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Abstract

The goal of this thesis is to study the emergence of spatiotemporal waves in neural

field models. Neural field models aim to describe the activity of populations of neurons

at a mesoscopic scale, considering averaged neuronal states dependent on continuous

space and time. Mathematically, they are composed of spatial and temporal inte-

gral operators on domains of anatomical interest. The cortex is modelled as a two

dimensional sheet, and under physiological assumptions for the spatial extent of con-

nectivities, it is shown when the principal transition from resting to active states will

result in the formation of waves. This thesis starts with a derivation for the integral

operators from a physiological viewpoint. The notion of a dynamical system is then

introduced, and theory relevant to the spontaneous emergence of activity is discussed.

The thesis progresses to applying the dynamical systems view to neural fields, leading

to an understanding of the transitions from inactive resting states to space dependent

temporal oscillations – waves. For tractable analysis, the active states are restricted

to have square periodic symmetry.
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Introduction
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This thesis is directed at studying the nonlinear behaviour of wave forming bifurca-

tions for mesoscopic models of cortical activity. The work presented here is at the

forefront of both applied mathematics and mathematical neuroscience, having i) gen-

eral applicability to equations defined on two dimensional spatial domains with space

dependent delays, and ii) specific novel results for neural models that contain long

range excitatory connections and delays induced by finite transmission speeds.

1.1 Overview

A brief overview of cortex physiology is presented in Chapter 2, followed quickly by

a semi-heuristic derivation of the spatiotemporal neural field operator. Two specific

models that make use of this operator are then presented, and their relevance to the

physiology discussed.

Chapter 3 gives an introductory view into the world of dynamical systems. While

this is indeed a rather large world, a few specific topics relevant to setting up the

analyses we perform are presented in some detail. These topics include equilibria bi-

furcations, normal forms, spatially extended systems, symmetry, and numerical con-
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1.2. An historical note 2

tinuation applied to each of these scenarios.

Chapter 4 is where the results start. It begins slowly, presenting results that

could easily be found in existing works, but quickly builds to the nonlinear analysis

of the wave forming bifurcation. A normal form for an arbitrary scalar neural field

model – one that contains an arbitrary temporal operator (synapse) and an arbitrary

spatiotemporal connectivity – that captures the dynamics of two dimensional waves

with square periodic symmetry is obtained, with symbolic expressions for the normal

form coefficients. Predictions of this normal form are confirmed with direct numerical

simulation of the spatiotemporally delayed system.

In Chapter 5, a couple of things happen. First, the analysis of the wave form-

ing bifurcation from the previous chapter is extended to handle a more complicated

system of two coupled populations of neurons. This model is complicated both by

the addition of interacting populations, and by the separation of postsynaptic and

soma membrane potential dynamics. Next, numerical software is developed for gen-

eral purpose simulation of this complicated model. The software is turned towards the

neighbourhood of the wave forming bifurcation, eventually leading to a continuation

of one of the branches of waves that emerge.

1.2 An historical note

The work presented in this thesis has been laid out in the progression that makes the

most logical sense. This is not, however, the progression in which it was conducted.

Perhaps many who have gone through the doctoral process can relate, or maybe they

can not. For me, personally, I can not help but chuckle when considering my initial

viewpoints and expected progression of the work. So much ignorance in those days,

yet so much more now.

For the reader who would like in on this humour, the one who wishes to read this

work in its temporal ordering, the results would progress as follows.

• Read Chapter 5, ignoring any reference to the integral formulation of Liley’s

model. Also ignore anything to do with the dynamic Turing bifurcation, as our

initial abilities to compute this thing were non existent.

• Skim Appendix B.1.1-B.3, to get an idea of how we were originally planning on

studying neural field models.

• Read Chapter 4 in its entirety, and maybe glance at Appendix A. This chapter

was the result of us not understanding the dynamic Turing bifurcation at all, and
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discovering that no relevant literature existed for neural fields in two dimensional

space.

• Go back to Chapter 5, now considering all things that have to do with the dis-

persion relation, all things that have to do with the integral representation of the

model, and all unfoldings of square symmetric wave modes in the neighbourhood

of dynamic Turing bifurcations.

With this temporal history, some of the results, particularly with respect to Liley’s

model, do not fit together as perfectly as I would have liked. From my experience, I

can only say that this is just the nature of a doctoral dissertation.

1.3 Publications

The publication of results from this thesis tell a similar story to the historical note

above. The numerical algorithms and general simulation tools for Liley’s model (Sec-

tions 5.1.3, 5.1.4, and Appendix B.2) are published in [1]. After this, the numerical

tools were turned towards computing a branch of supercritical standing wave solutions

(Section 5.3.2) with results published in [? ].

The normal form results at the wave forming bifurcation in the scalar field (Chap-

ter 4, and Appendix A) are currently under review, and consist of a heavily modified

version of the technical report [? ]. The numerical normal form computations in

Liley’s model are currently unpublished results.
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This section introduces some of the relevant physiology needed to place the models

that will be studied. After this, a brief historical view of the progression of neural

field/mass modelling is given, moving from the models of Wilson & Cowan [30] forward

to Liley’s mean field model of the cortex [22]. From there, the integral operators that

are commonly found in these models are then derived from a semi-heuristic viewpoint,

4



2.1. Neocortex physiology 5

and the two specific models studied in this thesis are presented in terms of these

operators.

2.1 Neocortex physiology

2.1.1 Structure of the human brain

One possible decomposition of the human brain is into the following three high-level

regions: cerebrum, cerebellum, and brain stem [18], as visualized in Figure 2.1.

The cerebrum is divided into a left and right hemisphere and accounts for most of

our brains’ mass. The hemispheres consist of a wrinkled outer layer of grey matter –

the cerebral cortex, consisting mostly of unmyelinated neurons and glial cells – which

is supported by an inner layer of white matter, which also consists of glial cells, but

contains myelinated axons of neurons as well. The left and right hemispheres of the

cerebrum are linked through a structure called the corpus callosum, which is visible

in Figure 2.2.

The unmyelinated neurons in the cerebral cortex are responsible for local con-

nections within the cortex, while the myelinated axons of the white matter connect

the different regions of a cerebral hemisphere to each other, as well as to lower brain

centres. The myelin covering of an axon assists with signal transmission properties,

increasing speed of transmission while decreasing signal degradation. This allows

neurons with myelinated axons to communicate effectively at longer distances.

The cerebral cortex is where much of the higher processing in humans occurs,

and it is divided into four lobes: frontal, parietal, temporal and occipital. Each lobe

handles various functions, for example the frontal lobes are responsible for functions

such as judgement, foresight, and personality [5, 20]. The parietal lobe houses the

primary somatosensory cortex, responsible for handling the tactile representation for

our sense of touch. Another example, the occipital cortex, houses the primary visual

cortex which is responsible for the processing of our visual field.

Despite the large number of functions that the cortex handles, and this apparent

separation into lobes, the structure of the neurons within it remains qualitatively

similar throughout. This is a large motivating factor for our work: To study the

cortex through models related to its physiological structure.

Deeper within the cerebral hemispheres are many more structures, such as the

basal ganglia, thalamus, hypothalamus, hippocampus, and the amygdaloid nuclei to

name a few. Discussion of the functions of these deeper cerebral structures is deferred
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Figure 2.1: Schematic view of the exterior of the human brain. Left: The cerebrum
is split into two hemispheres. Image modified from Blausen Gallery 2014 licensed
under CC BY 3.0. Right: Both hemispheres can be divided into separate lobes:
frontal, parietal, temporal, and occipital, which are generally responsible for handling
different cognitive functions. Also visible from the exterior are the cerebellum and the
brain stem. Image modified from Cancer Research UK licensed under CC BY-SA
4.0.

at this point for brevity. This thesis will focus on modelling the cortex, so the reader

should consult a more prominent source, such as Kandel [18], for details regarding

these deeper cerebral structures, the cerebellum, and the brain stem.

2.1.2 The pyramidal cell

Neurons are often thought of as the fundamental building blocks of the brain. They

come in many variations based on their location and role. The type of neurons most

abundant in the neocortex are called pyramidal cells due to their shape. The main

components of these pyramidal cells are their cell body (soma), dendrites and axon.

A pyramidal cell is shown in Figure 2.3.

When a neuron is not firing, it maintains a balance of Na+, K+ and Ca2+ ions such

that the interior of the neuron is at an electric potential of about −70 mV relative to

the outside. This is called the rest potential. If the neuron receives enough excitatory

input such that this potential difference depolarizes to some critical value, somewhere

around −55 mV, the neuron produces an action potential, a rapid depolarization and

repolarization of the membrane potential, which travels down the axon. Hodgkin &

Huxley developed the original nonlinear model for this firing phenomenon based on

measurements of the membrane potentials of squid giant axons [15].

Communication between neurons is then done via neurotransmitters, released from

http://dx.doi.org/DOI:10.15347/wjm/2014.010
http://creativecommons.org/licenses/by/3.0
http://commons.wikimedia.org/wiki/File%3ADiagram_showing_some_of_the_main_areas_of_the_brain_CRUK_188.svg
http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
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Figure 2.2: View of the interior of the human brain, showing deeper structure from two
cross sections. Top: Cross section through the coronal plane, showing both cerebral
hemispheres. Gyri and sulci are highlighted in the cerebral cortex, and the corpus
callosum is labelled. While other deeper cerebrum structures could be highlighted
from this view, we omit labels for brevity. Image modified from John A. Beal licensed
under CC BY 2.5. Bottom: Schematic cross section through the sagittal plane
(cerebellum omitted), showing the right cerebral hemisphere. This view also shows
division of the brain stem into the midbrain, pons, and medulla. Image modified from
OpenStax College licensed under CC BY 3.0.

http://
http://creativecommons.org/licenses/by/2.5
http://commons.wikimedia.org/wiki/File%3A1311_Brain_Stem.jpg
http://creativecommons.org/licenses/by/3.0
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Figure 2.3: A single pyramidal neuron. The dendrites are stimulated by neurotrans-
mitters from other neurons, and their resulting potentials are summed at the soma.
Once the soma potential is above a threshold, the neuron undergoes an action po-
tential that travels through the axon and its branches, releasing neurotransmitters to
other neurons. Image from Bob Jacobs licensed under CC BY-SA-2.5.

an axonal branch once an action potential has reached the end. The neurotransmitters

are released into the space between the neurons, called a synapse, and picked up by

the dendrites of other neurons. In principle, a neuron can release both excitatory

and inhibitory neurotransmitters to communicate, but about 90% of the neurons

within the cortex seem to be dedicated to one or the other [26]. To give an idea

of the composition of the human neocortex, the primary inhibitory neurotransmitter

(gamma-aminobutyric acid, GABA) accounts for 20% to 44% of all neurotransmitters

within it [27].

2.1.3 Cortical columns

Every larger structure we speak of, e.g., the hippocampus or the cerebral cortex, is

composed of millions to billions of a variety of neurons. The human neocortex however,

seems to be made up itself of functional units that are composed of many neurons

in groupings that are perpendicular to the cortical surface. These units that fire

coherently are referred to as minicolumns, and are composed of about 100 pyramidal

cells and a million or so synapses, all in a radius of about 0.03 mm. In some regions of

the cortex, even larger scale has been observed: Macrocolumns, which are composed

of 80 or so minicolumns, and have radii around 0.5 mm [26].

This idea of a macrocolumnar scale comes originally from Mountcastle [23], who

determined that neurons perpendicular to the local cortical surface have common

http://commons.wikimedia.org/wiki/File:GolgiStainedPyramidalCell.jpg
http://creativecommons.org/licenses/by-sa/2.5/
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Figure 2.4: Representation of a cortical column. The white arrows show excitatory
(intracortical and corticocortical) connections, and the black arrows show inhibitory.
The hourglass shape shows the tendency for excitation to spread to neighbouring
columns through layers I and VI, while inhibitory influence is localized to the interior
layers. Used with permission from Nunez, 2006 [26].

receptive fields at about this length scale. The receptive field of a neuron is a region

in space in which the presence of a stimulus will alter the behaviour of that neuron.

Thus, this scale is relevant for elements of sensory cortex.

Mountcastle, for example, looked at the neural response to applying pressure

(among other things) to various regions of cats’ skin. For a given location, correlated

neuronal firing in the cortex was observed mostly in localized regions perpendicular

to the local cortical surface. It is for this reason that macrocolumns are thought of as

the functional scale of the cortex. These macrocolumns can overlap, but the degree

to which they do is not very well known, and most likely varies with region. While

this idea originated in the 1950s, it is still considered to be a useful scale for cortex

dynamics [24], provided one is wary of all the ways that the term cortical column is

used [29].

In humans, the columns in the neocortex have six layers numbered from outermost

to innermost I-VI, as shown in Figure 2.4. Layers I and VI are responsible mostly for

intracortical and corticocortical excitation. The middle layers are where most of the
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relatively short range inhibition takes place. In addition to being densely connected

to itself, the cortex is also connected to the thalamus. Various types of connections

can be found between the thalamus and cortex layers I, IV, and VI. Even beyond this,

layers V and VI are connected to other regions such as the brain stem.

The number of neurons that connect the cortex to itself far outweigh the number

that connect it to other parts of the brain. This is typically used as a modelling

argument for studying models of an isolated cortex, with the possibility of extraneous

input. The use of this argument must be done with care, however, as a few syn-

chronous signals can be much more influential than a large number of asynchronous

ones. Thus, sparse synchronized input from other parts of the brain may be important.

However, experiments such as those done by Gebber et al. [12], have demonstrated

that the cortex is not just a slave to some sub-cortical pacemaker, and that it must be

capable of sustained deterministic oscillations. Whether the circumstances for these

oscillations can be met by looking at just an isolated cortex, or if mutual coupling to

another structure, i.e., the thalamus, is needed is still an open question.

2.1.4 Towards measurement

Measuring temporally precise electrical activity of the human cortex is restricted to a

few methods, if we limit ourselves to non-invasive measurements. The two most com-

monly used methods are electroencephalography (EEG), and magnetoencephalogra-

phy (MEG).

EEG relies on measuring the electric fields by using electrodes on the scalp and,

under some circumstances, within the cranium. The benefits of using this are that it

is relatively cheap and easy to get measurements of electrical activity in the cortex

with high temporal resolution. As the EEG is connected to the scalp, any signals

measured are filtered through the various layers of the human cranium. This filter-

ing can be somewhat taken into account with n-sphere models, which treat n − 1

layers of tissue with distinct electrical properties between the cortical surface and

the scalp. Some common choices are the 3-sphere (brain, skull and scalp) and the

4-sphere (brain, cerebrospinal fluid (CSF), skull, and scalp). These are approximate

models, both geometrically and electrically, of the human head. While more precise

geometrical information can be obtained for a given subject, the electrical properties

of the tissues are more difficult to obtain on a person to person basis, and still must

be approximated. Due to the fact that the relative permittivity of biological tissues

varies greatly [26], small unknowns in the electrical/geometrical properties produce
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Figure 2.5: Dipole layers in the cortex. Signals must pass through CSF, skull, and
scalp before being picked up by EEG or MEG. Used with permission from Nunez,
2006 [26].

large variation in the electrical field, making it a difficult task to relate the electrode

measurements to the underlying electrical activity with high confidence.

MEG relies on measuring magnetic fields using magnetometers outside of the head.

The magnetic fields are generated by small currents within the columns of the neo-

cortex. The main benefit of MEG is that it can provide measurement of electrical

activity with the same temporal resolution of the EEG, and can give a much higher

spatial resolution. The reason for this is that the relative magnetic permeability of

biological tissues (in particular, the CSF, skull, and scalp) are very similar, effectively

removing some of the unknown that is inherent in the EEG measurements [26].

The currents within the cortex are aligned mostly with the columns, i.e., a firing

neuron produces a potential difference between the soma and the tip of the axon [26].

Since the axons of pyramidal cells are, for the most part, perpendicular to the local

cortical surface, this translates into currents that are perpendicular as well.

The EEG is most sensitive to currents that are perpendicular to the scalp. The

reason for this becomes clear when one considers the electric potential of a current

dipole [17], and makes the connection that EEG is measuring such an electric po-

tential. The potential is proportional to cos θ, with θ the relative angle between the

dipole alignment and the position vectors, maximizing when these are parallel or

antiparallel as seen in Figure 2.6. Thus, EEG readings are primarily the result of

electrical activity in the crowns of the gyral surfaces as seen in Figure 2.5. Currents

found in the columns of sulci are closer to parallel with the scalp. On top of the fact
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Figure 2.6: Power of the electric field for ideal current dipoles. This is proportional
to cos2 θ where θ is the angle between the dipole alignment and the position vectors
[17]. Left : Dipoles aligned perpendicular to the scalp (in crowns of gyri) Contribute
largely to electrode measurements at the scalp. Right : Dipoles aligned parallel to the
scalp (in superficial sulci) do not contribute much to electrode measurements at the
scalp.

that this orientation produces weaker electric fields at the scalp, the fields generated

from neighbouring sulcal walls tend to cancel out due to the geometry [26]. With all

of this considered, the geometry of the cortical surface and the spreading of signals in

the scalp, it turns out that for a discernible signal to appear in the EEG, it is required

that about 6 cm2 of synchronous activity must be occurring in the cortical gyri. This

means that from scalp EEG readings alone, we are not able to resolve the dynamics

of the cortex at length scales smaller than this.

The MEG is most sensitive to activity in superficial sulci of the cortex. The reason,

again, comes from electromagnetic theory. Considering a magnetic field generated

by a current dipole, the power of the field is proportional to sin2 θ, where θ is the

relative angle between the dipole alignment and the position vectors. The power is

thus maximum in the θ = ±π/2 direction, i.e., perpendicular to the alignment of the

current. This is visualized in Figure 2.7, showing that the strongest magnetic field

measurements should come from currents aligned horizontal to the scalp, i.e., in the

column in a sulcus.

It is beneficial to view measurement of EEG and MEG as complementary, combin-

ing both to get the best possible (non-invasive) view of the electrical activity within

the cortex. For example, Aydin et al. recently show how the combination of EEG and

MEG measurements can permit more conclusive results for source localization than
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Figure 2.7: Power of the magnetic field for ideal current dipoles. This is propor-
tional to sin2 θ where θ is the angle between the dipole alignment and the position
vectors [17]. Left : Dipoles aligned perpendicular to the scalp (in crowns of gyri) do
not contribute much to magnetometer measurements at the scalp. Right : Dipoles
aligned parallel to the scalp (in superficial sulci) contribute most to magnetometer
measurements at the scalp.

either of the single methods alone [? ].

2.1.5 EEG rhythms

When scalp EEG measurements are performed, the temporal dynamics are typically

transformed to frequency space. In frequency space, different names are given to differ-

ent frequency bands. In particular, there are five major divisions into which readings

are binned: delta, theta, alpha, beta, and gamma in increasing order, displayed in

Table 2.1.

Band Frequency range

delta, δ < 4 Hz

theta, θ 4 - 8 Hz

alpha, α 8 - 13 Hz

beta, β 13 - 20 Hz

gamma, γ > 20 Hz

Table 2.1: The 4 major divisions in brain activity readings.
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The relative power in each of these bands at different locations of the brain can

correlate with different aspects of consciousness. For example, the alpha band typ-

ically has the largest peak power over the occipital lobes when the subject is in an

eyes closed resting state. This alpha peak disappears when the eyes are opened, or

when the subject sets their focus to some cognitive task.

Alpha band and the lower frequencies are often the focus of scalp EEG readings.

The reason for this is because of the nature of power dissipation through the skull

and scalp. The resistive properties of these tissues effectively lead to a low pass

filter, attenuating the higher frequencies more so than the lower. Oscillations with

frequencies in the higher bands can be measured, but because of the low pass filtering,

they can be seen at the scalp only when relatively large regions of the cortex are

synchronously active.

Models for the electrical activity of the cortex are often not formulated at as coarse

of a scale as the scalp EEG reads. It is instead typical to see models developed at the

length scale of local field potentials (LFP), which can be measured only from within

the cranium. LFP measures the combined activity of many dendrites at a submillime-

tre scale [18]. The benefit of modelling at this scale is that it is intermediary between

our network understanding of neural connections and the non-invasive measurement

discussed above.

It is this scale that neural fields aim to model, and so the next section will proceed

with prescribing what constitutes a neural field.

2.2 Neural field models

This section will introduce the mathematics used in defining neural field models. We

begin by writing a neural population as an averaged view of simple neurons, and

continue by extending that with delayed spatial connections. In this progression, the

relation of presynaptic firing rates to postsynaptic potentials is done in a semi-rigorous

manner, with the spatiotemporal axonal connectivity added in a more heuristic way.

The result is a specific combination of integrals over space and time which can model

a spatially extended neural population in an averaged sense. The combination can

be used to construct more complicated models involving multiple populations. The

derivation here is performed from the viewpoint of postsynaptic potentials. Since

postsynaptic potential is linearly proportional to the dendritic current [26], the form

of the resulting operator can be applied to either postsynaptic current or potential.

The combination of integrals will then be used to construct two separate models for
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neural activity. The first is the most simple model involving a single population with

input from an external source. The second involves two populations, and considers the

soma membrane potential dynamics in addition to the postsynaptic potentials. We

write this second model, Liley’s model, in a more general form than it was originally

derived, but make note of the explicit assumptions that lead to the partial differential

equation (PDE) model of the original paper [22].

2.2.1 A brief history of neural masses

The idea that we can treat large assemblies of neurons with continuum variables

seems to be first introduced by Beurle in the 1950s [2], with slight modification later

by Griffith [14, 13]. These initial attempts were focused on describing the generation

and propagation of large scale activity in networks of excitatory neurons with the

continuum variables commonly referred to as synaptic fields. The models are most

simply expressed through integro-differential equations (IDEs). In the 1970s, Wilson

and Cowan [30, 31] extended Beurle’s work to incorporate inhibitory neurons and

refractory (recovery) periods as well. The addition of refractoriness can be important,

since neurons are unable to fire continuously. Dynamical analysis at time scales near

this refractory period (∼ 1 ms) will depend heavily on this.

An important extension from Wilson and Cowan was made shortly after by Nunez

[25]. Where the IDE model of Wilson and Cowan essentially contained an infinite

propagation speed of the signals, Nunez’s model incorporated a propagation speed in

terms of a spatiotemporal lag in the integral kernel. This was analyzed for a single

population model.

From here, Amari [1] started to look at pattern formation under natural assump-

tions for connectivity and firing functions. Amari considered models with lateral

inhibition, i.e., local excitation and long range inhibition. I note here that this is a

feature of some neural systems, such as that of the retina, but it is clearly different

from the view of the cortex presented in Figure 2.4.

It was also around this time that Freeman published a text on the role of meso-

scopic modelling in neural systems [10]. While much of Freeman’s work at the time

was based on linear models (i.e., motivated by electromagnetic theory), he has played

an important role in the development of new approaches to the problem of relating

continuous models to experimental data [11].

These seminal works on neural fields provided a basis for many years of research,

during which the focus was mostly on qualitative behaviour of these models. Dynamic
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behaviour typically present are spatially and temporally periodic patterns [8], localized

activity [19, 21], and travelling waves [28]. A very cohesive review of the dynamics

of neural fields is presented in short by Coombes [6, 7], and more recently in long by

Bressloff [4].

In 2001, Liley introduced a modified model of the cortex [22]. The goal here

was to create a physiologically paramaterized extension of Wilson and Cowan type

models. The main motivation for this extension is that the previous models focused

on fields that were first order in time. When considering two interacting populations

(neglecting space), this does not allow for the development of chaotic solutions. This

also means that the linearized equations, when driven by white noise, will only be

capable of producing a single resonance peak. Chaos and multiple spectral peaks are

seen in EEG [12], so perhaps a model should exist that allows for these features.

Liley’s model treats excitatory and inhibitory populations separately, based on the

claim that most of the neurons in the cortex are specialized (made at the end of section

2.1.2) and chooses to model the average soma membrane potential of each population

in addition to the postsynaptic potentials generated by the synaptic coupling between

them.

2.2.2 Neural field components

There are three main components that form the basis of neural field modelling,

1. Synaptic coupling,

2. Firing (transfer) functions, and

3. Spatiotemporal connectivity.

From these, models can be created that vary from simple activity models, taking the

form of a single scalar equation, to models with multiple populations which can also

include additional dynamics for membrane potentials.

Synaptic coupling

First, we take the postsynaptic potential to be the variable V (t), t ≥ 0. Then we

define h(t) to be the postsynaptic response to a single incoming incoming pulse, i.e.,

V (t) = h(t) for a single (delta-function) input at time zero. If we now consider a train

of incoming delta-function pulses as P (t), then the postsynaptic response will be a
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convolution of h(t) with this train,

V (t) =

∫ t

−∞
dτ h(t− τ)P (τ).

Experimental studies, such as those performed by Freeman [10], have shown this to

be a good model for single neurons, and in fact, network models of neural activity

(like in the network simulator NEST [? ] or the Blue Brain project [? ]) employ this

view for their individual elements.

Considering a neural population now, with various types of synapses, various den-

drites, and multiple pulse trains, the average postsynaptic potential V̄ (t) in response

to the average population firing rate P̄ (t) will behave in a similar manner,

V̄ (t) =

∫ t

−∞
dτ η(t− τ)P̄ (τ), (2.2.1)

with η(t) representing population response to an average pulse rate. While the time

response of a population of synapses may differ to that of a single neuron, it may have

the same functional form with just different parameters [10? ]. To simplify notation,

the temporal convolution of Eq. (2.2.1) is written as the operator ∗,

(
η ∗ P̄

)
(t) =

∫ t

−∞
dτ η(t− τ)P̄ (τ). (2.2.2)

This forms a solid base for modelling a neural population, but it is not closed in

the sense that it relies on some average quantity being known. That is, knowing the

average population firing rate, we can determine the average postsynaptic potential,

and vice versa. Closing the model requires another (independent) way of relating

these quantities.

Firing functions

To relate the number of firing neurons (i.e., the average firing rate) to the average

postsynaptic potential of a closed population, we will start from a simple model of a

single neuron with a single dendrite, the so-called McCulloch-Pitts model [? ]:

P (t) = SmaxΘ
(
V (t)− Vth

)
=

0, V (t) < Vth

Smax, V (t) > Vth
, (2.2.3)

and follow a similar argument to that presented in Hutt & Atay [16]. Here, Θ is the

Heaviside step function, and Vth is a threshold postsynaptic potential. This simple
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model says that if a neuron’s postsynaptic potential is above a certain value, then

that means it is receiving pulses at a fixed rate Smax. Adding to this, we can consider

a distribution of dendrites on the neuron with different thresholds, D(Vth, t). This

distribution can, in general, change in time to account for refractory periods of the

neuron. Incorporating this, a neuron with dendrites distributed according to D will

have a firing rate given by

P (t) =

∫ ∞

−∞
dVthD(Vth, t)SmaxΘ

(
V (t)− Vth

)
.

Next we consider a population of neurons with postsynaptic potentials that follow a

distribution about its average ρ(V − V̄ (t)). The expected firing rate of this population

can be expressed

P (t) =

∫ ∞

−∞
dV ρ(V − V̄ (t))

∫ ∞

−∞
dVthD(Vth, t)SmaxΘ

(
V − Vth

)
,

with V now representing the randomly distributed potentials at time t.

