
Detecting Vulnerabilities of
Broadcast Receivers in Android

Applications

by

Di Tian

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Science (MSc)

in

Computer Science

Faculty of Business and Information Technology

University of Ontario Institute of Technology (UOIT)

Oshawa, Ontario, Canada, 2016

c© Di Tian 2016

Abstract

As being a representative mobile operating system in the world, Android

OS has been part of users’ daily life. Unfortunately, the rapid expansion

of Android third-markets introduces malware aiming at Android applica-

tions at an alarming rate, which poses great threats to its users. Current

research about the privacy leakage in Android mostly focuses on Activ-

ity, Service and Content Providers. Little attention has been paid to

the vulnerability of Broadcast Receiver, which is expected to assist inter-

component collaboration and facilitate component reutilization.

In this thesis, we first present a detailed analysis on vulnerabilities of

Broadcast Receiver. Then, we design and develop a Broadcast Receiver

Vulnerability Detection (BRVD) system that examines such vulnerabili-

ties, using a combination of semantic analysis and taint analysis. Further-

more, we perform experimental evaluation by analyzing 55 applications

from Android third-markets using the proposed system; and 132 registered

receivers are found with 11 vulnerable receivers being verified.

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Xiaodong

Lin for the continuous support of my Master study and related research,

for his patience, motivation, and immense knowledge. His guidance not

only helped me in all the time of research and writing of this thesis, but

also gave me a new comprehend about life. I could not have imagined

having a better advisor and mentor for my Master study.

Besides my advisor, I would like to thank the rest of my thesis committee,

for their insightful comments and encouragement, and also for the time

and efforts they have given.

My sincere thanks also goes to my fellow lab-mates in for the stimulat-

ing discussions, for the sleepless nights we were working together before

deadlines, and for all the fun we have had in the last several years. Also

I thank all my friends who always inspire me during my study.

Last but not the least, I would like to thank my parents for supporting

me spiritually throughout writing this thesis and my life in general.

Contents

1 Introduction 1

1.1 Background . 2

1.2 Objective . 3

1.3 Motivation . 4

1.4 Methodology . 7

1.5 Contributions . 7

1.6 Thesis Organization . 8

2 Background and Literature Review 10

2.1 Android Overview . 10

2.1.1 Android Framework . 10

2.1.2 Application Components . 13

2.1.3 The Intent-based Inter-component communication (ICC) . . . 15

2.1.4 Permission Protection Mechanism 16

2.2 Android Threat Models . 17

2.3 Analytical Measure . 18

2.3.1 Static Analysis . 18

2.3.2 Dynamic Analysis . 20

2.4 State of the Art . 21

3 BroadcastReceiver Analysis 24

3.1 Semantic Analysis in the BroadcastReceiver Registration 25

3.1.1 Static BroadcastReceiver Registration 26

3.1.2 Dynamic BroadcastReceiver Registration 29

3.2 Taint Analysis in Broadcastreceiver 31

3.2.1 Inter-procedural data-flow Analysis 32

3.2.2 Four Paths (4P) Policy . 35

3.3 Concluding Remarks . 37

i

4 The BRVD Framework 39

4.1 Semantic Analysis–SUKE Framework 40

4.1.1 Abroster Engine . 41

4.1.2 Algorithms in Abroster . 42

4.2 Taint Analysis–BETA Framework . 44

4.2.1 Tools used . 45

4.2.2 Taint Problem Setup . 47

4.3 4P-Based Attacks . 52

4.3.1 Intent Spoofing Attack . 52

4.3.2 Intent Hijacking Attack . 53

4.3.3 Confused Deputy Attack . 55

4.3.4 Collusion Attack . 56

4.3.5 Self-Evolution Attack . 57

4.4 Concluding Remarks . 59

5 Experimental Evaluation 61

5.1 Customized Sample . 62

5.2 Real Samples . 64

5.2.1 Case Study: Lango Messaging 68

5.2.2 Case Study: BomBom-Free SMS 71

5.3 Concluding Remarks . 75

6 Conclusions and Future Work 76

6.1 Conclusions . 76

6.2 Future Work . 77

Bibliography 79

ii

List of Figures

2.1 Android Framework[14] . 11

2.2 APK Framework . 19

3.1 A Call Back sample in an Application 32

3.2 Flow Chart in a Broadcastreceiver 34

3.3 Four Data-Flow Paths for a Broadcastreceiver 36

4.1 BRVD Framework . 39

4.2 SUKE Framework . 40

4.3 Intent Spoofing Attack . 52

4.4 Intent Hijacking Attack . 54

4.5 Confused Deputy Attack . 55

4.6 Collusion Attack . 56

4.7 Self-Evolution Attack . 58

5.1 Filtering Log . 63

5.2 BETA’s Result . 63

5.3 Source of Taint Analysis in vulnerable Receivers 65

5.4 Sinks in Vulnerable Receivers . 66

5.5 Lango Messaging Analysis Report . 69

5.6 BRVD’s Report . 70

5.7 Analysis Reports From ApkScan and Eacus 72

5.8 Analysis Reports From BRVD . 73

iii

Listings

1.1 A Code Snippet in the Hypothetical Android Application 5

3.1 Static BroadcastReceiver Registration 26

3.2 An Example for the Dynamic Broadcastreceiver Registration 29

4.1 VLC BroadcastReceiver . 53

4.2 Malicious BroadcastReceiver . 54

4.3 code snippets of Android GoldGPEN Spyware in the Tweetcaster . . 58

5.1 code snippets of Lango Messaging . 71

5.2 code snippets of BomBom-Free SMS 74

iv

List of Tables

4.1 Symbol Table . 43

4.2 Privacy APIs . 47

4.3 Source Methods in X1 . 48

4.4 Sink Methods in Y1 . 50

4.5 Sink Methods in Y2 . 50

4.6 Attacks based on 4P policy . 60

5.1 The Results of Suspicious Applications Using BRVD. 64

5.2 Testing Results from ApkScan and Eacus 67

v

List of Abbreviations

AMS Activity Manager Service

API Application Programming Interface

APK Android application package

BRVD Broadcast Receiver Vulnerability Detection

BSD Berkely Software Distribution

CIA Confidentiality, Integrity, and Availability

DVM Dalvik Virtual Machine

GUI Graphic User Interface

ICC Inter-Component Communication

IDF Inter-Procedural Data-Flow

IPC Inter-Process Communication

IR Intermediate Representation

PMS Package Manager System

SBL System Broadcast Library

WALA Watson Libraries for Analysis

XML Extensible Markup Language

vi

Chapter 1

Introduction

With the rapid development of mobile networks, mobile phones are no longer re-

stricted to telephone calls and text messages. Smartphones have emerged in response

to customers’ expectation as well as developers. The major smartphone operating

systems on the market include Symbian, Apple IOS, and Android OS.

Symbian was reputed to be the world’s best-selling operating system before the

arrival of the Android OS, whose system framework has become outdated with years

of utilization, coupled with innovated advances. Since the Android OS has provided a

convenient open-platform, an increasing number of users have been using it for daily

life, such as online banking and shopping, when in fact, imminent security threats

arise due to fast adoption. An authoritative study, IDC report [8], has shown that the

Android smartphone has exceeded by an 11.7% market share with the IOS (IPhone),

and has already taken over 84.7% of the world smartphone market by 2014.

Compared with IOS which has the secondary market shares, the Android OS

is built upon the idea that the user does have the autonomous right to access to

their device as an administrator, and all installed apps are accommodated within

its own process sandbox. Furthermore, all privileged resources have been explicitly

displayed and must be granted before the installation. The freedom control and

reboot of the Android OS is what appeals to users. The drawback of this mode lies

within the debate that the general user does not have the capacity to comprehend the

connotations of their security choices or chooses not to follow recommended practice,

nor does it give reason for a well-intentioned developer who inadvertently makes

resources available to malicious individuals who wish to exploit them.

1

1.1 Background

Android OS is a free and open source platform that allows various of applications

to be developed and installed from freedom online markets. In addition to meet

the demand of market-oriented economy and users during the era of functional and

innovative, companies are more inclined to provide better entertainment features than

security solutions. As a consequence, this further opens doors and rises vulnerabilities

for hackers to explore attacks on the Android system.

Besides the incommensurate security measures in the product deployment, a

chaotic third-party market[45] is accountable for rampant Android malware abuse.

Because in the smartphone market the role of Android OS has become increasingly

important, the Android market has different proportions of possession. As a re-

sult, many Android applications can be released by third-party markets and forums

without verification. This ability provides convenience for many developers, with-

out involving a heavy and complicated validation process, while creating a chance

for critical attack. For example, the “Ghost Push”[25], as an un-installable virus,

accordingly evolves in infection sprees through users installing malicious apps offered

by third-party markets, rather than the official Google Play Store. Even worse, the

infected smartphone will imperceptibly and passively install other malwares. The

above study suggests this virus is infecting 600,000 users per day, which has resulted

in an increase in economic losses as well as the number of privacy disclosures.

If used correctly and responsibly, the Android OS is eminently secure. A 2014

Google security review [39] has indicated that fewer than 1% of Android devices have

malware. Not surprisingly, under the upsurge of Android malware, the majority of

users fail to review the privacy disclosure statement prior to acceptance and utilization

of the application [10].

These factors have led to Android devices being easily infected with malware.

Although the results are not surprising, the collected data quantifies what has been

a generally accepted fact for years: users are either disinterested in or unaware of

the computer security risks to which they are exposed, so frequently do not take

advantage of the provided security tools. Beyond that basic comprehension is the

question of what approach should be taken by software and hardware manufacturers

to secure their customers’ data, from an economic, legal, or social perspective.

For users, the security of the Android system directly affects the user experience

and privacy information, so that a reliable security system is the key to the future

for sustainable development and promotion. For developers, a better understanding

2

of Android security is more conducive to protect user privacy information, which

improves the user experience and satisfaction as a virtuous circle for the industry.

Therefore, security enhancement in the Android system has become an important

research topic.

This thesis focuses on privacy information leakage and defense that target Android

users. It introduces and analyzes the Android security mechanism, especially the

security issue of the Broadcastreceiver component in the framework. In addition, a

Broadcastreceiver detection system, which enhances the security of the Android, is

proposed and implemented.

1.2 Objective

The primary goal of this research study is to investigate the security risks affili-

ated with the utilization of Android phones. Furthermore, proposing a design for a

real-time, effective, and integrated defense framework for the Android application is a

secondary purpose. This thesis will contribute to identifying classical security threats

facing Android phones and the corresponding privacy information. The proposed so-

lution will detect attacks, such as virus infections and malicious phishing, and prompt

users to take actions to prevent potential damage; any suspicious behavior that may

reveal privacy material to third-parties or unknown ports will be announced to users.

Android phones contain easy-to-exploit vulnerabilities as well as sensitive personal

data. This collectively offers appealing motives for hackers to target consumers to

gain financial incentives. A focused review of the literature [36] discloses that there

have been abundant protection strategies offered for securing Android phones and

ensuring user privacy. On the contrary, most of those endeavors are small-scale and

tackle particular areas of protection, such as the EPICC [29] and Flowdroid [2]. This

research is different from past studies. It leverages previously proposed and imple-

mented defense strategies, and presents an enhanced protection framework that will

further address Android’s weakness and threats, particularly, those security issues in

Broadcast Receiver; an important Android application component. Moreover, this

study will extend the existing knowledge relevant to the Android security and pro-

vide in-depth explanation of how to effectively manage emerging risks and fend off

attacks.

3

1.3 Motivation

Android, as an open-source operating system, has led to a growth in market share,

while the security issue of Android research receives a rising in interest in past years.

In particular, most current studies[29, 23, 3, 44, 22] focus on the Inter-component

communication and permission leakage, whereas some [30, 17] state the specific com-

ponent security issue related to the Activity, Service, and Content Providers. Instead,

few studies discuss the security problem of the Broadcastreceiver component.

The Broadcastreceiver component in the Android system is normally used for lis-

tening to the appointed event and returning the correlated response, such as providing

the screen locked notification for users when they touch the mobile screen. Indeed,

many system events can be listened to, including the low battery warning and the

timezone changing. Nevertheless, the Broadcastreceiver component has potential se-

curity issues, while it is listening to the registered event. As an event listener, the

Broadcastreceiver is the important crossing of information hinge between the caller

and callee. At the same time, the transferred data during the hinge risks being modi-

fied and hijacked. In other words, a victim receiver may leak the sensitive information

that jeopardizes user’s privacy. Meanwhile, the receiver can be not only exploited by

attackers, but also might be used as a malware for attacking purpose.

Furthermore, the Broadcastreceiver is invisible for users because it runs in the

background, which means it strengthens the feasibility of the attack. In addition,

Google provides two different registrations for the receiver that can receive the broad-

cast intent: dynamic registration and static registration, respectively. The original

goal of the multiple-registration is to make the Android application development be-

come more flexible, but it brings more risks of the changeable attack. The static

registration is registered in the Manifest file and it cannot be easily destroyed be-

cause of the macro-monitoring when the Android phone starts. Since the registration

is written into the Manifest file, the lifecycle of the receiver has been together with

the whole specific application’s lifecycle, even if that application is an unknown app

who can trigger the non-indigenous receiver in other applications. Compared with

the static registration, the dynamic registration is more capricious that parasitics on

other components as a listener to follow the change of a particular event. For example,

a receiver can be part of an Activity component’s thriving decay registered with using

registerReceiver() . This means the receiver is only to surveil the specific activity, and

it is hard to be tracked at most of time because of its thanatosis character.

4

Indeed, there are security issues in both registrations of the broadcast receiver.

Meantime, the Android system offers receiver with several ways to restrict the un-

known broadcast for safety consideration, such as value of android:permission and

android :exported in the receiver’s registration [14]. For example, the android : permis-

sion=“perm.P Limitation” limits any broadcast receiving except who owns the same

permission value in the Intent sender sendBroadcast(intent, “perm.P Limitation”).

Also, the other securing approaches, such as LocalBroadcastManager which provides

a private inter-component communication for an individual application, will be intro-

duced in the Chapter 3.

Although there are some restricted approaches to protect the receiver, the empha-

sis on the protection is apparently not enough. Further, the method of attacks for

Broadcastreceiver component has not been investigated by Android security commu-

nities. In order to show the security issue of the Broadcastreceiver, a hypothetical

example is demonstrated in the listing 1.1, which contains three code snippets in

different Java classes.

Listing 1.1: A Code Snippet in the Hypothetical Android Application

1 pub l i c c l a s s getMessage extends Act ionBarAct iv i ty {
2 . . .
3 protec ted void onCreate (Bundle savedIns tanceState) {
4 new MyAsyncTask () . execute () ; // s t a r t an AsysncTask
5 Handler seconds = new Handler () {
6 @Override
7 pub l i c void handleMessage (Message msg) {
8 St r ing me = msg . getData () . g e tS t r i ng (”key”) ;
9 In tent i n t en t = new Intent () ;

10 i n t en t . s e tAct ion (”MyBroadcast”) ;
11 i n t en t . putExtra (” value ” , me) ;
12 sendBroadcast (i n t en t) ; // send a broadcas t
13 }
14 } ;
15 }
16 }
17 pub l i c c l a s s MyAsyncTask extends AsyncTask<
18 Void , Void , L i s t<Address>> {
19 . . .
20 protec ted Lis t<Address> doInBackground (Void . . . arg0) {
21 . . .
22 l i s t = geocoder . getFromLocation (l a t i t ude , long i tude , 1) ;
23 . . .
24 Message m = new Message () ;
25 Bundle b = new Bundle () ;
26 b . putStr ing (”key” , S t r ing . valueOf (l i s t)) ;
27 m. setData (b) ;
28 Handler handler = nu l l ;
29 handler . sendMessage (m) ; // send a handlerMessage

5

30 . . .
31 }
32 }
33 pub l i c c l a s s MyBroadCastReceiver extends BroadcastRece iver {
34 pub l i c void onReceive (Context context , In tent i n t en t) {
35 Bundle ex t ra s = in t en t . getExtras () ;
36 . . .
37 St r ing message = (St r ing) ex t ra s . get (” va lue ”) ; // ge t ” va lue ”
38 i n t a = 5556 ;
39 St r ing phoneNo = In t eg e r . t oS t r i ng (a) ;
40 SmsManager smsManager = SmsManager . ge tDe fau l t () ;
41 smsManager . sendTextMessage (phoneNo , nu l l , message , nu l l , nu l l) ;
42 // send a SMS
43 . . .
44 }
45 }

This is a hypothetical Android chatting application that provides SMS and GPS

functions for users. It shows three piece codes from a main activity class, an Async-

Task class, and a broadcast receiver class respectively. Similar to most of apps in the

Android market, it aggregates the popular free internet call and the address sharing

between friends. Once the user installed the app, it will remotely acquire and send

the user’s location information back to the visual phone number, without users’ con-

cern. This data theft is not uncommon in the application market. Furthermore, the

messaging return might be a simple attack in the real world, the data uploading is

a much more convenient way based on the hidden link in the child thread. Here we

elaborate on this possible attack on this example and discuss the attack mechanism

associated with the clear code.

In listing 1.1, method Bundle (Line 25) is invoked by the AsyncTask whenever a

requester connects to the main activity class getMessage. The execute() method (Line

4) in the getMessage will start an AsyncTask. From now on, the GPS information

is collected as a list in the doInBackground() method (Line 22). The bundled data

“b” in line 26 within data will be set into Handler method as a message in line 29.

Consequently, this message is going to send back to the main activity class. Once the

main thread activity obtain the handler message by the objected Message method in

line 8 with getData(), the bundle data ”value” is prepared to package into the Intent

mechanism (Line 11). The Intent then will send a broadcast (Line 12), and pass to

the next component which is MyBroadCastReceiver class. Finally, the original user’s

GPS information will be received in line 35 using intent.getExtras(), and delivered

as a SMS message to the appointed phone number in line 41. To avoid this kind of

malicious attack, most of users should install apps from the official Android market

6

as recommended. Meanwhile, this thesis demonstrates a detection system for this

kind of attack to protect users’ privacy.

