
A NUMERICAL STUDY OF THE

EFFECTS OF INHOMOGENEOUS

MEDIA IN DIFFUSION WEIGHTED

IMAGING

By

Jessica Cervi

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in

The Faculty of Science

Modelling and Computational Science

University of Ontario Institute of Technology

July, 2015

©, Jessica Cervi, 2015



Abstract

Diffusion Weighted Imaging (DWI) -a common Magnetic Resonance Imaging (MRI)

technique - is used to infer material properties of tissues from the average diffusion of

water molecules over brief time intervals. In particular, the Apparent Diffusion Coef-

ficient (ADC), a measure of the magnitude of diffusion within tissues, can be derived

from the MR signal under the assumption of homogeneous medium. Unfortunately,

the complex structure of a typical volume element of physiological tissue contains

many types of cells separated from extracellular space by semi-permeable barriers and

is thus far from homogeneous.

In this thesis, we define an idealized tissue model as a system of cells separated

by non-uniformly spaced semi-permeable membranes and extracellular space. Finite-

difference solutions of the associated PDE model can be used to compute a Displace-

ment Probability Density Function (DPDF). Having numerically computed the DPDF

it is possible to simulate the intensity of the MRI signal and, from it, compute the

ADC as in a real Diffusion Weighted-MRI experiment. The ADC is measured by av-

eraging the second moments of the DPDF. Finally, we investigate the changes in the

ADC in an inhomogeneous model by including higher order moments of the DPDF

and we discuss the possible advantages of these alternative definitions.
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Chapter 1

Introduction

1.1 Background

Diffusion MRI is a relatively recent branch of Magnetic Resonance Imaging (MRI)

that has been used to produce information regarding human physiology and various

porous structures. Diffusion MRI is applied [12] to infer structural information at a

sub-voxel level by interpreting MRI signals [14].

In a broader sense, MRI is a well-known, non-invasive tomographic imaging tech-

nique for visualizing internal structures with a high degree of detail. MRI is able

to produce images of internal physical and chemical characteristics of a system using

nuclear magnetic resonance (NMR) [34]. The NMR phenomena was observed for the

first time in 1846 by Bloch and Purcell [34]. However, it was not until 1972 that Paul

Lauterbur developed the technology and the theory needed to encode spatial informa-

tions using NMR and build the first MRI scanner. Thanks to the deep physical theory

behind the MRI modality, MR images are able to provide a rich variety of informa-

tion. The image voxel value depends on a large set of intrinsic parameters that can be

tuned to enhanced or suppress imaging effects. MRI is able to provide strong contrast

between different types of soft tissues in the body and is widely used to image human

brains, hearts, muscles, and even to locate tumours.

The first experiments to combine diffusion-weighted magnetic resonance measure-

ments with MRI were published in 1984 [25]. However, in the past thirty years,

developing and improving diffusion imaging techniques have become a research area

of great interest due to established success in clinical neurodiagnostics [14].

1



1.2. Diffusion Magnetic Resonance Imaging Techniques

1.2 Diffusion Magnetic Resonance Imaging Techniques

Various MRI-based diffusion imaging techniques have been developed since the earli-

est experiment combining diffusion theory with MRI. Diffusion MRI has been used to

infer different kinds of information (e.g., tissue connectivity, anatomical features, etc.).

The simplest imaging technique is Diffusion Weighted Imaging (DWI); this makes use

of the variability of the Brownian motion that water molecules experience in tissues to

map the changes in average magnitude of diffusion under the assumption of isotropy.

Imaging techniques range from DWI, to other more complex techniques that are able

to capture information in more than one dimension. Examples of these techniques

include Diffusion Tensor Imaging (DTI), Diffusion Kurtosis Imaging (DKI), Q-ball

imaging, and tractography [14]. In this thesis, we begin the discussion by introducing

a fundamental component of all diffusion MRI schemes - the Displacement Probability

Density Function.

1.2.1 Displacement Probability Density Function ρ

Before explaining the Displacement Probability Density Function, it is useful to intro-

duce, briefly, some basic concepts of Probability theory, starting from the definition of

a continuous random variable.

Notions about probability theory

A continuous random variable is a real-valued function that associates a unique numer-

ical value to every, uncountably infinite, outcome of an experiment [18]. In particular,

a random variable X is continuous if there exists a non-negative, integrable function

f(x) so that, for every set B,

P (X ∈ B) =

∫
B

f(x)dx, (1.2.1)

where the function f(x) is called the Probability Density Function (PDF) of X [15]

and P (X ∈ B) denotes the probability that X is on the set B.

2



1.2. Diffusion Magnetic Resonance Imaging Techniques

The density function f(x) must satisfy the following properties [7]:

1.
∫ +∞
−∞ f(x)dx = 1

2. f(x) has to be non-negative on every set B, that is, f(x) ≥ 0 for all x in B.

3. limx→−∞ f(x) = 0

4. limx→+∞ f(x) = 1

Additionally, the One crucial property of a continuous random variable is that P (X =

a) = 0, if a is a specific event. This means that the probability of the exact event

a happening is always zero. A simple way to think about this is by interpreting the

probability density function as a curve; this means that, finding the probability that

a continuous random variable X falls in some interval of values, involves finding the

area under the curve f(x) between the endpoints of the interval

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx. (1.2.2)

Clearly, if we consider an interval that is just the point corresponding to the event a,

then, in the sense of the Riemann sum, the area under f(a) is zero (i.e.,
∫ a
a
f(x)dx =

0,∀x ∈ R). Because we cannot associate a probability to any precise value, we need a

function to measure the probability that X falls into a certain interval a, b. For this

reason we define the Probability Distribution Function as [15]

F (x) = P (X ≤ x) =

∫ x

−∞
f(s)ds, (1.2.3)

where s in this case is a dummy variable. It is worth mentioning that F (x) is an

increasing function (F (x) ≤ F (y) is x ≤ y).

It is important to say that the probability distribution function is a probability

(i.e., its value is a number between zero and one), and it is defined for both discrete

and continuous random variables. On the other hand, the probability density func-

tion contains information about probability of all the events, but is not a probability

because it can assume any positive value, even a value larger than one.

Some characteristics of the shape of a continuous PDF can be described by certain

quantities, called standardized moments. The nth moment of a real-valued continuous

3



1.2. Diffusion Magnetic Resonance Imaging Techniques

function f(x) about a value c is defined as

µn =

∫ +∞

−∞
(x− c)nf(x)dx. (1.2.4)

Given the definition for the moments, we can define the moment generating function

MX(ζ) for a continuous random variable X as [15]

MX(ζ) = E(eζX) =

∫ +∞

−∞
eζxfX(x)dx, ζ ∈ R, (1.2.5)

where fX(x) is the PDF for the random variable X and E is the expectation of eζX .

By expanding (1.2.5) in Taylor series we can rewrite this as

MX(ζ) ' E[1 + ζX +
1

2!
ζ2X2 +

1

3!
ζ3X3],

= 1 + ζE(X) +
1

2
ζ2E(X2) +

1

3!
ζ3E(X3),

= 1 + ζµ1 +
ζ2µ2

2!
+
ζ3µ3

3!
+ · · · , (1.2.6)

where ζn/n!, n = 1, . . . ,∞, are the coefficients of the expansion of eζx in the moment

generating function. In (1.2.6), the expectation of the nth power of the random variable

X, µn = E(Xn), is the nth moment of the random variable X.

The lower-order moments have recognizable names and are easy to compute. In

particular, the first moment is the mean or the expected value, the second moment is

the variance, the third moment is the skewness and the fourth moment is the kurtosis.

The mean is used to refer to one measure of the central tendency either of a probability

distribution or of the random variable characterized by that distribution. The variance

is a measure of how spread out the values about an event are, and always has a non-

negative value. For example, a variance of zero indicates that all the values associated

with X are identical. We can think of the skewness as a measure of the asymmetry of

the probability density function. The last moment we will introduce for our study is the

kurtosis K: it is a descriptor of the shape of a probability density and it characterizes

how peaked the probability density of a real-valued random variable is.

Having clarified some basic concepts of probability theory, we can introduce the

notion of Displacement Probability Density Function (DPDF) and start interpreting

it for cellular diffusion processes. The DPDF ρ(x0|x, t) is the PDF that a particle

4



1.2. Diffusion Magnetic Resonance Imaging Techniques

starting at x0 at t = 0 is at position x at time t, i.e., the probability that a particle

starting at x0 is between x1 and x2 at time t is

P (x1 < X < x2) =

∫ x2

x1

ρ(x0|x, t)dx. (1.2.7)

In diffusion MRI, water molecules are the particles of primary interest because

water is a major constituent of biological tissue. Because of this reason, MRI is

tuned to receive signal from the protons of water molecules. However, determining

the form of the displacement density for such particles is very difficult due to the

multitude of natural barriers to water diffusion, such as cell membranes organelles,

plasma, membranes, and fibre tracts. These barriers make the diffusion of water an

inhomogeneous random process. That is, the shape of the DPDF depends on x0, the

point where the particle starts diffusing.

In fact, in a homogeneous medium, the displacement PDF computed at one specific

location in the domain would be the same under translation to any other location

in the domain. In a homogeneous domain, the displacement density is a Gaussian

(bell-shaped) function. In the case where diffusion in more than one direction is

considered, the Gaussian is multivariate and corresponds to either isotropic (equal

diffusion coefficients in all directions, Figure 1.1a) or anisotropic diffusion where there

may be preferred directions of diffusion (Figure 1.1b). It is easy to understand that,

(a) Isotropic diffusion (b) Anisotropic diffusion

Figure 1.1: Water diffusion in ordered structures exhibits directional preference de-
pending on the geometry of the media itself. If the molecules are not likely to diffuse
in any particular direction then the medium is said to be isotropic (a). If the struc-
tures permit molecules to diffuse more readily in one direction as opposed to others
the medium is said to be anisotropic.(b).

in reality, the complex heterogeneity of biological tissue implies that the DPDF is, in

general, not Gaussian. However, very often, due to the complexity of modelling these

5



1.2. Diffusion Magnetic Resonance Imaging Techniques

elaborate structures, scientists make the simplifying assumption that there are no

barriers or obstacles to water diffusion and, therefore, the medium can be considered

homogenous. In the next section, we will discuss this assumption in the diffusion

imaging techniques considered in this thesis.

1.2.2 Diffusion Weighted and Diffusion Kurtosis Imaging

In order to infer information about the biological microstructures from the MR signal,

the most commonly used imaging techniques use the hypothesis of homogeneity across

the whole domain to approximate the Displacement PDF of water molecules diffusing

over a fixed period of time. It follows that, often, diffusion-based imaging techniques

assume that diffusion follows a Gaussian distribution. This would be a very accurate

description if the medium was homogenous. However, biological tissue are highly

heterogenous. For example, the presence of cell membranes make biological diffusion

media inhomogeneous [14] and, therefore the shape of the probability function of

molecular displacement will depend on the molecules starting point [27]. This is true

because, the diffusing molecules will encounter different kinds of obstacles depending

on how close it starts to these obstacles. Because of the complexity that characterizes

the tissue structures, the diffusion obstructed by the barriers and the obstacles in the

medium is understood as an average of different probabilities over the entire sample.

The great attraction and interest in some imaging schemes, such as DWI, Diffusion

Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI), lies in their simplicity

and short acquisition times compared to more complex methods such as Diffusion

Spectrum Imaging (DSI)[14]. In Diffusion Weighted Imaging, it is common practice

to use a specific, one directional, MRI spin-echo sequence (see Section 3.1) tailored

to acquire diffusion-weighted images [27]. By measuring the MRI signal in each voxel

from such a sequence, it is possible to infer information about the biological tissue by

computing the Apparent Diffusion Coefficient which is related to the 2nd-order mo-

ment of the PDF (see Section 3.2). Some common clinical applications of DWI include

stroke localization [25] and characterization of renal and musculoskeletal diseases [27].

Despite these remarkable accomplishments, DWI fails to fully utilize the MR diffu-

6



1.3. Motivation for a Numerical Study in Heterogeneous DWI

sion measurements by implicitly assuming that the water molecule diffusion occurs in

a free and homogeneous environment. To probe and characterize the non-Gaussian dif-

fusion, a new imaging technique called Diffusion Kurtosis Imaging (DKI) has been de-

veloped recently [33]. In theory, DKI aims to provide a higher-order description of the

restricted water diffusion process by gathering information from the 2nd- and 4th-order

moments of the Displacement PDF. DKI findings are promising. Measurements of the

apparent kurtosis along the diffusion gradient encoding directions have been demon-

strated to offer a better and improved understanding of neural tissue changes [33].

1.3 Motivation for a Numerical Study in Heterogeneous DWI

Ideally, we would like to gain insight into information of the microstructures of a

heterogeneous cellular medium without making any hypothesis about the shape of the

displacement probability density function. However, removing the assumption from

DWI that diffusion follows a Gaussian can be very difficult. In fact, to replace the

Gaussian with a function with a different shape, first, we would need to understand

how the cellular microstructures affect the shape of the DPDF. In fact, predicting the

shapes of the displacement densities in the presence of water restriction, such as in the

case where particles encounter semi-permeable barriers, can be very challenging.

In order to address these questions, in this thesis, we develop two idealized models

for tissues that are hoped to capture the diffusion of water molecules in a inhomo-

geneous medium. The idealized medium is made inhomogeneous by the presence of

semi-permeable barriers that separate cellular and extracellular regions. We present

a PDE model describing diffusion in the idealized medium and calculate the shape of

the probability density functions for various sizes and configurations of the domain

of computation. Having numerically computed the solutions, we can make some ad-

ditional measurements of the moments of the probability density function and seek

information about the structure of the medium as in an inverse problem.

The main advantage of the model used in this thesis is that it is versatile as all the

parameters defining the geometry and the physiological properties can be adjusted

to represent various structures without the need of complicated grids or numerical

7



1.4. Thesis Outline

methods. Such versatility would be not possible using an MRI machine directly. The

important point of this work is that the mathematical approach applied, and the results

obtained from the simulations, could be used to confirm DWI findings and to address

specific questions that could not be answered in a conventional DWI experiment.

1.4 Thesis Outline

In Chapter 2 we describe the mathematical model for diffusion in cellular media start-

ing with a brief description of human cells and tissues. Next we distinguish between

homogenous, isotropic and anisotropic diffusion in cellular media. The last part of this

chapter is dedicated to deriving an analytical expression for the DPDF for a diffusion

process with particular attention to the cases of homogenous and non-homogenous

diffusion.

Chapter 3 is entirely dedicated to Diffusion Weighted Imaging theory: we explain

how a DW-MRI image is produced in practice and we define a mathematical expression

to measure the signal of the experiment. In the last part of this chapter we introduce

the fundamental concept of Apparent Diffusion Coefficient (ADC) and we derive ways

for computing it.

Chapter 4 covers the core of this thesis. We present our idealized tissue models as

well as the governing equations to describe diffusion in an inhomogeneous medium. We

explain how to discretize the PDE model and we look at the structure of the matrix

of the discretization. In the last section of this chapter, we reconsider the notion of

ADC and present a new practical way of computing it for our model.

In Chapter 5, we establish the choice of computational and physiological param-

eters used to solve the PDEs numerically and present the results starting from some

preliminary tests of the code. We present the numerical solution of the PDE for a

simple problem and we look at the reliability and numerical accuracy of the solution.

Next we present the solution for a more complex problem that simulates diffusion

in an idealized inhomogeneous tissue. The last part of the chapter is dedicated to

the measurements of the ADC using different definitions presented in Chapters 3 and

4. Finally, in Chapter 6 we summarize the benefits and potentials of our project for

8



1.4. Thesis Outline

DW-MRI experiments and point to some possible future work developments.

9



Chapter 2

Mathematical Models of Diffusion

Diffusion is a process that plays a fundamental role in the function of living organ-

isms. Many biological systems rely strongly on the diffusion properties of cellular mem-

branes [28]. It is possible that information about cellular structures can be obtained by

studying the diffusion properties of water molecules as they cross the semi-permeable

cellular membranes. To infer this information, diffusion MRI imaging techniques are

used to track the diffusion of water molecules, because water is the most abundant

constituent of most biological systems. In this process, simplified models for the dis-

placement density (i.e., the Gaussian function) are often used. A better understanding

of the effects of the inhomogeneities induced by the cellular structures may enable an

analysis of the error caused by the simplifying assumption and show how the relax-

ation of the assumption can lead to the ability to extract more information from the

imaging process.

In this chapter we will first give a brief insight into the complexity of the human

cells and tissue structures. With regards to the complicated anatomy, we will then

explain the characteristics of molecular diffusion in cellular media by giving some

realistic examples of diffusion in a highly heterogenous medium and by highlighting the

differences between free and restricted diffusion in cellular media. In the last section of

this chapter we derive the mathematical form of the displacement probability density

function by searching for the Green’s function of the diffusion equation solved for a

homogenous and inhomogeneous medium.

10



2.1. Human Cell Anatomy

Figure 2.1: Diagram of a cell.
Source by: https://en.wikipedia.org/wiki/Cell_(biology)

2.1 Human Cell Anatomy

The human body is an extremely complex system. The structural, functional, and

biological unit of the human body is the cell. Clusters of cells with the same origin

and the same function constitute tissues. A collection of tissues joined in a structural

unit to serve a common function is called an organ. Because each organ system is

dedicated to a different function, each corresponding cell is unique not only in its

function, but also in size, shape, and composition.

