5s 1 1.07s
Drag or place wrong asset 6 8 25.5s 1 3.19s
Try to add AI, miss target 2 4 9.5s 2 2.38s
Selected wrong object 4 13 16.5s 3 1.27s
Missed movement arrow 2 2 2s 1 1s
Move with wrong arrow 2 4 17s 2 4.25s
Try AI on selected spi. 10 15 61.5s 1 4.1s

Table 6.15: A small sample of errors that occurred, demonstrating the mouse's sus-
ceptibility to Fitts's law. The times shown here are approximated to half of a second.

One of the key di�erences between the activities, and the reason why "feature

idle" was so common in PlayTIME is that with that system users can do multiple

things simultaneously. In contrast, while using the mouse in Unity's editor only one

thing can possibly be happening at any point in time. This is where the term "feature

idle" comes from: with the mouse, users would have short pauses while completing

a task, but with PlayTIME a user could pause by passively leaving a marker on the

desk and actively complete another task using another marker. This was commonly

seen while panning the camera; for example, a bunch of spiders were being placed in

one area and the marker remained visible while the user panned to another area to

continue placing spiders without removing the spider marker (exact occurrences of

this not tracked).

Performance was analysed on a basis of which features were visibly being used at

any point in time. That being said, PlayTIME markers that were "paused" but still

visible heavily contributed to the feature idle statistics.

Here we discuss the breakdown of the construction time and look at the individual

features used to complete the activity and how they di�ered between PlayTIME and

Unity, with speci�c and important system usages, confusions or errors discussed in

detail. We also discuss how the observed issues relate to Nielsen's usability heuristics

and Fitts's law.

Fitts's Law

A small sample of errors that occurred, summarized by frequency in Table 6.15,

demonstrate that the mouse was frequently susceptible to Fitts's law [49], which

describes the time needed to reach a target as a function of the distance to and size of

132

the target. Note that the times shown here do not include the time spent correcting

the mistakes.

One common example was when users tried to navigate through folders and click-

ing on the wrong one, requiring the user to return to the parent folder or try again.

This happened a total of 7 times over 6 users, costing an average of 1.07s per occur-

rence. A similar error occurred while placing objects: selecting or dragging the wrong

prefab from the assets window. This happened 8 times over 6 users, averaging 3.19s

per occurrence. Clicking on the wrong object while selecting was also an issue: this

happened 13 times over 4 participants at 1.27s/occ.

The observance of Fitts's law with the individual features is discussed below.

Object Placement

The process of placing objects using PlayTIME AR paddles is easy: users just show

the marker they want to place, where they want to place it, and press the C-button

to place the object. It is even easier with the mouse: click on the object in the assets

panel and drag it into the scene. The object placement categories had the highest

ease of use ratings for the PlayTIME activity, with spiders having the highest ratings

across all participants (M=6, SD=1.049). For the Unity activity, spiders also had

the leading placement ratings (M=6.65, SD=0.572), but were second-highest overall

after selection. Figures 6.8 and 6.9 show that the average time spent correctly placing

objects with PlayTIME was 88% in PlayTIME and 96% with Unity alone. The times

spent making mistakes while placing were 1.7% and 2.5% respectively. These numbers

perfectly validate the high ease of use ratings.

This is interesting because it is consistent with the highly-rated importance of

object placement in the demographics questionnaire (N=17, M= 4.176, SD=0.706;

see Figure 5.11). Furthermore, object placement had the highest average time con-

sumption across all groups, with an average of 3:46 for PlayTIME and 2:03 for Unity.

Even in the context of the activity as a whole, we can see in Figure 6.7b that the over-

all time spent placing objects was around 34% for PlayTIME2 and around 29% for

Unity3. The di�erences were found signi�cant by the KW p-values in the surveys-only

group alone: 1.92e-5 overall, 0.0005041 within P-�rst and 0.02334 within U-�rst.

The fact that the most time was spent placing objects shows that participants

focused the most on setting up the interactive objects within the world. This is

important to the domain of prototyping because it directly relates to some of the

questions we should consider early when building a game prototype: How is the en-

2PlayTIME feature percentages are normalized to show relativity to the other tasks only.
3Unity feature times are not normalized since only one thing happened at a time in Unity.

133

Figure 6.20: Since the keyboard was not allowed, users had to delete objects via the
edit menu.

vironment set up? Where should objects go? How will this a�ect the environment?

Since this was a spatial task it was nice to see that people were generally concerned

about where things were located in space. Users spent the most time getting com-

fortable with their interactive objects, the enemies, and ensuring the game would be

winnable.

An interesting note about placement: PlayTIME markers a�ord rotation while

objects are being placed, but Unity does not. We restricted the ability to rotate

objects so it would be one less variable to worry about. Two users tried to use

Unity's rotation tool, which is entirely di�erent from movement and placement, but

they were told not to because PlayTIME did not allow rotation once objects were

placed. The rotation should have been locked for PlayTIME as well; it did not appear

to be a signi�cant factor in the placement times but there were a few who did spend

a few seconds getting the rotation correct. There are no de�nite numbers to re�ect

this; it is just an observation

Object Deletion

Furthermore, once objects were placed, users felt little to no need to remove them

from the world. With PlayTIME, 15 users in the surveys-only group spent an overall

average of 14.57 seconds deleting objects, and 29 users in the full population spent

an overall average of 12.97 seconds deleting objects. In Unity the average was 13.31

seconds. Despite the numbers being close together, they were still signi�cantly di�er-

ent: the overall KW p-value was 0.0009665 for surveys-only and 0.01228 for the full

population. This is interesting because it shows that users were much more interested

in adding to the world instead of taking away from it. The objects that were deleted

were often the ones that were placed accidentally by double clicking the C button.

134

There were a total of 9 ways to commit this type of error, 3 for each object placement

marker: the C button was occluded intentionally a second time while the marker was

showing; the placement marker itself was occluded and then moved; or the C button

was occluded accidentally while the marker was showing. Of the 40 samples analysed,

11 users visibly experienced at least one of these errors.

In Unity, deletion without the delete key consisted of a single option in the edit

menu, pictured in Figure 6.20. They were not allowed to delete objects through the

hierarchy since we ultimately decided it would be too hard to read for inexperienced

users; plus, deletion through the edit menu is a standard in all kinds of software,

which increases familiarity. Only 7 people used deletion in Unity; nobody in the

P-�rst group committed any errors and the average error time in U-�rst was 3.29

seconds, or about 12% of their entire time deleting. Surprisingly, deletion received

the second-lowest ease of use ratings, averaging 5.47 (SD=1.036).

In PlayTIME, users were often confused by the process of deletion. To delete an

object, users had to �rst select the marker they wanted to delete using the selection

wand, then show the marker representing that object (e.g. spider), and then occlude

the B button to delete the object. This is not intuitive since with Unity a user only

has to select the object and then delete it in the menu, or simply tap the delete key

if the keyboard is being used. While trying to delete, the intuitive response was just

to press the B button without showing the object marker they were trying to remove.

This was counted as an error since it was not the correct way to delete, but users

just did not think it had worked and often proceeded to try again, thus accumulating

error time. After a few tries they were reminded that they needed to show the correct

object marker. This mistake was made by 18 users. This is why the percentages for

deletion error are so high for PlayTIME: 23% overall for surveys-only and about 35%

for the full population. The complications here justify deletion having the lowest ease

of use ratings for PlayTIME, averaging 4.687 (SD=1.261).

Selection

Selection was rated the highest overall for the Unity activity (M=6.75, SD=0.433).

For PlayTIME, selection had relatively lower ratings (M=5.35, SD=1.492), with de-

selection having slightly higher ratings (M=5.6, SD=1.497). Selection in Unity was

done correctly 94% of the time. PlayTIME users had an average of 91% correct

actions with selection.

Selection with the mouse had the highest rating and time used correctly likely

because is exactly the type of action we are very familiar with. We are most practised

135

with this because it is the mouse's primary purpose: it is a means of interacting with

a virtual pointer, the cursor, by using our hand. Whenever something needs doing, we

simply push the mouse across the desk, which moves the cursor towards the desired

location, and we click when are pointing at the right object. This is the staple of

every component of every graphical interface: text boxes, radio buttons, web links,

etc. all require a selection by pointing and clicking to trigger an interaction.

With PlayTIME, the 'pointer' equivalent is a red collision box within the editor,

and its interface was the Selection Wand marker; unlike a cursor, the red box only

becomes visible when the selection marker is active. Moving the tangible marker

causes the virtual red box to move, just as the mouse does with the cursor. The

di�erence between the interfaces occurs when the pointer collides with the virtual ob-

ject to be selected: with the selection marker, selection occurs upon collision, whereas

the mouse requires a click once the pointer is over the object. With PlayTIME, this

'click' gesture is automatic; the user is not required to do anything once the marker

aligns with the object. This slight di�erence was the source of much confusion for

participants who associated the act of clicking to select with using the C marker to

select: 7 out of 40 people did this an average of 2 times each. Similarly, 15 of 40

participants tried to con�rm manipulation an average of 2 times each, and 7 tried to

con�rm movement an average of 2 times each, where neither of these con�rmations

were required.

PlayTIME tried to optimize things like selection by not requiring that 'click' of

the C button, but in the process made things confusing for users and wasted time.

Users spent an overall average of 2:19 waving PlayTIME's selection wand and only 47

seconds to simply click on things in Unity. This is justi�ed by the highly signi�cant

e�ect that the condition had on selection time on all groups : looking at Group 2 alone

in Table 6.7, the KW test found a p-value of less than one hundred-thousandth for the

whole population, less than one thousandth for P-�rst and less than one hundredth for

U-�rst. For the full population in Table 6.7 we see that the KW test returned even

smaller p-values. In both cases, even the selection features' normalized percentage

of construction time were heavily a�ected by condition. Due to the shockingly low

numbers, these tests were double-checked and returned the same results. This is

a clear indication that the use of the selection features was most certainly di�erent

between the conditions. Regarding the e�ect of condition, selection had the lowest set

of p-values thereby making it the most signi�cantly-di�erent feature. Order did not

have any explicitly signi�cant e�ects on selection, but the same explanation regarding

136

(a) Selection marker (b) Multiple selection in Unity, which was
not allowed

Figure 6.21: The paddle icon for selection was based on the multi-select feature in
Unity, which participants were told not to use.

the di�erences between the �rst and second activity shows that there was an implicit

e�ect.

The di�erence in how the selection methods work is also the reason why Play-

TIME's C button was categorized as an "other" feature along with mouse clicks;

they technically have the same meaning but are used di�erently in the activities and

therefore cannot be compared fairly. As seen in Figure 6.11, the overall average distri-

bution of click actions was 91.142% correct clicks, 4.223% incorrect clicks, and 4.635%

extra clicks, out of an average of 177 total click actions. A single "click action" is

de�ned here as any type of click: left-click, double-click, middle-click or right-click.

Multiple Selections

There was a problem with how users were permitted to use Unity's selection feature.

With PlayTIME, the marker behaved as a wand, so that "waving" the virtual pointer

over an object would select it without having to click. Since users were required to

click on an object in the Unity activity, it means the equivalent of the "waving"

gesture was unavailable: multiple selection, pictured in Figure 6.21b, was triggered

by clicking away from the object and moving cursor diagonally, creating a rectangular

selection within which any object would be selected. This is exactly what the selection

AR paddle's icon depicts (Figure 6.21a).

This goes back to the consistency heuristic: the icon on the marker described

that it was used to simulate the click-and-drag action, yet when it came to selecting

137

(a) A close-up of the manipulation in-
dicator in PlayTIME.

(b) A close-up of the manipulation in-
dicator in Unity.

Figure 6.22: In this view, the manipulation marker is used to change the attack radius
of multiple spiders.

with the mouse they were only allowed to click. This was a poor decision for the

study design. Users reported that batch actions, such as applying AI to multiple

enemies, were more helpful in PlayTIME, however this is a biased result since Unity

was restricted.

Adding & Manipulating AI Behaviour

For selection and AI attachment, the targets were the objects in the scene, so the

ability to select and apply AI correctly was hindered by the size of the object. Un-

fortunately this could not be �xed since all participants were required to keep the

camera at a �xed distance, meaning the objects would always appear to be the same

size.

A frustrating issue was that in Unity the AI behaviour could not be applied to

a spider that was already selected; this is a silly caveat with Unity, but it was still

counted as a user error since they were told at the start that this would happen and

that they needed to deselect before applying AI. This occurred a total of 15 times

over 10 participants, costing an average of 4.1s/occ. It resulted in users trying to

repeat the action, thinking they had missed the target spider when they had not.

Actually having missed the target spider while placing AI only occurred 4 times over

2 users, averaging 2.38s/occ.

Manipulation received the second-lowest ease of use ratings for PlayTIME: the

overall average was 4.95 (SD=1.396). The Unity ratings were a fair bit higher, aver-

aging 5.8 (SD=0.98). This is interesting because the feature was built to re�ect the

way it is done in Unity, which is a slider. In Unity, participants clicked on the attack

radius property, pictured close-up in Figure 6.22a, and moved the cursor left and

right to change the value. Similarly with PlayTIME, when the manipulation marker

138

appeared, a box was displayed in the centre of the display, seen in Figure 6.22b, and

in the editor in Figure E.7. Moving the marker left and right within this box changed

the attack radius. Furthermore, this could be done with multiple spiders selected,

whereas Unity objects could only be manipulated one at a time.

Panning the Camera

Panning the camera was treated di�erently between the conditions. In Unity, middle

clicking and dragging would o�set the camera along the axis of the cursor's movement.

This only worked for a short distance and so the action had to be repeated some 5 or

so times to get the camera from place to place.

Since PlayTIME did not have a notion of click-and-drag, we treated the camera

marker like a joystick. When the camera marker was visible, the centre of the screen

was the default position; moving the marker in some direction away from the centre

would cause the camera to pan in that direction, just as a controller joystick has an

e�ect on movement in a similar fashion.

For PlayTIME, panning had the fourth-lowest ease of use average rating: 5.25

(SD=1.639). Panning had the lowest ratings for Unity: 5.35 (SD=1.458). There was

a fair amount of feedback regarding panning for both systems. A couple of users said

that they enjoyed PlayTIME's method of panning:

"PlayTIME pros: Camera pan (much faster and smoother)... Mouse

cons: Poor camera pan- it took forever to get places, and I don't enjoy

that." - Participant 34-P

"PlayTIME was very fun to use as it made it much easier to move the

camera around quickly." - Participant 37-U

There were some who explicitly did not enjoy it:

"I �nd panning in PlayTime to be rather di�cult, and it takes a while

to get used to. Moreover, it requires that you readjust when you are out

of the �eld of view of the [AR detection] camera, which I was not paying

much attention to." - Participant 33-P

Participant 49-U just used point-form, implying that PlayTIME's camera movement

was too sensitive.

PlayTIME's approach to camera panning was interesting to try, but it would not

be practical in 3D situations; this activity was constrained to two dimensions. This

will be very important when developing future systems, such as FilmTIME, where

139

(a) Unity's move tool from a top-down
view. The green arrow is pointing at the
'plane' tool, an alternative way to move
objects.

(b) In this example, the depth-axis move-
ment arrow was visible due to the per-
spective; it was unintentionally selected
instead of the red arrow.

Figure 6.23: Use-cases with Unity's move tool. Participants were restricted to the
red arrow for horizontal movement and the blue arrow for vertical movement.

tangibles will play a part in 3D �lm and animation production and cinematography

techniques. For this application it would be more practical to have a panning tool

that can be precisely tracked in 3D, such as a physical camera with motion capture

nodes attached to it.

Moving Objects

Unity's move tool was used correctly by clicking on one of two tiny arrows (red for

horizontal or blue for vertical movement). A the third movement arrow along the

depth axis (yellow when clicked) was still visible and often got in the way, as seen in

Figure 6.23b. The depth axis becomes visible when an object is closer to the edge

of the work area; since the scene was viewed in perspective, it the incorrect arrow

would appear in front of the intended one and cause an incorrect click. The depth

axis movement was accidentally used 4 times by 2 participants and cost a total of

4.25s/occ. Objects were moved into "the abyss," requiring a correction. Also, 2 users

completely missed the movement arrows, clicking on something entirely di�erent. An

alternative movement was attempted by 3 users: they tried to use another method of

movement which provided a larger target to activate movement seen in Figure 6.23a.

The move tool in Unity demonstrates Fitts's law since the targets the users were

instructed to use for movement were very small.

Movement in Unity di�ers from PlayTIME's move tool. In Unity a user knew

exactly which object would be moved. With PlayTIME, however, users often left

140

(a) The asset folders pre-
sented to users during the
Unity activity. The blue
ribbon shows the height of
the target for selection.

(b) The way it should have been, with everything in one folder
and large, clear icons and a simple label instead of just one
long, ambiguous line of text.

Figure 6.24: A comparison between the asset layout during the Unity activity and
what could have been done to prevent errors.

objects selected in o�-screen areas before using the move tool, which would result in

additional, unintended objects to be moved. Sometimes those objects were pushed

through the �oor or inside a wall, where they would never be accessible. Unfortunately

the exact occurrences of this �aw could not be recorded since it was an o�-screen error;

users only noticed when previewing and �nding they did not have enough enemies for

the level to be winnable.

Movement had the third-lowest ease of use rating for Unity, averaging 5.75 (SD=

1.135), which was still higher than the average rating for PlayTIME, 5.412 (SD=

1.457). Of all the participants, 18 used movement in Unity and used it for an average

of 46.7s, where only 11 from that group used movement in PlayTIME for an average

of 43.1s, and 21 users overall for an average of 33.5s.

Folder Navigation (Unity)

The Unity activity's "other" feature was navigation through the asset folders in Unity,

which was more di�cult than it needed to be, despite the high ease of use ratings

(M=6, SD=1.095). The time distribution for the navigation feature in Figure 6.12

shows that the average time spent navigating correctly was 94.556%, and 5.444%

spent navigating incorrectly.

The only reason why the navigation feature was used is because the placeable

objects had been previously sorted into their own folder and the AI behaviour had

its own folder. Figure 6.24a shows the way assets were presented to users in Unity,

divided into three folders that had to be navigated. To select an asset to be placed,

the target was a narrow ribbon only the height of the asset's name. Participants

141

had to �rst navigate through the parent folder, "Study," to reach assets stored in

"Prefabs" and "Scripts." Figure 6.24b shows an alternate way that assets should be

organized for this activity, using large, clearly identi�able icons.

Having everything in one place would be similar to how PlayTIME stores its

"assets:" the paddles representing the placeable objects and the AI behaviour were

located in one place: the desk. The user just had to pick the paddle they needed and

put it in the camera's view to make it work, whereas with Unity alone the placement

objects had to be navigated to before they could be placed. The alternative for Unity's

asset organization described above would present users with large, clear icons, labelled

with the simple yet descriptive name of the object, instead of a long, confusing name

with a blue square. Not only do the large icons prevent target issues with Fitts's

law, but they also agree with more of Nielsen's heuristics: using the same icons for

both systems would mean the users had consistency and standards they could adhere

to. Although the current AR markers show similar graphics, they would need to

be exactly the same for consistency. Having the same icons for both systems would

support recognition since they would be used to seeing the same icons repeatedly.

Furthermore, it supports the visibility of system status heuristic because it would

prevent users from having to focus on the names of the assets, as in Figure 6.24a,

when they could just see a picture of what it is they want to use and immediately

know it will work. All of these together give us easier prevention of errors.

6.5.6 Creativity Support & Preference

CSI Discussion

The Creativity Support Index (CSI) questionnaire was designed to describe how well

a system supports one or more of six creativity-related metrics: collaboration, enjoy-

ment, exploration, expressiveness, immersion and results worth e�ort. A higher score

indicates that at least one area of creativity is supported very well.