To proceed, we average the pulse activity over a time scale ∆t, assuming that the

postsynaptic potentials vary on a time scale greater than this,

P̄ (t) =
1

∆t

∫ t+∆t

t

dτ P (τ)

≈
∫ ∞

−∞
dV ρ(V − V̄ (t))

∫ ∞

−∞
dVth D̄(Vth, t)SmaxΘ

(
V − Vth

)
.

The argument in the Heaviside function can be used, and the limits of integration

adapted, and a general expression for the average firing rate of the population is

obtained

P̄ (t) = Smax

∫ ∞

−∞
dV ρ(V )

∫ V+V (t)

−∞
dVth D̄(Vth, t).

If we consider D̄ to be constant in time, D̄(Vth, t) = D̄(Vth) then we can rewrite the

average firing rate in terms of the postsynaptic potential, calling it the firing function

S[V̄ (t)] = Smax

∫ ∞

−∞
dV ρ(V )

∫ V+V̄ (t)

−∞
dVth D̄(Vth). (2.2.4)

This closes the model, Eq. (2.2.1), as we can now write

V (t) = η ∗ S ◦ V (t) (2.2.5)
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Figure 2.8: Top left: McCulloch-Pitts model for a single neuron. Top right: Many
McCulloch-Pitts neurons with firing thresholds distributed according to a normal
distribution. Bottom: Effective firing function for a normally distributed population
of McCulloch-Pitts neurons (Gaussian error function) compared to a sigmoid with a
simpler functional form.

Now, if we assume a normal distribution of postsynaptic potentials,

ρ(V ) =
1

σPSP

√
2π

exp

(
− V 2

2σ2
PSP

)
,

and a normal distribution of synapses about an average threshold V̄th,

D(Vth) =
1

σsyn
√
2π

exp

(
−(Vth − V̄th)

2

2σ2
syn

)
,

then the firing function takes the form

S(V ) =
Smax

2

(
1 + erf

(
V − V̄th√

2σ

))
, (2.2.6)

with erf being the Gaussian error function, and σ2 = σ2
PSP + σ2

syn.

This process of going from a single McCulloch-Pitts neuron to population firing

function is displayed in Figure 2.8. While Eq. (2.2.6) holds exactly for normally

distributed statistics, it is generally replaced with another sigmoidal form that roughly

has the same shape. This is acceptable because the assumption on the dendrite

distribution is weak. Were it replaced with some other distribution, the exact equation

would not hold, but since S is essentially a scaling of cumulative distribution functions,
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the sigmoidal shape should remain.

Spatiotemporal connectivity

The previous two subsections have made no mention of the spatial extent of the

neural population, aside from the dynamical equations being locally averaged over

cortical columns. Now we introduce a synaptic coupling strength w which can be ei-

ther positive, representing dominance of excitatory synaptic connections, or negative,

representing dominance of inhibitory synapses

V̄ (t) = w η ∗ S ◦ V̄ (t).

This now allows us to consider continuous spatial coupling of neural populations.

Taking our averaged postsynaptic potential to be a function of both space and time,

V̄ (x, t), x ∈ Ω, we extend the coupling strength to be a function of two spatial

coordinates w(x,x′), from source x′ to destination x. Thus, the average postsynaptic

potential at position x can be taken as a sum over all of the source positions in the

domain

V̄ (x, t) = η ∗
∫
Ω

dnx′w(x,x′)S ◦ V̄ (x′, t)

noting that n is the spatial dimension of Ω.

This model says that the communication between all neurons within the domain is

instantaneous. This is physically not plausible, so a temporal delay that is dependent

on source and destination locations, s(x,x′), is introduced

V̄ (x, t) = η ∗
∫
Ω

dnxw(x,x′)S ◦ V̄ (x′, t− s(x,x′))

= η ∗
∫ ∞

−∞
dt′
∫
Ω

dnx′ w(x,x′)δ(t− t′ + s(x,x′))︸ ︷︷ ︸
K(x,x′,t−t′)

S ◦ V̄ (x′, t′),

with δ(·) the Dirac delta function. The physical interpretation of this when we consider

a constant axonal transmission speed c for the entire field is displayed in Figure 2.9.

Writing the equation with the delta function leads to the notion of spatiotemporal

connectivity

K(x,x′, t) = w(x,x′)δ (t+ s(x,x′)) , (2.2.7)

coupling points in space and time.

With the spatiotemporal connectivity, we define the spatiotemporal integral oper-
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Ω

x'

x

w(x,x')
c

Figure 2.9: View of spatiotemporal connectivity on 2D domain Ω. Neurons at x′ are
connected to neurons at x with coupling strength w(x,x′). For signals propagating
with a constant axonal speed c, the influence of this connection is delayed by s(x,x′) =
‖x− x′‖/c.

ator, ⊗, as

(K ⊗ g) (x, t) =

∫ ∞

−∞
dt′
∫
Ω

dx′1x
′
2K (x,x′, t− t′) g (x′, t′) , (2.2.8)

leading to a very concise notation for a model of the averaged postsynaptic potential

V̄ (t) = η ∗K ⊗ S ◦ V̄ (t).

This is the specific combination of integrals that so often arises in neural field

modelling,

η ∗K ⊗ S◦ (2.2.9)

being able to describe elements in the models from Amari [1] to that of Liley [22].

2.3 Scalar neural field

The single equation IDE,

u(x, t) = η ∗
(
K ⊗ S ◦ u(x, t) + p

)
. (2.3.1)

This equation has shown up in many papers, originating back to Amari in 1977 [1] who

considered it in one spatial dimension without the presence of delays, s(x,x′) = 0.
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Since there is not much more to say about this model that has not been men-

tioned in the component derivations above, we give some specific instances of relevant

components that will be analyzed in the coming chapter.

2.3.1 Specific components

For the firing function, work in this thesis makes use exclusively of sigmoids of the

form

S(x) =
Smax

1 + e−C(x−θ)
. (2.3.2)

The three parameters relating to the average firing threshold, θ, the maximal firing

rate Smax and the steepness at threshold C. A specific instance of this function is

plotted in the bottom panel of Figure 2.8, alongside the more formal derivation of the

error function sigmoid previously discussed.

For synaptic connectivity, there are a few common choices. The first and most

simple is the single exponential time scale

η(t) =
1

τ
e−t/τ . (2.3.3)

This model synapse has been found to work well for individual neurons as in, and also

for neural populations.

The main flaw of the single exponential synapse is that the dendritic response

in the postsynaptic neuron is inherently discontinuous, seen in Figure 2.10. That

is, when the postsynaptic neurons feel a pulse, the postsynaptic potential instantly

jumps to a new value and then exponentially decays. This is unrealistic, as dendritic

currents and postsynaptic potentials are observed to rise continuously in response to

a single input (Kandel et al. [18] p. 274).

To be able to tune both the rise and fall times of the postsynaptic potential,

another exponential time scale can be incorporated into the synapse,

η(t) =
α1α2

α2 − α1

(
e−α1t − e−α2t

)
. (2.3.4)

In Figure 2.11, the dendritic response to an excitatory and an inhibitory synapse with

two different parameter sets are plotted to show this.

If we take the synapse with two exponential time scales from Eq. (2.3.4) and let

the parameters approach each other in value, α ≡ α1 → α2, then we end up with

what is called the alpha function synapse

η(t) = α2te−αt. (2.3.5)
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Figure 2.10: The postsynaptic potential response V̄ (t) of neurons with a single
exponential time scales in response to a delta function input (i.e., a pulse). These are
the solution to Eq. (2.2.1) with P̄ (t) = δ(0). Note that the rise of this response is
instantaneous, which is an unphysical feature.
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Figure 2.11: The postsynaptic potential response V̄ (t) of postsynaptic neurons with
two exponential time scales in response to a delta function input (i.e., a pulse).
These are the solution to Eq. (2.2.1) with P̄ (t) = δ(0). Note that one is excita-
tory (weighted with +) and the other is inhibitory (weighted with −). In neural field
models, these weights are incorporated into the connectivity w(x,x′) rather than the
effective synapse η(t).
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Figure 2.12: The postsynaptic potential response V̄ (t) of postsynaptic neurons with
the alpha function synapse in response to a delta function input (i.e., a pulse). These
are the solution to Eq. (2.2.1) with P̄ (t) = δ(0).

The alpha function synapse is nice from a modelling point of view because it only has

a single parameter which modifies both the rise and the fall of the dendritic response

curve. As mentioned earlier, this is closer to reality than the single exponential

model. Sometimes however, having both the rise and fall manipulated through a

single parameter is not enough, and we must revert back to the double exponential

model. This is exactly the case when one wants to parameterize a model to match

general anaesthetic agents such as isoflurane that are known to prolong the rise time

of inhibitory postsynaptic potential much less than the decay time. Having the two

exponential time scales was shown to be necessary by Bojak & Liley [3] to correctly

reproduce EEG spectra in Liley’s model.

Finally we have the spatiotemporal connectivity. This thesis will exclusively use

constant, homogeneous, and isotropic transmission speed throughout. That is, the

delay time will always have the form

s(x,x′) =
‖x− x′‖

c
, (2.3.6)

with transmission speed c, as in the schematic of Figure 2.9. Taking the limit c→ ∞
results in instantaneous communication between any two points, recovering the often

studied neural field without delay. This leaves just the connection weight w(x,x′) to

be specified.
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Many simplifying assumptions on w can be used for tractable analysis. We can

use homogeneous connections

w(x,x′) = w(x− x′),

implying that the connection weight depends solely on the relative position of x and

x′. Even more restrictive is if the connections are also isotropic

w(x− x′) = w(‖x− x′‖),

saying that the connection weight only depends on the distance between points x and

x′, not the direction. Analysis presented in the next chapter is done with homogeneous

and isotropic connectivities, but extends in a straightforward way if the isotropy

condition is relaxed, and for specific symmetries of the connectivity.

A useful property for connectivities is to have excitatory and inhibitory domi-

nance differ with length scale, in accordance with with anatomical observations as in

Stepanyants et al. [? ]. In two dimensions, the wizard hat connectivity

w(x,x′) = −w0

2π
(1 + ‖x− x′‖) e−‖x−x′‖, (2.3.7)

is very convenient for demonstrating this. The single parameter can qualitatively

model two distinct regimes, lateral inhibition (w0 < 0) and lateral excitation (w0 > 0)

connectivities, demonstrated in Figure 2.13.

One thing to note is that while the single parameter is convenient as a model, the

distance where the dominance switches from excitation to inhibition (or vice versa)

remains one. This is fine in the qualitative sense for a single population model, as the

the system can be scaled around this length, but would be problematic with the use

of multiple populations with different length scales. Adding additional parameters is

one way to proceed, or we can go with something different altogether.

As that something different, we combine two exponentially decaying connectivities

with different strengths, different signs, and different length scales to come up with a

more robust connectivity

w(x,x′) =
1

2π

(
aee

−‖x−x′‖ − air
2e−r‖x−x′‖

)
. (2.3.8)

The three parameters in this model are the strength of excitatory connections ae,

strength of inhibitory connections ai, and a characteristic length scale r. Varying

these three parameters can produce the lateral excitation and inhibition connectivities

qualitatively similar to the wizard hat, but can also produce purely excitatory and
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Figure 2.13: Wizard hat connectivity with varying parameter. Positive connection
strength indicates dominance of excitatory connections, negative indicates dominance
of inhibitory connections. Zero value can either mean there are no connections at that
distance or the excitatory an inhibitory perfectly balance. The single parameter w0

can represent either lateral excitation or lateral inhibition connectivities.

0 1

Distance

0

C
o
n

n
e
ct

io
n

st
re

n
g
th

w(‖x‖) = 1
2π

(

aee
−‖x‖

− air
2e−r‖x‖

)

ae = 1.0, ai = 0.2, r = 2.0

ae = 40, ai = 41, r = 0.97

ae = 1.0, ai = 2.0, r = 0.8

ae = 1.0, ai = 0.2, r = 0.2

ae = 2.0, ai = 1.0, r = 2.0

Figure 2.14: Double exponential connectivity with varying parameters. The addition
of parameters makes the model more versatile than the single parameter wizard hat.
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purely inhibitory connectivities that are non-monotonic.

2.4 Liley’s neural field model

In 2001, Liley et al. proposed a neural population model combining two neural popula-

tions to model the excitatory pyramidal cells and inhibitory pyramidal cells of human

neocortex [22]. One major difference from this model compared to the above is that

it treats the dynamics of postsynaptic potentials separately from the dynamics of the

soma membrane potential.

2.4.1 General form

The main observable of this model is the soma membrane potentials of the two pop-

ulations, and it is these quantities that leads to the synaptic activity. Thus, firing

functions will take, as input, the soma membrane potentials rather than the post-

synaptic potentials that the scalar model did. The dynamics of the postsynaptic

potentials otherwise follow the same equations. The dynamics of the soma membrane

potentials involve a shifted-inverted mass action coupling to the scaled postsynaptic

potentials, and are taken to be purely local.

A general form of the model, with hk(x, t) being the soma membrane potential of

population k = e, i at position x and time t, and the post synaptic potentials Ijk(x, t)

of neurons between populations j = e, i and k, can be written

hk(x, t) = ηk ∗
(
hrk +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrj
∣∣ Ijk(x, t)

)
Ijk(x, t) = ηjk ∗

(
Kjk ⊗ Sj ◦ hj(x, t) + pjk

)
,

(2.4.1)

using the temporal and spatiotemporal integral operators defined in Section 2.2.2.

Here, the spatiotemporal connectivities and effective synapses have been given sub-

scripts that tell from which population to which population the connection is occur-

ring.

The equation for the soma membrane potentials is interpreted as follows. The

ηk represent a temporal convolution kernel for the dynamics of the soma membrane

potential of population k. The soma membrane potentials want to relax to their

resting membrane potential hrk, but are being forced by the postsynaptic potentials.

This forcing consists of a mass action coupling between the deviation of membrane
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potential from its reversal potential, heqjk−hk(x, t), normalized by the relative difference

between resting and reversal potentials,
∣∣heqjk − hrj

∣∣, and the postsynaptic potential

originating from population j, Ijk(x, t).

2.4.2 Specific form of components

To obtain the specific model introduced by Liley et al. [22], we introduce the specific

temporal and spatiotemporal connectivity kernels.

For the soma membrane potentials, the ηk have the same form, but different pa-

rameters for the time scale τk,

ηk(t) =
1

τk
e−t/τk . (2.4.2)

This is the same as the single exponential synapse that was proposed in Eq. (2.3.3),

but when applied here it is more physiologically justified as the soma membrane

potential can rise much faster than that of the postsynaptic potentials.

The synaptic convolution kernels for the postsynaptic potentials all have an alpha

function form, with differing time scales γjk,

ηjk(t) = γ2jkte
−γjkt. (2.4.3)

As discussed, this is the simplest way of obtaining the proper qualitative behaviour

of the postsynaptic potentials.

The spatiotemporal connectivities are different depending on the source population

(first index). The inhibitory population i, representing the interneurons, has only pure

local connections written as

Kik(x,x
′, t− t′) = exp(1)Γik

Nβ
ik

2π
δ2(x− x′)δ(t− t′), (2.4.4)

with the postsynaptic potential peak amplitude Γik, the number of local intracortical

synapses Nβ
ik from i to k, and δ2(x) ≡ δ(x1)δ(x2) the two dimensional delta function.

The excitatory population e, representing the pyramidal cells, does have spatially

extending connections in addition to its local connections. The spatiotemporal con-

nectivity kernel has a strange form, with the explanation to follow

Kek(x,x
′, t− t′) = Γek

(
Nα

ekΛ
2

3π
K0

(√
2/3Λ‖x− x′‖

)
δ (t− t′ + ‖x− x′‖/v)

+
Nβ

ek

2π
δ2(x− x′)δ(t− t′)

)
exp(1).

(2.4.5)
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In this connectivity, we have:

• K0, the modified Bessel function of the second kind,

• Γek, the postsynaptic potential peak amplitude,

• Nα
ek, the number of cortico-cortico synapses from e to k,

• Λ, spatial decay scale for connectivity,

• v, axonal transmission speed, and

• Nβ
ek, the number of local intracortical synapses from e to k.

The modified Bessel function of the second kind is used for two reasons: i) it looks

similar to an exponential, and ii) with all of the other kernels as specified, it permits a

PDE formulation of the model when Ω = R2. Both of these statements are quantified

in Appendix B, with the key being that in this form, the Fourier-Laplace transform

is a rational function, which allows the delayed integral to be written as a damped

wave equation.

With all of the kernels as specified, we can now write Liley’s model in the form in

which it was originally presented

τk
∂

∂t
hk(x, t) = hrk − hk(x, t) +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrj
∣∣ Ijk(x, t)(

∂

∂t
+ γjk

)2

Ijk(x, t) = exp(1)Γjkγjk

[
Nβ

jkSj ◦ hj(x, t) + φjk(x, t) + pjk

]
[(

∂

∂t
+ vΛ

)2

− 3

2
v2∇2

]
φek(x, t) = Nα

ekv
2Λ2Se ◦ he(x, t)

φik(x, t) = 0,

(2.4.6)

with the firing functions written as our sigmoid

Sk(x) = Smax
k

[
1 + exp

(
−
√
2
x− µk

σk

)]−1

, (2.4.7)

maximal firing rate, threshold, and variance parameters dependent on population.

The schematic view of everything discussed above is found in Figure 2.15, and a

quick summary of the parameters is given in Table 2.2.
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Parameter Definition Minimum Maximum Units

hre resting excitatory membrane potential −80 −60 mV

hri resting inhibitory membrane potential −80 −60 mV

τe passive excitatory membrane decay time 5 150 ms

τi passive inhibitory membrane decay time 5 150 ms

heqee excitatory reversal potential −20 10 mV

heqei excitatory reversal potential −20 10 mV

heqie inhibitory reversal potential −90 hrk − 5 mV

heqii inhibitory reversal potential −90 hrk − 5 mV

Γee EPSP peak amplitude 0.1 2.0 mV

Γei EPSP peak amplitude 0.1 2.0 mV

Γie IPSP peak amplitude 0.1 2.0 mV

Γii IPSP peak amplitude 0.1 2.0 mV

γee EPSP characteristic rate constant‡ 100 1000 s−1

γei EPSP characteristic rate constant‡ 100 1000 s−1

γie IPSP characteristic rate constant‡ 10 500 s−1

γii IPSP characteristic rate constant‡ 10 500 s−1

Nα
ee no. of cortico-cortical synapses, target excitatory 2000 5000 –

Nα
ei no. of cortico-cortical synapses, target inhibitory 1000 3000 –

Nβ
ee no. of excitatory intracortical synapses 2000 5000 –

Nβ
ei no. of excitatory intracortical synapses 2000 5000 –

Nβ
ie no. of inhibitory intracortical synapses 100 1000 –

Nβ
ii no. of inhibitory intracortical synapses 100 1000 –

v axonal conduction velocity 100 1000 cm s−1

1/Λ decay scale of cortico-cortical connectivity 1 10 cm

Smax
e maximum excitatory firing rate 50 500 s−1

Smax
i maximum inhibitory firing rate 50 500 s−1

µe excitatory firing threshold −55 −40 mV

µi inhibitory firing threshold −55 −40 mV

σe standard deviation of excitatory firing threshold 2 7 mV

σi standard deviation of inhibitory firing threshold 2 7 mV

pee extracortical synaptic input rate 0 10000 s−1

pei extracortical synaptic input rate 0 10000 s−1

Table 2.2: Meaning and ranges for parameters of Liley’s model.
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Figure 2.15: A schematic view of Liley’s model, Eq. (2.4.6). This shows the synaptic
coupling between the two populations. Inhibitory synapses are coloured white, and
excitatory coloured black. The excitatory population has direct coupling to other
regions in space, while the inhibitory population has only local. External input to
this model can be excitatory or inhibitory, and can act on either of the excitatory or
inhibitory populations. Used with permission from Frascoli, 2011 [9].

2.5 Summary

The state variables in the two different models have physiologically relevant interpre-

tations. As a quick reminder, they are restated here.

u in the scalar neural field is thought of as a locally averaged soma membrane

potential for a single population that can contain both excitatory and inhibitory

synapses. This local average is considered to be at the scale of micro to macrocolumns.

hj in Liley’s model refer to locally averaged membrane potentials of separate pop-

ulations that are purely excitatory (j = e) or inhibitory (j = i) in nature. The Ijk

have the same interpretation as the u in the scalar field, but now may be different

depending on the origin j = e, i and destination k = e, i. Again, the local averages

are considered to be at the scale of micro to macrocolumns.

The macrocolumn scale at which these models are relevant is most comparable to

data acquired by LFP measurements [18]. They can be compared to the more coarse

spatial data obtained by EEG & MEG by using spatial blurring filters on the domain

of the neural field. Finally, network models of neurons can be spatially and temporally

averaged to get space and time scales comparable to the neural field scales.

On that final note, there are a few cases where neural field models can be formally

derived from the explicit averaging of network models, such as Brunel & Wang [? ],
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and more recently Laing [? ], and Zandt et al. [? ]. It is reiterated that the models

studied in this thesis do not have a formal equivalence to underlying network models,

rather they are semi heuristic in nature.
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This chapter will focus on presenting the formulations of dynamical systems that

will be used throughout the remainder of the thesis. There are two viewpoints that

35
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must be introduced to follow our analysis, that of finite dimensional dynamical sys-

tems (i.e., ODEs), and infinite dimensional (i.e., spatially extended and/or delayed)

systems. Bifurcations are discussed from the finite dimensional viewpoint. For the

infinite dimensional case, the linear stability of perturbations with respect to all possi-

ble Fourier wave modes leads to dispersion relations. On the infinite plane, an infinite

number of wave modes destabilize simultaneously, corresponding to a degree of free-

dom in the orientation of the waves. Restricting this orientational freedom to wave

modes in two directions orthogonal to each other restricts the dimensionality at bi-

furcation, allowing for progress to be made through the use of symmetric bifurcation

theory.

3.1 Finite dimensional dynamical systems

For the purposes of this thesis, a finite dimensional dynamical system is taken to be

a system of ordinary differential equations (ODEs) of the form

u̇ = f(u, α), u(0) = u0,

α̇ = 0,
(3.1.1)

where u(t) ∈ Rn represents the state vector at time t ∈ [0,∞), and α ∈ Rm a vector

of parameters, so f : Rn+m → Rn and is taken to be smooth enough such that any

derivatives used below are well defined. This view, the separation of parameters and

state, is most useful when there are aspects of the system that do not change in

time, or change on a time scale that is much longer than the time scales that we are

interested in studying.

Another way to view such a dynamical system is via the flow, φ. A finite dimen-

sional dynamical system on RN is a continuously differentiable function φ : RN ×R →
RN such that φ(X, t) satisfies

1. φ(X, 0) : RN → RN is the identity function φ(X, 0) = X

2. The composition φ(X, t) ◦ φ(X, s) = φ(X, t+ s) holds for each t, s ∈ R

The connection to the ODEs in Eq. (3.1.1) is that the flow satisfies the equation, i.e.,

∂tφ(u, t) = f(φ(u, t)). With this equivalence, 1 is satisfied by the initial condition,

and 2 is satisfied if f satisfies the existence and uniqueness criteria for ODEs, thus

the definition holds with N = n + m and X = [u, α]T . The reason for including

this definition is because the discussion of aspects of periodic solutions follow more



3.1. Finite dimensional dynamical systems 37

naturally from the viewpoint of a flow. Specifically, both the computation and stability

analysis of periodic solutions make use of the differential of the flow with respect to

the initial state.

3.1.1 Equilibrium solutions

An equilibrium is a solution to Eq. (3.1.1) that does not change in time. That is, it

satisfies

f(u, α) = 0 (3.1.2)

Without loss of generality, we can assume a solution to eq. (3.1.2) to be at u = 0,

α = 0. We Taylor expand the vector function f(u, 0) as

f (u, 0) = Au+
1

2
B (u, u) +

1

6
C (u, u, u) +O

(
||u||4

)
, (3.1.3)

with elements of the different order terms

Aij = ∂uj
fi, (3.1.4a)

Bi (u, v) =
∑
j,k

(
∂uj

∂uk
fi
)
ujvk, (3.1.4b)

Ci (u, v, w) =
∑
j,k,l

(
∂uj

∂uk
∂ul
fi
)
ujvkwl, (3.1.4c)

for indices i, j, k = 1 . . . n. Partial differentiation is indicated by ∂, with each evaluated

at the zero state, i.e.,

∂uj
∂uk

fi =
∂2fi

∂uj∂uk

∣∣∣∣
u,α=0

.

As written, A is thus a matrix, while B and C are vectors.

We can then analyze the linear stability of the equilibrium by looking at the

eigenvalues of the Jacobian A. In particular, we can define three subspaces from the

eigenvalue equation (λI − A) v = 0:

• Stable eigenspace S: The subspace spanned by the generalized eigenvectors

corresponding to the eigenvalues λ with Reλ < 0.

• Center eigenspace C: The subspace spanned by the generalized eigenvectors

corresponding to the eigenvalues λ with Reλ = 0.

• Unstable eigenspace U : The subspace spanned by the generalized eigenvectors

corresponding to the eigenvalues λ with Reλ > 0.
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Depending on the dimensionality of these subspaces, we describe the equilibrium in

one of three ways: An equilibrium solution is called stable if dimS = dimA. It is

called unstable if dimU > 0, and it is called neutrally stable if dimS+dim C = dimA.

The nonlinear system (3.1.2) has invariant manifolds that correspond to each of

the linear subspaces, and the subspaces are locally tangent to these manifolds at the

equilibrium. An invariant manifold is a space that is invariant under the flow φ.

That is to say, points starting within an invariant manifold will remain within it for

all time.

Examples of invariant manifolds are equilibria, periodic orbits, and the stable,

unstable and center manifolds of these solutions. Stable manifolds of an equilibrium

solution u can be defined as ω = { u0 | limt→∞ φ(u0, t) = u }, and the unstable mani-

fold as α = { u0 | limt→∞ φ(u0,−t) = u }. Further discussion of invariant manifolds is

deferred to Wiggins [8].

An equilibrium is said to be hyperbolic if the linearization only contains stable

and unstable subspaces, i.e., dim C = 0. An equilibrium that lacks hyperbolicity is

called a local bifurcation point. At local bifurcation points, new solutions can emerge,

with their properties being determined by the nature of the eigenvalue(s) causing

the bifurcation, and by the so-called normal form coefficients. The dynamics near a

bifurcation point can be understood by transforming the equations to their normal

form on the center manifold. This normal form transformation involves transformation

to coordinates that approximately cover the center manifold. It consists of near-

identity transformations that eliminate terms in the Taylor expanded vector field

(Eq. (3.1.3)) order by order.

The codimension of an equilibrium bifurcation is the number of conditions (in

addition to Eq. (3.1.2)) that must be met for the bifurcation to occur. These are

conditions on either the eigenvalues or the normal form coefficients. The codimen-

sion is also the number of parameters that need to be varied (in general) to see the

bifurcation. For example, in a model with many parameters, it is very unlikely to see

an equilibrium at a Hopf bifurcation (codimension 1) for a fixed parameter set, but

adding a single degree of freedom that can be varied can allow us to satisfy both the

equilibrium equation and the λc = iωc condition if f (and A) will permit this.

