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Abstract

In this dissertation, the energy storage management and load scheduling problems

are studied. The main objective is to design real-time cost-effective control policies

at a residential site with integrated renewable generation. Stochastic nature of sys-

tem dynamic for renewable generation, user load, and electricity pricing has been

formulated in problems. Furthermore, battery degradation costs due to battery op-

eration have been incorporated into the system cost. Both infinite and finite time

horizon approaches have been designed in this dissertation. Lyapunov optimization

technique has been applied to design the real-time control algorithms that rely only

on the current system dynamics. Close-form solutions have been obtained for simple

implementation. The proposed algorithms are shown to have bounded performance

gap to the optimal control policies.

The first problem is to minimize the long-term time-averaged system cost with

i.i.d system inputs, where battery operation cost is considered. In the second problem,

a finite time horizon approach is provided to minimize the system cost over a fixed

time period. Non-stationary stochastic nature of system dynamics is considered in

formulating the problem. Furthermore, the detailed battery operation costs is incor-

porated into the system cost. A special technique to tackle the technical challenges

xi



xii

in problem solving is developed. In the third problem, a joint energy storage manage-

ment and load scheduling problem is proposed. The problem is to optimize the load

scheduling and energy storage control simultaneously in order to minimize the overall

system cost over a finite time horizon. In this real-time optimization design, the joint

scheduling and energy storage control is separated and sequentially determined. Both

scheduling and energy control decisions have close-form solutions for simple imple-

mentation. Through analysis, it is shown that the proposed real-time algorithm has

a bounded performance guarantee from the optimal T -slot look-ahead solution and is

asymptotically equivalent to it as the battery capacity and time period go to infinite.
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Chapter 1

Introduction

1.1 Overview

Over past 60 years, the term grid has been used to describe an electricity system

that generates, transmits and distributes electricity from several central generators

to a large number of consumers. A smart grid is an enhancement and renovation on

our existing power grid. Smart grid enables two-way transmission to transmit not

only electricity but also information via wired or wireless communication networks.

Due to the information shared among the generators, distributors and consumers, the

integration of distributed generation, renewable sources and energy storage becomes

possible in a future power system, and will substantially change the current power

system.

In future grid system, integrating renewable energy sources will be a vital green

energy solution to reduce the energy cost and to build a sustainable society and econ-

omy. Energy storage devices will be adopted to mitigate the uncertainty introduced

by the renewable generation as well as to reduce electricity cost for consumer. Devel-

oping smart appliances with flexible load will further help in stabilizing the grid and

reducing the electricity cost [1]. As a result, energy delivery will be more reliable,
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sustainable and economical.

The smart grid related research is broad. It involves various topics all the way

from generation to consumption. Different researchers may have different visions for

smart grid because of their different focuses and perspectives. From the grid operation

perspective, the topics include but not limited to: Smart meter, generation phase

control, micro-grid, direct load control, pricing strategies, energy distribution and

distributed energy storage management. From the consumption perspective, energy

storage management and demand side management can provide effective means for

energy management to reduce electricity cost. In particular, energy storage can be

exploited to shift energy across time, while flexible loads can be controlled to shift

demand across time.

1.2 Energy Storage System

In conventional grid, centralized generation must be able to provide enough energy

precisely to satisfy consumers’ demands over time. This becomes problematic when

generation deals with peak demand periods. Grid operators have to use generation

assets called peaker plants to ensure reliability and meet the peak demand. However,

peakers are expensive to operate, and they stay idle for most of the year but must be

paid nevertheless [2].

In future power system, building energy storage system has the promising ben-

efits to improve the grid reliability by reducing voltage fluctuation, and at the same

time reduce energy bill for the electricity consumers. It is the promising solution for

various applications. Examples of these applications include short-term power balanc-
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ing services such as frequency regulation, and long-term services such as maintaining

a certain level of reserve capacity [3]. Moreover, there are many types of storage

with a wide range of storage characteristics for different applications: pumped hydro

storage, compressed air energy storage, thermal energy storage, batteries, flywheels,

capacitors, and super conducting magnetic energy storage [4].

As the incorporation of renewable energy into the grid system becomes widely

adopted, designing effective energy storage management to integrate the renewable

generation and harness the free energy source becomes especially important but chal-

lenging due to the inherit stochastic nature of the renewable sources. In this re-

gard, energy storage management techniques need to be developed. The management

should be able to control all the energy flows from (to) conventional generation, en-

ergy storage and renewable generation to satisfy the consumer demands and reduce

the electricity costs.

Next, the main characteristics of renewable generation and battery technology

will be introduced. The potential problems that the researchers may face in designing

the system will be addressed in Section 1.4.

1.2.1 Renewable Generation

Currently, the largest share of electricity generation is still from fossil fuels, e.g.,

natural gas and coal. This share is expected to increase by 29% between 2012 and

2040 to address the growing demand of energy [5]. Humanity’s endless request for

energy has caused the exhaustion of fossil fuels and environmental deterioration.

To address those concerns, integrating renewable generation into the grid system
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has become a vital green solution to reduce the dependence of fossil fuels and to en-

able a transition to a sustainable society and economy [4]. Photovoltaic (PV) and

wind are two renewable sources to be considered because they can be easily integrated

into our power system as the distributed generation on the consumer end, capable of

providing free energy and zero carbon emissions.

The renewable sources are intermittent in nature. To maximally harvest the re-

newable energy, mathematical methods have been developed to effectively forecast

the renewable energy, including the statistical models and persistence models. Statis-

tical models predict well in the short and medium term, i.e., 1 hour up to 36 hours.

Therefore, they have been widely adopted to predict accurate solar generation. The

persistence model performs well for real-time wind forecast because it has accurate

prediction in very short term compared to the actual data. Normally, the model’s ac-

curacy keeps within 1 hour [6]. Other possible prediction approaches may use image

processing technique or meteorological information on cloudiness [7].

As renewable penetration into the power supply increases, the renewable energy

with storage solution will be adopted and implemented for wide applications. This

will include power balancing in a grid system, green and cost effective solution for

base station power supply for wireless transmissions, low-power self-sustainable sen-

sor network applications, as well as energy solutions for cloud data centre computing.

Thus, cost effective energy management technologies to maximally harness energy

from renewable sources becomes crucial for the success of green energy transition [8].
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Table 1.1: Battery Characteristics

Lead-acid NiCd NiMH Li-ion

Technology Matured Matured Matured Developing

Hazard Toxic Toxic Environmentally friendly Safety issue

Efficiency Low Low Low High

Cost Cheap Cheap Cheap Costy

Adoptability Poor Moderate Better Best

1.2.2 Battery Technology for Energy Storage

Energy storage has been recently picked up to face the shortage and high price of

fossil fuels. It is expected that most future consumer end renewable installations will

be equipped with storage devices. A typical application of storage devices is electric

vehicles (EVs). EVs are driven by electricity power from an array of batteries. In the

near term, it is expected that EVs will be integrated to the grid system, capable of

storing energy for consumers and selling it back to the grid when the grid needs it.

Thankfully, many auto manufacturers have been working on the development of EVs

for years and already released some models on the auto market, e.g., Tesla Model S

and BMW i-series.

Four types (Lead-acid, Nickel cadmium (NiCd), Nickel metal hydride (NiMH),

Lithium ion (Li-ion)) of battery are listed in Table 1.1 to compare their technology

maturities, hazards, storage efficiencies, investment costs and the adoptabilities to the

renewable energy integration.

The detail characteristics are introduced below:

• Lead-acid: The lead-acid battery is the oldest and most mature technology
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that has been used for electrical energy storage. Pros: Ideal for small-cycle

renewable energy integration applications; Low investment costs and ease of

maintenance; Can be discharged repeatedly by as much as 80% of their capacity.

Cons: Limited cycle life; Poor performance at low and high ambient tempera-

tures; Failure due to deep and continuous cycling; Environmentally unfriendly.

Adoptability to renewable energy integration: Currently, Lead-acid is a

front-runner for use in distributed generation application.

• Nickel cadmium (NiCd): NiCd batteries are a robust and proven alternative

to lead-acid batteries. Pros: Longer cycle life; Higher energy densities and

low maintenance requirements. Cons: Contain toxic heavy metals and suffer

from severe self-discharge. Adoptability to renewable energy integration:

Compared to Lead-acid, NiCd Offer many advantages in PV applications.

• Nickel metal hydride (NiMH): NiMH battery is a feasible alternative to

NiCd battery. Pros: Environmentally friendly due to the lack of toxic sub-

stances such as cadmium, lead or mercury. Energy density is 25%−30% better

than NiCd. Cons: Also suffer from severe self-discharge, making them in-

efficient for long-term energy storage. Adoptability to renewable energy

integration: NiMH has lower costs compared to Li-ion technology; Before Li-

ion batteries have lower prices, NiMH batteries could play a temporary role and

are possible front-runners for renewable energy integration applications.

• Lithium ion (Li-ion): The current use of Li-ion batteries is predominant

in portable electronics market. Pros: Achieves energy storage efficiencies of
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close to 100%; Highest energy density. Cons: High investment costs; Compli-

cated charge management systems required; Lack of longevity; Safety issue [9].

Adoptability to renewable energy integration: The use of Li-ion batteries

for renewable energy storage applications is very plausible in the not-so-distant

future. Global investment in Li-ion research and development is estimated at

over $1 billion annually. The work is aimed at reducing the capital cost and

further improving reliability of this technology [10].

With the battery technology being developed, the performance and reliability of

the battery have been improved drastically in recent years. However, battery oper-

ations cause battery degradation. This effect has to be considered when the storage

applications are implemented. Particulary, the high depth of discharge (DoD) and

the frequent charge cycling can severely cut short the lifetime of Li-ion batteries[13].

Another effect is called the battery aging effect which highly depends on internal

parameters such as battery chemistry and manufacturing quality and external pa-

rameters such as temperature, charge habits and cycling regime [12].

To prolong battery life, the apparent way is to limit the number of charge cycles

and restrict the DoD in each cycle. This way can ensure that the total number of

cycles are always under a certain value given by the manufacture design. In practical

daily cycling regime, 5 to 10 charge cycles are expected to ensure that the battery

lifetime is not shortened by the operation. Alternatively, a different operation cost

can be attached to the charge cycling and the DoD. If the number of cycles finished

per day is more than an expected number by the design, battery lifetime is shortened
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and a higher operation cost will be paid; If the deep DoD is happened, a higher cost

will be paid too. In the storage system design, this research has taken into account

the operation cost as described in the second way.

1.3 Energy Consumption Scheduling

Energy consumption scheduling is widely applied to stabilize the grid system and

reduce operation costs at system operator side as well as reduce electricity costs at

energy consumer side. This section will explain the approaches of load scheduling

from system operation and energy consumption perspectives.

1.3.1 System Operation Perspective

When the system operators perform the management on the system, stabilizing the

entire system is the most primary consideration. Before putting the emphasis on

operator-to-consumer interaction, conventionally, system operators manage the sys-

tem on the way of direct load control (DLC). The main purpose of doing that is to

shave the peak-to-average ratio (PAR), which enables them to directly modify the

operations of consumers’ appliances during high-peak periods. As introduced in Sec-

tion 1.2, peakers have to be installed at the grid operation end to meet the peak

demand, which are expensive to run. Maintaining PAR at a certain level will save

the operation cost for grid operators as well as reduce the possibility of outage on the

consumer end.

In smart grid, more interaction between the operator and the consumer becomes

possible through two-way communication techniques. To improve the system relia-
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bility, instead of directly controlling consumers’ demands, the system operators can

design dynamic pricing strategies, i.e., adjust different prices per kilowatt hour ac-

cording to the real-time variation of the production capacity and the load demands.

Thus, consumers will have the opportunity to see what price they will pay for en-

ergy before they buy. Although dynamic pricing is not a direct control behaved on

the operator end, it provides energy consumers effective economic incentives to shift

their power consumptions to low-peak periods and thus help the operators save their

operation cost [11].

For example, Ontario Energy Board offers electricity price based on Time of Use

(TOU). It is a fixed three-stage price with high, medium and low rates for the day.

Winter and summer seasons are followed by two different rate distributions. Another

promising pricing strategy is called Real-Time Pricing (RTP). where grid operators

will monitor the current load consumption and adjust the price in a real time manner.

Designing such a strategy to benefit both operators and consumers is difficult, since

higher uncertainty may lead to less attraction from a consumer perspective. Plenty

of research is aimed at designing the effective RTP strategies.

1.3.2 Energy Consumption Perspective

From a electricity consumer perspective, consumers can respond to the dynamic price

set by the operators through demand scheduling. In other words, a lower electricity

cost will give the consumers an incentive to re-schedule their load if the current

electricity rate is high. This requires that domestic appliances can be deferred or

interrupted, and must be capable of automatical starts and stops. Therefore, their
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loads are flexible. For some appliances e.g., lights and televisions, their starting and

stopping time and operation durations are not predictable or completely unknown.

Those are hard demands by consumers which must be satisfied as requested. For other

appliances, such as washers, dryers and EVs, their loads are flexible and therefore are

able to respond to the dynamic price. It is necessary to be pointed out that the

demands for those appliances can be deferred for a few minutes or hours at little or

no cost [12]. Therefore, it is possible to utilize the flexibility from those appliances,

and intelligently schedule them to help consumers maximally save their electricity

cost.

Moreover, some schemes have been shown that significant savings can be achieved

if only a few consumers participate to the demand response, i.e., rescheduling their

appliances. When a higher penetration of demand response is involved among con-

sumers, the grid stability is problematic, i.e., a rebound peak of demand may occur

in the originally low-rate periods due to a large number of shifted loads [2]. There-

fore, to achieve notable savings for consumers and maintain a reliable grid system for

operator, effective scheduling schemes need to be developed.

1.4 Motivation and Objective

As the penetration of renewable generation to the power supply increases, energy stor-

age can be adopted to mitigate the randomness of renewable generation, reducing the

power supply instability caused by renewable integration. It also provides excellent

means for cost effective energy management. The renewable generation with storage

solutions will become increasingly popular. At the same time, since many smart ap-
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pliances have been developed, load scheduling problems have been studied to shift the

energy demand in order to reduce electricity cost for consumers. Providing effective

management solutions that combine both energy storage and load scheduling will be

the most promising future solution for electricity consumers to reduce their energy

costs.

Developing the cost effective energy storage management and load scheduling

solutions are important, but faces unique challenges. Those issues mentioned below

have not been fully/partially studied by other literature works.

• For the renewable generation, electricity pricing, and loads, they are all random

and likely to be statistically time-varying making them difficult to predict.

• For the energy storage, there exists a double effect of electricity cost reduction

and added operation costs regarding the storage degradation. Also, finite bat-

tery capacity makes the storage control decisions coupled over time and difficult

to optimize.

• For the load scheduling, while minimizing the electricity cost, the delay require-

ments need to be met for each load and the overall service when joint design

of energy storage management and load scheduling is considered. In particular,

load scheduling decisions affect the energy usage and storage; vise versa, stor-

age control and load scheduling decisions are coupled with each other over time,

making joint design especially challenging.

• In addition, most energy storage management or load scheduling problems con-

sider long-term expected cost over an infinite time horizon as the design metric.
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In reality, consumers may prefer a cost saving solution in a period of time defined

by their own needs. This is yet to be studied.

In this dissertation, we focus on real-time energy storage management and load

scheduling at a residential site with integrated renewable generation and storage bat-

tery.

In our first problem, we study the problem of energy storage management with

renewable energy integration by designing real-time control policy to minimize the

long-term time-averaged system cost. We take into account system input dynamics

and finite battery capacity, and incorporate the battery operation cost for energy

storage into the control optimization.

In our second and third problems, we take finite time horizon approaches and

consider unknown arbitrary dynamics of renewable source, load, and electricity pric-

ing information. In addition, we provide detailed modeling of battery operation costs

due to charging and discharging activities as part of the system cost.

Specifically, we consider the design of cost-effective management of energy storage

with renewable integration in our second problem. We formulate the control optimiza-

tion problem aiming at minimizing the system cost over a fixed time period.

In our third problem, we consider joint energy storage management and load

scheduling with integrated renewable generation. We aim at optimizing the load

scheduling and energy storage control simultaneously in order to minimize the overall

system cost.
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1.5 Methodology

In our first problem, we design a real-time storage control algorithm to meet consumer

demand while minimizing the long-term system cost. We directly apply the Lyapunov

optimization technique to design a real-time control algorithm that only relies on the

current system dynamics. We also extend our existing model to a centralized model.

Using same algorithm, we provide control solution for each user and compare two

models in simulation.

In our second problem, we take a finite time horizon approach and formulate the

control optimization problem over a fixed time period. The finite horizon problem

prevents direct adoption of Lyapunov optimization for devising a real-time control

algorithm. We develop special techniques to tackle the problem, through problem

modification and transformation, which enables us to leverage Lyapunov optimiza-

tion to design a real-time control algorithm. Furthermore, using same approach, we

extend our existing model to a sell-back model and develop new real-time control

solution.

In our last problem, we design a real-time solution for joint energy storage man-

agement and load scheduling to minimize the system cost over a finite period of

time. We develop techniques to employ Lyapunov optimization technique through a

sequence of problem modification and transformation for designing a real-time algo-

rithm. The joint scheduling and energy storage control is then separated and sequen-

tially determined in our real-time optimization algorithm.
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1.6 Contributions

The contributions of this dissertation are summarized as follows:

1. Real-Time Energy Storage Management for Long-Term System Cost

Minimization

We consider an energy storage management problem of minimizing the long-term

time averaged system cost with renewable integration. We take into account system

input dynamics, and incorporate the battery operation cost for energy storage into

the control optimization. Applying Lyapunov optimization technique, we design the

real-time control algorithm that only relies on the current system input. We provide

a close-form control solution which renders our policy implementation with minimum

complexity. Unlike existing works on energy storage which do not consider either

renewable integration or battery operation cost, we incorporate both into our design

for a storage control solution.

Through analysis, we show our proposed algorithm has a bounded performance

to the optimal. Other literature works are lack of consideration for battery operation

cost or renewable integration in their simulations. We provide the detailed studies and

show that introducing renewable energy can effectively reduce the long-term cost and

improve the efficiency of energy storage. In addition, we study a centralized model.

Simulations show that users can further reduce their total system cost from sharing

a common battery.

2. Real-Time Energy Storage Management for System Cost Minimization

in a Finite Time Approach
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We consider an energy storage management problem of minimizing the time av-

eraged system cost over a finite time period. We take into account unknown arbitrary

dynamics and provide detailed modeling for battery operation cost due to charging

and discharging activities as part of the system cost.

The finite time horizon approach through Lyapunov optimization is not yet stud-

ied by any literature works. We are the first to investigate on this approach. However,

the finite horizon problem prevents the direct adoption of Lyapunov optimization for

devising a real-time control algorithm. To deal with that, we develop special tech-

niques to tackle the problem, through problem modification and transformation, which

enables us to leverage Lyapunov optimization to design a real-time storage control

algorithm that relies only on the current system dynamics. Compared with other

works, our design can handle unknown arbitrary dynamics, while those works can

only assume the stationary system inputs.

We also extend our work by adding sell-back in the system model and provide

explicit solution for each control action. We analyze our proposed algorithm and show

that it has a bounded performance gap to the optimal non-causal T -slot look-ahead

control solution. Furthermore, we show that our algorithm is asymptotically optimal

as the battery capacity and time period go to infinity. Simulation studies show the

effectiveness of our proposed algorithm as compared with two alternative real-time

and non-causal algorithms.

3. Real-Time Joint Energy Storage Management and Load Scheduling for

System Cost Minimization

We focus on a joint control optimization problem for energy storage management
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and load scheduling with the objective of minimizing the system cost over a finite

time horizon. Besides assuming unknown arbitrary system dynamics and incorporat-

ing detailed battery operational costs, we model each individual task with its own

intensity, requested service duration, and maximum and average delay constraints.

The joint problem of energy storage management and load scheduling is not yet

fully studied by other literature works. The existing works can only guarantee the

maximum delay over all loads, or provide scheduling for each load but require known

ahead information. We are the first to provide a joint solution for storage control and

load scheduling that does not rely on any statistic information.

The interaction of load scheduling and energy usage, the finite battery capac-

ity, and finite time period for optimization complicate scheduling and energy control

decision making over time. To tackle this difficult stochastic problem, we develop tech-

niques through a sequence of problem modification and transformation which enables

us to employ Lyapunov optimization technique for designing a real-time algorithm

that otherwise is not directly applicable. We show that the joint energy storage con-

trol and load scheduling can be separated and sequentially determined in our real-time

optimization algorithm. Furthermore, both scheduling and energy control decisions

have close-form solutions making the real-time algorithm simple to implement. We

show that our proposed real-time algorithm has a bounded performance guarantee

from the optimal T -slot look-ahead solution and is asymptotically equivalent to it as

the battery capacity and time period go to infinity. Simulation results demonstrate

the effectiveness of joint load scheduling and energy storage management by our pro-

posed algorithm as compared with alternative solutions considering neither storage
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nor scheduling, or storage only.

The results of this dissertation have been published/submitted in several presti-

gious journals and conferences as I summarize below:

1. T. Li and M. Dong, “Real-time energy storage management with renewable

integration: finite-time horizon approach,” accepted to IEEE J. Select. Areas

Commun., Sep. 2015.

2. T. Li and M. Dong, “Real-time residential-side joint energy storage management

and load scheduling with renewable integration,” submitted to IEEE J. Select.

Areas Commun., July. 2015.

3. T. Li and M. Dong, “Energy storage with renewable generation: real-time con-

trol and its application to centralized storage management,” in preparation to

be submitted.

4. T. Li and M. Dong, “Real-time energy storage management with sell-back:

finite-time horizon approach,” to be submitted to IEEE Trans. Smart Grid.

5. T. Li and M. Dong, “Real-time energy storage management: Finite-time horizon

approach,” in Proc. IEEE Int. Conf. on Smart Grid Communications, Venice,

Italy, Nov. 2014.

6. T. Li and M. Dong, “Real-time energy storage management with renewable

energy of arbitrary generation dynamics,” in Proc. Asilomar Conf. on Signals,

Systems and Computers, Pacific Grove, CA, Nov. 2013.
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7. T. Li and M. Dong, “Online control for energy storage management with re-

newable energy integration,” in Proc. IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, Vancouver, BC, May 2013.

1.7 Outline of the Dissertation

The rest of this dissertation is organized as follows: In Chapter 2, I present a review

on the recent studies of energy storage management. Also, I provide a literature

review on demand side management. In Chapter 3, I formulate a real-time energy

storage management system with renewable integration using infinite time approach.

In Chapter 4, I design the storage management through a finite horizon approach. In

Chapter 5, I extend my work to consider a joint energy storage management system

with load scheduling. The conclusion is provided in Chapter 6.

1.8 Notation

The main symbols used in this dissertation are summarized as below:

Wt: user’s demand at time slot t

Pt: conventional grid real-time price at time slot t

Pmax: maximum electricity price

Et: energy purchased from conventional grid at time slot t

St: renewable energy harvested at time slot t

Sw,t: amount of renewable energy supplied to user’s demand Wt at time slot t

Sr,t: amount of renewable energy stored to battery at time slot t

Qt: the portion of Et stored into battery at time slot t
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Rmax: maximum charging amount allowed to battery

Dt: discharging amount from battery at time slot t

Dmax: maximum discharging amount from battery

Bt: stage of battery energy level at time slot t

Bmin: minimum energy required in battery

Bmax: maximum energy allowed in battery

Crc: entry cost for battery usage due to each charging

Cdc: entry cost for battery usage due to each discharging

xe,t: entry cost for battery usage at time slot t as xe,t = 1R,tCrc + 1D,tCdc

xu,t: amount of battery energy level change in time slot t, as xu,t = |Qt + Sr,t − Dt|

xe: average entry cost for battery usage over the To-slot period

xu: average amount of battery energy level change over the To-slot period

Cu(·): usage cost function of the battery

J : average cost of purchasing energy from the grid in To slots

at: control action at time slot t

∆a: desired change amount of battery energy level in To slots

dt: actual scheduling delay incurred for Wt

dmax
t : maximum allowed delay for the load Wt before it is served

dmax: maximum average delay for the loads within the To-slot period

α: positive weight for the cost of scheduling delay

Cd(·): cost function of scheduling delay

µ: positive weight for delay related queues in the Lyapunov function



Chapter 2

Literature Review

2.1 Energy Storage Management (ESM)

Energy storage can be located at the supply side or the demand side. With more

and more renewable generation integrated, it is suggested that energy storage can be

co-located with renewable generators so as to mitigate the uncertainty of renewable

generation [13]. Also, the storage can be used for minimizing the users’ electricity cost

at the demand side. In particular, energy storage management has been considered for

power balancing to counter the fluctuation of renewable generation and increase grid

reliability for system operator [14–17], and to reduce electricity cost at consumption

side for users [18–24].

Off-line storage control strategies for dynamic systems have been proposed [14,15,

18,19]. Using storage to mitigate the intermittent nature of renewable energy resources

is studied in [14, 15]. In [14], the optimal use of distributed storage is studied where

authors design their control strategies via a Linear-Quadratic based technique and

show these strategies achieve asymptotically optimal for simple network topologies.

The dependence of optimal performance on storage and transmission capacity is also

explicitly quantified. A prediction model to study the error of the difference between
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the generation and the load is proposed to ensure that the demand is satisfied as much

as possible [15]. The problem is formulated as an infinite time average cost dynamic

program. Threshold optimal policies are obtained.

In [18], a problem of peak shaving for the power grid using renewable generation

and energy storage is studied. Renewable generation and load power consumption

prediction algorithms are presented. The proposed control algorithms are separated

into global tier and local tier. The global control is solved as a convex optimization

problem, and the local control is solved analytically. In [19], a problem of cost saving

for data centers is investigated through dynamically right-sizing the servers in data

center. The optimal off-line algorithm is first proposed for dynamically turning off the

servers to achieve the cost-saving. After that, the authors propose an online algorithm

and show it has proven performance. In these works, renewable energy arrivals are

assumed known ahead of time and the knowledge of load statistics is assumed. For

real-time storage management design, [20] studies a storage management problem in

order to maximize consumer energy consumption. The problem is first formulated

as a Markov Decision Process (MDP), and then formulated as an online learning

algorithm.

Lyapunov optimization technique [25] has been recently employed for designing

real-time storage control at either grid operator side or consumer side under different

system models and optimization goals [16, 17, 21–23]. Among these works, [22, 23]

study the optimal demand response with energy storage management in order to

minimize the system costs. Their polices show that the maximum delay is guaranteed

for user demands. However, they do not consider battery operation cost due to
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charging/discharging in their system models. Both renewable generation and battery

operation cost are modeled in [16,17]. The authors consider the dynamic aggregator-

EVs systems and provide real-time algorithms for aggregator to fairly allocate the

regulation amount among the EVs.

Energy storage is also considered in other applications besides for future grid

operation. Using energy harvesting device for wireless communication has recently

attracted growing interests [26–29]. The problems there focus on wireless transmission

policy design, instead of energy storage management. Thus, the modeling of battery

is relatively simple.

2.2 Demand Side Management (DSM)

The problems of demand side management can be designed from either the system’s

perspective (e.g., maintaining the grid reliability, minimizing the system operational

cost) or from the user’s perspective (e.g., minimizing the electricity cost, maximizing

the energy consumption), or from the both (i.e., combing the user-level objective along

with the system-level objective). Many problems have been studied with different

design objectives. We have summarized those works as below.

