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ABSTRACT 

Cardiovascular disease (CVD) is the leading cause of death among Canadian adults. 

Research has demonstrated an inverse relationship between the consumption of fermented 

dairy products and a decreased risk of CVD due to lactic acid bacteria used in the 

fermentation process which liberate small bioactive peptides from larger milk proteins (eg. 

casein). We observed that supplementation with 0.1% casein significantly increased the 

growth rate of L. helveticus R0389 and L. rhamnosus R0011 and increased the ACE-

inhibitory activity of their secreted peptide fractions. Peptide-containing supernatants of L. 

rhamnosus R0011 show comparable ACE inhibition to known antihypertensive peptides, 

VPP and IPP. Supernatants of milk ferments induced the production of the regulatory 

cytokine, IL-10, by THP-1 monocytes. Novel antihypertensive and immunomodulatory 

activities of individually synthesized peptides were also reported. By investigating the 

relationship between these bioactive properties, we can improve upon the use of probiotic 

organisms to confer maximal health benefits to Canadians. 

 

Keywords: lactobacillus, lactic acid bacteria, bioactive peptides, ACE inhibition, 

immunomodulatory, antihypertensive  
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1 INTRODUCTION 

1.1 Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease that affects millions of people 

around the world, and accounts for billions of dollars in health care costs every year. It is 

also a primary cause of cardiovascular disease (CVD) which, in the past decade, has 

become one of the leading causes of death around the world (FAO/WHO, 2001).  

Atherosclerosis is characterized by the build-up and rupturing of plaques that form along 

the arterial wall. These plaques are composed primarily of foam cells, immune cells, 

endothelial cells, smooth muscle cells and lipids. Although the mechanism responsible for 

the initiation of plaque formation is not completely understood, it has been recently 

accepted that the activation of the immune system plays an important role in the 

pathogenesis of atherosclerosis (Galkina & Ley, 2009; Lundberg & Hansson, 2010; 

Andersson et al., 2010). 

As mentioned previously, the exact cause of atherosclerosis is not known. However, 

it is understood that damage to the endothelial wall may be one mechanism of initiation of 

the disease. One example of this damage is oxidized low density lipoproteins (LDL) which 

can be retained on the arterial wall, leading to activation of both the innate and adaptive 

immune systems and the recruitment of macrophages, T-cells, dendritic cells (DCs) 

followed by various other immune cells (Lundberg & Hansson, 2010). Macrophages are of 

particular interest in the study of the atherosclerotic progression since they are believed to 

be one of the first inflammatory cells to respond to the development of the disease; they 

play a role in lipid retention, expression of toll-like receptors (TLRs), and in the production 

of pro-inflammatory cytokines. These pro-inflammatory cytokines have also been shown 
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to have multiple key roles in the atherogenic process (Galkina & Ley, 2009). Macrophages 

will engulf the fatty material to form foam cells which will begin to accumulate as fatty 

streaks in the wall of the artery. A harder capsule layer then begins to form around the fatty 

streaks – the initial step in plaque formation. With incoming macrophages, these foam cells 

will continue to form and grow and will eventually rupture, releasing oxidized cholesterol 

into the artery, recruiting additional white blood cells, and further contributing to plaque 

formation (Galkina & Ley, 2009). This accumulation of immune cells, and the rupturing 

of foam cells causes further buildup in the intima of the blood vessel leading to narrowing 

of the artery, decreased blood flow, and increased blood pressure. 

Various factors have been shown to increase an individual’s risk of atherosclerosis 

including high blood pressure, smoking, diabetes, and high blood cholesterol levels. High-

fat diets will also lead to elevated levels of LDL, further increasing the risk of 

atherosclerosis which can ultimately lead to a heart attack or stroke. Current treatments for 

atherosclerosis include the administration of drugs meant to regulate blood pressure and 

cholesterol levels such as statins (Figure 1A). Statins inhibit a particular reductase enzyme 

crucial for cholesterol synthesis and are able to directly and indirectly lower LDL levels 

and control vascular inflammation and thrombosis, leading to a decreased risk of CVD 

(Galkina & Ley, 2009). Statins also exhibit immunomodulatory effects, causing impaired 

leukocyte activation and migration (Andersson et al., 2010). A variety of synthetic 

angiotensin converting enzyme (ACE) inhibitors also exist to treat hypertension including 

captopril, lisinopril, and enalapril (Figure 1B). However, like statins, these drugs have been 

reported to cause numerous side effects such as hypotension, reduced renal function, 

cough, and rashes (Piepho, 2000; Phelan and Kerins, 2011).  
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 (A) 

lovastatin 
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captopril 

 

    

lisinopril 

 

 

 

enalapril 

 

Figure 1 - Examples of drugs available for the inhibition of cholesterol synthesis such as statins, 

(A) or ACE inhibitors used for the treatment of hypertension (B). (A) – lovastatin, the first statin 

to be marketed, isolated from Aspergillus terreus; (B) – ACE inhibitors captopril, lisinopril, and 

enalapril. Structures were drawn using ChemBioDraw Ultra 13.0. 

 

Although medications are available for patients with atherosclerosis, focus has 

recently been on the prevention of the disease via dietary and lifestyle modifications. 

Recently, it has been demonstrated that a dietary approach may reduce the risk of CVD 

development. Clinical studies have established a relationship between hypertension and 
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diet; implementation of modified dietary and lifestyle habits reduces blood pressure 

(Huang et al., 2013). Any reduction in blood pressure, no matter how small, can be 

incredibly effective in reducing one’s risk of developing CVD. According to Collins et al. 

(1994) a reduction in systolic blood pressure (SBP) of 10 – 12 mmHg and in diastolic blood 

pressure (DBP) of 5 mmHg may reduce the risk of stroke, coronary heart disease and all-

cause mortality by 40, 16 and 13%, respectively. Therefore, changes in diet or lifestyle, 

such as increased physical activity, weight reduction, smoking cessation, and potentially 

the consumption of functional foods or bioactive compound-containing products, could be 

sufficient to lower blood pressure in individuals with mild hypertension to prevent disease. 

1.2 Fermented Dairy Products 

There is evidence that consumption of low-fat dairy products, specifically fermented 

dairy products, can lower blood pressure and reduce hypertension, decreasing risk factors 

associated with the onset of CVD (Lamarche, 2008; Sonestedt et al., 2011). Although the 

exact role of fermented dairy products in the regulation of risk factors associated with CVD 

is not fully understood, the probiotic bacteria used in the fermentation process are thought 

to be responsible for much of the benefit provided by these fermented milk products. 

During fermentation, lactic acid bacteria convert lactose to various fermentation products, 

including lactic acid and acetic acid, and break down large milk proteins, both of which 

contribute to flavour development as well as cheese maturation in the production of these 

fermented dairy products (Haug et al., 2007; Tidona et al., 2009). The organic acids 

produced during fermentation can also aid in the absorption of various minerals, including 

iron and calcium (Haug et al., 2007). For these reasons, an interest in dietary prevention 
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has emerged in recent years, not only to reduce blood cholesterol levels, but to regulate the 

immune and inflammatory responses associated with atherosclerosis. 

Milk proteins play an important role in the benefits conferred by fermented dairy 

products. Bovine milk contains approximately 32 g/L of protein, 80% of which is 

comprised of casein proteins. The remaining 20% of milk protein is comprised mostly of 

whey proteins which include primarily α-lactalbumin and β-lactoglobulin, as well as 

lactoferrins, immunoglobulins and bovine serum albumin (Marshall, 2004; Jakala et al., 

2010). Although whey proteins are also used as a popular dietary supplement, and are 

proposed to also possess antimicrobial, antihypertensive, immunomodulatory and other 

bioactive properties (Marshall, 2004), the focus of most studies, including this thesis 

project, is on the more abundant casein proteins. Since caseins are the predominant protein 

found in milk, the majority of milk-derived peptides are liberated from casein proteins; 

therefore the investigation of caseins can provide a broader view of the different peptide 

sequences liberated during milk fermentation and their bioactive effects. The properties of 

caseins are also quite different from those of whey proteins; the coagulation of caseins in 

the intestinal tract increases hydrolysis as opposed to the fast acting soluble whey proteins 

that are quickly passed through the intestines, providing less opportunity for absorption of 

liberated peptides in the small intestine compared to caseins (Marshall, 2004). Caseins are 

phosphoproteins that form micelles (~ 0.04 to 0.3 µM in diameter) in milk that will 

coagulate at pH 4.6. Casein proteins are comprised of three types of casein (αs1- and αs2- 

casein, β-casein and κ-casein). Caseins increase the efficiency of calcium and phosphate 

transport in milk products (Griffiths and Tellez, 2013) and provide a substrate for the 

liberation of bioactive peptides through bacterial proteolysis during fermentation or 
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gastrointestinal digestion. Not only does the fermentation process allow for the liberation 

of bioactive peptides through microbial proteolysis (see section 1.3.2), but the fermentation 

of milk with lactic acid bacteria, specifically Lactobacillus helveticus, is thought to 

influence the rate and pattern of subsequent release of peptides during digestion (Matar et 

al., 1996).  

1.3 Lactic Acid Bacteria 

Lactic acid bacteria (LAB) are gram-positive bacteria, producing lactic acid as their 

major or sole product of carbohydrate fermentation. They are predominantly used in the 

food industry as starter strains for the fermentation of a wide variety of dairy products 

including yogurts and cheeses. Their resistance to acidic environments allows them to 

survive the fermentation process while most other microorganisms will not. In addition to 

their release of lactic acid, they produce various anti-microbial compounds such as 

bacteriocins, lantibiotics, peptides, and fatty acids that prevent the growth of pathogenic or 

spoilage bacteria during food processing (Zendo, 2013; Hayes et al., 2006). The most 

common species of LAB used in the fermentation industry include Streptococcus 

thermophilus, Lactococcus lactis, Lactobacillus helveticus, and Lactobacillus bulgaricus. 

1.3.1 Lactobacillus 

The Lactobacillus genus is often used as a starter strain in the food industry during 

fermentation. Lactobacilli species can be divided amongst three groups: Group I 

lactobacilli are obligate homofermenters, producing lactic acid as their sole product of 

fermentation. Group II are also homofermentative, however they can produce more 

oxidized fermentation products if O2 is present. Group III lactobacilli are 
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heterofermentative, and produce CO2 and ethanol in addition to lactic acid. Both strains 

used throughout this thesis work are Group I homofermentative LAB. 

Homofermentative lactobacilli will typically convert glucose into two molecules of 

pyruvate through glycolysis, which are then converted into two molecules of lactate. 

Heterofermentative LAB, however, utilize the pentose-phosphate pathway for the 

breakdown of glucose, releasing CO2, and leading to the production of lactate and ethanol 

from xylulose-5-phosphate. Many homofermentative Lactobacillus species are considered 

probiotic organisms. Probiotics are characterized as microorganisms that confer some 

health benefit to their host. The mechanisms underlying the health benefits of many 

Lactobacillus species have not yet been fully elucidated. However, it is believed that they 

act to protect against other microorganisms in the gut, strengthen the host immune system, 

maintain epithelial barrier function, and regulate pro-inflammatory responses (Bermudez-

Brito et al., 2012). Their production of lactic acid also prevents the growth of many 

pathogenic microorganisms either in the gut or during food processing (Bermudez-Brito et 

al., 2012). 

1.3.2 Proteolytic Activity of LAB 

Lactobacilli are nutritionally fastidious organisms and therefore their proteolytic 

system is crucial to both their growth in milk as well as to flavour development in various 

dairy products. Due to the inability of many Lactobacillus species to synthesize a majority 

of the amino acids that they require, they must rely on their proteolytic system, consisting 

of multiple proteinases, peptide transport systems and peptidases, in order to digest the 

larger milk proteins, transport the oligopeptides into the cell, and break them down into 

individual amino acids, respectively (Griffiths and Tellez, 2013; Savijoki et al., 2006). 
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Lactobacillus helveticus is an example of the very fastidious LAB and has been shown to 

have the highest proteolytic activity among various LAB species (Yamamoto et al., 1994; 

Beganovic et al., 2013; Genay et al., 2009). Although not as extensively studied, certain 

strains of L. rhamnosus may also be capable of liberating bioactive peptides from larger 

proteins in their growth environment. The most highly characterized strain of L. 

rhamnosus, L. rhamnosus GG, has been shown to produce two soluble proteins, p40 and 

p75, that are able to prevent cytokine-induced epithelial damage and apoptosis (Yan et al., 

2007). Few studies have been conducted to investigate the secreted products of L. 

rhamnosus species such as peptides or other low molecular weight (< 10 kDa) compounds. 

However, one study by Yang et al. (2014) showed that the supernatant of L. rhamnosus 

GR-1 in de Man Rogosa Sharpe (MRS) medium was able to reduce inflammation by 

preventing the lipopolysaccharide (LPS)-induced production of pro-inflammatory 

cytokines in the maternal plasma of pregnant CD-1 mice. While the proteolytic systems of 

L. helveticus species have been more extensively characterized, few studies have 

investigated the peptides liberated by strains of L. rhamnosus and their bioactive properties 

compared to those produced by the highly characterized probiotic L. helveticus. However 

many species of lactobacilli possess similar proteolytic enzymes; it would therefore benefit 

the field of probiotics to direct more attention towards less characterized Lactobacillus 

species and the potential health benefits they may confer. 

Lactobacillus species are equipped with a variety of cell-envelope proteinases 

(CEPs) which act to break down larger milk proteins in order to supply the bacteria with 

the amino acids required for growth. These CEPs will degrade larger milk proteins, such 
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as casein, to produce smaller peptides which are taken up into the cell and further broken 

down by a variety of intracellular peptidases.  

1.3.2.1 Cell Envelope Proteinases 

A variety of CEPs have been identified in a select number of LAB species. 