Human cells are enclosed in a protective cell membrane (see Figure 2.1). The cell

membrane, surrounds the cytoplasm of a cell. This membrane serves to separate and

protect a cell from its surrounding environment. The cell membrane is made of a

double layer of phospholipids and a variety of protein molecules that act as channels

and pumps that move different molecules into and out of the cell [10]. For this reason,

the membrane is said to be semi-permeable. The cell membrane, in fact, can either

let molecules of different type pass through freely, pass through to a limited extent,

or not pass through at all. One of the main features of the cells in the human body is

compartmentalization, that is, the presence of membrane-bound organelles (compart-

ments) in which specific metabolic activities take place. Examples of such organelles

11
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2.2. Molecular Diffusion in Cellular Media

include mitochondria, the endoplasmic reticulum, the centrosome, vacuoles, ribosomes

and the nucleus (see Figure 2.1). The molecular composition of cells includes mainly

water (70%), simple and complex carbohydrates, fats and nucleic acids such as DNA

and RNA [10] .

Cells are separated by extracellular space: this is defined as the tissue component

outside the cells proper, thus outside the cell membranes, and occupied by fluid. The

composition of fluid in the extracellular space includes, for the most part, water, as

well as other chemical compounds such as metabolites, ions, various proteins and

non-protein substances.

This complex structure makes the diffusion in cellular media a difficult process to

describe. In the next section, we will develop a model for cellular diffusion in the

presence of semi-permeable barriers.

2.2 Molecular Diffusion in Cellular Media

We use the term molecular diffusion to refer to the notion that any type of molecule

in a fluid is randomly displaced as it is agitated by thermal energy. This process leads

to ceaseless, irregular and apparently random motion of molecules in the medium

[14]. The first reported experimental observations of a random walk of particles was

made in 1828 by the botanist Robert Brown [16]. Brown noticed that particles of

pollen, in water, were in an uninterrupted and irregular swarming motion. “Brownian

motion”was described formally for the first time by Albert Einstein in 1905 [14][11].

Einstein understood that Brownian motion concerns the behaviour of a colloidal par-

ticle in a liquid and results from random molecular collisions with liquid molecules,

leading to a motion, which can be described in terms of the random walk.

To clarify what we mean by random walk, let a particle start at the origin of the

x−axis and execute N independent random steps of equal length ∆x to the left or to

the right. Let Xi be a random variable that assumes the value of δ if the particles

moves to the right and −δ if it moves to the left. Let q be the probability that the

particle moves to the left and (1− q) the probability that it moves to the right. When

the particle is crossing a cell membrane, we can assign a certain probability of it passing

12



2.2. Molecular Diffusion in Cellular Media

though the membrane as the membranes microstructure may or may not allow it to

pass.

Random diffusion is a non-deterministic process, which invariably leads to disorder

in a system. Although random diffusion over time may contribute to the creation

of essential reaction pathways in living matter, it is too disordered and disorganized

to be relied on in life processes. Therefore, over evolutionary time, cells developed

strategies to compartmentalize their anatomy using soft interfaces, fibres and scaf-

folding structures. Within these structures, macromolecules and sub-cellular entities

undergo random and free diffusion. The typical length scales of these structures are in

the range of 1− 1000 nm. This is the typical length scale where diffusional processes

can be effective on the time scales that are relevant in biology [11]. The structur-

ing and compartmentalization imply that the various diffusional processes take place

in a highly heterogeneous medium. Therefore, the assumption of homogeneous and

isotropic diffusion are poor.

In the following section, we will explain, using realistic examples, why diffusion in

cellular media cannot be assumed to be isotropic by underlying some features which

makes the medium inhomogeneous. Next, we will describe the processes of free and

restricted water diffusion highlighting how the presence of obstacles can affect the

diffusion of water molecules.

2.2.1 Example of direction-dependent diffusion in brain tissue

As explained in Section 2.1, the differences in cellular and extracellular structures,

composition and organelle orientation can lead to significant changes in the shape

of the displacement density of diffusing water molecules (see Section 1.2.1). For ex-

ample, in the ventricles of the nervous system or other regions of the body that are

mostly fluid-filled, there are relatively few microstructure barriers to diffusion. As

such, particle displacements are equally likely in any direction and hence the diffusion

is predominantly isotropic [2]. In other regions of the brain, such as in grey matter,

there are several barriers to water mobility. In this case, where membrane structures

are not aligned in any particular direction, the diffusion process remains isotropic as

13
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well.

In white matter, neuronal axons are oriented parallel to each other with a greater

consistency than that of cell walls in grey matter. Since displacements parallel to the

fibre axis are, on average, larger than in directions perpendicular to the fibre axis, the

diffusion in these tissues is anisotropic [2].

These various configurations of water diffusion in brain tissue can be applied to

different types of tissue in various parts of the human body. Next, we will briefly

discuss a model of diffusion in cellular media that can be applied to different types of

tissue configurations and parameters.

2.2.2 Free and restricted diffusion in complex cellular media

We will use an example to illustrate the diffusion process in cellular media. We can

imagine that at time t = 0, a given number N of labelled water molecules is free to

move, from a starting point x0 = 0, only along one dimension in a glass of water.

The glass is assumed to be large enough so that it can be considered infinite. We are

interested in measuring the displacement ∆x after a specific time which we call the

diffusion time interval ∆t. If we count the number of molecules that travelled a certain

distance x0 + ∆x, we see that most of the molecules travel short distances, and only

a few travel farther. In fact, if we count the relative number n/N of particles that

have travelled a certain distance, and we plot this information versus the displacement

∆x, we observe that the histogram resembles a Gaussian distribution (see Figure 2.2).

This is not surprising because the Gaussian distribution is the Green’s function, also

called fundamental solution, in the case of free diffusion in homogeneous media [32].

The exact shape of this distribution depends on different factors such as the type of

molecule, temperature of the system and the diffusion time ∆t. Depending on these

variables, the distribution is going to be wider or narrower. Assuming that we are

measuring the displacement in just one direction, the spread of the Gaussian over

time is described by a single parameter: the variance σ2 = 2D∆t, where D is the

diffusion coefficient, which describes how easily the molecules are displaced. It follows

that, for longer diffusion time ∆t, we would expect a wider distribution as the particles
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Figure 2.2: The histogram shows the typical displacement distribution due to diffusion
in a one-dimensional model. For a source that starts at x0, in a given diffusion time
∆, we can observe that only a few particles have travelled a long distance.

experience a longer displacement.

Consider now the same one-dimensional system with impermeable barriers dis-

tributed throughout at fixed locations. The displacement distribution associated

within a volume element that contains one of the barriers and some of the surrounding

liquid would be now significantly different than the one describing the free diffusion

process. The difference reflects the presence of some restriction to diffusion in the sys-

tem [14]. It is not easy to predict the shape of the Displacement PDF in this specific

case, but, for sufficiently long diffusion times, it would be more or less bell-like and

narrower than the one corresponding to free diffusion.

However, to better approximate a biological system, we can instead introduce semi-

permeable interfaces that water molecules can cross with some resistance [14]. Over

very short time scales, relatively few particles encounter the barriers and the diffusion

would effectively be the same as in the case of free diffusion. As the time of observation

increases, more particles encounter the barriers and eventually are transmitted or

reflected. Therefore, the total displacement is less than it would have been without

barriers.

Having introduced a model for the cellular diffusion, next, we will define the diffu-
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sion tensor and discuss how its form changes in the case of homogeneous, isotropic or

anisotropic diffusion.

2.2.3 The diffusion tensor

It is well known that, in the reaction-free case, any diffusion-like process can be mod-

elled using the partial differential equation (PDE)

∂ρ(r, t)

∂t
= −∇ · (D(r)∇ρ(r, t)). (2.2.1)

In (2.2.1), ρ(r, t) is the density of the particles and it depends both on the spatial

position r and on the time t. D(r) is called the diffusion tensor, and it is a sym-

metric positive definite rank-2 tensor field [23]. When we are measuring diffusion in

more than one dimension, D(r) is interpreted as a tensor because the relationship

between the properties of the driving forces that generate diffusion and the result-

ing complex pattern of their movement in the tissue depends on the direction of the

diffusion. Therefore, the collection of molecular displacements of this physical prop-

erty can be described with nine components-each one associated with a pair of axes

xx, yy, zz, xy, yx, xz, zx, yz, zy[26]. Because of the space dependence D(r) is defined

as a two dimensional (rank-2) tensor field. The D(r) tensor is positive definite because

its eigenvalues represent molecular mobility along the principal axes [20]. Finally, be-

cause x → y and y → x diffusivities should be the same, mirror-image off-diagonal

elements are equal. This means the diffusion tensor matrix is symmetric with only 6

unique elements. The diffusion tensor can be written as

D(r) =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dxz Dzy Dzz

 . (2.2.2)

If the material in which we are measuring the diffusion is homogenous (i.e., the diffu-

sion is independent of position, and it is symmetric under translation [23]), then the

diffusion tensor is constant (its entries are spatially independent). In the case where
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2.3. The Displacement Probability Density Function

we have isotropic diffusion, the diffusion tensor is proportional to the identity:

D(r) = cI, (2.2.3)

where I is the identity matrix and c is some constant coefficient. It is obvious that,

for this case, the tensor D(r) is diagonal. For this case, we have no preferred direction

for diffusion and Dxx = Dyy = Dzz. In the case of anisotropic diffusion, (2.2.3) does

not hold. The diffusion tensor is still symmetric and positive definite, but its entries

off the main diagonal are not necessarily zero anymore. When we consider diffusion

in just one dimension, there is no distinction between isotropy or anisotropy. In this

case, the diagonal components of the diffusion tensor are equal, (Dxx = Dyy = Dzz),

the diffusion tensor reduces to a scalar, and it is the diffusion coefficient D [6]. In the

one dimensional case, (2.2.1) becomes

∂ρ(x, t)

∂t
= −D(x)

∂2ρ(x, t)

∂x2
. (2.2.4)

Now that we have introduced the diffusion tensor and we have seen how it depends

on the structure of the medium, we will go back to the density ρ(r, t) in the diffusion

equation and will justify, mathematically, why it can be interpreted as a Displacement

Probability Density Function.

2.3 The Displacement Probability Density Function

As explained in Section 1.2.1, the molecular diffusion process and the global behaviour

of the molecules can be described using a Displacement Probability Density Function

(DPDF). To relate the DPDF to a diffusion process, we must first relate the concept of

a random walk to the Brownian motion. Given this result we introduce the probability

density function for molecules experiencing random motion and relate it to the diffusion

equation.

In Section 2.2 we defined the Brownian motion as a ceaseless and irregular random

motion of particles colliding with fluid molecules. In the limit where the displacement

that a particle experiences at each step goes to zero (∆x → 0) and the number

of collisions it undergoes is infinite (N → ∞), then we can define ρ(x, t) to be the
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2.3. The Displacement Probability Density Function

probability that at the time t the particle is located at the point x [35]. The probability

density ρ(x, t) satisfies the difference equation

ρ(x, t+ ∆t) = pρ(x−∆x, t) + qρ(x+ ∆x, t). (2.3.1)

Equation (2.3.1) states that the probability that the particle is at x at time t+∆t equals

the probability that it was at point x−∆x at the time t multiplied by the probability p

that it moved to the right in the following step plus the the probability that it was at

point x + ∆x at the time t multiplied by the probability q that it moved to the left in

the following step [35].

Expanding in Taylor series with remainder ρ(x, t+ ∆t) and ρ(x±∆x, t) in(2.3.1)

givesρ(x, t+ ∆t) = ρ(x, t) + ∆tρt(x, t) +O(∆t2), for the LHS

ρ(x±∆x, t) = ρ(x, t)±∆xρx(x, t) + 1
2
∆x2ρxx(x, t) +O(∆x3), for the RHS

(2.3.2)

Substituting (2.3.2) into (2.3.1) we obtain

∂ρ(x, t)

∂t
= (q − p)∆x

∆t

∂ρ(x, t)

∂x
+

1

2
(p+ q)

∆x2

∆t

∂2ρ(x, t)

∂x2
+O

(
∆t+

∆x4

∆t

)
(2.3.3)

At this point, we shall assume that p + q = 1 and that p = q = 1/2. Making use

of these assumption, and ignoring the higher order terms in the expansion, we can

rewrite (2.3.3) as
∂ρ(x, t)

∂t
=

1

2

∆x2

∆t

∂2ρ(x, t)

∂x2
(2.3.4)

From its definition [35], the expected value of the random variable X in this case is

E(X) = (p−q)∆xn, where n is the total number of particle we are considering. Having

computed the expected value, we can write the variance of X as V(X) = 4pq∆x2n =

D. Making use of these definitions with n = 1/∆t, in the limit as ∆x→ 0 and ∆t→ 0,

(2.3.4) tends to the partial differential equation

∂ρ

∂t
= D

∂2ρ

∂x2
(2.3.5)

where D is the called diffusion coefficient. Now, we can interpret ρ as a probability

density associated with the continuous variable x at time t. In the next sections we
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will derive a mathematical expression for the DPDF in the case of diffusion occurring

in an homogeneous or inhomogeneous medium.

2.3.1 DPDF for an homogenous medium

As explained is Section 1.2.1, if we consider diffusion in a homogenous medium, we

expect the probability density function to have a Gaussian profile. It is important

to make clear that having an unbounded domain is necessary when considering a

homogeneous medium. In this section, we want to show this by deriving the expression

for the Green’s function for the 1D diffusion equation defined over the infinite domain,

−∞ < x < +∞. More precisely, we want to find a form for the Green’s function [35]

K(x, t; ξ, τ) such that it is a solution to the problem

∂K(x, t; ξ, τ)

∂t
−D∂

2K(x, t; ξ, τ)

∂x2
= −δ(x− ξ)δ(t− τ), ∞ < x < +∞; t, τ < ∆,

(2.3.6)

and satisfies the initial condition K(x, t, ξ, τ) = 0 where (ξ, τ) is some specific space-

time point in our domain. In (2.3.6), the functions on the RHS are Dirac delta functions

in space and time.

In order to solve the IVP for the Green’s function, we use the Fourier transform

in the spatial variable x. Denoting the Fourier transform of K(x, t; δ, τ) as k(λ, t; δ, τ)

we can write, from the definition of Fourier transform [35],

k(λ, t; δ, τ) =
1√
2π

∫ ∞
−∞

e−iλxK(x, t; δ, τ)dx. (2.3.7)

Multiplying (2.3.6) by (1/
√

2π)e−iλx, integrating with respect to x on the whole domain

and using the differentiation property for the Fourier transform

1√
2π

∫ +∞

−∞
e−iλxf (n)(x)dx = (−iλ)nF (Λ), (2.3.8)

we obtain an equation for k(λ, t; δ, τ)

∂k(λ, t; ξ, τ)

∂t
− (Dλ)2k(λ, t; ξ, τ) =

−1√
2π
e−iλξδ(t− τ). (2.3.9)

Using an integrating factor, the solution of the first-order differential equation (2.3.9)
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is

k(λ, t; ξ, τ) =
1√
2π

exp[(Dλ)2(τ − t)− iλξ]H(t− τ), (2.3.10)

where H(t− τ) represents the Heaviside step function centered at t = τ . The inverse

Fourier transform of K(x, t; δ, τ) in (2.3.10) is

K(x, t; ξ, τ) =
1

2π
H(τ − t)

∫ ∞
−∞

exp[iλ(x− ξ)−Dλ2(τ − t)]dλ. (2.3.11)

Evaluating the integral, we find the Green’s function for the diffusion equation

K(x, t; ξ, τ) =
H(τ − t)√

(4πD2(τ − t))
exp

[
− (x− ξ)2

4D2(τ − t)

]
. (2.3.12)

The obtained Green’s function K(x, t; ξ, τ) can be used to find a solution ρ(x, t) for

the diffusion equation

∂ρ

∂t
−D∂2ρ

∂x2
= F (x, t) −∞ < x <∞; t > 0 (2.3.13)

when the initial condition is: ρ(x, 0) = δ(x− ξ). The solution formula is

ρ(ξ, τ) =

∫ ∆

0

∫ ∞
−∞

K(x, t; ξ, τ)F (x, t)dxdt+

∫ ∞
−∞

K(x, 0; ξ, τ)δ(x− ξ)dx. (2.3.14)

In our case, the first integral vanishes because F (x, t) is zero. Moreover, because

H(τ − t) = 0 for t > τ , the second integral becomes∫ ∞
−∞

K(x, t; ξ, τ)δ(x− ξ)dx =
1

2
√
Dπτ

∫ ∞
−∞

e(x−ξ)2/4Dτδ(x− ξ)dx. (2.3.15)

Therefore, we can conclude that the solution to the 1D diffusion equation, when the

initial condition is a Dirac delta function, is

ρ(x, t) =
1

2
√
Dπt

∫ ∞
−∞

e(x−ξ)2/4Dtδ(x− ξ)dx. (2.3.16)

That is, the source function is

S(x, t) =
1

2
√
πDt

e(x−ξ)2/4Dt, for t > 0. (2.3.17)

This result justifies the interpretation of the function ρ(x, t) as a DPDF for molecules

diffusing in an homogenous medium. A physical interpretation for our purposes of

(2.3.16) is the following: Suppose we are observing Brownian motion where particles

are moving in one dimension. Then the probability that a particle that begins at position

ξ ends up in the interval (a, b) at time t is precisely
∫ b
a
S(x − ξ, t)dξ where S is the
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source function for the diffusion equation [32].

