

Detection of Side-Channel Communication in a Mobile Ad-Hoc

Network Environment Using the Hamming Distance Metric

by

Brent Moore

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in

Faculty of Engineering and Applied Science

And the program of Computer Science

University of Ontario Institute of Technology

Supervisor(s): Dr. Ramiro Liscano and Dr. Miguel Vargas Martin

June 2015

Copyright © Brent Moore 2015

iii

Abstract

Side-Channel communication is a form of traffic in which malicious parties communicate

secretly over a wireless network. This is often established through the modification of Ethernet

frame header fields, such as the Frame Check Sequence (FCS). The FCS is responsible for

determining whether or not a frame has been corrupted in transmission, and contains a value

calculated through the use of a predetermined polynomial. A malicious party may send

messages that appear as nothing more than naturally corrupted noise on a network to those

who are not the intended recipient. A Hamming Distance (HD) difference between the FCS

values of purposely corrupted and naturally corrupted frames is proposed as a metric for the

detection of side channel communication. In theory, it should be possible to recognize

purposely corrupted frames based on how high this HD value is, as it signifies how many bits

are different between the expected and the received FCS values. It is hypothesized that a range

of threshold values based on this metric exists, which may allow for the detection of Side-

Channel communication across all scenarios. In order to achieve this threshold range, a

calculation known as F-Score has been used. Several approaches to verifying the F-Score

thresholds have been presented to verify this range, as well as the validity of F-Score itself such

as: Receiver Operating Characteristic (ROC) curves, and Support Vector Machines.

iv

I dedicate this thesis to those that never stopped supporting me:

My best friend and partner Ellen Coombs

for all of her love and assistance,

which I could not have done without.

As well as Dave, Gayle, Ben and Ollie for keeping me motivated.

v

Acknowledgements

This project was supported in part by Defence Research & Development Canada and NSERC.

It is with the utmost appreciation that I thank my supervisors Dr. Ramiro Liscano and Dr. Miguel

Vargas Martin. Your support, trust, and guidance were invaluable. Even when I was unable to

meet certain deadlines, I knew your faith in me was not entirely lost.

A special thank you goes out to my colleague Visal Chea, for all of your support and guidance in

getting me caught up in the project, and for assisting me in preparation of my experiment

environments.

I would also like to acknowledge and thank Mazda Salmanian, Ming Li and Peter Mason at

Defence Research & Development Canada for lending their expertise, insight and assistance.

vi

Table of Contents

List of Tables ... vii

List of Figures .. viii

Chapter 1- Introduction ... 1

1.1 - Problem Statement ... 2

1.2 – Contributions .. 4

1.3 – Structure of Thesis .. 5

Chapter 2 – Background & Related Work ... 7

2.1 – Steganography .. 7

2.2 – Anomaly Detection ... 10

2.3 – Establishing a Side-Channel .. 20

2.4 – Hamming Distance Delta-CRC ... 22

2.5 – MANETs & OLSR .. 27

2.6 – Classification Quality Measures .. 28

Chapter 3 –Side-Channel Identification Based on an F-Score Quality Measure 31

3.1 – The F-Score as a Hamming Distance Detection Quality Measure 31

3.2 – Testing the F-Score Threshold .. 34

Chapter 4 – Experimental Design ... 37

4.1 The Hybrid Experimental Environment ... 37

4.2 – Platooning: Forging a Formation .. 44

4.3 – The OLSR Routing Protocol ... 46

4.4 – Physical Experimental Scenarios .. 48

vi

4.5 – Pre-processing the Data ... 53

Chapter 5 – Analysis .. 57

5.1 – Performing the F-Score Calculation .. 57

5.2 – Assessing a Threshold Range .. 60

5.3 – Using the Threshold to Find a Side-Channel... 65

5.4 – ROC Curves ... 70

5.5 – Support Vector Machines ... 74

Chapter 6 – Conclusion .. 80

6.1 – Summary ... 80

6.2 – Future Work .. 82

 Appendices ... 93

vii

List of Tables

Table 2.1 – An XOR to calculate the HD of the Default 32-bit CRC polynomial, and the Koopman

32-bit CRC polynomial... 25

Table 3.1 – Definitions of calculations / classifications utilized when calculating an F-Score

value. ... 32

Table 3.2 – F-Score Calculations on a dataset with 2-Nodes & 30% FER. 36

Table 5.1 – Statistical information regarding the 14% SC scenario using its unmodified 0.83%

FER ... 57

Table 5.2 – Demonstration of F-Score results used to select a threshold of 9 for the given

scenario. .. 59

Table 5.3 – Optimal HD Thresholds for all 264 unique experiment combinations. 63

Table 5.4 – Population means of each of the scenarios at their “actual” FER value, with

Standard Deviation, Variance, Kurtosis, Skewness, 95/98% Confidence Intervals, and Upper &

Lower Limits. ... 67

viii

List of Figures

Figure 2.1 – A diagram of a standard frame w/ included FCS field. ... 23

Figure 2.2 – A simple demonstration of the HD between simple ASCII strings. 24

Figure 3.1 – Comparison of Side-Channel (FTP) Hamming Distance to Normal traffic. 35

Figure 4.1 – Hybrid Test Environment Model Flow Diagram [3] .. 43

Figure 4.2 – The Fire Team Wedge, a standard platoon formation [52]. 45

Figure 4.3 – A screen capture of the Ubuntu terminal showcasing the OLSR routing table

output. .. 47

Figure 4.4 – A topology diagram detailing the communication and positioning for the OLSR

Experiment. ... 49

Figure 4.5 – Demonstration of the communication links between the Side-Channel and normal

traffic. .. 51

Figure 4.6 – TShark Filter commands used in the generation of files. ... 54

Figure 4.7 – An example output of Chea’s [3] TShark hex dump Java program. 56

Figure 4.8 – Process diagram illustrating the steps involved in parsing Wireshark capture files

for MATLAB. .. 56

Figure 5.1 – A graph showing the calculated Optimal HD Threshold for each SC percentage

where each line represents the percentage of FER. ... 61

Figure 5.2 – An FER based examination of the calculated Optimal HD Thresholds. 61

Figure 5.3 – Mean HD thresholds shown to fall within the suggested 11 – 12 range, with 95%

confidence. .. 64

Figure 5.4 – Mean HD thresholds shown to fall within the suggested 11 – 12 range, with 99%

confidence. .. 64

Figure 5.5 – A visual representation of the HD values for all frames in a scenario with 14% Side-

Channel traffic & 25% Frame Error Rate. ... 65

viii

Figure 5.6 – The HD population means for Normal and Side-Channel traffic at 95% confidence.

... 68

Figure 5.7 – The HD population means for Normal and Side-Channel traffic at 99% confidence.

... 69

Figure 5.8 – Determining the effectiveness of a point in the ROC space [61]. 72

Figure 5.9 – The ROC curve demonstrating the effectiveness of the F-Score thresholds, with a

magnified view of the upper left corner. .. 73

Figure 5.10 – Performing SVM learning and Classification in the SVMlight tool............................ 75

Figure 5.11 – SVM Classification of Side-Channel based on HDs of a scenario with 14% SC at 25%

FER. .. 78

Figure 5.12 – SVM Classification in relation to HD. .. 79

Moore | 1

Chapter 1- Introduction

Mobile Ad-Hoc Networks (MANETS) provide an easily configurable mobile platform where

nodes can communicate without requiring the use of additional hardware to provide routing.

While convenient, these networks are not without their share of drawbacks in terms of

security, management, or packet loss. As with all wireless networks, there is some level of

information loss or corruption due to signal fading, frame collisions, or environmental

interference. As a result, frames can become corrupt and will be disregarded by wireless

receivers as noise. Side-Channel communication takes advantage of this as a method for

discretely transmitting messages between two or more nodes. This process can be difficult to

detect since it is hard to tell these intentionally corrupted messages from naturally corrupted

ones; unfortunately for other nodes in a network, both appear as noise. Through the use of

frame manipulation, it is possible for a malicious party to modify a frame in order for it to

appear corrupted. Upon receiving a corrupted frame, most nodes will simply discard the frame,

disregarding its existence. This behaviour is expected for all nodes on a network, unless the

recipient has been configured in order to correctly receive and decode these secret frames. This

type of communication is described as “Side-Channel Communication”, and while the process is

conceptually simple to achieve, finding adequate hardware that supports the functionality

required is rather difficult. Detection of frames based on this form of communication provide

the foundation for the research presented throughout this thesis.

Moore | 2

A network frame has several fields that are used for a variety of functions in transit,

such as the source and destination fields. The field responsible for determining whether or not

a frame has been corrupted in transmission is known as the Frame Check Sequence (FCS), and is

a four-octet length field containing a value that is calculated prior to transmission [1]. Upon

arrival, the receiver node utilizes an agreed upon algorithm in an attempt to re-calculate the

value of the frame’s FCS field via a Cyclic Redundancy Check (CRC). If the calculated value

matches the FCS field’s value, then the frame has arrived safely; however, if the calculated FCS

value does not match the one present in the frame, the frame is considered corrupted and

immediately discarded by the node.

1.1 - Problem Statement

A common question that occurs is “Why go through the effort of establishing a Side-Channel,

when the transmission can be encrypted?” The reason for this is that while encrypted messages

may be difficult to decode, they are not an inconspicuous means of communication. This is

where network steganography techniques such as Side-Channel communication come in, as

they allow multiple users the opportunity to transmit secret messages in plain sight. One of the

main reasons why Side-Channel communication is so difficult to recognize is that there is no

discernible difference between malicious Side-Channel frames, and those that were naturally

corrupted through the transmission process.

In previous works [2], it was suggested that an increase in Side-Channel frames would

provide an easily recognizable increase in Frame Error Rate (FER), to the point where a network

Moore | 3

with Side-Channel would have a noticeably larger volume of errors than those without. Since

these Side-Channel messages appear as nothing more than corrupted frames to average nodes,

logically a substantial increase in corrupted messages on the network would provide evidence

that Side-Channel must be occurring; however, this is not necessarily true. Since there are a

variety of factors that could influence a wireless network, the amount of FER is never truly

consistent. The level of noise on a network could change completely erratically, and almost

arbitrarily. Many errors that occur in a wireless network may be triggered by seemingly

inconsequential events, such as an individual walking through the transmission zone, a

microwave or other device operating on the same frequency, nearby construction, or even

changes in weather. With no persistent baseline for comparison, this eliminated the possibility

of utilizing FER as a detection metric.

When determining a metric for use in detecting anomalous behaviour, such as Side-

Channel, one of the requirements is that it must provide consistent results. In dealing with a

MANET environment, this becomes increasingly more challenging as there is no guarantee of

the surroundings or reliability of the network. There is also very little control over factors such

as interference, and as such, the metric must be unaffected by FER. If such a metric is found,

the challenge of validation still remains.

Moore | 4

1.2 – Contributions

Due to the fact that FER is such an unreliable variable, there is a need for a detection metric

uninfluenced by its fluctuations. The Hamming Distance (HD) calculation based on a frame’s

CRC polynomial appears to fulfill this requirement. There is a notable difference between the

CRC value of Side-Channel frames using a modified CRC calculation and those using a standard

algorithm, which will be touched upon further in Section 2.4. The difference between these

values, or delta-CRC, is calculated by performing an XOR between the expected CRC value and

the received one in order to compute an HD [3]. This metric was tested against a static ad-hoc

scenario [3], and validated through various methods which will be described more in-depth in

the Related Works section. While the HD metric appears to be relatively unaffected by factors

such as FER, there are still several aspects of the work left to explore. This work provides four

major contributions to the topic:

 Testing of the HD threshold technique against multiple MANET experiment scenarios in

order to evaluate its effectiveness

 Determining a threshold range using a mathematical calculation known as “F-Score” to

detect Side-Channel communications in MANETs when a Side-Channel is created by

modifying the CRC polynomial

 Testing the validity of the F-Score approach by graphing the test against various datasets

using an ROC curve

Moore | 5

 Provides additional validation of the HD as a metric by performing analysis using the

Support Vector Machine learning algorithm

1.3 – Structure of Thesis

The structure of this thesis was designed to provide the reader with the knowledge necessary

to understand exactly what a Side-Channel is, along with many of the mechanics necessary for

detection. Once the appropriate background concepts have been established, information

regarding scenario procedures will be presented. Having a thorough understanding of the

concepts, the reader should then be able to examine the results. In Chapter 2, previous works

in the field will be examined. While Side-Channel communication is a relatively

underrepresented area of research, there are a number of quintessential papers that provide

the foundation for the concept. The aim of this chapter is to show just how challenging of an

issue it is to not only detect Side-Channel, but also establish an adequate testing environment.

In Chapter 3, the reader will be presented with the fundamentals necessary to understand the

concepts of Side-Channel, the HD metric, and Mobile Ad-Hoc Networks. These areas provide

insight that should help to understand the experimental design choices shown in the following

chapter. Chapter 4 explains why simulation wasn’t possible for this unique problem; how the

OLSR routing protocol works; a very basic explanation of Platooning; and the parameters and

methodologies used to conduct and analyze the experiments. Chapter 5 is where the

information captured in the experiments comes to life in a series of figures that showcase the

results, and alternative methodologies. Finally, Chapter 6 concludes by recognizing how the

Moore | 6

contributions of this work impact the field, and possible directions for further examination of

the Side-Channel problem.

Moore | 7

Chapter 2 – Background & Related Work

2.1 – Steganography

In order to properly assess the detection of Side-Channel communication, it is important to

understand where the concept originated, and analyze previously suggested detection

methods. Steganography is a form of covert communication that dates back several

millennia [4]. During this archaic era, messages were sent between generals by hiding them on

the reverse of wax writing tables, on the stomachs of rabbits, and by tattooing them on the

scalps of slaves [4]. Steganography was also used throughout the World Wars, where spies

were able to use more advanced techniques, accredited to the invention of photography and

technologies such as Microdots or Microfilm [5]. Steganography is used to hide a covert

message, but does not hide the fact that two parties are in communications [4]. In the internet

age, steganography is most commonly linked with techniques involving graphical images or

audio files as a carrier medium; however, this is not the only digital steganography currently in

practice.

 The research presented by Szczypiorski [6] may be accredited as one of the pioneering

articles in the topic of Network Steganography, inspiring a large amount of interest in the field.

While most implementations of steganography systems are typically dedicated to multimedia,

the research presented in HICCUPS: Hidden Communication System for Corrupted Networks [6]

offers a unique approach, aiming to develop a steganographic system from a network

Moore | 8

perspective. Even though research in network steganography is not that uncommon, many of

the techniques examined rely on optional packet header fields belonging to very specific

network protocols [7] [8] [9]. HICCUPS [6] was developed with the idea that if messages are

modified at the Data Link Layer of the OSI model, it is possible to take advantage of naturally

occurring imperfections in network transmission, such as noise. It is believed that this system

offers an advantage over many of the other implementations in that it does not require any

specific protocol. The results of the study by Szczypiorski [6] concluded that while

steganographic communication may be possible, there are very specific and challenging criteria

that must be met. As Szczypiorski [6] suggests, one of the issues with developing this form of

Side-Channel is that there is a distinct lack of network interface cards that allow for the

modification of frame header fields, such as the FCS field.

In a standard wireless network, all devices receive a copy of each message sent but

often disregard those messages when they are not the intended recipients. This functionality

stems from the use of CSMA (Carrier Sense Multiple Access) and CSMA/CD (CSMA with Collision

Detection) protocols on a network. These protocols operate at the Data Link Layer, and

measure a network for an absence of traffic prior to transmission. The intended usage for these

protocols is to ensure that data collisions do not occur, or occur less frequently on a shared

medium such as a wireless frequency. Szczypiorski [6] identifies these protocols as one of the

three properties required for a working implementation of HICCUPS to exist.

Moore | 9

The three requirements that must be met by a network susceptible to HICCUPS [6] are:

a shared medium network with some form of CSMA; a publicly known method of cipher

initiation (such as initiation vectors); and finally, integrity mechanisms for encrypted frames

(such as FCS). The CSMA requirement stems from the fact that this mechanism gives all nodes

the ability to “hear” all traffic on the network, meaning that malicious parties can analyze the

traffic to find exploitable features. Three possible mechanisms that may be exploited to allow

for the creation of a Side-Channel were also outlined in his work [6]: a channel based on a

corrupted FCS field; a channel based on MAC network addresses; and a channel based on a

cipher’s initialization vectors.

The Initialization Vector channel requires all devices involved to be included within a

hidden group that establishes a secret key for ciphers embedded in a steganographic system.

This method was designed to work in a unicast, multicast or even broadcast mode utilizing the

Diffie-Hellman algorithm for key exchange among nodes. A major drawback to a system of this

type is that key exchange is difficult to mask from observers, requiring operation on a standard

channel [6]. The second channel proposed by Szczypiorski [6] was entitled the “Basic Channel”,

the establishment of which requires a cipher’s initialization vectors and MAC network

addresses. It is suggested that the primary purpose of this mode was to allow for a channel

characterized by low bandwidth where the exchange of control messages among hidden group

stations occurs [6]. The third and final suggested Side-Channel has been referred to as

“Corrupted Frame Mode” [6]. The detection and prevention of the “Corrupted Frame Mode”

channel form the reasoning for this thesis. Szczypiorski [6] proposed that information could be

Moore | 10

exchanged through frames which feature intentionally created corrupt FCS fields. The benefit of

a channel of this design is that it provides the ability to utilize nearly 100% of the bandwidth for

a certain period, and relying on the functionality of CSMA, nodes that are not the intended

recipients will simply discard these frames as noise. Szczypiorski [6] felt that this method was

out of the scope of his research, as he was unable to acquire a network interface card allowing

for the manual modification of CRC checksums. While initial research on his third proposed

channel was left largely untested in his work, it has become the focus of many works involving

the Defence Research & Development Canada (DRDC) and the University of Ontario Institute of

Technology (UOIT) [3] [10] [11].

2.2 – Anomaly Detection

Anomaly Detection mechanisms are often an alternative to everyday anti-malware or firewall

solutions. These systems can offer an advantage over conventional intrusion detection methods

in that they are not reliant on the use of a signature database. Some of the detection methods

examined in this research include network traffic analysis, behaviour analysis, and smartphone

security. While not all of these systems are network oriented, many of their functions and

properties were considered as potential monitoring techniques.