1.4 Methodology

The rapid development of the Android has, simultaneously, attracted hackers and

criminals. For the sake of an increasing demand for malware application detection and

prevention, a Broadcast Receiver Vulnerability Detection (BRVD) system is proposed

as a static analyzing tool in the thesis. Moreover, the purpose of BRVD is to analyze

and vet the vulnerability of the independent Broadcastreceiver component in the

Android app.

Due to the fact that the Broadcastreceiver component in the Android app is invis-

ible running at background, the BRVD combines semantic analysis and taint analysis

together to a complete inspection. In general, the vulnerability of the receiver can be

transformed into an equivalent leakage of the sensitive resources problem. Therefore,

the data leakage of the receiver could be identified as a data-flow analysis method.

Then, the detection of the filtered receiver is transformed into a taint problem[2] that

seeks to identify the sensitive information leakage.

To vomit the warning result from the malware for the Android user, there are

several steps in our detection system, which are preprocessing, receiver generating,

data-flow analyzing, and result assessing. In order to request the application’s source

code, the Android app needs to be decompiled as a readable file. After filtering the

source code based on the semantic analysis in the second step, the generated receiver

will be the input of the third step which analyzes the data-flow to assign into different

classification. In the end, the organized result is collected and presented.

Compared with other detection systems, the BRVD fills a gap which has hitherto

existed in the Android security issue. What is more, the combination of the semantic

analysis and taint analysis is based on the automated testing concept. This means a

set of broadcast receiver testing is advanced and convenient.

1.5 Contributions

This thesis focuses on the malicious code method in the Android platform and

does more exploration and research, especially the Broadcastreceiver component. The

main contributions of this research as following:

7

• Identified a new attack against Broadcastreceiver based on data-flow analysis,

as well as the security threats with deep-seated reasons. In addition, as stated in

the significance of the security research background, from the in-depth study of

the present implementation mechanisms, we analyzed current attacks’ methods

and defense.

• Formulated a set of malicious behaviors in various data-flows through the Broad-

castreceiver component, along with the security design flaws of the inter- and

intra- application data transmission mechanism. In contrast with both of the

dynamic and static analysis, we summed up advantages and disadvantages of

existing Android’s theories, and put forward static analysis that combines se-

mantic and taint analysis to detect the vulnerability of the Broadcastreceiver

component.

• Designed and developed a Broadcast Receiver Vulnerability Detection (BRVD)

system which is based on the semantic and taint analysis. After decompiling

the Dalvik bytecode, the pre-defined data structure will be reassembled with

the sensitive API call to unify the warning label, and track the privacy data

direction to identify the unsafe element of the broadcast receiver. Compared

with the similar tools, it has a faster filtering function within compatibility,

usability and accurately.

• Collected and designed a System Broadcast Library (SBL) for Broadcastre-

ceivers, which are permission-protected for system receivers’ registration. Ac-

cording to the different registration forms in Broadcastreceiver component, we

proposed a new detection logic based on registration formats. Concretely, con-

sidering the difference between the static data member and the normal text data

file in the system action registration, the action library in the BRVD provides

two input types of the system broadcast action for the receiver’s registration.

1.6 Thesis Organization

This thesis studies the threat and the security mechanism of the Android Broad-

castreceiver. On account of the security risk in the Android platform, we proposed a

malware detection model which combines the semantic filter and data-flow monitor.

In the light of the characteristics from the PC and Android phones, the detection

model based on the PC platform can reduce the mobile phone’s workload and pro-

vide a large amount of the data storage. Also, we apply this model to improve the

8

detection accuracy of the Android malware. The thesis consists of six chapters, and

the chapters are organized as follows:

Chapter 1 It presents a background of the subject. Furthermore, a motivation example for

architecture of the Android platform is described detail, along with the purpose

and significance of the thesis. In the end of this chapter, the organization of

the thesis is presented.

Chapter 2 It introduces the architecture of the Android platform and the threat malware

model, as well as the current research associated with the Android security

technology and the corresponding open source tool. This platform security

design also provides the theoretical reference for our detection system.

Chapter 3 It analyzes a new classification of the Broadcastreceiver data-flow detailedly,

including the broadcast sending, receiving and the security analysis of the reg-

istration. Meanwhile, the static registered receiver and the dynamic registered

receiver are analyzed separately, together with different attack paths of the

data-flow respectively.

Chapter 4 It proposes the BRVD’s framework and implementation. Precisely, the main

function of the each sub-module is introduced, in conjunction with the relevant

key algorithm. The model focuses on combining the characteristics of the text

registration and the taint analysis in the application, to avoid the impact of

the user behavior on the test results. Accordingly, it improves the detection

accuracy.

Chapter 5 It depicts an experimental evaluation for BRVD. Based on a customized sample

and real Android applications. BRVD analyzes and provides detailed statistical

data related to testing results. In addition, compared with two Android security

detection tools, there are two vulnerable Android applications as case study for

a specific analysis.

Chapter 6 It states a summary and future works for the thesis. Moreover, the advantage

and disadvantage of BRVD are indicated. In accordance with the deficiency ex-

isting in this research, aspects which should be awaited the further amelioration

and research were put forward.

9

Chapter 2

Background and Literature Review

Wireless technology has revolutionized the way people communicate and live,

while smartphones have become indispensable in the private space for personal infor-

mation. They are increasingly being used to track fitness and health information and

access bank accounts. Extensive storage of sensitive details make smartphones more

attractive for attackers. Since the first “SMS Trojan” [45] was discovered, the mal-

ware on the Android platform has drawn attention. To mitigate attacks and enhance

security, new mechanisms for the Android platform have frequently been proposed.

In this chapter, we provide a detailed description of Android security mechanisms

and review some malware threats with current research solutions.

2.1 Android Overview

Android is an open-source application execution environment that includes an

operating system, application framework, and core applications. Android is designed

and released originally by Android Inc. to provide a user-friendly, open and mobile-

based development environment. This open-source mobile development framework is

user-centric, providing a variety of development tools and features. Nevertheless, the

open-source nature of Android also poses challenges in securing sensitive user data,

such as those third-party applications that usually phish and send some attractive

information to Android users.

2.1.1 Android Framework

The Android system uses a multi-layer architecture system. It is divided into

four layers from top to bottom: application, application framework, libraries and

Android runtime, and Linux kernel. Java language is used in the application and the

10

application framework layers. The libraries and Android runtime layer is composed

of a Java coding environment (Dalvik Virtual Machine) and core libraries with local

codes (C and C++ database). The Linux kernel layer incorporates a custom Linux

system and the drivers; mainly implemented by the C language. Figure fig 2.1 shows

the Android framework [14], which is detailed below.

Figure 2.1: Android Framework[14]

1. First Layer-Application

As a user application layer, it contains basic smartphone’s functions for the

Android user, such as Email client, SMS programs, browser and contacts etc.

2. Second Layer-Application Framework

This was designed specifically for the Android platform application devel-

11

opment, which allows full access to core applications in the API framework. It

Consists of services and systems including the view invoking, package manager

and content providers etc. All APIs inside are functionally offered for various

apps.

- View- An abundant set of scalable views can be used to build applications

such as lists, tables, buttons and embedded webpages

- Resource Manager- Accessible un-coded resources such as local string,

bitmaps and layout files.

- Package Manager- Has the privilege for enabling and disabling installed

applications, including getAllPermissions() and querying the specific com-

ponent

- Message Manager- Allows applications to be displayed in the status bar

with custom view.

- Task Manager- Manages the application life cycle and it is used for general

navigation

3. Third layer-Library and Android Runtime

This layer is mainly associated with the process running where the library

provides JAVA programming language for the majority of the core library func-

tions. Additionally, each program has an Android Dalvik’s java virtual machine

for its operating environment.

- Android includes a C/ C++ library for each part of the Android system.

- Lbc is a standard C library with Berkely Software Distribution (BSD)

implemented for its embedded Linux devices.

- SGL (multimedia library) is based on PacketVideo’s open-source kernel.

This library supports playback and record of many popular audio and

video formats as well as static pictures such as MPEG4, H.264, PNG and

others.

- Surface Manager controls a multi-application access to the display subsys-

tem and continuously mixing 2D and 3D graphics systems.

Each Android application creates a DVM to run its own process. Owing

to that Dalvik has been rewritten, thus each device is able to run multiple

VMs effectively. The DVM relies on the Linux kernel which provides many

implication functions, including threads and low-level memory management.

12

4. Fourth layer-Linux Kernel

Android’s kernel is the model of Linux2.6 kernel. The kernel is the funda-

mental part of the Android system where its main role is to interact with the

computer hardware. In fact, it will implement not only to control hardware pro-

gramming and interface operations, but also to schedule and access hardware

resources. At the same time, the kernel provides a high level execution envi-

ronment and the hardware virtual interface. The key features include service

routine interrupting, scheduler processing, address space memory management,

inter-process communication(IPC) and network protocol etc. In order to make

the android system more adaptable to the mobile devices, the android system

adds some special drives and some of them are not belonging to the Linux stan-

dard drives. Normally, they do not need to operate with the real hardware, but

assist the system to process smoothly. The main Android drivers are as follow:

- Ashmem is anonymous shared memory. Through this kernel mechanism, it

provides memory allocation scheme for user-space programs to implement

functions similar to malloc.

- Logger driver supplies lightweight log support for the application programs

- Binder driver is based on the driver of the Open-binder system, along with

the support of the inter-components communication in the application.

Furthermore, the whole Android system operation relies on the Binder for

the process to process communication.

- Power Management (PM)

- Low Memory Killer driver will end the process, if the process lacks memory.

- Android PMEM is a physical memory driver.

2.1.2 Application Components

Android application framework requires developers to conform to Android’s archi-

tecture while programming an application. There are no main() functions nor similar

execution entry points in Android applications. On the contrary, applications are

composed of component concepts.

These concept of components are the cornerstone in the Android system, and

provide for the entry points into the application. However, not every component are

entry points for a user’s application. Many components are interdependent. Each

component plays a specified role and exist as an independent entity. In other words,

13

every component plays a unique part, collectively they define the overall behavior of

an application. In the Android system, there are four main components, which are

Activity, Service, Broadcastreceiver and Content Providers.

* Activity Component

The purpose of Activity is to provide a graphic user interface (GUI) in-

teraction. Furthermore, every Activity is an independent interface which could

not only display other GUI widgets, but also monitor and respond to a received

event. Generally, an application contains more than one Activity which could

either run in the same process or in different processes. For Activities in dif-

ferent processes, they will co-operate with each other to complete application

functionality through the Inter-Process Communication (IPC) mechanism.

* Service Component

Service is the one of the four modules in the Android. The difference

between Service and Activity is that the Service is mainly used to deal with

the user interface independent of the business logic. Due to the fact that the

Service component does not need to directly interact with the user, its tasks are

often related to computational processes which can be time consuming. This

is applicable to run in the background and prevent blocking the user interface

(UI) thread. There are two approaches to start the Service which are explicit

and implicit. For the implicit way, it only needs to pass the action by using

the Intent object. By comparison, the explicit needs to clarify the specific class

name and even the package name. Moreover, the Service component can be

activated by other components, such as the Activity component. Meanwhile,

Service can run in the main process with other components that trigger it to

start, it can also be created as independent sub-process in the background.

* Broadcastreceiver Component

Due to the function of the inter-component communication in separated

processes, the Binder in the Android Kernel is a significant driver for the broad-

casting function. Accordingly, the essence of the broadcast is implemented

through the Binder. This mechanism is a message publish/subscribe model

based on the event-driven. In other words, the recipient needs to be registered

before broadcasting information, and then receivers can accept the message from

a caller. As a result, this registered receiver in the Android system is abstractly

regarded as a Broadcastreceiver component. Simultaneously, the three main

14

components in the Android system; Service, Activity and Broadcastreceiver,

can easily interact with each other via using the Intent mechanism. Besides

this, although the broadcast receiver does not have the user interface, it can

either through the corresponding Activity and/or Service act in response with

a registered event, or be activated by the correlative broadcast.

* Content Providers Component

By reason of the limitation for the Linux user ID, different applications do

not have access directly to each other. Therefore, Content Provider, as a public

database, is the one to realize the function of data sharing and transmitting

among Android applications. A typical example is to apply Content Provider

to access the main address book. Applications with related permissions will

obtain the contact information through the Content Provider. In addition, the

Content Provider can transfer data based on the IPC to applications by using

the Binder. However, due to the inadequacy of the Binder transmission for the

large amounts of data, the Android system also provides an Anonymous Shared

Memory to achieve the big data sharing between processes. In fact, only the file

descriptor is passed between processes. Therefore, on account of the synergy of

Binder and Ashmem, the Content Provider can realize the efficient data sharing.

2.1.3 The Intent-based Inter-component communication (ICC)

The Intent is an important connecting bridge among the four components in the

Android system, which specifically is a run-time binding mechanism. In particular,

the intent is an objective that is instantiated by the Intent Class in the Android and

it can bind running components together within data transmission. Apart from this,

the Intent text input during the registration has three main parts which are; action,

data and category. Over and above it, the main functions of the intent can invoke

the startActivity (Intent) as an argument to start an activity, be received as an intent

broadcast (sendBroadcast (Intent)) by the registered components and communicate

with the Service component through startService (Intent) or bindService ().

Indeed, the Intent mechanism has the explicit intent and the implicit intent. In

detail, both of them can be called by Activity, Service and Receiver. On the contrary,

there are some differences between them.

• The explicit intent: It has the specific class name or the package name outlined

in the Intent registration when it is being called. Thus, the explicit intent always

points out the exactly callee direction.

15

• The implicit intent: It only needs to meet the action name matching requirement

when it is being called. Therefore the Intent is exposed to any callers and several

application with the same action name can call upon the intent simultaneously

which risks sharing data with vulnerable receivers.

Thus, the explicit intent is more secure than the implicit intent, because the

implicit intent supplies an omni-directional data transmission without security control

while explicit needs the clear class name.

2.1.4 Permission Protection Mechanism

Android is a “Privilege Separation” system. Restricted resources, such as Blue-

tooth and SMS functions, should have the corresponding registered permission before

applications downloading. In turn, an application can process to utilize the appropri-

ate resources after installing. The permission mechanism is a many-to-many mapping

relation between Permission and Java Application Programming Interface (API). This

means Android applications will call the relational API to complete its function after

acquiring the matching approval. The process of the API calling from user-behavior

to the specific function realization can be divided into several steps: An application

will call the public library API after permission is obtained, then the public library

API invokes an interface named RPC stub which will send requests to a system service

via using inter-process communication (IPC) bindings format. In the end, the system

service progress will complete specific functions. Actually, the permission detection

will be running during the period between system services and system processes.

In the Android system, all installed applications must own a digital certificate.

Otherwise, the Android system will never accept an application without a digital

certificate. In detail, the digital certificate is applied to identify the trust relationship

between authors and applications. Besides this, functions in the Android application

can be activated by both of user behavior and other applications. For example, Google

map location is an external method that can be invoked by many Apps associated

with the GPS permission. Consumers take a risk to leakage the location information

through installing malicious application that trigger other apps who have the GPS

permission.

To defend the malicious switch-on in the inter-application communication from

attackers, the permission mechanism provides a customized permission to protect

non-system action. The strength of the protection is divided into four levels; Normal,

Dangerous, Signature, and SignatureOrSystem permissions.

16

- Normal: It is granted and approved to activate acquiescently by the Android

platform, but this default value is limited inside the application without outsides

requesting. Thus, the normal level is low risk permission.

- Dangerous: It notifies the specific accessing function to users before the appli-

cation installing, and does risk the method calling associated with the user’s

privacy. Hence, this level has potential danger.

- Signature: It is invoked automatically without the users notification by other ap-

plications which have the matching certificate. Once the authentication between

the caller and the requester is verified, the system will grant the permission.

- SignatureOrSystem: the function will only grant and share to the other APPs

which is in consonance with APKs signature. No matter how many activities in

other APPs defined by the same signature, the target permission only matches

completely with the same APKs or Android package classs signature. Especially,

if two different APPs want to call each other, they should reach the signature

matching requirement that is created by the same and unique author.

The associated permission requirement in the Android application is written by

the developer, but is permitted by the user. In other words, the user will make the

final decision to choose installing or not, whereas the majority of users do not have

the capacity to understand the security choice.

The permission mechanism seemingly is literally safe. On the contrary, it is “Over-

lord Provisions”. The reason for the inflexibility of the permission mechanism is that

it only provides two options for users; either they have to approve all permissions

before installing the favorite application or disapprove and cancel the utilization. In

addition, once the user has approved the permission and activates an application,

the activity of this application during the lifetime cannot be stopped from the user’s

operation, such as automatically completing a malicious SMS sending event in the

background before uninstalling.

2.2 Android Threat Models

There are many variable applications in the Android third-market. What’s more,

some of them are even lurking inside the official market. As stated in the user’s

perspective, the loss from various of attacks and the Confidentiality, Integrity, and

Availability (CIA) security model standard, attacks can be divided into five models;

17

information disclosure, information destroyed, function blocking, fraudulent billing

and fraudulent information.

- Information Disclosure: a malware illegally gains users’ privacy information by

attacking smartphones, including their address book, SMS, and GPS location,

which directly affects consumers’ life and work.

- Information Destroys: a malware modifies and deletes users’ privacy information

via infecting smartphones.

- Function Blocking: a malware interferes functions in smartphones through dis-

tributing denial of service attacks. The function blocking includes stopping the

cellphone system, continuous cellphone restarts, disruptions in the interface dis-

play, interfering with the cellphone signal, intercepting phone calls and SMS,

illegally terminating and uninstalling the APP.

- Fraudulent Billing: a complete mobile communication network has a compli-

cated billing system, and some of operations are directly related to consumers’

fund account. Fraudulent billing can cause the loss of money by faking bill,

which might bring an economic loss to its users. This behavior contains uncon-

sciously dialing and sending SMS, passively connecting network and illegally

customizing value-added services.

- Fraudulent Information: Using users’ contacts to spread fraudulent informa-

tion, so that false messages would be received by users’ friends and families

who might have emotional and material loss. The way of deception contains

applying malicious advertising plug-ins to advise phishing websites, leveraging

users’ relationships network to spread fraudulent information.

2.3 Analytical Measure

The detecting approach in the Android security can be concluded into two main

fields. The pre-installing analysis which is static behavior-based detection and the

dynamic behavior-based detection that is real-time based analysis.

