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ABSTRACT 

Komagataeibacter xylinus ATCC 53582 is a fruit-associated, cellulose-producing 

bacterium that responds to and synthesizes phytohormones. This thesis elaborates on the 

ecophysiology of K. xylinus. Responses to indole-3-acetic acid (IAA), abscisic acid (ABA) 

and ethylene, produced in situ from ethephon, were of particular focus. The effect of these 

phytohormones on K. xylinus cellulose production and expression of cellulose 

biosynthesis-related genes (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx) were 

determined using pellicle assays and reverse transcription quantitative polymerase chain 

reaction (RT-qPCR), respectively. Ethylene enhanced cellulose yield by upregulating bcsA 

and bcsB expression, while IAA decreased cellulose yield by downregulating bcsA. 

Differential gene expression within the bacterial cellulose synthesis (bcs) operon is 

reported and a phytohormone-regulated CRP/FNR transcription factor was identified that 

may influence K. xylinus cellulose biosynthesis. Based on evidence provided in this thesis, 

the classification of K. xylinus as a saprophyte and its potential to accelerate fruit ripening 

in nature is proposed. 
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1 INTRODUCTION 

 Cellulose: Structure and uses 

The production of the organic biomaterial cellulose is common to various eukaryotic 

and prokaryotic organisms, including vascular plants, green algae, oomycetes, 

hyphochytriomycetes, tunicates, and numerous bacterial species (Kimura and Itoh, 2007; 

Römling, 2002; Sarkar et al., 2009; Stone, 2005). Structurally, cellulose is an unbranched 

biopolymer consisting of β-D-glucopyranose units connected through β-1,4-glycosidic 

linkages (Figure 1). Each of the glucopyranose residues is rotated 180o with respect to its 

neighbor (O’Sullivan, 1997), making cellobiose (Figure 1) the disaccharide unit of 

cellulose (Somerville, 2006). The two dominant cellulose allomorphs, cellulose I and 

cellulose II, differ in terms of their intra- and intermolecular hydrogen bonding patterns. 

Cellulose I contains the β-1,4-glucan chains oriented in parallel with the same polarity, 

resulting in a highly crystalline structure (Figure 1). In contrast, cellulose II contains less 

ordered parallel β-1,4-glucan chains, causing its structure to be more amorphous (Kudlicka 

and Brown, 1996). Specific allomorph content results in varied structural characteristics of 

the final cellulose product. For example, in the textiles industry, cellulose I is converted to 

cellulose II through the process of mercerization to make the material more amorphous and 

better able to absorb colored dyes (Heins, 1944; Okano and Sarko, 1985). 

 

Figure 1. Chemical structure of cellulose. The repeating 

cellobiose units (black box) are connected through β-1,4-

glycosidic bonds and hydrogen bonds (red dotted lines). 
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The most plentiful source of cellulose is plant cellulose (PC). It is the main 

constituent of the plant cell wall and is in complex with hemicellulose, pectins, lignin and 

glyocproteins. Along with providing plant cells with structural support, PC forms the 

apoplastic network (xylem) that facilitates the transport of water, carbon dioxide and other 

solutes throughout vascular plant tissues (Kudlicka and Brown, 1996). High concentrations 

of cellulose are found in cotton and wood, both of which are globally-traded commodities 

(Lejeune and Deprez, 2010). Cellulose can be hydrolyzed into its constituent sugars and 

used as a fermentable substrate for bioethanol production by yeast (Jørgensen et al., 2007). 

As of 2014, numerous companies are producing biofuels from cellulosic feedstocks in the 

United States of America, highlighting the advancement of the cellulosic biofuel industry. 

However, in order for cellulosic biofuels to become economically sustainable and more 

valuable than fossil fuels, the process must be made more efficient in regards to cellulose 

purification and saccharification. Cellulose is believed to be the most abundant renewable 

carbon source on the planet, thus making it an important industrial resource with immense 

socioeconomic value.  

 

 Cellulose biosynthesis: Plants vs. bacteria 

1.2.1 Cellulose synthesis complexes 

The synthesis of cellulose can be attributed to plasma membrane-localized (Brown 

and Montezinos, 1976; Brown et al., 1976) cellulose synthesis complexes (CSCs) that have 

diverse geometries in different cellulose-producing organisms. Plant CSCs consist of 

cellulose synthase (CESA) proteins arranged into hexagonal rosettes (Kimura et al., 1999), 

while bacterial CSCs (BCSCs) form single or multiple linear arrays along the longitudinal 

axis of the cell (Iyer et al., 2011; Kimura et al., 2001; Sunagawa et al., 2013; Tsekos, 1999). 

The genome of Arabidopsis thaliana, a model organism for cellulose biosynthesis in plants, 

contains 10 cesA genes (Richmond and Somerville, 2000) that are classified into two 

groups: those encoding proteins responsible for cellulose biosynthesis in the primary cell 

wall (Desprez et al., 2007), and those encoding proteins responsible for cellulose 

production in the secondary cell wall (Li et al., 2014; Taylor et al., 2003). CESA proteins 

are classified as family 2 glycosyltransferases (GT-2; Richmond and Somerville, 2000) 
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that catalyze the formation of glycosidic bonds between β-D-glucopyranose monomers 

using UDP-glucose as the substrate (Lin et al., 1990; Omadjela et al., 2013; Saxena et al., 

1995; Somerville, 2006). GT-2 family enzymes include all cellulose, chitin and hyaluronan 

synthases (Kudlicka and Brown, 1996). The active site of glycosyltransferases contain the 

D,D,D,Q(Q/R)XRW motif that binds the substrate and facilitates catalysis (Omadjela et 

al., 2013; Saxena et al., 1990). Higher plant CESA proteins also contain a plant-conserved 

region (P-CR) between D1 and D2 of the D,D,D,Q(Q/R)XRW motif, and a class-specific 

region (CSR) between D2 and D3 (Sethaphong et al., 2013). These additional regions have 

been proposed to be involved in rosette assembly and plant-specific regulation of cellulose 

biosynthesis (Sethaphong et al., 2013).  

 

Interestingly, plant CESA proteins have a bacterial origin, since the genes that 

encode them were obtained from cyanobacterial endosymbionts (Nobles and Brown, 2004; 

Nobles et al., 2001). Research regarding bacterial cellulose (BC) biosynthesis spans 7 

decades (Aschner and Hestrin, 1946; Hestrin et al., 1947). The number of publications in 

the BC field, and in regards to its model organism, Komagataeibacter (formerly 

Gluconacetobacter) xylinus, have increased steadily in the last 15 years (Figure 2). This is 

likely due to the improvement of next-generation sequencing technologies, publication of 

genome sequences of numerous BC producers (Römling and Galperin, 2015), increased 

availability of genetic tools and the 1987 discovery of the primary activator of the BCSC, 

bis-(3’→5’)-cyclic diguanylate monophosphate (c-di-GMP; Figure 2; Ross et al., 1987).  

 

Genera of BC producers include Komagataeibacter, Gluconacetobacter (formerly 

Acetobacter), Enterobacter, Pseudomonas, Achromobacter, Alcaligenes, Aerobacter, 

Azotobacter, Agrobacterium, Burkholderia, Dickeya, Escherichia, Rhizobium, Salmonella, 

and Sarcina (Römling and Galperin, 2015; Römling, 2002; Ross et al., 1991). The most 

prominent phylum of BC producers are the Proteobacteria which inhabit diverse 

environmental habitats (Table 1; Augimeri et al., 2015).
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Figure 2. The number of publications regarding BC and Komagataeibacter xylinus. BC 

publications are shown by grey bars, while those studying K. xylinus BC production are 

shown by black bars. The 1987 discovery that c-di-GMP (inset) activates BcsA and 

controls BC production marks a turning point for research in the BC field (*). Adapted 

from Augimeri et al. (2015). 

 

Four bacterial cellulose synthesis (bcs) genes (bcsABCD; Figure 3B) were initially 

identified and characterized in the acetic acid bacterium (AAB), K. xylinus (Saxena et al., 

1990, 1994; Wong et al., 1990). Since then, genome sequences of numerous bacterial 

strains were shown to contain organizationally diverse bcs operons that encode varied 

BCSCs (Römling and Galperin, 2015; Römling, 2002). BC is synthesized on the 

cytoplasmic side of the inner membrane (Bureau and Brown, 1987) and is subsequently 

transported through the periplasmic space before it is released into the extracellular 

environment (Figure 3A; Morgan et al., 2013). 
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BCSCs form a single linear row along the longitudinal axis of the rod-shaped K. xylinus cell (Brown et al., 1976; Kimura et al., 

2001; Sunagawa et al., 2013) and are responsible for the synthesis and export of BC. This arrangement allows adjacent glucan chains 

to be hydrogen bonded as they are being exported; coupling elongation, translocation and crystallization of BC (Morgan et al., 2013). 

Table 1. Diversity of experimentally determined BC producers in the phylum Proteobacteria. From Augimeri et al. (2015). 

Class Order Family Genus Host Reference1 

α-proteobacteria Rhizobiales 

Rhizobiaceae 
Agrobacterium Plant Matthysse et al. (1981) 

Rhizobium Plant Laus et al. (2005) 

Acetobacteriaceae 
Komagataeibacter Plant Brown et al. (1976) 

Asaia Animal Kumagai et al. (2011) 

β-proteobacteria Neisseriales Chromobacteriaceae Chromobacterium Animal Recouvreux et al. (2008) 

γ-proteobacteria 

Enterobacteriales Enterobacteriaceae 

Enterobacter Plant/Animal Basavaraj et al. (2010) 

Escherichia Plant/Animal Ellermann et al. (2015) 

Salmonella Plant/Animal Römling and Lunsdorf (2004) 

Dickeya Plant Jahn et al. (2011) 

Pseudomonadales Pseudomonadaceae Pseudomonas Plant/Animal Spiers et al. (2003) 

Vibrionales Vibrionaceae Aliivibrio Animal Bassis and Visick (2010) 

1Select reports demonstrating BC production from the respective bacterial genus 
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1.2.2 Bacterial cellulose synthesis complex subunits 

The BC synthase protein, BcsA, is encoded in the bcs operon (bcsA) along with other 

genes that encode BCSC proteins (Figure 3A; Kawano et al., 2002b; Römling and 

Galperin, 2015; Ross et al., 1987). BcsA is an integral inner membrane protein with eight 

transmembrane (TM) domains in clusters of 4+4 (Kumar and Turner, 2014; Omadjela et 

al., 2013). It contains a very small cytosolic N-terminal domain and a large central 

glycosyltransfersase domain. It was first thought that the activator of BcsA, c-di-GMP, was 

binding to the 85 kDa BcsB subunit, suggesting that BcsB regulated the levels of free c-di-

GMP that could activate the glycosyltransferase domain (Amikam and Benziman, 1989). 

However, subsequent studies revealed that c-di-GMP was actually binding to a 200 kDa 

membrane-bound protein complex that has not yet been further characterized (Weinhouse 

et al., 1997) but has been hypothesized to represent either a dimer of the BcsA subunit or 

a BcsAB subunit. A bioinformatics study determined that BcsA contains a cytosolic C-

terminal PilZ domain that binds and regulates levels of free c-di-GMP (Amikam and 

Galperin, 2006). The PilZ domain was found to be ubiquitous in bacteria and is believed 

to be the binding domain of c-di-GMP receptors. The C-terminal PilZ domain binds c-di-

GMP and controls the catalytic domain through conformational changes (Amikam and 

Galperin, 2006; Morgan et al., 2014; Römling et al., 2013; Ryjenkov et al., 2006). 

 

BcsB is a periplasmic protein attached to BcsA by a single C-terminal TM helix and 

contains two carbohydrate binding domains (CBD1 and CBD2) that likely chaperone the 

synthesized glucan chain through the periplasm (Figure 3A; Morgan et al., 2013). The 

functional BcsA subunit is stabilized by BcsB (Morgan et al., 2013). BcsA and BcsB are 

the only two proteins that are essential for in vitro BC synthesis, but in vitro-formed BC is 

less crystalline than cell-produced BC (Omadjela et al., 2013; Wong et al., 1990).  

 

Extrusion of BC from the periplasm to the extracellular environment is thought to be 

facilitated through the action of BcsC (Figure 3A) which, based on its structure, is 

predicted to form a pore in the outer membrane of K. xylinus. Consistent with the view that 

BcsC is an outer membrane porin, is the observation that BcsC is essential for in vivo, but 
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not in vitro BC biosynthesis (McManus et al., 2016; Saxena et al., 1994). The mechanisms 

of BC export by BcsC have not been studied to date, but BcsC contains two conserved 

domains; a COG3118 (thioredoxin containing protein responsible for post-translational 

modifications and protein turnover) domain, and a COG4783 (putative Zn-dependent 

protease containing TPR repeats) domain (Marchler-Bauer et al., 2005). The TPR 

(tetratricopeptide repeat) motif is a 34 amino acid sequence that forms a molecular scaffold 

that facilitates protein-protein interactions, and is most often associated with large multi-

protein complexes (Blatch and Lässle, 1999). There is little to no conformational change 

when TPR repeats bind to their respective ligand indicating TPR domains form an 

unchanging molecular structure that is folded to allow protein partners to associate 

(Cortajarena and Regan, 2006). This suggests that BcsC may interact with other subunits 

of the BCSC through the TPR motif however, there are no studies describing these 

interactions. 

 

Figure 3. Structural and genetic organization of the BCSC and the K. xylinus bcs operon. 

Four dimers of BcsA (green), activated by c-di-GMP, add a glucose unit to cellulose 

using UDP-glucose as a substrate in the cytoplasm; Four dimers of BcsB (blue) guide 

the glucan chain through the periplasm; Octameric BcsD (orange) crystallizes four 

glucan chains in the periplasm; Octameric BcsC (grey) exports the BC microfibril into 

the extracellular space (A). The green triangle indicates c-di-GMP stimulates BC 

biosynthesis. The genetic organization of the bcs operon that encodes the BCSC and the 

genes up- and downstream (B). The genes in the bcs operon (B) are color coordinated 

with their protein products (A). From Augimeri and Strap (2015). 
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Crystallization of BC is achieved in part, through the action of BcsD, a cylindrical 

octameric periplasmic protein (Iyer et al., 2011) that contains four spiral channels that 

facilitates hydrogen bonding of four glucan chains during export through BcsC (Figure 

3A; Hu et al., 2010). K. xylinus bcsD knock-out mutants still synthesize BC but the yield 

and crystallinity were much reduced compared to the wildtype (Saxena et al., 1994; 

Sunagawa et al., 2013) suggesting that bcsD is not essential for BC synthesis but is required 

for maximal production and crystallinity. BcsD is also required for optimal BC production 

in vitro (McManus et al., 2016). It is possible that BcsD interacts with BcsC through the 

TPR motif to couple crystallization and export of BC. However, this has yet to be 

investigated. In K. hansenii ATCC 23769, bcsD is regulated independently of the other bcs 

genes (Deng et al., 2013), as a 321 base pair untranslated region (UTR) separates bcsC and 

bcsD, leaving room for a functional promoter (Deng et al., 2013). In contrast, the coding 

regions of bcsC and bcsD in K. xylinus have a 1 base pair overlap, suggesting that bcsD is 

regulated from the same promoter as the rest of the bcs genes in this strain. 