The next subsection shows how this can be done in a procedural manner for a

Hopf bifurcation, which has a center manifold corresponding to a pair of complex

conjugate eigenvectors with the eigenvalues λc = ±iωc. This particular bifurcation is

chosen because it plays a role in the generation of temporal oscillations which come

up frequently in neural models.
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Further discussion of center manifold transformations in general is left to Wig-

gins [8] and Kuznetsov [5]. Also, Kuznetsov [6] provides succinct expressions for

computing normal form coefficients for all equilibrium bifurcations up to codimension

2. It is the value of the coefficients that we are interested in, so we look at methods

like Kuznetsov [6] more closely.

3.1.2 Hopf bifurcation

This subsection follows the idea presented in Kuznetsov [6], relying on the fact that

we already know what the normal form equation should look like, and just want to

compute the normal form coefficients.

In general, we write the restriction to the center manifold as

u = H(w), H : Rnc → Rn, (3.1.5)

and the (known) restricted equation as

ẇ = G(w), G : Rnc → Rnc , (3.1.6)

where G is a polynomial expansion, the coefficients of which are the normal form

coefficients, and nc is the dimension of the center manifold (nc = 2 for the Hopf

bifurcation).

If we substitute Eqs. (3.1.5) and (3.1.6) into Eq. (3.1.1), we obtain the homological

equation

Hw(w)G(w) = f(H(w)), (3.1.7)

Expanding H in terms of w,

H(w) =
∑
ν≥1

1

ν!
hνw

ν , (3.1.8)

substituting this into the homological equation, and comparing terms order by order

gives systems of linear equations to be solved for the hν . These linear systems are

in fact singular, so applying Fredholm’s alternative is required to ensure solvability

of the systems. Fredholm’s alternative states that for L a singular matrix, Lu = b

will have a solution iff 〈p, b〉 = 0, for all p in the null space of the adjoint matrix,

L̄Tp = 0. Applying this to each order equation will give solvability conditions on any

unknown coefficients that are present in G(w). Values for these coefficients can be

used to determine the criticality and stability of branching solutions.

For a stable equilibrium becoming unstable through the increase of a parameter
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β through bifurcation point βc, the criticality of branching solutions refers to which

values of β the branching solutions exist in the neighbourhood of the bifurcation. A

subcritical branch exists for β < βc, and a supercritical branch exists for β > βc.

At a Hopf bifurcation with critical eigenvalues λ = ±iωc, we define the left and

right (complex) eigenvectors of the Jacobian

Aq = iωcq, ATp = iωcp (3.1.9)

and normalize them according to

〈p, q〉 ≡ p̄T q = 1, (3.1.10)

noting the standard inner product for complex vector arguments.

The normal form of the Hopf bifurcation (in complex coordinate w) comes from

Hopf’s 1942 paper [? ? ]

G(w) = iωcw + l1w |w|2 +O
(
|w|4

)
, w ∈ C1. (3.1.11)

Applying Fredholm’s alternative to each order solution of the homological equation

will eventually show that the normal form coefficient l1 is

l1 =
1

2
Re〈p, C(q, q, q̄) +B(q̄(2iωcIn − A)−1B(q, q))− 2B(q, AINVB(q, q̄)〉, (3.1.12)

with In the n× n identity, and the notation AINV b representing the solution x to the

nonsingular system A q

p̄T 0

x
s

 =

b
0

 (3.1.13)

Furthermore, if l1 6= 0 and Eq. (3.1.1) depends smoothly on a parameter α1, it

can be shown that the cubic truncation of the restriction to the parameter-dependent

center manifold is topologically equivalent to the normal form

ẇ = (β + iωc)w + l1w |w|2 . (3.1.14)

It is this parameter dependent normal form that allows us to determine the branching

diagram of the Hopf bifurcation.

The nature of the Hopf bifurcation depends on the value of l1. For l1 < 0, the

bifurcation is called subcritical, and decreasing β through zero takes an equilibrium

from unstable to stable, and produces an unstable limit cycle. For l1 > 0, the Hopf

bifurcation is called supercritical, and increasing β through zero takes an equilibrium
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Figure 3.1: Unfolding (branching) diagrams for the Hopf bifurcation. An equilibrium
undergoing a Hopf bifurcation will produce a finite amplitude limit cycle (periodic or-
bit). The sub/super-criticality and stability of the emerging limit cycle is determined
by the parameter dependent unfolding in Eq. (3.1.14).

from stable to unstable, and produces a branch of stable limit cycles. This is best

demonstrated visually, as in Figure 3.1.

The method described within this section can be applied to bifurcations of any

codimension, but the analysis quickly gets complicated as nc increases. As the codi-

mension increases, the number of normal form coefficients also increases. This adds

to the number of possibilities for the number of unfolding diagrams. Also with in-

creasing codimension, comes increasing complexity of the formulae for computing the

coefficients. The computation coefficients for all generic equilibria bifurcations with a

codimension less than 3 is presently well established, and we can look to Kuznetsov [6]

for useful expressions to evaluate their numerical values.

3.1.3 Periodic solutions

Periodic solutions to Eq. (3.1.1) can be expressed in terms of the flow

u− φ(u, T, α) = 0, (3.1.15)

where T > 0 is the minimal time to satisfy this equation, and we have made the

parameter dependence explicit, i.e., X = [uT , α]T ∈ Rn+m has been expanded in the

flow’s arguments. As there are very few systems for which solutions to this equation

can be determined analytically, numerical methods are key for finding solutions. The

method we make use of treats this as a problem in n + 1 unknowns, by including T

in the state vector, and is described in more detail in Section 3.4.4. To summarize

here, one can integrate the system of ODEs for a time T , and perform a Newton
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update on the n+1 dimensional system based on the residual of the left hand side of

Eq. (3.1.15).

However, there is a problem with doing this, in that there are only n equations in

the n+ 1 unknowns. This leads to an infinite number of solutions, which correspond

to the starting point that can be anywhere along the periodic orbit. To handle this,

an extra condition must be introduced to effectively fix the phase of the solution. In

general, this can be written as

P (u, t) = 0, (3.1.16)

where P can fix a Poincaré plane of intersection, or represent some integral constraint

over the time-course of the periodic solution [5]. If we are dealing with a large system

of equations, then in practice it is more convenient to simply remove the direction

of the flow from the Newton update step. We will elaborate on this approach in the

computational section.

What can be done once a periodic solution has been found? Difference equa-

tions (i.e., the map uk+1 = φ(uk, t, α)) can be linearized and split up into different

eigenspaces similar to what was done with ODEs at equilibrium in Eq. (3.1.3). The

main modification that needs to be made for maps is with the linear stability, looking

at ∂uφ(u, T, α). Upon evaluation at an exact periodic solution u, ∂uφ(u, T, α) is called

the monodromy matrix. Linear stability analysis of a periodic solution u corresponds

to the eigenvalue problem

[∂uφ(u, T, α)] v = µv. (3.1.17)

The monodromy matrix will always have one eigenvalue µ = 1, and this corresponds

to perturbations along the periodic solution. Stable, center, and unstable eigenspaces

are now determined by eigenvalues µ with |µ| < 1, |µ| = 1, and |µ| > 1 respectively.

µ are called the Floquet multipliers, as Eq. (3.1.17) represents a linear system with

time-periodic coefficients, analyzed originally by Floquet [? ].

Generic bifurcations of the periodic cycle come in three flavours: µ = 1, µ = −1,

and µ1,2 = e±iθ0 . The listed bifurcations are called fold, flip and torus, respectively.

The fold bifurcation involves the spontaneous generation of a stable and unstable

periodic solution. The flip is also known as period doubling, and involves the desta-

bilization of an existing periodic orbit, and the generation of a new periodic solution

with a different period. The torus bifurcation involves the destabilization of an exist-

ing periodic orbit, and the generation of either i) a new periodic orbit or ii) a dense

torus of trajectories.
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3.2 Infinite dimensional systems

While the previous section was dealing with a finite number of state variables, this

section extends some of those ideas to infinite dimensional systems. Infinite dimen-

sional systems arise predominantly in two ways: i) by the addition of time delays,

or ii) by extending the state variables to depend on continuous variables other than

time. We will use both views of the infinite dimensionality in this thesis. The scalar

neural field uses both i and ii. The integral formulation of Liley’s model uses i and ii,

but its formulation as the PDE system requires only ii.

The most general way we write an evolution equation for a smooth, autonomous,

spatially extended, parameter dependent system is

ut = f(u, ut, α). (3.2.1)

This differs from the finite dimensional case without delays, as we now consider u(x, t)

to have n components defined for x ∈ Rd and t ∈ [0,∞), ut = {u(x, τ) : τ < t} is

the trajectory of the past solution, α the set of m parameters, and a functional

operator f : Rn × C1(Rn) × Rm → Rn. The functional operator can incorporate

partial derivatives of the spatial coordinates, and integrals over the spatial or (past)

time domains.

3.2.1 Equilibrium solutions

The idea of an equilibrium solution remains the same as in the finite dimensional case,

it is a solution that does not change in time.

Generally, equilibrium solutions can depend on space. In terms of our general

definition for infinite dimensional systems, we have

f(u, u, α) = 0 (3.2.2)

for u(x). It is important to note that the time history is evaluated at the equilibrium

solution as well. A spatially homogeneous equilibrium, or SHE, is an equilibrium that

in addition to satisfying Eq. (3.2.2), does not vary with space as well, satisfying

∇xu = 0.

These types of equilibria are very important in the study of infinite dimensional

systems, as they often represent resting or ground state solutions that the system

will tend to in some parameter regimes. These solutions are easier to find numerically
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than space dependent equilibria. Through continuation methods parameters can be

varied until a bifurcation of the SHE occurs, and a new type of solution branch, can

then be picked up and continued as well. This process allows us to study the dynamics

of the system, gradually building up the complexity of the solutions.

For spatially extended systems, the equation for SHE reduces to a finite dimen-

sional one similar to Eq. (3.1.2). Stability with respect to spatially homogeneous

modes can be obtained by studying the linearization of Eq. (3.2.1) about the SHE,

subject to spatially homogeneous perturbations. For non-delayed systems, this will

also be a finite dimensional (i.e., polynomial) problem, but in general when space-

dependent delays are present, transcendental equations (i.e., involving irreducible frac-

tional exponents), may arise.

SHE are also important for the study of spatially localized solutions and travelling

waves. These solutions can be studied from the view of homoclinic and heteroclinic

connections, respectively. A homoclinic orbit is a solution that connects the unstable

manifold of an equilibrium to the stable manifold of the same equilibrium. A hetero-

clinic orbit is a solution that connects the unstable manifold of an equilibrium to the

stable manifold of a different equilibrium. Localized solutions connect a SHE to itself

in a one dimensional spatial domain (homoclinic in space), and wave fronts connect

one SHE to another (heteroclinic in space), also in a one dimensional spatial domain.

We do not look at these types of solutions in this thesis, as they have been studied

quite extensively in neural field models [1].

3.2.2 Linear stability

To linearize a spatially extended system about a general solution u0(x, t), we substi-

tute

u(x, t) = u0(x, t) + εu1(x, t)

into Eq. (3.2.1) and look at the terms proportional to ε. This gives

∂u1
∂t

= fu(u0, u
t
0, α)u1.

The linear stability of infinite dimensional systems can be investigated by looking

at perturbations of the form

u1(x, t) = ϕ(x)eλt,

with λ ∈ C. The general case of stability is beyond the scope of this thesis, but rather

we will look at the linear stability of SHE with respect to spatial Fourier modes with
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specific wave vectors k ∈ R2. This is written as

u1(x, t) = q(k)eik·xeλt (3.2.3)

Substituting this into Eq. (3.2.1) will result in a system of equations that relates λ

and k, the dispersion relation. Looking at perturbations with k = 0 gives linearized

dynamics of the spatially homogeneous modes.

Dispersion relations

After the substitution of Eq. (3.2.3), a dispersion relations can be obtained, written

to satisfy some equation of the form

F (λ,k, α) = 0.

For PDEs, and systems without delays, the dispersion relation can be reduced to

a scalar equation which is polynomial in λ. Systems that include delays can be

much more unpredictable in the form of F , but F can generally be reduced to a

scalar equation with nonlinear dependence on λ. For example, the double exponential

connectivities used in the scalar neural field result in a dispersion relation with terms

that have a rational exponents.

For systems that are spatially homogeneous and isotropic, the dispersion relation

will depend only on the magnitude k = ‖k‖ and not the direction of the wavevector,

F (λ, k, α) = 0. (3.2.4)

The following analysis presented proceeds with this case. We think of the set of

solutions to this equation as

Λ = { λ | F (λ, k, α) = 0 } . (3.2.5)

There will be a certain (generally unknown) number of continuous branches that

satisfy Eq. (3.2.4), and can thus be locally parameterized by k.

ΛCONT =
{
λ
∣∣∣ F (λ(k), k, α) = 0, λ(k) = lim

ε→0
λ(k ± ε)

}
. (3.2.6)

In addition to this, there also exists the possibility of discrete solutions to the disper-

sion relation where λ can not be parameterized with k, and we denote this

ΛDISC = Λ \ ΛCONT . (3.2.7)
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Figure 3.2: What happens in a dynamic Turing bifurcation. As a parameter is
increased through γc, a portion of a complex conjugate branch becomes unstable,
with wave number kc and angular frequency ωc leading the way.

3.2.3 Bifurcation from dispersion relation

Two specific bifurcations that arise from the destabilization of a continuous dispersion

relation ΛCONT are the Turing and the dynamic Turing bifurcations. The first occurs

when a real valued branch of the continuous dispersion relation crosses the Reλ = 0

threshold, and the second for a complex valued branch crossing this threshold, both

while changing some parameter, say γ. Similar to the fold and the Hopf bifurcations

of the finite dimensional system, the Turing bifurcation has the potential to produce

steady state solutions, and the dynamic Turing to produce temporally oscillating

solutions. But now, the spatial scale of these bifurcating solutions is dependent on

the wave vector causing the destabilization, kc. This is shown for the dynamic Turing

bifurcation in Figure 3.2.

If space is one dimensional, R, then there are at most 2 k1 values that satisfy

k = ‖k‖ = |k1|. In spatial dimensions greater than one, we have k = ‖k‖ =
√
k21 + k22

(for example with Euclidean norm in R2) which has a degree of freedom giving rise

to an infinite correspondence between k and its components kj.

We do not have the tools to address bifurcations that have infinite dimension,

however we can apply ideas from symmetry to help with this problem.

3.3 Bifurcations with symmetry

One way that we can circumvent the infinite dimensionality of bifurcations that arise

from the dispersion relations in two dimensional space is to look for solutions that

are symmetric with respect to subgroups of the Euclidean symmetry. Euclidean sym-

metries are an important group of symmetries that are present in models that are

homogeneous and isotropic, such as specific instances of the scalar neural field and



3.3. Bifurcations with symmetry 47

Liley’s model described in Chapter 2. This section will lay out the formulation of bi-

furcation problems in the presence of symmetry, and then look at a specific symmetric

bifurcation, the D4 n T 2 symmetric Hopf bifurcation.

3.3.1 General problem

For finite dimensional dynamical systems, it is intuitive that low codimension bifur-

cations arise more commonly than higher codimension. For example, if we think

of a bifurcation in which n complex conjugate eigenvalues cross the imaginary axis

together, this would involve the vector field of Eq. (3.1.2) to satisfy n additional

constraints simultaneously, an unlikely scenario in the general case.

However, when symmetries are present, in either finite or infinite dimensional

systems, we often find the multiplicity of certain eigenvalues to increase. Fortunately,

while symmetries do generally increase the number of bifurcating modes, these modes

are confined to moving together, and so do not increase the codimension of a given

bifurcation. For instance, if one mode satisfies the bifurcation condition, then all

of the related symmetric modes must satisfy the condition as well. The symmetries

also play a role in restricting the terms that are possible in the normal form on the

centre manifold. The result is that symmetric bifurcations will have more complicated

normal forms than non-symmetric ones, but the situation is more manageable than

when dealing with higher codimension bifurcations.

The useful formulation of symmetric bifurcations presented here is thanks to Gol-

ubitsky & Stewart [? ]. For this view, we consider an evolution equation written

as

∂tv = f(v) (3.3.1)

for v ∈ V and f : V → V . This can be seen to be the finite dimensional dynamical

system Eq. (3.1.1), or the infinite dimensional one, Eq. (3.2.1), depending on the

interpretation of V .

We consider the case when f commutes with the action of some Lie group Γ, i.e.,

f(γv) = γf(v), γ ∈ Γ,

For bifurcations with symmetry Γ, a bifurcating branch will have less symmetry than

Γ. This is referred to as spontaneous symmetry breaking. If Γ acts on V , then

Σv = { σ ∈ Γ | σv = v }
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is called the isotropy subgroup. The fixed-point subspace of a subgroup Σ ⊂ Γ is

V Σ = { v ∈ V | σv = v, ∀σ ∈ Σ } ,

and it consists of all points in V whose symmetries include Σ.

The most important thing to gather from these definitions is that if f : V → V

commutes with Γ, then f : V Σ → V Σ. That is, solutions that have the symmetry of

an isotropy subgroup of Γ remain in their isotropy subgroup under the application

of f . This is the key aspect that allows one to formulate normal form equations for

symmetric systems undergoing bifurcation.

We do not work with symmetric bifurcation theory directly in this thesis. Instead,

we rely on normal forms that have already been formulated and studied in the presence

of symmetry, and look at how we can compute the normal form coefficients from our

neural field models.

3.3.2 D4 n T 2 Hopf bifurcation

The symmetric bifurcation that this thesis revolves around is the Hopf bifurcation on

a periodic square, and it arises as follows.

Solutions to spatially extended equations that are homogeneous and isotropic on

R2 are equivariant under the group of continuous translations T 2 and continuous

rotations and reflections O(2). Combined, these make the Euclidean symmetry group

E(2) = O(2)nT 2. The dispersion relations with this symmetry group are continuous

functions of the wavenumber k, and destabilization involves the loss of stability of

an infinite number of wave modes. As this is impractical from the viewpoint of

bifurcation analysis, the Euclidean symmetry can be restricted to sub-symmetries.

There are many ways to do this, one of which is to restrict to tiling patterns of the

plane, the symmetries Dn n T 2, with Dn being the dihedral group with n rotations

and n reflections. D2 n T 2 refers to lattices with a rhomboid symmetry (there are a

few of them, such as the rectangles with different side lengths), D4nT 2 a lattice with

square symmetry, and D6 n T 2 a lattice with hexagonal symmetry. The main reason

we would decompose into these specific symmetries, is to preserve the translational

part of the Euclidean symmetry which will allow for travelling wave modes.

When a complex branch of the continuous dispersion relation destabilizes as in

Figure 3.2, and we restrict our view to the D4 n T 2 symmetric modes, we effectively

restrict our view to the spatial domain [0, Lc]
2 with Lc = 2π/kc, and the temporal

domain [0, Tc] with Tc = 2π/ωc. The multiplicity of the complex conjugate pair
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causing the destabilization will be 4, corresponding to the complex valued eigenmodes

φ1 = ei(ωct+kcx1),

φ2 = ei(ωct−kcx1),

φ3 = ei(ωct+kcx2),

φ4 = ei(ωct−kcx2),

(3.3.2)

so this means that the codimension of the bifurcation will still be 1, but the dimension

of the center eigenspace will be 8.

Normal form & unfolding

The normal form for the D4 n T 2 Hopf bifurcation was originally studied by Silber

& Knobloch [7]. Their analysis determined that the cubic truncation of the normal

form can be written in terms of four complex-valued amplitudes Aj ∈ C,

Ȧ1 = (β + iωc)A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā2A3A4

Ȧ2 = (β + iωc)A2 + A2

[
a1|A1|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā1A3A4

Ȧ3 = (β + iωc)A3 + A3

[
a1|A4|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā4A1A2

Ȧ4 = (β + iωc)A4 + A4

[
a1|A3|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā3A1A2,

(3.3.3)

with complex valued normal form coefficients ak ∈ C. Through application of the

Equivariant Hopf Theorem [2], it was determined that there are five periodic solutions

that are guaranteed to emerge from this bifurcation. The five solutions are called:

standing roll (SR), travelling roll (TR), travelling square (TS), standing square (SS),

and alternating roll (AR). These five solutions are shown in Figures 3.3-3.5, and the

ways in which they are related to the amplitudes Aj are given in Table 3.1. Also in the

table are the amplitudes of each solution in terms of the normal form coefficients and

the unfolding parameter. Increasing the unfolding parameter through zero causes the

SHE to go from stable to unstable, so the criticality of solutions is given by the sign

of the denominator. For example, Re(a1 + 2a2 + 2a3 − a4) > 0 implies a real valued

amplitude for AR when β < 0, thus the AR branch would bifurcate subcritically.

With known normal form coefficients, this can be applied to each of the five branches,
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Figure 3.3: Time dependent snapshots of travelling modes that bifurcate from the
D4nT 2 symmetric Hopf bifurcation. Spatial domain is [0, 2Lc]

2. Top: Travelling roll
(TR). Bottom: Travelling square (TS).
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Figure 3.4: Time dependent snapshots of standing modes that bifurcate from the
D4 n T 2 symmetric Hopf bifurcation. Spatial domain is [0, 2Lc]

2. Top: Standing roll
(SR). Bottom: Standing square (SS).

giving the complete picture of criticality.

Considering all of the criticality conditions in Table 3.1 and all of the stability

results in [7] together, Silber & Knobloch determine that there are 34 qualitatively

different regions for the unfolding diagrams for Re a4 > 0. For Re a4 < 0, additional

unfoldings can be obtained simply by swapping the branches of SS and AR. All of

these unfolding possibilities are shown in Figure 3.6, which is reproduced from [7].

Later in the thesis, we will see the stable travelling rolls and alternating rolls from

direct numerical simulation of the scalar neural field, and we will explicitly compute

a branch of standing square waves in Liley’s model.
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Figure 3.5: Time dependent snapshots of the alternating roll (AR) solution that
bifurcates from the D4 n T 2 symmetric Hopf bifurcation. Spatial domain is [0, 2Lc]

2.

Solution Amplitudes Criticality condition

TR A1 6= 0, A2 = A3 = A4 = 0 |A1|2 = −β/Re(a2)
SR A1 = A2 6= 0, A3 = A4 = 0 |A1|2 = −β/Re(a1 + 2a2)

TS A1 = A3 6= 0, A2 = A4 = 0 |A1|2 = −β/Re(a2 + a3)

SS A1 = A2 = A3 = A4 6= 0 |A1|2 = −β/Re(a1 + 2a2 + 2a3 + a4)

AR A1 = A2 = −iA3 = −iA4 |A1|2 = −β/Re(a1 + 2a2 + 2a3 − a4)

Table 3.1: The five guaranteed solutions emerging from the D4nT 2 symmetric Hopf
bifurcation. Given are the nontrivial amplitudes that contribute to the solution, and
the amplitude condition that gives criticality.
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Figure 3.6: Unfolding diagrams of the D4 n T 2 symmetric Hopf bifurcation for 34
qualitatively different normal form coefficient regions. These are only for Re a4 > 0,
and more diagrams can be obtained for Re a4 < 0 simply by switching the AR and
SS branches. Reproduced with permission from Silber & Knobloch, 1991 [7].
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3.4 Continuation

Continuation methods form the bulk of the numerical computation for almost all

things discussed above. This is because:

1. The main idea underlying continuation is simple,

2. The simple idea is extensible, and

3. Quadratic convergence of Newton’s method makes for fast algorithms.

Continuation aims to find one parameter families of solutions to underdetermined

equations of the form

g(U, β) = 0, (3.4.1)

where what g, U , and β represent change depending on context, but β ∈ R is always

consistent. For example, g(U, β) can be the equilibria described by Eq. (3.1.2), or the

periodic solutions described by Eq. (3.1.15). The main continuation problems needed

for this thesis are described in the upcoming Applied to Sections 3.4.2–3.4.6.

If a solution is known for a particular value of β, continuation can be applied to find

how that solution changes with β. Sometimes, a continuous family of solutions may

not be monotonic with respect to β, which will cause certain continuation methods to

fail. When this happens, it often suffices to change to a better continuation method.

These ideas seem to have originated with Keller [4].

3.4.1 General methods

There are two forms of continuation methods we make use of:

1. Parameter continuation, and

2. Pseudoarclength continuation,

for finding continuous, one parameter families of solutions.

Parameter continuation

The simplest method of continuation is called parameter continuation. Parameter

continuation involves changing the parameter β by an amount ∆β, and using the

known solution at β as the initial guess to a Newton iteration at the new parameter

value β +∆β. Visually, this is in Figure 3.7, and algorithmically this is expressed as
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β

U

g(U, β) = 0

(β0 + ∆β, U0)(β0, U0)

update
direction

β

g(U, β) = 0

(β0 + ∆β, U0)

update
direction

(β0, U0)

?

update
direction

Figure 3.7: What is happening in parameter continuation. Left : The method can
work when there is a solution to be found at the new parameter value β+∆β. Right :
Near fold points of g, parameter continuation is doomed to fail because there is no
solution to find.

1. Assign known solution of g(U, β) = 0 to U0 = U .

2. Solve the linear system

∂Ug(Uk, β +∆β)∆U = −g(Uk, β +∆β).

3. Update solution

Uk+1 = Uk +∆U.

4. Increase k, repeat from 2 until some error tolerance reached.

The repetition of points 2-4 is just a simple Newton iteration.

The main drawback to parameter continuation is that it assumes U is a function

of β, i.e., U(β). This is not generally true, as U can have multiple solutions for a

given parameter value. In the neighbourhood of a fold bifurcation, for example, u

and β are related as in the right panel of Figure 3.7, which causes the algorithm to

break in an unpredictable way. By unpredictable, we simply mean that a sequence

{Uk} will follow the global dynamics of the map given in point 3. The next algorithm

fixes this situation.

Pseudoarclength continuation

Pseudoarclength continuation takes its initial guess to be tangential to the slope of g

at the current solution. It then performs a Newton iteration in directions orthogonal
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to the direction of that initial guess. This change in initial guess can be worked into

parameter continuation as well, so the big difference in pseudoarclength continuation

is in the orthogonal update. This is what allows the method to get around the folds

that parameter continuation has problems with, seen in Figure 3.8. It is natural

to split the vectors tangent to g into their state components and their parameter

component, i.e., t = (t(U)T , t(β))T . The algorithm for pseudoarclength continuation is

1. Start with known solutions (U0, β0) and (U1, β1), with tangent vector t0 between

them, and a step size ∆s.

2. Compute tangent vector t1 from the equation∂Ug(U1, β1) ∂βg(U1, β1)

t
(U)T
0 t

(β)
0

t(U)
1

t
(β)
1

 =

0
1

 .
3. Form predictor as

Û = Uk +
∆s

‖t0‖
t
(U)
0 , β̂ = βk +

∆s

‖t0‖
t
(β)
0 ,

4. Assign U2 = Û , β2 = β̂, i.e., k = 2

5. Solve the system∂Ug(Uk, βk) ∂βg(Uk, βk)

t
(U)T
1 t

(β)
1

∆U
∆β

 =

−g(Uk, βk)

0

 .
6. Update the solution

Uk+1 = Uk +∆U, βk+1 = βk +∆β

7. Increase k, repeat from 5 until some error tolerance reached.

The repetition of points 5-7 is again just a Newton iteration, but with the initial set

up, it now updates not only the state but the continuation parameter as well.