2.3.1 Static Analysis

Static analysis[42] uses the special software tools to analysis software including

files and execution code before running this APP. It typically obtains codes from

18

disassembling software, then analyzes this softwares execution process, and code logic

by using the manual analysis. There are several main key technologies, from the code

extraction to the method analysis.

Due to the fact that the APK in Android platform is similar to the JAR package

in Java program, so extracting and detecting feature codes from the original package

is one way of Android security analysis. In turn, we can detect the feature code from

three steps; APK (filename.apk) extraction, DEX (classes.dex) decompilation, and

XML (AndroidManifest.xml) analysis.

AndroidManifest.xml

Class.dex

Signature Files

Resources

Figure 2.2: APK Framework

* APK Extraction

Based on the reverse engineering[13], feature codes in a procedure of an

application will be extracted, including binary sequences, operating codes, and

function callings. Furthermore, feature codes will never be modified. Otherwise,

the modified feature codes in the application will be dysfunction, even fail to

start. In Figure 2.2., it states an APK framework, as an installed package for

the Android application. There are specify files inside :

- APK features: There are not only source codes in the APK but also

non-code resources, which are extrinsic attributes and intrinsic attributes.

Specifically, the size, name, and building date of files are belong to the

extrinsic attribute, while the information of URL, version and permission

list in the package is the intrinsic attribute.

19

- XML files: Each APK contains several XML files. What is more, the An-

droidManifest.xml is one of the most important file in the Android APK,

because most of Android permissions will be declared in this file. Ele-

ments in XML files contain sub-elements with related attribute value that

can announce and affect all component functions, such as icon, label and

permission.

- DEX files: DEX files, constructed with bytecodes, are required by APK

files in the Android OS. The DEX file is generated by Dalvik Visual Ma-

chine (DVM) from Java source codes.

After extracting the APK file, there are APK features, XML files, and

DEX files. On account of the unreadable DEX file, the DEX decompilation is

requested to be a readable Java file.

* DEX Decompilation

DEX Decompilation is a specific reverse engineering for the file decompil-

ing. There are many DEX decompiling tools, and they can obtain java source

codes from the DEX byte-code. For example, the DEX file in an APK can be

transform into normal JAR format files by using such as dex2jar [32] or Baks-

mali [34] tool, and then we can check the Java source code in JAR package by

using tool JD-GUI [33]. As a result, the Android software can be analyzed via

implementing the semantic of codes.

2.3.2 Dynamic Analysis

The dynamic analysis is an approach to investigate behaviors of programs’ execu-

tion in strictly controlled environment (sandbox). Also, the real-time demand of the

dynamic analysis needs to be accurate, so that malicious behaviors would not cause a

great damage. In android platform, the environment of the dynamic detection gener-

ally applies sandboxes or the DVM for simulating applications. There are two main

methods in the dynamic analysis; they are status contrast and behavior tracking.

* Status Contrast

It is an analyzing method that is to compare pre- and post-execution of

the system status, along with the source data extraction. Nevertheless, the

drawback of the method is that it is easily affected by the changing status of

superposition, and the detecting result is not accuracy.

20

* Behavior Tracking

It can dynamically capture the execution of a program operation and

analyze the program behavior. According to the different implementation tech-

niques, the behavior tracking can be divided into two categories: instruction

level analysis and lightweight level analysis.

- The instruction level analysis could not only obtain or modify the status

of CPU, memory, and value, but also change the control flow during a

program execution. However, the time consuming is longer than other

analysis.

- The lightweight level analysis method can implement some technologies,

such as HOOK technology[24], to track the run-time based behavior. Ow-

ing to the fact that the amount of data resources on the light level is small,

so this analysis is faster and easier than other similar methods. Simulta-

neously, the accuracy is relatively high and has a wide tracking range.

In conclusion, the static behavior-based detection abstracts program characteris-

tics through using reverse engineering, such as binary sequences, operation code se-

quences, and function call sequences, while the dynamic analysis monitors real-time

behaviors after the operation system service or component authorization.

Both of static analysis and dynamic analysis are significant for the Android se-

curity. Compared with the dynamic analysis, the static analysis has lower energy

consumption and lower risk, but accurate.

2.4 State of the Art

With the development of the Android security detection technology, there are

two main platforms that be implemented into the data-flow analysis for Android

application research; soot[20] and the Watson Libraries for Analysis (WALA)[12]. The

first platform is developed by Sable Research Group of McGill University, supplied

an JAVA optimization framework. The other one, WALA, is issued and donated as a

open source tool from IBM company that provides a static analysis for java bytecode

and javascript. Currently, most of Android detection tool based on the static analysis

are built on the soot and WALA.

Thanks to Felt et al.[7], a clearly inter-application communication is defined in

Android applications. They examined a communication mechanism in the Android

21

platform and developed a tool named ComDroid. This tool is based on the Dex code

that is applied for identifying suspected components in an Android application.

Huang et al.[16] applied a WALA-based tool, AsDroid, to detect stealthy behaviors

based on the identification of the difference between application’s behaviors and user

interface text. In particular, they presented the relationship between interface text

from those frequently used key words in the Graphical User Interface (GUI) of android

applications and the associated user’s behavior. For example, when an user is clicking

a button “Send Message” in a malicious application, there are any other behaviors

inside not only message sending. In other words, according to the GUI design in

Android applications, if this function is not matching with the UI text direct meaning,

this will be defined as malwares. Furthermore, they implemented AsDroid to test 182

apps and 113 of them show the stealthy behaviors.

PermissionFlow, as a WALA-based tool for detecting Android application vulner-

abilities in the bytecode and configuration, has been demonstrated by Sbrlea et al[41].

They provided a solution for the issue of monitoring the permission leaks based on

the Android manifest file. Due to the result that 56% of tested 313 Android APPs

have been utilized inter-component information flow. Hence, the relationship, also

named rule generator in the thesis, between permissions and corresponding behaviors

is constructed and saved as an Android library. According to the rule generator, this

tool can check every event in an Android application through the Intent mechanism

and filter the sensitive permission related to the users’ privacy.

Didfail is a system that combined EPICC[29] and flowdroid [2] together. In spe-

cific, EPICC mainly focuses on the Intent mechanism and detects the information

leakage by reason of the Intent bundle data, while the flowdroid is a soot-based an-

alyzing tool that provides a precise data-flow analysis. Thus, this system is using

the EPICC as a filter tool to select vulnerable components based on the unexpected

connection. In addition, the output of the EPICC will be the input of the flowdroid.

Then the flowdroid will track the data-flow simply depending on the broadcast In-

tents, such as the intent.sendBroadcast(), to analysis the vulnerability.

Chen, T et al.[6] proposed a concolic execution combined both dynamic and static

analysis, which is applied by the symbolic execution on hosts and the concrete execu-

tion on testing objects. They implemented their prototype on the “VxWork” system.

Also, the speed for the code coverage is acceptable, because all time consumed works

are finished on the resourceful hosts.

Apex [27] is a policy enforcement framework that provides permission options for

users who are installing Android applications. In other words, the user is given an

22

ability to choose and deny permissions from an application from third markets. This

framework is based on the static analysis that extends Android original framework.

Moreover, the extending framework has a simple graphic user interface for users.

There are many defending tools from researchers who have paid attention to the

Android malware and discovered its vulnerabilities. However, the Android platform

still needs to be updated and improved. Most of researches only consider about the

data transmitting between components, which is the key point for defending data

leakage in Android, but they do not recognize the Broadcastreceiver component itself

could be a malicious object. In other words, the Broadcastreceiver, for example, may

contain some malicious URL links and submit privacy data via Internet. Researchers

consider about permission issues, whereas some Android applications do not need

permission by leveraging other applications. Meantime, the Broadcastreceiver is one

component that can be used for bypassing related permissions. As a result, Broadcas-

treceiver can be an attacking avenue, but its related security issues have never been

studied in the past. Therefore, we will give some insight into security and privacy

issues associated with Broadcastreceiver component.

23

Chapter 3

BroadcastReceiver Analysis

A BroadcastReceiver represents one main component of an essential publish/sub-

scribe messaging platform in Android. It, known as a subscriber, can be used to

receive and respond to specific messages (or broadcasts) from the system or other

components in the same application or different applications, such as notifying An-

droid users when cellphone power is low as a system event-driven. This is generally

achieved through the utilization of intent filters defined in the app manifest file.

Nonetheless, the most common uses of the Broadcastreceiver component in Android

application development are to act as a listener to receive Broadcast intent from the

intra- and inter-applications[7]. They can be used for local listeners among different

components in one application, as well as global listeners in inter-applications. Inside

a self-contained Broadcastreceiver object, the expected operations to be performed

are specified in the action field and filter definition with corresponding permissions.

In Android, a broadcast is delivered through the passing of an Intent object using

Broadcast message sending methods, including sendBroadcast(), sendOrderedBroad-

cast() and sendStickyBroadcast(). Generally, the definition for Android broadcast

mechanism is one event or broadcast intent to trigger many broadcast receivers with

their intent filters that match the Intent. Based on the publish/subscribe message

mechanism, different receiver registration modes will result in different published

broadcasts to be received. There are three major categories of broadcasts that can

be received:

- Normal broadcast: A normal broadcast is sent to all the eligible receivers at

the same time without considering any order between them. Normal broadcasts

can be transmitted implementing method sendBroadcast().

- Ordered broadcast: It depends on the priority level, which is claimed by a

receiver. After receiving a broadcast intent, the receiver will decide whether to

24

stop forwarding the received broadcast using method abortBroadcast(). If not,

the Intent object will pass to the next matching receiver. Ordered broadcasts

can be transmitted implementing sendOrderedBroadcast().

- Sticky broadcast: Unlike other broadcasts, sticky broadcasts will be destroyed

after executing transmission. It can be saved into Activity Manager Service

(AMS) when it can not currently find any corresponding receivers. Once a new

Broadcastreceiver has been registered and matched, the AMS in Android sys-

tem will send this saved broadcast to the target receiver immediately. However,

Google has deprecated the sticky broadcast after Android 5.0/API21, but it

still can be used for its earlier versions by implementing method sendSticky-

Broadcast().

Also, according to different utilization modes, two special types of broadcast may

be particularly worth considering from perspectives of security. In detail, the sys-

tem broadcast is triggered by the basic system operation, such as power on, network

state changing, and screen off, etc. Instead of the attack threaten, the system-event

broadcast can be safely delivered to all permission-protected receivers. Meanwhile,

the LocalBroadcastManager(), as its name indicates, is the only one method that pro-

vides broadcast intents transmission inside an individual application. In other words,

the LocalBroadcastManager() restricts other application’s Intent from the passive ac-

tivation. Compared with global broadcasts between applications, local broadcast is

only limited to a single app, and is highly efficient and secure. Its associative re-

ceivers can be created by LocalBroadcastManager() as an inner class of a Java class

in Android application development.

To analyze the Broadcastreceiver component security, we combined semantic anal-

ysis [11] and taint analysis together. On the basis of the subscribe/publish mechanism,

the first step of analyzing in the event-driven model is the Broadcastreceiver registra-

tion, which also is for the identification of vulnerable receivers in our analysis. Then

the vulnerable Broadcastreceiver will be verified from its message publish result as a

classification of malicious behaviors.

3.1 Semantic Analysis in the BroadcastReceiver

Registration

Compared with the static analysis discussed in chapter 2.3, dynamic analysis is

not only time consuming, but also cannot accurately detect the vulnerable receiver

25

during the running time as long as the malware does not behaves abnormally. For

instance, the target application is working well with all permission protected data flow

under the detection, whereas dynamic analysis cannot point out the weakness of the

receiver because there is no dangerous behaviors being triggered in this application.

Hence, in virtue of the malware’s elusiveness, the vulnerable receiver in an Android

phone has possibility to be called by other malicious software without the relational

permission authentication, and dynamic analysis in this situation is really inflexible

for searching vulnerable receivers.

Semantic analysis, as one of static analysis, is based on the examination and de-

termination of source codes. It is applied for understanding the semantics of the

code, as well as the logical process. Thus, according to the logical order between

the Broadcastreceiver registration and behaviors, the vulnerable Broadcastreceiver in

testing objects can be detected and filtered. However, the Broadcastreceiver compo-

nent in Android has two different programming languages, XML and JAVA, which

focuses on the establishment of two quite different registrations. Therefore, the se-

mantic analysis of the Broadcastreceiver component in Android applications needs

to be divided into two types for analysis; static registration analysis and dynamic

registration analysis, which will be discussed in detail in the following subsections.

3.1.1 Static BroadcastReceiver Registration

The Android static broadcastreceiver is registered in the AndroidManifest.xml and

defined in the manifest file written by XML programming language. The Android

system implements the Package Manager System (PMS) to arrange the static receiver.

The format for the standard static broadcastreceiver is as follows:

Listing 3.1: Static BroadcastReceiver Registration

1 <xml> <r e c e i v e r andro id : enab l ed=[” t rue ” | ” f a l s e ”]
2 andro id : expor ted=[” t rue ” | ” f a l s e ”]
3 andro id : i c on=”drawable r e s ou r c e ”
4 and r o i d : l a b e l=” St r ing r e sou r c e ”
5 android:name=” St r ing ”
6 andro id :pe rmi s s i on=” St r ing ”
7 and ro i d : p r o c e s s=” St r ing ”>
8 . . .
9 <in tent− f i l t e r a nd r o i d : p r i o r i t y=”−1000−1000”>

10 <ac t i on android:name=” St r ing ”>
11 </ intent− f i l t e r>
12 . . .
13 </ r e c e i v e r>
14 </xml>

26

Among the various features of an Android application, their attributes have a

certain structural relationship. Suitably, XML is a structural markup language, and

its language structure characteristic attributes can be reflected to the relationship of

the properties of an Android application.

As shown in Fig. 3.1., it can be observed that there are some attributes that are

used indifferent interrelated tags, such as the receiver tag, the intent-filter tag, and

the action tag. Precisely, each of tags has its own attributes for different purposes.

The attribute in the receiver is generally implemented for the basic receiver’s class

type and limited the object, while the android:priority in the intent-filter is designed

for controlling the order sequence of the receiving broadcast. Besides this, the action

element represents the specific type of action name that matches the corresponding

broadcast intent.

After successfully registering, the implementing class will extend the Broadcas-

tReceiver’s class and invoke the onReceive() method to trigger the receiver’s reaction.

Remarkably, the receiver tag is one subset of a application tag in androidManifest.xml

files of Android applications. Especially, this receiver tag is not only one sub tag un-

der the application tag, there are other sub tags, such as activity tags, service tags

and any other receiver tags. Besides this, we found that a receiver may have more

than one android:name under the sub-tag action in the receiver, and each of the

action names signifies an independent callback function, sharing the same receiver’s

name with the rest of other actions.

As a consequence, to protect the static receiver in the Android, Google provides

some attribute options in the manifest file for limiting broadcast Intent’s abuse, and

the receiver’s external exposure, such as the android:exported and android:permission

options under the receiver tag. Not surprisingly, some security issues in the static

Broadcastreceiver registration have been discussed already. Felt et al.[22, 7] have al-

ready identified the threaten of the communication between components, for example,

if the value of android:exported in the static receiver registration is “true” or null,

this receiver might be vulnerable from other Android applications’ calling.

Nonetheless, to be the best of our knowledge, existing works do not mention the

vulnerability of the android:priority attribute under the intent-filter tag, nor do they

mention the different formats of permission-protected system broadcast in the dy-

namic and static registration. Most importantly, the android:priority attribute under

the intent-filter tag is the mandatory property for the ordered broadcast receiver,

and this attribute value is within the range of the integer number from -1000 to 1000.

Specially, the larger integer number with the ordered broadcast receiver, the higher

27

its priority. In detail, the first receiver to receive the ordered broadcast has the priv-

ilege to cancel and modify the rest of ordered broadcasts. Consequently, on account

of the malicious cancellation and modification, the vulnerability of the priority at-

tribute must be considered when designing an Android broadcast receive vulnerability

detection system.

During the static receiver registration, most of the system broadcast intents’ con-

stant value in the action tag are protected by their related permissions, but all of them

are registered as string characters in the androidManifest.xml. For example, the An-

droid platform provides the permission “READ PHONE STAT” to limit and protect

the relevant system intent action “android.intent.action.PHONE STATE”. Thereinto

both of them should be registered separately. In reality, the list of the system actions

have been collected in the each version of the platforms under the Android Software

Development Kit (SDK). Owing to the characteristics of the lower influence and non-

synergism, the non-permission protected system broadcast intents have been consid-

ered safe. In detail, the non-permission system broadcast intents actually are not nec-

essary to be concerned as a security issue, such as “android.intent.action.DIAL” which

only provides dialing function from the system dialer without permission-protected.

On the other hand, if this dialing function cooperates with other behaviors, such as

uploading, phoning, or messaging to transmit data to outside, this synergism will be

concerned as a potential security issue.

Therefore, it is acquiescent that any receivers with system intent action registered

are in safety. However, there is one case that needs to be cautious, which is multiple

intent actions might be registered concurrently under the same receiver. The reason

for our concern is the vulnerable customized intent action might share the receiver

with the system intent actions. Subsequently, the multiple-actions receiver has a risk

of being invoked by other malicious apps. Thus, no matter how many intent actions

are there with the protected permission inside one receiver, if there is one vulnerable

registered intent action mixed with other protected ones, this receiver exists a security

problem.

Accordingly, there are some key points in the static registration where some con-

cerns need to be addressed:

- To check attribute android:name and confirm the receiver is registered and

protected with the system broadcast.

- To check attribute android:exported and confirm the receiver is publically avail-

able to other apps or not.

28

- To check attribute android:permission and confirm the receiver is written and

protected with the relevant permission.

- To check attribute android:priority in the filter-intent and make sure it has the

highest number or not.

Owing to the special structural of the XML language, the semantic analysis is

more appropriate inasmuch as it solves the receiver leakage thoroughly in the static

registration. Also, there are many open source tools available can be explored to

extract the data from a XML file. Thus the semantic analysis on the Broadcastreceiver

can be efficient and accurate.

As a result, the mapping relationship between vulnerable and safe receivers in the

static registration can be accurately defined by the semantic analysis. Furthermore,

the potential vulnerable receiver can be efficiently filtered from amount of Android

decompiled applications.

