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Abstract 

 

We consider two methods about operating data for tree-structured data sets. The first method is to 

search particular data items and still retains all the important metadata information; the second 

method is to allow the data synchronization between two tree-structured files. Both of the 

methods are based on a special data structure we proposed, called Bloom Filter Tree. It is to 

compute a bloom filter for each interior node of the tree, essentially building a co-existing BF-

tree to enhance the original data tree in order to allow more operations. Using the BF-tree, these 

two processes become faster by pruning out entire subtrees from being searched and precisely 

locate the parts we are looking for. Experiments are performed to verify the efficiency of each 

method. What’s more, we deploy the search method as an android application for practical 

purposes on mobile devices. We focus on a particular tree-structured dataset, DBLP, and select 

hundreds of records from it and enrich it as a neat XML file for parsing. With hundreds of 

records, more than 35,000 nodes in the tree structure, our method responds accurately and 

efficiently. 
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1  

Introduction 

1.1 Introduction 

 

Mobile devices have completely revolutionized the way we interact with our environment. They 

have become intertwined with the user, carrying them wherever they go. These changes are 

evident in both our social and professional environments. Mobile applications were complete 

packages installed onto the device, capable of completing the tasks as designed. Due to the limits 

of mobile devices, such as limited storage, low bandwidth etc., the recent trend of mobile 

application development has favoured approaches to decrease the amount of local storage, save 

battery life and increase performance.  

We consider data that are structured as trees, examples include XML trees and DOM [1] trees. 

The leaf nodes in the data tree are the data elements; the interior nodes contain metadata as well 

as possibly data elements. That is, the set of data elements reside in the leaf nodes and possibly in 

the interior nodes, while the metadata reside in the interior nodes. As an illustrative example, 

suppose a collection of text data — these could be documents or forum posts or just pieces of text 

that users contribute to a common repository. This data is naturally organized into a tree, the 

children of the root node may represent the different content types, the next levels down may 

represent the timestamps, and the further down the breakdown may be by user ID, etc. The leaf 

nodes contain the actual text data. There are two mainly operations considered in this research; 

one is how to search particular elements in this kind of big data tree in a fast way; the other one is 

if we store two copies of a data tree without having them on the same machine, and changes 

happened to one of the copies, how to do the data synchronization to have these two copies to be 
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identical.  

With the widely usage of android smart phones and tablets, we are aiming to implement the 

methods of these two operations onto mobile devices. Thus, the limitations of the mobile devices 

like low bandwidth, limited local storage, short life span battery, etc. should be considered 

through the whole development. 

 

1.2 Objective and Methodology  

 

The first objective we consider is the problem of searching for a particular data element x in the 

tree-structured set.  

Given a set of data in tree-structure, the basic operation is always about searching for a particular 

element x to see whether it is in the set. Usually, the first solution came up into mind is simply 

taking all the leaf nodes into a list, and search the list for this particular date element x, then we 

could obtain a boolean answer of whether x is a member of the set. However, most of the time, 

we are not only restricted to the satisfaction of a boolean answer of the existence of a particular 

data element, but want to explore more information related to this being searched element. The 

naïve way of doing a breadth-first or depth-first tree traversal would yield x’s location(s) in the 

tree and hence all its associated metadata. The cost of such a traversal is that every node in the 

tree must be visited and every leaf node also compared with x. Since, it is a tree structure, any of 

the metadata associated with the x could be reside in the interior nodes. We would lose vital 

information encapsulated in the tree organization, and therefore lose its original intent and 

advantage. To avoid losing the vital information encapsulated in the tree organization, capturing 

the location and metadata for x is of essence.  

To realize this, a more efficient method to find x and obtain its metadata and location(s) in the 
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tree is proposed in this research. At each interior node, we compute a bloom filter for the entire 

subtree rooted at this node. By checking the bloom filter, we can eliminate the possibility that x is 

in that subtree and altogether forego the traversal or search in that subtree. This way, every 

subtree not having x as one of its leaf nodes does not get traversed or searched at all, thus saving 

the unnecessary cost. Essentially we construct a tree of bloom filters; the tree has the same 

topology as the data tree, minus its leaf nodes. A bloom filter is simply a bit vector of m bits. 

Each computed bloom filter can easily be stored at the corresponding interior node in the original 

data tree. We construct the bloom filter tree from bottom up. First, we compute the bloom filters 

for the lowest-level (topologically speaking) interior nodes, i.e., those with leaf nodes as children. 

The bloom filters of upper interior nodes are obtained by taking the union of the bloom filters of 

all their children. Proceeding thus from bottom up, we build the entire bloom filter tree right up to 

the root. The search for x, in contrast, begins at the top. We first check the bloom filter at the root 

to see if x exists in the entire tree. If it does, then we go down one level to check the bloom filters 

of the children of the root, to see if x is in any of these subtrees. If a check yields positive, then 

we know that most likely x is in that subtree and proceed to keep checking in that subtree top-

down, in the same fashion. If a check yields negative, then we know with certainty that x is not in 

that subtree and can prune out that subtree. Throughout this top-down pruning search process, we 

store the path(s) that lead to data element x. For every instance of x found in the data tree, the 

path to it from the root is obtained and this path gives the location and metadata information. The 

answer to the query for x is therefore not just a boolean, but a set of paths (obviously empty set 

means no instance of x found). 

The bloom filter tree is constructed from bottom up. The first level interior nodes’ bloom filters 

contain all the information of their children. Thus, all the parent interior nodes associated with 

these first level interior nodes will contain the same information. Taking advantage of this 

property is the motivation of synchronizing two tree-structured files by building bloom filter 
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trees. These two tree-structured files are coming from the same copy and now locate on different 

machines without access to each other. There are some changes happened to one of the copies 

and the problem is how to update the old one to be the same as the new version. The ultimate goal 

is to perform the algorithm on android mobile devices, thus we are assuming that the two 

machines are connected by a low-bandwidth and preferred to send messages through the 

communication link at the minimum cost. To really speed things up, taking advantage of the 

similarity between two files is a wise choice. The BF-Sync algorithm efficiently computes which 

parts of a source file don’t match some part of an existing destination file. These parts could be 

sent across the link directly. The receiver can then construct a copy of the new version file by 

updating the differences with the corresponding transferred data. After building up two bloom 

filter trees, comparing the bloom filters level by level from top to bottom could help locate where 

the differences are. What’s more, during the whole recursively comparing process, if two bloom 

filters from each side are the same, which indicates there’s no difference between their children 

nodes, then there’s no need to go any further. We prone out those subtrees rooted at the equal 

bloom filters nodes, which really speeds the whole process up.  

 

1.3 Research Contributions 

 

This thesis contains two main research contributions.  We investigate the problems of data search 

in tree-structured data sets and remote synchronization of two data trees over the network.  To 

solve the first problem, we propose an algorithm that uses bloom filters to succinctly represent 

data elements contained in subtrees and performs a search by scanning these bloom filters in a 

top-down manner starting at the root node.  The search is made efficient by being able to 

eliminate entire subtrees from the top down.  We verify this in our experimental evaluation.  We 
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also present a theoretical analysis of the effect on search performance of the number and 

positioning of a fraction of bloom filters in the tree (instead of placing one at every node). 

For the second problem of remote data synchronization of tree-structured data, we propose an 

algorithm that generates and maintains bloom filters on each of the two data trees, and 

synchronizes them by selectively exchanging bloom filters.  We also implement the classic rsync 

[2] scheme for remote data synchronization, for comparison and evaluation of our method.  We 

experimented with two variants of data, one with append-only operations and the other with 

randomly located differences between the two trees.  For the second variant, we experimented 

with a small number of differences.  Our assumption is that data synchronization is performed on 

a frequent regular basis between mobile device and the cloud or between two mobile devices, and 

given the usage patterns of most mobile devices, not a large amount of data will change during a 

short interval of time.  We use three metrics to measure the performance: number of nodes visited 

in the tree, number of bytes transmitted between the data sites, and the runtime.  In all three 

metrics, our method has better performance than rsync, for both variants of data. 

 

1.4 Thesis Organization  

 

This thesis is organized in five chapters. Chapter 1 is an introduction to the background and the 

objectives of the whole research. 

Chapter 2 illustrates the features of the bloom filter, and how to take advantages of these features. 

Some variants and applications of the bloom filter are reviewed as the motivation of our BF-Tree 

construction. Also in this chapter, we clarify the synchronization techniques, especially rsync, as 

the foundations of BF-Sync. 
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Chapter 3 presents a method to efficiently search for data items in data sets that are organized into 

hierarchical tree structures by constructing co-existing bloom filter trees. The performance are 

investigated thoroughly and compared with the naïve method of tree traversal. In order to reduce 

the amount of overhead associated with computing and maintaining a full bloom filter tree, we 

also consider the problem of using a sparse bloom filter tree instead of the full one in which every 

node in the data tree in indexed by a bloom filter.  

Chapter 4 we address several issues about using BF-Sync algorithm for data synchronization, also 

we present two main scenarios of the way changes happen; one is the differences are randomly 

located in the middle of the whole set; the other one is the differences are only appended in the 

end. As well, implement and discuss the results of different situations, and finally, analyze the 

result and the performance of the implemented BF-Sync algorithm. 
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2  

Literature Review 

2.1 Why Bloom Filter 

 

Thinking of a general scenario, given a particular element x, it could be any integer, string, etc. 