The particular method described in the algorithm is known as Keller’s method [4].

There are a few variants of pseudoarclength continuation that will have very slightly

different convergence properties, described in Govaerts [3], but this method was suffi-

cient for any computations required in this thesis. Stressing again that this method is

sufficient to allow for continuation around folds, we direct your attention to the right

panel of Figure 3.8.
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β
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g(U, β) = 0

(β1, U1)

(β̂, Û)

update direction

β

g(U, β) = 0

(β1, U1)

(β̂, Û)

update direction

Figure 3.8: What is happening in pseudoarclength continuation. Left : For situations
where parameter continuation will work, pseudoarclength works as well. The initial
guess (β̂, Û) is typically closer to the actual solution which is beneficial for starting
the Newton iteration both here and in parameter continuation. Right : When param-
eter continuation breaks down at a fold, pseudoarclength can succeed, provided the
predicted step is not too large.

3.4.2 Applied to equilibria

For a finite dimensional dynamical system, the continuation of an equilibrium is as

straightforward as it gets. It can be achieved simply by setting the general function

g equal to the vector field of the system, f , the state U = u, and the continuation

parameter β = α1, a single parameter out of the ODE’s parameter set. That is, the

elements needed for continuation are

g(U, β) = f(u, α),

∂Ug(U, β) = A(u, α),

∂βg(U, β) = ∂α1f(u, α).

(3.4.2)

Various software packages are available to perform this computation for parameter

dependent vector fields. For instance, Matcont [? ] written in Matlab, or Auto-07p

[? ]. These packages however, are written with ODEs in mind, and work very well

for systems with few degrees of freedom. When it comes to large discretized PDE

problems, however, the algorithms used scale poorly in dimension, and thus can not

be applied in a timely manner.
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3.4.3 Applied to bifurcations of equilibria

For continuation of a bifurcation of an equilibrium, we think of the problem like this:

Continuation is applied to the equilibrium such that the condition causing the bifur-

cation holds. As one parameter is needed for the continuation of the equilibrium, (at

least) another degree of freedom must be considered so that the bifurcation condition

can be met. For continuation of codimension n bifurcations, we effectively think of

this as a n + 1 dimensional continuation – 1 parameter for the equilibrium, and n

parameters to ensure it satisfies the bifurcation conditions. In the context of the pre-

sented continuation algorithms, we can move n parameters into our state U so that β

remains one dimensional. How to set up the nonsingular systems that will allow for

the continuation of the codimension 1 fold bifurcation of equilibria is now presented.

Continuation of fold

At a non-degenerate fold bifurcation, also called a quadratic turning point, the Jaco-

bian, A, at our equilibrium has a nullspace of dimension 1. We can thus define left

and right nullvectors p 6= 0 and q 6= 0 according to

Aq = 0, ATp = 0.

A minimally augmented system can be defined for g,

g(u, α) =

f(u, α)
h(u, α)

 =

0
0


where h(u, α) ∈ R is part of the solution toA q

pT 0

q
h

 =

0
1

 .
What is more important to know about h, is that its derivatives with respect to an

arbitrary state vector or parameter z are of the form

hz = −pT (∂zA) q.

It can then be shown that the matrix A ∂α1f

−pT (∂uA) q −pT (∂α1A) q
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is nonsingular, with proof of this given in Govaerts [3], Chapter 4.1.2.

Finally, we write the elements needed for continuation of a fold bifurcation by

adding one parameter into the state U = (uT , α1)
T and having a free parameter for

the continuation β = α2,

g(U, β) =

f(u, α)
h


∂Ug(U, β) =

 A(u, α) ∂α1f(u, α)

−pT
(
∂uA(u, α)

)
q −pT

(
∂α1A(u, α)

)
q


∂βg(U, β) =

 ∂α2f(u, α)

−pT
(
∂α2A(u, α)

)
q

 .
(3.4.3)

Further, the pseudoarclength algorithm can be tailored to this specific case, in-

cluding scale parameters for the state and both parameters, θx, θα1 and θα2 , trying to

stabilize the numerics further. However, this level of optimization/stability was not

needed for computations done in this thesis.

3.4.4 Applied to periodic orbits

For continuation of a finite dimensional periodic solution, the temporal period of the

solution must be considered in the state variables. Using the components that were

defined in Section 3.1.3, we identify the state vector U = (uT , T )T , and a continuation

parameter β = α1. The components for continuation are then written

g(U, β) =

u− φ(u, T, α)

P (u, T )


∂Ug(U, β) =

I − ∂uφ(u, T, α) −∂tφ(u, T, α)

∂uP ∂TP


∂βg(U, β) =

−∂α1φ(u, T, α)

0

 .
(3.4.4)

Using these components to continue a periodic solution, however, can be tricky,

and is a generally fragile process. As written, the equations suggest that P (u, T )

is independent of the parameters. This is not generally true, and continuation can

possibly take us towards solutions that will never satisfy P = 0, causing a breakdown
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of the algorithm. This can be alleviated by monitoring the transversality of the orbit

on P = 0, and reorthogonalizing P with the new periodic solutions as continuation

steps are made.

Matcont and Auto-07p favour integral constraints over the time course of the pe-

riod rather than this Poincaré plane. The reason being that it avoids the problem

discussed in the above paragraph. This does however become computationally pro-

hibitive when dealing with large systems, so we prefer the more easily implemented

Poincaré plane while considering the noted potential problems.

3.4.5 Applied to continuous dispersion relations

Continuation methods are also useful for computing the continuous portion of disper-

sion relations, ΛCONT . For PDEs, dispersion relations take the form of polynomials in

both λ and k, so for a given k value, all possible solutions for λ can be computed in an

algorithmic way. This is not the case when looking at the integral operators for the

neural fields in general. Sometimes the dispersion relations have terms with rational

exponents that can not be removed, and in even worse cases, the Fourier transform

can not be evaluated symbolically at all. Even in these cases, however, it is still likely

that the k = 0 state gives an easier system in λ. Keeping only the roots that satisfy

the dispersion relation, we can perform parameter continuation in k to get different

branches of the dispersion relation ΛCONT .

There are a few things that must be noted when taking this approach. The first

is that while we are looking for dispersion relationships that are continuous, they are

not necessarily smooth. For instance, two separate branches of ΛCONT can collide

at a given value of k = kr, called a resonant point. The direction of a branch at a

resonant point changes discontinuously, i.e.,

lim
ε→0

(
λj(kr + ε)− λj(kr)

)
6= lim

ε→0

(
λj(kr − ε)− λj(kr)

)
.

This is seen most often occurring on the real axis, and more rarely away from it.

The second is that for equations with rational exponents or more general functional

dependence, this only obtains the branches that are continuously connected to k = 0.

That is to say, there may be branches that exist for k ∈ (a, b) with b > a > 0 that

this approach does not pick up.
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3.4.6 Applied to bifurcations of SHE

For the bifurcations that are caused by elements of the continuous dispersion relations

discussed in Section 3.2.3 we can formulate an appropriate continuation problem. The

formulation for continuation of Turing or dynamic Turing bifurcation is the same, but

as the case of the Turing bifurcation is just a simplified version, i.e., ωc = 0, we neglect

that completely. The formulation consists of two pieces, the finding of a turning point

of the dispersion, followed by continuation of such a turning point towards Reλ = 0.

Turning point of dispersion relation

First, we want to find a turning point of a complex branch of the dispersion relation,

recalled from earlier

F (λ, k, α) = 0, ((3.2.4) revisited)

and taken to be a scalar equation. Since F is a complex equation, to write it in real

coordinates, we take λ = µ + iω, substitute it into the dispersion relation, and split

that into the real and imaginary parts.

F r(µ, ω, k, α) = ReF (µ+ iω, k, α) = 0

F i(µ, ω, k, α) = ImF (µ+ iω, k, α) = 0

We are looking for the turning point in (µ, k) space, so that means that it must satisfy

the equalities

µ′(k) = 0 → F r
kF

i
ω − F i

kF
r
ω ≡ J(µ, ω, k, α) = 0.

Thus we consider the state to be U = (µ, ω, k)T , and a continuation parameter β = α1.

The elements required for continuation of a turning point of the dispersion relation



3.4. Continuation 61

are

g(U, β) =


F r(µ, ω, k, α)

F i(µ, ω, k, α)

J(µ, ω, k, α)

 = 0

∂Ug(U, β) =


∂µF

r ∂ωF
r ∂kF

r

∂µF
i ∂ωF

i
ω ∂kF

i

∂µJ ∂ωJ ∂kJ



∂βg(U, β) =


∂α1F

r

∂α1F
i

∂α1J

 .

(3.4.5)

We note that this notation is hiding the SHE values. In general the SHE must be

continued simultaneously to this system of equations, because it is required to fully

specify F .

Dynamic Turing bifurcation

We perform continuation of Eq. (3.4.5), until we reach a point with µ ≈ 0. At this

point, we explicitly set µ = 0, and switch our view of the state to U = (ω, k, α1),

where the α1 parameter has been added to make up for the lost degree of freedom in

doing this. We take another parameter for continuation β = α2, and write

g(U, β) =


F r(0, ω, k, α)

F i(0, ω, k, α)

J(0, ω, k, α)



∂Ug(U, β) =


∂ωF

r ∂kF
r ∂α1F

r

∂ωF
i ∂kF

i ∂α1F
i

∂ωJ ∂kJ ∂α1J



∂βg(U, β) =


∂α2F

r

∂α2F
i

∂α2J

 ,

(3.4.6)

noting the different partial derivatives when compared to Eq. (3.4.5). From this

expression, we can refine approximations to the dynamic Turing bifurcation, using
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just the g and ∂Ug expressions, and then perform continuation in the α2 parameter.

This approach will pick up dynamic Turing bifurcations, but we are most interested

in studying when these are the principal instability of the system. That is, we must

look at the rest of the dispersion relation, which must be computed using Section 3.4.5,

for example.

3.5 Summary

Above, we presented general formulations for finite and infinite dimensional dynam-

ical systems. We introduced the concept of bifurcations and center manifolds, and

briefly discussed the influences of symmetry. We looked in more detail at the specific

symmetry studied in this thesis – the square periodic tiling symmetry, D4 n T 2. And

finally the idea of continuation was presented, with its relevant domains of application

detailed. Now we move on to using these ideas to study the dynamics of neural field

models.
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This chapter will bring the view of dynamical systems from Chapter 3 to the scalar

neural field model described in Chapter 2. For this model,

u(x, t) = η ∗
(
K ⊗ S ◦ u(x, t) + p

)
, ((2.3.1) revisited)

it will progress through:

• Determining the equations that spatially homogeneous equilibria (SHE) will

satisfy,

• Linearization about SHE,

64
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• Finding dispersion relation about SHE,

• Analyzing the unfolding of the dynamic Turing bifurcation that arises, and

• Simulating solutions in the neighbourhood of the bifurcations.

It is mentioned again that the equation is taken on a two dimensional spatial

domain Ω = R2. The analysis is presented for homogeneous and isotropic problems,

but we note that the normal form result will hold for problems with explicit D4 n T 2

symmetry i.e., if the spatiotemporal connectivity satisfies this symmetry.

Novel results of this chapter are Section 4.3.1, the detection of the dynamic Turing

bifurcation from a dispersion relation with irreducible rational exponents, Section

4.3.1 where symbolic expressions for computing the normal form coefficients of the

D4nT 2 symmetric Hopf bifurcation are derived, and Section 4.4 where the bifurcating

solutions are simulated in its neighbourhood.

4.1 Preliminaries

All of the analysis presented in this chapter can be done on the scalar field in its general

form, without specifying a connectivity kernel, a synapse, or even a firing function.

This is because the model has only spatial and temporal convolutions, which allows

for simple representation in Fourier-Laplace space.

For visualizing the results presented here, specific kernels are chosen from those

discussed in Section 2.2.2. These will be worked in among the analysis, with the

relevant methods from Chapter 3 mentioned whenever they are used.

4.1.1 Integral transforms

First, we define the integral transforms which end up touching all facets of the coming

sections, and even find use in the next chapter. These are:

1. The Laplace transform

η̃(λ) =

∫ ∞

0

ds η(s)e−λs, (4.1.1)

2. The Fourier-Laplace transform

K̂(k, λ) =

∫
R2

dy1dy2

∫ ∞

0

dsK(y, s)e−(ik·y+λs). (4.1.2)
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Fourier and Laplace transforming the scalar model, Eq. (2.3.1), we obtain

û(k, λ) = η̃(λ)K̂(k, λ)
(
Ŝ ◦ u

)
(k, λ) + p̂(k, λ), (4.1.3)

where the Fourier-Laplace transform of the composition is interpreted as(
Ŝ ◦ u

)
(k, λ) =

∫
R2

dy1dy2

∫ ∞

0

ds
(
S ◦ u(y, s)

)
e−(ik·y+λs).

Specific kernels

For the alpha function synapse

η(t) = α2te−αt, ((2.3.5) revisited)

we have its Laplace transform

η̃(λ) =
1

(1 + λ/α)2
. (4.1.4)

For the double exponential connectivity, Eq. (2.3.8), combined with the constant,

homogeneous, isotropic and space-dependent delay, Eq. (2.3.6), our specific spatiotem-

poral connectivity is

K(x, t) =
1

2π

(
aee

−‖x‖ − air
2e−r‖x‖) δ(t+ ‖k‖

c

)
, (4.1.5)

and its Fourier-Laplace transform is.

K̂(k, λ) =
1 + λ/c(

(1 + λ/c)2 + k2
)3/2ae − r + λ/c(

(r + λ/c)2 + k2
)3/2 r2ai. (4.1.6)

4.1.2 Firing function

With the firing function as the sigmoid

S(u) =
Smax

1 + e−C(u−θ)
, ((2.3.2) revisited)
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its derivatives satisfy

S ′(u) = CS(u)

(
1− S(u)

Smax

)
S ′′(u) =

C2S2(u)

Smax

(
1− S(u)

Smax

)
(1− S(u))

S ′′′(u) =
C3S3(u)

S2
max

(
1− S(u)

Smax

)(
3S2(u)−

(
3 + 2Smax

)
S(u) + Smax

)
.

(4.1.7)

4.2 Spatially homogeneous dynamics

Spatially homogeneous equilibria (SHE) of the neural field are very straightforward

to determine. We denote the SHE as u0, and also consider the extraneous input to

be constant in space and time p(x, t) = p0. Subbing these into the scalar model gives

u0 = η ∗
(
K ⊗ S ◦ u0 + p0

)
=

∫ t

−∞
dτ η(t− τ)

(
S(u0)

∫ ∞

−∞
dt′
∫
Ω

dx′1x
′
2K (x− x′, t− t′) + p0

)
= η̃(0)

(
S(u0)K̂(0, 0) + p0

)
.

(4.2.1)

This is just a single equation. For the sigmoidal form of Eq. (2.3.2), it is easy to see

that u0 can have either 1, 2, or 3 solutions for a given p0 value, depending on the

parameters in S, η, and K.

4.2.1 Continuation

Because it is just a single equation, the continuation of the SHE is almost trivial.

Looking back to Section 3.4.2, we associate the state with U = u0, and consider all of

the parameters as the set β, so we have

g(u0, β) = u0 − η̃(0)
(
S(u0)K̂(0, 0) + p0

)
∂u0g(u0, β) = 1− γ1η̃(0)K̂(0, 0)

(4.2.2)

The derivative with respect to a specific parameter can also be easily expressed. We

can consider the parameter set to be composed of four different types of parameters,

β = {p0, βsyn, βcon, βsig}, the external forcing, the synaptic parameters, the connectiv-

ity parameters, and the sigmoidal parameters respectively. Identifying one of these as
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Figure 4.1: Continuation of SHE in the scalar model, Eq. (4.2.4), demonstrating the
possibility of multiple solutions. Parameters are: ae = 41; ai = 40;C = 2, θ = 3,
and Smax set to different values for each curve. The transition from seeing no folds
(Smax = 2) to two folds (Smax = 3) implies that we would see the codimension 2 cusp
bifurcation in this region.

our continuation parameter gives different possibilities for the parameter derivative:

∂p0g(u0, β) = −η̃(0),

∂βsyng(u0, β) = −
(
S(u0)K̂(0, 0) + p0

)
∂βsyn η̃(0, 0),

∂βcong(u0, β) = −η̃(0)S(u0)∂βconK̂(0, 0),

∂βsigg(u0, β) = −η̃(0)K̂(0, 0)∂βsigS(u0).

(4.2.3)

For the specific functions chosen for each piece of the model, a particular equation

we can look at for the SHE is

u0 − (ae − ai)S(u0)− p0 = 0 (4.2.4)

As it was mentioned that there is the possibility of 1, 2, or 3 SHE solutions for a given

parameter set, this implies that a continuation of u0 may result in fold bifurcations.

A pseudoarclength continuation in the p0 parameter shows this in Figure 4.1.



4.2. Spatially homogeneous dynamics 69

4.2.2 Linearization and dispersion relations

Now we linearize the scalar neural field equation about a general solution u0(x, t) by

subbing u0(x, t) + εu1(x, t) into the model, and keeping terms proportional to ε. The

result, after Taylor expanding the sigmoid as well, is

u1(x, t) = η ∗K ⊗
(
S ′ ◦ u0(x, t)

)
u1, (4.2.5)

which simplifies when u0 is a SHE

u1(x, t) = γ1η ∗K ⊗ u1, γ1 = S ′(u0).

A convenient notation to use for the upcoming nonlinear analysis is to rewrite the

linear equation to be

L(γ1)u1 ≡ (1− γ1η ∗K⊗)u1 = 0 (4.2.6)

With this linear equation, we take the ansatz

u1(x, t) = eik·x+λt,

which gives the dispersion relation

1− γ1η̃(λ)K̂(k, λ) = 0. (4.2.7)

We mention again that for homogeneous and isotropic spatial connections, the dis-

persion relation only depends on the norm of k.

A very useful feature of this dispersion relation, is that γ1 can be varied inde-

pendently of the SHE. That is, we can fix parameters in the synapses η and the

spatiotemporal connectivity K, then look at the dispersion relation for varying γ1.

Once an interesting value of γ1 is obtained, we can move back to the SHE equation

and determine u0, p0, and the sigmoidal parameters such that the model is at the

interesting state.

The specific dispersion relation we visualize is in fact given by

(1 + λ/α)2 − γ1

[
1 + λ/c(

(1 + λ/c)2 + k2
)3/2ae − r + λ/c(

(r + λ/c)2 + k2
)3/2 r2ai

]
= 0, (4.2.8)

with continuation applied as discussed in Section 3.4.5. Various dispersion relations

for different parameter sets are shown in Figures 4.2–4.7.

With continuous dispersion relations computed, we can now turn our attention to

stability of the SHE with respect to spatially homogeneous modes as well as Fourier
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modes with wavenumber k.

4.2.3 Homogeneous dynamics

For stability with respect to spatially homogeneous modes, we simply take k = 0 in

our dispersion relation

1− γ1η̃(λ)K̂(0, λ) = 0. (4.2.9)

For a discrete set of temporal eigenvalues satisfying this equation, we can define the

stable, unstable, and center subspaces as was done for the finite dimensional dynamical

system.

For our specific functions, the stability of the homogeneous dynamics is determined

by

(1 + λ/α)2 − γ1

[
1 + λ/c

|1 + λ/c|3
ae −

r + λ/c

|r + λ/c|3
r2ai

]
= 0, (4.2.10)

where we have left it in this form since λ ∈ C. Finding solutions to this is simpler

than the general k-dependent dispersion relation of Eq. (4.2.10).

4.3 D4 n T 2 symmetric Hopf

4.3.1 Finding dynamic Turing bifurcations

Once we have the homogeneous mode eigenvalues, λj(0), we can perform continuation

in k to obtain the distinct branches λj(k) ∈ ΛCONT . The process for doing this,

described in Section 3.4.5, can result in the continuous dispersion relations as shown

in Figures 4.2– 4.5.

The Turing and dynamic Turing bifurcations can now be detected by analysis of

these dispersion relations. In fact, due to the form of the dispersion relation for this

model, there is a simple way for detecting Turing bifurcations, which proceeds as

follows.

1. Set λ = 0 in the dispersion relation

1

γ1
= η̃(0)K̂(k, 0) (4.3.1)

2. If

max
k>0

η̃(0)K̂(k, 0) > 0,
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Figure 4.2: Continuous dispersion relation for parameters: ae = 41; ai = 40; r =
1.1; c = 2;α = 1; γ1 = 0.6.
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Figure 4.3: Continuous dispersion relation for parameters: ae = 39; ai = 40; r =
0.9; c = 6;α = 1; γ1 = 0.4.
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Figure 4.4: Continuous dispersion relation for parameters: ae = 30; ai = 40; r =
1.1; c = 1;α = 1; γ1 = 0.6. The unstable portion corresponds to modes with k ∈
[0, 0.962). The instability of bulk oscillations is typical for parameter sets with small
transmission speeds.
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Figure 4.5: Continuous dispersion relation for parameters: ae = 121; ai = 120; r =
1.4; c = 10;α = 1; γ1 = 0.5. The right panel is a zoom of the left. The black
dot represents a point in ΛCONT that may produce a dynamic Turing bifurcation on
increasing γ1.
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Figure 4.6: Continuous dispersion relation for parameters: ae = 121; ai = 120; r =
1.4; c = 10;α = 1; γ1 = 1.003950769. The right panels show zooms of the left. The
black dot represents a point in ΛCONT that would produce a dynamic Turing bifur-
cation if the rest of dispersion relation was stable. The red dot shows the maximum
extent of an unstable branch.
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Figure 4.7: Continuous dispersion relation for parameters: ae = 121; ai = 120; r =
1.4; c = 6;α = 1; γ1 = γc ≈ 0.689077. Progressive zoom from the left. The black
dot represents a point in ΛCONT that produces a dynamic Turing bifurcation. The
green dot in the middle frame shows that decreasing the transmission speed c from
Figure 4.6 has stabilized the real branch. The right-most level shows that this is
indeed the dispersion behaviour depicted in the schematic view of Figure 3.2.

Then a Turing bifurcation exists for

kTu
c = argmax

k
η(0)K̂(k, 0), (4.3.2)

with γ1 = γTu
c .

A variation of this method was initially applied to finding Turing bifurcations in one

dimensional neural fields by Hutt et al. [2]. Its generalization to the two dimensional

homogeneous isotropic case is trivial.

However, we are not interested in the formation of stationary patterns, so we do not

get so lucky with such a simple algorithm. For instance, when we set λ = iωc, ωc > 0,

and split the dispersion relation into real and imaginary parts, we obtain the system

of two equations

1− γc Re η̃(iωc)K̂(kdTu
c , iωc) = 0

γc Im η̃(iωc)K̂(kdTu
c , iωc) = 0.

(4.3.3)

For a one dimensional neural field, this can be applied successfully to find ωc(k
dTu
c ) as

in Venkov et al. [6] and Hutt et al. [2], because the resulting expressions are polynomial

in ω and k. In two dimensional space, it is rare to see dispersion relations that are
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polynomial, so applying this approach leaves us with complicated expressions such as

1− (ω/α)2

γ1
=

[(
cos

(
3

2
θ1

)
+
ω

c
sin

(
3

2
θ1

))
aeR

−3/2
1 −(

r cos

(
3

2
θr

)
+
ω

c
sin

(
3

2
θr

))
air

2R−3/2
r

]
,

(2/α)ω

γ1
=

[(
ω

c
cos

(
3

2
θ1

)
− sin

(
3

2
θ1

))
aeR

−3/2
1 −(

ω

c
cos

(
3

2
θr

)
− r sin

(
3

2
θr

))
air

2R−3/2
r

]
,

(4.3.4)

with (noting the subscripts)

Rz =
√

(z2 + k2 − ω2/c2)2 + (2ω/c)2z2,

θz = arctan
2ωz/c

z2 + k2 − ω2/c2
.

This is the expression that results for our specific choice of synapse and connectivities,

and even with attempted simplification through the application of trig identities, it

remains difficult to work with. This is why the continuation approach of Section 3.4.6

was discussed.

With continuous dispersion curves computed as in Figure 4.5, we choose a turning

point that looks like it has the potential to generate a dynamic Turing bifurcation as

the primary instability. Such a point is displayed as the black dot in this figure. The

turning point is continued by applying Eq. (3.4.5) in the parameter γ1, until we get

it to λ = 0 as in Figure 4.6.

However, the SHE is already unstable at this point, looking at the branch on the

real axis with maxReλj > 0. So, we switch to a new parameter, the transmission

speed c, and perform continuation using Eq. (3.4.6) until maxReλj < 0 for all of the

branches except the one causing the dynamic Turing instability. The result is the

parameter set given in Table 4.1, with continuous dispersion relation in Figure 4.7.

With a principal dynamic Turing bifurcation located, we now perform our restric-

tion to square symmetric modes, and try to compute the normal form coefficients.

At the dynamic Turing bifurcation, the bifurcation parameter, the wave number

and the angular frequency take critical values γc, kc and ωc, respectively. Correspond-

ingly, the critical wavenumber and critical frequency also define a length scale and

time scale at the bifurcation point Lc = 2π/kc and Tc = 2π/ωc, respectively. Again

we stress that in general on R2 the dimension of the nullspace of L(γc) is infinite

dimensional due to the degree of freedom in k.
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Parameter Value

ae 121

ai 120

r 1.4

c 6.0

α 1.0

γ1 = γc 0.689077

ωc 3.400300

kc 1.089196

Table 4.1: Parameters that will display a dynamic Turing bifurcation for the specific
synapse and connectivity, Eqs. (2.3.5) and (4.1.5). Important to note that only the
synapse and connectivity parameters need be defined and γ1 can be taken as its own
distinct parameter.

On the domain [0, Lc]
2×[0, Tc] with periodic boundary conditions, it is very natural

to define the eigenfunctions

φ1 = ei(ωct+kcx1),

φ2 = ei(ωct−kcx1),

φ3 = ei(ωct+kcx2),

φ4 = ei(ωct−kcx2),

(4.3.5)

which can be taken as a basis for the nullspace of L(γc)

kerL(γc) = span
{
φ1, φ2, φ3, φ4, φ̄1, φ̄2, φ̄3, φ̄4

}
,

with the bars denoting complex conjugation.

The linear analysis in Section 4.2.2 allows us to extract the bifurcation type by

the computation of the eigenvalue spectrum of the corresponding linear operator.

However, the linear analysis leads to degenerate solutions and does not allow us to

determine the dynamic spatial patterns that emerge in the neighbourhood of the

bifurcation. To extract criteria for the specific patterns, it is necessary to perform

a weakly nonlinear analysis. To this end, one considers the linear eigenbasis of the

nullspace of L(γc) and investigates the nonlinear interaction of the system projections

on this basis.

Performing a center manifold reduction on this problem should be possible as well,

such as through an extension of the rigorous results in Veltz & Faugeras [? ] to two-

dimensional space. However this is beyond the scope of this thesis as our end goal
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is simply to obtain behaviour of the square symmetric modes in the neighbourhood

of the bifurcation. We do expect that a center manifold reduction will result in the

same expressions as the weakly nonlinear analysis, as seen in Folias [? ], where Hopf

bifurcations of localized solutions were studied without transmission delays.