Expression of CEPs will vary not only between LAB species, but even between strains of 

the same species. Lactobacillus species will typically express between 1 and 4 CEPs which 

include PrtH, PrtH2, PrtH3, PrtH4 (Griffiths and Tellez, 2013; Savijoki et al., 2006) and 

the more recently discovered PrtH5 (Smeianov et al., 2007). CEPs are synthesized as 

inactive pre-proteinases; maturation to an active proteinase often occurs with the cleavage 

of a portion of the N-terminal sequence, a process which requires the aid of an additional 

PrtM chaperone protein (Smeianov et al., 2007; Beganovic et al., 2013). Many experiments 

have been performed to characterize the different CEPs expressed by different L. helveticus 

strains (Broadbent et al., 2013; Martin-Hernandez et al., 1994; Ono et al., 1997; Pederson 

et al., 1999). Genay et al. (2009) found that prtH2 was more prevalent than prtH in a variety 

of L. helveticus strains. However when Broadbent et al. (2011) included an additional two 

proteinase genes in their comparison, they found prtH3 to be most commonly expressed 

among helveticus strains. The genome of L. helveticus R0052 revealed only one prt gene 

encoding for PrtH4 (Tompkins et al., 2012) and that of L. helveticus H10 contains two 

proteinase encoding genes (Zhao et al., 2011). L. helveticus CNRZ 32 is the only helveticus 

strain known to date to carry genes encoding for four distinct CEPs (PrtH, PrtH2, PrtH3, 

and PrtH4) (Broadbent et al., 2013). Not only does each strain express a different 

combination of proteinases, but the expression of those CEPs is dependent on the strain’s 

growth medium and the protein/peptide concentration within their growth environment. 
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Various genomic and microarray experiments have provided evidence of upregulation of 

particular genes that encode for CEPs, as well as genes for other proteins involved in 

peptide transport and degradation, in milk (high in protein, low in amino acids) as 

compared to the complex amino acid rich MRS broth typically used for the propagation of 

lactobacilli, or even in the gut (O’Sullivan et al., 2009; Smeianov et al., 2007) An increase 

in growth rate is also observed when Lactobacillus species are grown in a medium with 

additional supplementation of casein. The increase in substrate concentration increases the 

expression of proteinase-encoding genes, leading to quicker protein degradation, and rapid 

growth. The opposite is observed when the growth medium is supplemented with an excess 

of peptides or casein hydrolysate. Since the organism is provided with the oligopeptides 

and amino acids it requires, the expression of prt genes, and the growth rate decreases 

(Wakai et al., 2012; Hebert et al., 2000). Although the proteolytic system of Lactobacillus 

is quite efficient at liberating peptides from larger milk proteins, according to Foucaud & 

Juillard (2000), only approximately 25% of those peptides are transported into the cell, 

leaving the rest to be found in the extracellular environment. 

1.3.2.2 Peptide Transport Systems 

Peptides that are required to supply the cells with the necessary amino acids are 

transported into the cell through specific peptide transport systems, the most common being 

the oligopeptide Opp transport system. The Opp transporter is a pentameric protein 

complex consisting of a substrate-binding lipoprotein (OppA), two integral membrane 

proteins (OppB and OppC), and two membrane-bound cytoplasmic adenosine triphosphate 

(ATP)-binding subunits (OppD and OppF) (Beganovic et al., 2013). The sequence of L. 

helveticus DPC4571 revealed genes encoding for the Opp transport system, but also for the 
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di- and tri-peptide transport systems, Dpp and DtpT, respectively (Callanan et al., 2008). 

Other L. helveticus strains, such as H10, have genes that encode for only two of the three 

transport systems, Opp and DtpT (Zhao et al., 2011). Each Lactobacillus species expresses 

substrate specific transport systems, however a preference for hydrophobic basic peptide 

substrates has been observed (Juillard et al., 1998). Once transported into the cell, the 

peptides are then further broken down by intracellular peptidases to release their individual 

amino acids. 

1.3.2.3 Intracellular Peptidases 

A variety of aminopeptidases (pepN, pepR, pepT, pepT2) and endopeptidases 

(pepE, pepO, pepO2) have been identified in Lactobacillus species when grown in milk 

(Savijoki et al., 2006). Additional peptidases were found to be present when grown in both 

milk and MRS broth including pepC, pepD, pepF (Smeianov et al., 2007). Broadbent et al. 

(2011) identified upwards of 20 peptidase genes encoded by L. helveticus CNRZ32. A large 

variety of peptidases are encoded by different strains of L. helveticus and their expression 

may be dependent on the environment in which they are grown (Wakai et al., 2013). It was 

observed that particular antihypertensive peptides, previously known to be produced by 

certain LAB species, were not released from casein cleaved by a purified CEP from L. 

helveticus (Yamamoto et al., 1993).  

Various peptidases such as pepR in L. helveticus and L. rhamnosus have been 

specifically identified as playing a crucial role in the formation of bioactive peptides from 

longer peptide sequences (Shao et al., 1997; Varmanen et al., 1998). Ueno et al. (2004) 

also identified a peptidase in another helveticus strain responsible for the cleavage of 

oligopeptides to form the antihypertensive peptides, VPP and IPP.  
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1.3.3 Bioactive Peptides 

Dairy products fermented with LAB have been shown to reduce the risk of CVD; 

therefore the elucidation of their mechanism of bioactivity is of great interest (Lamarche, 

2008; Sonestedt et al., 2011). Various Lactobacillus species are used in the fermentation 

of milk products, each with a unique set of enzymes that aid in the release of bioactive 

components from the milk proteins. Many dietary proteins have been found to contain 

encrypted functional peptide sequences that are released during the gastrointestinal 

breakdown of these proteins or by microbial proteolysis during food processing. These 

peptides, of approximately 2 to 20 amino acids long, are thought to provide benefits to the 

cardiovascular, immune, digestive, and nervous systems (Meisel, 1997; Tidona et al., 2009; 

Korhonen and Pihlanto, 2006). Following digestion, peptides can either be absorbed 

through the intestine to enter the bloodstream intact, causing systemic effects, or can 

interact directly with intestinal cells producing local effects in the GI tract (Erdmann, 

2008). Increased research surrounding functional foods and dietary approaches may lead 

to cost effective alternatives for lowering the risk of CVD and other chronic diseases. 

Bioactive peptides can be found in a variety of dietary products and other animal or 

plant sources, however dairy products have the most abundant source of food-derived 

bioactive peptides (Moller et al., 2008). Bioactive peptides can be released from larger 

proteins through enzymatic proteolysis, gastrointestinal digestion or during food 

processing (Kohornen and Pihlanto, 2006; Aluko, 2015). Milk and fermented dairy 

products are rich in larger proteins, such as caseins, which act as a substrate for the 

proteolytic enzymes of LAB in order to release bioactive peptides. This results in a higher 

concentration of peptides and amino acids in fermented milks, compared to non-fermented 
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milks. Bioactive peptides released from the whey fraction have also been identified 

(reviewed in Marshall et al., 2004), however this study focuses predominantly on casein-

derived bioactive peptides. The release of bioactive peptides from milk proteins is largely 

dependent on both fermentation time as well as on the bacterial strain for fermentation 

(Jensen, 2009). These casein-derived bioactive peptides have a wide variety of activities 

including antimicrobial, antihypertensive, antioxidant, and immunomodulatory properties 

(Tidona et al., 2009; Silva and Malcata, 2005). The two bioactive properties of interest in 

this study were the antihypertensive and immunomodulating properties of casein-derived 

peptides. 

1.3.3.1 Antihypertensive Peptides 

Of the knowledge surrounding bioactive peptides, those with antihypertensive 

properties, along with immunomodulating peptides, are most favourable for the 

incorporation into food products to provide a particular health benefit (Meisel & 

Bockelmann, 1999). Most peptides classified as being antihypertensive elicit their effect 

through the inhibition of the angiotensin converting enzyme (ACE). ACE, a carboxy-

terminal dipeptidyl exopeptidase, is a part of the renin angiotensin system (RAS) and plays 

an important role in the regulation of blood pressure by cleaving the carboxy-terminal His-

Leu of the decapeptide angiotensin I to form the octapeptide angiotensin II, a vasopressor 

(Unger, 2002; Turner and Hooper, 2002). ACE also inhibits the synthesis of the 

vasodilator, bradykinin, collectively increasing blood pressure (Figure 2A). ACE is located 

on the surface of vascular endothelial cells in multiple organs including the brain, heart, 

lungs, and intestine (Turner and Hooper, 2002). Human somatic ACE (~ 140 kDa) contains 

two functionally active domains; the C-terminal domain is typically involved in blood 
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pressure regulation and the N-terminal domain is involved in hematopoietic stem cell 

differentiation and proliferation (Phelan and Kerins, 2011). Inhibitors of ACE are 

frequently used to reduce blood pressure in hypertensive individuals. Natesh et al. first 

published the crystal structure of the human testicular ACE enzyme in 2003, complexed to 

one of the most commonly used synthetic inhibitors, lisinopril. ACE inhibitors bind to both 

catalytic domains of the enzyme but have greater affinity for, and inhibitory activity 

against, the C-terminal domain (Natesh et al., 2003). Recent studies have demonstrated the 

strong influence of peptide sequence and structure on ACE-inhibitory activity. Binding of 

inhibitors to ACE seems to be highly dependent on the C-terminal tripeptide sequence of 

the substrate (FitzGerald et al., 2000). Early on, Cheung et al. (1980) demonstrated the 

importance of the C-terminal dipeptide residues and suggested that ACE preferred 

substrates with more hydrophobic residues at the C-terminal positions with peptides 

containing C-terminal tryptophan, tyrosine, phenylalanine, and proline residues being most 

effective at binding the enzyme. Inhibitors of ACE will prevent production of the 

vasopressor, angiotensin I and inhibit the degradation of bradykinin, collectively resulting 

in reduced blood pressure (Figure 2B).  
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Figure 2 - Function of angiotensin I converting enzyme (ACE) in the renin angiotensin system 

(RAS) and its role in the regulation of blood pressure (A); The role of ACE-inhibiting peptides to 

prevent the production of angiotensin II and the metabolism of bradykinin to reduce blood pressure 

(B). 

 

The ACE inhibition of various peptides and fermented milk products in vitro has 

been studied quite extensively. ACE inhibitory properties of peptides can be measured in 

vitro using a hippuryl-L-histidyl-L-leucine (HHL) substrate which is cleaved by ACE to 

form hippuric acid and L-histidyl-L-leucine. Liberated hippuric acid can be measured 

spectrophotometrically as an indication of ACE activity (Cushman and Cheung, 1971). 

Two previously identified ACE inhibiting peptides, VPP and IPP, have been shown to 

reduce blood pressure in spontaneously hypertensive rats (SHR) as well as in hypertensive 

human subjects with an IC50 of 5 and 9 μM, respectively (Nakamura et al., 1995a; 

Yamamoto et al., 1994). However, apart from these two tripeptides, many antihypertensive 

peptides have been identified and characterized in in vitro experiments, but have not been 

(A) 

(B) 
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able to retain ACE-inhibitory activity in vivo (Erdmann et al., 2008). The difficulty in 

establishing a relationship between the two is a result of two main factors: the 

bioavailability of these peptides in circulation has yet to be fully investigated, and peptides 

which show bioactivity in vitro may undergo proteolytic digestion in the gastrointestinal 

tract, rendering them inactive. The opposite can also occur in which peptides which show 

no bioactivity in vitro can be cleaved during digestion to form a bioactive peptide with 

antihypertensive properties. This can make it difficult to identify and characterize peptides 

with antihypertensive properties both in vitro and in vivo. Manso et al. (2003) and Savoie 

et al. (2005) showed that IPP could be liberated from casein proteins in the gastrointestinal 

(GI) tract by simulating GI fluids using the digestive enzymes trypsin, pancreatin and 

pepsin. As mentioned previously, the binding of a substrate to ACE is highly dependent on 

its amino acid sequence and secondary structure; the same has been found for the stability 

of a peptide in vivo. Through multiple GI digestion studies, Mizuno et al. (2004) were able 

to show that some peptides, particularly those containing C-terminal Pro and Pro-Pro 

residues, were stable under a simulated gastrointestinal environment. Interestingly, C-

terminal proline residues were also shown to enhance bioavailability of peptides 

(Vermeirssen, 2004). Foltz et al. (2007) were able to detect significantly increased levels 

of both IPP (897 ± 157 pmol/L) and LPP (152 ± 85 pmol/L), compared to the placebo 

control (555 ± 80 pmol/L and 96 ± 34 pmol/L, respectively) in the plasma of individuals 

who consumed a lactotripeptide (LTP)-enriched yogurt beverage containing eight ACE 

inhibitory peptides, including IPP. Jauhiainen et al. (2007) also found evidence for the 

absorption of IPP from the GI tract into the bloodstream after a single oral dose by using 

radiolabelled tripeptides to visualize their absorption, distribution and excretion. Many 
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clinical studies have also demonstrated the hypotensive effects of treatments with 

lactotripeptides; these studies have reported decreases in SBP of 3 mmHg (de Leeuw et al., 

2009), 6 mmHg (Turpeinen et al., 2009), up to 16 mmHg (Nakamura et al., 2009).  

Milk fermented with L. helveticus has also been shown to have antihypertensive 

properties, and higher ACE-inhibitory and proteinase activity than milks fermented with 

other LAB species (Yamamoto et al., 1994). These fermented milks were also found to 

contain the VPP and IPP peptides. When milk was fermented with a proteinase-deficient 

variant of the same L. helveticus strain, the antihypertensive effects were no longer 

observed. It is therefore presumed that these particular ACE-inhibiting peptides are 

produced as a result of the proteolytic activity of L. helveticus (Yamamoto et al., 1994). 

Interestingly, pure tripeptides seem to have less of an antihypertensive effect than the milk 

products containing them (Sipola et al., 2001; Jauhiainen et al., 2005). It was thought that 

minerals such as calcium and potassium present in the milk may contribute to the 

bioactivity, however Jauhiainen et al. (2005) found that minerals alone were not able to 

attenuate the increase in blood pressure as effectively as fermented milk products. These 

products may, however, help to improve the bioavailability of these peptides compared to 

administering them in other media (Jakala, 2010). VPP and IPP have already been 

incorporated into food products in certain countries around the world and are currently 

available to the public. Calpis (by Calpis Co., Japan) is a commercially available soft drink 

product that consists of milk fermented with L. helveticus CP790 and S. cerevisiae 

containing VPP and IPP. Evolus (by Valio, Finland) is another milk product, fermented 

with L. helveticus LBK-16H containing IPP.  C12 (by DMV International, The 

Netherlands), another available product, is a casein hydrolysate that contains the peptide 
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FFVAPFEVFGK. All of these products have been shown to have antihypertensive effects 

in spontaneously hypertensive rats as well as in mildly hypertensive individuals (Tidona et 

al., 2009; FitzGerald et al., 2004).   