We have a data structure, which represents a set S of N elements and the problem is to determine 

whether x is in set S. For this data structure, it should enable of two basic operations, one is the 

ability to dynamically add elements to the set, and the other is a search operation to determine 

whether the given element is a member of S.  

There are many ways. One can think a set of hashed objects, which represents a range of hashed 

values. This is much more memory efficient than just storing all the elements in a set, especially 

when the hash function is well chosen. Moreover, the type of the elements in set S is not restricted 

to any specified one. A little more explicit of how this works. We have a set of objects 

x0,x1,...xN−1, where N denotes the number of elements in S. For each element, we compute an m-

bit hash function h(x j ). The hash function takes an element as input and arbitrarily comes up 

with an output of m bits. Thus the set S is represents by a set of hash values like 

h(x0 ), h(x1),...h(x|N |−1). This basic hashing approach requires roughly m|N| bits of memory. This 

works fine if N is not large. Otherwise, there exists the danger of making errors and more 

memory storage. The danger of making errors is because of the hash collision, h(x) = h(x j ) for 

some j. In this case, the search for x will always be positive as long as x j
 in the set. This collision 
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probability of hash function x ∈ S  is directly correlated to the false positive rate. Even though, 

for many applications, it’s acceptable to have a small probability of a false positive. However, to 

maintain a low false positive rate as N increases, the range of h(x j ) must increase and therefore 

m must increase, thus resulting in higher space and time cost. Suppose we want to represent a 

range of integers of length n. As an alternative to hashing or storing directly, we could represent S 

using a bit vector of n bits, like [0,1,… n-1].  In this bit vector, bit  x is set to 1 if x ∈ S  and 0 if

x ∉ S . To check whether x is in S is a simple look-up of bit x in the bit vector. This works fine if 

the range of integers dictated by the elements in S is not too large and the set S is not too sparse 

over the range. Otherwise, it will be too wasteful in space and look-up time. This bit vector is in a 

small and well-defined range. However, in general world, the elements in the set could be 

complicated not just a range of well-defined integers. Thus combining the method of bit vector 

and hashing method, we can use hashing to number the element in set S. Suppose h(•) is an m-bit 

hash function and a set S of N elements are of any type, x0, x1,...x|N−1| . We are going to represent 

this set using a bit vector containing 2m
−1integers. For each x j

, we set the h(x j )th element in 

the bit vector to be 1, where h(x j ) is a number in the range of 0 to 2m
−1. To check whether x is 

a member of S, we only need to check whether the h(x)th element in the bit vector has been set 

to 1. This scheme is improved but it doesn’t avoid the problem of hash collision and even takes 

more memory storage. In order to avoid hash collision, how about using multiple cells with 

different hash functions. There comes an idea of using k cells, each based on an independent m-

bit hash function, h0, h1,...hk−1. In this data structure, there exists k bit vectors and each vector 

contains 2m
bits. We are adding an element x by setting h0 (x) th, h1(x)th, … hk−1(x) th in each 

corresponding bit vector. To check whether x is in the set is by simply checking whether all the 

corresponding bits have been set to 1 in each vector. This idea does decrease the probability of 
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hash collision but if the number of elements increasing a lot, to maintain the low false positive 

rate, we need to increase the size of all the bit vectors which definitely results in higher space 

cost. A variation of this multiple bit vectors is using a single bit vector but simultaneously 

multiple hash functions, which is the bloom filter data structure. Bloom filter offers a better way 

to control the size of the bit vector while keeping a low false positive rate. The underlying data 

structure is a bit vector V with |V | = m and k independent hash functions h0, h1,...,hk−1 that map 

items in the data set to the range | m | = {1,..., m} . All bits in V are initialized to 0. For each 

element x in the data set, we simply set all the bits at h0 (x)th, h1(x)th...hk−1(x)th  positions in the 

bit vector to be 1. Given x, if not all these k bits are 1, then it is known with certainty that x ∉ S ; 

otherwise it is with high probability that x ∈ S . However, there remains probability that  

but it yields positive. This type of error is known as false positive rate. False positive rate is an 

error when the element is not in the set but it yields positive. It occurs because of the hash 

collision, which is due to some different elements map into the same positions. There is another 

error rate called false negative rate. In contrast, this error rate means the element is in the set but 

it yields negative. The false negative rate will never happen to the Bloom Filter and we can 

control the false positive rate by designing the filters on our own. 

x ∉ S
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Figure 2.1 Overview of a Bloom filter 

 

Even the structure offers a compact probabilistic way to represent a set that result in false 

positives, never in false negatives (claiming an inserted element to be absent). Thus this makes 

bloom filter popular for many kinds of tasks that involve lists and sets. The accuracy of a bloom 

filter depends on the size of the filter, the number of hash functions used, the number of elements 

added in the filter. To compute the probability of a false positive rate, suppose we have an empty 

bit vector V and insert an item. As known, all the bits in the V at  

positions are set to 1. Here we assume that a hash function selects each array position with equal 

probability. Thus, when inserting one element into the filter  (m is the number of bits in the 

Bloom filter), the probability that a certain bit is not set to 1 is in equation (2.1) [3]: 

1−
1

m  

(2.1) 

 

h0 (x)th, h1(x)th...hk−1(x)th
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There are k hash functions. This is same as independently choosing k bits and setting them to 1. 

Thus, the probability that a certain bit in V is still 0 is in equation (2.2) [3]: 

(1−
1

m
)k

 
(2.2) 

 

After n insertions, the probability that a certain bit is 1 is [3]: 

1− (1−
1

m
)kn

 

(2.3) 

 

The process of test for the existence of a particular data element in the set involves hashing this 

item k times. The false positive occurs if the k times hash functions map into the bit, which are set 

to 1 already. Thus, the probability of false positives could be [3]: 

(1− (1−
1

m
)kn )k

 

(2.4) 

 

Fig 2.2 shows the false positive probability rate for Bloom filters with the number of inserted 

elements in a range of 1 to 100. 



 12

 

Figure 2.2 False positive probability rate for Bloom filters [4] 

 

 

According to the equation (2.4), we can see the false positive rate decreases as the size of Bloom 

filter m increases. The false positive rate increases as the size of elements inserted n increases. 

We note that e
−kn/m

 is a very close approximation of (1−
1

m
)kn  [3]. Thus: 

(1− (1−
1

m
)kn )k

≈ (1− e
−kn/m )k

 
(2.5) 

 

With a pre-specified set size N and false positive rate, one can find the required size of bit vector 

m. Even for a low false positive rate of 0.1, m is only approximately 10N bits. This is considered 

constant space because m doesn’t depend on the data size of each element in S. The small storage 
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cost of the bloom filters naturally leads itself to the tree structure of the data set. The Bloom Filter 

Tree structure proposed in Chapter 3 is just taking advantages of the properties of bloom filters. 

 

2.2 Applications and Extensions of Bloom Filters 

 

Bloom Filter data structure has been widely used to solve many problems and was first 

introduced in the 1970’s by Burton H Bloom [5] for simple text search. Because of its extremely 

simple randomized data structure for representing a set of data for membership queries, it has 

found applications in many areas including databases, computer networks, social networks and 

cryptography. Even its space efficient representation comes at the cost of durable false positive 

rate, the huge space savings often outweigh a sufficiently low rate.  

Bloom filters are found very early uses in databases [3]. Suppose one wanted to determine the 

students in UOIT that live in cities where cost of living is greater than 5,000 dollars. In a 

distributed database, one host might hold the information regarding the cost of living; while 

another might hold the information regarding where students live. Rather than having the first 

database sending a list of information regarding the cost of living to the second, it can only send a 

bloom filter of the list. The second can also send back a potential bloom filter. In this way, the 

communication between two hosts is highly reduced. 

Bloom filters can also be used for differential files [6]. Suppose there is a file of record at the 

beginning of the day, one wanted to know whether there would be some changes happened to this 

file during the day. Instead of tracking the whole records, one can keep a bloom filter. The list of 

the changed records can be kept as a bloom filter that helps reduce the storage.  

Fan, Cao, Almeida, Broder [7] describe Summary Cache, which uses bloom filters for web cache 

sharing. A proxy attempts to determine if another proxy cache holds the desired web page. In 
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summary cache, proxies do not transfer URL lists corresponding to exact content of their caches, 

but instead bloom filters, which represent the contents of their cache. If a proxy wants to check if 

the desired web page is included, it only needs to check the bloom filter. This technique is used in 

the open source Web proxy cache Squid, where the bloom filters are referred to as cache digest. 

Because of the space efficiency of bloom filters, it has been used for constructions for peer-to-

peer networks. While keeping a list of objects stored at every other node in a peer-to-peer system 

may be prohibitive, keeping a bloom filter for every other node may be tractable [6]. For 

example, instead of using a 64-bit identifier for each object, a bloom filter could use 8 or 16 bits 

per object. A prototype P2P system dubbed PlanetP based on this idea is described in [5]; the 

filters actually store keywords associated with documents instead of object IDs. In [8], there are 

ideas that introduce some hierarchy, so that groups of nodes are governed by a leader in the 

networks. The leaders are meant to be more stable and long lasting. So the leader stores keywords 

associated with the group of nodes. Thus, the group leader controls routing within a group and 

other groups. 