 

Römling and Galperin (2015) proposed a model for the organization of the entire 

BCSC based on crystal structure data of the Rhodobacter sphaeroides BcsAB complex, the 

BcsC-like AlgK-AlgE protein complex of Pseudomonas aeruginosa, and the BcsD protein 

of K. xylinus. The model predicts a BCSC stoichiometry of [(A2B2)4C8D8], in which four 

dimers of BcsA and BcsB associate with one octameric unit of BcsC and BcsD to faciliate 

the crystallization of four glucan chains as they are exported from one BCSC (Figure 3A).  

 

Various ancillary genes are also involved in K. xylinus BC biosynthesis. Located 

upstream of the bcs operon, is bcsZ (formerly and for the rest of this thesis called cmcAx; 

Figure 3B), which encodes an endo-β-1,4-glucanase (CmcAx) that belongs to the 

glycoside hydrolase 8 family of enzymes (Yasutake et al., 2006). CmcAx has cellulose-

hydrolyzing activity in vitro on cellopentose or longer oligosaccharide substrates (Kawano 

et al., 2002a) and is localized to the outer membrane (Yasutake et al., 2006). KOR and 

CelC, homologous endoglucanases from A. thaliana and Agrobacterium tumefaciens, 

respectively, are also anchored to the plasma membrane (Matthysse et al., 1995; Nicol et 
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al., 1998). Antibodies that inhibit CmcAx (Koo et al., 1998), and a cmcAx knock-out 

mutant (Nakai et al., 2013) have shown that this enzyme is required for BC biosynthesis in 

K. xylinus. The cmcAx deletion mutant produced remarkably reduced amounts of BC 

compared to wildtype (Nakai et al., 2013). BC fibrils were packed together irregularly in a 

tight and highly-twisted ribbon, suggesting that CmcAx is responsible for cleaving the 

twisting glucan chains as they are being exported from the BCSC. It is likely that the BcsD 

subunit causes the twisting of the glucan chains due to its four twisted cylindrical 

passageways (Hu et al., 2010). The hyper-twisting of BC microfibrils likely clog the BCSC 

and reduce BC production by preventing export. In small amounts, exogenous CmcAx 

enhances BC production of K. xylinus (Kawano et al., 2002a). Likewise, endogenous 

overexpression of cmcAx increases BC yield (Kawano et al., 2002a); cellulose hydrolyzing 

activity of CmcAx may therefore exert a regulatory effect on BC biosynthesis.  

 

In the same upstream operon as cmcAx, is bcsH (formerly and for the rest of this 

thesis called, ccpAx; Figure 3B), which encodes the cellulose-complementing protein 

(CcpAx). This protein is essential for in vivo BC biosynthesis (Deng et al., 2013; Standal 

et al., 1994), and is required for optimal BC production in vitro (McManus et al., 2016). 

CcpAx interacts with BcsD on the extracellular side of the cell membrane, suggesting that 

CcpAx is a critical part of the BCSC (Sunagawa et al., 2013). CcpAx is involved in BC 

crystallization, as ccpAx knock out mutants produce less cellulose I, and more cellulose II, 

compared to the wildtype (Nakai et al., 2002). Disruption of ccpAx results in a significant 

reduction in the levels of BcsB and BcsC, but not BcsA in K. hansenii ATCC 23769 (Deng 

et al., 2013; McManus et al., 2016). The genes that encode all three proteins are located 

within the same operon, indicating CcpAx plays a post-transcriptional regulatory role in 

BC biosynthesis. Since this protein is of low molecular weight and has predicted secondary 

structures rich in α-helices, CcpAx may facilitate protein-protein interactions for the spatial 

assembly of BCSCs (Sunagawa et al., 2013). Sequence analysis using the Protein Disorder 

Prediction System (PrDos) showed that the CcpAx sequence includes a C-terminal 

disordered region that could act as a scaffold to mediate protein-protein interactions 

between CcpAx and other BCSC subunits (Hsu et al., 2012).  
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Downstream of the bcs operon is bglX (formerly and for the rest of this thesis called 

bglAx; Figure 3B), which encodes a β-glucosidase (BglAx; Tajima et al., 2001) that 

belongs to the family 3 glycoside hydrolase enzyme group. This monomeric enzyme is 

secreted (Tahara et al., 1998) and has the ability to hydrolyze oligosaccharides larger than 

three residues into single β-D-glucose units (Tahara et al., 1998; Tajima et al., 2001). 

BglAx exhibits slight activity towards cellobiose (Tahara et al., 1998; Tajima et al., 2001). 

It has been proposed that BglAx works with CmcAx to edit exported glucan chains or to 

relieve oligosaccharide-induced inhibition of CmcAx activity (Deng et al., 2013). In 

addition to its cellulose hydrolyzing ability, BglAx produces gentiobiose through a 

condensation reaction, which positively regulates the expression of cmcAx (Kawano et al., 

2008). Furthermore, the expression of bglAx is transcriptionally-regulated by CRP/FNRKh, 

a cyclic-AMP receptor/fumarate nitrate reductase protein in K. hansenii ATCC 23769 

(Deng et al., 2013). Transposon insertion into crp/fnrKh (GXY_00863) completely 

abolished production of BC and BglAx, providing evidence that CRP/FNRKh controls BC 

biosynthesis at the transcriptional level. Since bglAx deletion results in reduced BC 

synthesis, but not the absence of BC production observed with crp/fnrKh deletion, it is 

probable that CRP/FNRKh controls the expression of additional genes that are essential for 

BC biosynthesis (Deng et al., 2013). Therefore, research regarding the effect of CRP/FNR 

transcription factors on BC biosynthesis warrants further investigation. 

 

1.2.3 Cellulose biosynthesis 

In addition to their catalytic function, CESA and BcsA form a pore in the plasma 

membrane with their eight TM domains that facilitate translocation of glucan chains 

(Morgan et al., 2013; Sethaphong et al., 2013). Though the cytosolic domains of CESA 

and BcsA share low amino acid sequence similarity (Doblin et al., 2002), the 

glycosyltransferase domains are generally conserved (Sethaphong et al., 2013), supporting 

the notion that the D,D,D,Q(Q/R)XRW motif is responsible for cellulose polymerization. 

In contrast to BCSCs that are fixed in position with respect to the cell surface (Iyer et al., 

2011; Kimura et al., 2001; Sunagawa et al., 2013), plant CSCs are motile within the plasma 

membrane and associate with microtubules (Harris et al., 2012; Paredez et al., 2006). In 
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bacteria, crystallization of BC occurs immediately when glucan chains exit the cell (Haigler 

et al., 1980), and due to the fixed nature of BCSCs, a consistent cell shape and distance 

between the enzyme complexes are required for maximum crystallinity. For example, 

pellicin, a chemical inhibitor of pellicle production in K. xylinus ATCC 53582, increases 

cell size, and as a result contributes to the reduction in BC crystallinity (Strap et al., 2011). 

It is not known if pellicin, like the fluorescent dye Calcofluor-white (Haigler et al., 1980), 

directly interferes with hydrogen bonding interactions between glucan chains. 

Furthermore, the peptidoglycan layer within the bacterial cell wall plays a role in BC 

crystallization. Deng et al. (2015) demonstrated that K. hansenii ATCC 23769 mutants 

defective in genes encoding for lysine decarboxylase and alanine racemase display a 

reduction in BC crystallinity. This study also showed that these mutations affect cell shape, 

suggesting that a highly structured peptidoglycan network is required for proper cell shape 

and consequently, the formation of crystalline BC.  

 

1.2.4 Cellulose crystallization 

Hydrogen bonding and van der Waals interactions work to crystallize individual 

glucan chains to form cellulose microfibrils. Generally, 3 nm elementary microfibrils 

aggregate into thicker microfibrils (5-10 nm wide), which then aggregate to form cellulose 

ribbons with widths of 30-50 nm (Zhang et al., 2014). Precise microfibril widths depend 

on the organism that produced them. According to a computational molecular energy study 

by Cousins and Brown (1995), crystallization of cellulose I is achieved by: formation of 

mini-sheets produced by the interaction of individual glucan chains through van der Waals 

forces as they exit the enzyme active site; aggregation of mini-sheets through hydrogen 

bonding to form elementary microfibrils as glucan chains exit the CSC; and association of 

elementary microfibrils through hydrogen bonding to form a crystalline cellulose 

microfibril. The crystallization step limits cellulose polymerization in both plants and 

bacteria (Benziman et al., 1980; Haigler et al., 1980; Harris et al., 2012).  
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1.2.5 Plant vs. bacterial cellulose 

Structurally, BC is more pure than PC since it lacks hemicellulose, pectin, and lignin 

that are found in the plant cell wall. BC also exhibits a higher crystallinity index (CI) and 

degree of polymerization (DP) than PC (Czaja et al., 2004; Sethaphong et al., 2013; Strap 

et al., 2011). Increased crystallinity of BC may be explained by the presence of the BcsD 

protein that is unique to the BCSC (Delmer, 1999; Römling and Galperin, 2015) and shown 

to be involved in crystallization (Saxena et al., 1994; Sunagawa et al., 2013). These 

structural characteristics, along with the ability to form BC-nanocomposites have made BC 

of great interest to numerous industries, particularly those involved in drug-delivery 

systems, medical devices, food products and acoustics (Abeer et al., 2014; Iguchi et al., 

2000; Nwodo et al., 2012; Siró and Plackett, 2010).  

 

Ground-breaking research has begun that could revolutionize the cellulosic biofuel 

industry; the production of BC from genetically-altered photosynthetic cyanobacteria. 

Small quantities of BC are produced naturally from cyanobacteria (Nobles and Brown, 

2004; Nobles et al., 2001). However, cloning of the bcsAB genes from K. xylinus into a 

cyanobacterium (Synechococcus leopoliensis UTCC 100), resulted in the production of 

much larger quantities of BC using sugars obtained through photosynthesis (Nobles and 

Brown, 2008). This system was improved by Zhao et al. (2015), who overexpressed the 

entire K. xylinus bcs operon and its flanking genes (cmcAx, ccpAx and bglAx) in a 

cyanobacterium (Synechococcus sp. PCC 7002). BC produced by heterotrophic organisms 

like K. xylinus is not a suitable feedstock for biofuel production since these bacteria must 

be fed purified sugars. PC is not an ideal feedstock either since plant growth requires the 

use of limited arable land that should be used for food crops, and copious amounts of fresh 

water, while producing a cellulose product that contains contaminating components that 

are difficult and costly to remove. Furthermore, the need for petroleum-based fertilizers to 

grow current feedstock crops intrinsically ties biofuels to fossil fuels. Cyanobacteria can 

thrive on non-arable land and be nourished with salt water, providing a useful alternative 

to plants. Therefore, using BC produced by photosynthetic cyanobacteria could finally 
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sever the tie between biofuels and fossil fuels, preserve arable land and fresh water, and 

provide a truly carbon-neutral fuel source.  

 

 Microbial biofilm formation 

In addition to some mechanistic and structural differences, PC and BC have different 

functions in the organisms that produce them. PC acts as a structural component of the 

plant cell wall and is essential to plant survival. In contrast, BC is not essential for bacterial 

survival, but does confer a survival advantage under certain conditions. When BC 

producers are grown statically in liquid, they often form a solid surface-associated biofilm 

(SSAB) at the bottom of the vessel. Biofilms are described as multicellular, surface-

associated microbial communities embedded within an extracellular matrix comprised of 

extracellular polysaccharides (EPS), proteins and nucleic acids (Costerton et al., 1995; 

Flemming and Wingender, 2010; Geesey et al., 1978). Various polysaccharides are found 

in microbial biofilms, including BC, alginate and curdlan (Brown et al., 1976; Hentzer et 

al., 2001; Laus et al., 2005; Matthysse et al., 1981; Römling et al., 2004; Saldaña et al., 

2009; Vu et al., 2009; Williams and Cannon, 1989).   

 

Aerobic bacteria often build a floating biofilm at the air-liquid interface (ALI), 

commonly referred to as a pellicle. The ALI is a favorable environment for aerobic bacteria 

as it provides high concentrations of oxygen from the air, while still allowing access to 

nutrients present in the soluble medium. Pellicle formation has been thoroughly studied in 

regards to the Gram-positive bacterium, Bacillus subtilis (Vlamakis et al., 2013), but is less 

characterized in Gram-negative bacteria. However, current data suggests that planktonic 

cells aggregate, causing them to become buoyant and float to the ALI where high oxygen 

concentrations stimulate pellicle production (Armitano et al., 2014).  

 

Some BC producers make soluble hemicellulose-like EPS that contain glucose, 

mannose, rhamnose, galactose and glucuronic acid in variable molar ratios (Fang and 

Catchmark, 2014, 2015). Most of the EPS can be removed by solvent precipitation of 

culture supernatant, but some EPS cannot be removed. This “hard to extract” EPS (HE-
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EPS) complexes with the BC matrix (Fang and Catchmark, 2014, 2015). By binding in 

between adjacent glucan chains, these HE-EPS impact cellulose ribbon assembly and 

crystallization by disrupting the highly ordered hydrogen bonding pattern of crystalline BC 

(Deng et al., 2015; Fang and Catchmark, 2014).  

