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Abstract 

Side-Channel communication is a form of traffic in which malicious parties communicate 

secretly over a wireless network. This is often established through the modification of Ethernet 

frame header fields, such as the Frame Check Sequence (FCS). The FCS is responsible for 

determining whether or not a frame has been corrupted in transmission, and contains a value 

calculated through the use of a predetermined polynomial. A malicious party may send 

messages that appear as nothing more than naturally corrupted noise on a network to those 

who are not the intended recipient. A Hamming Distance (HD) difference between the FCS 

values of purposely corrupted and naturally corrupted frames is proposed as a metric for the 

detection of side channel communication. In theory, it should be possible to recognize 

purposely corrupted frames based on how high this HD value is, as it signifies how many bits 

are different between the expected and the received FCS values. It is hypothesized that a range 

of threshold values based on this metric exists, which may allow for the detection of Side-

Channel communication across all scenarios. In order to achieve this threshold range, a 

calculation known as F-Score has been used. Several approaches to verifying the F-Score 

thresholds have been presented to verify this range, as well as the validity of F-Score itself such 

as: Receiver Operating Characteristic (ROC) curves, and Support Vector Machines. 
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Chapter 1- Introduction 

Mobile Ad-Hoc Networks (MANETS) provide an easily configurable mobile platform where 

nodes can communicate without requiring the use of additional hardware to provide routing. 

While convenient, these networks are not without their share of drawbacks in terms of 

security, management, or packet loss. As with all wireless networks, there is some level of 

information loss or corruption due to signal fading, frame collisions, or environmental 

interference. As a result, frames can become corrupt and will be disregarded by wireless 

receivers as noise. Side-Channel communication takes advantage of this as a method for 

discretely transmitting messages between two or more nodes. This process can be difficult to 

detect since it is hard to tell these intentionally corrupted messages from naturally corrupted 

ones; unfortunately for other nodes in a network, both appear as noise. Through the use of 

frame manipulation, it is possible for a malicious party to modify a frame in order for it to 

appear corrupted. Upon receiving a corrupted frame, most nodes will simply discard the frame, 

disregarding its existence. This behaviour is expected for all nodes on a network, unless the 

recipient has been configured in order to correctly receive and decode these secret frames. This 

type of communication is described as “Side-Channel Communication”, and while the process is 

conceptually simple to achieve, finding adequate hardware that supports the functionality 

required is rather difficult. Detection of frames based on this form of communication provide 

the foundation for the research presented throughout this thesis. 
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A network frame has several fields that are used for a variety of functions in transit, 

such as the source and destination fields.  The field responsible for determining whether or not 

a frame has been corrupted in transmission is known as the Frame Check Sequence (FCS), and is 

a four-octet length field containing a value that is calculated prior to transmission [1]. Upon 

arrival, the receiver node utilizes an agreed upon algorithm in an attempt to re-calculate the 

value of the frame’s FCS field via a Cyclic Redundancy Check (CRC). If the calculated value 

matches the FCS field’s value, then the frame has arrived safely; however, if the calculated FCS 

value does not match the one present in the frame, the frame is considered corrupted and 

immediately discarded by the node.  

1.1 - Problem Statement 

A common question that occurs is “Why go through the effort of establishing a Side-Channel, 

when the transmission can be encrypted?” The reason for this is that while encrypted messages 

may be difficult to decode, they are not an inconspicuous means of communication. This is 

where network steganography techniques such as Side-Channel communication come in, as 

they allow multiple users the opportunity to transmit secret messages in plain sight. One of the 

main reasons why Side-Channel communication is so difficult to recognize is that there is no 

discernible difference between malicious Side-Channel frames, and those that were naturally 

corrupted through the transmission process. 

In previous works [2], it was suggested that an increase in Side-Channel frames would 

provide an easily recognizable increase in Frame Error Rate (FER), to the point where a network 
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with Side-Channel would have a noticeably larger volume of errors than those without. Since 

these Side-Channel messages appear as nothing more than corrupted frames to average nodes, 

logically a substantial increase in corrupted messages on the network would provide evidence 

that Side-Channel must be occurring; however, this is not necessarily true. Since there are a 

variety of factors that could influence a wireless network, the amount of FER is never truly 

consistent. The level of noise on a network could change completely erratically, and almost 

arbitrarily. Many errors that occur in a wireless network may be triggered by seemingly 

inconsequential events, such as an individual walking through the transmission zone, a 

microwave or other device operating on the same frequency, nearby construction, or even 

changes in weather. With no persistent baseline for comparison, this eliminated the possibility 

of utilizing FER as a detection metric.  

When determining a metric for use in detecting anomalous behaviour, such as Side-

Channel, one of the requirements is that it must provide consistent results. In dealing with a 

MANET environment, this becomes increasingly more challenging as there is no guarantee of 

the surroundings or reliability of the network. There is also very little control over factors such 

as interference, and as such, the metric must be unaffected by FER. If such a metric is found, 

the challenge of validation still remains. 
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1.2 – Contributions 

Due to the fact that FER is such an unreliable variable, there is a need for a detection metric 

uninfluenced by its fluctuations. The Hamming Distance (HD) calculation based on a frame’s 

CRC polynomial appears to fulfill this requirement. There is a notable difference between the 

CRC value of Side-Channel frames using a modified CRC calculation and those using a standard 

algorithm, which will be touched upon further in Section 2.4. The difference between these 

values, or delta-CRC, is calculated by performing an XOR between the expected CRC value and 

the received one in order to compute an HD [3]. This metric was tested against a static ad-hoc 

scenario [3], and validated through various methods which will be described more in-depth in 

the Related Works section. While the HD metric appears to be relatively unaffected by factors 

such as FER, there are still several aspects of the work left to explore. This work provides four 

major contributions to the topic: 

 Testing of the HD threshold technique against multiple MANET experiment scenarios in 

order to evaluate its effectiveness 

 Determining a threshold range using a mathematical calculation known as “F-Score” to  

detect Side-Channel communications in MANETs when a Side-Channel is created by 

modifying the CRC polynomial 

 Testing the validity of the F-Score approach by graphing the test against various datasets 

using an ROC curve 
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 Provides additional validation of the HD as a metric by performing analysis using the 

Support Vector Machine learning algorithm 

1.3 – Structure of Thesis 

The structure of this thesis was designed to provide the reader with the knowledge necessary 

to understand exactly what a Side-Channel is, along with many of the mechanics necessary for 

detection. Once the appropriate background concepts have been established, information 

regarding scenario procedures will be presented. Having a thorough understanding of the 

concepts, the reader should then be able to examine the results. In Chapter 2, previous works 

in the field will be examined. While Side-Channel communication is a relatively 

underrepresented area of research, there are a number of quintessential papers that provide 

the foundation for the concept. The aim of this chapter is to show just how challenging of an 

issue it is to not only detect Side-Channel, but also establish an adequate testing environment. 

In Chapter 3, the reader will be presented with the fundamentals necessary to understand the 

concepts of Side-Channel, the HD metric, and Mobile Ad-Hoc Networks. These areas provide 

insight that should help to understand the experimental design choices shown in the following 

chapter. Chapter 4 explains why simulation wasn’t possible for this unique problem; how the 

OLSR routing protocol works; a very basic explanation of Platooning; and the parameters and 

methodologies used to conduct and analyze the experiments. Chapter 5 is where the 

information captured in the experiments comes to life in a series of figures that showcase the 

results, and alternative methodologies. Finally, Chapter 6 concludes by recognizing how the 
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contributions of this work impact the field, and possible directions for further examination of 

the Side-Channel problem.  
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Chapter 2 – Background & Related Work 

2.1 – Steganography 

In order to properly assess the detection of Side-Channel communication, it is important to 

understand where the concept originated, and analyze previously suggested detection 

methods. Steganography is a form of covert communication that dates back several  

millennia [4]. During this archaic era, messages were sent between generals by hiding them on 

the reverse of wax writing tables, on the stomachs of rabbits, and by tattooing them on the 

scalps of slaves [4]. Steganography was also used throughout the World Wars, where spies 

were able to use more advanced techniques, accredited to the invention of photography and 

technologies such as Microdots or Microfilm [5]. Steganography is used to hide a covert 

message, but does not hide the fact that two parties are in communications [4]. In the internet 

age, steganography is most commonly linked with techniques involving graphical images or 

audio files as a carrier medium; however, this is not the only digital steganography currently in 

practice.  

 The research presented by Szczypiorski [6] may be accredited as one of the pioneering 

articles in the topic of Network Steganography, inspiring a large amount of interest in the field. 

While most implementations of steganography systems are typically dedicated to multimedia, 

the research presented in HICCUPS: Hidden Communication System for Corrupted Networks [6] 

offers a unique approach, aiming to develop a steganographic system from a network 
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perspective. Even though research in network steganography is not that uncommon, many of 

the techniques examined rely on optional packet header fields belonging to very specific 

network protocols [7] [8] [9]. HICCUPS [6] was developed with the idea that if messages are 

modified at the Data Link Layer of the OSI model, it is possible to take advantage of naturally 

occurring imperfections in network transmission, such as noise. It is believed that this system 

offers an advantage over many of the other implementations in that it does not require any 

specific protocol. The results of the study by Szczypiorski [6] concluded that while 

steganographic communication may be possible, there are very specific and challenging criteria 

that must be met. As Szczypiorski [6] suggests, one of the issues with developing this form of 

Side-Channel is that there is a distinct lack of network interface cards that allow for the 

modification of frame header fields, such as the FCS field. 

In a standard wireless network, all devices receive a copy of each message sent but 

often disregard those messages when they are not the intended recipients. This functionality 

stems from the use of CSMA (Carrier Sense Multiple Access) and CSMA/CD (CSMA with Collision 

Detection) protocols on a network. These protocols operate at the Data Link Layer, and 

measure a network for an absence of traffic prior to transmission. The intended usage for these 

protocols is to ensure that data collisions do not occur, or occur less frequently on a shared 

medium such as a wireless frequency. Szczypiorski [6] identifies these protocols as one of the 

three properties required for a working implementation of HICCUPS to exist. 
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The three requirements that must be met by a network susceptible to HICCUPS [6] are: 

a shared medium network with some form of CSMA; a publicly known method of cipher 

initiation (such as initiation vectors); and finally, integrity mechanisms for encrypted frames 

(such as FCS).  The CSMA requirement stems from the fact that this mechanism gives all nodes 

the ability to “hear” all traffic on the network, meaning that malicious parties can analyze the 

traffic to find exploitable features. Three possible mechanisms that may be exploited to allow 

for the creation of a Side-Channel were also outlined in his work [6]: a channel based on a 

corrupted FCS field; a channel based on MAC network addresses; and a channel based on a 

cipher’s initialization vectors. 

The Initialization Vector channel requires all devices involved to be included within a 

hidden group that establishes a secret key for ciphers embedded in a steganographic system. 

This method was designed to work in a unicast, multicast or even broadcast mode utilizing the 

Diffie-Hellman algorithm for key exchange among nodes. A major drawback to a system of this 

type is that key exchange is difficult to mask from observers, requiring operation on a standard 

channel [6]. The second channel proposed by Szczypiorski [6] was entitled the “Basic Channel”, 

the establishment of which requires a cipher’s initialization vectors and MAC network 

addresses. It is suggested that the primary purpose of this mode was to allow for a channel 

characterized by low bandwidth where the exchange of control messages among hidden group 

stations occurs [6]. The third and final suggested Side-Channel has been referred to as 

“Corrupted Frame Mode” [6]. The detection and prevention of the “Corrupted Frame Mode” 

channel form the reasoning for this thesis. Szczypiorski [6] proposed that information could be 
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exchanged through frames which feature intentionally created corrupt FCS fields. The benefit of 

a channel of this design is that it provides the ability to utilize nearly 100% of the bandwidth for 

a certain period, and relying on the functionality of CSMA, nodes that are not the intended 

recipients will simply discard these frames as noise. Szczypiorski [6] felt that this method was 

out of the scope of his research, as he was unable to acquire a network interface card allowing 

for the manual modification of CRC checksums. While initial research on his third proposed 

channel was left largely untested in his work, it has become the focus of many works involving 

the Defence Research & Development Canada (DRDC) and the University of Ontario Institute of 

Technology (UOIT) [3] [10] [11]. 

2.2 – Anomaly Detection 

Anomaly Detection mechanisms are often an alternative to everyday anti-malware or firewall 

solutions. These systems can offer an advantage over conventional intrusion detection methods 

in that they are not reliant on the use of a signature database. Some of the detection methods 

examined in this research include network traffic analysis, behaviour analysis, and smartphone 

security. While not all of these systems are network oriented, many of their functions and 

properties were considered as potential monitoring techniques. 

 In recent years, anomaly detection has received extensive interest from the academic 

community. While there are many researchers looking to develop the next Intrusion Detection 

System (IDS) through the use of machine learning or behavioral analysis, very few have had 

success with acquiring mainstream usage. Many of these systems employ the use of machine 
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learning algorithms, and several [12] [13] [14] were successful in their implementations; even 

so, anomaly detection is still not as mainstream as conventional anti-malware solutions. 

Sommer et al. [13] attribute the scarcity of such systems to the fact that the intrusion detection 

domain has been established for so long that there is a high barrier to entry for new 

applications. 

In the field of intrusion detection, there is a high cost of failure if a misclassification 

were to occur. A false positive is often considered an inconvenience, and may require I.T. 

personnel resources to be spent examining incident reports for an alert that was triggered in 

error. Even a small rate of false positives can render a network intrusion detection system 

unusable [13]. On the other side of this scale, false negatives exhibit catastrophic results in 

which information is compromised, systems are damaged, or a loss of service occurs. While the 

usage of Machine Learning algorithms and other automated systems may offer several benefits 

for network monitoring, many of the systems employing anomaly detection often feature a 

false positive rate that may be considered unacceptably high [15] [16]. 

 Sommer et al. [13] outlined several issues affecting the adoption of machine learning 

anomaly detection methodologies. Such issues include: the distinct lack of classification, the 

diversity in the forms network traffic can take, and the difficulties with evaluation. Further 

research on anomaly detection from Bolzoni et al. [17] explains that when alerts are raised by 

anomaly-based IDSs, the system is able to detect the anomaly, but has too little information to 

determine a classification for the attack. This limitation suggests that many anomaly-based 
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alerts require manual processing by I.T. personnel in order to classify an alert. Not only would 

this increase the work required by security teams, but also the time required to appropriately 

respond to the situation. Panacea [17] is a system that uses machine learning techniques to 

automatically and systematically classify attacks identified by an anomaly-based intrusion 

detection system, using information gathered about their payload. The idea behind such a 

system as Panacea [17] is the fact that attacks will often share common patterns in their 

payloads, such as byte-sequences. By examining this pattern, it is likely that there is an attack 

occurring belonging to a specific class, and an alert can be triggered. 