The proteolytic mechanisms responsible for the activation of many 

antihypertensive peptides still remain unknown; however it has been suggested that they 

may require further activation after entering the digestive tract. Maeno et al. (1996) isolated 

a heptapeptide (KVLPVPQ) from casein hydrolyzed by purified CEPs. The heptapeptide 

showed little ACE-inhibitory activity, however after digestion with pancreatin, a 

hexapeptide was generated (KVLPVP) with high ACE-inhibitory activity. Although many 

of these peptides are characterized as antihypertensive due to their ACE-inhibitory activity, 

that is only one of many mechanisms of bio-activation responsible for the antihypertensive 

properties of milk-derived peptides. While recent clinical studies, such as those described 

above, report hypotensive effects by treatment with lactotripeptides, many clinical studies 

have failed to show ACE inhibiting effects with these putative antihypertensive peptides 

(Wuerzner et al., 2009; Engberink et al., 2008) therefore there must be additional 

mechanisms responsible for the blood pressure lowering effects observed (Jakala, 2010). 

Other studies have also found treatment with lactotripeptide-containing products results in 

either no significant effect on SBP or DBP, or in only short-term reduction of blood 

pressure (2 mmHg) (Engberink et al., 2008; van der Zander et al., 2008). Although the 

results of in vitro experiments regarding the benefits of antihypertensive peptides are quite 

consistent, in vivo results, including human experiments, are more contradictory. Outcomes 

of these studies seem to be highly dependent on dosage as well as duration of treatment 

(Nakamura et al., 1995b). This suggests a need for more standardized methodology and 
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investigative methods regarding antihypertensive effects of peptide-containing products on 

humans. 

Antihypertensive peptides studied in vivo also have little to no effect on 

normotensive subjects, meaning they do not exert an acute hypotensive effect (Erdmann, 

2008; FitzGerald et al., 2004). Therefore, while ACE inhibitory peptides cannot be 

administered as a solitary treatment to individuals with mild hypertension as a low cost 

alternative to synthetic drugs, they could potentially be used as a preventive measure to 

decrease the risk of developing hypertension.  

1.3.3.2 Immunomodulatory Peptides 

Lactobacilli, as well as their products secreted during fermentation, have a large 

impact on the host immune system and can activate both the innate and, indirectly, the 

adaptive immune systems by binding to pattern recognition receptors (PRRs) which 

recognize conserved molecular structures of bacteria (or viruses) known as microbe 

associated molecular patterns (MAMPs), a term recently adapted from the previously used 

pathogen-associated molecular patterns (PAMPs) since not all of these organisms are 

pathogenic (Wells, 2011). PRRs include nucleotide oligomerization domain (NOD)-like 

receptors (NLRs) and the highly characterized toll-like receptors (TLRs). There are 10 

known TLRs in humans and 12 in mice (Kawai, 2010). Human TLRs 1, 2, 4, 5, 6, and 11 

are expressed on the surface of immune cells and recognize mainly microbial membrane 

components. TLR4, specifically, is responsible for the recognition of bacterial 

lipopolysaccharide (LPS), with the help of LPS-binding protein and CD14. These 

interactions will initiate signal transduction by recruiting intracellular adaptor proteins such 

as myeloid differentiation primary response gene 88 (Myd88), toll-interleukin 1 receptor 
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(TIR) domain-containing receptor (TIRAP) and TIR domain-containing adaptor-inducing 

interferon β (TRIF) leading to the activation of mitogen-activated protein kinase (MAPK) 

and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). NF-κB is a 

transcription factor that, when inactivated, is found in the cytosol bound to the inhibitory 

protein IκBα. TLR signaling pathways lead to the phosphorylation of IκBα, allowing NF-

κB to translocate into the nucleus, inducing the transcription of multiple pro-inflammatory 

genes (Figure 3). In intestinal epithelial cells (IECs), activated NF-κB can lead to the 

production of chemokines and cytokines including various interleukin proteins and tumor 

necrosis factors. 

 

 

 

Figure 3 – Simplified scheme of TLR4 signaling pathway leading to the production of pro-

inflammatory cytokines. 
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Some probiotics can suppress intestinal inflammation by down-regulating the 

expression of TLRs, inhibiting TNF-α via secreted metabolites, and inhibiting NF-κB 

signaling in enterocytes (Gomez-Llorente et al., 2003). Certain cell wall components of 

lactobacilli can potentially signal through binding to TLR2. TLR2 is thought to interact 

with lipoproteins as well as lipoteichoic acids on the surface of gram-positive bacteria 

(Well et al., 2011). 

 Many in vitro experiments have been conducted to assess the immunomodulation of 

lactobacilli on various types of immune cells including human monocyte derived dendritic 

cells, and human peripheral blood mononuclear cells (PBMCs). Vissers et al. (2010) and 

Christensen et al. (2002) have both confirmed the ability of lactobacilli to modulate 

cytokine production in human PBMCs and DCs and have demonstrated that cytokine 

production and immune response to lactobacilli can vary greatly between both species and 

strain when analyzing for induction of IL-10, IL-12, IL-1β, IL-6 and TNF-α. 

IL-10 production is typically measured when assessing immunomodulation by 

probiotics or bioactive peptides because it is an anti-inflammatory cytokine and suppresses 

IL-12 production and, consequently, IFN-γ production, favoring a regulatory immune 

response (Wells, 2011). Foligne et al. (2007) provide evidence that immune profiles 

observed in vitro (especially IL-10 and IL-12) can in fact be predictive of their 

immunomodulatory properties in vivo. 

In vivo experiments in which mice or rats were fed with milk fermented with L. 

helveticus showed both suppression and activation of the immune system. Some argue that 

activation of the immune system would protect the host against infection. Many studies 

look for lactobacilli or LAB-derived peptides that stimulate an immune response 
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suggesting it confers a protective advantage to the host (LeBlanc et al., 2002; Tellez et al., 

2010; Vinderola et al., 2007). Jensen et al. (2015) reported an increase in cytokine 

production and NFκB activation in THP-1 monocytes in response to L. reuteri; they report 

L. rhamnosus GG along with L. plantarum having the lowest immunostimulating effects. 

However inducing an inflammatory response could also have potentially detrimental 

effects to other body systems. Therefore, in this thesis, we aimed to look for peptides that 

would decrease the production of inflammatory cytokines, and increase that of regulatory 

cytokines as an indication of beneficial immunomodulating properties. Although there is a 

lack of correlation between the in vitro and in vivo response of many lactobacilli strains, 

certain studies have identified certain strains that are able to induce high levels of IL-10 

and low levels of IL-12 or TNF-α, simulating a favorable regulatory response, in immune 

cells and that can provide significant immune protection in 2,4,6-trinitrobenzenesulfonic 

acid (TNBS)-induced colitis in mice (Foligne et al., 2007; Peran et al., 2005).  

Non-bacterial components present in milks fermented with these probiotic 

organisms may also play a role in the immunomodulating effects of fermented dairy 

products. Vinderola et al. (2007) investigated the non-bacterial fractions of milk fermented 

with L. helveticus R389 and their effect on cytokine production in IECs, the gut lamina 

propria, and in the lumen of BALB/c mice. Although they were looking for immune 

stimulation and observed an induction of IL-6, a pro-inflammatory cytokine, this still 

demonstrates the need to assess the immune effects of both the bacterial and non-bacterial 

components of fermented dairy products. Although many different mechanisms have been 

proposed, the mechanisms responsible for in vivo immunomodulation by probiotics are not 

yet known and therefore investigating the interaction of these bacteria and bacterial 
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components with a variety of immune cells can lead us to better understand how they might 

confer the observed benefits, in hopes of using the administration of probiotics to treat a 

variety of inflammatory diseases. 

 By investigating the immunomodulatory effects of these bioactive peptides 

liberated by lactic acid bacteria during the production of fermented dairy products in 

combination with their ACE inhibitory properties we can identify additional benefits to 

these antihypertensive peptides and further elucidate their interactions within the body 

system. The lowering of blood pressure through the inhibition of ACE can help to reduce 

the risk of developing many cardiovascular diseases. However, the onset of atherosclerosis 

in particular is highly dependent on and regulated by the immune system and therefore a 

better understanding is required of the interactions between probiotics or bioactive peptides 

and our immune cells. Therefore, by investigating the relationship between the ability of 

casein-derived peptides found in fermented dairy products to reduce hypertension and the 

role that they play in regulating the immune system, we can further improve upon the use 

of these probiotic organisms and their secreted products in the food industry to confer the 

maximal health benefits to Canadian consumers.  
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2 METHODOLOGY 

2.1 Materials 

All reagents used were purchased from Sigma Aldrich Co. (St. Louis, MO, USA) 

unless otherwise stated. 

2.2 Bacterial and Cell Culture Growth Conditions 

The two strains of lactic acid bacteria used throughout this project, Lactobacillus 

helveticus R0389 and Lactobacillus rhamnosus R0011, were obtained as a frozen stock, 

kept at -80oC, from the Green-Johnson Lab at UOIT. Both strains were acquired from 

Lallemand-Institut Rosell (Montreal, QC, Canada). For the entirety of this project, both 

strains were grown in DifcoTM de Man Rogosa Sharpe (MRS) broth (BD Diagnostic 

Systems, Sparks, MD, USA) at 37oC under agitation (200 – 220 rpm) unless otherwise 

stated.  

The THP-1 human monocytic cell line (ATCC #TIB-202) was used for 

immunological studies. THP-1 cells were grown in Roswell Park Memorial Institute 

(RPMI) 1640 growth medium (supplemented with 10% fetal bovine serum (FBS) or calf 

serum, 0.05 mg/mL gentamicin, and 0.05 mM β-mercaptoethanol) at 37oC with 5% CO2. 

Cells were sub-cultured every 3 to 4 days.  

2.3 Growth Analysis & Kinetics 

Growth curves of both Lactobacillus strains were performed and their growth rate 

and doubling times were calculated when grown in different media. MRS medium was first 

supplemented with 0.1% (w/v) casein in order to assess any change in growth rate and 

subsequently compare the peptide profiles of each strain to cultures grown in MRS. Casein 

is one the major substrates of the proteolytic systems of LAB when used in the fermentation 
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industry and we therefore hypothesized that casein supplementation would increase growth 

rate and increase peptide production during growth. A second supplementation with 0.01% 

sodium formate (NaCOOH) was performed. Streptococcus thermophilus and Lactobacillus 

bulgaricus are commonly used as a mixed-culture in fermentation and are thought to 

stimulate each other’s growth. S. thermophilus provides L. bulgaricus with formic acid, 

folic acid and carbon dioxide (Sieuwarts et al., 2010). We therefore investigated the 

potential of sodium formate supplementation to stimulate the growth of L. helveticus 

R0389 and L. rhamnosus R0011. Overnight cultures (50 mL) of L. helveticus R0389 and 

L. rhamnosus R0011 were centrifuged at 3,000 x g for 20 minutes at room temperature. 

The supernatant was discarded and cells were re-suspended in 10 mL of either MRS, RPMI, 

MRS supplemented with 0.1% w/v casein (BioShop, Burlington, ON, Canada), or MRS 

supplemented with 0.01% w/v sodium formate (Sigma). Cells re-suspended in RPMI were 

washed twice in RPMI prior to re-suspension. Cultures were then diluted 1:20 in fresh 

medium to an approximate starting OD600nm of 0.2. Two hundred microliters of the diluted 

cultures were transferred into each well in one row of a 96-well plate. In addition, 200 µL 

of each medium was added to each well of one row of a 96-well plate to serve as a control. 

The 96-well plates, along with the 1:20 diluted liquid cultures, were incubated at 37oC 

under agitation (200-220 rpm) for 24 hours. OD600nm measurements were recorded every 

30 minutes for 24 hours using an xMarkTM microplate spectrophotometer (Bio-Rad, 

Mississauga, ON, Canada) and viable counts were determined at various time points 

throughout the 24 hour growth period by the spread plate method on MRS agar. Spread 

plates were incubated at 37oC and colony forming units (CFUs) were counted after 3 days 

and the CFUs were calculated using the following equation: 
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CFU = (Average # of colonies from each plate) x (reciprocal of dilution) x 

(reciprocal of plated dilution) 

The growth rate and doubling times were calculated for each strain grown in MRS, MRS 

supplemented with 0.1% (w/v) casein, and MRS supplemented with 0.01% (w/v) sodium 

formate. The growth rate constant (µ) was calculated using the following equation: 

ln(Nt) – ln(N0) = µ(t – t0) 

Where N0 and Nt are the OD600nm values of the culture at two time points, t0 and t 

respectively, in the log phase of growth. For our calculations, t0 = 1 hour and t = 3 hours. 

The doubling time (g) of each culture was calculated using the following equation: 

g = ((t – t0) / (ln2)/µ) 

2.4 Fermentation 

Following growth rate analysis in complex MRS medium, Lactobacillus strains 

were used to ferment milk and their growth and peptide production was assessed. Overnight 

cultures (50 mL) of L. helveticus R0389 and L. rhamnosus R0011 in MRS were centrifuged 

at 3,000 x g for 20 minutes at room temperature. The supernatant was discarded and cells 

were re-suspended in an equal volume of Neilson® 3.25% homogenized milk. Re-

suspended cells were added at 16.7% (v/v) to fresh 3.25% homogenized milk. Acidified 

controls were prepared by adding 0.4% (v/v) D/L-lactic acid to fresh 3.25% milk. Non-

acidified controls consisted of 3.25% milk subjected to identical conditions as fermenting 

samples. All samples and controls were incubated at 37oC under agitation (200 – 220 rpm) 

for 3, 4, 5, or 6 days. 
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2.5 Isolation and Collection of Secreted Peptides 

2.5.1 Peptides Secreted During Growth in MRS 

Overnight cultures of Lactobacillus helveticus R0389 and Lactobacillus rhamnosus 

R0011 grown in MRS were centrifuged at 3,000 x g for 20 minutes at room temperature 

and cells were re-suspended in either MRS or MRS supplemented with 0.1% (w/v) casein 

(BioShop) and diluted to a starting OD600nm of approximately 0.3. After 6, 12, or 24 hours 

of growth, cells were centrifuged and the cell-free supernatant was collected. To precipitate 

proteins and peptides, two volumes of ice cold acetone were added to the supernatant 

solutions. Precipitated supernatant solutions were centrifuged at 3,000 x g for 15 minutes 

at 4oC. The supernatant was discarded and protein pellets were dried and re-suspended in 

approximately two times the pellet volume with protein buffer solution composed of 25% 

(v/v) glycerol, 1 mM EDTA, 10 mM Tris-HCl in H2O). Re-suspended pellets were 

transferred into Amicon centrifugal filter units (Millipore) with a molecular weight cut-off 

(MWCO) of either 3 or 10 kDa and centrifuged at 3,000 x g for 30 minutes at 4oC. The 

filtrate was collected and stored in 1.5 mL microcentrifuge tubes at -20oC for further 

analysis. Filtered protein solutions were quantified via Bradford assay (Bradford, 1976) 

using bovine serum albumin (BSA, Sigma Aldrich) as a standard. OD600nm and pH 

measurements of cultures grown in MRS or MRS supplemented with 0.1% casein were 

recorded at 1, 6, 12, and 24 hours during growth.  