From system’s perspective, load (demand) scheduling through demand side man-

agement has been studied by many for shaping the aggregate load at utility through

direct load control [30–32] or pricing design [33, 34]. Among these work, [30] studies

a distributed direct load control scheme for large-scale residential demand response.

The problem is to reduce the mismatch between the actual aggregated demand and

desired demand. An average consensus algorithm is proposed to distribute the desired
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aggregated demand in a decentralized fashion. In [31], a multi-timescale scheduling

scheme is proposed to optimize real-time price and manage the user demand so as

to achieve system-wise reliability and efficiency. In [32], the problem of minimizing

the average power grid operational cost through power demand scheduling is studied.

The threshold-based control policy is proposed to ensure that every power demand

is served within its deadline. For pricing design problems, [33] studies the cost min-

imization problem for energy provider. One algorithm for day-ahead pricing and

another for estimating and refining user reaction to the prices are proposed. Dynamic

programming approach is applied to solve those algorithms. In [34], an optimal real-

time pricing algorithm is proposed to fairly and efficiently assign energy to each user

from the aggregate utility. Convex programming techniques are applied to solve this

problem.

Load scheduling has been also studied at consumer side to reduce electricity bill

in response to dynamic pricing [35–40]. In [35, 36], the authors study the energy

consumption scheduling problems in order to minimize the electricity cost and max-

imize the quality of service for appliance in household. Their problems are solved

by linear-based algorithms to reduce the computation complexity. [37] considers a

load scheduling problem across multiple homes in a neighborhood to deal with the

issue of rebound peak. The problem is formulated and solved by dynamic program-

ming technique. [38] considers the power consumption scheduling problem with future

price uncertainty. The problem is formulated as a Markov decision process, and a

threshold-based solution is obtained. [39] studies a problem of minimizing the total

cost of electricity on a daily scale for home through load scheduling with total power
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constraint. The proposed scheme shows a reduced peak demand for the home is

achieved. A real-time opportunistic scheduling scheme based on the optimal stopping

rule for smart appliances is proposed in [40]. The problem is to determine the optimal

time for appliances’ operation in order to reduce electricity cost.

Combining both utility side and demand side management is also considered

in [41–43]. Game theory has been well applied to design the demand side management

problems, such as pricing with strategic decision marking involved both the suppli-

ers and the consumers [44]. [41, 42] have studied the distributed energy management

problems through game theoretic approach. They formulate the energy consump-

tion scheduling games between the utility operator and electricity consumers. From

participating the games, their schemes show that lower costs have been achieved for

the utility, and efficient load distribution has been achieved for the consumers. [43]

designs a real-time pricing scheme to reduce the peak-to-average load ratio through

demand response. With message exchanged between user and retailer, the optimal

prices are obtained to help retailer overcome the uncertainty from users’ responses,

and help users determine their energy usage. The optimal solution is obtained by an

iterative method.

2.3 Energy Storage Management with Flexible

Loads

Since energy storage management and load scheduling are promising solutions to

reduce the energy cost, some literature have focused on the designs of storage man-

agement with flexible loads. We have summarized those works as below.
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Real-time energy storage management with flexible loads has been considered in

[45–50]. In [45], the authors focus on local demand scheduling problem. The objective

is to minimize the Micro-grid operation cost and maintain the outage probability of

quality of service for electricity. [46] studies the minimization of the total energy cost of

multiple residential households in a smart neighborhood. [47] studies the minimization

of total operating cost for data centers where the bandwidth cost for geographically

distributed data centers is considered. The utility optimal scheduling algorithm is

proposed in [48] where the objective is to maximize the aggregate traffic utility with

time-varying qualities of communication links. [49] studies the minimization of average

energy cost by jointly determining the amount of electricity and natural gas dispatched

in each time slot. [50] combines both grid operator and demand side management using

distributed storage to minimize the long-term system cost.

In these works, flexible loads are modeled as the amount of total energy request.

Thus, no individual task modeling or scheduling is considered. Only worst-case delay

is provided. Joint energy storage and task scheduling is considered in [24], in which the

electricity price is assumed to be known ahead of time. In [24, 45–50], the Lyapunov

optimization technique has been applied to design the real-time control algorithms

that only rely on the current system state. They show that their algorithms can

significantly reduce the computational complexity and provide bounded performances

to the optimal. However, those works only consider the long-term time averaged

system cost as their design metric.
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2.4 Lyapunov Optimization Technique

Designing real-time control strategies for energy storage management amid system

unknown dynamics from renewable, demand, and pricing is particularly challenging.

We have applied Lyapunov optimization technique to derive real-time solutions for

storage control and load scheduling. An introduction of Lyapunov optimization is

given as below.

Lyapunov optimization techniques have a long history in the field of control the-

ory. Thanks to the pioneering works [51, 52] by Tassiulas and Ephremides, this tech-

nique was first used to design stable routing and scheduling policies for queueing

networks. Those algorithms only require the knowledge of the current network state.

No statistic information is needed. Later, this form of technique has been introduced

for the analysis and control of stochastic networks by Michael J. Neely in [25] in

which he focuses on the application to communication and network delay. Today,

this technique is applicable to stochastic systems that arise in smart grid communica-

tions, where the problems can be formulated to optimize the time average of certain

quantities subject with time average constraints on other quantities.

Consider a stochastic problem that operates in discrete time slots with t ∈

{0, 1, 2, · · · }. Define attribute vectors x(t), y(t), e(t) as

x(t) = (x1(t), . . . , xM(t))

y(t) = (y0(t), y1(t), . . . , yL(t))

e(t) = (e1(t), . . . , eJ(t))

where M, L, J are non-negative integers. Those attributes can be positive or negative,
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and their general functions are given as

xm(t) = x̂m(α(t), ω(t)) ∀m ∈ {1, . . . , M}

yl(t) = ŷl(α(t), ω(t)) ∀l ∈ {0, 1, . . . , L}

ej(t) = êj(α(t), ω(t)) ∀j ∈ {1, . . . , J}

where ω(t) is a random event observed on time slot t and α(t) is the control action

taken on time slot t. The action α(t) is chosen within a set Aω(t), i.e., α(t) ∈ Aω(t).

Denote xm as the time average function of xm(t), given by

xm , lim
t→∞

1
t

t−1
∑

τ=0

xm(τ).

Similarly, denote yl, ej as the time average functions of yl(t), ej(t), respectively.

Define the real queues in the system with a backlog vector Q(t) = (Q1(t), . . . , QK(t)).

The dynamics is given by:

Qk(t + 1) = max[Qk(t) − bk(t), 0] + ak(t) (2.1)

where ak(t) = âk(α(t), ω(t)) and bk(t) = b̂k(α(t), ω(t)).

The objective is to design an algorithm that solves the following problem

Minimize : lim
t→∞

y0 (2.2)

s.t lim
t→∞

yl ≤ 0 for all l ∈ {1, . . . , L} (2.3)

lim
t→∞

ej = 0 for all j ∈ {1, . . . , J} (2.4)

α(t) ∈ Aω(t) ∀t (2.5)

Stability of all Network Queues. (2.6)
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A solution is an algorithm that determines control actions {α(t)} over time to min-

imize the objective value of (2.2), while satisfying all constraints. For this type of

stochastic problem, queueing theory plays a central role. To solve the problem, we

first transform all inequality and equality constraints (2.3)-(2.5) into queue stability

problems. Virtual queues are introduced to ensure the required time average con-

straints being satisfied, and ensure the stability of all queues. Define the dynamics of

virtual queues Zl(t) and Hj(t) for each l ∈ {1, . . . , L} and j ∈ {1, . . . , L} as:

Zl(t + 1) = max[Zl(t) + yl(t), 0] (2.7)

Hj(t + 1) = Hj(t) + ej(t) (2.8)

where the virtual queue Zl(t) is to ensure constraint yl ≤ 0 being satisfied, and the

virtual queue Hj(t) is designed to turn the time average equality constraint ej = 0

into a pure queue stability problem.

Next, the problem (2.2)-(2.6) is solved by a theory of Lyapunov drift and Lya-

punov optimization. Let Θ(t) , [Q(t), Z(t), H(t)] be a vector of all actual and virtual

queues, with the dynamics (2.1), (2.7) and (2.8), respectively. Define L(Θ(t)) as the

Lyapunov function, given by

L(Θ(t)) ,
1
2

K
∑

k=1

Qk(t)2 +
1
2

L
∑

l=1

Zl(t)2 +
1
2

J
∑

j=1

Hj(t)2. (2.9)

Define ∆(Θ(t)) = L(Θ(t + 1)) − L(Θ(t)) as the difference of Lyapunov function from

one slot to the next. The objective function (2.2) is mapped to a penalty function.

Instead of minimizing the existing problem, Lyapunov optimization is to greedily min-

imize the drift-plus-penalty function. Thus, the algorithm does not require knowledge
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of the probabilities associated with the random events ω(t). This drift-plus-penalty

problem is given as below

∆(Θ(t)) + V · y0(t) (2.10)

where V is a non-negative weighted control parameter. It is easy to see that set-

ting V = 0 leads our drift-plus-penalty to the drift alone problem, while V > 0

offers a tradeoff between backlog reduction and penalty minimization. In term of

the performance bound, the time average objective value of (2.2) obtained by the

drift-plus-penalty optimization is deviated by at most O(1/V ) from optimality.

2.5 Highlights of Contributions

In this dissertation, we design real-time energy storage management and load schedul-

ing problems through Lyapunov optimization. Now, we highlight our contributions

as follows.

We are the first to design the energy storage management in a finite horizon ap-

proach. All existing works only consider long-term time average cost as their design

metric [16,17,21–23,45–50]. In reality, the energy consumer may prefer the cost sav-

ing solution within a fixed period of time. We actually provide a solution suitable

to such a requirement. Moreover, the existing works have to assume the renewable

generation, demands (loads), and pricing information to be stationary processes. In

our finite horizon approach, our problems are designed to handle the non-stationary

system dynamics. This is meaningful when the problem is implemented in reality (for

example, renewable energy from solar is naturally a non-stationary process). Since
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Lyapunov optimization framework [25] is developed based on the infinite time horizon

problem, solving finite time horizon problem is quite different. For this reason, we

need to develop new techniques to overcome unique challenges, and thus employ Lya-

punov optimization to design our real-time algorithms that otherwise is not directly

applicable.

Specifically, for real-time energy storage management designs, the existing works

either do not consider the renewable generation as one of the power sources in system

[21], or battery operation cost [22,23]. We have added the renewable into the system in

order to harvest the green energy, and actively modeled the detailed battery operation

cost due to the charging (discharging) activities. Although both renewable generation

and battery operation cost are modeled [16, 17], they only consider long-term time

average cost as their design metric.

For the designs of energy storage management with flexible loads, [45–50] have

modeled the flexible loads as the amount of total energy request. Thus, no individual

task modeling or scheduling is considered. Only worst-case delay is provided. In our

works, we have considered both individual and overall delay constraints, and provide

the scheduling scheme for each task (load). A joint energy storage and task scheduling

is considered in [24], while the electricity price is assumed to be known ahead of time.

In our joint design, we do not require any statistic information. In the proposed real-

time algorithm, we show that the joint problem has been separated, and the storage

control and delay scheduling have been decoupled and sequentially determined.



Chapter 3

Real-Time Energy Storage
Management with Renewable
Integration: Infinite Time
Approach

In this chapter, we consider the design of cost-effective management of energy stor-

age with renewable integration by designing real-time control policy to minimize the

long-term time-averaged cost. We take into account the system dynamics, and in-

corporate the batter operation cost for energy storage into the control optimization.

Applying Lyapunov optimization technique, we design an on-line control policy that

jointly optimizes the decisions for storage from two energy sources and supply to the

consumer, which has bounded performance from the optimal scheme. We provide a

close-form solution to our control optimization which renders our policy implementa-

tion with minimum complexity. Simulations show that introducing renewable energy

can effectively reduce the long-term cost and improve the efficiency of energy storage

relative to the battery operation cost. Last, we extend the basic model to a central-

ized model. Case studies show that users can further reduce their total cost in the

centralized model.
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3.1 System Model

Consider an energy storage and management system as shown in Fig. 3.1. A power

consuming entity (user) can draw electricity from the power sources and/or the energy

storage unit (battery) to supply its energy demand, which is denoted as Wt. Two types

of power sources are considered: the conventional grid and the renewable generator.

The battery is used to store energy from both power sources and to supply energy to

the user1. We assume the system operates in discrete time slots with t ∈ {1, 2, · · · },

and all operations are performed per time slot t. Details of each component are

described below.

3.1.1 Power Sources

Conventional Grid: Power can be purchased at a real-time price Pt from the power

grid using conventional generators. Let Et denote the amount of energy purchased

per slot. It is bounded by

Et ∈ [0, Emax] (3.1)

where Emax is the maximum amount of energy can be purchased from the grid per slot.

The purchased amount Et can supply the user’s demand directly and/or be stored

into the battery for future use. The unit price Pt is assumed to be in a price interval

Pt ∈ [Pmin, Pmax], where Pmin and Pmax are the minimum and maximum electricity

prices at slot t. The value of Pt is assumed known to the user and remains unchanged

during time slot t. Thus, the energy purchasing cost from the grid at time slot t is

1Fig. 3.1 is only for illustration purpose. In practice, DC/AC converters are applied for charg-
ing/discharging to/from the battery.
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Figure 3.1: An example of energy storage and management system.

EtPt.

Renewable Generator: Assume that the priority of using St is to first directly sup-

ply the demand Wt. We denote this portion by Sw,t. It is given by Sw,t = min{Wt, St}.

The remaining portion of harvested energy, if any, can be stored into the battery. As

we will see later, charging incurs certain cost to the battery. Thus, a controller will

make a decision on whether or not to store the remaining amount into the battery.

Let Sr,t denote the amount of renewable energy stored into the battery at time slot t.

We have

Sr,t ∈ [0, St − Sw,t]. (3.2)

3.1.2 Battery Operation

1) Storage: We consider a simplified model for the battery charging and discharging,

where there is no energy loss during charging/discharging nor leakage of stored energy

over time2. There may be multiple sources for battery charging at the same time, e.g.,

2The energy loss during charging/discharging can be modeled as the battery efficiency level ηe ∈
[0%, 100%]. Since this parameter does not affect our fundamental problem structure and solutions,
we ignore this effect and only focus on the main charging and discharging activities.
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from either the grid, the renewable source, or both. Let Qt denote the portion of Et

stored into the battery. The total amount of energy charged into battery at time slot

t, i.e., Qt + Sr,t, is upper bounded by

Qt + Sr,t ∈ [0, Rmax] (3.3)

where Rmax is the maximum charging amount allowed to the battery. Similarly, the

discharging amount, denoted as Dt, is upper bounded by

Dt ∈ [0, Dmax] (3.4)

where Dmax denotes the maximum discharged amount allowed from the battery. We

assume there is no simultaneous charging and discharging activities in the battery.

This means

(Qt + Sr,t) · Dt = 0. (3.5)

Let Bt denote the state of battery (SOB) at time slot t. For a battery with a finite

capacity, the SOB Bt is upper and lower bounded by

Bt ∈ [Bmin, Bmax] (3.6)

where Bmin and Bmax are the minimum energy required and maximum energy allowed

in the battery, respectively; They are battery-specific characteristics and their values

depend on the battery type and size. The dynamic of Bt over time due to charging

and discharging activities are expressed by

Bt+1 = Bt + Qt + Sr,t − Dt. (3.7)
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2) Battery cost: We model battery cost as a fixed cost incurred due to each

charging or discharging activity. We define two indicator functions to represent

charging and discharging activities: 1R,t = {1 : if Qt + Sr,t > 0; 0 : otherwise} and

1D,t = {1 : if Dt > 0; 0 : otherwise}. Denote the cost for charging by Crc and that

for discharging by Cdc. Denote xe,t as the battery cost at time slot t. It is given by

xe,t , 1R,tCrc + 1D,tCdc.

3.1.3 Energy Storage Management

The energy storage management system depicted in Fig. 3.1 should satisfy the supply-

demand balancing requirement at each time slot t, given by

Wt = Et − Qt + Sw,t + Dt. (3.8)

3.2 Energy Management Optimization

In this section, we consider an infinite time approach is proposed, where the power

purchase cost from the grid and the battery entry cost are considered. In this ap-

proach, we consider the system dynamics of user’s demand, renewable source, and

pricing. The control objective is to minimize the average system cost over a long-

term To-slot time period. We first introduce a stand-alone model, where the goal is

to minimize the cost for single user. Next, we study a centralized model, where users

have shared battery and renewable in the system.

Denote the control actions for the energy storage management system at time

slot t by at , [Et, Qt, Dt, Sr,t]. The goal is to determine {at} to minimize the average

system cost over a long-term To-slot period. This optimization problem is formulated
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by

P1: min
{at}

lim
To→∞

1
To

To−1
∑

t=0

E{EtPt + xe,t}

s.t. (3.1), (3.2), (3.5), (3.8), and

0 ≤ Sr,t + Qt ≤ min{Rmax, Bmax − Bt} (3.9)

0 ≤ Dt ≤ min{Dmax, Bt − Bmin}. (3.10)

where E{·} is taken with respect to Wt, St, Pt.

Remark: If the distributions of Wt, St, Pt are known, it is possible to solve the

optimization problem P1 through Dynamic Programming, of which we have to face

the curse of dimensionality in terms of complexity. Instead, we are interested in

designing an online control policy that does not rely on the statistics of Wt, St, Pt.

To do this, we adopt Lyapunov optimization technique [25] to obtain a sub-optimal

solution while satisfying all constraints in P1. The Lyapunov approach provides a

real-time algorithm for control decision at with given system input Wt, St, Pt at time

slot t. Furthermore, we can bound its performance gap to the optimal solution by a

system design parameter.

3.2.1 Real-Time Energy Storage Management Algorithm: In-
finite Time Approach

The constraints (3.9) and (3.10) depend on the SOB Bt. Due to the time-coupling

dynamics of Bt over time in (3.7), the finite battery capacity imposes a hard constraint

on the control actions {at}, causing them to be correlated over time. We first relax

Bt in (3.7) to a long-term time-averaged relation among Qt, Sr,t and Dt. It can be
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shown that the following condition holds

lim
To→∞

1
To

To−1
∑

t=0

E{Qt + Sr,t − Dt} = 0. (3.11)

We relax P1 to the following problem.

P1r min
{at}

lim
To→∞

1
To

To−1
∑

t=0

E{EtPt + xe,t}

s.t (3.1) − (3.5), (3.8), (3.11).

By this relaxation, we remove the dependency of per-slot charging/discharging amount

on Bt in constraints (3.9) and (3.10), and replace them by (3.3) and (3.4), respectively.

Since the constraints are now relaxed, solving P1r may not give a feasible solution to

P1.

3.2.2 Lyapunov Function and Drift

Define Zt as a virtual queue

Zt , Bt − V Pmax − Dmax − Bmin (3.12)

where V > 0 is a constant to be explained later. Note that Zt is only a shifted version

of Bt and can be negative. Due to (3.7), the dynamic of Zt is given by

Zt+1 = Zt + Qt + Sr,t − Dt. (3.13)

Define the Lyapunov function for Zt as L(Zt) ,
Z2

t

2
, and the conditional Lyapunov

drift [25] for Zt at time t as ∆Zt , E{L(Zt+1) − L(Zt)|Zt}. With (3.8), we can show

that ∆Zt is bounded by

∆Zt ≤ G − ZtE{Wt − Et − Sw,t − Sr,t|Zt} (3.14)

where G ,
max{D2

max,R2
max}

2
.
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Proof. This upper bound of ∆Zt in (3.14) has been used to prove Proposition 3.3.

Please find detail in Appendix 3.5.3. �

The Lyapunov approach intends to minimize a drift-plus-penalty metric. The

drift-plus-penalty is expressed as a weighted sum of the Lyapunov drift and the ex-

pected cost, defined as Ut
∆= ∆Zt + V E{EtPt + xe,t}, where V serves as a weighted

factor providing the relative weight between the cost and the drift in the metric. Using

the bound above for ∆Zt, we have the bound on the drift-plus-penalty as

Ut ≤ G − ZtE{Wt − Et − Sw,t − Sr,t|Zt} + V E{EtPt + xe,t}. (3.15)

We design our online control algorithm to minimize the upper bound of the drift-

plus-penalty Ut in (3.15), with given system states {Wt, St, Pt} at time t. The resulting

minimization problem is given as

P2 : min
at

Zt(Et + Sr,t) + V (EtPt + xe,t) (3.16)

s.t (3.1) − (3.5), (3.8).

We will show later that the solution to P2 will meet the constraints (3.9) and (3.10)

of P1.

Now, we solve P2 to obtain the optimal control solution a∗
t = [E∗

t , Q∗
t , D∗

t , S∗
r,t].

Define the idle state of the battery as the state where there is no charging or dis-

charging activity. We denote the control solution under this idle state by aid
t =

[Eid
t , Qid

t , Did
t , S id

r,t]. By supply-demand balancing equation (3.8), it is given by Eid
t =

Wt − Sw,t, Qid
t = Did

t = S id
r,t = 0. Let ξt denote the value of the objective in P2 when

battery is in the idle state. In this state, we have ξt = (Wt − Sw,t)(Zt + V Pt). We
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derive a∗
t in three cases below. In each case, the cost of charging (or discharging) is

compared with the cost ξt of keeping an idle state, and the control decision is obtained

by taking the one with the minimum cost. The solution is summarized below.

Proposition 3.1. Denote a′
t = [E ′

t, Q′
t, D′

t, S ′
r,t]. The optimal control solution a∗

t of

P4b is given by

1) For Zt + V Pt ≤ 0: The battery is in either charging or idle state. The solution a′
t

in charging state is give by


























D′
t = 0,

S ′
r,t = min{St − Sw,t, Rmax}

Q′
t = min{Rmax − S ′

r,t, Emax − Wt + Sw,t}
E ′

t = min{Wt + Rmax − Sw,t − S ′
r,t, Emax}.

(3.17)

If E ′
t(Zt + V Pt) + ZtS

′
r,t + V Crc1R,t < ξt, then a∗

t = a′
t; Otherwise, a∗

t = aid
t .

2) For Zt < 0 ≤ Zt + V Pt: The battery is either in charging, discharging, or idle

state. The solution a′
t in charging or discharging state is give by



























D′
t = min{Wt − Sw,t, Dmax}

S ′
r,t = min{St − Sw,t, Rmax}

Q′
t = 0,

E ′
t = [Wt − Sw,t − Dmax]+.

(3.18)

If E ′
t(Zt + V Pt) + ZtS

′
r,t + V (Crc1R,t + Cdc1D,t) < ξt, then a∗

t = a′
t; Otherwise,

a∗
t = aid

t .

3) For 0 ≤ Zt < Zt + V Pt: The batter is in either discharging or idle state. The

solution a′
t in discharging state is give by















D′
t = min{Wt − Sw,t, Dmax}

S ′
r,t = Q′

t = 0,

E ′
t = [Wt − Sw,t − Dmax]+.

(3.19)

If E ′
t(Zt + V Pt) + V Cdc1D,t < ξt, then a∗

t = a′
t; Otherwise, a∗

t = aid
t .
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Proof. See Appendix 3.5.1.

The above solution can be intuitively explained as follows: case 1) corresponds to

the state when energy stored in the battery is relatively low, and (3.17) reflects the

incentive to recharge the battery, provided that the recharging cost Crc is not high.

To the opposite, case 3) indicates the scenario when the energy stored in the battery

is high, and there is an incentive to discharge the battery to supply energy if Cdc is

not high. Case 2) corresponds to the case when the battery is moderately charged,

and recharging or discharging is only based on the balance between supply St and

demand Wt.

3.2.3 Performance of the Real-Time Control Policy

We first show that the real-time control policy developed in Section 3.2.1 meets the

constraints of the original problem.

Proposition 3.2. If set A = Bmin + V Pmax + Dmax and V ∈ (0, Vmax] with Vmax =

Bmax−Dmax−Rmax−Bmin

Pmax

, the optimal control solution a∗
t for P2 is a feasible policy for

P1, i.e., battery finite capacity constraint (3.6) is satisfied.

Proof. See Appendix 3.5.2.

Next, we show that under the i.i.d. assumption of system inputs, the performance

of the real-time control policy is bounded from that of the optimal policy as follow.

Proposition 3.3. Assume i.i.d. {Wt, St, Pt} over time. Under the proposed control

solution a∗
t , the resulting long-term time averaged cost is bounded from the optimal
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Figure 3.2: An example of energy storage and management in centralized system.

objective value ξo of P1 by

lim
To→∞

1
To

To−1
∑

t=0

E{EtPt + xe,t} ≤ ξo +
G

V
. (3.20)

Proof. See Appendix 3.5.3.

3.3 Centralized Storage Management System

In our existing model, each user has its own battery, renewable generation and grid.

We call it stand-alone model. If we have N users in the grid, users are all independent

from each other. Now, we consider an application of our stand-alone model, where

multiple users share one battery, renewable generation and grid. As can be seen in

Fig. 3.2, the left dotted frame contains the shared power sources and battery. We use

superscript (·)c to distinguish from the stand-alone model. Denote Sc
t as the energy

harvested by renewable generation at time t. We assume each user in stand-alone
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model will harvest same amount of renewable energy, i.e., Si,t = St, for i = 1, 2, . . . , N .

Thus, we set Sc
t to be N times greater than St. We still assume the renewable has the

priority to first supply the users’ demands, which is given as Sc
w,t = min{∑N

i=1 Wi,t, Sc
t }.

We also set the maximum allowed amount of purchase from the grid is N times

larger, i.e., Ec
t ∈ [0, N × Emax], following the price Pt ∈ [Pmin, Pmax]. Similarly,

the battery charging and discharging are bounded by Qc
t + Sc

r,t ∈ [0, N × Rmax] and

Dc
t ∈ [0, N × Dmax], respectively.

The objective is to determine the control action [Ec
t , Qc

t , Dc
t , Sc

r,t] to minimize the

time average system cost over N users. Compared to the stand-alone problem, it is

easy to see that the problem formulation of centralized model is unchanged. As the

result, we directly apply the Lyapunov optimization to design our real-time algorithm.

Once we obtain the centralized optimal control action [Ec∗
t , Qc∗

t , Dc∗
t , Sc∗

r,t], we dis-

tribute energy Ec∗
t − Qc∗

t , Dc∗
t and Sc

w,t to N users, which are located on the right

side of Fig. 3.2. We consider to distribute the energy for users proportional to their

demands. This means user i is allocated Wi,t
∑N

i=1
Wi,t

(Ec∗
t − Qc∗

t ) from grid, Wi,t
∑N

i=1
Wi,t

Dc∗
t

from battery discharging, and Wi,t
∑N

i=1
Wi,t

Sc
w,t from the renewable. Thus, we ensure that

the supply-demand balance constraint (3.8) for each user is still satisfied.

We have detailed case studies for this centralized model in Section. 3.4.2. From

the simulation results, we show that the flexibility among users save more energy cost

for the users in centralized model.
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3.4 Simulation Results

To realistically set the price Pt, we use the data collected from Ontario Energy Board

[53], where Pt consists of three-stage prices and is periodic every 24 hours. Fig. 3.3

shows the value of Pt within the period of 24 hours, where the three-stage prices

are given as PH = $0.118, PM = $0.099, and PL = $0.063. We set the time slot

duration to be 5 minutes, and approximate the renewable energy St and user demand

Wt within each slot to be constant. We generate St and Wt per slot using uniform

distribution within interval [0.1/12, 2.5/12] kWh and [1/12, 2/12] kWh, respectively.