Network characteristics such as bandwidth, application support, and network policies 

governing the length of a connection are all features that can prohibit widespread adoption of 

anomaly detection systems when dealing with network intrusion detection. When taking data 

for training phases, one of the most difficult considerations when dealing with networks 

concerns usage patterns. For example, usage can be highly variable over certain time intervals, 

resulting in many false positives when using a detection method heavily reliant on network 

patterns as a metric; while fluctuations are less notable over a large sample size, network traffic 

can see significant increases and decreases on an hourly basis. It is worth noting that a flux in 

usage is not the only observable challenge. Protocol specifications may operate in such a way 

that their behavior and the amount of traffic they produce varies, depending on the level of 

heterogeneity across the network, or based on the status of the current communication 

session. 
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Another challenge that the implementation of an anomaly detection system faces is in 

regards to determining a proper evaluation of the mechanism. Traditional signature-based anti-

malware systems or other IDS systems such as firewalls often have access to publically available 

testing data or communities that produce content for testing purposes. An example of these 

tools comes in the form of voluntary spam requests [18], which allow for I.T. personnel to test 

their mail filters. When attempting to evaluate anomaly detection mechanisms, there is a 

limited amount of available datasets for appraisal, meaning that the evaluation process can be 

quite difficult. Should anomaly detection see more widespread usage in the future, or if 

researchers begin to focus their efforts on the development aspect of anomaly detection, 

evaluation of these systems could become much easier. 

Many network operators utilize a system known as deep packet inspection (DPI) [19] 

[20]. DPI involves examining application layer protocols and content, such as port destinations, 

in order to monitor and control activity on a network. These systems are most frequently used 

in organizations, or countries with heavy restrictions on the content available to the general 

public. While effective for general purpose network monitoring, they are susceptible to exploits 

such as Protocol Misidentification or Polymorphic Blending Attacks [19] [21]. 

Protocol Misidentification is the process of labeling a packet designed to operate with a 

certain application layer protocol as another. Using this system, it is possible to bypass 

detection systems which employ DPI. For example, in an environment where FTP traffic is 

prohibited, a malicious party could mask the port number and protocol information attached to 
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outbound packets, and disguise them as HTTP traffic destined for port 80. This allows for a 

bypass around many network IDS systems and filters. To demonstrate this capability,  

Dyer et al. [19] proposed a system known as FTE (format-transforming encryption). FTE was 

capable of transforming ciphertext into a format of their choosing in order to bypass DPI. In 

addition to this functionality, the system can also act as a proxy for communication outside of 

restrictive countries or networks, with little to no bandwidth overhead. A counter to this form 

of attack would be to place a limitation on the types of protocols allowed to be transmitted 

across a network, but even this solution faces limitations. Users could determine which 

protocols are and aren’t allowed on a network and simply adapt their approach to compensate 

for the restrictions. This is yet another area where anomaly detection implementations could 

provide an observable benefit. Based on typical network traffic, if an anomaly based intrusion 

detection system were to suddenly see a network inundated with an abnormal amount of FTP 

traffic, it would be a tip off that some form of protocol misidentification were occurring. An 

example of a network anomaly detection mechanism capable of providing such functionality 

exists, and has been presented in the form of a tool known as Spectrogram [14]. 

Spectrogram [14] is a network oriented anomaly detection system which operates in a 

passive state. This system, proposed by Song et al. [14], works as a filter that examines 

multitudes of web requests in an attempt to find a small subset of attack traffic. Spectrogram 

operates at the packet layer so that it can easily be implemented in conjunction with a port-

mirror. By incorporating this functionality, the port-mirror is able to forward a copy of all 

received packets directly to Spectrogram, allowing for a system that does not add an additional 
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possible bottleneck to the receiver. The system operates by gathering packets, and analyzing 

them based on their content distribution and structure. Once packets have been picked out, 

they are passed through a system utilizing the machine learning algorithm known as Markov 

Chains, which afterwards requires some minor human interaction [14]. Unlike many of the 

other systems that were examined in this subsection [12] [17] [13], this system is not 

completely autonomous. After analysis, a final likelihood score for whether or not the anomaly 

is an attack is presented, and I.T. personnel can decide on a solution. 

While the primary focus of this work is to detect Side-Channel anomalies on a network, 

it is important to consider other implementations of anomaly detection systems. In doing so, 

the evaluation of these systems may provide a better understanding of the functionality 

required to develop a proper detection mechanism. Some of the other areas that were 

assessed include anomaly detection on mobile devices [22] and masquerade detection [23], 

both of which feature techniques that are oriented towards behavioural analysis. 

Threats against smartphones do not necessarily have to come in the form of malware, 

as the small size and transportability of these devices increases the risk of theft from simple 

eavesdropping techniques [22]. The limited functionality of these devices leaves their 

protection to rudimentary versions of security and authentication methods. Such features 

include pattern-based lock sequences, or simple 4-digit pin passcodes. Issues arise from this 

simplicity, as the limited functionality and vulnerable nature of these devices creates a 

challenge in preventing malicious access to a user’s device. A process outlined by Muslukhov et 
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al. [16] involves the use of a trusted process which operates in the background and monitors a 

user’s usage patterns. Once enough information has been obtained, a behavioural model of the 

user can be developed. Behaviour analysis allows for a detection mechanism to determine 

whether a particular action has been made by the user or a malicious party/software based on 

common patterns that a user may exhibit when interacting with their system or device. Should 

anomalous activity occur, a defensive action could trigger, such as a prompt for password 

authentication or a device lockdown. 

Another key area for anomaly detection is the prevention of masquerade attacks. 

Masquerade attacks are one of the most common types of malicious activity on both networks 

and computer systems [23]. A masquerade is a type of attack in which a malicious party has 

gained access to a system or network session and intends to impersonate a legitimate user for 

the purposes of accessing confidential information or to gain access to permissions that they 

have not been granted. These types of attacks can be incredibly difficult to detect since the 

malicious party is often using the credentials of a legitimate user, and is for all intents and 

purposes that user (as far as the system is concerned). 

A common method for the detection of these system masquerade attacks is to enlist the 

help of machine learning algorithms capable of classifying normal behavior and identifying 

suspicious activity. According to research presented by Salem et al. [23], an excellent way to 

determine if a masquerade is occurring on a computer system is to examine the search 

behaviour of the user. An average user will have fairly accurate knowledge of the layout of their 
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file system, thus when searching for a file, they will be able to do so in a limited fashion. It is the 

use of the search mechanisms in a Windows environment which plays an essential role in 

anomaly detection in the study presented by Salem et al. [23]. An extreme example of how 

search behaviour analysis could be effective is that a user will understand that photos of his 

family vacation would not be stored in his System32 folder, while a masquerading party or 

software may not. The result of such a lack of knowledge is a broader, more extensive search 

across the file system in a manner that is uncharacteristic of the typical user. 

In their paper, Salem et al. [23] modelled the usage behaviour of 18 individuals who 

were working with their own personal computers for a period of 4 days. The results were then 

compared against simulated data created from 40 additional users performing a mock 

masquerade on a system unfamiliar to them. The data gathered were run through an SVM 

based anomaly detection mechanism, and was able to provide a 100% detection rate with a 

false positive ratio of only 1.1% [23]. These results are within an acceptable range, but with the 

requirement of such a large sample size, it is difficult to determine if this would be feasible in a 

real-world scenario without extensive training performed by the user [15] [16]. 

 An additional area of anomaly detection which should be considered is the Support 

Vector Machine algorithm. Arguably the most successful classification method in machine 

learning, Support Vector Machines (or SVMs) are algorithms used to analyze data in order to 

recognize patterns and linear classifiers [24]. SVMs are a form of supervised learning, meaning 

that the details of the program are dependent on choices of parameters, which can be tuned by 
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the program given a set of objects of known classification [25]. In a lecture from the University 

of Caltech [24], Dr. Abu-Mostafa details the principled components of the method, which 

include finding the optimal margin, arriving at a solution analytically, and transforming the data 

nonlinearly; i.e., expanding the machinery to applicability with nonlinear data. These steps 

follow the approach developed by Cortes & Vapnuk [26] for binary classification in 1995, and 

are the characteristics of a program able to perform such tasks. 

The term linearly separable is used to describe data for which there exists a linear 

decision boundary that separates positive from negative examples [27]. Given such a two-class, 

separable training dataset, there are many possible separating lines and margins of error [24]. 

SVMs search for the best linear separator by looking for the decision surface that is maximally 

distanced from all data points [28]. As Dr. Abu-Mostafa explains [24], the process of generating 

data may result in noise, and the bigger the margin, the greater the chances that the new point 

will still be on the correct side of the line. In other words, maximizing the margin gives a 

classification safety margin, meaning that a slight error in measurement or documentation will 

not result in a miscalculation [28]. These points lying on the boundaries are called the support 

vectors, and our optimal separating hyperplane occurs in the middle of this margin [26]. 

Through examining related works, a few important details regarding anomaly detection 

have been discovered. Due to the lack of popularity in real-world environments, such 

mechanisms often face a multitude of challenges throughout the development process. A lack 

of available training data means that implementation would require a lengthy training process 
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on the part of the technician. This is especially evident when trying to develop a solution for a 

very specific or obscure problem, such as Side-Channel detection. Coupled with the inherently 

large amount of sample data and time required by some of the machine learning algorithms, it 

is arguable that anomaly detection mechanisms may not exist in a mature enough state to 

completely supersede conventional signature-based mechanisms. By utilizing the delta-CRC 

approach proposed by Chea [3], detection is transitioned into packet analysis (delta-CRC) rather 

than signal analysis (FER), meaning that detection may be possible without the use of machine 

learning algorithms. 

Many advantages to a variety of anomaly detection methods have been outlined above; 

however, these mechanisms are not perfect. Like all systems, anomaly detection mechanisms 

have a set of policies, which must be met in order for data to be determined anomalous.  

Engla et al. [21] suggest that should a malicious user develop an understanding of how an 

anomaly detection system operates through brute-force attempts to match the criteria, they 

could in theory trick a system into believing a user or message is legitimate. 

The functionalities of anomaly detection methods, and prior research in the field that 

have been presented herein, should be highly favourable when developing a Side-Channel 

detection system. In spite of all of the weaknesses that are presented above, it is important not 

to discount the potential benefits to using machine learning algorithms. For the scope of this 

thesis, several of the aforementioned algorithms will not be considered; however, SVM will be 

examined as a potential candidate in Section 5.5. The justification of such an algorithm’s 
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selection is primarily due to the fact that the Side-Channel problem is a binary decision, and 

SVM provides a distinct binary classification using linear separation. 

2.3 – Establishing a Side-Channel 

Najafizadeh [11] was able to establish a simulated Side-Channel communication in what was 

otherwise a rudimentary simulator application known as Sinalgo [29]. Using collected data from 

his Side-Channel simulations, he examined the ratio of corrupt to non-corrupted traffic during 

periods where Side-Channel existed, comparing them to those that had no Side-Channel. He 

was able to show that a system based on the network’s historical data would showcase a high 

degree of variance in the amount of Frame Error Rate (FER) when Side-Channel communication 

was occurring [11]. Using this, Najafizadeh [11]  proposed an agent-based detection system that 

would trigger an alert depending on whether or not the variance of FER fell outside of an upper 

bound. One of the limitations to his approach was a lack of exhaustive scenarios. 

Another approach to the detection of Side-Channel communication was presented 

through the use of the RTS/CTS network mechanic by Madtha et al. [2] The Request to Send / 

Clear to Send (RTS/CTS) mechanic is one employed on many wireless networks as an optional 

feature used to prevent information loss due to packet collisions. In a network using this 

feature, a sender node will transmit an RTS frame to check the availability of a channel prior to 

sending out a data packet. If the channel is available, the destination node will reply with a CTS 

frame, informing other nodes to refrain from transmitting any data for a period of time. As 

soon as the sender node receives the CTS message, it will begin transmitting data packets.  
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In the work of Madtha et al. [2], it was hypothesized that for every Side-Channel frame, 

there should be a corresponding RTS/CTS message pair. What this means is that while non-

malicious parties may be unable to determine whether or not a message has been purposely 

corrupted, analysis of the traffic should present a substantially higher number of RTS/CTS 

messages indicative of extra communication occurring on the network. For every RTS frame, 

there should be a corresponding data frame; this means that the ratio of received application 

data and RTS frames should be 1:1 in a network with no data loss. In the presence of Side-

Channel, this ratio will increase, and the amount of RTS messages will be significantly higher [2]. 

Several experiments were run using the QualNet [30] simulator, such as an increase in 

the number of nodes, a varied number of Side-Channel links, and a range of inter-nodal 

distances. In the results presented by Madtha et al. [2], a distinct increase in RTS messages was 

shown to be disproportionate to the amount of known data packets when a Side-Channel is 

present. Unfortunately, while this research provided promising results, several weaknesses 

were identified. In order for their method to work, a network is required to be running the 

RTS/CTS mechanic, which may not necessarily hold true for all networks. Additionally, this 

method is incredibly sensitive to Frame Error Rate, and in networks with a high degree of FER, 

there will be substantially more RTS messages as packets become naturally corrupted and 

require re-transmission, effectively skewing the results. The research presented Madtha et al. 

[2] demonstrated a need for an FER insensitive metric.  
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2.4 – Hamming Distance Delta-CRC 

In a wireless network, corrupted packets are typically detected through the use of a Frame 

Check Sequence (FCS). Frame Check Sequences work by appending a fixed-length binary 

sequence to the FCS field in the frame. This sequence is calculated by the source node based on 

the data within the frame. Figure 2.1 showcases several of the expected fields on a typical 

frame, including the FCS field. Other key fields which are present in a frame are the Preamble, 

SFD, Source/Destination Addresses, EtherType, and Payload. The Preamble contains a 56-bit 

binary pattern, which allows network devices to synchronize their receiver clocks. An SFD is 

used to signify the end of the preamble, and the beginning of the frame. Source and 

Destination fields contain the MAC addresses of both nodes, and allow nodes on a network to 

determine if a frame is meant for them. The EtherType field is two octets long, and often 

provides information regarding the length of a Payload. The frame’s Payload is where the actual 

data is stored, and can have a size between 42 and 1500 octets in length.  

Upon receiving a frame, the destination node recalculates the FCS sequence and 

compares it with the one included with the frame. If these values do not match, the frame is 

considered corrupt, and the node may request retransmission or drop the frame. The most 

common type of Frame Check Sequence is Cyclic Redundancy Check (CRC). This CRC value is 

calculated by considering the result of the remainder when dividing the polynomial for the data 

payload by the CRC polynomial. Prior to this calculation, both of the polynomials are converted 

to their binary form. 



 

Moore | 23  

 

 

Figure 2.1 – A diagram of a standard frame w/ included FCS field. 

After a CRC value has been calculated, it is appended to the FCS field and the frame may 

then be transmitted. There is not just one standard CRC polynomial, but rather a set of 

standardized polynomials as defined by the IETF [31], ITU [32], and other similar organizations 

[33]. In fact, there are over 72 possible standard CRC polynomials [34], which range from CRC-3 

bits up to CRC-82 bits. It is also worth noting that while the CRC calculation does assist with the 

detection of transmission errors, it is entirely possible that certain bits may corrupt in such a 

way that a receiver may still calculate a CRC identical to the one that was sent [35]. In the work 

conducted by Koopman and Chakravarty [35], it is stated that a given CRC polynomial may 

operate more or less effectively on any given application. This means that a range of CRCs are 

necessary in order to facilitate a variety of operations, and the effectiveness of each is 

measurable. 