2.5.2 Peptides Secreted During Growth in Milk 

Inoculated milk samples (prepared as described above) were centrifuged after 3, 4, 

5, or 6 days of fermentation at 3,000 x g for 20 minutes at 4oC. The supernatant was 

collected in fresh 50 mL screw capped tubes. To the supernatant solutions, approximately 
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two volumes of ice cold acetone were added, and samples were allowed to precipitate 

overnight at -20oC. Precipitated supernatant solutions were centrifuged at 3,000 x g for 15 

minutes at 4oC and protein pellets were re-suspended in protein buffer solution. Re-

suspended pellets were then filtered (<10 kDa) as described above and quantified via 

Bradford assay (Bradford, 1976) using BSA as a standard. 

2.6 Peptide Separation 

2.6.1 Protein Gel Electrophoresis  

Quantified, filtered and unfiltered supernatant solutions were separated via sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) using a pre-cast Mini-

PROTEAN® TGXTM 4-20% tris-glycine or a pre-cast Mini-PROTEAN® 16.5% or 10-20% 

Tris-Tricine polyacrylamide gel (Bio-Rad).  

Sample buffer (5 X) for glycine gels consisting of 60 mM Tris-HCl (pH 6.8), 25% 

(v/v) glycerol, 2% SDS, 14.4 mM β-mercaptoethanol, and 0.1% bromophenol blue in H2O 

and was used to resuspend 5 µg of supernatant protein sample. Ten microliters of protein 

sample in sample buffer were loaded into each sample well of the gel. Empty sample lanes 

were loaded with 10 µL of sample buffer and 0.5 or 1 µL of protein ladder was loaded into 

the first and last lanes of the gel. For glycine gels, the Precision Plus ProteinTM Unstained 

Standard was used; molecular weight marker proteins include a mixture of ten Strep-tagged 

recombinant proteins (10 – 250 kDa). A running buffer consisting of 25 mM Tris, 192 mM 

glycine and 0.1% SDS was used and the gel was run at 125 V for approximately 1 hour. 

Sample buffer (1X) for tricine gels was prepared by adding 20 µL of β-

mercaptoethanol to 980 µL of 10X sample buffer consisting of 200 mM Tris-HCl (pH 6.8), 

40% glycerol, 2% SDS, and 0.04% Coomassie Blue and was used to dissolve 5 µg of 
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filtered (< 10 kDa) supernatant protein sample. Polypeptide SDS-PAGE standards (Bio-

Rad), a mixture of six proteins, was diluted 1:20 in tricine sample buffer. Standards and 

sample solutions in sample buffer were then heated to 95oC for 5 minutes. Ten microliters 

of protein sample, and either 5 or 10 µL of polypeptide standard, in sample buffer were 

loaded into each well of the gel. Empty sample lanes were loaded with 10 µL of sample 

buffer. A running buffer consisting of 100 mM Tris (pH 8.3), 100 mM tricine, and 0.1% 

SDS was used and the gel was run at 100 V for approximately 2 hours. 

Protein gels were either stained using silver (Celis et al., 2006) or with Coomassie 

Blue (Meyer and Lambert, 1965). For silver staining, gels were left overnight in a fixative 

solution of 50% ethanol, 12% acetic acid, and 0.05% formaldehyde in water. Gels were 

then washed with 20% ethanol and submerged in a sensitizing solution comprised of 0.02% 

(w/v) sodium thiosulfate (Na2S2O3) in water for 2 minutes. Gels were washed in deionized 

water and submerged in a cold staining solution comprised of 0.2% (w/v) silver nitrate 

(AgNO3) and 0.076% (v/v) formaldehyde in water, in the dark, shaking at 4oC for 20 

minutes. Gels were once again washed with deionized water and briefly rinsed with a 

developing solution comprised of 6% (w/v) sodium carbonate (Na2CO3), 0.0004% (w/v) 

sodium thiosulfate (Na2S2O3), and 0.05% formaldehyde in water until protein bands are 

developed. The reaction was terminated by the addition of 12% acetic acid. For Coomassie 

staining, gels were submerged in 0.1% (w/v) Coomassie G-250, 40% (v/v) methanol, 10% 

(v/v) acetic acid in water for one hour and then in the de-staining solution comprised of 5% 

(v/v) methanol, 7% (v/v) acetic acid in water overnight. Stained protein gels, illuminated 

on a light box, were photographed using a Canon Rebel T1i camera. 
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2.6.2 Thin Layer Chromatography (TLC) 

To accompany the protein gel electrophoresis results, supernatant protein samples 

were also separated by thin layer chromatography (TLC). Acetone precipitated, filtered (< 

10 kDa) supernatant solutions were spotted onto either silica or cellulose TLC plates 

(Analtech, Newark, DE, USA). Both mobile and stationary phases were altered to optimize 

separation (See Table 4 in Results). All TLC plates were stained with ninhydrin spray 

reagent (Sigma Aldrich). 

2.6.3 High Performance Liquid Chromatography (HPLC) 

Since any peptides present in the cell-free supernatant solution are likely present in 

very low concentrations, separation via high performance liquid chromatography was 

performed in the hopes of obtaining improved resolution and separation of peptide 

components in supernatants of Lactobacillus cultures grown in MRS and 3.25% milk. 

Acetone precipitated, filtered (< 3 or 10 kDa) supernatant solutions from MRS medium 

grown cultures or milk ferments of both L. helveticus R0389 and L. rhamnosus R0011 were 

filtered through Millex GV 0.22 µM, 13 mm filter unit (Millipore) into 1.5 mL Prominence 

HPLC vials (Shimadzu, Laval, QC, Canada). An acetylated decapeptide standard mixture 

(Ac-RGXXGLGLGK, where XX is GG,AG,VG,VV or AG) (Thermo Scientific, Rockford, 

IL, USA) and a non-acetylated peptide standard mixture containing equal masses of each 

of GY, VYV, YGGFM, YGGFL, DRVYIHPF (Sigma Aldrich) were also analyzed by 

HPLC to aid in the optimization of chromatographic conditions for sample solutions. All 

samples (10 µL injection volume) were analyzed on a Shimadzu Prominence HPLC 

equipped with an apHeraTM C18 Polymer column (15 cm x 4.6 mm x 5 µM) and a 

photodiode array (PDA) detector using a mobile phase of acetonitrile with 0.25% 
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trifluoroacetic acid (TFA) at a flow rate of 0.8 mL/min. Multiple run conditions were tested 

in order to obtain optimal separation (Table 1) 

Table 1 – Solvent gradient and run time of HPLC experiments conducted 

Solvent Gradient 

(Acetonitrile + 0.25% TFA) 
Run Time (minutes) Flow Rate* 

30%  20 N/A 

20 to 70%  60 +10% / 10 min 

70 to 20% 60 -10% / 10 min 

90 to 30% 35 -10% / 5 min 

80 to 30% 100 -10% / 20 min 

5 to 30% 60 +5% / 10 min 

70 to 30% 25 -10% / 5 min 

30 to 70% 25 +10% / 5 min 

90 to 30% 12 -10% / 2 min 

30 to 50% 20 +5% / 5 min 

30 to 90% 60 +10% / 10 min 

30 to 80% 10 +10% / 2 min 

80 to 30% 10 -10% / 2 min 

70 to 50% 25 -2% / 2 min + 5 min 
*The change in solvent (% change in acetonitrile) over the listed time increments 

All HPLC data was analyzed using the LCsolution software by Shimadzu Scientific 

Instruments. 

2.7 Synthesized Peptides 

A list of previously identified (and published) bioactive peptides derived from the 

sequence of β-casein, liberated either through microbial fermentation or by enzymatic 

digestion, possessing a variety of bioactive properties was compiled. Twelve of the 

previously identified peptides were selected to be synthesized and assessed for their 

antihypertensive and immunomodulatory properties. The twelve peptides included the 

highly characterized and studied antihypertensive VPP and IPP. The remaining ten 

peptides had either been identified as part of a larger bioactive fraction and their 

bioactivities had not been individually investigated, or had been assessed for either 
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antihypertensive or immunomodulatory effects (or other bioactive properties) but not both. 

Synthesized peptides were obtained from Bio Basic Inc. (Markham, ON, Canada) (Table 

2). Stock solutions (4.8 mg/mL) of synthesized peptides were prepared by dissolving 

peptides in 500 µL of sterile, deionized H2O. From these, working peptide solutions of 19 

µg/mL were then prepared and used in order to assess inhibition of the angiotensin 

converting enzyme (ACE) and to treat THP-1s at varying concentrations (See APPENDIX 

A for peptide structures and properties).  

Table 2 – Synthesized peptide sequences and origin 

ID# Peptide Sequence Protein Origin 
MW 

(g/mol) 
Reference 

P1 VPP β-CN (84-86) 311.38 Nakamura et al., 

1995a P2 IPP β-CN (74-76) 325.41 

P3 HQPHQPLPPTVMFPPQ β-CN (145-160) 1851.18 

Tellez et al., 2010 

P4 HQPHQPLPPT β-CN (145-154) 1151.3 

P5 WMHQPHQPLPPT β-CN (143-154) 1468.71 

P6 LYQEPVLGPVR β-CN (192-202) 1270.51 

P7 LDQWLCEK β-CN (115-122) 1034.2 

P8 
YP 

αs1-CN, β-CN, κ-

CN 
278.31 

Yamamoto et al., 

1999 

P9 PGPIPN β-CN (63-68) 593.69 Boutrou et al., 2013 

P10 
FFVAP αs1-CN (23-27) 579.7 

Yamamoto et al., 

1997 

P11 KVLPVP β-CN (169-174) 651.85 
Maeno et al., 1996 

P12 KVLPVPQ β-CN (169-175) 779.99 

 

2.8 Angiotensin Converting Enzyme (ACE) Inhibition Assay 

ACE inhibitory activity was assessed using the method of Cushman and Cheung 

(1971). The hippuryl-L-histidyl-L-leucine (HHL) substrate and angiotensin converting 

enzyme (ACE) from rabbit lung were purchased from Sigma Aldrich Co. (St. Louis, MO, 

USA). The HHL buffer (3.8 mM) was prepared by dissolving the substrate in 0.1 M sodium 

borate buffer with 0.3 M NaCl (pH 8.3). Peptides were diluted to a working concentration 
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of 19 µg/mL and 30 µL of 19 µg/mL peptide solution was incubated at 37oC in 200 µL of 

the HHL buffer for 5 minutes. Following incubation, 20 µL of 0.1 U/mL ACE was added 

to the reaction and incubated at 37oC for 30 minutes. 250 µL of 1N HCl was added to stop 

the reaction and 1.5 mL ethyl acetate was added to each reaction tube to extract the liberated 

hippuric acid. Samples were centrifuged at 800 x g for 15 min and 300 µL of the top organic 

layer was transferred to a fresh microcentrifuge tube and placed in a water bath at 65oC to 

evaporate the ethyl acetate. The extracted hippuric acid was then dissolved in 1 mL dH2O. 

Samples were transferred in triplicate to a UV transparent 96-well plate and the absorbance 

at 228 nm was recorded. Percent ACE inhibition was calculated using the following 

formula, 

[(B – A) / (B – C)] x 100 % 

Where A is the optical density in the presence of ACE and the potential ACE inhibitor, B 

is the optical density without an inhibitor, and C is the optical density without ACE.  

2.9 Treatment of THP-1 with Peptide Samples 

In order to assess the immunomodulating effects of secreted peptides from 

Lactobacillus  strains, a human monocytic cell line derived from an acute monocytic 

leukemia patient (THP-1) was exposed to varying concentrations of cell-free supernatant 

solutions filtered with molecular weight cut off (MWCO) of 3 or 10 kDa. Cells were either 

co-incubated with supernatant samples and lipopolysaccharide (LPS) to assess their ability 

to attenuate or diminish LPS-induced cytokine production, or were exposed to only the 

supernatant solutions (without LPS) in order to assess the cytokine profiles of THP-1 cells 

induced by cell-free supernatants of Lactobacillus cultures in a non-challenged state.  



34 

 

For THP-1 cell treatments, 100μL of THP-1 cells were seeded in a 96-well plate at 1 

x 106 cells/mL and exposed to 100 μL of peptide sample diluted to various concentrations 

in THP-1 challenge medium (RPMI 1640 with 10% FBS) with or without 125 ng/mL of 

lipopolysaccharide (LPS) from E. coli O26:B6 (Sigma Aldrich); the final THP-1 

concentration was 5 x 105 cells/mL. Cells stimulated with LPS were either co-treated with 

125 ng/mL LPS and varying concentrations of peptide-containing sample solutions for 24 

hours or were pre-incubated with the sample solution for 17 hours, followed by the addition 

of 125 ng/mL LPS and incubated for an additional 7 hours. Three technical replicates were 

performed for each treatment. Controls included no cell controls (with and without 125 

ng/mL LPS), no sample controls (100 μL of 1 x 106 cells and 100 μL challenge medium 

with and without 125 ng/mL LPS). All 96-well plates were incubated for a total of 24 hours 

at 37oC with 5% CO2. After 24 hours, the plate was centrifuged at 300 x g for 10 minutes, 

and the supernatant (140 μL) was transferred to a fresh 96-well plate and stored at -80oC 

for further analysis. 

2.10 Cell Viability Assay 

Cell viability of the THP-1 cells post-treatment was assessed via the 2,3-Bis(2-

methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) viability 

assay. After the supernatant of the treated cells was removed, 15 μL of XTT reagent (with 

125 μM N-methyl dibenzopyrazine methyl sulfate (PMS)) was added to each well of the 

96-well plate and the plate was incubated at 37oC with 5% CO2 for 2 hours. After 2 hours, 

a Synergy HT microplate reader (Bio-Tek Instrumentation Inc., Winooski, VT, USA) was 

used to read the absorbance of the treated cells at 450 and 650 nm. The ∆OD650-450 was 

recorded. Cells supplemented with RPMI challenge medium (no stimulant or sample) were 
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designated as the blank sample (100% viable); viability of all sample treated cells were 

normalized to the medium control. 