2.3.2 DPDF for an inhomogenous medium

If we do not consider an infinite domain in our problem, then the Green’s function for

the diffusion function is no longer a Gaussian. This is due to the fact that limiting the

domain to a bounded region, as well as introducing membranes in the model, affect

the form of the Green’s function rendering it much more complex. This point is very

important for the purpose of this work: in fact, as we will explain (see Section 4.1),

our domain is not infinite and the presence of semi-permeable barriers is modelled by

boundary conditions at each of these interfaces.

To derive the Green’s function for the one-dimensional parabolic equation in a

bounded region, we start by considering the general boundary value problem (BVP)

ν(x)
∂ρ(x, t)

∂t
− ∂

∂x

(
p(x)

∂ρ(x, t)

∂x

)
+ q(x)ρ(x, t) = ν(x)F (x, t), 0 < x < l, t > 0,

(2.3.18)

with initial condition

ρ(x, 0) = f(x), (2.3.19)

and boundary condition

α1ρ(0, t)− β1ρx(0, t) = g1(t) α2ρ(l, t)− β2ρx(l, t) = g2(t). (2.3.20)

Equation (2.3.18) is the most generic example of one-dimensional parabolic PDE,

where ν(x), p(x), q(x) and F (x, t) are linear generic terms depending on the space

variable x and on time t. The domain of integration is assumed to be a bounded region

(0 < x < l), and the time is assumed to be positive (t > 0). This derivation is valid for

any spatially dependent initial condition of the form (2.3.19). The conditions at the

boundaries, as specified in (2.3.20), may be Dirichlet, Neumann or mixed boundary

condition. In order to write an integral relation to find the solution at the generic

point ρ(ξ, τ) for the BVP, we can define [35], a one-dimensional space-time gradient

operator ∇̃ = [∂/∂x, ∂/∂t] and a one-dimensional differential operator L such that

Lρ(x, t) = − ∂

∂x

(
p(x)

∂ρ(x, t)

∂x

)
+ q(x)u. (2.3.21)

21



2.3. The Displacement Probability Density Function

With the use of the operator L, we can rewrite (2.3.18) as

ν(x)
∂ρ(x, t)

∂t
+ Lρ(x, t) = ν(x)F (x, t). (2.3.22)

Applying the operator ∇̃ to (2.3.22), and using the fundamental theorem of calculus,

we can obtain the following integral relation [35]∫ T

0

∫ l

0

[K(νρt + Lρ)− ρ(−νKt + LK)]dxdt

= −
∫ l

0

[νKρ]|t=0dx+

∫ T

0

[−νKρx + νρKx]|x=ldt

+

∫ l

0

[νKρ]t=Tdx−
∫ T

0

[νKρx + νρKx]|x=0dt, (2.3.23)

where the subscript x or t denotes the derivatives with respect to space and time

respectively and K(x, t; ξ, τ) is the generic Green’s function. If the space-time point

(ζ, τ) is inside our domain of integration, then we can choose the function K(x, t; ξ, τ)

to be a solution of the parabolic problem

− ν(x)Kt(x, t; ξ, τ) + LK(x, t; ξ, τ) = δ(x− ξ)δ(t− τ) ξ < l; t, τ < T. (2.3.24)

If α1 = α2 = 0 in (2.3.20), then we have Neumann boundary conditions and we can

rewrite the second and fourth integral in the RHS of (2.3.23) as∫ T

0

[−νKρx + νρKx]|x=ldt =

∫ T

0

ν(l)

β2

g2(t)Kx(l, t; ξ, τ)dt, (2.3.25)

and ∫ T

0

[νKρx + νρKx]|x=0dt =

∫ T

0

ν(l)

β1

g1(t)Kx(0, t; ξ, τ)dt, (2.3.26)

respectively. Combining the results in (2.3.23), (2.3.25) and (2.3.26), the solution

formula for the arbitrary point ρ(ξ, τ) in the one-dimensional parabolic case is given

by

ρ(ξ, τ) =

∫ T

0

∫ l

0

ν(x)F (x, t)K(x, t; ξ, τ)dxdt+

∫ l

0

ν(x)f(x)K(x, 0; ξ, τ)

+

∫ T

0

[
ν(l)

β2

g2(t)Kx(l, t; ξ, τ)− ν(l)

β1

g1(t)Kx(0, t; ξ, τ)

]
dt. (2.3.27)

If the RHS of (2.3.18) is equal to 0, then the first integral in (2.3.27) vanishes, and, in

the case of constant Neumann boundary conditions so does the third integral in the

same equation.
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Next, we want to find an expression for the Green’s function K(x, t; ξ, τ) in the

inhomogeneous case. In order to do that, we expand K(x, t; ξ, τ) in a series of eigen-

functions: K(x, t; ξ, τ) =
∑∞

k=1 Nk(t)Mk(x). Here Mk(x) are the eigenfunctions of the

operator L that satisfy the BVP. Multiplying (2.3.24) by Mk(x) and integrating over

the domain, we obtain

−N ′k(t) + λkNk(t) = Mk(ξ)δ(t− τ), t, τ < T ; k = 1, 2 . . . (2.3.28)

Using the fact that δ(t− τ) = δ(τ − t), we can rewrite (2.3.28) as

− d

dt
[e−λktNk(t)] = Mk(ξ)e

−λktδ(t− τ) = Mk(ξ)e
−λkτδ(τ − t), (2.3.29)

where the symmetry property of the Dirac delta has been used. Integrating (2.3.29),

and using Nk(0) = 0 as the initial condition, we get

Nk(t) = e−λk(t−τ)Mk(ξ)H(τ − t), (2.3.30)

where H(t) denotes the Heaviside step function. Finally, recalling that dH(x)/dx =

δ(x), the Green’s function can be written as

K(x, t; ξ, τ) =

[
∞∑
k=1

e−λk(t−τ)Mk(ξ)Mk(x)

]
H(τ − t). (2.3.31)

Both the results that have been shown in this section (equations (2.3.27) and

(2.3.31)) demonstrate that a simple extension such as bounding the domain, can result

in a significant complication of the form of the solution for a single point and of the

Green’s function (and consequently the form of the Source Function). We conclude

then, that without the assumption of homogeneity, the Probability Density Function

cannot be considered to have a Gaussian form. In fact, it is easy to see that substituting

(2.3.31) into (2.3.27) we do not get a Source function that is a Gaussian.
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Chapter 3

Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) is the simplest of a variety of diffusion MRI tech-

niques (see Section 1.2). In particular, DWI is an inherently one-dimensional MR-

imaging technique that makes MRI sensitive to the process of water molecular diffu-

sion, yielding micro-structural insights into the states of tissues. Free molecules, such

as water, are in constant random motion due to the thermal energy associated with

their body temperature. As discussed in Section 2.2, this random motion suggests

that, over time, a molecule will undergo a certain displacement in a random direc-

tion. Information regarding the average magnitude of the random displacement can

be inferred by a quantity known the Apparent Diffusion Coefficient (ADC).

We will start this chapter by explaining how a Diffusion Weighted Image is created

through the use of a specific spin-echo sequence in an MRI experiment. Next, we will

introduce a mathematical way to express the signal and, from here, we will derive and

justify various expressions for the Apparent Diffusion Coefficient.

3.1 Creating a Diffusion Weighted Image

3.1.1 Basic physics of MRI

To understand how a Diffusion Weighted Image is created, it is useful to give here some

explanations about the basics of the MRI physics. The units of a biological sample are

the atomic nuclei and their orbiting electrons. A fundamental property of nuclei with

odd atomic weight and/or odd atomic number is that they posses an intrinsic angular

momentum ~J . An important property of a nuclear spin system, i.e., an ensemble
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3.1. Creating a Diffusion Weighted Image

Figure 3.1: Standard Spin Echo sequence

of nuclei of the same type [34], is nuclear magnetism. As with any classical spinning

charged objects, a nucleus with a nonzero angular momentum creates a magnetic field.

The presence of this magnetic field is represented by the magnetic moment ~µ. Due to

the thermal random motion, the direction of ~µ is completely random and no magnetic

field is observable in a macroscopic object. To line up the spin vectors, an external,

static magnetic field ~B0 is applied. The macroscopic effect of the external field ~B0 is

the generation of an observable bulk magnetization ~M =
∑N

n=1 ~µn pointing along the

direction of ~B0. At the equilibrium, the transverse component of ~M is zero because

the precessing magnetic moments have random phases. Establishments of a phase

coherence is called resonance and it can be achieved by a sequence of RF pulses after

which a signal (echo) can be measured.

The pulse sequence used to generate a DW image differs from the basic Spin-Echo

sequence often used in MRI. The basic Spin-Echo sequence (see Figure 3.1) is generated

using two RF pulses [34]. The first pulse is a 90◦ pulse which has the effect of rotating

the nuclear spins into the transverse plane, and thus, they begin to precess about the

z-axis, the direction of the main field B0 (see Figure 3.4). Due to the relatively small

local magnetic field inhomogeneities (variations in the magnetic field at different parts

of the sample) the spins will have slightly different precessional frequencies. Thus,

after some time they will lose phase coherence as the free precession continues (see

Figure 3.2b) [8]. After a time t = τ , the second pulse, (a 180◦ pulse), is applied. This

pulse has the effect of flipping the spins over to the other side of the transverse plane

(Figure 3.2c). Because all the spins will still precess at the same rate as before the

second pulse, the faster will catch the slower and, at time t = 2τ , the phase coherence
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3.1. Creating a Diffusion Weighted Image
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Figure 3.2: Vector diagram illustrating the refocusing of spins in a standard Spin Echo
sequence. The letters f and s denote the faster and slower spins respectively. At the
beginning the spins are in phase (a). Just after the 90◦ pulse is applied, since one is
precessing faster than the other, they will start dephasing (b). At time t = τ , the 180◦

pulse, about the y’ axis, has the effect of flipping them (c) so that, at time t = 2τ the
faster will catch the slower recreating phase coherence (d).

will be restored (Figure 3.2d). If the echo, i.e., the capturing of the signal, occurs at

this time, the attenuation of the signal due to dephasing of the spins will be minimized.

The Spin-Echo sequence described above is unable to capture diffusion behaviours.

However, an additional encoding procedure can turn the spin-echo sequence into a DW-

MRI acquisition used to study the diffusion of water molecules [27]. In particular, two

short, high-amplitude, magnetic field gradients are added after the 90◦ and 180◦ pulses

transforming the spin-echo into a Diffusion Weighted (DW) spin-echo (see Figure 3.3).

The effect of these gradient pulses is to accelerate spin precession of individual water

molecules (see Figure 3.4) according to their spatial position. For example, if the

gradient field is applied along the z direction, spins associated with water molecules

with high z coordinates will precess more quickly whereas spins associated with water

molecules at low z coordinates will precess more slowly. Overall, the ensemble of

spins will precess at different rates and consequently dephase, where the magnitude

of dephasing will depend on the relative position of the molecules. A 180◦ RF pulse,

followed by a gradient pulse of equal amplitude and duration is then applied, which

has the effect of flipping the spins allowing the rephasing at which point the echo is

acquired.
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3.1. Creating a Diffusion Weighted Image

Figure 3.3: Diffusion Weighted Imaging Spin Echo sequence

180◦RFGradient Gradient

Slow
precession

Slow
precession

Slow
precession

Fast
precession

Fast
precession

Fast
precession

x1

x2

z′

y′x′

Figure 3.4: Representation of the dephasing of the different spin during the Spin Echo
Pulse Sequence used in diffusion weighted imaging. If there is displacement of water
molecules after the first gradient pulse and before the second, thus the position in the
gradient field are not the same during the 90◦ and 180◦ pulse, there will be a net loss
of spin echo amplitude.
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3.1. Creating a Diffusion Weighted Image

If the individual spins are at exactly the same spatial coordinates during both

gradient pulses, the phase refocusing will be theoretically exact and there will be no

net loss of signal in the resultant spin-echo. However, if a molecule moves in between

the two gradient pulses (see Figure 3.4), then a different amplitude of the gradient will

be experienced during the second gradient and the phase refocusing will be incomplete

and a loss of spin-echo amplitude will be experienced (see Figure 3.4). The larger the

distance travelled, the larger the phase difference and the larger the signal loss will be.

As such, the diffusion of molecules in the time between the two gradient pulses, called

the diffusion time ∆, can be encoded in the spin-echo amplitude [30]. As we will see

in the following section, tuning the amplitude and the length of the gradient pulses is

fundamental in order to measure the diffusion of water.

3.1.2 Measuring the MRI signal for a DW image

In DW-MRI, there is a loss in the strength of the signal due to the diffusion of the

water molecules. Mathematically, we can express this with a definition that correlates

the signal attenuation to the distance travelled by the molecules [31] [30]

R(∆) =
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆) cos[q(x− x0)]dxdx0, (3.1.1)

where ρ(x|x0,∆) is the displacement PDF and R(∆) is the measured signal. In (3.1.1),

Ω ≡ [Ω−,Ω+] is the domain covering the sample and L(Ω) is the length of the sample.

The function ρ(x|x0,∆) describes the probability that an hydrogen proton starting at

position x0 is at x after the diffusion time ∆ (see Section 2.3). The factor q = γδG,

where γ is the gyromagnetic ratio, δ is the duration of the gradient pulse and G is the

intensity (amplitude) of the gradient (see Figure 3.3). From this definition it follows

that the units for q are [rad/µm], i.e., q gives the relation between phase and position.

The cosine function in (3.1.1) describes the dephasing angle between molecules at the

end of the DW- Spin-Echo sequence and it can be interpreted as an attenuating factor

due to this dephasing.

In (3.1.1), R(∆) is defined to be the relative echo height. In fact, it is the ratio of

the signal measured when the value of q is not zero, S(q 6= 0), and when the value of
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3.2. The Apparent Diffusion Coefficient

q is zero, S(q = 0). Therefore, we can say that the signal is normalized, i.e., R = 1 in

the absence of the diffusion sensitization gradients (i.e., when q = 0) (see Figure 3.3).

Assuming that the concentration of molecules is constant throughout the domain over

the entire diffusion time, and that the domain of computation is a infinite periodic

lattice with lattice constant α (i.e., the contribution from each lattice unit is the same),

in order to assume homogeneity, we can write the expression for the normalized signal

R(∆) as

R(∆) =
1

α

∫ α

0

∫ Ω+

Ω−
ρ(x|x0,∆) cos[q(x− x0)]dxdx0, (3.1.2)

where we just replaced the bounds of integration.

The term q is directly related to the gradient application [6], and it determines the

magnitude of the attenuating effect of the proton dephasing due to the displacement

of water molecules. Because q depends on the duration of the gradient pulses as well,

the easiest way to change its value is to lengthen the duration of the two gradient

pulses. In this way, the longer the duration, the less the water molecules will have to

move to produce a similar signal loss [24]. The important point is that we can control

the value of q by changing the intensity G and the duration δ of the gradient pulses.

Depending on these changes we can expect a difference in the signal loss.

Having introduced and explained the mathematical expression for the signal in a

DW-MRI experiment, we will now introduce the most widely used measure in diffusion

weighted imaging: the Apparent Diffusion Coefficient (ADC).

3.2 The Apparent Diffusion Coefficient

A quantitative measure derived from a DWI experiment is the Apparent Diffusion

Coefficient (ADC). The ADC is a measure of the freedom of water molecular diffusion

in the tissue environment and encodes information about an average distance water

molecules diffuse [17]. A numerical value of the ADC depends on interactions of the

diffusing molecules of water with cellular and extracellular structures over a given time.

It follows that a decrease in the ADC is interpreted as a reduced diffusion of water,

whereas in tissue with an increased ADC, there is less restriction to the diffusion [17].
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3.2. The Apparent Diffusion Coefficient

Even though more complex and sophisticated imaging techniques have been devel-

oped (see Section 1.2), DWI and measurements of the ADC are still effective when

the orientation of the structures within the tissue is not important (i.e., isotropic

medium). In these cases, it is sufficient to characterize the diffusion with a scalar

ADC (see Section 2.2.3) [6]. In this thesis we focus on DWI and the ADC because the

effects of inhomogeneities in an isotropic medium would be reflected in a similar way

in an anisotropic medium.

In the next section, we will show how we can derive an expression for the ADC

from the measured DW-Spin-Echo signal R(t).

3.2.1 Measuring the ADC from the signal: a theoretical approach

In this section we will show that, even without prior knowledge of the internal structure

of our system (i.e., without knowing the form of the DPDF ρ(x, t)), it is possible to

compute a value for the apparent diffusion coefficient from a measured MRI signal

R(∆). We begin the derivation by considering an equation [1] used to describe a

diffusion-spin-echo experiment for the case of a 90◦ pulse followed by a 180◦ pulse as

shown in Figure 3.5 assuming homogeneity in the medium [30]

∂Ψ

∂t
= −iγ(r ·G)Ψ +D∇2Ψ, (3.2.1)

where Ψ is the net magnetization of nuclei in the transverse plane, r is the vector of

coordinates, G is a constant magnetic field collinear with the B0-field and D is the

diffusion coefficient.