Further work by Koopman [34] explores the effectiveness of many well-known CRC 

polynomials, and classifies each based on their effectiveness and ideal payload size. The work 

presented demonstrates that a 32-bit CRC polynomial, commonly known as the “Koopman 

Polynomial”, provides the best error detection out of any of the standardised CRC calculations 

at the time. In his research, Chea [3] utilized this 32-bit CRC polynomial as a stand-in for the 

Side-Channel communication CRC in his experiments on HD as a metric for detection. Chea’s [3] 
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justifications were in part due to the fact that the 32-bit CRC polynomial is so widely used, and 

has a high effectiveness in error detection. As such, this is the CRC calculation that has been 

used for the experiments described herein; however, testing against a less effective CRC 

polynomial, while outside of the scope of this research, could provide further verification on 

the effectiveness of HD as a metric for Side-Channel detection. 

Throughout this work, the term “Hamming Distance” or “HD” refers to the number of 

bits that differ between an expected calculated CRC value and the actual value calculated by 

the recipient node. HD is a mathematical concept that was introduced by Richard Hamming in 

1950 [36], and is commonly used today in coding theory when comparing the difference 

between bit strings of equal length [37]. The HD value refers to the number of characters in 

given positions for which corresponding items are different, or the number of characters that 

must be changed in order for two items to match. In summary, it is a numeric representation 

for how different two same-length strings are. Consider the following examples demonstrating 

the HD between two similar, but different strings: 

“CAT” & “CAR” have an HD of 1 

“Brigette” & “Brittany” have an HD of 5 

Figure 2.2 – A simple demonstration of the HD between simple ASCII strings. 

This measurement can also be used to determine a difference in CRC values by examining 

them in their binary notation. When dealing with binary strings, the HD is equal to the number 

of ones in an XOR between two strings of length n. An example of this has been provided using 
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the two CRC polynomials that will be utilized in this research in Table 2.1. First, the Default and 

Koopman 32-bit CRC polynomials must be converted to their binary notation, and then an XOR 

may be performed to get their HD. In Table 2.1 below, it is shown that there are 13 positions 

with an XOR binary value of 1, meaning that the expected HD between the Koopman and 

Default CRCs is 13. This, of course, does not mean that there will always be an HD value of 13, 

as there is a chance that natural corruption may occur on Normal and Side-Channel frames. This 

corruption may cause certain bits to flip, creating CRCs with a wide variety of HDs, as will be 

shown in Section 5.3.  

Default 
(0x04C11DB7) 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1 
Koopman 
(0x741B8CD7) 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1 

XOR 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 

Table 2.1 – An XOR to calculate the HD of the Default 32-bit CRC polynomial, and the Koopman 32-bit CRC polynomial 

 In order for HD to work as a metric, one must first make the assumption that the 

number of bits different in a naturally corrupted Normal frame from a Side-Channel frame will 

be large enough to provide a visible separation between the two. The concept for using HD as a 

metric for Side-Channel detection was originally proposed by Chea [3]. This metric was the 

inspiration for much of the experiment planning for this work, and provided a basis to draw 

from and expand upon. The methodology and results presented by Chea [3] provide a better 

understanding for the rationale of many of the procedures used below.  

 Chea [3] suggests that the average HD between two CRC values could be used to detect 

Side-Channel where the malicious party has used an alternative CRC polynomial to mask his/her 
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traffic. In his work, Chea [3] also compared the HD of several CRC polynomials, including the 

Default 32-bit CRC, Koopman 32-bit CRC and Castagnoli 32-bit CRC to find the mean HD 

between them. His preliminary research showed that there was a clearly defined difference 

between the mean HD of the expected Default CRC vs. Koopman, and Default vs. Castagnoli [3]. 

Chea’s [3] work also provides merit to the fact that it should be possible to adequately 

determine if a Side-Channel exists given the assumptions: 

1. The CRC polynomial used for Side-Channel communication will be a known polynomial, 

such as the Koopman 32-bit CRC 

2. The CRC chosen by the malicious user for Side-Channel CRC will be different enough 

from the Default CRC (i.e. not a CRC containing a single flipped bit difference from the 

Default) 

The experiments presented in this thesis utilize a Default 32-bit CRC polynomial for all 

Normal traffic, and the Koopman 32-bit CRC polynomial for Side-Channel traffic. Due to current 

hardware limitations, the ability to modify these CRC polynomials for the different channels in 

the experiments was not possible, and instead a MATLAB [38] script was used to alter the CRC 

of specific frames in post-processing. The process of modifying the CRC values will be covered 

more in-depth in Chapter 4. 

 



 

Moore | 27  

 

2.5 – MANETs & OLSR 

Mobile Ad-Hoc Networks, or as they’re more colloquially known, “MANETs” are self-configuring 

wireless networks consisting of mobile devices. These networks often lack any defined 

infrastructure, and instead build a routing table on the fly (thus, Ad-Hoc). The routing table of a 

MANET often exists in a peer-to-peer (P2P) nature. Every device in a MANET can move 

independently and in any direction, which leads to a number of challenges, such as maintaining 

a routing table, and creating persistent connectivity [39]. In order for a MANET to operate 

successfully, each device must have the ability to continuously maintain a routing table in order 

to properly route traffic. Some protocols, such as OLSR, rely on using designated devices to 

keep all other nodes up to date on the available routes. MANETs are also known for their 

heterogeneity, meaning that these networks may contain multiple transceiver types, resulting 

in an even more complex topology. 

 There are several categorizations for MANETs, each with their own unique uses and 

purposes. Vehicle oriented MANETs (VANETs) [40] are typically used for inter-vehicular 

communication and communication from vehicles to roadside equipment. A more recent usage 

is that of Smart Phone Ad-Hoc Networks (SPANs) [41], which rely on hardware existing within 

current commercial smartphones in order to create P2P networks to communicate while 

circumventing typical carrier networks. Another core application for MANETs environments are 

military communication devices. The experiments shown in this thesis are meant to emulate a 

military-style MANET environment [42] using the OLSR routing protocol. This research could 
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also be applied to different non-military applications such as: Campus Networks, Smart Phone 

Networks, or other similar Ad-Hoc applications. 

 Optimized Link State Routing (OLSR) is a variation of the standard Link State Routing 

Protocol [43], whereby each node in the network will independently form a routing table by 

determining the best path to each destination node in the network. OLSR was intended to 

optimize link state algorithms for use on a wireless ad-hoc network, especially one featuring 

embedded devices, smartphones, or other similarly resource-limited devices. OLSR is an 

improvement upon standard Link State protocols in that each node selects a set of neighbor 

nodes known as “multipoint relays” (MPR). It is only these MPRs that forward control traffic, 

effectively reducing the number of transmissions required, and therefore the flood of control 

messages [44]. 

2.6 – Classification Quality Measures 

The F-Score method (also known as F1 score or F-measure) is commonly used in a variety of 

works for classification, such as: information retrieval, search measurements, document 

classification, and query classification [45]. This approach is often used when testing the 

effectiveness of a feature, such as the HD between two CRC values. Another area that makes 

use of the F-Score calculation is the evaluation of word segmentation or speech recognition. In 

their work, Sangwan et al. [46] relied on the use of the F-Score calculation when testing their 

keyword model for phone-based speech recognition. Using this calculation, they were able to 
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propose a new threshold estimation technique for the detection of keywords in conversational 

speech patterns.  

 The F-Score calculation, while useful in classification, is far from perfect in that it has 

issues determining an effective threshold when trying to detect multiple classes. Tao et al. [47] 

have identified some of the limitations of the F-Score approach in their work, and proposed a 

new method of calculating a weighted F-Score. The F-Score measurement has been shown to 

produce issues when there is inter-class overlapping or inconsistent features [47]. The 

suggested issues arise due to the fact that F-Score weighs all features equally, which may not be 

idea for certain experiment conditions. To combat this, Tao et al. suggest a technique useful for 

selecting the most effective features for classification by taking the average value of a feature in 

a dataset and comparing it against another feature on a per-feature basis. This ensures that the 

most accurate feature is selected for the given problem. Since the described Side-Channel 

detection method relies on just a single feature, any multi-class limitations of F-Score will not 

be an issue. The F-Score measurement is calculated based on the compounded harmonic mean 

of precision and recall. Further information regarding this calculation will be examined in 

Chapter 3.  

 Some problems require a more specialized approach, where Precision and Recall may 

not be considered equally weighted. Two other commonly used F-measures exist for this 

purpose, and are called the F2 and F0.5 measures. F2 places more weight into recall than 

precision, while the F0.5 measure is more heavily weighted towards precision. These alternative 
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“Fβ” measures were proposed by Van Rijsbergen [48] as a means for when users place “β times 

as much emphasis on recall as precision”. Other work conducted by Xie et al. [49] demonstrates 

a multi-feature variation on the F-Score approach, where each feature is further verified 

through the use of the SVM machine learning algorithm. The use of SVM for verification is 

harkened back to within this work (Section 5.5), as a means for determining the effectiveness of 

the HD metric. 
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Chapter 3 –Side-Channel Identification 

Based on an F-Score Quality Measure 

3.1 – The F-Score as a Hamming Distance Detection Quality Measure 

An HD threshold is a whole number at which the maximum number of Side-Channel messages 

are detected, while avoiding false alarms when naturally corrupted Normal messages have a 

non-zero HD. The difficulty when selecting a value is that if your threshold is too high you will 

easily miss large volumes of Side-Channel communication; alternatively, if the threshold is too 

low, you will end up with a large amount of false positives. There are several quality measures 

for this type of classification, but the primary measurement chosen for this threshold 

calculation is a concept known as F-Score. It is important to understand how this measurement 

works in order to recognize how effective the calculated threshold may be. 

 When classifying data the most common approach to verification is to assess the data 

against a trusted set of correctly identified results. In doing so, you are able to determine 

whether or not data has been flagged as True/False Positive, or True/False Negative. Two 

common quality measures exist, known as Precision and Recall, which take these classifications 

into consideration when determining the relevance of the classification. Precision focuses 

largely on what fraction of the results were relevant to the classifier, by taking the number of 

True Positives and dividing it by the total number of data points identified as Positive. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 

Recall is oriented towards determining how successful the classification was, and does 

so by dividing the number of True Positives over the number of data points which should have 

been classified as positive (True Positives & False Negatives). As such, this value is heavily 

impacted by the number of False Negative classifications.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

 The following Table 3.1 should be used for reference in order to better understand the 

influence of each of the classifications when calculating a threshold value. These concepts are 

not just essential for understanding how F-Score calculates a threshold, but also pivotal in 

gauging a threshold based on an ROC curve, as shown in Section 5.4.  

Term Definition 

True Positive (TP) The classifier has correctly categorized a data point as Side-Channel 
communication.   

True Negative (TN) The classifier has correctly categorized a data point as Normal traffic. 

False Positive (FP) The classifier has incorrectly categorized a Normal traffic data point as 
Side-Channel communication. 

False Negative (FN) The classifier has incorrectly categorized a Side-Channel data point as 
Normal traffic. 

Precision How accurately the number of data points classified as Side-Channel 
was, when compared to the number of False Positives.  

Recall How accurately the number of data points classified as Side-Channel 
was, was when compared to the number of missed Side-Channel frames 
(flagged as False Negative). 

Table 3.1 – Definitions of calculations / classifications utilized when calculating an F-Score value. 
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Both Precision and Recall are compounded in order to calculate a composite value 

known as F-Score. F-Score utilizes the Harmonic Mean [50] of Precision and Recall in order to 

find the best possible combination, or in this case, the Optimal HD Threshold. F-Score is 

displayed as a value which falls between 0 and 1, where 0 is considered highly inaccurate and 1 

is considered perfectly accurate. F-Score can be calculated using the following formula:  

𝐹 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

In the work presented by Chea [3], F-Score was used to define a threshold for 

experiments by selecting the threshold which presented the highest F-Score. This work builds 

upon this, but instead aims to present a precise range of thresholds that could be used to 

detect Side-Channel in a variety of situations. In order to calculate a threshold using F-Score, a 

dataset with known Positive and Negative samples must exist, along with some metric to test 

against a threshold value. Hamming Distance is used as the metric for this purpose.  

When using F-Score to calculate a threshold, the first step is to select a range of 

threshold values to test. Each of these thresholds are checked against the HD metric of a 

dataset in order to determine the number of TP, FP, TN, & FN. For example, given a possible 

threshold range of 1-30, the HD value for each individual frame must be checked against the 

specific threshold in order to classify data. Precision and Recall calculations are then performed 

using the TP, FP, and FN values in the formulas described above. Once Precision and Recall have 

been determined for each of the thresholds being examined (in this case 1-30), F-Score 
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calculations may commence. Finally, the threshold value with the largest F-Score is determined 

to be the optimal threshold for the given dataset. 

The two other variables that were considered for the purposes of selecting a Hamming 

Distance threshold were Accuracy and Specificity. Accuracy is the measurement of how close 

the measurement results are to the true value, and how reproducible these results are. While 

Accuracy appears to provide a solid value for determining a threshold, this value has been 

shown to operate poorly when dealing with inconsistent conditions, such as the 

disproportionate levels of Side-Channel with respect to normal traffic. Specificity is the 

percentage of correctly identified True Negatives. While this is also important to measure, this 

calculation ignores a decrease in the number of True Positives as the threshold increases in 

favour of a greater rate of True Negatives. 

3.2 – Testing the F-Score Threshold 

In Section 2.4 it was explained that the HD is calculated by performing an XOR on two 

CRC values. This HD provides a metric for anomaly detection, and F-Score provides a threshold. 

Knowing the total number of each frame type, along with the Hamming Distance values for all 

of the Normal & Side-Channel frames, allows a user to determine which threshold provides the 

most optimal detection. Determining whether or not a frame is flagged as Side-Channel is as 

simple as comparing the HD value to the threshold. For example, if an F-Score Optimal 

Threshold of 12 is selected, any frames with an HD value of 12 or greater would be considered 

Side-Channel whether or not they do in fact belong to Side-Channel communication. This makes 
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the selection of a threshold a delicate balance between the highest possible naturally corrupted 

Normal frame HD, and the lowest possible Side-Channel HD. 

The following Figure 3.1 presents results from a rudimentary proof-of-concept Side-

Channel experiment where Side-Channel was emulated through the use of FTP, and HTTP traffic 

was generated to represent Normal traffic in a 2-node scenario with 30% FER. The Hamming 

Distance was calculated for these frame types, where the Koopman 32-bit polynomial was used 

for Side-Channel CRC generation. As you can see, when frames become naturally corrupted 

their HD increases, and with an increased percentage of FER there is a larger volume of frames 

that could be incorrectly flagged as Side-Channel. Consider the scenario, and imagine a 

threshold of 12 is applied to it. The threshold would capture the eight Side-Channel frames with 

HD values in the 13 – 18 range, but unfortunately would also incorrectly identify eighteen 

naturally corrupted Normal frames that have an HD of 12 – 17. This demonstrates the challenge 

of determining a threshold, as selecting a value that is too high or low could result in inaccurate 

results.  