3.1.2 Dynamic BroadcastReceiver Registration

The dynamically Broadcastreceiver is in the java source code to realize the broad-

cast mechanism using onReceive(). This mechanism is managed by the Activity

Manager Service (AMS) on the second framework layer in the Android architecture.

As the dynamic registration is mentioned in the Android developer’s guider[14], a dy-

namic Broadcastreceiver, as a inner class, relies on other components’ lifecycle. There

is an an Activity class example named aTest, as shown in List.3.2. The aTest class

needs to create an object myBroadcastReceiver and intentFilter via instancing Broad-

castReceiver and IntentFilter classes in the line 2 and the line 12 respectively. After

necessarily adding the associative action name value using method filter.addAction()

in the line 13, the process of the dynamic receiver registration will be generally done

with method registerReiceiver() in this Activity component. Compared with the

static registration, there is an additional note is to unregister the dynamic receiver

with method unregisterReceiver(), such as the code snippet in line 19, when the dy-

namic receiver is registered in the Activity.onResume().

Listing 3.2: An Example for the Dynamic Broadcastreceiver Registration

1 pub l i c c l a s s aTest extends Act i v i t y {
2 pr i va t e BroadcastRece iver myBroadcastReceiver =
3 new BroadcastRece iver ({
4 @Override
5 pub l i c void onReceive (. . .) {
6 . . .

29

7 }
8 }) ;
9 pub l i c void onResume () {

10 super . onResume () ;
11
12 I n t e n tF i l t e r i n t e n t F i l t e r = new I n t e n tF i l t e r () ;
13 i n t e n t F i l t e r . addAction (”a . t e s t ”) ;
14 t h i s . r e g i s t e rR e c e i v e r (myBroadcastReceiver , i n t e n t F i l t e r) ;
15 }
16 pub l i c void onPause () {
17 super . onPause () ;
18 . . .
19 un r e g i s t e rRe c e i v e r (myBroadcastReceiver) ;
20 }
21 . . .
22 }

In this case, the dynamic Broadcastreceiver registration can be hidden in the

source code when users are implementing the semantic detection. Meanwhile, to

be noticed is that the registerReiceiver() has two types of usage; which are regis-

terReceiver(BroadcastReceiver, IntentFilter) and registerReceiver(BroadcastReceiver,

IntentFilter, String, android.os.Handler). The first approach of the registration is

preferred by most developers, due in simple format. The latter with the permission-

protected, however, is the best option for the security concern, because the String

attribute inside represents the permission option.

In comparison with the static Broadcastreceiver, the dynamic registration acqui-

escently has a higher priority in the Android platform. In other words, the dynamic

registration is faster to receive a broadcast, when both the dynamic and the static

register synchronously for an same event. Meanwhile, most of the dynamic broadcast

receivers are embedded in other components, such as binding in the Activity and

Service. As a result, once these components are stopped or destroyed by users, the

binding receiver will be invalid simultaneously.

Meantime, the documentation of the system Intent action for Java classes in the

Android SDK contains a list of static data members, and dozens of them are pre-

fixed with “ACTION ”. Specifically, the static member in the Intent class does not

need to be registered as a String format, but not all Intent actions are defined in

the Android SDK as listed on the Intent class. Therefore, for the sake of the con-

venient invocation, the dynamic broadcast receiver registration provides the system

broadcast action names for the direct Java input as static data members in the In-

tent class, such as “ACTION TIMEZONE CHANGED”, which is different from “an-

droid.intent.action.TIMEZONE CHANGED” in the static registration as only one

30

input option. All of them demonstrate the timezone has changed, whereas only the

dynamic registration can use both input forms.

The value assignment in the dynamic broadcast receiver registration is flexible, for

example, there are at least two ways to assign the value to android:name in the action

attribute, which are addAction() and IntentFlter(). Thus, the dynamic registration is

harder to apply the semantic analysis to filter this flexible registration, compared with

the static registration in an standard XML tree structure. Nevertheless, the dynamic

receiver registration still has some keywords that are semantically in regard to the

IntentFilter method invoking and the action adding, e.g. registerReiceiver, addAc-

tion(), and IntentFIter(), which occur frequently, but do uniquely cover the dynamic

receiver registration in the text. In this specific condition, the most frequently oc-

curring keywords will be generated as a dictionary to check the dynamic broadcast

receiver registration based on the regular regression, whereas the registration pat-

tern through the regular expression in the testing text is actually closer to a greedy

detection because of the changeable value assignment in the dynamic registration.

3.2 Taint Analysis in Broadcastreceiver

Android is a component-based platform. There is no main method for an object-

oriented Android application. Instead, an Android application consists of four main

components, and each of them can have its own entry point. To coordinate various

interaction between the platform and applications, there are various callback methods

in the Android system, and all of them are through from the platform methods to the

specific application function as a view of the sequence of calls. An Android application

can be viewed as a sequence of callback functions from the Android platform to the

codes or implementations of these callback functions[43], as well as showed in figure

3.1. However, the callback functions in Android platform are different from others, for

example Javascript, which allow a callback function to run asynchronously. Instead,

Android platform will wait for a callback function to finish before invoking another

one.

31

Figure 3.1: A Call Back sample in an Application

Considering inter-component communication (ICC) and callback function in the

Android framework, a malware could call Android APIs due to the callback function,

such as onReceive(). Therefore, the concept of the taint is used to determine whether

permissions in Android applications are over-privileged via tacking the marked data.

In other words, the over-privileged application is the one that has unnecessary per-

missions or has more API invoking without relevant permissions. According to the

precise control-flow generation, this taint analysis in the detection system will provide

a accurate result.

3.2.1 Inter-procedural data-flow Analysis

Based on the above observation, we apply the Inter-procedural Data-Flow (IDF)

analysis[40] as a key step to examine the data-flow of the methods of Broadcastre-

ceivers in an Android application. In fact, the precise data-flow graph analysis is

also an; inter-procedural, finite, distributive, and subset (IFDS) problem[4], where

the dataflow facts considered are finite and the dataflow functions considered are dis-

tributive, and as a result, all and only valid execution paths can be discovered in a

timely manner. In an IDF graph, nodes correlate to statements, and intra-procedural

32

edges display the direction inside the whole flow. The standard IDF graph for a

procedure P has an exclusive start node Sp and a specialized exit node Ep.

During a procedure P, data can be passed between components in Android plat-

form. Besides this, each of start and exit nodes can be regarded as interactions with

two other nodes: a call-site node Cp from the Android platform triggering P and a

return-site node Rp from the platform corresponding to Cp. In consequence, there

is an inter-procedural edge for the full path, Cp → Sp, Ep → Rp. In other words,

a DFG path P is a full callback procedure representation in Android platform, and

it is activated by the call-site node Cp, and starts from Sp; the corresponding exit

node Ep will send the data out via the return-site node Rp. Specifically, the node

Sp is the entry of the main method while the inter-procedural edges are matched.

As one of callback methods in the Android platform, the Broadcastreceiver carries

the interaction between an application and the platform. In either dynamic or static

registration, the receiver is managed by the Android platform to override the method

BroadcastReceiver.onReceive() when an event occurs.

In detail, a complete life-cycle process of the Broadcastreceiver callback is initiated

from the platform method OnReceive() to the end of the destroy method OnDestroy(),

which is around ten seconds or less without considering the Broadcast Queue in the

background time. On the other hand, if the execution of the onReceive() method does

not finish within a short period of time allowed in Android, the Android platform will

alert users and reply the unresponsive information. Owing to the fact that the object

of the broadcast receiver will be destroyed immediately after executing onReceive()

method, the main implementation of the broadcast receiver is always applied to the

event listening, triggering and notifying.

Fig 3.2 is an example of an implementation of a Broadcastreceiver. Class main

defines Broadcast Receiver: an application component responsible for requesting call-

back event and creating other events. After requesting a broadcast intent, the receiver

will invoke onReceive (Context context, Intent intent). Method onReceive() is an ex-

ample of a life-cycle callback method; it is triggered by the Android platform when

the instantiated receiver has been registered already.

33

onReceive()

Main

Notification

J

J1

onDestroy()
B

Context.checkCalling

Permssion

onStart()

B1
onUnBind()

onCreate()

Activity

onBind()

Context.checkCalling

Permssion

onDestroy()

onCreate()

Service

Figure 3.2: Flow Chart in a Broadcastreceiver

The structure of the receiver is defined with the receiver’s name, and the action’s

name with additional permissions, through either dynamic registerReceiver() method

in the Java class or static registration in the AndroidManifest.xml. Furthermore,

the context.checkCallingPermission() is another callback method to check whether

the receiver has the relevant permission to trigger other components or not, such as

Activity and Service. Also, in this example, B is a switch node to provide multiple

execution paths: start an Activity, start a Service, trigger some APIs (J), give a

notification and be destroyed directly. Among these paths, both J1 and B1 are

the nodes to represent unknown event triggering, functioning as to activate another

new Activity or a new broadcast. Regardless the number of events of being triggered

during the life-cycle of a broadcast receiver, all of them eventually are being destroyed.

34

3.2.2 Four Paths (4P) Policy

The purpose of the IDF analysis is to conclude the set of all valid paths through the

receiver. Some of these abstraction paths are actually implemented. As its essence,

by all means, the collection of all the valid paths needs to be abstracted and explored,

where the concept of the precise detection equals to “meet-over-all-path”[18].

The inter-procedural data-flow analysis investigates the relevance between the

callers and callees. Thanks to the fact that context-sensitive analysis cannot dis-

tinguish the distinct call from the caller, the set of the path collection provides a

solution to generate a complicated Android control flow involved multiple-classes in

source codes.

Here, we take the Broadcastreceiver as an independent module, and the data is

going to flow through it from the input to the output. According to the tabulation

method of functional approach, if one or more calls to a procedure P have the same

data-flow value X to the entry of the P, the identical data reaches the exit of the

procedure, denoted by Y. As a result, the (X,Y) will be a pair of the input-output

values, where X stands for the data to the entry of the Broadcastreceiver component

and Y is the corresponding data flow value reaching the exit of the Broadcastreceiver.

Also, X has two basic divisions; the external source data in the Broadcastreceiver is

collected from elsewhere (X1), and the internal source data in the Broadcastreceiver

is generated from the receiver itself (X2). In addition, Y has two main directions; to

send the data out directly (Y1), for example, send out a SMS message, and to send

the data to other components (Y2), for example, start an Activity. However, the Y2’s

data direction might contain multi-components activation, such as passing data to a

new activity and then activate another service to send the data outside. In such cases,

data remains unsafe because it still can be leak out eventually after passing through

the receiver to other vulnerable components. According to the value set of the (X,Y),

there are four paths based on the data-flow of the inter-component communication

(ICC) mechanism, as well as displayed in figure 3.3.

35

Through

External Intent

Network, SMS, and

other Public Databases

Other Components via Intent

Mechanism

Broacastreceiver

Through

Internal Generator

Figure 3.3: Four Data-Flow Paths for a Broadcastreceiver

Due to the characteristic of the privilege separation in the Android platform, if

a sensitive event has been triggered without the relevant permission, we can assume

this behavior is a vulnerability from a unknown trigger. Hence, the target broadcast

receivers we are interested are those that we have found vulnerable having regarding

to improperly setting permissions (or filters) on the broadcast receivers and intents.

Then we perform IDF analysis on those vulnerable broadcast receivers, and identify

all the valid paths through the receivers, each path corresponding to a potential

attack. It is worth pointing out that the path of the Y2 direction is considered as a

threat, although the data flow is not traced and the data-flow-based tainted analysis

is not performed beyond the vulnerable receiver. In doing so, we do not have to

analyze the whole application, which could be time consuming and even infeasible if

the size of the application is large, and instead, are focused on unprotected receivers.

It significantly improves efficiency in broadcast receiver’s vulnerability analysis and

simplifies vulnerability assessment on Broadcastreceiver components. Therefore, the

four abstraction paths; P1, P2, P3, and P4 as following will be our concern:

P1 (X1 → Y1)

The source data will be transmitted by the Intent from other components to

the vulnerable receiver, and then send to the outside of the receiver via triggering

the related and permission-protected Android APIs, such as uploading data to

the Internet and messaging data to other devices.

P2 (X1 → Y2)

The source data will be transmitted by the Intent from components to the

vulnerable receiver, and then be transferred to the rest of other components.

36

P3 (X2 → Y1)

The source data will be generated by an vulnerable receiver internally, and

this receiver will be triggered by other component. In the end, the data will be

intentionally sent outside directly.

P4 (X2 → Y2)

The source data will be generated by an vulnerable receiver internally, and

this receiver will be triggered by other component. Consequently, the data will

be transmitted to the other components through the Intent.

The 4P policy in the taint analysis only focuses on the Broadcastreceiver com-

ponent, and classifies different behaviors from the data-flow. It builds a relationship

between receivers’ data collection and assignment.

Also, the abstraction paths can be used to classify the attack behavior from ac-

tively and passively based on the input X. From the paths’ classification, the P1and

P2 are under the input X1, while the P3 and P4 start from the X2. Obviously, the

path begins from the X1 is to send the data actively to the receiver. Videlicet, the

P1 and P2 are belonged to the actively attack behavior. In contrast, the attack path

of the P3 and P4 that comes from the X2 is passively waiting for other components’

triggered. Therefore, the data-flow for the X1 → Y1,2 is active and the X2 → Y1,2 is

passive.

3.3 Concluding Remarks

As a conclusion, to detect vulnerabilities of receivers, we applied two analysis

techniques which are semantic analysis and taint analysis. After semantic analysis in

the Broadcastreceiver registration, suspicious vulnerable receivers are identified in an

Android application. Afterwards, according to different types of threats and attacks

against receivers, these suspicious receivers have to go through another thorough

analysis, and are further evaluated to validate vulnerabilities using different taint

analysis criteria.

On the one hand, it is very challenging to confirm the caller of the receiver or the

source which triggers the receiver. If a potentially vulnerable receiver in an Android

application is passively involved in an attack, for example, being a callee or called by

another malware, the potential risks of the receiver can be identified by using taint

analysis according to our 4P policy. Consequently, we can make sure this receiver is

influential in the local application or not. If this receiver does not actively participate

37

in communication in any forms, it is not a threat. In other words, we can conclude

that the receiver is not a risk or invulnerable. However, if the receiver plays the role

of passing data, it will be assumed as a high-risk receiver as a callee. On the other

hand, if the receiver that is flagged as being suspicious is a caller, for example, to

actively collect data, we can assume it is vulnerable since it is very likely that it is a

malicious spyware that is designed purposely.

Most of existing security tools do not analyze the receiver as a callee that could

be a pertinence attack. The proposed two-step analysis presents a new approach

to finding passively vulnerable receivers. Particularly, the definition of active and

passive receiver in the 4P policy is to identify the explicit callers and implicit callees

in the receiver. As a result, the 4P policy has ability to find a hidden vulnerable

receiver, which makes vulnerability detection more accurate.

38

Chapter 4

The BRVD Framework

In this chapter, we will present a Broadcast Receiver Vulnerability Detection

(BRVD) that we design to detect vulnerable receivers in Android applications. There

are two main parts in this system including semantic analysis module, named SUKE,

and taint analysis module, named BETA. As shown in the figure 4.1, the input is

an Android APK file, while the SUKE module provides a function combined both

decompiling and filtering. The APK file will be decompiled into original source files

consisted of XML files and Java files, and vulnerable registered receivers, as a detect-

ing result of the SUKE, will be filtered from these files based on semantic analysis.

Then, the BETA module will give data-flow results for each vulnerable receiver based

on taint analysis from the output of the SUKE. Finally, we will further analyze the

data-flow results, and identity the vulnerabilities in this application.

Figure 4.1: BRVD Framework

Specifically, the semantic analysis module SUKE is used to decompile APK files

applying reverse engineering tools, and collect all the registered Broadcast Receivers in

source files. Through the core engine Abroster in the SUKE we design and develop,

the suspicious vulnerable receivers can be filtered from all registered receivers in

the end. The Abroster is a Java-based tool that is utilized to receive and analyze

39

XML files and Java files. It can find all the vulnerable registered receivers based on

semantic analysis. As a result, the SUKE will output data log, including the number

of receivers, the value of receiver attributes and interrelated file names, etc. Then, the

data log will be transmitted to the BETA module for a further inductive classification.

It has two main results: insignificant threat and real threat. Additionally, the real

vulnerability will be divided into four different possible attack paths based on the

view of 4P policy we introduced in the Chapter 3.2.2.

By confirming each broadcast receiver from the SUKE result, the BETA module

will generate a data-flow graph to analyze suspicious receivers based on taint analysis,

which will be detailedly introduced in next sections. Eventually, the final evaluation

result of the testing APK will be displayed on the decision maker from the accurate

data-flow analysis.

4.1 Semantic Analysis–SUKE Framework

To analysis the real Android Market application whose source code is not usually

for the customer, the SUKE module, as a tool package, supports the input of APK

form. Because an APK file with Dalvik bytecodes, which is introduced in section

2.3.1, is hard to be directly analyzed, the SUKE module provides reverse engineering

tools to decompile APK files into XML files and Java files.

Figure 4.2: SUKE Framework

40

There are three main components in the SUKE module as showed in Figure 4.2;

Reverse Engineering as a preprocess, Abroster as a core engine and Database as a

data storage which is applied to save the decompiled source files in the SUKE module.

* Reverse Engineering

Reverse Engineering is a preprocess in the SUKE that uses three open

source tools as a decompling platform to automatically generate source codes

from APK files. Thereinto, Dex2jar[32] and JD-GUI[33] are applied for Java

decompiling, while ApkTool[31] is for XML process.

- Dex2jar, as a famous open source tool, is used to decompile Dalvik byte-

codes in an APK file into a Java jar file directly, and JD-GUI is an open

tool to read jar files.

- ApkTool is a proper parser for the XML programming language decompi-

lation. It is implemented to extract XML file, especially the manifest.xml

file that contains the setting of all component permissions in Android ap-

plications.

* Abroster

Abroster is a reusable filtering engine we designed for SUKE, consisted of

XML analysis, Java analysis and Risk detection. It is based on the semantic

analysis to find keywords from both XML files and Java files, and will process a

testing result to the risk detection. This engine will be fully introduced in next

subsections.