 In recent years, anomaly detection has received extensive interest from the academic

community. While there are many researchers looking to develop the next Intrusion Detection

System (IDS) through the use of machine learning or behavioral analysis, very few have had

success with acquiring mainstream usage. Many of these systems employ the use of machine

Moore | 11

learning algorithms, and several [12] [13] [14] were successful in their implementations; even

so, anomaly detection is still not as mainstream as conventional anti-malware solutions.

Sommer et al. [13] attribute the scarcity of such systems to the fact that the intrusion detection

domain has been established for so long that there is a high barrier to entry for new

applications.

In the field of intrusion detection, there is a high cost of failure if a misclassification

were to occur. A false positive is often considered an inconvenience, and may require I.T.

personnel resources to be spent examining incident reports for an alert that was triggered in

error. Even a small rate of false positives can render a network intrusion detection system

unusable [13]. On the other side of this scale, false negatives exhibit catastrophic results in

which information is compromised, systems are damaged, or a loss of service occurs. While the

usage of Machine Learning algorithms and other automated systems may offer several benefits

for network monitoring, many of the systems employing anomaly detection often feature a

false positive rate that may be considered unacceptably high [15] [16].

 Sommer et al. [13] outlined several issues affecting the adoption of machine learning

anomaly detection methodologies. Such issues include: the distinct lack of classification, the

diversity in the forms network traffic can take, and the difficulties with evaluation. Further

research on anomaly detection from Bolzoni et al. [17] explains that when alerts are raised by

anomaly-based IDSs, the system is able to detect the anomaly, but has too little information to

determine a classification for the attack. This limitation suggests that many anomaly-based

Moore | 12

alerts require manual processing by I.T. personnel in order to classify an alert. Not only would

this increase the work required by security teams, but also the time required to appropriately

respond to the situation. Panacea [17] is a system that uses machine learning techniques to

automatically and systematically classify attacks identified by an anomaly-based intrusion

detection system, using information gathered about their payload. The idea behind such a

system as Panacea [17] is the fact that attacks will often share common patterns in their

payloads, such as byte-sequences. By examining this pattern, it is likely that there is an attack

occurring belonging to a specific class, and an alert can be triggered.

Network characteristics such as bandwidth, application support, and network policies

governing the length of a connection are all features that can prohibit widespread adoption of

anomaly detection systems when dealing with network intrusion detection. When taking data

for training phases, one of the most difficult considerations when dealing with networks

concerns usage patterns. For example, usage can be highly variable over certain time intervals,

resulting in many false positives when using a detection method heavily reliant on network

patterns as a metric; while fluctuations are less notable over a large sample size, network traffic

can see significant increases and decreases on an hourly basis. It is worth noting that a flux in

usage is not the only observable challenge. Protocol specifications may operate in such a way

that their behavior and the amount of traffic they produce varies, depending on the level of

heterogeneity across the network, or based on the status of the current communication

session.

Moore | 13

Another challenge that the implementation of an anomaly detection system faces is in

regards to determining a proper evaluation of the mechanism. Traditional signature-based anti-

malware systems or other IDS systems such as firewalls often have access to publically available

testing data or communities that produce content for testing purposes. An example of these

tools comes in the form of voluntary spam requests [18], which allow for I.T. personnel to test

their mail filters. When attempting to evaluate anomaly detection mechanisms, there is a

limited amount of available datasets for appraisal, meaning that the evaluation process can be

quite difficult. Should anomaly detection see more widespread usage in the future, or if

researchers begin to focus their efforts on the development aspect of anomaly detection,

evaluation of these systems could become much easier.

Many network operators utilize a system known as deep packet inspection (DPI) [19]

[20]. DPI involves examining application layer protocols and content, such as port destinations,

in order to monitor and control activity on a network. These systems are most frequently used

in organizations, or countries with heavy restrictions on the content available to the general

public. While effective for general purpose network monitoring, they are susceptible to exploits

such as Protocol Misidentification or Polymorphic Blending Attacks [19] [21].

Protocol Misidentification is the process of labeling a packet designed to operate with a

certain application layer protocol as another. Using this system, it is possible to bypass

detection systems which employ DPI. For example, in an environment where FTP traffic is

prohibited, a malicious party could mask the port number and protocol information attached to

Moore | 14

outbound packets, and disguise them as HTTP traffic destined for port 80. This allows for a

bypass around many network IDS systems and filters. To demonstrate this capability,

Dyer et al. [19] proposed a system known as FTE (format-transforming encryption). FTE was

capable of transforming ciphertext into a format of their choosing in order to bypass DPI. In

addition to this functionality, the system can also act as a proxy for communication outside of

restrictive countries or networks, with little to no bandwidth overhead. A counter to this form

of attack would be to place a limitation on the types of protocols allowed to be transmitted

across a network, but even this solution faces limitations. Users could determine which

protocols are and aren’t allowed on a network and simply adapt their approach to compensate

for the restrictions. This is yet another area where anomaly detection implementations could

provide an observable benefit. Based on typical network traffic, if an anomaly based intrusion

detection system were to suddenly see a network inundated with an abnormal amount of FTP

traffic, it would be a tip off that some form of protocol misidentification were occurring. An

example of a network anomaly detection mechanism capable of providing such functionality

exists, and has been presented in the form of a tool known as Spectrogram [14].

Spectrogram [14] is a network oriented anomaly detection system which operates in a

passive state. This system, proposed by Song et al. [14], works as a filter that examines

multitudes of web requests in an attempt to find a small subset of attack traffic. Spectrogram

operates at the packet layer so that it can easily be implemented in conjunction with a port-

mirror. By incorporating this functionality, the port-mirror is able to forward a copy of all

received packets directly to Spectrogram, allowing for a system that does not add an additional

Moore | 15

possible bottleneck to the receiver. The system operates by gathering packets, and analyzing

them based on their content distribution and structure. Once packets have been picked out,

they are passed through a system utilizing the machine learning algorithm known as Markov

Chains, which afterwards requires some minor human interaction [14]. Unlike many of the

other systems that were examined in this subsection [12] [17] [13], this system is not

completely autonomous. After analysis, a final likelihood score for whether or not the anomaly

is an attack is presented, and I.T. personnel can decide on a solution.

While the primary focus of this work is to detect Side-Channel anomalies on a network,

it is important to consider other implementations of anomaly detection systems. In doing so,

the evaluation of these systems may provide a better understanding of the functionality

required to develop a proper detection mechanism. Some of the other areas that were

assessed include anomaly detection on mobile devices [22] and masquerade detection [23],

both of which feature techniques that are oriented towards behavioural analysis.

Threats against smartphones do not necessarily have to come in the form of malware,

as the small size and transportability of these devices increases the risk of theft from simple

eavesdropping techniques [22]. The limited functionality of these devices leaves their

protection to rudimentary versions of security and authentication methods. Such features

include pattern-based lock sequences, or simple 4-digit pin passcodes. Issues arise from this

simplicity, as the limited functionality and vulnerable nature of these devices creates a

challenge in preventing malicious access to a user’s device. A process outlined by Muslukhov et

Moore | 16

al. [16] involves the use of a trusted process which operates in the background and monitors a

user’s usage patterns. Once enough information has been obtained, a behavioural model of the

user can be developed. Behaviour analysis allows for a detection mechanism to determine

whether a particular action has been made by the user or a malicious party/software based on

common patterns that a user may exhibit when interacting with their system or device. Should

anomalous activity occur, a defensive action could trigger, such as a prompt for password

authentication or a device lockdown.

Another key area for anomaly detection is the prevention of masquerade attacks.

Masquerade attacks are one of the most common types of malicious activity on both networks

and computer systems [23]. A masquerade is a type of attack in which a malicious party has

gained access to a system or network session and intends to impersonate a legitimate user for

the purposes of accessing confidential information or to gain access to permissions that they

have not been granted. These types of attacks can be incredibly difficult to detect since the

malicious party is often using the credentials of a legitimate user, and is for all intents and

purposes that user (as far as the system is concerned).

A common method for the detection of these system masquerade attacks is to enlist the

help of machine learning algorithms capable of classifying normal behavior and identifying

suspicious activity. According to research presented by Salem et al. [23], an excellent way to

determine if a masquerade is occurring on a computer system is to examine the search

behaviour of the user. An average user will have fairly accurate knowledge of the layout of their

Moore | 17

file system, thus when searching for a file, they will be able to do so in a limited fashion. It is the

use of the search mechanisms in a Windows environment which plays an essential role in

anomaly detection in the study presented by Salem et al. [23]. An extreme example of how

search behaviour analysis could be effective is that a user will understand that photos of his

family vacation would not be stored in his System32 folder, while a masquerading party or

software may not. The result of such a lack of knowledge is a broader, more extensive search

across the file system in a manner that is uncharacteristic of the typical user.

In their paper, Salem et al. [23] modelled the usage behaviour of 18 individuals who

were working with their own personal computers for a period of 4 days. The results were then

compared against simulated data created from 40 additional users performing a mock

masquerade on a system unfamiliar to them. The data gathered were run through an SVM

based anomaly detection mechanism, and was able to provide a 100% detection rate with a

false positive ratio of only 1.1% [23]. These results are within an acceptable range, but with the

requirement of such a large sample size, it is difficult to determine if this would be feasible in a

real-world scenario without extensive training performed by the user [15] [16].

 An additional area of anomaly detection which should be considered is the Support

Vector Machine algorithm. Arguably the most successful classification method in machine

learning, Support Vector Machines (or SVMs) are algorithms used to analyze data in order to

recognize patterns and linear classifiers [24]. SVMs are a form of supervised learning, meaning

that the details of the program are dependent on choices of parameters, which can be tuned by

Moore | 18

the program given a set of objects of known classification [25]. In a lecture from the University

of Caltech [24], Dr. Abu-Mostafa details the principled components of the method, which

include finding the optimal margin, arriving at a solution analytically, and transforming the data

nonlinearly; i.e., expanding the machinery to applicability with nonlinear data. These steps

follow the approach developed by Cortes & Vapnuk [26] for binary classification in 1995, and

are the characteristics of a program able to perform such tasks.

The term linearly separable is used to describe data for which there exists a linear

decision boundary that separates positive from negative examples [27]. Given such a two-class,

separable training dataset, there are many possible separating lines and margins of error [24].

SVMs search for the best linear separator by looking for the decision surface that is maximally

distanced from all data points [28]. As Dr. Abu-Mostafa explains [24], the process of generating

data may result in noise, and the bigger the margin, the greater the chances that the new point

will still be on the correct side of the line. In other words, maximizing the margin gives a

classification safety margin, meaning that a slight error in measurement or documentation will

not result in a miscalculation [28]. These points lying on the boundaries are called the support

vectors, and our optimal separating hyperplane occurs in the middle of this margin [26].

Through examining related works, a few important details regarding anomaly detection

have been discovered. Due to the lack of popularity in real-world environments, such

mechanisms often face a multitude of challenges throughout the development process. A lack

of available training data means that implementation would require a lengthy training process

Moore | 19

on the part of the technician. This is especially evident when trying to develop a solution for a

very specific or obscure problem, such as Side-Channel detection. Coupled with the inherently

large amount of sample data and time required by some of the machine learning algorithms, it

is arguable that anomaly detection mechanisms may not exist in a mature enough state to

completely supersede conventional signature-based mechanisms. By utilizing the delta-CRC

approach proposed by Chea [3], detection is transitioned into packet analysis (delta-CRC) rather

than signal analysis (FER), meaning that detection may be possible without the use of machine

learning algorithms.

Many advantages to a variety of anomaly detection methods have been outlined above;

however, these mechanisms are not perfect. Like all systems, anomaly detection mechanisms

have a set of policies, which must be met in order for data to be determined anomalous.

Engla et al. [21] suggest that should a malicious user develop an understanding of how an

anomaly detection system operates through brute-force attempts to match the criteria, they

could in theory trick a system into believing a user or message is legitimate.

The functionalities of anomaly detection methods, and prior research in the field that

have been presented herein, should be highly favourable when developing a Side-Channel

detection system. In spite of all of the weaknesses that are presented above, it is important not

to discount the potential benefits to using machine learning algorithms. For the scope of this

thesis, several of the aforementioned algorithms will not be considered; however, SVM will be

examined as a potential candidate in Section 5.5. The justification of such an algorithm’s

Moore | 20

selection is primarily due to the fact that the Side-Channel problem is a binary decision, and

SVM provides a distinct binary classification using linear separation.

2.3 – Establishing a Side-Channel

Najafizadeh [11] was able to establish a simulated Side-Channel communication in what was

otherwise a rudimentary simulator application known as Sinalgo [29]. Using collected data from

his Side-Channel simulations, he examined the ratio of corrupt to non-corrupted traffic during

periods where Side-Channel existed, comparing them to those that had no Side-Channel. He

was able to show that a system based on the network’s historical data would showcase a high

degree of variance in the amount of Frame Error Rate (FER) when Side-Channel communication

was occurring [11]. Using this, Najafizadeh [11] proposed an agent-based detection system that

would trigger an alert depending on whether or not the variance of FER fell outside of an upper

bound. One of the limitations to his approach was a lack of exhaustive scenarios.

Another approach to the detection of Side-Channel communication was presented

through the use of the RTS/CTS network mechanic by Madtha et al. [2] The Request to Send /

Clear to Send (RTS/CTS) mechanic is one employed on many wireless networks as an optional

feature used to prevent information loss due to packet collisions. In a network using this

feature, a sender node will transmit an RTS frame to check the availability of a channel prior to

sending out a data packet. If the channel is available, the destination node will reply with a CTS

frame, informing other nodes to refrain from transmitting any data for a period of time. As

soon as the sender node receives the CTS message, it will begin transmitting data packets.

Moore | 21

In the work of Madtha et al. [2], it was hypothesized that for every Side-Channel frame,

there should be a corresponding RTS/CTS message pair. What this means is that while non-

malicious parties may be unable to determine whether or not a message has been purposely

corrupted, analysis of the traffic should present a substantially higher number of RTS/CTS

messages indicative of extra communication occurring on the network. For every RTS frame,

there should be a corresponding data frame; this means that the ratio of received application

data and RTS frames should be 1:1 in a network with no data loss. In the presence of Side-

Channel, this ratio will increase, and the amount of RTS messages will be significantly higher [2].

Several experiments were run using the QualNet [30] simulator, such as an increase in

the number of nodes, a varied number of Side-Channel links, and a range of inter-nodal

distances. In the results presented by Madtha et al. [2], a distinct increase in RTS messages was

shown to be disproportionate to the amount of known data packets when a Side-Channel is

present. Unfortunately, while this research provided promising results, several weaknesses

were identified. In order for their method to work, a network is required to be running the

RTS/CTS mechanic, which may not necessarily hold true for all networks. Additionally, this

method is incredibly sensitive to Frame Error Rate, and in networks with a high degree of FER,

there will be substantially more RTS messages as packets become naturally corrupted and

require re-transmission, effectively skewing the results. The research presented Madtha et al.

[2] demonstrated a need for an FER insensitive metric.

Moore | 22

2.4 – Hamming Distance Delta-CRC

In a wireless network, corrupted packets are typically detected through the use of a Frame

Check Sequence (FCS). Frame Check Sequences work by appending a fixed-length binary

sequence to the FCS field in the frame. This sequence is calculated by the source node based on

the data within the frame. Figure 2.1 showcases several of the expected fields on a typical

frame, including the FCS field. Other key fields which are present in a frame are the Preamble,

SFD, Source/Destination Addresses, EtherType, and Payload. The Preamble contains a 56-bit

binary pattern, which allows network devices to synchronize their receiver clocks. An SFD is

used to signify the end of the preamble, and the beginning of the frame. Source and

Destination fields contain the MAC addresses of both nodes, and allow nodes on a network to

determine if a frame is meant for them. The EtherType field is two octets long, and often

provides information regarding the length of a Payload. The frame’s Payload is where the actual

data is stored, and can have a size between 42 and 1500 octets in length.

Upon receiving a frame, the destination node recalculates the FCS sequence and

compares it with the one included with the frame. If these values do not match, the frame is

considered corrupt, and the node may request retransmission or drop the frame. The most

common type of Frame Check Sequence is Cyclic Redundancy Check (CRC). This CRC value is

calculated by considering the result of the remainder when dividing the polynomial for the data

payload by the CRC polynomial. Prior to this calculation, both of the polynomials are converted

to their binary form.

Moore | 23

Figure 2.1 – A diagram of a standard frame w/ included FCS field.

After a CRC value has been calculated, it is appended to the FCS field and the frame may

then be transmitted. There is not just one standard CRC polynomial, but rather a set of

standardized polynomials as defined by the IETF [31], ITU [32], and other similar organizations

[33]. In fact, there are over 72 possible standard CRC polynomials [34], which range from CRC-3

bits up to CRC-82 bits. It is also worth noting that while the CRC calculation does assist with the

detection of transmission errors, it is entirely possible that certain bits may corrupt in such a

way that a receiver may still calculate a CRC identical to the one that was sent [35]. In the work

conducted by Koopman and Chakravarty [35], it is stated that a given CRC polynomial may

operate more or less effectively on any given application. This means that a range of CRCs are

necessary in order to facilitate a variety of operations, and the effectiveness of each is

measurable.

Further work by Koopman [34] explores the effectiveness of many well-known CRC

polynomials, and classifies each based on their effectiveness and ideal payload size. The work

presented demonstrates that a 32-bit CRC polynomial, commonly known as the “Koopman

Polynomial”, provides the best error detection out of any of the standardised CRC calculations

at the time. In his research, Chea [3] utilized this 32-bit CRC polynomial as a stand-in for the

Side-Channel communication CRC in his experiments on HD as a metric for detection. Chea’s [3]

Moore | 24

justifications were in part due to the fact that the 32-bit CRC polynomial is so widely used, and

has a high effectiveness in error detection. As such, this is the CRC calculation that has been

used for the experiments described herein; however, testing against a less effective CRC

polynomial, while outside of the scope of this research, could provide further verification on

the effectiveness of HD as a metric for Side-Channel detection.