Byers, Considine, Mitzenmacher, and Rost [9] demonstrate an area where bloom filters can be 

used in solving approximate set reconciliation problems. This is one of the motivations of our 

data synchronization method based on bloom filters. They suppose peer A has a set of items S
A

, 

and peer B has a set of items S
B

. Peer A and B would like to find the items that B does not have, 

which is the set difference, S
A

− S
B

. They propose one approach that is to have B to send A a 

bloom filter; A then runs through its elements, checking each one against the bloom filter and 

sending any element that isn’t in S
B

 according to the filter. The determination of the set 

difference will be faster when the difference is small. As long as we can figure out the set 

difference, it is also possible to determine the set intersection. Reynolds and Vahdat [10] propose 

their approach that peer B can send a bloom filter representing S
B

 to A; A then sends the elements 
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of S
A

. According to the boolean result of bloom filter, we can find out which elements in A are in 

B. These are the elements exactly belongs to S
A

∩ S
B
. To handle conjunction queries involving 

multiple nodes, the set intersection methods are used to reduce the amount of information that 

needs to be sent to determine the appropriate documents. 

The de Brujin graph data structure is widely used in next-generation sequencing in molecular 

biology and many programs are relying on in-memory representation of this kind of graph, which 

results in a requirement of a large amount of memory. Chikhi, R., & Rizk, G. [11] encode based 

on bloom filters to a new, space-efficient representation of the de Bruigin graph. 

Some recent best applications of bloom filters related to our daily life are introduced in [12][13]. 

Facebook uses bloom filters for typeahead search, to fetch friends and friends of friends to a user 

typed query. The bloom filter is just 16 bits per friend connection (an edge in the facebook social 

graph) and they have called it "world's smallest bloom". Another application is familiar with the 

Yahoo email. When you log into Yahoo mail, the browser page requests a bloom filter 

representing your contact list from Yahoo servers. The bloom filter is compact and easily fits in 

your browser cache. When you send an email to other people, the browser-side javascript quickly 

checks the bloom filter in the browser cache for those email addresses. 

Section 2.1 describes the mathematics behind bloom filters. There are also some important 

variations. Suppose we have a set that is changing over time, with elements being inserted and 

deleted. Inserting elements into bloom filter is easy; just like described in 2.1, hashing the 

elements k times and set these bits to 1. However, the deletion process could not be simply 

performed in reverse. If we delete one element by changing its corresponding hashing bits to 0, 

then some other elements stored in the set might be influenced. A bloom filter can easily be 

extended to support deletions by adding a counter for each element of the data structure. Counting 

Bloom filters [7] was first published to avoid this problem and some improved versions in 
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[14][15]. The structure works in a similar manner as a standard bloom filter. The array positions 

are extended from a single bit to n-bit as a counter, which makes the delete and insert operations 

possible. When an item is inserted, the corresponding counters are incremented; when an item is 

deleted, the corresponding counters are decremented. There is also one problem with the bloom 

filter is that it allows any hash function to map to any bit in the vector, thus for some member, 

more than five hash functions map to the same memory segment, which exceeds the lookup 

capacity of the memory core. The problem is solving by restricting the range of each hash 

function a given memory presented in [16] called Parallel Bloom filters. Another problem with 

bloom filters is that you must know an expected capacity in advance. If the prediction is too high, 

you’ll waste space. If the prediction is too low, the rate of false positives will be increased before 

item insertion. [17] proposed Scaling Bloom Filters to solve this problem by starting with a small 

bloom filter and creating additional ones as needed. Compressed Bloom filter was introduced in 

[18], which improves performance when the bloom filter is passed as a message, and its 

transmission size is a limiting factor. This structure is particularly useful when information must 

be transmitted repeatedly, and the bandwidth is a limiting factor. Shanmugasundaram et al. [19] 

presented a data structure called Hierarchical Bloom Filter to support substring matching. This 

structure supports the checking of a part of string for containment in the filter with low false 

positive rates. It works by splitting an input string into a number of fixed-size blocks. These 

blocks are then inserted into a regular bloom filter. It is possible to check for substrings. What’s 

more, several proposals [20][21] even have suggested providing some basic security during the 

hashing of bloom filters so that the identities of the set elements represented by the BF are less 

clearly visible for observers or attackers.  

Bloom filters are in many shapes and forms and widely used. This has been reflected in some 

very recent research and algorithms proposed either directly or indirectly based on bloom filters. 

[22] proposes an exact set reconciliation algorithm based on bloom filters, in which the 
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estimation of symmetric difference size is using bloom filters, and multiple polynomial values 

according to the estimated symmetric difference set are calculated, and then the rational 

polynomials are interpolated, finally the union of sets is determined through factoring the rational 

polynomials. In [23], the authors firstly describe an algorithm called Invertible Bloom Filter, 

which is taking an existing IBF [24] and introducing a subtraction operator. And based on IBF, 

the Difference Digest structure is proposed, that allows two nodes to compute the elements 

belonging to the set difference. An advanced bloom filters based algorithm for efficient 

approximate detection of duplicates in data stream was presented in [25]. A generic framework 

for de-depulication was provided by combing the working principle of reservoir sampling and 

bloom filters. Another BF-based algorithm called data hiding algorithm aims to contribute in 

network security in [26], in which the data security issue for many sensor network applications is 

solved by uniformly and randomly embedding sensitive data into the ordinary data using bloom 

filters. All these BF-based algorithms are introduced within recent five years; they are making the 

best use of the features and characteristics of bloom filters, and applying them into specific data 

structure for specific purposes, which is quite similar with the goal of our research. 

2.3 Synchronization Techniques 

 

Data synchronization is the process of establishing consistency among data from a source to a 

target data storage and vise versa and the continuous harmonization of the data over time [27]. In 

Computer Science, it refers to the idea of keeping multiple copies of a dataset in coherence with 

one another.  

Given two versions of a data set on different machines, say an outdated and a current one, how 

can we update the outdated one with minimum communication cost? The obvious solutions are to 

send all of the current data or compress the current data then send it or only send the compressed 
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differences between two data sets. Synchronization techniques are considering two versions of 

data have no access to each other. It is a remote data synchronization technique. There are two 

aspects of the problem; one is file synchronization, eg. Rsync, updating an outdated file to be 

identical to a current one; the other is set reconciliation. The formalization of set reconciliation 

problem is as follows: given node A and B, each with a set of b-bit strings, how can both nodes 

determine the union of two sets with a minimum of communication cost and a minimum of 

reconciliation latency [28]. The data synchronization talked in this research is between files. 

The methods of finding data differences between set reconciliation and file synchronization are 

also different. The naïve method of set reconciliation is to determine the set difference for each 

party by sending an encoding of their entire set and then one scanning the other entire list to 

remove shared elements. Minsky, Trachtenberg, and Zippel [28] discovered a method to use 

characteristic polynomials for set reconciliation. A key part of this approach is the representation 

of sets by characteristic polynomials. The key of this data synchronization protocol algorithm is 

to translate the data characteristic polynomial. It is simply to say that each reconciling host set 

maintains its own characteristic polynomial. Through the observation of the two host sets, one 

can evaluate their characteristic polynomials on several sample points and then using a rational 

function to interpolate these points. The numerator and denominator of the interpolated function 

are the differences between the two host sets. However, the computational complexity of this 

technique has two terms; one is from the cost of evaluating the characteristic polynomials at the 

chosen points; one is from the rational function reconstruction, which make the method is 

complex to be implemented. 

The synchronization techniques of file synchronization update the data of two remote files to be 

identical and without having them on the same machine. The rsync [2] propose a method to locate 

the differences in a single pass very quickly using special properties of the rolling checksum and 

the strong multi-alternate search mechanism. The first rolling checksum needs to be very cheap to 
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compute for all byte offsets but also effective and efficient. And the second checksum needs to 

have a low probability of collision. The algorithm should not assume any prior knowledge of the 

source file and the destination file and also should work on random data. Rsync doesn’t assume 

one or more files are same on the either end, it’s actually using the algorithm to compare every 

part of each file. 

For example, a very large file, first we run a weak rolling checksum across the whole file to 

compute at every byte offset, and then we only transfer the blocks which are not similar. The role 

of this fast rolling checksum is to act as a window- rolling filter. In practice, the author found that 

the probability of rolling checksum matching when the blocks are not equal is quite low. This is 

important because the strong checksum is expensive and it would only be calculated for the 

blocks where the rolling checksum matches. For this part, the benefits are saving time and 

bandwidth. 

2.4 Rsync 

 

The rsync algorithm proposed by Andrew Tridgell and Paul Mackerras [2] is a classic data 

synchronization algorithm. Rsync does remote synchronization and updates the data of two files 

to be identical and without having them on the same machine. The algorithm can be used in the 

condition where the two machines are connected by a low-bandwidth high latency bi-directional 

communications link. It was published in 1996, the algorithm remains a classic and people 

nowadays are still using rsync in many applications. 