 

Bacteria that form SSABs can switch between a motile, planktonic state, and a 

sessile, biofilm-forming state, depending on environmental signals (Flemming and 

Wingender, 2010). This adaptive mechanism allows motile bacterial species to search for 

a suitable growth environment. Once a nutrient-rich area is found, growth and biofilm 

production commences to initiate colonization of the substrate. This transition is controlled 

by the antagonistic action of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) 

that contain conserved GGDEF and EAL or HD-GYP domains, respectively (Galperin et 

al., 2001; Simm et al., 2004). These catalytic domains are responsible for the synthesis 

(GGDEF) and degradation (EAL and HD-GYP) of the ubiquitous bacterial second 

messenger and activator of BcsA, bis-(3’→5’)-cyclic diguanylate (c-di-GMP; Amikam and 

Benziman, 1989; Ross et al., 1987). Bifunctional GGDEF-EAL and GGDEF-HD-GYP 

enzymes also exist (Römling et al., 2013). Many of these proteins contain upstream sensory 

domains that control the activity of the downstream catalytic domains in response to 

environmental cues. There are different types of sensory domains, such as the Per-Arnt-

Sim (PAS) and GAF domains, the latter being named after the proteins in which it is found: 

cGMP-specific PDEs, adenylyl cyclases and FhlA (E. coli). These sensory domains contain 

prosthetic groups, such as heme, flavin mononucleotide, flavin adenine dinucleotide and 

various chromophores which allow proteins to sense a variety of signals, including O2 

(Chang et al., 2001; Gilles-Gonzalez and Gonzalez, 2004), the redox status of the cell (Qi 

et al., 2009) and light (Tarutina et al., 2006). Binding of these ligands modulates the 

activity of the catalytic GGDEF, EAL and HD-GYP domains and couples environmental 

signals with the turnover of c-di-GMP. Typically, low-levels of c-di-GMP is a cellular 

signal for motility and virulence, while high levels of c-di-GMP initiates the transition to a 

biofilm-forming state by activating enzymes involved in biofilm formation (Figure 4).  
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In K . xylinus, three cdg (cyclic diguanylate) operons encode DGCs and PDEs that 

display hierarchical control of BC biosynthesis (Figure 5; Tal et al., 1998). Disruption of 

each DGC results in reduced BC production in vivo (Tal et al., 1998). The PDE, AxPDEA1, 

contains a heme-based PAS domain that binds oxygen and inactivates the c-di-GMP-

cleaving EAL domain (Chang et al., 2001). Oxygen binding leads to increased c-di-GMP 

and BC levels (Chang et al., 2001). The K. xylinus DGC, AxDGC2, contains a flavin 

cofactor-binding PAS domain (Qi et al., 2009). Non-covalent binding of FAD to AxDGC2 

induced higher catalytic activity compared to FADH, demonstrating a role of cellular redox 

status in K. xylinus BC biosynthesis (Qi et al., 2009). Regeneration of FAD primarily 

occurs at the electron transport chain which uses oxygen as a terminal electron acceptor in 

aerobic organism like K. xylinus. Oxygen is required for effective activation of AxDGC2 

and inhibition of AxPDEA1, resulting in increased c-di-GMP and BC levels.  

 

In addition to DGCs and PDEs, the K. xylinus cdg1 operon also encodes two 

transcriptional regulators: CDG1A and CDG1D (Figure 5; Tal et al., 1998). The cdg1a 

gene encodes a CRP/FNR transcription factor that has a positive effect on BC production 

(Tal et al., 1998). Bacteria respond to environmental changes using CRP/FNR family 

transcription factors which regulate processes that are critical to bacterial growth and 

survival (Matsui et al., 2013). Some of these processes include catabolite repression, 

aerobic growth, nitrogen fixation, oxidative stress responses, stationary phase survival, 

arginine catabolism and pathogenicity (Körner et al., 2003). Binding of various ligands by 

CRP/FNR proteins alters their DNA binding specificity, and results in the activation or 

repression of target gene expression. The role of CDG1D in BC biosynthesis has not been 

demonstrated, but sequence analysis reveals that it belongs to the poorly characterized Rrf2 

repressor family of transcriptional regulators. The B. subtilis CymR protein is the most 

studied Rrf2 regulator (Shepard et al., 2011), and is responsible for the repression of many 

genes involved in cystine (cysteine dimer) uptake and cysteine biosynthesis (Even et al., 

2006). Therefore, CDG1D may repress genes involved in K. xylinus BC biosynthesis 

through a yet to be discovered mechanism. CDG1A and CDG1D are poorly understood 
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regulators in K. xylinus, and warrant further investigation due to their genetic loci within 

the cdg1 operon that most strongly controls BC biosynthesis.  

 

 

Figure 4. The turnover of c-di-GMP is controlled by environmental conditions. 

Extracellular cues that signal conditions suitable for colonization activate GGDEF 

domain-containing DGC enzymes that synthesize c-di-GMP. High levels of c-di-GMP 

binds the PilZ domain within the BcsA glycosyltransferase and triggers the production 

of a BC biofilm. In contrast, extracellular signals associated with an unsuitable growth 

environment activate EAL/HD-GYP domain-containing PDEs that degrade c-di-GMP 

and produce the linear dinucleotide, pGpG. The resulting low c-di-GMP and high pGpG 

levels activate motility and virulence mechanisms that allow the bacterium to move to a 

more optimal environment for colonization. Negative feedback occurs between c-di-

GMP and DGCs, as well as between GTP and PDEs. Figure credit to Andrew Varley 

(Augimeri et al., 2015). 
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Figure 5. Genetic organization of the three cyclic diguanylate (cdg) operons in K. 

xylinus. The cdg1 (A), cdg2 (B), and cdg3 (C) operons are shown. 

 

 Environmental diversity of BC producers 

In the environment, SSABs serve to anchor bacteria to their host to establish close 

contact and facilitate symbiotic or pathogenic relationships. Bacteria take advantage of 

host-derived nutrients and use biofilm formation to colonize their preferred substrate. 

Numerous examples exist of BC producers that associate with animals and plants (Table 

2). The structure, function and regulatory mechanisms of BC biofilm production are as 

diverse as the bacteria that produce them. Select examples of these BC-mediated inter-

domain interactions are discussed below (Augimeri et al., 2015).  
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Table 2. Environmental relationships between BC producers and various hosts. From 

Augimeri et al. (2015). K. xylinus is shown in bold as it is the bacterium studied in this 

thesis. 

Bacterium Host/Vector Location Relationship Reference1 

Rhizobium 

leguminoserum 

Plant Roots Mutualistic Lin et al. (2015) 

Agrobacterium 

tumefaciens 

Plant Roots Pathogenic Tolba and Soliman (2014) 

Komagataeibacter 

xylinus 

Plant Fruit Uncertain Neera et al. (2015) 

Escherichia coli 
Human Gut Pathogenic Manageiro et al. (2015) 

Plant Fresh produce Vector Rangel-Vargas et al. (2015) 

Salmonella 

enterica 

Human Gut Pathogenic Manageiro et al. (2015) 

Plant Fresh produce Vector Rangel-Vargas et al. (2015) 

Asaia sp. Insect Gut Symbiotic Favia et al. (2007) 

Aliivibrio  fischeri Squid Light Organ Symbiotic Boettcher and Ruby (1990) 

1References given are the most recent reports describing the isolation of the respective 

bacterium from its respective host or vector. 

 

1.4.1 Insect-bacteria interactions of BC-producing acetic acid bacteria 

As described in Augimeri et al. (2015), many BC-producing acetic acid bacteria 

(AAB) are secondary symbionts of insects that rely on sugar-based diets (nectars, fruit 

sugars, phloem sap), particularly those belonging to the orders Diptera, Hymenoptera, and 

Hemiptera (Crotti et al., 2010). These α-proteobacteria provide their insect hosts with 

competitive advantages in the environment (Feldhaar and Gross, 2009). Acetobacteraceae 

are naturally found in association with the plants that these insects feed upon which 

facilitates environmental acquistion. The fruit fly Drosophila melanogaster and the pink 

sugarcane mealybug Saccharicoccus sacchari have a rich AAB microbiome consisting of 

A. aceti, G. diazotrophicus and G. sacchari (Ashbolt and Inkerman, 1990; Corby-Harris et 

al., 2007). The BC-producing Asaia bogorensis (Kumagai et al., 2011) was originally 

isolated from the nectar of tropical flowers (Yamada et al., 2000) and subsequently from 

the gut of insects (Crotti et al., 2009).  
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AAB typically inhabit the digestive system, salivary glands and reproductive 

organs of insects (Dillon and Dillon, 2004), but have also been isolated from insect surfaces 

(Ren et al., 2007). In the digestive tract of certain insects, AAB flourish due to the aerobic 

environment, acidic pH and a plethora of diet-derived sugars which are ideal conditions for 

BC production. Transmission electron microscopy (TEM) has demonstrated that Asaia sp. 

and Acetobacter tropicalis embed themselves within the BC matrix to establish tight 

association to the host epithelium (Favia et al., 2007; Kounatidis et al., 2009). Consistent 

with observations from the human gut microbiome (Kau et al., 2012), the immune system 

of Drosophila is influenced by its AAB symbionts. For example, the normal microflora of 

Drosophila supresses the proliferation of the pathogenic commensal gut bacterium, 

Gluconobacter morbifer (Ryu et al., 2008).  

 

In addition to being a phytopathogen, BC-producing Dickeya dadantii, is also an 

insect pathogen, as it produces entomotoxins and causes septicemia and death in the pea 

aphid, Acyrthosiphon pisum (Costechareyre et al. , 2012). D. dadantii colonizes the insect 

gut and forms dense clusters using a BC biofilm. A. pisum acquires bacteria from 

contaminated plant leaves, serving as a vector of D. dadantii, and phytopathogenic and 

BC-producing Pseudomonas syringae (Stavrinides et al., 2009). 

 

Since the insect gut serves as a reservoir of AAB, sugar-loving insects act as vectors 

dispersing various BC-producers to plants in nature. For example, Drosophila could 

deposit and acquire AAB from unripe, ripe or rotten fruit and be responsible for their fruit-

fruit transmission (Figure 6). This phenomenon has been demonstrated experimentally 

with non-pathogenic E. coli ATCC 11775 and human pathogenic E. coli O157:H7 (Berger 

et al., 2010). Little is known about how the regulation of BC biosynthesis is affected by 

insect-bacteria relationships. 
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Figure 6. Sugar-loving insects, such as the fruit fly Drosophila melanogaster, acquires 

and deposits acetic acid bacteria (AAB) onto fruit in nature. AAB residing in the gut of 

the insect get deposited on the fruit and encourage ripening, perpetuating this positive 

feedback loop. This process facilitates the fruit-fruit transmission of AAB that inhabit 

the carposphere (fruit surface), such as K. xylinus. Figure credit to Andrew Varley. From 

Augimeri et al. (2015). 

 

1.4.2 Plant-bacteria interactions of BC producers 

BC biofilms contribute to numerous plant-bacteria interactions. Various BC 

producers inhabit the phyllosphere (above ground) and rhizosphere (beneath ground) 

microenvironments, where symbiotic and pathogenic relationships flourish. Some 

examples are discussed below (Augimeri et al., 2015).  

 

1.4.2.1 Persistence of pathogenic Enterobacteriaceae on fresh produce 

Human pathogens, such as E. coli and S. enterica, can form biofilms on fruits and 

vegetables by surviving on exudate released from lysed plant cells. Enterbacteriaceae are 

found on sprouts, green leafy vegetables and fruits, such as melons and tomatoes, where 

they adhere to, but typically do not cause disease symptoms (Doyle and Erickson, 2008; 

Niemira and Zhang, 2009). However, S. enterica serovar Typhimurium acts as 
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phytopathogen in maize and mung bean plants when inoculated onto non-germinated seeds 

(Singh et al., 2004, 2005). S. enterica serovar Typhimurium and the enterohemorrhagic E. 

coli O157:H7 persists for over 100 days on basil and 177 days on parsley, respectively 

(Islam et al., 2004; Kisluk et al., 2013). Contamination of fresh produce has been, and 

continues to be a leading source of foodborne illness and more research is required to 

develop more effective prevention strategies (Lynch et al., 2009). The longevity of 

pathogens on fresh produce is largely due to EPSs and curli, which contribute to resistance 

against chlorine washes, a commonly used sanitizer in the food industry (Beuchat, 1997, 

1999; Ryu and Beuchat, 2005; Taormina and Beuchat, 1999).  

 

BC and curli are two main factors in adherence of Enterbacteriaceae on produce. 

S. enterica serovar Typhimurium mutants that were unable to produce BC or curli were 

found to have a one log reduction in adherence to parsley leaves (Lapidot and Yaron, 2009). 

The role of BC in adherence was also demonstrated by mutations in bcsA and bcsC, in 

which S. enterica serovar Enteritidis and S. enterica serovar Typhimurium had reduced 

attachment to either alfalfa sprouts and tomato fruits, respectively (Barak et al., 2007; Shaw 

et al., 2011). It is likely that the reduced colonization was caused by decreased BC synthesis 

and decreased BC export, in regards to the bcsA and bcsC mutants, respectively. 

 

Other studies have shown that pre-cut produce has an increased risk of becoming 

contaminated, as several S. enterica serovars were shown to preferentially attach to cut 

surfaces of many types of produce (Patel and Sharma, 2010). Exposed internal surfaces 

supply more nutrients since numerous plant cells are lysed when the fruit is cut. In some 

studies, E. coli displays less dependence on BC for adherence. The ability for 

enterohemorrhagic E. coli O157:H7 to attach to spinach leaves was shown to be associated 

with curli rather than BC (Macarisin et al., 2012). The highly virulent and BC non-

producing E. coli O104:H4 was found contaminating sprouts (Buchholz et al., 2011; 

Richter et al., 2014). This strain contains a novel hyperactive DGC (GdcX), and 

overproduced both CsgD and curli (Richter et al., 2014). This suggests that the production 

of curli and other c-di-GMP-dependent EPS may assist with adherence in the absence of 
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BC. However, these studies are not representative for all E. coli strains, since E. coli 

O103:H2 relies on BC for attachment to lettuce leaf surfaces, but not to their cut edges (Lee 

et al., 2015).  

 

A review by Yaron and Römling (2014) identified in Enterobacteriaceae, several 

plant adherence genes that encode virulence factors in animals. In S. enterica serovar 

Enteritidis, these genes include the biofilm regulator csgD and the curli nucleator, csgB 

(Barak et al., 2005) suggesting a mechanism in which pathogens could persist in the 

environment and use fresh produce as vehicles to infect human hosts (Berger et al., 2010). 

 

1.4.2.2 Fruit-bacteria interactions of Komagataeibacter xylinus 

The ability of bacteria to form BC biofilm enhances colonization of fruit substrates 

by serving as a molecular anchor. Two examples of BC producers that have been isolated 

from decaying fruit are Enterobacter amnigenus GH-1 (Hungund and Gupta, 2010), a 

human pathogen (Capdevila et al., 1998), and Komagataeibacter spp., which has been 

studied in regards to its BC production and interaction with fruit. 