2.11 Measurement of Cytokine Production by Enzyme Linked Immunosorbant Assays 

Production of pro-inflammatory cytokines IL-8 and IL-6, and regulatory cytokine 

IL-10 was measured via enzyme linked immunosorbant assays (ELISAs). All reagents and 

buffers were prepared according the Human CXCL8/IL-8 Kit, Human IL-10, or Human 

IL-6 procedures (reagent compositions listed below) (R&D, Minneapolis, MN, USA). Half 

well 96-well plates were used for ELISAs. The following solutions were prepared and used 

for all ELISAs preformed: phosphate buffered saline (PBS) comprised of 137 mM NaCl, 

2.7 mM KCl, 8.1 mM Na2PO4, 1.5 mM KH2PO4 (pH 7.4), wash buffer comprised of 

0.005% Tween 20 in PBS, 3,3’,5,5’-tetramethylbenzidine (TMB) as the substrate solution 

and a stop solution of 2 N H2SO4. 

2.11.1 IL-8  

 50 μL of 4.0 μg/mL of the mouse anti-human IL-8 capture antibody was added to 

each well of the 96-well plate and stored at 4oC overnight. The capture antibody was then 

removed and the plate was washed three times with the IL-8 wash buffer. 150 μL of 

blocking buffer (1% BSA in PBS) was added to each well and the plate was incubated at 

room temperature for 1 hour. The plate was then washed three times with the IL-8 wash 

buffer. Two-fold serial dilutions of recombinant human IL-8 standard were prepared in 

reagent diluent (0.1% BSA, 0.05% Tween 20 in PBS) to create a seven point standard curve 

with standard concentrations ranging from 0 to 2000 pg/mL. 50 μL of standard and sample 

solutions were added to corresponding wells and the plate was incubated for 2 hours at 

room temperature. Sample solutions (THP-1 supernatants) were diluted, often 1/5, to 
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obtain concentrations within range of the standard curve. The plate was then washed three 

times with IL-8 wash buffer. The detection antibody was prepared to a working 

concentration of 20 ng/mL, and 50 μL was added to each well. The plate was then incubated 

for another 2 hours at room temperature and then washed three times with IL-8 wash buffer. 

50 μL of the diluted horseradish peroxidase (HRP)-streptavidin was added to each well and 

the plate was incubated for 20 minutes in the dark and then washed three times with the 

IL-8 wash buffer. 50 μL of the substrate solution (TMB) was then added to each well and 

the plate was again incubated for 20 minutes in the dark. Following the 20 minute 

incubation period, 50 μL of the stop solution (2N H2SO4) was added to each well and the 

absorbance was measured at 450 nm. 

2.11.2 IL-10 

 50 μL of the Human IL-10 capture antibody was added to each well of the 96-well 

plate and stored at 4oC overnight. The capture antibody was then removed and the plate 

was washed four times with the wash buffer. 100 μL of reagent diluent (1% BSA in PBS) 

was added to each well and the plate was incubated at room temperature for 1 hour on a 

plate shaker at 200 rpm. The plate was then washed four times with the wash buffer. Two-

fold serial dilutions of human IL-10 standard were prepared to create an eight point 

standard curve with standard concentrations ranging from 0 to 250 pg/mL. 50 μL of 

standard and sample solutions were added to corresponding wells and the plate was 

incubated for 2 hours at room temperature at 200 rpm. The plate was then washed four 

times with wash buffer. The detection antibody was prepared to a working concentration 

of 20 ng/mL, and 50 μL was added to each well. The plate was then incubated for 1 hour 

at room temperature (200 rpm) and then washed four times with wash buffer. 50 μL of the 
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diluted HRP-streptavidin was added to each well and the plate was incubated for 30 

minutes at room temperature (200 rpm) and then washed four times with the wash buffer. 

50 μL of the substrate solution (TMB) was then added to each well and the plate was again 

incubated for 30 minutes in the dark. Following the 30 minute incubation, 50 μL of the 

stop solution (2N H2SO4) was added to each well and the absorbance was measured at 450 

nm. 

2.11.3 IL-6 

150 µL of 2.0 µg/mL mouse anti-human IL-6 capture antibody was added to each 

well of the 96-well plate and stored overnight at 4oC. The capture antibody was then 

removed and the plate was washed three times with the wash buffer. 150 µL of reagent 

diluent (1% BSA in PBS) was added to each well and the plate was incubated at room 

temperature for 1 hour. The plate was then washed three times with the wash buffer. Two-

fold serial dilutions of recombinant human IL-6 standard were prepared to create an eight 

point standard curve with standard concentrations ranging from 0 to 600 pg/mL. 50 µL of 

standard and sample solutions were added to corresponding wells and the plate was 

incubated at room temperature for 2 hours. The plate was then washed three times with the 

wash buffer. The detection antibody was prepared to a working concentration of 50 ng/mL, 

and 50 µL was added to each well. The plate was then incubated at room temperature for 

2 hours followed by three washes with the wash buffer. 50 µL of the diluted streptavidin-

HRP was added to each well and the plate was incubated for 20 minutes in the dark. The 

plate was then washed three times with the wash buffer, 50 µL of the substrate solution 

(TMB) was added to each well and the plate was incubated for another 20 minutes in the 
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dark. 25 µL of stop solution (2 N H2SO4) was added to each well and the absorbance was 

measured at 450 nm. 

2.12 Statistical Analysis 

Statistical analysis was conducted using Microsoft Excel. Significant differences 

amongst samples were assessed by analysis of variance (ANOVA) with replication. 

Significant differences between two sample groups were analyzed by t-test, with a 

significance of p < 0.05 unless otherwise stated. All error bars represent standard deviation 

values. All data was graphed using Prism by GraphPad Software, Inc. (La Jolla, CA, USA). 
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3 RESULTS AND DISCUSSION 

3.1 Growth Curves and Growth Rate Analysis 

The growth of both L. helveticus R0389 and L. rhamnosus R0011 was assessed in 

various media. RPMI 1640, the medium used for all THP-1 cell treatments, was first used 

to assess growth of both strains to investigate the potential to use RPMI as an alternative 

to the complex, protein rich MRS medium. Although other studies have shown that 

bacterial propagation in RPMI is possible (Kanangat et al., 1999), neither strain appeared 

to grow very well in RPMI; therefore this medium was not used for the propagation of 

bacterial cells (Figure 4). 

 

 

Figure 4 - Growth of L. helveticus R0389 and L. rhamnosus R0011 in MRS or RPMI medium for 

14 hours. Each data point is the mean of 12 replicate values. 
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The growth of both L. helveticus R0389 and L. rhamnosus R0011 in medium supplemented 

with either 0.1% (w/v) casein or 0.01% (w/v) sodium formate (NaCOOH) was compared 

to growth in non-supplemented MRS medium (Figure 5). All cultures reached stationary 

phase in approximately 10 hours, however OD600nm values of cultures grown in 

supplemented medium do not decrease, even after 24 hours. The growth rates and doubling 

times of each strain in supplemented medium were calculated and compared to those of 

MRS-grown cultures (Table 3). Supplementation of MRS with either casein (0.1% w/v) or 

sodium formate (0.01% w/v) significantly increased the growth rate of both L. helveticus 

R0389 and L. rhamnosus R0011 when compared to the MRS-grown cultures (p < 0.05).  

 

Figure 5 - Growth curves of L. helveticus R0389 and L. rhamnosus R0011 in MRS, MRS 

supplemented with 0.1% (w/v) casein or MRS supplemented with 0.01% (w/v) sodium formate 

over 24 hours. Each data point is the mean of 12 replicate values. 

 



41 

 

Table 3 - Growth rate constant (hour-1) and doubling time (hours) of L. helveticus R0389 and L. 

rhamnosus R0011 grown in MRS or in MRS supplemented with either 0.1% (w/v) casein or 0.01% 

(w/v) sodium formate. 

R0389 R0011 

Medium 
Growth Rate 

(hour-1) 

Doubling Time 

(hours) 
Medium 

Growth Rate 

(hour-1) 

Doubling 

Time (hours) 

MRS 0.430 ± 0.010 1.239 ± 0.029 MRS 0.451 ± 0.021 1.300 ± 0.060 

MRS + 

casein 
0.567 ± 0.017  1.636 ± 0.049 

MRS + 

casein 
0.484 ± 0.021 1.395 ± 0.060 

MRS + 

NaCOOH 
0.505 ± 0.022 1.457 ± 0.063 

MRS + 

NaCOOH 
0.383 ± 0.011 1.105 ± 0.031 

 

3.2 Peptide Separation 

The protein profiles of supernatant solutions from L. helveticus R0389 and L. 

rhamnosus R0011 cultures grown in MRS or MRS supplemented with 0.1% (w/v) casein 

or from milk fermented with each strain were analyzed by SDS-PAGE. Gradient (4 – 20%) 

glycine gels were first used to visualize protein present in precipitated, filtered and non-

filtered, supernatant solutions of milk fermented with L. helveticus R0389 or L. rhamnosus 

R0011. Figure 6 shows unfiltered supernatant solutions from acidified or non-acidified 

controls and from milk ferments of both strains collected at multiple time points throughout 

fermentation. Protein profiles of L. helveticus R0389 and L. rhamnosus R0011 ferment 

supernatant solutions observed by gel electrophoresis are noticeably different than those of 

the acidified and non-acidified controls. All samples (including the acidified and non-

acidified controls) contain the same prominent protein bands corresponding to proteins of 

approximately 14 kDa and slightly larger than 50 kDa. These bands could possibly 

correspond to two soluble milk proteins in the whey fraction of milk, α-lactalbumin (14 

kDa) and the heavy chain of immunoglobin G (IgG) (~ 55 kDa). Casein proteins are 

typically between 25 and 32 kDa; however, no bands in this size range were observed. Two 
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bands of approximately 60 and 75 kDa are present in all sample lanes but not in either of 

the control samples. Yan et al. (2007) reported that L. rhamnosus GG produced two soluble 

proteins with immunomodulating properties, one of 75 kDa and the other 40 kDa. 

Supernatants collected from milk ferments of L. helveticus R0389 and L. rhamnosus R0011 

seem to contain proteins between 17 and 30 kDa, the presence of which seems to differ 

between fermentation times. Jovanovic et al. (2007) identified two dominant complexes of 

71 and 141 kDa and suggest they could be soluble chemical complexes of κ-casein, β-

lactoglobulin, and α-lactalbumin. 

 

 

 

 

 

 

 

 
 

Figure 6 – Protein profiles of precipitated (non-filtered) cell-free supernatants of acidified and non-

acidified controls and ferments of L. helveticus R0389 and L. rhamnosus R0011 collected after 3 

to 6 days of fermentation. Aliquots of 5 µg of protein were loaded into each well of a 4 – 20% 

glycine polyacrylamide gel and silver stained. Molecular weight ladder contains a mixture of ten 

Strep-tagged recombinant proteins of 10, 15, 20, 25, 37, 50, 75, 100, 150, and 250 kDa. 

 

250 kDa 

75 kDa 

50 kDa 

25 kDa 

15 kDa 
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When the same L. helveticus R0389 supernatant solutions from above were 

electrophoresed on a 16.5% tricine gel, meant for separation of smaller molecules, there 

was an increase in the resolution of < 10 kDa components with each day of fermentation 

for filtered supernatants of L. helveticus R0389 that are not present in either of the control 

supernatant solutions (Figure 7).  

 

 

 

 

 

 
 

Figure 7 – Protein profiles of acetone precipitated, filtered (< 10 kDa) cell-free supernatants of 

acidified and non-acidified controls and ferments of L. helveticus R0389 and L. rhamnosus R0011 

collected after 3, 5 and 6 days of fermentation. Aliquots of 5 µg of protein were electrophoresed on 

a 16.5% tricine polyacrylamide gel and silver stained. MW ladder contains six proteins of 1.4, 3.4, 

6.5, 14.4, 16.9, and 26.6 kDa. 
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Multiple protein and peptide separation methods were utilized in order to separate 

the components present in each of the supernatant fractions, but also to compare the protein 

and peptide profiles of each strain. Supernatant solutions were analyzed on both silica and 

cellulose TLC plates with a variety of solvents to obtain the optimal separation and 

resolution (Table 4). Although most of the conditions tested resulted in poor separation and 

limited resolution, silica plates provided better separation than cellulose plates and the 

solvent that provided the best resolution was ethyl acetate:n-propanol:acetic acid:water 

(4:2:2:1) with 0.25% TFA (Figure 8A).  

Table 4 – Run conditions (stationary and mobile phase) of TLC experiments 

Plate 

(stationary 

phase) 

Mobile Phase 
% 

TFA 

Results 

(Separation/Resolution) 

Silica 

Butanol:acetic acid:water (3:1:1) N/A No Separation 

Ethyl acetate:pyridine:water 

(10:4:3) 
N/A Poor 

Methanol:DCM (1:1) N/A Poor 

100% MeOH N/A Poor 

Acetonitrile 

0.1% Little/No Separation 

0.25% 
Fair Separation, Poor 

Resolution 

0.4% 
Fair Separation, Poor 

Resolution 

Ethyl acetate:n-propanol:acetic 

acid:water (4:2:2:1) 

N/A 
Fair Separation, Poor 

Resolution 

0.25% Good 

Chloroform:ethyl acetate:formic 

acid (8:1:1) 
0.25% No separation 

2D (Silica) 

Solvent A: ethyl acetate:n-

propanol:acetic acid:water 

(4:2:2:1) 

Solvent B: Acetonitrile + 0.25% 

TFA 

 Poor 

Cellulose 
Ethyl acetate:n-propanol:acetic 

acid 
0.25% Poor 
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Figure 8 – Protein profiles of acetone precipitated, filtered (<10 kDa) cell-free supernatants of 

MRS supplemented with 0. 1% (w/v) casein (lane 1) or cultures of L. helveticus R0389 (lane 2) 

and L. rhamnosus R0011 (lane 2) grown in MRS supplemented with 0.1% (w/v) casein. 0.5 µL 

of each sample were separated on silica plates with ethyl acetate:n-propanol:acetic acid:water 

(4:2:2:1) with 0.25% TFA (A) or acetonitrile with 0. 1, 0.25 or 0.4% TFA (B). TLC plates were 

stained with ninhydrin.  

 

When acetonitrile was used as a solvent for TLC separation, it was observed that 

0.25% TFA provided increased resolution (compared to 0.1%). Increasing the 

concentration of TFA to 0.4% did not improve resolution compared to 0.25% therefore 

0.25% TFA was selected to use for HPLC analysis rather than 0.1% (Figure 8B). 