The result of SUKE contains source codes of decompiled APKs from the Database

and vulnerbale receivers’ information from Abroster. Currently, all described com-

ponents in the SUKE are implemented automatically, except the result transmission

between SUKE and BETA. This transmitting data is the result of Abroster that is

performed manually.

4.1.1 Abroster Engine

Abroster is a reliable engine in the SUKE module that processes XML files and

Java files. Also, it is a Java-based tool that has a good compatibility for Broadcast

Receivers’ filtering. This means it can be designed as a extension tool in any Android

security detection systems for users, developers and researchers in the the Android

ecosystem.

41

In consideration of different input types, Abroster is designed for two interfaces to

separately process XML and Java source files. Due to the difference of the registration

for dynamic and static receivers, this engine also applies two filtering mechanisms

based on semantic analysis to find registered receivers in different approaches. Thus,

the two main parts in the Abroster are XML analysis and Java analysis as following:

- XML analysis is one language detection mechanism in the Abroster, which can

read the input XML file using DOM [15]. Because of the tree structure in the

XML language, DOM provides a function to query the receiver tag to extract

child nodes and relevant attributes’ value in the static Broadcastreceiver regis-

tration.

- Java analysis is a detection mechanism for Java programming language in

Abroster. It is used to examine Java source files from the decompiled Android

APK, implementing Regex [1] to find the unique text format in the dynamic

Broadcastreceiver registration, such as addAction() and IntentFilter(). Accord-

ing to the key text format searching, the number of receivers and their attributes

in Java files will be generated as a result.

In view of the different system broadcast registration formats, which was in-

troduced in Section 3.1.2, we also designed a System Broadcast Library(SBL) for

Abroster to test different format inputs. For example, both of the android.intent.action.BATTERY

CHANGED and intent.ACTION BATTERY CHANGED represent the same system

event for the Android phones’ battery state. However, the first expression is the only

one format for static registration when a receiver wants to listen the battery state, but

dynamic registration can use both of them. Abroster considers these situations for

the different receiver’s registration. Besides this consideration, new system broadcasts

can be easily added in Abroster’s SBL.

As a third part of the engine in the SUKE, the Risk Detection receives the pro-

cessing result from two mechanism analysis, and gives an integrated result in the end

of Abroster process. This final result records the specific description of vulnerable

receivers, including receivers’ name, attributes and class files’ locations.

4.1.2 Algorithms in Abroster

Identifying and filtering sources of XML and Java files is challenging at the same

time after reverse engineering. To avoid this, we provide two correlative algorithms

in Abroster based on semantic analysis for XML analysis and Java analysis.

42

Table 4.1: Symbol Table

Symbol Definition

W Warning Level
E Value of android:exported
P Value of android:permission
R Value of android:priority
A Value of android:name
SAction A Set of System Broadcasts in the SBL

Assuming the value of W is the warning level, while S refers a set of the system

broadcasts in the SBL. Furthermore, the value E of the android:exported attribute

is under the receiver tag, as well as the android:permission P. In addition, R and A

are hypothesized as value of android:priority and android:name respectively, which

are under the tag of the intent-filter. Specifically, the A is the attribute of the action

element, while R is located in the intent-filter. The specific reference is in the Table

4.1, and the Algorithm of XML Analysis is shown as follows:

Algorithm 1: XML Analysis

Input : XML Source Files
Output: Vulnerable Receivers
1: Int W = 0;
2: Boolean E;
3: if A ∈ SAction then
4: return W ;
5: else if E = False then
6: return W ;
7: else
8: while E = ∅ ‖ E = Ture do
9: R ∈ (−1000, 1000)
10: if R = ∅ && P = ∅ then
11: return W ;
12: else if R 6= ∅ && P = ∅ then

13: if R > 998 then
14: return W ;
15: else
16: return W + +;
17: end if
18: else if R 6= ∅ && P 6= ∅ then
19: return W ;
20: else if R = ∅ && P = ∅ then
21: return W + +;
22: end if
23: end while
24: end if

Depending on the type of the input, Abroster will automatically choose the related

file on the corresponding algorithm. Most of Receivers registered with system broad-

casts have relevant protected permissions, and all of them can be regard as safe in the

Android platform. Therefore, Abroster will firstly extract the value of android:name

from a decomplied APK file to compare with the existing system broadcast in the

43

SBL: If the value of android:name is not included in the SBL in the static receiver

registration from XML files, Abroster will apply iterator() in the XML format to find

the value android:priority, android:permission and android:exported respectively. On

the other hand, if the value of android:name is not matching from the SBL in the

dynamic receiver registration from Java files, Abroster will implement the greedy

matching for calculating all the number of registered receivers. Hence, the Algorithm

of Java Analysis is displayed as following:

Algorithm 2: Java Analysis

Input : Java Source Files
Output: Vulnerable Receivers
1: NumberOfReceivers = GetAllRegisteredReceiver()
2: NumberOfSystemActions = GetAllSystemAction()
3: if NumberOfReceivers > NumberOfSystemActions then
4: return W + +;
5: else if NumberOfReceivers = NumberOfSystemActions then
6: return W ;
7: else if NumberOfReceivers < NumberOfSystemActions then
8: Erro;
9: end if

As a conclusion, Abroster in SUKE module is used to receive decompiled source

files from the reverse engineering component, and generates suspicious receivers as a

testing result. This testing result of Abroster combined with decompiled source files

will be the final result of SUKE module. Meanwhile, the output of the SUKE module

will become the input of the BETA module.

4.2 Taint Analysis–BETA Framework

In order to figure out the specific types of attacks and perform the data verification,

we designed BETA module in the BRVD to receive and analyze the data flow based on

the suspicious Broadcastreceiver. After filtering general apk files, the rest of apks will

be assumed as threatening apps. However, the SUKE module is not accurate for the

attack detection. For example, the receiver would not influence any other methods

inside the application, such as to simply monitor the system power and release the

notification, but it is still considered as a vulnerable origin by the SUKE module. We

will not regard this receiver as a concerning threat for the whole apk. In other words,

the scenery we should be concerned with is that the target receiver would not influence

44

other normal components’ running when it is being attacked by malicious apps. We

named it as an insignificant receiver and the security warning result from the SUKE

is a false positive. Nevertheless, the discovery of the vulnerable insignificant receiver

also should create an awareness of the security concern that needs to be enhanced.

It is meaningful for the Android ecosystem to build a better, and a more healthy

environment.

Therefore, the existence of the BETA is to distinguish the threat receiver in the

rest of vulnerable apks, and put them into different classifications. In the BETA, we

regard any methods which could create the data flow into the vulnerable Broadcas-

treceiver as a “source”, while the method which is triggered by its receiver and to

send the data out will be defined as a “sink”.

An algorithm for the accuracy of inter-procedural data-flow analysis should meet

the requirement of the “meet-over-all-valid-paths”. This means the path is valid if it

accurately shows the procedure of the data-flow. Here, we take the Broadcastreceiver

as an independent module and the data is going to flow through it from the import

to the out-port. In our taint analysis, the source as data input, and the sink as data

output, keep activating during this whole running process of the module. Since the

taint analysis is the core concept in the BETA, we have provided data-flow analysis

to the current attack based on the Four Routing policies P1−4 in Chapter 3.

4.2.1 Tools used

The input of Beta consumes an Android application package (.apk). It retrieves

the package and translates the Dalvik byte-code into an Intermediate Representation

(IR). The front end of Beta starts the IR generation process by parsing the input

byte-code file, while the back end analyses the IR based on the taint analysis. Beta

applies an open source Dalvik byte-code parser named Soot[20], part of a well-known

java optimized tool for Android apps. Soot has powerful interfaces to process code

from Android byte-code and analyze the inter-procedural data-flow. Specifically, a

Soot-based taint analysis tool, Flowdroid [2], is our current key engine for the BETA

module. In general, BETA adopted from two main modules, Flowdroid provides the

static taint analysis for Android application and SUSI[38] brings a fairly comprehen-

sive list for the Android’s sources and sinks.

Flowdroid is built on the Soot platform and Heros[4] that gives taint analysis for

Android applications. It is provided by the European Center for Security and Privacy

by Design (EC SPRIDE). We choose the Flowdroid for following reasons:

45

- Provided a well-defined semantic proximity between Dalvik bytecode and the

IR by Soot community. It has three IR formats; Bat, Jimple, and shrimple,

based on which the back end analyzers carry out their tasks.

- Implemented complete callback functions and each of components’ lifecycles in

the Android application. Therefore, the broadcast receiver as an independent

component will be our research target in the BETA detection system.

- Achieved 93% recall as a higher precision Soot-based tool currently, comparing

with other similar data-flow analysis tools, such as JOANA[26] which is WALA-

based tool. Especially for the lack of main method in the Android application,

the Flowdroid is the one will automatically generate a dummy main method

and supplies a completely method analysis.

- Offered to be configured to output the data-flow path for every source-to-sink

connection separately. Accordingly, the multi-paths may display at the same

time, and it caters for our data-flow routing P1−4 definition.

In our view, the tool selection is according to the requirement of fast and accuracy,

so the Flowdroid is the one that meets all these conditions. More detailed informa-

tion related Flowdroid and the download links can be found in its official website:

http://sseblog.ec-spride.de/tools/flowdroid/.

In addition, Beta realizes the data-flow path and models discussed before. It

detects four different types of the attack based on the Routing P1−4, with a set

of specific 34 sources and sinks that match the data-flow defined by paths. The

whole library of set was constructed by SUSI to cover a relatively wide range of

Android’s sources and sinks, but we concern on the specific part that only affect the

Broadcastreceiver component. Hence, the biggest reason for why we choose SUSI is

that it provides a powerful category list of sources and sinks. For example, there is

a source category we defined “Broadcast Receiving” grouping all methods relevant to

the getBroacast(). According to the categorized sources and sinks, we can perform a

demand-driven vetting of Broadcastreceiver component in Android apps.

The overall principle for the data-flow analysis is to check if there is a potential

flow between source and sink. Therefore, SUSI not only gives us a highly accurate list

of found sources and sinks, but also a completely list of categories. Besides this, as a

machine-learning tool, SUSI can be extended the definite source and sink to vet the

individual component from apps, so that the Beta can capture the data-flow from an

46

independent Broadcastreceiver component. More information concerning SUSI can

be found in its official website, http://sseblog.ec-spride.de/tools/susi/.

4.2.2 Taint Problem Setup

In Android applications, there are many APIs that extract and collect users’ infor-

mation. To protect the user’s privacy data in the Android phone from the malicious

application’s calling, most of main privacy APIs will be tracked and monitored.

Privacy APIs
Calendar java.util.Calendar

Browser History and Bookmarks android.provider.Browser
User Account android.accounts.AccountManager
Microphone android.media.AudioRecord
System Log android.util.Log

android.os.Handler
SMS android.os.Handler

android.telephony.SmsManager
Network State android.net.wifi.WifiInfo

android.bluetooth.BluetoothAdapter
Application Information android.app.PendingIntent

android.content.pm.PackageManager
Location Information android.location.Location

android.location.LocationManager
android.telephony.gsm.GsmCellLocation

URL java.net.URL
java.net.URLConnection

org.apache.http.util.EntityUtils
org.apache.http.HttpResponse

User Profiles java.io.Writer
(Including User Contacts) java.io.Reader

android.database.Cursor
android.content.ContentResolver

android.content.SharedPreferences
android.database.sqlite.SQLiteDatabase

Table 4.2: Privacy APIs

The privacy API through the suspectable broadcast receiver will be tainted in the

BETA. Meanwhile, each API in the list contains at least one method. For instance,

the getLocation() method in the android.location.Location is one of the ways to query

47

users’ location information, and there are other methods that can do the same func-

tion. As a result, the number of specific methods are much more than the number of

associated APIs. Hence, to avoid the implementation details with the specific method

list out of the scope in this thesis, and also generate a wider kinds of privacy APIs,

we list main source APIs as Source Methods (Sm) in table 4.2, consisted around 100

tainted methods in total, and the Sm has been updated in the BETA library.

In the current version, BETA in the BRVD marks the input-output value set of

(X,Y). Specifically, X1 and X2 are two main sources in the set of X, while Y has Y1

and Y2 two different output methods. However, all of paths in the BETA of BRVD

are according to the X → Y direction. Pursuant to different carriers of Sm, X1 and

X2 are regarded as two source carriers in the taint analysis, but different methods’

utilization.

During the period of the X1 carrier, after filtering in the SUKE module, any

source data Sm will be transmitted to the Broadcastreceiver component via the Intent

mechanism, will be assumed as tainted sources in the Beta module. As a result, we

collect a set of intent methods X1 and categorize them as a category “Broadcast

Intent Receiving” grouping all sources related to data transmission between receiver

and other components. To do so, the carrier X1 will be a tunnel of the Sm as tainted

sources, which contains PendingIntent() method, Intent content sources, and Bundle

sources as displayed in the Table 4.3.

APIs Descriptions
android.os.Bundle Input data via Bundle methods

android.content.Intent Input data via Intent Mechanism
android.app.PendingIntent Input data via PendingIntent()

Table 4.3: Source Methods in X1

In detail, although all of them are under different APIs, they are using a same

approach for the data communication because the broadcast intent is an information

carrier. In other words, the broadcast intent is the input of the receiver which can

access and trigger the receiver activating. To obtain the broadcast intent from the

receiver, the getBroadcast() and its related content showed in the Table 4.3 will be

the main detecting part in the BETA.

Additionally, the Bundle in the Android is used for data transformation between

components. Besides carrying Sm, it could also hold varies of data parameter, such

as String and Int, when an component crushed. For example, the screen rotation will

48

lead to the Activity destroyed, later another instance of the activity is created. So if

there is a receiver is registered under the activity, the bundle data will be held until

the broadcast receiver is re-create again. For this temporary data saving point, the

android.os.Bundle is considered as tainted data in X1 category as well.

On the other hand, according to the types of carrier category, the X2 is a category

Source Generating categorizing all the Sm from the Broadcastreceiver component.

Compare with the X1, the X2 is using receiver as its data carrier originally without

outside data injecting. In order to detect the data leakage in the X2 path, we perform

all of privacy data methods Sm as sources that will be triggered in the relevant

receiver. Namely, for the sake of identifying the Sm method from being called directly

by the receiver, the list of Sm has been connected to the X2 as sources. As a result, to

initialize the taint analyzing from the X2 as an entry point, in addition to receiving

the broadcast Intent from other components’ triggering, the Sm should also be called

by the vulnerable receiver class at the same time.

Therefore, the Beta provides a visual routing to prove the data-flow where the

privacy method Sm has been called eventually. In our vetting system, the two different

carrier X1 and X2 are the source of the taint analysis.

Since the source X1 and X2 are tracked, the set of sink Y is the method that

brings the data out of the receiver. It has two different directions within data; us-

ing functional APIs directly (Y1), and activating other components (Y2). e.g. the

first direction (Y1) in the Y could be the data leakage straightforwardly of the SMS

sending method. Whats more, the other direction (Y2) in the set of Y could utilize

startActivity(intent) to start another activity with the intent.putExtra() data package.

In the Y1 sink method, we consider all of the directly data exists in the receiver

as sinks. Particularly, the path is from the node X1 or X2 to the node Y1. By the

reason of the life-cycle limitation of the Broadcastreceiver component, only two main

exits of data-flow can be implemented by the receivers activation which are Internet,

SMS, and file output.

49

Sinks of Y1

File in-out-put java.io.OutputStream
java.io.FileOutputStream

Message android.os.Handler
android.telephony.SmsManager

Internet java.net.URL
java.net.URLConnection

org.apache.http.client.HttpClient
org.apache.http.impl.client.DefaultHttpClient

Table 4.4: Sink Methods in Y1

From the table 4.4, it states a list of main output APIs for related functions. Iden-

tifying the inter- and intra-procedural components data-flow on the Android platform

requires a call graph with proper definition of the reach-ability analysis. Once we

confirm the sink of the Sm, an edge is drawn from the node X to the node Y. Con-

sequently, an amount of edges through the receiver between scalar variables can be

drawn with the help of the Flowdroid implied from the source-sink.

Similarly, the sink of Y2 is the other data-flow exist of the broadcast receiver model.

In contrast of the Y1, Y2 assumes all the data that pass out of the receiver will be

considered as a threaten. For example, the target receiver is triggered, and sends an

Intent query to start a new thread for a new Service within data transmission. It is not

a simple one-way direction which is X → Y1 as we mentioned before, but a multiple-

ways for X → Y2 → Y2...→ Y1. This means the data transmission from the receiver

may through more than one component till it find a exist Y1 to pass to the outside of

the phone. However, we only pick the first component activation as the data input

for the Y2. Based on the inter- and intra- component data communication, the set of

Y2 will be methods from the broadcast receiver implemented any data transportation

via Intent mechanism.

Sinks of Y2

android.os.Bundle Data holding unit via Bundle method
android.content.ContentResolver Output data to Content Providers

android.content.BroadcastReceiver Output data to Broadcast Receivers

android.content.Context
Output data via other components, including
Activity and Service.

Table 4.5: Sink Methods in Y2

50

Specifically, all methods in the list showed in the table 4.5 are functions to

trigger other components running. In the list, android.content.BroadcastReceiver,

android.content.ContentResolver and android.content.Context are the key to gen-

erate an Intent to start a new lifecycle of a component that comes from the Ac-

tivity, Service, Broadcastreceiver and Content Providers. For example, Content

Providers not only can be affected by API android.content.ContentResolver, but

also android.content.SharedPreferences$Editor. Therefore, a Content Provider com-

ponent, as a data storage in Android phones, can be accessed from a receiver in

accordance with different methods. In case of the data leakage in the database, the

content provider is a big security concern as a data sink in taint analysis.

However, a data flow F from the source X to the specific sink Y2 might not be

a completely flow in a whole function process after passing the receiver, because Y2

could be a temporary transfer station and will pass the data to a next new component.