Throughout this work, the term “Hamming Distance” or “HD” refers to the number of

bits that differ between an expected calculated CRC value and the actual value calculated by

the recipient node. HD is a mathematical concept that was introduced by Richard Hamming in

1950 [36], and is commonly used today in coding theory when comparing the difference

between bit strings of equal length [37]. The HD value refers to the number of characters in

given positions for which corresponding items are different, or the number of characters that

must be changed in order for two items to match. In summary, it is a numeric representation

for how different two same-length strings are. Consider the following examples demonstrating

the HD between two similar, but different strings:

“CAT” & “CAR” have an HD of 1

“Brigette” & “Brittany” have an HD of 5

Figure 2.2 – A simple demonstration of the HD between simple ASCII strings.

This measurement can also be used to determine a difference in CRC values by examining

them in their binary notation. When dealing with binary strings, the HD is equal to the number

of ones in an XOR between two strings of length n. An example of this has been provided using

Moore | 25

the two CRC polynomials that will be utilized in this research in Table 2.1. First, the Default and

Koopman 32-bit CRC polynomials must be converted to their binary notation, and then an XOR

may be performed to get their HD. In Table 2.1 below, it is shown that there are 13 positions

with an XOR binary value of 1, meaning that the expected HD between the Koopman and

Default CRCs is 13. This, of course, does not mean that there will always be an HD value of 13,

as there is a chance that natural corruption may occur on Normal and Side-Channel frames. This

corruption may cause certain bits to flip, creating CRCs with a wide variety of HDs, as will be

shown in Section 5.3.

Default
(0x04C11DB7) 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1
Koopman
(0x741B8CD7) 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1

XOR 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0

Table 2.1 – An XOR to calculate the HD of the Default 32-bit CRC polynomial, and the Koopman 32-bit CRC polynomial

 In order for HD to work as a metric, one must first make the assumption that the

number of bits different in a naturally corrupted Normal frame from a Side-Channel frame will

be large enough to provide a visible separation between the two. The concept for using HD as a

metric for Side-Channel detection was originally proposed by Chea [3]. This metric was the

inspiration for much of the experiment planning for this work, and provided a basis to draw

from and expand upon. The methodology and results presented by Chea [3] provide a better

understanding for the rationale of many of the procedures used below.

 Chea [3] suggests that the average HD between two CRC values could be used to detect

Side-Channel where the malicious party has used an alternative CRC polynomial to mask his/her

Moore | 26

traffic. In his work, Chea [3] also compared the HD of several CRC polynomials, including the

Default 32-bit CRC, Koopman 32-bit CRC and Castagnoli 32-bit CRC to find the mean HD

between them. His preliminary research showed that there was a clearly defined difference

between the mean HD of the expected Default CRC vs. Koopman, and Default vs. Castagnoli [3].

Chea’s [3] work also provides merit to the fact that it should be possible to adequately

determine if a Side-Channel exists given the assumptions:

1. The CRC polynomial used for Side-Channel communication will be a known polynomial,

such as the Koopman 32-bit CRC

2. The CRC chosen by the malicious user for Side-Channel CRC will be different enough

from the Default CRC (i.e. not a CRC containing a single flipped bit difference from the

Default)

The experiments presented in this thesis utilize a Default 32-bit CRC polynomial for all

Normal traffic, and the Koopman 32-bit CRC polynomial for Side-Channel traffic. Due to current

hardware limitations, the ability to modify these CRC polynomials for the different channels in

the experiments was not possible, and instead a MATLAB [38] script was used to alter the CRC

of specific frames in post-processing. The process of modifying the CRC values will be covered

more in-depth in Chapter 4.

Moore | 27

2.5 – MANETs & OLSR

Mobile Ad-Hoc Networks, or as they’re more colloquially known, “MANETs” are self-configuring

wireless networks consisting of mobile devices. These networks often lack any defined

infrastructure, and instead build a routing table on the fly (thus, Ad-Hoc). The routing table of a

MANET often exists in a peer-to-peer (P2P) nature. Every device in a MANET can move

independently and in any direction, which leads to a number of challenges, such as maintaining

a routing table, and creating persistent connectivity [39]. In order for a MANET to operate

successfully, each device must have the ability to continuously maintain a routing table in order

to properly route traffic. Some protocols, such as OLSR, rely on using designated devices to

keep all other nodes up to date on the available routes. MANETs are also known for their

heterogeneity, meaning that these networks may contain multiple transceiver types, resulting

in an even more complex topology.

 There are several categorizations for MANETs, each with their own unique uses and

purposes. Vehicle oriented MANETs (VANETs) [40] are typically used for inter-vehicular

communication and communication from vehicles to roadside equipment. A more recent usage

is that of Smart Phone Ad-Hoc Networks (SPANs) [41], which rely on hardware existing within

current commercial smartphones in order to create P2P networks to communicate while

circumventing typical carrier networks. Another core application for MANETs environments are

military communication devices. The experiments shown in this thesis are meant to emulate a

military-style MANET environment [42] using the OLSR routing protocol. This research could

Moore | 28

also be applied to different non-military applications such as: Campus Networks, Smart Phone

Networks, or other similar Ad-Hoc applications.

 Optimized Link State Routing (OLSR) is a variation of the standard Link State Routing

Protocol [43], whereby each node in the network will independently form a routing table by

determining the best path to each destination node in the network. OLSR was intended to

optimize link state algorithms for use on a wireless ad-hoc network, especially one featuring

embedded devices, smartphones, or other similarly resource-limited devices. OLSR is an

improvement upon standard Link State protocols in that each node selects a set of neighbor

nodes known as “multipoint relays” (MPR). It is only these MPRs that forward control traffic,

effectively reducing the number of transmissions required, and therefore the flood of control

messages [44].

2.6 – Classification Quality Measures

The F-Score method (also known as F1 score or F-measure) is commonly used in a variety of

works for classification, such as: information retrieval, search measurements, document

classification, and query classification [45]. This approach is often used when testing the

effectiveness of a feature, such as the HD between two CRC values. Another area that makes

use of the F-Score calculation is the evaluation of word segmentation or speech recognition. In

their work, Sangwan et al. [46] relied on the use of the F-Score calculation when testing their

keyword model for phone-based speech recognition. Using this calculation, they were able to

Moore | 29

propose a new threshold estimation technique for the detection of keywords in conversational

speech patterns.

 The F-Score calculation, while useful in classification, is far from perfect in that it has

issues determining an effective threshold when trying to detect multiple classes. Tao et al. [47]

have identified some of the limitations of the F-Score approach in their work, and proposed a

new method of calculating a weighted F-Score. The F-Score measurement has been shown to

produce issues when there is inter-class overlapping or inconsistent features [47]. The

suggested issues arise due to the fact that F-Score weighs all features equally, which may not be

idea for certain experiment conditions. To combat this, Tao et al. suggest a technique useful for

selecting the most effective features for classification by taking the average value of a feature in

a dataset and comparing it against another feature on a per-feature basis. This ensures that the

most accurate feature is selected for the given problem. Since the described Side-Channel

detection method relies on just a single feature, any multi-class limitations of F-Score will not

be an issue. The F-Score measurement is calculated based on the compounded harmonic mean

of precision and recall. Further information regarding this calculation will be examined in

Chapter 3.

 Some problems require a more specialized approach, where Precision and Recall may

not be considered equally weighted. Two other commonly used F-measures exist for this

purpose, and are called the F2 and F0.5 measures. F2 places more weight into recall than

precision, while the F0.5 measure is more heavily weighted towards precision. These alternative

Moore | 30

“Fβ” measures were proposed by Van Rijsbergen [48] as a means for when users place “β times

as much emphasis on recall as precision”. Other work conducted by Xie et al. [49] demonstrates

a multi-feature variation on the F-Score approach, where each feature is further verified

through the use of the SVM machine learning algorithm. The use of SVM for verification is

harkened back to within this work (Section 5.5), as a means for determining the effectiveness of

the HD metric.

Moore | 31

Chapter 3 –Side-Channel Identification

Based on an F-Score Quality Measure

3.1 – The F-Score as a Hamming Distance Detection Quality Measure

An HD threshold is a whole number at which the maximum number of Side-Channel messages

are detected, while avoiding false alarms when naturally corrupted Normal messages have a

non-zero HD. The difficulty when selecting a value is that if your threshold is too high you will

easily miss large volumes of Side-Channel communication; alternatively, if the threshold is too

low, you will end up with a large amount of false positives. There are several quality measures

for this type of classification, but the primary measurement chosen for this threshold

calculation is a concept known as F-Score. It is important to understand how this measurement

works in order to recognize how effective the calculated threshold may be.

 When classifying data the most common approach to verification is to assess the data

against a trusted set of correctly identified results. In doing so, you are able to determine

whether or not data has been flagged as True/False Positive, or True/False Negative. Two

common quality measures exist, known as Precision and Recall, which take these classifications

into consideration when determining the relevance of the classification. Precision focuses

largely on what fraction of the results were relevant to the classifier, by taking the number of

True Positives and dividing it by the total number of data points identified as Positive.

Moore | 32

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

Recall is oriented towards determining how successful the classification was, and does

so by dividing the number of True Positives over the number of data points which should have

been classified as positive (True Positives & False Negatives). As such, this value is heavily

impacted by the number of False Negative classifications.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)

 The following Table 3.1 should be used for reference in order to better understand the

influence of each of the classifications when calculating a threshold value. These concepts are

not just essential for understanding how F-Score calculates a threshold, but also pivotal in

gauging a threshold based on an ROC curve, as shown in Section 5.4.

Term Definition

True Positive (TP) The classifier has correctly categorized a data point as Side-Channel
communication.

True Negative (TN) The classifier has correctly categorized a data point as Normal traffic.

False Positive (FP) The classifier has incorrectly categorized a Normal traffic data point as
Side-Channel communication.

False Negative (FN) The classifier has incorrectly categorized a Side-Channel data point as
Normal traffic.

Precision How accurately the number of data points classified as Side-Channel
was, when compared to the number of False Positives.

Recall How accurately the number of data points classified as Side-Channel
was, was when compared to the number of missed Side-Channel frames
(flagged as False Negative).

Table 3.1 – Definitions of calculations / classifications utilized when calculating an F-Score value.

Moore | 33

Both Precision and Recall are compounded in order to calculate a composite value

known as F-Score. F-Score utilizes the Harmonic Mean [50] of Precision and Recall in order to

find the best possible combination, or in this case, the Optimal HD Threshold. F-Score is

displayed as a value which falls between 0 and 1, where 0 is considered highly inaccurate and 1

is considered perfectly accurate. F-Score can be calculated using the following formula:

𝐹 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

In the work presented by Chea [3], F-Score was used to define a threshold for

experiments by selecting the threshold which presented the highest F-Score. This work builds

upon this, but instead aims to present a precise range of thresholds that could be used to

detect Side-Channel in a variety of situations. In order to calculate a threshold using F-Score, a

dataset with known Positive and Negative samples must exist, along with some metric to test

against a threshold value. Hamming Distance is used as the metric for this purpose.

When using F-Score to calculate a threshold, the first step is to select a range of

threshold values to test. Each of these thresholds are checked against the HD metric of a

dataset in order to determine the number of TP, FP, TN, & FN. For example, given a possible

threshold range of 1-30, the HD value for each individual frame must be checked against the

specific threshold in order to classify data. Precision and Recall calculations are then performed

using the TP, FP, and FN values in the formulas described above. Once Precision and Recall have

been determined for each of the thresholds being examined (in this case 1-30), F-Score

Moore | 34

calculations may commence. Finally, the threshold value with the largest F-Score is determined

to be the optimal threshold for the given dataset.

The two other variables that were considered for the purposes of selecting a Hamming

Distance threshold were Accuracy and Specificity. Accuracy is the measurement of how close

the measurement results are to the true value, and how reproducible these results are. While

Accuracy appears to provide a solid value for determining a threshold, this value has been

shown to operate poorly when dealing with inconsistent conditions, such as the

disproportionate levels of Side-Channel with respect to normal traffic. Specificity is the

percentage of correctly identified True Negatives. While this is also important to measure, this

calculation ignores a decrease in the number of True Positives as the threshold increases in

favour of a greater rate of True Negatives.

3.2 – Testing the F-Score Threshold

In Section 2.4 it was explained that the HD is calculated by performing an XOR on two

CRC values. This HD provides a metric for anomaly detection, and F-Score provides a threshold.

Knowing the total number of each frame type, along with the Hamming Distance values for all

of the Normal & Side-Channel frames, allows a user to determine which threshold provides the

most optimal detection. Determining whether or not a frame is flagged as Side-Channel is as

simple as comparing the HD value to the threshold. For example, if an F-Score Optimal

Threshold of 12 is selected, any frames with an HD value of 12 or greater would be considered

Side-Channel whether or not they do in fact belong to Side-Channel communication. This makes

Moore | 35

the selection of a threshold a delicate balance between the highest possible naturally corrupted

Normal frame HD, and the lowest possible Side-Channel HD.

The following Figure 3.1 presents results from a rudimentary proof-of-concept Side-

Channel experiment where Side-Channel was emulated through the use of FTP, and HTTP traffic

was generated to represent Normal traffic in a 2-node scenario with 30% FER. The Hamming

Distance was calculated for these frame types, where the Koopman 32-bit polynomial was used

for Side-Channel CRC generation. As you can see, when frames become naturally corrupted

their HD increases, and with an increased percentage of FER there is a larger volume of frames

that could be incorrectly flagged as Side-Channel. Consider the scenario, and imagine a

threshold of 12 is applied to it. The threshold would capture the eight Side-Channel frames with

HD values in the 13 – 18 range, but unfortunately would also incorrectly identify eighteen

naturally corrupted Normal frames that have an HD of 12 – 17. This demonstrates the challenge

of determining a threshold, as selecting a value that is too high or low could result in inaccurate

results.

Figure 3.1 – Comparison of Side-Channel (FTP) Hamming Distance to Normal traffic.

0

5

10

15

20

-50 450 950 1450 1950

H
am

m
in

g
D

is
ta

n
ce

Frame Number

2-Nodes @ 30FER

All Packets

FTP

Moore | 36

 In order to exhibit how F-Score is used in this decision, observe a snippet of the results

from the F-Score calculation performed on this dataset in Table 3.2. The Threshold value of 16

is calculated as the best choice for this dataset due to the fact that it presents the highest F-

Score. While a threshold of 14 shows a larger amount of True Positives, the number of False

Positives raises. This demonstrates the concept of finding a harmonic mean.

Threshold True(+) False(+) True(-) False(-) Accuracy Sensitivity Specificity Precision F-Score

14 7 13 1038 2 0.9858 0.7778 0.9876 0.3500 0.4828
15 6 4 1038 3 0.9933 0.6667 0.9962 0.6000 0.6316

16 6 2 1038 3 0.9952 0.6667 0.9981 0.7500 0.7059

17 4 1 1038 5 0.9943 0.4444 0.9990 0.8000 0.5714

Table 3.2 – F-Score Calculations on a dataset with 2-Nodes & 30% FER.

Moore | 37

Chapter 4 – Experimental Design

The goal of the experiments is to simulate a military foot soldier platoon’s ad-hoc

communication; as such, the selected MANET protocol, the positioning of the nodes [51], and

the communication methods have all been kept in line with potential real-world scenarios [52].

Further details will be outlined in the sections below.

4.1 The Hybrid Experimental Environment

There are two possible routes that could have been pursued when developing experiments for

this problem. Option 1 involves conducting experiments in a real network using real data, with

two challenges in doing so: Should it exist, hardware capable of establishing a Side-Channel

must be used; and if not, then a method for emulating the behavior of Side-Channel must be

clearly defined. Option 2 is to use a network simulator, which outputs files for processing or

allows for modification of source code in order to implement desired functionalities. Due to the

obscure nature of the Side-Channel problem, it was unlikely that network simulators would

offer this functionality off the shelf.

In his work, Najafizadeh [11] aimed to develop a system in which a Side-Channel link

could be established. Previous works in the topic [6] [10] had shown that a form of Side-

Channel communication may be possible through modification of the FCS field. Taking the

results of those works into account, Najafizadeh [11] tested these hypotheses. This work also

outlined the issues related to many of the simulator options, and described an exhaustive

Moore | 38

search for compatible hardware. The Sinalgo [29] network simulator was chosen as the medium

for simulation. Sinalgo [29] is an open source Java-based network simulator which provided

core functionality necessary for simulation, and allowed for easier modification than other

simulators such as NS-2 [53] or QualNet [11]. The elegant simplicity of Sinalgo left many

features to be desired that would need to be added by Najafizadeh [11] before he could begin

testing his hypothesis. One of the limitations of Sinalgo that was recognized in his

work [11] was the fact that corrupted frames were simply discarded by the simulator, rather

than being transmitted to the recipient. In addition to this, several other issues which he would

later resolve were lack of a proper channel fading model, and a need for promiscuous agent

nodes who could monitor and capture traffic.

With little to no available hardware for Side-Channel testing, the most likely option for

experimentation was to use a simulation environment. Simulators provide an inexpensive,

scalable solution for testing, and typically allow for easily modifiable parameters. Network

simulators in particular also often provide channel models, routing, and full TCP stacks. With

support for the OLSR protocol, the ability to instantiate controlled mobility, and featuring a full

TCP/IP protocol stack, QualNet [30] appears to be the ideal Simulator for Side-Channel

experiments. Unfortunately, there are several issues when attempting to post-process or

analyze data from QualNet scenarios, as frames generated within experiments are actually

devoid of any useable information, such as FCS values.

Moore | 39

 One of the challenges facing the development of Side-Channel experiments is a distinct

lack of hardware with the capability of establishing a genuine Side-Channel. Due to this

limitation, performing experiments through simulation seems to be the most logical step;

however, these simulators often lack the necessary functionality when it comes to transferring

an actual data frame, as well as calculation and transmission of corrupt frames. Instead, a way

to emulate this behavior is needed. In order to establish Side-Channel via the methods

proposed in the previous works of Szczypiorski [6] or Najafizadeh [11], it must be possible to

allow an application to generate its own FCS, which, as with all MAC layer operations, is a

functionality that is locked into the firmware of most current 802.11 wireless network cards.

A chipset known as the Atheros AR5212 developed by Qualcomm [55] supports a

flexible MAC layer allowing for modification of the device’s CRC algorithm. Unfortunately,

devices with this chipset are no longer in production, and have become scarcely available.

Without the ability to generate an alternative CRC using hardware, a substitute method for

emulating Side-Channel communication is necessary. The emulated Side-Channel must also be

easily recognizable during the analysis phase in order to allow for modification in post-

processing. The simplest way to execute this is to establish a Constant Bitrate (CBR)

communication on a port that differs from the rest of the network traffic.