 

Figure 3.1 – Comparison of Side-Channel (FTP) Hamming Distance to Normal traffic. 
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 In order to exhibit how F-Score is used in this decision, observe a snippet of the results 

from the F-Score calculation performed on this dataset in Table 3.2. The Threshold value of 16 

is calculated as the best choice for this dataset due to the fact that it presents the highest F-

Score. While a threshold of 14 shows a larger amount of True Positives, the number of False 

Positives raises. This demonstrates the concept of finding a harmonic mean.  

Threshold True(+) False(+) True(-) False(-) Accuracy Sensitivity Specificity Precision F-Score 

14 7 13 1038 2 0.9858 0.7778 0.9876 0.3500 0.4828 
15 6 4 1038 3 0.9933 0.6667 0.9962 0.6000 0.6316 

16 6 2 1038 3 0.9952 0.6667 0.9981 0.7500 0.7059 

17 4 1 1038 5 0.9943 0.4444 0.9990 0.8000 0.5714 

Table 3.2 – F-Score Calculations on a dataset with 2-Nodes & 30% FER. 
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Chapter 4 – Experimental Design 

The goal of the experiments is to simulate a military foot soldier platoon’s ad-hoc 

communication; as such, the selected MANET protocol, the positioning of the nodes [51], and 

the communication methods have all been kept in line with potential real-world scenarios [52]. 

Further details will be outlined in the sections below. 

4.1 The Hybrid Experimental Environment 

There are two possible routes that could have been pursued when developing experiments for 

this problem. Option 1 involves conducting experiments in a real network using real data, with 

two challenges in doing so: Should it exist, hardware capable of establishing a Side-Channel 

must be used; and if not, then a method for emulating the behavior of Side-Channel must be 

clearly defined. Option 2 is to use a network simulator, which outputs files for processing or 

allows for modification of source code in order to implement desired functionalities. Due to the 

obscure nature of the Side-Channel problem, it was unlikely that network simulators would 

offer this functionality off the shelf. 

In his work, Najafizadeh [11] aimed to develop a system in which a Side-Channel link 

could be established. Previous works in the topic [6] [10] had shown that a form of Side-

Channel communication may be possible through modification of the FCS field. Taking the 

results of those works into account, Najafizadeh [11] tested these hypotheses. This work also 

outlined the issues related to many of the simulator options, and described an exhaustive 
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search for compatible hardware. The Sinalgo [29] network simulator was chosen as the medium 

for simulation. Sinalgo [29] is an open source Java-based network simulator which provided 

core functionality necessary for simulation, and allowed for easier modification than other 

simulators such as NS-2 [53] or QualNet [11]. The elegant simplicity of Sinalgo left many 

features to be desired that would need to be added by Najafizadeh [11] before he could begin 

testing his hypothesis. One of the limitations of Sinalgo that was recognized in his  

work [11] was the fact that corrupted frames were simply discarded by the simulator, rather 

than being transmitted to the recipient. In addition to this, several other issues which he would 

later resolve were lack of a proper channel fading model, and a need for promiscuous agent 

nodes who could monitor and capture traffic. 

With little to no available hardware for Side-Channel testing, the most likely option for 

experimentation was to use a simulation environment. Simulators provide an inexpensive, 

scalable solution for testing, and typically allow for easily modifiable parameters. Network 

simulators in particular also often provide channel models, routing, and full TCP stacks. With 

support for the OLSR protocol, the ability to instantiate controlled mobility, and featuring a full 

TCP/IP protocol stack, QualNet [30] appears to be the ideal Simulator for Side-Channel 

experiments. Unfortunately, there are several issues when attempting to post-process or 

analyze data from QualNet scenarios, as frames generated within experiments are actually 

devoid of any useable information, such as FCS values.  
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 One of the challenges facing the development of Side-Channel experiments is a distinct 

lack of hardware with the capability of establishing a genuine Side-Channel. Due to this 

limitation, performing experiments through simulation seems to be the most logical step; 

however, these simulators often lack the necessary functionality when it comes to transferring 

an actual data frame, as well as calculation and transmission of corrupt frames. Instead, a way 

to emulate this behavior is needed. In order to establish Side-Channel via the methods 

proposed in the previous works of Szczypiorski [6] or Najafizadeh [11], it must be possible to 

allow an application to generate its own FCS, which, as with all MAC layer operations, is a 

functionality that is locked into the firmware of most current 802.11 wireless network cards.  

A chipset known as the Atheros AR5212 developed by Qualcomm [55] supports a 

flexible MAC layer allowing for modification of the device’s CRC algorithm. Unfortunately, 

devices with this chipset are no longer in production, and have become scarcely available. 

Without the ability to generate an alternative CRC using hardware, a substitute method for 

emulating Side-Channel communication is necessary. The emulated Side-Channel must also be 

easily recognizable during the analysis phase in order to allow for modification in post-

processing. The simplest way to execute this is to establish a Constant Bitrate (CBR) 

communication on a port that differs from the rest of the network traffic. 

Chea [3] attempted to modify and recompile the source code for QualNet in order to 

implement FCS capabilities and frame information, but was unsuccessful in his efforts. His 

hypothesis was attempted in the QualNet simulator, tested using MATLAB with Simulink, and 
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finally accomplished with hardware using an emulated Side-Channel [3]. The QualNet [30] 

simulator was considered, but presented a lot of challenges regarding the implementation of a 

payload and CRC calculation. When unable to correctly analyze scenario information from 

QualNet, Chea [3] experimented with hardware environments, using FTP as an emulated Side-

Channel. This allowed for the ability to conduct detection on a network without needing the 

proper hardware required to modify the FCS field. The network described for this work was 

similar to that of a hub-and-spoke, with five nodes communicating to a central “Server” node 

and an agent node collecting data. Chea was able to show that there was a distinction between 

Hamming Distances of Side-Channel and non-SC nodes, with very simple experimental 

procedures. He developed a system known as the “Hybrid Testing Approach” [3] where results 

from a Wireshark [54] capture file were manipulated using MATLAB [38] to generate CRCs and 

FER. This “Hybrid” approach was borrowed for the processing and preparation of data for this 

thesis. Building from that, the work within this thesis aims to expand upon and improve much 

of what was shown in [3], while bringing it to a MANET environment. 

The Hybrid Experimental Environment involves parsing files captured from Wireshark, 

and executing a number of functions in MATLAB to organize the data into a format that can be 

correctly analysed. After six files created through the TShark scripts and Java program have 

been generated, the format of which are described in Section 4.5, a MATLAB script (see 

Appendix A) takes them as input. MATLAB/Simulink are the tools responsible for the actual CRC 

modification that constitute the emulated Side-Channel. With the frames parsed through 

TShark and Java, several output files have been created, but these files are simply the first step 
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towards collecting the data into a format that can be analyzed. As mentioned above, a different 

CRC polynomial is used for the purpose of Side-Channel than that of Normal traffic. Figure 4.1 

illustrates the process interactions between MATLAB and the parse files described above. The 

“olsrFCSCheck.txt” file is used by MATLAB in conjunction with the “hexDataDump.txt” file in 

order to identify which of the frames are good and which are naturally corrupted. Any naturally 

corrupted frames are automatically discarded to prevent skewing of the FER generation 

process. Next, the “olsrPorts.txt” file is used to determine if the received frame was destined 

for Port 1337, or another port. This is done to determine if the frames should be treated as 

Side-Channel or Normal traffic. Control frames and port 80 destined data frames are considered 

“Normal” traffic. Once a frame’s port, and corresponding type have been identified, they are 

forwarded to a decision gate and on to the CRC generation algorithm. If the frame was destined 

for Port 1337, a CRC is generated using the Koopman CRC polynomial (simulated Side-Channel) 

while all other frames compute a CRC based on a Default 32-bit CRC polynomial. At this point in 

the simulation process, each of these frames are treated as uncorrupted, and the Normal 

frames would be shown to have a HD value of 0 if compared to the expected polynomial. 

Once the appropriate CRC is generated for each frame, it is appended onto the end and 

simulation of channel properties can begin. The probability of each frame being erroneous is 

considered, and if it is selected to be so, a number of bits is flipped. The frame is given a chance 

to become corrupted based on the probability value inputted into the “Frame Error Probability 

Decider” function, and if it is not corrupted then it is sent on to have its HD calculated. If the 

frame is selected to become corrupted, it is passed through an “AWGN” channel for corruption. 
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The SNR value for this channel comes from the “SINRFile.txt” that was generated earlier. After 

corruption is complete, the corrupted frames are also sent on to have their HD calculated. 

In the final portion of the MATLAB script, the original Default polynomial is compared 

against the CRC of the current frame. From this, the HD value is calculated through an XOR of 

the two polynomials. If the HD value is 0, the frame is a non-corrupted Normal frame; 

otherwise, if there is an HD value that is greater than 0, the frame is either part of the Side-

Channel communication or a corrupted Normal frame. The HD value will always be a positive 

integer relative to the number of bits different it is from the expected CRC.  The HD value for 

each frame is then reported and output to a file. In addition to this, several values are 

calculated and output to files at this point, such as: frame count statistics and F-Score 

calculations (True Positives, False Positives, True Negatives, False Negatives, accuracy, 

sensitivity) for a range of thresholds (1 – 30). 

While this system allows for the emulation of a physical Side-Channel network, it does 

have a few limitations that must be addressed. Firstly, in order to increase the number of nodes 

in the experiment, one must re-run the physical experiments with an additional node. Secondly, 

the errors generated for each of the frames chosen for corruption are based on the AWGN 

channel model, and may only be as good as the channel model. This means that there may be 

some bias in regards to the accuracy of the Hamming Distances generated for corrupted 

frames. 
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4.2 – Platooning: Forging a Formation 

Platoon formations define the expected arrangements of soldiers in relation to each other. The 

goal of these formations is to provide as much flexibility to adapt to situations as needed while 

maintaining control of a unit. In almost all formations, Team and Squad Leaders are in the front, 

allowing for these individuals to lead by example, and as such all soldiers within a platoon are 

required to have line of sight on their leader at all times. The platoon formation is typically 

selected by a leader after he or she has considered factors such as Mission objectives, Enemy, 

Terrain, Troops, and Time available (METT-T) [52]. The selection of this formation should ideally 

provide maximum protection, and allow for the maintenance of unit cohesion, stable 

momentum, and a smooth transition between offensive and defensive actions. 

In an attempt to design experiments that represent military platoon scenarios as 

accurately as possible, several sources were examined when considering node placement. The 

“Fire Team Wedge” formation [52] is the most basic formation a fire team can select. This 

formation provides the unit with visibility of the Team Leaders, while covering a large patrol 

area. The interval between soldiers in this formation is suggested to be 10 meters, however this 

inter-operative distance is variable depending on visibility, terrain conditions, availability of 

space, or other factors affecting the functionality of the wedge. The inter-operative distance 

may shrink or expand in order to ensure visibility of the squad leader. According to the FM 7-8 

Infantry and Platoon Field Manual [52], it is not uncommon for a wedge to contract to the point 

where units may move in single file, if for example the platoon has entered into an indoor 
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environment. Figure 4.2 has been provided for reference of a standard Fire Team Wedge. The 

flexibility of the inter-operative spacing allowed for some modification to the platoon 

positioning in the experiments. Due to spatial limitations, and given that volunteers did not 

have radios for communication, inter-operative positioning was reduced to a standard distance 

of 5 feet. 

 

Figure 4.2 – The Fire Team Wedge, a standard platoon formation [52]. 

Both the number of soldiers and layout of the Fire Team Wedge were selected as 

parameters for the experiment. Not only did this formation provide a more realistic approach 

to node positioning, it also allowed for maximum control while directing volunteers. Based on 

the requirements of the experiments, and because the volunteers were not military trained, the 

Fire Team Wedge was selected both for simplicity, and to represent possible positioning during 

a standard patrol mission. 
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4.3 – The OLSR Routing Protocol 

For the experiments, a stable version of the OLSR protocol (0.6.8) was installed and run on the 

wlan0 interface using Ubuntu 14.04. Figure 4.3 shows a screen capture of OLSR’s output from a 

laptop with the IP Address 10.10.10.15. A similar output was printed to the terminal by OLSR on 

a per second basis as the routing table information was requested; however, the frequency of 

this update is configurable and can be increased or decreased as needed. In this capture, the 

links of each of the nodes on the network are present, along with their Link Quality (LQ) and 

Expected Transmission Count (ETX). Following this, the nodes which are considered direct one-

hop neighbours to each node, and whether or not they are MPRs, are also observable. Finally, 

the list of neighbours that are accessible through two-hops are listed, along with their total cost 

and prospective routes. 

Each of the nodes in the scenarios were provided with a static IP Address belonging to 

the 10.10.10.0/24 network. By providing static IP Addresses, analyzing captured data was 

easier, and allowed for a clear overview of the network activities in the live feed displayed in 

Wireshark [54]. 
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Figure 4.3 – A screen capture of the Ubuntu terminal showcasing the OLSR routing table output. 
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4.4 – Physical Experimental Scenarios 

In each of the experiment scenarios, the nodes formed a typical platoon of 8 members as 

defined by the Michigan Tech AROTC [51]. Squad members consisted of UOIT and Durham 

College volunteers, all of whom were informed of their right to withdraw, and their required 

tasks for the experiment, all of which was approved by UOIT’s Review Ethics Board (REB). A 

marker was used to signify an Observation Post that the squad needed to reach within the 

allotted five minute experiment scenario. During the experiment, volunteers were instructed to 

maintain a relative distance of 5 feet while walking. This distance was not arbitrarily chosen, 

but rather a scaled down variation of the standard 10m inter-operative patrol distance, as per 

the guidelines outlined in the sourced platoon field manuals [51] [52]. The key observation of 

this experiment was to monitor the relative effectiveness of the CRC HD metric in a MANET 

environment while subjected to normal interference. As such, participants in the experiments 

were merely a means of transporting devices in order to provide mobility, and as such no bias 

was made in regards to volunteers. 

Seven of the volunteers were responsible for carrying seven of the platoon nodes, and 

one volunteer was responsible for both the eighth node and the agent node. The arrangement 

of this was to illustrate that the agent could exist as a module within one of the nodes. Figure 

4.4 showcases the positioning and location of nodes for various times throughout the scenario. 

The hardware for each of the nodes was a Lenovo T520 laptop, with a second generation i5 CPU 

and 8GB of RAM. Each of the devices were configured using the Ubuntu 14.04 [56] operating 
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system, with the OLSR routing protocol installed. Ubuntu was chosen due to the fact that at the 

time of writing, there is currently no implementation of OLSR for non-Linux operating systems. 

The agent node was also a Lenovo T520 with the same hardware listed above; however, this 

device was running Windows 7, the Wireshark traffic analysis tool, and a USB network capture 

card. Volunteers maintained a constant walking speed and relative distance while following the 

predetermined route. It is also worth noting that due to the proximity of these devices, there 

was a full overlap, and all nodes could reach one another. The experiments were performed 

outdoors during overcast weather conditions with some light rain. Proof of concept 

experiments that were performed on similar conditions were also performed in an indoor 

setting and upon comparison, similar results were achieved within an FER percentage of 0.2%. 