Other parameters are chosen as follows: Rmax = 0.165 kWh, Dmax = 0.165 kWh,

Emax = 0.3 kWh, Crc = Cdc = 0.001, and V = Vmax.

3.4.1 Stand-Alone Model

First, we look at the effect of renewable energy on the objective value of P1. We

assume Bmax = 1.5 kWh, and Bmin = 0. As shown in Fig. 3.4, the integration of

renewable energy offers about 80% off in the total system cost that a user needs to

pay in a grid-only system (i.e., the conventional grid is the only energy source). The

benefit is mainly contributed by a deduction from the purchasing cost from the grid.

For the same battery capacity, in Fig. 3.5, we study the battery recharging (dis-

charging) activities by plotting the number of recharges (and/or discharges) vs. Crc

(Cdc). We compare the performance of the system with or without renewable energy.

As shown, with the renewable energy, higher battery operation cost becomes more

tolerable for the system with renewable integration. For example, in a grid-only sys-

tem, the control decision suggests a few charging (discharging) actions at a cost of Crc
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(Cdc) = 0.001, 0.003, while this cost becomes “affordable” when the renewable energy

is added, reflected by the positive number of recharges (discharges). In general, the

total number of charges and discharges decreases as the cost Crc (or Cdc) increases.

Thus, the battery charging (discharging) cost directly affect the battery participation,

and thus the effectiveness of the energy management system.

In Fig. 3.6, we show how the battery capacity affects the relative proportions

of purchased power from grid into the battery at different prices. We plot the to-

tal amount of purchased energy at a specific price that is charged into the battery,

EQ(Pi)
∆=
∑

t∈{t:Pt=Pi} Q∗
t , for Pi = PL, PM , PH . Intuitively, as the capacity increases,

the optimal decision will let the battery buy energy from the gird only if Pt is low. For

our control policy, as Bmax increases, V increases, and the performance approaches to

the optimal as indicated in (3.20). This result is verified on Fig. 3.6. We see that as

Bmax increases, most energy purchased from the grid is at Pi = PL.

Last, we look at the relation between V value and the objective value of P1. Two

approaches can be used to determine the V value. To satisfy the battery capacity

constraint (3.6), our algorithm has been designed to set V ≤ Vmax. The resulting

bound of V tightens the distance to the optimal by G
Vmax

, which is given in (3.20).

Another approach is to allow V arbitrarily large, but manually cut off or fill out the

energy in the battery in order to satisfy (3.6). Based on the parameters we set, we have

Vmax = 9.95 in the first approach. In the second approach, we increase V = 20, 30, 40.

As we see in Fig. 3.7, our proposed algorithm with V ≤ Vmax leaves a distance from

the optimal more than that of V = 20 in second approach. However, if we further

increase V = 30, 40, we loss the optimality in second approach. From the objective
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Figure 3.3: Power grid real-time price Pt, average demands Wt, average solar energy
St

of P2, we see that a larger V value adds more weight on EtPt in the objective, and

thus, the drift is less important. As the result, the proposed algorithm will become

one-slot greedy search algorithm of P1, i.e., minimize the per slot objective of P1.

3.4.2 Centralized Model vs. Stand-Alone Model: Case Study

In the centralized system, the users share single battery. We believe that users can

further reduce their cost by the flexibility and diversity offered in this model. We

set up the total number of users N = 64. For the renewable energy, we assume each

user will harvest same amount of energy St. Thus, we have Sc
t = NSt. For battery,

we assume the battery capacity is NBmax. Also, this large battery will be associated
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with higher operation costs, i.e., Cc
rc = NCrc. Again, we set Cc

rc = Cc
dc.

In the following scenarios, we compare the system objective cost of P1 obtaining

from two different models, given as

ρ =
System cost in centralized model

Total system cost over N users in stand-alone model
(3.21)

Scenario 1: In this scenario, we assume the renewable generation can harvest more

energy. We set that St is uniformly generated with interval η1 · [0.1/12, 2.5/12] kWh

where η1 ∈ [0.8, 2]. We set Wi,t as uniform distribution with interval [1/12, 3.6/12] kWh.

Scenario 2: In this scenario, the users’ demands are more away from the mean

value. We assume that {Wi,t}N
i=1 are generated by Gaussian distribution with different

values of variance Wi,t ∼ N (Wt, η2 · Wt) where η2 ∈ [0, 1] and Wt = 1.8/12 kWh. The
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1.5 kWh)

renewable energy St is uniformly distributed with interval [0.2/12, 5/12] kWh.

Scenario 3: In this scenario, the users’ demands are correlated each other. Using

correlation factor η3 ∈ [0, 1], we set the demands as follow

Wi,t = η3Wf,t +
√

1 − η2
3Ui,t + Wt (3.22)

where Wf,t ∼ N (0, 0.8Wt) is a reference process and Ui,t ∼ N (0, 0.8Wt). We set

Wt = 1.8/12 kWh and the renewable energy St is uniformly distributed with interval

[0.2/12, 5/12] kWh.

In scenario 1, we look at how the renewable energy achieves further cost reduction

in centralized system. As can be seen in Fig. 3.8, in the range of η1 ∈ [0.8, 1.5], the

users only achieve 5% cost reduction. However, with η1 > 1.5, we see a significant
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reduction which is up to 30%. This is because the shared battery can store more

energy from the renewable generation, which reduces the purchasing cost from the

conventional grid.

In scenario 2, we diverse the users’ demands by varying the standard deviation

of Wi,t with η2 ∈ [0, 1]. Fig. 3.9 shows that, with the users’ demands lie more than

a few variances away from the mean, which realizes more diversity among the users,

the system cost is reduced up to 45% over the stand-alone model. In scenario 3, we

generate {Wi,t}N
i=1 correlated each other. From Fig. 3.10, we know that, if the users’

demands are less correlated, i.e., η3 < 1, we observe cost-saving up to 40% in the

centralized system.

Next, we consider an extreme scenario by setting a new price P ′
H which is 10
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Table 3.1: Ratio ρ vs. Bmax and Crc (or Cdc) with P ′
H = 10PH and i.i.d Wt, St

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Bmax

Crc (or Cdc) 0.001 0.005 0.01

3 0.98 0.95 0.95

4 0.95 0.91 0.92

5 0.83 0.83 0.86

6 0.77 0.78 0.82

10 0.76 0.77 0.81

Table 3.2: Ratio ρ vs. Bmax and Crc (or Cdc) with P ′
H = 10PH and non-stationary

Wt, St

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Bmax

Crc (or Cdc) 0.001 0.005 0.01

3 0.89 0.90 0.91

4 0.75 0.81 0.86

5 0.64 0.71 0.78

6 0.63 0.69 0.75

10 0.62 0.69 0.74

Table 3.3: Ratio ρ vs. Bmax and Crc (or Cdc) with non-stationary Wt and boosted
non-stationary St

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Bmax

Crc (or Cdc) 0.001 0.005 0.01

3 0.73 0.81 0.79

4 0.73 0.81 0.79

5 0.73 0.81 0.79

6 0.73 0.81 0.79

10 0.72 0.81 0.79

times expensive than usual i.e., P ′
H = 10PH = $1.18. If users still purchase energy

when Pt = PH , they pay much more than before.

In Table 3.1, Wt and St are uniformly distributed within the intervals [1/12, 3.6/12] kWh
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and [0.2/12, 5/12] kWh, respectively. When the battery capacity is limited and opera-

tion cost is high, there is no additional cost saving in the centralized system. However,

we observe up to 24% in cost reduction when the capacity is large and the operation

cost is cheap. As the reference, we can only obtain 12% if set PH back to usual (not

shown in table). A larger capacity can effectively reduce the cost in the centralized

system. It could buy more energy when the price is low.

Next, we assume the demand Wi,t is a non-stationary process, where the three-

stage means energy E[Wi,t] is given as {W H , W M , W L} = {2.4, 1.38, 0.6}/12 kWh

with σWi
= 0.5W i, i = H, M, L, as shown in Fig. 3.3 middle. Similarly, the renew-

able energy St follows three-stage mean value E[St] with {SH , SM , SL} = {1.98, 0.96,

0.005}/12 kWh and standard deviation σSi
= 0.5Si, i = H, M, L, as shown in Fig. 3.3

bottom. The ratio ρ with non-stationary processes is shown in Table 3.2. As can be

seen, we reduce the cost by at most 38% at Bmax = 10 kWh.

Another scheme is to increase St as {SH , SM , SL} = 10{1.98, 0.96, 0.005}/12 kWh.

With more energy coming from the renewable generation, remaining energy can be

used to charge to the battery, and supply the demands when the price is high. We

achieve up to 28% saving in the centralized system, which is shown in Table 3.3.

3.5 Appendices

3.5.1 Proof of Proposition 3.1

Proof. We show the solution in each case below.

1) For Zt + V Pt ≤ 0: Since V and Pt are both positive, we have Zt ≤ 0. To

minimize the objective of P2, one possible solution is to set both E ′
t and S ′

r,t as large
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as possible. This means that battery is in the charging state. We have 1R,t = 1,

1D,t = 0, D′
t = 0, and use maximum charging rate, i.e., S ′

r,t + Q′
t = Rmax. Since Q′

t is

a portion of E ′
t, and Zt ≤ Zt +V Pt, maximizing S ′

r,t in the above equation can further

reduce the value of P2. By supply-demand balancing equation (3.8), we obtain Q′
t

and E ′
t in (3.17). Thus, the control solution a′

t is as in (3.17). Note that under the

charging state, the entry cost Crc for charging is paid. Alternatively, we consider the

battery in the idle state instead, i.e., S id
r,t + Qid

t = 0. In this case, 1R,t = 0, but Eid
t is

smaller. The optimal a∗
t is then the one that achieves the minimum objective value.

2) For Zt < 0 ≤ Zt + V Pt: Because Zt + V Pt ≥ 0, to minimize the objective of

P2, one possible solution is to set E ′
t as small as possible. This means E ′

t should be

only purchased to supply Wt, and not for storage, i.e., Q′
t = 0. When Sw,t = Wt,

it is possible that St − Sw,t ≥ 0. In this case, there is no need for discharging, i.e.,

D′
t = 0, and the battery could be charged from renewable source S ′

r,t ≥ 0. On the

other hand, when Sw,t < Wt, i.e., St is fully used to supply Wt, we have S ′
r,t = 0. To

meet the demand in (3.8), we could either purchase E ′
t and/or let battery discharge

D′
t. Based on the above, we have the control solution a′

t as shown in (3.18). Charging

or discharging will incur entry cost Crc or Cdc, respectively. Similar to Case 1), there

exists an alternatively way which is to keep the battery idle. Thus, the optimal a∗
t

is chosen from the three possible solutions whichever achieves the minimum objective

value.

3) For 0 ≤ Zt < Zt + V Pt: One possible solution is to set both E ′
t and S ′

r,t as

small as possible to minimize the objective value of P4b. Thus, the battery should not

be charged, i.e., Q′
t + S ′

r,t = 0. To satisfy the rest of demand Wt − Sw,t, energy should
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be discharged from the battery. Following this, we can similarly derive the control

solution a′
t in (3.19). Under this assumption, the entry cost Cdc for discharging is

paid. Alternatively, we can keep the battery idle and only purchase energy Eid
t from

the grid. This will result in more Eid
t purchased but avoid battery cost Cdc. The

optimal a∗
t is the one that achieves the minimum objective value. �

3.5.2 Proof of Proposition 3.2

Proof. To prove Proposition 3.2, we first provide the following Lemma.

Lemma 3.1. Under the proposed solution in Proposition 3.1, we have

1) If Zt > 0, then Q∗
t + S∗

r,t = 0.

2) If Zt < −V Pmax, the D∗
t = 0.

Proof. 1) This case corresponds to Case 3) of Proposition 3.1. It is straightforward to

see that Q∗
t + S∗

r,t = 0 is the optimal control action. 2) This case corresponds to Case

1) of Proposition 3.1. It is straightforward to see that D∗
t = 0 is the optimal control

action. �

We now prove Proposition 3.2. From Lemma 3.1 case 2, we know D∗
t = 0 when

Zt < −V Pmax. If Zt ≥ −V Pmax, the maximum decreasing amount of Zt to Zt+1 in

(3.13) in the next time slot is

Zt+1 ≥ −V Pmax − Dmax, ∀t (3.23)

Therefore, Zt is lower bounded by −V Cmax − Dmax.

Since Zt = Bt − A, we need to design A to satisfy Bt ≥ Bmin for ∀t. We have

Bt ≥ −V Cmax − Dmax + A = Bmin. (3.24)
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Thus, we have A = Bmin + V Pmax + Dmax.

From Lemma 3.1 case 1, we have Q∗
t + S∗

r,t = 0 for Zt > 0. If Zt ≤ 0, then the

maximal increasing amount of Zt to Zt+1 in (3.13) in the next time slot is

Zt+1 ≤ Rmax, ∀t. (3.25)

Therefore, Zt is upper bounded by Rmax for ∀t. We can immediately obtain that

Zt = Bt − Bmin − V Pmax − Dmax ≤ Rmax, (3.26)

To ensure Bt in the above equation satisfies Bt ≤ Bmax, we have

Bt ≤ Bmin + V Pmax + Dmax + Rmax ≤ Bmax. (3.27)

We obtain V ≤ Vmax with Vmax below.

Vmax =
Bmax − Dmax − Rmax − Bmin

Pmax

. �

3.5.3 Proof of Proposition 3.3

Proof. A one-slot Lyapunov drift can be shown with its upper bound as below

∆(Zt) , E{L(Zt+1) − L(Zt)|Zt} =
1
2
E{Z2

t+1 − Z2
t |Zt}

= ZtE{Qt + Sr,t − Dt|Zt} +
E{Qt + Sr,t − Dt|Zt}2

2

≤ ZtE{Qt + Sr,t − Dt|Zt} + G. (3.28)

Using the upper bound of drift obtained in (3.28), the drift-plus-penalty function is

also upper bounded by

∆(Zt) + V E{EtPt|Zt} ≤ ZtE{Qt + Sr,t − Dt|Zt} + V E{(EtPt + xe,t)|Zt} + G. (3.29)
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Since the system inputs {Wt, St, Pt} are i.i.i over time, we can show that there exists an

optimal, stationary, randomized policy [25] that takes control action astat per slot as

the function of current system state and independent of battery SOB while satisfying

(3.1)-(3.5),(3.7) and providing the following solution

E{Qstat
t } + E{Sstat

r,t } = E{Dstat
t } (3.30)

E{(Estat
t P stat

t + xstat
e,t ) = ξstat. (3.31)

Substitute (3.30) and (3.31) into (3.29), we obtain

ZtE{Qstat
t + Sstat

r,t (t) − Dstat
t |Zt} + V E{(Estat

t P stat
t + xstat

e,t )|Zt)} + G

= V ξstat + G ≤ V ξo + G. (3.32)

Summing LHS of (3.29) and RHS of (3.32) over t ∈ {0, 1, 2, · · · , To}, we have

E{∆(ZTo
) − ∆(Zo)} +

To−1
∑

t=0

V E{EtPt + xemt|Zt} ≤ V Toξ
o + GTo. (3.33)

Take the expectation with respect to Zt and apply the law of total expectation, then

divide V To on both sides of (3.33) with To → ∞, we have

lim
To→∞

To−1
∑

t=0

V E{EtPt + xe,t} ≤ G

V
+ ξo. �



Chapter 4

Real-Time Energy Storage
Management with Renewable
Integration: Finite Time Approach

In the previous chapter, we have used the long-term expected system cost over an

infinite time horizon as the design metric, while we assume that the system dynamics

are stationary processes. In this chapter, based on the existing system model, we take

a finite time horizon approach and formulate the control optimization problem aiming

to minimize the system cost over a fixed time period. Recognizing the unpredictable

and non-stationary stochastic nature of system dynamics, we assume unknown arbi-

trary dynamics of renewable generation, load, and electricity pricing in formulating

our problem. Furthermore, we incorporates detailed battery operation cost into the

system cost. Different from the infinite time horizon problem that we have consid-

ered in the previous chapter, the coupling of control decisions over time, due to finite

battery capacity, is more challenging to manage. We develop a special technique to

tackle the technical challenges in solving the problem. Through problem modification

and transformation, we are able to apply Lyapunov optimization to design a real-time

control algorithm that only relies on the current system dynamics. The proposed con-
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Figure 4.1: An example of energy storage and management system.

trol solution has a closed-form expression and thus is simple to implement. Through

analysis, the proposed algorithm is shown to have a bounded performance gap to

the optimal non-causal T -slot lookahead control policy. Simulation studies show the

effectiveness of our proposed algorithm as compared with two alternative real-time

and non-causal algorithms.

4.1 System Model

We consider the energy storage management system as shown in Fig. 4.1. This is the

same management system as we have previously introduced in Fig. 3.1.

4.1.1 Power Sources

Conventional Grid: User can purchase amount of Et from the grid. It is bounded by

Et ∈ [0, Emax] (4.1)

following the real-time price Pt, which is within a range of Pt ∈ [Pmin, Pmax].

Renewable Generator: We assume St is to first supply the demand Wt. The

remaining portion Sr,t of harvested energy, if any, can be charged into the battery.
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Since the charging incurs certain cost to the battery, a controller will make a decision

on whether or not to store the remaining amount into the battery. We have

Sr,t ∈ [0, St − Sw,t]. (4.2)

4.1.2 Battery Operation

1) Storage: Battery can be charged from either the grid, the renewable source, or

both. The total amount of energy charged into battery at time slot t comes from the

grid and the renewable, i.e., Qt + Sr,t. The charging amount is upper bounded by

Qt + Sr,t ∈ [0, Rmax]. (4.3)

The discharging amount Dt is upper bounded by

Dt ∈ [0, Dmax]. (4.4)

We assume there is no simultaneous charging and discharging activities in the battery.

This means

(Qt + Sr,t) · Dt = 0. (4.5)

For a battery with a finite capacity, the SOB Bt is upper and lower bounded by

Bt ∈ [Bmin, Bmax]. (4.6)

The dynamics of Bt over time due to charging and discharging activities are expressed

by

Bt+1 = Bt + Qt + Sr,t − Dt. (4.7)
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2) Battery degradation cost: It is well known that frequent charging/discharging

activities cause a battery to degrade [54]. We model two types of battery degrada-

tion cost: entry cost and usage cost. The entry cost is a fixed cost incurred due

to each charging or discharging activity. We define two indicator functions to rep-

resent charging and discharging activities: 1R,t = {1 : if Qt + Sr,t > 0; 0 : otherwise}

and 1D,t = {1 : if Dt > 0; 0 : otherwise}. Denote the entry cost for charging by Crc

and that for discharging by Cdc. Denote xe,t as the entry cost for battery usage at

time slot t. It is given by xe,t , 1R,tCrc + 1D,tCdc.

The battery usage cost is the cost associated with the charging/discharging amount.

Let xu,t
∆= |Qt + Sr,t − Dt| denote the net amount of battery energy level change at

time slot t due to charging or discharging. From (4.3) and (4.4), it follows that xu,t

is bounded by

xu,t ∈ [0, max{Rmax, Dmax}] . (4.8)

We model the usage cost as a function of average net amount of battery energy level

change over a period of time, defined as C(x), where x is the average net amount

of change.1 It is known that faster charging/discharging within a fixed period has

a more detrimental effect on the life time of the battery. Thus, we assume C(·) is

a continuous, convex, non-decreasing function with maximum derivative C ′(·) < ∞.

Such convex cost function has been adopted in literature [34, 46, 55].

1In general, the battery usage cost is associated with a charge cycle (charging the battery and
then discharging it to the same level is considered a charge cycle). The charge cycle typically lasts
for a period of time. To approximate this, we model the associated usage cost function in terms of
average amount of energy change in the battery over a time period.
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4.1.3 Energy Storage Management

The energy storage management system depicted in Fig. 4.1 should satisfy the supply-

demand balancing requirement at each time slot t, given by

Wt = Et − Qt + Sw,t + Dt. (4.9)

The goal of the management system is to control the supply and storage to minimize

the overall system cost within a given period of operation time (defined in Section 4.2).

Note that power demand, renewable source, and pricing {Wt, St, Pt} are the ran-

dom system inputs at time slot t. Their statistical behaviors are often difficult to

obtain or predict. For example, for renewable sources such as solar, the dynamics

of the generation amount over time is complicated: St is correlated over time and

furthermore is typically non-stationary. Thus, assuming certain (known) statistics on

St would not be realistic in practice. The same applies to Wt and Pt. Instead, in

this work, we do not make any assumption on the dynamics of these system inputs

{Wt, St, Pt}. We intend to design a real-time control algorithm that is able to handle

such arbitrary and unknown system inputs.

4.2 Energy Management Optimization: Finite

Horizon Approach

Our control objective is to minimize the average system cost within a pre-defined

period of time To. The system cost includes both power purchasing cost and battery

degradation costs. Define the average cost of purchasing energy from the grid over

a To-slot period by J
∆= 1

To

∑To−1
t=0 EtPt. For the battery degradation cost, define the
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average entry cost over the To-slot period by

xe ,
1
To

To−1
∑

t=0

xe,t. (4.10)

As described in Section 4.1.2, the battery average usage cost over the To-slot period is

based on the average net changing amount over the To-slot period. Define the average

net amount of change over the To-slot period by

xu ,
1
To

To−1
∑

t=0

xu,t. (4.11)

From (4.8), it is straightforward to see that xu is bounded by2

xu ∈ [0, max{Rmax, Dmax}], (4.12)

and the battery average usage cost is C(xu). Overall, the average battery degradation

cost over the To-slot period is given by xe + C(xu).

Denote the control actions for the energy storage management system at time

slot t by at , [Et, Qt, Dt, Sr,t]. Our goal is to determine {at} to minimize the average

system cost within the To-slot period. This optimization problem is formulated by

P1: min
{at}

J + xe + C(xu)

s.t. (4.1), (4.2), (4.5), (4.9), (4.12), and

0 ≤ Sr,t + Qt ≤ min{Rmax, Bmax − Bt} (4.13)

0 ≤ Dt ≤ min{Dmax, Bt − Bmin}. (4.14)

Remark: The challenges in solving the above optimization problem are two-fold:

First, the constraints (4.13) and (4.14) depend on the SOB Bt. Due to the time-

coupling dynamics of Bt over time in (4.7), the finite battery capacity imposes a

2Note that tighter bounds can be obtained depending on different initial capacity value or total
capacity of the battery and the length of To.
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hard constraint on the control actions {at}, causing them to be correlated over time.

Second, the optimization problem under a finite horizon is much more challenging

than those considered under the infinite horizon in the existing works [21, 24, 56].

Specifically, for the infinite horizon where To → ∞, it can be shown that the av-

erage battery charging amount and discharging amount over long term are equal,

i.e., limTo→∞
1

To

∑To−1
t=0 Dt = limTo→∞

1
To

∑To−1
t=0 (Sr,t + Qt). This is a key relation that

is relied upon in developing the techniques for designing the real-time control. For

the problem with a finite period, however, the above relation no longer holds. New

techniques need to be developed for a real-time control solution.

In the following, we first apply a sequence of modification and transformation

of P1, and then we propose a real-time control algorithm to solve the resulting en-

ergy storage management problem and ensure the solution is feasible to the original

problem P1. Although the resulting real-time solution is suboptimal to P1, we show

in Section 4.4 that our proposed algorithm has a provable performance bound on its

suboptimality.

4.2.1 Problem Modification

As mentioned earlier, P1 is a challenging problem because the charging/ discharging

amount depends on the current SOB Bt as in constraints (4.13) and (4.14). This

makes the control actions couple over time. To remove such coupling, we modify the

constraints on the charging and discharging amounts. Based on the dynamic of SOB

Bt in (4.7), we have the following relation over the To-slot period.

BTo
− B0 =

To−1
∑

t=0

(Qt + Sr,t − Dt). (4.15)
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We now set a constraint on the change of SOB over the To-slot period to be equal to

a desired value ∆a, i.e.,

To−1
∑

t=0

(Qt + Sr,t − Dt) = ∆a. (4.16)

It is easy to see that |∆a| ≤ ∆max
∆= min{Bmax − Bmin, To max{Rmax, Dmax}}. Note

that, ∆a is only a desired value we set; it may not be achieved by an control algorithm

at the end of To-slot period. In Section 4.4, we will quantify the amount of mismatch

with respect to ∆a under our proposed control algorithm.

With the constraint (4.16), we now modify P1 to the follow optimization problem

P2: min
{at}

J + xe + C(xu)

s.t (4.1) − (4.5), (4.9), (4.12), (4.16).

Note that from P1 to P2, we impose the new constraint (4.16) on the change of

SOB over the To-slot period, and remove the battery capacity constraint (4.6). By

doing so, we remove the dependency of per-slot charging/discharging amount on Bt

in constraints (4.13) and (4.14), and replace them by (4.3) and (4.4), respectively.

4.2.2 Problem Transformation

In the objective of P2, the battery average usage cost C(xu) is a function of a time-

averaged quantity, which complicates the problem. Adopting the technique intro-

duced in [57], we now transform the problem to one that contains the time-average

of the function. Specifically, we introduce an auxiliary variable γt with the following
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constraints

γt ∈ [0, max{Rmax, Dmax}], ∀t (4.17)

γ = xu (4.18)

where γ
∆= 1

To

∑To−1
τ=0 γt. The above constraints indicate that the auxiliary variable

γt and xu,t lie in the same range and have the same time average behavior over the

To-slot period. Define C(γ) , 1
To

∑To−1
t=0 C(γt) as the time average of C(γt) over To

slots. By using γt instead of xu,t, we transform the optimization problem P2 into the

following optimization problem

P3: min
{γt,at}

J + xe + C(γ)

s.t (4.1) − (4.5), (4.9), (4.16) − (4.18)

where the objective now is to minimize the To-slot time average of system cost. The

following lemma shows the equivalence of P2 and P3.

Lemma 4.1. P2 and P3 are equivalent, i.e., at optimality, their objective values are

identical, and an optimal control solution {a∗
t } for P2 is optimal for P3, and vise

versa.

Proof. See Appendix 4.7.1.

P3 is still a difficult problem to solve. Nonetheless, by the modification and trans-

formation from P1 to P3, we are able to utilize Lyapunov optimization techniques

to design real-time control algorithm for P3. In the following, we propose a real-time

control policy to solve P3 by adopting the Lyapunov optimization technique [25].

Note that the solution to P3 may not be feasible to P1 due to the modification in
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(4.16). However, we will show later that by properly designing our control parameters

Ao and V , we can ensure the produced solution is also feasible to P1.

4.3 Real-Time Energy Management Algorithm

4.3.1 Lyapunov Function and Drift

Using the Lyapunov optimization framework, based on the time-averaged constraints

(4.16) and (4.18), we introduce the following two virtual queues Zt and Ht, respectively

Zt+1 = Zt + Qt + Sr,t − Dt − ∆a

To

, (4.19)

Ht+1 = Ht + γt − xu,t. (4.20)

Under the Lyapunov optimization, it can be shown [25] that satisfying constraints

(4.16) and (4.18) is equivalent to maintaining the stability of queues Zt and Ht,

respectively.