The average overall CSI score for the PlayTIME activity is 70.125 (SD= 17.819),

and for the Unity activity the average is 74.925 (SD=14.471). CSI scores map nicely

to letter-grades [8]; in this respect, PlayTIME earned a B- whereas Unity earned a B.

None of the statistical tests found any signi�cant e�ects for these results (Table 6.3);

the responses were generally balanced, but it is notable that PlayTIME was deemed

to be less creative than Unity on its own. This may be because several of the users

already had experience with Unity, again bringing us back to familiarity of not only

the mouse but also the software.

142

One CSI question pertaining to enjoyment, "I enjoyed using the system," received

the highest rating across all participants (M=5.85, SD=1.014), the highest rating in

the P-�rst group (M=6.1, SD=0.7), and very nearly the highest rating in the U-�rst

group (M=5.6, SD=1.2). After the ratings, the second part of the CSI questionnaire

was a direct preference question, comparing each of the 6 CSI metrics with each other.

The ratings are weighted by the number of times each of these is picked, meaning a

metric that was picked fewer times will reduce the impact of the ratings pertaining

to that metric. The average number of times enjoyment was picked over the other

CSI metrics was 3 for PlayTIME and 2 for Unity. In the feedback questions, 14

participants explicitly stated they enjoyed using PlayTIME over Unity alone. There

were 4 people who enjoyed both systems without preference. Of all the participants

who enjoyed PlayTIME, 7 cited the main reason as the novelty of the experience and

using a new system with an unfamiliar technology (AR).

The high prevalence of enjoyment indicates that PlayTIME was indeed a fun

and new experience for people, agreeing with their emotional responses from the

PANAS questionnaires. The other metrics that had high ratings and preferences

were exploration (M=3) and results worth e�ort (M=3). Together, these imply that

participants also enjoyed discovering what the features were capable of helping them

create, and in the end felt that the tool helped them get what they wanted out of the

activity.

Despite the feedback, the preference question in the post-study questionnaire

shows that people leaned towards the mouse. Just because the users thought the

mouse was more appropriate for certain features, this should not hinder the value

of the experience they had while using the PlayTIME system as a whole, which is

the point of the CSI questionnaire and feedback. Therefore it should be noted that

the preference ratings are re�ective of the individual features of each system and this

should not take away from the meaning of the CSI results and feedback.

Participant 45-P summarized the experience and creativity very nicely:

"It was far more interesting to be using technologies that I'd never used

before, whereas I am almost always using just a mouse and keyboard, or

as in this case, a mouse alone. The mouse, however, is something that

everyone already knows how to use, but lacks the immersion and level of

creativity. In an industry that relies on creativity, I feel that the PlayTIME

tiles would de�nitely make for a great experience in the game development,

animation, game programming, etc. industry. I am a strong believer in

being able to do work e�ectively and have fun doing it; this is proof as far

143

as I'm concerned... It took me probably twice as long to complete the task

with tiles just because I was having fun doing it."

- Participant 45-P

Since we are also interested in fostering collaboration with PlayTIME, we should

be concerned with the collaboration metric of the CSI. On average, PlayTIME scored

slightly lower than Unity on one collaboration question and slightly higher on the

other, with the exact same preference counts. On the �rst question, "The system

would allow other people to work with me easily," PlayTIME averaged 4.7 (SD=1.873)

whereas Unity averaged 4.8 (SD=1.249). On the second question, "It would be really

easy to share ideas and designs with other people using this system," PlayTIME

scored 5.2 (SD=1.503) whereas Unity scored an average of 5 (SD=1.549). These

mixed results show that users did not believe there was a di�erence between the

collaborative potential of PlayTIME and Unity.

This is surprising because Unity, by nature, follows traditional computer-based

design and development techniques; it can only have one operator per-computer at

any given point in time, and resources are not instantly shared. On the other hand,

PlayTIME has a collection of objects that multiple people could physically use simul-

taneously. One possible reason for this lack of collaborative interest by participants is

that they were not collaborating during the experiment; perhaps if the task had been

done in pairs, they would have realized the bene�ts of collaboration and PlayTIME

may have received higher ratings for this metric.

Scenes & Task Deviation

Interestingly, the scenes themselves did not tell us much about creativity as antici-

pated. The Manhattan scores for each activity were similar enough that no statistical

signi�cance was found. As well, many of the scenes stuck to the exact task descrip-

tion with zero deviations: 10 out of 50 for PlayTIME and 14 out of 50 for Unity.

Table 6.13 shows the complete distribution of objects for all scenes. The most fre-

quent deviation from the instructions was placing extra spiders in reachable areas

that were not labelled on the map. Simply placing an extra enemy anywhere would

only earn one point since there was no removal involved. The placement of extra

enemies was supported by the second-most frequent action: removing spiders from

the main room of the level (and less frequently other areas) to have them re-placed in

other areas. An combined action such as this would earn two points in the Manhattan

score: one for taking an enemy out of a speci�ed area, and another for placing an

extra one in an unspeci�ed area.

144

Figure 6.25: The average Manhattan scores for both activities, for each participant
group, for both the surveys-only population (surv.) and the full population (all).

Aside from the zones or areas that were given to the participants as guidelines,

the level was �lled with speci�c locations to place their objects. The task description

provided at the start was merely a guideline to make the level winnable, meaning

they would have enough enemies to complete the objective that we had built into

the game project. To name a few examples: the patio, near where the game started

up, had many crates behind which enemies could be hiding. In the main room of

the level, spiders blended in well with the plants that were placed there already. On

the balcony, the last area visited by the player, spiders could hide behind barrels.

There were many di�erent outcomes (100 to be exact), so there would be too much

to describe here.

It is also notable that the scene analysis for a population size of 20, Group 2

alone, against the full population size of 50, yielded signi�cantly di�erent p-values

(KW p=0.03263, MWW p=0.03505; see Table E.2).

Figure 6.25 shows us that the overall Manhattan score averages were quite dif-

ferent: the average scores for Group 2 alone were 5.025 for PlayTIME and 4.95 for

Unity, and the averages across all 50 participants were much lower, 3.11 for Play-

TIME and 3 for Unity. This tells us that, despite the population of 50 including the

sub-population of 20, adding the extra 30 Manhattan scores to the mix had a very

noticeable e�ect on the results.

The p-values for both populations showed that neither condition nor order had a

signi�cant e�ect on the results, but by comparing the values in Tables 6.9 and 6.14

145

we can see that the e�ects were simply greater and therefore more signi�cant in the

full population of Groups 1 and 2.

Regardless of population size, as discussed earlier, most people had shorter run

times during their second activity because they had already done the activity. Looking

at Figure 6.25 we see that the higher averages occurred in whichever activity was

done �rst. It is still interesting that the statistical tests did not �nd signi�cance

in the activity order because of this. The reason is likely due to the high standard

deviations, indicating that, despite the averages having a clear di�erence, there was

a high overlap in the raw data. It is possible for the second activity, participants had

tried to complete it as fast as possible, strictly adhering to the task they were given

and therefore reducing their Manhattan score.

6.6 Summary

6.6.1 Usability

Statistical analysis of the CSUQ results for each condition revealed that using Play-

TIME over Unity did have a statistically signi�cant e�ect, however this e�ect was

not in PlayTIME's favour, thereby rejecting our �rst pair of hypotheses pertaining

to usability. Investigating the screen capture videos for performance, we found that

users generally took extremely signi�cantly longer to accomplish tasks.

Since we are developing PlayTIME as a starting point for other tangible-based

scenario development tools, it is important to acknowledge the limitations of the

current implementation. Some issues arising from the technology used, augmented

reality with �duciary markers, also caused errors and di�culties for the users. Play-

TIME also presented clear violations of important usability guidelines, Nielsen's ten

usability heuristics that have much room for improvement. Most notably, it must be

better at preventing user errors.

Regarding ease of use and preference, the statistics and participants' feedback

generally agreed that the mouse was easier to use simply because it is more familiar.

This is not just within the context of Unity or scenario design; it is applicable to

all computer and software-related disciplines and it is a fact we see daily: nothing is

simpler than the mouse.

6.6.2 Creativity

We also had some insight into PlayTIME's creative potential. The statistical tests did

not �nd any signi�cant e�ects by condition on CSI scores. Similarly, the Manhattan

146

scores used to quantify deviations from the assigned task also yielded no signi�cant

di�erences. Therefore we must also reject our second pair of hypotheses pertaining

to creativity.

We learned that users did not believe PlayTIME was more collaborative than

Unity, despite its a�ordances to stray away from traditional design methods. We also

learned that there were more bugs in PlayTIME which explicitly prevented users from

making creative choices; hindering creativity is another reason why �xing usability

issues is the priority.

6.6.3 Enjoyment & Fun

The PANAS results yielded statistically signi�cant results. Both the condition and

the activity order had e�ects on the participants' positive a�ect scores, showing that

their positive emotions consistently improved through the PlayTIME activity. From

the CSI we learned that PlayTIME also received higher scores on one of the two

enjoyability metrics. Furthermore, of the 20 participants who provided feedback,

14 explicitly stated that they enjoyed PlayTIME over Unity because they felt it

was a novel experience. Another 4 participants were indi�erent. There were also

participants who stated that PlayTIME felt more like play than work, indicating

some potential to achieve the goal playful design.

This evidence gives us just cause to validate our hypotheses pertaining to en-

joyability. PlayTIME has succeeded in providing people with a guide for building a

scenario development tool that makes digital prototyping an enjoyable, fun experience

that supported the exploration of ideas and the system itself.

6.6.4 Conclusion

By running this study, we saw how the PlayTIME system, currently an AR-based

extension for Unity's editor, compared against Unity on its own. A variety of ques-

tionnaires presented us with qualitative data about the systems' usability, creative

potential, as well as enjoyability and emotional response. We discovered that the sys-

tems themselves had major performance di�erences, signi�cantly di�erent emotional

responses, and similar creative potential.

Chapter 7 ties the results of this study into the original expectations, and presents

considerations for future development of PlayTIME and related systems.

147

Chapter 7

Conclusions

7.1 Hypotheses

Here we revisit the hypotheses introduced in Chapter 1. Each hypothesis is accepted

or rejected based on the results presented in sections 6.3 and 6.4, and the factors

discussed in section 6.5.

Recall that a "statistically signi�cant" e�ect is de�ned as having the Kruskal-

Wallis, Wilcoxon signed-rank or Mann-Whitney-Wilcoxon tests return a p-value less

than 0.05. Here, p-values less than 0.01 are referred to as "highly signi�cant," and

p-values less than 0.001 are referred to as "extremely signi�cant."

1. Usability:

Hypothesis: The use of PlayTIME will have a signi�cant e�ect on the perfor-

mance of the developers completing the assigned task.

This hypothesis must be accepted due to the following evidence:

(a) The use of PlayTIME (changing the activity condition or system) had a

statistically signi�cant e�ect on the qualitative CSUQ results speci�cally

pertaining to the system usability factor (Table 6.2).

(b) The use of PlayTIME had a statistically signi�cant e�ect on the ease of

use questionnaires comparing the tangible interface used with each system

(Table 6.4).

(c) The use of PlayTIME had statistically signi�cant e�ects on some areas of

overall activity performance and feature-wise performance, highly signi�-

cant e�ects on several other areas and extremely signi�cant e�ects on other

areas, some of which are irrevocable due to p-values of approximately zero

(tables 6.6, 6.7, 6.11 and 6.12).

148

(d) The performance values and �gures throughout sections 6.3.4 and 6.4.1

show clear di�erences between the conditions.

Hypothesis: This e�ect will be in PlayTIME's favour.

This hypothesis must be rejected on the grounds that the overall CSUQ scores

were lower, the ease of use scores were lower, and performance was overall slower

for PlayTIME with more errors.

2. Creativity:

Hypothesis: The use of PlayTIME will have a signi�cant e�ect on users' creative

output.

This hypothesis must be rejected due to the following evidence:

(a) No statistically signi�cant e�ects found on the CSI results between the

conditions (Table 6.3).

(b) No statistically signi�cant e�ects found on the scenes, which were the

output of each activity, between the conditions (tables 6.9 and 6.14).

Hypothesis: This e�ect will be in PlayTIME's favour.

This hypothesis must be rejected on the grounds that it is dependent on the

�rst hypothesis being accepted.

3. Enjoyment and fun:

Hypothesis: The use of PlayTIME will have a signi�cant e�ect on users' emo-

tions and will positively a�ect users' enjoyment of the activity.

This hypothesis must be accepted due to the following evidence:

(a) The use of PlayTIME had a statistically signi�cant e�ect on the positive

a�ect through condition metric from the PANAS results (Table 6.1).

(b) The order of the activities had a statistically signi�cant e�ect on the same

metric, as visualized in Figure 6.2.

(c) Of the CSI metrics, enjoyment received the highest ratings for PlayTIME.

Hypothesis: This e�ect will be in PlayTIME's favour.

This hypothesis must be accepted on the grounds that the impact the system

had on emotions was clearly in PlayTIME's favour, and the feedback regarding

enjoyment was generally positive.

149

7.1.1 Discussion of Hypotheses

PlayTIME most certainly had an e�ect on the usability and performance. Unfortu-

nately this e�ect was not in PlayTIME's favour. The CSUQ scores were lower overall,

most noticeably on the system usability metric. The post-study ease of use question-

naire also yielded lower results for PlayTIME. Furthermore, almost everything was

more time consuming with PlayTIME and it yielded more errors overall.

What we learned from the usability ratings and the performance statistics can help

future renditions of PlayTIME and other technologies. Most importantly, Nielsen's

heuristics, which are model metrics in HCI, must be upheld; of all of them the biggest

violation was on error prevention.

The rejection of the second hypothesis is not at all bad news. It does not neces-

sarily mean that PlayTIME was to blame for hindering creativity. As discussed in

section 6.5.6, it was more likely an issue of the activity design. The task description

was too speci�c and had participants believe they they were strict. A more open

study design would be more appropriate in a future study to foster creativity.

Even if the creativity e�ect hypothesis had been accepted, the next would have

been rejected anyway since it was hard to di�erentiate which system produced higher

scores and by how much. The averages for both CSI and scene analyses were similar

for both systems.

With respect to the �nal hypotheses, it was very interesting to see that PlayTIME

had such a great e�ect on the positive emotions of participants. On average PlayTIME

always increased positive a�ect scores, while Unity alone only had this e�ect on those

who used Unity �rst. In the feedback, 14 of 20 participants preferred using PlayTIME

over Unity alone, and 4 others had no preference, meaning they did not dislike it.

Several users cited that it was a novel and playful experience. This means that the

hypothesis can be con�dently accepted in PlayTIME's favour.

7.2 Limitations & Future Work

The current version of PlayTIME proved to be a worthwhile creation. Looking at

what participants did with the system they were given, they happily managed to

accomplish their goals. Albeit the goals were given to them, they still completed a

valid task using a novel tangible interface to operate the system.

7.2.1 Augmented Reality

One of the caveats of using �fteen-year-old software is that it is �fteen years old. AR-

ToolKit was developed in 1999 and has scarcely been maintained. Fiduciary marker

150

technology is de�nitely well-known, and it paved the way for other tracking tech-

nologies used for AR, but to use a primitive framework was probably not the wisest

choice.

Primarily, ARToolKit's �duciary marker detection is extremely sensitive. Di�er-

ent lighting can change the response of the system, so it was a good call to add a quick

way to interface with ARToolKit's threshold value directly through Unity's editor;

this allowed us to adjust the sensitivity to light when needed. Another sensitivity

issue: during the evaluation study, so much as a �ngertip would throw o� detection.

As participants became frustrated when PlayTIME did not show the marker they

were trying to place, they were reminded countless times that their �nger was in the

way. This was not only annoying for the participants, but it was also tiresome to

watch it happen frequently. This should not have been an issue from the start; a

more reliable technology is needed.

My recommendation for future TIME products is to not use primitive AR tech-

nologies, namely ARToolKit. Other AR software development kits, including Qual-

comm's Vuforia [109] and Metaio [110], exhibit similar functionalities but are more

stable and kept up-to-date. Other tracking can be used for spatial awareness, such as

PTAM, with entirely di�erent methods of tracking speci�c objects. Motion capture

could be used to track the positions and orientations of tangible objects, which could

be made of basically anything the designer should choose. QR codes could then be

used to carry the actual data of the game world between stations.A potential issue

with this is that motion capture requires a �xed designated space, so this must be

accounted for when developing work stations: the tracking stays where it is. An

alternative for tabletop-based activities would be RFID tags, which rely on direct

electronic signals. One small drawback is that RFID tags require a contact surface.

7.2.2 Studies & User Evaluations

Here are some ways that future implementations learn from the current PlayTIME

for better evaluations:

1. The study should not have required each participant to do the activity twice,

once for each condition. In other words, the study should follow a between-subjects

design. It is clear that the �rst activity had a direct impact on the second, since all

participants reported that directly and a lot of statistical tests found signi�cance in

the order. More importantly, this would minimize the amount of data. The study

described in Chapter 5 obviously presented far too much data, given that 50 people

each ran two activities. A between-subjects design would reduce the amount of data

151

by over 50% and the required analysis by upwards of 80%. 50% is immediately reduced

since each participant only runs one activity. This also means only having one set

of comparisons instead of �ve: All PlayTIME vs. All Other system, as opposed

to that for all participants and each group, and comparisons to �nd the e�ect of

order. Furthermore, there would be no need for a post-study questionnaire because

participants would not have any comparison.

2. To better the e�ect of a between-subjects design, all participants should

have exceptionally similar expertise and background experience to reduce

the discrepancies in con�dence that may in�uence the results. It would also balance

the results for each condition without having to worry about order to do that job.

Participants should preferably have no experience as professionals in scenario-driven

industries, such as �lm, animation or games. Younger people would be better for

this since they would presumably have no professional experience, and they are very

imaginative and proud of it.

3. A tool that helps with performance analysis is incredibly important. It has

not been reported at all yet, but there is an analysis tool integrated with the current

PlayTIME. It tracked the usages of the main features: placement, deletion, selection,

etc. Despite how much time was put into the tool and how much it could have helped,

there two big drawbacks: �rst, it was not automatic. When the PlayTIME plugin

was initialized, the metrics tool did not initialize with the rest of the system; it had to

be started separately. For a tool to be truly useful it should track equivalent actions

for both of the systems being compared; the current implementation only tracked

PlayTIME actions. Such a tool must be built into the development pipeline so that

it starts up automatically.

Furthermore, the metrics tool was only looking out for a few speci�c events. There

is no way it could have directly identi�ed all of the 130 PlayTIME events and the 80

Unity events that were observed. A metrics tool for both systems would help if it can

at least identify a handful of speci�c events. Knowing what happened is decent, but

having a system understand why these events happen and what they mean would be

incredible.

A metrics tool must be automatically integrated and have some knowledge about

the possible events that can occur and their meanings.

4. To reduce the number of possible events, largely populated by errors, it

would help to actually prevent the errors from happening in the �rst place, as per

the most-violated usability heuristic. Most of the system-related errors were because

of the AR, so changing the technology would be a start. From the user side, using

152

familiar and consistent icons and objects to represent what the tangibles' functions

are would help reduce the memory load for users, thereby enabling them to make

correct decisions and do it faster. The complete set of events, correct and incorrect,

can be found in Appendix D.3.