Consider the behaviour of the solution Ψ in the absence of the diffusion term

∂Ψ

∂t
= −iγ(r ·G)Ψ. (3.2.2)

First, we solve for the solution Ψ for 0 ≤ t ≤ τ (i.e., between the 90◦ and the 180◦

pulses). In this case, we can use an integrating factor to get

Ψ = S(t)e−iγr·F(t), (3.2.3)

where S(t) represents the transverse magnetization at any point in time (i.e., the

measurable signal) [19] and the integrating factor is F(t) =
∫ t

0
G(t′)dt′. Now we
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3.2. The Apparent Diffusion Coefficient

RF

τ τ

∆

90◦ 180◦

FID

δ δ
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G(t)

Figure 3.5: Pulse Gradient Spin Echo sequence. The RF pulse sequence consists of a
90◦ and a 180◦ pulse separated by the time τ , the Free Induction Decay is recorded
after a time 2τ , at the peak of the spin echo. The magnetic field gradient pulses are
of equal duration δ, and separated by the time interval ∆.

consider the solution Ψ for t ≥ τ (i.e., after the 180◦ pulse). The effect of this pulse is

to reduce the phase of Ψ by twice the amount which it has increased. Therefore, we

can write the complete solution of (3.2.1) as

Ψ = S(t)e−iγr·(F(t)+(β−1)f). (3.2.4)

The coefficient β is chosen so that the second exponent in (3.2.4) is 0 between the 90◦

and the 180◦ during which F(t) increases from F(0) to F(τ). After the 180◦ pulse,

the second exponent turns into −2f (constant), and the first part of the exponent

continues to increase from F(τ) to F(2τ). A spin-echo occurs when F(2τ) = −2f(2τ)

and the exponential term equates to one [19]. Differentiating (3.2.4) with respect to

time, we obtain

∂Ψ

∂t
=
dS(t)

dt
e−iγr·(F(t)+(β−1)f) − S(t)iγr ·

(
dF(t)

dt
+ (β − 1)

df

dt

)
e−iγr·(F(t)+(β−1)f).

(3.2.5)

Now we include the diffusion term in (3.2.1). The solution is very similar to the

previous case. Because S(t) depends just on time and the Laplacian double derivative

is taken with respect to the spatial vector r we can write

Ψ = DS(t)∇2e−iγr·(F(t)+(β−1)f),

= DS(t)(−iγr · (F(t) + (β − 1)f))∇e−iγr·(F(t)+(β−1)f),

= DS(t)(γr · (F(t) + (β − 1)f))2e−iγr·(F(t)+(β−1)f). (3.2.6)
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3.2. The Apparent Diffusion Coefficient

Substituting (3.2.6) into (3.2.1) we get

∂Ψ

∂t
= −iγG · rΨ−DS(t)(γr · (F(t) + (β − 1)f))2e−iγr·(F(t)+(β−1)f). (3.2.7)

From now on, to simplify the notation, we will set Φ(t) = −iγ(F(t) + (β − 1)f) [30].

Next, we equate (3.2.5) and (3.2.7) and use (3.2.4) to get

dS(t)

dt
eΦ−S(t)(−iγr·G)eΦ = −S(t)(−iγr·G)−DS(t)(γ(F(t)+(β−1)f))2eΦ. (3.2.8)

Algebraic simplification yields

dS(t)

dt
= −DS(t)(γ(F(t) + (β − 1)f))2. (3.2.9)

Now we can solve (3.2.9) by separation of variables:∫ S(2τ)

S(0)

dS(t)

S(t)
= −Dγ2

∫ 2τ

0

(F(t) + (β − 1)f))2dt. (3.2.10)

The integral in the RHS of (3.2.10) is not easy to evaluate, but it can be shown (see

[30]) that, in the case where the two gradient pulses are very short, the result is simply

ln

(
S(2τ)

S(0)

)
= −Dγ2G2δ2∆ = −D∆q2, (3.2.11)

where ∆ is the diffusion time and D is, in the case of a homogenous medium, the

diffusion coefficient. The entire previous theoretical derivation is to show and to justify

(3.2.11); this result is widely used in the literature. In practice, one would measure

the signal with and without the sintetizing gradients, (S(q 6= 0)) and (S(q = 0)).

Having chosen q and the diffusion time, one would calculate the Apparent Diffusion

Coefficient directly from (3.2.11).

3.2.2 Calculating the ADC: a probabilistic approach

The result in (3.2.11) is often used in practice. However, it is instructive to consider

an alternative derivation. If the medium is homogenous the diffusion coefficient can

be found from the second moment of the displacement probability density function

D =
1

2∆L[Ω]

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)(x− x0)2dxdx0. (3.2.12)
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3.2. The Apparent Diffusion Coefficient

We recall the relation (3.1.1) between the DPDF ρ and the MRI relative signal R(t),

and replace the cosine function with its Maclaurin series expansion. By Taylor ex-

panding the cosine in (3.1.1) with respect to q(x− x0) we get

R(∆) =
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆) cos[q(x− x0)]dxdx0,

∼ 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)

[
1− q2 (x− x0)2

2!
+ · · ·

]
dxdx0,

=
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)dxdx0−

− 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)q2 (x− x0)2

2!
dxdx0 +O(q4(x− x0)4). (3.2.13)

If we assume that the domain of integration is big enough and that the sample is

homogenous then the first term on the right-hand side of (3.2.13) is 1; by definition

of the DPDF-being a probability density function, its integral over R is necessarily 1.

The second term on the right-hand side of (3.2.13), up to a scaling factor, assuming

homogeneity, is the diffusion coefficient D as given in (3.2.12); as such, the second

term in (3.2.13) can be written as q2∆D. Therefore, if we neglect the O(q4(x− x0)4)

terms, then, given a homogenous medium, the diffusion coefficient can be computed

via:

R(∆) = 1− q2∆D. (3.2.14)

However, because of the presence of inhomogeneities in the medium, the value of the

diffusion coefficient changes in time. Therefore, we can define the apparent diffusion

coefficient by writing (3.2.14) as

R(∆) = 1− q2∆D
(2)
ADC(∆), (3.2.15)

where the superscript 2 denotes the ADC computed from a second-order Taylor ex-

pansion. Taking the natural logarithm of both sides of (3.2.15), by using a Taylor

expansion for the logarithm, and by neglecting the q4 terms, we conclude

log(R(∆)) = −q2∆D
(2)
ADC(∆), (3.2.16)

where R(∆) is the normalized signal.
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3.3. Higher Order Moment: Kurtosis

3.3 Higher Order Moment: Kurtosis

In Section 1.2.1, we introduced some basic concepts of probability theory. In this

section, we extend the description of the kurtosis and apply that to the measurement

of the displacement of water particles in the tissues. Mathematically, the kurtosis, is

expressed as [33]

K =
µ4

µ2
2

− 3 =
k4

k2
2

, (3.3.1)

where µn and kn are the nth order moments and cumulants of the PDF, respectively.

Subtracting three from the ratio of the fourth moment and the second moment squared

in (3.3.1) results in the kurtosis of a Gaussian distribution being zero. As with the third

moment (see Section 1.2.1), the kurtosis is a descriptor of the shape of the probability

density function. The most common interpretation of kurtosis of a PDF is as a mea-

sure of the width of the peak, the contributions of the tails and any “shoulders”(i.e.,

subsidiary peaks). Having introduced the definition and explained the meaning of the

kurtosis, now we will show how to use it to obtain a higher moment expression for the

Apparent Diffusion Coefficient that, we hope, will give a deeper insight into the tissue

structures.

3.3.1 Computing the ADC using higher order terms

To see how we can infer more information about the structure of the system by in-

cluding the notion of kurtosis in a DWI experiment, we need an expression to relate

the relative echo height to the higher order moments. As we saw at the beginning of

this chapter, the relative echo height for a source of molecules that starts at the point

ζ0 is given by (3.1.1). By expanding the cos[q(x − ζ0)] in this equation as a Taylor
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3.3. Higher Order Moment: Kurtosis

series up to the fourth order we get

R(∆) =
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆) cos[q(x− ζ0)]dxdζ0,

∼ 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)

[
1− q2 (x− ζ0)2

2!
+ q4 (x− ζ0)4

4!
+ · · ·

]
dxdζ0,

∼ 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)dxdζ0 −

1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q2 (x− ζ0)2

2!
dxdζ0+

+
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q4 (x− ζ0)4

4!
dxdζ0 +O(x− ζ0)6,

∼ 1− 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q2 (x− ζ0)2

2!
dxdζ0+

+
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q4 (x− ζ0)4

4!
dxdζ0 +O(x− ζ0)6.

(3.3.2)

In (3.3.2), the term O(x − ζ0)6 involves an integral, and, therefore, depends on the

value of the Displacement Probability Density Function ρ(ζ0|x,∆) near (x − ζ0). In

fact, even though the PDF reaches some high values in the neighbourhood of the

starting point ζ0, due to the presence of obstacles and semi-permeable barriers in the

great majority of the the domain, the value of ρ(ζ0|x,∆) at the distance (x − ζ0) is

small. Thus we may expect the term that gathers the higher order terms in the Taylor

expansion to be small. However, we will see below that, depending on the value of q

that may not be the case (see Section 5.4).

It is useful to point out that, because the size of the imaged volume element is much

bigger than the scale of the tissue microstructures, we can neglect any asymmetry in

the displacement PDF and expand the previous series ignoring the odd terms [33].

Using the result in (1.2.6) we can rewrite (3.3.2) as a summation of moments. Taking

the logarithm (3.2.13) we can write

log(R(∆)) = − 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q2 (x− ζ0)2

2!
dxdζ0+

+
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q4 (x− ζ0)4

4!
dxdζ0 +O(q2 + q4)2, (3.3.3)

=
−µ2q

2

2!
+
µ4q

4

4!
+O(q2 + q4)2
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3.3. Higher Order Moment: Kurtosis

In theory, under the assumption that the PDF ρ(ζ0|x,∆) is known a priori, (3.3.3)

can be used to compute R(∆). Because we are considering an extra term in the

Taylor expansion, it is logical to assume that this measure for the signal would be

more accurate. Once we have computed an expression for the signal from (3.3.3), we

can compute a new, updated, value for the ADC using (3.2.16). To avoid confusion,

we will use the notation D
(4)
ADC to define the Apparent Diffusion Coefficient calculated

from the signal using a fourth order Taylor expansion.
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Chapter 4

Simplified models of cellular media

In Section 2.2 we discussed the inhomogeneity of human tissue due to compartmen-

talization that characterizes cellular and extracellular anatomy. However, the theory

around Diffusion Weighted Imaging uses the strong assumption of homogeneity to

compute the Apparent Diffusion Coefficient directly from the measured MRI signal.

We begin this chapter by developing two models for an idealized tissue in which

we will study diffusion of water molecules in an inhomogeneous medium. Next we

introduce the governing equations that describe diffusion in these models and suggest

efficient numerical methods for their solution. For both models, the spatial discretiza-

tion of the partial differential equations (PDEs) is done using a second-order finite-

difference scheme. We solve the resulting equations by applying the Crank-Nicholson

numerical scheme. This produces a linear system of equations from which we can

compute the evolution in time of the DPDF for each point in the mesh grid. In the

last part of this chapter we propose a different way of computing the ADC than the

one presented in Chapter 3 which is hoped to capture the effect of the inhomogeneities

in the models. We present the results of the simulations for different computational

and physiological parameters in Chapter 5.

4.1 Idealized Tissue Model

The model we develop describes the restricted diffusion of particles, e.g., water molecules,

in a cellular medium. In order to do this, a coupled one-dimensional model is created

that is hoped to capture the general behaviour of a collection of cells contained within

semi-permeable membranes and separated by extracellular space. One of the reasons
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b a

c1 c2 c3 ck

. . .
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. . .
x

cellular space
extracellular space

Figure 4.1: Cartoon of a system of cells. The extracellular and intracellular space
are separated by semi-permeable barriers. The dashed lines represents some of the
possible paths a particle can experience while diffusing.

why we consider a 1D model, is that DWI only measures displacement in a single di-

rection at a time; therefore, a single-dimensional system seems justifiable. Initially, we

consider diffusion across 2k regions alternating one-dimensional intervals of intracellu-

lar and extracellular space (as shown in Figure 4.1). The lengths of these two regions

are generally different, and denoted by a and b for extra- and intracellular space, re-

spectively. Because, as seen in Section 2.1, the inner structure of a cell is different

from the extracellular space, we consider that the interior and exterior spaces also

have different diffusion coefficients: D1 for outside the cell, and D2 for inside the cell.

Cell membranes are modelled as semi-permeable walls with permeability coefficient p.

After, we extend this model by coupling the one-dimensional cell lattice with a

one-dimensional channel of exclusively extracellular space (see Figure 4.3). In this

way, we may also capture the transfer of molecules between non-adjacent cells.

A note about the terminology

To avoid confusion throughout the following chapters, it is appropriate to clarify some

details about the terminology used to describe the model. We use the term cellular

channel or channel with cells to indicate that portion of domain that includes alter-

nating regions of cellular and extracellular space (see Figure 4.1). In a similar way, we

define the part of the extended domain without cells extracellular channel or channel

of exclusively extracellular space (see Figure 4.3). The word region is used uniquely for

the cellular channel and denotes the portion of domain within two interfaces (cellular
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c1 c2 c3 ck

. . .

. . .

. . .

a b

x

b

a

Intracellular space

Extracellular space

Figure 4.2: Cartoon of a system of cells with a channel of extracellular space. The cells
are separated from the extracellular space via semi-permeable barriers. The dashed
lines represent potential trajectories of diffusing particles.

barriers). Because, in the cellular channel, all cellular and extracellular regions alter-

nate arranged on a periodic lattice, we use the word lattice unit to describe a portion

of domain that includes a single cellular region and a single extracellular region.

4.1.1 Model assumptions

To simplify our model, we assume homogeneity both inside and outside cells, while the

overall inhomogeneity of the tissue is modelled by the separation of the extracellular

and intracellular space with semi-permeable interfaces which model cell walls. This

model is not entirely realistic for two main reasons: first, as explained in Section

2.1, the presence of larger molecules and structures within cells makes the medium

not homogenous. However, we assume that these smaller scale inhomogeneities are

less important, and less structured, than the inhomogeneity introduced by the cell

membranes. Secondly, it is well known that the cells in tissues are not arranged on a

periodic lattice as in our model.

The justification for this model is that we can still represent the overall effect of the

cellular membranes as well as restricted diffusion inside the cell by selecting appropriate

permeability coefficients for the membrane and characteristic diffusion coefficients to

model the displacement of a water molecule outside the cell.
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4.2 Governing Equations for a System of Cells

As discussed in Section 2.2, the displacement probability of a proton diffusing in the

ith region is described by the 1D diffusion equation

∂ρi
∂t

= Di
∂2ρi
∂x2

, (4.2.1)

where the suffix i = 1 . . . k is used to distinguish the different units of the cell lattice,

and Di is equal to D1 if i is odd and to D2 if i is even. Each region has its own

coordinates with x ∈ (0, Li), where Li is b if i is odd, and a if i is even. At the

external boundaries of the system we prescribe the flux, so we can define pure constant

Neumann boundary conditions:

∂ρ1

∂x

∣∣∣∣
x=0

= g0,

∂ρ2k

∂x

∣∣∣∣
x=χ

= gχ, (4.2.2)

where 0 and χ are the endpoints of the domain (i.e., 0 ≤ x ≤ χ). Below we will assume

no flux through the external boundaries, i.e., we set g0 = gχ = 0. In Section 4.1 it

is stated that the two different types of regions in the domain are separated by a

semi-permeable membrane situated at x = Li. To study diffusion across the entire

domain, we need to couple the two regions using two conditions at the interface. These

interface conditions describe the likelihood of particles passing through semi-permeable

membranes (Section 2.1). The coupling equations at the interfaces are

Di
dρi
dx

∣∣∣∣
x=Li

= Di+1
dρi+1

dx

∣∣∣∣
x=0

,

Di
dρi
dx

∣∣∣∣
x=Li

= p (ρi+1(0, t)− ρi(Li, t)) , (4.2.3)

where p is the permeability of the membrane. The first equation describes the conser-

vation of mass across the interfaces, that is, the flux of particles traversing from left

to right is equal to the flux from right to left. The second condition expresses that

the molecular flux across the interfaces is proportional to the magnitude of the jump

discontinuity in density across the interface (the constant of proportionality being the

permeability p associated with the membrane).
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4.3 Discretizing the Governing Equations for the System of Cells

With the governing PDE established, we can construct an appropriate spatial and

temporal discretization.

We choose to use a second-order centred finite-difference scheme for the spatial

discretization. This takes us from a system of PDEs to a system of ODEs, where the

time is the only independent variable. Then, the time-stepping is done by using the

Crank-Nicolson method.

4.3.1 Space discretization

To solve this problem numerically, we discretize in space first: we discretize the differ-

ent regions into a set of equally spaced points: that is, we discretize the intracellular

region into n mesh points equally spaced by ∆n (i.e. ∆n = b/n) and we divide the

extracellular space into m points separated by ∆m (i.e. ∆m = a/m). To keep the

notation from becoming cumbersome, from now on we will identify the n points in the

ith intracellular region with the vector Φi:

Φi =



u(0)

u(∆n)

u(2∆n)
...

u((n− 1)∆n)

u(n∆n)


i = 0, 2, 4, .., k, (4.3.1)

where u(j∆n) for j = 0, .., n represents approximations of the solution at the corre-

sponding mesh points.