 

Komagataeibacter are Gram-negative α-proteobacteria that belong to the family 

Acetobacteraceae (Cleenwerck et al., 2009; Mamlouk and Gullo, 2013) and are model 

organisms for BC synthesis. These bacteria produce a crystalline BC pellicle at the ALI of 

statically grown liquid cultures (Gromet-Elhanan and Hestrin, 1963) and form biofilms on 

climacteric (Dellaglio et al., 2005; Jahan et al., 2012; Park et al., 2003) and non-climacteric 

(Barata et al., 2012; Valera et al., 2011) fruit in nature. Komagataeibacter species are also 

commonly isolated from spoiled batches of wine (Bartowsky and Henschke, 2008). The 

natural habitat of K. xylinus is the carposphere (surface of fruit); its occurrence in wine is 

merely a result of its presence on the grapes used to make the wine. Studying the 

ecophysiology of K. xylinus will provide important clues for how the energetically costly 

BC is regulated and structurally influenced by its environment.  
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Nutrient availability on the surface of unripe fruits is limited. The small pool of 

plant-derived nutrients is from exudates or from wounds on the fruit surface. Bacteria are 

chemotactic towards exudates. For example, plant growth-promoting Pseudomonas 

fluorescens exhibits chemotaxis towards tomato root exudate, some amino acids, malic 

acid and citric acid, but not sugars (de Weert et al., 2002). E. coli is chemotactic towards 

sugars (Adler et al., 1973).  

 

Since K. xylinus is an acetic acid bacterium (AAB) that colonizes fruit, it likely 

persists within the gut of insects (refer to section 1.4.1). The fruit fly, Drosophila, 

preferentially deposits bacteria through regurgitation on the wounds of fruit where nutrients 

are most plentiful (Janisiewicz et al., 1999). The pH of these wounds is around 3.5 

(Janisiewicz et al., 1999) which is similar to the pH of K. xylinus cultures during 

exponential growth (Qureshi et al., 2013). Bacterial growth within fruit wounds has been 

observed for a saprophytic strain of Pseudomonas syringae (Janisiewicz and Marchi, 

1992), another plant-associated BC producer that resides in the phyllosphere (Arrebola et 

al., 2015). As fruit ripens, stored starch and PC are degraded by endogenous plant enzymes 

into glucose, providing a substrate for microbial growth and BC synthesis (Ahmed and 

Labavitch, 1980; Brady, 1987).  

 

Williams and Cannon (1989) investigated the environmental roles of K. xylinus BC 

production and its influence on the fruit-microbe interactions of this bacterium. When K. 

xylinus was inoculated on apple slices, it colonized the substate and outcompeted fungi and 

other bacteria when BC was produced, or overproduced, compared to BC non-producers. 

BC protected K. xylinus from dessication and from the damaging effects of UV radiation. 

K. xylinus produces BC to increase environmental fitness which differs from the notion 

that BC biosynthesis was required to suspend bacteria to the ALI of liquid cultures, an 

environment where they are not naturally found. This highlights the importance of studying 

the fruit-bacteria interactions of K. xylinus, to better understand the ecological role of BC.  
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The K. xylinus fruit-bacteria interactions described by Williams and Cannon (1989) 

demonstrated that BC production is required for effective colonization of apple slices. In 

K. xylinus, BC is synthesized by BcsA, BcsB, BcsC, BcsD, CcpAx, CmcAx and BglAx 

(refer to section 1.2) and the absence of any of these proteins results in decreased BC 

production (Deng et al., 2013; Nakai et al., 2002, 2013; Wong et al., 1990). Therefore, any 

disruption of these proteins could be inferred to negatively impact fruit colonization. 

Interestingly, CmcAx is homologous to the endoglucanase, CelC2, from the endophytic 

bacterium, R. leguminosarum, which degrades the non-crystalline tip of root hairs to make 

a localized hole that the bacterium can penetrate (Robledo et al., 2008). Similarily, secreted 

CmcAx (Koo et al., 1998) may also function to degrade the plant cell wall so that K. xylinus 

can obtain valuble nutrients trapped inside. This mechanism may play a role in the 

persistance of K. xylinus on unripe fruit, where nutrients are scarce. This idea is supported 

by the fact that CmcAx is secreted by BC non-producers, suggesting a role for CmcAx that 

is independent of BC biosynthesis.  

 

K. xylinus secretes large quantities of various organic acids (Zhong et al., 2013, 

2014). Although production of organic acids drains carbon away from K. xylinus BC 

production (Zhong et al., 2013, 2014), substrate acidification serves an ecological purpose. 

In the context of fruit-bacteria interactions, environmental acidification through secretion 

of organic acids provides K. xylinus with a competitive advantage over less acid-tolerant 

organisms growing on the same substrate. This phenomenon has been observed with 

various vaginal lactobacilli and oral streptococci strains that acidify their environment to 

outcompete competitors (Graver and Wade, 2011; Quivey et al., 2000). Kawano et al. 

(2002b) demonstrated that K. xylinus ATCC 53582, but not K. hansenii ATCC 23769 

synthesizes BC after glucose depletion by utilizing gluconic acid as a carbon source. While 

gluconic acid production is correlated with a decrease in pH, gluconic acid catabolism 

increases culture pH (Kawano et al., 2002). In the context of fruit-bacteria interactions, 

strains of K. xylinus acidify their microenvironment through gluconic acid secretion until 

they become the predominant organism on the fruit substrate. Once established, K. xylinus 

resorbs gluconic acid for BC production to enhance colonization. Secretion of other acids, 
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particularly acetic acid, may contribute to this process. Environmental acidification also 

solubilizes essential micronutrients such as phosphate and iron as previously reported for 

other plant-associated bacteria, including Gluconacetobacter diazotrophicus, Bacillus 

subtilis, and Pseudomonas and Rhizobium species (Crespo, 2011; Rodríguez and Fraga, 

1999; Zhang et al., 2009a).  

 

In vitro and in planta biofilm production by the Gram-positive rhizosphere 

bacterium, B. subtilis, is induced by the plant cell wall polysaccharides arabinogalactan, 

pectin and xylan (Beauregard et al., 2013), while monosaccharides have no effect. Though 

the B. subtilis biofilm has not been shown to contain BC, it does contain EPS, including 

the fructans levan I and II (Abdel-Fattah et al., 2005; Dogsa et al., 2013) and another 

polysaccharide containing glucose, galactose, fucose, glucuronic acid and O-acetyl groups 

in a molar ratio of about 2 : 2 : 1 : 1 : 1.5 (Morita et al., 1979). Therefore, plant cell wall 

components (PCWCs) can have a profound effect on polysaccharide-containing biofilms. 

Once deposited on fruit by an insect vector, K. xylinus would encounter several PCWCs 

that would interact and structurally modify its BC (Augimeri et al., 2015). Briefly, the plant 

cell wall polysaccharides hemicellulose (xylan, xyloglucan and glucomannan) and pectin 

incorporate into the BC matrix and reduce BC crystallinity (Chanliaud and Gidley, 1999; 

Hackney et al., 1994; Hanus and Mazeau, 2006; Iwata et al., 1998; Park et al., 2014; Uhlin 

et al., 1995; Whitney et al., 1995, 1998; Yamamoto et al., 1996; Yui et al., 1992). This 

increases the water-holding capacity of BC and would make the BC biofilm more resistant 

to desiccation in an environmental setting. Lignin also incorporates into the BC matrix and 

forms bacterial lignocellulose (BLC) that forms a BC biofilm that is more recalcitrant and 

resistant to environmental cellulases (Augimeri et al., 2015). The effect of PCWCs on the 

regulation of BC biosynthesis has not yet been investigated.  

 

1.4.2.2.1 Phytohormone-mediated fruit-microbe interactions of K. xylinus 

K. xylinus can be isolated from fleshy fruit where it would be exposed to various 

phytohormones that work in concert to control plant growth, development, and interaction 

with external stimuli. Indole-3-acetic acid (IAA; Figure 7A) is an auxin involved in nearly 
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every aspect of plant growth and development (Zhao, 2010). Abscisic acid (ABA; Figure 

7B) controls root growth, seed dormancy, the opening and closing of stomata, and the 

adaptive stress response to biotic and abiotic factors (Cutler et al., 2010). Zeatin (Figure 

7C) is a cytokinin that regulates cytokinesis and differentiation of plant cells, and works in 

conjunction with IAA to control plant growth (Hitoshi, 2006). Gibberellic acid (GA3; 

Figure 7D) encourages plant cells to increase in size through the uptake of photosynthate 

(Davière and Achard, 2013). Ethylene (Figure 7E) is a gaseous phytohormone that 

interacts with other phytohormones to regulate vegetative development, flowering, 

ripening and disease (Vandenbussche and Van Der Straeten, 2012).  

 

Figure 7. Chemical structures of phytohormones. Adapted from Augimeri et al. (2015). 

 

Fruit growth, characterized by cell division and expansion, is initially signaled by 

IAA, zeatin and GA3 sent from the seed to surrounding tissues, followed later by an 

increase in ABA. Fruit ripening and senescence is the final developmental stage, wherein 

levels of IAA, Z, and GA3 remain low, and levels of ABA and ethylene increase.  

 

Fruit ripening is associated with numerous physiological and biochemical changes. 

The sweetness of ripe fruit for example, is caused by starch hydrolysis. ABA promotes this 

process by upregulating ethylene production, which increases amylase activity and sugar 

accumulation (Agravante et al., 1990; Montalvo et al., 2009; Zhang et al., 2009b). The 

fruit cell wall is weakened during ripening (Brummell, 2006). This process, triggered by 
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ABA and ethylene (Cantín et al., 2007; Lohani et al., 2004), is associated with increased 

activity of cell wall-degrading pectolytic and cellulolytic enzymes (Ahmed and Labavitch, 

1980; Brummell and Harpster, 2001; Lohani et al., 2004). Intense turgor pressure within 

the plant cell and weakening of the cell wall releases exudate onto the surface of the fruit 

leaving it more susceptible to microbial invasion.  

 

Accumulation of sugars and weakening of the fruit cell wall during ripening 

provides a suitable nutrient environment for BC production and colonization. K. xylinus 

participates in numerous fruit-bacteria interactions, including the bi-directional transfer of 

phytohormones. While the effect of bacterially-produced phytohormones on plant 

physiology has been well-studied (Costacurta and Vanderleyden, 1995; Spaepen and 

Vanderleyden, 2011), there is limited information regarding the effect of plant-produced 

phytohormones on bacterial physiology.  

 

The role of IAA in plant-bacteria interactions of rhizosphere bacteria, such as 

Gluconacetobacter, Pseudomonas, Agrobacterium, Rhizobium, Bradyrhizobium, 

Enterobacter, Azospirillum and Streptomyces (Duca et al., 2014) is well-studied. 

Depending on the amount of IAA secreted and the sensitivity of the plant to IAA, these 

bacteria can have a plant-growth-promoting (Glick, 2012), or phytopathogenic effects 

(Spaepen and Vanderleyden, 2011). For example, crown-gall tumor formation by A. 

tumefaciens and A. rhizogenes depends on production of auxins and cytokinins that induce 

rapid cell division in plant roots. Genes for the biosynthesis of IAA, zeatin-riboside and 

trans-zeatin are found on the T-DNA region of the Ti plasmid (Akiyoshi et al., 1984; 

Thomashow et al., 1984). Unlike the rhizosphere bacterium Gluconacetobacter 

diazotrophicus (Lee and Kennedy, 2000), the closely related carposphere bacterium K. 

xylinus, does not produce endogenous IAA (Qureshi et al., 2013), as it would be counter-

productive for its survival; IAA inhibits fruit ripening (Aharoni et al., 2002; Davies et al., 

1997).  
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Exogenous IAA stimulates the growth of K. xylinus but diminishes BC yield, 

suggesting that IAA has a direct effect on BC production (Qureshi et al., 2013). The 

observed lower BC yield is consistent with the fruit-bacteria interactions of K. xylinus, 

since IAA inhibits ripening and signals monosaccharide building blocks are unavailable 

for BC synthesis. Delaying BC production preserves carbon source for growth. In nature, 

K. xylinus growth stimulation by IAA ensures cell density is at a peak once fruit ripening 

begins and IAA levels decrease (Jia et al., 2011). Whether IAA-induced growth is a result 

of IAA metabolism is unknown. IAA metabolism and degradation has been observed in 

other bacteria (Duca et al., 2014; Leveau and Gerards, 2008; Leveau and Lindow, 2005). 

It has been suggested that the degradation or inactivation of IAA by K. xylinus could 

decrease its effective concentration, thereby allowing fruit ripening to commence (Qureshi 

et al., 2013). Two rhizobacteria, Rhodococcus sp. P1Y and Novosphingobium sp. P6W, 

metabolize ABA and decrease its concentration in planta, altering host-plant growth 

(Belimov et al., 2014). Lowered BC production in the presence of IAA permits K. xylinus 

to chemotactically seek out nutrient conditions better suited for colonization (ie. wounds 

on fruit).  

 

IAA and other indole derivatives act as signaling molecules in bacteria, having 

effects on biofilm formation (Lee et al., 2007) and quorum sensing (Pillai and Jesudhasan, 

2006). Similar to IAA effects on K. xylinus BC production, indole (Figure 7F) decreases 

biofilm formation in E. coli (Lee et al., 2007; Martino et al., 2003). The effect of indole on 

biofilm formation was first reported to be dependent on SdiA, an N-acyl-homoserine 

lactone receptor (Lee et al., 2007) but recent data suggests this is not the case (Sabag-

Daigle et al., 2012). SdiA belongs to the LuxR family of transcriptional regulators. The 

genome sequence of K. xylinus E25 contains three genes (H845_2765, H845_67, and 

H845_1915) that encode LuxR family transcription factors which may be involved in K. 

xylinus quorum sensing; an area of research that has yet to be investigated. 

 

Fruit growth occurs prior to ripening, and is regulated by zeatin and GA3, which 

work with IAA to induce cytokinesis and cell enlargement, respectively. Bacterial 
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biosynthesis of zeatin and GA3 is documented in numerous plant-growth promoting 

bacteria (Arkhipova et al., 2005; Atzorn et al., 1988; Bastián et al., 1998; Boiero et al., 

2007; Bottini et al., 1989; Karadeniz et al., 2006; Phillips and Torrey, 1972) and bacterial 

phytopathogens (Akiyoshi et al., 1987; Karadeniz et al., 2006). These bacteria also produce 

IAA and influence cell division, and growth of host plants. Qureshi et al. (2013) showed 

that K. xylinus produces endogenous zeatin and GA3. B. subtilis, when grown in association 

with lettuce, produces zeatin causing an increase in plant shoot and root weight (Arkhipova 

et al., 2005). GA3 production by various root-colonizing bacteria is also accompanied by 

increased plant growth (Bottini et al., 2004). Inoculation with GA3-producing G. 

diazotrophicus, or exogenous GA3, increases monosaccharide levels in Sorghum bicolor 

(Bastian et al., 1999). Exogenous GA3 also increases the size and sugar content of grapes 

(Casanova et al., 2009). These studies demonstrate that bacterial zeatin and GA3 production 

can influence plant development, and suggest K. xylinus may be able to influence the 

growth of its fruit substrate. Exogenous zeatin and GA3 increase K. xylinus growth and BC 

production (Qureshi et al., 2013). However, the positive effect of zeatin and GA3 on BC 

production is indirect because it also increases cell growth. 