Recall that constraint (4.16) is under the assumption that BTo
− B0 = ∆a for the

To-slot period. From the updating dynamics in (4.7) and (4.19), we see that Zt and

Bt have the following relation

Zt = Bt − At (4.21)

where At
∆= Ao + ∆a

To
t is a time-dependent shift consisting of two parts: the first term

is a constant Ao > 0 which expands the range of Zt to be the entire real line, i.e.,

Zt ∈ R for Bt ∈ R
+; The second term is a linear time function ∆a

To
t which is to ensure

that the constraint (4.15) is satisfied given the dynamics of Zt in (4.19). The value of

Ao will be determined later to ensure that the solution we develop is feasible for P1,

i.e., the constraint (4.6) is satisfied.
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Let Θt , [Zt, Ht] be the vector of the virtual queues defined above. We define a

quadratic Lyapunov function L(Θt) for Θt as L(Θt) , 1
2
(Z2

t + H2
t ). Divide To slots

into M sub-frames of T -slot duration, i.e., To = MT , for positive integers M and T .

We define a one-slot sample path Lyapunov drift3 as

∆(Θt) , L (Θt+1) − L(Θt) (4.22)

which only depends on the current system inputs {Wt, St, Pt}. Instead of directly

minimizing the system cost considered in P3, we now consider a drift-plus-cost metric

defined by

∆(Θt) + V [EtPt + xe,t + C(γt)] (4.23)

which is a weighted sum of the drift ∆(Θt) and the system cost at current time slot

t.4 The constant V > 0 sets the relative weight between the drift and the system cost.

We first provide the following lemma presenting an upper bound on the drift

∆(Θt), which will be used in our subsequent design of the real-time control algorithm.

Lemma 4.2. The one-slot Lyapunov drift ∆(Θt) is upper bounded by

∆(Θt) ≤ G + Zt

(

Qt + Sr,t − Dt − ∆a

To

)

+ Ht [γt − (Et + Sr,t + lt)] (4.24)

where

lt ,







Wt − Sw,t if Ht < 0,

Sw,t − Wt otherwise.

and G = 1
2

max
{

(Rmax − ∆a

To
)2, (Dmax + ∆a

To
)2
}

+ 1
2

max {R2
max, D2

max}.

3We can also define a T -slot sample path Lyapunov drift L (Θt+T ) − L(Θt). However, for T ≥ 2,
L(Θt+T ) and thus the drift are functions of future system inputs. To design a real-time control
algorithm with causal inputs, we only consider one-slot Lyapunov drift with the current system
input {Wt, St, Pt}

4By Lyapunov optimization theory [25], essentially the Lyapunov drift in the drift-plus-cost metric
is used to maintain the time-averaged constraints (4.16) and (4.18) being satisfied.
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Proof. See Appendix 4.7.2.

Using the upper bound on ∆(Θt) in (4.24), we immediately have the upper bound

on the drift-plus-cost metric in (4.23).

4.3.2 Real-Time Control Algorithm

In the following, we design the real-time algorithm to minimize the upper bound of

drift-plus-penalty metric at every time slot t. By removing the constant terms inde-

pendent of control action at, this problem is equivalent to the following optimization

problem

P4 : min
γt,at

V [EtPt + xe,t + C(γt)] + Htγt + (Et + Sr,t)(Zt − Ht)

s.t. (4.1) − (4.5), (4.9), and (4.17).

Denote the optimal solution of P4 by (γ∗
t , a∗

t ). Regrouping the terms in the

objective of P4 with respect to the control actions γt and at, we can split P4 into

two sub-problems below to solve separately

P4a : min
γt

Htγt + V C(γt) s.t. (4.17).

P4b : min
at

Et(Zt − Ht + V Pt) + Sr,t(Zt − Ht) + V (1R,tCrc + 1D,tCdc)

s.t. (4.1) − (4.5), and (4.9).

After determining (γ∗
t , a∗

t ), we update Zt and Ht through their respective updating

equations.

We now find γ∗
t and a∗

t by solving P4a and P4b, respectively. Furthermore, we

provide the conditions under which the control solution a∗
t is feasible to P1.
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1) The optimal γ∗
t : We first consider P4a. Since C(·) is convex, the objective of

P4a is convex. Let C ′(·) denotes the first derivative of C(·) and C ′−1(·) denote the

inverse function of C ′(·). Solving P4a, we obtain the optimal solution γ∗
t below.

Lemma 4.3. The optimal solution γ∗
t of P4a is given by

γ∗
t =















0 if Ht ≥ 0
Γ if Ht < −V C ′(Γ)
C ′−1

(

−Ht

V

)

otherwise.

(4.25)

where Γ , max{Rmax, Dmax}.

Proof. See Appendix 4.7.3.

As we will see next, Lemma 4.3 is also useful to ensure a∗
t to be feasible to P1.

The feasibility of a∗
t to P1 relies on the design of Ao and V , which requires Ht to be

bounded. The optimal solution γ∗ in (4.25) essentially ensures a bounded Ht.

2) The optimal a∗
t feasible to P1: Now, we solve P4b to obtain the optimal control

solution a∗
t = [E∗

t , Q∗
t , D∗

t , S∗
r,t]. Define the idle state of the battery as the state where

there is no charging or discharging activity. We denote the control solution under

this idle state by aid
t = [Eid

t , Qid
t , Did

t , S id
r,t]. By supply-demand balancing equation

(4.9), it is given by Eid
t = Wt − Sw,t, Qid

t = Did
t = S id

r,t = 0. Let ξt denote the value

of the objective in P4b when battery is in the idle state. In this state, we have

ξt = (Wt − Sw,t)(Zt − Ht + V Pt). We derive a∗
t in three cases below. In each case,

the cost of charging (or discharging) is compared with the cost ξt of keeping an idle

state, and the control decision is obtained by taking the one with the minimum cost.

The solution is summarized below.
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Proposition 4.1. Denote a′
t = [E ′

t, Q′
t, D′

t, S ′
r,t]. The optimal control solution a∗

t of

P4b is given by

1) For Zt−Ht +V Pt ≤ 0: The battery is in either charging or idle state. The solution

a′
t in charging state is give by



























D′
t = 0,

S ′
r,t = min{St − Sw,t, Rmax}

Q′
t = min{Rmax − S ′

r,t, Emax − Wt + Sw,t}
E ′

t = min{Wt + Rmax − Sw,t − S ′
r,t, Emax}.

(4.26)

If E ′
t(Zt − Ht + V Pt) + (Zt − Ht)S ′

r,t + V Crc1R,t < ξt, then a∗
t = a′

t; Otherwise,

a∗
t = aid

t .

2) For Zt − Ht < 0 ≤ Zt − Ht + V Pt: The battery is either in charging, discharging,

or idle state. The solution a′
t in charging or discharging state is give by



























D′
t = min{Wt − Sw,t, Dmax}

S ′
r,t = min{St − Sw,t, Rmax}

Q′
t = 0,

E ′
t = [Wt − Sw,t − Dmax]+.

(4.27)

If E ′
t(Zt − Ht + V Pt) + (Zt − Ht)S ′

r,t + V (Crc1R,t + Cdc1D,t) < ξt, then a∗
t = a′

t;

Otherwise, a∗
t = aid

t .

3) For 0 ≤ Zt −Ht < Zt −Ht + V Pt: The batter is in either discharging or idle state.

The solution a′
t in discharging state is give by















D′
t = min{Wt − Sw,t, Dmax}

S ′
r,t = Q′

t = 0,

E ′
t = [Wt − Sw,t − Dmax]+.

(4.28)

If E ′
t(Zt − Ht + V Pt) + V Cdc1D,t < ξt, then a∗

t = a′
t; Otherwise, a∗

t = aid
t .

Proof. See Appendix 4.7.4.
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Remark: Proposition 4.1 shows that the optimal control decision a∗
t is determined

in three cases, depending on the value of Zt−Ht and Zt−Ht +V Pt. Since Zt is related

to Bt, and Ht is related to battery usage cost xu,t, the three cases essentially represent

the control decision when the battery energy level is at low, moderate, or high, as in

case 1), 2), or 3), respectively. When both the battery energy level and electricity

price are low, the battery tends to charge to store energy (or idle if the battery cost

is high). When battery energy level is high, the battery tends to discharge to supply

energy (or idle if the battery cost is high). Between the two levels, the battery may

choose either charge or discharge, depending on the electricity price and battery cost

(or idle if the battery cost is high).

The optimal solution a∗
t of P4b provides a real-time solution for P3. However,

it may not be feasible to P1, because the battery capacity constraint (4.6) on Bt

may be violated. By properly designing Ao and V , we can guarantee that a∗
t satisfies

constraint (4.6), and ensure the feasibility of the solution. The result is stated below.

Proposition 4.2. For the optimal solution a∗
t of P4, set At in (4.21) with

Ao =







Bmin + V Pmax + V C ′(Γ) + Γ + Dmax + ∆a

To
, if ∆a ≥ 0

Bmin + V Pmax + V C ′(Γ) + Γ + Dmax + ∆a

To
− ∆a, if ∆a < 0

(4.29)

and V ∈ (0, Vmax] with

Vmax =
Bmax − Bmin − Rmax − Dmax − 2Γ − |∆a|

Pmax + C ′(Γ)
(4.30)

the resulting Bt satisfies the battery capacity constraint (4.6), and {a∗
t } is feasible to

P1.

Proof. Here we provide a brief outline of our proof. The details are provided in
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Appendix 4.7.5. Using the solutions γ∗
t and a∗

t of P4a and P4b, respectively, we can

show that both Zt and Ht are upper and lower bounded. Then, by applying these

bounds to (4.21) and using the battery capacity constraint (4.6), we obtain Ao as the

minimum value that can be achieved with a given value of ∆a. With Ao obtained, we

derive the upper bound of V , i.e., Vmax, to ensure that (4.6) is satisfied. �

Remark 1 : Since V > 0, for Vmax in (4.30) to be positive, the battery storage

capacity should be larger than several times the maximum of charging and discharging

amounts, provided |∆a| is set small. This is generally satisfied for the battery used

for storage and the time slot duration not being too long.

Remark 2 : Since ∆a is set as a desired value, the solutions {a∗
t } from P4 may

not satisfy constraint (4.16) at the end of the To-slot period, and thus may not be

feasible to P2. Nonetheless, by Proposition 4.2, setting Ao and V as in (4.29) and

(4.30) guarantees the control solutions {a∗
t } being feasible to P1.

We summarize the proposed real-time control algorithm in Algorithm 1 and pro-

vide the following remarks.

Remark 3 : We here summarize our overall approach. To seek a solution to P1,

we have performed a sequence of modification and transformations from P1 to P4.

These problems have tight connections as follows: we modify P1 to P2 by removing

the battery capacity constraint on per-slot charging and discharging amounts in (4.13)

and (4.14), and instead imposing a new constraint (4.16) on the overall change of bat-

tery energy level over To slots. Problems P2 and P3 are equivalent by Lemma 4.1.

Although P3 is still difficult to solve, we are able to leverage Lyapunov optimization

technique, and propose a real-time algorithm for P3, which is solving per-slot opti-
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Algorithm 1 Real-time battery management control algorithm
Initialize: Z0 = H0 = 0.
Determine To.
Set ∆a ∈ [−∆max, ∆max].
Set Ao and V ∈ (0, Vmax] as in (4.29) and (4.30), respectively.
At time slot t:

1: Observe the system input {Wt, St, Pt} and queues Zt and Ht.
2: Solve P4a and obtain γ∗

t in (4.25); Solve P4b and obtain a∗
t by following cases

(4.26)-(4.28).
3: Use a∗

t and γ∗
t to update Zt+1 and Ht+1 in (4.19) and (4.20), respectively.

4: Output control decision a∗
t .

mization problem P4. From P1 to P4, the only constraint we removed from P1 is

the battery capacity constraint. Thus, we design system parameters Ao and Vmax to

ensure our proposed real-time solution satisfies the battery capacity constraint and

thus is feasible to P1. As a result, Algorithm 1 provides a real-time suboptimal solu-

tion to P1. Although suboptimal, we will see in Section 4.4 that Algorithm 1 has a

provable performance bound on its suboptimality.

Remark 4 : Note that, our proposed real-time control solution is provided in

closed-form and thus is very simple to implement. Furthermore, our proposed al-

gorithm does not rely on any statistical assumption on the pricing, demand, and

renewable processes {Wt, St, Pt}. Thus, it can be applied to general scenarios, espe-

cially when such process is non-stationary or difficult to predict in a highly dynamic

environment and over a short time period.

4.4 Performance Analysis

We have proposed a real-time control solution (Algorithm 1) for the original energy

storage problem P1. As mentioned earlier, it is a feasible but suboptimal solution for
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P1. In this section, we analyze the performance of Algorithm 1.

4.4.1 Performance of Algorithm 1

We first analyze the performance of Algorithm 1 with respect to the objective of

P1. Let u∗(V ) denote the To-slot average system cost objective of P1 achieved by

Algorithm 1, where we explicitly show the dependency of the cost on the weight V

in the drift-plus-cost metric. Partition To slots into T frames with To = MT , for

some integers M, T ∈ N
+. Let uopt

m denote the minimum T -slot average cost achieved

by a T -slot look-ahead optimal control solution over the mth frame. In other words,

assuming a full knowledge of {Wt, St, Pt} for the entire frame beforehand, we solve P1

with T -slot average cost objective for this frame and obtain its minimum objective

value uopt
m . Thus, the T -slot look-ahead optimal solution is a non-causal solution.

The following theorem provides a bound of the cost performance under our proposed

real-time algorithm to uopt
m under the T -slot lookahead optimal solution.

Theorem 1. Consider {Wt, St, Pt} being any arbitrary processes over time. Assume

any M, T ∈ N
+ with To = MT . Under Algorithm 1, the resulting To-slot average

system cost is bounded by

u∗(V ) − 1
M

M−1
∑

m=0

uopt
m ≤ GT

V
+

L(Θ0) − L(ΘTo
)

V To

+
C ′(Γ)(H0 − HTo

)
To

. (4.31)

In particular, as To → ∞, we have

lim
To→∞

u∗(V ) − lim
To→∞

1
M

M−1
∑

m=0

uopt
m ≤ GT

V
. (4.32)

Proof. We provide a brief proof here. Please find detailed proof in Appendix 4.7.6.

Using the upper bound on ∆(Θt) in Lemma 4.1, we have the upper bound of the
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drift-plus-penalty metric. Summing the bound over m ∈ {0, . . . M − 1} and dividing

by V To, we obtain the upper bound for u∗(V ). Using Jensen’s inequality in the convex

function C(γ) yields the above bound. �

Note that, as shown in Appendix 4.7.5, both L(Θt) and Ht are bounded. Thus,

the upper bound in (4.31) is finite. We also have the following remarks.

Remark 1 : First, Theorem 1 presents an upper bound on the performance gap

of Algorithm 1 to the T -slot lookahead optimal solutions, for all possible MT = To.

The gap is in the order of O(1/V ). Thus, for the best performance, we should always

set V = Vmax. Second, since Vmax in (4.30) increases with Bmax, the solution by

Algorithm 1 is asymptotically optimal, as it is asymptotically equivalent to the optimal

T -slot lookahead solution as the battery capacity increases and To increases.

Remark 2 : The average system cost under the T -slot lookahead optimal solution

decreases with increasing T . This is because more system inputs are known beforehand

and better optimization can be made. Thus, although the upper bound in (4.31)

bounds the gap between Algorithm 1 and T -slot lookahead, the actual gap between

u∗(V ) and that of T -slot lookahead is smaller with smaller T . It is also possible that

u∗(V ) is lower than the average system cost of T -slot lookahead optimal solution for

small value of T , as we will see in the simulation results.

Remark 3 : The bound in (4.32) provides the performance gap of long-term time-

averaged sample-path system cost of Algorithm 1 and T -slot lookahead. As To → ∞,

Algorithm 1 essentially provides the control solution under the infinite time horizon.
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4.4.2 Algorithm Parameter ∆a

As mentioned earlier, when modifying P1 to P2, we impose a new constraint (4.16),

where we set ∆a to be a desired value for the change of battery energy level in To

slots. This value may not be achieved by our proposed algorithm at the end of To

slots. We now quantify the amount of mismatch with respect to ∆a by Algorithm 1.

Denote the mismatch by ǫ ,
∑To−1

τ=0 (Qτ + Sr,τ − Dτ ) − ∆a. We have the following

result.

Proposition 4.3. For any system input {Wt, St, Pt}, under Algorithm 1, for any

initial queue value Z0 ∈ R, the mismatch ǫ for constraint (4.16) is given by

ǫ = ZTo
− Z0, (4.33)

and is bounded by

|ǫ| ≤ 2Γ + Rmax + V Pmax + V C ′(Γ) + Dmax. (4.34)

Proof. See Appendix 4.7.7.

Proposition 4.3 provides the exact expression of the mismatch ǫ, as well as an

upper bound for it. This upper bound may be loose in the actual implementation.

As we will see in the simulation results, the actual error ǫ is much smaller than this

upper bound.

Since ∆a needs to be set in Algorithm 1, the solution and its performance depend

on ∆a. Note from (4.30) that Vmax increases as |∆a| decreases. As discussed in

Remark 1 following Theorem 1, the larger Vmax, the closer performance to the optimal

T -slot look-ahead solution. Thus, in terms of performance bound, a smaller |∆a| is
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Figure 4.2: System inputs W t, St, and Pt over 24 hours.

preferred. In Section 4.5, we provide detailed simulation analysis of the effect of ∆a

on the performance, and provide a guideline for determining ∆a in Section 4.5.5.

4.5 Simulation Results

4.5.1 Simulation Configuration

We study the performance of our proposed battery management control algorithm

through simulation. We set the slot duration to be 5 minutes, and assume Pt, St

and Wt within each slot being constant. We use the data collected from Ontario

Energy Board [53] to set the price Pt. As shown Fig. 4.2 top, it follows a three-

stage price pattern as {Ph, Pm, Pl} = {$0.118, $0.099, $0.063} and is periodic every

24 hours. We consider {St} being generated by solar energy. It is a non-stationary

process, with the mean amount St = E[St] changing periodically over 24 hours, and
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having three-stage values as {Sh, Sm, Sl} = {1.98, 0.96, 0.005}/12 kWh and standard

deviation as σSi
= 0.4Si, for i = h, m, l, as shown in Fig. 4.2 middle. We assume the

load {Wt} is a non-stationary process, having three-stage mean values W t = E[Wt] as

{W h, W m, W l} = {2.4, 1.38, 0.6}/12 kWh with standard deviation as σWi
= 0.2W i,

for i = h, m, l, as shown in Fig. 4.2 bottom. We set other parameters as follows:

Rmax = 0.165 kWh, Dmax = 0.165 kWh, Emax = 0.3 kWh, Crc = Cdc = 0.001,

Bmin = 0, and the initial battery energy level B0 = Bmax/2. Unless specified, we set

Bmax = 3 kWh as the default value.5

We consider a 24-hour duration and thus set To = 288 slots. Based on constraint

(4.16), a positive (negative) ∆a allows battery to charge (discharge) more than dis-

charge (charge) over To-period. Note that in the practical implementation, fixing ∆a

( 6= 0) over multiple periods will eventually drive the energy in the battery to its max-

imum or minimum, and render its setting meaningless.6 Thus, in simulation, we set

the value of |∆a| and alternate the sign of ∆a over each To-slot period to control this

tendency. Specifically, we set ∆a = +c for the odd To-slot periods and ∆a = −c for

the even To-slot periods, for some constant c > 0. The respective values of Ao and

Vmax are set as in (4.29) and (4.30). Unless specified, we set V = Vmax as the default

value.

Quadratic Battery Usage Cost: We consider an exemplary case where the battery

usage cost is a quadratic function, given by C(xu) = kxu
2, where the constant k > 0

5The current storage battery products in the market are with capacity ranging from 1.2 kWh to
7 kWh [58–60].

6The battery eventually reaches its maximum storage capacity (or empty) and may not be able
to charge (or discharge) even if ∆a > 0 (or < 0) is set over all To-slot periods.
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is the battery cost coefficient depending on the battery characteristics, and xu is given

in (4.11). By Lemma 4.3, the optimal γ∗
t of P4a with this particular C(xu) can be

straightforwardly obtained as below

γ∗
t =















0 if Ht > 0
Γ if Ht < −2kV Γ
− Ht

2kV
otherwise

. (4.35)

We use this cost function throughout our simulation study. Unless specified, we set

k = 0.2 as the default value.

Other Algorithms for Comparison: We consider two other algorithms, one being a

non-causal solution and the other being a real-time algorithm: i) 3-slot look-ahead : We

consider the non-causal T -slot look-ahead optimal solution with T = 3. Specifically,

assuming {Pt, Wt, St} are known non-causally 3-slot ahead, for each 3-slot frame, we

solve P1 with the objective being a 3-slot average cost objective and obtain uopt
m

for mth frame.7 ii) One-slot greedy: a greedy algorithm that minimizes the per-slot

system cost, based on the current input {Pt, Wt, St}. That is, we solve P1 with the

objective being 1-slot cost objective. Using it in the To-slot period, it essentially is the

T -slot look-ahead solution with T = 1. Note that, due to the battery operation cost,

to minimize per-slot system cost, the greedy solution is to directly purchase energy

from the grid to meet the demand without utilizing battery storage (after use up the

energy initially stored in the battery). Thus, the greedy algorithm is a solution that

does not utilize storage.

7Here we only consider 3-slot look-ahead optimal solution. It is obtained through exhaustive
search. Finding T -slot look-ahead optimal solution for larger T becomes increasingly more difficult.
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4.5.2 Behavior of Bt over Time

We first show the state of battery energy level Bt over time slot t under Algorithm 1.

Fig. 4.3 top is generated assuming both {St} and {Wt} are i.i.d. processes with

uniform distribution with interval [1, 15]/60 kWh and [1, 4]/12 kWh, respectively.

Fig. 4.3 bottom is generated with non-stationary {St} and {Wt} with the default

setting as described in Section 4.5.1 and Fig. 4.2. We see that, in both cases, the

change of Bt roughly follows the change of three-stage price Pt in Fig. 4.2 top. For

the non-stationary case, due to the change of mean renewable energy St and mean

demand W t, we observe the changes of Bt at some time durations are less random

(e.g. more renewable St to supply Wt directly), and at other time duration can be

more drastic (e.g. when the mean St and W t change).

4.5.3 Performance Comparison under Algorithm Parameters

1) Effect of desired ∆a: We first evaluate how the average system cost objective of

P1 under our proposed Algorithm 1 (i.e., u∗(V )) varies with ∆a in Fig. 4.4. We run

our control algorithm over a total duration of Ttot slots, with Ttot = {4, 6}To. As we

see, the cost increases with ∆a. In particular, a positive ∆a results in a higher cost.

This is because that, to satisfy the desired ∆a(> 0) at the end of the To-slot period,

more energy needs to be stored in the battery. A larger ∆a results in more cost due

to energy purchasing from the grid. When ∆a < 0, more discharging than charging

is required, resulting in less cost because no energy purchase from the grid is needed.

A larger value of |∆a| for ∆a < 0 leads to less requirement of energy purchase, even

though the battery usage cost C(xu) is higher. Thus, the overall system cost is lower.
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Figure 4.3: Trace of state of battery Bt vs. time slot t in a single realization: Top: i.i.d
{Wt} and {St}; Bottom: non-stationary {Wt} and {St} using Fig. 4.2).
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2) Mismatch ǫ: We study the resulting mismatch ǫ for the constraint (4.16)

under Algorithm 1 as described in Proposition 4.3. In Fig. 4.5, we plot the CDF of

the mismatch ǫ over 500 realizations of {Wt, St}, for ∆a = ±0.2, ±0.4, ±0.6. The

duration of Ttot = 6To. We see that for a small |∆a| = 0.2, the absolute mismatch |ǫ|

is also relatively small, and the range of the CDF curves is closer to 0. When |∆a|

increases to 0.6, the value of |ǫ| becomes larger accordingly. This is because requiring

battery discharging or charging to meet larger |∆a| may not be achieved at the end of

To, causing larger absolute mismatches. We also observe that ǫ and ∆a are in opposite

sign. This shows that |∑(n+1)To−1
τ=nTo

(Qτ + Sr,τ − Dτ )| < |∆a|, i.e., the net change of

energy amount in the battery is less than the desired amount we set.

3) Effect of parameter V : In Fig. 4.6, we evaluate the average system cost under

Algorithm 1 for V ∈ (0, Vmax]. We set ∆a = 0 and Ttot = 6To. As we see, under

our proposed algorithm, the system cost reduces as V increases. This observation is

consistent with the result in Theorem 1 that the upper bound of the performance to

the optimal T -slot lookahead solution reduces as V increases. In contrast, both 3-slot

look-ahead and one-slot greedy algorithms do not depend on V , and thus the average

system cost is flat.

4.5.4 Performance Comparison under Battery Parameters

1) Effect of battery usage cost: Fig. 4.7 shows the average system cost vs. battery

usage cost coefficient k under Algorithm 1 and the two alternative algorithms. We

set ∆a = 0. Note that since k affects the battery usage cost, the system cost under

Algorithm 1 increases with k. So does that of the 3-slot look ahead solution. However,
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one-slot greedy algorithm does not depend on k, because the optimal control decision

to minimize the per slot system cost objective of P1 is to purchase the exact amount

of Wt − Sw,t without storing energy (after all energy is the battery is used up). Thus,

the battery storage is bypassed under this algorithm. We see from Fig. 4.7 that our

proposed real-time solution under Algorithm 1 outperforms the other two algorithms

over a wide range of values of k. Note that as already discussed in Remark 2 after

Theorem 1, it is possible that our proposed real-time solution performs better than

T -slot look-ahead optimal solution for small T .

2) Effect of battery storage capacity Bmax: In Fig. 4.8, we study the effect of

battery capacity Bmax on the system cost under Algorithm 1, for ∆a = 0, ±0.2, ±0.4.

We set Crc = Cdc = 0.001. As we see, the system cost reduces as Bmax increases. This

is because a larger battery capacity allows charging/discharging to be more flexible

based on the current need and electricity price, resulting in a lower system cost. Also,

consistent with previous simulation results, we see that setting ∆a ≤ 0 results in a

smaller system cost. Under Algorithm 1, when ∆a > 0, the battery is forced to store

more energy, resulting in a higher system cost. When ∆a ≤ 0, the battery discharges

more energy to meet the desired ∆a, resulting in a lower system cost. The performance

difference between ∆a = 0 and ∆a = −0.2 is negligible for a low to medium battery

capacity, but is more noticeable for a larger battery capacity.

As a comparison, the optimal 3-slot look-ahead algorithm also benefits from a

larger battery capacity Bmax and the system cost reduces. However, the cost is un-

changed under the one-slot greedy algorithms as it bypasses the battery. We observe

that our proposed real-time control solution under Algorithm 1 outperforms these two
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algorithms over a wide range of Bmax and ∆a.

4.5.5 Guideline for Determining ∆a

For setting the value of ∆a, a user has his own choices depending on what he prefers

in this period. If the user wants to store more energy, a positive ∆a can be set; If

the user prefers to use more energy from the battery to supply the user demand, then

a negative ∆a can be set. In Section 4.5.3.1)-2), we have studied the effect of ∆a in

terms of its setting value and mismatch ǫ on the performance in Figs. 4.4 and 4.5.