Similarly, the m points in the ith extracellular space can be identified with the
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4.3. Discretizing the Governing Equations for the System of Cells

vector Θi:

Θi =



v(0)

v(∆m)

v(2∆m)
...

v((m− 1)∆m)

v(m∆m)


i = 1, 3, 5, .., k − 1, (4.3.2)

where v(j∆m) for j = 0, ..,m, represents of the solution at the corresponding grid

points.

Using a second-order finite-difference approximation for a second-order spatial

derivative, the discretized equations for all the interior points in the intracellular and

extracellular regions are

duj
dt

= D1
uj−1 − 2uj + uj+1

(∆n)2
, for 1 ≤ j ≤ n− 1, (4.3.3)

dvj
dt

= D2
vj−1 − 2vj + vj+1

(∆m)2
, for 0 ≤ j ≤ m− 1, (4.3.4)

respectively, and where the index j refers to the mesh grid point. We need to be

careful with the equation for the first and the last point on the domain:

du0

dt
= D1

u−1 − 2u0 + u1

(∆n)2
, (4.3.5)

dvm
dt

= D2
vm−1 − 2vm + vm+1

(∆m)2
. (4.3.6)

Specifically, u−1 and vm+1, which are called ghost points, are external to the domain

and must be eliminated. In particular, we use the pure Neumann boundary conditions

to eliminate u−1 and vm+1 by discretizing the boundary conditions (4.2.3) to obtain

u1 − u−1

2∆n
= g0,

vm+1 − vm−1

2∆m
= gχ. (4.3.7)

Solving (4.3.7) for u−1 and vm+1, we get

u−1 = −2∆ng0 + u1,

vm+1 = 2∆mgχ + vm−1. (4.3.8)
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Using these results, we can rewrite (4.5.2) and (4.5.3) for the point u0 and vm as:

du0

dt
= D1

2u0 − 2u1

(∆n)2
− 2g0

∆n
,

dvm
dt

= D2
−2vm−1 + 2vm

(∆m)2
+

2gχ
∆m

. (4.3.9)

Similarly, discretization in each compartment of the domain leads to the presence of

ghost points corresponding to the interfaces of adjacent regions. We can eliminate the

ghost points across the domain, by discretizing the boundary conditions (4.2.3) for

the internal membranes. The boundary condition at each coordinate x = Li can be

written as:

D1
un+1 − un−1

2∆n
−D2

v1 − v−1

2∆m
= 0,

D1
un+1 − un−1

2∆n
− p(v0 − un) = 0, if i is odd, (4.3.10)

and as

D2
vn+1 − vn−1

2∆m
−D1

u1 − u−1

2∆n
= 0,

D2
vn+1 − vn−1

2∆m
− p(u0 − vn) = 0, if i is even. (4.3.11)

Assuming here that we consider just the case where a cell region is on the left side

of a extracellular region, solving (4.3.10) for un+1 allows us to rewrite the discretized

equations for the point un on the the left edge of the membrane as

dun
dt

= D1
un−1 − 2un + un+1

(∆n)2

=
2D1

∆n2
un−1 −

(
2D1

∆n2
+

2p

∆n

)
un +

2p

∆m
v0. (4.3.12)

In the same way we can get an expression for the right point on the membrane.

Substituting the expression for v−1 in the discretized equation for the point v0, we get:

dv0

dt
= D1

u−1 − 2v0 + v1

(∆m)2

=
2p

∆n
un −

(
2D2

∆m2
+

2p

∆m

)
v0 +

2D2

∆m2
v1. (4.3.13)

Similar derivation could be done in the case where a cellular region is on the right of

an extracellular region. It is more convenient to stack the vectors Φi and Θi to create
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a single vector that contains all the unknowns. We then define a vector W

W =



u0(0)

u0(∆n)
...

u0(n∆n)

v1(0)

v1(∆m)
...

v1(m∆m)

u2(0)
...



, (4.3.14)

where the suffix refers to the number of the corresponding region of intracellular or

extracellular space in our domain. The RHS from the Neumann boundary conditions

are included in a column vector G; we choose the prescribed fluxes at the left- and

right-hand point of the domain to be zero, therefore G is the zero vector. We can now

rewrite the initial PDE for our problem as a set of ODEs which has the form

dW

dt
= A W +G. (4.3.15)

In (4.3.15), A is a the matrix of the finite difference discretization. If, just for now,

we suppose that our domain consists of a single lattice unit (i.e. one cell with some

extracellular space on its right side), then the matrix A is given by

A =



(−2) D1

∆n2 (2) D1

∆n2 0 . . . 0 0 . . . 0

1 D1

∆n2 (−2) D1

∆n2 1 D1

∆n2 0 0 . . . . . . 0

0 . . . . . . . . . . . . . . . . . . . . .

0 0 2 D1

∆n2 (−2) D1

∆n2− 2p
∆n

2p
∆m2 . . . 0 0

0 0 0 2p
∆n2 −2 D2

∆m2− 2p
∆m

(−1) D2

∆m2 0 . . .

0 0 0 0 1 D2

∆m2 (−2) D2

∆m2 1 D2

∆m2 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 2 D2

∆m2 (−2) D2

∆m2


(4.3.16)
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4.3.2 Time-stepping

Having completed the discretization in space, we have reduced the initial PDE to a

set of ODEs. In order to find the numerical solution to the corresponding IVP we will

use the Crank-Nicholson method as a time-stepper.

Using the Crank-Nicolson scheme we can rewrite the semi-discrete problem as

~W τ+1 − ~W τ

∆t
=

1

2
(A ~W τ+1 + A ~W τ ) +G, (4.3.17)

where the superscript τ refers to the time index. We would like to solve for ~W τ+1,

therefore, we rearrange the terms to obtain

(I − ∆t

2
A) ~W τ+1 = (I +

∆t

2
A) ~W τ +G. (4.3.18)

At each time step (4.3.18) must be solved for ~W τ+1, i.e.,

~W τ+1 =

(
I − ∆t

2
A

)−1 [(
I +

∆t

2
A

)
~W τ +G

]
. (4.3.19)

Simulations can be found in Chapter 5.

4.4 Governing Equations for the Coupled System

Thus far, our system has been modelled as a 1D channel with alternating intra- and

extra-cellular space. In this section, we extend the model by coupling this 1D channel

of cells with a 1D channel consisting exclusively of extracellular space. The evolution

of the displacement probability of a particle in the cell and channel regions is mod-

elled with the one-dimensional diffusion equation. The diffusion equations are coupled

through a term that is proportional to the difference of the density of particles in the

cell and in the adjacent portion of extracellular channel region. To distinguish the

different behaviour of particles in different domains, we decompose the total density

ρ into β for the channel containing cells and γ for the extracellular channel. The

equations become
∂β

∂t
= D(x)

∂2β

∂x2
+ α1[γ − β] (4.4.1)

and
∂γ

∂t
= D2

∂2γ

∂x2
+ α2[β − γ]. (4.4.2)
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Previously, the diffusion coefficient in the equation describing the behaviour of the

molecules in the channel with cells depends on the spatial variable x, because in this

channel we have alternating regions with different physical properties. Therefore, the

diffusion coefficient D(x) is either D1 or D2 depending on whether the coordinate x

is inside or outside the cell. On the other hand, the diffusion coefficient in (4.4.2) is

constant as we consider the channel of extracellular space as homogeneous. For the

channel containing cells, the boundary conditions at the endpoints of the domain are

the same as in Section 4.2, while for the extracellular channel we now have

D2
∂γ

∂x

∣∣∣∣
x=0

= g0,

D2
∂γ

∂x

∣∣∣∣
x=χ

= gχ, (4.4.3)

where 0 and χ are the external boundaries of the domain (i.e., 0 ≤ x ≤ χ).

4.4.1 Coupling the cellular and extracellular channels

Before discretizing the equations describing the cellular channel and the channel of

just extracellular space, we complete our description of the model by deriving an

expression for the coupling terms in (4.4.1) and (4.4.2) , namely α1(x) and α2(x).

To do this, the two channels are each assigned their own vertical coordinates, taking

y = 0 to correspond to the lower-most part of each of the two different channels. To

eliminate the y dependence, we define a mean density that depends exclusively on the

horizontal coordinate x and on the time t: β̄(x, t) and γ̄(x, t). In particular, for the

cellular channel, assuming symmetry about y = b/2, the change for the mean density

is

∂β̄

∂t
=

2

b

∫ b
2

0

∂β

∂t
∂y =

2

b

∫ b
2

0

D(x)

[
∂2β

∂x2
+
∂2β

∂y2

]
dy,

= D(x)
∂2β̄

∂x2
− 2

b
D(x)

∂β

∂y

∣∣∣∣
y=0

. (4.4.4)
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Figure 4.3: In the coupled system, we give to the cellular and extracellular channel
each their own coordinates in the vertical direction. This is useful to eliminate y-
dependence for the density of molecules moving from the channel with cells to the
region of just extracellular space.

Similarly, for the extracellular channel, assuming symmetry about y = a/2, the change

for the mean density is

∂γ̄

∂t
=

2

a

∫ a
2

0

∂γ

∂t
∂y =

2

a

∫ a
2

0

D2

[
∂2γ

∂x2
+
∂2γ

∂y2

]
dy,

= D2
∂2γ̄

∂x2
− 2

a
D2

∂γ

∂y

∣∣∣∣
y=a

. (4.4.5)

Because we want to find an expression for the flux of particles between two channels,

when x is such that there is no semi-permeable membrane between the two channels,

we define the flux of molecules coming from the channel with cells at the interface to

be ∂β
∂y

∣∣
y=0

= 2(β̄ − γ̄)/(a+ b). Substituting this into (4.4.4) we get

∂β̄

∂t
= D(x)

∂2β̄

∂x2
+

4

b(a+ b)
D2(γ̄ − β̄). (4.4.6)

Therefore α1(x) = 4
b(a+b)

D2. Similarly we can derive an expression for α2(x). We

define the flux from the extracellular channel to the channel with cells to be ∂γ
∂y

∣∣
y=a

=

2(γ̄ − β̄)/(a+ b). Substituting this into (4.4.5) we get

∂γ̄

∂t
= D2

∂2γ̄

∂x2
+

4

a(a+ b)
D2(β̄ − γ̄). (4.4.7)

Hence, α2 = 4
a(a+b)

D2.

However, when the coordinate x is such that there is a membrane separating the

channel with cells and the extracellular channel we use the following boundary condi-
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tion:

D1
∂β

∂y

∣∣∣∣
y=0

= D2
∂γ

∂y

∣∣∣∣
y=a

= p(β∗ − γ∗), (4.4.8)

where β∗ and γ∗ are hypothetical densities at the interface. We define the flux of

molecules coming from the channel with cells at the interface to be

∂β

∂y

∣∣∣∣
y=0

= 2(β̄ − β∗)/b. (4.4.9)

Following the same idea, the flux of particles from the extracellular channel to the

channel with cells can be written as

∂γ

∂y

∣∣∣∣
y=a

= 2(γ∗ − γ̄)/a. (4.4.10)

Solving (4.4.8)-(4.4.10) for P (β∗ − γ∗) yields

P (β∗ − γ∗) =
2pD1D2

2D1D2 + p(aD1 + bD2)
(β̄ − γ̄) (4.4.11)

Using (4.4.11), we can rewrite (4.4.9) and (4.4.10) as:

∂β

∂y

∣∣∣∣
y=0

=
4pD1D2

2D1D2 + p(aD1 + bD2)

(γ̄ − β̄)

b
, and, (4.4.12)

∂γ

∂y

∣∣∣∣
y=a

=
4pD1D2

2D1D2 + p(aD1 + bD2)

(β̄ − γ̄)

a
, (4.4.13)

respectively. Substituting (4.4.12) into (4.4.4) we get:

∂β̄

∂t
= D(x)

∂2β̄

∂x2
+

8pD1D2

2bD1D2 + pb(aD1 + bD2)
D1(γ̄ − β̄). (4.4.14)

Therefore we can conclude α1(x) = 8pD1D2

2bD1D2+pb(aD1+bD2)
D1. In a similar way, substituting

(4.4.13) into (4.4.5) we get

∂γ̄

∂t
= D2

∂2γ̄

∂x2
+

8pD1D2

2aD1D2 + pa(aD1 + bD2)
D2(β̄ − γ̄). (4.4.15)

Hence, in this case, α2 = 8pD1D2

2aD1D2+pa(aD1+bD2)
D2.

4.5 Discretization of the Governing Equations for the Coupled Sys-
tem

Before discretizing using a finite-difference method, it is important to note that we

choose the grid spacing in the extracellular channel to be the same as that of the

cellular channel. This will facilitate the coupling of the two channels. This means

48



4.5. Discretization of the Governing Equations for the Coupled System

that the grid points in the extracellular channel are not all equally spaced, but when

x corresponds to an intracellular region of the channel with cells the spacing between

two points is going to be ∆n, and when x corresponds to an extracellular region, the

spacing is ∆m.

We start by discretizing the diffusion equation for the cellular channel and the

extracellular channel without the linear coupling terms. Next, we include these terms

and thus couple the two channels.

4.5.1 Spatial discretization of the channel

We start by discretizing the governing equations for the cellular and extracellular

channels as if they were uncoupled. In particular, the discretization for the channels

with cells is the same as in Section 4.3 because we have the same lattice structure

of cells and extracellular space separated by membranes modelled by (4.2.3). In the

extracellular channel the equation for the uncoupled case is

∂γ

∂t
= D2

∂2γ

∂x2
. (4.5.1)

If we discretize the entire domain into a set of η points, the equation for all the internal

points in the channel, i.e., for j = 1 : (η−1), can be approximated using a second-order

finite-difference scheme

dγj
dt

= D2
γj−1 − 2γj + γj+1

(∆n)2
, if x corresponds to an intracellular region, and

dγj
dt

= D2
γj−1 − 2γj + γj+1

(∆m)2
, if x corresponds to an extracellular region.

As in the channel with cells, because we are using Neumann boundary conditions, we

need to be careful with the points γ0 and γη. If the first region in the channel with

cells corresponds to a cell, and the last one corresponds to extracellular space, then

the equation for these points are respectively

dγ0

dt
= D2

γ−1 − 2γ0 + γ1

(∆n)2
, (4.5.2)

dγη
dt

= D2
γη−1 − 2γη + γη+1

(∆m)2
. (4.5.3)
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To eliminate the two ghost points γ−1 and γη+1, we can discretize the boundary con-

ditions (4.4.3)

γ1 − γ−1

2∆n
= g0,

γη+1 − γη−1

2∆m
= gχ, (4.5.4)

and solve (4.5.4) for γ−1 and γη+1. Using these results we can rewrite (4.5.2) and

(4.5.3) as

dγ0

dt
= D2

2γ0 − 2γ1

(∆n)2
− 2g0

∆n
, and

dγη
dt

= D2
−2γη−1 + 2vη

(∆m)2
+

2gχ
∆m

. (4.5.5)

As stated above (see Section 4.1), we treat the extracellular channel as an homogeneous

medium. Therefore, contrary to the channel with cells, we do not have permeable

barriers throughout the domain. However, care must be taken at the points in the

extracellular channel that corresponds to the barrier because, if ∆n 6= ∆m, the grid

spacing changes at those points. Thus, upon discretization of (4.5.1) we obtain

dΓ

dt
= C Γ +G, (4.5.6)

where Γ is the vector of unknowns corresponding to the grid points. If we assume that

there are just two different compartments in the channel with cells, then the vector of
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unknowns for the extracellular channel would look like

Γ =



γ(0)

γ(∆n)

γ(2∆n)
...

γ((n−1)∆n)

γ(n∆n)

γ(∆m)

γ(2∆m)
...

γ((m−1)∆m)

γ(m∆m)



. (4.5.7)

In equation (4.5.6), G is, again, a vector that accounts for the boundary conditions.

Since we choose the prescribed flux at the boundaries to be zero, (i.e., g0 = 0 and

gχ = 0), G is the zero vector.

4.6 Discretization of the Governing Equation for the Whole Sys-
tem

In order to see better how the discretization for the whole system works, it is useful

to rewrite the previous equations as

∂β

∂t
= D(x)

∂2β

∂x2
− α1β + α1γ, (4.6.1)

∂γ

∂t
= D2

∂2γ

∂x2
− α2γ + α2β. (4.6.2)

First consider (4.6.1), which models the behaviour of the molecules in the cellular

channel. The first two terms, which involve derivatives with respect to β, model the

diffusion in the channel with cells as if there is no extracellular channel. In order to

take into account the coupling with the extracellular channel, we need to discretize

the third and the fourth term in the same equation. Those term can be represented

via a diagonal matrix with alternating coefficients 8pD1D2

2bD1D2+pb(aD1+bD2)
D1 and 4

b(a+b)
D2
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Figure 4.4: Structure of the entire matrix Λ after the discretization. The frames
the right display zooms on the main diagonal (top) and of the off diagonal bands
(bottom). From now on, unless specified, the blue and orange diamonds correspond
to intracellular and extracellular space respectively.

on the main diagonal depending on whether there is a semi-membrane at the interface

between the two channels. We proceed in a similar manner in the discretization of

(4.6.2). The first two terms in (4.6.2) model the diffusion process in the channel.

The third and fourth terms describe the coupling with the cellular channel and, when

discretized as diagonal matrices with the factors 8pD1D2

2aD1D2+pa(aD1+bD2)
D2 and 4

a(a+b)
D2 on

the main diagonal depending on the presence of a membrane between the two channels.