 

ABA triggers fruit ripening during the development of climacteric and non-

climacteric fruit, though its effect is more pronounced in non-climacteric varieties (Li et 

al., 2011). The climacteric stage of fruit ripening is associated with increased ethylene 

production and cellular respiration. Decreased IAA levels, and increased concentrations of 

ABA during ripening triggers the biosynthesis of ethylene (Zhang et al., 2009b), initiating 

a cascade of physiological changes that render the fruit more suitable for colonization by 

K. xylinus (see above). ABA biosynthesis has been reported in the phytopathogens 

Azospirillum brasilense (Cohen et al., 2008; Perrig et al., 2007) and A. lipoferum (Bottini 

et al., 2009), various plant-growth promoting bacteria such as Bradyrhizobium japonicum, 

Rhizobium spp., Proteus vulgaris, Klebsiella pneumoniae, Bacillus megaterium and B. 

cereus (Boiero et al., 2007; Dangar and Basu, 1991; Karadeniz et al., 2006; Tuomi and 

Rosenqvist, 1995) and numerous other endophytic bacteria (Sgroy et al., 2009). K. xylinus 

also produces endogenous ABA (Qureshi et al., 2013), which likely plays a role in its 
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ability to colonize fruit. A. brasilense Sp245 produces ABA and increases endogenous 

ABA levels in Arabidopsis (Cohen et al., 2008). ABA biosynthesis by A. lipoferum USA 

59b stimulates the growth of plants in dry soil (Bottini et al., 2009). Analogously, ABA 

production by K. xylinus could accelerate fruit ripening by stimulating the fruit’s 

endogenous ABA levels. This encourages plant ethylene production, leading to 

degradation of PC and starch and the liberation of free glucose providing ideal conditions 

for fruit colonization. ABA also plays a key role in regulating plant-pathogen interactions. 

In plants, there is a positive correlation between ABA levels and susceptibility to pathogens 

(Fan et al., 2009; Mohr and Cahill, 2003; Thaler and Bostock, 2004). ABA production by 

K. xylinus may also serve to down-regulate host-plant defenses.  

 

Qureshi et al. (2013) showed that exogenous ABA enhanced the growth and BC 

production of K. xylinus. Though monosaccharides in an unripe fruit are scarce, a ripe fruit 

provides the carbon required for growth, BC production and colonization. ABA therefore 

acts as a signal to K. xylinus indicating that the environment is suitable for colonization. In 

response, K. xylinus growth increases and causes an increase in BC synthesis, enhancing 

its ability to outcompete other organisms inhabiting the same fruit (Williams and Cannon, 

1989). However, like zeatin and GA3, the positive effect ABA has on BC production is an 

indirect result of a increased growth rate.  

 

Based on Qureshi et al. (2013), IAA, zeatin and GA3, which are present at high 

concentrations in unripe fruit, stimulate K. xylinus growth ensuring high cell density once 

ripening begins. IAA directly represses BC biosynthesis, since it is an indicator that fruit 

is not ripe. Endogenous zeatin and GA3 production increase fruit size, providing more 

biomass for colonization. Higher cell densities enhance endogenous ABA production by 

K. xylinus inducing fruit ripening through the activation of plant-produced ethylene. IAA, 

zeatin, and GA3 levels drop significantly concommitant with an increase in ABA during 

the ripening stage, a signal to K. xylinus that ripening has begun and that carbon source is 

available for BC production. Using current data, a model for this process was proposed 

(Figure 10; Augimeri et al., 2015). 
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The periplasmic space is a region of Gram-negative bacterial cell walls located 

between the inner cytoplasmic membrane and the outer membrane that contains 

lipopolysaccharide (Mitchell, 1961). This highly viscous environment contains a thin 

peptidoglycan layer (Schleifer and Kandler, 1972) and acts as a buffer between the external 

environment and the inside of the bacterium. External signals are received and transmitted 

by numerous periplasmic proteins, including degradative enzymes (Cook, 1988; Li et al., 

2003; Minsky et al., 1986), periplasmic binding proteins involved with sugar transport 

(Cangelosi et al., 1990), chemotaxis proteins (Shilton et al., 1996), and proteins that act as 

chaperones during cell envelope biogenesis (Zorn et al., 2014). Likewise, the BCSC 

transverses the cell wall of K. xylinus and must pass the growing glucan chain through the 

periplasm to be exported (Römling and Galperin, 2015). Therefore, though they have not 

been studied to date, proteins within the periplasm of K. xylinus warrant investigation and 

represent a unique approach to investigating IAA and ABA. Determining the effect of IAA 

and ABA on the periplasmic protein profiles of K. xylinus may provide insight into the 

molecular mechanisms that lead to the phenotypes these hormones induce.  
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Figure 8. Proposed model of the bi-directional transfer of phytohormones which influences bacterial physiology and fruit 

development during K. xylinus fruit colonization. The fruit on the left represents an unripe fruit that contains high levels of IAA, 

zeatin (Z), and GA3 (A). The fruit on the right represents a ripe fruit that contains high levels of ABA (B). Green triangles indicate 

that a characteristic would be promoted, while red triangles indicate that a characteristic would be reduced. Figure credit to Andrew 

Varley. Adapted from Augimeri et al. (2015). 

 



33 

 

 

 Ethylene: Response and biosynthesis in plants and bacteria 

The olefin ethylene was the first discovered phytohormone. In 1901, the graduate 

student, Dimitry Neljubow, from the Botanical Institute of St. Petersburg in Russia, noticed 

that his pea seedlings had stems that were shorter, thicker and bent sideways compared to 

normal pea seedlings; a phenotype later termed the triple response (Bakshi et al., 2015; 

Guzmán and Ecker, 1990). Mr. Neljubow discovered that the abnormal morphology was 

caused by ethylene, a by-product from the combustion of coal gas that was being used to 

fuel lamps in the laboratory. Subsequent studies demonstrated that ethylene is a vital 

phytohormone that regulates numerous processes, such as abscission, senescence, fruit 

ripening, stress responses and growth (Schaller, 2012).  

 

In Arabidopsis thaliana, ethylene binds to copper-containing ethylene-binding 

domains (EBDs) that are found within the conserved transmembrane domains of five 

ethylene receptors: ETR1, ERS1, ETR2, EIN4 and ERS2 (Chang et al., 1993; Hua and 

Meyerowitz, 1998; Hua et al., 1998; Sakai et al., 1998). All five receptors are homodimers 

and are located on the membrane of the endoplasmic reticulum (Chen et al., 2002; Ma et 

al., 2006). In the cytosol, ethylene receptors contain GAF domains that mediate protein-

protein interactions, as well as kinase and receiver domains that are similar to bacterial 

two-component signaling systems (Lacey and Binder, 2014; Schaller et al., 2008). Signals 

are transduced through autophosphorylation of a histidine/serine/threonine residue in the 

kinase domain, transfer of a phosphate group to an aspartic acid residue on the receiver 

domain and subsequent phosphorylation of downstream effectors (Chang et al., 1993; 

Schaller et al., 2008). Two subfamilies of ethylene receptors exist: the first subfamily 

contains ETR1 and ERS1 that have histidine kinase activity, and the second subfamily 

consists of ETR2, EIN4 and ERS2 that have serine/threonine kinase activity (Gamble et 

al., 1998; Moussatche and Klee, 2004). Ethylene signaling is believed to occur through an 

inverse-agonist phosphorelay model, wherein the ethylene receptors act as negative 

regulators of the pathway (Figure 9). The CTR1 (constitutive triple response-1) protein, a 

serine/threonine kinase that supresses the ethylene response, is activated by the ethylene 

receptors in the absence of ethylene (Clark et al., 1998; Kieber et al., 1993). When ethylene 
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binds, the receptors undergo a conformational change and inactivate CTR1, which relieves 

the suppression of downstream effectors that induce ethylene responses. 

 

Figure 9. Schematic of the 

ethylene signaling pathway in 

Arabidopsis thaliana. Ethylene 

signaling occurs through an 

inverse-agonist model, in 

which ethylene receptors 

(ETR1, ERS1, ETR2, EIN4 and 

ERS2) negatively regulate the 

pathway. In the absence of 

ethylene, the ethylene receptors 

activate CTR1 which supresses 

downstream effectors that 

induce the ethylene response. In 

the presence of ethylene, the 

ethylene receptors are 

inactivated, resulting in the 

inactivation of CTR1 and 

subsequent relief of ethylene 

response inhibition.  

A bioinformatics study showed that EBDs are common in plants and cyanobacteria, 

occur in fungi and green algae, but were absent in archaea and bacteria (Wang et al., 2006). 

However, Kim et al. (2007) demonstrated that various Pseudomonas species, including 

plant-associated P. syringae and P. putida, were chemotactic towards ethylene and that a 

mutant with the deletion of a gene involved in chemotaxis (cheR) was unable to respond to 

ethylene. Interestingly, both prokaryotic chemoreceptors and plant ethylene receptors 

utilize the two-component response system. Inner membrane-bound bacterial 

chemoreceptors (Shapiro, 1993) detect external stimuli via sensory domains in the 

periplasm, and relay the signals, through the CheW linker protein, to cytoplasmic two-

component signal transduction systems (Hazelbauer et al., 2008). External signals are 

transduced to a kinase (CheA) that phosphorylates two response regulators: CheY, which 

controls the rotational direction of the flagellar motor, and CheB, which facilitates sensory 

adaptation (Hazelbauer et al., 2008). Repellents activate CheA and the formation of 
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phospho-CheY, which binds to flagellar motor proteins and enhances clockwise rotation 

and random directional changes. Attractants inactivate CheA, reducing the levels of 

phospho-CheY, and allows the default counter-clockwise rotation of the flagellar motor to 

produce a forward swimming motion. Chemoreceptors respond to changes in 

chemoeffector concentration through reversible methylesterification of glutatmate residues 

by the CheR methyltransferase and the CheA-activated CheB methylesterase (Bornhorst 

and Falke, 2003). Therefore, chemoreceptors are methyl-accepting chemotaxis proteins 

(MCP). A higher degree of methylesterification is correlated with an increase in attractant 

response. Attractants inactivate CheA, reduce CheB methylesterase activity, cause an 

increase in receptor methylesterification and induce a forward swimming motion 

(Hazelbauer et al., 2008). It is possible that in Pseudomonas, ethylene binds to the 

periplasmic sensory domain of a chemoreceptor, inactivates CheA, and results in increased 

methylesterification and forward swimming. The absence of CheR would prevent 

methylesterification and inhibit the chemotactic response that Pseudomonas has for 

ethylene. No bacterial ethylene receptors have been discovered thus far, but Kim et al. 

(2007) established that bacteria have the ability to respond to exogenous ethylene, 

potentially through chemotaxis signaling pathways.  

 

In addition to being able to detect ethylene, plants and microorganisms are able to 

synthesize ethylene. Biosynthesis of ethylene in plants occurs via the Yang cycle (Peiser 

et al., 1984; Yang and Hoffman, 1984), wherein L-methionine is converted to S-

adenosylmethionine (SAM) by SAM synthetase, and then SAM is converted to 1-

aminocyclopropane-1-carboxylate (ACC) by ACC synthase (ACS). ACC is then oxidized 

to produce ethylene via one of the plant’s ACC oxidase (ACO) enzymes, of which there 

are five (Yang and Hoffman, 1984). In terms of microbial ethylene biosynthesis, only a 

few fungal species have been shown to use the ACC pathway (Arshad and Frankenberger 

Jr, 2002). However, bacteria like Escherichia coli produce ethylene from 2-keto-4-

methylthiobutyric acid (KMBA), a deaminated derivative of methionine (Ince and 

Knowles, 1985, 1986). In this pathway, ethylene is produced non-enzymatically by 

hydroxyl radicals produced from O2 via a NADH:Fe(III)EDTA oxidoreductase-mediated 
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reaction. In contrast, phytopathogenic Pseudomonas syringae strains (Weingart and 

Völksch, 1997) and the fungus Penicillium digitatum (Chou and Yang, 1973) can produce 

ethylene from 2-oxoglutarate (α-ketoglutarate) using an ethylene-forming enzyme (EFE) 

that is classified as an O2- and Fe(II)-dependent 2-oxoglutarate dioxygenase (2OG-

dioxygenase). Interestingly, plant ACO enzymes are also members of the 2OG-

dioxygenase family, suggesting a similar mechanism of ethylene formation by all EFEs. 

Though microorganisms can produce ethylene, an endogenous function of this compound 

has yet to be described. 

 

Numerous studies have investigated the effect of bacterially-produced ethylene on 

plants (Baca and Elmerich, 2007; Weingart and Völksch, 1997), as well as the effect of 

lowering plant-produced ethylene levels by bacterially-produced 1-aminocyclopropane-1-

carboxylate (ACC) deaminase enzymes (Glick, 2005). However, there is a paucity of 

literature regarding the effect of plant-produced ethylene on bacteria. This may be because 

ethylene is a gas and thus difficult to control in a laboratory setting without specialized 

equipment. Ethephon (2-chloroethylphosphonic acid) is an ethylene-releasing compound 

that produces in situ ethylene at a 1:1 molar ratio above pH 3.5 (Zhang and Wen, 2010). 

Base-catalyzed chemical degradation of ethephon results in the production of ethylene, 

chloride, and phosphate through a first-order reaction (Biddle et al., 1976; Klein et al., 

1979; Warner and Leopold, 1969). The rate of ethephon decomposition is positively 

correlated with pH and temperature (Biddle et al., 1976; Klein et al., 1979). Like ethylene, 

numerous studies have shown that application of ethephon induces and accelerates ripening 

of various fruits (Ban et al., 2007; Dhall and Singh, 2013; Dhillon and Mahajan, 2011; 

Hardie et al., 1981; Jolliffe, 1975; Szyjewicz et al., 1984; Zhang et al., 2012), allowing 

ethephon to be used in agriculture as a chemical replacement for gaseous ethylene during 

pre- and post-harvest fruit ripening (Gill et al., 2014; Khorshidi and Davarynejad, 2010; 

Singh and Janes, 2001).  
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 Purpose, hypotheses, and rationale of thesis research 

The study by Qureshi et al. (2013) revealed that IAA directly decreased BC yield in 

K. xylinus, but did not identify a phytohormone that directly increased BC yield. Qureshi 

et al. (2013) also showed that ABA increased the growth rate of K. xylinus. The main 

ripening hormone, ethylene, which is produced in plants in response to changes in IAA and 

ABA concentrations, was not investigated. The proposed phytohormone-mediated fruit-

bacteria interaction model (Figure 8) is therefore lacking in this respect. The overall 

purpose of this thesis was to identify molecular mechanisms that lead to the previously 

observed IAA- and ABA-induced phenotypes, determine whether K. xylinus BC 

biosynthesis and gene expression is influenced by exogenous ethylene, and assess whether 

K. xylinus produces endogenous ethylene.  

 

This thesis tested four hypotheses: i) K. xylinus periplasmic proteins are involved in 

mediating IAA- and ABA-induced phenotypes; ii) K. xylinus synthesizes endogenous 

ethylene; iii) Exogenous ethylene increases the yield of BC produced by K. xylinus; and 

iv) phytohormones influence the expression of K. xylinus genes involved in BC 

biosynthesis. 