Thus, the F could be multiple-points transportation flow until to the final destination

Y1, which carries data outside of the user’s phone. It could be X → Y2 → Y2...→ Y1

that considers X → Y2 as a beginning. In detail, X is the data input of the receiver,

while Y2 is the data output of the receiver. Considering the source and sink correspond

to the data entrance and exit of the vulnerable broadcast receiver respectively, the

data-flow F will be assumed as a short X → Y2 path, because the beginning path

of the F has already been threaten by the vulnerable receiver. For the rest of the

data-flow direction Y2 → Y2... → Y1, we do not omit the continue tracking in this

situation from concluded two reasons:

- The data tracking in the BETA is based on a single application detection. If the

data communication is among several applications, the final exist Y1 is almost

impossible to be found according to the isolated application vetting method.

- Since the receiver has been confirmed as a suspected vulnerability from our first

SUKE module, no matter where the final direction of the data-flow is going, the

vulnerable receiver risks a potential attack from other malicious applications.

In other words, the unprotected Y2 method in the receiver can be possibility

attacked and called by malwares.

As a consequence, with the X → Y flow F is generated, the BETA picks two

sets of nodes, Fx and Fy, where Fx contains pre-defined sources (X1 and X2), and

Fy contains pre-defined sinks (Y1 and Y2). The resulting F is built on different four

data-flow edges (4P policy in chapter 3) from the node Fx to the node Fy. According

to the different Fx and Fy, although there are many attack approaches around the

51

broadcast receiver, they can never get rid of the four routing principles no matter

how the attack method is changed.

4.3 4P-Based Attacks

In this section, we elaborate on four popular attacks against Broadcast Receivers,

particularly, from the view of 4P policy. Also, we discover a new attack according to

our 4P policy.

4.3.1 Intent Spoofing Attack

The Intent Spoofing attack is a famous active attack. In the Intent mechanism,

it contains Activity Intent, Service Intent, and Broadcast Intent. However, during

the BETA analysis, we only concern on the security issue of the Broadcast Intent in

the Android application. In other words, the BETA mainly focuses on the Spoofing

attack that comes from the Broadcast receiver.

Figure 4.3: Intent Spoofing Attack

In the fig 4.3, the M as a malware is trying to call the broadcast receiver in the ap-

plication A, when the receiver in the A is vulnerable and open for any applications’

calling. Actually, in accordance with the receiver’s registration, there are some at-

tributes inside for protecting and controlling, such as export and priority number set-

ting. In Google handbook[14], the default value of the android:exported setting in the

receiver’s registration is True. Accordingly, once the value setting of android:exported

is null or True, the relevant receiver is opened as a public component for the global

calling in the Android platform. Thusly, the application that has the vulnerable

receiver will take the potential risk from other applications’ malicious triggering.

As a consequence, considering the attribute under the receiver tag during the reg-

istration can be set as open-ended, the unprotected and public receiver is vulnerable

under the Intent Spoofing attack. As an actively attack, the key of the Intent spoofing

52

attack utilizes the vulnerability of the receiver registration to threaten the correlated

application.

Listing 4.1: VLC BroadcastReceiver

1 <xml> <r e c e i v e r android:name=” . RemoteContro lCl ientRece iver ”>
2 <in tent− f i l t e r>
3 <ac t i on android:name=”android . i n t en t . a c t i on .MEDIABUTTON”/>
4 <ac t i on android:name=”org . v ideo lan . v l c . remote . PlayPause”/>
5 <in tent− f i l t e r />
6 </ r e c e i v e r>
7 <xml>

From the listing 4.1, the above code snippet is one broadcast receiver registration

that comes from the Android media application VLC[35]. In this open source appli-

cation, the first action with the MEDIA BUTTON is a system-protected action name,

whereas the other customized one org.videolan.vlc.remote.PlayPause is the weakness

and open to the global calling in the Android platform. In this example, the VLC pub-

lic receiver provides an action name that is unprotected without the android:exported

attribute. In other words, the receiver RemoteControlClientReceiver could be called

by an unknown source with the default android:exported value.

Consequently, the process of the Intent Spoofing attack is that the malicious

Intent from other components is going to attack the vulnerable receiver, and through

the target to use its corresponding function methods for the unexpected behavior.

Pursuant to data-flow F, it is from the node FX1 to the node FY which belongs to P1

and P2 based on the P1−4 principle. Equally, the Intent Spoofing attack is to send the

data to the target receiver in order to accomplish the malicious activity. Furthermore,

the different Y1 and Y2 in the set of FY decide the direction way of the Intent Spoofing

attack. Therefore, this attack can be divided into P1 and P2.

4.3.2 Intent Hijacking Attack

The way of Intent hijacking is a well-known passive attack, including Activity

Hijacking, Service Hijacking and Broadcast Theft. As we can see from the Fig 4.4.,

the malicious receiver M is sitting in the middle of the component A and B. As stated

in the current study, the Intent hijacking M can use the Intent mechanism to modify,

listen or even stop the communication between A and B. However, in the BETA

module, we only focus on the broadcast theft.

53

Figure 4.4: Intent Hijacking Attack

Specifically, when the implicit broadcast intent will be sent by the application A, the

malicious receiver in the M and the common receiver in the B will be triggered and

obtained the access to all the data via declaring intent-filters with the same name of

actions, data and categories.

Both malicious receiver M and normal receiver B need to wait for component A’s

triggering while the user is interacting. Indeed, the passively Intent attack is similar

to the phishing attack. In doing so, once the M mix the spurious with the genuine

receiver B, the A might activate both M and B at the same time by the implicit

Intent.

Listing 4.2: Malicious BroadcastReceiver

1 <xml> <r e c e i v e r android:name=” . myReceiver”>
2 <in tent− f i l t e r>
3 <ac t i on android:name=”org . v ideo lan . v l c . remote . PlayPause”/>
4 <in tent− f i l t e r />
5 </ r e c e i v e r>
6 <xml>

As mentioned above from the VLC media application example, if the hijacking

receiver M (Listing 4.2.) has the same action name with the receiver B, when the A

is sending the implicit intent for a normal requesting, both .RemoteControlClientRe-

ceiver and .myReceiver will be responding.

According to the data-flow of the Broadcast Theft, the malicious receiver is called

by the other health components via Intent, and do the threaten behavior. In this

general attack, it contains both data injecting from Intent and data collecting from

the malicious receiver. Based on the four paths in the BETA module, the Broadcast

Theft will be defined into whole R’s paths depending on the data-flow. On the other

hand, although the broadcast theft is similar to the Intent Spoofing attack, while one

is passively attack and the other one is actively attack, the Broadcast Theft is more

54

complicated than the Intent Spoofing. Compared with Intent Spoofing, the Broadcast

Theft attack mainly can be divided into data obtaining and data creating. For the

reason of two data acquisition, the flow Fx → Fy is generated accordingly by the

BETA based on various set of (Fx,Fy).

4.3.3 Confused Deputy Attack

The Confused Deputy attack is an advanced Intent Spoofing attack. Nevertheless,

it is a special attack that is bypass the permission to call the accompanying API.

Figure 4.5: Confused Deputy Attack

In the fig 4.5., an application A could be relative security compared with other ap-

plications. All the receivers in the application A is secure, but only one data commu-

nication connected with an application B. Also, the communication tunnel between

A and B is secured. However, if the receiver that triggers A’s activity in the B is not

setting in proper, the malicious M will call the B’s vulnerable receiver to control A’s

behavior.

In a Confused Deputy attack (some people called permission re-delegation [9]

), Service and Broadcast Receiver are the main parts which are invited to ally with

stealthy permission re-delegation behaviors because they are not visible user interface

at the most time. To invoke the target application, the malicious application does

not need to declare the corresponding permission inside, it still can attack and access

the target through controlling other connected applications.

The data-flow F in the Confused Deputy attack is similar to the Intent spoofing,

but the output of the receiver is just a start for another behaviors activating. Ac-

cording to the P14 policy, the set of Y2 sink is confirmed in this attack as a stable

data output. As a matter of course, the edge of the flow F should be X → Y2, while

X is a set contains X1 and X2. Therefore, the P2 (X1 → Y2) and P4(X2 → Y2) in

the BETA module will be the path to analyze the data-flow of the Confused Deputy

attack.

55

4.3.4 Collusion Attack

The collusion attack is neither passively nor actively, but cooperation. In the Fig

4.6., each of application A and B is completely security in the Android platform, even

with the secure permission inside confuse users to download. In contrary, application

A and B will be combined as a malware M eventually. The essential condition for this

attack is to use the same digital signature in the APK file to recognize and cooperate

with each of other functions.

Figure 4.6: Collusion Attack

For example, a normal application A has the camera function and the other ap-

plication B does the internet uploading separately. When the user is clicking the

photo shooting button, the A will send a broadcast via the Intent in the background,

such as the sticky broadcast. Moreover, the broadcast can be designed under the

author’s signature protection, which means only the signature matching receiver can

receive the corresponding broadcast and couple to the appointed function. On the

contrary, the hiding broadcast from the A will be vanished naturally if there is no

corresponding receiver in the application B. Therefore, the application B is going to

accept the related broadcast when both A and B are installing in the same phone.

Once the vulnerable receiver in the B found A’s purposeful broadcast, the data will

flow to outside through B’s receiver.

In the collusion attack for the data-flow analysis, there is an application A which

is for data collecting and transmitting, while the other B is assigned to do the data

receiving and sending. The truth for the malware detection is that the data collecting

is really hard for detecting, because there is no clear sink Y for the source data in

an isolated application. In other words, the data collecting and transmitting in the

application A not only is difficult for tracking, but also is fuzzy for distinguishing

malware from the healthy application.

56

Hence, the BETA only focuses on the receiver which is doing the data receiving

(X1) and sending (Y), instead of detecting both caller and callee. From the source-

sink analysis, a flow F could be easily vomited from X1 → Y , while the set Y contains

Y1 and Y2. Namely, the P1 and P2 is the path for the Collusion Attack. From a

certain perspective based on the 4P policy, Collusion Attack as a classical attack in

the Android phone could be regarded as Spoofing attack under the same attack path.

However, Both Intent Spoofing attack and Broadcast Theft are summed up as

single-side attack. This means the single-side is mainly based on the receiver’s vulner-

abilities, and its attack relationship is simple only between malware and applications.

On the other hand, the multi-sides attack, such as collusion attack, are not simple as

single-side attack. Malware inside is not an easy observed, and all of them are not

malware if they do not do some malevolent behaviors. Literally, most of multi-sides

attack are written and designed by the same author. Scilicet, the receiver inside is

purposefully designed as a secure component on the appearance when the user is

downloading these applications. Unfortunately, there is a special situation which is

non-detectable in the SUKE filtering module. The application is well-planned and

the receiver is permission-protected with the customized android:permission setting

value. In other words, the broadcast between applications is secured by the permis-

sion. To do so, we cannot detect the “secured” receiver and regard it as a malware.

In this situation, we need to propose this case as our future work for a further devel-

opment.

As mentioned before, the X1 → Y flow is embedded into the BETA medule.

Similar path detection to the Intent Spoofing attack, as an active attack, the collusion

attack belongs to the P1 and P2, except for the special case. The classical attack is

re-defined by our path policy. According to different paths, we also can forecast some

new attack methods.

4.3.5 Self-Evolution Attack

The Self-Evolution attack is a special attack we forecasted based on the exist

attacks. As we known for the updating version in Android third party, if any appli-

cations provide the new updating version numbers, the target application will notify

the user about the updating information when the Android phone is connecting to

the internet.

57

Figure 4.7: Self-Evolution Attack

From the illusion of the Fig 4.7., the application A is a secure Android app, whereas

it might be a malware M after version updating by the app’s author or other third

party operators. The Self-Evolution attacking approach could be repacking some

popular Android applications, such as “Tweetcaster” application mentioned by Joany

et at[5]. They modified the several components in the “Tweetcaster” and applied a

Broadcastreceiver to trigger an updating once a specific call is received.

Listing 4.3: code snippets of Android GoldGPEN Spyware in the Tweetcaster

1 pub l i c void onReceive (Context context , In tent i n t en t) {
2 ge tTe l eS e rv i c e (context) ; //Access to the TelephonyManager
3 Bundle b = in t en t . getExtras () ;
4 St r ing incommingNumber = b . g e tS t r i ng (” incoming number”) ;

//Get Incoming Number
5 . . .
6 // Trigger an updat ing ac t i on accord ing to the Ca l l e r
7 i f (incommingNumber . equa l s (”5556”)) {
8 AnswerAndRejectCall () ;
9 In tent launchHome = new Intent (Intent .ACTION MAIN) ;

10 launchHome . addCategory (In tent .CATEGORYHOME) ;
11 launchHome . addFlags (In tent .FLAG ACTIVITY NEW TASK) ;
12 context . s t a r tA c t i v i t y (launchHome) ;
13 DownloadFromUrl (”CMDs. txt ” , context) ;
14 F i l e d i r = Environment . ge tExte rna lS to rageDi r e c to ry () ;
15 F i l e cmd s f i l e = new F i l e (d ir , ”CMDs. txt ”) ;
16 . . .
17 whi le ((l i n e = bu f f r e ade r . readLine ()) != nu l l) {
18 l i n e = l i n e . tr im () ;
19 l i s t = TextUt i l s . s p l i t (l i n e , ”/”) ;
20 i f (l i s t [0] . compareTo (”UPDATE”)==0){
21 In tent update in t ent = new Intent () ;
22 update in t ent . setClassName (

” t e l i n du s . AndroidGoldGPENSpywareFirst” ,
” t e l i n du s . AndroidGoldGPENSpywareFirst . ProcessUpdate ”) ;

23 update in t ent . addFlags (Intent .FLAG ACTIVITY NEW TASK) ;

58

24 context . s t a r tA c t i v i t y (update in t ent) ;
25 }
26 }
27 }
28 }

In the listing 4.3, a receiver in the “Tweetcaster” obtains incoming numbers from

users in line 4 and downloads appointed text based on the specific number in line 7

and line 13. Then, this receiver will read the installed text to update and point a

specific spyware in line 22 starting a new Activity in line 24. This is an interesting

remote control attack sample based on the Broadcastreceiver. The vulnerable receiver

is designed to wait an specific income number in this case. However, there are more

approaches than this number “trick”, such as to get the user’s browser history to

match the specific website and download some components when user is connecting

Internet.

Furthermore, it is easily applying the same digital signature and providing ma-

licious components into an updating patch. Normally, the user does not realize the

difference between the old version and new version, except some new functions dis-

played graphically. So the non-visible Broadcastreceiver and Service will be potential

suspected components for the malicious behavior after updating.

For the application A, we cannot detect it for secure problems because this could

be a healthy application originally on the list of the online commercial market. On

the contrary, the malware M is easily to be detected, but at that time the old version

application already has been installed in the user’s mobile phone.

Consequently, the flow F in the Self-Evolution attack can be any paths (P1−4)

depend on the patch inside. to defence this attack, we have to do periodic inspection

after softwares installation, and not install unauthorized Android applications.

4.4 Concluding Remarks

In this Chapter, a Broadcast Receiver Vulnerability Detection(BRVD) system is

proposed from several areas, including system design, architecture introduction and

key algorithms utilization.

BRVD is written by Java and XML language combined Android SDK, Eclipse

and other open-source tools. It is divided into SUKE and BETA modules, which are

based on semantic analysis and taint analysis respectively. In specific, we design a

core engine Abroster in the SUKE to analyze input files that are decompiled from

59

APK files, and set up the source-sink problem based on 4P for the BETA’s data-flow

verification.

In addition, we introduce four classical attacks based on data-flow, along with

a new attacking method against Broadcast Receivers. All of them are under the

detection range of the BRVD system. In the regular data leakage attack, we nominate

the 4P policy for the data routing analysis. From the attack introduction we proposed

above, the 4P principle can be matched for the each attack as a table below:

Attacks Mode Paths
Intent Spoofing Active P1&P2

Broadcast Theft Passive P1−4

Collusion Attack Active P1&P2

Confused Deputy Active P2&P4

Self-Evolution Both P1−4

Table 4.6: Attacks based on 4P policy

From the table 4.6, all five attacks are listed in the table with their corresponding

attack modes. In our principle, we divide the attacks into active and passive modes,

depending on various attack behaviors. Only Self-Evolution contains both modes

because of its flexible patch modification. Notwithstanding, no matter the way how

the attack is, the path category matches each of them based on the taint problem.

Next, we will introduce the experimentation for the data-flow analysis.

60

Chapter 5

Experimental Evaluation

The Broadcast Receiver Vulnerability Detection (BRVD) is written in JAVA based

on the Kepler eclipse. The total amount of code is more than 10K lines, excluding

third party libraries. It consists of two main modules, namely SUKE and BETA. The

two modules in the BRVD are atuomated testing based on static analysis. In addition,

the apktool [31], jd-gui [33], and dex2jar [32] are needed for the reverse engineering, as

well as the Android platform SDK.

The building process of the BRVD took us plenty of meaningful efforts due to a

shortness of similar work and code. Notwithstanding, most of efforts were spent on

reproducing existing open tools and testing the related algorithms inside. Certainly, it

is not an intent to claim these efforts as contributions in our thesis. BRVD currently

supports both Windows and Linux system. After packaging, BRVD can even be

embeded in the Android platform as an app tool. However, BRVD is a prototype

with single component vetting function, not including Activity, Service, and Content

Provider.

As a front end of the BRVD, SUKE is mainly implemented with Regular expres-

sion. It consumes JAVA and XML source files separately. The key function of the

SUKE is to decompile and filter the source file from the apk package. From the

rest of suspected receivers, SUKE provides a strong and precise analysis function.

Furthermore, it allows different analysis to choose depends on the source code.

In principle, the privacy data that risks to be tracked should be marked as tainted

sources. In fact, the Intent mechanism in the Android platform is the only way for the

components’ communication among with Activity, Service and Broadcastreceiver in

the Android platform. For this reason, the Intent method with the data transmission

are essential for our BETA module. Subsequently, from the above description in

the chapter 3, the Broadcast Intent is the key to activate the associated receiver,

no matter the activation is active or passive. Inspired by the the SOOT platform

61

support, the problem of checking data-flows could be known as a graph reach-ability

test. With the callback function of the broadcast receiver, the receiver can be taken

for an isolated vetting unit between various of components in an Android application.

Therefore, the BETA provides a test for the connectivity of source-sink pairs on a

receiver. A source-sink pair would be displayed on the BETA that demonstrates the

existence of a data-flow from the source to the sink.