Rsync is a remote file (or data) synchronization protocol. It allows you to synchronize files in two 

different computers or ends, which means it makes both of the copies the same. Rsync is capable 

of synchronization files without sending the whole file across the network.  
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Imagine you have a file on your local hard drive, and copy of that file on a remote hard server. 

These two are connected by a slow communication link. Now you make a change to the file on 

your local hard drive. Since it is only a small change to the whole file, you don’t want to send the 

complete file across the link. You may only want to send the differences. This is how Rsync 

works. The basic idea of rsync algorithm is that it can efficiently compute the similar parts of the 

source file and the destination file. Only parts of the source file which are not matched need to be 

sent verbatim. It takes advantages of the similarity and only sends the differences. 

Without having the two files on the same machine, Rsync supplies a method to detect the 

differences. The most salient parts of the algorithm are the rolling checksum and the strong multi-

alternate search mechanism. The first rolling checksum needs to be very cheap to compute for all 

byte offsets but also effective and efficient. And the second checksum needs to have a low 

probability of collision. The algorithm should not assume any prior knowledge of the source file 

and the destination file and also should work on random data. Rsync doesn’t assume one or more 

files are same on the either end, it’s actually using the algorithm to compare every part of each 

file. 

 Suppose two files, A is on NEW side and B is on OLD side. B is an updated version. The OLD 

divides the old version of the file into blocks of size S bytes. The last block may be shorter than S 

bytes. This is done logically, internally in the memory. For each of the blocks OLD calculates 

two checksums: a weak “rolling” 32-bit checksum and a strong 128-bit checksum, then these 

checksums are sent to NEW. 
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Figure 2.3 Rsync: After receiving the checksums from old version, the new file begins 

rolling checksum for matches. 

 

 

 

NEW searches the newest version of the file for blocks of data that has the same “rolling” 

checksum as those found in the old version of the file. This is done by fist calculating the 

“rolling” checksum for the very first block of data (S bytes) and can be done in a single pass.  If 

this checksum does not match any checksum in the old file, NEW moves 1 byte down the new 

file and calculates the checksum for this new block. NEW thus calculates checksums for every 

possible S bytes block in the new file, to search for matches to blocks in the old file.  If NEW 

finds a block with the same checksum as one of the checksums received from OLD, then it 

considers that block to exist in the old version. NEW now skips to the end of this block and 

continues searching for checksum matches from there.  
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Figure 2.4 The changes are detected using block checksums. 

 

 

 

Eventually, NEW will find multiple blocks of data matching checksums of the old file. These are 

the data not changed. Between these blocks is the part that doesn’t match, which is the changed or 

new data. Thus, NEW sends OLD a sequence of instructions for constructing a copy of A, which 

includes a list of block references for the sections are not changed and literal data, which doesn’t 

match any of the blocks of OLD. The literal data is sent verbatim.  

The Figure 2.5 shows the process of data synchronization between client and server. First, the 

server side calculates the checksums of the raw data and then sends the checksum stream to the 

client side. After receiving the checksum stream, the client detects the differences that are the 

parts not matched. The client sends the differences and merge instructions for the server to 

construct a copy. The server then construct a copy of the new version file by merging the 

references to the existing parts and the verbatim material.  
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Figure 2.5 The Rsync process 

 

 

Rsync is widely used to back up data from clients to a server.  Of course you can use rsync to do 

restoring if necessary. 

Another use case for rsync would be to implement resumable uploads and downloads. If you start 

a file upload via rsync, and if it is interrupted for any reason, for example the connection fails 

halfway through the uploading, you can resume it easily with very little cost. Rsync will then 

compare the full file on the client, to the half file on the server, and find that the last half is 

missing, and start sending the second half of the file. The same is true for downloads. 

Rsync could also be used to implement incremental file versioning. By incremental file versioning 

we mean keeping different versions of the same file, but rather than keeping the full version of 



 24

each file, you could just keep the rsync merge instructions needed to go from one file version to 

another. Thus, you just keep the "incrementation" from one version to another [29]. 
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3  

Bloom Filter Tree 

3.1 Bloom Filter Tree Structure 

 

Suppose there is a data tree T with n nodes, each node storing data information. The leaf nodes 

may contain the data elements of specific detailed information and the interior nodes are the 

metadata including abstracts or the summaries related to the leaf nodes. This kind of tree-

structure data set is quite common in practice examples like XML files. Given a set of data of 

tree-structure, the basic operation is always about searching for a particular element x to see 

whether it is in the set. However, most of the time, we are not only restricted to the satisfaction of 

a boolean answer of the existence of a particular data element, but want to explore more 

information related to this being searched element. Since, it is a tree structure, any of the 

metadata associated with the x could be reside in the interior nodes. To avoid losing the vital 

information encapsulated in the tree organization, capturing the location and metadata for x is of 

essence. To realize this, we need to construct the search on the tree. We proposed a method to 

construct a co-existing bloom filter tree for further efficiently operations on the data.  

The constructed bloom filter tree has the same topology as the data tree, minus its leaf nodes. 

Since a bloom filter is just a bit vector of m bits, it can just be stored as a new field at the 

corresponding interior node in the original data tree. The bloom filter tree is constructed from 

bottom up. First, we compute the lowest-level (topologically speaking) interior nodes, whose 

children are the leaf nodes. To build up the upper nodes’ bloom filters, one of the nice properties 

of bloom filter has been utilized. The union of a collection of bloom filters can be simply 

computed by the bitwise OR of each filter. In the other word, a collection of sets’ bloom filter can 

be computed as the bitwise OR result of separated bloom filters for each set. Thus, the bloom 
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filters of the upper interior nodes are obtained by taking the union of the bloom filters of all their 

children. Eventually, the entire bloom filter tree is finished building when the union is computed 

right up to the root node. 

 

Figure 3.1 BF-Tree construction for an example data tree 

 

The bloom filter tree structure maintains all the salient features and properties of bloom filter, 

simultaneously makes it easier for searching and exploring through the tree without losing the 

intents and advantages of the structure. 

3.2 Bloom Filter Tree  

 

The construction is based on an assumption of a data tree T with n elements, including interior 

nodes and leaf nodes, each leaf node is a data element and each interior node contains metadata or 
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possibly a data element. Given the number of elements n and a desired false positive rate f, the 

number of bits m required for the bloom filter to represent the set of elements, using the following 

equation [30]: 

 
(3.1) 

 

 

Knowing m and n, the optimal number of hash functions k can be found by the following equation 

[30]. Optimality is in the sense of minimizing false positive probability: 

 

(3.2) 

 

3.2.1 BF-Tree Construction 

 

The BF-Tree is build from bottom up. The construction is first started with groups of leaf nodes 

for those who are sharing the same parent node. The bloom filter for each group of elements with 

n number of has m bits and using k hash functions, which are generated based on the equations 

above. And then the bloom filter is stored at parent node as a new filed. After processing all the 

leaf nodes, parent node of leaves each has a bloom filter, which is constructed from all its leaf 

nodes. These firstly computed bloom filters are storing at the topologically lowest level of interior 

nodes. We move one level higher up and build bloom filters for these lowest level interior nodes. 

For the new level interior nodes, the lower nodes become the children with bloom filters. Those 

m = −
n ln f

(ln 2)2

k =
m

n
ln2



 28

nodes, who are sharing the same parent, are taken bitwise OR operation of each bloom filter to 

come up with a union result as the bloom filter of the parent node. Consider such an interior node 

u, let ci, i =1,..., l  be its l children with their respective bloom filters bi, i =1,..., l . The set of data 

represented by u should be the union of all the data sets represents by {c}1

l
. The bloom filter for u 

is the bitwise OR of all its children’s bloom filters, b1
 OR b2

 OR ... OR bl . The bloom filter 

construction is computing for each level of interior nodes of the tree from bottom up until it is 

computed and stored at the root node. 

 

 

 

Function buildBF (node u) { 

u.bf := create-bloom-filter(n,m,k)  

if  u’s children are leaf nodes then 

for each child c of u do 

     add data element c to u.bf  

end  

end 

else  

      u.bf := bitwiseORc child of u buildBF(c,n,m,k) 

end 

} 
 

3.2.2 BF-Tree Search 

 

According to the element data for each node in the co-existing bloom filter tree, check whether x 

exists in the tree by beginning at the top, seeing the root’s bloom filter. If it does, in contrast to 

Algorithm 1: Constructing the BF-Tree 
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the construction, we go down one level to check each bloom filter of root’s children, which are 

topologically the highest level of the interior nodes. At this time, we are not checking whether 

this node’s bloom filter contains x but to locate a subtree which contains x. If the check yield 

positive, then we know that most likely x is in the subtree and proceed to keep checking in this 

subtree top-down, in the same fashion. If the check yield negative, then we know with certainty 

that x is not in this subtree and can prune out this subtree. The pruning out subtrees makes the 

saving of unnecessary cost possible. By simply checking the bloom filter, we can eliminate the 

possibility that x is in a subtree and altogether forego the traversal in a particular subtree. Those 

subtrees not having x doesn’t get traversed at all. The construction of co-existing BF-Tree 

structure doesn’t break or waste the original data tree structure, thus throughout this top-down 

pruning search process, the path that leads to x from the root is obtained and this path gives not 

limited to the location but also the metadata information which may be encapsulated in the tree 

organization as vital information. 