Multiple conditions and solvent gradients were tested to achieve optimal peptide 

separation with HPLC. A solvent of 30% acetonitrile and a run time of 20 minutes provided 

the best separation of the non-acetylated peptide standard mixture. Unfortunately, the 

acetylated peptide standards (Thermo Scientific) could not be visualized via HPLC under 

1 1 1 1 2 2 2 2 3 3 3 3 

0.1% TFA 0.25% TFA 0.4% TFA 

(A) (B) 
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any conditions tested. Supernatant solutions were not reproducibly separated via HPLC; 

even when samples were concentrated, little chromatographic signal was detected. Peptide 

fractions of ferment cell-free supernatant solutions were not reproducibly separated via 

HPLC and resolution was quite poor with all solvent systems used. 

3.3 ACE Inhibition 

HHL acts as a substrate for ACE and the liberation of hippuric acid can therefore be 

measured to provide an indication of enzymatic activity; a decrease in absorbance in the 

presence of an inhibitor solution is inversely proportional to its inhibitory activity 

(Cushman and Cheung, 1971).  

Due to an observed increase in growth rate of lactobacilli grown in MRS medium 

supplemented with 0.1% (w/v) casein, the cell-free supernatant (precipitated and filtered) 

of L. helveticus R0389 and L. rhamnosus R0011 cultures grown in casein-supplemented 

media were assessed for their abilities to inhibit ACE. A two-way ANOVA, with 

replication, showed significant differences in percent ACE inhibition between sample types 

(p < 0.01). Further statistical analysis revealed a significant increase in percent ACE 

inhibition of fractions collected at 12 hours of growth in casein supplemented media, for 

L. helveticus R0389 and L. rhamnosus R0011 (p=0.029 and 0.004, respectively), compared 

to those collected from the supernatant of MRS-grown cultures without supplementation 

(Figure 9). Since the addition of casein to the growth environment of L. helveticus R0389 

and L. rhamnosus R0011 significantly increased the growth rate  as well as ACE inhibitory 

properties of the secreted peptide fraction of both strains, it suggests that an increase in 

growth rate, likely indicative of increased proteolytic activity, leads to an increase in the 

bioactive peptides produced during growth. Oddly, the supernatants collected from  6 hour 
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cultures in MRS had the highest ACE inhibitory activity, whereas ACE inhibitory activity 

of supernatants collected from cultures in MRS supplemented with 0.1% casein increased 

throughout growth.  

 

 

Figure 9 – Mean percent ACE inhibition (± SD) of <10 kDa peptide fractions (1 µg/mL) isolated 

from the cell-free supernatant of L. helveticus R0389 or L. rhamnosus R0011 cultures grown in 

MRS or MRS with 0.1% (w/v) casein over 24 hours (n=3). * indicates a significant difference in 

ACE inhibition between the casein supplemented sample and the same strain grown in MRS at the 

same time point (p < 0.05). 

 

Preliminary analysis conducted to determine the level of ACE inhibition of peptide 

fractions isolated from 3.25% milk fermented with Lactobacillus helveticus R0389 and 

Lactobacillus rhamnosus R0011 revealed inhibitory properties comparable to the known 

* 
* 
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tri-peptide ACE inhibitor, IPP. The ACE inhibition assay was therefore performed in 

triplicate with the peptide fractions (< 10 kDa) obtained from the fermentation of 3.25% 

milk. ACE inhibition values were all found to be greater than 40%. However upon further 

investigation, it was discovered that the protein buffer solution in which peptides were re-

suspended showed some ACE inhibitory activity. Therefore, filtered ferment peptide 

fractions (Day 3 – 6) previously tested were acetone precipitated and re-suspended in dH2O 

and ACE inhibition was re-evaluated in triplicate. A two-way analysis of variance 

(ANOVA), with replication, indicates that fermentation time has a significant effect on 

percent ACE inhibition (p = 0.004). In addition, t-tests revealed significant differences 

between the ACE inhibition of peptide fractions collected from L. rhamnosus R0011 

fermented cultures after 6 days and the corresponding acidified and non-acidified controls 

(p = 0.035 and 0.011, respectively) (Figure 10).  Filtered supernatant solutions collected at 

each time point from acidified and non-acidified controls retained ACE inhibitory activity 

of approximately 40%. ACE inhibitory activity of L. helveticus R0389 increased from the 

third to fourth day of fermentation to a maximum of 63.5 ± 0.3% before decreasing over 

the fifth and sixth day of fermentation. This mimics the results of Meisel et al. (1997) in 

which they observed an increase in ACE inhibitory activity of low molecular weight 

peptides from several ripened cheeses as proteolysis developed; however ACE inhibition 

begins to decrease once cheese ripening exceeded a certain level. In contrast, ACE 

inhibitory activity of supernatants collected from L. rhamnosus R0011 ferments continued 

to increase throughout fermentation. Donkor et al. (2007) also found that concentrations in 

the microgram range of VPP and IPP from yogurt cultures produced with various LAB 

strains were able to inhibit ACE. However, due to the limitations of absorption and 
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bioavailability in vivo, many studies regarding the administration of bioactive peptides use 

milligram quantities in order to observe a significant decrease in blood pressure in vivo 

(Sipola et al., 2002; de Leeuw et al., 2009; Foltz et al., 2007; Matsui et al., 2002a,b). The 

lowest dose of bioactive peptides or peptide-containing products shown to be effective in 

reducing blood pressure in humans was 3.07 mg of lactotripeptides per day which resulted 

in a decrease of 3 mmHg after 8 weeks of administration (Sano et al., 2005). 

 

 

Figure 10 – Mean percent ACE inhibition (± SD) of <10 kDa peptide fractions (1 µg/mL) in dH2O 

isolated from the cell-free supernatant of 3.25% milk fermented with L. helveticus R0389 or L. 

rhamnosus R0011 for 3, 4, 5, or 6 days, or from acidified (A.C.) and non-acidified (N.A.C.) controls 

(n=3). * indicates a significant difference between the sample group and both control groups at the 

same time point (p < 0.05). 

 

When compared to the known ACE inhibitors, VPP and IPP, ferment supernatant 

samples show comparative percent inhibition values (Figure 11). When compared to VPP, 

the percent inhibition of peptide fractions from day 4, 5, and 6 ferments of L. helveticus 

* 
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R0389 and from day 5 and 6 ferments of L. rhamnosus R0011 were not significantly 

different (p < 0.05). When compared to IPP, the percent inhibition of peptide fractions 

collected from ferments of both strains at each of the time points were not significantly 

different. 

 

 
 

Figure 11 - Mean percent ACE inhibition (± SD) of <10 kDa peptide fractions (1 µg/mL) in dH2O 

isolated from the cell-free supernatant of 3.25% milk fermented with L. helveticus R0389 or L. 

rhamnosus R0011 for 3, 4, 5, or 6 days compared to percent inhibition of VPP and IPP (n=3).* 

indicates a significant difference between samples (p < 0.05). 

 

In order to further narrow down the bioactive components within the supernatant 

solutions, filtered milk ferment supernatant samples (< 10 kDa) from L. helveticus R0389 

or L. rhamnosus R0011, and acidified and non-acidified controls, were filtered  through 

centrifugal filter tubes with a MWCO of 3 kDa and assessed for their ACE inhibiting 

potential. The ACE inhibitory activity of both acidified and non-acidified controls 

increased with increasing fermentation time to reach percent inhibition values similar to 

those seen from the < 10 kDa fractions of the same acidified and non-acidified control 

* 

* 
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supernatants (approx. 50 – 60%). Milk ferment samples of both strains however, showed 

lower inhibition overall when compared to their corresponding < 10 kDa fractions, with L. 

helveticus  R0389 supernatants from day 3, 4, and 5 ferments showing no inhibition at all 

(Figure 12). When fermentation begins, larger milk proteins are hydrolyzed by proteinases 

on the surface of the cell (Savijoki et al., 2006). Further breakdown of these resulting 

polypeptides is then required to produce the small < 20 amino acid long bioactive peptides. 

Therefore it is expected that it would take longer for smaller peptides (< 3 kDa) to 

accumulate in the extracellular environment. This could potentially explain the lessened 

(or lack of) activity compared to the < 10 kDa peptide fractions. 

 

Figure 12 - Percent ACE inhibition of < 3 kDa peptide fractions (1 µg/mL) in dH2O isolated from 

the cell-free supernatant of 3.25% milk fermented with L. helveticus R0389 or L. rhamnosus R0011 

for 3, 4, 5, or 6 days, or from acidified (A.C.) and non-acidified (N.A.C.) controls. Each value is 

an average of three technical replicates of a single biological replicate. 

Twelve casein-derived peptides (Table 2) were selected based on literature searches 

of previously identified bioactive peptides, some of which have been shown to possess 

certain bioactive properties but which have not been tested for others, or have been 
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identified as part of a larger bioactive fraction but their bioactivity had yet to be 

individually tested. These twelve peptides were synthesized and individually assessed for 

their ability to inhibit ACE. The tripeptides, VPP and IPP, are known ACE inhibitors 

(Nakamura, 1995a) and displayed the highest ACE inhibition (94% ± 15% and 68% ± 20%, 

respectively) (Figure 13). Notably, the hexapeptide KVLPVP showed the next highest 

percent ACE inhibition (65% ± 16%) (Figure 13). The addition of glutamine to the C-

terminal end of the hexapeptide abolishes all ACE inhibitory activity, similar to the results 

seen by Maeno et al. (1996). Peptides 3 through 7 (HQPQHPLPPTVMFPPQ, 

HQPQHPLPPT, WMHQPHQPLPPT, LYQEPVLGPVR, and LDQWLCEK) were 

identified by Tellez et al. in 2010 as part of a larger peptide fraction that displayed 

immunomodulatory properties (increased IL-6, IL-1β, TNF-α, and nitric oxide (NO) 

production) in RAW264.7 cells. However, until this study, the bioactive properties of these 

five peptides had yet to be tested individually, and their ability to inhibit ACE had not been 

previously investigated at all. From the ACE assays conducted in this study, all five 

peptides show very similar ACE inhibition (between 23% and 30%). Peptide sequences, 

those of C-terminal residues in particular, have been shown to play an important role in the 

bioactive effects of milk-derived peptides. (FitzGerald et al. 2000; Cheung et al., 1980). 

We observed that each of the synthesized peptides with terminal Pro or Pro-Pro residues 

possessed the highest levels of ACE inhibition (Figure 13). 



53 

 

 

 

Figure 13 – Mean percent ACE inhibition (± SD) of 1 µg/mL solutions of synthesized peptides 

(n=3). 

 

3.4 THP-1 Treatments 

3.4.1 Ferment-Derived Peptide Fractions 

Preliminary cell treatments were conducted in which cells were co-challenged with 

125 ng/mL LPS and a range of concentrations of supernatant solutions from 48 hour 

ferment cultures of L. helveticus R0389 and L. rhamnosus R0011 as well as those from 

acidified and non-acidified controls filtered through Millex HV filters (13 mm, 0.45 µM). 

After 24 hours, cell viability was assessed with the XTT viability assay. THP-1 cells all 

remained above 80% viable for all but the highest concentration used (Figure 14).  
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Figure 14 – Normalized viability of THP-1 cells treated for 24 hours with varying concentrations 

(1.67 to 833.3 µg/mL) of filtered (0.45 μm) ferment supernatant solutions from 48 hour cultures of 

L. helveticus R0389, L. rhamnosus R0011 or acidified (A.C.) and non-acidified (N.A.C.) controls 

as determined by the XTT cell viability assay. Medium – THP-1 cells treated with RPMI 1640 

medium with 10% FBS. Each value shown is an average of three technical replicates of a single 

biological replicate. Percent viability was normalized to the medium control. 

 

Supernatant solutions were collected from milk cultures after at least 3 days, and 

up to 6 days, post-fermentation since protein and growth analysis indicated that bacterial 

growth, and therefore proteolytic activity, was optimal between these time points. 

Fermentation times of less than 3 days resulted in very low levels of secreted products as 

not enough time had elapsed to allow for bacterial proteolysis to occur. Lower 

concentrations, in the ng to low µg/mL range, of the precipitated and filtered (<10 kDa) 

supernatant of L. helveticus R0389 ferments, and acidified and non-acidified controls, 

fermented for 3 to 6 days, were used to co-challenge THP-1 cells with LPS for 24 hours. 

In this case, cells retained at least 80% viability with all concentrations used (Figure 15). 
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The supernatant of the treated THP-1s was collected and production of IL-8 was measured 

via ELISA (Figure 16).  

 

 

Figure 15 – Normalized viability of THP-1 cells treated for 24 hours with varying concentrations 

(62.5 ng/mL to 12.5 µg/mL) of acetone precipitated, filtered (< 10 kDa) supernatant solutions of L. 

helveticus R0389, L. rhamnosus R0011 or acidified (A.C.) and non-acidified (N.A.C.) controls 

collected after 3 to 6 days of fermentation as determined by the XTT cell viability assay. Medium 

– THP-1 cells treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 

125 ng/mL LPS in RPMI 1640 medium with 10% FBS. Each value is an average of three technical 

replicates of a single biological replicate. Percent viability was normalized to the medium control. 
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Figure 16 - IL-8 production by THP-1 cells stimulated for 24 hours with 125 ng/mL LPS and 

varying concentrations (62.5 ng/mL to 12.5 µg/mL) of filtered (< 10kDa) supernatant solutions 

collected from L. helveticus R0389 ferments after 3 to 6 days of fermentation as well as from 

acidified (A.C.) and non-acidified (N.A.C.) controls. Medium – THP-1 cells treated with RPMI 

1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 

medium with 10% FBS. Unlike all other ELISA data presented, this ELISA was performed using 

a Human IL-8 kit from Invitrogen. All other ELISAs were performed using a Human IL-8 kit from 

R&D (n = 1). 

 

Since higher peptide concentrations (> 10 µg/mL) seemed to have more of a pro-

inflammatory effect, as reflected by IL-8 production by THP-1 cells, cells were 

subsequently treated with the filtered ferment supernatant solutions (<10 kDa) of L. 

helveticus R0389 and L rhamnosus R0011, and acidified and non-acidified controls, but in 

even lower concentrations (ng and pg range). Viability of THP-1 cells treated with all 

concentrations of peptide fractions remained above 80% (Figure 17) and IL-8 levels of 

cells treated with supernatant solutions dropped to below those of the LPS-treated cells 

(Figure 18). Although most of the ferment supernatant solutions were able to reduce IL-8 

levels to below those of the LPS-stimulated control, so did both the acidified and non-
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acidified controls and it was therefore more likely a result of the reduced concentrations of 

peptide sample used rather than an LAB-specific effect. 