Figure 4.4 – A topology diagram detailing the communication and positioning for the OLSR Experiment. 
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 In the experiments conducted by Madtha et al. [2] using the QualNet simulator, a 

Constant Bitrate (CBR) application was utilized for traffic generation. Drawing from this, it was 

discovered that an application known as “Nping” [57] provided desirable functionality for the 

experiments. Nping is an open source network packet generation tool that is commonly used in 

networks for measuring response times, detecting active hosts, and can even be used to 

generate raw packets for stress testing, ARP poisoning, or Denial of Service attacks. The Nping 

tool is versatile, and provides the ability to control the rate of transmission, number of packets 

sent, and destination port. This tool was chosen for the experiment since it would allow for raw 

packets to be transmitted across distinct ports. For the experiments, Side-Channel traffic was 

transmitted across port 1337, while “Normal” traffic was sent through port 80. In the 

experiment scenarios that were run, the rate of Side-Channel transmission was varied in order 

to test the HD detection technique against different ratios of Side-Channel to normal traffic 

communication.  

Each of the packets generated by Nping were 86 bytes, a relatively small size chosen in 

order to illustrate that the proposed technique could be used in even the most minimal traffic. 

Communication existed between multiple source and destination nodes, in order to generate as 

much traffic as possible while mitigating possible hardware bottlenecks when nodes were 

transmitting and receiving at the same time, and was sent using UDP. Figure 4.5 shows the 

communication links and the direction of transmission between each of the nodes in the 

platoon, where the blue links represent the traffic sent via port 80, and the red link represents 

the Side-Channel communication transmitted via port 1337. The agent node was not included 



 

Moore | 51  

 

in the OLSR network, but instead simply captured nearby traffic in a promiscuous state using 

Wireshark [54] and the AirPCap TX [58] network capture card. 

The direction of communication for these experiments consisted of nodes 10.10.10.10, 

10.10.10.11, and 10.10.10.16 transmitting Normal traffic to the nodes ending in 14, 12 & 15 

respectively, while the malicious node 13 was responsible for transmitting Side-Channel traffic 

to 17. For reference, the Team Leader position is represented by nodes 10 & 14, the Grenadiers 

are 11 & 15, the Automatic Riflemen are 12 & 16, and the Riflemen are 13 & 17. 

 

Figure 4.5 – Demonstration of the communication links between the Side-Channel and normal traffic. 
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 Two parameters were varied for the experiments: the ratio of Side-Channel to normal 

communication, and the percentage of Frame Error Rate. While the ratio of  

Side-Channel to Normal traffic required running an additional experiment with each increase in 

volume, the modification to the percentage of FER was achievable offline in post-processing. 

During each of the five-minute experiments, Side-Channel communication would begin at the 

one minute and thirty second mark, and continue for ninety seconds. The experiments were 

run a total of 12 times, with the number of Side-Channel messages per second increased by an 

additional message each time in order to provide varying ratios of Side-Channel to normal 

traffic. The range of Side-Channel to normal traffic began with 9% of the total traffic as side 

channel, corresponding to one Side-Channel frame per second being transmitted over a 90 

second window. The percentage was increased by gradually adding an additional Side-Channel 

frame per second, until 40% of the traffic consisted of Side-Channel frames. The conclusion of 

experiments at 40% Side-Channel was not an arbitrary choice, but as will be shown in Chapter 

5, an observable threshold plateau began to appear. The scenarios consisted of the following 

percentages of Side-Channel traffic: 9%, 12%, 14%, 19%, 22%, 25%, 28%, 30%, 35%, 37%, and 

40%. These percentages correlated directly to an additional 1 Side-Channel frame per second. 

Adding or subtracting nodes from the network would of course directly increase/decrease the 

percentage of Side-Channel traffic relative to the change in normal traffic, and is a variable 

which could be examined in future experiments. 

As previously mentioned, there was a second controlled variable: the modification of 

the Frame Error Rate. Modification of this value was performed during post-processing through 
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the use of MATLAB and Simulink, where a select percentage of communication was artificially 

corrupted in order to increase the amount of noise. FER was modified in order to examine the 

effectiveness of the Hamming Distance metric for various levels of noise on the network. With 

increased error rate, the number of non-Side-Channel frames featuring higher than expected 

HD should be exponentially higher than instances with little to no noise. Through post-

processing, 22 different levels of FER were introduced to each of the 12 experiments, creating 

264 unique datasets for analysis. More information regarding the process of FER modification is 

shown in Section 4.5. 

4.5 – Pre-processing the Data 

With the data from the experiments captured and stored within a Wireshark file, it was 

important to parse it properly. All of the relevant data needed to be kept, while traffic not 

belonging to the OLSR network had to be stripped out and ignored. Due to the nature of 

monitoring wireless traffic, there are often a lot of packets captured which may belong to other 

networks within range. Fortunately, as part of its standard installation Wireshark includes a 

command line interface known as TShark. TShark allows a user to capture information similarly 

to Wireshark, but without a GUI. This tool also allows for the output of select frames and 

information from a capture file into a text file based on user-defined filter criteria. Several of 

the commands used for the filtering of traffic can be seen below in Figure 4.6. 
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Figure 4.6 – TShark Filter commands used in the generation of files. 

The five commands above, while all appearing nearly identical, actually provide a variety 

of information. The first command outputs a file called “allFCSCheck.txt”, which contains a 

binary list defining whether or not each of the frames captured suffered from natural error. 

This initial list is for all frames received, whether or not they were related to OLSR or the 

experiment. If a frame was corrupted, a value of 0 will be displayed for that particular frame. It 

is important to note that each of the output files generated will feature the frames in the order 

that they were received by the AirPCap device. The second command generates a file similar to 

that of command 1, with the exception that it filters out and displays only frames which have 

been transmitted using UDP with a destination of port 1337 or port 80, or if they were simply 

using the OLSR routing protocol. These filters allowed for the capture of all OLSR control 

packets, Side-Channel packets, and generated “Normal” traffic in the experiment. The third 

command also filters frames using the same criteria, but this time outputs a file titled 

“olsrPorts.txt”, containing the port values of all of the frames relevant to the experiment for the 

1) tshark -r "captureFile.pcapng" -T fields -e wlan.fcs_good >> 

allFCSCheck.txt   

 

2) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng" 

-T fields -e wlan.fcs_good >> olsrFCSCheck.txt 

 

3) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng" 

-T fields -e udp.dstport >> olsrPorts.txt 

 

4) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng" 

-T fields -e radiotap.db_antsignal >> SINRFile.txt 

 

5) tshark -Y "udp.port==1337 || udp.port==80 || olsr" -r "captureFile.pcapng" 

-x >> hexDataDump.txt 
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OLSR network. The fourth command generates the “SINRFile.txt” file, containing the Wireshark 

calculated Signal-to-Noise ratio for each captured frame. Finally, command 5 generates a file 

containing the data bytes captured by Wireshark in their hexadecimal format. 

With the data of the captured frames output to a file, it is then necessary to convert 

them from Hexadecimal into a format that can be analyzed. Using a java program originally 

created by Chea [3], the dumped hexadecimal data was serialized into a binary format and 

output to a file for use by MATLAB. Figure 4.7 shows an example of the type of conversion 

performed on a frame by the program. On the left are the Wireshark bytes in their hexadecimal 

format. These bytes represent the frame’s fields and data. To better evaluate what is provided 

in this data, it is important to recognize what is present in this text. The first column containing 

clusters of four digits is used to signify the position of each line within the hex dump. The start 

of each new frame is clearly defined by Wireshark through the use of the value “0000”. The 

middle values, shown in clusters of two hexadecimal digits, contain the actual data portion of 

the frames. Lastly, the rightmost column is an ASCII translation of the hexadecimal numbers 

within the frame. For the purposes of the Java program, only the first two columns are 

considered. The program captures each line of hexadecimal and then converts it into a binary 

sequence, appending the lines together in order to form a single binary sequence for each 

frame, removing the bits correlating to the FCS field. These bits are removed so that a new CRC 

may be incorporated into them using MATLAB. After all of the frames have been assessed by 

the program, a text output file is generated, and MATLAB post-processing may begin. Figure 
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4.8, presents a process diagram of the entire parsing process from start to finish. The 

significance of each of these files has been detailed in-depth in Section 4.1. 

 

Figure 4.7 – An example output of Chea’s [3] TShark hex dump Java program. 

 

 

Figure 4.8 – Process diagram illustrating the steps involved in parsing Wireshark capture files for MATLAB. 
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Chapter 5 – Analysis 

The goal of this analysis chapter is to determine whether or not it is possible to define a 

threshold, or range of thresholds that will detect Side-Channel communication with as few false 

negatives or false positives as possible in a MANET. Another important task is to compare the 

results presented by Chea [3] against the MANET results, to determine whether his stationary 

network could utilize the same threshold range presented below. 

5.1 – Performing the F-Score Calculation 

Using F-Score for calculation, threshold values from 1 – 30 were tested for each of the 

experiment scenarios, with the value presenting the highest F-Score value ultimately being 

chosen as the threshold as presented in Section 3.2. The following information presented in 

Table 5.1 shows the statistical information for a scenario with 14% of the total traffic consisting 

of Side-Channel communication, and using the actual (unmodified by MATLAB) calculated FER. 

Percentage of Frame Error Rate: 0.83% 

Total Number of Frames: 2,680 

Total Number of Uncorrupted Frames: 2663 

Total Number of Naturally Corrupted Frames: 17 

Total Number of Non-SC (Normal) Frames: 2316 

Total Number of Side-Channel Frames: 364 (14%) 

Table 5.1 – Statistical information regarding the 14% SC scenario using its unmodified 0.83% FER 



 

Moore | 58  

 

The process of calculating F-Score was described in-depth in the above Chapter 3, and as 

such will not be re-examined here. Instead, observe the results of the F-Score calculations for 

proposed threshold values from 1 – 30 in Table 5.2. With an F-Score value of 0.9973 (on a scale 

from 0 – 1), the threshold of 9 was selected in this scenario. Upon further examination of the  

F-Score results, it is evident that while a threshold value of 9 did not have the highest number 

of True Positives, it did in fact have a lower number of False Negatives than some of the higher 

thresholds. A threshold of 10 or higher had even fewer False Positives, but began to present a 

larger number of False Negatives, continuing this trend as the threshold grew higher. This 

suggests that the F-Score Calculation places a higher level of significance to the best harmonic 

combination of False Positives and False Negatives when considering a threshold value.   
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Threshold True(+) False(+) True(-) False(-) Accuracy Sensitivity Specificity Precision F-Score 

1 364 14 2302 0 0.9948 1 0.994 0.963 0.9811 

2 364 14 2302 0 0.9948 1 0.994 0.963 0.9811 

3 364 14 2302 0 0.9948 1 0.994 0.963 0.9811 

4 364 12 2304 0 0.9955 1 0.9948 0.9681 0.9838 

5 364 11 2305 0 0.9959 1 0.9953 0.9707 0.9851 

6 364 8 2308 0 0.997 1 0.9965 0.9785 0.9891 

7 364 6 2310 0 0.9978 1 0.9974 0.9838 0.9918 

8 364 5 2311 0 0.9981 1 0.9978 0.9864 0.9932 

9 363 1 2315 1 0.9993 0.9973 0.9996 0.9973 0.9973 

10 361 0 2316 3 0.9989 0.9918 1 1 0.9959 

11 352 0 2316 12 0.9955 0.967 1 1 0.9832 

12 331 0 2316 33 0.9877 0.9093 1 1 0.9525 

13 310 0 2316 54 0.9799 0.8516 1 1 0.9199 

14 279 0 2316 85 0.9683 0.7665 1 1 0.8678 

15 223 0 2316 141 0.9474 0.6126 1 1 0.7598 

16 159 0 2316 205 0.9235 0.4368 1 1 0.608 

17 107 0 2316 257 0.9041 0.294 1 1 0.4544 

18 63 0 2316 301 0.8877 0.1731 1 1 0.2951 

19 35 0 2316 329 0.8772 0.0962 1 1 0.1754 

20 15 0 2316 349 0.8698 0.0412 1 1 0.0792 

21 5 0 2316 359 0.866 0.0137 1 1 0.0271 

22 2 0 2316 362 0.8649 0.0055 1 1 0.0109 

23 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

24 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

25 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

26 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

27 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

28 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

29 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

30 0 0 2316 364 0.8642 0.00 1.00 NaN NaN 

Table 5.2 – Demonstration of F-Score results used to select a threshold of 9 for the given scenario. 
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5.2 – Assessing a Threshold Range 

The F-Score calculation was tested against the data from 252 out of the total 264 experiments 

in order to determine the possibility of a potentially universal threshold, or range of thresholds 

that would allow for the detection of a Side-Channel in any network. The scenarios for an FER of 

0% were omitted for these calculations, as even though the experiments featured an incredibly 

low actual FER (0.4% - 0.8%), the likelihood of establishing communication with an absolutely 

0% FER can be considered virtually impossible.  Table 5.3 contains the calculated Optimal HD 

Thresholds for these experiments, where each column represents a different percentage of 

Side-Channel communication, and each row is the percentage of simulated FER. By graphing 

these calculated thresholds, such as in Figure 5.1 or Figure 5.2, it initially appears as though 

there is very little consistency in thresholds. As the percentage of FER increases, the threshold 

fluctuates seemingly at random. While there is some observable patterning in the HD, analyzing 

the data in this way provides what appears to be a range of thresholds from an HD value of 5 up 

to an HD value of 15. This spread of threshold ranges is far too large to be considered effective, 

and establishing a cohesive range of thresholds would be unreliable. Fortunately, there are 

ways to narrow down these threshold values into an acceptable range. 
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Figure 5.1 – A graph showing the calculated Optimal HD Threshold for each SC percentage where each line represents the percentage of FER. 

 

Figure 5.2 – An FER based examination of the calculated Optimal HD Thresholds. 
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While the huge variance in calculated thresholds makes determining a narrow range of 

thresholds appear to be quite difficult, further inspection of the data suggests that this is not 

actually the case. Observe Table 5.3, and notice that the mean, median and mode of these 

thresholds fall between 10 and 13, and begins to normalize after the percentage of Side-

Channel increases beyond 25%. Taking into consideration how HD operates, you cannot suggest 

that an HD value is not a whole number; you must round up or down (i.e. you cannot have an 

HD that is 11 ½ bits different from the expected CRC). By rounding these HD threshold means, a 

consistent range of thresholds with an average mean of 11 – 12 appears, all calculated with a 

substantially high typical F-Score hovering around 0.99.   