Because of the property of construction, the search for a particular data element can also return 

the siblings of x in a straightforward way. Throughout the whole top-down search process, the 

final stop is one interior node which is topologically at the lowest level. Since the co-existing BF-

Tree is just a new filed of the original tree, after locating this final interior node which most likely 

contains x, it is simple to get the set of all the leaf nodes of this interior node, which are the 

siblings of x. 

 

 

 

Function lookFor (node u, data element x, result) { 

if  u’s children are leaf nodes then 

if x is in u.bf then 

Algorithm 2: BF-Tree Search 
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     append u in result 

     return  

end  

else 

     return 

end 

end 

else 

              if x is in u.bf then 

     append u in result 

     for c in u’s children do 

           lookFor(c,x,result) 

     end 

     end 

end 

} 
 

Algorithm above is a recursive function of searching for a particular data element x. If x is in the 

bloom filter at the interior node u, then we recursively for x in each of the children of u; 

otherwise, prune out the subtree rooted at u and don’t search it any further. Every time we find x 

in a bloom filter, result is recorded with the visited interior nodes. 

 

3.3 Optimal Placement in a Sparse Bloom Filter Tree 

 

We now consider the problem of using a sparse bloom filter tree instead of the full one in which 

every node in the data tree in indexed by a bloom filter. In order to reduce the amount of 

overhead associated with computing and maintaining a full bloom filter tree, we can choose to 
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index only a subset of the nodes. The problem becomes: Given the number of bloom filters k that 

we wish to generate, how do we find an optimal placement for them in the tree? Optimality is 

defined in terms of search efficiency, or equivalently, by the total number of nodes scanned or 

accessed before the target item if sound or deemed to not exist in the tree. Incidentally, our 

analysis also yields the exact reduction in search complexity achieved by adding b bloom filters 

to the tree. 

To calculate the search complexity, we need the parameters: n = total number of nodes in the 

tree; q = probability of any given data item being searched for is in the tree; α =number of 

children each interior node has. 

The reason we only need to consider the cases of b = 0,1, 2 is because the analysis process can be 

thought of as being recursive, with each of the subtrees rooted at level 1 nodes (children of the 

root) being treated recursively as a tree. 

We begin with the cases of b = 0,1, that is, the cases of using no bloom filter and using only one. 

For search complexity, we use the expected number of nodes scanned in the search. For b = 0 , 

whether the data item being searched for is in the tree or not, the expected number of nodes 

scanned is the same: 

q ⋅
n

2
+ (1− q) ⋅ n

 

For b =1, we first calculate the search complexity of placing the bloom filter at the root node. If 

the data item is in the tree, the search complexity remains the same as above; but if it is not, then 

the bloom filter at the root would indicate so and eliminate the search altogether. 
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q ⋅
n

2
+ (1− q) ⋅ 0 = q ⋅

n

2
 

We observe that by adding just one bloom filter (at the root), the expected number of nodes 

scanned is reduced by (1− q) ⋅ n . In the uninformed case of q =
1

2
, search is improved by 

scanning 
n

2
fewer nodes on average. 

 

Figure 3.2 Bloom filter at a level-1 node 

 

Suppose instead, we place the bloom filter at a level-1 node (i.e., one of the children of the root). 

The decision tree in 1 shows the three different possible outcomes, which are at the leaf nodes of 

this decision tree. For instance, if the data item is in the tree and in the subtree rooted at the level-

1 node that has the bloom filter --- outcome 1; this results in a search of only this subtree, the 

expected number of nodes scanned is hence 1/ 2  of the number of nodes in the subtree,

≈ (1 / 2)n /α . If it is in the tree but not in the subtree of this level-1 node, then it must be in one 

of the other (α −1) subtrees of level-1 nodes --- outcome 2. The edges are labeled by the 

probabilities of events. For outcome 1, the number of nodes scanned is limited to searching one 

subtree --- the one rooted at the level-1 node with the bloom filter. For outcome 2, the bloom 
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filter will indicate that the item is not in that subtree, so all the remaining subtrees will be 

searched until the item is found. Since the bloom filter is at a level-1 node, outcome 3 will require 

scanning every single node in all the subtrees buy one, until it is concluded that the item is not in 

the tree. The expected number of nodes scanned is therefore given below: 

 

q ⋅
1

α
⋅

n

2α
+ q ⋅

α −1

α
⋅
n(α −1)

2α
+ (1− q) ⋅

n(α −1)

α

= q ⋅
n(1+ (α −1)2 )

2α
2

+ (1− q) ⋅
n(α −1)

α  

 

To compare with zero bloom filter, we subtract this from the other to obtain: 

 

q ⋅
n

2
−

n(1+ (α −1)2 )

2α
2









+ (1− q) ⋅ n −

n(α −1)

α








= q ⋅
n(α −1)

α
2

+ (1− q) ⋅
n

α

≈ q ⋅
n

α
+ (1− q) ⋅

n

α  

 

We compare selection of level-1 node with root node for placing the bloom filter, to obtain the 

difference: 

 

−q ⋅
n(α −1)

α
2

+ (1− q) ⋅
n(α −1)

α  
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If this expression evaluated to a positive number, then placing the bloom filter at the root 

performs better than placing it at a level-1 node; otherwise, the level-1 node is the better choice. It 

is interesting to note that with different values of q , it may be one or the other. The root does not 

always give the better performance. For example, letting q = 0.8  and α = 3 , the above 

expression evaluates to a negative number, meaning placing the bloom filter at a level-1 node 

gives better performance that at the root. We draw the conclusion: If it is know a priori that the 

search item is likely to be found in the tree, then it is better to place the bloom filter at a 

level-1 node, not at the root. Otherwise, it is optimal to place the bloom filter at the root. 

(Conclusion I) 

Generalizing this, we obtain the search complexity for placement at level-k node. The 

probabilities on the right-most two arrows in 1 would change to 1/ a
k

and 1−1/ a
k
, respectively. 

Therefore we have the following: 

 

q ⋅
1

α
k

⋅
n

2α
k

+ q ⋅ (1−
1

α
k
) ⋅ (

n

2
−

n

2α
k
)+ (1− q) ⋅ (n −

n

α
k
)

= q ⋅
n((α k

−1)2
+1)

2α
2k

+ (1− q) ⋅
n(α k

−1)

α
k

= q ⋅ n
(α k

−1)2

2
− (α k

−1)








+

n(α k
−1)

α
k

 

 

For increasing k, this quantity clearly increases since the (α k
−1) term is easily dominated by the 

(α k
−1)2 / 2  and (α k

−1) /α
k
terms. In brief, this quantity achieves the minimum value at k = 1 

over all values for k >=1. The conclusion is that bloom filter placement at a level-1 node is 

always better than at a level-k node for any k >1. (Conclusion II) 
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Next, we consider the case of b = 2bloom filters to be placed in the tree. We compare the search 

complexity for (i) 1 at root and 1 at level-1, and (ii) 1 at root and 1 at level-2. Using the decision 

tree reasoning as above, we obtain the following: 

 

(i) : q ⋅
1

2
⋅

n
2

α
2

1+ (α +1)2 

(ii) : q ⋅
1

2
⋅

n2

α
4

1+ (α 2
−1)2 

 

 

Subtracting them, (ii) – (i), gives the difference: 

 

n2 1+ (α 2
−1)2

α
4

−
1+ (α −1)2

α
2











= n
2 2(α 3

− 2α
2

+1)

α
4











 

 

Since α
3
− 2α

2
+1> 0∀α ≥ 2 , placement (ii) always has a larger search complexity than (i), 

hence the conclusion is that it is more optimal to place the first bloom filter at root and the 

second one at level-1 than to skip a level for the second one. (Conclusion III) 

Now we put our conclusions together. To be most generally applicable, we assume a q value 

that is not too lopsided. Conclusion I requires that we place a bloom filter at the root. Conclusion 

III indicates that the next bloom filter should be placed at a level-1 node for optimal search 

efficiency. Applying Conclusion II, the next bloom filter should be placed at another level-1 

node, and this is applied until all but one of the level-1 nodes have bloom filters assigned (the last 
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one does not need one, since the complement of all its siblings serve the same purpose). Then, we 

apply these recursively to each of the subtrees rooted at the level-1 nodes. Because the equivalent  

q value for each level-1 node (root of their own subtree) is known to be small (it is size of one 

subtree over size of all subtrees), Conclusion I dictates that we place bloom filters at the level-2 

nodes (all except one). And so on and so forth, until we reach the quota of b bloom filters in total 

to be placed. Based on our analysis, this incurs the minimum search complexity and thus 

optimum search efficiency. 

3.4 Experiments 

 

The experiments are implemented in Python. For the data tree, we randomly generated data 

elements for the leaf nodes and the interior nodes of the tree using parameters of tree height h, 

number of children for each interior node at level less than h, and the number of leaf nodes for 

each interior node at level h. Then using the generated data tree as input, the co-existing bloom 

filter tree was constructed as the construction algorithm. For comparison, the naïve method of tree 

traversal, breadth-first [31] and depth-first [32] methods were implemented.  