5. Pilot sessions are important and allow system errors to be identi�ed and

removed before gathering participants for the data population. I was worried about

losing potentially good data, so I only had two pilot sessions, neither of which helped

us identify potential issues. Especially if the target demographic is broadened to

people who have little to no experience in the �eld, or a more general audience. Future

studies should run as many pilots as are needed to eliminate frequently-repeatable

errors.

6. Instead of having only screen capture to record performance, it would also

help to include a video recording of the actual participants to see what they are doing

during the idle times. In his study, activity idle time gave the appearance that users

were not doing anything at all, however they may have been observed struggling

to locate the correct PlayTIME marker or taking notes. Furthermore, most of the

participants were silent while completing the activities, some only asking for help

upon repeatedly committing the same mistake. Audio recording should be analysed

and users should be encouraged to talk through their design processes; this could

also help identify areas of struggle if users are consistently vocal about what they are

trying to accomplish. The additional video and audio capture would provide more

evidence for or against the usability of the system.

7. Finally, the activities planned for studies like this one should do a better

job fostering creativity. We have seen that the CSI questionnaire here, which is an

absolutely brilliant way to measure the contributing factors of creativity, did not yield

any signi�cance. Furthermore, the scenes mostly matched the task description. The

participants likely felt they had to stick to "the rules" that were never really o�cial

and that hindered creativity.

A good starting point for a completely creative task is the one found in Chapter 3,

the TimeSplitters study. Contrary to the �nal study, the TimeSplitters study activity

was left very open. The resulting levels were so vastly di�erent there would be no

way to possibly assign them a score, such as the Manhattan distance method. The

TimeSplitters study had barely any constraints, only a few on the items that they

were and were not allowed to use, which was still a large number. There needs to be

a way to balance the constraints with creative freedom.

153

7.2.3 Future Evaluations

The lessons learned provide opportunity for future user evaluations of PlayTIME to

explore new directions in tangible prototyping. Here, I present three study concepts to

further investigate the e�ects of familiarity, study the factors that enhance enjoyment

of using the interface, and explore how di�erent demographics complete tasks with

PlayTIME.

Familiarity Study

For the study presented in this thesis, none of the participants had previously used

PlayTIME, but some had experience with a game engine. The average activity dura-

tion with PlayTIME was approximately 17 minutes for the participants who used it

�rst; they had experience with neither the system nor with the task they were given

to complete. With an expert who has had extensive experience and familiarity with

PlayTIME's interface, a control run of the study was completed in approximately 4

minutes.

Hypothesis: I hypothesise that familiarity would have a signi�cant impact

on performance. There is a noticeable di�erence between average activity time by

users with no experience with PlayTIME, and the completion time by a user with

experience and frequent use of the system.

Demographics: Participant groups may include people who have never used

PlayTIME, people who have been using it for a day, a week, and a month.

Metrics: The most applicable metric would be performance to measure how

the system is used by people with varying degrees of experience.

Method: A between-groups study design would investigate the performance

di�erences between sets of participants who have been practising and gaining expe-

rience with PlayTIME over di�erent windows of time, such as a week or a month.

Participants in each group could be assigned appropriate tasks to complete to become

accustomed to the system over time. A within-subjects study design with repeated

measures would be able to follow particular subjects as they learn and become more

familiar with the interface. This design would require participants to return for mul-

tiple sessions after the initial meeting to repeat the experiment and collect new data

each time.

Data to be collected would include screen and video capture for performance

analysis, and an interview or questionnaire asking about how often they practised

using the system over time, and the depth of their activities. Performance analysis

can also be used to compare the correct and incorrect usages of the system within

154

Potential Issues: A foreseeable di�culty with this study would be user reten-

tion. Motivation may also be a concern when it comes to having the participants

practise to get where they need to be for each session. These concerns apply to

both the between-groups and within-subjects designs since each requires some or all

participants to continue using and becoming familiar with PlayTIME.

Biometrics Study

To further evaluate the enjoyment of PlayTIME, future studies may include biometric

measures to collect data on physiological factors supporting enjoyment of the system.

Direct physiological measurements of emotion to supplement self-reported measure-

ments such as the PANAS questionnaire should provide a detailed overview of the

true emotional and enjoyment responses from participants.

Hypothesis: I hypothesise that evaluation with biometrics will show that Play-

TIME is more enjoyable than Unity alone, and will also help identify the strengths

and weaknesses of each system.

Demographics: For simplicity, the study could be limited to game designers of

intermediate experience.

Metrics: The metric evaluated is emotional response to PlayTIME, speci�cally

focusing on the level of enjoyment and excitement.

Method: Following a task-based activity, topical electromyography (EMG)

nodes attached to a participant's face can be used to measure the tenseness of fa-

cial muscles to determine whether participants are smiling, laughing, frowning or

scowling during their experiences; facial expressions are used to identify the emo-

tions experienced by participants. Galvanic skin response (GSR) is a measurement

of skin conductance, used to determine excitement or frustration. Biometrics would

provide some insight towards the emotions experienced by game designers using Play-

TIME, and serve as quantitative evidence backing up qualitative questionnaires such

as the PANAS. Screen capture could be used to align the emotional responses with

speci�c events during the session. This study could be conducted using the current

implementation of PlayTIME.

Demographics Study

A third study would focus strictly on the use of PlayTIME and evaluate how di�erent

demographics use the system. For the study described in this thesis, the target

demographic included people within creative domains (games, �lm, animation) who

were new to game development or had limited experience. A future study evaluating

155

performance and enjoyment using PlayTIME could compare how it is used by two

vastly di�erent target audiences: experienced industry professionals, and children.

Although PlayTIME is catered to game designers, it may be worthwhile to see if

children's imaginations and creativity a�ect the output when assigned a simple task

to complete. Professionals may feel more inclined to complete the task as requested,

as they were seen to do in the current study. Children are naturally more playful and

may not understand why they are asked to follow a set tasks, and would therefore be

more interested in just building a level that makes them happy.

Hypothesis: I hypothesise that children would yield more creative results

whereas professionals would aim to complete a task more directly with less creativity.

Children may also report that the system is more enjoyable, and professionals will be

more critical of the system.

Demographics: The study should be catered towards children with varying

creative interests, and towards game development professionals with expertise or ad-

vanced skills in design.

Metrics: Performance would yield the most useful data to determine how

PlayTIME is handled by the di�erent groups, time distributions, and how errors are

committed. The �nal output should also be evaluated for patterns between the two

groups.

Method: The study should follow a between-groups design, where the groups

are children and professionals. A free-form activity with minor constraints, such as

the one described in Chapter 3, would allow for more creative freedom.

7.3 Summary

This chapter discusses the results and takeaways from evaluating PlayTIME, a game

prototyping tool that uses tangible interfaces to help us complete game prototyping

tasks. Guidelines and suggestions for future implementations and studies are sug-

gested. Following these steps should produce cleaner and more manageable results in

future evaluations of TIME systems for all disciplines: games, �lm, animation, and

whatever else the software suite may cover. There are many types of media out there

that these lessons can help developers strive to improve.

7.4 Concluding Remarks

When my grandfather asked me one December evening in 2009, "How do you make

a living?" I �gured the best way to describe what I did in school was to show rather

156

than tell. I had my laptop with me, and all of my assignments from the fall semester

were on it.

For one class I had worked on a small platformer game to demonstrate animation

principles, sprite sheets and simple physics. My grandfather, who I am sure had never

touched a computer in his life, surely did not see the principles of animation as he

played the game with a subtle smile on his face. What he saw was a new, unfamiliar

form of art that he could play with, using only a few keys.

For another class I created a simple drawing program, like a tiny and boring

MS Paint, to demonstrate what I had learned about graphics, primitives in OpenGL

and programming. My grandmother did not see all of this technical jargon about

graphics and who-knows-what, and it certainly wasn't boring to her. What she saw

was a playful canvas that let her create the images in her mind of colourful �owers,

hearts, stars, and write the message "Trudy loves Daniel" in surprisingly clean cursive,

given how di�cult it was to use with my laptop's track pad.

The playfulness of digital games and related technologies is recognized across the

generations, and the ability to use these technologies to create and re�ne ideas is also

widely understood.

Whether we are talking about a triple-A, �ashy, realistic title, or a digital mock-

up of what could one day be the next big indie game, or a board game with little

�gurines; the medium used does not change the fundamentals of play. The challenge

is not creating and playing, the challenge is bridging the gap between the two. The

creative side exists in all of us, and we have digital tools that help us harness creativity

to build digital prototypes quickly. The playful side exists as well; we have physical

utilities that let us explore our ideas and build hands-on, physical versions of what

we want to eventually become some form of digital media. The media we need to

design playful experiences exist in many forms, but the challenge remains: we need

these media to work together to speed up our work and build top-quality products.

The good news is that some of PlayTIME's users found it playful. I hope the in-

sight gathered by evaluating PlayTIME can make a di�erence in scenario development

and lay a brick or two in the foundation for full-scale tangible scenario development.

157

References

[1] Unity Technologies, �Unity 3D.� [Computer software], 2005. unity3d.com.

[2] G. W. Fitzmaurice, H. Ishii, and W. A. S. Buxton, �Bricks: Laying the founda-

tions for graspable user interfaces,� in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI '95, (New York, NY, USA),

pp. 442�449, ACM Press/Addison-Wesley Publishing Co., 1995.

[3] M. Billinghurst, �Shared space: Collaborative augmented reality,� in ACM

SIGGRAPH 99 Conference Abstracts and Applications, SIGGRAPH '99, (New

York, NY, USA), pp. 178�, ACM, 1999.

[4] H. Kato and M. Billinghurst, �Marker tracking and HMD calibration for a

video-based augmented reality conferencing system,� in Augmented Reality,

1999. (IWAR '99) Proceedings. 2nd IEEE and ACM International Workshop

on, pp. 85�94, 1999.

[5] J. R. Lewis, �IBM computer usability satisfaction questionnaires: psychometric

evaluation and instructions for use,� International Journal of Human-Computer

Interaction, vol. 7, no. 1, pp. 57�78, 1995.

[6] J. Lewis, �Psychometric evaluation of the computer system usability question-

naire: The csuq,� tech. rep., Tech. Rep, 1992.

[7] J. R. Lewis, �Psychometric evaluation of the post-study system usability ques-

tionnaire: The PSSUQ,� Proceedings of the Human Factors and Ergonomics

Society Annual Meeting, vol. 36, no. 16, pp. 1259�1260, 1992.

[8] E. Cherry and C. Latulipe, �Quantifying the creativity support of digital tools

through the creativity support index,� ACM Trans. Comput.-Hum. Interact.,

vol. 21, pp. 21:1�21:25, June 2014.

158

[9] E. A. Carroll and C. Latulipe, �The creativity support index,� in CHI '09 Ex-

tended Abstracts on Human Factors in Computing Systems, CHI EA '09, (New

York, NY, USA), pp. 4009�4014, ACM, 2009.

[10] E. A. Carroll, C. Latulipe, R. Fung, and M. Terry, �Creativity factor evaluation:

Towards a standardized survey metric for creativity support,� in Proceedings of

the Seventh ACM Conference on Creativity and Cognition, C & C '09, (New

York, NY, USA), pp. 127�136, ACM, 2009.

[11] D. Watson, L. A. Clark, and A. Tellegen, �Development and validation of brief

measures of positive and negative a�ect: the PANAS scales.,� Journal of per-

sonality and social psychology, vol. 54, no. 6, p. 1063, 1988.

[12] Free Radical Design, �TimeSplitters: Future Perfect.� [Nintendo GameCube],

2005.

[13] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamentals. The

MIT Press, 2003.

[14] J. Schell, The Art of Game Design: A Book of Lenses. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2008.

[15] B. Brathwaite and I. Schreiber, Challenges for Game Designers. Rockland, MA,

USA: Charles River Media, Inc., 1 ed., 2008.

[16] T. Fullerton, Game Design Workshop: A Playcentric Approach to Creating

Innovative Games. Burlington, MA, USA: Morgan Kaufmann, 2008.

[17] T. Fullerton, �That's entertainment: Playcentric design,� interactions, vol. 15,

pp. 42�45, Mar. 2008.

[18] T. Fullerton, J. Chen, K. Santiago, E. Nelson, V. Diamante, A. Meyers, G. Song,

and J. DeWeese, �That cloud game: Dreaming (and doing) innovative game de-

sign,� in Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames,

Sandbox '06, (New York, NY, USA), pp. 51�59, ACM, 2006.

[19] T. Fullerton, T. Furmanski, and K. ValaNejad, �Journey of discovery: The

night journey project as "video/game art",� in Proceedings of the 2007 ACM

SIGGRAPH Symposium on Video Games, Sandbox '07, (New York, NY, USA),

pp. 55�63, ACM, 2007.

159

[20] H. Sharp, Y. Rogers, and J. Preece, Interaction Design: Beyond Human-

Computer Interaction. West Sussex, England: John Wiley & Sons, Inc., 2 ed.,

2007.

[21] R. A. Virzi, �What can you learn from a low-�delity prototype?,� in Proceedings

of the Human Factors and Ergonomics Society Annual Meeting, vol. 33, pp. 224�

228, SAGE Publications, 1989.

[22] P. Green and L. Wei-Haas, �The rapid development of user interfaces: Experi-

ence with the wizard of oz method,� in Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, pp. 470�474, SAGE Publications, 1985.

[23] P. Green and L. Wei-Haas, �The wizard of oz: a tool for rapid development of

user interfaces,� tech. rep., University of Michigan, Ann Arbor, MI, USA, 1985.

[24] J. Rudd, K. Stern, and S. Isensee, �Low vs. high-�delity prototyping debate,�

interactions, vol. 3, pp. 76�85, Jan. 1996.

[25] M. Rettig, �Prototyping for tiny �ngers,� Commun. ACM, vol. 37, pp. 21�27,

Apr. 1994.

[26] J. Nielsen, �Paper versus computer implementations as mockup scenarios for

heuristic evaluation,� in Proceedings of the IFIP TC13 Third Interational Con-

ference on Human-Computer Interaction, INTERACT '90, (Amsterdam, The

Netherlands, The Netherlands), pp. 315�320, North-Holland Publishing Co.,

1990.

[27] V. Bellotti, �Implications of current design practice for the use of hci tech-

niques,� in Proceedings of the Fourth Conference of the British Computer Soci-

ety on People and Computers IV, (New York, NY, USA), pp. 13�34, Cambridge

University Press, 1988.

[28] J. Nielsen, �Evaluating the thinking-aloud technique for use by computer scien-

tists,� in Advances in Human-computer Interaction (Vol. 3) (H. R. Hartson and

D. Hix, eds.), pp. 69�82, Norwood, NJ, USA: Ablex Publishing Corp., 1992.

[29] R. Sefelin, M. Tscheligi, and V. Giller, �Paper prototyping - what is it good for?:

A comparison of paper- and computer-based low-�delity prototyping,� in CHI

'03 Extended Abstracts on Human Factors in Computing Systems, CHI EA '03,

(New York, NY, USA), pp. 778�779, ACM, 2003.

160

[30] J. Derboven, D. De Roeck, M. Verstraete, D. Geerts, J. Schneider-Barnes, and

K. Luyten, �Comparing user interaction with low and high �delity prototypes

of tabletop surfaces,� in Proceedings of the 6th Nordic Conference on Human-

Computer Interaction: Extending Boundaries, NordiCHI '10, (New York, NY,

USA), pp. 148�157, ACM, 2010.

[31] J. Manker and M. Arvola, �Prototyping in game design: Externalization and

internalization of game ideas,� in Proceedings of the 25th BCS Conference on

Human-Computer Interaction, BCS-HCI '11, (Swinton, UK, UK), pp. 279�288,

British Computer Society, 2011.

[32] J. Manker, �Designscape - a suggested game design prototyping process tool,�

Eludamos. Journal for Computer Game Culture, vol. 6, no. 1, pp. 85�98, 2012.

[33] C. Snyder, Paper prototyping: the fast and easy way to design and re�ne user

interfaces. The Morgan Kaufmann series in interactive technologies, Morgan

Kaufmann, 2003.

[34] Epic Games, �Unreal Engine.� [Computer software], 1998. unrealengine.com.

[35] Crytek, �CryEngine.� [Computer software], 2001. cryengine.com.

[36] YoYo Games, �GameMaker: Studio.� [Computer software], 1999. yoyo-

games.com/studio.

[37] ProCore, �Prototype for Unity.� [Computer software]. protools-

forunity3d.com/prototype/.

[38] �Global Game Jam.� globalgamejam.org.

[39] J. Musil, A. Schweda, D. Winkler, and S. Bi�, �Synthesized essence: what game

jams teach about prototyping of new software products,� in Software Engineer-

ing, 2010 ACM/IEEE 32nd International Conference on, vol. 2, pp. 183�186,

May 2010.

[40] T. T. Hewett, �ACM SIGCHI Curricula for Human-computer Interaction,� tech.

rep., ACM, New York, NY, USA, 1992.

[41] J. Nielsen and R. Molich, �Heuristic evaluation of user interfaces,� in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI '90,

(New York, NY, USA), pp. 249�256, ACM, 1990.

161

[42] J. Nielsen, �Finding usability problems through heuristic evaluation,� in Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI '92, (New York, NY, USA), pp. 373�380, ACM, 1992.

[43] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1993.

[44] J. Nielsen, �Usability inspection methods,� in Conference Companion on Human

Factors in Computing Systems, CHI '94, (New York, NY, USA), pp. 413�414,

ACM, 1994.

[45] R. Molich and J. Nielsen, �Improving a human-computer dialogue,� Commun.

ACM, vol. 33, pp. 338�348, Mar. 1990.

[46] S. L. Smith and J. N. Mosier, �Guidelines for designing user interface software,�

Aug. 1986. Available at http://hcibib.org/sam/.

[47] J. Nielsen, �Heuristic evaluation,� in Usability Inspection Methods (J. Nielsen

and R. L. Mack, eds.), pp. 25�62, New York, NY, USA: John Wiley & Sons,

Inc., 1994.

[48] J. Johnson, Designing with the Mind in Mind. Burlington, MA, USA: Morgan

Kaufmann, 2010.

[49] P. M. Fitts, �The information capacity of the human motor system in controlling

the amplitude of movement.,� Journal of experimental psychology, vol. 47, no. 6,

p. 381, 1954.

[50] I. S. MacKenzie, �Fitts' law as a research and design tool in human-computer

interaction,� Hum.-Comput. Interact., vol. 7, pp. 91�139, Mar. 1992.

[51] I. S. MacKenzie andW. Buxton, �Extending �tts' law to two-dimensional tasks,�

in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI '92, (New York, NY, USA), pp. 219�226, ACM, 1992.

[52] A. F. Blackwell, G. Fitzmaurice, L. E. Holmquist, H. Ishii, and B. Ullmer,

�Tangible user interfaces in context and theory,� in CHI '07 Extended Abstracts

on Human Factors in Computing Systems, CHI EA '07, (New York, NY, USA),

pp. 2817�2820, ACM, 2007.

162

[53] H. Ishii and B. Ullmer, �Tangible bits: Towards seamless interfaces between peo-

ple, bits and atoms,� in Proceedings of the ACM SIGCHI Conference on Human

Factors in Computing Systems, CHI '97, (New York, NY, USA), pp. 234�241,

ACM, 1997.

[54] H. Ishii, �Tangible bits: Beyond pixels,� in Proceedings of the 2Nd International

Conference on Tangible and Embedded Interaction, TEI '08, (New York, NY,

USA), pp. xv�xxv, ACM, 2008.

[55] H. Ishii, M. Kobayashi, and K. Arita, �Iterative design of seamless collaboration

media,� Commun. ACM, vol. 37, pp. 83�97, Aug. 1994.

[56] J. Blake, Natural User Interfaces in. NET: WPF 4, Surface 2, and Kinect.