Furthermore, we have shown the effect of ∆a to the system cost in Fig. 4.8. These

studies provide us a guideline on determining the value of ∆a. To summarize, the

overall system cost increases with ∆a, and the change is smaller when ∆a ≤ 0 than

when ∆a > 0. In addition, a smaller value of |∆a| results in a smaller mismatch as

shown in Fig. 4.5. Thus, in general, setting ∆a ≤ 0 with |∆a| being a relatively small

value in Algorithm 1 is desirable for the system cost.

4.6 Energy Storage System with Sell-Back

In this section, we extend our current model to sell-back model. As shown in Fig. 4.9,

the energy discharged from the battery and harvested from the renewable generation

can be sold back to the grid.

4.6.1 System Model

Energy Consumption: This part has been introduced in Section 4.1. We only provide

a brief description as below. For renewable generation, we assume St is first supplied

to the user’s demand. We have Sw,t = min{Wt, St}. Also, user can purchase energy
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Figure 4.9: An example of energy storage and management system with selling-back

from the conventional grid at a real-time buying price Pb,t. It is assumed to be

in a price interval Pb,t ∈ [P min
b , P max

b ], where P min
b and P max

b are the minimum and

maximum buying prices, respectively. The value of Pb,t is assumed known to the user

and remains unchanged during the slot. The amount of energy Et buying from the

grid is bounded by

Et ∈ [0, Emax] (4.36)

Let Fd,t denote the amount of energy discharged from the battery used to sup-

ply the user demand. By the demand-and-supply relation, the demand Wt must be

satisfied at each time slot t. We have

Wt = Et − Qt + Sw,t + Fd,t. (4.37)

Energy Production: Let Ss,t denote the amount of energy sold back to the grid

from the renewable generation and Fs,t denote the amount of energy discharged from

the battery used to sell back to the grid. The total amount for selling is bounded by

Fs,t + Ss,t ∈ [0, Umax] (4.38)
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where Umax is the maximum amount of energy allowed to sell back to the grid. Similar

to Et, Fs,t + Ss,t is followed with a real-time selling price Ps,t ∈ [P min
s , P max

s ], where

P min
s and P max

s are the minimum and maximum selling prices. Ps,t is assumed known

to the user and remains unchanged during the slot. We assume Pb,t > Ps,t for ∀t.

Remark: Our algorithm can handle Pb,t ≤ Ps,t. However, with energy storage

being considered, it is not appropriate to set Pb,t ≤ Ps,t, i.e., user will always sell

stored energy with high price and buy the same amount with lower price at same

time. From the utility perspective, this should not be allowed.

Essentially, the user can only be in one of stages, i.e., either electricity-hungry

or electricity-satiated. The corresponding behavior allows user either to buy or sell,

but not both at same time. Since Ss,t is separate from any supply-related activity,

the renewable energy should be able to sell Ss,t at any time without any constraint.

Thus, user must satisfy the following constraint

Et · Fs,t = 0. (4.39)

For Fs,t > 0, we must have Et = 0. It implies that battery would sell energy back

to the grid only if the user doesn’t need to buy any energy from the grid to supply

its demand at the moment; For Et > 0, we must have Fs,t = 0. It implies that

user requests to buy extra energy from the grid. Thus, the user needs energy and

cannot sell any energy at the moment. Later, we will show (4.39) is not a sufficient

condition, but it is the necessary condition. Running our algorithm can ensure (4.39)

being satisfied.

Battery Operation: After Sw,t is used to directly supply the user’s demand, a
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controller will help user decide how to utilize the remaining energy harvested by the

renewable generator. Let Sr,t be the amount of energy charged into the battery.

Consider together with Ss,t, we have

Sr,t + Ss,t ∈ [0, St − Sw,t], (4.40)

and with Qt, we have

Sr,t + Qt ∈ [0, Rmax]. (4.41)

The total discharged amount from the battery that is used to supply the user

demand and sell back to the grid is bounded by

Fd,t + Fs,t ∈ [0, Dmax]. (4.42)

We assume there is no simultaneous charging and discharging activities happened at

the same time. Thus, we have

(Sr,t + Qt) · (Fd,t + Fs,t) = 0. (4.43)

The dynamic of SOB Bt due to charging and discharging activities is given as

Bt+1 = Bt + Sr,t + Qt − Fd,t − Fs,t. (4.44)

4.6.2 Real-Time Energy Storage Management

Our control objective is to minimize the average system cost within a pre-defined

period of time To. The system cost includes the power buying cost, selling profit

and the battery degradation cost. Let J
∆= 1

To

∑To−1
t=0 EtPb,t − (Fs,t + Ss,t)Ps,t be the

average net cost for energy buying and selling over a To-slot period. The average
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battery degradation cost over the To-slot period is same to the previous model, given

by xe + C(xu).

At time slot t, the system input is {Wt, St, Pb,t, Ps,t}. The control action is at ,

{Et, Qt, Fd,t, Fs,t, Sr,t, Ss,t}. Our optimization problem is formulated as follows

P1: min
{at}

J + xe + C(xu)

s.t. (4.36), (4.37), (4.38), (4.40), (4.43),

xu ∈ [0, max{Rmax, Dmax}] (4.45)

0 ≤ Sr,t + Qt ≤ min{Rmax, Bmax − Bt} (4.46)

0 ≤ Fd,t + Fs,t ≤ min{Dmax, Bt − Bmin}. (4.47)

Since the problem formulation for this sell-back system is similar to our previous

work, i.e., without sell-back, we apply the same approach for problem modification

and transformation. Specifically, for problem modification, we set a new constraint

on the change of SOB over the To-slot period to be equal to a desired value ∆a, i.e.,

To−1
∑

τ=0

(Qτ + Sr,τ − Fd,τ − Fs,τ ) = ∆a. (4.48)

For problem transformation, we introduce the auxiliary variable γt with constraints

(4.17) and (4.18). Thus, we are able to utilize Lyapunov optimization techniques to

design the real-time control algorithm. Please find detail for problem formulation in

Section 4.2, and Lyapunov function and drift in Section 4.3. The resulting real-time
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optimization problem is provided as follow

P4a : min
γt

Htγt + V C(γt)

s.t. γt ∈ [0, max{Rmax, Dmax}], ∀t (4.49)

P4b : min
at

Et(Zt − Ht + V Pb,t) + Sr,t(Zt − Ht)

− Fs,t(Zt − |Ht| + V Ps,t) − Ss,tV Ps,t + V (1R,tCrc + 1D,tCdc)

s.t. (4.36)-(4.38), (4.40)-(4.43).

We now find γ∗
t and a∗

t by solving P4a and P4b, respectively. Furthermore, we provide

the conditions under which the control solution a∗
t is feasible to P1.

1) The optimal γ∗
t : See Lemma 4.3.

2) The optimal a∗
t feasible to P1: Now, we solve P4b to obtain the optimal control

solution a∗
t = [E∗

t , Q∗
t , F ∗

d,t, F ∗
s,t, S∗

r,t, S∗
s,t]. Define the idle state of the battery as the

state where there is no charging or discharging activity. Under this state, the control

solution, denoted by aid
t = [Eid

t , Qid
t , F id

d,t, F id
s,t, S id

r,t, S id
s,t], is given by Eid

t = Wt − Sw,t,

Qid
t = F id

d,t = F id
s,t = S id

r,t = 0, and S id
s,t = min{St − Sw,t, Umax}. Let ξt denote the

value of the objective in P4b when battery is in the idle state. In this state, we have

ξt = (Wt − Sw,t)(Zt − Ht + V Pb,t) − min{St − Sw,t, Umax}V Ps,t. We derive a∗
t in cases

below. In each case, the cost of charging (or discharging) is compared with the cost

ξt of keeping an idle state, and the control decision is obtained by choosing the one

with the minimum objective cost. The solution is summarized below.

Proposition 4.4. Denote a′
t = [E ′

t, Q′
t, F ′

d,t, F ′
s,t, S ′

r,t, S ′
s,t]. If the renewable energy is
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used to charge the battery, i.e., S ′
r,t > 0, for S ′

r,t(Zt − Ht) + V Crc < −S ′
s,tV Ps,t, let







S ′
r,t = min{St − Sw,t, Rmax}

S ′
s,t = min{St − Sw,t − S ′

r,t, Umax},
(4.50)

for S ′
r,t(Zt − Ht) + V Crc ≥ −S ′

s,tV Ps,t, let







S ′
s,t = min{St − Sw,t, Umax}

S ′
r,t = min{St − Sw,t − S ′

s,t, Rmax}.
(4.51)

The optimal control solution a∗
t of P4b is given by

1) For Zt − Ht + V Pb,t ≤ 0: The battery can either charge or stay idle. Let



























F ′
d,t = F ′

s,t = 0
S ′

r,t and S ′
s,t follow (4.50) or (4.51)

Q′(t) = min{Rmax − S ′
r,t, Emax − Wt + Sw,t}

E ′
t = min{Wt + Rmax − Sw,t − S ′

r,t, Emax}.

(4.52)

If E ′
t(Zt − Ht + V Pb,t) − S ′

s,tV Ps,t + (Zt − Ht)S ′
r,t + V 1R,tCrc < ξt, then a∗

t = a′
t;

Otherwise, a∗
t = aid

t .

2) For min{Zt − Ht, Zt − |Ht| + V Ps,t} > 0: The battery can either discharge or stay

idle. If Ht ≥ 0 or {Ht < 0, Zt+Ht ≥ 0}: Battery sells back prior to the renewable.

Let






































F ′
d,t = min{Wt − Sw,t, Dmax}

F ′
s,t = min{Dmax − F ′

d,t, Umax}
S ′

s,t = min{St − Sw,t, Umax − F ′
s,t}

S ′
r,t = Q′(t) = 0

E ′
t = [Wt − Sw,t − Dmax]+,

(4.53)

else the renewable sells first, i.e., {Ht < 0, Zt + Ht < 0}. Let







































F ′
d,t = min{Wt − Sw,t, Dmax}

S ′
s,t = min{St − Sw,t, Umax}

F ′
s,t = min{Dmax − F ′

d,t, Umax − S ′
s,t}

S ′
r,t = Q′(t) = 0

E ′
t = [Wt − Sw,t − Dmax]+.

(4.54)
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If E ′
t(Zt − Ht + V Pb,t) − S ′

s,tV Ps,t − F ′
s,t(Zt − |Ht| + V Ps,t) + V 1D,tCdc < ξt, then

a∗
t = a′

t; Otherwise, a∗
t = aid

t .

3) For max{Zt −Ht, Zt −|Ht| + V Ps,t} < 0 ≤ Zt −Ht + V Pb,t: The battery can either

charge (only from Sr,t) or discharge (only from Fd,t). Let



























F ′
d,t = min{Wt − Sw,t, Dmax}

F ′
s,t = Q′(t) = 0

S ′
r,t and S ′

s,t follow (4.50) or (4.51)
E ′

t = [Wt − Sw,t − Dmax]+,

(4.55)

If E ′
t(Zt − Ht + V Pb,t) + S ′

r,t(Zt − Ht) − S ′
s,tV Ps,t + V (Crc1R,t + Cdc1D,t) < ξt, then

a∗
t = a′

t; Otherwise, a∗
t = aid

t .

4) For Zt − Ht < 0 < Zt − |Ht| + V Ps,t: Battery can either charge (only from Sr,t)

or discharge. Due to no simultaneous charging and discharging constraint (4.43),

if Fs,t ≥ 0 and Sr,t = 0, let







































F ′
d,t = min{Wt − Sw,t, Dmax}

S ′
s,t = min{St − Sw,t, Umax}

F ′
s,t = min{Dmax − F ′

d,t, Umax − S ′
s,t}

S ′
r,t = Q′(t) = 0

E ′
t = [Wt − Sw,t − Dmax]+;

(4.56)

If Sr,t ≥ 0 and Fs,t = 0, let



























F ′
d,t = min{Wt − Sw,t, Dmax}

S ′
r,t and S ′

s,t follow (4.50) or (4.51)
F ′

s,t = Q′(t) = 0
E ′

t = [Wt − Sw,t − Dmax]+,

(4.57)

Choose the control action a′
t achieving the minimum value for the objective. If

E ′
t(Zt −Ht +V Pb,t)+S ′

r,t(Zt −Ht)−F ′
s,t(Zt −|Ht|+V Ps,t)−S ′

s,tV Ps,t +V (Crc1R,t +

Cdc1D,t) < ξt, then a∗
t = a′

t; Otherwise, a∗
t = aid

t .
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5) For Ht < 0 and Zt + Ht + V Ps,t < 0 < Zt − Ht: Let



























F ′
d,t = min{Wt − Sw,t, Dmax}

F ′
s,t = S ′

r,t = Q′(t) = 0
S ′

s,t = min{St − Sw,t, Umax}
E ′

t = [Wt − Sw,t − Dmax]+.

(4.58)

If E ′
t(Zt − Ht + V Pb,t) + V Cdc1D,t − S ′

s,tV Ps,t < ξt, then a∗
t = a′

t; Otherwise,

a∗
t = aid

t .

Proof. See Appendix 4.7.8.

Remark: Proposition 4.4 shows that the optimal control decision a∗
t is determined

in those five cases, depending on the values of Zt−Ht+V Pb,t, Zt−Ht, Zt−|Ht|+V Ps,t

and V Ps,t. Since Zt is related to Bt as shown in (4.21), and Ht is related to battery

usage cost xu,t, the cases essentially represent the control decision when the battery

energy is at certain levels. When the battery energy level is low as case 1), the battery

tends to charge to store energy (or idle if the battery cost is high). When the battery

energy level is high as case 2), the battery tends to discharge to supply energy (or idle

if the battery cost is high). Between the two levels as cases 3)-5), the battery may

choose either charge or discharge, depending on the prices and battery cost (or idle if

the battery cost is high). There is one exception for S∗
s,t. It is not determined by the

battery level due to V Ps,t > 0. This means the selling direct from the renewable only

depends on the selling-price. It is advantageous when the control solution chooses not

to charge Sr,t, the remaining energy from the renewable will be utilized for selling.

The optimal solution a∗
t of P4b provides a real-time solution for P3. However,

it may not be feasible to P1, because the battery capacity constraint (3.6) on Bt

may be violated. By properly designing Ao and V , we can guarantee that a∗
t satisfies
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constraint (3.6), and ensure the feasibility of the solution. The result is stated below.

Proposition 4.5. Under our proposed real-time control algorithm, for At in (4.21)

with

Ao =







Bmin + V P max
b + V C ′(Γ) + Γ + Dmax + ∆a

To
, if ∆a ≥ 0

Bmin + V P max
b + V C ′(Γ) + Γ + Dmax + ∆a

To
− ∆a, if ∆a < 0

(4.59)

and V ∈ (0, Vmax] with

Vmax =







Bmax−Bmin−Rmax−Dmax−2Γ−|∆a|
P max

b
+C′(Γ)

, if P min
s > C ′(Γ)

Bmax−Bmin−Rmax−Dmax−2Γ−|∆a|
P max

b
+2C′(Γ)−P min

s
, if P min

s ≤ C ′(Γ)
(4.60)

the resulting Bt satisfies the battery capacity constraint (4.6), and {a∗
t } is feasible to

P1.

Proof. We use similar approach for Proposition 4.2 to prove Proposition 4.5. See

Appendix 4.7.5 for detail.

4.6.3 Performance Analysis

Since the algorithm for this sell-back model is unchanged, we omit the analysis for

the performance bound. Please find Theorem 1 in Section 4.4.1 for detail.

Similar to Proposition 4.3 in Section 4.4.2, we quantify the mismatch ǫ as follows.

Proposition 4.6. For any system input {Wt, St, Pb,t, Ps,t}, under Algorithm 1, for

any initial queue value Z0 ∈ R, the mismatch ǫ for constraint (4.48) is given by

ǫ = ZTo
− Z0, (4.61)

and is bounded by

|ǫ| ≤ max{2Γ + V C ′(Γ) + V P max
b + Rmax + Dmax,

2Γ + 2V C ′(Γ) + V P max
b + Rmax + Dmax − V P min

s } (4.62)
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Proof. We use similar approach for Proposition 4.3 to prove Proposition 4.6. See the

proof in Appendix 4.7.7 for detail.

Last, as we expect in (4.39), buying energy for Et > 0 and selling-back from

battery for Fs,t > 0 should not happen at same time. By the optimal control solution

(4.52)-(4.58), we have the following result.

Proposition 4.7. For any system inputs {Wt, St, Pb,t, Ps,t}, under Algorithm 1, the

optimal control solution a∗
t can guarantee (4.39) being satisfied.

Proof. See Appendix 4.7.9.

4.6.4 Simulation Results

Please find our simulation configuration in Section 4.5.1.

Effects of Selling-Back Price Ps,t: We fist study the battery buying and selling

behaviors varied with the selling-back price Ps,t. We assume the selling price is pro-

portional to the buying price. Since we set 3-stage selling price with low, medium

and high rates as P l
b , P m

b , P h
b , the selling price is also followed by the 3-stage, but it

has the rate P i
s = ηP i

b with 0 < η < 1 and i = l, m, h. Define the average charging

amount Qt and sell-back amount Fs,t at each stage as follows

EQ(P i
b ) ,

1
Ti

∑

t={t:Pb,t=P i
b
}

Q∗
t , i = h, m, l (4.63)

EFs
(P i

s) ,
1
T ′

i

∑

t={t:Ps,t=ηP i
b
}

F ∗
s,t, i = h, m, l (4.64)

where Ti ,
∑

t={t:Pb,t=P i
b
} 1 and T ′

i ,
∑

t={t:Ps,t=ηP i
b
} 1. We assume η is known and kept

unchanged over To time slots. We set parameters to ∆a = 0.1 and η = 0.9, 0.3.
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Figure 4.10: Buying (Selling) energy to (from) battery vs. Bmax (η = 0.9).
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Figure 4.11: Buying (Selling) energy to (from) battery vs. Bmax (η = 0.3).
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If set η = 0.9, as shown in Fig. 4.10 bottom, more energy is sold back to the

grid. This is because selling back energy in high price can profit user; If set η = 0.3,

as shown in Fig. 4.11 bottom, battery chooses to keep the energy, not selling back.

This is because the selling price is cheap, energy will be kept in the battery for future

usage. Moreover, when the battery capacity Bmax increases, we see more energy is

sold back to the grid on medium and high rates, i.e., i = m, h. This is because a large

size of capacity offers more flexibility for charging and discharging activities. Thus,

user only sells energy when the price is high enough. On the contrary, as shown in

Fig. 4.10 top and Fig. 4.11 top, the amount of energy purchased from the grid with

high rate of Pb,t is decreased as the battery capacity increases.

Effects of Desired ∆a and Mismatch ǫ: We evaluate how the average system

cost objective of P1 under our proposed Algorithm 1 (i.e., u∗(V )) varies with ∆a

in Fig. 4.12. We run our control algorithm over a total duration of Ttot slots, with

Ttot = {4, 6}To. We see that the cost increases with ∆a. A positive ∆a results in

a higher cost. This is because more energy needs to be stored into the battery to

satisfy the desired ∆a (> 0). More purchasing energy from grid causes the higher

cost. When ∆a < 0, more discharging is required than the charging, resulting in less

cost since less energy is purchased from the grid. Although, the battery usage cost

C(xu) is higher, the overall system cost is still lower.

We study the resulting mismatch ǫ for the constraint (4.16) under Algorithm 1.

In Fig. 4.13, we plot the CDF of the mismatch ǫ over 500 realizations, for ∆a =

±0.2, ±0.4, ±0.6. The duration of Ttot = 6To. For a small |∆a| = 0.2, we see that the

absolute mismatch ǫ is also relatively small, and the range of the CDF curves is closer
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to 0. For large |∆a| = 0.4, 0.6, the range of the CDF curves are similar to |∆a| = 0.2.

This is because the selling-back amount Fs,t keeps the mismatch amount relatively

small to meet the desired large |∆a|.

Effect of Battery Capacity Bmax on System Cost: In Fig. 4.14, we study the

effect of battery capacity Bmax on the system cost under algorithm 1 over algorithm

parameters for |∆a| = 0, 0.2, 0.4 and η = 0.9, 0.3. We set Ttot = 6To and Crc = Cdc =

0.001. First, we observe that, consistent with previous simulation results, setting

∆a = 0 always results in the lowest system cost. This is because, for any |∆a| > 0,

higher cost is incurred since the battery is either forced to charge or discharge to

meet the desired value of ∆a, leading to unnecessary purchasing cost with respect to

EtPb,t or discharging cost with respect to xu,t. Second, we find that the system cost

reduces as Bmax increases. This is because a larger battery capacity allows charging

(discharging) to be more flexible. Thus, the system cost is reduced. Also, we look

at the effect of η. With higher selling price, the system cost is reduced. Setting high

selling price can effectively promote user to sell more energy back to the grid, helping

user reduce the system cost.

Performance Comparison under Difference Algorithms: We compare our proposed

algorithm to a 3-slot look-ahead algorithm. In Fig. 4.15, different capacities of Bmax

is considered. With large η, i.e., Ps,t is higher, the cost difference between these two

algorithms are less. The 3-slot look-ahead algorithm may benefit more from selling

back energy with higher repayment, while our proposed algorithm sells less and intends

to store more energy for future usage. With larger capacity of Bmax, from (4.31), we

know that our algorithm performs closer to the optimal with larger value of V , which
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is proportional to Bmax as shown in (4.30). A large battery provides more flexibility,

resulting the reduced cost. Also we consider different values in battery coefficient k.

As can be seen, our proposed algorithm is close to the optimal over a wide range of

k.

4.7 Appendices

4.7.1 Proof of Lemma 4.1

Proof. The proof follows the general argument in [57]. Note that the optimal solution

of P2 satisfies all constraints of P3, and therefore it is a feasible solution of P3.

Let uo
2 and uo

3 denote the minimum objective values of P2 and P3, respectively.

Thus, we have uo
3 ≤ uo

2. By Jensen’s inequality and convexity of C(·), we have

C(γ) ≥ C(γ) = C(xu). This means uo
3 ≥ uo

2. Hence, we have uo
2 = uo

3 and P3 and P2

are equivalent. �

4.7.2 Proof of Lemma 4.2

Proof. From the definition of ∆(Θt) in (4.22), we have

∆(Θt) = L(Θt+1) − L(Θt) =
1
2

(

Z2
t+1 − Z2

t + H2
t+1 − H2

t

)

= Zt

(

Qt + Sr,t − Dt − ∆a

To

)

+ Ht(γt − xu,t)

+

(

Qt + Sr,t − Dt − ∆a

To

)2

2
+

(γt − xu,t)2

2
. (4.65)

Let gt denote the sum of the last two terms in (4.65). Note that from (4.16), we have

∆a

To
≤ max{Rmax, Dmax}. For a given value of ∆a, by (4.3), (4.4), (4.8) and (4.17), gt
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is upper bounded by

gt ≤
max

{

(

Rmax − ∆a

To

)2
,
(

Dmax + ∆a

To

)2
}

2
+

max{R2
max, D2

max}
2

, G. (4.66)

We now find the upper bound of −Htxu,t in the second term of (4.65). By the

supply-demand balancing requirement in (4.9), we have xu,t = |Qt + Sr,t − Dt| =

|Et + Sr,t + Sw,t − Wt|. Note that Sw,t, Wt and Ht are known for the current time slot

t. Also, Sw,t − Wt ≤ 0, because Sw,t = min{Wt, St}. The upper bound of −Htxu,t is

obtained as follows:

1) For Ht ≥ 0: Let lt , Sw,t −Wt. It is easy to see that the following inequality holds

−Ht|Et + Sr,t + Sw,t − Wt| < 0 ≤ −Ht[Et + Sr,t + lt].

2) For Ht < 0: Let lt , Wt − Sw,t. We have

−Ht|Et + Sr,t + Sw,t − Wt| ≤ −Ht(|Et + Sr,t| + |Sw,t − Wt|) = −Ht[Et + Sr,t + lt].

Combining the above results and (4.66), we have the upper bound of ∆(Θt) in

(4.24). �

4.7.3 Proof of Lemma 4.3

Proof. Given γt ∈ [0, Γ] in (4.17) and C(γt) as a continuous, convex, non-decreasing

function in γt with maximum derivative C ′(Γ) < ∞, the optimal γ∗
t is determined by

examining the derivative of the objective function Ht +V C ′(γt). Note that C ′(γt) ≥ 0

and is increasing with γt. We have

1) For Ht ≥ 0: Ht + V C ′(γt) > 0, thus the objective of P4a is a monotonically

increasing function, and its minimum is obtained with γ∗
t = 0.
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2) For Ht < −V C ′(Γ): Since V C ′(Γ) ≥ V C ′(γt), we have Ht + V C ′(γt) < 0 The

objective of P4a is a monotonically decreasing function, and its minimum is reached

with γ∗
t = Γ.

3) For −V C ′(Γ) ≤ Ht ≤ 0: In this case, γ∗
t is the root of Ht + V C ′(γt) = 0, we have

γ∗
t = C ′−1

(

−Ht

V

)

.

Thus, we have γ∗
t as in (4.25). �

4.7.4 Proof of Proposition 4.1

Proof. We show the solution in each case below.

1) For Zt −Ht +V Pt ≤ 0: Since V and Pt are both positive, we have Zt −Ht ≤ 0.

To minimize the objective of P4b, one possible solution is to set both E ′
t and S ′

r,t as

large as possible. This means that battery is in the charging state. We have 1R,t = 1,

1D,t = 0, D′
t = 0, and use maximum charging rate, i.e., S ′

r,t + Q′
t = Rmax. Since Q′

t is

a portion of E ′
t, and Zt − Ht ≤ Zt − Ht + V Pt, maximizing S ′

r,t in the above equation

can further reduce the value of P4b. By supply-demand balancing equation (4.9),

we obtain Q′
t and E ′

t in (4.26). Thus, the control solution a′
t is as in (4.26). Note

that under the charging state, the entry cost Crc for charging is paid. Alternatively,

we consider the battery in the idle state instead, i.e., S id
r,t + Qid

t = 0. In this case,

1R,t = 0, but Eid
t is smaller. The optimal a∗

t is then the one that achieves the minimum

objective value.

2) For Zt − Ht < 0 ≤ Zt − Ht + V Pt: Because Zt − Ht + V Pt ≥ 0, to minimize

the objective of P4b, one possible solution is to set E ′
t as small as possible. This

means E ′
t should be only purchased to supply Wt, and not for storage, i.e., Q′

t = 0.
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When Sw,t = Wt, it is possible that St − Sw,t ≥ 0. In this case, there is no need for

discharging, i.e., D′
t = 0, and the battery could be charged from renewable source

S ′
r,t ≥ 0. On the other hand, when Sw,t < Wt, i.e., St is fully used to supply Wt, we

have S ′
r,t = 0. To meet the demand in (4.9), we could either purchase E ′

t and/or let

battery discharge D′
t. Based on the above, we have the control solution a′

t as shown in

(4.27). Charging or discharging will incur entry cost Crc or Cdc, respectively. Similar

to Case 1), there exists an alternatively way which is to keep the battery idle. Thus,

the optimal a∗
t is chosen from the three possible solutions whichever achieves the

minimum objective value.