To perform weakly nonlinear analysis at a dynamic Turing bifurcation, it is neces-

sary to consider higher order perturbations from the equilibrium state u0 beyond the

linear limit. In particular, the subsequent analysis takes into account terms of cubic

order of the transfer function S leading to a model of up to 3rd order perturbations

S(u) = S(u0) + γ1 (u− u0) + γ2 (u− u0)
2 + γ3 (u− u0)

3 +O
(
(u− u0)

4
)
, (4.3.6)

with γn = ∂nuS(u0)/n! evaluated at the homogeneous equilibrium u0.

Multiple time scales

Just beyond a dynamic Turing bifurcation, dominant eigenmodes grow slowly in am-

plitude. This leads naturally to the idea of identifying different time scales in the

system. The behaviour that occurs at all but the slowest of time scales can be dis-

carded to obtain information about the envelopes, or amplitudes, of the slowest scale.

If we Taylor expand the dispersion curve, Eq. (4.2.7), about the temporal eigen-

value with maximum real part, we obtain Re(λ) ∼ γ1 − γc and Im(λ) ∼ k − kc ∼
√
γ1 − γc near the dynamic Turing bifurcation. For γ1 6= γc, emergent patterns can

thus be written as an infinite sum of unstable modes of the form

eµ0(γ1−γc)tei
√
γ1−γck0·xei(ωct+kc·x),

with µ0 and k0 some unknown constants in the proportionalities. If we choose a scaling

parameter ε ∼
√
γ1 − γc, then with ε small, we can identify the fast eigenmodes as

ei(ωct+kc·x), and the slow modulations of the form eµ0ε2teiεk0·x.

We define scaled parameters, χ = εx and τ = ε2t according to this reasoning,

and also include an intermediate time scale θ = εt which assists in stepping through

some integrals in the perturbative analysis as shown in Appendix A.1.1. Finally

the analysis permits us to write solutions in the form A(χ, θ, τ)ei(ωct+kc·x), with A

containing everything we do not know about the slower scales. With wave vectors

(±kc, 0)T and (0,±kc)T , these are linear combinations of the basis functions spanning

kerL(γc) given in Eq. (4.3.5). In addition, the individual amplitudes depend on a

single scaled spatial coordinate only rather than both of them, i.e., A1 = A1(χ1, θ, τ).

Now, we take a perturbation of the solution to the full model, Eq. (2.3.1), in the
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form

u (x, t)− u0 =
∞∑
n=1

εnun (x, t,χ, θ, τ) . (4.3.7)

with unknown functions un. Inserting this ansatz into the model equation, we can

pull out the equations for each order of ε

(1− γcM0)u1 = g1 = 0,

(1− γcM0)u2 = g2 = γ2M0u
2
1 + γcM1u1,

(1− γcM0)u3 = g3 =M0

(
2γ2u1u2 + γ3u

3
1 + δu1

)
+M1

(
γcu2 + γ2u

2
1

)
+ γcM2u1.

(4.3.8)

where gn(u0, u1, . . . , un−1) is a shorthand notation for the right hand sides, and

δ ≡ (γ1−γc)/ε2, a scaled distance from the bifurcation. TheMi operators are defined

as

M0 =η ∗K⊗,

M1 =− η ∗
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
− (tη ∗K + η ∗ tK)⊗ ∂

∂θ
,

M2 =
1

2
η ∗
(
x21K ⊗ ∂2

∂χ2
1

+ x22K ⊗ ∂2

∂χ2
2

)
+ η ∗ x1x2K ⊗ ∂

∂χ1

∂

∂χ2

+ tη ∗
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+ η ∗ t
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+
1

2

(
t2η ∗K + 2tη ∗ tK + η ∗ t2K

)
⊗ ∂2

∂θ2

+ (tη ∗K + η ∗ tK)⊗ ∂

∂τ
,

(4.3.9)

with details of their computation given in Appendix A.1.1.

Noticing that the operator on the left hand side of (4.3.8) is identical to L(γc) in
all orders, we see that our perturbative solutions originate from the kernel of L(γc).
In its general form, we write

u1(x, t) =
4∑

i=1

(
Aiφi + Āiφ̄i

)
(4.3.10)

so that now the unknowns in the problem are the amplitudes A1 (χ1, θ, τ), A2 (χ1, θ, τ),

A3 (χ2, θ, τ), and A4 (χ2, θ, τ) which are functions of the scaled independent variables.

By virtue of the structure of the perturbation solutions, the Fredholm alternative can



4.3. D4 n T 2 symmetric Hopf 79

be applied to find equations for these amplitudes.

Fredholm alternative

The form of the perturbation expansion is

Lun = gn(u1, u2, . . . , un−1),

such that the right hand side always contains known quantities. Thus to construct

solutions that are a finite truncation of the system, we just need to know the inverse

of L. The Fredholm alternative may be generalized from the discussion in Section

3.1.2 to include general linear operators [1]. Applying this generalization to L will

put solvability conditions on the gn, which will lead to conditions on the amplitudes.

Considering the basis on the square periodic domain that we have already written

(4.3.10), we notice that this solution is also periodic in time. Thus, we are concern-

ing ourselves with the domain Λ = [0, 2π/kc]
2 × [0, 2π/ωc]. To apply the Fredholm

alternative, we define the inner product to be

〈u, v〉 = k2cωc

8π3

∫
Λ

dx1dx2dt ū(x, t)v(x, t). (4.3.11)

This definition is chosen such that our basis for the nullspace (4.3.5) is orthonormal,

〈φi, φj〉 = δij.

Under this inner product, the adjoint to L is given by L∗ = 1−γcη(−t)∗K(x,−t)⊗.

Since the dispersion relation, Eq. (4.2.7), is invariant under time reversal t → −t, L
and L∗ have the same nullspace.

The Fredholm alternative states that for all Lu = g to have a solution for singular

L, it must hold that 〈v, g〉 = 0 for all v ∈ kerL. In terms of our situation, this means

that computing the inner products

〈φi, gn〉 = 0, i = 1 . . . 4, n = 1, 2, . . . , (4.3.12)

will put solvability conditions on the amplitudes Ai.
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For the first nontrivial equation, and looking specifically at φ1, we obtain

〈φ1, g2〉 = 0 = γ2〈φ1,M0u
2
1〉+ γc〈φ1,M1u1〉

= γ2η̃K̂〈φ1, u
2
1〉+ γc

(
−η̃ ∂

∂ik1

∂

∂χ1

K̂ +
∂

∂iω

∂

∂θ
η̃K̂

)
〈φ1, u1〉

=

(
−η̃ ∂

∂ik1

∂

∂χ1

K̂ +
∂

∂iω

∂

∂θ
η̃K̂

)
A1

=

(
∂

∂θ
− vg1

∂

∂χ1

)
A1

(4.3.13)

where vg1 = ∂ω/∂k1|k=(kc,0)T
can be considered a group velocity, and the Laplace and

Fourier-Laplace transforms are evaluated at the critical arguments. Going from the

1st to 2nd line in Eq. (4.3.13) is detailed in Appendix A.1.2. Going from the 2nd

to 3rd line in (4.3.13) makes use of 〈φi, u
2
1〉 = 0, and 〈φi, u1〉 = Ai. The final line of

(4.3.13) has a solution that restricts how A1 depends on its arguments. Performing

similar calculation steps with the other basis functions leads to restrictions on all of

the amplitudes

A1 (χ1, θ, τ) = A1 (χ1 + vg1θ, τ) ≡ A1 (ξ1, τ)

A2 (χ1, θ, τ) = A2 (χ1 − vg1θ, τ) ≡ A2 (ξ2, τ)

A3 (χ2, θ, τ) = A3 (χ2 + vg2θ, τ) ≡ A3 (ξ3, τ)

A4 (χ2, θ, τ) = A4 (χ2 − vg2θ, τ) ≡ A4 (ξ4, τ) ,

where vg2 = ∂ω/∂k2|k=(0,kc)T
= vg1 ≡ vg, and note the relative coordinates ξi intro-

duced by our abuse of notation

ξ1 = χ1 + vg1θ,

ξ2 = χ1 − vg1θ,

ξ3 = χ2 + vg2θ,

ξ4 = χ2 − vg2θ.

Calculating 〈φi, g3〉 requires more steps. In particular, there is the inner product

〈φi, u
3
1〉 which requires the cube of the assumed solution (4.3.10), and then there are

〈φi, u2〉 and 〈φi, u1u2〉 which both require an expression for u2 before they can be

evaluated, see Appendix A.1.2 again for details. Eventually, we gain equations for all
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four amplitudes

∂A1

∂τ
= a0A1 + A1

[
a1〈|A2|2〉2 + a2

(
|A1|2 + 〈|A2|2〉2

)
+ a3

(
〈|A3|2〉3 + 〈|A4|2〉4

)]
+

+ a4〈Ā2〉2〈A3〉3〈A4〉4 + a5
∂2A1

∂ξ21
,

(4.3.14)
∂A2

∂τ
= a0A2 + A2

[
a1〈|A1|2〉1 + a2

(
〈|A1|2〉1 + |A2|2

)
+ a3

(
〈|A3|2〉3 + 〈|A4|2〉4

)]
+

+ a4〈Ā1〉1〈A3〉3〈A4〉4 + a5
∂2A2

∂ξ22
(4.3.15)

∂A3

∂τ
= a0A3 + A3

[
a1〈|A4|2〉4 + a2

(
|A3|2 + 〈|A4|2〉4

)
+ a3

(
〈|A1|2〉1 + 〈|A2|2〉2

)]
+

+ a4〈Ā4〉4〈A1〉1〈A2〉2 + a5
∂2A3

∂ξ23
(4.3.16)

∂A4

∂τ
= a0A4 + A4

[
a1〈|A3|2〉3 + a2

(
〈|A3|2〉3 + |A4|2

)
+ a3

(
〈|A1|2〉1 + 〈|A2|2〉2

)]
+

+ a4〈Ā3〉3〈A1〉1〈A2〉2 + a5
∂2A4

∂ξ24
(4.3.17)

where the angle brackets 〈·〉i indicate an average. The subscript i of these brackets

indicate which ξi has been averaged over. As an example, we can look at patterns

periodic in ξi, with period Pi, with the average given by

〈X〉i =
1

Pi

∫ Pi

0

Xdξi. (4.3.18)

The parameters ai of Eqs. (4.3.14) to (4.3.17) are given by

a0 = −δD

a1 = −D
[
2γ22 (2C200 + 2C020 − C220) + 3γ3

]
a2 = −D

[
2γ22 (2C000 + C220) + 3γ3

]
a3 = −2D

[
2γ22 (C211 + C011 + C000) + 3γ3

]
a4 = −2D

[
2γ22 (2C011 + C200) + 3γ3

]
a5 = −γ

2
c

2
D

(
∂

∂ik1
− vg

∂

∂iω

)2 (
η̃K̂
)

D =
1

γ2c

(
∂(η̃K̂)

∂iω

)−1

,

(4.3.19)
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with the shorthand notation

Clmn =
η̃(ilωc)K̂((mkc, nkc)

T , ilωc)

1− γcη̃(ilωc)K̂((mkc, nkc)T , ilωc)
. (4.3.20)

4.3.2 D4 n T 2 Normal form

For small ε, in a first approximation one may assume that the amplitudes Ai do not

vary with ξi leading to

dA1

dτ
= a0A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā2A3A4

dA2

dτ
= a0A2 + A2

[
a1|A1|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā1A3A4

dA3

dτ
= a0A3 + A3

[
a1|A4|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā4A1A2

dA4

dτ
= a0A4 + A4

[
a1|A3|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā3A1A2.

((3.3.3) revisited)

This is the normal form for the Hopf bifurcation on a square lattice that is determined

and analyzed in Silber & Knobloch [5], and discussed in Section 3.3.2.

4.3.3 Locating degeneracies

This section explains how to use the normal form of Eq. (3.3.3) to reveal spatiotem-

poral solutions of Eq. (2.3.1) assuming the specific temporal dynamics and spatial

interaction, Eqs. (2.3.5) and (4.1.5).

Parameter search

Despite having a complicated normal form parameter space, C4, we can make use of

Silber & Knobloch’s analysis to determine the branches of the periodic solutions for

a given set of model parameters. We find the system parameters c, α, ae, ai, r, and

γ1 = γc such that a dynamic Turing bifurcation emerges, then apply Eqs. (4.3.19) and

compare the parameters found to the conditions in Table 3.1 to see how the solutions

branch.

To compute the normal form parameters, we only need to have set the specific

functions and parameters for the temporal and spatial kernels, η and K, respectively.

Once these are set, varying the steepness of the transfer function f changes only γ2
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C interval Region number Distinguishing characteristic

(4γc, C1) 21(-) TR and AR both supercritical and stable

(C1, C2) 24(-) TR subcritical, AR supercritical and stable

(C2, C3) 23(-) TR and AR both subcritical

(C3, C4) 25(-) Only TS and SS supercritical

(C4, C5) 20(-) Only SS supercritical

(C5,∞) 1(-) All modes subcritical

Table 4.2: The regions of normal form parameter space traversed as steepness is
increased. The visualization of this is in Figure 4.8.

Transition Degeneracy condition Solution

21 → 24 Re (a2) = 0 C1 ≈ 3.209199

24 → 23 Re (a1 + 2a2 − (f + |a4|)/2) = 0 C2 ≈ 3.522248

23 → 25 Re (a1 + 2a2) = 0 C3 ≈ 3.525135

25 → 20 Re (a1 + 4a2 − f) = 0 C4 ≈ 4.214041

20 → 1 Re (a1 + 2a2 − (f − |a4|)/2) = 0 C5 ≈ 16.069927

Table 4.3: The transitions between branching diagrams, their associated degeneracy
conditions, and the C values that satisfy this for the parameters in Table 4.1. Note
that f used here is a combination of parameters defined in [5] for convenience f =
a1 + 2a2 − 2a3.

and γ3, and we can observe how the branching diagram changes.

As an example, we set the system parameters as those depicted with the spectrum

in Table 4.1, with the maximum of the sigmoid Smax = 1. We note that the maximum

slope of the transfer function is γ = C/4. Thus, for a small steepness C < 4γc, we

find that there will be no dynamic Turing bifurcation. For C = 4γc, there exists a

single dynamic Turing bifurcation but it is degenerate in the sense that the spectrum

never destabilizes, but just touches the complex axis. For C > 4γc, our analysis can

be applied, and the behaviour as C is increased further is summarized in Table 4.2,

and visualized in Figure 4.8.

Note that this analysis approach does not reveal what happens for explicit equal-

ities C = Ci. This is because these represent degenerate cases in the normal form,

and to understand what is happening we need to take into account nonlinear terms of

larger than cubic orders. As there are a large number of ways in which these degen-

eracies arise, we refrain from analyzing all possibilities. Rather we investigate how to
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Figure 4.8: The behaviour of the dynamic Turing bifurcations for increasing steepness
C > 4γc for parameters taken from Table 4.1. Left : Relation between steepness
parameter C and values of u0 at the dynamic Turing bifurcations, the lower being a
more detailed view of a region in the upper. Right : Branching diagram at the lower
bifurcation point, noting that the branching diagram for the upper point is simply
the mirror image. Definition and values of Ci are given in Table 4.2 and Table 4.3,
respectively.
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determine when a specific degeneracy emerges while varying C.

To compute the values of Ci of the degenerate cases, the problem can be formulated

in terms of a Newton iteration to solve the nearby degeneracy condition. For instance,

for C1 we observe that C ≈ 4γc + 0.5 is close to the degeneracy condition between

regions 21 and 24. The equation for this degeneracy is simply given by

Re (a2) = 0,

as determined in [5]. Taking the equation to be just a function of C, we can apply

Newton’s method to obtain the value of C1 that satisfies this to arbitrary precision,

limited only by the precision of the previously calculated γc, kc, and ωc. Increasing

the parameter C, one crosses different degeneracy conditions. These conditions, along

with the corresponding values of Ci where they are satisfied, are given in Table 4.3.

4.4 Simulation

To compare the analytical results to numerical solutions of Eq. (2.3.1), we have em-

ployed a recently developed numerical integration scheme1 [? 3]. The numerical

scheme assumes a discretization in space and time, and considers a fixed finite trans-

mission speed. To integrate over time, a forward Euler scheme is applied. The com-

putation of the spatial integral in Eq. (2.3.1) is done as a combination of a spatial

convolution and a temporal integration, where the former is implemented by a Fast

Fourier transform and the latter utilizes a rectangular integration rule.

By virtue of the spatial discretization, it is mandatory to choose the spatial ex-

tension of the integration domain |Ω| = L2 with side length L and the number of

discretization intervals N in such a way to ensure the convergence of the numerical

solution to the analytical results. The major criteria for the parameters are:

• Discretization of wave vectors: the wave vector k = (kx, ky)
T is discrete due to

periodic boundary condition, i.e. ki = ni∆k, ni ∈ Z for i = x, y and ∆k = 2π/L.

For a finite number N ni = −N/2, . . . , N/2. Hence the maximum resolution for

wave vectors is given by ∆k = 2π/N∆x where ∆x = L/N , and k = ‖k‖ is a

multiple of ∆k. This insight is important when scanning the parameter space

for values of k which destabilize the stationary state. In addition, ∆k has to

be chosen in such a way that it allows to sample the Fourier transforms with a

sufficiently high resolution, e.g. resolving the locations of local extrema of the

1NeuralFieldSimulator: https://gforge.inria.fr/projects/nfsimulator/

https://gforge.inria.fr/projects/nfsimulator/
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transforms.

• Discretization of space: the analytical study assumes periodically repeating so-

lutions on an infinite spatial domain implying that there are no boundary effects

affecting the Fourier transform of the spatial connectivity kernel while, on the

other side, taking into account periodic boundary conditions. To ensure the

validity of these assumptions, we have guaranteed by a large enough L and N

that the analytical and spatial norms of the connection kernels are identical up

to a relative error < 0.01.

• Numerical integration time: The larger N , the better the numerical approxima-

tion of the analytical dynamics. However, the number of delayed rings to be

integrated in the delay integral increases with the spatial discretization N . To

see this, we note that there is a maximum transmission delay τm = L
2c

due to

the finiteness of location space. Since the numerical integration makes it neces-

sary to discretize the delay integral into time steps ∆t = τm/Tm, the numerical

integration performs a sum over rings of number

Tm =
∆x

2c∆t
N, (4.4.1)

i.e. the number of terms to sum up in the integral is proportional to the number

of discretization intervals N .

The relation (4.4.1) leads to a trade-off between the integration time and the integra-

tion precision.

With the above considered, we are able to simulate the predicted stable modes

of region 21(−) (TR and AR) from Fig. 4.8. For our parameter set, we find that

a simulation domain of length L = 7lc, with a discretization of N = 512 points in

each spatial dimension is enough for the norm of the discretized kernel connectivity

to match the norm of the analytical connectivity within a tolerance of 0.01.

Simulating a desired mode requires us to use initial conditions (initial history,

technically) that are within the basin of attraction for that mode. We know no

details of the geometry of these basins, and simulating from random initial conditions

is not likely to produce one of the principal modes. However, starting the simulation

from conditions that are the correct shape (but wrong amplitude) of the desired mode

should allow it to evolve towards the mode. This is what was done to generate the

fields in Figure 4.9, which are taken after the transient variation in amplitude has

decayed.
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Travelling Rolls (stable)

Alternating Rolls (stable)

Figure 4.9: Snapshots of stable TR and AR from NeuralFieldSimulator [4]: direct
numerical simulation of the integral model Eq. (2.3.1) just beyond the discussed bi-
furcation point. Steepness parameter set to C = 2.856, which corresponds to region
21(-) in Figure 4.8. Time in the frames is increasing by one-eighth of the critical
period Tc ≈ 1.84783. Simulation domain size is L = 7Lc ≈ 40.3805, discretized into
N = 512 points in each dimension.

When we do start with random perturbations in the initial conditions, the sim-

ulation becomes more unpredictable. For example, if we set initial conditions that

are in the shape of a standing square wave, and add to this Gaussian white noise

across the domain, then after some time, the numerical solution may or may not have

regions that resemble the elementary modes discussed in our analysis. This comes

about because our analysis was performed for a single unit cell near the bifurcation

point, i.e., length L = Lc, but our numerics are restricted to being on a domain at

least seven times this size. Stability that we speak of thus refers to stability with

respect to perturbations with the periodicity of the unit cell. After a long simulation

time, this example of randomized initial conditions is shown in Figure 4.10. For our

parameters, the simulation is eventually dominated by TR-like behaviour, which is

good because our analysis showed these to be stable, but there are deviations from

the elementary TR solution in the waves’ profile.
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This chapter will bring the view of dynamical systems from Chapter 3 to Liley’s neural

field model which was described in Chapter 2. For this model, we must recall both

the integral form,

hk(x, t) = ηk ∗
(
hrk +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrk
∣∣ Ijk(x, t)

)
,

Ijk(x, t) = ηjk ∗
(
Kjk ⊗ Sj ◦ hj(x, t) + pjk

)
,

((2.4.1) revisited)

89
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which is used for the weakly nonlinear analysis, and the specific PDE form

τk
∂

∂t
hk(x, t) = hrk − hk(x, t) +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrk
∣∣ Ijk(x, t)(

∂

∂t
+ γjk

)2

Ijk(x, t) = exp(1)Γjkγjk

[
Nβ

jkSj ◦ hj(x, t) + φjk(x, t) + pjk

]
[(

∂

∂t
+ vΛ

)2

− 3

2
v2∇2

]
φek(x, t) = Nα

ekv
2Λ2Se ◦ he(x, t)

φik(x, t) = 0,

((2.4.6) revisited)

which is used for numerical simulation.

This chapter focuses on applying the weakly nonlinear analysis of the D4 n T 2

symmetric Hopf bifurcation to a system of integral equations, followed by the devel-

opment of simulation code for the PDE variant Liley’s model. We then apply the

developed ideas and methods to two specific parameter sets chosen from literature to

evaluate them and gain some further insight.

5.1 Preliminaries

The first thing we will do is write the different forms of Liley’s model as vector

systems, expanding the dense index notation. First is the general form with the

integral convolutions. This does not require any manipulations, we simply write the

6 components of the model out in vector form

he

hi

Iee

Iie

Iei

Iii



=



ηe ∗
(
hre +

heq
ee−he(x,t)

|heq
ee−hr

e| Iee(x, t) +
heq
ie−he(x,t)

|heq
ie−hr

e| Iie(x, t)
)

ηi ∗
(
hri +

heq
ei−hi(x,t)

|heq
ei−hr

i |
Iei(x, t) +

heq
ii −hi(x,t)

|heq
ii −hr

i |
Iii(x, t)

)
ηee ∗

(
Kee ⊗ Se ◦ he(x, t) + pee

)
ηie ∗

(
Kie ⊗ Si ◦ hi(x, t) + pie

)
ηei ∗

(
Kei ⊗ Se ◦ he(x, t) + pei

)
ηii ∗

(
Kii ⊗ Si ◦ hi(x, t) + pii

)



. (5.1.1)

We will consistently use small letters to denote vectors of this general integral system,

i.e., u(x, t) = (he, hi, Iee, Iie, Iei, Iii)
T (x, t) for this chapter.

For a vector system from the specific PDE formulation, we introduce additional
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variables to split the postsynaptic potentials and long range connections from their

second order form in a common way. For postsynaptic potentials, we introduce the

Jjk fields,
∂

∂t
Ijk = Jjk − γjkIjk

∂

∂t
Jjk = exp(1)Γjkγjk

{
Nβ

jkSj [hj] + φjk + pjk

}
− γjkJjk

(5.1.2)

and for the long-range connections, the ψek fields,

∂

∂t
φek = ψek − vΛφek

∂

∂t
ψek = v2Λ2Nα

ekSe [he] +
3

2
v2∇2φek − vΛψek.

(5.1.3)

This allows the PDE system for Liley’s model to be written as

∂

∂t



he(x, t)

hi(x, t)

Iee(x, t)

Jee(x, t)

Iie(x, t)

Jie(x, t)

Iei(x, t)

Jei(x, t)

Iii(x, t)

Jii(x, t)

φee(x, t)

ψee(x, t)

φei(x, t)

ψei(x, t)



=



1
τe

(
hre − he(x, t) +

heq
ee−he(x,t)

|heq
ee−hr

e| Iee(x, t) +
heq
ie−he(x,t)

|heq
ie−hr

e| Iie(x, t)
)

1
τi

(
hri − hi(x, t) +

heq
ei−he(x,t)

|heq
ei−hr

i |
Iei(x, t) +

heq
ii −hi(x,t)

|heq
ii −hr

i |
Iii(x, t)

)
Jee(x, t)− γeeIee(x, t)

exp(1)Γeeγee
(
Nβ

eeSe [he(x, t)] + φee(x, t) + pee
)
− γeeJee(x, t)

Jie(x, t)− γieIie(x, t)

exp(1)Γieγie
(
Nβ

ieSi [hi(x, t)] + φie(x, t) + pie
)
− γieJie(x, t)

Jei(x, t)− γeiIei(x, t)

exp(1)Γeiγei
(
Nβ

eiSe [he(x, t)] + φei(x, t) + pei
)
− γeiJei(x, t)

Jii(x, t)− γiiIii(x, t)

exp(1)Γiiγii
(
Nβ

iiSi [hi(x, t)] + φii(x, t) + pii
)
− γiiJii(x, t)

ψee(x, t)− vΛφee(x, t)

v2Λ2Nα
eeSe [he(x, t)] +

3
2
v2∇2φee(x, t)− vΛψee(x, t)

ψei(x, t)− vΛφei(x, t)

v2Λ2Nα
eiSe [he(x, t)] +

3
2
v2∇2φei(x, t)− vΛψei(x, t)


(5.1.4)

which fits the first order (in time) general form for an infinite dimensional dynamical

system. We will consistently denote the vectors for this system as upper case letters,

i.e., U(x, t) = (he, hi, Iee, Jee, Iie, Jie, Iei, Jei, Iii, Jii, φee, ψee, φei, ψei)
T (x, t).

It is because of the large expression for the PDE system that the weakly nonlinear

analysis is done on the simpler 6 component integral system of Eq. (5.1.1). In addition
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to this, there is an added bonus: such analysis can be used with general connectivities.

5.1.1 Linearization and dispersion

Assuming we have some solution u0 to Liley’s model, we can write the linearization

of the integral form as

Lu1(x, t) =



L11 0 L13 L14 0 0

0 L22 0 0 L25 L26

L31 0 1 0 0 0

0 L42 0 1 0 0

L51 0 0 0 1 0

0 L62 0 0 0 1


u1(x, t) = 0 (5.1.5)

with the components

L11 = 1 +
1

|heqee − hre|
ηe ∗

(
I0ee(x, t) ·

)
+

1

|heqie − hre|
ηe ∗

(
I0ie(x, t) ·

)
L13 =

1

|heqee − hre|
ηe ∗

(
h0e(x, t) ·

)
L14 =

1

|heqie − hre|
ηe ∗

(
h0e(x, t) ·

)
L22 = 1 +

1

|heqei − hri |
ηi ∗

(
I0ei(x, t) ·

)
+

1

|heqii − hri |
ηi ∗

(
I0ii(x, t) ·

)
L25 =

1

|heqei − hri |
ηi ∗

(
h0i (x, t) ·

)
L26 =

1

|heqii − hri |
ηi ∗

(
h0i (x, t) ·

)
L31 = −ηee ∗

(
Kee ⊗ S ′

e[h
0
e(x, t)] ·

)
L42 = −ηie ∗

(
Kie ⊗ S ′

i[h
0
i (x, t)] ·

)
L51 = −ηei ∗

(
Kei ⊗ S ′

e[h
0
e(x, t)] ·

)
L62 = −ηii ∗

(
Kii ⊗ S ′

i[h
0
i (x, t)] ·

)
.