By calculating the Standard Deviation of the thresholds for each of the varying amounts 

of Side-Channel, it is possible to say with 95% and 99% confidence that the range of Optimal 

Thresholds still falls between the 11 – 12 range (with rounding), as shown in Figures 5.3 and 

5.4. In addition to this, as the percentage of Side-Channel communication increases past 19%, 

the mean threshold remains relatively consistent, with a maximum variance of 0.6. 
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  9% 12% 14% 19% 22% 25% 28% 30% 33% 35% 37% 40% 

0% FER 1 1 1 1 1 1 1 1 1 1 1 1 

Actual FER  9 7 9 8 6 8 7 7 7 6 6 5 

5% FER 11 11 10 10 10 9 9 10 9 9 9 9 

10% FER 11 11 11 10 10 10 10 10 9 10 10 10 

15% FER 12 11 11 11 10 10 10 10 10 10 10 10 

20% FER 11 12 12 11 11 11 11 11 10 10 10 10 

25% FER 12 12 12 12 11 11 11 11 10 10 11 11 

30% FER 13 11 11 11 11 11 11 11 10 11 11 11 

35% FER 13 12 12 11 11 11 11 11 11 11 11 11 

40% FER 13 12 13 12 12 11 11 11 11 11 11 11 

45% FER 12 12 12 12 11 11 11 11 11 11 11 11 

50% FER 13 13 13 12 12 12 12 11 11 11 11 11 

55% FER 13 12 12 12 12 11 12 11 11 11 11 11 

60% FER 13 12 13 12 12 12 11 11 11 11 11 11 

65% FER 13 13 13 12 12 12 12 11 11 11 11 11 

70% FER 13 13 13 12 12 12 12 12 12 11 11 11 

75% FER 13 12 12 12 12 12 12 11 11 11 11 11 

80% FER 13 13 13 12 12 12 12 12 12 11 12 12 

85% FER 14 13 13 12 12 12 12 12 12 12 12 11 

90% FER 13 13 13 12 12 12 12 12 12 12 12 12 

95% FER 13 13 13 12 12 12 12 12 12 12 12 12 

100% FER 13 13 13 12 12 12 12 12 12 12 12 11 

             Mode 13 12 13 12 12 12 12 11 11 11 11 11 

Mean 12.4 12.0 12.1 11.4 11.2 11.1 11.1 11.0 10.7 10.7 10.8 10.6 

Median 13 12 12 12 12 11 11 11 11 11 11 11 

Variance 1.26 1.85 1.29 1.06 1.96 1.23 1.59 1.25 1.61 1.73 1.79 2.15 

SD 1.12 1.36 1.14 1.03 1.40 1.11 1.26 1.12 1.27 1.32 1.34 1.47 

Kurtosis 3.26 8.65 1.44 5.44 9.42 2.20 4.77 7.50 2.33 7.63 7.80 
11.3

6 

Skewness -1.69 -2.55 -1.33 -2.23 -2.79 -1.53 -2.01 -2.28 -1.34 -2.36 -2.43 -3.05 

95% C.I. 0.47 0.57 0.47 0.43 0.59 0.46 0.53 0.47 0.53 0.55 0.56 0.61 

99% C.I. 0.62 0.75 0.62 0.56 0.77 0.61 0.69 0.61 0.70 0.72 0.73 0.80 

Low. Limit 
12.5

3 
11.4

3 
11.5

3 
11.5

7 
11.4

1 
10.5

4 
10.4

7 
10.5

3 
10.4

7 
10.4

5 
10.4

4 
10.3

9 

Up. Limit 
12.9

0 
12.5

2 
12.5

7 
11.8

6 
11.7

8 
11.6

1 
11.6

2 
11.4

2 
11.2

5 
11.2

2 
11.3

2 
11.2

3 

Table 5.3 – Optimal HD Thresholds for all 264 unique experiment combinations. 
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Figure 5.3 – Mean HD thresholds shown to fall within the suggested 11 – 12 range, with 95% confidence. 

 

Figure 5.4 – Mean HD thresholds shown to fall within the suggested 11 – 12 range, with 99% confidence. 
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5.3 – Using the Threshold to Find a Side-Channel 

Now that F-Score has been used to determine a threshold value, the results of the experiments 

must be tested against these thresholds. As was demonstrated in Section 5.1, the threshold 

calculation with the highest F-Score value should represent the most accurate value that avoids 

a large volume of False Positives and Negatives. By graphing the HD of each of the frames from 

one of the individual scenarios, it is possible to visually demonstrate how well these thresholds 

may actually perform when differentiating Side-Channel frames from normal traffic.  

 

Figure 5.5 – A visual representation of the HD values for all frames in a scenario with 14% Side-Channel traffic & 25% Frame Error Rate. 
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Channel frames and any naturally corrupted Normal Traffic. The question is, how accurate is 

this trend across multiple scenarios? If you take the mean of the HD for Side-Channel and 

Normal traffic from a population sample of all experiments featuring their actual FER 

percentages (Table 5.4), a distinct difference in these values is evident between traffic types. 

Using the suggested threshold range described above (11 – 12), one can see that this range fits 

nearly centered between the two HD mean trend lines in Figure 5.6.  
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By calculating the confidence level results at 95% and 99% confidence for each of the 

Normal and Side-Channel HDs, it can be stated that each of the HD means of Normal frames fall 

within the range of 8.0 +/-0.32 with 95% confidence, and 8.0 +/-0.42 with 99% confidence. 

Additionally, the population mean for Side-Channel frames falls within the range of 16.0 +/-0.54 

with a confidence level of 95%, and 16.0 +/- 0.70 with a confidence level of 99%. These results 

suggest that the appropriate threshold should exist somewhere between the calculated 

population means of the two values. To better interpret these results, please refer to Figures 

5.6 & 5.7, which showcase the calculated HD population means at 95% and 99% confidence, 

respectively. 

 

 

Figure 5.6 – The HD population means for Normal and Side-Channel traffic at 95% confidence. 
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Figure 5.7 – The HD population means for Normal and Side-Channel traffic at 99% confidence. 
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5.3 & 5.4), it was stated with 95% and 99% confidence that the threshold would exist within a 

range of 11 – 12. This is well within the isolation of the population means shown above for all of 

the tested percentages of Side-Channel traffic.  

In his work, Chea [3] suggested that a threshold would exist in the range of 15 – 16, but 

the results shown above advocate that the threshold should in fact exist within the realm of 11 

– 12. This difference in threshold is expected; as shown in Table 5.3, variation in Side-Channel 

frames will effectively skew the position of the mean Optimal Threshold based on the 
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presented by Chea [3], the total percentage of Side-Channel traffic was roughly 1% for his 

experiments. This implies that the threshold directly correlates to the ratio of Side-Channel 

traffic for a given period, and provides further proof that a Windowing technique could allow 

for more precise threshold detection in real-time. With F-Score shown to be capable in its 

ability to define a threshold based on HD, it is important to ensure the validity of the HD metric 

itself. Section 5.4 & 5.5 respectively explore the use of the Receiver Operating Characteristic 

curve and the Support Vector Machine learning algorithm to determine if the HD metric is 

useful for classification, or if the F-Score calculation presents a biased level of effectiveness. 

5.4 – ROC Curves 

The Receiver Operating Characteristic (ROC) curve is a plot of the True Positive Rate (TPR) 

against the False Positive Rate (FPR) (1 – Specificity) for all possible thresholds of a diagnostic 

experiment. The technique provides information on how effective a given feature is for a 

particular set of data. The calculation for the TPR is the same as Sensitivity (also referred to as 

“Recall”), which has been shown in Section 3.1 as part of the F-Score calculation and assesses 

how positive a given threshold is for the technique. The TPR and FPR calculations rely on the 

count of True/False Positives and True/False Negatives for a given threshold tested against a 

dataset. The general purposes of an ROC curve are to provide the following [59]: 

1. Demonstrate a tradeoff between Sensitivity and Specificity, where increasing one 

decreases the other 
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2. The closer that the area under the ROC curve is to 1, the better the classifier is at 

detection 

3. The closer the curve droops to the central 45-degree diagonal of the graph (less area 

under the curve), the less accurate the threshold can be considered 

 Assessing a threshold technique using an ROC curve is relatively simple: the more a 

curve represents a 90-degree angle, the more optimal the test is for that particular dataset 

[59] [60]. A prediction method with the best possible outcome would yield a point at the 

upper leftmost corner of the ROC space, which represents 100% Sensitivity (no False 

Negatives) and 100% Specificity (no False Positives). If an arbitrary guess at classification is 

taken, then the ROC curve should appear as a point along a 45-degree diagonal line, also 

referred to as the “Line of No Discrimination.” Figure 5.8 illustrates this concept, where 

Point A represents a perfect classification, Point B represents a moderate classification, 

Point C represents a poor classification. Point D may also represent an exceptional 

classification, as a curve along this point would describe the presence of Normal traffic. In 

the case of F-Score thresholds, an ideal threshold should have a high TPR, whilst 

maintaining a low FPR. Not all data is equal, so a technique may be more or less effective 

for a particular dataset. Performing an analysis using ROC curves will demonstrate how 

effective the calculated HD thresholds are for a given Side-Channel experiment. 
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Figure 5.8 – Determining the effectiveness of a point in the ROC space [61]. 

 Figure 5.9 presents the ROC curves calculated for the HD thresholds on a variety of 

scenarios. These scenarios range from 9% to 25% Side-Channel, and from 0.8% (Actual FER) 

to 95% FER. This wide range of scenarios was arbitrarily chosen to demonstrate how 

effectively the HD metric can be used across a large variation in scenarios. As mentioned 

above, the closer the area under the curve approaches 1, the more effective the test is 

against a particular dataset. Figure 5.9 demonstrates just how effective thresholds based on 

HD are against the Side-Channel problem. 
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Figure 5.9 – The ROC curve demonstrating the effectiveness of the F-Score thresholds, with a magnified view of the upper left corner. 

 As shown above, this technique suggests that the F-Score approach to defining 

thresholds is very effective when tested against the HD metric. It should be noted that the 

ROC curve is strongly influenced by False Negatives, and as such the scenarios with lower 

FER (less naturally corrupted Normal frames) depict a much higher area under the curve. 

There are some similarities between the ROC & F-Score approaches in that they both rely 

on the use of Sensitivity & Specificity; while these techniques are assessed very differently, 

it is important to disprove any bias that may be caused by similar variables. In order to do 

so, Section 5.5 explores the use of the SVM machine learning algorithm as an alternative 

means of utilizing the HD metric for detection of Side-Channel. 
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5.5 – Support Vector Machines 

For the purposes of this thesis, SVM classification was performed using a tool known as 

SVMlight [62]. SVMlight is an implementation of the Support Vector Machine algorithm 

programmed in C. Created by Thorsten Joachims of Cornell University in 2008, this software 

was based on Vapnuk’s Support Vector Machine to solve the problem of pattern recognition, 

regression, and learning a ranking function. The tool itself requires compilation from the source 

code, and consists of two compiled modules: “svm_learn” for learning from a training set, and 

“svm_classify.” Svm_classify uses a model generated from the svm_learn module in order to 

classify a test dataset. These modules are used through the Terminal window (Linux/OSX) or 

the Command Prompt (Windows). Figure 5.8 shows a typical training/classification performed 

using the data from one of the scenarios.  
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Figure 5.10 – Performing SVM learning and Classification in the SVMlight tool. 

The svm_learn module takes in a space delimited input file containing training 

examples. The format of each of the lines in the training example should look similar to: 

<target> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info> 

Where <target> is a value of +1 for a positive example, -1 for a negative example, or 0 

where the target will be treated as a negative example through transduction by default. A data 

entry can also have multiple features; for example, if characterizing a person, features could 

refer to traits such as: eye colour, hair colour, etc. For the purposes of this work, each data 

point (frame) has only one feature, since the only data that must be tested is the HD. Finally, 
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the value parameter is the actual digit to be checked against the SVM defined threshold, and in 

this example the HD was used as the value. It is also possible to force the tool to ignore a line, 

or provide additional information by commenting it out through the use of the # symbol. In 

order to correctly utilize SVMlight, the arrangement of the captured HD data had to be placed 

into the correct format (commonly known as “scaling”). An example of the formatting can be 

seen below: 

-1 1:0 #Normal 

+1 1:17 #Side-Channel 

The above example shows two lines taken directly from the training file used for 

analysis. Selecting feature numbers is a fairly straightforward process, where each item (in this 

case, a frame) is granted a feature based on some criteria such as weighted importance. Given 

that the Hamming Distance value is the only metric being used for classification in this analysis, 

each of the frames had a single feature, which was given a value of 1. 

For the SVM classification process a scenario with a moderate amount of Side-Channel 

was chosen, which for consistency, was the same experiment explored in Section 5.3. This 

experiment features 14% of the traffic as Side-Channel. In order to achieve the most optimal 

classification threshold, it is important to begin with a training set that demonstrates the 

cleanest separation between classes. As such, the training set was formed using a scenario with 

14% Side-Channel, but this time a version with an FER of just 0.83% was used. Selecting a 



 

Moore | 77  

 

scenario with such a low FER percentage ensures a significantly lower count of naturally 

corrupted frames, and offers clear separation between the HDs of the Side-Channel and Normal 

traffic. Training was accomplished using a feature set containing all 2680 frames from the 

scenario. Upon completion of the training process using the training data created based on the 

HD values for this experiment, SVMlight generated a model file for classification that contained a 

threshold value. For this particular experiment, SVMlight defined the threshold as 11.4559, which 

further supports the proposed threshold range of 11 – 12.  

With training complete, classification using this model was performed on the 14%SC @ 

25%FER scenario. The additional FER means more naturally corrupted frames appear, and a 

larger volume of Normal frames with high HD values offers a greater chance of 

misclassification. As shown in Figure 5.5, there are a large number of corrupted Normal frames 

with HDs in the 5 – 12 range. 

SVM classifies items as positive or negative based on their value in relation to the 

defined threshold. Items that are classified as positive are assigned an SVM rank above zero, 

while negative items are assigned a value below zero. Figure 5.11 illustrates the predictions 

assigned by SVM for each of the frames, where the Y-axis represents the SVM prediction and 

the X-axis represents the Frame Number. Frames above 0 on the Y-axis have been classified as 

Side-Channel, while frames below 0 are classified as Normal traffic. For reference, the data 

points have been colour-coded based on their actual type. Frames with an SVM ranking above 0 

that were accurately classified as Side-Channel frames have been categorized as “True 
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Positive,” while Normal frames have been assigned a category of True Negative/False Positive 

depending on their SVM ranking. As the SVM rank increases or decreases, so does the 

likelihood that the value belongs to a certain class. For example, it is 100% likely that a frame 

with a ranking of -11 is a Normal frame, while a frame with a rank of +31 is most definitely a 

Side-Channel frame. 

 

 Figure 5.11 – SVM Classification of Side-Channel based on HDs of a scenario with 14% SC at 25% FER. 

 In Figure 5.12, the SVM classification has been graphed relative to the Hamming 

Distance of each frame. The calculated SVM threshold of 11 has also been included for 

reference. While SVM does incorrectly classify 57 data points as Side-Channel, it still manages 

to correctly classify 2623 of the total possible 2680 frames. The threshold shown through this 

SVM training (11.4559) is also conducive to the range of thresholds (11 – 12) defined using F-

Score in Section 5.2. This signifies that SVM could potentially provide a system in which a 

suitable threshold for Side-Channel detection could be identified in a real-time approach. 
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Figure 5.12 – SVM Classification in relation to HD. 
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Chapter 6 – Conclusion 

6.1 – Summary 

This thesis has presented the concept of Side-Channel communication through the modification 

of the CRC polynomials in a MANET environment, and attempted to provide the reader with a 

thorough understanding of its functionality and the issues involved in detection. In addition to 

this, several works related to this seemingly obscure problem have been explored, and their 

contributions and limitations have been assessed. Elements from these works were drawn from 

or considered when attempting to develop experiment scenarios that could accurately 

represent a real-world environment. The concepts of Cyclic Redundancy Checks and the HD 

metric were presented, along with the role that they play when trying to recognize the 

presence of Side-Channel.  