The first one is comparing the search time of using the bloom filter tree and of doing the naïve 

tree traversal. For each data tree, we randomly selected 1,000 data elements and run the search for 

them by using both methods. For this experiment, the tree size was around 20,000 nodes with 

height of 7. The search time histogram is shown in Figure 3.2.  
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Figure 3.3 Histogram of query time distribution, with bloom filter versus naïve method 

 

 

As can be seen in Fig. 3.2 the search time for the BF-Tree is consistently and substantially more 

efficient than the naïve method.  

Another way to do the evaluation is to measure the average query time over thousands of queries. 

We varied the tree size from 10,000 to 30,00 and measured the average query time over 1000 

queries. And then we plot the lines for both methods as displayed in Figure 3.3. One may observe 

that with bloom filter index, the query time is improved by 1 to 2 magnitudes. 
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Figure 3.4 Varying tree size versus query time 

 

 

To investigate the robustness of our method, we measured the average query time for trees of 

varying structures. The experiment was conducted with shallow trees to deep trees, varying the 

height from 2 to 10. The log plot of query time is shown in Fig. 3.3. Not only is our method more 

efficient in query time, but also as the tree height increases, the gap grows even more rapidly.  
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Figure 3.5 Effect of tree height on query time 

 

 

 

 

We also considered the scenario of selectively placing bloom filters in the tree. If the tree is really 

deep and dense, there is no need to compute all the bloom filters for interior nodes for every level. 

The construction for the BF-Tree starts from the building the lowest-level interior nodes, which 

already contains all the information of the leaf nodes. Thus, if the concentration of the application 

is not strictly about the full path of finding a particular element, selectively placing bloom filters 

in the tree is a brilliant choice. We investigated the performance when we change the proportion 

of nodes that have bloom filters. The proportion various from sparsely indexed to densely 

indexed trees, numerically from 0 to 1. As we can see in Fig. 3.5 even with only 40% of the nodes 

indexed, our method outperforms the naïve one; and as in the previous experiment, the 

improvement grows with the density increase. 
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Figure 3.6 Density of indexed nodes versus query time 

 

 

Figure 3.7 Effect of types of querying the work load on query time 

 

 

In the experiments presented so far, all the data items for searching are already known in the tree. 

In real life, we probably miss the queries, namely queries that do not match any data in the tree. 
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Given the bloom filter property, we have greater pruning power with missed queries, thus 

yielding better performance. 

Fig. 3.6 shows the performance for workloads consisting of various proportions of missed 

queries. As expected, the higher the ratio of missed queries, the more efficient the search time our 

method exhibits. 

3.5 Search Method Implementation as an Android app 

 

To better test the search method based on our BF-tree, we implement the algorithm onto an 

android application for a practical purpose. The design of this search app is about searching a 

particular single keyword in a tree-structured text data set and to get the paths and the whole text 

data that are associated with the keyword. 

As an illustrative example in real life, suppose a collection of text data. These could be 

documents or forum posts or just pieces of text that users contribute to a common repository. The 

data is naturally organized as a tree structure, the children of the root node could be the different 

content types, the next levels down may represent the timestamps, and further down the 

breakdown may be by ID, etc. The leaf nodes contain the actual text data. To search a particular 

text items, one can build a BF-tree and use the BF search method. 

The DBLP records are stored in huge XML file and are open to be downloaded for testing. 

Digital Bibliography and Library Project or DBLP has been evolved from a small experimental 

Web server in 1993 to a computer science community which consists of millions of bibliographic 

records; these records represent bibliographic details of variety types of articles which have been 

published in journals, conferences, Web pages … etc [33]. DBLP dataset records have eight 

different elements of publications and for each main element there are sub elements which 

provide information regards to any publication such as authors, year, title, journal, pages … etc. 
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These eight elements are all connected to an article, thus we decide to add one more sub element 

to store the actual text data and let these existing elements to be the interior nodes levels. 

According to the XML format of DBLP, we enrich the DBLP with one more element tag called 

“abstract”, in which we put related abstracts. An example has been given in Figure 3,7. The 

contents under this element tag will be the leaf nodes in the tree structure. 

 

Figure 3.8 An example in XML file 

 

The XML file is stored under the Asset folder in the android application. Even the XML file has 

already been in the tree structure, we still need to parse the file in order to manipulate the data as 

needed. There are variant XML parsing models used to read and manipulate XML files. Such 

these parsers are SAX, DOM, StAX [34], and VTD parser [35]. The parsing process goes through 

three-step processing (Character conversion, Lexical Analysis and Syntactic Analysis) [36]. We 

choose SAX parser since it meets the application requirements in terms of better parsing process 

stages, smaller memory usage and larger file size. The SAX parser is able to parse the XML file 

element by element, thus after parser each element has been set as the interior nodes in the tree 

and the contents under “abstract” element tag are stored as the leaf nodes. 
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After SAX parsing, every element in the XML file finds its corresponding position in the tree 

structure and the leaf nodes contain the actual text data. By building the bloom filters for this tree, 

we can efficiently search for a particular text item and find out both the paths to this particular 

data item and the whole abstract contents that contain this data item. There is one thing should be 

clarified here is that the abstract contents are not stored in the leaf nodes directly, but firstly 

trimmed in a form as word by word after parsing. Since we are aiming to search one word and 

find out all the siblings associated with this word, we need to record all the sibling leaf nodes 

those under the same parent interior node as the searched one in the search algorithm. 

There are three simple page layouts in the application. The first page is with a EditText widget 

which allows inserting input words and a Button widget which is for searching purpose. After 

clicking the Search Button, the current page will be forwarded to the second page. The mainly 

purpose of the second page is to display the paths where the keyword stores. The third page 

contains a TextView widget in order to display all the leaf nodes sets which contain the searched 

word. Our application is able to return multiple results. 
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Figure 3.9 Android app screenshot 
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Figure 3.8 shows the screenshot of our search method android application. In the given example, 

the search keyword is “wireless” which is a very common word in computer science industry. 

After clicking the Search button, it turns out that “wireless” is recorded in more than one article 

and all the paths are displayed. These paths are the element tags as described in the XML file. If 

you click “ Details” button, you’ll get all the abstracts contains “wireless” with the searched 

keyword highlighted.  

In the experiment, we inserted hundreds of articles in the XML file. These hundreds of articles 

are selectively from different research areas. We could not take all the records in DBLP dataset. It 

is too large for a mobile device. With the hundreds of articles recorded in the XML file, the 

number of total nodes in the whole tree is approximately 35,000 nodes. We have fast responses 

and accurate search results. 
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4  

Tree Structure Data Synchronization using BF-Tree 

 

4.1 The Problem 

 

Imagine you have two tree-structure files, A and B. There are only small differences between 

them, and you wish to update B to be the same as A. These two files could be on different ends 

connected by a slow communication link. The obvious method think of is to scan all the leaf 

nodes of each end and translate them into two files, and then use the rsync algorithm to do the 

data synchronization. Suppose we have a big data tree with approximately fifty thousands nodes, 

ten thousands interior nodes and forty thousands leaf nodes respectively. In practice, most of 

time, the number of interior nodes is way smaller than the number of leaf nodes. Now assume, A 

and B are quite similar, perhaps both derived from the same original file. The number of nodes 

which have differences comparing to the number of all leaf nodes is like one out of ten thousands. 

This is reasonable if the synchronization between two files is performed frequently. Rsync could 

be a right way but scanning forty thousands nodes to locate small differences is such a cost. 

We are considering two possible scenarios; one could be randomly insertion or deletion of several 

data element in the middle of the whole leaf nodes sets; the other is only appended differences at 

the end of the whole leaf nodes sets. In both scenarios, the number of changed nodes compared to 

the entire tree is like nothing. Thus, data synchronization using constructed BF-Tree is taking 

advantages of the interior nodes. 
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4.2 BF-Tree Sync 

 

The synchronization starts from the comparison from top of two trees, the bloom filter of root 

nodes at two ends. If it yields positive, no more comparisons, we can conclude two files are 

identical. At this point, only the root bloom filter is transmitted through the communication link. 

If it yields negative, we move down to the children of root, comparing each node’s bloom filter at 

this level. We only continue exploring the subtrees when the bloom filters of two roots of the 

subtrees are different. For the ones whose bloom filters are the same, we are with highly certainty 

the entire two subtrees are the same. Thus, only scanning bloom filters in the first level of interior 

nodes helps us prune out several big subtrees, which avoids the further visiting and comparing of 

every nodes in those subtrees.  

The algorithm efficiently computes which parts of the leaf nodes of a source data tree don’t match 

some part of an existing destination data tree by comparing the bloom filters of interior nodes 

level by level top-down and gradually narrow down to the comparisons of certain subtrees. Only 

the leaf nodes whose parent nodes’ bloom filters are not matched need to be set verbatim through 

the communication link. The parts need not be sent across the link have been pruned out by only 

transmitting its root nodes’ bloom filters.  

Suppose we have two general tree-structured files A and B. A and B are identical at first, and then 

some changes happened to B. However, A and B are still quite similar, and they are at two 

different ends and could get access to each other. We want to find the differences and make A to 

be the same as B. There is a slow communication link between two ends.  