Manning, 2011.

[57] Microsoft, �Kinect for Windows.� [Computer hardware]. microsoft.com/en-

us/kinectforwindows/.

[58] Microsoft, �Xbox Kinect.� [Gaming hardware]. xbox.com/en-CA/Kinect/.

[59] Leap Motion, Inc., �Leap Motion.� [Computer hardware]. leapmotion.com.

[60] Sony, �PlayStation Move.� [Gaming hardware].

us.playstation.com/ps3/playstation-move/.

[61] Nintendo, �Nintendo Wii.� [Gaming hardware]. wii.com.

[62] R. Azuma, �Overview of augmented reality,� in ACM SIGGRAPH 2004 Course

Notes, SIGGRAPH '04, (New York, NY, USA), ACM, 2004.

[63] H. Kato, �ARToolKit.� [Computer software], 1999.

hitl.washington.edu/artoolkit/.

[64] R. E. Kalman, �A new approach to linear �ltering and prediction problems,�

Transactions of the ASME�Journal of Basic Engineering, vol. 82, no. Series D,

pp. 35�45, 1960.

[65] G. Klein and D. Murray, �Parallel tracking and mapping for small ar

workspaces,� in Proceedings of the 2007 6th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality, ISMAR '07, (Washington, DC, USA),

pp. 1�10, IEEE Computer Society, 2007.

163

[66] M. Billinghurst, H. Kato, and I. Poupyrev, �The magicbook: a transitional ar

interface,� Computers & Graphics, vol. 25, pp. 745�753, 2001.

[67] M. Billinghurst, H. Kato, and I. Poupyrev, �Magicbook: Transitioning between

reality and virtuality,� in CHI '01 Extended Abstracts on Human Factors in

Computing Systems, CHI EA '01, (New York, NY, USA), pp. 25�26, ACM,

2001.

[68] H. Kaufmann and A. Dünser, �Summary of usability evaluations of an educa-

tional augmented reality application,� in HCI (14), pp. 660�669, 2007.

[69] H. Kaufmann, �Collaborative augmented reality in education,� Institute of Soft-

ware Technology and Interactive Systems, Vienna University of Technology,

2003.

[70] H. Kaufmann and D. Schmalstieg, �Mathematics and geometry education with

collaborative augmented reality,� in ACM SIGGRAPH 2002 Conference Ab-

stracts and Applications, SIGGRAPH '02, (New York, NY, USA), pp. 37�41,

ACM, 2002.

[71] C. Wolfe, J. Smith, W. Phillips, and T. Graham, �Fiia: A model-based approach

to engineering collaborative augmented reality,� in The Engineering of Mixed

Reality Systems (E. Dubois, P. Gray, and L. Nigay, eds.), Human-Computer

Interaction Series, pp. 293�312, Springer London, 2010.

[72] M. Billinghurst, H. Kato, K. Kiyokawa, D. Belcher, and I. Poupyrev, �Experi-

ments with face-to-face collaborative ar interfaces,� Virtual Reality, vol. 6, no. 3,

pp. 107�121, 2002.

[73] M. Billinghurst, S. Weghorst, and I. Furness, T., �Shared space: An augmented

reality approach for computer supported collaborative work,� Virtual Reality,

vol. 3, no. 1, pp. 25�36, 1998.

[74] R. Grasset, P. Lamb, and M. Billinghurst, �Evaluation of mixed-space collabora-

tion,� in Proceedings of the 4th IEEE/ACM International Symposium on Mixed

and Augmented Reality, ISMAR '05, (Washington, DC, USA), pp. 90�99, IEEE

Computer Society, 2005.

[75] E. Hornecker and T. Psik, �Using artoolkit markers to build tangible prototypes

and simulate other technologies,� in Proceedings of the 2005 IFIP TC13 Inter-

164

national Conference on Human-Computer Interaction, INTERACT'05, (Berlin,

Heidelberg), pp. 30�42, Springer-Verlag, 2005.

[76] H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K. Tachibana, �Virtual

object manipulation on a table-top ar environment,� in Augmented Reality,

2000. (ISAR 2000). Proceedings. IEEE and ACM International Symposium on,

pp. 111�119, 2000.

[77] M. H. Rooke, �Organic board games with tangible tiles: interaction methods for

small hexagonal tiles,� Master's thesis, Queen's University, Kingston, Ontario,

Canada, 2009. hdl.handle.net/1974/1817.

[78] D.-N. T. Huynh, K. Raveendran, Y. Xu, K. Spreen, and B. MacIntyre, �Art of

defense: A collaborative handheld augmented reality board game,� in Proceed-

ings of the 2009 ACM SIGGRAPH Symposium on Video Games, Sandbox '09,

(New York, NY, USA), pp. 135�142, ACM, 2009.

[79] J. Marco, E. Cerezo, and S. Baldassarri, �Toyvision: A toolkit for prototyping

tabletop tangible games,� in Proceedings of the 4th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems, EICS '12, (New York, NY, USA),

pp. 71�80, ACM, 2012.

[80] J. Marco, I. Oakley, E. Cerezo, and S. Baldassarri, �Designing and making a

tangible tabletop game with toyvision,� in Proceedings of the 7th International

Conference on Tangible, Embedded and Embodied Interaction, TEI '13, (New

York, NY, USA), pp. 423�426, ACM, 2013.

[81] M. Kaltenbrunner and R. Bencina, �reactivision: A computer-vision framework

for table-based tangible interaction,� in Proceedings of the 1st International

Conference on Tangible and Embedded Interaction, TEI '07, (New York, NY,

USA), pp. 69�74, ACM, 2007.

[82] Tangible Play, Inc., �Osmo,� 2014. playosmo.com.

[83] Technical Illusions, �castAR.� [Computer hardware]. technicalillusions.com.

[84] Wacom, �Cintiq 24HD Creative Pen Display.� [Computer hardware].

wacom.com/en/us/creative/cintiq-24-hd/.

[85] S. R. Khattak, D. S. Buckstein, and A. Hogue, �Reconstructing 3D buildings

from LIDAR using level set methods,� in 2013 International Conference on

Computer and Robot Vision, pp. 151�158, IEEE, May 2013.

165

[86] S. Khattak and A. Hogue, �Sculpting beyond the screen,� in IEEE Games,

Entertainment and Media Conference, 2014.

[87] S. Khattak, B. Cowan, I. Chepurna, and A. Hogue, �A real-time reconstructed

3d environment augmented with virtual objects rendered with correct occlu-

sion,� in IEEE Games, Entertainment and Media Conference, 2014.

[88] Oculus VR, �Oculus Rift.� [Computer hardware]. oculusvr.com.

[89] Virtuix, �Virtuix Omni.� [Computer hardware]. virtuix.com.

[90] Unity Technologies, �AngryBots.� [Computer software]. u3d.as/content/unity-

technologies/angry-bots/5CF.

[91] Jenkins Software, LLC, �RakNet.� [Computer software]. jenkinssoftware.com.

[92] W. H. Kruskal and W. A. Wallis, �Use of ranks in one-criterion variance analy-

sis,� Journal of the American statistical Association, vol. 47, no. 260, pp. 583�

621, 1952.

[93] F. Wilcoxon, �Individual comparisons by ranking methods,� Biometrics bulletin,

pp. 80�83, 1945.

[94] H. B. Mann and D. R. Whitney, �On a test of whether one of two random

variables is stochastically larger than the other,� The annals of mathematical

statistics, pp. 50�60, 1947.

[95] R Development Core Team, R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

ISBN 3-900051-07-0.

[96] SurveyMonkey, �SurveyMonkey.� [Website], 2014. surveymonkey.com.

[97] R. Likert, �A technique for the measurement of attitudes.,� Archives of psychol-

ogy, 1932.

[98] J. R. Lewis, �Psychometric evaluation of an after-scenario questionnaire for

computer usability studies: The ASQ,� SIGCHI Bull., vol. 23, pp. 78�81, Jan.

1991.

[99] J. R. Lewis, �An after-scenario questionnaire for usability studies: Psychometric

evaluation over three trials,� SIGCHI Bull., vol. 23, pp. 79�, Oct. 1991.

166

[100] J. Brooke, �SUS-a quick and dirty usability scale,� Usability evaluation in in-

dustry, vol. 189, p. 194, 1996.

[101] J. Sauro and J. R. Lewis, �When designing usability questionnaires, does it hurt

to be positive?,� in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI '11, (New York, NY, USA), pp. 2215�2224, ACM,

2011.

[102] T. Tullis and B. Albert, Measuring the User Experience: Collecting, Analyzing,

and Presenting Usability Metrics. Interactive Technologies, Elsevier Science,

2013.

[103] J. R. Lewis and J. Sauro, �The factor structure of the system usability scale,�

in Human Centered Design, pp. 94�103, Springer, 2009.

[104] J. P. Chin, V. A. Diehl, and K. L. Norman, �Development of an instrument

measuring user satisfaction of the human-computer interface,� in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI '88,

(New York, NY, USA), pp. 213�218, ACM, 1988.

[105] J. R. Crawford and J. D. Henry, �The positive and negative a�ect schedule

(PANAS): Construct validity, measurement properties and normative data in a

large non-clinical sample,� British Journal of Clinical Psychology, vol. 43, no. 3,

pp. 245�265, 2004.

[106] J. Sauro and J. S. Dumas, �Comparison of three one-question, post-task usabil-

ity questionnaires,� in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, CHI '09, (New York, NY, USA), pp. 1599�1608, ACM,

2009.

[107] TechSmith Corporation, �Camtasia Studio.� [Computer software], 2014. tech-

smith.com/camtasia.html.

[108] P. E. Black, �Manhattan distance.� [Online], 2006.

nist.gov/dads/HTML/manhattanDistance.html.

[109] Qualcomm Technologies, Inc., �Vuforia Augmented Reality SDK.� [Computer

software]. qualcomm.com/products/vuforia.

[110] Metaio GmbH, �Metaio SDK.� [Computer software]. metaio.com/products/sdk.

167

Appendices

168

Appendix A

Designer Actions Study Materials

A.1 Activity Materials

Task Description

You are a puzzle designer working on a �rst-person shooter game. The

game's protagonist has been travelling through time on a mission to collect all of

the Time Crystals, artefacts used to power a time machine built by Earth's top

scientists.

Prototype one of the levels in the game using the provided editor. The level must

be puzzle-oriented: it will have some puzzle element to it. The player's objective in

the level is to �nd the crystals, which you will place throughout the level. The player

will have �ve minutes to complete the mission, so the level must be relatively small

and straightforward.

Constraints

� The game genre is �rst-person shooter

� The player will only have �ve minutes to play through the level

� The level must have a puzzle mechanic

� The player must collect crystals; you must place one or more crystals within

the map

� You have doors, keys, switches and other objects to help you build a compelling

puzzle mission

169

ITEMS ALLOWED:

Start Point (1 max)

Guns

Ammo

Health n’ Armour

Teleports (2 per colour)

Objects

Movable Objects

Cars

Radio Controlled Pets

Story Keys

Features

Panels

170

ITEMS NOT ALLOWED:

Team Starts

Assault Starts

Powerups

Bags n’ Bases

Zones

Additional Notes

ALL tiles allowed

ALL light effects allowed

ALL enemy A.I. allowed

ALL STORY logic allowed

ASSAULT logic NOT allowed!

Focus on logic, triggers and actions!

Only set up awards if you have time!

171

Control Scheme

Figure A.1: Control layout for the TSFP mapmaker using a Nintendo GameCube
controller.

172

Informed Consent Form for Experiment
This study has received ethical approval from the UOIT Research Ethics
Board (REB)
File 13-022

Investigators:

Daniel Buckstein
Daniel.Buckstein@uoit.ca
Dr. Andrew Hogue, Faculty of Business and IT (Ext. 3698),
Andrew.Hogue@uoit.ca

Consent is an ongoing process. This consent form is only part of the process of
informed consent. It should give you the basic idea of what this research is about
and what your participation will involve. If you would like more detail about
something mentioned here, or information not included here, please ask your
experimenter or any of the investigators listed above. Please take the time to
read this form carefully and to understand any accompanying information. A copy
of this form is available for your records.

This purpose of this study is to gain a better understanding of the process of
video game design and prototyping, and determine the steps developers use to
reach a goal and why they are relevant. You will be assigned a design-related
task using a level editing tool with a set of assets.

Risks of the experiment are minimal. Screen capture software will be used to
record your progress, with video recording used as a backup. All data is stored
confidentially and anonymously. Anything that can identify you as a participant
will be known only to the principal investigator (D. Buckstein) and will be
anonymized for data analysis. Opinions and thoughts or feelings expressed will
not change your relationship with the researchers or UOIT.

Your participation in this study is completely voluntary and you may interrupt or
end the study at any time without giving a reason or fear of being penalized.

173

If at any point during the experiment you feel uncomfortable and want to end your
participation, please let the experimenter know and the study will end
immediately. There are no consequences for withdrawal. Withdrawing
participants will have all of their data destroyed.

The session will require about 70-90 minutes, during which you will be asked to
complete assigned tasks, completing a questionnaire after your session.

At the end of the session, you will be given the opportunity to request more
information about the purpose and goals of the study, and there will be time for
you to ask questions about the research.

Thank you very much for your time and help in making this study possible. If you
have any inquiries or wish to know more please contact Daniel Buckstein or
Dr. Andrew Hogue.

Faculty of Business and Information Technology
2000 Simcoe St N, Oshawa, ON L1H 7K4

Daniel Buckstein:
Email: Daniel.Buckstein@uoit.ca

Dr. Hogue:
Phone: 905-721-8668 Ext. 3698 or email: Andrew.Hogue@uoit.ca

For any queries regarding this study, please contact the UOIT Research and
Ethics Committee Compliance officer (compliance@uoit.ca and 905-721-8668
Ext. 3693).

174

After reading this information, you give consent.

 I understand that taking part in this study is my choice and that I am free
to withdraw from the study at any time without reason and irrespective of
whether or not payment is involved.

 This consent form will be kept in a locked filing cabinet in Oshawa for a
period of seven years before being destroyed.

 I have read and understand all of the above information

 I understand that I am not waiving any of my legal rights

I, ___
(First name, Last name, Signature), agree to take part in this research.

Voluntary and optional consent for photographic release
Please sign below if you would like to give us photographic consent to use a
video of you and the experimental setup in research reports and presentations.

I would like to explicitly grant Daniel Buckstein and Andrew Hogue, and their
research assistants, the right to use the screen capture session for presenting
this study in publications, such as scientific journals and magazines, and
research presentations. I understand that the video material is not linked to any
personal data outside of this experiment that may identify me.

The non-visual data collected from this study will be used in articles for
publication in journals and conference proceedings. All data gathered is stored
anonymously and kept confidential. Only the investigators of this study and their
research assistants may access and analyze the data. All published data will be
coded, so that your non-visual data is not identifiable.

I, ___
(First name, Last name, Signature), give consent to use video and image
material of myself and the experimental setup in research reports and
presentations.

Optional As one way of thanking you for your time, we will be pleased to make
available to you a summary of the results of this study once they have been
compiled (usually within two months). This summary will outline the research and
discuss our findings and recommendations. If you would like to receive a copy of
this summary, please leave your preferred contact information with the
researchers.

175

Appendix B

Designer Actions Study Data

B.1 Questionnaires

This section presents the questionnaires used to collect self-reported data from par-

ticipants.

First, the demographics questionnaire asked participants to provide a description

of their experience by rating their expertise with a variety of tools and in a variety of

developer roles.

The post-study questionnaire asked participants to rate their experiences with the

system they used to complete their task.

176

Designer Actions Study:

Demographics Questionnaire

1. Please indicate your age.

2. How many years of game

development experience do you

have?

3. Please rate your level of expertise in

the following game development

roles:

a. Gameplay programmer

b. Graphics programmer

c. Tools programmer

d. Technical designer

e. Systems designer

f. Level designer

g. User interface designer

h. 3D modeller

i. Animator

j. 2D artist

k. Concept artist

l. Character artist

m. Environment artist

n. Interface artist

o. Writer

p. Sound designer/composer

4. From the above list (or other), which

role do you feel suits you best?

5. Please rate your level of expertise

using the following tools for

developing games.

a. Visual Studio

b. Xcode

c. Eclipse

d. Unity3D

e. Unreal

f. CryEngine

g. GameMaker

h. Blender

i. Maya

j. 3DS Max

k. Mudbox

l. Zbrush

m. Photoshop

n. Illustrator

o. MS Paint

p. Paint.NET

q. Gimp

r. Pen and paper

s. Lego blocks

t. Other toys

6. Please rate how frequently you use

these tools when you are developing

games.

(same options as above)

7. From the above list (or other), which

tool best suits your everyday game

development needs?

8. What methods and tools do you use

to prototype your games, and/or

pieces of your games (including any

combination of these)?

a. I write and draw ideas on

paper

b. I think about my game really

hard

c. I make a small demo in a

game engine

d. I modify existing game

engine projects

177

e. I use existing games' built-in

level editors

f. I draw environment layouts

on paper

g. I use 3D modelling/animation

software

h. I change the rules of existing

board games

i. I make a text-based game

j. I make a card game (like

Pokemon)

k. I build things out of Lego

bricks

l. Who needs prototypes? Just

go for it!

m. Other

9. Here is a list of features you might

see in game development software.

Please rate the importance of these

features.

a. Three-dimensional editing

b. Tile-/grid-based scenario

mapping

c. Free-form scenario mapping

d. Object placement and

manipulation

e. A variety of pre-made

objects to use

f. Objects with predefined

behaviours and meanings

g. Objects with properties you

can change

h. Change mood and

atmosphere

i. Character/actor placement

j. Characters/actors with

predefined behaviours

k. Characters/actors with

properties you can change

l. Control over the camera

m. Scripting or some

programming tool

n. Basic logic editor or layout

(no programming, just

describes the flow of logic in

the scenario)

o. Mark which objects and

characters are involved

with/controlled by logic

p. Applicable textures and

materials

q. Animation and motion

editors

r. Scene hierarchy

s. Sound effects and music

(while editing)

t. Being able to stop working

and continue later

10. From the initial idea to a playable

game, please briefly describe the

steps you take during your design

and prototyping process.

11. Any general comments about your

game prototyping experiences?

178

Designer Actions Study:

Post-Study Questionnaire

1. Please rate how you feel about the

features which you experienced

while completing your task.

a. Interactive preview

b. Interactive preview quality

c. Memory status bar

d. Multiple floors

e. Enemy patrol paths

f. Game logic editor

g. Changing item properties

h. Overall experience

i. Copy, rotate, delete

j. "Drag n' drop"

k. Changing lighting

l. Placing enemy AI

m. Displaying logic connections

n. Connecting objects with logic

o. Placing and moving items

p. Choice of tiles

q. Choice of items

r. Choice of enemy AI

s. Logic trigger creation

t. Logic trigger editing

u. Logic action creation

v. Logic action editing

w. Placing and moving tiles

x. Changing enemy properties

y. Control scheme

z. Menu navigation

2. Had you ever used this editor before

this experiment?

3. What things do you like the most

about this editor?

4. What features of this editor work

well for game prototyping?

5. What things do you like the least

about this editor?

6. What features of this editor do not

work well for game prototyping?

7. Please describe your favourite

experience(s) while completing your

task (e.g. anything that made you

extremely happy, excited, etc.).

8. Please describe your least favourite

experience(s) while completing your

task (e.g. anything that drove you

nuts).

9. Any general questions, comments or

concerns about the experiment?

179

B.2 Design Process

"From the initial idea to a playable game, please brie�y describe the steps

you take during your design and prototyping process."