 The goal of this thesis was to take a military oriented MANETs environment that had 

fallen victim to Side-Channel communication and not only attempt to detect it, but also provide 

a range of threshold values that could work across a variety of situations. Information on 

Platooning was considered and 12 experiment scenarios came to life through the use of an  

8-man platoon of nodes operating over the OLSR routing protocol in a MANET. Communication 

took place through the use of the Nping software, where Side-Channel traffic was directed 

through a different port than normal traffic. An agent node running a USB AirPCap packet 

capture card, in conjunction with Wireshark, was able to intercept messages on the network for 
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analysis. Through artificially introducing varying levels of FER into the captured data with the 

help of MATLAB, 264 unique experiment combinations were built and ready for analysis. With 

no simulators capable of offering the ability to output frame contents, including header 

information, all of the experiments had to be completed in a hardware environment with an 

emulated Side-Channel. 

 The F-Score mechanic was used to calculate a threshold based on HD for each of these 

scenarios, and it was identified that a mean threshold range of 11 – 12 provided accurate 

detection capabilities consistently across each of the experiments. Calculating the Standard 

Deviation and Confidence Interval of the thresholds for each of the varying amounts of  

Side-Channel made it clear that with 95% and 99% confidence, the range of Optimal HD 

Thresholds fell well within the defined range. In an attempt to illustrate the difference between 

Side-Channel and Normal traffic, a population sample was taken from the experiments and it 

was shown once again with Standard Deviation that Normal traffic typically had with 95% 

confidence a mean HD of 8.0 +/-0.32, and with 99% confidence a mean of 8.0+/-0.42. 

Comparatively, the HD of Side-Channel traffic was shown to hover in the area of 16.0 +/-0.54 

(95%) & 16.0 +/- 0.70 (99%). Further validation of the F-Score thresholds was performed using 

ROC curves, which showed that the HD-based F-Score thresholds were incredibly accurate in 

this purpose. 

  To verify whether or not HD was a valid metric, and to ensure that F-Score was not 

biased, the Support Vector Machine algorithm was also considered, and was trained to 
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successfully classify Side-Channel based on HD as a feature. This evaluation was performed by 

taking an optimal dataset with little to no noise that featured 14% Side-Channel and training 

the SVM classifier. Once a model had been established, another scenario with 14% Side-

Channel was selected for classification, with the key difference being the 25% FER present in 

the scenario. Not only did the results show that the HD metric could be used for classification 

using alternative approaches, it also presented a threshold that fits perfectly into the range 

proposed using F-Score. 

While gathering the appropriate training information on a given network will help to 

accurately determine a threshold, the proposed range of 11 – 12 should provide an excellent 

starting point towards solving the issue of Side-Channel communication. Many of the 

techniques explored within this work have resulted in thresholds of similar values belonging to 

this range. 

6.2 – Future Work 

There are several areas that have been identified within this paper which could certainly 

benefit from additional research. Firstly, the experiments presented all share one similar 

characteristic in that the same CRC polynomials were used for Normal and Side-Channel 

frames. This makes the assumption that the Koopman 32-bit CRC would be chosen as the CRC 

polynomial for Side-Channel; however, there is no guarantee that the malicious party may 

utilize one of the standard CRC polynomials. Future work should be conducted through 

thorough experimentation on different standard and non-standard CRC polynomials. An 
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example of this would be to use a CRC with merely a single bit difference from the CRC used for 

Normal traffic and determine if our estimated threshold range would remain effective. In the 

work of Chea [3], it is suggested that there are a total of 22342 CRC combinations, and an 

exhaustive comparison of the HD metric against even a small subset of these could prove 

beneficial. 

 Another key area that was not explored in this thesis, but would be an excellent topic to 

expand upon, would be the identification of a windowing approach for real-time detection. For 

the most part, the analysis within this thesis as well as in the previous works of Chea [3] or 

Madtha et al. [2] have been performed on a dataset of all frames captured during the entirety 

of an experiment’s duration. When attempting to detect anomalies in real-time on an active 

network, this is of course not possible since as long as the network is up, there will never be a 

natural point where frame generation halts. As such, many detection methods employ the use 

of a mechanism known as Windowing. Windowing is a form of processing commonly used 

when analyzing digital signals, where a small subset is taken out of a larger dataset for 

processing and analysis. The challenge is, of course, knowing how large of a window size to 

take. A windowing approach with a scenario broken into five 60-second windows was 

conducted, but not expanded upon in-depth. The results of the F-Score calculations for this 

rudimentary windowing approach have been included in Appendix B. 

 Finally, further work into the validation of the F-Score mechanic could be performed by 

comparing the calculated threshold range against those calculated through the use of several 
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machine learning algorithms. Other possible solutions which were considered and could be 

explored include: Markov Chains, Bayesian modelling, and K-means. Given that there is only 

one feature (Hamming Distance) used for the detection method described in this work, 

approaching other Machine Learning methods would be superfluous. This means that 

additional features may be explored to further strengthen threshold predictions.  
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Appendix A 

Chea’s [3] MATLAB Script for Post-Processing & HD Calculation 

t=fix(clock); 
year=num2str(t(1)); 
month=num2str(t(2)); 
day=num2str(t(3)); 
hour=num2str(t(4)); 
min=num2str(t(5)); 
sec=num2str(t(6)); 

  
execTime=strcat(year,month,day,hour,min,sec); 
scenarioName='AdHoc5N16kB50MB'; 

  
subScenarioName=scenarioName(6:15); 
subScenarioName2=scenarioName(1:7); 

  

  
strH1='Frame#'; 
strH2='CRCPoly:0x04C11DB7(Default)'; 
strH3='CRCPoly:Recieved(FCS)'; 
%strH4='CRCPoly:0x04C11DB7(In_Error)'; 
%strH5='CRCPoly:0x741B8CD7(On_SC)'; 
strH6='Calculated_HD'; 
strH7='Protocol'; 
strH8='isGood'; 
crc32V1=[1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1]; 
crc32V2=[1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 1]; 
crc32V3=[1]; 

  

  

  
%crcCalV1=comm.CRCGenerator(crc32V1,'InitialConditions',[1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1],'ReflectInputBytes',true,'ReflectChecksums',true,'FinalXOR',[1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]); 
%crcCalV2=comm.CRCGenerator(crc32V2,'InitialConditions',[1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1],'ReflectInputBytes',true,'ReflectChecksums',true,'FinalXOR',[1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]); 
crcCalV1=comm.CRCGenerator(crc32V1); 
crcCalV2=comm.CRCGenerator(crc32V2); 
deModulation=comm.CRCGenerator(crc32V3); 

  
%run through the fGood file to get the frame error 
fFER=fopen('isFCSGood.dat','r'); 
fCount=1; 
isGood = fgetl(fFER); 
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tally=0; 
while ischar(isGood) 
    if(isGood=='0') 
        tally = tally + 1; 
    end 

     
    isGood = fgetl(fFER); 
    fCount=fCount+1; 

     
end 
fclose(fFER); 

  

  
actualCorr= (tally/fCount)*100 
%FE 
percentageCorr=[0 actualCorr 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 

85 90 95 100]; 

  

  
strFNames = strcat('HDresult_',scenarioName,'_wiAWGN','_',execTime); 
strFMName=strcat('Metrics_',scenarioName,'_wiAWGN','_',execTime); 
strFMAName=strcat('Stats_',scenarioName,'_wiAWGN','_',execTime); 
strFSName=strcat('Summary_',scenarioName,'_wiAWGN','_',execTime); 
strFNSample=strcat('TestTrainSample_',subScenarioName2); %stores frames as 

frame# HD class(0-nonSC, 1-SC-ftp) starting at first ftp transmissoin 

  
strFSNameOut=strcat(strFSName,'.txt'); 
strFNSampleOut=strcat(strFNSample,'.txt'); 
fSOut = fopen(strFSNameOut,'wt'); 
%fprintf(fSOut,'           0.5MB            2.5MB            5.0MB     \n'); 
%fprintf(fSOut,'FER% OptimalThreshold  OptimalThreshold OptimalThreshold\n'); 
fprintf(fSOut,'%10s\n',subScenarioName); 

  
for corrVal = 1:22 
    ferNum = num2str(percentageCorr(corrVal)); 
    strFNameOut = strcat(strFNames,'_FE',ferNum,'.txt'); 
    strFMNameOut=strcat(strFMName,'_FE',ferNum,'.txt'); 
    strFMANameOut=strcat(strFMAName,'_FE',ferNum,'.txt'); 

     

     
    falsePos = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
    trueNeg = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
    falseNeg = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
    truePos = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
    strFName=('adHocMatlabInput.dat'); 
    fInput = fopen(strFName,'r'); 
    fGood = fopen('isFCSGood.dat','r'); 
    fProto = fopen('protoFile.dat','r'); 
    fSINR = fopen('SINRFile.dat','r'); 
    fOut = fopen(strFNameOut,'wt'); 
    fprintf(fOut,'%-10s %-32s %-32s %-19s %-16s %-

6s\n',strH1,strH2,strH3,strH6,strH7,strH8); 
    tline = fgetl(fInput); 
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    isFCSGood = fgetl(fGood); 
    protoType = fgetl(fProto); 
    SNRstr = fgetl(fSINR); 
    cc=1; 
    TotFrames=0; 
    TotGFrames=0; 
    TotCorFrames=0; 
    TotFTP=0; 

     
    isFTPLast=0; %0 not started yet, >0 save last seen frame number, start 

saving to array 
    sampleHDArray=[]; %after end of frames save to file from index 1 to 

(sizeofArray-(cc-ftp last)) 
    sampleClassArray=[]; %0-nonSC-NORMAL, 1-SC-FTP 
    sampleIndex=1; 
    %otherCC=1; 

  
    while ischar(tline) 
        protoName = 'NORMAL'; 
        matchFTP=strcmp('1337',protoType); 
        matchTCP=strcmp('80',protoType); 
        if(isFCSGood=='1' && (matchTCP==1 || matchFTP==1)) %when isGoodFile 1 

then good(True), 0 is bad(False) 
            TotFrames= TotFrames+1; %track total frames 

         
            ascVer=uint8(tline); 
            asTemp=ascVer-48; 
            X=double(asTemp); 
            m=X'; 

                 
            G1=step(crcCalV1,m); %calculate the default CRC on all frames 
            fcsPartV1=(G1(end-31:end))'; %get the good FCS part 

     
            if(matchTCP==1) 
                protoName='NORMAL'; 
            elseif(matchFTP==1) 
                isFTPLast=sampleIndex; %we have seen a ftp save the frame 

number and start saving to array 
                protoName ='FTP'; 
                G1=step(crcCalV2,m); %calculate the koopman CRC as SC 
            end 
            SNRValue = str2num(SNRstr); 
            r=rand; 
            if(r>=0 && r<(percentageCorr(corrVal)/100)) 
                TotCorFrames=TotCorFrames+1; %track all corrupted frames 

             
                %B1=bsc(G1,0.05); %send the G1 through the BSC 
                crcMod=awgn(G1,SNRValue); 
                B1=step(deModulation,crcMod); %send the G1 through the AWGN 
                %disp('B1') 
            elseif (r>(percentageCorr(corrVal)/100) && r<=1) 
                TotGFrames=TotGFrames+1; %track all good frames 

             
                B1=G1; 
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            end 

         
            fcsPartB1=(B1(end-31:end))'; 

         
            %do some Hamming calculation for each FCS value 
            hamV1vsB1 = binArray2HammingD(fcsPartV1,fcsPartB1); 
            %hamV1vsV2 = binArray2HammingD(fcsPartV1,fcsPartV2); 
            %hamV1vsV3 = binArray2HammingD(fcsPartV1,fcsPartV3); 

                          
            fprintf(fOut,'%-10d',cc); %'Frame#' 
            fprintf(fOut,' '); 
            fprintf(fOut,'%-d',fcsPartV1); %'CRCPoly:0x04C11DB7(d)' 
            fprintf(fOut,' '); 
            fprintf(fOut,'%-d',fcsPartB1); %'CRCPoly:Recieved(FCS)' 
            fprintf(fOut,' '); 
            fprintf(fOut,'%-19d',hamV1vsB1); %'Calculated HD' 
            fprintf(fOut,' '); 
            fprintf(fOut,'%-16s',protoName); %'Protocol' 
            fprintf(fOut,' '); 

         
            if(hamV1vsB1==0) 
                fprintf(fOut,'Good'); %'isGood' 
                fprintf(fOut,'\n'); 
                %otherCC=otherCC-1; %must take one from the total because its 

not saving in out array 
            else 
                if(isFTPLast>0) %start saving frames HD to array we only want 

bad 
                    sampleHDArray(sampleIndex)=hamV1vsB1; 
                    if(matchTCP==1) 
                        sampleClassArray(sampleIndex)=0; 
                    elseif(matchFTP==1) 
                        sampleClassArray(sampleIndex)=1; 
                    end 
                    sampleIndex=sampleIndex+1; 
                end 
                fprintf(fOut,'Bad'); %'isGood' 
                fprintf(fOut,'\n'); 
            end 

         
            if(matchTCP==1) 
                %protoName='NORMAL'; 
                for threshold = 1:30 

                                                
                    if(hamV1vsB1<=threshold)%True-: Correctly identified Non 

SC frame as Non SC NORMALHD<=Threshold 
                        tempVal = trueNeg(threshold); 
                        trueNeg(threshold) = tempVal + 1; 
                    elseif(hamV1vsB1>threshold)%False+:Incorrectly Identified 

non SC frame as SC NORMALHD>Threshold 
                        tempVal = falsePos(threshold); 
                        falsePos(threshold) = tempVal + 1; 
                    end  
                end 



 

Moore | 98  

 

            elseif(matchFTP==1) 
                TotFTP=TotFTP+1; %track FTP frames 
                %protoName ='FTP'; 
                for threshold = 1:30 
                    if(hamV1vsB1>threshold)%True+:Correctly identified SC 

frame as SC FTPHD>Threshold 
                        tempVal = truePos(threshold); 
                        truePos(threshold) = tempVal + 1; 
                    elseif(hamV1vsB1<=threshold)%False-:Incorrectly 

identified Non SC frame as SC FTPHD<=Threshold 
                        tempVal = falseNeg(threshold); 
                        falseNeg(threshold) = tempVal + 1; 
                    end 
                end  
            end 
        end 
        tline = fgetl(fInput); 
        isFCSGood = fgetl(fGood); 
        protoType = fgetl(fProto); 
        SNRstr = fgetl(fSINR); 
        matchFTP=0; 
        matchTCP=0; 
        cc=cc+1; 
        %otherCC=otherCC+1; 
    end 
    fclose(fProto); 
    fclose(fGood); 
    fclose(fOut); 
    fclose(fInput); 
    fclose(fSINR); 

  
    strMH1='Threshold'; 
    strMH2='True(+)'; 
    strMH3='False(+)'; 
    strMH4='True(-)'; 
    strMH5='False(-)'; 
    strMH6='Accuracy'; 
    strMH7='Sensitivity'; 
    strMH8='Specificity'; 
    strMH9='Precision'; 
    strMH10='F-Score'; 

  
    fMOut = fopen(strFMNameOut,'wt'); 
    fprintf(fMOut,'%-9s %-7s %-8s %-7s %-8s %-8s %-11s %-11s %-9s %-