3) For 0 ≤ Zt − Ht < Zt − Ht + V Pt: One possible solution is to set both

E ′
t and S ′

r,t as small as possible to minimize the objective value of P4b. Thus, the

battery should not be charged, i.e., Q′
t + S ′

r,t = 0. To satisfy the rest of demand

Wt − Sw,t, energy should be discharged from the battery. Following this, we can

similarly derive the control solution a′
t in (4.28). Under this assumption, the entry

cost Cdc for discharging is paid. Alternatively, we can keep the battery idle and only

purchase energy Eid
t from the grid. This will result in more Eid

t purchased but avoid

battery cost Cdc. The optimal a∗
t is the one that achieves the minimum objective

value. �

4.7.5 Proof of Proposition 4.2

Proof. To prove Proposition 4.2, we first introduce Lemma 4.4 and Lemma 4.5 below.

Lemma 4.4. Under the proposed solution in Lemma 4.4 and Proposition 4.1, we have

1) If Zt < −V Pmax + Hmin, then D∗
t = 0;
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2) If Zt > Hmax, then S∗
r,t + Q∗

t = 0,

where Hmin , min{Ht} and Hmax , max{Ht}.

Proof. 1) This case corresponds to Case 1) of Proposition 4.1. If Zt < −V Pmax+Hmin,

it is easy to see that D∗
t = 0 is the optimal control action.

2) This case corresponds to Case 3) of Proposition 4.1. It is easy to see that

S∗
r,t = Q∗

t = 0 are the optimal control action. �

Lemma 4.5. For γ∗
t in (4.25), Ht is bounded by

−V C ′(Γ) − Γ ≤ Ht ≤ Γ. (4.67)

where Hmin = −V C ′(Γ) − Γ and Hmax = Γ. Note Γ = max{Rmax, Dmax} as in (4.25).

Proof. 1) Upper bound of Ht: From (4.8), xu,t ≥ 0. If Ht ≥ 0, from (4.25), we have

γ∗
t = 0. Thus, based on the dynamics of Ht in (4.20), Ht+1 ≤ Ht, i.e., non-increasing.

When Ht < 0, from (4.25), the maximum increment of Ht+1 in (4.20) is when γ∗
t = Γ

and xu,t = 0, and thus Ht+1 ≤ Γ as in (4.67).

2) Lower bound of Ht: From (4.25), if Ht < −V C ′(Γ), we have γ∗
t = Γ, and Ht+1

is non-decreasing in (4.20). If Ht ≥ −V C ′(Γ), the maximum decrement of Ht+1 from

Ht in (4.20) is when γ∗
t = 0 and xu,t = Γ, and Ht+1 ≥ −V C ′(Γ) − Γ. �

Now, we are ready to prove Proposition 4.2. When first show that under Ao and

V in (4.29) and (4.30), Bt is always upper bounded by Bmax; Then we prove that Bt

is lower bounded by Bmin.

1) Upper Boundedness of Bt, i.e., Bt ≤ Bmax: Based on Lemma 4.4.1, we have

D∗
t = 0, if Zt < −V Pmax + Hmin. Equivalently, if Zt − ∆a

To
< −V Pmax + Hmin − ∆a

To
,
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there is no discharge from the battery. When Zt − ∆a

To
≥ −V Pmax + Hmin − ∆a

To
, from

(4.4), the maximum decreasing amount of Zt to Zt+1 in (4.19) in the next time slot is

Zt+1 ≥ −V Pmax + Hmin − ∆a

To

− Dmax, ∀t. (4.68)

In (4.21), we have Bt = Zt + Ao + ∆a

To
t. To satisfy the lower bound of Bt in (4.6), we

must ensure Zt + Ao + ∆a

To
t ≥ Bmin. Substituting Zt in (4.68) to the above equation,

we obtain

−V Pmax + Hmin − ∆a

To

− Dmax + Ao +
∆a

To

t ≥ Bmin

which results to

Ao ≥ Bmin + V Pmax − Hmin + Dmax +
∆a

To

− ∆a

To

t. (4.69)

We need to determine the minimum possible value of Ao based on the sign of ∆a.

1) If ∆a ≥ 0: The minimum value of Ao in (4.69) is given by

Ao,min = Bmin + V Pmax − Hmin + Dmax +
∆a

To

. (4.70)

As a result, At is given by

At = Ao,min +
∆a

To

t = Bmin + V Pmax − Hmin + Dmax +
∆a

To

+
∆a

To

t. (4.71)

Based on Lemma 4.4.2, we have S∗
r,t + Q∗

t = 0 if Zt > Hmax. Equivalently, if

Zt − ∆a

To
> Hmax − ∆a

To
, there will be no charging into the battery. When Zt − ∆a

To
≤

Hmax − ∆a

To
, the maximum increasing amount of Zt to Zt+1 in (4.19) in the next time

slot is

Zt+1 ≤ Hmax + Rmax − ∆a

To

, ∀t. (4.72)
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Substituting At in (4.71) into (4.21), we have

Zt = Bt −
(

Bmin + V Pmax − Hmin + Dmax +
∆a

To

+
∆a

To

t

)

≤ Hmax + Rmax − ∆a

To

(4.73)

where inequality (4.73) follows (4.72).

From inequality (4.73), we have

Bt ≤ Hmax + Rmax − ∆a

To

+ Bmin + V Pmax − Hmin + Dmax +
∆a

To

+
∆a

To

t. (4.74)

For the solution to be feasible, we need Bt ≤ Bmax. This would be satisfied if RHS of

(4.74) ≤ Bmax. This can be satisfied if V ∈ (0, Vmax] where Vmax is given by

Vmax =
Bmax − Bmin − Rmax − Dmax − 2Γ − ∆a

Pmax + C ′(Γ)
. (4.75)

2) If ∆a < 0: The minimum value of Ao in (4.69) is given by

Ao,min = Bmin + V Pmax − Hmin + Dmax +
∆a

To

− ∆a. (4.76)

As a result, At is given by

At = Ao,min +
∆a

To

t = Bmin + V Pmax − Hmin + Dmax + ∆a

1 − To + t

To

. (4.77)

Substituting At in (4.77) into (4.21), we have

Zt = Bt −
(

Bmin + V Pmax − Hmin + Dmax + ∆a

1 − To + t

To

)

≤ Hmax + Rmax − ∆a

To

. (4.78)

where inequality (4.78) follows (4.72).

From inequality (4.78), we have

Bt ≤ Hmax + Rmax − ∆a

To

+ Bmin + V Pmax − Hmin + Dmax + ∆a

1 − To + t

To

. (4.79)
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For the solution to be feasible, we need Bt ≤ Bmax. This would be satisfied if RHS of

(4.79) ≤ Bmax. This can be satisfied if V ∈ (0, Vmax] where Vmax is given by

Vmax =
Bmax − Bmin − Rmax − Dmax − 2Γ + ∆a

Pmax + C ′(Γ)
. (4.80)

2) Lower Boundedness of Bt, i.e., Bt ≥ Bmin: We now show that using Ao,min in

(4.70) or (4.76) for ∆a ≥ 0 or ∆a < 0, respectively, and V ∈ (0, Vmax] with Vmax in

(4.75) or (4.80), respectively, we have Bt ≥ Bmin for all t.

1) If ∆a ≥ 0: Substitute At in (4.71) and Zt in (4.21) into (4.68), we have

− V Pmax + Hmin − ∆a

To

− Dmax

≤ Bt −
(

Bmin + V Pmax − Hmin + Dmax +
∆a

To

+
∆a

To

t

)

which gives Bmin + ∆a

To
t ≤ Bt. Since ∆a

To
t > 0, ∀t, Bt ≥ Bmin is satisfied for ∆a ≥ 0.

2) If ∆a < 0: Substitute At in (4.77) and Zt in (4.21) into (4.68), we have

− V Pmax + Hmin − ∆a

To

− Dmax

≤ Bt − Bmin − V Pmax + Hmin − Dmax − ∆a

To

+ ∆a − ∆a

To

t

which gives Bmin + ∆a

(

t
To

− 1
)

≤ Bt. Since ∆a

(

t
To

− 1
)

> 0, ∀t, Bt ≥ Bmin is

satisfied for ∆a < 0. �

4.7.6 Proof of Theorem 1

Proof. A T -slot sample path Lyapunov drift is defined by ∆T (Θt) , L(Θt+T )−L(Θt).

We upper bound it as follows

∆T (Θt) =
1
2

(

Z2
t+T − Z2

t + H2
t+T − H2

t

)



110

= Zt

t+T −1
∑

τ=t

(

Qτ + Sr,τ − Dτ − ∆a

To

)

+ Ht

t+T −1
∑

τ=t

(γτ − xu,τ )

+

[

∑t+T −1
τ=t (γτ − xu,τ )

]2

2
+

[

∑t+T −1
τ=t

(

Qτ + Sr,τ − Dτ − ∆a

To

)]2

2

≤ Zt

t+T −1
∑

τ=t

(

Qτ + Sr,τ − Dτ − ∆a

To

)

+ Ht

t+T −1
∑

τ=t

(γτ − xu,τ ) + GT 2 (4.81)

where G is defined in Lemma 4.2.

Assume To = MT . We consider a per-frame optimization problem below, with

the objective of minimizing the time-averaged system cost within the mth frame of

length T time slots.

Pf : min
{at,γt}

1
T

(m+1)T −1
∑

t=mT

[EtPt + xe,t + C(γt)]

s.t (4.1), (4.2), (4.5), (4.9), (4.13), (4.14), (4.17) and (4.18).

We show that Pf is equivalent to P1 in which To is replaced by T . Let uf
m denote the

minimum objective value of Pf . The optimal solution of P1 satisfies all constraints of

Pf and therefore is feasible to Pf . Thus, we have uf
m ≤ uopt

m . By Jensen’s inequality

and convexity of C(·), we have C(γ) ≥ C(γ) = C(xu). Note that introducing the

auxiliary variable γt with constraints (4.17) and (4.18) does not modify the problem.

This means uf
m ≥ uopt

m . Hence, we have uf
m = uopt

m and Pf and P1 are equivalent.

From (4.81) and the objective of Pf , we have the T -slot drift-plus-cost metric for

the mth frame upper bounded by

∆T (Θt) + V





(m+1)T −1
∑

t=mT

[EtPt + xe,t + C(γt)]





≤ Zt

(m+1)T −1
∑

t=mT

(

Qt + Sr,t − Dt − ∆a

To

)

+ Ht

(m+1)T −1
∑

t=mT

(γt − xu,t) + GT 2

+ V





(m+1)T −1
∑

t=mT

[EtPt + xe,t + C(γt)]



 . (4.82)
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Let {ãt, γ̃t} denote a pair of feasible solution of Pf , satisfying the following relations

(m+1)T −1
∑

t=mT

(

Q̃t + S̃r,t

)

=
(m+1)T −1
∑

t=mT

(

D̃t +
∆a

To

)

(4.83)

(m+1)T −1
∑

t=mT

γ̃t =
(m+1)T −1
∑

t=mT

x̃u,t (4.84)

with the corresponding objective value denoted as ũf
m.

Note that comparing with P1, we impose per-frame constraints (4.83) and (4.84)

as oppose to (4.16) and (4.18) for the To-slot period. Let δ ≥ 0 denote the gap of ũf
m

to the optimal objective value uopt
m , i.e., ũf

m = uopt
m + δ.

Among all feasible control solutions satisfying (4.83) and (4.84), there exists a

solution which leads to δ → 0. The upper bound in (4.82) can be rewritten as

∆T (Θt) + V





(m+1)T −1
∑

t=mT

[EtPt + xe,t + C(γt)]





≤ GT 2 + V T lim
δ→0

(

uopt
m + δ

)

= GT 2 + V Tuopt
m . (4.85)

Summing both sides of (4.85) over m for m = 0, . . . , M − 1, and dividing them by

V MT , we have

L(ΘTo
) − L(Θ0)

V MT
+

1
MT

M−1
∑

m=0

(m+1)T −1
∑

t=mT

[EtPt + xe,t + C(γt)] ≤ 1
M

M−1
∑

m=0

uopt
m +

GT

V
.

(4.86)

Since C(γ) ≥ C(γ) for the convex function C(·) where γ , 1
To

∑To−1
t=0 γt, from

(4.86), we have

(

1
To

To−1
∑

t=0

EtPt

)

+ xe + C(γ) ≤ 1
To

To−1
∑

t=0

[EtPt + xe,t + C(γt)] (4.87)

For a continuously differentiable convex function f(·), the following inequality holds

[61]

f(x) ≥ f(y) + f ′(y)(x − y). (4.88)
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Applying (4.88) to C(xu) and C(γ), we have

C(xu) ≤ C(γ) + C ′(xu)(xu − γ) ≤ C(γ) + C ′(Γ)(xu − γ) = C(γ) − C ′(Γ)
HTo

− H0

To

(4.89)

where the last term in (4.89) is obtained by summing both sides of (4.20) over To.

Applying the inequality (4.89) to C(γ) at the LHS of (4.87), and further applying

the inequality (4.87) to the LHS of (4.86), we have the following bound of the objective

value u∗(V ) of P1 achieved by Algorithm 1

u∗(V ) − 1
M

M−1
∑

m=0

uopt
m ≤ GT

V
+

C ′(Γ)(H0 − HTo
)

To

+
L(Θ0) − L(ΘTo

)
V To

. (4.90)

Note that Ht is bounded as in (4.67), and Zt is bounded by (4.68) and (4.72).

It follows that L(Θt) is bounded. As To → ∞, we have C′(Γ)(H0−HTo )

To
→ 0 and

L(Θ0)−L(ΘTo )

V To
→ 0. From (4.90), it follows that

lim
To→∞

u∗(V ) ≤ lim
To→∞

1
M

M−1
∑

m=0

uopt
m +

GT

V
. �

4.7.7 Proof of Proposition 4.3

Proof. For t = To, from the dynamic shifting in (4.21), we have ZTo
= BT0

−Ao− ∆a

To
To;

For t = 0, we have Z0 = B0 − Ao. Thus, we have the following relation

ZTo
− Z0

To

=
BT0

− Ao − ∆a − B0 + Ao

To

=
BTo

− B0

To

− ∆a

To

.

Substituting (4.15) into the above equation, we have

ZTo
− Z0

To

=
∑To−1

τ=0 Qτ + Sr,τ − Fτ

To

− ∆a

To

. (4.91)

Note that the queue Zt in (4.19) is derived from (4.91). Since this finite time horizon

algorithm, (4.16) is satisfied with error ǫ = ZTo
−Z0. Because Zt is bounded by (4.68)
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and (4.72) and Ht is bounded by (4.67), the error ǫ has the following upper bound

|ǫ| = |ZTo
− Z0| ≤ Hmax + Rmax − ∆a

To

+ V Pmax − Hmin +
∆a

To

+ Dmax

≤ 2Γ + Rmax + V Pmax + V C ′(Γ) + Dmax.

Thus, we complete the proof. �

4.7.8 Proof of Proposition 4.4

Proof. From the objective function of P4b2, we see that the optimal control action

Fs,t is determined by the value of Zt − |Ht| + V Ps,t. Similarly, Et is determined by

Zt − Ht + V Pb,t and Sr,t is by Zt − Ht. It is easy to see that, for Ht ≥ 0, we only have

one possible relation, given as

Zt − Ht < Zt − Ht + V Ps,t < Zt − Ht + V Pb,t; (4.92)

For Ht < 0, we have the following two possible relations

Zt − Ht < Zt + Ht + V Ps,t < Zt − Ht + V Pb,t (4.93)

Zt + Ht + V Ps,t < Zt − Ht < Zt − Ht + V Pb,t. (4.94)

From the relations (4.92)-(4.94), we have the following conditions for the control

action.

1 For any value of Ht, if Zt − Ht + V Pb,t ≤ 0, Et has to be as large as possible to

minimize the objectives of P4b. If Zt − Ht + V Pb,t > 0, Et has to be as small

as possible and only ensure the demand balance (3.8) being satisfied.

2 For any value of Ht, if Zt − |Ht| + V Ps,t ≥ 0, Fs,t has to be as large as possible;

If Zt − |Ht| + V Ps,t < 0, Fs,t = 0 can achieve the minimum objective value.
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3 For any value of Ht, if Zt − Ht ≤ 0, Sr,t has to be as large as possible; If

Zt − Ht > 0, Sr,t = 0 can achieve the minimum objective value.

4 Due to V Ps,t > 0, Ss,t is not controlled by (4.92)-(4.94).

5 If S ′
r,t(Zt − Ht) + V Crc < −S ′

s,tV Ps,t, the remaining amount St − Sw,t is used

to first charge the battery Otherwise, the remaining amount is used to first sell

back to the grid. This means the remaining amount St − Sw,t is first used to

whichever action achieves lower objective value.

We use the relations (4.92)-(4.94) to solve P4b. We show the solution in each

case below.

1) For Zt − Ht + V Pb,t ≤ 0: From condition 1, we could choose to set Et as large

as possible to minimize the objective of P4b. This means that 1R,t = 1 and 1D,t = 0,

and we achieve maximum charging rate, i.e., Sr,t +Qt = Rmax. We determine Sr,t and

Ss,t by condition 5. In this case, due to charging, the entrance cost for charging Crc

needs to be paid. Alternatively, we could let the battery stay idle instead of charging,

i.e., Sr,t + Qt = 0. In this case, Crc1R,t = 0, but Et is smaller and Sr,t = 0. The

optimal a∗
t is the one that achieves the minimum objective value.

2) For min{Zt −Ht, Zt −|Ht| + V Ps,t} > 0: From conditions 1-3, we could choose

to set Et and Sr,t as small as possible, thus Et = Qt = 0, and to set Fs,t as large as

possible to minimize the objective of P4b; This means that 1D,t = 1 and 1R,t = 0. To

achieve maximum sell-back amount Umax, if −Fs,t(Zt − |Ht| + V Ps,t) < −Ss,tV Ps,t, we

selling is first from the battery, then the renewable. Otherwise, we sell first from the

renewable. Alternatively, we could let the battery stay idle instead of discharging,
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i.e., Fs,t + Fd,t = 0. In this case, Cdc1D,t = 0. The optimal a∗
t is the one that achieves

the minimum objective value.

3) For max{Zt − Ht, Zt − |Ht| + V Ps,t} < 0 ≤ Zt − Ht + V Pb,t: We could choose

to set Et and Fs,t as small as possible. This means the charging is only from Sr,t, but

not from Qt. Similar to case 1), we determine Sr,t and Ss,t by condition 5. When

Sw,t = Wt, it is possible that St − Sw,t > 0. In this case, there is no need for

discharging, i.e., Fd,t = 0, and the battery could charge Sr,t > 0. On the other hand,

when Sw,t < Wt, i.e., St is fully used to supply demand Wt, Sr,t = 0. To meet demand,

we could either purchase Et and/or let battery discharge Fd,t. Charging or discharging

will incur entrance cost Crc or Cdc, respectively. There exists an alternatively way

which is to keep the battery idle. Thus, the optimal a∗
t is chosen by whichever achieves

the minimum objective value.

4) For Zt − Ht < 0 < Zt − |Ht| + V Ps,t: This is the condition when (4.92)

and (4.93) hold. Under this case, we could choose to maximize Sr,t and Fs,t and

minimize Et to minimize the objective of P4b. But, due to constraint (3.5), we

have to satisfy Sr,t · Fs,t = 0. If set Fs,t ≥ 0 and Sr,t = 0, it means the remaining

amount St − Sw,t, if any, will be only used for sell. Due to Zt < Ht for ∀Ht, we have

0 < Zt − |Ht| + V Ps,t < V Ps,t. Thus, Ss,t is prior to Fs,t; If set Sr,t ≥ 0 and Fs,t = 0,

we only charge battery from Sr,t. There is no selling from battery. The control action

a′
t is chosen from whichever achieve the less value for the objective. The alternative

way is to keep the battery idle. Thus, the optimal a∗
t is chosen by whichever achieves

the minimum objective value.

5) For Ht < 0 and Zt +Ht +V Ps,t < 0 < Zt −Ht: This condition is specifically for
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(4.94). Based on conditions 1-5, it is straightforward to obtain a′
t. After comparing

to the alternative idle battery option, the optimal a∗
t is chosen by whichever achieves

the minimum objective value. �

4.7.9 Proof of Proposition 4.7

Proof. To ensure (4.39) is satisfied, we must show that the optimal control solution

(4.52)-(4.58) in Proposition 4.4 can ensure (4.39) to be satisfied.

For cases 1,3 and 5, from their optimal control solutions (4.52), (4.55) and (4.58),

it is easy to see that (4.39) is satisfied;

For cases 2 and 4, from their optimal control solutions (4.53) or (4.54) and (4.56)

or (4.57), if F ′
d,t = Wt − Sw,t < Dmax, it means E ′

t = 0 and Fs,t ≥ 0; If F ′
d,t = Dmax,

we have F ′
s,t = 0 and E ′

t ≥ 0. Thus, (4.39) is satisfied.

For idle state, i.e., battery is in idle, we always have F id
s,t = 0. Thus, (4.39) is a

sufficient condition for our algorithm 1. �



Chapter 5

Real-Time Joint Energy Storage
Management and Load Scheduling
with Renewable Integration

In the previous chapter, an energy storage management problem is considered without

flexible user loads. Given the individual load modeling, delay constraints considered

and the load interaction with energy usage over time, the extension to the joint

design of load scheduling and energy storage management is highly non-trivial for

both algorithm design and performance analysis. In this chapter, we develop a joint

energy storage management and load scheduling problem to achieve more cost saving

for consumer.

5.1 System Model

We consider an electricity consuming entity (residential home or business site) powered

by the conventional grid and a local renewable generator (RG) (e.g., wind or solar

generators). An energy storage unit (battery) is co-located with RG and can store

energy from both power sources and supply power for the user’s loads. The energy

storage management (ESM) system is shown in Fig. 5.1. As a part of the ESM
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Figure 5.1: The residential energy storage management system.
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Figure 5.2: An example of load scheduling for two arrival loads Wt1
and Wt2

.

system, a load scheduling mechanism is implemented to schedule each load within its

delay requirement. We assume the ESM system operates in discrete time slots with

t ∈ {0, 1, · · · }, and all operations are performed per time slot t. Each component of

the EMS system is described below.

5.1.1 Load Scheduling

We assume the user has load tasks in various types arriving over time slots. An

example of the scheduling time line of two loads is shown in Fig. 5.2. Let Wt denote

the load that arrives at the beginning of time slot t. It is given by Wt = ρtλt, where

ρt and λt are the load intensity and duration for Wt, respectively. We assume the

load duration is an integer in multiple of time slots, and the minimum duration for
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any load is 1, i.e., λt ∈ {1, 2, . . .}. Let dmax
t denote the maximum allowed delay for

the load Wt before it is served (in multiple of time slots), and let dt denote the actual

scheduling delay incurred for Wt. We have

dt ∈ {0, 1 . . . , dmax
t }, ∀t. (5.1)

Thus, the earliest serving time duration for Wt is [t, t + λt], and the latest serving

time duration is [t + dmax
t , t + dmax

t + λt]. We define an indicator function 1S,t(dτ ) ,

{1 : if t ∈ [τ + dτ , τ + dτ + λτ ); 0 : otherwise}, for ∀τ ≤ t. It indicates whether or not

the load Wτ is being served at time slot t. Consider a To-slot period. We define dw as

the average scheduling delay of all arrived loads within this To-slot period, given by1

dw ,
1
To

To−1
∑

τ=0

dτ . (5.2)

Besides the per load maximum delay dmax
t constraint in (5.1), we impose a constraint

on the average delay dw as

dw ∈ [0, dmax] (5.3)

where dmax is the maximum average delay for the loads within the To-slot period. It

is straightforward to see that for the constraint (5.3) to be effective, we have dmax ≤

maxt∈[0,To−1]{dmax
t }, for ∀t. The average delay dw reflects the average quality of service

for the loads within the To-slot period. We define a cost function Cd(dw) associated

with dw. A longer delay reduces the quality of service and incurs a higher cost. Thus,

we assume Cd(·) to be a continuous, convex, non-decreasing function with maximum

derivative C ′
d(·) < ∞.

1Without loss of generality, we start the To-period at time slot t = 0.
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5.1.2 Energy Sources and Storage

Since the storage model for power sources and battery operation has been similarly

defined in Section 3.1, we summarize the identical equations with brief explanation

and highlight the difference.

Power Sources: The user can purchase energy from the conventional grid with a

real-time price Pt. The purchased amount Et is bounded by

Et ∈ [0, Emax] . (5.4)

The average cost for the purchased energy from the grid over a To-slot period is defined

by J
∆= 1

To

∑To−1
t=0 EtPt.

Renewable generator : An RG is used as an alternative energy source in the ESM

system. Let St denote the amount of renewable energy harvested at time slot t. We

assume St is first used to supply the currently scheduled loads. Denote this portion

by Sw,t, we have

Sw,t = min

{

t
∑

τ=0

ρτ 1S,t(dτ ), St

}

(5.5)

where the first term in (5.5) represents the total energy over those scheduled loads

that need to be served at time slot t (See Fig. 5.1 at time slot t2 + dt2
for example).

The remaining portion of St, if any, can be stored into the battery. Since there is

a cost associated to the battery charging activity, we use a controller to determine

whether or not to store the remaining portion into the battery. Let Sr,t denote the

amount of renewable energy charged into the battery at time slot t. It is bounded by

Sr,t ∈ [0, St − Sw,t] . (5.6)
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Battery Operation: The total charging amount at time slot t is bounded by

Qt + Sr,t ∈ [0, Rmax] . (5.7)

Similarly, the discharging amount from the battery at time slot t is bounded by

Dt ∈ [0, Dmax] . (5.8)

We assume there is no simultaneous charging and discharging activities at the battery,

i.e.,

(Qt + Sr,t) · Dt = 0. (5.9)

With a finite capacity, Bt is bounded by

Bt ∈ [Bmin, Bmax] . (5.10)

The dynamics of Bt over time due to charging and discharging activities are given by

Bt+1 = Bt + Qt + Sr,t − Dt. (5.11)

The entry cost at time slot t is given by xe,t , 1R,tCrc + 1D,tCdc. Thus, the

time-averaged entry cost over the To-slot period is xe ,
1

To

∑To−1
t=0 xe,t.

The net amount of energy change in battery at time slot t due to charging or

discharging is given by xu,t = |Qt + Sr,t − Dt|. From (5.7) and (5.8), it follows that

xu,t is bounded by

xu,t ∈ [0, max {Rmax, Dmax}] . (5.12)

We model the usage cost as a function of xu, which is Cu(xu). We assume Cu(xu) is a

continuous, convex, non-decreasing function with maximum derivative C ′
u(xu) < ∞.

Based on the above, the average battery degradation cost over the To-slot period

due to charging/discharging activities is given by xe + Cu(xu).



122

5.1.3 Supply and Demand Balance

For each load Wto
arrived at time slot to, if it is scheduled to be served at time slot t

(≥ to), the energy supply needs to meet the amount ρto
scheduled for Wto

. The overall

energy supply must be equal to the total demands from those loads which need to be

served at time slot t. Thus, we have supply and demand balance relation given by

Et − Qt + Sw,t + Dt =
t
∑

τ=0

ρτ 1S,t(dτ), ∀t. (5.13)

5.2 Joint Energy Storage Management and Load

Scheduling: Problem Formulation

Our goal is to jointly optimize the load scheduling and energy flows and storage control

for the ESM system to minimize an overall system cost over the To-slot period. Note

that the loads, renewable energy, and pricing {Wt, St, Pt} are the random inputs to the

ESM system. Their complicated statistical behaviors are often difficult to acquire or

predict. For example, for St generated from a renewable source such as solar, it is not

only correlated over time, but also typically non-stationary over time. Thus, assuming

certain known statistics on the process {St} would not be realistic in practice. The

same applies for {Wt} and {Pt}. In light of this, in this work, we assume arbitrary

dynamics for {Wt, St, Pt} and do not assume their statistical knowledge is known. We

intend to design a real-time control algorithm that is able to handle such arbitrary

and unknown system inputs.