 

 

Figure 17 – Normalized viability of THP-1 cells treated for 24 hours with varying concentrations 

(12.5 pg/mL to 2.5 ng/mL) of acetone precipitated, filtered (< 10 kDa) supernatant solutions of L. 

helveticus R0389 and L. rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified 

(N.A.C.) controls, collected after 3 or 6 days of fermentation as determined by the XTT cell 

viability assay. Medium – THP-1 cells treated with RPMI 1640 medium with 10% FBS; LPS – 

THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 medium with 10% FBS. LPS. Each 

value is an average of three technical replicates of a single biological replicate. Percent viability 

was normalized to the medium control. 
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Figure 18 – Normalized IL-8 production by THP-1 cells stimulated for 24 hours with 125 ng/mL 

LPS and varying concentrations of filtered (< 10 kDa) supernatant solutions from L. helveticus 

R0389 and L. rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, 

collected after 3 and 6 days of fermentation. LPS – THP-1 cells stimulated with 125 ng/mL LPS in 

RPMI 1640 medium with 10% FBS. IL-8 levels were normalized against those of the LPS-

stimulated control (n =1).  

 

Based on the above preliminary analyses, filtered supernatant solutions (< 10 kDa) 

from three biological replicates of L. helveticus R0389 and L. rhamnosus R0011 ferments 

and acidified/non-acidified controls, collected after 3, 4, or 5 days of fermentation, were 

added to THP-1 cells at 2.5 ng/mL. Monocytic THP-1 cells maintained 100% cell viability 

(Figure 19) compared to the untreated control. Acidified control (Day 3) and supernatant 

solutions collected from milk ferments of both L. helveticus R0389 and L. rhamnosus 

R0011 after 4 days of fermentation significantly increased cell viability values (p < 0.05) 

compared to the untreated control, suggesting these ferment samples can induce an 

increased rate of growth or proliferation of the THP-1 cells. None of the samples were able 

to significantly reduce IL-8 production when compared to the LPS-stimulated control. 
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There were no significant differences in the levels of IL-8 production by cells treated with 

supernatant solutions of either LAB strain compared to the respective acidified and non-

acidified controls (Figure 20). Although our filtered supernatant solutions from milk 

ferments were not able to reduce the LPS-induced levels of IL-8, the measurement of 

additional cytokines may be required to observe any protective effect against LPS-induced 

inflammation. Yang et al. (2014) also investigated the anti-inflammatory properties of L. 

rhamnosus supernatant collected from MRS-grown cultures of L. rhamnosus GR-1. It is 

expected that cultures grown in milk, as opposed to MRS, would have increased proteolytic 

activity, and therefore a higher production of bioactive peptides. However their supernatant 

solutions were able to reduce LPS-induced levels of pro-inflammatory markers including 

IL-6. IL-1β, and TNF-α in the maternal placenta of pregnant mice. Thus, investigating the 

effect on production of additional cytokines and pro-inflammatory markers by milk 

ferment supernatants could provide a better understanding of the immune response to these 

peptide supernatant solutions. 
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Figure 19 – Normalized cell viability (± SD) of THP-1 cells treated for 24 hours with acetone 

precipitated, filtered (< 10 kDa) supernatant solutions (2.5 ng/mL) of L. helveticus R0389 and L. 

rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, collected 

after 3, 4, and 5 days of fermentation as determined by the XTT cell viability assay. Medium – 

THP-1 cells treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 

125 ng/mL LPS in RPMI 1640 medium with 10% FBS. Each value is the average of three technical 

replicates obtained from the three biological replicates. * indicates a significant difference in cell 

viability compared to the LPS-treated control (p < 0.05). Percent viability was normalized to the 

medium control. 

 

 

* * * 
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Figure 20 - Normalized IL-8 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL 

LPS and acetone precipitated, filtered (<10 kDa) supernatant solutions (2.5 ng/mL) from L. 

helveticus R0389 and L. rhamnosus R0011 ferments after 3, 4, and 5 days as well as an acidified 

(A.C.) and non-acidified (N.A.C.) control. IL-8 levels were normalized against those of the LPS-

stimulated control (n = 3). 

 

The above analyses were all conducted using filtered (< 10 kDa) supernatant 

samples from milk ferment samples. In order to further assess the effect of the components 

of these supernatant fractions, they were filtered a second time to retain only components 

less than 3 kDa in size. Preliminary treatments of THP-1 cells were repeated with the < 3 

kDa fractions of the cell-free supernatant solutions of L. helveticus R0389 and L. 

rhamnosus R0011 ferments after 3, 4, or 5 days post-fermentation. Cell viability was 

retained at all three concentrations analyzed (Figure 21). Interestingly, the highest 

concentration of the < 3 kDa fraction of the ferments from both L. helveticus R0389 and L. 

rhamnosus R0011 (1 µg/mL) showed the largest decrease in IL-8 production compared to 

the LPS-stimulated control (Figure 22). Therefore, further analysis was performed with 1 

µg/mL solutions of filtered (< 3 kDa) cell-free supernatant from three biological replicates 



62 

 

of L. helveticus R0389 and L. rhamnosus R0011 ferments and acidified/non-acidified 

controls. Again, cell viability remained above 80% of the control (Figure 23). 

Unfortunately, any reduction in IL-8 production observed from the preliminary ELISA was 

not observed when the experiment was repeated with the biological replicates of all four 

ferment samples; none of the treatments were able to significantly reduce LPS-induced IL-

8 production (p < 0.05) (Figure 24). 

 

 

Figure 21 – Normalized cell viability of THP-1 cells treated  for 24 hours with varying 

concentrations (0.1 to 1 µg/mL) of acetone precipitated, filtered (< 3 kDa) supernatant solutions of 

L. helveticus R0389 and L. rhamnosus R0011 ferments collected after 3, 4, and 5 days of 

fermentation as determined by the XTT cell viability assay. Medium – THP-1 cells treated with 

RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 

1640 medium with 10% FBS. Each value is the average of three technical replicates of a single 

biological replicate. 
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Figure 22 - IL-8 production by THP-1 cells treated for 24 hours with 125 ng/mL LPS and various 

concentrations (0.1 to 1 µg/mL) of filtered (< 3 kDa) supernatant solutions from L. helveticus 

R0389 and L. rhamnosus R0011 ferments collected after 3, 4, and 5 days. Medium – THP-1 cells 

treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL 

LPS in RPMI 1640 medium with 10% FBS (n = 1). 

 

Figure 23 – Normalized cell viability (± SD) of THP-1 cells treated for 24 hours with acetone 

precipitated, filtered (< 3 kDa)  supernatant solutions (1 µg/mL) of L. helveticus R0389 and L. 

rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C) controls, collected 

after 3, 4, and 5 days of fermentation as determined by the XTT cell viability assay. Medium – 

THP-1 cells treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 

125 ng/mL LPS in RPMI 1640 medium with 10% FBS (n = 3). Percent viability was normalized 

to the medium control. 

* 

* 

* 
* * * 
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Figure 24 - Normalized IL-8 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL 

LPS and 1 µg/mL filtered (<3 kDa) supernatant solutions from L. helveticus R0389 and L. 

rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, after 3, 4, 

and 5 days of fermentation. IL-8 levels were normalized against those of the LPS-stimulated control 

(n = 3). 

 

In all 24 hour treatments, the cell-free supernatant solutions from both L. helveticus 

R0389 and L. rhamnosus R0011 were not able to effectively and reproducibly prevent the 

LPS-stimulated induction of IL-8 production by THP-1 cells. Monocytic cells are typically 

responsible for inducing an inflammatory response in the presence of foreign compounds 

or pathogens. Therefore it was postulated that increasing the time of exposure of the THP-

1 cells to the peptide samples may allow the inflammatory cells to reach a more steady, 

and potentially regulatory, state. To test this, the co-incubation time was increased from 24 

hours to 48 hours. After 48 hours, the viability of the cells for all samples remained above 

80% when normalized to the medium control (Figure 25). Only cells treated with the 

supernatant of the non-acidified control collected after 4 days resulted in significantly 

decreased viability compared to the LPS-stimulated control. The preliminary ELISA of the 
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cells treated for 48 hours however showed very low levels of IL-8 for peptide-treated cells 

as well as for the LPS-stimulated control when compared to the IL-8 concentrations 

typically observed from 24 hour treatments. Therefore, although the levels of IL-8 

produced from the sample treated cells were incredibly low, so were those of the cells 

treated with LPS alone (Figure 26). A 4 hour co-incubation of the THP-1 cells was also 

conducted with LPS and the supernatant solutions of L. helveticus R0389 and L. rhamnosus 

R0011 and both the acidified and non-acidified controls, however it was not long enough 

for any detectable IL-8 to be produced from any of the LPS or sample treated cells. For 

these reasons, all subsequent cell treatments were carried out for 24 hours. 

 

 

Figure 25 – Normalized cell viability of THP-1 cells treated for 48 hours with acetone precipitated, 

filtered (< 10 kDa) supernatant solutions (2.5 ng/mL) of L. helveticus R0389 and L. rhamnosus 

R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, collected after 3, 4, 5, 

and 6 days of fermentation as determined by the XTT cell viability assay. Medium – THP-1 cells 

treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL 

LPS in RPMI 1640 medium with 10% FBS. Each value is the average of three technical replicates 

of a single biological replicate. Percent viability was normalized to the medium control. 
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Figure 26 - IL-8 production by THP-1 cells treated for 48 hours with 125 ng/mL LPS and 2.5 ng/mL 

filtered (<10 kDa) supernatant solutions from L. helveticus R0389 and L. rhamnosus R0011 

ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, collected after 3, 4, 5, and 6 

days of fermentation (n = 1). 

 

One additional set of preliminary treatments was conducted in which THP-1 cells 

were pre-incubated for 17 hours with filtered peptide samples (< 10 kDa) from L. helveticus 

R0389 and L. rhamnosus R0011 supernatants, as well as from acidified and non-acidified 

controls, collected after 3, 4 or 5 days of fermentation. After the initial 17 hour incubation, 

125 ng/mL LPS was added as an inflammatory stimulant to sample wells and the cells were 

incubated for another 7 hours. Cell viability for all treatments (LPS and supernatant 

samples) was greatly increased compared to the medium control (Figure 27). Pre-

incubation of the monocytes with the peptide solutions prior to LPS stimulation was not 

able to prevent the LPS-induced IL-8 production (Figure 28). The protein buffer was also 
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assayed for its potential ability to induce IL-8 production, however no IL-8 was produced 

by THP-1 cells treated with the buffer solution alone. 

 

 

Figure 27 – Normalized cell viability of THP-1 cells pre-incubated for 17 hours with acetone 

precipitated, filtered (< 10 kDa) supernatant solutions (2.5 ng/mL) of L. helveticus R0389 and L. 

rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, collected 

after 3, 4, 5, and 6 days of fermentation followed by the addition of LPS and incubation for an 

additional 7 hours as determined by the XTT cell viability assay. Medium – THP-1 cells treated 

with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells treated with RPMI 1640 medium with 

10% FBS for 17 hours, and then stimulated with 125 ng/mL LPS for 7 hours. Each value is the 

average of three technical replicates of a single biological replicate. 
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Figure 28 - IL-8 production by THP-1 cells pre-incubated with 2.5 ng/mL filtered (<10 kDa) 

supernatant solutions from L. helveticus R0389 and L. rhamnosus R0011 ferments as well as 

acidified (A.C.) and non-acidified (N.A.C.) controls after 3, 4, and 5 days for 17 hours, followed 

by the addition of 125 ng/mL LPS and incubation for an additional 7 hours. Medium – THP-1 cells 

treated for 24 hours with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells treated for 17 

hours with RPMI 1640 medium with 10% FBS followed by stimulation with 125 ng/mL LPS for 7 

hours (n = 1). 

 

Certain bacterial cell-surface components of lactobacilli, in addition to their 

secreted products, have been shown to possess bioactive properties through their 

interaction with immune cells (Wells, 2011). In order to investigate the effects of the 

bacterial fraction of the ferments, THP-1 cells were also co-challenged with LPS and 

decreasing volumes of the whole ferment culture solutions after 6 days of fermentation; a 

dramatic increase in IL-8 production compared to LPS-stimulated cells was observed by 

ELISA (Figure 29). The whole ferment cultures induced IL-8 production, with IL-8 levels 

increasing to levels far higher than those of the LPS-stimulated control. 
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Figure 29 - IL-8 production by THP-1 cells co-treated with 3.25% milk fermented with L. helveticus 

R0389 and/or L. rhamnosus R0011, or an acidified (A.C.) and non-acidified (N.A.C.) control after 

6 days of fermentation, and 125 ng/mL LPS. Medium – THP-1 cells treated with RPMI 1640 

medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 medium 

with 10% FBS (n = 1). 

 

Finally, filtered supernatant solutions (< 10 kDa) from three biological replicates 

of L. helveticus R0389 and L. rhamnosus R0011 ferments, or acidified and non-acidified 

controls, were used to treat THP-1 monocytes in the absence of a pro-inflammatory 

stimulant (LPS). Oddly, viability of the THP-1s following this treatment decreased (Figure 

30). However, ELISAs revealed that cells treated with all samples, in the absence of a pro-
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inflammatory stimulant, showed very low IL-8 production, comparable to that of the 

medium control (Figure 31). 

 

 

Figure 30 – Normalized cell viability (± SD) of THP-1 cells treated for 24 hours with acetone 

precipitated, filtered (< 10 kDa) supernatant solutions (2.5 ng/mL) L. helveticus R0389 and L. 

rhamnosus R0011 ferments, and acidified (A.C.) and non-acidified (N.A.C.) controls, collected 

after 3, 4, 5 and 6 days of fermentation as determined by the XTT cell viability assay. Medium – 

THP-1 cells treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 

125 ng/mL LPS in RPMI 1640 medium with 10% FBS (n=2). Percent viability was normalized to 

the medium control. 
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Figure 31 - IL-8 production by THP-1 cells treated for 24 hours with filtered (<10 kDa) supernatant 

solutions (2.5 ng/mL) from L. helveticus R0389 and L. rhamnosus R0011 ferments, and acidified 

(A.C.) and non-acidified (N.A.C.) controls, collected after 3, 4, and 5 days (No LPS). Medium – 

THP-1 cells treated with RPMI 1640 medium with 10% FBS (n = 1). 