7s(FER=%3s%%)\n',strMH1,strMH2,strMH3,strMH4,strMH5,strMH6,strMH7,strMH8,strM

H9,strMH10,ferNum); 

     
    bThresh = 0; 
    bFScore = 0; 

  
    for x = 1:30 

     
        %TP=truePos(x)/TotFTP; 
        %TN=trueNeg(x)/(TotGFrames+TotCorFrames); 
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        %FP=falsePos(x)/(TotGFrames+TotCorFrames); 
        %FN=falseNeg(x)/TotFTP; 

     
        TP=truePos(x); 
        TN=trueNeg(x); 
        FP=falsePos(x); 
        FN=falseNeg(x); 

     

     
        %Precision = Positive Predictive Value (PPV) = TP/TP+FP [missing from 

your equations] 
        %Recall = Sensitivity = True Positive Rate (TPR) = TP/TP+FN 
        %Specificity = True Negative Rate (TNR) = TN/TN+FP 

  

     
        %accuracy = ((TP+TN)/(TP+TN+FP+FN)); 
        %sensitivity = (TP/(TP+FN)); 
        %specificity = (TN/(TN+FP)); 
        %Precision = (TP/(TP+FP)); 

     
        accuracy = (TP+TN)/(TP+TN+FP+FN); 
        sensitivity = TP/(TP+FN); 
        specificity = TN/(TN+FP); 
        precision = TP/(TP+FP); 
        fScore = (2*precision*sensitivity)/(precision+sensitivity); 

         

         
        if(fScore > bFScore) 
           bThresh=x; 
           bFScore=fScore; 
        end 
        fprintf(fMOut,'%-9d',x);  
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-7d',TP); 
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-8d',FP);  
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-7d',TN);  
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-8d',FN); 
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-8.4f',accuracy); 
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-11.4f',sensitivity); 
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-11.4f',specificity); 
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-9.4f',precision); 
        fprintf(fMOut,' '); 
        fprintf(fMOut,'%-15.4f',fScore); 
        fprintf(fMOut,'\n'); 
    end 
    fclose(fMOut); 
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    fMAOut = fopen(strFMANameOut,'wt'); 
    if (corrVal==1) 
        fprintf(fMAOut,'Percentage of Actual Corrupted packets in Capture: %-

6.4f \n',actualCorr); 
    end 
    fprintf(fMAOut,'Percentage of Simulated Corrupted packets: %-6.4f 

\n',percentageCorr(corrVal)); 
    fprintf(fMAOut,'Total Frames: %d \n',TotFrames); 
    fprintf(fMAOut,'Total Good Frames: %d \n',TotGFrames); 
    fprintf(fMAOut,'Total Corrupted Frames: %d \n',TotCorFrames); 
    fprintf(fMAOut,'Total FTP Frames (Side-Channel): %d \n',TotFTP); 
    if(bThresh>0) 
        fprintf(fMAOut,'Best Threshold: %d',bThresh); 
        fprintf(fMAOut,'Best Threshold: %1.4f',bFScore); 
        fprintf(fSOut, '%10d\n',bThresh); 
    else 
       fprintf(fMAOut,'No Threshold found \n'); 
       fprintf(fSOut, '%10d\n',0); 
    end 

     
    fclose(fMAOut); 
    fSampleOut = fopen(strFNSampleOut,'at'); 
    %isFTPStop=sampleIndex-(otherCC-isFTPStart); 
    ind=1; 
    while ind<(isFTPLast+1) 
        if((isFTPLast-ind)>0) 
            fprintf(fSampleOut,'%d %d\n', 

sampleHDArray(ind),sampleClassArray(ind)); 
        else 
            fprintf(fSampleOut,'%d %d\n', 

sampleHDArray(ind),sampleClassArray(ind)); 
        end 
        ind=ind+1; 
    end 

     
    fclose(fSampleOut); 
    strFMANameOut 

  
end 
fclose(fSOut); 
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Appendix B 

F-Score Calculations for Window Scenario 1 

Threshold True(+) False(+) 
True 
(-) 

False 
(-) Accuracy Sensitivity Specificity Precision 

F-Score 
(FER=25%) 

1 0 136 399 0 0.7458 0.0000 0.7458 0.0000 0.0000 

2 0 135 400 0 0.7477 0.0000 0.7477 0.0000 0.0000 

3 0 134 401 0 0.7495 0.0000 0.7495 0.0000 0.0000 

4 0 123 412 0 0.7701 0.0000 0.7701 0.0000 0.0000 

5 0 111 424 0 0.7925 0.0000 0.7925 0.0000 0.0000 

6 0 96 439 0 0.8206 0.0000 0.8206 0.0000 0.0000 

7 0 77 458 0 0.8561 0.0000 0.8561 0.0000 0.0000 

8 0 54 481 0 0.8991 0.0000 0.8991 0.0000 0.0000 

9 0 31 504 0 0.9421 0.0000 0.9421 0.0000 0.0000 

10 0 12 523 0 0.9776 0.0000 0.9776 0.0000 0.0000 

11 0 7 528 0 0.9869 0.0000 0.9869 0.0000 0.0000 

12 0 2 533 0 0.996262 0.0000 0.9963 0.0000 0.0000 

13 0 2 533 0 0.9963 0.0000 0.9963 0.0000 0.0000 

14 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

15 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

16 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

17 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

18 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

19 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

20 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

21 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

22 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

23 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

24 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

25 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

26 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

27 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

28 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

29 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 

30 0 0 535 0 1.0000 0.0000 1.0000 0.0000 0.0000 
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F-Score Calculations for Window Scenario 2 

Threshol
d 

True(+
) 

False(+
) 

True 
(-) 

False 
(-) 

Accurac
y 

Sensitivit
y 

Specificit
y 

Precisio
n 

F-Score 
(FER=25%) 

1 150 101 285 0 0.8116 1.0000 0.7383 0.5976 0.7481 

2 150 101 285 0 0.8116 1.0000 0.7383 0.5976 0.7481 

3 150 99 287 0 0.8153 1.0000 0.7435 0.6024 0.7519 

4 150 95 291 0 0.8228 1.0000 0.7539 0.6122 0.7595 

5 150 84 302 0 0.8433 1.0000 0.7824 0.6410 0.7813 

6 150 69 317 0 0.8713 1.0000 0.8212 0.6849 0.8130 

7 150 55 331 0 0.8974 1.0000 0.8575 0.7317 0.8451 

8 150 35 351 0 0.9347 1.0000 0.9093 0.8108 0.8955 

9 150 25 361 0 0.9534 1.0000 0.9352 0.8571 0.9231 

10 147 14 372 3 0.9683 0.9800 0.9637 0.9130 0.9453 

11 143 9 377 7 0.9701 0.9533 0.9767 0.9408 0.9470 

12 137 4 382 13 0.9683 0.9133 0.9896 0.9716 0.9416 

13 124 1 385 26 0.9496 0.8267 0.9974 0.9920 0.9018 

14 110 0 386 40 0.9254 0.7333 1.0000 1.0000 0.8462 

15 87 0 386 63 0.8825 0.5800 1.0000 1.0000 0.7342 

16 63 0 386 87 0.8377 0.4200 1.0000 1.0000 0.5915 

17 44 0 386 106 0.8022 0.2933 1.0000 1.0000 0.4536 

18 32 0 386 118 0.7799 0.2133 1.0000 1.0000 0.3516 

19 22 0 386 128 0.7612 0.1467 1.0000 1.0000 0.2558 

20 10 0 386 140 0.7388 0.0667 1.0000 1.0000 0.1250 

21 4 0 386 146 0.7276 0.0267 1.0000 1.0000 0.0519 

22 2 0 386 148 0.7239 0.0133 1.0000 1.0000 0.0263 

23 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

24 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

25 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

26 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

27 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

28 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

29 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 

30 0 0 386 150 0.7201 0.0000 1.0000 0.0000 0.0000 
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F-Score Calculations for Window Scenario 3 

Threshold True(+) False(+) 
True 
(-) 

False 
(-) Accuracy Sensitivity Specificity Precision 

F-Score 
(FER=25%) 

1 196 85 255 0 0.8414 1.0000 0.7500 0.6975 0.8218 

2 196 85 255 0 0.8414 1.0000 0.7500 0.6975 0.8218 

3 196 84 256 0 0.8433 1.0000 0.7529 0.7000 0.8235 

4 196 81 259 0 0.8489 1.0000 0.7618 0.7076 0.8288 

5 196 75 265 0 0.8601 1.0000 0.7794 0.7232 0.8394 

6 196 61 279 0 0.8862 1.0000 0.8206 0.7626 0.8653 

7 196 44 296 0 0.9179 1.0000 0.8706 0.8167 0.8991 

8 196 29 311 0 0.9459 1.0000 0.9147 0.8711 0.9311 

9 195 21 319 1 0.9590 0.9949 0.9382 0.9028 0.9466 

10 194 18 322 2 0.9627 0.9898 0.9471 0.9151 0.9510 

11 190 11 329 6 0.9683 0.9694 0.9676 0.9453 0.9572 

12 173 1 339 23 0.9552 0.8827 0.9971 0.9943 0.9351 

13 159 1 339 37 0.9291 0.8112 0.9971 0.9938 0.8933 

14 145 0 340 51 0.9049 0.7398 1.0000 1.0000 0.8504 

15 123 0 340 73 0.8638 0.6276 1.0000 1.0000 0.7712 

16 89 0 340 107 0.8004 0.4541 1.0000 1.0000 0.6246 

17 64 0 340 132 0.7537 0.3265 1.0000 1.0000 0.4923 

18 39 0 340 157 0.7071 0.1990 1.0000 1.0000 0.3319 

19 25 0 340 171 0.6810 0.1276 1.0000 1.0000 0.2262 

20 7 0 340 189 0.6474 0.0357 1.0000 1.0000 0.0690 

21 3 0 340 193 0.6399 0.0153 1.0000 1.0000 0.0302 

22 1 0 340 195 0.6362 0.0051 1.0000 1.0000 0.0102 

23 1 0 340 195 0.6362 0.0051 1.0000 1.0000 0.0102 

24 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 

25 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 

26 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 

27 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 

28 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 

29 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 

30 0 0 340 196 0.6343 0.0000 1.0000 0.0000 0.0000 
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F-Score Calculations for Window Scenario 4 

Threshold True(+) False(+) 
True(-
) 

False(-
) Accuracy Sensitivity Specificity Precision 

F-Score 
(FER=25%) 

1 18 142 377 0 0.7356 1.0000 0.7264 0.1125 0.2022 

2 18 140 379 0 0.7393 1.0000 0.7303 0.1139 0.2045 

3 18 137 382 0 0.7449 1.0000 0.7360 0.1161 0.2081 

4 18 130 389 0 0.7579 1.0000 0.7495 0.1216 0.2169 

5 18 117 402 0 0.7821 1.0000 0.7746 0.1333 0.2353 

6 18 103 416 0 0.8082 1.0000 0.8015 0.1488 0.2590 

7 18 80 439 0 0.8510 1.0000 0.8459 0.1837 0.3103 

8 18 54 465 0 0.8994 1.0000 0.8960 0.2500 0.4000 

9 18 35 484 0 0.9348 1.0000 0.9326 0.3396 0.5070 

10 18 17 502 0 0.9683 1.0000 0.9672 0.5143 0.6792 

11 17 4 515 1 0.9907 0.9444 0.9923 0.8095 0.8718 

12 16 1 518 2 0.9944 0.8889 0.9981 0.9412 0.9143 

13 16 1 518 2 0.9944 0.8889 0.9981 0.9412 0.9143 

14 14 0 519 4 0.9926 0.7778 1.0000 1.0000 0.8750 

15 12 0 519 6 0.9888 0.6667 1.0000 1.0000 0.8000 

16 9 0 519 9 0.9832 0.5000 1.0000 1.0000 0.6667 

17 6 0 519 12 0.9777 0.3333 1.0000 1.0000 0.5000 

18 4 0 519 14 0.9739 0.2222 1.0000 1.0000 0.3636 

19 1 0 519 17 0.9683 0.0556 1.0000 1.0000 0.1053 

20 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

21 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

22 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

23 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

24 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

25 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

26 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

27 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

28 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

29 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

30 0 0 519 18 0.9665 0.0000 1.0000 0.0000 0.0000 

 

 



 

Moore | 105  

 

F-Score Calculations for Window Scenario 5 

Threshold True(+) False(+) 
True(-
) 

False(-
) Accuracy Sensitivity Specificity Precision 

F-
Score(FER=25%) 

1 0 128 410 0 0.7621 0.0000 0.7621 0.0000 0.0000 

2 0 128 410 0 0.7621 0.0000 0.7621 0.0000 0.0000 

3 0 128 410 0 0.7621 0.0000 0.7621 0.0000 0.0000 

4 0 125 413 0 0.7677 0.0000 0.7677 0.0000 0.0000 

5 0 113 425 0 0.7900 0.0000 0.7900 0.0000 0.0000 

6 0 97 441 0 0.8197 0.0000 0.8197 0.0000 0.0000 

7 0 84 454 0 0.8439 0.0000 0.8439 0.0000 0.0000 

8 0 56 482 0 0.8959 0.0000 0.8959 0.0000 0.0000 

9 0 38 500 0 0.9294 0.0000 0.9294 0.0000 0.0000 

10 0 19 519 0 0.9647 0.0000 0.9647 0.0000 0.0000 

11 0 13 525 0 0.9758 0.0000 0.9758 0.0000 0.0000 

12 0 6 532 0 0.9888 0.0000 0.9888 0.0000 0.0000 

13 0 3 535 0 0.9944 0.0000 0.9944 0.0000 0.0000 

14 0 2 536 0 0.9963 0.0000 0.9963 0.0000 0.0000 

15 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

16 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

17 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

18 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

19 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

20 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

21 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

22 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

23 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

24 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

25 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

26 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

27 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

28 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

29 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 

30 0 0 538 0 1.0000 0.0000 1.0000 0.0000 0.0000 
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Appendix C 

SVM Model Output File 

SVM-light Version V6.02 
0 # kernel type 
3 # kernel parameter -d  
1 # kernel parameter -g  
1 # kernel parameter -s  
1 # kernel parameter -r  
empty# kernel parameter -u  
1 # highest feature index  
2680 # number of training documents  
11 # number of support vectors plus 1  
11.4559208 # threshold b, each following line is a SV (starting with alpha*y) 
-0.20084786523640671407342495058401 1:9 #Normal 
0.20084786523640671407342495058401 1:11 #Side-Channel 
-0.20084786523640671407342495058401 1:10 #Normal 
0.20084786523640671407342495058401 1:9 #Side-Channel 
-0.20084786523640671407342495058401 1:9 #Normal 
0.20084786523640671407342495058401 1:11 #Side-Channel 
-0.20084786523640671407342495058401 1:9 #Normal 
0.20084786523640671407342495058401 1:12 #Side-Channel 
-0.19850157887958630453795194625854 1:9 #Normal 
0.19850157887935893086250871419907 1:12 #Side-Channel 

 

 