We model the overall system cost as a weighted sum of the cost from energy

purchase and battery degradation, and the cost of scheduling delay. Define at ,

[Et, Qt, Dt, Sw,t, Sr,t] as the control action vector for the energy flow in the ESM system
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at time slot t. Our goal is to optimize {at, dt} to minimize the time-averaged system

cost. This optimization problem is formulated as follows

P1: min
{at,dt}

J + xe + Cu(xu) + αCd(dw)

s.t. (5.1), (5.3), (5.4), (5.6), (5.9), (5.13), and

0 ≤ Sr,t + Qt ≤ min {Rmax, Bmax − Bt} (5.14)

0 ≤ Dt ≤ min {Dmax, Bt − Bmin} . (5.15)

where α is the positive weight for the cost of scheduling delay. It sets the relative

weight between energy related cost and delay incurred in load scheduling in the joint

optimization.

P1 is a finite time horizon stochastic joint optimization problem which is difficult

to solve. It possesses the following challenges: The finite battery capacity imposes

a hard constraint on the control actions {at}. The constraints (5.14) and (5.15) on

charging and discharging amounts depend on the SOB Bt. Due to the time-coupling

dynamics of Bt in (5.11), this causes {at} being correlated over time. Furthermore,

joint energy storage control and load scheduling complicates the problem which make

it much more challenging than each separate problem alone. Finally, for the problem

considered, the finite time horizon problem is much more difficult to tackle than the

infinite time horizon problem as considered in most existing energy storage works.

The techniques developed in the infinite time horizon problem no longer holds when

a finite period is considered and new techniques need to be developed for a real-time

control solution.

Instead of solving P1, in this work, we focus on proposing a real-time algorithm
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to provide a suboptimal solution to P1 which has a bounded guarantee of its sub-

optimality. To do this, we first apply a sequence of modification and transformation

of P1, which allows us to design a real-time algorithm for joint energy storage control

and load scheduling at every time slot. Then, we discuss how our real-time solution

can meet the constraints of P1.

5.2.1 Problem Modification

As mentioned above, due to finite battery capacity constraint, the control actions {at}

is coupled over time. To remove this time coupling, similar to the technique used in

Chapter 4 for energy storage only problem, we remove the finite battery capacity

constraint, and instead, we impose a constraint on the change of battery energy level

over the To-slot period. Specifically, by (5.11), the change of battery energy level over

the To-slot period is BTo
− B0 =

∑To−1
t=0 (Qt + Sr,t − Dt). We now set this change to

be a desired value ∆u, i.e.,

To−1
∑

t=0

(Qt + Sr,t − Dt) = ∆u. (5.16)

Note that, ∆u is only a desired value we set, which may not be achieved by an control

algorithm at the end of To-slot period. We will quantify the amount of mismatch with

respect to ∆u under our proposed control algorithm in Section 5.4. By the battery

capacity and (dis)charging constraint, it is easy to see that |∆u| ≤ ∆max
∆= min{Bmax−

Bmin, To max{Rmax, Dmax}}.

We now modify P1 to the follow optimization problem by adding the new con-
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straint (5.16), and removing the battery capacity constraint (5.10)

P2: min
{at,dt}

J + xe + Cu(xu) + αCd(dw)

s.t. (5.1), (5.3) − (5.9), (5.13), (5.16).

Note that by removing the battery capacity constraint (5.10), we remove the depen-

dency of per-slot charging/discharging amount on Bt in constraints (5.14) and (5.15),

and replace them by (5.7) and (5.8), respectively.

5.2.2 Problem Transformation

In P2, both battery average usage cost Cu(xu) and scheduling delay cost Cd(dw)

are functions of time-averaged variables, which complicates the problem. Using the

technique introduced in [57], we now transform the problem into one that only contains

the time-average of the functions. Specifically, we introduce auxiliary variables γu,t

and γd,t for xu,t and dt, respectively, and impose the following constraints

0 ≤ γu,t ≤ max{Rmax, Dmax}, ∀t (5.17)

γu = xu (5.18)

0 ≤ γd,t ≤ min{dmax
t , dmax}, ∀t (5.19)

γd = dw (5.20)

where γi
∆= 1

To

∑To−1
τ=0 γi,t, for i = u, d. The above constraints ensure that each auxiliary

variable lies in the same range as its original variable, and its time average is the same

as that of its original variable. Define Ci(γi) , 1
To

∑To−1
t=0 Ci(γi,t) as the time average of

Ci(γi,t) over To slots, for i = u, d. Applying (5.18) and (5.20) to the objective of P2,
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and defining πt , [at, dt, γu,t, γd,t], we transform P2 into the following optimization

problem

P3: min
{πt}

J + xe + Cu(γu) + αCd(γd)

s.t. (5.1), (5.3) − (5.9), (5.13), (5.16) − (5.20)

where the terms in the objective are all To-slot time-averaged cost functions. The

equivalence of P2 and P3 is given in the following lemma.

Lemma 5.1. P2 and P3 are equivalent, with the same optimal objective values and

optimal control solution {a∗
t , d∗

t }.

Proof. See Appendix 5.6.1.

Although P3 is still difficult to solve, it enables us to design a dynamic control

and scheduling policy for joint energy storage control and load scheduling by adopting

Lyapunov optimization technique [25]. In the following, we propose our real-time

algorithm for P3, and then design parameters to ensure the proposed solution meets

the battery capacity constraint imposed in the original P1 which is removed in P2.

5.3 Joint Energy Storage Management and Load

Scheduling: Real-Time Algorithm

By Lyapunov optimization technique, we first introduce virtual queues for each time-

averaged inequality and equality constraints of P3 to transform them into queue

stability problems. Then, we design a real-time algorithm based on minimizing the

drift of Lyapunov function defined on these virtual queues.
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5.3.1 Virtual Queues

We introduce a virtual queue Xt to meet constraint (5.3), evolving as follows

Xt+1 = max (Xt + dt − dmax, 0) . (5.21)

From (5.2), the above results in dw ≤ dmax + (XTo
− X0)/To. Thus, formulating the

virtual queue Xt in (5.21) will guarantee to meet the average delay constraint (5.3)

with a margin (XTo
− X0)/To. In Section 5.4, we will further discuss this constraint

under our proposed algorithm.

For constraint (5.16), dividing both sides by To gives the time-averaged net change

of battery energy level per slot being ∆u

To
. To meet this constraint, we introduce a

virtual queue Zt, evolving as follows

Zt+1 = Zt + Qt + Sr,t − Dt − ∆u

To

. (5.22)

From Bt in (5.11) and Zt above, we can show that they are different by a time-

dependent shift as follows

Zt = Bt − At, where At
∆= Ao +

∆u

To

t. (5.23)

The linear time function ∆u

To
t in At is to ensure that constraint (5.16) is satisfied. Due

to this shift At, the range of Zt is expanded to the entire real line, i.e., Zt ∈ R for

Bt ∈ R
+. Note that Ao is a design parameter. Later, we design Ao to ensure that

our control solution {at} for the energy flows in our proposed algorithm satisfies the

battery capacity constraint (5.10) imposed in P1.

Finally, to meet constraints (5.18) and (5.19), we establish virtual queues Hu,t
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and Hd,t, respectively, as follows

Hu,t+1 = Hu,t + γu,t − xu,t (5.24)

Hd,t+1 = Hd,t + γd,t − dt. (5.25)

From the Lyapunov optimization, it can be shown that satisfying constraints

(5.3), (5.16), (5.18), and (5.19) is equivalent to maintaining the stability of queues

Xt, Zt, Hu,t, and Hd,t, respectively [25].

5.3.2 Real-Time Algorithm

Note that Zt and Hu,t are the virtual queues related to the battery operation, while

Xt and Hd,t are those related to the scheduling delay. Let Θt , [Zt, Hu,t, Xt, Hd,t]

denote the virtual queue vector. We define the quadratic Lyapunov function L(Θt)

for Θt as follows

L(Θt) ,
1
2

[

Z2
t + H2

u,t + µ
(

X2
t + H2

d,t

)]

(5.26)

where µ is a positive weight which is used to adjust the relative importance of delay

related queues in the Lyapunov function. We define a one-slot sample path Lyapunov

drift as ∆(Θt) , L (Θt+1) − L(Θt), which only depends on the current system inputs

{Wt, St, Pt}.

Instead of directly minimizing the system cost objective in P3, we consider the

drift-plus-cost metric given by ∆(Θt) + V [EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]. It is a

weighted sum of the drift ∆(Θt) and the system cost at time slot t with V > 0 being

the relative weight between the two terms.
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Rather directly using the drift-plus-cost function which is still challenging, in the

following, we will use an upper bound of this drift-plus-cost function to design our

real-time algorithm. The upper bound is derived in Appendix 5.6.2 as (5.39). Using

this upper bound, we formulate a per-slot real-time optimization problem and solve

it at every time slot t. By removing all the constant terms independent of control

action πt, we arrive at the following optimization problem

P4 : min
πt

Zt [Et + Sr,t + Sw,t − ρt1S,t(dt)] − |Hu,t| Sw,t

+ Hu,t [γu,t − (Et + Sr,t)] + |Hu,t| ρt1S,t(dt) + µXtdt + µHd,t(γd,t − dt)

+ V [EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

s.t. (5.1), (5.4) − (5.9), (5.13), (5.17), (5.19).

Note that the term
∑t

τ=0 ρτ 1S,t(dτ ) in the upper bound (5.39) is the total energy

demand from the scheduled loads at time slot t. Since delay dτ for τ ∈ {0, 1, . . . , t−1}

are determined in previous time slot τ ≤ t − 1 by solving P4, only ρt1S,t(dt) is a

function of πt at time slot t, and is part of the objective of P4.

Denote the optimal solution of P4 by π
∗
t , [a∗

t , d∗
t , γ∗

u,t, γ∗
d,t]. After regrouping the

terms in the objective of P4 with respect to different control variables, we show that

P4 can be separated into four sub-problems to be solved sequentially and variables

in π
∗
t can be determined separately. The steps are described below.

S1) Determine d∗
t and γ∗

d,t by solving the following P4a1 and P4a2, respectively.

P4a1 : min
dt

µdt(Xt − Hd,t) − ρt1S,t(dt) (Zt − |Hu,t|) s.t. (5.1).

P4a2 : min
γd,t

µHd,tγd,t + V αCd(γd,t) s.t. (5.19).
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S2) Determine S∗
w,t in (5.5) using d∗

t obtained in S1).

S3) Using S∗
w,t obtained in S2) in (5.13), determine γ∗

u,t and a∗
t by solving the follow-

ing P4b1 and P4b2, respectively.

P4b1 : min
γu,t

Hu,tγu,t + V Cu(γu,t) s.t. (5.17).

P4b2 : min
at

Et(Zt − Hu,t + V Pt) + Sr,t(Zt − Hu,t) + V (1R,tCrc + 1D,tCdc)

s.t. (5.4) − (5.9), (5.13).

Remark: An important and interesting observation of the above is that the joint

optimization of load scheduling and energy storage control can in fact be separated:

The scheduling decision (i.e., d∗
t ) is determined first in P4a1; Based on the resulting

energy demand in the current time slot t, energy storage control decision (i.e., a∗
t ) is

then determined in P4b2. The two sub-problems are connected through the current

virtual queue backlogs Zt and Hu,t related to the battery operation.

In the following, we solve each subproblem to obtain a closed-form solution. Thus,

the optimal solution of πt is obtained in closed-form, and our proposed algorithm bears

minimum complexity and very simple to implement.

1) The optimal d∗
t : The optimal scheduling delay d∗

t for P4a1 is given below.

Proposition 5.1. Let ωo , −ρt (Zt − |Hu,t|), ω1 , µ (Xt − Hd,t), and ωdmax

t
,

µdmax
t (Xt − Hd,t).

1. If Xt − Hd,t ≥ 0, then

d∗
t =







0 if ωo ≤ ω1

1 otherwise;
(5.27)
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2. If Xt − Hd,t < 0, then

d∗
t =







0 if ωo ≤ ωdmax

t

dmax
t otherwise.

(5.28)

Proof. See Appendix 5.6.3.

Remark: Note that ωo, ω1, and ωdmax

t
are the objective values of P4a1 when

dt = 0, 1, and dmax
t , respectively. Furthermore, wo depends on the virtual queue

backlogs (Zt and Hu,t) related to battery energy level, while ω1 and ωdmax

t
depend

on the virtual queue backlogs (Xt and Hd,t) related to delay. Proposition 5.1 shows

that the scheduling decision for load Wt is to either immediately serve it (d∗
t = 0) or

delay its serving time (d∗
t = 1 or dmax

t ). This decision depends on whether the battery

energy is high enough (so Wt will be served immediately) or the scheduling delays for

the loads so far are low enough (so Wt will be delayed). When the load is delayed

to serve, the delay should be either minimum or maximum depending on the existing

scheduling delays of the past loads.

2) The optimal γ∗
d,t and γ∗

u,t: Since Cd(·) and Cu(·) are both convex, the objective

of P4a2 and P4b1 are convex. Let C ′
i(·) denote the first derivative of Ci(·), and C ′−1

i (·)

denote the inverse function of C ′
i(·), for i = d, u. We obtain the optimal solution γ∗

i,t

for P4a2 and P4b1 as follows.

Lemma 5.2. The optimal solution γ∗
i,t for i = d, u is given by

γ∗
i,t =















0 if Hi,t ≥ 0
Γi if Hi,t < −V βiC

′
i(Γi)

C ′−1
i

(

−Hi,t

V βi

)

otherwise.

(5.29)

where βu = 1, βd = α
µ
, Γu , max{Rmax, Dmax}, and Γd , min{dmax

t , dmax}.
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Proof. See Appendix 5.6.4.

3) The optimal a∗
t : Once the scheduling decision d∗

t for Wt is determined, the

total energy demand from the scheduled loads, i.e.,
∑t

τ=0 ρτ 1S,t(d∗
τ ), is determined.

Given this energy demand, P4b2 is solved to obtain the optimal control solution

[E∗
t , Q∗

t , D∗
t , S∗

r,t] in a∗
t . This subproblem for energy storage and control is essentially

the same as in Chapter 4, where the energy storage only problem is considered. Thus,

the solution can be readily obtained from Appendix 4.7.4. Here we directly state the

result.

Define L∗
t ,

∑t
τ=0 ρτ 1S,t(d∗

τ ) as the current energy demand at time slot t. Define

the idle state of the battery as the state where there is no charging or discharging

activity. The control solution under this idle state is denoted by [Eid
t , Qid

t , Did
t , S id

r,t].

By supply-demand balancing equation (5.13), it is given by Eid
t = L∗

t − S∗
w,t, Qid

t =

Did
t = S id

r,t = 0. Let ξt denote the objective value in P4b2 for the battery being in the

idle state. We have ξt = (L∗
t −S∗

w,t)(Zt−Hu,t+V Pt). Denote a′
t = [E ′

t, Q′
t, D′

t, S∗
w,t, S ′

r,t].

The optimal control solution a∗
t of P4b2 is given in three cases below.

i) For Zt − Hu,t + V Pt ≤ 0: The battery is in either charging or idle state. The

solution a′
t in charging state is give by































D′
t = 0,

S ′
r,t = min

{

St − S∗
w,t, Rmax

}

Q′
t = min

{

Rmax − S ′
r,t, Emax − L∗

t + S∗
w,t

}

E ′
t = min

{

L∗
t + Rmax − S∗

w,t − S ′
r,t, Emax

}

.

(5.30)

If E ′
t(Zt − Hu,t + V Pt) + (Zt − Hu,t)S ′

r,t + V Crc1R,t < ξt, then a∗
t = a′

t; Otherwise,

a∗
t = aid

t .

ii) For Zt − µuHu,t < 0 ≤ Zt − Hu,t + V Pt: The battery is either in charging,
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discharging, or idle state. The solution a′
t in charging or discharging state is

give by






























D′
t = min

{

L∗
t − S∗

w,t, Dmax

}

S ′
r,t = min

{

St − S∗
w,t, Rmax

}

Q′
t = 0,

E ′
t =

[

L∗
t − S∗

w,t − Dmax

]+
.

(5.31)

If E ′
t(Zt − Hu,t + V Pt) + (Zt − Hu,t)S ′

r,t + V (Crc1R,t + Cdc1D,t) < ξt, then a∗
t = a′

t;

Otherwise, a∗
t = aid

t .

iii) For 0 ≤ Zt − Hu,t < Zt − Hu,t + V Pt: The battery is in either discharging or idle

state. The solution a′
t in discharging state is give by



















D′
t = min

{

L∗
t − S∗

w,t, Dmax

}

S ′
r,t = Q′

t = 0,

E ′
t =

[

L∗
t − S∗

w,t − Dmax

]+
.

(5.32)

If E ′
t(Zt − Hu,t + V Pt) + V Cdc1D,t < ξt, then a∗

t = a′
t; Otherwise, a∗

t = aid
t .

In each case above, the cost of charging or discharging is compared with the cost

ξt of being in an idle state, and the control solution of P4b2 is the one with the

minimum cost. The condition for each case depends on Zt, Hu,t and Pt, where Zt

and Hu,t are rated to battery energy level Bt and usage cost xu,t, respectively. Thus,

Cases i)-iii) represent the control actions at different battery energy levels (i.e., low,

moderate, or high) and electricity prices. For example, the ESM tends to store energy

into the battery (or idle if the battery cost is high) , when the battery energy level

and electricity price are both low, as shown in Case i); And the ESM tends to use the

battery storage for energy supply (or idle if the battery cost is high), when battery

energy level is high, as shown in Case iii).
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4) Feasibility of a∗
t to P1: Recall that we have removed the battery capacity

constraint (5.10) when modifying P1 to P2. Thus, this constraint is no longer imposed

in P4b2, and our real-time algorithm may not provide a feasible control solution {a∗
t }

to P1. To ensure the solution is still feasible to the original problem P1, we design our

control parameters Ao and V . The result readily follows Proposition 4.2 in Chapter 4.

We omit the details and only state the final result below.

Proposition 5.2. For the optimal solution a∗
t of P4b2, the resulting Bt satisfies the

battery capacity constraint (5.10), and {a∗
t } is feasible to P1, if Ao in (5.23) is given

by

Ao =







A′
o if ∆u ≥ 0

A′
o − ∆u if ∆u < 0

(5.33)

where A′
o = Bmin + V Pmax + V C ′

u(Γu) + Γu + Dmax + ∆u

To
, and V ∈ [0, Vmax] with

Vmax =
Bmax − Bmin − Rmax − Dmax − 2Γu − |∆u|

Pmax + C ′
u(Γu)

. (5.34)

5.3.3 Discussions

We summarize the proposed real-time joint load scheduling and energy storage man-

agement in Algorithm 2. Due to the separation of joint optimization, the algorithm

provides a clear sequence of determination of control decisions at each time slot t.

Recall that we modify the original joint optimization problem P1 to P3, and

apply Lyapunov optimization to propose a real-time algorithm for P3 which is to

solve the per-slot optimization problem P4. We have the following discussions.

• In modifying P1, we remove the battery capacity constraint (5.10) and instead

impose a new constraint (5.16) on the overall change of battery energy level
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Algorithm 2 Real-Time Joint Load Scheduling and Energy Storage Management
Set the desired value of ∆u. Set Ao and V as in (5.33) and (5.34), respectively.
At time slot 0: Set Z0 = X0 = Hu,0 = Hd,0 = 0.
At time slot t: Obtain the current values of {Wt, St, Pt}

1. Load scheduling: Determine d∗
t according to (5.27) and (5.28) and γ∗

d,t according
to (5.29), respectively.

2. Energy Storage Control:

(a) Renewable contribution: Determine S∗
w,t in (5.5) using d∗

t obtained above.

(b) Energy purchase and storage: Determine γ∗
u,t according to (5.29) and a∗

t

according to Cases i)-iii) in Section 5.3.2.

3. Updating virtual queues: Use π
∗
t to update Bt based on (5.11), and

Xt, Zt, Hu,t, Hd,t based on (5.21)−(5.25).

over To slots to be ∆u. Note that this constraint is set as a desired outcome,

i.e., ∆u is a desired value. The actual solution a∗
t in the proposed algorithm

may not satisfy this constraint at the end of the To-slot period, and thus may

not be feasible to P3. Nonetheless, setting Ao and V as in (5.33) and (5.34)

guarantees that {a∗
t } satisfy the battery capacity constraint (5.10) and therefore

are feasible to P1.

• In designing the real-time algorithm by Lyapunov optimization, virtual queue

Xt in (5.21) we introduce for the average delay constraint (5.3) can only ensure

the constraint is satisfied with a margin as indicated below (5.21). As a result,

constraint (5.3) can only be approximately satisfied. However, this relaxation

is mild in practice for the average delay performance. Note that the per-load

maximum delay constraint (5.1) is strictly satisfied for d∗
t by Algorithm 2. We

will show in simulation that the achieved average delay dw by Algorithm 2 in

fact meets constraint (5.3).
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• Finally, we point out that the load scheduling and energy storage control deci-

sions are provided in closed-form by Algorithm 2. Thus, the algorithm can be

easily implemented in real-time. Furthermore, no statistical assumptions on the

loads, renewable source, and pricing {Wt, St, Pt} are required in the algorithm,

allowing it to be applied to general scenarios, especially when such statistics are

difficult to predict. Despite being suboptimal for P1, we will show in Section 5.4

that Algorithm 2 provides a provable performance guarantee.

5.4 Performance Analysis

In this section, we analyze the performance of Algorithm 2 and discuss the mismatch

involved in some constraints as a result of the real-time algorithm design.

5.4.1 Algorithm Performance

To evaluate the proposed algorithm, we consider a T -slot look-ahead problem. Specif-

ically, we partition To slots into T frames with To = MT , for M, T ∈ N
+. For each

frame, we consider the same problem as P1 but the objective is the T -slot averaged

cost within the frame and the constraints are all related to time slots within the frame.

In addition, we assume {Wt, St, Pt} for the entire frame are known beforehand. Thus,

the problem becomes a non-causal static optimization problem and we call it a T -slot

lookahead problem. Let uopt
m be the corresponding minimum objective value achieved

by a T -slot look-ahead optimal solution over the mth frame.

We denote the objective value of P1 achieved by Algorithm 2 over To-slot period

by u∗(V ), where V is the weight value used in Algorithm 2. The following theorem
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provides a bound of the cost performance under our proposed real-time algorithm to

uopt
m under the T -slot lookahead optimal solution.

Theorem 2. Consider {Wt, St, Pt} being any arbitrary processes over time. For any

M, T ∈ N
+ satisfying To = MT , the To-slot average system cost under Algorithm 2 is

bounded by

u∗(V ) − 1
M

M−1
∑

m=0

uopt
m

≤ GT

V
+

C ′
u(Γu)(Hu,0 − Hu,To

) + αC ′
d(Γd)(Hd,0 − Hd,To

)
To

+
L(Θ0) − L(ΘTo

)
V To

(5.35)

where the upper bound is finite.

In particular, as To → ∞, we have

lim
To→∞

u∗(V ) − lim
To→∞

1
M

M−1
∑

m=0

uopt
m ≤ GT

V
. (5.36)

Proof. See Appendix 5.6.5.

Remark: Theorem 2 shows that our proposed algorithm is able to track the T -slot

lookahead optimal solution with a bounded gap, for all possible M and T . Also, for

the best performance, we should always choose V = Vmax. The bound in (5.36) gives

the asymptotic performance as To increase. Since Vmax in (5.34) increases with Bmax,

it follows that Algorithm 2 is asymptotically equivalent to the optimal T -slot look-

ahead solution as the battery capacity and To go to infinity. Note that, as To → ∞,

P1 becomes an infinite time horizon problem with average sample path cost objective.

The bound in (5.36) provides the performance gap of long-term time-averaged sample-

path system cost of our proposed algorithm to the T -slot look-ahead policy.



138

5.4.2 Design Approximation

1) Average scheduling delay dmax: Recall that, by Algorithm 2, using the virtual

queue Xt in (5.21), the average delay constraint (5.3) is approximately satisfied with

a margin, i.e., dw ≤ dmax + ǫd, where ǫd , (XTo
− Xo)/To is the margin. We now

bound ǫd below.

Proposition 5.3. Under Algorithm 2, the margin ǫd for constraint (5.3) is bounded

as follows

|ǫd| ≤
√

2G

µTo

+
L(Θo)

µTo

+
|Xo|
To

. (5.37)

Proof. See Appendix 5.6.6.

Proposition 5.3 indicates that the margin ǫd → 0 as To → 0. Thus, the average

delay is asymptotically satisfied. Note that, for Xo = 0, ǫd ≥ 0. If Xo > 0, it is

possible that ǫd < 0 and constraint (5.3) is satisfied with a negative margin. However,

this will drive d∗
t to be smaller which may cause higher system cost. Thus, we set

Xo = 0 in Algorithm 2.

2) Mismatch of ∆u: In our design, we set ∆u to be a desired value for the change of

battery energy level over To-slot period as in new constraint (5.16). This value may not

be achieved by Algorithm 2. Define the mismatch by ǫu ,
∑To−1

τ=0 (Qτ +Sr,τ −Dτ )−∆u.

The bound for ǫu follows the result in Proposition 4.3 in Chapter 4 and is shown below.

|ǫu| ≤ 2Γu + Rmax + V Pmax + V C ′
u(Γu) + Dmax. (5.38)

Note that Vmax in (5.34) increases as |∆u| decreases, and a larger Vmax is preferred

for better performance by Theorem 2. Thus, a smaller |∆u| is preferred. Note also



139

that our simulation study shows that the actual mismatch ǫu is much smaller than

this upper bound.

5.5 Simulation Results

5.5.1 Simulation Configuration

We set each slot to be 5 minutes and consider a 24-hour duration. Thus, we have

To = 288 slots for each day. We assume Pt, St and Wt do not change within each slot.

We collect data from Ontario Energy Board [53] to set the price Pt. As shown Fig. 5.3

top, it follows a three-stage price pattern as {Ph, Pm, Pl} = {$0.118, $0.099, $0.063}

and is periodic every 24 hours. We assume {St} to be solar energy. It is a non-

stationary process, with the mean amount St = E[St] changing periodically over 24

hours, and having three-stage values as {Sh, Sm, Sl} = {1.98, 0.96, 0.005}/12 kWh

and standard deviation as σSi
= 0.4Si, for i = h, m, l, as shown in Fig. 5.3 middle.

We assume the load {Wt} is a non-stationary process, having three-stage mean values

W t = E[Wt] as {W h, W m, W l} = {2.4, 1.38, 0.6}/12 kWh with standard deviation as

σWi
= 0.2W i, for i = h, m, l, as shown in Fig. 5.3 bottom. For each load Wt, we

generate λt from a uniformly distribution with interval [1, 12], and ρt = Wt/λt. We

set dmax
t in (5.1) to be identical for all t.

We set the battery related parameters as follows: Rmax = 0.165 kWh, Dmax =

0.165 kWh, Crc = Cdc = 0.001, Bmin = 0 and the battery initial energy level B0 = 0.