Chea [3] attempted to modify and recompile the source code for QualNet in order to

implement FCS capabilities and frame information, but was unsuccessful in his efforts. His

hypothesis was attempted in the QualNet simulator, tested using MATLAB with Simulink, and

Moore | 40

finally accomplished with hardware using an emulated Side-Channel [3]. The QualNet [30]

simulator was considered, but presented a lot of challenges regarding the implementation of a

payload and CRC calculation. When unable to correctly analyze scenario information from

QualNet, Chea [3] experimented with hardware environments, using FTP as an emulated Side-

Channel. This allowed for the ability to conduct detection on a network without needing the

proper hardware required to modify the FCS field. The network described for this work was

similar to that of a hub-and-spoke, with five nodes communicating to a central “Server” node

and an agent node collecting data. Chea was able to show that there was a distinction between

Hamming Distances of Side-Channel and non-SC nodes, with very simple experimental

procedures. He developed a system known as the “Hybrid Testing Approach” [3] where results

from a Wireshark [54] capture file were manipulated using MATLAB [38] to generate CRCs and

FER. This “Hybrid” approach was borrowed for the processing and preparation of data for this

thesis. Building from that, the work within this thesis aims to expand upon and improve much

of what was shown in [3], while bringing it to a MANET environment.

The Hybrid Experimental Environment involves parsing files captured from Wireshark,

and executing a number of functions in MATLAB to organize the data into a format that can be

correctly analysed. After six files created through the TShark scripts and Java program have

been generated, the format of which are described in Section 4.5, a MATLAB script (see

Appendix A) takes them as input. MATLAB/Simulink are the tools responsible for the actual CRC

modification that constitute the emulated Side-Channel. With the frames parsed through

TShark and Java, several output files have been created, but these files are simply the first step

Moore | 41

towards collecting the data into a format that can be analyzed. As mentioned above, a different

CRC polynomial is used for the purpose of Side-Channel than that of Normal traffic. Figure 4.1

illustrates the process interactions between MATLAB and the parse files described above. The

“olsrFCSCheck.txt” file is used by MATLAB in conjunction with the “hexDataDump.txt” file in

order to identify which of the frames are good and which are naturally corrupted. Any naturally

corrupted frames are automatically discarded to prevent skewing of the FER generation

process. Next, the “olsrPorts.txt” file is used to determine if the received frame was destined

for Port 1337, or another port. This is done to determine if the frames should be treated as

Side-Channel or Normal traffic. Control frames and port 80 destined data frames are considered

“Normal” traffic. Once a frame’s port, and corresponding type have been identified, they are

forwarded to a decision gate and on to the CRC generation algorithm. If the frame was destined

for Port 1337, a CRC is generated using the Koopman CRC polynomial (simulated Side-Channel)

while all other frames compute a CRC based on a Default 32-bit CRC polynomial. At this point in

the simulation process, each of these frames are treated as uncorrupted, and the Normal

frames would be shown to have a HD value of 0 if compared to the expected polynomial.

Once the appropriate CRC is generated for each frame, it is appended onto the end and

simulation of channel properties can begin. The probability of each frame being erroneous is

considered, and if it is selected to be so, a number of bits is flipped. The frame is given a chance

to become corrupted based on the probability value inputted into the “Frame Error Probability

Decider” function, and if it is not corrupted then it is sent on to have its HD calculated. If the

frame is selected to become corrupted, it is passed through an “AWGN” channel for corruption.

Moore | 42

The SNR value for this channel comes from the “SINRFile.txt” that was generated earlier. After

corruption is complete, the corrupted frames are also sent on to have their HD calculated.

In the final portion of the MATLAB script, the original Default polynomial is compared

against the CRC of the current frame. From this, the HD value is calculated through an XOR of

the two polynomials. If the HD value is 0, the frame is a non-corrupted Normal frame;

otherwise, if there is an HD value that is greater than 0, the frame is either part of the Side-

Channel communication or a corrupted Normal frame. The HD value will always be a positive

integer relative to the number of bits different it is from the expected CRC. The HD value for

each frame is then reported and output to a file. In addition to this, several values are

calculated and output to files at this point, such as: frame count statistics and F-Score

calculations (True Positives, False Positives, True Negatives, False Negatives, accuracy,

sensitivity) for a range of thresholds (1 – 30).

While this system allows for the emulation of a physical Side-Channel network, it does

have a few limitations that must be addressed. Firstly, in order to increase the number of nodes

in the experiment, one must re-run the physical experiments with an additional node. Secondly,

the errors generated for each of the frames chosen for corruption are based on the AWGN

channel model, and may only be as good as the channel model. This means that there may be

some bias in regards to the accuracy of the Hamming Distances generated for corrupted

frames.

Moore | 43

 F
ig

u
re

 4
.1

 –
 H

yb
ri

d
 T

e
st

 E
n

vi
ro

n
m

en
t

M
o

d
e

l F
lo

w
 D

ia
gr

am
 [

3
]

Moore | 44

4.2 – Platooning: Forging a Formation

Platoon formations define the expected arrangements of soldiers in relation to each other. The

goal of these formations is to provide as much flexibility to adapt to situations as needed while

maintaining control of a unit. In almost all formations, Team and Squad Leaders are in the front,

allowing for these individuals to lead by example, and as such all soldiers within a platoon are

required to have line of sight on their leader at all times. The platoon formation is typically

selected by a leader after he or she has considered factors such as Mission objectives, Enemy,

Terrain, Troops, and Time available (METT-T) [52]. The selection of this formation should ideally

provide maximum protection, and allow for the maintenance of unit cohesion, stable

momentum, and a smooth transition between offensive and defensive actions.

In an attempt to design experiments that represent military platoon scenarios as

accurately as possible, several sources were examined when considering node placement. The

“Fire Team Wedge” formation [52] is the most basic formation a fire team can select. This

formation provides the unit with visibility of the Team Leaders, while covering a large patrol

area. The interval between soldiers in this formation is suggested to be 10 meters, however this

inter-operative distance is variable depending on visibility, terrain conditions, availability of

space, or other factors affecting the functionality of the wedge. The inter-operative distance

may shrink or expand in order to ensure visibility of the squad leader. According to the FM 7-8

Infantry and Platoon Field Manual [52], it is not uncommon for a wedge to contract to the point

where units may move in single file, if for example the platoon has entered into an indoor

Moore | 45

environment. Figure 4.2 has been provided for reference of a standard Fire Team Wedge. The

flexibility of the inter-operative spacing allowed for some modification to the platoon

positioning in the experiments. Due to spatial limitations, and given that volunteers did not

have radios for communication, inter-operative positioning was reduced to a standard distance

of 5 feet.

Figure 4.2 – The Fire Team Wedge, a standard platoon formation [52].

Both the number of soldiers and layout of the Fire Team Wedge were selected as

parameters for the experiment. Not only did this formation provide a more realistic approach

to node positioning, it also allowed for maximum control while directing volunteers. Based on

the requirements of the experiments, and because the volunteers were not military trained, the

Fire Team Wedge was selected both for simplicity, and to represent possible positioning during

a standard patrol mission.

Moore | 46

4.3 – The OLSR Routing Protocol

For the experiments, a stable version of the OLSR protocol (0.6.8) was installed and run on the

wlan0 interface using Ubuntu 14.04. Figure 4.3 shows a screen capture of OLSR’s output from a

laptop with the IP Address 10.10.10.15. A similar output was printed to the terminal by OLSR on

a per second basis as the routing table information was requested; however, the frequency of

this update is configurable and can be increased or decreased as needed. In this capture, the

links of each of the nodes on the network are present, along with their Link Quality (LQ) and

Expected Transmission Count (ETX). Following this, the nodes which are considered direct one-

hop neighbours to each node, and whether or not they are MPRs, are also observable. Finally,

the list of neighbours that are accessible through two-hops are listed, along with their total cost

and prospective routes.

Each of the nodes in the scenarios were provided with a static IP Address belonging to

the 10.10.10.0/24 network. By providing static IP Addresses, analyzing captured data was

easier, and allowed for a clear overview of the network activities in the live feed displayed in

Wireshark [54].

Moore | 47

Figure 4.3 – A screen capture of the Ubuntu terminal showcasing the OLSR routing table output.

Moore | 48

4.4 – Physical Experimental Scenarios

In each of the experiment scenarios, the nodes formed a typical platoon of 8 members as

defined by the Michigan Tech AROTC [51]. Squad members consisted of UOIT and Durham

College volunteers, all of whom were informed of their right to withdraw, and their required

tasks for the experiment, all of which was approved by UOIT’s Review Ethics Board (REB). A

marker was used to signify an Observation Post that the squad needed to reach within the

allotted five minute experiment scenario. During the experiment, volunteers were instructed to

maintain a relative distance of 5 feet while walking. This distance was not arbitrarily chosen,

but rather a scaled down variation of the standard 10m inter-operative patrol distance, as per

the guidelines outlined in the sourced platoon field manuals [51] [52]. The key observation of

this experiment was to monitor the relative effectiveness of the CRC HD metric in a MANET

environment while subjected to normal interference. As such, participants in the experiments

were merely a means of transporting devices in order to provide mobility, and as such no bias

was made in regards to volunteers.

Seven of the volunteers were responsible for carrying seven of the platoon nodes, and

one volunteer was responsible for both the eighth node and the agent node. The arrangement

of this was to illustrate that the agent could exist as a module within one of the nodes. Figure

4.4 showcases the positioning and location of nodes for various times throughout the scenario.

The hardware for each of the nodes was a Lenovo T520 laptop, with a second generation i5 CPU

and 8GB of RAM. Each of the devices were configured using the Ubuntu 14.04 [56] operating

Moore | 49

system, with the OLSR routing protocol installed. Ubuntu was chosen due to the fact that at the

time of writing, there is currently no implementation of OLSR for non-Linux operating systems.

The agent node was also a Lenovo T520 with the same hardware listed above; however, this

device was running Windows 7, the Wireshark traffic analysis tool, and a USB network capture

card. Volunteers maintained a constant walking speed and relative distance while following the

predetermined route. It is also worth noting that due to the proximity of these devices, there

was a full overlap, and all nodes could reach one another. The experiments were performed

outdoors during overcast weather conditions with some light rain. Proof of concept

experiments that were performed on similar conditions were also performed in an indoor

setting and upon comparison, similar results were achieved within an FER percentage of 0.2%.

Figure 4.4 – A topology diagram detailing the communication and positioning for the OLSR Experiment.

Moore | 50

 In the experiments conducted by Madtha et al. [2] using the QualNet simulator, a

Constant Bitrate (CBR) application was utilized for traffic generation. Drawing from this, it was

discovered that an application known as “Nping” [57] provided desirable functionality for the

experiments. Nping is an open source network packet generation tool that is commonly used in

networks for measuring response times, detecting active hosts, and can even be used to

generate raw packets for stress testing, ARP poisoning, or Denial of Service attacks. The Nping

tool is versatile, and provides the ability to control the rate of transmission, number of packets

sent, and destination port. This tool was chosen for the experiment since it would allow for raw

packets to be transmitted across distinct ports. For the experiments, Side-Channel traffic was

transmitted across port 1337, while “Normal” traffic was sent through port 80. In the

experiment scenarios that were run, the rate of Side-Channel transmission was varied in order

to test the HD detection technique against different ratios of Side-Channel to normal traffic

communication.

Each of the packets generated by Nping were 86 bytes, a relatively small size chosen in

order to illustrate that the proposed technique could be used in even the most minimal traffic.

Communication existed between multiple source and destination nodes, in order to generate as

much traffic as possible while mitigating possible hardware bottlenecks when nodes were

transmitting and receiving at the same time, and was sent using UDP. Figure 4.5 shows the

communication links and the direction of transmission between each of the nodes in the

platoon, where the blue links represent the traffic sent via port 80, and the red link represents

the Side-Channel communication transmitted via port 1337. The agent node was not included

Moore | 51

in the OLSR network, but instead simply captured nearby traffic in a promiscuous state using

Wireshark [54] and the AirPCap TX [58] network capture card.

The direction of communication for these experiments consisted of nodes 10.10.10.10,

10.10.10.11, and 10.10.10.16 transmitting Normal traffic to the nodes ending in 14, 12 & 15

respectively, while the malicious node 13 was responsible for transmitting Side-Channel traffic

to 17. For reference, the Team Leader position is represented by nodes 10 & 14, the Grenadiers

are 11 & 15, the Automatic Riflemen are 12 & 16, and the Riflemen are 13 & 17.

Figure 4.5 – Demonstration of the communication links between the Side-Channel and normal traffic.

Moore | 52

 Two parameters were varied for the experiments: the ratio of Side-Channel to normal

communication, and the percentage of Frame Error Rate. While the ratio of

Side-Channel to Normal traffic required running an additional experiment with each increase in

volume, the modification to the percentage of FER was achievable offline in post-processing.

During each of the five-minute experiments, Side-Channel communication would begin at the

one minute and thirty second mark, and continue for ninety seconds. The experiments were

run a total of 12 times, with the number of Side-Channel messages per second increased by an

additional message each time in order to provide varying ratios of Side-Channel to normal

traffic. The range of Side-Channel to normal traffic began with 9% of the total traffic as side

channel, corresponding to one Side-Channel frame per second being transmitted over a 90

second window. The percentage was increased by gradually adding an additional Side-Channel

frame per second, until 40% of the traffic consisted of Side-Channel frames. The conclusion of

experiments at 40% Side-Channel was not an arbitrary choice, but as will be shown in Chapter

5, an observable threshold plateau began to appear. The scenarios consisted of the following

percentages of Side-Channel traffic: 9%, 12%, 14%, 19%, 22%, 25%, 28%, 30%, 35%, 37%, and

40%. These percentages correlated directly to an additional 1 Side-Channel frame per second.

Adding or subtracting nodes from the network would of course directly increase/decrease the

percentage of Side-Channel traffic relative to the change in normal traffic, and is a variable

which could be examined in future experiments.

As previously mentioned, there was a second controlled variable: the modification of

the Frame Error Rate. Modification of this value was performed during post-processing through

Moore | 53

the use of MATLAB and Simulink, where a select percentage of communication was artificially

corrupted in order to increase the amount of noise. FER was modified in order to examine the

effectiveness of the Hamming Distance metric for various levels of noise on the network. With

increased error rate, the number of non-Side-Channel frames featuring higher than expected

HD should be exponentially higher than instances with little to no noise. Through post-

processing, 22 different levels of FER were introduced to each of the 12 experiments, creating

264 unique datasets for analysis. More information regarding the process of FER modification is

shown in Section 4.5.

4.5 – Pre-processing the Data

With the data from the experiments captured and stored within a Wireshark file, it was

important to parse it properly. All of the relevant data needed to be kept, while traffic not

belonging to the OLSR network had to be stripped out and ignored. Due to the nature of

monitoring wireless traffic, there are often a lot of packets captured which may belong to other

networks within range. Fortunately, as part of its standard installation Wireshark includes a

command line interface known as TShark. TShark allows a user to capture information similarly

to Wireshark, but without a GUI. This tool also allows for the output of select frames and

information from a capture file into a text file based on user-defined filter criteria. Several of

the commands used for the filtering of traffic can be seen below in Figure 4.6.

Moore | 54

Figure 4.6 – TShark Filter commands used in the generation of files.

The five commands above, while all appearing nearly identical, actually provide a variety

of information. The first command outputs a file called “allFCSCheck.txt”, which contains a

binary list defining whether or not each of the frames captured suffered from natural error.

This initial list is for all frames received, whether or not they were related to OLSR or the

experiment. If a frame was corrupted, a value of 0 will be displayed for that particular frame. It

is important to note that each of the output files generated will feature the frames in the order

that they were received by the AirPCap device. The second command generates a file similar to

that of command 1, with the exception that it filters out and displays only frames which have

been transmitted using UDP with a destination of port 1337 or port 80, or if they were simply

using the OLSR routing protocol. These filters allowed for the capture of all OLSR control

packets, Side-Channel packets, and generated “Normal” traffic in the experiment. The third

command also filters frames using the same criteria, but this time outputs a file titled

“olsrPorts.txt”, containing the port values of all of the frames relevant to the experiment for the

1) tshark -r "captureFile.pcapng" -T fields -e wlan.fcs_good >>

allFCSCheck.txt

2) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng"

-T fields -e wlan.fcs_good >> olsrFCSCheck.txt

3) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng"

-T fields -e udp.dstport >> olsrPorts.txt

4) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng"

-T fields -e radiotap.db_antsignal >> SINRFile.txt

5) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng"

-x >> hexDataDump.txt

Moore | 55

OLSR network. The fourth command generates the “SINRFile.txt” file, containing the Wireshark

calculated Signal-to-Noise ratio for each captured frame. Finally, command 5 generates a file

containing the data bytes captured by Wireshark in their hexadecimal format.

With the data of the captured frames output to a file, it is then necessary to convert

them from Hexadecimal into a format that can be analyzed. Using a java program originally

created by Chea [3], the dumped hexadecimal data was serialized into a binary format and

output to a file for use by MATLAB. Figure 4.7 shows an example of the type of conversion

performed on a frame by the program. On the left are the Wireshark bytes in their hexadecimal

format. These bytes represent the frame’s fields and data. To better evaluate what is provided

in this data, it is important to recognize what is present in this text. The first column containing

clusters of four digits is used to signify the position of each line within the hex dump. The start

of each new frame is clearly defined by Wireshark through the use of the value “0000”. The

middle values, shown in clusters of two hexadecimal digits, contain the actual data portion of

the frames. Lastly, the rightmost column is an ASCII translation of the hexadecimal numbers

within the frame. For the purposes of the Java program, only the first two columns are

considered. The program captures each line of hexadecimal and then converts it into a binary

sequence, appending the lines together in order to form a single binary sequence for each

frame, removing the bits correlating to the FCS field. These bits are removed so that a new CRC

may be incorporated into them using MATLAB. After all of the frames have been assessed by

the program, a text output file is generated, and MATLAB post-processing may begin. Figure

Moore | 56

4.8, presents a process diagram of the entire parsing process from start to finish. The

significance of each of these files has been detailed in-depth in Section 4.1.

Figure 4.7 – An example output of Chea’s [3] TShark hex dump Java program.

Figure 4.8 – Process diagram illustrating the steps involved in parsing Wireshark capture files for MATLAB.