(5.1.6)

For SHE, this simplifies in a similar way to the scalar equation: All of the zeroth order

terms can be taken out of the integral operators, so the operators will act only on

the higher order solutions to which this is applied. Now we look at perturbations of

the form u1 = qeik·xeλt. This allows us to write the linear system in Fourier-Laplace
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space

L(k, λ)q =



1 +
(

I0ee
|heq

ee−hr
e|
+ I0ie

|heq
ie−hr

e|

)
η̃e 0 h0

e

|heq
ee−hr

e|
η̃e

h0
e

|heq
ie−hr

e|
η̃e 0 0

0 1 +
(

I0ei
|heq

ei−hr
i |
+

I0ii
|heq

ii −hr
i |

)
η̃i 0 0

h0
i

|heq
ei−hr

i |
η̃i

h0
i

|heq
ii −hr

i |
η̃i

−γ1e η̃eK̂ee 0 1 0 0 0

0 −γ1i η̃iK̂ie 0 0 1 0

−γ1e η̃eK̂ei 0 0 1 0 0

0 −γ1i η̃iK̂ii 0 0 0 1


q = 0,

(5.1.7)

where the arguments in η̃(λ) and K̂(k, λ) are always the same, and we have introduced

the short notation

γ1e = S ′
e(h

0
e), γ1i = S ′

i(h
0
i ) (5.1.8)

The dispersion relation will then satisfy detL(k, λ) = 0.

5.1.2 D4 n T 2 symmetric Hopf

The normal form coefficients for Liley’s model can also be computed using a multi-

scale analysis as was done for the scalar field. For this, however, we do not consider

the long spatial scale in order to simplify the calculations, and can obtain the normal

form of Eq. (3.3.3) directly. The weakly nonlinear analysis now proceeds with the

integral equation system Eq. (5.1.1).

The modes causing a D4 n T 2 Hopf bifurcation for a system of equations can be

written as

ϕ1 = qφ1, ϕ2 = qφ2, ϕ3 = qφ3, ϕ4 = qφ4, (5.1.9)

where φj represent theD4nT 2 scalar wave modes given in Eq. (3.3.2), and q represents

the normalized right nullvector of the Fourier-Laplace transformed linear system at

criticality

L (kc, iωc) q = 0, q̄T q = 1, (5.1.10)

The first order solution is then written as

u1(x, t) =
4∑

j=1

(
Ajϕj + Ājϕ̄j

)
= q

4∑
j=1

Ajφj + q̄
4∑

j=1

Ājφ̄j.

(5.1.11)

For this, we consider the amplitudes to be only functions of the long time scale τ = ε2t,

excluding the long spatial scale χ and the intermediate time scale θ. Determining the
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higher order perturbations will result in the sequence of equations

Lu1(x, t) = g1(u0) = 0

Lu2(x, t) = g2(u0, u1)

Lu3(x, t) = g3(u0, u1, u2),

(5.1.12)

with each order requiring the solution to a 6 component linear system. Fortunately,

all of the hard work in separating the scales of the integral terms was performed in

the scalar model, and Liley’s model can be expressed in terms of those results. The

second order equation will have

g2 =



−ηe ∗
(

h1
eI

1
ee

|heq
ee−hr

e|
+

h1
eI

1
ie

|heq
ie−hr

e|

)
−ηi ∗

(
h1
i I

1
ei

|heq
ei−hr

i |
+

h1
i I

1
ii

|heq
ii −hr

i |

)
γ2eM

0
ee(h

1
e)

2 + γ1eM
1
eeh

1
e

γ2iM
0
ie(h

1
i )

2 + γ1iM
1
ieh

1
i

γ2eM
0
ei(h

1
e)

2 + γ1eM
1
eih

1
e

γ2iM
0
ii(h

1
i )

2 + γ1iM
1
iih

1
i


, (5.1.13)

where we have introduced the notation γ2j = S ′′
k (h

0
k)/2, and the Mn

jk operators are

simply the Mn operators from the scalar analysis (Eq. (4.3.9)) with indices added for

the generating and receiving populations, i.e.,

M0
jk = ηjk ∗Kjk⊗,

M1
jk = 0,

M2
jk = (tηjk ∗Kjk + ηjk ∗ tKjk)⊗

∂

∂τ
,

(5.1.14)

noting the drastic simplification that comes with ignoring the long space and inter-

mediate time scales at this stage. The M2
jk operator shows up in the next order

equation.
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The right hand side for the third order equation is

g3 =



−ηe ∗
[(

I2ee
|heq

ee−hr
e|
+

I2ie
|heq

ie−hr
e|

)
h1e +

(
I1ee

|heq
ee−hr

e|
+

I1ie
|heq

ie−hr
e|

)
h2e

]
−ηi ∗

[(
I2ei

|heq
ei−hr

i |
+

I2ii
|heq

ii −hr
i |

)
h1i +

(
I1ei

|heq
ei−hr

i |
+

I1ii
|heq

ii −hr
i |

)
h2i

]
M0

ee (2γ
2
eh

1
eh

2
e + γ3e (h

1
e)

3) + γ1eM
2
eeh

1
e

M0
ie (2γ

2
i h

1
ih

2
i + γ3i (h

1
i )

3) + γ1iM
2
ieh

1
i

M0
ei (2γ

2
eh

1
eh

2
e + γ3e (h

1
e)

3) + γ1eM
2
eih

1
e

M0
ii (2γ

2
i h

1
ih

2
i + γ3i (h

1
i )

3) + γ1iM
2
iih

1
i


, (5.1.15)

with γ3j = S ′′′(h0j)/6. To help parse the meaning, it is useful to keep in mind that

superscripts on variables are denoting a perturbation order, and that powers have

been written with explicit brackets consistently.

Also to note with Liley’s model, we have not included a parameter that involves

distance from the bifurcation (i.e., δ in the scalar analysis), and this is because we

are interested in computing the normal form coefficients a1,2,3,4 that determine the

criticality and stability of the branching solutions. This can be thought of as looking

at the parameter independent normal form. Criticality and stability can be obtained

by analysis at the bifurcation point, similar to setting δ = 0 in the scalar model.

An unfolding parameter β can then be added in afterwards with the assumption

β ∝ p − pc, where p is an arbitrary parameter in Liley’s model, and pc its value at

criticality.

Since u1 ∈ kerL, the Fredholm Alternative must be satisfied for each order as

well. To apply the Fredholm alternative, we must define an inner product

〈u, v〉 = k2cωc

8π3

∑
j

∫
Λ

dx1dx2dt ūj(x, t)vj(x, t) =
k2cωc

8π3

∫
Λ

dx1dx2dt ū
T (x, t)v(x, t),

(5.1.16)

with Λ = [0, 2π/kc]
2 × [0, 2π/ωc] as in the scalar case. From Eq. (5.1.16), we can

determine the adjoint operator L∗. The adjoint turns out to be simply the transpose
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of the original operator with connectivity kernels evaluated at negative time

L∗ =



L∗
11 0 L∗

13 L∗
14 0 0

0 L∗
22 0 0 L∗

25 L∗
26

L∗
31 0 1 0 0 0

0 L∗
42 0 1 0 0

L∗
51 0 0 0 1 0

0 L∗
62 0 0 0 1



T

(5.1.17)

with the components

L∗
11 = 1 +

(
I0ee

|heqee − hre|
+

I0ie
|heqie − hre|

)
ηe(−t)∗

L∗
13 =

h0e
|heqee − hre|

ηe(−t)∗

L∗
14 =

h0e
|heqie − hre|

ηe(−t)∗

L∗
22 = 1 +

(
I0ei

|heqei − hri |
+

I0ii
|heqii − hri |

)
ηi(−t)∗

L∗
25 =

h0i
|heqei − hri |

ηi(−t)∗

L∗
26 =

h0i
|heqii − hri |

ηi(−t)∗

L∗
31 = −γ1eηee(−t) ∗Kee(x,−t)⊗

L∗
42 = −γ1i ηie(−t) ∗Kie(x,−t)⊗

L∗
51 = −γ1eηei(−t) ∗Kei(x,−t)⊗

L∗
62 = −γ1i ηii(−t) ∗Kii(x,−t)⊗

(5.1.18)

This has the useful property that in Fourier-Laplace space, it is simply the conju-

gate transpose of the matrix L defined in Eq. (5.1.7). We define p as the nullvector of

the Fourier-Laplace transform of this adjoint operator, which can thus be written as

L̄T (kc, iωc)p = 0. (5.1.19)

The Fredholm Alternative then manifests itself as requiring

〈pφj, g
n〉 = 0 (5.1.20)

for each of the nullspace elements (j = 1 . . . 4), for each order of equation (n =
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1, 2, . . .).

As mentioned before, this is exactly the same procedure as was performed for the

scalar model, now complicated by dealing with 6 simultaneous equations rather than

1. This can only be carried out numerically, so specific application of this method is

deferred to Appendix B.1 with results simply stated in Sections 5.2, 5.3.

5.1.3 Simulation

An important tool for the analysis of complicated models is the ability to perform

direct numerical simulation of the model equations. In fact, a large portion of time

was spent in this thesis developing simulation tools using state-of-the-art algorithms

for the PDE version of Liley’s model. This section will describe the basic algorithms

used in creating a scalable simulation code for numerical simulation of Eq. (2.4.6).

Details of how the code is structured to incorporate everything discussed here is left

to Appendix B.3.

Spatial discretization

Approximating the spatial derivatives by finite difference (FD) approximations will al-

low the continuous system to be discretized into an arbitrarily large finite dimensional

system. We take a regular square grid with equally spaced nodes

xj,k =

jh
kh

 ,
with h the grid spacing. Taking centered differences in both spatial dimensions allows

the Laplacian to be approximated as the truncation of

∇2φ(xj,k, t) =
φ(xj−1,k,t)+φ(xj+1,k,t)+φ(xj,k−1,t)+φ(xj,k+1,t)−4φ(xj,k,t)

h2 +O(h2).
(5.1.21)

On a square grid with periodic boundary conditions in either direction, we order the

nodes as

X = (x0,0, . . . ,x0,N−1,x1,2, . . . ,x1,N−1, . . .)
T (5.1.22)

The resulting node connectivity matrix will then appear as the light colouring in

Figure 5.1.

Considering all 14 of the dynamical quantities at each node, we choose a grid-

based ordering scheme, which allows us to hold our view of the large-scale coupling,
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Figure 5.1: Coupling for Liley’s model on a 3x3 grid with periodic BC. Grid-based
ordering of the 14 components in Liley’s PDE (dark) overlaid on the grid coupling
(light). The result is a very sparse structure of the Jacobian.

but we can also consider the smaller scale coupling determined by the actual model

Eq. (5.1.4). This gives us an overall view of the coupling in the discretized system, the

black squares in Figure 5.1, which will reflect the structure of the Jacobian. Though

visualized for only a 3x3 grid, the sparsity of this system is apparent, and is exploited

for parallel computation for larger grids.

Distribution through parallel domain decomposition

As we take more and more grid points, computation on the discretized system will take

longer and longer. Splitting up the domain into various pieces that can be worked

on separately by different processors will become advantageous. The catch is that

since our grid points do have a local coupling to their neighbours, it is required that

points on the boundaries of processor subdomains be communicated to the relevant

neighbouring processors that use them in computing the vector field or Jacobian.

These coordinates whose actual values are on another processor are called ghost nodes,

and this situation is visualized as the coloured squares in the discrete grid of Figure

5.2. The red dots represent the grid points local to a specific processor, with the other

colours the relevant ghost points.
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Figure 5.2: A regularly spaced grid on a square domain, split into multiple processors.
The red dots represent grid points local to a particular processor. In order for this
processor to compute a Laplacian according to Eq. (5.1.21), they must contain ghost
nodes that are communicated from the local points on neighbouring processors.

Implementing this discretization and distribution is straightforward in an MPI

code, however, we have made use of a particular C library where this is standard

procedure. That library is the Portable Extensible Toolkit for Scientific Computation

(PETSc) [2], which is intended to provide useful tools for the numerical solution of

PDEs using a distributed computing environment. More specifics of the structure of

the PDE code can be found in Appendix B.3.

Treatment as a finite dimensional system

With the continuous domain discretized into a square periodic grid, the PDE system

is effectively a high dimensional dynamical system

∂tU
D = FD(Ud, A), FD : R14N2 × R32 → R14N2

(5.1.23)

for UD(t) ∈ R14N2
the set of all dynamical quantities, and A ∈ R32 the set of all

parameters.

The treatment as a finite dimensional dynamical system may commence as in

Section 3.1, but some algorithmic concerns must be taken into account due to the

potentially large system size. The main problem that arises is the storage of, and

solution to, systems involving the Jacobian. The specific algorithms we use for com-
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Problem Algorithm

Solving a linear system GMRES [10], preconditioned with incomplete LU
factorization of order k (ILU(k)) [9]

Computing eigenvalues Krylov-Schur iteration [? ]

• Largest real part by shift

• Largest magnitude by straight application

• Target eigenvalues by shift-invert methods

Solving nonlinear system Newton iteration with linesearch [5]; Linear systems
solved as above

Table 5.1: Useful algorithms for performing certain computations on large, sparse sys-
tems. All of these algorithms are available in the PETSc/SLEPc distributed software
libraries.

putations involving the Jacobian are listed in Table 5.1.

All of the algorithms mentioned in the table are provided either by PETSc, or its

sister library, the Scalable Library for Eigenvalue Problem Computations (SLEPc) [8].

We provide our own schematic of the relative hierarchy of classes in these libraries in

Appendix B.2. The PETSc/SLEPc combination cover all aspects of computation we

wish to perform, but we now make a special note on computations regarding periodic

orbits.

5.1.4 Periodic orbit computations

To refresh, the linear system to be solved in computing a periodic orbit was written

in Section 3.4.4:

g(U, β) =

Ud − φd(Ud, T, α)

P (Ud, T )

 ,
∂Ug(U, β) =

I − ∂Udφd(Ud, T, α) −∂tφd(Ud, T, α)

∂UdP ∂TP

 ,
((3.4.4) revisited)

with notation updated to our discretized viewpoint. The problem with this lies in the

∂Udφ term. As this can be thought of as “the derivative of the flow at time T , with
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respect to initial condition u,” it becomes apparent that this can be a dense matrix,

i.e., small localized perturbations in the initial conditions can possibly influence the

entire system over the course of the period. Changing a single component in the initial

condition can affect all components by time T. Even with the sparse coupling of our

system in Figure 5.1, this is the case.

For a large grid, split onto multiple processors, dealing with dense matrices is

not feasible. The solution to this problem comes from looking at the first variational

equation

v̇ = ∂uf
∣∣
u(t)
v. (5.1.24)

Keeping in mind that the ∂Ug matrix in Eq. (3.4.4) is multiplied by the vector

[∆u,∆T ]T , we can find that the product ∂uφ(u, T, α)∆u can be approximated by

v(T ) such that v(0) = ∆u. (5.1.25)

Since we already use iterative (matrix-free) algorithms within PETSc/SLEPc,

these can simply be turned to this new view where we do not form the matrix ex-

plicitly, but rather just have the effect of the matrix multiplication. This approach

to periodic orbit computation (and its extension to continuation) was pioneered by

Sanchez et al. [11] for use with Navier-Stokes flows.

5.1.5 Initialization of D4 n T 2 modes

One practical consideration for the simulation of the D4 n T 2 symmetric waveforms

in the multicomponent systems is generating initial conditions to be used that can be

compared with the analysis presented above. In general, the numerical computation

of the the basis for the nullspace (i.e., the bifurcating eigenmodes) will be different

from the basis given in Eq. (3.3.2). The eigenmodes in the basis will be some unknown

linear combination of the eigenmodes in Eq. (3.3.2). This section resolves that issue

by taking the dispersion relation viewpoint, and determining initial conditions for

each of the five D4 n T 2 symmetric wave modes from there.

Considering the PDE system Eq. (5.1.4), with a complex nullvector Q at the

bifurcation point, i.e., (
iωcI − ∂̂UF (kc)

)
Q = 0, (5.1.26)

we can use Eq. (5.1.9) and the amplitude relations of Table 3.1 to obtain real-valued
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expressions for each of the 5 branching modes. These are U(x, t)− U0 ∝

TR : Re(Q) cos(ωct+ kcx1)− Im(Q) sin(ωct+ kcx1),

SR : 2
[
Re(Q) cos(ωct) + Im(Q) sin(ωct)

]
cos(kcx1),

TS : Re(Q)
(
cos(ωct+ kcx1) + cos(ωct+ kcx2)

)
−

Im(Q)
(
sin(ωct+ kcx1) + cos(ωct+ kcx2)

)
,

SS : 2

[
Re(Q)

(
cos kcx1 + cos kcx2

)
cosωct−

Im(Q)
(
cos kcx1 + cos kcx2

)
sinωct

]
AR :

[
Re(Q)

(
cosωct− sinωct

)
,+Im(Q)

(
cosωct+ sinωct

)]
×(

cos kcx1 + sin kcx1 + cos kcx2 + sin kcx2
)
.

(5.1.27)

These are written with their time dependence because these expressions can be

used either when Q is obtained from the PDE system, or even if Q is taken from

the integral version of the model, i.e., we use q from Eq. (5.1.9). For initialization

of a PDE simulation, it is sufficient to take t = 0, however for the (delayed) integral

version of the model, an initial history needs to be supplied, and the time dependence

of these solutions becomes useful.

The above neglects the actual amplitudes of the solutions, which is reasonable

because the numerical normal form analysis does not reveal a precise value for the

unfolding parameter. Without a value for the unfolding parameter, the scaling fac-

tors that would make Eq. (5.1.27) equalities are unable to be obtained. These are

thus mostly useful in generating the correct form of the bifurcating wavemodes, with

Q containing information about the relative amplitudes and phases of the various

components in the system.

What can be done, in principle, is finding one of the periodic solutions near the

bifurcation, and using the scaling factor to give an approximation to a0 using the

relevant entry of Table 3.1. With an approximation to a0, the amplitudes of all of the

other periodic solutions can be approximated, so that even with unstable branches

we may be able to obtain reasonably close estimates for the periodic solutions, which

can then be refined to the actual solutions.

Now that we have covered how all of the methods generalize to Liley’s model, both

with continuous and discretized space, we move on to the analysis of parameter sets.
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Parameter Value Units Parameter Value Units

hre -72.293 mV Nα
ee 3228.0 –

hri -67.261 mV Nα
ei 2956.9 –

τe 32.209 ms Nβ
ee 4202.4 –

τi 92.260 ms Nβ
ei 3602.9 –

heqee 7.2583 mV Nβ
ie 443.71 –

heqei 9.8357 mV Nβ
ii 386.43 –

heqie -80.697 mV v 116.12 cm s−1

heqii -76.674 mV 1/Λ 1.6423 cm

Γee 0.29835 mV Smax
e 66.433 s−1

Γei 1.1465 mV Smax
i 393.29 s−1

Γie 1.2615 mV µe -44.522 mV

Γii 0.20143 mV µi -43.086 mV

γee 122.68 s−1 σe 4.7068 mV

γei 982.51 s−1 σi 2.9644 mV

γie 293.10 s−1 pee 2250.6 s−1

γii 111.40 s−1 pei 4363.4 s−1

Table 5.2: Parameter set PS1 for Liley’s model. This parameter set was taken
originally from Bojak & Liley [4] where oscillations with a 40Hz component were
studied. This is also the principle parameter set used in our verification and testing
of the PDE simulation code MFM [7].

5.2 Parameter set I

5.2.1 Origin

The first parameter set we are going to apply our ideas to are taken from Bojak

& Liley [4] where they are used to investigate the generation of oscillations with a

40Hz component. This parameter set was taken from the set of 73,454 physiologically

admissible parameter sets that were determined by Bojak & Liley [3], and is displayed

in Table 5.2.

In [4], Bojak & Liley perform some SHE and spatially homogeneous periodic or-

bit continuations in two different parameters: the inhibitory postsynaptic potential

amplitudes (simultaneously) Γie,ii → r1Γie,ii, and the local inhibitory-inhibitory con-

nectivity Nβ
ii → r2N

β
ii . Their results are reproduced in Figure 5.3. And we make note

of the idea of a spatially homogeneous periodic orbit, or SHPO.

From there they move on to show how nonzero wave modes will undergo Hopf
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ii . Reproduced with permission from [4].
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Figure 5.5: Temporal power spectra, normalized to peak power. Left : Predictions
from linear theory as r1 is varied through the principal bifurcation. Right : Temporal
power spectra observed from simulation before and after instability, very different
from the prediction of linear theory. Reproduced with permission from [4].

bifurcation before spatially homogeneous modes (i.e., dynamic Turing bifurcation),

as shown in Figure 5.4. They do not perform any analysis of this bifurcation, but

instead perform some numerical simulations of Eq. (5.1.4) just beyond the bifurcation

point to show the emergence of gamma-band (∼40Hz) hot spots in a sharp transition

just beyond the bifurcation point. The hot spots occur spontaneously from random

initial conditions, with different hot spots shown to exhibit phase correlations among

each other.

While the critical frequency at bifurcation suggests periodic solutions with alpha

frequency (∼13 Hz), the branching solutions seem to be subcritical and the increase

through bifurcation produces a discontinuous jump to large amplitude oscillations

with a 40 Hz frequency. This is shown by computing power spectra of the numerical

simulations before and after the bifurcation as in Figure 5.5.

5.2.2 Building on previous work

Now comes the time to build on the analysis performed in [4]. First we verify that

our numerics are indeed consistent with those that were used in the paper. We check

three things:

1. Our implementation of the spatially homogeneous dynamics in Auto-07p is con-

sistent, by comparing continuation of equilibria and periodic solutions in r2 as

in the right panel of Figure 5.3.

2. Our PETSc code for the discretized PDE system is consistent, by
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(a) comparing its spatially homogeneous behaviour to the right panel of Figure

5.3,

(b) confirming that we see a dynamic Turing bifurcation for r2 . 1.047, and

(c) confirming that our temporal power spectrum of simulation behaves as in

the right panel of Figure 5.5.

3. Our Maple implementation for dispersion relation calculations is consistent, by

comparing our least damped mode to the right panel in Figure 5.4.

All three turn out to give the expected results, which we elaborate on in the next

subsections and Section B.4.

Results from discretized PDE viewpoint

Our PETSc simulation code is capable of performing parameter continuation of SHE

and SHPO. Thus, it can reproduce the equilibrium curve and the top of the SHPO

curve in the right panel of Figure 5.3. Numerically computing the eigenvalues during

the continuation of the SHE reveals a dynamic Turing bifurcation occurring for some

r2 ∈ [1.044, 1.045]. The eigenvector found to cause this bifurcation has a structure

as displayed in Figure 5.6. It is important to recall that for the square periodic

domain, we expect to see the bifurcating modes appear in quadruplets. To observe

this numerically, with the Krylov-Schur iterative algorithm, the tolerance must be set

finer than usual defaults. This is reflected in the relevant runfile for the thesis’ code

repository.

Perturbing by the real part of the eigenvector in Figure 5.6, we find that the

perturbations do in fact grow. After some time the formation of gamma frequency

oscillations and hot spots do emerge as described in [4]. After a short amount of time,

we observe the hotspot form and produce propagating waves radially outward. After

a longer amount of time, the hotspots become spiral waves, and eventually the whole

domain becomes engulfed in spiral-like waves. Temporal snapshots of these cases are

shown in Figure 5.7, with attention drawn to the black boxes.

Next, we compute the frequency power spectrum of this simulation in one second

intervals around three of the temporal evolution events previously described. For the

simulation, we generate a time series by averaging the values from a small region (the

black squares in Figure 5.7). The simulation is run over 4 seconds, and sampled at

1000 Hz. For the power spectra, we compute the discrete Fourier transform (DFT) of
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Figure 5.6: Spatial structure of one of the modes causing the left dynamic Turing
bifurcation for PS1. The top row is the real part, and bottom imaginary, for six
components of the eigenvector computed just beyond the dynamic Turing bifurcation
with r2 = 1.045. Computed numerically with Krylov-Schur iteration, the algorithm
does not produce the exact modes used in analysis, rather an undetermined linear
combination. The algorithm does return 3 additional complex conjugate pairs of
vectors, with eigenvalues that match to 7 digits. These eigenvalues are

λ ≈ 4.934091× 10−5 ± (8.34590298× 10−2)i [1/ms].

the discrete time series in the intervals i) [0, 1], ii) [1.75, 2.75], iii) [2.75, 3.75] (seconds)

with the resulting power spectrum displayed in Figure 5.8.

Finally, we look at the upper branch of the SHPO. Even though we have precise

information about the period of oscillation along the branch, seen in Figure 5.9, we

compute a power spectrum in the same way as was done in the general simulation. The

time series and spectrum are shown in Figure 5.10. Comparing this to the separate

spectra of the simulation, we see slight difference in the first region when the hot spots

are forming, and no significant difference as the simulation progresses.

Perturbation by (one of) the principal bifurcating modes has the capacity to pro-

duce the large amplitude gamma hot spots that were observed from random initial

conditions in Bojak & Liley [4]. From this we can conclude that the square symmetric

bifurcating modes of the principal bifurcation should all be subcritical. To check this,

we perform the normal form computation based on bifurcation from the dispersion

relation.



5.2. Parameter set I 108

1:
t = 0ms t = 4ms t = 8ms t = 12ms t = 16ms t = 20ms t = 24ms t = 28ms

2:
t = 2250ms t = 2254ms t = 2258ms t = 2262ms t = 2266ms t = 2270ms t = 2274ms t = 2278ms

3:
t = 3250ms t = 3254ms t = 3258ms t = 3262ms t = 3266ms t = 3270ms t = 3274ms t = 3278ms

Figure 5.7: Perturbing with the unstable eigenmode from Figure 5.6, the time evo-
lution of the solution (he pictured) goes through stages. 1 : After some time of slowly
increasing amplitude, localized hotspots of large amplitude emerge in the upper left
corner. Time t is measured relative to this first frame. 2 : The radially propagating
waves give way to spiral waves. 3 : The waves throughout the domain break up even
more, giving even finer spatial structure.
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Figure 5.8: Power spectra for 3 time intervals related to the snapshots shown in
Figure 5.7. The time series are generated by averaging over the black box regions in
Figure 5.7, at 1 ms intervals. The power spectra are obtained by DFT of the discrete
time series, as described in the text.
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Figure 5.10: Power spectrum for spatially homogeneous periodic solution at r2 =
1.045. The time series was generated by sampling the solution at 1 ms intervals (1000
Hz) for 1 s. The power spectrum is obtained by DFT of the discrete time series, as
described in the text.
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Figure 5.11: Least stable branch of the dispersion relation for SHE of PS1 at r2 =
1.04453. The lower left frame is the branch in the complex plane. The top gives the
k dependence of Reλ, and the right gives the k dependence of Imλ.