With all terms in the governing equations discretized, the discretized system has

the form:
dΣ

dt
= ΛΣ +G. (4.6.3)

The structure of the entire matrix of the discretization Λ is shown in Figure 4.4.The

entries in the band along the main diagonal represent the discretized uncoupled terms

as they are in the uncoupled equations, while the coupling terms are found in the

off-diagonal bands .

52
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Figure 4.5: Order of the unknows in the system before (a) and after (b) applying the
permutation matrix

4.6.1 Change of the structure of the matrix

Solving a system with a matrix like the one in Figure 4.4 might be quite expensive and

inefficient; in fact it is easy to see that the matrix has a sparse structure, but the entries

are not all clustered around the main diagonal. To increase the efficiency and speed

of computation we can significantly reduce the band-width by interchanging the order

of the columns and the rows in the whole system. The unknowns and the equations

in the system can be rearranged by using a permutation matrix P . This matrix is

built so that the unknowns for the cellular and extracellular channels corresponding

to the same grid point become adjacent. Figure 4.5 displays the order of the unknowns

in the system of equations before (Figure 4.5a) and after (Figure 4.5b) applying the

permutation matrix.

We start by rearranging the columns of Λ which corresponds to rearranging the

order of the unknowns in the system. This is equivalent to multiplying the matrix Λ

on the right by a particular permutation matrix P . After doing this, using the Crank-

Nicolson method to time-step our solution as we did in section 4.3.2, the system we

have to solve is

(I − ∆t

2
ΛPc) ~W τ+1 = (I +

∆t

2
ΛPc) ~W τ + ~G, (4.6.4)

where Pc is the permutation matrix that acts on the columns of Λ and the suffix τ

denotes the time-step. The structure of the matrix, after this operation, is represented

in Figure 4.6.
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4.7. The Apparent Diffusion Coefficient

Figure 4.6: Structure of the entire matrix after swapping the columns. The frames on
the right display zooms of the matrix structure.

In order to obtain a matrix that is banded, we apply another permutation to the

rows to our system. This is equivalent to multiplying the system on the left by a

permutation matrix Pr. In our case, to obtain a banded matrix, Pr is equivalent to

P T
c . Applying this permutation corresponds to the following operation on the system

(4.6.4) we obtain

(I − ∆t

2
PrΛPc)Pr ~W τ+1 = (I +

∆t

2
PrΛPc) Pr ~W

τ + ~G. (4.6.5)

The structure of the matrix after applying the permutation is presented in Figure 4.7.

4.7 The Apparent Diffusion Coefficient

In Section 3.2, we define the ADC and the means by which to compute it from an MRI

signal. Here, we derive an expression for the ADC starting from the Einstein relation

for diffusion and we justify the use for our model.

4.7.1 The ADC from the Einstein relation for diffusion

The one-dimensional diffusion equation can be written as

∂ρ(ζ0|x, t)
∂t

= D
∂2ρ(ζ0|x, t)

∂x2
, (4.7.1)
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4.7. The Apparent Diffusion Coefficient

Figure 4.7: Structure of the entire matrix after swapping the columns and the rows.
The matrix is now banded around the main diagonal. The structure of the different
parts of the main diagonal is displayed in the frames on the right.

where ρ(ζ0|x, t) is the conditional probability that a particle starting at ζ0 will be at

position x after a time t, and D is the diffusion coefficient. To show that (4.7.1) can

describe diffusive behaviours, we consider the mean square displacement of a particle

described by:
〈
(x(t)− ζ0(t))2〉 ∼ t.

Molecular dynamics theory allows us to express the mean square displacement of

a particle that starts diffusing at ζ0 as [36] [22]〈
(x− ζ0)2〉 =

∫ +∞

−∞
dx(x− ζ0)2ρ(ζ0|x, t). (4.7.2)

Multiplying (4.7.1) by (x − ζ0)2 and integrating over the whole line we can rewrite

(4.7.2) as

∂

∂t

∫ +∞

−∞
dx(x− ζ0)2ρ(ζ0|x, t)︸ ︷︷ ︸

LHS

= D

∫ +∞

−∞
dx(x− ζ0)2∂

2ρ(ζ0|x, t)
∂x2︸ ︷︷ ︸

RHS

(4.7.3)

Using (4.7.2) we can rewrite the LHS in (4.7.3) as

∂

∂t

∫ +∞

−∞
dx(x− ζ0)2ρ(ζ0|x, t) =

∂

∂t

〈
(x− ζ0)2〉 . (4.7.4)
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4.7. The Apparent Diffusion Coefficient

To simplify the integral on the RHS in (4.7.3), we use integration by parts to get [22]

D

∫ +∞

−∞
dx(x− ζ0)2∂

2ρ(ζ0|x, t)
∂x2

= D(x− ζ0)2∂ρ(ζ0|x, t)
∂x

∣∣∣+∞
−∞︸ ︷︷ ︸

1

−D
∫ +∞

−∞

∂(x− ζ0)2

∂x

∂ρ(ζ0|x, t)
∂x

dx︸ ︷︷ ︸
2

. (4.7.5)

Making use of the properties of a PDF in 1.2.1 and applying L’Hôpital’s rule, the first

term on the RHS of (4.7.5) is zero

D(x− ζ0)2∂ρ(ζ0|x, t)
∂x

∣∣∣+∞
−∞

= 0. (4.7.6)

We can integrate by parts again to Integral 2 to get [22]

−2D

∫ +∞

−∞
(x− ζ0)

∂ρ(ζ0|x, t)
∂x

dx = −2D(x− ζ0)ρ(ζ0, x, t)
∣∣∣+∞
−∞︸ ︷︷ ︸

3

+ 2D

∫ +∞

−∞

∂(x− ζ0)

∂x
ρ(ζ0|x, t)dx︸ ︷︷ ︸

4

. (4.7.7)

Integral 3 goes to 0 for the same reasons as integral 1

− 2D(x− ζ0)ρ(ζ0, x, t)
∣∣∣+∞
−∞

= 0. (4.7.8)

Integral 4 simply becomes

2D

∫ +∞

−∞
ρ(ζ0|x, t)dx = 2D. (4.7.9)

When we put back the LHS and the RHS of (4.7.3) together we get

∂

∂t

〈
(x− ζ0)2〉 = 2D. (4.7.10)

(4.7.10) is a separable ODE. Rearranging the terms and integrating over the time we

can write 〈
(x− ζ0)2〉 = 2Dt. (4.7.11)

Using (4.7.2), we get an expression for the diffusion coefficient

D =
1

2t

∫ +∞

−∞
dx(x− ζ0)2ρ(ζ0|x, t). (4.7.12)

In the case where the domain is homogenous this integral will produce a constant
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4.7. The Apparent Diffusion Coefficient

equal to the diffusion coefficient D independent of ζ0. However, in the case where the

domain is not homogenous the value of this integral will depend on both time and ζ0.

It make sense, then, to average of ζ0 and use this average quantity as definition of an

ADC. Thus we may evaluate the integral in (4.7.12) over every region of the lattice to

obtain:

D =
1

2t

∫ +∞

−∞

∫ +∞

−∞
(x− ζ0)2ρ(ζ0|x, t)dζ0dx. (4.7.13)

Because the lattice is periodic, the average over a single lattice unit gives the average

over the whole domain. The inner integral in this case can be evaluated from 0 to α,

is α is the lattice constant, and the integral then becomes

DAVE =
1

2tα

∫ χ

0

∫ α

0

dxdζ0(x− ζ0)2ρ(ζ0|x, t) (4.7.14)

where DAVE represents now the apparent diffusion coefficient for our model.

57



Chapter 5

Results

In Chapter 4, we introduced the model used in this study to reproduce the diffusion of

water molecules in an inhomogeneous medium. In this chapter, we present some nu-

merical tests we performed to establish the proposed model’s validity and applicability

to simulating diffusion in cellular media.

In Section 5.1, we consider a simple problem in which the same is taken diffusion

coefficient across the entire domain and the intracellular and extracellular regions have

the same width. Although the specific parameters chosen for this test do not resemble

the physiological reality of a system of cells, the results obtained are qualitatively ac-

curate and validate the correctness of the model. In Section 5.2 we perform additional

tests to verify the reliability and numerical accuracy of the code and we justify the

choice of the size of the computational domain. In Section 5.3, we present the shape

of the DPDF for a inhomogeneous media. While the computational parameters are

chosen to be the same for each case, examples of different cellular configurations are

presented by changing physiological parameters such as the width of the cellular and

extracellular regions and the membranes permeability. The DPDFs for each case of

the diffusion problem are presented as well. Given the numerical solutions to the PDE

model, Section 5.4 covers the core of this project. Here we present various compu-

tations of the ADC using different approaches presented in Sections 3.2.2, 3.3.1 and

4.7. For each case, we justify the differences and validity in the various strategies for

computing the ADC in the presence of inhomogeneities.
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5.1. Preliminary Tests

5.1 Preliminary Tests

We begin this chapter with a validation of the code for the discretization of the govern-

ing equations as explained in Section 4.2. First we make a qualitative and quantitative

comparison of our results with those obtained by J. E. Tanner [31]. In his original

work, Tanner showed the form of the Displacement Probability Density Function of

particles randomly diffusing from a Dirac Delta function initial condition in a sys-

tem of parallel planar, equally-spaced, semi-permeable barriers. Tanner, to model the

diffusion in his inhomogeneous system, used a series of eigenfunctions for ρ(x, t) to

compute the shape of the DPDF [31]. Here, we use a different approach; see Chapter

4. We compute the shape of the DPDF for different values of the membrane perme-

ability p and diffusion time t, and we will justify how the results we obtain represent

a good qualitative comparison with the ones obtained in the original work.

The geometry of the domain is the same for all the cases presented in this section.

Specifically, we consider a finite number, N , of one-dimensional equally-spaced regions

separated by semi-permeable barriers. As explained in Section 4.1, the cells are as-

sumed to be arranged on a periodic lattice with lattice constant α. In order to be able

to do a more meaningful comparison, we choose to use the same values for the lattice

constant, diffusion coefficients, permeability and diffusion times as Tanner [31]. Thus,

for the comparison, each region, corresponding to both intracellular or extracellular

space, has length l = 1.5µm. It follows that the lattice constant α for this problem is

equal to 3µm. Similarly, we choose the diffusion coefficient D = 0.5 cm2/s ×10−5 in

both the intracellular and extracellular regions. We make the comparison at several

diffusion times t and for two different values of the permeability of the barriers. A

summary of the system parameters used in the comparison is presented in Table 5.1.

The original work of Tanner reported the number of intracellular and extracellular

region used for the calculation and the form of the initial condition, but there was

no indication of how many terms were used in the eigenfuction expansion to compute

the shape of the DPDF. We choose again to use the same number of regions in our

domain and we discretize each region into 40 grid points. The Initial Condition (IC)
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5.1. Preliminary Tests

System parameters Value used by both Tanner [31] and us

Lattice constant α, µm 3
Diffusion coefficient D, cm2/s ×10−5 0.5
Diffusion times t, msec 1.8-180
Permeability p, cm/s 0.009-0.03

Table 5.1: Range of biological parameters relative to a single cell used in comparison
with Tanner [31]

Numerical Simulation Parameters Value used by us

Number of regions, N 20
Number of grid point for each region, nx 40
Number of time steps, nT 1.8e7, 1.8e8, 1.8e9
Time step, ∆t 1e-9
Mean of the IC, µ 1.42308e-8
Standard Deviation of the IC, σ 9e-6

Table 5.2: Range of parameters used in the numerical simulation to reproduce Tanner’s
original work [31].

is taken to be a very steep and narrow Gaussian distribution which should approx-

imate a Dirac Delta function. The IC is defined using the built-in Python function

scipy.stats.norm.pdf with mean corresponding to the grid point x0 at the centre of

the middle region of the domain and variance σ = 2Dt, where t is some very short

diffusion time (see Section 2.2.2). A summary of the parameters used in the numerical

simulation is reported in Table 5.2.

The solutions generated with the IC described above are presented in Figure ?? for

different values of the reduced time T ≡ Dt/α2 and reduced permeability P ≡ αp/D.

The solutions have a single maximum and decrease monotonically on the left and on

the right. Because we choose the source of particles diffusing to be in the centre of

the domain, as expected, the solutions are symmetric about the mean of the PDF

and exhibit discontinuities at the membranes as defined in (4.2.3). For finite values of

the permeability and for very short diffusion times, the PDF has the appearance of a

Gaussian, or segments thereof, and qualitatively fits the function:

ρ =
1√
4πT

e
−x2

4T , (5.1.1)
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5.2. Reliability and Numerical Accuracy of the Simulations

where T is the reduced diffusion time: T ≡ Dt/α2. However, as we increase the dif-

fusion time, the solution loses its similarity with a Gaussian. This effect is produced

by the presence of the barriers which makes the domain not homogenous. In fact,

as we saw in Section 2.3.2, for a bounded domain, the Green’s function for the diffu-

sion equation, when the initial condition is a Dirac Delta function, has a much more

complicated form than a Gaussian.

The results are broadly similar to those presented in [31]: the solutions look similar

but have different characteristics in accordance with the values of permeability adopted

in the simulations. As shown in Figure ??, for reduced permeability P = 2.0 and for

a very short diffusion time, T = 0.1, the shape of the solution looks very similar to

a Gaussian distribution with discontinuities. As the diffusion time increases, the only

maximum in the solution decreases and the height of the jumps have decreased. This

agrees with the physics of the diffusion process. For a very long diffusion time T = 10,

represented by the dark green curve in Figure ??, the solution appears to be almost flat

over the whole domain. The analysis for the behaviour of the solution when P = 0.5,

reported in Figure ??, is very similar to the previous case. However it is worth noting

that, for a lower value of membrane permeability, diffusion is slower which is again in

accordance with the theory.

Having introduced and verified the shape of the numerical solution ρ(x, t), be-

low we present some tests we perform in order to guarantee trustworthy numerical

computations.

5.2 Reliability and Numerical Accuracy of the Simulations

In the previous section, we verified that the solutions behave accordingly to the physics

of a diffusion process in an inhomogeneous system. Here, we describe some additional

tests that verify the reliability and the numerical accuracy of the code and the results.

First, we discuss the choice of domain size. Next we discuss the dependence of the

error on the grid size.
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Figure 5.1: Probability density function of diffusing particles from a delta function
IC in the middle of a 20 region system at reduced times T = 0.1, 1, 10 as labelled
and different reduced permeability P . The dashed lines represent the location of the
cellular membranes.
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Numerical Simulation Parameters Value used

Intracellular length lin, µm 15
Extracellular length lout, µm 15
Intracell. diffusion coefficient Din, cm2/s 0.5e-5
Extracell. diffusion coefficient Dout, cm2/s 0.5e-5
Diffusion time t, msec 18
Permeability p, cm/s 0.5

Table 5.3: Range of parameters used in the numerical simulation to look at the change
at the boundaries for the case of equally spaced barriers and same diffusion coefficient.

5.2.1 Truncation of the domain

In Section 4.1 we introduce our model as an infinite system of regions of alternating

intracellular and extracellular space. For obvious computational reasons, it is necessary

to truncate the domain and define conditions (4.2.2) at the boundaries of the domain.

In this section we discuss the choice of domain size, i.e., the number of regions over

which the diffusion is simulated. An appropriate choice may be a domain for which

the change of ρ(x, t) at the boundaries is considered small enough so that the solutions

approximate those for which the domain is infinite.

Here, we present the behaviour of the DPDF boundaries of the computational

domain for two different systems. In the first, the domain is a set of regions with

the same width and same diffusion coefficient. The permeability of the membranes is

p = 0.5cm/s and the diffusion time is t = 18ms. In the second case, we distinguish

the extracellular and intracellular regions by varying the width of the alternating

regions, and choosing different diffusion coefficients for the two regions. For this second

experiment, the permeability of the barriers is p = 0.01cm/s and the diffusion time is

t = 30ms. In both cases, we considered the same number of regions, N = 20, each

discretized in a set of 40 grid points (nx = 40). The values of all the parameters used

in the experiments are reported in Tables 5.3 and 5.4, respectively. It is important to

mention that the chosen diffusion times are considered to be long enough to simulate a

DW-MRI experiment [13] [4]. In Figure 5.2, the change at the extreme boundaries of

the domain are shown for the first simulation. Because the source of diffusing particles
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5.2. Reliability and Numerical Accuracy of the Simulations

Numerical Simulation Parameters Value used

Intracellular length lin, µm 24
Extracellular length lout, µm 6
Intracell. diffusion coefficient Din, cm2/s 1e-5
Extracell. diffusion coefficient Dout, cm2/s 2.5e-5
Diffusion time t, msec 30
Permeability p, cm/s 0.001

Table 5.4: Range of parameters used in the numerical simulation to look at the change
at the boundaries for the case of not equally spaced barriers and different diffusion
coefficient for the intracellular and extracellular regions.