Moore | 57

Chapter 5 – Analysis

The goal of this analysis chapter is to determine whether or not it is possible to define a

threshold, or range of thresholds that will detect Side-Channel communication with as few false

negatives or false positives as possible in a MANET. Another important task is to compare the

results presented by Chea [3] against the MANET results, to determine whether his stationary

network could utilize the same threshold range presented below.

5.1 – Performing the F-Score Calculation

Using F-Score for calculation, threshold values from 1 – 30 were tested for each of the

experiment scenarios, with the value presenting the highest F-Score value ultimately being

chosen as the threshold as presented in Section 3.2. The following information presented in

Table 5.1 shows the statistical information for a scenario with 14% of the total traffic consisting

of Side-Channel communication, and using the actual (unmodified by MATLAB) calculated FER.

Percentage of Frame Error Rate: 0.83%

Total Number of Frames: 2,680

Total Number of Uncorrupted Frames: 2663

Total Number of Naturally Corrupted Frames: 17

Total Number of Non-SC (Normal) Frames: 2316

Total Number of Side-Channel Frames: 364 (14%)

Table 5.1 – Statistical information regarding the 14% SC scenario using its unmodified 0.83% FER

Moore | 58

The process of calculating F-Score was described in-depth in the above Chapter 3, and as

such will not be re-examined here. Instead, observe the results of the F-Score calculations for

proposed threshold values from 1 – 30 in Table 5.2. With an F-Score value of 0.9973 (on a scale

from 0 – 1), the threshold of 9 was selected in this scenario. Upon further examination of the

F-Score results, it is evident that while a threshold value of 9 did not have the highest number

of True Positives, it did in fact have a lower number of False Negatives than some of the higher

thresholds. A threshold of 10 or higher had even fewer False Positives, but began to present a

larger number of False Negatives, continuing this trend as the threshold grew higher. This

suggests that the F-Score Calculation places a higher level of significance to the best harmonic

combination of False Positives and False Negatives when considering a threshold value.

Moore | 59

Threshold True(+) False(+) True(-) False(-) Accuracy Sensitivity Specificity Precision F-Score

1 364 14 2302 0 0.9948 1 0.994 0.963 0.9811

2 364 14 2302 0 0.9948 1 0.994 0.963 0.9811

3 364 14 2302 0 0.9948 1 0.994 0.963 0.9811

4 364 12 2304 0 0.9955 1 0.9948 0.9681 0.9838

5 364 11 2305 0 0.9959 1 0.9953 0.9707 0.9851

6 364 8 2308 0 0.997 1 0.9965 0.9785 0.9891

7 364 6 2310 0 0.9978 1 0.9974 0.9838 0.9918

8 364 5 2311 0 0.9981 1 0.9978 0.9864 0.9932

9 363 1 2315 1 0.9993 0.9973 0.9996 0.9973 0.9973

10 361 0 2316 3 0.9989 0.9918 1 1 0.9959

11 352 0 2316 12 0.9955 0.967 1 1 0.9832

12 331 0 2316 33 0.9877 0.9093 1 1 0.9525

13 310 0 2316 54 0.9799 0.8516 1 1 0.9199

14 279 0 2316 85 0.9683 0.7665 1 1 0.8678

15 223 0 2316 141 0.9474 0.6126 1 1 0.7598

16 159 0 2316 205 0.9235 0.4368 1 1 0.608

17 107 0 2316 257 0.9041 0.294 1 1 0.4544

18 63 0 2316 301 0.8877 0.1731 1 1 0.2951

19 35 0 2316 329 0.8772 0.0962 1 1 0.1754

20 15 0 2316 349 0.8698 0.0412 1 1 0.0792

21 5 0 2316 359 0.866 0.0137 1 1 0.0271

22 2 0 2316 362 0.8649 0.0055 1 1 0.0109

23 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

24 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

25 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

26 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

27 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

28 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

29 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

30 0 0 2316 364 0.8642 0.00 1.00 NaN NaN

Table 5.2 – Demonstration of F-Score results used to select a threshold of 9 for the given scenario.

Moore | 60

5.2 – Assessing a Threshold Range

The F-Score calculation was tested against the data from 252 out of the total 264 experiments

in order to determine the possibility of a potentially universal threshold, or range of thresholds

that would allow for the detection of a Side-Channel in any network. The scenarios for an FER of

0% were omitted for these calculations, as even though the experiments featured an incredibly

low actual FER (0.4% - 0.8%), the likelihood of establishing communication with an absolutely

0% FER can be considered virtually impossible. Table 5.3 contains the calculated Optimal HD

Thresholds for these experiments, where each column represents a different percentage of

Side-Channel communication, and each row is the percentage of simulated FER. By graphing

these calculated thresholds, such as in Figure 5.1 or Figure 5.2, it initially appears as though

there is very little consistency in thresholds. As the percentage of FER increases, the threshold

fluctuates seemingly at random. While there is some observable patterning in the HD, analyzing

the data in this way provides what appears to be a range of thresholds from an HD value of 5 up

to an HD value of 15. This spread of threshold ranges is far too large to be considered effective,

and establishing a cohesive range of thresholds would be unreliable. Fortunately, there are

ways to narrow down these threshold values into an acceptable range.

Moore | 61

Figure 5.1 – A graph showing the calculated Optimal HD Threshold for each SC percentage where each line represents the percentage of FER.

Figure 5.2 – An FER based examination of the calculated Optimal HD Thresholds.

0

2

4

6

8

10

12

14

16

9 12 14 19 22 25 28 30 33 35 37 40

O
p

ti
m

al
 H

D
 T

h
re

sh
o

ld

Percentage of SC Frames (%)

Optimal HD Threshold for Each FER

Actual FER

5% FER

10% FER

15% FER

20% FER

25% FER

30% FER

35% FER

40% FER

45% FER

50% FER

0

2

4

6

8

10

12

14

16

A
ct

u
al 5

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

 5
5

 6
0

 6
5

 7
0

 7
5

 8
0

 8
5

 9
0

 9
5

 1
0

0

O
p

ti
m

al
H

D
 T

h
re

sh
o

ld

Frame Error Rate (%)

Optimal HD Thresholds for Each % of Side-Channel

9% SC

12% SC

14% SC

19% SC

22% SC

25% SC

28% SC

30% SC

33% SC

35% SC

37% SC

40% SC

Moore | 62

While the huge variance in calculated thresholds makes determining a narrow range of

thresholds appear to be quite difficult, further inspection of the data suggests that this is not

actually the case. Observe Table 5.3, and notice that the mean, median and mode of these

thresholds fall between 10 and 13, and begins to normalize after the percentage of Side-

Channel increases beyond 25%. Taking into consideration how HD operates, you cannot suggest

that an HD value is not a whole number; you must round up or down (i.e. you cannot have an

HD that is 11 ½ bits different from the expected CRC). By rounding these HD threshold means, a

consistent range of thresholds with an average mean of 11 – 12 appears, all calculated with a

substantially high typical F-Score hovering around 0.99.

By calculating the Standard Deviation of the thresholds for each of the varying amounts

of Side-Channel, it is possible to say with 95% and 99% confidence that the range of Optimal

Thresholds still falls between the 11 – 12 range (with rounding), as shown in Figures 5.3 and

5.4. In addition to this, as the percentage of Side-Channel communication increases past 19%,

the mean threshold remains relatively consistent, with a maximum variance of 0.6.

Moore | 63

 9% 12% 14% 19% 22% 25% 28% 30% 33% 35% 37% 40%

0% FER 1 1 1 1 1 1 1 1 1 1 1 1

Actual FER 9 7 9 8 6 8 7 7 7 6 6 5

5% FER 11 11 10 10 10 9 9 10 9 9 9 9

10% FER 11 11 11 10 10 10 10 10 9 10 10 10

15% FER 12 11 11 11 10 10 10 10 10 10 10 10

20% FER 11 12 12 11 11 11 11 11 10 10 10 10

25% FER 12 12 12 12 11 11 11 11 10 10 11 11

30% FER 13 11 11 11 11 11 11 11 10 11 11 11

35% FER 13 12 12 11 11 11 11 11 11 11 11 11

40% FER 13 12 13 12 12 11 11 11 11 11 11 11

45% FER 12 12 12 12 11 11 11 11 11 11 11 11

50% FER 13 13 13 12 12 12 12 11 11 11 11 11

55% FER 13 12 12 12 12 11 12 11 11 11 11 11

60% FER 13 12 13 12 12 12 11 11 11 11 11 11

65% FER 13 13 13 12 12 12 12 11 11 11 11 11

70% FER 13 13 13 12 12 12 12 12 12 11 11 11

75% FER 13 12 12 12 12 12 12 11 11 11 11 11

80% FER 13 13 13 12 12 12 12 12 12 11 12 12

85% FER 14 13 13 12 12 12 12 12 12 12 12 11

90% FER 13 13 13 12 12 12 12 12 12 12 12 12

95% FER 13 13 13 12 12 12 12 12 12 12 12 12

100% FER 13 13 13 12 12 12 12 12 12 12 12 11

 Mode 13 12 13 12 12 12 12 11 11 11 11 11

Mean 12.4 12.0 12.1 11.4 11.2 11.1 11.1 11.0 10.7 10.7 10.8 10.6

Median 13 12 12 12 12 11 11 11 11 11 11 11

Variance 1.26 1.85 1.29 1.06 1.96 1.23 1.59 1.25 1.61 1.73 1.79 2.15

SD 1.12 1.36 1.14 1.03 1.40 1.11 1.26 1.12 1.27 1.32 1.34 1.47

Kurtosis 3.26 8.65 1.44 5.44 9.42 2.20 4.77 7.50 2.33 7.63 7.80
11.3

6

Skewness -1.69 -2.55 -1.33 -2.23 -2.79 -1.53 -2.01 -2.28 -1.34 -2.36 -2.43 -3.05

95% C.I. 0.47 0.57 0.47 0.43 0.59 0.46 0.53 0.47 0.53 0.55 0.56 0.61

99% C.I. 0.62 0.75 0.62 0.56 0.77 0.61 0.69 0.61 0.70 0.72 0.73 0.80

Low. Limit
12.5

3
11.4

3
11.5

3
11.5

7
11.4

1
10.5

4
10.4

7
10.5

3
10.4

7
10.4

5
10.4

4
10.3

9

Up. Limit
12.9

0
12.5

2
12.5

7
11.8

6
11.7

8
11.6

1
11.6

2
11.4

2
11.2

5
11.2

2
11.3

2
11.2

3

Table 5.3 – Optimal HD Thresholds for all 264 unique experiment combinations.

Moore | 64

Figure 5.3 – Mean HD thresholds shown to fall within the suggested 11 – 12 range, with 95% confidence.

Figure 5.4 – Mean HD thresholds shown to fall within the suggested 11 – 12 range, with 99% confidence.

5

6

7

8

9

10

11

12

13

14

9 12 14 19 22 25 28 30 33 35 37 40

M
e

an
 T

h
re

sh
o

ld
 V

al
u

e

Percentage of SC Traffic (%)

Thresholds w/ 95% Confidence

Thresholds

5

6

7

8

9

10

11

12

13

14

9 12 14 19 22 25 28 30 33 35 37 40

M
e

an
 T

h
re

sh
o

ld
 V

al
u

e

Percentage of SC Traffic (%)

Thresholds w/ 99% Confidence

Thresholds

Moore | 65

5.3 – Using the Threshold to Find a Side-Channel

Now that F-Score has been used to determine a threshold value, the results of the experiments

must be tested against these thresholds. As was demonstrated in Section 5.1, the threshold

calculation with the highest F-Score value should represent the most accurate value that avoids

a large volume of False Positives and Negatives. By graphing the HD of each of the frames from

one of the individual scenarios, it is possible to visually demonstrate how well these thresholds

may actually perform when differentiating Side-Channel frames from normal traffic.

Figure 5.5 – A visual representation of the HD values for all frames in a scenario with 14% Side-Channel traffic & 25% Frame Error Rate.

As depicted in Figure 5.5 above, even with a higher volume of naturally corrupted

frames, there remains a distinct difference between the HD of purposely corrupted Side-

0

5

10

15

20

25

0 2000 4000 6000 8000

H
am

m
in

g
D

is
ta

n
ce

Frame #

OLSR HD Threshold @ 14% Side-Channel & 25% FER

Side-Channel

Best Threshold

Normal Traffic

Moore | 66

Channel frames and any naturally corrupted Normal Traffic. The question is, how accurate is

this trend across multiple scenarios? If you take the mean of the HD for Side-Channel and

Normal traffic from a population sample of all experiments featuring their actual FER

percentages (Table 5.4), a distinct difference in these values is evident between traffic types.

Using the suggested threshold range described above (11 – 12), one can see that this range fits

nearly centered between the two HD mean trend lines in Figure 5.6.

Moore | 67

9
%

 S
C

1

2
%

 S
C

1

4
%

 S
C

1

9
%

 S
C

2

2
%

 S
C

2

5
%

 S
C

2

8
%

 S
C

3

0
%

 S
C

3

3
%

 S
C

3

5
%

 S
C

3

7
%

 S
C

4

0
%

 S
C

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

N
o

rm

SC

M
e

an

8
.0

1

5
.7

8

.8

1
6

.2

7
.1

1

6
.2

8

.2

1
6

.0

7
.8

1

6
.0

7

.4

1
6

.1

7
.7

1

6
.0

8

.0

1
6

.0

8
.8

1

5
.9

8

.8

1
5

.9

6
.7

1

6
.1

8

.9

1
6

.0

M
e

d
ia

n

8
.5

1

6

1
0

1

6

7

1
6

8

1

6

7
.5

1

6

8

1
6

8

1

6

7
.5

1

6

8

1
6

9

1

6

6

1
6

9

1

6

M
o

d
e

9

1
5

1

0

1
6

9

1

6

1
0

1

7

6

1
6

8

1

6

7

1
5

7

1

5

7

1
7

8

1

6

6

1
7

1

2

1
6

V
ar

ia
n

ce

3
.8

2
7

.4
7

5
.6

9
7

.8
0

3
.9

2
6

.3
3

7
.6

9
7

.9
8

8
.9

7
7

.7
5

4
.5

5
8

.2
8

6
.4

2
7

.9
6

2
.0

0
8

.3
6

1
2

.4
4

8
.0

0
4

.4
4

7
.9

4
5

.4
7

8
.0

1
1

2
.2

9
8

.2
6

SD

0
.6

3
4

.4
5

0
.5

6
5

.4
9

0
.5

3
5

.6
1

0
.5

2
6

.4
4

0
.4

0
6

.8
0

0
.4

2
7

.1
5

0
.5

1
7

.3
1

0
.3

0
7

.4
7

0
.5

3
7

.6
4

0
.4

9
7

.7
5

0
.3

1
7

.9
7

0
.5

7
8

.0
0

K
u

rt
o

si
s

0
.1

8
-0

.6
2

-1
.1

6
0

.1
2

-1
.2

1
-0

.1
5

-0
.4

1
-0

.1
6

-1
.3

4
-0

.2
7

-1
.1

5
-0

.0
6

1
.4

8
-0

.1
1

1
.5

0
-0

.1
0

-0
.6

2
-0

.3
1

2
.5

5
-0

.2
9

-1
.2

9
-0

.1
3

0
.0

3
0

.1
1

Sk
e

w
n

e
ss

-0

.9
7

-0
.0

4
-0

.3
7

0
.0

7
-0

.1
8

-0
.0

3
0

.2
0

-0
.1

3
0

.1
7

0
.0

5
-0

.5
3

-0
.0

5
-1

.0
2

-0
.0

6
1

.4
1

0
.1

1
0

.0
2

0
.0

0
0

.3
7

-0
.0

8
0

.6
0

0
.0

2
-0

.6
1

-0
.0

2

C
.I

. (
9

5
%

)
0

.3
6

0
.6

6
0

.3
6

0
.6

2
0

.2
8

0
.5

8
0

.3
4

0
.5

8
0

.3
2

0
.5

5
0

.2
9

0
.5

4
0

.3
0

0
.5

2
0

.2
9

0
.5

0
0

.3
4

0
.4

9
0

.3
2

0
.4

7
0

.2
5

0
.4

7
0

.3
4

0
.4

5

C
.I

. (
9

9
%

)
0

.4
7

0
.8

7
0

.4
8

0
.8

1
0

.3
6

0
.7

6
0

.4
5

0
.7

6
0

.4
2

0
.7

3
0

.3
8

0
.7

0
0

.4
0

0
.6

8
0

.3
9

0
.6

6
0

.4
5

0
.6

4
0

.4
2

0
.6

2
0

.3
3

0
.6

1
0

.4
4

0
.5

9

9
5

%
 L

.L
.

8
.1

4
1

5
.3

4
9

.6
4

1
5

.3
8

6
.7

2
1

5
.4

2
7

.6
6

1
5

.4
2

7
.1

8
1

5
.4

5
7

.7
1

1
5

.4
6

7
.7

0
1

5
.4

8
7

.2
1

1
5

.5
0

7
.6

6
1

5
.5

1
8

.6
8

1
5

.5
3

5
.7

5
1

5
.5

3
8

.6
6

1
5

.5
5

9
9

%
 L

.L
.

8
.0

3
1

5
.1

3
9

.5
2

1
5

.1
9

6
.6

4
1

5
.2

4
7

.5
5

1
5

.2
4

7
.0

8
1

5
.2

7
7

.6
2

1
5

.3
0

7
.6

0
1

5
.3

2
7

.1
1

1
5

.3
4

7
.5

5
1

5
.3

6
8

.5
8

1
5

.3
8

5
.6

7
1

5
.3

9
8

.5
6

1
5

.4
1

9
5

%
 U

.L
.

8
.8

6
1

6
.6

6
1

0
.3

6
1

6
.6

2
7

.2
8

1
6

.5
8

8
.3

4
1

6
.5

8
7

.8
2

1
6

.5
5

8
.2

9
1

6
.5

4
8

.3
0

1
6

.5
2

7
.7

9
1

6
.5

0
8

.3
4

1
6

.4
9

9
.3

2
1

6
.4

7
6

.2
5

1
6

.4
7

9
.3

4
1

6
.4

5

9
9

%
 U

.L
.