 

The rationale behind these hypotheses were: i) IAA and ABA exert their effects 

from outside of the cell, therefore periplasmic proteins are likely involved in mediating 

IAA- and ABA signals within the periplasm; ii) K. xylinus synthesizes the fruit ripening 

hormone ABA, thus it likely produces ethylene, another ripening hormone; iii) ripe fruit 

provides a more suitable nutrient environment for fruit colonization by K. xylinus, so 

ethylene may act as a signal to upregulate BC production to facilitate this process; and iv) 

phytohormones influence BC biosynthesis in K. xylinus, so it is likely that they influence 

the expression of BC biosynthesis-related genes.  

 

In this thesis, periplasmic protein profiles of IAA- and ABA-treated K. xylinus 

cultures were examined using one-dimensional sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) to determine how periplasmic protein expression was 
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influenced by these phytohormones. To identify proteins involved in mediating IAA- and 

ABA-induced phenotypes in K. xylinus, protein bands displaying differential expression 

were excised from the gel and analyzed using liquid chromatography mass spectrometry 

(LC-MS). Qureshi et al. (2013) demonstrated K. xylinus endogenously produces ABA, 

zeatin and GA3; phytohormones that promote fruit growth and ripening. An ethylene 

detection assay, inspired by the A. thaliana triple response assay, was developed to 

demonstrate that K. xylinus synthesizes endogenous ethylene. A method to study bacterial 

ethylene response using ethephon, a chemical that releases ethylene in situ, was developed 

during this research study. Using this technique, the effect of exogenous ethylene on K. 

xylinus growth, BC production and pellicle properties was assessed. To complement 

previous and current phenotypic studies involving IAA, ABA and ethylene, this thesis 

determined the effect of these phytohormones on the expression of K. xylinus genes 

involved BC biosynthesis using reverse transcription quantitative polymerase reaction 

(RT-qPCR) experiments. This thesis elaborates on the phytohormone-mediated fruit-

bacteria interactions of K. xylinus and gives new insights into the transcriptional regulation 

of the bcs operon. Altogether, the data obtained from this thesis provides evidence that 

support the hypothesis that K. xylinus is a saprophytic carposphere bacterium that has the 

ability to effectively colonize and accelerate the rotting of fleshy fruit in the environment. 
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2 METHODOLOGY 

 Chemicals and growth medium 

Indole-3-acetic acid (IAA; BioShop) and abscisic acid (ABA; BioShop) were 

prepared in 100% (v/v) dimethyl sulfoxide (DMSO; BioBasic). L-methionine (BioShop) 

was dissolved in 0.1 M HCl, while α-ketoglutarate (BioShop), Tris-HCl (BioBasic), 

ethylenediaminetetraacetic acid (EDTA; BioBasic; pH 8) and 1-aminocyclopropane 

carboxylic acid (ACC; Sigma) were prepared in ultra-pure water (18.2 MΩ water). 

Phenylmethylsulfonyl fluoride (PMSF; BioShop) was dissolved in 100% (v/v) ethanol. 

Stock solutions of ethephon (2-chloroethylphosphonic acid; Sigma), NaCl (BioBasic) and 

NaH2PO4·H2O (BioBasic) were dissolved in acidified ultra-pure water (pH 2.5). Stock 

solutions (except those made in DMSO and ethanol) were filter-sterilized. All stock 

solutions were stored at -20oC until used. Schramm-Hestrin (SH) medium (Schramm and 

Hestrin, 1954) consisted of 20.0 g/L glucose, 5.0 g/L peptone, 5.0 g/L yeast extract, 2.7 

g/L Na2HPO4·7H2O  and 1.5 g/L citric acid. SH agar plates contained 15 g/L agar. SH 

medium was supplemented with cellulase from Trichoderma reesei ATCC 26921 (Sigma) 

to prevent the accumulation of cellulose and to allow for a homogeneous cell solution to 

be produced when cultures were grown under agitated conditions. Cellulase was filter-

sterilized and stored at 4oC. RNase-free water was prepared by treating ultra-pure water 

with 0.1% (v/v) diethylpyrocarbonate (DEPC; Sigma) for two hours at 37oC. Remaining 

traces of DEPC were inactivated by autoclaving for 15 minutes at 121oC.  

 

 Bacteria and starter culture growth conditions 

Komagataeibacter xylinus ATCC 53582 was maintained as frozen glycerol stocks at 

-80oC. All starter cultures were grown by inoculating a single rough colony of K. xylinus 

from a Schramm and Hestrin (SH) agar plate streaked from glycerol stock, into 5.0 mL of 

SH broth (pH 5) supplemented with 0.2% (v/v) filter-sterilized cellulase. Cultures were 

grown in triplicate and incubated at 30oC with agitation at 150 rpm until the cells reached 

an OD600 of 0.3-0.4. Cultures were harvested by centrifugation (3,500 rpm; 10 minutes; 

4oC), washed twice, suspended in sterile 0.85% (w/v) NaCl and quantified with a Petroff-

Hauser counting chamber.  
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 Periplasmic protein isolation and analysis 

Periplasmic proteins were extracted from K. xylinus using a protocol adapted from 

Ames et al. (1984). K. xylinus starter cultures were used to inoculate 25.0 mL of SH broth 

and SH broth supplemented with 0.01 µM or 10.0 µM IAA or ABA at a concentration of 

105 cells/mL. Cultures were also supplemented with 0.2% (v/v) cellulase and were grown 

at 30oC and 150 rpm for 5 days. Cells were transferred to 50.0 mL screw-capped tubes, 

harvested via centrifugation (3,500 rpm; 10 minutes; 4oC) and washed twice with 0.85% 

(w/v) NaCl. Washed cell pellets were suspended in 5.0 mL of 0.85% (w/v) NaCl (5X 

concentrated cells) and 1.0 mL portions were aliquoted into micro-centrifuge tubes. These 

tubes were centrifuged (13,000 x g; 5 minutes; 4oC) and the supernatant was decanted. The 

cell pellets were suspended in 50 µL of chloroform, quickly vortexed and then allowed to 

incubate at room temperature (23oC) for 15 minutes. After incubation, 200 µL of TE buffer 

(10.0 mM Tris-HCl; 1.0 mM EDTA; pH 8) supplemented with PMSF (100 µM) was added 

to each tube (PMSF was added to the TE buffer directly before it was added to each tube, 

since it decomposes quickly under aqueous conditions). Periplasmic proteins were released 

by mixing the tubes gently by inversion for two minutes. The tubes were centrifuged 

(10,000 x g; 5 minutes; 4oC) to separate the aqueous and organic phases and 150 µL of the 

upper aqueous layer containing the periplasmic proteins in TE buffer was transferred into 

a micro-centrifuge tube. Periplasmic protein samples were diluted 1/10 in TE buffer (10 

mM Tris-HCl; 1.0 mM EDTA; pH 8) and quantified using the Bradford assay (Bradford, 

1976) with 100 µg/mL bovine serum albumin (BSA) as the standard. Absorbance at 595 

nm was measured using a Bio-Rad xMark Microplate Spectrophotometer. Samples were 

precipitated by adding two volumes of ice-cold acetone and overnight incubation at -20oC. 

Periplasmic proteins were recovered by centrifugation (13,000 x g; 15 minutes; 4oC). The 

supernatant was decanted completely and the protein pellet was allowed to dry at room 

temperature until the tubes stopped smelling of acetone (about 10 minutes). The dried 

protein pellet was dissolved in TE buffer (10 mM Tris-HCl; 1.0 mM EDTA; pH 8) 

supplemented with PMSF (100 µM) to give a protein concentration of 2.0 µg/µL. Unused 

periplasmic proteins were stored as acetone precipitates at -20oC.  
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SDS-PAGE was used to assess how IAA and ABA influenced the periplasmic 

protein profiles of K. xylinus. Two Bio-Rad Mini-PROTEAN TGX polyacrylamide 

gradient gels (4-20%) were electrophoresed with identical samples on a Bio-Rad Mini-

PROTEAN Tetra System gel apparatus at 125V in 1X Tris/glycine/SDS running buffer 

that was diluted from a 10X stock (30.3 g/L tris base; 144.0 g/L glycine, 10.0 g/L SDS). 

One volume of 2X Laemmli sample buffer (120 mM Tris-HCl, pH 6.8; 4% (w/v) SDS; 

20% (v/v) glycerol; 0.02% (w/v) bromophenol blue; Laemmli (1970)) was added to 

aliquoted periplasmic protein samples and the mixture was heated for 10 minutes at 70oC. 

The first gel was loaded with 5.0 µg/well of protein and was stained with silver as 

previously described (Gromova and Celis, 2006). The second gel was loaded with 30.0 

µg/well of protein and stained (20 minutes) with 0.1% (w/v) Coomassie Blue G-250 

dissolved in 50% (v/v) methanol and 10% (v/v) glacial acetic acid. The Coomassie Blue 

stain was filtered through Whatman #1 filter-paper. Protein bands were developed by 

overnight incubation in destain solution (40% (v/v) methanol and 10% (v/v) glacial acetic 

acid). Coomassie Blue staining and destaining were performed at room temperature with 

gentle agitation. Stained gels were stored in 5% glacial acetic acid and photographed using 

a Canon Rebel T1i digital camera on a Logan desktop light box.  

 

Protein bands of interest (increased or decreased intensity compared to the untreated 

control) were excised from the gels, stored in 5% acetic acid and sent to the Sick Kids 

Hospital Advanced Protein Technology Centre for sequencing using LC-MS. Peptide 

sequences were compared to the protein database of K. xylinus NBRC 3288 that is 

published on the NCBI website. K. xylinus NBRC 3288 has been reclassified as K. 

medellinensis NBRC 3288 (Yamada et al., 2012). Protein identification results were 

analyzed using Scaffold Proteome Software (www.proteomesoftware.com). 

 

 Prediction of disordered protein domains  

The prediction of disordered protein domains within the MtfB protein was 

determined using the FoldIndex© algorithm, as previously described (Prilusky et al., 



42 

 

 

2005). This program is available as a free online tool and is used by imputing the amino 

acid sequence of the protein of interest (http://bip.weizmann.ac.il/fldbin/findex).  

 

 Triple response assay  

Endogenous production of ethylene from K. xylinus was determined using the 

Arabidopsis thaliana triple response assay (Guzmán and Ecker, 1990). Seeds of A. thaliana 

ecotype Columbia (kindly provided by Dr. Dario Bonetta) were surface-sterilized in a 

sealed plastic container using chlorine gas produced from the addition of 3.0 mL 

concentrated HCl into 100 mL of bleach. The assay was performed using sectored 

polypropylene petri dishes. Growth medium for seeds was added in the quadrants adjacent 

to those containing SH agar (Figure 10). Negative controls consisted of sterile seeds plated 

on 1X Murashige and Skoog (MS) salts medium (4.33 g/L; pH 6.0; 0.8% agar) containing 

1% (w/v) sucrose. MS medium was prepared at 75% of its required final volume so that 

0.25 volumes of a 4% (w/v) sucrose stock solution (autoclaved separately) could be added. 

Positive controls consisted of seeds plated on the MS-sucrose medium supplemented with 

10.0 µM ACC, the precursor for ethylene biosynthesis in plants (Yang and Hoffman, 1984). 

After seeds were stratified at 4oC for 4 days, K. xylinus starter culture (20 µL; OD600=0.5) 

was spread on the two quadrants of plates containing SH medium (pH 5) with and without 

the addition of 4.0 mM L-methionine or α-ketoglutarate (Figure 10). Experiments using 

K. xylinus grown on SH medium without supplementation were also performed using glass 

petri dishes to rule out off-gassing as the cause of a negative result when using 

polypropylene petri dishes. Plates were sealed with Parafilm, wrapped in foil, exposed to 

light for 2 hours and then germinated in the dark for 72 hours at 23oC. 

 

A separate triple response assay experiment was carried out to determine if ethylene 

was released as a result of ethephon decomposition in SH medium (pH 5 and pH 7). The 

assay was performed using sectored glass petri dishes. Ethephon (1 mM) was spread on 

SH agar (1.5%), while seeds were plated on the adjacent MS-sucrose medium (Figure 11). 

Positive and negative control experiments, seed stratification and the germination of A. 

thaliana seeds were carried out as they were for the triple response assay with K. xylinus. 
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Both triple response assays were performed using three biological replicates (three plates 

per treatment). Seedlings were photographed using a Canon Rebel T1i digital camera or a 

USB 2.0 USB Digital Microscope (Plugable Technologies). The hypocotyl length of 60 

seedlings per biological replicate (180 seedlings per treatment) was measured using ImageJ 

software (Schneider et al., 2012). Statistics were performed using a one-way ANOVA with 

a Tukey’s multiple comparison test. Differences were considered statistically significant if 

p < 0.05.  

 

 Gas chromatography (GC) 

GC was used in an attempt to detect ethylene. NaOH (10 N), sodium phosphate 

buffer (pH 10) and SH broth (pH 7) were supplemented with ethephon (2.0, 20.0, 40.0 and 

80.0 mM) for the production of ethylene. Ethephon decomposition was carried out in 2.0 

mL GC vials that were incubated statically or at 150 rpm at 30oC for 3 days. K. xylinus 

starter cultures were grown and concentrated to an OD600 of 0.5 in SH medium with and 

without the addition of 4.0 mM L-methionine or α-ketoglutarate; two precursors known to 

be used for bacterial ethylene biosynthesis. Five hundred microliters was added to a 2.0 

mL GC vial and incubated statically or at 150 rpm at 30oC for 3 days. To determine 

ethylene production from cultures grown on agar, 500 µL of SH agar was added to a 2.0 

mL GC vial and 3.0 µL of K. xylinus starter culture (concentrated to OD600=0.5) was 

spotted. These vials were incubated statically at 30oC with the lid open for 2 days to allow 

for bacterial growth. The vials were then sealed and incubated in the same way for an 

additional 24 hours to allow for ethylene accumulation in the vial. A. thaliana ecotype 

Columbia seeds were grown in 2.0 mL GC vials containing 500 µL MS-sucrose medium 

supplemented with 10.0 µM of ACC. Vials containing A. thaliana seeds were initially 

incubated at 4oC in the dark for 3 days. Stratified seeds were then provided light for 2 hours 

and then incubated at 23oC in the dark for an addition 3 days to allow for germination and 

ethylene production. Ripening and rotting bananas produce ethylene. Therefore, slices of 

banana peel (0.5 x 2 cm) were added to 2.0 mL GC vials and incubated statically at 30oC 

for 3 days. All samples were prepared in triplicate. GC conditions (method name: 

Ethylene.METH) are described in Table 3. 
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Table 3. GC conditions used for the detection of ethylene. 