0 18
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Figure 5.2: Change at the very left (orange) and right (green) points of the discretized
domain for a system with equally spaced barriers and constant diffusion coefficients
after a diffusion time t = 18ms.

is at the centre of the discretized domain, the changes at the left (orange) and right

(green) grid points are very similar for the entire duration of the experiment. For

very short diffusion times the changes are extremely small and, even though seem to

increase rapidly for slighter longer times, they do not seem to be growing exceedingly

fast. This behaviour is in accordance with the physics of the diffusion process. Even

though the diffusion time for this experiment is shorter than the ones normally used

in a DW-MRI experiment, we concluded that the change at the boundary is still

negligible and, therefore, our choice of domain size is appropriate. In Figure 5.3

the change at the boundaries for a domain with parameters as described in Table 5.4

is shown. For this experiment we choose a value for the permeability that is more

physiologically relevant for cellular membranes [13] and a diffusion time that is typical
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Figure 5.3: Change at the very left (orange) and right (green) points of the discretized
domain for a system with not equally spaced barriers and different diffusion coefficients
for intracellular and extracellular regions after a diffusion time t = 30ms.

of a DW-MRI experiment. The analysis of the results reported in Figure 5.3 is very

similar to that of the first experiment. However, it is worth mentioning that, even

though the diffusion coefficient is larger for both the intracellular and extracellular

regions than in the previous experiment, the fact that the permeability p is much

lower in this case ensures the change at the boundaries remains negligible even for

longer diffusion times.

After this analysis, we can conclude that the domain of computation we choose

(20 alternating regions each discretized into 40 grid points) is big enough to assume

that the effects of computing on a finite domain are negligible. Theoretically, we could

have chosen to work with a finer grid than the one considered here, but this would

have led to much larger computations.

5.2.2 Numerical accuracy

In this part, we present some additional tests of the numerical approximations. As

we explained in Section 4.3, we use a second-order centred finite-different scheme

to discretize in space the diffusion equation for our problem (4.2.1). In the case

of a diffusion problem solved by using a second-order finite-difference scheme, we

would expect a rate of convergence proportional to ∆x2, where ∆x is the grid spacing

[21]. Thus far we have considered grids for which each region of intracellular and
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5.2. Reliability and Numerical Accuracy of the Simulations

Points per region Total points in the domain ∆x

160 (reference grid) 3200 9.375e-7
80 1600 1.875e-6
40 800 3.75e-6
20 400 7.5e-6
10 200 1.5e-5

Table 5.5: Number of grid points used in the simulations in order to estimate the error.
The finest one is used as reference for estimates on coarse grids.

extracellular space is discretized using nx = 40 points. Here, we estimate the rate of

convergence for the error for numerical solutions on coarser-grids in comparison to a

fine grid solution considered as reference.

Because we are dealing with a inhomogenous domain, finding the exact analytical

solution requires a very involved mathematical calculation (see Section 2.3.2). There-

fore, we obtain an estimate of the error for the problem by computing the solution

on a very fine grid, say with grid spacing ∆x, and use this as a reference solution for

computing errors on some sequence of coarser grids. A summary of the number of

grid points used in each run with the relative ∆x is reported in Table 5.5. In order to

compare the approximate solution u∆x corresponding to one of the coarser grids with

the approximation u∆x on the fine grid, we need to make sure that these two grids

contain coincident grid points at which we can directly compare the solutions. It is

typical to choose the grids in such a way that all the grid points on the coarser grid

are also on the fine grid [21]. In order to give an estimate of the rate of convergence of

the error, let ū∆x be the restriction of the fine-grid solution to the ∆x-grid, so that we

can define the approximate error Ē(∆x) = ||u∆x − ū∆x||, analogous to the true error

E(∆x) = ||u∆x − û∆x|| [21]. Given this definition we can write

u∆x − ū∆x = (u∆x − û∆x) + (û∆x − ū∆x). (5.2.1)

We have already stated that the method we use to discretize the diffusion equation is

supposed to be second-order accurate (p = 2), and we know also that ∆x
2 � ∆x2.

From this last information we can conclude that the second term on the right hand

side of (5.2.1), the true error on the ∆x-grid, should be negligible compared to the
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Figure 5.4: 5.4a: coarser grid solution compared to a fine one as labelled. The domain
is a system of 20 regions with equal spacing and permeability p = 0.5. The diffusion
coefficient is constant across the different regions and the diffusion time is t = 15ms.
5.4b: 2-norm (orange) and ∞-norm (green) of the error for coarser-grid solution in
comparison to a very fine one as labelled.

first one, the true error on the ∆x-grid, and, therefore Ē(∆x) should give an accurate

estimate of the error. In particular, because the discretization is second-order accurate

we may expect

E(∆x) = C∆x2 + o(∆x2) ∆x→ 0. (5.2.2)

In particular, if ∆x is sufficiently small then we can just write: E(∆x) ≈ C∆x2.

Suppose now, that we decide to refine the grid by a factor of 2, say. Then we expect

E(∆x/2) ≈ C(∆x/2)2. (5.2.3)

Defining the error ratio to be

R(∆x) =
E(∆x)

E(∆x/2)
, (5.2.4)

and given the previous analysis, we can write

R(∆x) ≈ 2p. (5.2.5)

This, for the standard diffusion problem discretized on a uniform grid, we would get

a O(∆x2) convergence assuming that the diffusion coefficient is constant and that the

functions describing the source terms and boundary conditions are smooth.

In Figure 5.4 we present results obtained at various grid spacing. Plots of the
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solution with fine- and coarser-grids are reported in Figure 5.4a. The initial condition

is chosen to be the same for each run, the membranes are equally spaced across the

domain, the diffusion coefficient is taken as constant in both the extracellular and

intracellular space, and the diffusion time is t = 15ms. In Figure 5.4b we present the

computation of the 2-norm (orange) and ∞-norm (green) of the error of the solution

on coarser grids using, as reference, a fine grid with nx = 160 points per region. It is

easy to notice that, on a log-log plot as in Figure 5.4b, the rate of convergence seems

to be O(∆x) rather than O(∆x2) as we would expect. We justify this behaviour by

noticing that, for this problem, we do not have the smoothness required for a second-

order convergence as there are discontinuities across the distinct regions as defined in

(4.2.3). Hence, the requirements that lead to second-order convergence in ∆x do not

apply. Our solution has discontinuities at the cellular membranes and therefore are

not smooth. Usually, in order to maintain a good order of convergence in the presence

of jumps, it is good practice to locate the discontinuity and place a mesh point as close

to it as possible [5]. However, in this case, we discretize (4.2.3) in a way such that

two different values of ρ(x, t) are associated with each interface. This way of treating

the discontinues affected, in fact, the order of convergence of the solution giving a rate

proportional to O(∆x).

Now that we have seen what the solution looks like for a toy problem, in the next

section, we will define a domain that is supposed to model more realistically a system

of cells in human tissue.

5.3 Computing the Probability Density Function

In the previous section, we have verified the reliability and the numerical accuracy of

the code. In this section we compute the solution for a system very similar to the

one presented in Section 5.1. The main difference lies in the choice of the parameters.

As explained in Section 2.1, in the human body there are cells with different shapes

and sizes depending on their function. Here we will present the computations for the

DPDF ρ(x, t) for systems of cells arranged on a periodic lattice (see Section 4.1) for

various values of key membrane parameters and for various sizes of intracellular and
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Numerical Simulation Parameters Value used

Number of regions, N 20
Number of grid point for each region, nx 40
Diffusion time, t, ms 50
Time step, ∆t 1e-9
Number of time steps, nT 5e10

Table 5.6: Range of parameters used in the numerical simulation to simulate a systems
of cells arranged on a periodic lattice with physically relevant parameters.

extracellular space.

Given the results obtained in Section 5.2.1, we choose N = 20 alternating regions

of intracellular and extracellular space. Independent of the width of each region, we

discretize each of them using nx = 40 points. We choose the diffusion time to be

t = 50ms. This value is slightly longer than the one commonly used in DW-MRI.

This choice is made in part for a purely practical reason; once the code is parallelized

using Message Passing Interface (MPI), using diffusion times longer than those typical

of a DWI experiment (typical t = 30ms) do not result in significantly or challenging

computations. Of course we hope to capture more information about the diffusion of

particles by increasing the diffusion time (see Section 2.2.2); we will discuss this in

more detail in Section 5.4. We choose the time step to be very small, in particular

∆t =1e-9ms. This leads to a time stepper with nT = 5e10 total time steps. A

summary of the computational parameters used for all the experiments is presented

in Table 5.6.

Having introduced the computational parameters, we shall now define the values of

the physiological variables involved in the simulations. Because the cells are arranged

on a periodic lattice separated by extracellular space, we define the lattice constant to

be that portion of the domain which includes one full intracellular region and one full

extracellular region. Henceforth, we will denote the lattice constant to be α. We run

experiments for three different lattice constants: α = 3µm, α = 5µm and α = 7µm.

Moreover, we vary the volume ratio f of intracellular and extracellular space; for every

value of α we use f = 0.8 and f = 0.66. We do not change the values of the diffusion
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α α

f = 0.8
f = 0.66

Intracellular space

Extracellular space

Figure 5.5: Cartoon of the lattice unit used in our system. On the left the volume
ratio is equal to 0.8, on the right is 0.66: this structural difference leads to changes in
the solution as the regions have different diffusion coefficients.

α = 3µm
f = 0.8 f = 0.66

lin 2.4µm 2µm
lout 0.6µm 1µm

(a)

α = 5µm
f = 0.8 f = 0.66

lin 4µm 1µm
lout 3.3µm 1.7µm

(b)

α = 7µm
f = 0.8 f = 0.66

lin 5.6µm 1.4µm
lout 4.6µm 2.4µm

(c)

Table 5.7: Summary of the width of the intracellular, lin, and extracellular lout, width
of the regions in the domain for different values of the lattice constant α and for
different volume ratio t.

coefficients for the intracellular and extracellular space in all the simulations, while the

permeability of the membranes is changed over a wider variety of cases. The choice

for these parameters is dictated by the literature [12] [13] . A summary of the values

used is reported in Tables 5.7 and 5.8

Some examples of the solution for different lattice constants and volume ratio

are presented in Figures 5.6 - 5.8. In all the cases, the numerical solutions exhibit

the same characteristic; in particular, they all have a single maximum that decreases

monotonically towards the extremes of the domain. It can be seen that, due to the

Numerical Simulation Parameters Value used

Intracell. diffusion coefficient Din, cm2/s 1e-5
Extracell. diffusion coefficient Dout, cm2/s 2.5e-5
Diffusion time t, msec 50
Permeability p, cm/s 0.01- 0.05 - 0.1

Table 5.8: Physiological parameters used to model the cellular domain.
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Figure 5.6: Numerical solutions for a system of cell with lattice constant α = 3µm
and volume ratio f = 0.8 (5.6a) and f = 0.66 (5.6b). In both cases, the green lines
represent a solution with a delta function IC centred within an intercellular region,
while the orange lines represents a solution with a delta function IC centred inside an
extracellular region. The dashed lines represents the positions of the cellular mem-
branes.

presence of barriers, all the curves are discontinuous with jumps at each membrane

(whose locations are represented by dashed lines) and ρ(x, t) is clearly not a Gaussian.

If the ICs are not centred in the middle of the domain, then the symmetry is lost. This

follows from the fact that the displacement that each particle experiences depends on

how far is it from a semi-permeable membrane as well as the permeability of the

membrane and the diffusion coefficient.

A note on the MPI computation

In this section, we discuss the parallelizations of the source code using Message Passing

Interface-MPI. Before providing more insight on this, it is important to remember

that we define the domain as a periodic lattice. Each lattice unit is discretized in

the same way, except for the ones on the very left and right (where we have Neumann

boundary conditions to consider). In Section 5.2.1, we choose a large enough number of

layers across the domain to ensure that the value of the probability density function is

negligible in the outermost layers at the longest diffusion times; we have discussed the

validity of this assumption in Section 5.2.1. For the computation of the ADC, because
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Figure 5.7: Numerical solutions for a system of cell with lattice constant α = 5µm
and volume ratio f = 0.8 (5.7a) and f = 0.66 (5.7b). In both cases, the green lines
represent a solution with a delta function IC centred within an intercellular region,
while the orange lines represents a solution with a delta function IC centred inside an
extracellular region. The dashed lines represents the positions of the cellular mem-
branes.
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Figure 5.8: Numerical solutions for a system of cell with lattice constant α = 7µm
and volume ratio f = 0.8 (5.8a) and f = 0.66 (5.8b). In both cases, the green lines
represent a solution with a delta function IC centred within an intercellular region,
while the orange lines represents a solution with a delta function IC centred inside an
extracellular region. The dashed lines represents the positions of the cellular mem-
branes.

72



5.4. Computing the ADC

the system is periodic and has translational symmetry, it is only necessary to compute

the solutions ρ(ζ0|x, t) for values of ζ0 over the single lattice unit located in the middle

of the domain (see Section 5.3 for discussion). Thus we need only to compute ρ(ζ0, x, t)

with a delta function initial condition to be centred at each of the grid points within

the lattice unit, i.e., for ζ0 taken at each grid point with the lattice unit. Because

we are considering nx = 40 points per region, this means we are required to run 80

jobs (40 for the intracellular space, and 40 for the extracellular space) serially for the

desired diffusion time. To improve the efficiency of the code and be to able to have as

much data as possible we have parallelized the code using the Python library mpi4py.

In particular, we compute the solution corresponding to each point ζ0 is the lattice

unit simultaneously using 80 processors on the supercomputer Saw, part of the Shared

Hierarchical Academic Research Computing NETwork (SHARCNET) consortium.

5.4 Computing the ADC

In this section, we recall the notion of Apparent Diffusion Coefficient which has beed

introduced in Section 3.2 and we present the results obtained from using different

approaches. The ADC is a measure of the constrained diffusion that water molecules

experience while diffusing in an inhomogenous medium and, theoretically, it is possible,

from its value, to infer information about the tissue structure and integrity [29].

In the first part of this section, we will compute the ADC from the definition derived

in Section 3.2.2. We will refer to this value of the apparent diffusion coefficient using

the notation D
(2)
ADC: this will help us keep in mind that this represents the value of

the ADC computed from the signal by expanding the cosine term in (3.1.1) in Taylor

series up to second order. We will compare this measurement for the ADC with others

obtained by averaging the second moment of the DPDF as in Section 5.4.2. From

now on, we will refer to the ADC computed using this procedure as DAVE. In the last

part, we will present results for the ADC we obtain by expanding the cosine term in

the signal up to the fourth order. We will distinguish this value of the ADC using the

notation D
(4)
ADC.
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5.4.1 ADC from the signal - 2nd moment

In Section 3.2.2, we introduce and derive a formula (3.2.16) However, before being able

to use this formula, we must derive the signal value associated with the simulations.

That is, having computed the DPDF ρ(ζ0|x, t) within a single lattice unit of our

domain, (see Section 5.3), we can derive the value for the signal R(t) from (3.1.1).

Once we have the value for the signal, we can directly compute the ADC from (3.2.16).

We recall that the signal can be computed from the DPDF via

R(∆) =
1

L[Ω]

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆) cos[q(x− ζ0)]dxdζ0, (5.4.1)

if L is the length of the whole sample Ω. Because of the periodicity of the lattice, we

only need to integrate over a single lattice unit, i.e., we can evaluate the outer integral

from 0 to α, if α is the lattice unit. We are integrating the inner integral over x, that is,

over the entire domain. If χ is the length of the computational domain, then we can say

that the inner integral is evaluated from 0 to χ. We justify this simplification because,

as discussed in section 5.2.1, ρ(x, t) is small outside this interval, and, therefore, would

contribute little to the value of R. Therefore, we can rewrite (5.4.1) as

R(∆) =
1

α

∫ α

0

∫ χ

0

ρ(ζ0|x,∆) cos[q(x− ζ0)]dxdζ0. (5.4.2)

Before evaluating the integral we need to choose a suitable value for q. As explained

in Section 3.1.2, q provides the relationship between relative position and phase of the

spins, and thus, is related to the distance travelled by the molecules and the associated

signal loss. In order to ensure that the signal loss does not decrease as the molecule

moves further, we can set the phase change from one side of the domain to the other

to be 2π. Thus, given the units of q in Section 3.1.2, we can choose to compute q in

the following way

q =
ω

χ
=

2π

χ
, (5.4.3)

i.e., over the whole length of the domain the spins experience a complete revolution ω

equal to 2π. We summarize the values of q for the chosen domain sizes in Table 5.9.

The double integral is evaluated by using a two-dimensional trapezoidal rule over

rectangular regions. The weights in the grid of computation are chosen according
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χ = 30µm χ = 50µm χ = 70µm

q 210 125 90

Table 5.9: Values of the q factor used in computing the ADC for different sizes of
domain. The choice is made trying to guarantee the maximum proton rephasing
during the chosen diffusion time over the entire domain.

to the mesh points spacing; in fact, we recall that we use a different grid spacing for

intracellular and extracellular regions. With the simulated signal measured from 5.4.2,

the ADC can be computed from

D
(2)
ADC = − log(R(∆))

q2∆
, (5.4.4)

where ∆ is the chosen diffusion time for the simulation. Plots of the apparent diffusion

coefficients, computed in this way, are reported in Figure 5.9.

When α = 3µm and the volume fraction is f= 0.8 (see Figure 5.9a), for small

permeability of the membranes, the ADC seems to decrease quickly in the first part

of the diffusion process until it relaxes reaching a constant value. For higher values of

permeability (dark green curves), the ADC does not seem to approach any constant

value in the chosen time of diffusion. This might by due to the fact that having

membranes with higher permeability is equivalent to having increased motility of the

molecules of water. It was not practical, given the time of the computation, to increase

the diffusion time sufficiently to capture a relaxing value for the ADC in this system.