8
.9

7
1

6
.8

7
1

0
.4

8
1

6
.8

1
7

.3
6

1
6

.7
6

8
.4

5
1

6
.7

6
7

.9
2

1
6

.7
3

8
.3

8
1

6
.7

0
8

.4
0

1
6

.6
8

7
.8

9
1

6
.6

6
8

.4
5

1
6

.6
4

9
.4

2
1

6
.6

2
6

.3
3

1
6

.6
1

9
.4

4
1

6
.5

9

Ta
b

le
 5

.4
 –

 P
o

p
u

la
ti

o
n

 m
e

an
s

o
f

ea
ch

 o
f

th
e

 s
ce

n
ar

io
s

at
 t

h
e

ir
 “

ac
tu

al
”

FE
R

 v
al

u
e

, w
it

h
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n
, V

ar
ia

n
ce

, K
u

rt
o

si
s,

 S
ke

w
n

e
ss

, 9
5

/9
8

%
 C

o
n

fi
d

e
n

ce
 In

te
rv

al
s,

 a
n

d
 U

p
p

e
r

&
 L

o
w

e
r

Li
m

it
s.

Moore | 68

By calculating the confidence level results at 95% and 99% confidence for each of the

Normal and Side-Channel HDs, it can be stated that each of the HD means of Normal frames fall

within the range of 8.0 +/-0.32 with 95% confidence, and 8.0 +/-0.42 with 99% confidence.

Additionally, the population mean for Side-Channel frames falls within the range of 16.0 +/-0.54

with a confidence level of 95%, and 16.0 +/- 0.70 with a confidence level of 99%. These results

suggest that the appropriate threshold should exist somewhere between the calculated

population means of the two values. To better interpret these results, please refer to Figures

5.6 & 5.7, which showcase the calculated HD population means at 95% and 99% confidence,

respectively.

Figure 5.6 – The HD population means for Normal and Side-Channel traffic at 95% confidence.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

9 12 14 19 22 25 28 30 33 35 37 40

H
am

m
in

g
D

is
ta

n
ce

 P
o

p
u

la
ti

o
n

 M
e

an

Percentage of SC (%)

Normal v. SC Population Means (95% Confidence)

Normal

SC

Moore | 69

Figure 5.7 – The HD population means for Normal and Side-Channel traffic at 99% confidence.

Looking back at the proposed threshold range for the sum of the experiments (Figures

5.3 & 5.4), it was stated with 95% and 99% confidence that the threshold would exist within a

range of 11 – 12. This is well within the isolation of the population means shown above for all of

the tested percentages of Side-Channel traffic.

In his work, Chea [3] suggested that a threshold would exist in the range of 15 – 16, but

the results shown above advocate that the threshold should in fact exist within the realm of 11

– 12. This difference in threshold is expected; as shown in Table 5.3, variation in Side-Channel

frames will effectively skew the position of the mean Optimal Threshold based on the

percentage of Side-Channel, until a plateau is reached at 19% Side-Channel traffic. In the results

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

9 12 14 19 22 25 28 30 33 35 37 40

H
am

m
in

g
D

is
ta

n
ce

 P
o

p
u

la
ti

o
n

 M
e

an

Percentage of SC (%)

Normal v. SC Population Means (99% Confidence)

Normal

SC

Moore | 70

presented by Chea [3], the total percentage of Side-Channel traffic was roughly 1% for his

experiments. This implies that the threshold directly correlates to the ratio of Side-Channel

traffic for a given period, and provides further proof that a Windowing technique could allow

for more precise threshold detection in real-time. With F-Score shown to be capable in its

ability to define a threshold based on HD, it is important to ensure the validity of the HD metric

itself. Section 5.4 & 5.5 respectively explore the use of the Receiver Operating Characteristic

curve and the Support Vector Machine learning algorithm to determine if the HD metric is

useful for classification, or if the F-Score calculation presents a biased level of effectiveness.

5.4 – ROC Curves

The Receiver Operating Characteristic (ROC) curve is a plot of the True Positive Rate (TPR)

against the False Positive Rate (FPR) (1 – Specificity) for all possible thresholds of a diagnostic

experiment. The technique provides information on how effective a given feature is for a

particular set of data. The calculation for the TPR is the same as Sensitivity (also referred to as

“Recall”), which has been shown in Section 3.1 as part of the F-Score calculation and assesses

how positive a given threshold is for the technique. The TPR and FPR calculations rely on the

count of True/False Positives and True/False Negatives for a given threshold tested against a

dataset. The general purposes of an ROC curve are to provide the following [59]:

1. Demonstrate a tradeoff between Sensitivity and Specificity, where increasing one

decreases the other

Moore | 71

2. The closer that the area under the ROC curve is to 1, the better the classifier is at

detection

3. The closer the curve droops to the central 45-degree diagonal of the graph (less area

under the curve), the less accurate the threshold can be considered

 Assessing a threshold technique using an ROC curve is relatively simple: the more a

curve represents a 90-degree angle, the more optimal the test is for that particular dataset

[59] [60]. A prediction method with the best possible outcome would yield a point at the

upper leftmost corner of the ROC space, which represents 100% Sensitivity (no False

Negatives) and 100% Specificity (no False Positives). If an arbitrary guess at classification is

taken, then the ROC curve should appear as a point along a 45-degree diagonal line, also

referred to as the “Line of No Discrimination.” Figure 5.8 illustrates this concept, where

Point A represents a perfect classification, Point B represents a moderate classification,

Point C represents a poor classification. Point D may also represent an exceptional

classification, as a curve along this point would describe the presence of Normal traffic. In

the case of F-Score thresholds, an ideal threshold should have a high TPR, whilst

maintaining a low FPR. Not all data is equal, so a technique may be more or less effective

for a particular dataset. Performing an analysis using ROC curves will demonstrate how

effective the calculated HD thresholds are for a given Side-Channel experiment.

Moore | 72

Figure 5.8 – Determining the effectiveness of a point in the ROC space [61].

 Figure 5.9 presents the ROC curves calculated for the HD thresholds on a variety of

scenarios. These scenarios range from 9% to 25% Side-Channel, and from 0.8% (Actual FER)

to 95% FER. This wide range of scenarios was arbitrarily chosen to demonstrate how

effectively the HD metric can be used across a large variation in scenarios. As mentioned

above, the closer the area under the curve approaches 1, the more effective the test is

against a particular dataset. Figure 5.9 demonstrates just how effective thresholds based on

HD are against the Side-Channel problem.

Moore | 73

Figure 5.9 – The ROC curve demonstrating the effectiveness of the F-Score thresholds, with a magnified view of the upper left corner.

 As shown above, this technique suggests that the F-Score approach to defining

thresholds is very effective when tested against the HD metric. It should be noted that the

ROC curve is strongly influenced by False Negatives, and as such the scenarios with lower

FER (less naturally corrupted Normal frames) depict a much higher area under the curve.

There are some similarities between the ROC & F-Score approaches in that they both rely

on the use of Sensitivity & Specificity; while these techniques are assessed very differently,

it is important to disprove any bias that may be caused by similar variables. In order to do

so, Section 5.5 explores the use of the SVM machine learning algorithm as an alternative

means of utilizing the HD metric for detection of Side-Channel.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Se
n

si
ti

vi
ty

 (
TP

R
)

1 - Specificity (FPR)

ROC Curves for the F-Score Threshold Technique

Weak Threshold
Technique
35% SC @ 95% FER

33% SC @85% FER

30% SC @75% FER

28% SC @ 65% FER

25% SC @ 55% FER

22% SC @ 45% FER

19% SC @ 35% FER

14% SC @ 25% FER

12% SC @ 15% FER

9% SC @ 0.8% FERMagnified ROC Curve

Moore | 74

5.5 – Support Vector Machines

For the purposes of this thesis, SVM classification was performed using a tool known as

SVMlight [62]. SVMlight is an implementation of the Support Vector Machine algorithm

programmed in C. Created by Thorsten Joachims of Cornell University in 2008, this software

was based on Vapnuk’s Support Vector Machine to solve the problem of pattern recognition,

regression, and learning a ranking function. The tool itself requires compilation from the source

code, and consists of two compiled modules: “svm_learn” for learning from a training set, and

“svm_classify.” Svm_classify uses a model generated from the svm_learn module in order to

classify a test dataset. These modules are used through the Terminal window (Linux/OSX) or

the Command Prompt (Windows). Figure 5.8 shows a typical training/classification performed

using the data from one of the scenarios.

Moore | 75

Figure 5.10 – Performing SVM learning and Classification in the SVMlight tool.

The svm_learn module takes in a space delimited input file containing training

examples. The format of each of the lines in the training example should look similar to:

<target> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info>

Where <target> is a value of +1 for a positive example, -1 for a negative example, or 0

where the target will be treated as a negative example through transduction by default. A data

entry can also have multiple features; for example, if characterizing a person, features could

refer to traits such as: eye colour, hair colour, etc. For the purposes of this work, each data

point (frame) has only one feature, since the only data that must be tested is the HD. Finally,

Moore | 76

the value parameter is the actual digit to be checked against the SVM defined threshold, and in

this example the HD was used as the value. It is also possible to force the tool to ignore a line,

or provide additional information by commenting it out through the use of the # symbol. In

order to correctly utilize SVMlight, the arrangement of the captured HD data had to be placed

into the correct format (commonly known as “scaling”). An example of the formatting can be

seen below:

-1 1:0 #Normal

+1 1:17 #Side-Channel

The above example shows two lines taken directly from the training file used for

analysis. Selecting feature numbers is a fairly straightforward process, where each item (in this

case, a frame) is granted a feature based on some criteria such as weighted importance. Given

that the Hamming Distance value is the only metric being used for classification in this analysis,

each of the frames had a single feature, which was given a value of 1.

For the SVM classification process a scenario with a moderate amount of Side-Channel

was chosen, which for consistency, was the same experiment explored in Section 5.3. This

experiment features 14% of the traffic as Side-Channel. In order to achieve the most optimal

classification threshold, it is important to begin with a training set that demonstrates the

cleanest separation between classes. As such, the training set was formed using a scenario with

14% Side-Channel, but this time a version with an FER of just 0.83% was used. Selecting a

Moore | 77

scenario with such a low FER percentage ensures a significantly lower count of naturally

corrupted frames, and offers clear separation between the HDs of the Side-Channel and Normal

traffic. Training was accomplished using a feature set containing all 2680 frames from the

scenario. Upon completion of the training process using the training data created based on the

HD values for this experiment, SVMlight generated a model file for classification that contained a

threshold value. For this particular experiment, SVMlight defined the threshold as 11.4559, which

further supports the proposed threshold range of 11 – 12.

With training complete, classification using this model was performed on the 14%SC @

25%FER scenario. The additional FER means more naturally corrupted frames appear, and a

larger volume of Normal frames with high HD values offers a greater chance of

misclassification. As shown in Figure 5.5, there are a large number of corrupted Normal frames

with HDs in the 5 – 12 range.

SVM classifies items as positive or negative based on their value in relation to the

defined threshold. Items that are classified as positive are assigned an SVM rank above zero,

while negative items are assigned a value below zero. Figure 5.11 illustrates the predictions

assigned by SVM for each of the frames, where the Y-axis represents the SVM prediction and

the X-axis represents the Frame Number. Frames above 0 on the Y-axis have been classified as

Side-Channel, while frames below 0 are classified as Normal traffic. For reference, the data

points have been colour-coded based on their actual type. Frames with an SVM ranking above 0

that were accurately classified as Side-Channel frames have been categorized as “True

Moore | 78

Positive,” while Normal frames have been assigned a category of True Negative/False Positive

depending on their SVM ranking. As the SVM rank increases or decreases, so does the

likelihood that the value belongs to a certain class. For example, it is 100% likely that a frame

with a ranking of -11 is a Normal frame, while a frame with a rank of +31 is most definitely a

Side-Channel frame.

 Figure 5.11 – SVM Classification of Side-Channel based on HDs of a scenario with 14% SC at 25% FER.

 In Figure 5.12, the SVM classification has been graphed relative to the Hamming

Distance of each frame. The calculated SVM threshold of 11 has also been included for

reference. While SVM does incorrectly classify 57 data points as Side-Channel, it still manages

to correctly classify 2623 of the total possible 2680 frames. The threshold shown through this

SVM training (11.4559) is also conducive to the range of thresholds (11 – 12) defined using F-

Score in Section 5.2. This signifies that SVM could potentially provide a system in which a

suitable threshold for Side-Channel detection could be identified in a real-time approach.

-15

-10

-5

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

SV
M

 R
an

k

Frame Number

SVM Classification of Hamming Distances for 14%SC @ 25% FER

False Positives

True Positive

True Negative

Moore | 79

Figure 5.12 – SVM Classification in relation to HD.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500

H
am

m
in

g
D

is
ta

n
ce

Frame Number

SVM Classification of Hamming Distances for 14%SC @ 25%FER

False Positive HD

False Negative HD

True Positive HD

True Negative HD

Linear (SVM
Threshold)

Moore | 80

Chapter 6 – Conclusion

6.1 – Summary

This thesis has presented the concept of Side-Channel communication through the modification

of the CRC polynomials in a MANET environment, and attempted to provide the reader with a

thorough understanding of its functionality and the issues involved in detection. In addition to

this, several works related to this seemingly obscure problem have been explored, and their

contributions and limitations have been assessed. Elements from these works were drawn from

or considered when attempting to develop experiment scenarios that could accurately

represent a real-world environment. The concepts of Cyclic Redundancy Checks and the HD

metric were presented, along with the role that they play when trying to recognize the

presence of Side-Channel.

 The goal of this thesis was to take a military oriented MANETs environment that had

fallen victim to Side-Channel communication and not only attempt to detect it, but also provide

a range of threshold values that could work across a variety of situations. Information on

Platooning was considered and 12 experiment scenarios came to life through the use of an

8-man platoon of nodes operating over the OLSR routing protocol in a MANET. Communication

took place through the use of the Nping software, where Side-Channel traffic was directed

through a different port than normal traffic. An agent node running a USB AirPCap packet

capture card, in conjunction with Wireshark, was able to intercept messages on the network for

Moore | 81

analysis. Through artificially introducing varying levels of FER into the captured data with the

help of MATLAB, 264 unique experiment combinations were built and ready for analysis. With

no simulators capable of offering the ability to output frame contents, including header

information, all of the experiments had to be completed in a hardware environment with an

emulated Side-Channel.

 The F-Score mechanic was used to calculate a threshold based on HD for each of these

scenarios, and it was identified that a mean threshold range of 11 – 12 provided accurate

detection capabilities consistently across each of the experiments. Calculating the Standard

Deviation and Confidence Interval of the thresholds for each of the varying amounts of

Side-Channel made it clear that with 95% and 99% confidence, the range of Optimal HD

Thresholds fell well within the defined range. In an attempt to illustrate the difference between

Side-Channel and Normal traffic, a population sample was taken from the experiments and it

was shown once again with Standard Deviation that Normal traffic typically had with 95%

confidence a mean HD of 8.0 +/-0.32, and with 99% confidence a mean of 8.0+/-0.42.

Comparatively, the HD of Side-Channel traffic was shown to hover in the area of 16.0 +/-0.54

(95%) & 16.0 +/- 0.70 (99%). Further validation of the F-Score thresholds was performed using

ROC curves, which showed that the HD-based F-Score thresholds were incredibly accurate in

this purpose.

 To verify whether or not HD was a valid metric, and to ensure that F-Score was not

biased, the Support Vector Machine algorithm was also considered, and was trained to

Moore | 82

successfully classify Side-Channel based on HD as a feature. This evaluation was performed by

taking an optimal dataset with little to no noise that featured 14% Side-Channel and training

the SVM classifier. Once a model had been established, another scenario with 14% Side-

Channel was selected for classification, with the key difference being the 25% FER present in

the scenario. Not only did the results show that the HD metric could be used for classification

using alternative approaches, it also presented a threshold that fits perfectly into the range

proposed using F-Score.

While gathering the appropriate training information on a given network will help to

accurately determine a threshold, the proposed range of 11 – 12 should provide an excellent

starting point towards solving the issue of Side-Channel communication. Many of the

techniques explored within this work have resulted in thresholds of similar values belonging to

this range.

6.2 – Future Work

There are several areas that have been identified within this paper which could certainly

benefit from additional research. Firstly, the experiments presented all share one similar

characteristic in that the same CRC polynomials were used for Normal and Side-Channel

frames. This makes the assumption that the Koopman 32-bit CRC would be chosen as the CRC

polynomial for Side-Channel; however, there is no guarantee that the malicious party may

utilize one of the standard CRC polynomials. Future work should be conducted through

thorough experimentation on different standard and non-standard CRC polynomials. An

Moore | 83

example of this would be to use a CRC with merely a single bit difference from the CRC used for

Normal traffic and determine if our estimated threshold range would remain effective. In the

work of Chea [3], it is suggested that there are a total of 22342 CRC combinations, and an

exhaustive comparison of the HD metric against even a small subset of these could prove

beneficial.

 Another key area that was not explored in this thesis, but would be an excellent topic to

expand upon, would be the identification of a windowing approach for real-time detection. For

the most part, the analysis within this thesis as well as in the previous works of Chea [3] or

Madtha et al. [2] have been performed on a dataset of all frames captured during the entirety

of an experiment’s duration. When attempting to detect anomalies in real-time on an active

network, this is of course not possible since as long as the network is up, there will never be a

natural point where frame generation halts. As such, many detection methods employ the use

of a mechanism known as Windowing. Windowing is a form of processing commonly used

when analyzing digital signals, where a small subset is taken out of a larger dataset for

processing and analysis. The challenge is, of course, knowing how large of a window size to

take. A windowing approach with a scenario broken into five 60-second windows was

conducted, but not expanded upon in-depth. The results of the F-Score calculations for this

rudimentary windowing approach have been included in Appendix B.

 Finally, further work into the validation of the F-Score mechanic could be performed by

comparing the calculated threshold range against those calculated through the use of several

Moore | 84

machine learning algorithms. Other possible solutions which were considered and could be

explored include: Markov Chains, Bayesian modelling, and K-means. Given that there is only

one feature (Hamming Distance) used for the detection method described in this work,

approaching other Machine Learning methods would be superfluous. This means that

additional features may be explored to further strengthen threshold predictions.

Moore | 85

 References

[1] "IEEE SA - 802.3-2012 - IEEE Standard for Ethernet," IEEE, 2015. [Online]. Available:

http://standards.ieee.org/findstds/standard/802.3-2012.html. [Accessed 10 May 2015].