Variable Setting 

Instrument Varian 3900 GC 

Injection volume 5.0 µL 

Split ratio 20% 

Injector temperature 200oC 

Run time  4.5 minutes 

Column Varian VF-23ms 

Oven temperature 50oC for 2 minutes 

Ramp of 20oC/min 

Maximum of 100oC 

Carrier gas Helium 

Detector Flame-ionization detector (FID) 

Detector temperature 300oC 
 

 

 Time-course pH analysis of ethephon-exposed cultures 

The pH change during growth of K. xylinus cultures in the presence of ethephon was 

assessed. Starter cultures were used to inoculate 150 mL of SH medium (pH 7) 

supplemented with 0.2 % (v/v) cellulase at a concentration of 105 cells/mL. These cultures 

were incubated at 30oC and 150 rpm for 14 days. Ethephon was tested at concentrations of 

0.01, 0.1 and 1.0 mM, while the untreated control culture was supplemented with an equal 

volume of acidified ultra-pure water (pH 2.5). An identical experiment using phosphate 

and chloride (0.01, 0.1 and 1.0 mM) as the test compounds was run in parallel. All flasks 

were covered with foil and sealed tightly with tape to prevent the escape of released 

ethylene. Each day, 5 mL of culture was removed and the pH was measured. Three 

biological replicates were tested with three technical replicates each. Statistical analysis 

was completed using a one-way ANOVA with Tukey’s multiple comparisons test. 

Differences were considered significant if p < 0.05.



45 

 

 

 

Figure 10. Plate layout for the triple response assay with K. xylinus. A schematic illustrates the composition of each quadrant in the 

negative control (A), positive control (B) and experimental plates (C-E). 
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Figure 11. Plate layout for the triple response assay with ethephon as an in situ source of ethylene. A schematic illustrates the 

composition of each quadrant in the negative control (A), positive control (B) and experimental plates (C and D). 
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 Minimum inhibitory concentration (MIC) assay 

MIC assays were performed in sterile 96-well plates using the two-fold serial broth 

dilution MIC method (Witebsky et al., 1979) to determine the lowest concentration of 

ethephon that prevented visible growth of K. xylinus. Ethephon was tested using a 

concentration range of 0.195-100 mM and was diluted in SH broth (pH 7). Wells were 

inoculated with K. xylinus starter cultures at a concentration of 105 cells/mL in a final 

volume of 150 µL. Growth controls without ethephon and sterile controls were included. 

Plates were sealed with Parafilm and incubated statically for five days. Clear wells were 

an indication of growth inhibition. To ensure the results were caused by ethylene and not 

by chloride or phosphate, the two by-products that result from ethephon decomposition, 

the same experiment was performed using phosphate and chloride at the same 

concentrations as ethephon was tested. Three biological replicates were tested with one 

technical replicate each. 

 

 Growth kinetics 

The effect of ethephon on the growth of agitated K. xylinus cultures was determined 

in 96-well plates that were inoculated, in triplicate, with K. xylinus starter cultures at a 

concentration of 105 cells/mL in a final volume of 200 µL of SH medium (pH 7) 

supplemented with 0.4% (v/v) cellulase. Three biological replicates and sterile controls, 

each with six technical replicates, were included for each treatment. Ethephon 

concentrations of 0.01, 0.1 and 1.0 mM, along with an untreated control plate that was 

supplemented with sterile ultra-pure water (pH 2.5), were all tested using separate plates. 

All unused wells contained sterile water to limit evaporation of test wells. Two experiments 

were conducted; one in which ethephon or acidified ultra-pure water (pH 2.5) was added 

only at the beginning of the experiment, while the second included the addition of ethephon 

or ultra-pure water (pH 2.5) every two days. The latter was conducted to control for the 

possible loss of ethylene gas, since plates needed to be opened to read the OD. All plates 

were sealed with Parafilm and incubated at 30oC and 150 rpm. OD600 was recorded using 

a Bio-Rad xMark™ Microplate Absorbance Spectrophotometer. Growth was followed for 

335 hours.  
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The effect of IAA and ABA on the agitated growth of K. xylinus was also assessed. 

Cultures were inoculated at a concentration of 105 cells/mL in 25 mL of SH broth 

supplemented with 0.2% (w/v) cellulase and 0.01 µM and 10.0 µM of IAA and ABA. 

Untreated and DMSO-treated cultures were grown in parallel as controls. All treated 

cultures contained a final DMSO concentration of 0.02% (v/v) and were grown at 30oC 

and 150 rpm for 14 days. Each day, 1.0 mL of culture was removed and 100 µL aliquots 

were added to the wells of a 96-well plate. Sterile growth medium containing cellulase was 

used as a blank. OD600 was recorded using a Bio-Rad xMark microplate spectrophotometer. 

All cultures were grown in triplicate, each having their OD600 calculated using the mean of 

six technical replicates. Statistical analysis was carried out using a repeated measures one-

way ANOVA with the Greenhouse-Geisser correction. 

 

 Pellicle assays and analysis 

K. xylinus pellicles grown in the presence of ethephon were characterized to 

determine the effect of ethylene on BC production under static conditions. Pellicle assays 

were conducted in sterile 24-well plates using a final well volume of 2.0 mL SH broth (pH 

7). Wells were inoculated with K. xylinus starter cultures using three biological replicates, 

each with six technical replicates, at a concentration of 105 cells/mL. Ethephon stock 

solution was added to obtain final ethephon concentrations of 0.01, 0.1 and 1.0 mM. Each 

plate contained a row of sterile control wells that consisted of only medium and ethephon 

to control for contamination. All plates were sealed with Parafilm and incubated statically 

at 30oC for 7 days. Untreated control plates, as well as phosphate-chloride (0.01, 0.1 and 

1.0 mM) control plates were run in parallel. Each treatment was run in its own plate to 

prevent crossover of ethylene. Additionally, control- and ethephon-treated plates were 

spatially separated by growing them in different incubators.  

 

The thickness of K. xylinus pellicles was measured without the removal of water at 

the time of harvest. All pellicles, aligned with a ruler, were photographed from the side and 

measured at three different positions using ImageJ software (Schneider et al., 2012). These 
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values were averaged to get one value for each technical replicate, which were averaged to 

obtain one value for each biological replicate.  

 

Pellicle water-holding capacity and BC yield was determined by measuring the wet 

weights and dry weights, respectively. Pellicle wet weights were determined by removing 

pellicles from the plates and then holding them on paper towel for three seconds to remove 

excess medium before weighing. BC yield was determined by treating the pellicles with 

0.1 N NaOH at 80oC for 20 minutes to lyse cells. Pellicles were neutralized by shaking in 

ultra-pure water for 24 hours with two water changes and then dried in micro-centrifuge 

tubes at 50oC to constant weight before being weighed for pellicle dry weight. Pellicle 

hydration was calculated by subtracting the dry weight from the wet weight.  

 

The crystallinity index, CI(IR), of untreated K. xylinus pellicles as well as those 

formed in the presence of 0.01, 0.1 and 1.0 mM ethephon and phosphate-chloride, were 

assessed using Fourier-transform infrared spectroscopy (FT-IR). Pellicles from each 

treatment that had been NaOH-treated, washed and dried were used for FT-IR analysis on 

a Perkin Elmer Precisely Spectrum 100 FT-IR spectrometer with a horizontal attenuated 

total reflectance sampling accessory. For each treatment, three technical replicates for each 

of the three biological replicates were analyzed using 32 scans with a resolution of 4 cm-1 

in the range of 4000 to 650 cm-1. Background correction was performed prior to collecting 

sample data. OriginPro 2016 software was used for baseline correction and to normalize 

baseline-corrected transmittance values from 0 to 100. CI(IR) was calculated by converting 

the transmittance values for the bands at 1437 cm-1 (crystallinity band) and 895 cm-1 

(amorphous band) to absorbance values and determining the A1437/A895 as previously 

described  (Czaja et al., 2004) 

 

Values for technical replicates of pellicles were averaged to get one value for each 

biological replicate, which was used for statistical analysis. The means of ethephon-treated 

cultures were normalized to the mean of the control cultures and presented as the percent 
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of the control. A one-way ANOVA with a Tukey’s multiple comparison test was used. 

Differences were considered statistically significant if p < 0.05. 

 

 Colony morphology 

The effect of ethephon-derived ethylene on the morphology of K. xylinus colonies 

was assessed using an agar plate assay. Plates were made with 25 mL of SH agar (pH 7) 

and ethephon or phosphate-chloride were spread onto plates at concentrations of 0.01, 0.1 

and 1.0 mM. Untreated and solvent control plates which consisted of no ammendments and 

the spreading of acidified ultra-pure water (pH 2.5), respectively, were also performed. 

Triplicate K. xylinus starter cultures were grown, washed and inoculated onto agar plates 

that were sealed with Parafilm and incubated statically for five days. Colonies were 

photographed with a USB 2.0 USB Digital Microscope (Plugable Technologies). All 

treatments included three biological replicates. 

 

 Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) 

2.12.1 Growth conditions 

The effects of IAA and ABA on the steady-state expression levels of K. xylinus 

genes was assessed by performing a seven day time-course RT-qPCR experiment. 

Triplicate K. xylinus starter cultures were pooled and used to inoculate 80 mL of SH broth 

(105 cells/mL) that was supplemented with 0.2% (v/v) cellulase and 0.01 or 10.0 µM IAA 

or ABA. A control culture that was treated with an equal volume of 100% (v/v) DMSO 

was run in parallel and was considered the untreated culture. These master-mix cultures 

were separated into triplicate 25 mL cultures that were incubated at 30oC and 150 rpm for 

seven days. Cells were harvested by centrifugation (3,500 rpm; 10 minutes; 4oC) after 3 

(72 h), 4 (96 h), 5 (120 h), 6 (144 h) and 7 days (168 h) of growth. Medium-free cell pellets 

were flash-frozen in liquid nitrogen and stored at -80oC until RNA extraction could be 

completed (no longer than 7 days). All treatments included three biological replicates. 
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Ethephon, ABA and IAA were utilized for an RT-qPCR pulse experiment that was 

completed to assess the effect these hormones had on the expression of certain K. xylinus 

genes. For ethephon- and phosphate-chloride-treated cultures, triplicate K. xylinus starter 

cultures were grown, pooled, washed and quantified. A 2.0 L Erlenmeyer flask, containing 

1.0 L of SH broth (pH 5) with 0.2 % (v/v) cellulase was inoculated with 105 cells/mL and 

incubated at 30oC and 150 rpm until an OD600 of 0.4-0.5 was reached. Cells were harvested 

by centrifugation (3,500 rpm; 10 minutes; 4oC), washed twice with room temperature SH 

broth (pH 7), and suspended in 1.0 L of SH broth (pH 7). This synchronized culture was 

then separated into triplicate 25 mL cultures that were supplemented with 10.0 µM 

ethephon, 10.0 µM phosphate-chloride, or an equal volume of acidified ultra-pure water 

(pH 2.5) for the control.  These cultures were incubated for 24 hours to allow for the 

decomposition of ethephon, and subsequent release of ethylene before being harvested. 

Flasks were covered with foil and tightly sealed with tape to trap released ethylene. 

Cultures treated with IAA and ABA were inoculated similarly to those treated with 

ethephon. After the OD600 reached 0.4-0.5, the culture was separated into triplicate 25 mL 

cultures and supplemented with IAA or ABA at a concentration of 10.0 µM. A control 

experiment consisting of DMSO-treated cultures was performed in parallel. Cultures were 

harvested 1 hour after being treated with hormone and medium-free cell pellets were flash-

frozen in liquid nitrogen and stored at -80oC until RNA extraction could be completed (no 

longer than 7 days). All treatments included three biological replicates. 

 

2.12.2 RNA purification, quality control and first-strand cDNA synthesis 

Flash-frozen cell pellets (109 cells) were subject to total RNA extraction and 

purification using the Norgen Biotek RNA Purification Plus Kit following manufacturer 

instructions. Cells were not allowed to thaw prior to treatment with lysis buffer to ensure 

no change in mRNA levels occurred. Genomic DNA (gDNA) was removed by passing the 

crude RNA through a gDNA-removal column provided in the kit. Samples were stored at 

-80oC as RNA precipitates, obtained by the addition of 2.5 volumes of ice-cold 100% (v/v) 

ethanol, a 1/10 volume of 3.0 M sodium acetate (pH 5.2) and 10.0 µg of glycogen. 

Precipitated samples were centrifuged (13,000 x g; 30 minutes; 4oC) to recover the RNA. 
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Pellets were washed with ice-cold 70% (v/v) ethanol and dried at room temperature. 

Samples were suspended in DEPC-treated Tris-HCl (10 mM; pH 6.0) as soon as the pellets 

changed from opaque to translucent.  

 

Quality control of RNA was completed on the same day of cDNA synthesis. RNA 

quality was determined by agarose gel electrophoresis using a 2.0% (w/v) agarose gel. 

RNA concentration and purity was determined spectrophotometrically on a Cary 50 UV-

Visible Spectrophotometer (Varian), by measuring the A260 and A260/A280 values, 

respectively. RNA samples were diluted 1/200 in DEPC-treated Tris-HCl (10 mM; pH 6.0; 

the same buffer the RNA is suspended in) and read in a quartz cuvette. Only samples with 

A260/A280 values within 1.9-2.1 were used for cDNA synthesis. All samples were diluted to 

the same concentration using sterile DEPC-treated ultra-pure water.  

 

In a reaction volume of 40 µL, 2.0 µg of RNA from each sample was converted to 

first-strand cDNA using the Bio-Rad iScript Select cDNA Synthesis Kit using random 

hexamer primers according to manufacturer instructions. An initial master mix was made 

containing all reaction components except for the RNA template. This master mix was 

aliquoted into 200 µL polymerase chain reaction (PCR) tubes and RNA samples were 

added. Three samples were chosen at random from each experiment, and were subject to a 

mock-cDNA reaction that contained all components except reverse transcriptase, to assess 

RNA samples for genomic DNA (gDNA) contamination using RT-qPCR. All cDNA 

samples were stored at -20oC.  