Results from dispersion relation viewpoint

We apply our continuation of continuous dispersion relations (described in Section

3.4.5) to determine the value of the principal dynamic Turing bifurcation to be r2 ≈
1.04453. This was performed in a Maple code, which can be used to refine this value

to arbitrary precision. The least damped branch of the continuous dispersion relation

is depicted in Figure 5.11, consistent with Figure 5.4.

From the determination of the precise location of the principal bifurcation point,

the normal form coefficients, and thus the branching diagrams, can be computed using

the method described in Section 5.1.2, and detailed in Appendix B.1. This is done

for both ends, with results summarized in Table 5.3.

Putting together the information from both the PDE code and the normal form

analysis allows us to obtain a more complete picture of r2 dependent dynamics for

parameter set PS1. This picture is presented in Figure 5.13, where the branching from

the principal bifurcations is added in a qualitative rather than quantitative manner.
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Figure 5.12: Least stable branch of the dispersion relation for SHE of PS1 at r2 =
2.84769.

Parameter Left Value Right Value

r2 1.04453 2.84769

Criticals

kc 0.679987 cm−1 2.56537 cm−1

ωc 0.0833676 ms−1 0.348455 ms−1

Coefficients

a1 (0.34181− 1.55754i)× 10−3 (−3.20099 + 2.93132i)× 10−5

a2 (1.11877− 2.76280i)× 10−3 (−3.20992 + 2.99307i)× 10−5

a3 (1.55738− 4.40715i)× 10−3 (−6.46250 + 5.92864i)× 10−5

a4 (0.82736− 3.27429i)× 10−3 (−6.55619 + 5.89367i)× 10−5

Region: 1 21(-)

Table 5.3: Characterization of the dynamic Turing bifurcations with D4 n T 2 sym-
metry. The normal form coefficients result in branching diagram 1 at the left point,
and branching diagram 21(-) at the right point.
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Figure 5.13: SHE and homogeneous PO in the r1 continuation of the parameter set
PS1. The left zoom shows that the principle dynamic Turing bifurcation produces
only subcritical D4 n T2 symmetric wave modes similar to the nearby subcritical ho-
mogeneous Hopf. The right zoom shows all D4nT 2 modes branching supercriticaly, in
contrast to the nearby homogeneous Homogeneous. Note that the branching diagrams
from the principal bifurcations are qualitative and do not reflect the actual amplitudes
of D4 n T 2 wave modes.

The unstable subcritical nature of the branches at the left bifurcation point have

made our attempts at picking up all of the space dependent periodic solutions fail.

We had originally assumed that the right bifurcation point would have the same

unstable subcritical branching structure, as we could not yet (historically) compute

the normal form coefficients for these bifurcations. With that in mind, we moved to a

new parameter set, which contains a supercritical Hopf bifurcation in its homogeneous

dynamics. Assuming that a nearby D4 n T 2 Hopf bifurcation would have similar

behaviour, we moved to parameter set PS2, looking first at the problem numerically.

5.3 Parameter set II

5.3.1 Origin

This parameter set (PS2) was part of the set of the 73,454 parameter sets discussed

in [3]. While aside from satisfying the physiological constraints that the original

paper required, we are unaware of any further analysis performed on this particular

set. In general, recall that the database of 73,454 physiological parameter sets was

analyzed by Frascoli et al. [6] in an attempt to determine statistics of the nonlinear
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Parameter Value Units Parameter Value Units

hre -71.3473 mV Nα
ee 4129.3102 –

hri -78.2128 mV Nα
ei 1884.2588 –

τe 112.891 ms Nβ
ee 4204.8457 –

τi 116.4642 ms Nβ
ei 2867.3399 –

heqee 6.0551 mV Nβ
ie 987.9069 –

heqei -16.8395 mV Nβ
ii 210.0476 –

heqie -88.0656 mV v 251.4 cm s−1

heqii -88.6666 mV 1/Λ 3.6643 cm

Γee 0.3917 mV Smax
e 69.4 s−1

Γei 1.4019 mV Smax
i 320.9 s−1

Γie 1.4707 mV µe -40.9723 mV

Γii 1.4264 mV µi -42.5412 mV

γee 551.6 s−1 σe 4.2276 mV

γei 912.9 s−1 σi 2.1897 mV

γie 258.5 s−1 pee 1–10 s−1

γii 96.7 s−1 pei 4.3634 s−1

Table 5.4: Parameter set PS2 for Liley’s model. This parameter set was taken
originally from a set of 73,454 physiologically admissible parameter sets that were
determined by Bojak & Liley [3].

behaviours. For this thesis, this particular parameter set was chosen because the

homogeneous dynamics exhibit a supercritical Hopf bifurcation. In contrast to the

previous parameter set, we thought it may be easier to show branching solutions that

are supercritical and potentially stable.

The numerical results in this section were originally reported (in part) in van Veen

& Green [? ], and the parameters are given in Table 5.4.

5.3.2 Building on previous work

As already mentioned, the only previous work done on this particular parameter set

was in determining its relevance to physiology and as a piece of a larger statistical

analysis. This leaves us quite open ended in how we will proceed. The first thing we

do is a continuation of SHE in the parameter pee, to give an idea of the state space in

response to external excitatory forcing. This continuation is displayed in Figure 5.14.
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Figure 5.14: The spatially homogeneous dynamics of PS2, continuation in the ex-
ternal excitatory input to excitatory synapses parameter, pee. Increasing pee, this
parameter set undergoes a pair of fold bifurcations before a supercritical Hopf bifur-
cation to alpha frequency oscillations.

Normal form analysis

Turning our view to the spatial dependence and dispersion relation, we show that the

dynamic Turing bifurcation occurs before the homogeneous Hopf bifurcation, char-

acterized by the entries in Table 5.5, with dispersion relation shown in Figure 5.15.

The normal form coefficients determine that we have branching diagram 21(-), the

same as the right point in PS1. This branching diagram has all modes bifurcating

supercritically, with alternating and travelling rolls being stable.

With this in mind, we turn to simulation, trying to find the stable branches that

emerge here. We are not able to successfully pick up either the travelling rolls or

the alternating rolls to the right of the bifurcation point. Spatially inhomogeneous

perturbations about the SHE at pee = 4.95 (for example) move very quickly away

from the upper SHE, and move towards the lower (stable) SHE depicted in Figure

5.14. The homogeneous dynamics seem to overpower the spatially inhomogeneous

dynamics at this parameter value.

However, perhaps if we fix the boundaries of our square domain to the SHE values

of the upper branch, we can at least compute and observe the standing solutions.

This is exactly the approach we took in van Veen & Green [? ], and it allows us to

compute a supercritical branch of standing square waves.
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Parameter Value

pcee 4.94304

Criticals

kc 0.363867

ωc 0.0633570

Coefficients

a1 −(3.65403 + 1.92732i)× 10−4

a2 −(1.62484 + 0.93401i)× 10−3

a3 −(2.00397 + 1.20946i)× 10−3

a4 −(7.71473 + 4.34533i)× 10−4

Region: 21(-)

Table 5.5: Characterization of the dynamic Turing bifurcation restricted to D4 n T 2

symmetry for PS2. The result is region 21(-) from Figure 3.6 where all five periodic
modes bifurcate supercritically, with travelling and alternating rolls being stable.
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Figure 5.15: Continuous dispersion relation for SHE of PS2 at the dynamic Turing
bifurcation with pee = 4.94304.
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Figure 5.16: PS2 Neutral stability curves for varying length of square domain L. The
smallest wave vector that satisfies both periodic and fixed boundary conditions is the
(1, 1) mode, so we choose L to be a size such that this mode will become unstable
first. The black dot represents a domain size and pee value where only the (1, 1) mode
should be unstable.

Standing square computation

Since we are unable to produce good enough guesses to find the periodic solutions on

the square periodic domain, we move now to fixed boundary conditions. For a given

pee value in the neighbourhood of the dynamic Turing bifurcation, we fix the field to

the SHE values of the upper branch. This approach has been used by Ashwin et al.

[1], and here it ensures that the system can not move towards the lower stable SHE

branch as we destabilize.

To determine an appropriate system size for this solution, we introduce yet another

way of looking at the system: neutral stability curves. Neutral stability curves are

obtained by computing families of solutions to

det
(
iωI − ∂̂UF ((2πn/L, 2πm/L)

T )
)
= 0. (5.3.1)

They represent the neutrally stable eigenvalues for waves with (n,m) wave numbers.

They can be computed by solving Eq. (5.3.1) for particular pee, L, and (n,m), and

then extended using continuation methods. Neutral stability curves are shown in

Figure 5.16.

If we take L = 23 cm, then we do not see the principal bifurcation at pee ≈ 4.94304,

because the discretization of the dispersion relation does not allow kc ≈ 0.363867.

Instead, the first bifurcation we see corresponds to the (1, 1) wave mode on this

domain. This can be visualized by considering a vertical line in Figure 5.16 with
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Figure 5.17: Detailed zoom of bifurcation diagram for PS2 with L = 23 cm. We
compute a branch of standing square solutions emanating from the first bifurcation
point. The red squares show show our computed SS solutions, with the red line an
interpolant. The secondary bifurcations are noted by black circles, corresponding to
the neutral stability curves in Figure 5.16.

L = 23 cm. We have chosen this length because the (1, 1) wave mode satisfies the

periodic boundary conditions as well.

The Standing square modes are computed using the algorithm mentioned in Sec-

tion 5.1.4, and then continued in the pee parameter. The resulting branch is displayed

in Figure 5.17, with snapshots of a particular solution at pee = 4.95 displayed in

Figure 5.18. The branch is seen to bifurcate supercritically, the same as the SHPO

branch, and all of the predicted D4nT 2 symmetric wave modes of the dynamic Turing

bifurcation.
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6.1 Summary

The purpose of this thesis was to try to gain some insight into spatiotemporal solutions

of neural field models in two dimensional space. While the initial hopes and dreams

of the author were grand – to characterize transitions from spatially homogeneous

equilibria to wave solutions and eventually to chaotic solutions – the end result became

scaled back as we realized that the primary transitions were not understood so well.

This thesis enforced a specific symmetry, D4 n T 2, on the bifurcating solutions,

and developed methods for mapping various neural field models undergoing this bi-

furcation to a previously studied normal form. The restriction to this particular sym-

metry was justified on the basis that it still permits the T 2 (translational) symmetric

components of the Euclidean symmetry E(2) in two dimensional space, allowing for

travelling wave solutions. An additional feature, not discussed in detail in the text, is

that any solutions obtained in the D4nT 2 space can be transformed by the remaining

E(2) generator (i.e., O(2) rotations) and obtain new solutions along a group orbit.

121
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In the case of a general scalar neural field model that incorporates spatiotemporal

axonal delays, symbolic expressions for the normal form coefficients were derived.

This is a novel result for delayed neural fields in two dimensional space. While similar

work has been done for the dynamic Turing bifurcation in one dimension (with O(2)

symmetry [4]), and also for Turing bifurcations in two dimensions (with the Dn n T 2

symmetries [? ]), analysis of the two dimensional dynamic Turing bifurcation has not

been performed on neural fields with delays before this thesis. With our symbolic

expressions for normal form coefficients, a specific instance of the general model was

then employed to test the results of this analysis, using preexisting simulation software.

For the case of a coupled system of neural field models, which also introduces

dynamics for soma membrane potentials, the method used for the scalar equation is

extended, but can only be carried out numerically. We know of no published work

closer to this than that which was presented, in this thesis, on the scalar model.

Simulation software for a specific multi-population model (Liley’s model) was writ-

ten to be of general use in its simulation, and was turned towards the neighbourhood

of the D4 n T 2 symmetric Hopf bifurcation. Standing square waves were numerically

computed and continued away from the bifurcation, in the supercritical direction as

predicted by the normal form analysis. The behaviour of the numerical algorithms

during the SS branch computation brings up some questions regarding Liley’s model.

6.2 Discussion of results

To further zoom in on where this research falls, we provide a deeper comparison of

the models and results in this thesis to those in the literature, and discuss how our

approach expands on our understanding of, or extends to, other models.

The form of the integral operator that is used in the models of this thesis

η ∗K ⊗ S◦

generalizes the description of a large number of previously studied neural field models,

allowing them to be written in a single convenient notation. While we can not take

credit for this simple notation, what we can do is claim that our approach and results

can be easily used in homogeneous and isotropic neural field models that were not

studied in this thesis.
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6.2.1 Comparisons and extensions

Spike frequency adaptation

The models studied in this thesis are missing a piece that is very much present in

real biological neurons: metabolism. Through an abundance of metabolic processes,

neurons are unable to continuously fire at a high rate, which is referred to as spike

frequency adaptation (SFA). While missing in our analysis, a simple extension that

can model this effect can be introduced. We can consider a neural field with a local

negative feedback component, v

u = η ∗ (K ⊗ S ◦ u− av) ,

v = ηSF ∗KSF ⊗ SSF ◦ u,
(6.2.1)

with a a coupling coefficient, and ηSF , KSF , and SSF having (potentially) different

forms from their synaptic counterparts.

Note that this extension is known to produce Hopf bifurcations as the principal

instability more readily than the scalar neural field in this thesis. This such modifi-

cation was studied in one dimensional space with space dependent delays by Venkov

et al. [4] which, recall, applies the method that we have extended to two dimensional

space. The analysis in [4] generalized in a very straightforward manner to SFA, and

we expect the same for our D4 n T 2 normal form results.

SFA has also been studied in two dimensional neural field models without delays.

Examples of this include the study of spiral waves by Laing [? ], and square symmetric

waveforms in the more recent book chapter by Ermentrout et al. [? ]. While the

analysis in [? ] is for square symmetric waves, we note that a specific form for

the synapse was used in their analysis (similar to the single exponential synapse

of Eq. (2.3.3)), there are no symbolic expressions for the normal form coefficients,

and again we note that the model does not incorporate spatiotemporal delays. Our

analysis generalizes this to some extent by allowing for an arbitrary synapse and

including spatiotemporal delay.

To fully generalize the results by Ermentrout et al. [? ], we would have to extend

to incorporate the SFA as in Eq. (6.2.1). This seems to be as straightforward in two

dimensional space as in the one dimension. We did not perform this, however, because

our interests were more directed at multiple populations.

A specific type of SFA, called synaptic depression has recently been added to

Liley’s model by Bojak et al. [? ]. It adds a slowly varying temporal component to

the the PSP peak amplitudes Γjk. Note that this has been included in this subsection
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even though SFA deals with frequency modulation. The reason for this is because in

Liley’s model the PSP peak amplitudes always appear in product with the maximum

firing rates Smax
k (i.e., minimum frequency), so regardless of which one is actually

changing, they can be handled in an equivalent way. The model in [? ] can be

written as

hk(x, t) = ηk ∗
(
hrk +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrk
∣∣ Ijk(x, t)

)
,

Ijk(x, t) = ηjk ∗
(
Kjk ⊗

(
Cj(x, t)Sj ◦ hj(x, t)

)
+ pjk

)
,

Cj(x, t) = ηSFA
j ∗KSFA

j ⊗ Sj ◦ hj(x, t),

(6.2.2)

noting that [? ] treats the newly introduced variables Cj as having purely local

influence, similar to the inhibitory population in the PDE version of Liley’s model.

The results of Bojak et al. were based on numerical simulation on a square periodic

domain, looking at space dependent burst suppression. The methods of this thesis are

thus particularly suited to comparison with the results of the modified model. As [?

] is a very recent article, this has not been performed yet.

Multiple populations

We have already considered the extension to multiple populations in a specific sense

within this thesis. Extending the analysis from the scalar field to Liley’s model in-

volved both the introduction of a second population and additional dynamics for the

soma membrane potentials.

The approach to extending the scalar model to Liley’s model is quite general,

however in this thesis it was presented more from the viewpoint of practicality. That

is, we wanted to study the primary instabilities in Liley’s model, so the notation of

our numerical approach (the short form of Eq. (B.6) for example) was developed with

the sole purpose of being practical with the analysis of Liley’s model.

Multi-population neural field models have existed all the way back to Wilson &

Cowan in the 1970s [5, 6], whose model (generalized to space in Ermentrout & Cowan

[1]) can be expressed as:

ue = ηe ∗ Se ◦ (Kee ⊗ ue +Kie ⊗ ui) ,

ui = ηi ∗ Si ◦ (Kei ⊗ ue +Kii ⊗ ui) ,
(6.2.3)

with single exponential synapses and no spatiotemporal delay. One particular thing

to note about Eq. (6.2.3) is the order of the ◦ and ⊗ operators. This is the reverse of
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the order for models studied in this thesis, but it is easily explained. The difference

can be traced to how the population averages are interpreted. With the viewpoint of

“sum connections, and then convert to average firing rate,” then the η ∗S ◦K⊗ order

will come up. With the viewpoint of “convert to average firing rate, and then sum

connections,” then the η ∗K ⊗ S◦ ordering will be present. Neither of these seem to

be the definitive model, and it seems that qualitative behaviour of both variants have

a similar repertoire. In fact, as the nonlinear analysis presented in this thesis relies

on what are essentially Taylor expansions, the analysis could be easily converted to

this other view and the qualitative behaviours of both types could be compared. In

the interest of time, this was not conducted.

One particularly relevant paper (introduced to us only after we had performed all

of our computations) is that of Tass [? ]. Tass performs an analysis of Eq. (6.2.3) with

single exponential time scales and no spatiotemporal delays. As the synapse is spec-

ified, he is able to determine a symbolic expression for the frequency at bifurcation.

He goes through the procedure of computing order parameter equations for various

cases, one of which corresponding to square symmetric modes. The resulting equa-

tions (which includes symbolic expressions for all coefficients) seem to be equivalent

to the D4 n T 2 normal form of Silber & Knobloch, up to some scaling.

Our normal form analysis extends Tass’ work in the following three ways: i) It

incorporates the (biologically relevant) axonal delays into the models, ii) It generalizes

the synapses such that more biologically realistic models can be used (i.e., nonzero

rise time), and iii) It adds a model for soma membrane dynamics to the mix, still

allowing for the square modes to be analyzed (although, numerically).

Perhaps the most relevant comparison between Tass’ work and this thesis can be

stated as follows: Tass determines that the only modes that are possibly stable in the

square symmetric reduction of the neural field in his work are the TR and AR states.

Even though we are unable to make such a strong statement (our symbolic expressions

for the normal form coefficients are quite difficult to work with analytically) we have

only observed stability for the TR and AR states. The three other modes that are

guaranteed to branch by the Equivariant Hopf Theorem appear to always be stable

in both our scalar field with delay and Liley’s model. It may be possible to show this

result from our symbolic normal form coefficients, however we were unable to achieve

this.
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6.3 Conclusions

Scalar field

For scalar neural fields with transmission delay undergoing a pair of dynamic Tur-

ing bifurcations, the emergence of this pair can be visualized through the sigmoid

steepness parameter. For low enough steepness, there will be no such bifurcation, but

increasing through a critical value will create a pair of (reflected) Hopf bifurcations

originating in some region of the normal form coefficient space. In our investiga-

tions, this has always been regions 21/21(-), but may be different for different model

specifics. These regions have all solutions bifurcating supercritically, with travelling

rolls and standing squares (or alternating rolls) being stable. It is likely that the

branches of periodic solutions connect the Hopf bifurcations in this regime.

Increasing sigmoid steepness eventually moves theD4nT 2 normal form coefficients

towards regions 1/1(-). These regions have all 5 guaranteed solutions bifurcating sub-

critically and being unstable. The path taken in approaching this region is dependent

largely on the underlying model, i.e., the specifics of the spatiotemporal connectivity

and the synapse, so we may not comment on which regions will be traversed.

As the steepness approaches infinity (a Heaviside firing function) the normal form

coefficients also approach infinity in magnitude in region 1, meaning that the bifur-

cating wave modes will be subcritical and their amplitudes will go to zero. With a

Heaviside firing rate, the condition for a Hopf bifurcation can not possibly be met,

which can be thought of as consistent with a zero amplitude branching structure.

Liley’s model

From the analysis performed, we can only conclude that the temporal dynamics of the

spatially homogeneous modes tell us a lot about the temporal power spectrum in the

regions of instability. This is demonstrated by comparing the frequencies of general

simulation to the frequency of the spatially homogeneous oscillations as in Figures 5.8

and 5.10. This is likely due to the relatively weak spatial coupling that is present in

this particular model.

For Liley’s model, considering the spatial dependence in the analysis has been most

successful from the point of view of determining the precise location and branching of

the principal bifurcation. This provides a means for predicting when small perturba-

tions will grow to large amplitude waves in the neighbourhood of the bifurcation, i.e.,

we now have predictive power over this phenomena. A key result however, displayed
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in Figure 5.13, shows us that the D4 n T 2 symmetric Hopf modes do not always

branch in the same way (criticality and stability) as the nearby, and related, spatially

homogeneous oscillations.

We suspect that advancing the numerics now to pick up known branching solu-

tions and continue them will shed light on further bifurcations leading to the more

complicated dynamical regimes like the hot spots.

General

The above were concerned strictly with the results as they pertain to the models,

without any mention of reality. To be explicit, this thesis contained no attempt to

directly match experimental data. However, we can relate the results in a qualitative

sense to experimental observations. Muller et al. observe propagating activity waves

by voltage sensitive dye (VSD) imaging the cortex of awake monkey [? ]. The obser-

vations provide the first concrete evidence of propagating activity in the cortex of an

awake, conscious being. The travelling wave mode that is observed resembles that of

a travelling roll, as with cortex waves in past work on anaesthetized subjects (Muller

& Destexhe [3]).

The results of Muller et al. are consistent with our calculations showing that the

TR modes appear to be one of the two square symmetric modes that can be stable.

We suspect that in the absence of the square periodic symmetry, the AR state may

always be unstable as well, leaving us with stable TR solutions for some parameter

values. This is not to say that the TR solutions will be the only possible solutions,

rather that from the analysis of this thesis, and the recent experimental results, they

should be the primary target for expanding on our results.

6.4 Further work

The previous sections alluded to further work that could be conducted to gain a

better understanding of how the results of this thesis exist among existing results.

This section now presents the directions that will advance results.

Tiling symmetries

Since dynamic Turing bifurcation plays an important role in neural systems with long

range excitatory connections and time delays, it should be of principal importance
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to understand its behaviour in a more varied sense. Restrictions to the other two

dimensional tiling symmetries will add to the picture presented here. The stability of

the square symmetric modes in this thesis refers only to stability in the square periodic

lattice. It will be very beneficial to compare results among the tiling symmetries, to

see if there is a particular mode that consistently dominates the others. My prediction:

Travelling rolls are king.

Numerical methods

With the now known branching behaviour, numerics can be tuned around attempting

to pick up small amplitude branching solutions and performing continuation to larger

amplitude solutions. This process is sure to reveal what methods should be used for

the general simulation of the scalar delayed field and Liley’s model.

Continuation of the branch of standing square solutions using [2] posed a very

difficult problem numerically. Using the ideas presented in Section 5.1.4, we found

that the nonlinear residuals were not decreasing quadratically as we would expect for

Newton’s method. In fact, we required the use of a line search method to adjust the

length of our Newton updates, and even with this our approach would not converge

beyond a lower limit.

This presents a mystery to us, and we think the solution likely lies in one of the

possibilities:

• The convergence of the periodic orbit refinement is limited by the spatial dis-

cretization error, or

• The numerics for discretizing and time stepping the model are inadequate.

The first point can be addressed simply by adjusting the spatial discretization and

comparing convergence results between them. The second point would require a little

more work, perhaps writing a pseudospectral code to apply in the neighbourhood of

the bifurcations of interest.

Symmetry breaking

Restriction to the tiling symmetries with length and time scales of the principle bifur-

cation is just the first step. The nature of the dynamic Turing bifurcation, however,

is that there can be many (up to infinite) bifurcations with different scales in a small

region. An important question then becomes: How do these bifurcations at different
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scales interact among each other? Especially, since we have enforced a particular

symmetry on the principal bifurcation.

Radial and rotating waves

Simulation of Liley’s model, as demonstrated in Figure 5.7, shows the formation of

localized sources of activity which, due to the periodic boundary conditions, end

up interacting with themselves and creating spiral waves. With periodic boundaries

removed, it is plausible that the localized sources would be radially symmetric, and

their destabilization into spiral waves could be studied from this angle. While there is

currently work on spiral waves in neural fields, the extension to multiple populations

(and Liley’s model) with spatiotemporal delay would be very interesting to see.

Inhomogeneity, Anisotropy

Of course, the cortex is not homogeneous, nor is it isotropic. That does not mean,

however, that the results of this thesis are useless. Rather, they can form the begin-

nings of more realistic analysis. We now know how to characterize the generation of

square symmetric wave modes. How does their character change when K is slightly

anisotropic? Slightly inhomogeneous? What happens when the axonal delays have

small inhomogeneities or anisotropies? We should try to figure these out!
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A.1 Calculations

A.1.1 Details of separation of scales calculation

For the separation of scales calculation, we use the integral notation of the model as

seen in Eq. (2.3.1) with the operator notation expanded. We first write the model

making explicit the dependence of u on the scaled independent variables χ = εx,

θ = εt, and τ = ε2t leading to

u(x, t, εx, εt, ε2t) =

∫ t

−∞
ds η(t− s)×

×
∫ ∞

−∞

∫ ∞

−∞
dx′1dx

′
2

∫ ∞

−∞
dt′ K(x− x′, s− t′)f ◦ u(x′, t′, εx′, εt′, ε2t′) (A.1)

131
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Taylor expanding (A.1) about the homogeneous equilibrium as in (4.3.6), the integral

equation becomes

u(x, t, εx, εt, ε2t) =
∞∑
i=0

γi

∫
ds η(t− s)

∫∫
dΩ′ ×

×
∫

dt′K(x− x′, s− t′)ui(x
′, t′, εx′, εt′, ε2t′), (A.2)

where here (and throughout this appendix) we omit the limits of integration for sim-

plicity, and use dΩ′ = dx′1dx
′
2.

For the integral part of (A.2), adding and subtracting each of the scaled coordi-

nates in the appropriate place allows us to write

ui(x
′, t′, εx′, εt′, ε2t′) = ui(x

′, t′, εx+ εx′ − εx, εt+ εt′ − εt, ε2t+ ε2t′ − ε2t)

= ui(x
′, t′,χ+ ε(x′ − x), θ + ε(t′ − t), τ + ε2(t′ − t)),

for each separate order of the perturbation solutions. Taylor expanding the last 3

arguments of this leads to

ui(x
′, t′, εx′, εt′, ε2t′) = ui(x

′, t′,χ, θ, τ) +

+ ε

[
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

]
ui(x

′, t′,χ, θ, τ) +

+ ε2
[
1

2

(
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

)2

+ (t′ − t)
∂

∂τ

]
ui(x

′, t′,χ, θ, τ) +

+O(ε3),

(A.3)

where ∇χ = ( ∂
∂χ1

, ∂
∂χ2

)T .