P01 : "- Paper brainstorm

- Paper layout and breakdown of game mechanic fundamentals

- Implementation of fundamental via software"

P02 : "- Find Inspiration (often other games, life experiences or my critiques of

games)

- Sit down and �nd out what I really want from this game, and what experience

I want to deliver

- Get rough idea on paper

- Implement (program) features that I know will be essential

- Keep designing the rest of the game

- Repeat the above two points until game is playable and at least sort of fun

- Polish by adding assets and pretty visuals, polish gameplay as well"

P03 : "Initial idea

Rethink the initial idea

Talk to friends about the re�ned idea

Sketch idea on paper or build 3D prototypes (using e.g. Lego)

Build a prototype in Unity3D

Pretend the prototype was not a prototype and just continue developing on it for

the actual game (I know, one shouldnt do that, but everybody does)"

P04 : "Establish premise and main mechanics, implement current ideas,test them

in a prototype build. Reiterate."

P05 : "I would normally start with getting my ideas on paper to get an idea of

what it is I'm going to tackle. I would then try to get basic mechanics down and

play around using those mechanics and primitives. I would then lay out a basic level

to test out something more complete. I would then start adding in actual assets

to replace temporary objects. After that I would add in the more context sensitive

mechanics and polish the game, �xing any bugs, until completion."

P06 : "Design comes from an idea. The moment you have a base mechanic or

idea you can expand that into a game with rules and story. After you get the story

or "what is going to happen" you can �esh it out either vertically or horizontally to

get a �nished product/game"

P07 : "-Crazy idea

180

-Write it down (main mechanic)

-Forget about it for a week

-Come back to it, design core systems

-Prototype something

-Realize X doesn't work

-Fix it

-Add to prototype

-Repeat"

P08 : "I think about what kind of game I'd like to play and try to think of

mechanics that would be di�erent, perhaps, than something else that's out there.

Sometimes, though, it's not about original mechanics, but a certain atmosphere I

want to play in.

I start thinking about how to implement the mechanics and try to get them to

work. I also start making placeholder assets and �gure out the game structure"

P09 : "- Idea

- Draw and brainstorm for ideas that conform to the original (or they may not

and are better, at least on paper)

- Start building the core mechanics

- Play test the core mechanics

- Modify mechanics as needed

- Start building other mechanics

- Play test the mechanics

- Modify as needed

- Start building the game (at the same time the prototype may be extended,

depending on the game, to include playable levels for testing while the 'actual' game

catches up."

P10 : "-concept of gameplay implement:

-character control

-main mechanic

-level restrictions/goals

-level design

-interactions with the level

-other mechanics

-enemies

-animations

-sounds

181

-menus/states

-polish"

P11 : "1 - come up with a cool mechanic

2 - implement a paper prototype

3 - test it

4 - get feedback from subjects who test it

5 - tweek it

6 - return to 3 until i am happy with it

7 - document everything in a sort of game design doc. so that the idea and the

mechanic itself is not lost

I can perhaps later add in one or two more mechanics to add some content, which

would have followed the same process as well."

P12 : "-Imagine a game idea

-Prototype what it will look like in photoshop

-Figure out how to make it look like that

-Write down how I need to implement the logic

-Attempt the basic logic in code

-Use placeholder art and �nish mechanics

-Add �nal art, and add other essential elements such as menus

-polish the graphics to make everything smooth and nice"

P13 : "- concept draft

- rough prototype

- evaluation

- prototype

- evaluation

- deliver"

P14 : "-Come up with a hook

-Brainstorm the hook's surrounding game (2D, 3D, sidescroller, etc.) on paper or

a digital analog

-Prototype the hook and test its level of ""fun"" using primitives or a basic level

editor (Unity3D)

-Make changes and proceed to expanding the prototype, have others play

-Add/test complimenting features/mechanics and test their compatibility

-If the mechanics and gameplay work, continue with the game's creation"

P15 : "- Brainstorm (both within my head and with others)

- Start to work some details out on paper

182

- Begin to rough prototype in Unity (very simple - use prefab shapes, concentrate

on core idea)

- Iterate a lot

- Flush out prototype, de�ne details of core mechanic and begin to conceptualize

secondary ideas and how systems might work together.

- Basically I like to come up with a few small ideas, and then attempt to combine

them together to create more complex systems.

- I like to design from narrative, what I'm I trying to say how will that translate

into a players experience."

B.3 Feedback

"What things do you like the most about this editor?"

P01 : "- Quick placement of items

- Easy lists to deal with"

P02 : "Tiles are very modular, and they �t together nicely. Very little confusion,

and you can build on multiple levels."

P03 : "The 3 steps for previewing:

a) What you see is what you get in 2D

b) static 3D preview

c) interactive 3D preview of gameplay

The ability to manipulate also logical attributes, although I didnt really have the

time to try them out."

P04 : "Pretty robust and extensive. Ability to alter logic for the level was pretty

awesome as well."

P05 : "I liked that it was easy to set up an entire level �lled with di�erent object

with unique properties with no previous experience. Being able to tie things together

with logic was my favourite feature as it allowed for the opportunity of many di�erent

puzzle options."

P06 : "The simplicity was very nice. It was pretty easy to pick up. Once I was

able to �gure out the menus I was able to design without thinking too much about

what I was doing mechanically with the controller."

P07 : "Liked that everything was sectioned o� into its own categories, ie: enemies

in this tab, items here, �oor tiles here. Also liked the streamlined logic creation for

basic things like switches."

P08 : "It took a while to get used to but once you get the hang of it the controls

feel natural. Like all of the controls for one object is on one side, and all of the menu

183

controls are on the other side. The bigger buttons are used more often, and all that

stu�."

P09 : "- Multiple levels

- Fast preview (the semi-3D non-rotatable preview - I assume it was non-rotatable

because I couldn't rotate it!)

- Preview

- Item copy/placement"

P10 : "The ability to test your level with a press of a button and all the previews"

P11 : "I like the way things are organized. Although, the UI clearly needed some

improvements like having tabs instead of scroll down menus. The selection of items

was very easy. I liked the fact that you could use the object properties themselves to

set some levels of game logic, instead of having to script that every time through the

logic editor."

P12 : "I like the tile based movement, it gives a feeling of precision"

P13 : "- Quick placement of tiles

- good level overview

- easy navigation across height levels"

P14 : "Tile-based and previewing"

P15 : "The controls and tiles worked well on a game pad - I would have preferred

a mouse and keyboard. Level layout was good once I got used to it, placing enemies

and items was relatively simple."

"What features of this editor work well for game prototyping?"

P01 : "- Has basic components to place for level design blueprints"

P02 : "Working on individual parts of the level and testing each separately. Quick

build times and relatively small but purposeful selection of tiles"

P03 : "Placement of items was straightforward

Previewing (static and interactive) was neat"

P04 : "Preview provides instant feedback on the design. Not just the live game

preview, but the map itself helped to �x a lot of errors I made while designing the

level."

P05 : "The ability to quickly layout out level chunks and then preview them

ingame is a great thing for prototyping."

P06 : "It is really easy to create rooms and see how the size of the area will

impact the player. It is really simple and if you have an error in your logic it will tell

you exactly where it is and what it relates too."

184

P07 : "Quick level layouts and basic logic allow for fairly simple game prototypes.

Basically, we can prototype any really low level FPS as long as we scope the prototype

level down to a bare minimum"

P08 : "If you want a shooter with door logic and teleporters then it's great. It's

good that the controls are �uid and comfortable to use. It doesn't strain your �ngers"

P09 : "- Fast preview

- Automatic generation of walls (so I don't have to close things o� and waste time)

- Preview

- Copy/move items

- Undo"

P10 : "The ease of being able to pick it up and just start building with it"

P11 : "The fact that I could change some logic of some objects on the object

properties themselves, and not on the logic editor, worked well for me. It made it

easy to constantly visualize the level I was designing, instead of going back and forth

between editors. "

P12 : "The tile editor for quick level design"

P13 : "- placement of things

- designing the rough layout of the level area"

P14 : "Huge selection of items to drop, multiple levels to work on, nice control

and tile-based placement, and being able to change logic in the editor"

P15 :"Tiles work well for map layouts. There are lots of prefab objects to quickly

place and jump into the game. Took me two minutes to place a couple of locks, keys

and enemies to populate the level."

"What things do you like the least about this editor?"

P01 : "- Triggers and actions would take a bit to remember to be able to use

again. - Have to make a new enemy rather than copying one that already exists"

P02 : "Game logic item placement, due to it not being put in the item menu. I

would assume the game logic item would just be like any item, just highlighted to

signify its importance."

P03 : "The fact that one always needs to be in the correct mode (like AI, Item,

Tiles...) to interact with the items was really annoying."

P04 : "Until I had the map (press Z) I didn't like how I had to play the game to

see if I messed up or not."

P05 : "The fact that it is controller based de�nitely makes things a bit harder to

use. Navigating di�erent levels of the world got confusing, I kept going up when I

wanted to go down. I liked the logic editor, but the speed at which you can do things

185

with it is limited, again because of the controller. While the choice of tiles is nice,

I think it would have been good to be able to have an open space and add in walls,

instead of pre-walled chunks."

P06 : "I wasn't a huge fan of having to move through the menus with a gamecube

controller. If they added a next function on the controller or made it switch through

without the freeroam �nal fantasy style with sub menus that would probably have

allowed to me move a lot faster. It was like using a track ball as opposed to a touch

screen. Very hard."

P07 : "Controls. This is a pretty big problem in most level editors that are done

within existing games, especially when the input method is some kind of gamepad.

Moving around this sort of interface without the ease of a mouse and keyboard just

feels super clunky and even frustrating at times. I think the controller just adds an

extra level of input complexity by feeling so unnatural for this speci�c task."

P08 : "If you want to make any other type of game then you can't."

P09 : "- Interface

- Preview takes a while to load and unload (understandable)

- No �ythrough? Or at least it wasn't clear I could do a �y through

- Why not make the fast preview rotatable?"

P10 : "Some of the logic connections were a little di�cult to navigate with"

P11 : "The should de�nitely be a copy and paste functionality for multiple tiles

at once. It was annoying to copy and paste one tile at a time. The item and tile

selection could bene�t greatly from a tab sort of organization... it would have made

the selection process of the items way easier."

P12 : "Navigating it using a controller is di�cult, as in it makes it slower to

switch through items"

P13 : "- logic not really accessible

- no real-time preview of the map

- height tiles have no intuitive representation in the map editor, the preview of

the tiles is �ne when selecting it, but when placing the tile, it looks very abstract and

one cannot relate it back to the height level and tile type it represents

- navigation within the editor felt limited, I felt the GameCube controller made

selecting things and navigating through the menus really cumbersome

- overall I did �nd assigning names and behaviours to enemies took too long

- real-time previews of the levels would have been helpful

- overall really cumbersome interface with hard-to-memorize icons kept me guess-

ing at the functions"

186

P14 : "Only that the load times for testing the level are rather high"

P15 : "I found the elevation layers confusing for the majority of the experiment -

but do feel I was close to getting it. Also some of the previews for certain tiles, gave

me the wrong impression. The ability to rotate the preview would help."

"What features of this editor do not work well for game prototyping?"

P01 : "- Due to a grid base system and components it is very rigid and not as

�exible as I would like"

P02 : "The AI would have to be tweaked around with extensively, and would

probably not be a good tool for quickly dropping enemies in your level to assess the

relative di�culty."

P03 : "Connecting items (such as green key to enemy and to door) was very tricky

It was really hard to �nd out, where connections between the multiple �oors need

to be placed (like ramps), because there was only a top-down view while placing

them."

P04 : "Nothing really comes to mind. I mean the features all work really well

together once you understand what the editor is telling you e.g. sliiiides."

P05 : "The controller does not work well for prototyping as it greatly hinders

speed of use. Also having a limit on certain objects is a large annoyance."

P06 : "It seemed a bit confusing at times what the corridors were doing, how they

�t together and what level you were on. You got a vague idea of what level you were

on but 50 shades of grey isn't enough. Some color coding would have been great. IE

level 1 blue, level 2 red, 5 orange etc."

P07 : "There isn't a lot of room to add your own mechanics or a robust scripting

tool (as it's on the GameCube). At the end of the day, this tool is still just a level

editor that forces you to design within the constraints of the existing TimeSplitters

engine."

P08 : Well the fact that you're very limited in what you can do. You can't make

your own objects or have the freedom to make puzzles that involve di�erent things.

P09 : "- Undo should have a button

- When I place multiple levelled item, I had to place it, go to the other level, grab

it and replace it in the �rst level just so that I can get the cross-walks aligned with

the level. Would have liked the buttons to go back and forth between levels when

placing multi-level items

- Not clear enough what is walkable - a clear green outline and shading would

have been better (or better yet, a nice connected graph showing what's walkable)"

187

P10 : "Not as much character mobility options. Restricted to FPS with low

movement"

P11 : "There were some gimmicks with the teleports, where the exit direction is

actually opposite to the one that the item arrow points to. I also think that the tile

system is a bit confusing, since you have to lay all the tiles, one by one. I would have

perhaps implemented something like allowing the user to draw a path and from that

select the tiles. If the user does not want that, then he can pick a speci�c tile."

P12 : "Di�culty getting puzzles and logic set up in a short amount of time"

P13 : "I think the biggest problem is the controller interface. Even with a mouse

and keyboard, I would have had a better time editing and probably it would have

been possible to navigate around the editor quicker. I general, I found it hard to

move from the abstract representation back to the actual 3D game at the start."

P14 : "Being unable to easily attach multiple switches to doors (AND, OR, XOR

logic gates"

P15 : "It was obviously geared toward a certain genre of games. I don't prefer to

use a game pad to design games - struggled a bit to understand the interface. Felt it

got in the way, spent the majority of the �rst half learning it rather then designing

the game."

"Please describe your favourite experience(s) while completing your

task (e.g. anything that made you extremely happy, excited, etc.)."

P01 : "- Setting up the enemy turrets to be used as both the di�cult component

and the key to some areas"

P02 : "I was able to build a level that spanned 3 �oors, and had a "�nal boss

room" in the middle that would always harass the player until they have everything

done"

P03 : "Entering the interactive preview mode and seeing what a beautiful world

I had created. Especially, driving around in the car was great. Otherwise, I liked

conceiving the puzzle before / while actually putting it together and testing it."

P04 : "Having it all work in the end. Good vibes."

P05 : "I really liked using logic to tie multiple things together to make a puzzle.

I also liked using lights to try to make a puzzle, even though I never completed it."

P06 : "I really enjoyed previewing the music was great. I also liked how simple

it was to create logic and that perked me up, it wasn't tedious to go through the

options to create the logic."

P07 : "I enjoyed �nally understanding how the level editor worked. As with

any prototyping tool or even software in general, there was a somewhat substantial

188

learning curve. The a-ha moment is always satisfying, especially in this case when I

was able to actually execute what was in my head."

P08 : "It was fun being able to play-test it with real AI that would shoot you

back."

P09 : "- Many tile options when building the level"

P10 : "Shooting monkeys and seeing the level work the way it was suppose to"

P11 : "It was fun to set the AI enemies, as well as having automatic turrets that

can be controlled and/or disabled from afar with a switch."

P12 : "I enjoyed testing the level and seeing it come to life quickly"

P13 : "I was really happy about the radio-controlled pets. I would say these

things can be considered a delighter for gameplay that is very much action and run

and gun focused. I liked the switches and timers. I also enjoyed naming things even

though it was di�cult to do with a controller."

P14 : "Being able to quickly drop entire chunks of level down using prefabs, rather

than manually de�ning size, applying textures, �lling levels, etc. Drag and drop is

amazing."

P15 : "It worked :) I was able to complete and play something within 45 mins."

"Please describe your least favourite experience(s) while completing

your task (e.g. anything that drove you nuts)."

P01 : "- Not being able to use the triggers to use cameras and turrets together"

P02 :

P03 : "Trying to �gure out where to point and what buttons to press in the GUI."

P04 : "SLIIIIIIDES"

P05 : "I disliked when I discovered certain objects had limits to the amount you

could have in a level. It happened near the end and it stopped me from being able to

create a puzzle. Although I never reached the limit, I feel as though the limit on how

much can be in a level total could become a hindrance to people, especially people

with more time to create a level."

P06 : "I didn't like the way that the zoom was setup. I wanted to see more of

my map or less, and it would switch what menu I was in. I would end up selecting

the tile instead of the item. The worst part of the experiment was the moving of the

cursor. If I was able to just press right once and it would jump to the next available

spot icould palce my object that would have been great."

P07 : "I mentioned this before, but the controls don't feel great. I suppose for the

time and technology they are serviceable, but but it just feels awkward navigating

these sorts of menus with a joystick."

189

P08 : "I never �gured out what Radio Controlled Pets were for :c"

P09 : "- Placing the many tile options

- Fast preview (useful, but at the same time, wanted it to show me more)"

P10 : "Navigating through the logic menus was a little di�cult and I needed to

ask the experiment runner how to do things"

P11 : "Editing levels with a gamepad just feels weird. I would have preferred a

mouse."

P12 : "The time limit made it very di�cult to use all of the games puzzles and

logic so I was unable to make a challenging puzzle in time"

P13 : "Navigating the editor menus was really hard and recalling what icons

represented was di�cult."

P14 : "The...load...times!!!"

P15 : "Elevations not matching up - I couldn't �gure out how to get the tunnel

to line up."

190

Appendix C

PlayTIME User Study Materials

C.1 Activity Materials

Task Description

You are a level designer tasked with completing one of the stages in a new top-down

shooter project, �Angry Bots.� The game is anticipated to be a huge success, but it

will be quite boring without a player avatar or any bad guys to shoot! Your expertise

is required to place characters throughout the map of the level and make them behave

properly.

The programmers have developed the player's and enemies' behaviours, and an-

other level designer has provided you with a map of current game scene and a short

list of tasks for you to complete before the next team meeting. The map has been

segmented into zones, which should each have a number of enemies.

HERE IS YOUR TO-DO LIST (complete in any order, and preview as you

feel necessary):

1. Place the Player object as close to the marker as possible (X in the map, red

square in Unity)

2. Place 2 Buzzers each in zones 1, 2 and 3 (see map)

3. Place 1 Spider each in zones 1, 2 and 3

4. Place 7 spiders anywhere in zone 4

5. Place 2 spiders anywhere in zone 5

6. Ensure all the spiders have AI behaviours attached

7. Change the attack radius of at least 4 spiders anywhere

191

Things you need to know about gameplay:

� Make the best possible prototype in a short amount of time!

� Do not place anything outside the boundaries!

� The gameplay programming is done! You should not program anything!

� The door (see map) will open when all of the outdoor enemies have been

destroyed (zones 1-3).

� The player must be on-level with enemies to shoot them.

� The game is won when all enemies have been destroyed (counters displayed

in-game).

� The game is lost if the time limit (two minutes) is exceeded (timer displayed

in-game).

192

INSTRUCTIONS AND CONSTRAINTS (PlayTIME activity)

1) Controls (tangible AR paddles)

Marker Name Description

Confirm
action

‘C’

Treat like a button (hold your finger over it for a second to press the
button). Press to confirm current action (manipulation, placement…) with a
different marker.
NOTE: You can move the button markers around as you feel necessary!

Delete
selection

‘B’

Treat like a button. Press to delete currently-selected objects or
components while the appropriate marker is visible.
EXAMPLE: some spiders are selected and the AI marker is visible; pressing
this button will delete those spiders’ AR components.

Selection
wand

Move the selection cube over an object to select it.
MULTI-SELECT FEATURE: repeat this action to add multiple objects to the
selection to be manipulated simultaneously.
DESELECT: when marker is visible, and away from objects, press confirm.