Unless specified, we set Bmax = 3 kWh. We set Emax = 0.3 kWh. Also, we set the

weights α = 1 and µ = 1 as the default values. Since Vmax increases as |∆u| decreases,
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Figure 5.3: System inputs W t, St, and Pt over 24 hours.

to achieve best performance2, we set ∆u = 0 and V = Vmax.

For the battery cost, we consider an exemplary case where the battery usage

cost and the delay cost are both quadratic functions, given by Cu(xu) = kuxu
2 and

Cd(dw) = kddw
2
. The constant ku > 0 is a battery cost coefficient depending on the

battery characteristics, given by ku = 0.2. The constant kd > 0 is a normalization

factor for the desired maximum average delay in (5.3), given by kd = 1
(dmax)2 . The

optimal γ∗
i,t in (5.29) can be determined with C ′

i(Γi) = 2kiΓi, and C ′−1
i

(

−Hi,t

V βi

)

=

− Hi,t

2βikiV
for i = u, d.

2A detailed study of ∆u can be found in Section 4.5
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5.5.2 An Example of Load Scheduling

In Fig. 5.4, we show a fraction of the load scheduling results by Algorithm 2, where

we set dmax
t = dmax = 18 and α = 0.005. Each horizontal bar represents a scheduled

load Wt with the width representing the intensity ρt and the length representing the

total duration from arrival to service being completed. For a delayed load, the delay

is indicated in different color before the load is scheduled. In this example, we see

some loads are immediately scheduled, while others are scheduled at dmax
t . The total

energy demand at each time slot is the vertical summation over all loads that are

scheduled in this slot.

5.5.3 Effect of Scheduling Delay Constraints

1) Effect of dmax
t and dmax: We study how the average system cost objective of

P1 under our proposed algorithm varies with different delay requirements. We set

dmax
t = dmax, ∀t, and plot the average system cost vs. dmax

t in Fig. 5.5, for different

values of weight α in the cost objective. As can be seen, the system cost decreases

as dmax(dmax
t ) increases. This is shows that relaxing the average delay constraint

gives more flexibility to load scheduling, where each load can be scheduled at lower

electricity price, resulting in lower system cost. This demonstrates that flexible load

scheduling is more beneficial to the overall system cost. In addition, we see that a

larger value α gives more weight on minimizing the delay in the objective, resulting

in a higher system cost.

Next, we study the effect of delay constraints on the monetary cost, i.e., the

cost of energy purchasing and battery degradation. This part of cost is given by
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J + xe + Cu(xu) in the objective of P1. The monetary cost shows by allowing longer

service delay, how much saving a consumer could actually have. In Fig. 5.6, we plot the

monetary cost vs. dmax for dmax
t = 216. We see a clear trade-off between the monetary

cost and delay. Such trade-off curve can be used to determine the operating point.

For comparison, we also consider the case in which all loads are served immediately

after arrival, i.e., dmax
t = 0. This is essentially the case with only energy storage but

no scheduling. Thus, the monetary cost is independent of dmax. We see a substantial

gap between the two curves and the gap increases with dmax. This clearly shows the

benefit of joint load scheduling and energy storage management.

2) Average delay dw: We now study the average delay dw achieved by our proposed

algorithm vs. dmax for various dmax
t in Fig. 5.7. As can be seen, the actual averaged

delay dw increases with the average delay dmax requirement. This is because, with

a more relaxed constraint on the delay, loads can be shifted to a later time in order

to reduce the system cost, resulting in larger average delay. However, the increase

is sublinear with respect to dmax. Similarly, we observe that increasing the per load

maximum delay dmax
t increases dw. Finally, recall that we study the margin for average

delay constraint (5.3) under our proposed algorithm in Proposition 5.3. To see how

the resulting dw meets constraint (5.3), we plot the line dmax in Fig. 5.7. As we see,

dw is below dmax for all values of dmax and dmax
t .

3) Effect of µ: Weight µ is used to control the relative importance of virtual queues

related to the battery and those to delay in Lyapunov function L(Θt) in (5.26) and

Lyapunov drift ∆(Θt). For Lyapunov drift ∆(Θt), if µ is large, the two queues Xt and

Hd,t related to the delay will dominate the drift. This will affect the drift-plus-cost
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objective considered in our proposed algorithm and thus the performance. To study

the effect of µ on the performance, in Fig. 5.8, we evaluate the average system cost for

different values of µ. We see that a lower system cost is achieved by smaller value of

µ. This is because, with smaller µ, the drifts of Xt related to delay is less significant

in the overall drift. This allows wider difference between dw and dmax, i.e., smaller dw

and lower delay cost.

5.5.4 Performance vs. Battery Capacity

We consider two other algorithms for comparison: A) No storage or scheduling: In this

case, neither energy storage nor load scheduling is considered. Each load is served

immediately using energy purchased from the conventional grid and/or renewable

generator. B) Storage only: In this method, only battery storage is considered but

every load is served immediately without a delay. This is essentially the Algorithm 1

in Chapter 4.

In Fig. 5.9, we compare our proposed algorithm to the above two alternative

algorithms under various battery capacity Bmax. Since algorithm A does not consider

a battery, the system cost is unchanged over Bmax and is 0.01. We do not plot the

curve since the cost is much bigger than the rest of two algorithms we considered. For

algorithm B and our proposed Algorithm 2, as can be seen, the system costs reduces as

Bmax increases. This is because a larger battery capacity allows charging/discharging

to be more flexible based on the current demand and electricity price, resulting in the

lower system costs. Comparing the two, we see that joint load scheduling and energy

storage provides further reduction in system cost.
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5.6 Appendices

5.6.1 Proof of Lemma 5.1

Proof. The proof follows the same approach as in Appendix 4.7.1. Let uo
2 and uo

3

denote the minimum objective values of P2 and P3, respectively. Since the optimal

solution of P2 satisfies all constraints of P3, it is a feasible solution of P3. Thus,

we have uo
3 ≤ uo

2. By Jensen’s inequality and convexity of Ci(·) for i = d, u, we have

Cd(γd) ≥ Cd(γd) = Cd(dw) and Cu(γu) ≥ Cu(γu) = Cu(xu). This means uo
3 ≥ uo

2.

Hence, we have uo
2 = uo

3 and P3 and P2 are equivalent. �

5.6.2 Upper Bound on Drift-Plus-Cost Function

The following lemma shows the upper bound on the drift ∆(Θt).

Lemma 5.3. The one-slot Lyapunov drift ∆(Θt) is upper bounded by

∆(Θt) ≤Zt

(

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ ) − ∆u

To

)

+ Hu,tγu,t − Hu,t (Et + Sr,t) − |Hu,t|
(

Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ)

)

+ G

+ µXt (dt − dmax) + µHd,t(γd,t − dt) (5.39)

where G = 1
2

max
{

(

Rmax − ∆u

To

)2
,
(

Dmax + ∆u

To

)2
}

+ 1
2

max {R2
max, D2

max}

+ µ
2

max
{

(dmax)2 , (dmax
t − dmax)2

}

+ µ
2
(dmax

t )2.

Proof. From the definition of ∆(Θt), we have

∆(Θt) , L(Θt+1) − L(Θt)

=
1
2

[Z2
t+1 − Z2

t +
(

H2
u,t+1 − H2

u,t

)

+ µ(X2
t+1 − X2

t + H2
d,t+1 − H2

d,t)] (5.40)
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where from queue (5.22), Z2
t+1 − Z2

t can be presented by

Z2
t+1 − Z2

t

2
= Zt

(

Qt + Sr,t − Dt − ∆u

To

)

+
(Qt + Sr,t − Dt − ∆u

To
)2

2
. (5.41)

Note that from (5.16), we have ∆u

To
≤ max{Rmax, Dmax}. For a given value of ∆u, by

(5.7) and (5.8), (Qt+Sr,t−Dt−∆u

To
)2 is upper bound by max

{

(Rmax − ∆u

To
)2, (Dmax + ∆u

To
)2
}

.

By the supply-demand balance (5.13), the first term on RHS of (5.41) can be replaced

by

Zt

(

Qt + Sr,t − Dt − ∆u

To

)

= Zt

(

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ ) − ∆u

To

)

. (5.42)

From (5.24), H2
u,t+1 − H2

u,t in (5.40) can be presented by

H2
u,t+1 − H2

u,t

2
= Hu,t(γu,t − xu,t) +

(γu,t − xu,t)2

2
. (5.43)

Note that from (5.12) and (5.17), the second term of RHS in (5.43) is upper bounded

by (γu,t − xu,t)2 ≤ max{R2
max, D2

max}.

We now find the upper bound for −Htxu,t in the first term on RHS of (5.43). By

the supply-demand balance (5.13), −Htxu,t can be replaced by

−Htxu,t = −Hu,t(|Qt + Sr,t − Dt|)

= −Hu,t

(
∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

∣

∣

∣

∣

∣

)

. (5.44)

The upper bound of −Htxu,t in (5.44) is obtained as follows.

1) For Hu,t ≥ 0: It is easy to see that the following inequality holds

− Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t

(

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

)

= −Hu,t (Et + Sr,t) − Hu,t

(

Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

)

.
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2) For Hu,t < 0: We have

− Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t

(

|Et + Sr,t| +

∣

∣

∣

∣

∣

Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t

(

Et + Sr,t +
t
∑

τ=0

ρτ 1S,t(dτ ) − Sw,t

)

= −Hu,t (Et + Sr,t) + Hu,t

(

Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

)

.

Combine the above cases for Hu,t, we have −Htxu,t in (5.44) upper bounded by

− Hu,t

(∣

∣

∣

∣

∣

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

∣

∣

∣

∣

∣

)

≤ −Hu,t (Et + Sr,t) − |Hu,t|
(

Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

)

.

From (5.21), X2
t+1 − X2

t in (5.40) can be presented by

X2
t+1 ≤ (Xt + dt − dmax)2

≤ X2
t + 2Xt (dt − dmax) + (dt − dmax)2

X2
t+1 − X2

t

2
≤ Xt (dt − dmax) +

1
2

(dt − dmax)2 (5.45)

where by (5.1), the last term in RHS of (5.45) can be upper bounded by (dt −dmax)2 ≤

max
{

(dmax)2 , (dmax
t − dmax)2

}

.

From (5.25), H2
d,t+1 − H2

d,t in (5.40) can be presented by

H2
d,t+1 − H2

d,t

2
= Hd,t(γd,t − dt) +

(γd,t − dt)2

2
≤ Hd,t(γd,t − dt) +

1
2

(dmax
t )2 (5.46)

where the last inequality is derived from the bounds of γd in (5.19) and dt in (5.1).
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Now, we give the upper bond of (5.40) as follows

∆(Θt) , L(Θt+1) − L(Θt)

≤ Zt

(

Et + Sr,t + Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ ) − ∆u

To

)

+ Hu,tγu,t − Hu,t(Et + Sr,t) − |Hu,t|
(

Sw,t −
t
∑

τ=0

ρτ 1S,t(dτ )

)

+ µXt (dt − dmax) + µHd,t(γd,t − dt) + G (5.47)

where G includes all constant terms from the upper bounds of (5.41), (5.43), (5.45)

and (5.46), and is defined as

G ,
1
2

max







(

Rmax − ∆u

To

)2

,

(

Dmax +
∆u

To

)2






+
1
2

max
{

R2
max, D2

max

}

+
µ

2
(dmax

t )2

+
µ

2
max

{

(dmax)2 , (dmax
t − dmax)2

}

. � (5.48)

5.6.3 Proof of Proposition 5.1

Proof. To determine the optimal scheduling delay d∗
t , we need to compare the objective

values of P4a1 under all serving options. The optimal delay d∗
t is the one that achieves

the minimum objective value.

Due to the fact dt · 1S,t(dt) = 0, we have the following cases.

1) If the load is immediately served, we have 1S,t(dt) = 1 and dt = 0. The

objective value becomes ωo;

2) If the load is delayed, we have dt > 0 and 1S,t(dt) = 0. The objective function

is reduced to µdt(Xt − Hd,t). For Xt − Hd,t ≥ 0, the objective value is ω1; Otherwise,

the value is ωdmax

t
.

Comparing ωo to ω1 or ωdmax

t
, we obtain d∗

t . �
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5.6.4 Proof of Lemma 5.2

Proof. Since µ, α and V are all positive weights, and Ci(γt) are both assumed to be

continuous, convex and non-decreasing function with respect to γi,t with maximum

derivatives C ′
i(Γi) < ∞ for i = d, u, the optimal γ∗

i,t values are determined by exam-

ining the derivatives of the objective functions of P4a2 and P4b1. Note that, given

γu,t in (5.17) and γd,t in (5.19), C ′
i(γi,t) ≥ 0 and is increasing with γi,t for i = d, u. For

βi defined in Lemma 5.2, we have

1) For Hi,t ≥ 0: We have µdHd,t + V αC ′
d(γd,t) > 0 and Hu,t + V C ′

u(γu,t) > 0. Thus,

the objectives of P4a2 and P4b1 are both monotonically increasing functions, and the

minimum values are obtained with γ∗
i,t = 0 for i = d, u.

2) For Hi,t < −V βC ′
i(Γi): Since V C ′

i(Γi) ≥ V C ′
i(γi,t) for i = d, u, we have µdHd,t +

V αC ′
d(γd,t) < 0 and Hu,t + V C ′

u(γu,t) < 0. The objectives of P4a2 and P4b1

are both monotonically decreasing functions. From (5.19), the minimum objective

value of P4a2 is reached with γ∗
d,t = Γd where Γd , min{dmax

t , dmax}; The mini-

mum objective value of P4b1 is reached with γ∗
u,t = Γu where by (5.17), we have

Γu , min{Rmax, Dmax};

3) For −V βiC
′
i(Γi) ≤ Hi,t ≤ 0: In this case, γ∗

d,t and γ∗
u,t are the roots of µdHd,t +

V αC ′
d(γd,t) = 0 and Hu,t + V C ′

u(γu,t) = 0, respectively. We have γ∗
i,t = C ′−1

i

(

−Hi,t

V βi

)

for i = d, u.

Thus, we have γ∗
i,t for i = d, u as in (5.29). �
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5.6.5 Proof of Theorem 2

Proof. A T -slot sample path Lyapunov drift is defined by ∆T (Θt) , L(Θt+T )−L(Θt).

We upper bound it as follows

∆T (Θt) =
Z2

t+T − Z2
t +

(

H2
u,t+T − H2

u,t

)

2
+

µ
(

X2
t+T − X2

t + H2
d,t+T − H2

d,t

)

2

≤ Zt

t+T −1
∑

τ=t

(

Qτ + Sr,τ − Dτ − ∆u

To

)

+
1
2

[

t+T −1
∑

τ=t

(

Qτ + Sr,τ − Dτ − ∆u

To

)]2

+ Hu,t

t+T −1
∑

τ=t

(γu,τ − xu,τ ) +
1
2

[

t+T −1
∑

τ=t

(γu,τ − xu,τ )

]2

+ Xt

t+T −1
∑

τ=t

(dτ − dmax) +
µ

2

[

t+T −1
∑

τ=t

(dt − dmax)

]2

+ Hd,t

t+T −1
∑

τ=t

(γd,τ − xd,τ ) +
µ

2

[

t+T −1
∑

τ=t

(γd,τ − xd,τ )

]2

≤ Zt

t+T −1
∑

τ=t

(

Qτ + Sr,τ − Dτ − ∆u

To

)

+ Hd,t

t+T −1
∑

τ=t

(γd,τ − xd,τ ) + GT 2

+ Hu,t

t+T −1
∑

τ=t

(γτ − xu,τ ) + Xt

t+T −1
∑

τ=t

(dτ − dmax) (5.49)

where G is defined in Lemma 5.3.

Assume To = MT . We consider a per-frame optimization problem below, with

the objective of minimizing the time-averaged system cost within the mth frame of

length T time slots.

Pf : min
{at,γt}

1
T

(m+1)T −1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

s.t (5.1), (5.4), (5.6), (5.9), (5.13) − (5.15), (5.17) − (5.20).

We show that Pf is equivalent to P1 in which To is replaced by T . Let uf
m denote the

minimum objective value of Pf . The optimal solution of P1 satisfies all constraints of

Pf and therefore is feasible to Pf . Thus, we have uf
m ≤ uopt

m . By Jensen’s inequality

and convexity of Ci(·) for i = d, u, we have Cd(γd) ≥ Cd(γd) = Cd(dw) and Cu(γu) ≥
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Cu(γu) = Cu(xu). Note that introducing the auxiliary variables γu,t with constraints

(5.17) and (5.18), and γd,t with constraints (5.19) and (5.20) does not modify the

problem. This means uf
m ≥ uopt

m . Hence, we have uf
m = uopt

m and Pf and P1 are

equivalent.

From (5.49) and the objective of Pf , we have the T -slot drift-plus-cost metric for

the mth frame upper bounded by

∆T (Θt) + V





(m+1)T −1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]





≤ Zt

(m+1)T −1
∑

t=mT

(

Qt + Sr,t − Dt − ∆u

To

)

+ Hu,t

t+T −1
∑

τ=t

(γu,τ − xu,τ ) + GT 2

+ Xt

t+T −1
∑

τ=t

(dτ − dmax) + Hd,t

t+T −1
∑

τ=t

(γd,τ − xd,τ )

+ V





(m+1)T −1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]



 . (5.50)

Let {π̃t} denote a set of feasible solutions of Pf , satisfying the following relations

(m+1)T −1
∑

t=mT

(

Q̃t + S̃r,t

)

=
(m+1)T −1
∑

t=mT

(

D̃t +
∆u

To

)

(5.51)

(m+1)T −1
∑

t=mT

γ̃i,t =
(m+1)T −1
∑

t=mT

x̃i,t, for i = u, d (5.52)

(m+1)T −1
∑

t=mT

d̃t ≤
(m+1)T −1
∑

t=mT

dmax (5.53)

with the corresponding objective value denoted as ũf
m.

Note that comparing with P1, we impose per-frame constraints (5.51)-(5.53) as

oppose to (5.16), (5.18), (5.20) and (5.3) for the To-slot period, respectively. Let δ ≥ 0

denote the gap of ũf
m to the optimal objective value uopt

m , i.e., ũf
m = uopt

m + δ.

Among all feasible control solutions satisfying (5.51)-(5.53), there exists a solution
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which leads to δ → 0. The upper bound in (5.50) can be rewritten as

∆T (Θt) + V





(m+1)T −1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]





≤ GT 2 + V T lim
δ→0

(

uopt
m + δ

)

= GT 2 + V Tuopt
m .

Summing both sides of above over m for m = 0, . . . , M − 1, and dividing them by

V MT , we have

L(ΘTo
) − L(Θ0)

V MT
+

1
MT

M−1
∑

m=0

(m+1)T −1
∑

t=mT

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

≤ GT

V
+

1
M

M−1
∑

m=0

uopt
m . (5.54)

Since Ci(γi) ≤ Ci(γi) for the convex function Ci(·) where γi ,
1

To

∑To−1
t=0 γi,t for

i = u, d, from (5.54), we have

(

1
To

To−1
∑

t=0

EtPt

)

+ xe + Cu(γu) + αCd(γd) ≤ 1
To

To−1
∑

t=0

[EtPt + xe,t + Cu(γu,t) + αCd(γd,t)]

(5.55)

For a continuously differentiable convex function f(·), the following inequality holds

[61]

f(x) ≥ f(y) + f ′(y)(x − y). (5.56)

Applying (5.56) to Cu(xu) and Cu(γu), we have

Cu(xu) ≤ Cu(γu) + C ′
u(xu)(xu − γu) ≤ Cu(γu) + C ′

u(Γu)(xu − γu)

= Cu(γu) − C ′
u(Γu)

Hu,To
− Hu,0

To

(5.57)

where the last term in (5.57) is obtained by summing both sides of (5.24) over To.

Similarly, we obtain

Cd(dw) ≤ Cd(γd) − C ′
d(Γd)

Hd,To
− Hd,0

To

. (5.58)
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Apply the inequalities (5.57) and (5.58) to Cu(γu) and Cd(γd) respectively to the

LHS of (5.55). From (5.54) and (5.55), we have the following bound of the objective

value u∗(V ) of P1 achieved by our proposed algorithm

u∗(V ) − 1
M

M−1
∑

m=0

uopt
m

≤ GT

V
+

C ′
u(Γu)(Hu,0 − Hu,To

) + αC ′
d(Γd)(Hd,0 − Hd,To

)
To

+
L(Θ0) − L(ΘTo

)
V To

.

(5.59)

Now, we prove the bound of (5.59), i.e., as To → ∞, we have the bound (5.36).

To show this, it is suffice to show that both Hu,t and Hd,t in (5.59) are bounded. To

show these bounds, we need to show that the one-slot Lyapunov drift in (5.40) is

upper bounded as follows

L(Θt+1) − L(Θt) ≤ G. (5.60)

To show the above bound for the drift, we choose an alternative feasible solution π̃t,

satisfying the following per slot relations

Q̃t + S̃r,t = D̃t +
∆u

To

(5.61)

γ̃i,t = x̃i,t, for i = u, d (5.62)

d̃t ≤ dmax. (5.63)

Under the above (5.61)-(5.63), the first terms on the RHS of (5.41), (5.43), (5.45)

and (5.46) become zeros. It follows that L(Θt+1) − L(Θt) ≤ G. Note that the upper

bound for (5.45) in (5.60) is obtained by chosen d̃t = dmax in (5.63). Averaging (5.60)

over To-slot period, we have

1
To

[L(ΘTo
) − L(Θ0)] ≤ G. (5.64)
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For any initial value of Lyapunov function L(Θ0) < +∞, (5.64) can be presented by

1
2To

[

Z2
To

+ H2
u,To

+ µ
(

X2
To

+ H2
d,To

)]

≤ G +
L(Θ0)

To

. (5.65)

It follows that

Hi,To
≤
√

2ToG + 2L(Θ0), for i = u, d. (5.66)

Since
√

2ToG+2L(Θ0)

To
→ 0 as To → ∞, we have the second term on RHS of (5.59) goes

to zero. Thus, we have (5.36). �

5.6.6 Proof of Proposition 5.3

Proof. To prove ǫd is bounded, we see that

|ǫd| =
|XTo

− X0|
T0

≤ |XTo
| + |X0|
T0

. (5.67)

From (5.65), it follows that

|XTo
| ≤

√

2ToG

µ
+

2L(Θ0)
µ

. (5.68)

Substituting the above upper bound of |XTo
| in (5.67), we have (5.37). �



Chapter 6

Conclusions

In this dissertation, we first proposed a real-time control policy to minimize the long-

term time-averaged cost for energy storage management with renewable energy in-

tegration. We incorporated the system dynamics and the batter operation cost in

the problem formulation, and applied Lyapunov optimization technique to design

the real-time control policy with a bounded performance from the optimal scheme.

Our control decision was derived in closed-form resulting in minimum implementation

complexity. Simulations showed the effectiveness of integrating renewable energy for

energy storage in reducing the long-term cost as well as improving the efficiency of

energy storage relative to the battery operation cost.

Due to the unpredictable stochastic nature of the renewable source, load and

pricing, whose statistics are difficult to obtain and likely to be non-stationary, we

considered arbitrary system input dynamics in formulating the second problem. We

included the battery operation costs in the formulation, and modeled the battery

costs due to charging/discharging as part of the system cost. Our design aimed to

minimize the system cost over a finite period of time. We provided a real-time control

algorithm for such arbitrary system input dynamics. Our proposed algorithm is a
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result of a sequence of problem modification and transformation, and employing the

Lyapunov optimization framework. We further showed that our proposed algorithm

resulted in a guaranteed bounded performance from the optimal T -slot lookahead

scheme. Simulation results demonstrated the effectiveness of our proposed algorithm

as compared with other alterative approaches.

In our last problem, we considered an ESM system which included a renewable

generator and a battery for energy storage. We considered joint energy storage and

load scheduling for the ESM system, where renewable source, loads, and pricing might

be non-stationary and the statistics were unknown. For load scheduling, our model

considered random load arrival with different energy intensities and durations, and

both per load maximum delay and average delay constraints were considered. For

energy storage, our model included the battery operation cost due to charging and

discharging. Formulating the joint optimization problem to minimize the overall sys-

tem cost over a finite period of time, we designed a real-time algorithm for joint

scheduling and energy storage control. With a sequence of problem modification and

transformation and the application of Lyapunov optimization, we were able to pro-

vide a close-form per slot scheduling and energy storage decision. Interestingly, we

showed that the joint scheduling and energy storage could be separately and sequen-

tially determined in our real-time algorithm. We showed that our proposed real-time

algorithm had a bounded performance guarantee from an optimal T -slot look-ahead

solution and is asymptotically equivalent to the optimal T -slot look-ahead solution as

the battery capacity and time period go to infinity. Simulation results demonstrated

the effectiveness of our proposed algorithm for joint load scheduling and energy stor-
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age as compared with other real-time schemes which consider neither storage nor

scheduling, or storage only.



Chapter 7

Future Work

Energy storage management is a relatively new research topic in recent years. Some

potential directions as future works are given as follows:

1. Real-Time Algorithm with Predictable Information

With the increasing penetration of renewable and storage, the future grid demand

and supply management are expected to be quite dynamic. Similarly, the prediction

of intermittent renewable source is also a challenging task. Although the complete

long-term information of demand, renewable and pricing is difficult to obtain, some

information, such as pricing, is still predictable in a short period of time.

If certain type of full/partial statistical information is known, it potentially can

be used in designing the algorithm to improve the performance gap to the optimal

solution. For example, the per-slot control decision will be made based on the future

pricing information, besides the current input. Specifically, whether the future price

will (likely) be higher or lower will be factored the current decision on whether to store

energy or use the stored energy. This will further reduce the system cost. Exactly how

to incorporate such full/partial statistical information into the design is non-trivial;

it may require new technique and in-depth investigation.
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2. More Detailed Modeling for Battery Degradation

Battery technology has been evolving slowly in the past and has only recently

picked up the pace. The battery degradation and the associated cost function are

complicated and have yet to be better understood. The precise cost function is difficult

to model and it may also depend on the type of degradation one is concerned about.

In our developed models, we have modeled the cost function due to the battery

charging and discharging activities. For a more detailed modeling of battery degrada-

tion, we may study the battery aging effect to the battery capacity. As well known,

batteries begin fading from the day they are manufactured. The aging process oc-

curs naturally as part of usage, which cannot be reversed. To design our real-time

algorithm, we may face some new challenges. For example, we need to consider a

decreasing capacity of battery, but ensure the battery capacity constraint being sat-

isfied over time due to the charging and discharging activities. New technique may

be required to overcome this unique challenge. Also, since the performance of our

proposed algorithm has a tight connection with the battery capacity, how good the

new algorithm can perform still needs in-depth investigation.

3. From Residential-Level to System-Level

We have designed the energy storage management and load scheduling scheme for

the residential consumers, in helping them reduce the electricity cost. Our proposed

algorithm shows that the load scheduling can optimally respond to the real-time pric-

ing information, provided by the utility. As the result, each consumer can significantly

save the energy cost.

However, the demand responses by a large number of consumers may cause the
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issue of rebound peak. To combat this issue, we may consider studying a problem that

aims at saving the energy cost for the consumers and ensuring the grid reliability for

the system operator, simultaneously. To design such a problem, it is normally assumed

that certain level of statistical information is known. However, it is non-trivial to

design a real-time algorithm which does not rely on any statistical information. It

requires new technique and in-depth investigation.
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