 

3.4.2 Synthesized Peptides 

Twelve peptides derived from the β-casein sequence were synthesized (Table 2) 

and used to treat THP-1 monocytes in order to assess their effect on pro-inflammatory and 

regulatory cytokine production. VPP and IPP were identified by Nakamura et al. (1995a) 

in milk fermented with L. helveticus and S. cerevisiae and are potent ACE inhibitors (IC50 

= 9 and 5 µM, respectively). Nakamura et al. (1995a) also reported their antihypertensive 

ability in vivo; administration of 1.6 mg/kg of VPP and 1.0 mg/kg of IPP were able to lower 

SBP in SHR by 20 and 15 mmHg, respectively. Although they are commonly used to 

supplement dietary products, additional research regarding the immune response induced 

by these two tripeptides individually is required. Five of the twelve synthesized peptides 

were identified by Tellez et al. (2010) as part of a larger immunomodulatory fraction. 



72 

 

Tellez et al. (2010) reported immune stimulation, characterized by an increase in IL-6, I-

1β, and TNF-α production, in RAW264.7 cells. However, they observed macrophage cell 

death at peptide concentrations higher than 20 µg/mL. We therefore decided to further 

investigate the effects of these five peptides on the immune response by assessing their 

effect on cytokine production by THP-1 monocytes. Four of the selected peptides, YP, 

FFVAP, KVLPVP, and KVLPVP, have all been identified as ACE-inhibitory peptides in 

the literature, however their immunomodulating properties had yet to be investigated 

(Yamamoto et al., 1999; Yamamoto et al., 1997; Maeno et al., 1996). Since atherosclerosis 

is characterized as an inflammatory disease, we now know the large role of the immune 

system in the progression of this disease. Characterizing the multiple bioactive properties 

of these peptides, including the effects on the immune cell response, can help to further the 

understanding of the mechanisms of action responsible for the health benefits in vivo. 

Therefore cells were exposed, for 24 hours, to each individual peptide, with and without 

125 ng/mL LPS. Cell viability for both treatments remained above 80% (Figure 32 and 

Figure 33, respectively). None of the synthesized peptides were able to significantly reduce 

the amount of IL-8 produced compared to the LPS-stimulated levels at any of the 

concentrations tested; IL-8 production increased with increasing concentrations of peptides 

(Figure 34). However, without stimulation with LPS, peptides induced minimal amounts 

of IL-8 on their own (Figure 35). This could indicate that, without existing inflammatory 

stimuli, they are not able to induce inflammation through the production of IL-8.  
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Figure 32 – Normalized cell viability of THP-1 cells treated for 24 hours with 125 ng/mL LPS and 

1 µg/mL synthesized peptides as determined by the XTT cell viability assay. Medium – THP-1 

cells treated with RPMI 1640 medium with 10% FBS; LPS – THP-1 cells stimulated with 125 

ng/mL LPS in RPMI 1640 medium with 10% FBS. Percent viability was normalized to the medium 

control (n = 1). 
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Figure 33 – Normalized cell viability of THP-1 cells treated for 24 hours with 1 µg/mL synthesized 

peptides (without LPS) as determined by the XTT cell viability assay. Medium – THP-1 cells 

treated with RPMI 1640 medium with 10% FBS. Percent viability was normalized to the medium 

control (n = 1). 

 
 

Figure 34 - IL-8 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL LPS and 

1 µg/mL synthesized peptides. Medium – THP-1 cells treated with RPMI 1640 medium with 10% 

FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 medium with 10% FBS (n 

= 1). 
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Figure 35 - IL-8 production by THP-1 cells treated for 24 hours with 1 µg/mL synthesized peptides 

(without LPS). Medium – THP-1 cells treated with RPMI 1640 medium with 10% FBS (n = 1). 

 

IL-10 production is often an indication of the regulatory or anti-inflammatory properties of 

probiotics or bioactive peptides (Wells, 2011). IL-10 may also greatly influence the 

inflammatory process within atherosclerotic lesions through potent deactivating properties 

on both macrophages and T cells (Mallat et al., 1999). Therefore, the production of IL-10, 

a regulatory cytokine, by THP-1 cells was also investigated when treated with various 

concentrations of the synthesized peptides. In both the presence and absence of the 

inflammatory stimulant (LPS) a majority of the synthesized peptides, at a concentration of 

1 µg/mL, were able to induce the production of the regulatory IL-10 with levels increasing 

in the absence of LPS; IPP treated cells resulted in the highest production of IL-10 (Figure 

36 and Figure 37). Increased concentrations (5 and 10 µg/mL) of three of the twelve 
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peptides (VPP, IPP, and KVLPVP) were also used to treat THP-1s. In this case, IL-10 

production seemed to increase with increasing peptide concentration for VPP and 

KVLPVP in the presence and absence of LPS. IL-10 levels remained relatively steady, 

compared to 1 µg/mL levels for cells co-incubated with IPP and LPS, and dropped at higher 

concentrations for cells exposed to IPP (no LPS) (Figure 38 and Figure 39). The induction 

of IL-10 production by the THP-1 monocytes indicates a potentially regulatory response to 

each of the peptides administered. 

 

 

Figure 36 - IL-10 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL LPS and 

1 µg/mL synthesized peptides. Medium – THP-1 cells treated with RPMI 1640 medium with 10% 

FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 medium with 10% FBS (n 

= 2). 
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Figure 37 - IL-10 production by THP-1 cells treated for 24 hours with 1 µg/mL synthesized peptides 

(without LPS). Medium – THP-1 cells treated with RPMI 1640 medium with 10% FBS (n = 1). 

 

 

 

Figure 38 - IL-10 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL LPS and 

0.5, 1, 5 or 10 µg/mL of VPP, IPP, or KVLPVP. Medium – THP-1 cells treated with RPMI 1640 

medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 medium 

with 10% FBS (n = 2). 
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Figure 39 - IL-10 production by THP-1 cells treated for 24 hours with 0.5, 1, 5 or 10 µg/mL of 

VPP, IPP, or KVLPVP. Medium – THP-1 cells treated with RPMI 1640 medium with 10% FBS (n 

= 1). 

 

The effect of the synthesized peptides on the production of IL-6, another pro-

inflammatory cytokine, by THP-1 cells was also investigated. Cells were exposed to 1 

µg/mL of all twelve synthesized peptides as well as 0.5, 5, and 10 µg/mL solution of VPP, 

IPP, and KVLPVP (without LPS). At concentrations of 0.5 and 1 µg/mL, THP-1s did not 

produce any detectable IL-6. At 5 µg/mL, of the three peptides tested, only KVLPVP 

induced the production of low levels of IL-6 (36.70 ± 8.83 pg/mL). As seen with IL-10, 

increasing the concentration of VPP, IPP, and KVLPVP to 10 µg/mL further increased IL-

6 production to 88.39 ± 4.30 pg/mL, 78.85 ± 1.15 pg/mL and 102.24 ± 18.76 pg/mL, 

respectively. Therefore it seems that, at low enough concentrations, these peptides will not 

elicit an inflammatory response through the production of pro-inflammatory cytokines. 

However, increasing peptide concentration leads to an increase in cytokine production 

(both regulatory and inflammatory).  
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4 CONCLUSIONS AND FUTURE DIRECTIONS 

The aim of this study was to investigate the antihypertensive and immunomodulatory 

effects of casein-derived peptides. It was observed that supplementation of MRS medium 

with either 0.1% casein, an abundant milk protein, or 0.01% sodium formate, a compound 

known to stimulate the growth of L. bulgaricus in co-culture with S. thermophilus, 

increased the growth rate and doubling time of L. helveticus R0389 and L. rhamnosus. Both 

strains of lactobacilli were also used to ferment 3.25% milk to investigate the variety of 

casein-derived peptides liberated by each strain and to identify bioactive properties of 

Lactobacillus peptide fractions. Peptide analysis by polyacrylamide gel electrophoresis 

revealed unique protein and peptide bands present in milk ferment samples fermented with 

either L. helveticus R0389 or L. rhamnosus R0011.  

Further elucidation is required in order to identify the specific bioactive compounds 

within each milk ferment sample. We have shown that the 3 to 10 kDa fraction of the cell-

free supernatant of milk fermented with two strains of lactic acid bacteria confers more 

bioactivity than < 3 kDa or unfiltered supernatant samples; however, multiple components 

within each of those fractions could be contributing to bioactivity. Fractions should be 

treated with peptidases, to confirm that any bioactivity observed is solely due to peptides 

present. Lipase treatments of fractions of different MWCOs can also provide insight into 

the role of lipids in the antihypertensive and immunomodulating properties of peptide 

fractions from milk ferments cultured with LAB.  

Many other bacterial components can be assessed for their role in conferring benefits 

to consumers of fermented milk products. Surface layer proteins, cell wall components of 

gram-positive bacteria (lipoproteins, lipoteichoic acids, and peptidoglycan) or lipolysis 
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products can also be investigated for their impact on immune parameters or for their 

potential role in the reduction of hypertension. Despite the extensive research surrounding 

the bioactive properties of fermented dairy products and the contribution of lactic acid 

bacteria, little is known regarding the mechanisms responsible for both antihypertensive 

and immunomodulatory effects observed. Further investigation into the interaction of 

lactobacilli and the peptides liberated in the fermentation process with various immune 

cells, as well as intestinal epithelial, and vascular endothelial cells can aid towards 

elucidating the mechanisms responsible for the benefits of these probiotic organisms in the 

production of fermented dairy products. 

The benefits of using probiotic organisms such as lactobacilli as a treatment or 

preventive measure for the development of mild hypertension has been well established, 

however the effect of these bacteria and their secreted products on the immune response 

still has yet to provide consistent and definitive results. Further investigation into the 

immunomodulatory effects of fermented dairy products and the probiotic organisms used 

in their production can supplement the knowledge of their ability to regulate blood 

pressure; together this information can help to improve upon the use of probiotics in 

commercially available dietary products or can provide an accepted, cost-effective 

alternative to synthetic drugs to treat a variety of chronic inflammatory diseases, including 

atherosclerosis. 
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6 APPENDIX A 

Table 5 – Structures and properties of synthesized peptides 

 
P1: VPP, 311.38 g/mol 

Protein origin: β-casein (84-86) 

Net Charge: 0 (Neutral), pI: 6.01, 

Hydrophobicity: +7.72 Kcal/mol 

 
P2: IPP, 325.41 g/mol 

Protein origin: β-casein (74-76) 

Net Charge: 0 (Neutral), pI: 6.01, 

Hydrophobicity: +7.06 Kcal/mol 

 

 
P3: HQPHQPPLPPTVMFPPQ, 1851.18 g/mol 

Protein origin: β-casein (145-160) 

Net Charge: +2 (Basic), pI: 8.0, Hydrophobicity: +11.87 Kcal/mol 

 

 

 
P4: HQPHQPPLPPT, 1151.3 g/mol 

Protein origin: β-casein (145-154) 

Net Charge: +2 (Basic), pI: 8.0, Hydrophobicity: +13.66 Kcal/mol 

 

 

 
P5: WMHQPHQPLPPT, 1468.71 g/mol 

Protein origin: β-casein (143-154) 

Net Charge: +2 (Basic), pI: 8.0, Hydrophobicity: +10.90 Kcal/mol 
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P6: LYQEPVLGPVR, 1270.51 g/mol 

Protein origin: β-casein (192-202) 

Net Charge: 0 (Neutral), pI: 6.89, Hydrophobicity: +11.41 Kcal/mol 

 

 

P7: LDQWLCEK, 1034.2 g/mol 

Protein origin: β-casein (115-122) 

Net Charge: -1 (Acidic), pI: 4.07, Hydrophobicity: 

+14.13 Kcal/mol 

 

 

 
P8: YP, 278.31 g/mol 

Protein origin: αs1/β/κ-casein 

Net Charge: 0 (Neutral), pI: 

5.93, Hydrophobicity: +7.33 

Kcal/mol 

 

 
P9: PGPIPN, 593.69 g/mol 

Protein origin: β-casein (63-68) 

Net Charge: 0 (Neutral), pI: 6.01, Hydrophobicity: 

+9.20 Kcal/mol 

 
P10: FFVAP, 579.70 g/mol 

Protein origin: β-casein (23-27) 

Net Charge: 0 (Neutral), pI: 6.01, 

Hydrophobicity: +4.66 Kcal/mol 

 

 

 
P11: KVLPVP, 651.85 g/mol 

Protein origin: β-casein (169-174) 

Net Charge: +1 (Basic), pI: 10.1, 

Hydrophobicity: +8.81 Kcal/mol 

 

 

P12: KVLPVPQ, 779.99 g/mol 

Protein origin: β-casein (169-175) 

Net Charge: +1 (Basic), pI: 10.1, 

Hydrophobicity: +9.58 Kcal/mol 

*Peptide structures drawn using ChemBioDraw Ultra 13.0. Peptide characteristics were obtained from PepDraw by 

Tulane University (hydrophobicity values) (http://www.tulane.edu/~biochem/WW/PepDraw/) and Peptide property 

calculator by Innovagen (pI) (http://www.innovagen.com/custom-peptide-synthesis/peptide-property-calculator/peptide-

property-calculator.asp)  
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7 APPENDIX B 

 
Figure 40 – IL-8 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL LPS 

and 0.5, 1, 5 or 10 µg/mL synthesized peptides. Medium – THP-1 cells treated with RPMI 1640 

medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 

medium with 10% FBS. 
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Figure 41 - IL-8 production by THP-1 cells treated for 24 hours with 0.5, 1, 5 or 10 µg/mL 

synthesized peptides (without LPS). Medium – THP-1 cells treated with RPMI 1640 medium 

with 10% FBS. 
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Figure 42 - IL-10 production (± SD) by THP-1 cells treated for 24 hours with 125 ng/mL LPS 

and 0.5, 1, 5 or 10 µg/mL synthesized peptides. Medium – THP-1 cells treated with RPMI 1640 

medium with 10% FBS; LPS – THP-1 cells stimulated with 125 ng/mL LPS in RPMI 1640 

medium with 10% FBS. 
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Figure 43 - IL-10 production by THP-1 cells treated for 24 hours with 0.5, 1, 5 or 10 µg/mL 

synthesized peptides (without LPS). Medium – THP-1 cells treated with RPMI 1640 medium with 

10% FBS. 