In Figure 5.9b the ADC spans a smaller range of values. This might be the result

of having a smaller volume ratio (i.e., the extracellular space is larger). Bearing in

mind that in the extracellular regions the diffusion coefficient is higher, we justify

the behaviour of the ADC by saying that in this case the molecules encounter less

constraints in the diffusion. This justifies as well the fact that, for lower values of

the permeability, the ADC seems to reach a steady value in a shorter time. Similar

results were obtained for other cellular configurations (i.e., for different values of lattice

constant α and volume fraction f).
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Figure 5.9: Numerical value D
(2)
ADC of the Apparent Diffusion Coefficient computed

from the simulated signal by expanding the cosine term up to the second moment.
5.9a corresponds to a system with lattice constant α = 3µm and f = 0.8. 5.9b
corresponds to system with α = 5µm volume fraction f = 0.66. The computations
are done for different values of permeability, as displayed in the legends.

χ = 30µm χ = 50µm χ = 70µm

q 4.7e-4 7.9e-4 1.1e-4

Table 5.10: Values of the q factor used in computing the ADC for different sizes of
domain. This parameters are much smaller than the ones presented in 5.9.

A note about the value of q

At this point, it is worth mentioning something about the changes affecting the be-

haviour of the D
(2)
ADC as computed from the second order expansion of the signal.

In particular, we notice that changes in the q value are reflected in qualitative and

quantitative changes in the value of the ADC.

We have also computed D
(2)
ADC using the same approach used in this section, but

for much smaller values of q than the ones reported in Table 5.9. These new values

of q are summarized in Table 5.10. Results for D
(2)
ADC computed with the updated

values of q are presented in Figure 5.10. To make the comparison more meaningful,

in Figure 5.10 we report the values of D
(2)
ADC for the same volume fractions and lattice

constant α as in Figure 5.9. It is easy to notice that, changes in the values of q, do
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Figure 5.10: Apparent Diffusion Coefficient computed from the simulated signal by
expanding the cosine term up to the second moment in a system with volume fraction
f = 0.8 and lattice constant α = 3µm (5.10a) and α = 5µm (5.10b) and small values
of q.

not significantly affect the qualitative behaviour of the apparent diffusion coefficient.

However, it is interesting to notice the quantitative changes: for high values of q (see

Table 5.9 and Figure 5.9), D
(2)
ADC covers a range of parameters between 2.73e-5cm2/s

and 2.76e-5cm2/s. For small values of q (see Table 5.10 and Figure 5.10), D
(2)
ADC spans

a wide range of higher values.

We interpret this as an indicator of the fact that the value of q might be choose in

an arbitrary way. In fact, changes of an order of magnitude of q seems not to affect

the qualitative behaviour of D
(2)
ADC. Moreover, we believe that quantitative changes in

D
(2)
ADC due to changes in q indicate that the O(q4) terms that are neglected in (3.2.13)

are likely not negligible for reasonable values of q, resulting in values of the ADC which

are not quantitatively accurate.

We will now compute the ADC as we defined it in Section 4.7 and compare the

results.

5.4.2 Averaged ADC

In Section 4.7 we define an ADC by following the analogy with the diffusion relation

proposed by Einstein [31]. In particular, we recall that the ADC can be defined by
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Figure 5.11: Numerical value of the Apparent Diffusion Coefficient DAVE computed
by averaging the second order moment of the solution over a single lattice unit with
α = 3µm. We used different values of membrane permeability, as labelled. 5.11a
corresponds to a system with a volume ratio f = 0.8 and 5.11b corresponds to a
volume ratio f = 0.66

averaging the second moment of the displacement probability density function over a

single lattice unit

DAVE =
1

2∆α

∫ α

0

∫ χ

0

(x− ζ0)2ρ(ζ0|x,∆)dxdζ0, (5.4.5)

where ∆ is the diffusion time. In order to evaluate the integral, we take advantage

of the translational symmetry of the solution across our domain. In particular, the

contribution to the integral from each lattice unit will be the same. Because of this,

we can average the integral over the lattice unit α rather than the whole domain.

Thus, we are required to compute all the solutions corresponding to ICs centred at

the grid points inside a lattice unit. The computation of the ADC in this case is more

straightforward than the one presented in Section 5.4.1 as there is no need to compute

the signal. The results are reported in Figures 5.11-5.13.

For low permeability of the membranes, DAVE appears to decrease rapidly initially,

then eventually less so. However, rather than relaxing to a constant value, when the

lattice unit is small (α ≤ 5µm) and the permeability is p = 0.001, the DAVE reaches

a minimum and eventually starts increasing. This behaviour is clear in Figures 5.11a,

5.11b and 5.12b, but we expect the same to happen in cellular configurations where
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Figure 5.12: Numerical value of the Apparent Diffusion Coefficient DAVE computed
by averaging the second order moment of the solution over a single lattice unit with
α = 5µm. We used different values of membrane permeability, as labelled. 5.12a
corresponds to a system with a volume ratio f = 0.8 and 5.12b correspond to a
volume ratio f = 0.66
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Figure 5.13: Numerical value of the Apparent Diffusion Coefficient DAVE computed
by averaging the second order moment of the solution over a single lattice unit with
α = 7µm. We used different values of membrane permeability, as labelled. 5.13a
corresponds to a system with a volume ratio f= 0.8 and 5.13b correspond to a volume
ratio f = 0.66
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α f= 0.8 f = 0.66

3 µm 23 ms 13 ms
5 µm > 50 ms 27 ms
7 µm > 50 ms > 50 ms

Table 5.11: The point where the minimum for DAVE occurs for very low permeabil-
ity depends on the lattice constant and on the volume fraction of intracellular and
extracellular space.

the volume ratio f is smaller and the diffusion time is longer. The point where the

minimun of DAVE occurs seems to depend strongly on the structure of the domain, the

size of the lattice unit, and on the value of the permeability of the cells. In particular,

the minimum appears to shift to higher diffusion times as we increase the size of the

lattice and the volume fraction. A summary of the value when the minimum occurs

in each case is reported in Table 5.11.

This behaviour of DAVE is associated with its definition: in fact, in Section 4.7,

we make use of the relation for the diffusion coefficient for the case of homogenous

medium to derive the expression for DAVE used in this section. When the permeability

is very small, the molecules encounter more difficulties in passing the barriers. In fact,

in the presence of these barriers, for long diffusion times, some particles diffuse very

slowly and eventually are reflected when they encounter a barrier. The point where

the minimum occurs depends on the structure of the lattice (volume fraction) as well

as the size of the regions: when the volume fraction is lower, then we have more

extracellular space that has a higher diffusion coefficient. This might influence the

behaviour of the apparent diffusion coefficient as the particles move faster in these

regions.

For higher values of permeability, given the diffusion time for which we performed

the simulation, we do not notice any increase in the value of DAVE. We justify this by

saying that, when the permeability is higher, then particles encounter less resistance

at the membranes and move more easily.

The important point of this section is that, given these results, we believe that

it is possible to extract information about the structure of the tissue and the size of
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the cells from the value and the behaviour of the apparent diffusion coefficient. To

support this hypothesis we will compute the ADC from the simulated signal including

higher order terms in the approximation and then compare the results with the one

just presented.

5.4.3 ADC from the signal - 4th moment

In Section 5.4.1 and 5.4.2 we present various results for the apparent diffusion co-

efficient. Although we could notice that the two different approaches have a similar

qualitative behaviour, we could notice as well differences especially in the case of small

cell sizes.

The ADC presented in this section is computed using a simple mathematical ap-

proach; we want to extend the approach of Section 3.2.2 by considering a higher order

term in the Taylor expansion.

The important point here is that the formula that has been used so far in the

literature is based on the assumption of homogeneous domain: as we explained in

Section 2.1, this premise is not supported in the case of diffusion in human tissue.

Moreover, truncating the Taylor expansion at the second order might suppress some

precious information about the structure of the tissue we are analyzing.

As in Section 5.4.1, to calculate the ADC, we need to simulate the signal via (see

Section 3.3.1)

log(R(∆)) = − 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q2 (x− ζ0)2

2!
dxdζ0

+
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(ζ0|x,∆)q4 (x− ζ0)4

4!
dxdζ0 +O(q2 + q4)2. (5.4.6)

For the integral to converge, we truncate the domain using the same approach of

Section 5.4.1. We choose the value for q following the same hypothesis as in Section

5.4.1 (see Table 5.9). The signal now can be computed from the following expansion

log(R(∆)) = − 1

α

∫ α

0

∫ χ

0

ρ(ζ0|x,∆)q2 (x− ζ0)2

2!
dxdζ0

+
1

α

∫ α

0

∫ χ

0

ρ(ζ0|x,∆)q4 (x− ζ0)4

4!
dxdζ0 +O(q2 + q4)2. (5.4.7)

81



5.4. Computing the ADC
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Figure 5.14: Apparent Diffusion Coefficient D
(4)
ADC computed from the simulated signal

by expanding the cosine term up to the fourth order for a system with volume fraction
f = 0.8 and lattice constant α = 3µm (5.14a) and α = 5µm (5.14b). Membrane
permeability as labelled.

We compute the ADC via

D
(4)
ADC = − log(R(∆))

q2∆
, (5.4.8)

where ∆ is the diffusion time in the simulation and the superscript 4 indicates that

this value of the ADC is the result of a fourth order expansion.

The results are reported in Figures 5.14–5.15. As expected, considering higher

order moments in the Taylor expansion of 5.4.1 reveals some features in the value

of the ADC that are more similar to those presented in Section 5.4.2. For small

membrane permeability and small volume fractions the D4
ADC decreases rapidly for

short diffusion times and in the case of small lattice constant α = 3µm, it has a

minimum and increases for longer times t (see Figure 5.14a). This seems justifiable

the discussion of Section 5.4.2.

For volume fraction f = 0.66 and bigger lattice constants such as α = 5µm (Figure

5.15a) and α = 7µm (Figure 5.15b), the behaviour of D
(4)
ADC is really similar that of

DAVE, but the range of values it seems to cover is smaller and more similar to those

of D
(2)
ADC.

Finally, we can conclude that, when the inhomogeneity of the medium is consid-

ered, computing the ADC from the second order expansion of the signal miss some
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5.4. Computing the ADC
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Figure 5.15: Apparent Diffusion Coefficient D
(4)
ADC computed from the simulated signal

by expanding the cosine term up to the fourth order for system with volume fraction
f = 0.66 and lattice constant α = 5µm (5.15a) and α = 7µm (5.15b). Membrane
permeability as labelled.

information. In the case of having the domain of computation as a periodic lattice,

the definition of the ADC as given in Section 4.7 seems efficient. In fact, it requires

just the computation of the solution over a single lattice unit to compute an aver-

aged ADC. Results obtained for DAVE agree with the computation of D
(4)
ADC, i.e., when

higher order moments are included.

It is also useful to remind that the computation for DAVE and D
(4)
ADC require the

computation of the DPDFs, i.e., ρ(ζ0|x, t). Therefore, these measurements for the

apparent diffusion coefficient cannot be used in practice. However, we believe that the

models developed in this study could be used to address questions in diffusion-MRI.

83



Chapter 6

Conclusions and Future Work

Diffusion Weighted-Magnetic Resonance Imaging (DW-MRI) is a field of great research

interest which focuses constantly on improving the accuracy of imaging schemes as well

as validating new methodologies. In this thesis, we proposed an idealized model for

tissues to simulate diffusion in a non-homogenous media as a possible tool to test, and

potentially remove, the hypothesis of homogeneity commonly used in DWI. The model

we develop is as easy as it is versatile: different cellular and extracellular space sizes,

diffusion coefficients and membrane permeability values can be tuned in the source

code in order to produce data for many different configurations.

We validated and tested the results of our model by computing the numerical

solution for the Displacement Probability Density Function (DPDF) by using a second-

order finite-difference method. The results are broadly similar with the literature [31]

and agree with the physics of a diffusion process. Numerical tests for the rate of

convergence reveal that our model has less than second-order convergence. This is

not unexpected as the computational grid is not discretized uniformly and the model

presents discontinuities at the interfaces in the presence of cellular barriers. The main

result regarding the shape of the DPDF in a complex medium is that it cannot be

approximated as a Gaussian distribution. This was not surprising as the domain

considered is not homogenous.

Having numerically computed the shape of the DPDF we are able to measure the

Apparent Diffusion Coefficient (ADC) for various cellular configurations. The results

for the ADC vary when we do not make the assumption of homogenous medium. In

particular, D
(2)
ADC and DAVE seem to have very different behaviours when computed for
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an inhomogeneous medium. Many of these discrepancies are removed when the ADC

is computed from the signal including higher order moments, (D
(4)
ADC), meaning that

much information is lost when truncating the expansion of the signal and considering

just the second order moment in the computation of the ADC.

As explained is Sections 4.7 and 5.4.2, a measure for the ADC (DAVE) can be

computed directly having the solution ρ(x, t) to the model. Although the results

obtained for the ADC using the definition for the DAVE seem to well represent the

presence of inhomogeneities in the domain, the application of (4.7.14) is not practical.

In fact, the formula in (4.7.14) can be used to compute the ADC in a single voxel

provided that we know the numerical solution of ρ(x, t). It would be practical to be

able to derive an expression for DAVE that comes directly from the measured DW-MRI

signal as defined in (3.1.1). A possible approach might involve measurements of the

signal for different values of the q value. Let R1 and R2 be the relative echo height

measured in standard DW-MRI experiments using different values for the q factor.

Therefore, according to (5.4.2), we can write

R1(∆) =
1

α

∫ α

0

∫ χ

0

ρ(ζ0|x,∆) cos[q1(x− ζ0)]dxdζ0, (6.0.1)

R2(∆) =
1

α

∫ α

0

∫ χ

0

ρ(ζ0|x,∆) cos[q2(x− ζ0)]dxdζ0. (6.0.2)

We can expand (6.0.1) and (6.0.2) in Taylor series as in Section 3.3.1 to get

R1(∆) = 1− 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)q2

1

(x− x0)2

2!
dxdx0

+
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)q4

1

(x− x0)4

4!
dxdx0 +O(q6

1(x− x0)6), (6.0.3)

and

R2(∆) = 1− 1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)q2

2

(x− x0)2

2!
dxdx0

+
1

L(Ω)

∫ Ω+

Ω−

∫ Ω+

Ω−
ρ(x|x0,∆)q4

2

(x− x0)4

4!
dxdx0 +O(q6

2(x− x0)6), (6.0.4)

for R1 and R2 respectively. Using the definition (4.7.14) for the DAVE, and (3.3.1) and
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(4.7.14) to rewrite the fourth order term, we can rewrite (6.0.3) and (6.0.4) as

R1(∆) =1−∆q2
1DAVE +

1

6
∆q4

1KDAVE +O(q6
1(x− x0)6), (6.0.5)

and

R2(∆) =1−∆q2
2DAVE +

1

6
∆q4

2KDAVE +O(q6
2(x− x0)6). (6.0.6)

In fact, assuming that the higher order terms are negligible, DAVE and K are the

same for both experiments with different values of q. Rearranging the LHS and RHS

in (6.0.5) and (6.0.6) we can compute DAVE and K from R1 and R2 respectively.

Although more work needs to be done in order to verify the validity of this approach,

optimization techniques in DW-MRI experiments for different values of q have been

used [3]. This approach makes use of the definition in (4.7.14) that seems to well

capture the presence of inhomogeneities (see Section 5.4.2), and it may provide a

practical way for the computation of DAVE from the signals. However, further work is

required for choosing suitable values for q.

To the best our knowledge, the model proposed in this work has not been used for

the simulation of diffusion in heterogenous media in connection with measurements of

ADC and we believe that the results are promising. In particular, the model and the

source code [9] could be used to measure diffusion in a specific cell-tissue configuration

by tuning the physiological parameters. This could be useful for addressing questions

and validating results from a standard DW-MRI procedure.

In Figure 6.1, we show the DPDF for the coupled system introduced in Section 4.1.

The solution has some expected characteristics; it is discontinuous in the cellular region

due to the presence of membranes and is decreases monotonically on the left and on

the right (see Figure 6.1a). Figure 6.1b shows the DPDF in the channel of exclusively

extracellular space. As expected, the solution in this channel is continuous; this is the

result of the absence of cellular barriers in this particular part of the domain. The ADC

for this model was not computed. However, due to the presence of more extracellular

space, we would expect that information about the size and configuration of cells may

be obscured, because a particle, could, theoretically, move across the entire domain
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(a)

(b)

Figure 6.1: DPDF for the coupled 1D+1D system with the cellular and extracellular
channels. Figure 6.1a shows the solution for the coupled system when the molecules
start diffusing inside a cell in the cellular channel., Figure 6.1b displays the DPDF for
the same particles diffusing in the extracellular channel of just extracellular space.
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without crossing any barrier. Thus, in the future, we will use this model to study the

robustness of any results we obtain in the model combining only the cellular channel.

Theoretically, the model can be extended to higher dimensions: this would def-

initely allow for measurements of the ADC for more complete and broader sets of

cell configuration and sizes. In the case of a higher dimensional domain, isotropic as

well anisotropic diffusion can be measured and we expect to be able to observe the

same characteristics in the ADC due to the presence of inhomogeneities as in the one

dimensional case.
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