Move tool Move the selected object(s).

Camera
pan

Move the marker farther away from the red square in the middle of the
view to pan the camera around. The direction of panning is relative to the
red square.

Player
object

Position marker and press confirm to place the player object in the map.

Buzzer
object

Position marker and press confirm to place a buzzer (flying enemy) object
in the map.

Spider
object

Position marker and press confirm to place a spider (mechanical exploding
enemy) object in the map.

Spider AI
behaviour

Place marker over a spider and press confirm to add an AI component to
the spider. If multiple spiders are already selected, press confirm to add AI
to all spiders in the selection.

Manipulate
tool

Manipulate properties of the currently-selected object(s), namely the
attack radius variable on the spiders’ AI behaviour. When the red square
appears, moving the marker towards the left side of the square will
decrease the attack radius, and towards the right will increase the radius.

193

2) THINGS YOU ARE ALLOWED TO DO:

 Use the above markers to complete the assigned tasks

 Use the keyboard and mouse FOR PREVIEWING ONLY!!!!

o Press the play button to begin the preview

o Use the keyboard and mouse to control the player object

 WASD keys for movement, point and click with mouse to shoot

o Press the play button again to end the preview

3) THINGS YOU ARE NOT ALLOWED TO DO:

 Use the MOUSE and KEYBOARD for ANY REASON other than previewing

o This includes all keyboard shortcuts and menus!!!

 Change the experiment setup (webcam, monitors, computer…)

 Change ANY part of Unity’s configuration

194

INSTRUCTIONS AND CONSTRAINTS (Unity activity)

1) Controls (mouse)

The interface uses the MOUSE to control the placement and modification of objects.

All objects you will need to use are found in “Assets >

Study”; do not use assets in any other folder! To change

folders, left click on the folder you want to access.

To place an object (PLAYER, SPIDER or BUZZER), left click

the desired PREFAB from the PROJECT tab near the

bottom of the screen. The prefabs are located in the

folder “Assets > Study > Prefabs”. Drag the prefab to the

desired location and release the mouse button.

To delete an object, first left click on the PLAYER, SPIDER(S) or BUZZER(S)

that you wish to delete; this selects the object. The Delete command can

be found under the Edit menu: Edit > Delete.

To add AI to a spider object, left click the SCRIPT from the

project tab. The spider AI script is located in the folder

“Assets > Study > Scripts”. Drag the script on to the spider

that you wish to apply the behaviour to and release. Objects

must not be selected!

To change the spider’s attack radius, locate the behaviour

component in the right-most panel of Unity’s layout; the spider

behaviour is located at the bottom. Place the cursor over the

variable name “Attack Radius Value”, left click and drag left and

right to change the value.

To delete the AI component, left click on the SPIDER that you wish

to remove the AI from. Right click on the name of the component

and select “Remove Component”.

To move an object, left click and drag on the RED OR BLUE directional arrow on

the selected object.

To pan the camera, middle click and drag the mouse.

195

2) THINGS YOU ARE ALLOWED TO DO:

 Use the MOUSE ONLY to place, remove and modify assets in the scene to complete the

assigned tasks

o Worry about the PLAYER, SPIDERS and BUZZERS only!

 Use the keyboard FOR PREVIEWING ONLY!!!!

o Press the play button to begin the preview

o Use the keyboard and mouse to control the player object

 WASD keys for movement, point and click with mouse to shoot

o Press the play button again to end the preview

3) THINGS YOU ARE NOT ALLOWED TO DO:

 Use the KEYBOARD for any reason other than previewing

o This includes all keyboard shortcuts!!!

o DO NOT save the scene

o DO NOT undo or redo actions

o DO NOT copy, paste or duplicate objects

o Etc.

 Zoom or rotate the camera

 Change the experiment setup (webcam, monitors, computer…)

 Change ANY part of Unity’s configuration

 Navigate or use assets from outside the Assets > Study folder

 Use the hierarchy

196

Informed Consent Form for Experiment
This study has received ethical approval from the UOIT Research Ethics
Board (REB)
File 14-014

Investigators:

Daniel Buckstein
Daniel.Buckstein@uoit.ca
Dr. Andrew Hogue, Faculty of Business and IT (Ext. 3698),
Andrew.Hogue@uoit.ca

Consent is an ongoing process. This consent form is only part of the process of
informed consent. It should give you the basic idea of what this research is about
and what your participation will involve. If you would like more detail about
something mentioned here, or information not included here, please ask your
experimenter or any of the investigators listed above. Please take the time to
read this form carefully and to understand any accompanying information. A copy
of this form is available for your records.

This purpose of this study is to compare the effectiveness of game design tools
using different interfaces. The domain of study is level design and prototyping.
You will be provided with a game design task along with the assets and tools
required to complete the task. Please note that your skills are not the subject of
evaluation; we are interested in your use of the provided tools.

Risks of the experiment are minimal. Screen capture software will be used to
record your progress. All data is stored confidentially and anonymously.
Anything that can identify you as a participant will be known only to the principal
investigator (D. Buckstein) and will be anonymized for data analysis. Opinions
and thoughts or feelings expressed will not change your relationship with the
researchers or UOIT.

Your participation in this study is completely voluntary and you may interrupt or
end the study at any time without giving a reason or fear of being penalized. This
includes having no bearing or influence on one’s privacy, reputation or academic
standing at UOIT.

You do not waive any legal rights by agreeing to participate in this study.

197

If at any point during the experiment you feel uncomfortable and want to end your
participation, please let the experimenter know and the study will end
immediately. There are no consequences for withdrawal. Withdrawing
participants will have all of their data destroyed. You may optionally request to
have your visual data destroyed after participating in the study.

The session will require about 75-90 minutes. You will be required to complete a
demographic questionnaire, an assigned prototyping task using a game design
tool, and finally a questionnaire after your session.

At the end of the session, you will be given the opportunity to request more
information about the purpose and goals of the study, and there will be time for
you to ask questions about the research.

Thank you very much for your time and help in making this study possible. If you
have any inquiries or wish to know more please contact Daniel Buckstein or
Dr. Andrew Hogue.

Faculty of Business and Information Technology
2000 Simcoe St N, Oshawa, ON L1H 7K4

Daniel Buckstein:
Email: Daniel.Buckstein@uoit.ca

Dr. Hogue:
Phone: 905-721-8668 Ext. 3698 or email: Andrew.Hogue@uoit.ca

For any queries regarding this study, please contact the UOIT Research and
Ethics Committee Compliance officer (compliance@uoit.ca and 905-721-8668
Ext. 3693).

198

After reading this information, you give consent.

 I understand that taking part in this study is my choice and that I am free
to withdraw from the study at any time without reason and irrespective of
whether or not payment is involved.

 This consent form will be kept in a locked filing cabinet in Oshawa for a
period of seven years before being destroyed.

 I have read and understand all of the above information

 I understand that I am not waiving any of my legal rights

I, __
(First name, Last name, Signature), agree to take part in this research.

Voluntary and optional consent for photographic release
Please sign below if you would like to give us photographic consent to use a
video of you and the experimental setup in research reports and presentations. If
you prefer to participate in the experiment, but not to have your image released,
simply return this form without signing this optional section.

I would like to explicitly grant Daniel Buckstein and Dr. Andrew Hogue, and their
research assistants, the right to use the screen capture session for presenting
this study in publications, such as scientific journals and magazines, and
research presentations. I understand that the video material is not linked to any
personal data outside of this experiment that may identify me.

The non-visual data collected from this study will be used in articles for
publication in journals and conference proceedings. All data gathered is stored
anonymously and kept confidential. Only the investigators of this study and their
research assistants may access and analyze the data. All published data will be
coded, so that your non-visual data is not identifiable.

I, __
(First name, Last name, Signature), give consent to use video and image
material of myself and the experimental setup in research reports and
presentations.

Optional As one way of thanking you for your time, we will be pleased to make
available to you a summary of the results of this study once they have been
compiled (usually in two months). This summary will outline the research and
discuss our findings and recommendations. If you wish to receive a copy of this
summary, please leave your preferred contact information with the researchers.

199

Appendix D

PlayTIME User Study Data

D.1 Questionnaires

This section presents the questionnaires used to collect self-reported data from par-

ticipants.

First, the demographics questionnaire asked participants to provide a description

of their experience by rating their expertise with a variety of tools and in a variety

of developer roles. The lists of software and developer roles were extended for this

study to re�ect skills from a broader audience, such as animators and �lm makers,

instead of only those involved with games.

The post-condition questionnaire was the same for both conditions. This in-

cluded a few scienti�c questionnaires: the Positive and Negative A�ect Schedule

(PANAS) [11] questionnaire for rating momentary emotional evaluation; the Com-

puter System Usability Questionnaire (CSUQ) [5], also known as the Post-Study Sys-

tem Usability Questionnaire (PSSUQ) for rating system usability; and the Creativity

Support Index (CSI) [8] for rating the creative potential of the systems.

Finally, the post-study questionnaire asked participants to rate the ease of use

of various factors that they experienced in each activity, and state their preferred

interface for completing tasks.

200

PlayTIME User Study:

Demographics Questionnaire

1. Please indicate your age.

2. How many years of game

development experience do you

have? Include full-time, contract

work, internships, teaching,

studying, independent, etc.

3. Please rate your level of expertise

using the following software.

NO ANSWER: Do not answer if you

have never used the tool, very rarely

used it for its purposes, or have no

interest in ever using the tool. If you

have to ask what the tool is, this is

probably the best option!

BEGINNER: Select Beginner if you

have used the tool a few times

and/or are beginning to learn and

become familiar with the interface.

COMPETENT: You have used the tool

enough to complete basic tasks on

your own, but you may still refer to

help from others for more difficult

tasks pertaining to the tool.

INTERMEDIATE: You can complete

tasks of varying difficulty on your

own using the tool. Help is not

regularly needed.

ADVANCED: You use the tool

regularly, and have been using it

regularly for some time, and you can

solve complex problems on your

own.

EXPERT: Consider yourself an

'Expert' if you have been using the

tool for an exceptionally long time,

and very frequently, for most of

your duties. (10K hours rule)

a. Visual Studio

b. Xcode

c. Eclipse

d. GameMaker

e. Unity3D

f. Unreal

g. CryEngine

h. Blender

i. Maya

j. 3DS Max

k. Mudbox

l. Zbrush

m. Photoshop

n. Illustrator

o. Dreamweaver

p. Flash

q. Premiere

r. FMOD Sound Designer

s. Audacity

t. Paint.NET

u. Gimp

v. MS Paint (*for scenario &

production design only)

w. Pen and paper (*for scenario

& production design only)

x. Lego blocks (*for scenario &

production design only)

y. Other toys (*for scenario &

production design only)

z. Statistics software (R, SPSS...

*for scenario & production

design only)

aa. Excel (*for scenario &

production design only)

bb. Other (please specify)

201

4. Please rate how frequently you use

these tools when you are developing

games. (same options as above)

5. Which of the above tools (or other)

best suits your everyday needs?

6. Please rate your level of expertise in

the following production roles.

NO ANSWER: Do not answer if you

have never taken on this role and/or

have no interest in being this role.

BEGINNER: Select Beginner if you

have taken on this role for a very

short time and require supervision.

COMPETENT: You have had

responsibilities in this role for long

enough that you can make some

decisions on your own, but

sometimes require feedback, advice

or supervision.

INTERMEDIATE: You have enough

experience in this role to make some

big decisions, and work with and

manage other people.

ADVANCED: You use frequently act

in this role (e.g. as a job) and have

enough experience to support,

direct and guide other people in this

role.

EXPERT: Consider yourself an

'Expert' if you are a seasoned

veteran of the responsibilities of this

role, perhaps even leading teams

from time to time. (10K hours

rule)Gameplay programmer

a. Gameplay programmer

b. Tools programmer

c. Graphics programmer

d. Software developer (tool

software design &

programming...)

e. Technical designer (asset

management, integration...)

f. Level designer

(environments, worlds,

object placement...)

g. Systems designer

(mechanics, rules,

prototyping...)

h. User interface designer

(interaction with system)

i. Writer (story, dialogue,

characters...)

j. Film/game director (instruct

actors)

k. Film/game producer

(management & production)

l. Film editor

m. Cinematographer (camera

work)

n. Actor (physical presence in a

scene, including film, mocap,

voice...)

o. Concept artist

p. 2D artist

q. Environment artist

r. Character artist

s. Interface artist

t. 2D animator

u. 3D animator

v. 3D modeller

w. Sound designer/composer

x. Games user researcher

(evaluation, user

experience...)

y. Other (please specify)

202

7. From the above list (or other), which

role do you feel suits you best?

8. What methods and tools do you use

to prototype your games, and/or

pieces of your games (including any

combination of these)?

a. I write and draw ideas on

paper

b. I think about my game really

hard

c. I make a small demo in a

game engine

d. I modify existing game

engine projects

e. I use existing games' built-in

level editors

f. I draw environment layouts

on paper

g. I use 3D modelling/animation

software

h. I change the rules of existing

board games

i. I make a text-based game

j. I make a card game (like

Pokemon)

k. I build things out of Lego

bricks

l. Other

9. Here is a list of features you might

see in scenario development

software (games, film, animation).

Please rate the importance of these

features. Feel free to think in

terms of your specialization.

a. Three-dimensional editing

b. Tile-/grid-based scenario

mapping

c. Free-form scenario mapping

d. Object placement and

manipulation

e. A variety of pre-made

objects to use

f. Objects with predefined

behaviours and meanings

g. Objects with properties you

can change

h. Change mood and

atmosphere

i. Character/actor placement

j. Characters/actors with

predefined behaviours

k. Characters/actors with

properties you can change

l. Control over the camera

m. Scripting or some

programming tool

n. Basic logic editor or layout

(no programming, just

describes the flow of logic in

the scenario)

o. Mark which objects and

characters are involved

with/controlled by logic

p. Applicable textures and

materials

q. Animation and motion

editors

r. Scene hierarchy

s. Sound effects and music

(while editing)

t. Being able to stop working

and continue later

203

u. Being able to work with

other people

v. Being able to preview your

scenario instantly

w. Other (please specify)

(The PANAS questionnaire was inserted

here for the pre-study measurement. See

below for the PANAS questionnaire.)

10. Any general comments about your

game prototyping experiences?

204

D.1.1 Post-Condition

Positive and Negative A�ect Schedule (PANAS)

"This scale consists of a number of words that describe di�erent feelings

and emotions. Read each item and then select the number from the scale

below. Indicate to what extent you feel this way."

Ratings: 1 - Not at all; 2 - A little; 3 - Moderately; 4 - Quite a bit; 5 - Extremely

1. Interested

2. Distressed

3. Excited

4. Upset

5. Strong

6. Guilty

7. Scared

8. Hostile

9. Enthusiastic

10. Proud

11. Irritable

12. Alert

13. Ashamed

14. Inspired

15. Nervous

16. Determined

17. Attentive

18. Jittery

19. Active

20. Afraid

Computer System Usability Questionnaire (CSUQ)

"This questionnaire gives you an opportunity to express your satisfaction

with the usability of the system. Your responses will help us understand

what aspects of the system you are particularly concerned about and the

aspects that satisfy you. To as great a degree as possible, think about

all the tasks that you have done with the system while you answer these

questions. Please read each statement and indicate how strongly you agree

or disagree with the statement by selecting a number on the scale. Base

205

your responses around the way you interacted with the system during the

previous exercise."

Ratings: 1 - Strongly disagree; 2 - Disagree; 3 - Somewhat disagree; 4 - Neither

agree nor disagree; 5 - Somewhat agree; 6 - Agree; 7 - Strongly agree

Overall, I am satis�ed with how easy it is to use this system.

It is simple to use this system.

I can e�ectively complete my work (the assigned tasks and scenarios) using this

system.

I am able to complete my work quickly using this system.

I am able to e�ciently complete my work using this system.

I feel comfortable using this system.

It was easy to learn to use this system.

I believe I became productive quickly using this system.

The system gives error messages that clearly tell me how to �x problems.

Whenever I make a mistake using the system, I recover easily and quickly.

The information (on-screen messages, documentation) provided with this system

is clear.

It is easy to �nd the information I needed.

The information provided for the system is easy to understand.

The information is e�ective in helping me complete the tasks and scenarios.

The organization of information on the system screens is clear.

The interface of this system is pleasant.

I like using the interface of this system.

This system has all the functions and capabilities I expect it to have.

Overall, I am satis�ed with this system.

Creativity Support Index (CSI)

"Please rate your agreement with the following statements."

Ratings: 1 - Strongly disagree; 2 - Disagree; 3 - Somewhat disagree; 4 - Neither

agree nor disagree; 5 - Somewhat agree; 6 - Agree; 7 - Strongly agree

The system would allow other people to work with me easily.

It would be really easy to share ideas and designs with other people using this

system.

I would be happy to use this system on a regular basis.

I enjoyed using the system.

206

It was easy for me to explore many di�erent ideas, options, designs, or outcomes,

using this system.

The system was helpful in allowing me to track di�erent ideas, outcomes, or

possibilities.

I was able to be very creative while doing the activity inside this system.

The system allowed me to be very expressive.

My attention was fully tuned to the activity, and I forgot about the system that

I was using.

I became so absorbed in the activity that I forgot about the system that I was

using.

I was satis�ed with what I got out of the system.

What I was able to produce was worth the e�ort I had to exert to produce it.

"When completing tasks using this system, it's most important that

I'm able to..." (pick one from each pair)

Be creative and expressive/Become immersed in the activity

Be creative and expressive/Enjoy using the system or tool

Be creative and expressive/Explore many di�erent ideas, outcomes, or possibilities

Be creative and expressive/Produce results that are worth the e�ort I put in

Be creative and expressive/Work with other people

Become immersed in the activity/Enjoy using the system or tool

Become immersed in the activity/Explore many di�erent ideas, outcomes, or pos-

sibilities

Become immersed in the activity/Produce results that are worth the e�ort I put

in

Become immersed in the activity/Work with other people

Enjoy using the system or tool/Explore many di�erent ideas, outcomes, or possi-

bilities

Enjoy using the system or tool/Produce results that are worth the e�ort I put in

Enjoy using the system or tool/Work with other people

Explore many di�erent ideas, outcomes, or possibilities/Produce results that are

worth the e�ort I put in

Explore many di�erent ideas, outcomes, or possibilities/Work with other people

Produce results that are worth the e�ort I put in/Work with other people

207

D.1.2 Post-Study

"Please rate the ease of use for each of the following tasks using Play-

TIME's Tangible AR Markers only. If you did not use a feature, leave

that row blank."

Ratings: 0 - No answer; 1 - Very di�cult; 2 - Di�cult; 3 - Slightly di�cult; 4 -

Neither easy nor di�cult; 5 - Slightly easy; 6 - Easy; 7 - Very easy

Con�rming placement actions with the 'C' marker

Deleting world objects by presenting the object marker and pressing 'B'

Selecting one or more objects with the 'Selection Wand' marker

Deselecting all objects using the selection wand and C marker

Moving selections with the 'Move Tool' marker

Panning the camera around with the 'Camera Pan' marker

Placing the player object with the 'Player Object' marker

Placing �ying buzzer enemies with the 'Buzzer Object' marker (has a small square)

Placing exploding spider enemies with the 'Spider Object' marker (labelled Mesh)

Adding AI behaviour to one spider enemy directly using the 'Spider AI Behaviour'

marker (labelled 'AI')

Adding AI behaviour to multiple selected spiders using the spider AI marker

Changing the attack radius of selected spiders using the 'Manipulate Tool' marker

[Excluded] Deleting AI components by presenting the AI marker and pressing 'B'

"Please rate the ease of use for each of the following tasks using just

the mouse. If you did not use a feature, leave that row blank."