The data synchronization algorithm based on BF-Tree consists of the following steps: 
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1. Both two tree-structured data elements in A and B are parsing through the BF-Tree 

construction algorithm in chapter 3 to generate co-existing Bloom filter trees. And the 

bloom filter for each interior node is stored as a new field. 

2. The root bloom filter of B is sending to A. 

3. A takes out its bloom filter at the same location as the bloom filter received and does the 

comparison dynamically. 

4. For each interior node at B, the bloom filter keeps sending to A top-down level by level 

only when the comparison for its parent node yields negative.  

5. Step 3 and step 4 operate recursively until the bloom filter comes to the topologically 

lowest level of interior nodes. 

6. The leaf nodes elements of the different interior nodes at the lowest level in B are sending 

directly to A, and the leaf nodes at the same location in A are replaced with the received 

data elements for constructing a copy of B. 

 

 

 

 

 

Function dataSync (node u, node v) { 

if  u.bf equals to v.bf  then 

    return 

end 

else    

for each child c ,d of u,v do 

Algorithm 3: BF-Tree Data Synchronization 
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                 if  c.bf equals to d.bf  then 

                     println 

                  end 

                  else 

                   if  c.child is leaf || d.child is leaf  then 

            transmit the leaf nodes of c to d 

      else 

             dataSync(c,d) 

       end 

       end  

end  

end 

} 
 

 

Algorithm 3 is the pseudocode of the data synchronization process. First, we begin with the root 

from each end, if two roots’ bloom filters are identical, then we are with highly certainty to stop 

further comparisons. Otherwise, we continue exploring the children at the first level of each root. 

Here, the comparison only happens to the nodes at the same location from each end. The bloom 

filter of the leftmost child of the root from one end only can be compared with the bloom filter of 

the leftmost child of the other end. If it yields positive, we prune out this node rooted subtrees in 

each end tree. If it yields negative, we proceed to keep checking in that subtree top-down 

recursively, in the same fashion. Unlike the search method, the procedure proceeds to be in each 

subtrees when the result yields negative. Meanwhile, if the node’s children is leaf nodes, which 

means we have located the different sets, thus just transfer the whole set to the other end, and then 

data synchronization can be done.  
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4.3 Implementation and Evaluation 

 

We test the theoretical framework above by examining two specific scenarios. The considered 

scenarios, one is that the differences only happen at the end of the whole tree --- this is the 

application scenario of append-only data sets, and the other one is that the differences are located 

randomly in the middle --- this is scenario of random access data insertion or modification. For 

comparison, we implemented the classic rsync algorithm for the data synchronization of the same 

groups of trees. The data synchronization algorithm based on BF-Tree is implemented in Java and 

the performance is evaluated with the number of nodes from approximately 5,000 to 60,000. The 

comparisons of these two algorithms are operated in terms of three aspects, the number of nodes 

visited, the number of bytes transmitted and the running time of data synchronization. 

In the entire data synchronization process, the bloom filter plays a dual role. It is both a data 

structure being constructed, and a message being passed for comparison. When we use the bloom 

filter as a data structure, we may tune its parameters for optimal performance. The main tradeoffs 

of bloom filters are the number of hash functions used, which drives the computational overhead, 

the size of the filter and the collision rate. As the equations shown in Chapter 2&3, we’ve known 

that given the number of elements n and a desired false positive f, we can find the filter size m 

using . The size of the filter would influence the transmission size during the 

comparing. And given m and n, the number of hash functions k can be found by . 

Throughout our experiments, we use the false positive probability f of 0.1 and the number of 

elements n is from around 5,000 to 60,000. For each interior nodes in the tree structure has m bits. 

As the number of elements increase, the size of the filter is increased. The bloom filter is also 

being passed and compared, thus in the experiment we optimize the transmission size by 

m = −
n ln f

(ln2)2

k =
m

n
ln2
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calculating the SHA-1 value of the bloom filter. SHA-1 [37] uses 160-bit keys, which optimizes 

the transmission size and won’t result in more collisions. 

4.3.1 Data with Append-only Operation 

 

During the whole data synchronization process based on BF-Tree, the number of the visited 

nodes depends on the number of interior nodes scanned. In contrast, the rsync algorithm scanned 

all the leaf nodes as input, thus the number of the visited nodes equals to the number of leaf 

nodes. In reality, a tree-structure file or a naturally organized data tree, the children of the root 

node may represent the different content types, the next levels down may represent the 

timestamps, and the further down may be some information like user ID, and the leaf nodes 

contain the actual text data. Thus, the number of the leaf nodes should be greater than the number 

of the interior nodes at most of the time. In the experiment, we built groups of trees with the total 

number of nodes from approximately 5,000 to 60,000, and the ratio of the number of interior 

nodes to the number of leaf nodes is 1:10. 

For the data trees, we randomly generated thousands of data elements as the nodes, then using the 

generated data trees as input to compute co-existing BF-Trees as described in the construction 

algorithm in Chapter 3.  

In the first experiment, we considered the scenario of appending the differences at the end of the 

whole leaf nodes set.  For all the data trees, the BF-Sync procedure starts from the root and 

gradually narrows down to smaller certain subtrees that contain the differences. Eventually, all 

the visited nodes are the interior nodes related to the differences. However, the rsync algorithm 

scan the whole set of leaf nodes. The histograms of the number of nodes visited for these two 

algorithms are shown in Fig. 4.1. It is obvious that as the data tree becomes bigger, the rsync 

algorithm needs to visit much more number of nodes than the BF-Sync. 
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Figure 4.1 Histogram of the number of nodes visited, varying the number of total nodes 

from 5,000 to 60,000, rsync versus bf-sync 

 

 

Under the same circumstances, the second aspect we researched is the number of bytes 

transmitted through the communication link theoretically. According to the above analysis, the 

number of bytes transmitted depends on the number of bytes of the visited interior nodes’ bloom 

filters (here, we calculate the SHA-1 values) and the bytes of the block size where the differences 

locate (here, the appended differences locate in the last block). For rsync, the things transferred 

are the unmatched parts verbatimly plus the data for checksums and block indexes. We tracked 

and computed the number of bytes and displayed the records in Table 4.1. 
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Table 4.1 Table of the number of bytes transferred, varying the number of total nodes from 

5,000 to 60,000, rsync versus bf-sync 

# of 

Nodes 

rsync(# of 

bytes 

transmitted) 

bf-sync (# of 

bytes 

transmitted) 

5120 920 602 

10088 1264 717 

15493 1590 867 

20645 2155 962 

26533 2693 1078 

31432 3532 1130 

36745 4062 1223 

40517 4663 1271 

44473 4980 1318 

60752 5386 1391 

 

 

Figure 4.2  The number of bytes transferred, varying the number of total nodes from 5,000 

to 60,000, rsync versus bf-sync 
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Table 4.1 and Figure 4.2 show the number of bytes transferred for variant number of randomly 

generated nodes, as a result we can notice that as the tree size becomes bigger, bf-sync has the 

tendency to be more stable than rsync. 

Another way to evaluate the bf-sync algorithm is by calculating the time required to synchronize 

the data. The runtime records are shown in Table 4.2 & Fig. 4.3. Both of the methods perform 

well, but our method is more efficient as the bloom filter tree structure brings in pruning subtrees, 

so that less number of nodes visited results in less time spent. 

 

Table 4.2 Table of runtime in ms, varying the number of total nodes from 5,000 to 60,000, 

rsync versus bf-sync 

 

# of 

Nodes 

rsync(runtime 

in ms) 

bf-sync 

(runtime 

in ms) 

5120 5 3 

10088 7 3.333 

15493 10 4.000 

20645 12 3.667 

26533 12 3.333 

31432 14 4.000 

36745 17 5.000 

40517 19 5.000 

44473 16 5.333 

60752 17 5.667 
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Figure 4.3 The runtime in ms, varying the number of total nodes from 5,000 to 60,000, rsync 

versus bf-sync 

 

4.3.2 Data with Randomly Located Differences 

 

The second set of experiments we did is considering the situation where the differences are 
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same three aspects, the number of nodes visited, the number of bytes transmitted and the runtime. 

We tested with five differences located in the middle of the whole leaf nodes set. The number of 

nodes visited is the number of interior nodes associated to the differences. Since the changes are 
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The number of bytes transmitted is related to the number of nodes visited. For the interior nodes, 

all the visited nodes’ bloom filters are transmitting through the communication link for 

comparison in order to prune out subtrees. After locating the differences, the whole blocks where 

the differences located are directly transmitted. As described, we optimize the transmission size 

by computing the SHA-1 values of bloom filters. Thus, the number of bytes transmitted are total 

bytes of SHA-1 values of bloom filters of the visited interior nodes plus the bytes of all the leaf 

nodes sets which contain the differences. As can be seen in Fig. 4.4 and Fig. 4.5, both of the two 

methods have a good speed, however, with the same changes to do the data synchronization, the 

number of bytes transmitted for the BF-Tree is consistently and substantially more efficient than 

the rsync method. Especially, when the number of nodes in the tree is increasing, the BF-Tree 

could finish the synchronization in a fast way with less number of bytes transferred through the 

communication link. 