In this chapter, we will apply our BRVD on Android applications including both

one customized sample and real applications in the market. The goal of the exper-

iment is to validate the effectiveness of the proposed detection system. The system

is built on a 64-bit Windows operating system with Intel(R) Core(TM) i7-4770 CPU

3.40GHz and 16.0 GB RAM.

5.1 Customized Sample

The customized sample is written for testing as a hypothetical application. It

states several sensitive permissions, including SMS, Network and GPS. The advan-

tage of implementing the target is that most of key embedded points provided by the

interface method can be frequently called. Compared with the inconspicuous mali-

cious behavior in the market application, the customized sample highlights the attack

method for the specific component, and a testing result has already been expected.

According to the motivation example in the Listing 1.1 in Chapter 1, the malicious

behavior inside is similar to the X1 → Y1 attack mode based on the policy 4P. Note

that the original GPS data transmission is divided as three parts from the split

started by doInBackGround, and reach to the main activity by HandleMessage, then

pass to the split started by Intent in the BroadcastReceiver class. By the reason of

the asynchronous invocations of entry points, the sensitive source in the real app is

hard for detection, such as the GPS obtaining within the doInBackground() method

(Line 20) in the asynchronous thread is really difficult to be tested. Notwithstanding,

the Broadcast Receiver Vulnerability Detection (BRVD) is mainly concerned on the

input-output value of the independent receiver. We accordingly count the number

of receiver classes in every application, and filter each of the vulnerable receiver.

Ignoring all the resources collection in the Android application, our SUKE module

find the vulnerable receiver class which is weakness for the public invocation in the

target application. From the filtering log, it points out the specific receiver name as

well as the corresponding file location in Figure 5.1.

62

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/AndroidManifest.xml

Important Status: true

Action name: MyBroadcast

Android name: MyBroadCastReceiver

Export:

Priority:

Permission:

Matched results:

total dynamic registration:0

There is no dynamic receiver registration

Figure 5.1: Filtering Log

Because MyBroadCastReceiver is unprotected and open to public component invo-

cation, the specific application is marked with the explicit receiver class in the SUKE.

In accordance with the BRVD, the BETA is implemented for P1−4 path classification

after filtering.

Found a flow to sink virtualinvoke

$r9.<android.telephony.SmsManager: void sendTextMessage

(java.lang.String,java.lang.String,java.lang.String,android.app.PendingIntent,android.app.Pendi

ngIntent)>

($r8,null,$r7,null,null) on line 27,

from the following sources:

 -$r2 :=@parameter1: android.content.Intent

(in<com.di.user.broadcasttest.MyBroadCastReceiver void onReceive

(android.content.Content,android.content.Intent)>)

Maximum memory consumption: 1220.334248 MB

Analysis has run for 8.206706944 seconds

Figure 5.2: BETA’s Result

In Figure 5.2, the BETA applied Flowdroid to analysis the vulnerable receiver

class in the hypothetical application, which spends 8.2 seconds around for the data

analyzing. There are some data leakage behaviors in the customized sample, and the

AsyncTask running in the background consumes large amount of system resources.

From the BETA’s result, there is one line built already from the source to the sink,

which is from the source void onReceive() to the sink void sendTextMessage(). In

detail, the source contains the content from the Intent input. In addition, the sink

and source in Figure 5.2 also are displayed. Based on the 4P policy, the Intent input

to the SMS output is the P1 path. As a result, the receiver is not only malicious to

sent the privacy data outside, but also it is easy to be called by other components.

In summary, this example indicates that a receiver is vulnerable to be hijacked

when it is exported to the public without limiting its attributes, at the same time,

it can also be used for the malicious implementation. Compared to the results of

expected and real test in the sample receiver, the BRVD is able to accurately reflect

the characteristic of the behavior, including data pumping and information disclosing.

63

Moreover, the testing result of the customized sample demonstrates that applying

data-flow paths to model the data leakage is straightforward and simple. Therefore,

the detecting system, BRVD, aiming at analyzing common characteristics of malicious

code owns four attacking paths imposed by 4P policy.

5.2 Real Samples

We applied the BRVD on the real Android application from online markets. From

the SUKE filtering, we statically analyze Java and XML source code of 55 market ap-

plications and there are 132 registered receivers in total. Then according to the BETA

module, we find out 11 receivers in 8 applications that are related to vulnerabilities of

Broadcastreceiver component. These 13% of applications are specific vulnerable by

improperly utilizing startActivity(), sendBroadcast(), and startService() based on the

4P policy. All of them, which are displayed in the table 5.1, have malicious behavior

involving the common operation. In addition, there are 3 applications have “memory

explosion” problem in the testing computer, due to the large APK size that is bigger

than 4 MB.

Table 5.1: The Results of Suspicious Applications Using BRVD.

APKS Paths Vulnerable Receivers(N) Time(s)
Bitdefender Antivirus P1& P2 1 41.23
Lango Messaging P1 2 78.45
Contact Storage V4.4 P1& P2 2 35.85
SecDownload Provider P1 1 7.10
PPP Widget (Discontinued) P1 &P2 1 9.28
Bluetooth Walkie Talkie 1.1.2 P2 2 10.34
Weather Radar P2 1 18.79
BomBom-Free SMS P2 1 56.11

Table 5.1. shows a number of commercial APKs from both Chinese and North Amer-

ican third-markets. In detail, Column “Paths” displays the potential attacking paths

based on the 4P policy, along with the calculating time under the “Time” column.

Typically, a detected online application has at least one registered receiver located

in amount of source codes, so that the total number of receivers cannot be manually

filtered in source files, as well as the number of vulnerable receivers. This complexity

has been simplified in column “Vulnerable Receivers” as a final result of detection.

64

The number of vulnerable receivers is an indication of the variability of behavior

for a callback function (e,g., onReceive() in the motivation example). Our analysis is

considered the subset of Android, such as Activity, Service, and other Broadcastre-

ceivers. To maintain soundness with chains of target Broadcastreceiver components

in the Android platform from the same or different applications, we taint the data

transmission by XSource → YSink (defined in the Section 4.2.2) in a Broadcastreceiver.

In addition, these Android components should be considered to individually maintain

the invariant information. In other words, the privacy data could send to an vulner-

able receiver from a permission-protected component, or from a malicious receiver

to a secure component: if any permission-protected data D flows into a component,

then this component must enforce the related permission via its manifest using Con-

text.checkCallingPermission(). However, none of these steps displays in the flow, but

the input-output data between Broadcastreceiver and other components. This is the

reason why we implemented an acceptable taint analysis engine such as flowdroid.

Our analysis aims to model the variability more precisely in an vulnerable receiver,

by accounting for the percentage of the two main sources in the XSource and the various

exists in the YSink. After collecting the Source and Sink data from 11 vulnerable

receivers on the above table, we list XSource and YSink percentage in the Figure 5.3

and Figure 5.4 respectively.

82% X1

18% X2

Figure 5.3: Source of Taint Analysis in vulnerable Receivers

Figure 5.3 shows the percentage of different two sources (X1 and X2) in the vul-

nerable receiver. According to the 4P policy in the Chapter 3, the X1 represents

the data resource which is outside of the receiver from the Intent mechanism, while

65

the X2 refers to the source data generated within the receiver. From the experiment

information, the proportion of X1, which occupies 82% , is far greater than the X2.

In other words, the utilization of the Intent mechanism is the main attack approach

in the Broadcastreceiver component for the data transmission.

Most of testing samples in the Table 5.1 contains triggering events from the vul-

nerable Broadcastreceiver, which starts a new life-cycle to other components, such as

lifecycle for a Service or an Activity. Meanwhile, all sinks in the end of the data-flow

are correlated with SMS sending, Internet connecting, and data querying. Through

the analysis of these mainstream malicious code samples, the current form of the An-

droid malware is to implicitly call the framework layer API, and undisguisedly abuse

a variety of permission beyond the user’s comprehending.

sharedPerences Activity Service Receiver Other APIs
0

1

2

3

4

5

6

7

Sink

Vu
ln

er
ab

le
 R

ec
ei

ve
rs

(N
um

be
r)

Figure 5.4: Sinks in Vulnerable Receivers

Therefore, to pursue the precise result of the taint analysis, Figure 5.4 presents the

data output of the data-flow in the vulnerable receiver. The vulnerable receiver has

several key Sinks for the data transmission. In specifically, the sharePerences, as a

database, is the most frequently queried component by vulnerable receivers, accounted

by 7 of 11 suspected samples in our test. Activity and Service components are the next

easily to be triggered as a secondary risk module, such as startActivityForResult() and

startService(). Due to the short lifecycle of the Broadcastreceiver, starting an another

Intent broadcast to deliver information is the lowest risk, such as sendBroadcast().

66

Furthermore, the column “Other APIs” is the number of various APIs that is directly

triggered by the vulnerable receiver to send data outside. In the test, most of activated

APIs in the vulnerable receiver are applied the Android logging mechanism, such as

using android.util.log to write the log information through the vulnerable receiver

for debug. In fact, the information in the log file is unsafe before the Android 4.1

version [37], and some of sensitive information, such as WLAN mac address, will be

easily obtained and accessed by Runtime.getRuntime().exec(“logcat”) after passing

the related permission.

Table 5.2: Testing Results from ApkScan and Eacus

ApkScan Eacus

Results Risk Rating Results Risk Rating

Bitdefender Antivirus X Suspicious × NotFound
Lango Messaging X Confirmed X High
Contact Storage × Normal X Medium
SecDownload Provider X Suspicious X Medium
PPP Widget(Discontinued) X Suspicious X Medium
Bluetooth Walkie Talkie 1.1.2 × Normal X Low
Weather Radar X Confirmed X Low
BomBom-Free SMS × Normal × NotFound

Note: Risk(X); No Risk(×)

Currently, there are few numbers of Android security tools that specifically detect

Broadcastreceiver component. To verify the testing result of the BRVD for real sample

behaviors, we compare our proposed BRVD with two similar third-party tools, NVISO

ApkScan[28] and Eacus[19]. There are 8 suspicious Android applications in Table 5.2

that have been detected in BRVD. All of them contain vulnerabilities as detailedly

showed in Table 5.1.

In contrast, ApkScan is an online Android tool that scans .apk files, especially

Service components in Android applications. It detects five of eight suspicious applica-

tions. Because of the short lifecycle of the Broadcastreiceiver, Service components are

always connected with Broadcastreiceiver and assisted in doing some time consuming

works in the Android application development. Furthermore, the Service component

is invisible running in the background which is similar to the Broadcastreceiver mech-

anism. Hence, the ApkScan’s testing result is the one that has significance for the

correlation of BRVD’s results. In addition, Eacus is a lite framework analysis tool

67

for Android applications. It can directly analyze an application based on Android

permissions through its related behaviors. As a completely permission analyzing tool,

Eacus’s examining data, which finds 6 suspicious applications, can be a comparison

for BRVD’s testing results.

According to the similar working principle, we choose ApkScan and Eacus to test

all BRVD’s results from Table 5.1. The compared results are showed in Table 5.2,

which can be observed that we not only compare with the BRVD’s testing results,

but also list the risk rating from each of comparing tools. In Table 5.2, the ticks for

each applications are the threaten results found through two examining tools, and

crosses are the testing results that they assume as non-risk. Compared with BRVD,

there are some Android applications that cannot be found by ApkScan and Eacus,

such as BomBom-Free SMS.

Next, we will look at two suspicious Android applications from the BRVD’s testing

results in the table 5.1, which are Lango Messaging and BomBom-Free SMS. One is

confirmed as a risk Android application by testing security tools, whereas the other

one is regarded as a no risk application. Also, these two applications will be examined

in detail as study cases for understanding the Broadcast Hijacking attack and Intent

Spoofing attack.

5.2.1 Case Study: Lango Messaging

Lango Messaging is a messaging Android application similar to famous chatting

applications Skype and Line, but it has more emotion icons for users.

By applying ApkScan and Eacus, the testing results of Lango Messaging confirm

that it is a malicious Android application as showed in Figure 5.5. ApkScan gives a

general result for the risk of phone number leakage, while Eacus has an advance anal-

ysis for the lango messaging, which displays the specific behaviors of these suspicious

components based on the related permissions, including Service and Activity.

In Figure 5.6, BRVD gives a warning result for the Lango Messaging application.

There are five suspicious receivers that have been detected in SUKE, while BETA lists

a data flow from different receivers to a method startActivityForResult(). Specifically,

the five suspicious receivers are in the BETA’s result. In other words, those suspicious

receivers have data transmission behaviors to trigger a specific Activity component

during their activation period. Besides the detecting result, Li et at.[21] introduces

startActivityForResult() as an vulnerable method for the data callback function. As

a result, the privacy data through the suspicious receiver takes a high risk in leakage

to get the data back from a specific Activity. For example, a new Activity can obtain

68

users’ phone number and return the information to an vulnerable receiver by applying

startActivityForResult().

(a) NVISO ApkScan’s Result

(b) Eacus’s result

Figure 5.5: Lango Messaging Analysis Report

69

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/AndroidManifest.xml

Important Status: true

Action name: com.zlango.zms.transaction.MESSAGE_SENT

Android name: .transaction.ZmsSentReceiver

Export:

Priority:

Permission:

Matched results:

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/AndroidManifest.xml

Important Status: true

Action name: android.intent.action.TRANSACTION_COMPLETED_ACTION

Android name: com.zlango.mms.transaction.RetreivedDataReceiver

Export:

Priority:

Permission:

Matched results:

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/AndroidManifest.xml

Important Status: true

Action name: com.google.android.c2dm.intent.RETRY com.zlango.zms

Android name: com.google.android.c2dm.C2DMBroadcastReceiver

Export:

Priority:

Permission:

Matched results:

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/AndroidManifest.xml

Important Status: true

Action name: com.android.vending.billing.IN_APP_NOTIFY com.android.vending.billing.RESPONSE_CODE

com.android.vending.billing.PURCHASE_STATE_CHANGED

Android name: .gbilling.BillingReceiver

Export:

Priority:

Permission:

Matched results:

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/AndroidManifest.xml

Important Status: true

Action name: com.zlango.zms.RETRY_SEND_IP_ACTION com.zlango.zms.RETRY_FETCH_IP_ACTION

com.zlango.zms.DO_POLLING

Android name: com.zlango.mms.data.IPMessageManager

Export:

Priority:

Permission:

Matched results:

(a) SUKE’s Result

Found a flow to sink virtualinvoke

$r0.<com.zlango.zms.app.ComposeMessageActivity: Void startActivityForResult

(android.content.Intent,int)>($r4, 17),

from the following sources:

- $r2 := @parameter1: androId.content.Intent (in

<com.zlango.zms.transaction.ZmsReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

- $r1 := @parameter0: android.content.Context (in

<com.zlango.mms.transaction.PushReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

- $r2 := @parameter1: androId.content.Intent (in

<com.zlango.mms.transaction.SmsReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

- $r2 := @parameter1: android.content.Intent (in

<com.zlango.mms.transaction.RetreivedDataReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

- $r1 := @parameter0: android.content.Context (in

<com.zlango.mms.transaction.RetreivedDataReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

- $r1 := @parameter0: android.conteNt.Context (in

<com.zlango.zms.transaction.DailyTasksReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

- $r1 := @parameter0: android.content.Context (in

<com.zlango.zms.transaction.ZmsSentReceiver: void onReceive

(android.content.Context,android.content.Intent)>)

(b) BETA’s result

Figure 5.6: BRVD’s Report

70

Also, there is a code snippet of Lango Messaging in List 5.1. It is a registered

receiver named “ZmsSentReceiver” that is vulnerable in the Lango Messaging. From

line 14 and line 18, it is this receiver’s static registration in the manifest.xml which

displays without any protection, such as android:exported and android:permission we

discussed in the Chapter 3. In particular, the receiver has messages obtaining function

in line 3 and keeps them into a specific local file in line 8. Meanwhile, the Box ID is

constrained with number 2, which is easily hijacked under an vulnerable receiver.

Listing 5.1: code snippets of Lango Messaging

1 pub l i c void onReceive (Context paramContext , In tent paramIntent) {
2 i f ((getResultCode ()==−1)&&(”com . z lango . zms . t r an sa c t i on .

MESSAGE SENT” . equa l s (paramIntent . getAct ion ()))) {
3 Uri l o c a lU r i =paramIntent . getData () ;
4 t ry {
5 MessageItem loca lMessageItem=MessageItemManager . g e t In s tance () .

get (l o c a lU r i) ;
6 i f (loca lMessageItem . getBoxId () !=2)
7 i f (”sms” . equa l s (loca lMessageItem . getTransportType ())) {
8 i f (Telephony . Sms . moveMessageToFolder (paramContext , l o ca lUr i , 2))
9 loca lMessageItem . setBoxId (2) ;

10 }
11 }
12 }
13 }
14 <r e c e i v e r android : name=” . t r an sa c t i on . ZmsSentReceiver ”>
15 <in tent− f i l t e r >
16 <ac t i on android : name=”com . z lango . zms . t r an sa c t i on .MESSAGE SENT”/>
17 </intent− f i l t e r >
18 </r e c e i v e r>

According to the 4P policy, this is the path P3 that is from an internal data gen-

erator getData() to an unprotected local file BoxId(2). For those attackers, they can

query the specific Uri through triggering the vulnerable “ZmsSentReceiver” receiver,

which is a highly risk.

5.2.2 Case Study: BomBom-Free SMS

BomBom-Free SMS is a popular real-time chatting application in the Android

online store. It is SMS free not only for the BomBom user, but also for none BomBom

users by implementing Cellular Network.

There are two reports in Figure 5.7, (a) and (b), display testing results from

Android security tools which are NVISO ApkScan and Eacus. Compared with Lango

Messaging, both of them state a non-risk result for BomBom-Free SMS, but BRVD

provides a warning result.