Ratings: 0 - No answer; 1 - Very di�cult; 2 - Di�cult; 3 - Slightly di�cult; 4 -

Neither easy nor di�cult; 5 - Slightly easy; 6 - Easy; 7 - Very easy

Navigating through the project assets folders (Assets > Study > Prefabs and

Scripts)

Placing the player in the world by clicking and dragging the prefab

Placing �ying buzzers in the world by clicking and dragging the prefab

Placing exploding spiders in the world by clicking and dragging the prefab

Selecting an object by clicking on it

Deleting an object from the world

Applying the spider's AI behaviour to a spider by clicking and dragging the script

Modifying a spider's attack radius

Moving an object around the world using the mouse

Panning the camera using the middle mouse button

208

[Excluded] Removing a spider's AI component

"If you were given the option of choosing PlayTIME's tangible paddles,

or to just click and drag the mouse to complete similar tasks, please select

which interface you would prefer to use for completing each the following

tasks. You may leave answers blank."

Placing a game object in the world

Adding a behaviour component to ONE object

Adding a behaviour component to MULTIPLE objects

Changing behaviour parameters on ONE object

Changing behaviour parameters on MULTIPLE objects

Deleting ONE game object from the world

Deleting MULTIPLE game objects from the world

Deleting a behaviour component from ONE object

Deleting a behaviour component from MULTIPLE objects

Selecting ONE object

Selecting MULTIPLE objects

Moving ONE object

Moving MULTIPLE objects

Panning the camera

Extra: If you knew how to rotate the camera...

D.2 Feedback

"Overall, which activity (PlayTIME or mouse) did you enjoy the most and

why?"

P51 : "Overall I enjoyed using the mouse more, however I feel that a main reason

of this is that using a mouse is a very common tool which I use everyday/every other

day, so I've gotten very used to it, where as PlayTIME was a new tool that I was

unfamiliar with. I believe that if I could use PlayTIME more, I may enjoy it just as

much/possibly more than a mouse."

P50 : "I enjoyed the PlayTIME more for its full outside of the computer inter-

action and complexion to complete what would be or should be simple tasks. When

simple tasks are made di�cult I makes you think of how easy things are made for us

especially in this technologically driven time. It also made it seem more like playing

a game to create a game, I was almost more interested in making it then playing it."

209

P49 : "Mouse because it felt like playing a PC game; felt more natural; playtime

felt like it was a lot of e�ort for something that was not needed vs just click and

done"

P48 : "I enjoy the mouse but i use it in my daily life but the playtime feels more

like a toy i can see kids using it then sending levels to there friends or building full

games using per-made objects"

P47 : "I enjoyed playtime the most it was interactive!!!! I wish there was a little

more functionality but totally worth while. this system was new to me and i was

able to set the scene with minimal di�culty i would like to have been able place work

on prefabs (spider ai on spider mesh) or just in general going back to the little more

functionality. this system would be a blast spending hours with and i think it could

be used a lot when working with other people to build levels via the internet and

other network type situations ie LAN"

P46 : "PlayTIME I actually thoroughly enjoyed the interactivity of being able to

move the tangable aspects of the level around and use the "screen capture" technology

to help determine my actions. It seemed almost intuitive and like I was physically

building something more than as if I was simply sitting behind a computer screen

editing a level."

P45 : "PlayTIME was de�nitely a more enjoyable experience. I felt more creative,

more willing to work, and really genuinely enjoyed was I was doing, so much so that

this didn't feel much like an experiment as much as it felt like I was hanging out with

a friend and playing a game"

P44 : "I enjoyed PlayTIME and the Mouse, however I found play time to be

more fun, exciting and new. It was much easer to use than the program that I have

to use (MAYA). I really liked how interactive it was and found I lost myself in the

activity. The mouse however was a bit easier for me to use and navigate for some

things (selection) with mainly because it is something I am more familiar with and it

is a bit more precise as to what your selecting. I would enjoy using both or a mixture

of the two."

P43 : "PlayTIME was de�nitely more enjoyable because it felt like I was playing

a game as opposed to working. However, if my goal was to be as e�cient as possible,

PlayTIME was substantially slower than the mouse which I am more accustomed to.

If I had a choice, I would prefer to use both keyboard and mouse to be as fast as

possible."

P42 : "I enjoyed using PlayTIME more then the mouse overall because it was

interesting way to interface with a computer. It wasn't something I had done before,

210

and besides the learning curve (which I imagine would come with more use) it was

fun and fairly easy to use."

P41 : "I enjoyed PlayTIME the most. As someone who is used to regular Unity,

the mouse without keyboard seemed like a bothersome limitation. But PlayTIME

was just cool. I was like a kid discovering a toy for the �rst time. I mean all motion

tracking AR stu� is neat and interesting, but to have it as a tool for a program I use

daily was pretty awesome. It was like playing rather than working."

P40 : "The PlayTIME was more enjoyable, mostly because it was novel."

P39 : "Overall I enjoyed using the PlayTIME system over the mouse system.

For me, the PlayTIME system was new and interesting. However, it's still in it's

developmental stages and needs to be iterated upon until it can become a viable

solution."

P38 : "I did enjoy both interfaces. I found the PlayTIME to be much more

interactive. It was harder to 'pick up' but enjoyable. Playtime had a slower work

pace to it from taking the time to select each tool appropriately. I think that Overall,

I actually enjoyed the mouse more. Just because I was more familiar with it and I

was faster/more e�ective using it."

P37 : "I enjoyed using PlayTIME more. its a novel way of being able to move

around and place objects and made completing the assignment much quicker, even

though its less accurate for �ne-tuning certain things like the position of the actors

or camera."

P36 : "playtime -it's di�erent from what i am used to - using just a mouse without

a keyboard is tedious"

P34 : "I actually enjoyed the PlayTIME activity more than the mouse, mostly

because it was something fresh and exciting. However, in terms of actual productivity,

I would say I enjoyed the mouse more than the PlayTIME simply because PlayTIME

was much more tedious to perform the simple tasks such as placing and changing

properties"

P33 : "I enjoyed using PlayTIME more than the mouse. I use the mouse everyday

and there is no excitement in it for me, however it was the �rst time that I used

anything like PlayTime so using the paddles and making the scene using the paddles

was like a game in itself. It made the activity a lot more enjoyable and fun."

P32 : "PlayTIME, by far. The work �ow was easy, and using a real life workspace

was easier than navigating folders. Modifying behaviours was easier with playTIME

as well."

211

P31 : "Moving objects, because gives the sensation that I have more control over

the environment."

"Please identify the strengths and limitations of each system."

P51 : "The strength of the mouse is that its almost common practice or second

nature to most people, its quicker, and arguably more precise. PlayTIME is very easy

to understand and pickup, but has a few hassles in using it (ie. have to move yourself

or the buttons/paddles because they interfere with the camera's view)."

P50 : "Speed and E�ciency divides these two systems entirely however PlayTIME

was de�nitely more fun then using just a mouse. PT was slow but highly functional

for almost anyone to learn and complete the tasks asked, the mouse might have been

a little more complicated for some as it wasn't as visual. I think that you could still

over look the complex format of the system with how much it can be enjoyed as long

as more buttons/ features were added. The mouse was a lot faster for sure, functions

and speed still a problem though."

P49 : "Limitations: Playtime Camera movement (too high or too low, too far...)

I just really like the mouse :)"

P48 : "the mouse is the base line for usability, the playtime is much or fun and

given better tech a parent could play along making a learning tool. learning tools are

easier to sale to parents, and the learning curve is at this point at a very appropriate

level"

P47 : "TIME was easy to learn but had some limitations you needed to be aware

of where your arms were so as not to block things like buttons the tools could have

been re�ned a little more for time (maybe write the name of the tool on the back of

it(i liked to �ip them over and leave them in scene) I did not �nd limitations really

with the mouse just lack of hot keys took and prefabs creation messed with my normal

work �ow"

P46 : "Unity is pretty decent (as it is used in the industry) but I think it's interface

is kind of programming heavy. It requires some background knowledge of how to code

a level before you can actually �gure out how to do what you want to do. PlayTIME

on the other hand is alot more friendly to people with only a creative background. It

makes it seem more hands on and although you may not see the background coding,

it helps to perform basic functions needed for a prototype game."

P45 : "The strengths I'd say that PlayTIME had over the mouse, easily, was

my interest. It was far more interesting to be using technologies that id never used

before, whereas I am almost always using just a mouse and keyboard, or as in this

case, a mouse alone. the mouse however is something that everyone already knows

212

how to use, but lacks the immersion and , I feel, level of creativity. in an industry that

relies on creativity, I feel that the PlayTIME tiles would de�nitely make for a great

experience in the game development , animation, game programming, etc. industry.

I am a strong believer in being able to do work e�ectively and have fun doing it;

this is proof as far as I'm concerned. the only set back I saw that would make me

want to choose the mouse over the tiles was that rotation might be an issue if you

crossed your arm in front of the camera, and that it took me probably twice as long

to complete the task with tiles just because I was having fun doing it"

P44 : "PlayTIME and the Mouse are user friendly. PlayTIME is very interac-

tive, engaging and fun, it is however harder to select with precision. Mouse is quite

simple to use as long as you do the instructions and dont mess with anything else

-restraints/messing up the program/messing up the map etc- PlayTIME dose not

need restrictions as it only allows you to do what is needed and nothing else. You

wont mess up the original �le."

P43 : "PlayTIME takes a bit of time to get used to, and requires switching back

and forth between the tools which slows progress. It is much more fun though. The

mouse is the fastest of the two tools, but not very exciting. It also is a bit limiting in

that I am slowed down by being unable to use the keyboard."

P42 : "For PlayTIME: The Strengths are not having to be physically tethered to

the computer. It's an interesting and intuitive way to complete a task. However, the

bounding box that you're required to work in at times can be a bit limiting, and using

the tools isn't as familiar as a mouse. For the mouse: I've used a mouse for years, so

it comes really easy to me, and it was easier to use some of the unity controls with a

mouse. A good middle would be nice."

P41 : "The strengths of PlayTIME to me were how simple the basic controls were,

and how setting up a scenario took less prior knowledge of the system to be able to

work with the tools. The weakness is that it was hard to get used to at �rst, as my

initial reaction was to treat the "b" and "c" panels like buttons, and would forget

to remove my hands out of the way. As well, the very slight delay makes it hard to

move accurately, and though I'm not sure how necessary it was, but I felt I needed to

go super slow so that the system could keep track of the cards. The strengths for the

mouse are that it is also simple, accurate, and can move quickly. The drawbacks are

having to navigate through menus and folders manually, and having an understanding

of where things will be and what types of clicks do what function."

P40 : "The mouse is much faster and more precise, and generally had superior

function in every way. The PlayTime was more fun and novel. The important dis-

213

tinction, however, is that the PlayTIME can recognize objects. This could have a lot

of potential for other applications... just not basic work functionality."

P39 : "In regards to the mouse and keyboard system, I was de�nitely more com-

petent with it as I have at least a decade's worth of experience with using it. In terms

of it's limitations, I didn't like the fact that I was not allowed to use the keyboard

short cuts or even redesign unity to the setup that best suits me. (Side Note) In

game design, there should not be restrictions to how the user on how to get to the

end point goal. So long as they get there with the desired speci�cations it doesn't

matter the process that was used. In regards to the PlayTIME system, it de�nitely

had it's strengths in getting the user to physically interact with the system. Al-

though, I found that the lag and lack of response time with the system hindered it's

performance with creating the �nal product. I believe that in this early stage, it is

not viable as a developer tool as it does not have the speed that is needed for the

industry. Perhaps when a later iteration goes out it would be viable as a developer

tool."

P38 : "PlayTIME+: interactive, requires movement (activity), easy to work with

others. Mouse+: e�cient, more familiar, more immersion. PlayTIME-: takes longer,

a little harder to give commands. Mouse-: not as easy to work with others."

P37 : "Using the mouse is very slow although it is way more accurate then Play-

TIME. PlayTIME was very fun to use as it made it much easier to move the camera

around quickly and even let me multi-task unlike the solo mouse set-up."

P36 : "strengths of playtime: - it's fun and easy limitations of playtime: - the

materials used to make the markers were a bit �imsy"

P34 : "PlayTIME Pros: camera pan (much faster and smoother), being able to

physically place objects. PlayTIME Cons: Time consuming, not e�cient (took time

to get used to controls and time everything correctly) Mouse Pros: Familiarity and

e�ciency- I have used a mouse my entire life, so the controls made sense. Mouse

Cons: Poor camera pan - it took forever to get places, and I dont enjoy that."

P33 : "I �nd panning in PlayTime to be rather di�cult, and it takes a while to get

used to. Moreover, it requires that you readjust when you are out of the �eld of view

of the camera, which I was not paying much attention to and myself forgetting about

the fact that the camera was there. Also, the fact that I accidentally waved my hand

over something and it would cause a reaction from the system was rather frustrating.

It had to be more attentive when using PlayTime versus using the mouse which has

become automatic to me. It is much easier to select and manipulate multiple objects

using PlayTime rather than using the mouse."

214

P32 : "Having a physical representation of the items infront of me was much better

than dragging and dropping, especially because placing multiple objects required only

one paddle and a button. The only real limitation that I can fault the system for is

the lag time of the camera. I found myself staring at the screen more than my hands,

and the lag was disorienting."

P31 : "Overall was a nice experience, it fells like I was playing a game instead of

just making one. The problem is that theres too much markers, a lot of function can

be simpli�ed in fewer markers."

"Did doing the �rst activity help you complete the second activity in

any way?"

P51 : "Yes, Once I had an idea of how the activity was supposed to be done and

its requirements, I feel that it helped a lot towards completing it again the second

time."

P50 : "knowing what I was suppose to do already is about it, other then placement

of objects of course I had to almost skip the learning process I was just handed better

tools to complete the task at hand."

P49 : "De�nitely. Understood everything with the mouse, it was simply remem-

bering it and applying it to the "weird pad thing" (aka playtime)"

P48 : "it let me know what needed to go where"

P47 : "yes i was able to get used to using the prefabs and what the all did. It

was my learning the assets and level phase. This is partially why it took less time

to create the second level i knew where i wanted things to go also i am more used to

using the mouse."

P46 : "Slightly but not really. The �rst activity (in Unity) basically refreshed

my knowledge from past experiences with it. (Just the process of inserting an object,

apply an AI to it and then changing it's speci�c attack radius.) I actually felt the

second activity was more intuitive and user friendly to me."

P45 : "Yes, and I feel that maybe if I had done everything with a mouse �rst to

get used to it, I'd probably have been able to use the PlayTIME tiles more e�ciently,

but that was not the case."

P44 : "Yes I believe it did help me in already understanding my tasks and knowing

what i vaguely wanted to do already."

P43 : "After completing the �rst activity, I didn't have to refer back to the

instructions sheet which made me take a more e�cient route to completing the goals.

However, it did not make me use the tools themselves any faster."

215

P42 : "I think it de�nitely helped me complete the second activity, I knew what I

was required to do, and I used the PlayTIME system and my previous tests in-game

as prior knowledge."

P41 : "Yes, I did all my play testing and �guring in the �rst activity, so the second

activity was simple placement and scaling the aggro radius on spiders."

P40 : "Yes, I was more aware of the system's parameters, the requirements of the

task, the map layout, and what worked and didnt."

P39 : "Doing the �rst activity did give me an advantage in the second activity

however, it was mitigated by the fact that I needed to learn a new system in order to

complete the task."

P38 : "Yes. I got the opportunity to understand how unity works before venturing

to use PlayTIME."

P37 : "Yes, it prepared me for getting used to where I could place certain objects

and how they would interact with the environment."

P36 : "yes"

P34 : De�nitely - the �rst activity got me used to the need for AI, planning

for placement of the enemies and overall layout of the map. I was much quicker at

placing enemies once I understood the entire map, which I looked into roughly while

understanding the controls of the PlayTIME."

P33 : "It helped me complete the second activity in that I was more familiar with

the map now, and knew where the player could and could not go, so where I could

place objects, and where they would be out of reach."

P32 : "In some ways, yes. I spent more time on the �rst activity trying to make

sure that mechanics worked, such as opening doors and verifying that spiders were

working. I spent less time thinking about placement on the second activity."

P31 : "Yes"

D.3 Observed User Actions

D.3.1 PlayTIME

A total of 130 user actions were observed during PlayTIME activities. Here they are

listed by subtask, with correct usages listed �rst.

Object Placement

PLAYER marker: Used properly (de�ned as "visible to position and place one or

more of the player prefab object")

Marker out of bounds

216

Idle visible time (feature idle)

Marker occluded (more likely by a �ngertip!)

BUZZER marker: Used properly (de�ned as "visible to position and place one or

more of the buzzer prefab object")

Marker out of bounds

Press marker to place

Idle visible time

Marker occluded

Marker misbehaving (system confused by pattern; actually because of the partic-

ipant's shirt)

SPIDER marker: Used properly (de�ned as "visible to position and place one or

more of the spider prefab object")

Marker out of bounds

Confuse with buzzer marker for deletion

Confuse with AI marker

Press marker to place

Idle visible time

Marker occluded

Object Deletion (Markers & B-Button)

PLAYER marker: Used properly (de�ned as "visible to delete player object")

BUZZER marker: Used properly (de�ned as "visible to delete buzzer object")

SPIDER marker: Used properly (de�ned as "visible to delete spider object")

B BUTTON: Used correctly (de�ned as "pressing the button to delete SPIDER")

Used correctly (de�ned as "pre-delete click used to select SPIDER to be deleted"

[discovered feature])

Used correctly (de�ned as "pressing the button to delete BUZZER")

Used correctly (de�ned as "pre-delete click used to select BUZZER to be deleted"

[discovered feature])

Used correctly (de�ned as "pressing the button to delete PLAYER")

B button: Press too quickly, no e�ect

False release (did not actually reveal marker after press; nothing happens)

Move button too fast, accidental press

Pushed out of frame

Try to deselect (wrong button)

Try to delete while pressing C (while placing something else)

217

Try to delete with wrong marker

Try to delete without showing marker

Try to delete while marker is occluded

Try to delete without selecting object

Occluded (by AI marker or other), spider showing, accidental deletion of spider(s)

Accidental unaware deletion of object (best guess only)

Return from out of view or occl (x1), accidental deletion (AI)

UNRESPONSIVE

Adding AI Behaviour

Used properly (de�ned as "show to apply AI to one or more spider (also switch from

select)")

Used properly (de�ned as "visible to select one spider object")

Marker out of bounds

Try to place spider (confuse with spider mesh marker)

Try to manip (confuse with manip)

Try to move object (confuse with move)

Try to add to buzzer

Try to use for multi-select

Try to use (for selection) without desel. �rst

Wave to apply / re-select

Idle visible time

Marker occluded

Marker unresponsive (AR system marker confusion) (ONE instance of allowing

marker to seelect a buzzer (5s, p33)

Selection & Deselection

Used correctly (select or multi-select) ("moving/waving over objects to perform se-

lection or deselect")

Marker out of bounds

Reselection / wave to desel

Confuse with camera marker

Idle visible time (feature idle)

Marker occluded (it counts even if it's just a �ngertip!)

218

Panning Camera

Used correctly (de�ned as "moving the marker towards or relative to the center square;

camera moving")

Marker occluded

Marker out of bounds

Trying to tilt marker to make it move

Trying to use marker like click+drag

Spotted by system (camera goes �ying)

Spotted by system with select marker (thinks it is select, requires reset)

Idle visible time

Moving Objects

Used properly (de�ned as "visible to move selected objects from entry point to desired

location")

Marker out of bounds

Confuse with select marker

Confuse with manipulate marker

Confuse with camera marker

Completely ambiguous movement (probably trying to rotate, which isn't possible)

Move multiple things by accident (forgot to desel.)