[2] N. Madtha, M. Vargas Martin, R. Liscano, B. Moore, M. Salmanian, M. Li and P. Mason,

Detection of side-channel communication in ad hoc networks using request to send (RTS)

messages, Toronto: IEEE 27th Canadian Conference on, 2014, pp. 1,6,4-7.

[3] V. Chea, "Hamming Distance as a Metric for the Detection of Side Channel in 802.11

Wireless Communications," Oshawa, 2015.

[4] G. C. Kessler, "An Overview of Steganography for," Gary Kessler Associates, June 2014.

[Online]. Available: http://www.garykessler.net/library/fsc_stego.html. [Accessed 6 June

2015].

[5] M. Arnold, M. Schmucker and S. Wolthusen, Techniques and Applications of Digital

Watermarking and Content Protection, Norwood, Massachusetts: Artech House, 2003.

[6] K. Szczypiorski, "HICCUPS: Hidden communication system for corrupted networks," The

Tenth International Multi-Conference on Advanced Computer Systems ACS'2003, pp. 31-

40, 2003.

[7] M. Fisk, C. Papadopoulos, J. Neil and G. Fisk, "Eliminating Steganography in Internet

Traffic with Active Wardens," in Lecture Notes in Computer Science: 2578, 2002.

[8] B. Xu, J. Wang and D. Peng, "Practical Protocol Steganography: Hiding Data in IP Header,"

Moore | 86

in AMS '07. First Asia International Conference on Modelling & Simulation, 2007.

[9] B. Jankowski, W. Mazurczyk and K. Szczypiorski, "Information Hiding Using Improper

frame padding," Telecommunications Network Strategy and Planning Symposium

(NETWORKS),, pp. 1,6,27-30, 2010.

[10] M. Odor, B. Nasri, M. Salmanian, P. Mason, M. Martin and R. Liscano, "A frame handler

module for a side-channel in mobile ad hoc networks," IEEE 34th Conference on Local

Computer Networks (LCN), pp. 20-23,930,936, October 2009.

[11] A. Najafizadeh, "Detection of Covert Communications based on Intentionally," University

of Ontario Institute of Technology, Oshawa, 2011.

[12] J. Bacaj and L. Reznik, "POSTER: Signal anomaly based attack detection in wireless sensor

networks," in ACM SIGSAC Conference on Computer & Communications Security, Berlin,

2013.

[13] R. Sommer and V. Paxson, "Outside the Closed World: On Using Machine Learning for

Network Intrusion Detection," 2010 IEEE Symposium on Security and Privacy (SP), pp.

305,316,16-19, May 2010.

[14] Y. Song, A. Keromytis and S. Stolfo, "Spectrogram: A Mixture-of-Markov-Chains Model for

Anomaly Detection in Web Traffic," 16th Annual Network & Distributed System Security

Symposium, February 2009.

[15] W. Li, M. Duan and Y. Chen, "Network anomaly detection based on MRMHC-SVM

algorithm," Multitopic Conference, 2008. INMIC 2008. IEEE International,, pp. 307,312,23-

24, December 2008.

Moore | 87

[16] X. Yong and Z. Yilai, "An inteligent anomaly analysis for intrusion detection based on

SVM," Computer Science and Information Processing (CSIP), 2012 International

Conference on, pp. 739,742,24-26, August 2012.

[17] D. Bolzoni, S. Etalle and P. Hartel, "Panacea: Automating attack classification for anomaly-

based network intrusion detection systems," Twelfth International Symposium on Recent

Advances in Intrusion Detection, RAID 2009, 2009.

[18] T. A. S. Foundation, "The GTUBE," 2015. [Online]. Available:

http://spamassassin.apache.org/gtube/. [Accessed 18 June 2015].

[19] K. Dyer, S. Coull, T. Ristenpart and T. Shrimpton, "Protocol misidentification made easy

with format-transforming encryption," In Proceedings of the 2013 ACM SIGSAC

conference on Computer & Communications Security (CCS '13), pp. 61-72, 2013.

[20] SolarWinds, "Deep Packet Inspection & Analysis - Is It The Application Or The Network?,"

2014. [Online]. Available: http://go.solarwinds.com/en/npm/deep-packet-inspection.

[Accessed 18 June 2015].

[21] P. Engla and W. Lee, "Evading Network Anomaly Detection Systems: Formal Reasoning

and Practical Techniques," Proceedings of the 13th ACM Conference on Computer and

Communications Security, ACM 2006, 2006.

[22] Y. Muslukhov and H. B. K. Boshmaf, "An Approach to Address Physical Threats to

Smartphones," Symposium on Usable Privacy and Security (SOUPS), 2012.

[23] M. Salem and S. Stolfo, "Modelling User Search Behavior for Masquerade Detection,"

Proceedings of the Fourteenth Symposium on Recent Advances in Intrusion Detection

(RAID), 21 September 2011.

Moore | 88

[24] Y. Aby-Mostafa, "Lecture 14 - Support Vector Machines," Caltech, 18 May 2012. [Online].

Available: https://www.youtube.com/watch?v=eHsErlPJWUU. [Accessed 10 December

2014].

[25] A. Lesk, "Introduction to Bioinformatics," [Online]. Available:

https://books.google.ca/books?id=xYmcAQAAQBAJ&printsec=frontcover#v=onepage&q&

f=false . [Accessed 13 December 2014].

[26] D. Meyer, "Support Vector Machines," [Online]. Available: http://cran.r-

project.org/web/packages/e1071/vignettes/svmdoc.pdf. [Accessed 13 December 2014].

[27] A. Ben-Hur and J. Weston, "A user's guide to support vector machines," [Online].

Available: http://pyml.sourceforge.net/doc/howto.pdf. [Accessed 10 December 2014].

[28] C. U. Press, "Support Vector Machines: The Linearly Seperable Case," April 2009. [Online].

Available: http://nlp.stanford.edu/IR-book/html/htmledition/support-vector-machines-

the-linearly-separable-case-1.html. [Accessed 9 December 2014].

[29] D. C. Group, "Sinalgo," [Online]. Available: http://disco.ethz.ch/projects/sinalgo/.

[Accessed 18 June 2015].

[30] "QualNet," SCALABLE Network Technologies, Inc., [Online]. Available:

http://web.scalable-networks.com/content/qualnet. [Accessed 7 June 2015].

[31] "The Internet Engineering Task Force," The Internet Engineering Task Force (IETF),

[Online]. Available: https://www.ietf.org/. [Accessed 21 June 2015].

Moore | 89

[32] ITU, "ITU: Committed to connecting the world," [Online]. Available:

http://www.itu.int/en/Pages/default.aspx. [Accessed 21 June 2015].

[33] G. Cook, "Catalogue of parametrised CRC algorithms," 27 March 2015. [Online]. Available:

http://reveng.sourceforge.net/crc-catalogue/all.htm. [Accessed 7 June 2015].

[34] P. Koopman, "32-bit cyclic redundancy codes for Internet applications," International

Conference on Dependable Systems and Networks, pp. 459-468, 2002.

[35] P. Koopman and T. Chakravarty, "Cyclic redundancy checks via table look-up,"

Communications of the ACM, vol. 8, no. 31, pp. 1008-1013, 1988.

[36] R. Hamming, "Error detecting and error correcting codes," Bell System Technical Journal,

vol. 29, pp. 147-160, 1950.

[37] K. Rosen, "Coding Theory," in Applications of Discrete Mathematics, New York, McGraw-

Hill Higher Education, 2007, pp. 73-95.

[38] I. The MathWorks, "MATLAB," The MathWorks, Inc., 1994-2015. [Online]. Available:

http://www.mathworks.com/products/matlab/. [Accessed 21 June 2015].

[39] M. Zanjireh, A. Shahrabi and H. Larijani, "ANCH: A New Clustering Algorithm for Wireless

Sensor Networks," Advanced Information Networking and Applications Workshops

(WAINA), 2013 27th International Conference on, pp. 450,455, 25-28, March 2013.

[40] S. Rehman, M. Khan, T. Zia and L. Zheng, "Vehicular Ad-Hoc Networks (VANETs) - An

Overview and Challenges," Wireless Networking and Communications, pp. 29-38, 2013.

Moore | 90

[41] T. M. Corporation, "SmartPhone Ad-hoc Networking (SPAN)," [Online]. Available:

http://www.mitre.org/research/technology-transfer/open-source-software/smartphone-

ad-hoc-networking-span. [Accessed 18 June 2015].

[42] R. Sivakami and G. Nawaz, "Secured communication for MANETS in military," Computer,

Communication and Electrical Technology (ICCCET), pp. 146,151,18-19, 18-19 March 2011.

[43] "OLSR.org Wiki," 2015. [Online]. Available:

http://www.olsr.org/mediawiki/index.php/Main_Page. [Accessed 29 April 2015].

[44] N. W. Group, "RFC 3626 - Optimized Link State Routing Protocol (OLSR)," Project

Hipercom, INRIA, 2003.

[45] S. Beitzel, On Understanding and Classifying Web Queries, 2006.

[46] A. Sangwan and J. Hansen, "Keyword recognition with phone confusion networks and

phonological features based keyword threshold detection," Signals, Systems and

Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference

on, pp. 711-715, 7-10 November 2010.

[47] P. Tao, Y. Huang, C. Wei, L. Ge and L. Xu, "A Method Based on Weighted F-Score and SVM

for Feature Selection," Control and Decision Conference (CCDC), 2013 25th Chinese, pp.

4287-4290, 25-27 May 2013.

[48] C. VanRijsbergen, Information Retrieval, Butterworth, 1979.

[49] J. Xie, C. Wang, S. Jiang and Y. Zhang, "Feature selection method combing improved F-

Moore | 91

score and support vector machine," Journal of Computer Applications, vol. 30, no. 4, 2010.

[50] "Harmonic Mean -- from Wolfram MathWorld," Wolfram Alpha, 2015. [Online]. Available:

http://mathworld.wolfram.com/HarmonicMean.html. [Accessed 05 06 2015].

[51] " Cadet Portal AROTC at Michigan Tech," Michigan Tech, 2015. [Online]. Available:

http://www.mtu.edu/arotc/cadet-portal/. [Accessed 24 February 2015].

[52] H. D. O. T. A. Army, "FM 7-8 Infantry Rifle and Platoon Squad Field Manual," Washington

DC, 1992.

[53] "The Network Simulator - ns-2," [Online]. Available:

http://nsnam.isi.edu/nsnam/index.php/User_Information. [Accessed 21 June 2015].

[54] A. Communications, "AR5002 Series Spec Sheet," [Online]. Available:

http://mgvs.org/public/midge/datasheet/AR5002+spec+sheet.pdf. [Accessed 15 May

2015].

[55] "Wireshark," Wireshark Foundation, 2015. [Online]. Available:

https://www.wireshark.org/. [Accessed 7 June 2015].

[56] C. Ltd., "Ubuntu 14.04.2 LTS (Trusty Tahr)," 2015. [Online]. Available:

http://releases.ubuntu.com/14.04/. [Accessed 15 May 2015].

[57] G. Lyon, "Nmap.org," 2015. [Online]. Available: http://nmap.org/nping/. [Accessed 1 May

2015].

Moore | 92

[58] R. Technology, "Riverbed AirPCap Adapter for Microsoft Windows," Riverbed Technology,

2015. [Online]. Available: http://www.riverbed.com/products/performance-

management-control/network-performance-management/wireless-packet-capture.html.

[Accessed 22 June 2015].

[59] "Plotting and Intrepretating an ROC Curve," University of Nebraska Medical Centre,

[Online]. Available: http://gim.unmc.edu/dxtests/roc2.htm. [Accessed 23 June 2015].

[60] S. o. Surgery, "Medical Statistics VIII - Receiver operating characteristic (ROC) curves," 12

February 2015. [Online]. Available: https://www.youtube.com/watch?v=caqlX4cs4yQ.

[Accessed 23 June 2015].

[61] Indon, "Wikimedia," 2007. [Online]. Available:

https://commons.wikimedia.org/wiki/File:ROC_space.png. [Accessed 24 June 2015].

[62] T. Joachims, "SVM Light - Support Vector Machine," Cornell University, 14 August 2008.

[Online]. Available: http://svmlight.joachims.org. [Accessed 6 June 2015].

[63] Z. Hong, Y. Shi and N. Ansari, "Hiding Data in Multimedia Streaming over Networks,"

Communication Networks and Services Research Conference (CNSR), Eighth Annual, pp.

50-55, May 2010.

[64] R. Cideciyan, "Frame Error Rate," IBM, 24-26 September 2012. [Online]. Available:

http://www.ieee802.org/3/bj/public/sep12/cideciyan_3bj_01a_0912.pdf. [Accessed 11

June 2015].

Moore | 93

Table of Appendices

Appendix A - Chea’s [3] MATLAB Script for Post-Processing & HD Calculation 94

Appendix B - F-Score Calculations for Window Scenario 1-5 ... 101

Appendix C - SVM Model Output File ... 106

Moore | 94

Appendix A

Chea’s [3] MATLAB Script for Post-Processing & HD Calculation

t=fix(clock);
year=num2str(t(1));
month=num2str(t(2));
day=num2str(t(3));
hour=num2str(t(4));
min=num2str(t(5));
sec=num2str(t(6));

execTime=strcat(year,month,day,hour,min,sec);
scenarioName='AdHoc5N16kB50MB';

subScenarioName=scenarioName(6:15);
subScenarioName2=scenarioName(1:7);

strH1='Frame#';
strH2='CRCPoly:0x04C11DB7(Default)';
strH3='CRCPoly:Recieved(FCS)';
%strH4='CRCPoly:0x04C11DB7(In_Error)';
%strH5='CRCPoly:0x741B8CD7(On_SC)';
strH6='Calculated_HD';
strH7='Protocol';
strH8='isGood';
crc32V1=[1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1];
crc32V2=[1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1];
crc32V3=[1];

%crcCalV1=comm.CRCGenerator(crc32V1,'InitialConditions',[1 1 1 1 1 1 1 1 1 1

1

1],'ReflectInputBytes',true,'ReflectChecksums',true,'FinalXOR',[1 1 1 1 1 1 1

1 1]);
%crcCalV2=comm.CRCGenerator(crc32V2,'InitialConditions',[1 1 1 1 1 1 1 1 1 1

1

1],'ReflectInputBytes',true,'ReflectChecksums',true,'FinalXOR',[1 1 1 1 1 1 1

1 1]);
crcCalV1=comm.CRCGenerator(crc32V1);
crcCalV2=comm.CRCGenerator(crc32V2);
deModulation=comm.CRCGenerator(crc32V3);

%run through the fGood file to get the frame error
fFER=fopen('isFCSGood.dat','r');
fCount=1;
isGood = fgetl(fFER);

Moore | 95

tally=0;
while ischar(isGood)
 if(isGood=='0')
 tally = tally + 1;
 end

 isGood = fgetl(fFER);
 fCount=fCount+1;

end
fclose(fFER);

actualCorr= (tally/fCount)*100
%FE
percentageCorr=[0 actualCorr 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

85 90 95 100];

strFNames = strcat('HDresult_',scenarioName,'_wiAWGN','_',execTime);
strFMName=strcat('Metrics_',scenarioName,'_wiAWGN','_',execTime);
strFMAName=strcat('Stats_',scenarioName,'_wiAWGN','_',execTime);
strFSName=strcat('Summary_',scenarioName,'_wiAWGN','_',execTime);
strFNSample=strcat('TestTrainSample_',subScenarioName2); %stores frames as

frame# HD class(0-nonSC, 1-SC-ftp) starting at first ftp transmissoin

strFSNameOut=strcat(strFSName,'.txt');
strFNSampleOut=strcat(strFNSample,'.txt');
fSOut = fopen(strFSNameOut,'wt');
%fprintf(fSOut,' 0.5MB 2.5MB 5.0MB \n');
%fprintf(fSOut,'FER% OptimalThreshold OptimalThreshold OptimalThreshold\n');
fprintf(fSOut,'%10s\n',subScenarioName);

for corrVal = 1:22
 ferNum = num2str(percentageCorr(corrVal));
 strFNameOut = strcat(strFNames,'_FE',ferNum,'.txt');
 strFMNameOut=strcat(strFMName,'_FE',ferNum,'.txt');
 strFMANameOut=strcat(strFMAName,'_FE',ferNum,'.txt');

 falsePos = [0 0];
 trueNeg = [0 0];
 falseNeg = [0 0];
 truePos = [0 0];
 strFName=('adHocMatlabInput.dat');
 fInput = fopen(strFName,'r');
 fGood = fopen('isFCSGood.dat','r');
 fProto = fopen('protoFile.dat','r');
 fSINR = fopen('SINRFile.dat','r');
 fOut = fopen(strFNameOut,'wt');
 fprintf(fOut,'%-10s %-32s %-32s %-19s %-16s %-

6s\n',strH1,strH2,strH3,strH6,strH7,strH8);
 tline = fgetl(fInput);

Moore | 96

 isFCSGood = fgetl(fGood);
 protoType = fgetl(fProto);
 SNRstr = fgetl(fSINR);
 cc=1;
 TotFrames=0;
 TotGFrames=0;
 TotCorFrames=0;
 TotFTP=0;

 isFTPLast=0; %0 not started yet, >0 save last seen frame number, start

saving to array
 sampleHDArray=[]; %after end of frames save to file from index 1 to

(sizeofArray-(cc-ftp last))
 sampleClassArray=[]; %0-nonSC-NORMAL, 1-SC-FTP
 sampleIndex=1;
 %otherCC=1;

 while ischar(tline)
 protoName = 'NORMAL';
 matchFTP=strcmp('1337',protoType);
 matchTCP=strcmp('80',protoType);
 if(isFCSGood=='1' && (matchTCP==1 || matchFTP==1)) %when isGoodFile 1

then good(True), 0 is bad(False)
 TotFrames= TotFrames+1; %track total frames

 ascVer=uint8(tline);
 asTemp=ascVer-48;
 X=double(asTemp);
 m=X';

 G1=step(crcCalV1,m); %calculate the default CRC on all frames
 fcsPartV1=(G1(end-31:end))'; %get the good FCS part

 if(matchTCP==1)
 protoName='NORMAL';
 elseif(matchFTP==1)
 isFTPLast=sampleIndex; %we have seen a ftp save the frame

number and start saving to array
 protoName ='FTP';
 G1=step(crcCalV2,m); %calculate the koopman CRC as SC
 end
 SNRValue = str2num(SNRstr);
 r=rand;
 if(r>=0 && r<(percentageCorr(corrVal)/100))
 TotCorFrames=TotCorFrames+1; %track all corrupted frames