Table 4.3 Table of the number of bytes transferred, varying the number of total nodes from 

5000 to 60,000, rsync versus bf-sync 

 

# of 

Nodes 

rsync(# of 

bytes 

transmitted) 

bf-sync (# of 

bytes 

transmitted) 

5120 5097 566 

10088 4463 711 

15493 6881 831 

20645 8512 926 

26533 9102 1022 

31432 6731 1094 

36745 7791 1167 

40517 7897 1215 

44473 9291 1262 

60752 9590 1335 
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Figure 4.4 The number of bytes transmitted as the number of nodes varying, rsync versus 

bf-sync 

 

 

Figure 4.5 Runtime in ms as the number of nodes varying, rsync versus bf-sync 
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To figure out whether the number of differences inserted in the tree will influence the 

performance of the BF-Tree data synchronization. We did the experiment of changing the number 

of differences and observed how bf-sync performed. The data trees in our experiments are all big 

ones, the tree sizes are around five thousands to fifty thousands nodes. However, the locations of 

the differences will have effect on the performance. For instance, if all the differences are located 

densely, then the number of visited nodes won’t change dramatically as the number of differences 

increase. If the differences are randomly located sparsely, the number of visited nodes will 

increase which results in the overhead of other measurements. We varied the differences size 

from 25 to 150 (which weighs from 0.05% to 0.3%) in the tree size of fifty thousands and 

measured three metrics. We insert the differences both sparsely and densely, as shown in Table 

4.3. 

Table 4.4 

# of differences 

weighs 

# of nodes visited # of bytes transmitted runtime in ms 

0.05% 111 2588 3.333 

0.1% 111 2629 3.667 

0.15% 162 3913 4.667 

0.20% 162 3976 5.000 

0.25% 216 5387 5.750 

0.30% 216 5477 6.500 

 

 

 

Figure 4.6 The performances of bf-sync in three aspects when the number of inserted 

differences varying from 0.05% to 0.3% 
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The reason why we choose the difference size varied from 25 to 150 is that in real life we are 

considering the data synchronization happens frequently or the two data files are quite similar. 

Thus the number of differences weights from 0.05% to 0.30% of all leaf nodes of such a big size 

tree is reasonable. The line graphs in Fig. 4.6 show the number of nodes visited and the number 

of bytes transmitted is linearly increasing with small degrees of slope as the number of 

differences increases, which indicates the robustness of our method for trees of varying number 

of differences. 

4.4 Results and Performance Analysis  

 

In this chapter, we propose a BF-Sync algorithm allowing the data synchronization between two 

tree-structured files. The BF-Sync algorithm is based on the BF-Tree structure introduced in 

Chapter 3. After constructing the co-existing BF-Trees, the synchronization process starts from 

comparing the two roots’ bloom filters. If two roots’ bloom filters are identical, then we are with 

highly certainty that there’s no difference between two files and stop further comparisons. 

Otherwise, we continue exploring the children at the first level of each root. Here, the comparison 

only happens to the nodes at the same location from each end. The bloom filter of the leftmost 

child of the root from one end only can be compared with the bloom filter of the leftmost child of 

the other end. If it yields positive, we prune out this node rooted subtrees in each end tree. If it 

yields negative, we proceed to keep checking in that subtree top-down recursively, in the same 

fashion. During the data synchronization, bloom filter is playing dual roles, not only an efficient 

data structure but also the message to be compared in order to locate the differences. Thus, we 

optimize the transmission size by calculating the 160-bit SHA-1 values of bloom filters for 

comparing and transferring. 
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For the data tree, we randomly generated data elements for the leaf nodes and the interior nodes 

of the tree. Even though we are using integers as the experiment data elements and haven’t yet 

implemented BF-Sync in the context of a full working system for an application, the required size 

of filter size m won’t be influenced. Bloom filter is considered as constant space because the size 

does not depend on the data size of each element in the whole set. The property of using k 

independent hash functions simultaneously leads the small storage cost. We also implement the 

classic rsync scheme for remote data synchronization, for comparison and evaluation of our 

method.  We experimented with two variants of data, one with append-only operations and the 

other with randomly located differences between the two trees. In each case, the bloom filter tree 

needs to be updated when the data items are added or changed. For case ‘addition’, the new data 

items are appended, thus the bloom filters updating is just adding new elements to their parent 

bloom filter which is a simply bitwise OR operation. For case ‘change’, the change can be data 

item is deleted or modified. In this case, the parent bloom filter must be re-calculated for its entire 

children leaf set, however, the bloom filters connecting this node in a chain up to the root node 

need only be re-calculated by re-doing the bitwise OR at each node, so log N bloom filters 

changes (only one of which is recomputed bloom filter from scratch, all the others are simple 

bitwise OR operations). Three metrics are used to measure the performance: number of nodes 

visited in the tree, number of bytes transmitted between the data sites, and the runtime.  In all 

three metrics, our method has better performance for both variants of data. 
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5  

Conclusion and Future Work 

5.1 Conclusion 

 

Commonly used method for data synchronization is rsync. It identifies parts of the source file 

which are identical to some part of the destination file, and only verbatimly sends those parts 

which can not be matched. The method computes the differences without having both files on the 

same machine by firstly calculating a weak rolling checksum and a strong checksum, and then 

using the properties of rolling checksum and the associated search mechanism to compute the 

differences. 

Data synchronization between files is essential in a lot of scenarios in the industry and the tree 

structure files are also quite common. The method we provide locates the differences based on the 

construction of Bloom filter trees. We firstly propose an algorithm to build one co-existing bloom 

filter tree for the existing tree structure data file. The construction of a bloom filter tree not only 

maintains all of the properties of bloom filters but also applies to the specific tree structure. With 

the bloom filter tree, we have proposed a method to efficiently search for data items and record 

the searching path in data sets that are organized into hierarchical tree structures. Using the bloom 

filters assigned to interior nodes of the tree, the search through the tree can prune out subtrees, 

thereby greatly reducing search time. Another method we propose using the bloom filter trees 

called BF-sync allowing synchronizing data between two tree structure files. The algorithm 

efficiently computes which parts of the leaf nodes of a source data tree don’t match some part of 

an existing destination data tree by comparing the bloom filters of interior nodes level by level 

top-down and gradually narrow down to the comparisons of two or three subtrees. Only the leaf 

nodes whose parent nodes’ bloom filters are not matched need to be set verbatim through the 
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communication link. The parts need not be sent across the link have been pruned out by only 

transmitting its root nodes’ bloom filters.  

The performance of the search method is thoroughly investigated compared with the naïve 

method of tree traversal. Our method is clearly significantly more efficient by orders of 

magnitudes. What’s more, we also implement the search method onto an android application. In 

this search application, we selectively choose hundreds of articles from a large XML file called 

DBLP dataset. Digital Bibliography and Library Project or DBLP has bibliographic information 

on published journal, articles, and conferences proceedings in the field of computer and 

information science [38]. DBLP dataset records have eight different elements of publications and 

for each main element there are sub elements which provide information regards to any 

publication such as authors, year, title, journal, pages, volume … etc. To better display the 

efficiency of our search method, we enrich the XML file with one more element tag, in which we 

put the abstract of each article as the actual element text. Since all the records are stored in XML 

format, we need to parse the XML file to build a tree for further construction of Bloom filter tree. 

We use the SAX parser to parse the XML file and manipulate the contents under the abstract 

element tag as the leaf nodes, and the rest element tags as the interior nodes or the path. With the 

hundreds of articles recorded in the XML file, the number of total nodes in the whole tree is 

approximately 35,000. 35,000 nodes for a mobile device is not small, and it still turns out a good 

performance of the search method. 

We also did a lot of experiments to test the performance of BF-Sync algorithm. The experiments 

are performed comparing to the rsync algorithm during the whole data synchronization process in 

three aspects, the number of bytes transferred, the number of nodes visited and the runtime in ms. 

For all the experiments, the number of nodes are varying from around 5,000 to 60,000. And for 

each aspect, we consider two scenarios; one is the differences are randomly inserted in the middle 
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of the whole datasets; the other one is that the append-only differences, which means it only 

happens at the end of the whole set. The results shows our method is efficient and linearly stable 

as the number of nodes or the number of differences increase.  

5.2 Future Work 

 

In this research, we deploy an android search app with our search algorithm and the data model is 

an XML file, which includes hundreds of records selected from DBLP dataset. The SAX parser 

has been used to parse the XML file, and after parsing we just manipulate the data by putting 

them into the structure as wanted. This simple app works smoothly as the purpose is to implement 

the algorithm but for a long-lasting and sophisticated mobile application design, we should store 

the data with database after the SAX parsing. The SQLite database [39] is a small, compact, and 

self-contained database and already installed for Android devices. In the further or some more 

practical scenarios, the size of the data file could be very large, like millions of records. Using a 

database not only helps well organize the data but also saves a lot of space (e.g. the tag elements 

parts). Also, we will implement the BF-Sync algorithm into an app, which allows frequent data 

synchronizations between mobile device and the cloud or between two mobile devices. During 

the implementation, we should consider the problem of reducing the amount of overhead 

associated with computing and maintaining a full bloom filter tree using optimal placement in a 

sparse bloom filter tree as discussed in section 3.3. 
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