Remove from view without hiding

Moving objects into the abyss

Idle visible time

Marker occluded

Manipulating AI

Used properly (de�ned as "moving slider towards and within center square to adjust

radius")

Marker out of bounds

Confuse with select marker

Confuse with move marker

Confuse with camera marker

Try to extend beyond limits / outside square

Try to scale radially (relative to center of object instead of as a slider)

Try to manip without any AI selected

Manipulate multiple bots (no desel.) (technically correct, but sometimes not)

Remove from slider without hiding (mess up desired radius)

219

Idle visible time

Marker occluded

Marker unresponsive (AR system marker confusion)

Other: C-Button

Used correctly/as intended (placement) (de�ned as "pressing the button to place

something")

Used correctly (placement 2, inverse of above) (de�ned as "intentionally returned

to view to activate")

Used correctly (deselect) (de�ned as "pressing the button to deselect")

Used correctly (moving) (de�ned as "moving the button")

Press too quickly, no e�ect

False release (button still occluded)

Moving button, accidental press

Move button too fast, lost tracking (extra placement)

Try to desel. without selection marker shown

Try to desel. while selection marker still over object

Try to add AI without marker shown

Try to add AI without spiders selected

Try to add AI without desel. (repeat AI or incorrect selection)

Try to delete (wrong button, extra placement)

Indecisive or impatient button press (trying to delete or desel. or something other)

AI marker causing trouble (correct but did not work for some reason)

Trying to con�rm spider using AI marker

Trying to con�rm AI using spider

Con�rm SELECTION (not required, result in deselection)

Con�rm MANIPULATION (not required)

Con�rm MOVEMENT (not required)

Double click (extra placement): PLAYER

Double click (extra placement): BUZZER

Double click (extra placement): SPIDER

Placement marker moved or occluded while con�rming (extra placement):

PLAYER

Placement marker moved or occluded while con�rming (extra placement):

BUZZER

220

Placement marker moved or occluded while con�rming (extra placement):

SPIDER

Placement marker moved or occluded while con�rming (NO placement):

PLAYER

Placement marker moved or occluded while con�rming (NO placement):

BUZZER

Placement marker moved or occluded while con�rming (NO placement):

SPIDER

Placement marker moved or occluded while con�rming (NO placement):

AI

Selection marker moved or occluded while deselecting (NO desel.)

C button occluded by player marker, extra

C button occluded by buzzer marker, extra

C button occluded by spider marker, extra

C button occluded by select marker, accidental desel.

Partially out of bounds, invalid press

Return from out of view, accidental press

Out of area, unused (also applies to B)

Button genuinely unresponsive (unknown cause; known instances (2): buzzer con-

fusion)

D.3.2 Unity

A total of 80 user actions were observed during Unity activities.

Object Placement

Used correctly (de�ned as "moving towards and selecting PLAYER prefab in assets,

drag-n-drop into scene")

Used correctly (de�ned as "moving towards and selecting BUZZER prefab in

assets, drag-n-drop into scene")

Used correctly (de�ned as "moving towards and selecting SPIDER prefab in assets,

drag-n-drop into scene")

Select wrong prefab

Place wrong prefab

Select prefab but did not drag

Double click object name (trigger rename)

Prefab modi�cation warning (dragged one prefab into another)

Return PLAYER prefab to assets panel (didn't want it or just changed mind)

221

Return BUZZER prefab to assets panel

Return SPIDER prefab to assets panel

Object Deletion

Used correctly (de�ned as "moving towards and using Edit > Delete to remove se-

lected PLAYER from scene")

Used correctly (de�ned as "moving towards and using Edit > Delete to remove

selected BUZZER from scene")

Used correctly (de�ned as "moving towards and using Edit > Delete to remove

selected SPIDER from scene")

Duplicate spider

Use wrong menu item instead of delete (did not listen to instructions!)

Adding AI Behaviour

Used correctly (de�ned as "moving towards and selecting AI script in assets folder

and drag-n-drop on top of spider")

Try to add to already-selected spider (did not deselect or select other �rst)

Add to spider multiple times

Add to buzzer (intuitive response)

Add to other wrong object (once or multiple)

Double click object name (trigger rename or editor open)

Select but no drag

Return AI script to assets panel (likely because of pre-selected spider, would be

error anyway)

Indecisive drag?

Selection & Deselection

Used correctly (de�ned as "moving towards and single-clicking on a PLAYER object

to select it")

Used correctly (de�ned as "moving towards and single-clicking on a BUZZER

object to select it")

Used correctly (de�ned as "moving towards and single-clicking on a SPIDER

object to select it")

Used correctly (de�ned as "moving towards and single-clicking on unused object

to deselect target")

Used technically correctly (de�ned as "moving. . . to select a SPIDER that has

been duplicated")

222

Trying to select target but hitting wrong object (not to desel.)

Accidental click n' drag, deselect

Multi-select (click n' drag; not allowed)

Using hierarchy

Try to deselect object by clicking on the object itself (does nothing)

Panning Camera

Used correctly (de�ned as "middle-clicking and dragging to change the position of

the camera (pan)")

Zoom and correct (signi�cant change only; not allowed)

Zoom and correct; minor and noticeable

Rotating the camera (not allowed)

Left click to pan

Mouse roll-over to other window OR idle

Moving Objects

Used correctly (de�ned as "moving towards and using red or blue arrow to change

PLAYER pos")

Used correctly (de�ned as "moving towards and using red or blue arrow to change

BUZZER pos")

Used correctly (de�ned as "moving towards and using red or blue arrow to change

SPIDER pos")

Used technically correctly (de�ned as "moving. . . to change a SPIDER that has

been duplicated")

Deliberate translate on Y (green arrow not allowed)

Accidental translate on Y (try to move red or blue, hit green instead; due to

perspective!)

Translate with plane tool (not allowed)

Miss arrows, deselect instead

Rotate (not allowed)

Translate wrong object

Wrong mouse button, result in pan

Mouse roll-over to other window

Manipulating AI

Used correctly (de�ned as "moving towards and scroll-wheeling through properties

bar on spider WITH AI to locate component")

223

Used correctly (de�ned as "moving towards and using the scroll bar to navigate

properties bar on spider WITH AI")

Used correctly (de�ned as "moving towards and modifying radius value by clicking

and dragging text")

Used technically correctly (de�ned as "moving. . . to modify a spider that has

been duplicated")

Moving to and searching properties bar without selecting spider

Moving to and searching properties bar on spider WITHOUT AI; try to change

un-attached behaviour

Moving to and searching properties bar on other object without AI

Time spent in text box wanting to type number

Released click and tried to adjust, nothing happened

Missed text, closed component box

Tried to scroll in properties bar but ended up zooming (and correcting) instead

Tried to middle-click to adjust value; results in pan (people familiar with Maya)

Copying and pasting AI component

Mouse roll-over to other window OR idle

Other: Folder Navigation

Used correctly/as intended (de�ned as "moving towards*** and clicking STUDY

folder [top bar]")

Used correctly (de�ned as "moving towards and clicking PREFABS folder [main

assets window]")

Used correctly (de�ned as "moving towards and clicking SCRIPTS folder [main

assets window]")

Used correctly (de�ned as "moving towards and clicking the STUDY folder [side-

bar]")

Used correctly (de�ned as "moving towards and clicking the PREFABS folder

[sidebar]")

Used correctly (de�ned as "moving towards and clicking the SCRIPTS folder

[sidebar]")

Navigating and time spent outside study folder (wrong folder, probably interven-

tion req)

PREFABS: Clicking too slow and triggering folder rename

SCRIPTS Clicking too slow and triggering folder rename

PREFABS: Clicking on or accidentally navigating to the wrong folder

224

PREFABS: Single-click only resulting in not entering the folder; random move-

ments follow

SCRIPTS Single-click only resulting in not entering the folder; random movements

follow

SCRIPTS: Trying to drag entire folder into scene (happened with scripts folder

only)

225

Appendix E

Chapter 6 Complementary Material

E.1 Additional Tables & Figures

This section presents some additional �gures that complement the materials presented

and discussed in Chapter 6.

226

Performance: N=20/20 vs. N=40/20
KW test MWW test

Total activity time 0.7569 0.7908
Construction time 0.4011 0.4263
Activity idle time 0.3533 0.3767
Previewing time 0.6269 0.6585
Total correct usage, % of constr. time 0.5656 0.5959
Total user error, % of constr. time 0.7906 0.8248

Table E.1: The p-values testing the e�ect of sample size on performance and scenes
analyses. The Kruskal-Wallis test and Mann-Whitney-Wilcoxon test were used to see
if changing the sample sizes had an e�ect on the signi�cance levels within the two
population divisions.

Scenes: N=20/20 vs. N=50/50
KW test MWW test

Weighted Manhattan score 0.03263 0.03505

Table E.2: The p-values testing the e�ect of sample size on scenes analyses. The
Kruskal-Wallis test and Mann-Whitney-Wilcoxon test were used to see if changing
the sample sizes had an e�ect on the signi�cance levels within the two population
divisions.

227

(a
)
A
ve
ra
g
e
C
S
U
Q

ra
ti
n
g
s
p
er
-q
u
es
ti
o
n
fo
r
P
la
y
T
IM

E
(b
)
A
v
er
a
g
e
C
S
U
Q

ra
ti
n
g
s
p
er
-q
u
es
ti
o
n
fo
r
U
n
it
y

F
ig
u
re

E
.1
:
T
h
e
av
er
ag
e
ra
ti
n
gs

fo
r
al
l
C
S
U
Q
/P

S
S
U
Q

q
u
es
ti
on
s
fo
r
al
l
p
ar
ti
ci
p
an
ts

b
et
w
ee
n
b
ot
h
gr
ou
p
s.

T
h
e
er
ro
r
b
ar
s

re
p
re
se
n
t
on
e
st
an
d
ar
d
d
ev
ia
ti
on

fr
om

th
e
m
ea
n
.

228

(a
)
A
ve
ra
g
e
C
S
I
ra
ti
n
g
s
p
er
-q
u
es
ti
o
n
fo
r
P
la
y
T
IM

E
a
ct
iv
it
y

(b
)
A
ve
ra
g
e
C
S
I
ra
ti
n
g
s
p
er
-q
u
es
ti
o
n
fo
r
U
n
it
y
a
ct
iv
it
y

F
ig
u
re

E
.2
:
T
h
e
av
er
ag
e
ra
ti
n
gs

fo
r
al
l
C
S
I
q
u
es
ti
on
s
fo
r
al
l
p
ar
ti
ci
p
an
ts

b
et
w
ee
n
b
ot
h
gr
ou
p
s.

T
h
e
er
ro
r
b
ar
s
re
p
re
se
n
t
on
e

st
an
d
ar
d
d
ev
ia
ti
on

fr
om

th
e
m
ea
n
.
N
ot
e
th
at

th
es
e
q
u
es
ti
on
s
w
er
e
p
re
se
n
te
d
to

p
ar
ti
ci
p
an
ts

u
si
n
g
th
e
se
ve
n
-p
oi
n
t
sc
al
e
an
d

w
er
e
la
te
r
co
rr
ec
te
d
u
si
n
g
a
fo
rm

u
la
.

229

(a
)
A
ve
ra
g
e
ea
se

o
f
u
se

ra
ti
n
g
s
p
er
-q
u
es
ti
o
n
fo
r
P
la
y
T
IM

E
a
ct
iv
it
y

(b
)
A
ve
ra
g
e
ea
se

o
f
u
se

ra
ti
n
g
s
p
er
-q
u
es
ti
o
n
fo
r
U
n
it
y
a
ct
iv
it
y

F
ig
u
re
E
.3
:
T
h
e
av
er
ag
e
ra
ti
n
gs

fo
r
al
l
ea
se

of
u
se

q
u
es
ti
on
s
fo
r
al
l
p
ar
ti
ci
p
an
ts
.
T
h
e
er
ro
r
b
ar
s
re
p
re
se
n
t
on
e
st
an
d
ar
d
d
ev
ia
ti
on

fr
om

th
e
m
ea
n
.

230

Figure E.4: The average overall preference between the activities. The error bars
represent one standard deviation from the mean.

Figure E.5: The average preference ratings for the di�erent tasks that were completed
during the task. A positive rating leans towards PlayTIME and a negative rating leans
towards the mouse.

231

(a) The object to be placed is selected in the assets window.

(b) The object is dragged from the assets window to the scene window and is dropped in
place.

Figure E.6: The process of placing an object in Unity using the mouse. The cursor
is highlighted by a yellow circle.

232

(a
)
T
h
e
p
re
v
ie
w

w
in
d
ow

u
se
d
to

d
is
p
la
y
th
e
P
la
y
T
IM

E
v
ie
w
.

(b
)
T
h
e
ed
it
o
r
v
ie
w
,
w
h
ic
h
fo
ll
ow

s
th
e
a
ct
iv
e
m
a
rk
er
.

F
ig
u
re

E
.7
:
In

th
is
v
ie
w
,
th
e
m
an
ip
u
la
ti
on

m
ar
ke
r
is
u
se
d
to

ch
an
ge

th
e
at
ta
ck

ra
d
iu
s
of

m
u
lt
ip
le
sp
id
er
s.

233

F
ig
u
re

E
.8
:
T
o
m
an
ip
u
la
te

A
I
u
si
n
g
th
e
m
ou
se
,
th
e
u
se
r
m
u
st
cl
ic
k
on

a
si
n
gl
e
li
n
e
of

th
e
p
ro
p
er
ti
es

b
ar

on
th
e
ri
gh
t
si
d
e.

T
h
e

cu
rs
or

is
h
ig
h
li
gh
te
d
b
y
a
ye
ll
ow

ci
rc
le
.

234

E.2 Factors Hindering Creativity

Task Description

Participant 45-P had made a choice that resulted in the exact number of enemies

being placed, or something similar. In conversation, the observer said, "As a designer

don't you feel that you are required to make creative decisions?" The participant's

reply was along the lines of, "Yes, however I still need to please my employers." This

was a golden quote because the participant directly said what many others may have

only thought. People may have been worried about deviating from the task too much

because they treated it as strict requirements, as if the activities were simulating a job

or an interview perhaps. Some might have believed that it was a strictly professional

situation, and therefore they had to have some sort of justi�cation, or persuasion for

their "employer" regarding the creative choices they wanted to make but did not feel

they should.

It is quite possible that creativity was heavily a�ected by the task description

itself: if participants believed they had to follow instructions, for whatever reason,

then they would be less creative and line up with the task description. The task

description implied that the tasks were not strict: "Make the best prototype in a

short amount of time!" The task description did not say anywhere that they must

follow it exactly. Even the following line about the zones was cleared up: "Do not

place anything outside the boundaries!" This was immediately followed up with a

rehearsed verbal explanation summarizing that this was only pertaining to the area

visible within the map itself and they were free to use the areas not explicitly labelled

within the map. Despite being fun, the task would have been better for creativity if

it had been worded a little di�erently.

In-Game Bugs Hindering Creativity

There were a couple of a glitches in the level that had not been discovered early on

and may have a�ected the Manhattan scores and possibly creativity results. The

e�ects were not measured, but the bugs are worth noting.

The �rst bug is illustrated in Figure E.9. In the main room, one of the areas

of interest was the back corner, since it was guarded by rails and would hide spiders

well. However, due to the narrow opening between the rails and the walls in that area,

the player would not be able to navigate to the corner to destroy any spiders placed

there. The player would then shoot at the spider from a distance, and the spider

would disappear through the �oor as it approached, therefore rendering the level not

235

Figure E.9: An overview of the �oor glitch. The player has shot the spider in the cor-
ner, triggering an attack. As the spider approaches the player, it disappears through
the �oor around the area of the question mark.

Figure E.10: An overview of the passive spider glitch. The larger sphere around the
spider indicates that it does in fact have its AI behaviour attached; this is the attack
radius. It is also clear that the player has crossed the threshold, yet the spider is not
attacking.

236

winnable unless a replacement spider had been added somewhere else. Participants

who discovered this glitch while previewing either left it alone citing that it was "just

a prototype" or moved all enemies away from that corner. The bug is probably caused

by a missing collider in that area, so that the spider does not actually make contact

with what is supposed to be the �oor.

The second bug is illustrated in Figure E.10. This one happened all over the place:

spiders would simply not attack the player if they did not have a direct line of sight

when their attack zone was intruded. A spider in this situation would remain passive

until the player shot it or re-entered the attack radius. This but was not often �xed;

users left the spiders where they were, having been told that it was a glitch and not

their fault.

The bugs that occurred within the game itself hindered creativity because the

users who decided to �x their levels to accommodate somebody else's development

errors lost the opportunity to keep enemies in spots that were potentially unique, or

would have increase their Manhattan score.

237

	Abstract
	Acknowledgements
	Introduction
	Overview
	Objectives
	Thesis Outline
	Summary

	Related Works
	Introduction
	The Game Design Process
	Prototyping
	Physical Prototypes
	Digital Prototypes
	Summary of Prototypes

	Human-Computer Interaction
	Tangible & Natural User Interfaces
	Augmented Reality
	Tangible AR
	Summary

	Designer Actions Study
	Introduction & Motivation
	TimeSplitters: Future Perfect

	Method
	Session Overview
	Video Analysis

	Results
	Demographics
	Post-Study Questionnaire
	Screen Capture & Video Recordings

	Discussion
	Participants
	Development Process
	Previewing
	Logic Operations
	Questionnaires & Feedback
	Notebook

	Summary

	PlayTIME
	Introduction
	Traditional Scenario Design
	Physical Prototypes
	Digital Prototypes
	Bridging the Gap

	Tangible Interactive Media Environment
	PlayTIME
	System Overview
	Development Pipeline
	Asset Development Stations
	Design Stations

	Implementation Details
	Unused Features

	Summary

	User Evaluation of PlayTIME: Study Design
	Introduction & Motivation
	Important Definitions
	Assigned Tasks
	Hypotheses

	Method
	Session Overview
	Experimental Setup

	Demographics
	Overview
	Expertise
	Techniques
	Features

	Summary

	User Evaluation of PlayTIME: Results & Implications
	Overview
	Data Analysis Methods
	Significance Testing
	Organization of Data
	Survey Collection & Analysis
	Video Capture & Analysis
	Scene Analysis

	Results
	Summary of Data Collected
	Post-Condition Questionnaires
	Post-Study Questionnaire
	Performance & Time
	Scenes

	Extended Results
	Extended Performance & Time
	Extended Scenes

	Discussion
	PANAS & Emotions
	CSUQ & Usability
	Ease of Use & Preference
	Activity Time Overview
	Level Construction & Usability
	Creativity Support & Preference

	Summary
	Usability
	Creativity
	Enjoyment & Fun
	Conclusion

	Conclusions
	Hypotheses
	Discussion of Hypotheses

	Limitations & Future Work
	Augmented Reality
	Studies & User Evaluations
	Future Evaluations

	Summary
	Concluding Remarks

	References
	Appendices
	Designer Actions Study Materials
	Activity Materials

	Designer Actions Study Data
	Questionnaires
	Design Process
	Feedback

	PlayTIME User Study Materials
	Activity Materials

	PlayTIME User Study Data
	Questionnaires
	Post-Condition
	Post-Study

	Feedback
	Observed User Actions
	PlayTIME
	Unity

	Chapter 6 Complementary Material
	Additional Tables & Figures
	Factors Hindering Creativity