 %B1=bsc(G1,0.05); %send the G1 through the BSC
 crcMod=awgn(G1,SNRValue);
 B1=step(deModulation,crcMod); %send the G1 through the AWGN
 %disp('B1')
 elseif (r>(percentageCorr(corrVal)/100) && r<=1)
 TotGFrames=TotGFrames+1; %track all good frames

 B1=G1;

Moore | 97

 end

 fcsPartB1=(B1(end-31:end))';

 %do some Hamming calculation for each FCS value
 hamV1vsB1 = binArray2HammingD(fcsPartV1,fcsPartB1);
 %hamV1vsV2 = binArray2HammingD(fcsPartV1,fcsPartV2);
 %hamV1vsV3 = binArray2HammingD(fcsPartV1,fcsPartV3);

 fprintf(fOut,'%-10d',cc); %'Frame#'
 fprintf(fOut,' ');
 fprintf(fOut,'%-d',fcsPartV1); %'CRCPoly:0x04C11DB7(d)'
 fprintf(fOut,' ');
 fprintf(fOut,'%-d',fcsPartB1); %'CRCPoly:Recieved(FCS)'
 fprintf(fOut,' ');
 fprintf(fOut,'%-19d',hamV1vsB1); %'Calculated HD'
 fprintf(fOut,' ');
 fprintf(fOut,'%-16s',protoName); %'Protocol'
 fprintf(fOut,' ');

 if(hamV1vsB1==0)
 fprintf(fOut,'Good'); %'isGood'
 fprintf(fOut,'\n');
 %otherCC=otherCC-1; %must take one from the total because its

not saving in out array
 else
 if(isFTPLast>0) %start saving frames HD to array we only want

bad
 sampleHDArray(sampleIndex)=hamV1vsB1;
 if(matchTCP==1)
 sampleClassArray(sampleIndex)=0;
 elseif(matchFTP==1)
 sampleClassArray(sampleIndex)=1;
 end
 sampleIndex=sampleIndex+1;
 end
 fprintf(fOut,'Bad'); %'isGood'
 fprintf(fOut,'\n');
 end

 if(matchTCP==1)
 %protoName='NORMAL';
 for threshold = 1:30

 if(hamV1vsB1<=threshold)%True-: Correctly identified Non

SC frame as Non SC NORMALHD<=Threshold
 tempVal = trueNeg(threshold);
 trueNeg(threshold) = tempVal + 1;
 elseif(hamV1vsB1>threshold)%False+:Incorrectly Identified

non SC frame as SC NORMALHD>Threshold
 tempVal = falsePos(threshold);
 falsePos(threshold) = tempVal + 1;
 end
 end

Moore | 98

 elseif(matchFTP==1)
 TotFTP=TotFTP+1; %track FTP frames
 %protoName ='FTP';
 for threshold = 1:30
 if(hamV1vsB1>threshold)%True+:Correctly identified SC

frame as SC FTPHD>Threshold
 tempVal = truePos(threshold);
 truePos(threshold) = tempVal + 1;
 elseif(hamV1vsB1<=threshold)%False-:Incorrectly

identified Non SC frame as SC FTPHD<=Threshold
 tempVal = falseNeg(threshold);
 falseNeg(threshold) = tempVal + 1;
 end
 end
 end
 end
 tline = fgetl(fInput);
 isFCSGood = fgetl(fGood);
 protoType = fgetl(fProto);
 SNRstr = fgetl(fSINR);
 matchFTP=0;
 matchTCP=0;
 cc=cc+1;
 %otherCC=otherCC+1;
 end
 fclose(fProto);
 fclose(fGood);
 fclose(fOut);
 fclose(fInput);
 fclose(fSINR);

 strMH1='Threshold';
 strMH2='True(+)';
 strMH3='False(+)';
 strMH4='True(-)';
 strMH5='False(-)';
 strMH6='Accuracy';
 strMH7='Sensitivity';
 strMH8='Specificity';
 strMH9='Precision';
 strMH10='F-Score';

 fMOut = fopen(strFMNameOut,'wt');
 fprintf(fMOut,'%-9s %-7s %-8s %-7s %-8s %-8s %-11s %-11s %-9s %-

7s(FER=%3s%%)\n',strMH1,strMH2,strMH3,strMH4,strMH5,strMH6,strMH7,strMH8,strM

H9,strMH10,ferNum);

 bThresh = 0;
 bFScore = 0;

 for x = 1:30

 %TP=truePos(x)/TotFTP;
 %TN=trueNeg(x)/(TotGFrames+TotCorFrames);

Moore | 99

 %FP=falsePos(x)/(TotGFrames+TotCorFrames);
 %FN=falseNeg(x)/TotFTP;

 TP=truePos(x);
 TN=trueNeg(x);
 FP=falsePos(x);
 FN=falseNeg(x);

 %Precision = Positive Predictive Value (PPV) = TP/TP+FP [missing from

your equations]
 %Recall = Sensitivity = True Positive Rate (TPR) = TP/TP+FN
 %Specificity = True Negative Rate (TNR) = TN/TN+FP

 %accuracy = ((TP+TN)/(TP+TN+FP+FN));
 %sensitivity = (TP/(TP+FN));
 %specificity = (TN/(TN+FP));
 %Precision = (TP/(TP+FP));

 accuracy = (TP+TN)/(TP+TN+FP+FN);
 sensitivity = TP/(TP+FN);
 specificity = TN/(TN+FP);
 precision = TP/(TP+FP);
 fScore = (2*precision*sensitivity)/(precision+sensitivity);

 if(fScore > bFScore)
 bThresh=x;
 bFScore=fScore;
 end
 fprintf(fMOut,'%-9d',x);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-7d',TP);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-8d',FP);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-7d',TN);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-8d',FN);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-8.4f',accuracy);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-11.4f',sensitivity);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-11.4f',specificity);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-9.4f',precision);
 fprintf(fMOut,' ');
 fprintf(fMOut,'%-15.4f',fScore);
 fprintf(fMOut,'\n');
 end
 fclose(fMOut);

Moore | 100

 fMAOut = fopen(strFMANameOut,'wt');
 if (corrVal==1)
 fprintf(fMAOut,'Percentage of Actual Corrupted packets in Capture: %-

6.4f \n',actualCorr);
 end
 fprintf(fMAOut,'Percentage of Simulated Corrupted packets: %-6.4f

\n',percentageCorr(corrVal));
 fprintf(fMAOut,'Total Frames: %d \n',TotFrames);
 fprintf(fMAOut,'Total Good Frames: %d \n',TotGFrames);
 fprintf(fMAOut,'Total Corrupted Frames: %d \n',TotCorFrames);
 fprintf(fMAOut,'Total FTP Frames (Side-Channel): %d \n',TotFTP);
 if(bThresh>0)
 fprintf(fMAOut,'Best Threshold: %d',bThresh);
 fprintf(fMAOut,'Best Threshold: %1.4f',bFScore);
 fprintf(fSOut, '%10d\n',bThresh);
 else
 fprintf(fMAOut,'No Threshold found \n');
 fprintf(fSOut, '%10d\n',0);
 end

 fclose(fMAOut);
 fSampleOut = fopen(strFNSampleOut,'at');
 %isFTPStop=sampleIndex-(otherCC-isFTPStart);
 ind=1;
 while ind<(isFTPLast+1)
 if((isFTPLast-ind)>0)
 fprintf(fSampleOut,'%d %d\n',

sampleHDArray(ind),sampleClassArray(ind));
 else
 fprintf(fSampleOut,'%d %d\n',

sampleHDArray(ind),sampleClassArray(ind));
 end
 ind=ind+1;
 end

 fclose(fSampleOut);
 strFMANameOut

end
fclose(fSOut);

Moore | 101

Appendix B

F-Score Calculations for Window Scenario 1

Threshold True(+) False(+)
True
(-)

False
(-) Accuracy Sensitivity Specificity Precision

F-Score
(FER=25%)

1 0 136 399 0 0.7458 0.0000 0.7458 0.0000 0.0000

2 0 135 400 0 0.7477 0.0000 0.7477 0.0000 0.0000

3 0 134 401 0 0.7495 0.0000 0.7495 0.0000 0.0000

4 0 123 412 0 0.7701 0.0000 0.7701 0.0000 0.0000

5 0 111 424 0 0.7925 0.0000 0.7925 0.0000 0.0000

6 0 96 439 0 0.8206 0.0000 0.8206 0.0000 0.0000

7 0 77 458 0 0.8561 0.0000 0.8561 0.0000 0.0000

8 0 54 481 0 0.8991 0.0000 0.8991 0.0000 0.0000

9 0 31 504 0 0.9421 0.0000 0.9421 0.0000 0.0000

10 0 12 523 0 0.9776 0.0000 0.9776 0.0000 0.0000

11 0 7 528 0 0.9869 0.0000 0.9869 0.0000 0.0000

12 0 2 533 0 0.996262 0.0000 0.9963 0.0000 0.0000

13 0 2 533 0 0.9963 0.0000 0.9963 0.0000 0.0000

14 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

15 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

16 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

17 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

18 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

19 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

20 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

21 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

22 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

23 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

24 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

25 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

26 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

27 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

28 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

29 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

30 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000

Moore | 102

F-Score Calculations for Window Scenario 2

Threshol
d

True(+
)

False(+
)

True
(-)

False
(-)

Accurac
y

Sensitivit
y

Specificit
y

Precisio
n

F-Score
(FER=25%)

1 150 101 285 0 0.8116 1.0000 0.7383 0.5976 0.7481

2 150 101 285 0 0.8116 1.0000 0.7383 0.5976 0.7481

3 150 99 287 0 0.8153 1.0000 0.7435 0.6024 0.7519

4 150 95 291 0 0.8228 1.0000 0.7539 0.6122 0.7595

5 150 84 302 0 0.8433 1.0000 0.7824 0.6410 0.7813

6 150 69 317 0 0.8713 1.0000 0.8212 0.6849 0.8130

7 150 55 331 0 0.8974 1.0000 0.8575 0.7317 0.8451

8 150 35 351 0 0.9347 1.0000 0.9093 0.8108 0.8955

9 150 25 361 0 0.9534 1.0000 0.9352 0.8571 0.9231

10 147 14 372 3 0.9683 0.9800 0.9637 0.9130 0.9453

11 143 9 377 7 0.9701 0.9533 0.9767 0.9408 0.9470

12 137 4 382 13 0.9683 0.9133 0.9896 0.9716 0.9416

13 124 1 385 26 0.9496 0.8267 0.9974 0.9920 0.9018

14 110 0 386 40 0.9254 0.7333 1.0000 1.0000 0.8462

15 87 0 386 63 0.8825 0.5800 1.0000 1.0000 0.7342

16 63 0 386 87 0.8377 0.4200 1.0000 1.0000 0.5915

17 44 0 386 106 0.8022 0.2933 1.0000 1.0000 0.4536

18 32 0 386 118 0.7799 0.2133 1.0000 1.0000 0.3516

19 22 0 386 128 0.7612 0.1467 1.0000 1.0000 0.2558

20 10 0 386 140 0.7388 0.0667 1.0000 1.0000 0.1250

21 4 0 386 146 0.7276 0.0267 1.0000 1.0000 0.0519

22 2 0 386 148 0.7239 0.0133 1.0000 1.0000 0.0263

23 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

24 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

25 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

26 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

27 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

28 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

29 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

30 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000

Moore | 103

F-Score Calculations for Window Scenario 3

Threshold True(+) False(+)
True
(-)

False
(-) Accuracy Sensitivity Specificity Precision

F-Score
(FER=25%)

1 196 85 255 0 0.8414 1.0000 0.7500 0.6975 0.8218

2 196 85 255 0 0.8414 1.0000 0.7500 0.6975 0.8218

3 196 84 256 0 0.8433 1.0000 0.7529 0.7000 0.8235

4 196 81 259 0 0.8489 1.0000 0.7618 0.7076 0.8288

5 196 75 265 0 0.8601 1.0000 0.7794 0.7232 0.8394

6 196 61 279 0 0.8862 1.0000 0.8206 0.7626 0.8653

7 196 44 296 0 0.9179 1.0000 0.8706 0.8167 0.8991

8 196 29 311 0 0.9459 1.0000 0.9147 0.8711 0.9311

9 195 21 319 1 0.9590 0.9949 0.9382 0.9028 0.9466

10 194 18 322 2 0.9627 0.9898 0.9471 0.9151 0.9510

11 190 11 329 6 0.9683 0.9694 0.9676 0.9453 0.9572

12 173 1 339 23 0.9552 0.8827 0.9971 0.9943 0.9351

13 159 1 339 37 0.9291 0.8112 0.9971 0.9938 0.8933

14 145 0 340 51 0.9049 0.7398 1.0000 1.0000 0.8504

15 123 0 340 73 0.8638 0.6276 1.0000 1.0000 0.7712

16 89 0 340 107 0.8004 0.4541 1.0000 1.0000 0.6246

17 64 0 340 132 0.7537 0.3265 1.0000 1.0000 0.4923

18 39 0 340 157 0.7071 0.1990 1.0000 1.0000 0.3319

19 25 0 340 171 0.6810 0.1276 1.0000 1.0000 0.2262

20 7 0 340 189 0.6474 0.0357 1.0000 1.0000 0.0690

21 3 0 340 193 0.6399 0.0153 1.0000 1.0000 0.0302

22 1 0 340 195 0.6362 0.0051 1.0000 1.0000 0.0102

23 1 0 340 195 0.6362 0.0051 1.0000 1.0000 0.0102

24 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

25 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

26 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

27 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

28 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

29 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

30 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000

Moore | 104

F-Score Calculations for Window Scenario 4

Threshold True(+) False(+)
True(-
)

False(-
) Accuracy Sensitivity Specificity Precision

F-Score
(FER=25%)

1 18 142 377 0 0.7356 1.0000 0.7264 0.1125 0.2022

2 18 140 379 0 0.7393 1.0000 0.7303 0.1139 0.2045

3 18 137 382 0 0.7449 1.0000 0.7360 0.1161 0.2081

4 18 130 389 0 0.7579 1.0000 0.7495 0.1216 0.2169

5 18 117 402 0 0.7821 1.0000 0.7746 0.1333 0.2353

6 18 103 416 0 0.8082 1.0000 0.8015 0.1488 0.2590

7 18 80 439 0 0.8510 1.0000 0.8459 0.1837 0.3103

8 18 54 465 0 0.8994 1.0000 0.8960 0.2500 0.4000

9 18 35 484 0 0.9348 1.0000 0.9326 0.3396 0.5070

10 18 17 502 0 0.9683 1.0000 0.9672 0.5143 0.6792

11 17 4 515 1 0.9907 0.9444 0.9923 0.8095 0.8718

12 16 1 518 2 0.9944 0.8889 0.9981 0.9412 0.9143

13 16 1 518 2 0.9944 0.8889 0.9981 0.9412 0.9143

14 14 0 519 4 0.9926 0.7778 1.0000 1.0000 0.8750

15 12 0 519 6 0.9888 0.6667 1.0000 1.0000 0.8000

16 9 0 519 9 0.9832 0.5000 1.0000 1.0000 0.6667

17 6 0 519 12 0.9777 0.3333 1.0000 1.0000 0.5000

18 4 0 519 14 0.9739 0.2222 1.0000 1.0000 0.3636

19 1 0 519 17 0.9683 0.0556 1.0000 1.0000 0.1053

20 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

21 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

22 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

23 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

24 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

25 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

26 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

27 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

28 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

29 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

30 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000

Moore | 105

F-Score Calculations for Window Scenario 5

Threshold True(+) False(+)
True(-
)

False(-
) Accuracy Sensitivity Specificity Precision

F-
Score(FER=25%)

1 0 128 410 0 0.7621 0.0000 0.7621 0.0000 0.0000

2 0 128 410 0 0.7621 0.0000 0.7621 0.0000 0.0000

3 0 128 410 0 0.7621 0.0000 0.7621 0.0000 0.0000

4 0 125 413 0 0.7677 0.0000 0.7677 0.0000 0.0000

5 0 113 425 0 0.7900 0.0000 0.7900 0.0000 0.0000

6 0 97 441 0 0.8197 0.0000 0.8197 0.0000 0.0000

7 0 84 454 0 0.8439 0.0000 0.8439 0.0000 0.0000

8 0 56 482 0 0.8959 0.0000 0.8959 0.0000 0.0000

9 0 38 500 0 0.9294 0.0000 0.9294 0.0000 0.0000

10 0 19 519 0 0.9647 0.0000 0.9647 0.0000 0.0000

11 0 13 525 0 0.9758 0.0000 0.9758 0.0000 0.0000

12 0 6 532 0 0.9888 0.0000 0.9888 0.0000 0.0000

13 0 3 535 0 0.9944 0.0000 0.9944 0.0000 0.0000

14 0 2 536 0 0.9963 0.0000 0.9963 0.0000 0.0000

15 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

16 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

17 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

18 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

19 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

20 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

21 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

22 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

23 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

24 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

25 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

26 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

27 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

28 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

29 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

30 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000

Moore | 106

Appendix C

SVM Model Output File

SVM-light Version V6.02
0 # kernel type
3 # kernel parameter -d
1 # kernel parameter -g
1 # kernel parameter -s
1 # kernel parameter -r
empty# kernel parameter -u
1 # highest feature index
2680 # number of training documents
11 # number of support vectors plus 1
11.4559208 # threshold b, each following line is a SV (starting with alpha*y)
-0.20084786523640671407342495058401 1:9 #Normal
0.20084786523640671407342495058401 1:11 #Side-Channel
-0.20084786523640671407342495058401 1:10 #Normal
0.20084786523640671407342495058401 1:9 #Side-Channel
-0.20084786523640671407342495058401 1:9 #Normal
0.20084786523640671407342495058401 1:11 #Side-Channel
-0.20084786523640671407342495058401 1:9 #Normal
0.20084786523640671407342495058401 1:12 #Side-Channel
-0.19850157887958630453795194625854 1:9 #Normal
0.19850157887935893086250871419907 1:12 #Side-Channel