71

(a) NVISO ApkScan’s Result

(b) Eacus’s result

Figure 5.7: Analysis Reports From ApkScan and Eacus

72

Receiver Source File: file:///C:/Users/User/Desktop/filter/in/

AndroidManifest.xml

Important Status: true

Action name: bombom.latoi.com.VoiceReceiver

Android name: VoiceReceiver

Export:

Priority:

Permission:

Matched results:

Total dynamic registration: 6

Total static registration: 4

(a) SUKE’s Result

Found a flow to sink virtualinvoke
$r1.<android.content.Context:
android.content.ComponentNamestartService

(android.content.Intent)>($r2) on line 15,
from the following sources:

- $r1 := @parameter0: android.content.Context (
in <bombom.latoi.com.VoiceReceiver: void onReceive
(android.content.Context,android.content.Intent)>)

Maximum memory consumption: 1407.084912 MB
Analysis has run for 18.046281937 seconds

(b) BETA’s Result

Figure 5.8: Analysis Reports From BRVD

73

In Figure 5.8, SUKE and BETA in the BRVD, respectively examine and give

experimental results for BomBom-Free SMS. In detail, SUKE finds a receiver named

“VoiceReceiver”, which has no android:exported value. Meanwhile, BETA verifies

this suspicious receiver based on the data-flow. The sink in the receiver is to start

a Service within data, while the source is included internally. According to the 4P

policy, the path is X1,2 → Y2, along with P2 and P4. Next, we will analyze the specific

attack method in this application based on the source generation.

Listing 5.2: code snippets of BomBom-Free SMS

1 pub l i c c l a s s VoiceRece iver extends BroadcastRece iver {
2 . . .
3 pub l i c void onReceive (Context paramContext , In tent paramIntent) {
4 . . .
5 Object l o ca lOb j e c t2 = (example) paramContext ;
6 l o c a lBu i l d e r = new Noti f icat ionCompat .

Bui lder (paramContext) . s e tSmal l I con (2130837504) .
s e tContentT i t l e (” Incoming Cal l : ”+paramIntent .
g e tPe e rP r o f i l e () . getDisplayName ()) . setContentText (” . . . ”) ;

7 l o c a lOb j e c t2 = new Intent (paramContext , Ca l lAc t i v i t y . c l a s s) ;
8 ((In tent) l o ca lOb j e c t2) . putExtra (”INCALL USER NAME” ,

paramIntent . g e tPe e rP r o f i l e () . getDisplayName ()) ;
9 l o c a lOb j e c t2 . s t a r t S e r v i c e (paramContext , WlanLockService . c l a s s)

10 l o c a lBu i l d e r . s e tContent Intent (PendingIntent . g e tAc t i v i t y (
paramContext , 0 , (In tent) l oca lObjec t2 , 134217728)) ;

11 ((Not i f i cat ionManager) paramContext . getSystemServ ice (
” n o t i f i c a t i o n ”)) . n o t i f y (7819 , l o c a lBu i l d e r . bu i ld ()) ;

12 re turn ;
13 }
14 . . .
15 }
16 <r e c e i v e r android : l a b e l=”Voice Rece iver ”

android : name=”bombom. l a t o i . com . VoiceRece iver ”/>

In the listing 5.2, it shows a receiver named “VoiceReceiver” that records caller

identification information and notifies the user with missed calls. This receiver has

a common notification function which is similar to most of chatting applications,

but an interesting vulnerable data-flow. The flow is an simple point-point structure

which starts from getDisplayName() in line 6 to start a Service in line 9 and give a

notification in line 11. Moreover, there is a conditional multiple arithmetic relation-

ship between objects localBuilder and localObject2. Here, the localObject2 is used for

packaging and storing caller information by implementing PendendingIntent(), while

the localBuilder is a carrier that contains localObject2 for the data delivering. In

Android, a PendendingIntent() is a token that allows foreign applications to use local

application’s permissions to execute a predefined piece of code[14].

74

Besides the data collection behavior in the BomBom-Free, as showed in line

16, the receiver “VoiceReceiver” is registered without “android:export” and “an-

droid:permission”. This means the receiver is callable from any other applications

using the same value “bombom.latoi.com.VoiceReceiver”, which can be under the In-

tent Spoofing attacks.

BomBom-Free SMS is simple and easy for any malevolent developers to disassem-

ble and check the appropriate receiver attribute for Intent and the Broadcastreceiver

class name. Therefore, the information stolen in the BomBom can be performed by

any applications, which means the risk is high in this case.

5.3 Concluding Remarks

This chapter demonstrates the experimental environment, including test platform

and host configuration information. According to the 4P policy that introduced in

Chapter 3, we provide experimental results, along with the whole experiment process.

To implement the Broadcast Receiver Vulnerability Detection (BRVD), we apply two

different samples, which are a hypothetical sample from our design and real samples

from third markets. Both samples are effective, while the hypothetical sample is more

targeted based on the vulnerable Broadcastreceiver. However, to test the authenticity

of BRDV, the experiment of real samples is reliable.

First, the customized sample is used to describe the malicious behavior in Broad-

castreceiver, which can clearly display attack paths. Then, we give real samples to

test the performance of BRVD, compared with two similar security tools. Based on

the specific cases from those experimental results, the veracity of BRVD for detecting

the vulnerable Broadcastreceiver is proved.

75

Chapter 6

Conclusions and Future Work

The open source character in Android system combined with high-tech wireless

network environment have lead to domination of Android phones in smartphone’s

market in last few years. Simultaneously, there are innumerable malwares that’s

against Android operating system. The previous introduction undoubtedly illustrated

the various security issues related to the utilization of Android phones that both the

industry and academia have realized and acknowledged.

6.1 Conclusions

This thesis analyzes the current Android development, threats and associated so-

lutions. Aiming at security problems caused by the Android Broadcastreceiver com-

ponent, we provide a static analysis to detect the malicious behavior in the Broadcas-

treceiver of Android applications. This vetting approach implements both semantic

analysis and taint analysis to focus on an individual Broadcastreceiver component

which mentioned rarely few before, rather than general detection. In detail, semantic

analysis utilizes code characters to Broacastreceiver, while taint analysis is primarily

through instruction analysis to identify and mark the outside data, as tainted data,

which will be tracked using arithmetic and data movement instructions to construct

explicit information dissemination. As a result, if the tainted data is applied for an

unexpecting flow, such as jumping to other object addresses or format string, an un-

usual behavior alter will be announced. To reduce the false alarm rate and arrive a

precise level in the detection result, control flow graph and auxiliary stack under the

control-flow analysis are required for analyzing implicit information flow caused by

the spread of tainted data through branch nodes.

According to the proposed method, a Broadcast Receiver Vulnerability Detection

(BRVD) system for tracking the privacy data in the Broadcastreceiver component is

76

presented at end. It applies a new flow-based data path policy for malicious behav-

iors, consisted of two main modules; SUKE and BETA. To implement this system,

vulnerable Broacastreceivers from Android applications should be marked and filtered

in the SUKE module. Then the filtered receiver will be tagged with related data-flow

in the BETA module. Based on different paths of data-flow, the malicious behavior

can be confirmed. In addition, a log record function for the data tracking is applied

in the method, which enhances the real-time updating.

The performance of the vetting method in the BRVD is thoroughly investigated

compared with normal static analysis, our method is more detail and efficient for an

independent Broadcastreceiver component in the Android framework. Furthermore,

this system can be utilized before an Android application installation, which prevents

potential crises in advanced. Meanwhile, in order to verify the effectiveness and per-

formance of the detection system, this thesis also designed relevant tests for Android

applications. There are two parts in the test; one is a custom sample based on the

malicious behavioral characteristics, including GPS information collecting and SMS

messaging, the other one is the real sample obtained from Android online markets.

In contrast, due to the imperceptibility of malicious behaviors in real samples, the

custom sample has more outstanding muilt-behavioral characteristics.

6.2 Future Work

Compared with dynamic analysis, the BRVD combined with both taint analysis

and semantic analysis is high accurate and low risk, along with low energy. Due to

kinds of outstanding characteristics, this technology will not only be applicable to the

Android application, but also it has potential to be implemented to web applications

and even IOS applications.

However, the disadvantage of the BRVD is the performance overheads. In order to

satisfy users’ increasingly rich life, there are many Android applications that have a

large size with various functional services. In our real tests, some of the applications

are even around gigabytes, which is time consuming. Although we explored some

potential improvements building on prior work, the computing time is still out of our

expectation. To get an accurate result in a short time is a challenge for us. Hence,

how to make BRVD as a more efficient detection system is a main problem that needs

to be solved.

Besides to the time consuming problem, the memory exploration is considered as

another issue in the current research. Some of Android application may consume more

77

memory from the detection terminal. In addition to update the hardware standard,

the computing algorithm needs to be strengthened by lowering amounts of threads

construction in the background. Therefore, how to solve and simplify the generation

of the number of data-flow edges but keep accuracy is another issue in the future.

And last, but hardly least, with the development of the mobile technology, those

drawbacks will be further improved. All of the works are significant to have a body of

research that addresses the security defense aspects and supports the state of security

practice in the Android platform.

78

Bibliography

[1] Regular-Expression. http://www.regular-expressions.info/. [Online].

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flow-

droid: Precise context, flow, field, object-sensitive and lifecycle-aware taint anal-

ysis for android apps. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 259–269. ACM,

2014.

[3] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: an-

alyzing the android permission specification. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 217–228. ACM,

2012.

[4] Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In

Proceedings of the ACM SIGPLAN International Workshop on State of the Art

in Java Program analysis, pages 3–8. ACM, 2012.

[5] Joany Boutet and Lori Homsher. Malicious android applications: Risks and

exploitation. SANS Institute, 22, 2010.

[6] Ting Chen, Xiao-Song Zhang, Xiao-Li Ji, Cong Zhu, Yang Bai, and Yue Wu.

Test generation for embedded executables via concolic execution in a real envi-

ronment. Reliability, IEEE Transactions on, 64(1):284–296, 2015.

[7] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. An-

alyzing inter-application communication in android. In Proceedings of the 9th

international conference on Mobile systems, applications, and services, pages

239–252. ACM, 2011.

[8] International Data Corporation. 2014Q2. http://www.idc.com/getdoc.jsp?

containerId=prUS25037214, 2014. [Online; accessed 14-Aug-2014].

79

http://www.regular-expressions.info/
http://www.idc.com/getdoc.jsp?containerId=prUS25037214
http://www.idc.com/getdoc.jsp?containerId=prUS25037214

[9] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.

Android permissions demystified. In Proceedings of the 18th ACM conference on

Computer and communications security, pages 627–638. ACM, 2011.

[10] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,

and David Wagner. Android permissions: User attention, comprehension, and

behavior. In Proceedings of the Eighth Symposium on Usable Privacy and Secu-

rity, page 3. ACM, 2012.

[11] Eduardo B Fernandez and Xiaohong Yuan. Semantic analysis patterns. In Pro-

ceedings of Conceptual Modeling-ER 2000, pages 183–195. Springer, 2000.

[12] T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net/.

[13] Dominik Franke, Corinna Elsemann, Stefan Kowalewski, and Carsten Weise.

Reverse engineering of mobile application lifecycles. In Proceedings of Reverse

Engineering (WCRE), 2011 18th Working Conference on, pages 283–292. IEEE,

2011.

[14] Google. Android Developer’s Guide. http://developer.android.com/guide/

topics/manifest/receiver-element.html. [Online].

[15] W3C Web Applications Working Group. Document Object Model (DOM). http:

//www.w3.org/DOM/. [Online].

[16] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. Asdroid:

Detecting stealthy behaviors in android applications by user interface and pro-

gram behavior contradiction. In Proceedings of the 36th International Conference

on Software Engineering, pages 1036–1046. ACM, 2014.

[17] Yajin Zhou Xuxian Jiang. Detecting passive content leaks and pollution in an-

droid applications. In Proceedings of the 20th Network and Distributed System

Security Symposium (NDSS), 2013.

[18] Gary A Kildall. A unified approach to global program optimization. In Pro-

ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 194–206. ACM, 1973.

[19] MobiSec Lab. Eacus. http://www.mobiseclab.org/eacus.jsp.

80

http://wala.sourceforge.net/
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://developer.android.com/guide/topics/manifest/receiver-element.html
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.mobiseclab.org/eacus.jsp

[20] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot frame-

work for java program analysis: a retrospective. In Proceedings of Cetus Users

and Compiler Infastructure Workshop (CETUS 2011), 2011.

[21] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried

Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. I know what

leaked in your pocket: uncovering privacy leaks on android apps with static taint

analysis. http: // arxiv. org/ abs/ 1404. 7431/ , 2014.

[22] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically

vetting android apps for component hijacking vulnerabilities. In Proceedings of

the 2012 ACM conference on Computer and communications security, pages 229–

240. ACM, 2012.

[23] Amiya K Maji, Fahad Arshad, Saurabh Bagchi, Jan S Rellermeyer, et al. An

empirical study of the robustness of inter-component communication in android.

In Proceedings of Dependable Systems and Networks (DSN), 2012 42nd Annual

IEEE/IFIP International Conference on, pages 1–12. IEEE, 2012.

[24] Luo Xu Min and Qing Hua Cao. Runtime-based behavior dynamic analysis

system for android malware detection. In Advanced Materials Research, volume

756, pages 2220–2225. Trans Tech Publ, 2013.

[25] Cheetah Mobile. ‘Ghost Push’: An Un-Installable Android Virus Infect-

ing 600,000+ Users Per Day. http://www.cmcm.com/blog/en/security/

2015-09-18/799.html. [Online; accessed 18-Sep-2015].

[26] Martin Mohr, Jürgen Graf, and Martin Hecker. Jodroid: Adding android support

to a static information flow control tool. In Proceedings of the 8th Working

Conference on Programming Languages, 2015.

[27] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending an-

droid permission model and enforcement with user-defined runtime constraints.

In Proceedings of the 5th ACM Symposium on Information, Computer and Com-

munications Security, pages 328–332. ACM, 2010.

[28] NVISO. ApkScan. https://apkscan.nviso.be/. [Online].

81

http://arxiv.org/abs/1404.7431/
http://www.cmcm.com/blog/en/security/2015-09-18/799.html
http://www.cmcm.com/blog/en/security/2015-09-18/799.html
https://apkscan.nviso.be/

[29] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bod-

den, Jacques Klein, and Yves Le Traon. Effective inter-component communica-

tion mapping in android with epicc: An essential step towards holistic security

analysis. In Proceedings of USENIX Security 2013, 2013.

[30] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.

Semantically rich application-centric security in android. Security and Commu-

nication Networks, 5(6):658–673, 2012.

[31] Opensource. android apktool google code repository. https://code.google.

com/hosting/moved?project=android-apktool. [Online].

[32] Opensource. dex2jar github code repository. https://github.com/pxb1988/

dex2jar. [Online].

[33] Opensource. Java Decompiler. http://jd.benow.ca/. [Online].

[34] Opensource. smali github code repository. https://github.com/JesusFreke/

smali. [Online].

[35] Opensource. VLC media player. http://www.videolan.org/vlc/index.html.

[Online].

[36] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.

Paranoid android: versatile protection for smartphones. In Proceedings of the

26th Annual Computer Security Applications Conference, pages 347–356. ACM,

2010.

[37] Siegfried Rasthofer. The Android Logging Service – A Dangerous

Feature for User Privacy? http://sseblog.ec-spride.de/2013/05/

privacy-threatened-by-logging/. [Online; accessed 2013/05/17].

[38] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach

for classifying and categorizing android sources and sinks. In Proceedings of 2014

Network and Distributed System Security Symposium (NDSS), 2014.

[39] Google Report. Android Security 2014 Year in Review. https://static.

googleusercontent.com/media/source.android.com/en//devices/tech/

security/reports/Google_Android_Security_2014_Report_Final.pdf,

2014. [Online].

82

https://code.google.com/hosting/moved?project=android-apktool
https://code.google.com/hosting/moved?project=android-apktool
https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
http://www.videolan.org/vlc/index.html
http://sseblog.ec-spride.de/2013/05/privacy-threatened-by-logging/
http://sseblog.ec-spride.de/2013/05/privacy-threatened-by-logging/
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf

[40] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow

analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 49–61.

ACM, 1995.

[41] Dragos Sb̂ırlea, Michael G Burke, Salvatore Guarnieri, Marco Pistoia, and Vivek

Sarkar. Automatic detection of inter-application permission leaks in android

applications. IBM Journal of Research and Development, 57(6):10–1, 2013.

[42] Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt, Jan Clausen, Os-

man Kiraz, Kamer Yüksel, Seyit Camtepe, Sahin Albayrak, et al. Static analysis

of executables for collaborative malware detection on android. In Proceedings of

Communications, 2009. ICC’09. IEEE International Conference on, pages 1–5.

IEEE, 2009.

[43] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev.

Static control-flow analysis of user-driven callbacks in android applications. In

Proceedings of International Conference on Software Engineering (ICSE), 2015.

[44] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,

X Sean Wang, and Binyu Zang. Vetting undesirable behaviors in android apps

with permission use analysis. In Proceedings of the 2013 ACM SIGSAC confer-

ence on Computer & communications security, pages 611–622. ACM, 2013.

[45] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my

market: Detecting malicious apps in official and alternative android markets.

In Proceedings of Network and Distributed System Security Symposium (NDSS),

2012.

83

	Introduction
	Background
	Objective
	Motivation
	Methodology
	Contributions
	Thesis Organization

	Background and Literature Review
	Android Overview
	Android Framework
	Application Components
	The Intent-based Inter-component communication (ICC)
	Permission Protection Mechanism

	Android Threat Models
	Analytical Measure
	Static Analysis
	Dynamic Analysis

	State of the Art

	BroadcastReceiver Analysis
	Semantic Analysis in the BroadcastReceiver Registration
	Static BroadcastReceiver Registration
	Dynamic BroadcastReceiver Registration

	Taint Analysis in Broadcastreceiver
	Inter-procedural data-flow Analysis
	Four Paths (4P) Policy

	Concluding Remarks

	The BRVD Framework
	Semantic Analysis–SUKE Framework
	Abroster Engine
	Algorithms in Abroster

	Taint Analysis–BETA Framework
	Tools used
	Taint Problem Setup

	4P-Based Attacks
	Intent Spoofing Attack
	Intent Hijacking Attack
	Confused Deputy Attack
	Collusion Attack
	Self-Evolution Attack

	Concluding Remarks

	Experimental Evaluation
	Customized Sample
	Real Samples
	Case Study: Lango Messaging
	Case Study: BomBom-Free SMS

	Concluding Remarks

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