Now the integral terms of (A.2) become∫
ds η(t− s)

∫∫
dΩ′

∫
dt′K(x− x′, s− t′)ui(x

′, t′, εx′, εt′, ε2t′) =∫
ds η(t− s)

∫∫
dΩ′

∫
dt′K(x− x′, s− t′)

{
ui(x

′, t′,χ, θ, τ)+

+ ε

[
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

]
ui(x

′, t′,χ, θ, τ)+

+ ε2
[
1

2

(
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

)2

+ (t′ − t)
∂

∂τ

]
ui(x

′, t′,χ, θ, τ) +O(ε3)

}
.

(A.4)

Every order of ε can be broken down into the convolution notation using ∗ and ⊗,

and to do so requires us to use t′ − t = (s − t) + (t′ − s) to move between the time
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scales. Using this, and pulling the ε powers out of the integrals, we can continue from

(A.4)

=

∫
ds η

∫∫
dΩ′

∫
dt′Kui +

+ ε

{∫
ds η

∫∫
dΩ′

∫
dt′ (x′ − x)K · ∇χui +

+

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′K

∂ui
∂θ

+

+

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)Kui

}
+

+
ε2

2

{∫
ds η

∫∫
dΩ′

∫
dt′K ((x′ − x) · ∇χ)

2
ui +

+2

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′ (x′ − x)K · ∇χ

∂ui
∂θ

+

+2

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)K(x′ − x)K · ∇χ

∂ui
∂θ

+

+

∫
ds (s− t)2η

∫∫
dΩ′

∫
dt′K

∂2ui
∂θ2

+

+2

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′ (t′ − s)K

∂2ui
∂θ2

+

+

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)2K

∂2ui
∂θ2

+

+2

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′K

∂ui
∂τ

+

+2

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)K

∂ui
∂τ

}
+

+ O(ε3) (A.5)

noting that the arguments of η, K, and ui remain the same.

From equation (A.5) we can easily read off the convolutions after we have expanded



Appendix A. Resources for scalar equation 134

terms involving (x′ − x) · ∇χ, resulting in

= η ∗K ⊗ ui+

+ ε

{
−η ∗

(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
− (tη ∗K + η ∗ tK)⊗ ∂

∂θ

}
ui +

+ ε2
{
1

2
η ∗
(
x21K ⊗ ∂2

∂χ2
1

+ x22K ⊗ ∂2

∂χ2
2

)
+ η ∗ x1x2K ⊗ ∂

∂χ1

∂

∂χ2

+ tη ∗
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+ η ∗ t
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+
1

2

(
t2η ∗K + 2tη ∗ tK + η ∗ t2K

)
⊗ ∂2

∂θ2

+ (tη ∗K + η ∗ tK)⊗ ∂

∂τ

}
ui +

+O(ε)3.

(A.6)

Here is where it makes sense to define the operators Mi according to equation (4.3.9).

Now, take perturbations of u about u0 according to equation (4.3.7), and the result

obtained in equation (A.6), and insert them into equation (A.2) to obtain

εu1 + ε2u2 ++ε3u3 +O(ε4) = η ∗K ⊗
∞∑
i=0

γiui

= εγ1M0u1 + ε2
[
M0(γ1u2 + γ2u

2
1) + γ1M1u1

]
+

+ ε3
[
M0(γ1u3 + 2γ2u1u2 + γ3u

3
1)+

+M1(γ1u2 + γ2u
2
1) + γ1M2u1

]
+

+O(ε4).

It is possible to define an unfolding parameter δ according to γ1 = γc + ε2δ, so

that we can investigate dynamics in the neighbourhood of the bifurcation. Doing so

brings us to the final stage, where we can pull out equations for each order of ε

u1 = γcM0u1

u2 = γcM0u2 + γ2M0u
2
1 + γcM1u1,

u3 = γcM0u3 +M0

(
2γ2u1u2 + γ3u

3
1 + δu1

)
+M1

(
γcu2 + γ2u

2
1

)
+ γcM2u1,

(A.7)

which can be rearranged to equation (4.3.8).
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A.1.2 Details of Fredholm alternative inner products

This appendix section details the calculation of the inner products 〈φ1, gn〉. Note that
we only show the results of inner products using φ1 since results with the other basis

functions can be obtained by the same methods.

The first result is as easy as they come. We chose our basis functions to be

orthogonal with respect to the inner product (4.3.11), so that we have

〈φ1, u1〉 =

〈
φ1,

4∑
i=1

(
Aiφi + Āiφ̄i

)〉
= A1. (A.8)

Next, we have inner products with u21. These are handled easily as well

〈φ1, u
2
1〉 =

〈
φ1,

(
4∑

i=1

(
Aiφi + Āiφ̄i

))2〉
= 0.

Equality here again comes down to orthogonality relationships of cosine and sine

functions with respect to the defined inner product. The surviving terms in the

expansion of the summation are all orthogonal to the φi basis functions. These two

results are applied in the computation of 〈φ1, g2〉 in equation (4.3.13).

Now with the simple second order restriction computed, we move to the involved

computation of the third order restriction 〈φ1, g3〉. We start with

〈φ1, g3〉 = 2γ2η̃K̂〈φ1, u1u2〉+ γ3η̃K̂〈φ1, u
3
1〉+ δη̃K̂〈φ1, u1〉+

+ γc

(
− ∂

∂ik1

∂

∂χ1

+
∂

∂iω

∂

∂θ

)
η̃K̂〈φ1, u2〉+

+ γc

[
1

2

(
− ∂

∂ik1

∂

∂χ1

+
∂

∂iω

∂

∂θ

)2

+
∂

∂iω

∂

∂τ

]
η̃K̂〈φ1, u1〉

= 0,

(A.9)

and can quickly apply equation (A.8) to two of the terms. With the help of Maple1

we can also compute

〈φ1, u
3
1〉 = 3A1

[
|A1|2 + 2

(
|A2|2 + |A3|2 + |A4|2

) ]
+ 6Ā2A3A4,

and for the terms that include u2, we must first calculate that. It is not possible

to calculate u2 directly, but one may assume that it will be a quadratic form of the

1Maple 18. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
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complex exponential terms used in the lower order solution

u2 =
∑

l,m,n={0,±1,±2}

Blmne
i(lωct+mkcx1+nkcx2). (A.10)

Inserting this into the second equation in (A.7) permits us to pull out all values of

Blmn except those for m = 0; l, n = ±1 and n = 0; l,m = ±1 because those lie in the

nullspace of L. Aided again by Maple, we can compute 117 of the 125 components of

Blmn, most of them being 0, by using properties of the Laplace and the Fourier-Laplace

tranform. The results are summarized in Table A.1.

Now that we have computed u2, it is straightworward to determine the remaining

inner products

〈φ1, u1u2〉 =γ2A1

[
(2C000 + C220)|A1|2 + 2(C000 + C200 + C020)|A2|2

+ 2(C211 + C011 + C000)|A3|2 + 2(C000 + C011 + C211)|A4|2
]

+ 2(C200 + 2C011)Ā2A3A4,

where symmetry properties in the indices of Clmn have been used to combine terms,

and

〈φ1, u2〉 = B110. (A.11)

The unknown B110 is actually a function of ξ1, ξ2, ξ3, ξ4, and τ .

Inserting all that is needed into equation (A.9), we obtain the equation

0 = a0A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

) ]
+

+ a4Ā2A3A4 + a5
∂2A1

∂ξ21
+
∂A1

∂τ
+Dγc

(
− ∂

∂ik1

∂

∂χ1

+
∂

∂iω

∂

∂θ

)
η̃K̂B110,

with the ai coefficients and D as given in equation (4.3.19). Applying the chain rule

for the derivatives acting on B110, we can obtain

0 = a0A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

) ]
+

+ a4Ā2A3A4 + a5
∂2A1

∂ξ21
+
∂A1

∂τ
+
vg
γc

(
−2

∂

∂ξ2
+

∂

∂ξ3
− ∂

∂ξ4

)
B110.

Since B110 is an unknown function, we want to eliminate it. If we average the equation

over the ξ1, ξ2, and ξ3 variables. That is, even though B110 depends on ξ1, ξ2, ξ3, and

ξ4, averages of the form 〈〈〈∂B110

∂ξj
〉2〉3〉4 (with the averages defined as in equation (4.3.18)

for instance) will be independent of ξ2, ξ3, and ξ4, leaving just just τ and ξ1 as the

independent variables.

The result is Eq. (4.3.14). If this method is repeated for φ2, φ3, and φ4, the inner
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l m n Blmn/(γ2Clmn)

-2 -2 0 Ā1
2

-2 -1 -1 2Ā1Ā3

-2 -1 1 2Ā1Ā4

-2 0 -2 Ā3
2

-2 0 0 2(Ā1Ā2 + Ā3Ā4)

-2 0 2 Ā4
2

-2 1 -1 2Ā2Ā3

-2 1 1 2Ā2Ā4

-2 2 0 Ā2
2

l m n Blmn/(γ2Clmn)

2 -2 0 A2
2

2 -1 -1 2A2A4

2 -1 1 2A2A3

2 0 -2 A2
4

2 0 0 2(A1A2 +A3A4)

2 0 2 A2
3

2 1 -1 2A1A4

2 1 1 2A1A3

2 2 0 A2
1

l m n Blmn/(γ2Clmn)

0 -2 0 2Ā1Ā2

0 -1 -1 2(Ā1A4 +A2Ā3)

0 -1 1 2(Ā1A3 +A2Ā4)

0 0 -2 2Ā3A4

0 0 0 2(|A1|2 + |A2|2 + |A3|2 + |A4|2)
0 0 2 2A3Ā4

0 1 -1 2(Ā2A4 +A1Ā3)

0 1 1 2(Ā2A3 +A1Ā4)

0 2 0 2A1Ā2

l m n Blmn/(γ2Clmn)

-1 -1 0 undetermined

-1 0 -1 undetermined

-1 0 1 undetermined

-1 1 0 undetermined

l m n Blmn/(γ2Clmn)

1 -1 0 undetermined

1 0 -1 undetermined

1 0 1 undetermined

1 1 0 undetermined

Table A.1: Nontrivial quadratic coefficients Blmn, using Clmn from equation (4.3.20).

products will differ, but the final results are Eqs. (4.3.15)-(4.3.17).

A.2 Initialization files for nfSimulator

The initialization files used for simulation of the travelling and alternating rolls solu-

tions in Figure 4.9 were performed with nfSimulator version 2.3.4. The initialization

files for them are provided in the thesis repository

https://bitbucket.org/kegr/uoit_thesis.

https://bitbucket.org/kegr/uoit_thesis
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This appendix provides some additional details for calculations and simulations re-

garding Liley’s model. The notation used in normal form computation section is

consistent with the body of the text, but notation in the numerical section is distinct

for simplicity. The numerical section is essentially that present in Green & van Veen

[6].

138
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B.1 Calculations

Specific useful calculations that were omitted from the text include the derivation of

the PDE model from the integral system. And the process for computing D4 n T 2

symmetric Hopf normal form coefficients.

B.1.1 Equivalence of Integral and PDE models

We do not reproduce this calculation here. Rather, we point to sources where similar

calculations were used. We stress again that the equivalence can be shown by taking

Fourier transforms in the infinite domain.

For the temporal operator ∗, Fourier transform in only the time dimension allows

the ηj, ηjk to be written in terms of temporal differential operators on the left hand

side.

For the spatiotemporal operator, Fourier transforming in time and both spa-

tial dimensions will show the equivalence. This is because the Fourier transform

of Eq. (2.4.5) will result in a rational polynomial in the norm of the wave vector and

the temporal frequency. Sufficient details of this calculation are provided in Appendix

B in Liley et al. [8].

B.1.2 Normal form coefficient example

The normal form calculation is not presented in full detail here. Instead, we just

give the ideas that allow us to actually compute the second order solution and the

restriction of the third order equation.

Second order solution

For the second order solution, it is useful to define a short notation, χlmn, as the

matrix

χlmn = diag





η̃e(ilωc)

η̃i(ilωc)

η̃ee(ilωc)K̂ee((m,n)
Tkc, ilωc)

η̃ie(ilωc)K̂ie((m, )
Tkc, ilωc)

η̃ei(ilωc)K̂ei((m,n)
Tkc, ilωc)

η̃ii(ilωc)K̂ii((m,n)
Tkc, ilωc)




. (B.1)
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With this, we define a vector for the quadratic terms evaluated at q (the null vector)

r =



−
(

q3
|heq

ee−hr
e|
+ q4

|heq
ie−hr

e|

)
q1

−
(

q5
|heq

ei−hr
i |
+ q6

|heq
ii −hr

i |

)
q2

g2e(q1)
2

g2i (q2)
2

g2e(q1)
2

g2i (q2)
2


. (B.2)

With this notation, it can be shown that the second order solution will satisfy

u2(x, t) =
2∑

l=−2

2∑
m=−2

2∑
n=−2

Clmne
i(lωct+mkcx1+nkcx2), (B.3)

with Clmn the solution to a matrix equation

L((m,n)Tkc, ilωc)Clmn = Almnr, (B.4)

for L the Fourier-Laplace transformed linear operator, and Almn the scalar quantity

(for a fixed l,m, n) with the same entries as Blmn/γ2Clmn used in the scalar equation

(Table A.1). A difference though, is that we do not have the undetermined terms, as

those were caused by resonant terms that came up from the M1 operator, which has

become identically 0 for our simplified analysis.

Maple makes quick work of computing u2, and we suppress the output, avoiding

the gaze of Medusa. Now that we have the second order solution (still with arbitrary

amplitudes Aj), we move to the applying the Fredholm alternative to the third order

equation.

Third order restriction

The Fredholm alternative applied to the third order perurbation equation can be

rewritten as (for nullvector pφ1)

〈pφ1, g
3〉 = 〈pφ1, χ101v

0 +D2v
2〉 (B.5)
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with the matrix D2

D2 = diag





0

0

∂
∂iω
η̃ee(iωc)K̂ee((m,n)

Tkc, ilωc)
∂
∂τ

∂
∂iω
η̃ie(iωc)K̂ie((m,n)

Tkc, ilωc)
∂
∂τ

∂
∂iω
η̃ei(iωc)K̂ei((m,n)

Tkc, ilωc)
∂
∂τ

∂
∂iω
η̃ii(iωc)K̂ii((m,n)

Tkc, ilωc)
∂
∂τ




. (B.6)

vector v0

v0 =



−
(

u2
3

|heq
ee−hr

e|
+

u2
4

|heq
ie−hr

e|

)
u11 −

(
u1
3

|heq
ee−hr

e|
+

u1
4

|heq
ie−hr

e|

)
u21

−
(

u2
5

|heq
ei−hr

i |
+

u2
6

|heq
ii −hr

i |

)
u12 −

(
u1
5

|heq
ei−hr

i |
+

u1
6

|heq
ii −hr

i |

)
u22

2g2eu
1
1u

2
1 + g3e(u

1
1)

3

2g2i u
1
2u

2
2 + g3i (u

1
2)

3

2g2eu
1
1u

2
1 + g3e(u

1
1)

3

2g2i u
1
2u

2
2 + g3i (u

1
2)

3


, (B.7)

and vector v2

v2 =



0

0

g1eu
1
1

g1i u
1
2

g1eu
1
1

g1i u
1
2


. (B.8)

With all of the above considered, the inner product of Eq. (B.5) can be numerically

computed in a short amount of time. The result is an abundance of terms with

numerical coefficients at or below the tolerance of the precision used. Discarding those

negligible terms, we are left with only the Aj combinations present in the D4 n D2

symmetric normal form, and we can simply read off the normal form values.

B.2 Numerical algorithm descriptions
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B.2.1 PETSc overview

Rather than creating our code from scratch, we opted to work with the Portable,

Extensible Toolkit for Scientific Computation (PETSc): an open-source, object ori-

ented library that is designed for the scalable solution and analysis of PDEs [2, 1].

PETSc is written in the C language, and is usable from C/C++ as well as Fortran

and Python. We use PETSc in conjunction with the Scalable Library for Eigenvalue

Problem Computations (SLEPc) [7], for the computation of eigenspectra of equilib-

rium and periodic solutions. Since our implementation uses some features of PETSc

that are recent additions and are still being modified, we use the development version

of both projects.

PETSc is split up into multiple components to address the various problems asso-

ciated with solving PDEs numerically. For our purposes, we treat the DM component,

which handles the topology of the discretization, as the most fundamental, from which

we can easily derive memory allocation and communication for distributed vectors

(Vec) and matrices (Mat). With vectors and matrices, we can now solve linear sys-

tems, such as those that arise in Newton iteration for implicit time-stepping and the

computation of equilibria and periodic orbits. PETSc’s component for this is called

KSP, and it has numerous iterative solvers implemented, as well as preconditioners,

(PC), to increase convergence rates. For implicit time-stepping, for example, we use

GMRES , preconditioned with incomplete LU (ILU) factorization, combined with

the block Jacobi method [11, 10]. On top of the linear solvers come the nonlinear

solvers, PETSc’s SNES component, which implements a few different methods, such

as globally convergent Newton iteration with line search [4]. Finally, PETSc provides

a timestepping component, TS, to obtain time dependent solutions. Implemented here

are numerous explicit and implicit schemes such as adaptive stepsize Runge-Kutta and

implicit Euler. The implicit schemes make use of the SNES component. A schematic

of the hierarchy discussed here can be found in Fig. B.1.

For our dynamical systems calculations we will frequently need to compute specific

eigenvalues and eigenvectors for system-sized matrices. For this end, we use SLEPc,

which implements iterative eigenvalue solvers using PETSc Vec and Mat distributed

data structures. The component of SLEPc that we use is EPS, which has a few

algorithms for iteratively solving eigenproblems. Its default algorithm is Krylov-Schur

iteration.
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TS (Timestepping)

SNES (Nonlinear solving)

KSP (Krylov methods) PC (Preconditioning)

Matricies Vectors

DM (Grid management)

PETSc

BLAS      MPI

SLEPc

EPS (Eigenvalue solving)

Application 

Code

Figure B.1: Schematic representation of the components of PETSc and SLEPc used
in our code, and their relative hierarchy.

B.2.2 Timestepping

We currently use an arbitrary method to time step the discretized equations. This

subsection goes through the process of timestepping with the implicit Euler method.

Since we are aiming to compute periodic orbits, rather than to generate long time

series, the first order accuracy of the method is not an issue. Once a periodic orbit is

computed, the time step size can be reduced to increase accuracy.

We symbolically write the dynamical system as

u̇ = f(u), f : RN → RN . (B.1)

where N is the total number of unknowns after discretization, in our case 14×Nx×Ny.

The implicit Euler scheme for time integration is given by

un+1 = un + dt f(un+1) (B.2)

where the subscript represents the step number, dt the step size, and u0 the initial

conditions. This nonlinear equation is solved by Newton iteration:

uk+1
n+1 = ukn+1 + duk, (B.3)

where the superscript denotes the Newton iterate, and duk is the solution to the linear
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system (
I− dt

∂f

∂u

∣∣∣∣
uk
n+1

)
duk = dt f(ukn+1)− ukn+1 + ukn, (B.4)

where ∂f/∂u denotes the N ×N Jacobian matrix. Provided that the initial approx-

imation, u0n+1, is close enough to the actual solution of equation (B.2), this iteration

should converge quadratically. This is achieved by making the initial approximation

the result of an explicit Euler step

u0n+1 = un + dt f(un). (B.5)

As we scale up the size of our problems, it becomes the linear solve in equation

(B.4) that takes most of the time. This problem is handled by using GMRES to solve

the linear system. For large time steps, the spectrum of the matrix in Eq. (B.4) is

spread out, and we need to precondition it for iterative solving. We make use ILU,

which has shown to be reliable for this type of problem [12, 9]. If we use more than

one processor, PETSc uses distributed storage for the matrix, and combines ILU with

block Jacobi preconditioning.

B.2.3 Stepping of the first variational equation

The variational equations for the dynamical system are written as

v̇ =
∂f

∂u

∣∣∣∣
u

v, v ∈ RN (B.6)

and must be integrated simultaneously with the dynamical system (B.1). Solving the

variational equations allow us to compute the stability of solutions, and is also an

essential ingredient for the treatment of boundary value problems such as those that

arise in the computation of periodic orbits.

Performing implicit Euler timestepping on the variational equations (B.6) requires

solutions of the linear problems(
I− dt

∂f

∂u

∣∣∣∣
un+1

)
vn+1 = vn. (B.7)

Since we already have the Jacobian of the dynamical system at timestep n+1, stepping

the variational equations requires only one additional N × N linear solve per time

step.
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B.2.4 Equilibria

Having set up the function FormFunction for the right hand side of the dynamical

system, and its Jacobian computation FormJacobian, also used for time integration,

we can set up equilibrium calculations using PETSc’s SNES component with very little

effort.

Equilibrium solutions to the dynamical system (B.1) are solutions that satisfy

f(u) = 0. (B.8)

To solve this, we can set up a Newton iteration scheme

uk+1 = uk + duk (B.9)

with du coming from the solution of the linear system

∂f

∂u

∣∣∣∣
uk

duk = −f(uk). (B.10)

As with the timestepping, if the initial guess is good enough this will converge quadrat-

ically provided that ∂f
∂u

∣∣
uk is nonsingular. Unlike the case of time stepping, though,

we do not always have a way to produce an initial approximation that is good enough.

For stable equilibrium solutions, we can use timestepping to get close to an equilib-

rium, but this will not work for unstable equilibria. One possible solution is using

globally convergent Newton methods. Using such methods we can find equilibria from

very coarse initial data, at the cost of computing many iterations. The line search

algorithm and the trust region approach (see, e.g., [4]) are implemented in the SNES

component.

Stability of equilibrium solutions follows from the spectrum of the Jacobian. Be-

cause of the reflection symmetries of the model, these will mostly appear in groups.

On a square domain, for instance, a single eigenvalue will be associated with up to

eight eigenvectors, with wavenumbers (±kx,±ky) and (±ky,±kx).
As discussed in Section 3.3.2, the model on square periodic domains is also equiv-

ariant under translatations in both dimensions. In the presence of this symmetry, it is

more natural to search for relative equilibria, also called travelling waves. This leads

to the introduction of two extra unknowns, that can be thought of as the wave veloc-

ities, into system (B.8), and an extension by two equations of the associated linear

system (B.10). However, since we have so far only observed spatially homogeneous

equilibrium states, we will discuss this adjustment in Sec. B.2.5 on periodic solutions.
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B.2.5 Periodic solutions

The primary instability in the Liley model is often a Hopf bifurcation, and periodic

orbits have been shown to play an important role in the dynamics of ODE reductions of

the model (e.g. [5, 14]). However, space dependent periodic orbits have not previously

been computed and studied. Using PETSc data structures for bordered matrices, in

conjunction with a MATSHELL, we can solve for periodic orbits based on the time

stepping described in Secs. B.2.2 and B.2.3.

Relative periodic orbits solve the boundary value problem

F (u, t) = φ(t, u)− Tabu = 0, (B.11)

where φ is the flow of the dynamical system (B.1), t is the period, and Tabu(x, y) =

u(x + a, y + b) the translation operator. Our strategy for solving this equation is

essentially that of Sanchez et al. [13], namely Newton iterations combined with un-

conditioned GMRES iteration. Linearising Eq. (B.11) gives

(Duφ(u, t)− I) du+ f(φ(u, t))dt− ∂u

∂x
da− ∂u

∂y
db = −F (u, t), (B.12)

where Duφ is a matrix of derivatives of the flow with respect to its initial condition.

Upon convergence, this is the monodromy matrix of the periodic orbit. The result

is N equations in N + 3 unknowns, which must be closed by phase conditions. For

the temporal phase, we opted to handle this by providing a constraint on the Newton

update step:

[Duφ(u, t)]k,. du+ fk(φ(u, t))dt = 0. (B.13)

As Duφ is a matrix, [Duφ(u, t)]k,. denotes the k
th row of the matrix Duφ. As Similar

constraints can be applied to fix the phase in the spatial dimensions as well:

∂u

∂x
du = 0,

∂u

∂y
du = 0. (B.14)

These choices give the bordered system
(Duφ(u, t)− Tab) f(φ(u, t)) −∂u

∂x
−∂u

∂y

[Duφ(u, t)]k,. fk(φ(u, t)) 0 0

∂u
∂x

0 0 0

∂u
∂y

0 0 0




du

dt

da

db

 =


−F (u, t)

0

0

0

 , (B.15)
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the solution to which can be used to update the approximate solution
un+1

tn+1

an+1

bn+1

 =


un

tn

an

bn

+


du

dt

da

db

 . (B.16)

The matrix Duφ is dense, so we should avoid calculating and storing it explicitly.

Iterative solving of the linear problem, (B.15), requires the computation of matrix-

vector products, which are constructed from the integration of the variational equation

(B.6) with v = du and the vector field f(φ(u, t)) at the end point of the approximately

periodic orbit. This method will work well in dispersive regimes of the PDE, i.e., when

most of the eigenvalues of the monodromy matrix are clustered around zero. This

aids the convergence of GMRES, without any preconditioning. Sanchez et al. [13]

provide bounds for the number of GMRES iterations for the Navier-Stokes equation,

and the convergence we observe for the Liley model is qualitatively similar.

B.3 PETSc simulation code initialization files

Similar to the scalar model, all of the initialization files for this code have been

provided and organized in the online mercurial repository for this thesis:

https://bitbucket.org/kegr/uoit_thesis.

B.4 Testing of simulation code

This section summarizes some of the testing that was performed on our PETSc code

for Liley’s model. The timestepping order testing for both the full system and the

linearized equations are supplied in the mercurial repository.

B.4.1 Numerical timestepping error

For timestepping, we choose a fixed discretization and a fixed time integration time,

and vary the size of the time step for. This allows us to compute an approximate

error, as in Figure B.2. Of all of the timestepping methods shown, their computed

order match theoretical prediction at least in some region.

https://bitbucket.org/kegr/uoit_thesis
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Figure B.2: Relative differences computed after a time integration of 100ms using
various timestepping methods. State is initialized with a space-dependent field that
will result in varying dynamics (i.e., not an equilibrium). With the final state written
as a function of time step, u(dt), this relative error is computed by

err(dt) =
||u(2dt)− u(dt)||2

||u(dt)||2
,

with ‖ · ‖2 denoting the 2-norm of its vector entry. Note that the implicit methods
took much longer to integrate than the explicit, and thus their dt do not get as small.
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B.4.2 Accuracy testing

Determining that our code is capable of producing correct results is not as straight-

forward as the above finite difference testing. To do this, we must compare certain

computations of the PETSc code with results demonstrated in past literature.

The literature chosen was that of Bojak & Liley [3], with the problem that the

results are only expressed graphically. To reproduce the results we first wrote some

(more simple) AUTO-07p code that could reproduce the data of the SHE and SHPO

curves in the right side of Figure 5.3. Confirming that both the equilibrium and

periodic orbit curves look as in the published figure.

We then compare the data of our PETSc SHE continuation curve with the data

from the AUTO-07p code, with results (not included here) being equivalent up to 7

digits.

The PETSc code is further verified, qualtitatively, by observing the principle in-

stability of the SHE in the correct parameter region indicated from the published

article (right side of Figure 5.4). As the article does not include a precise calculation

of this instability, this is the best we can do.

Combining the accuracy testing on stationary states with the order calculations

for various timestepping methods, gives us high confidence that our implementation

of Liley’s model in PETSc is correct.
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