 

2.12.3 Bioinformatic identification of crp/fnrKx 

A transcription factor belonging to the CRP/FNR family was shown to positively 

regulate BC biosynthesis in K. hansenii ATCC 23769 (Deng et al., 2013). This prompted 

investigation of the K. xylinus genome for potential homologous genes. BlastN analysis 

(Altschul et al., 1990) was used to compare the nucleotide sequence of crp/fnrKh 

(GXY_00863) from K. hansenii ATCC 23769 to the K. xylinus E25 genome sequence 

(accession: CP004360.1). This analysis revealed the presence of a crp/fnrKx gene 
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(H845_3156) that is 79% similar (E=4-175; 97% query coverage) to crp/fnrKh. BlastX 

analysis showed that the encoded protein sequences have 81% identity (E=1-121; 94% query 

coverage). This high level of similarity suggested that CRP/FNRKx  may regulate BC 

biosynthesis in K. xylinus ATCC 53582, similar to the results of Deng et al. (2013) that 

showed CRP/FNRKh regulates BC biosynthesis in K. hansenii ATCC 23769. Therefore, 

crp/fnrKx expression was analyzed in the RT-qPCR studies. 

 

2.12.4 Primer Design 

RT-qPCR primers were designed and validated for seven genes involved in K. 

xylinus BC production (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx; Table 4), one 

gene identified bioinformatically (crp/fnrKx), one gene identified from the periplasmic 

protein experiment (oprB; Table 4) and seven reference genes from five different 

functional class (Table 4). Since the K. xylinus ATCC 53582 genome sequence is not 

published, primers for crp/fnrKx, oprB, 23SrRNA and gyrB were designed using the 

nucleotide sequence of identical genes from other K. xylinus strains (Table 5). End-point 

PCR was conducted using all primer sets and K. xylinus ATCC 53582 gDNA as the 

template to ensure the expected amplicons were produced. Primer specificity was assessed 

empirically by end-point PCR using K. xylinus ATCC 53582 gDNA as the template and 

by RT-qPCR melt-curve analysis. PCR products were run on a 2.0% (w/v) agarose to verify 

amplicon size and primer specificity. All primer sets were designed using Primer3Plus 

(Untergasser et al., 2007) to be 20-27 base-pairs in length, have a GC content of 45-55%, 

a melting temperature (Tm) of 55-65oC, and to produce an amplicon of 90-300 base-pairs. 

Sequences were checked to be specific in silico using the Primer-Blast program 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to compare primer sequences to the 

genome sequences of various K. xylinus strains. The mfold web server 

(http://mfold.rna.albany.edu/?q=mfold/dna-folding-form) was used to check primers and 

amplicons for potential secondary structures. Validated primer sequences are given (Table 

5).  
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Table 4. Function of proteins encoded by genes analyzed by RT-qPCR in this study. See introduction for details. 
 

 Gene Name Encoded Protein Protein Function 

Reference 

Genes 

23SrRNA 23S ribosomal RNA subunit Structural component of ribosome 

16SrRNA 16S ribosomal RNA subunit Structural component of ribosome 

gyrB DNA gyrase B subunit (GyrB) DNA replication 

gapdh 
Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) 
Glycolytic enzyme 

rho Termination factor (Rho) Transcription termination factor 

rpoA RNA polymerase α subunit (RpoA) Transcription initiation 

rpoD RNA polymerase β subunit (RpoD) 
Transcription initiation and binding  

of RNA polymerase 

Target 

Genes 

bcsA BC synthase A subunit (BcsA) Glycosyltransferase/BC synthesis 

bcsB BC synthase B subunit (BcsB) Carbohydrate binding/BC chaperone 

bcsC BC synthase C subunit (BcsC) Outer-membrane pore/BC export 

bcsD BC synthase D subunit (BcsD) BC crystallization 

cmcAx Endo-β-1,4-glucanase (CmcAx) BC hydrolysis/regulation 

ccpAx Cellulose-complimenting protein (CcpAx) BC crystallization/regulation 

bglAx β-glucosidase (BglAx) BC hydrolysis/regulation 

crp/fnrKx 
Cyclic-AMP receptor protein/fumarate-nitrate 

reductase (CRP/FNRKx) 
Transcription factor 

oprB Carbohydrate selective porin B (OprB) Cellular uptake of carbohydrates 
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Table 5. Details of primer sets used in this study 

 Type Gene Design Strain1 Accession/Locus Tag3 Amplicon length (bp) Forward primer sequence (5’→3’) Reverse primer sequence (5’→3’) 

Reference 

Genes 

23SrRNA NBRC 32882 GLX_r00204 255 TGAGCTGGGTTTAGAACGTCGTG ACACCTGGCCTATTGACGTGATG 

16SrRNA Consensus Consensus 273 TGGGTGGGGGATAACTTTGG CGAAAACCTTCTTCACACACGC 

gyrB E25 H845_8695 108 TCTCGTCACAGACCAAGGACAAG CTTCCTTGGGGTGGGTTTCAAAC 

gapdh E25 H845_4024 103 GTGGAGGTCGGGATCATGTTCA TCACCATCCATTCCTATACCGGC 

rho NBRC 32882 GLX_188504 190 GTTGTGCCCTCATCGGGTAA TTACCCGTGCCCTTGAACTC 

rpoA NBRC 32882 GLX_104304 116 GGACTTCCTTGATCTCGTTGAG CTGCCTGAAGAACGACAACATC 

rpoD E25 H845_21705 126 CACCAGCTTGTTGATCGTCTCG CGTGGCTACAAGTTCTCGACCTA 

Target 

Genes 

bcsA ATCC 53582 X546766 184 ACAATGGGCTGGATGGTCGA ACCCGCAAAAGAAGGTCGCA 

bcsB ATCC 53582 X54676.16 197 AATGCGTTCCATCTTGGGCTTGAC ATCAGGTCAAGATAGGCGCCAACA 

bcsC ATCC 53582 X54676.16 103 TACCAGTCGCATATCGGCAATCGT GCAGGTCGTTCAACTGGCTTTCAT 

bcsD ATCC 53582 X54676.16 153 TCACCCTGTTTCTTCAGACCCTGT TCAGTTCGATCTGCAGCTTGTCCA 

cmcAx ATCC 53582 AB091058.16 98 CACCAACCTGCAGCATACCAATGA CGCCATCTGTGGCATTGTTCTTGT 

ccpAx ATCC 53582 AB091058.16 191 TGTTGCCGATGAATGGAGTCCTGT TGTCTGTCTTGGTCATGCTGGTCA 

bglAx ATCC 53582 AB091059.16 116 TACCGATCAGGAACTTGTCTAT CAAAAGTGGTGTAGGTCAGG 

crp/fnrKx E25 H845_31565 138 TCAGGCAGCGCCTTGAACAGCTTGACC TGACATTTCCCGCCTGTCCGAAGCAGC 

oprB NBRC 32882 GLX_011704 289 GACAGTCCGTAATCACCAACAGA CTTTACCGGCACCATGGATAGAT 

1 Represents the strains of K. xylinus whose genome sequences were used to design each primer set. 
2 K. xylinus NBRC 3288 has been renamed to K. medellinensis NBRC 3288 (Yamada et al., 2012). 
3These locus tags identify each gene and can be found within the genome sequences of the respective K. xylinus strain. 
4 Locus tag- Genome accession: AP012159.1 
5 Locus tag- Genome accession: CP004360.1 
6 Gene accession numbers 
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2.12.5 RT-qPCR 

The relative expression levels of these genes (Table 4 and Table 5) were 

determined after treatment with 10.0 µM ethephon, IAA, and ABA using the CFX Connect 

Real-Time PCR Detection System (Bio-Rad). RT-qPCR reactions (10.0 µL) included the 

SsoFast™ EvaGreen® Supermix (Bio-Rad), 300 nM or 500 nM primers (Table 6) and 4.0 

µL of the appropriate cDNA sample. To minimize technical variation, a master-mix was 

made that contained Supermix, primers and ultra-pure water. This master-mix was 

aliquoted into separate tubes and the template of each sample was added to the sub-master-

mixes. Aliquots (10.0 µL; one reaction) of sub-master-mix was then loaded into triplicate 

wells in the 96-well qPCR plate. Annealing temperature gradients were performed to 

empirically determine the optimal annealing temperature (Ta, opt.) for each primer set. The 

template for annealing temperature gradients consisted of aliquots of cDNA from each 

sample that were pooled and diluted 1/20 in Tris-HCl (10.0 mM; pH 8). The Ta, opt. was 

chosen as the annealing temperature that resulted in the lowest Ct value and caused specific 

amplification as shown by melt-curve analysis. Standard curves were completed to ensure 

the PCR amplification efficiency (E) of each primer set at their optimal annealing 

temperature was between 90-110% (Table 6), as per the minimum information for 

publication of quantitative real-time PCR experiments (MIQE) guidelines (Bustin et al., 

2009; Taylor et al., 2010). The same pooled and 1/20-diluted cDNA were subject to a 

minimum of four serial dilutions and used as the template for standard curves. The fold-

dilution (Table 6) depended on the expression level of each gene, as determined from 

annealing temperature gradients. The cDNA template concentration used for expression 

analysis (Table 6) was determined by the linear dynamic range (LDR) of each primer set 

(Table 6) as determined from the standard curves. Samples to be compared were diluted 

to the middle range of the LDR of each primer set. Every run included a no template control 

(NTC) containing Tris-HCl (10.0 mM; pH 8) as the template to check for reagent 

contamination and a no reverse-transcriptase (NRT) control containing the pooled mock 

cDNA reaction as the template to check for gDNA contamination. The qPCR reaction 

conditions were as follows: 2 minutes at 95.0oC, 40 cycles of 95.0oC for 5 seconds, the Ta, 

opt. (Table 6) for 15 seconds, and 72.0oC for 5 seconds. Melt-curve analysis was carried out 
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at the end of every run with an initial denaturation at 95.0oC for 10.0 seconds, and then a 

temperature gradient from 65.0-95.0oC by steps of 0.5oC every 5 seconds. Plates were 

loaded using the sample maximization strategy as previously described (Hellemans et al., 

2007), by analyzing all samples with a particular gene on one plate to prevent the need for 

inter-run calibration. Each RT-qPCR was run in triplicate for three biological replicates per 

treatment. 

 

2.12.6 Analysis and selection of reference genes 

K. xylinus reference genes were analyzed using three commonly used gene stability 

algorithms: geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 2004) and 

RefFinder (Xie et al., 2012). This analysis was completed for each time-point studied using 

RT-qPCR. 

 

Analysis using geNorm was conducted by exporting raw Ct values from the CFX 

Manager Software in the form of an RDML file and importing it for analysis into qbase+ 

version 3.0 software (Hellemans et al., 2007; Vandesompele et al., 2002). Outlier technical 

replicates were removed prior to analysis. The geNorm algorithm uses a pairwise 

comparison approach to calculate a gene stability value (M) to determine the most stably 

expressed genes. For every combination of reference genes and samples, an array 

consisting of log-transformed expression ratios is calculated. The standard deviation of 

each array element is defined as the pairwise variation (V) value, and the arithmetic mean 

of all pairwise variations is termed M. Step-wise exclusion of the least stable gene, and 

recalculation of the M value identifies the most stably expressed gene. A gene is considered 

stable if the M value is below 0.5 for homogenously-derived samples, such as bacterial 

samples (Hellemans et al., 2007). To determine the optimal number of reference genes to 

use, the pairwise variation ratio (Vn/Vn+1) was calculated (n corresponds to the number of 

reference genes). A threshold value of 0.15 for Vn/Vn+1 is suggested, at which the inclusion 

of another reference gene is not required since it does not significantly improve the 

normalization factor (Vandesompele et al., 2002) . The geNorm algorithm assumes 

reference genes are not co-regulated, since the expression ratios of co-regulated genes will 
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result in a low M value regardless of expression stability, due to a low pair-wise variation. 

As such, reference gene stability was also completed using NormFinder which utilizes an 

algorithm that does not employ such assumptions.  

 

NormFinder analysis was conducted using the freely-accessible Excel macro 

(http://moma.dk/normfinder-software). Raw Ct values from CFX Manager Software were 

converted to efficiency-corrected relative linear quantities (RLQ) by normalizing the Ct 

values for all samples of each gene (Ct2) to the sample that produced the lowest Ct value 

(Ct1). The following formula was used: 

𝑅𝐿𝑄 =  
1

𝐸𝐶𝑡2−𝐶𝑡1
 

Where, 

𝐸 = (% 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 × 0.01) + 1 

This normalized data was then log-transformed by the macro and analyzed. NormFinder 

software employs a model-based approach to measure gene stability using intra- and inter-

group variations from defined sample groups. These variations are then used to calculate a 

stability value, where a lower value represents a more stably expressed gene.  

 

RefFinder is a web-based tool (http://fulxie.0fees.us/) that integrates the four major 

computational programs used to determine reference gene stability (geNorm, NormFinder, 

BestKeeper (Pfaffl et al., 2004) and the comparative ΔΔCt method (Silver et al., 2006). Ct 

values from CFX Manager Software were efficiency-corrected in Excel and entered into 

the RefFinder and analyzed. Based on the rankings from each program, RefFinder assigns 

an appropriate weight to individual genes and calculates the geometric mean of these 

weights for their overall final ranking. This final ranking provides a comprehensive 

expression stability value; this was used to determine the reference genes for data 

normalization. The number of these reference genes to use was determined by the geNorm 

V value. 
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Table 6. RT-qPCR assay optimization. 

 Gene [Primer] (nM) Ta, opt. (
oC) E (%)1 Standard Curve (Fold dilution) LDR (dilution factor) [Template] (dilution factor) 

Reference 

Genes 

16SrRNA 300 60 90.1 10 20-200,000 2000 

23SrRNA 300 62 100.0 10 20-200,000 2000 

gapdh 500 60 100.5 4 4-1024 100 

gyrB 500 60 106.7 4 4-1024 100 

rho 500 58 107.8 3 9-243 100 

rpoA 500 56 91.4 3 27-729 100 

rpoD 500 60 103.1 4 16-1024 100 

Target 

Genes 

bcsA 500 66.4 95.2 3 3-243 100 

bcsB 300 62.4 99.6 3 3-243 100 

bcsC 500 60 99.0 4 4-256 100 

bcsD 500 60 98.8 4 4-256 100 

cmcAx 500 56.7 94.5 4 16-1024 100 

ccpAx 500 60 99.4 4 4-256 100 

bglAx 500 62 105.0 3 3-243 100 

crp/fnrKx 500 60 105.2 3 36-324 100 

oprB 300 60 92.0 3 9-243 100 

1Calculated from the slope of the standard curve: E=(X-1) x 100, where X=10-(1/slope) 
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2.12.7 RT-qPCR quality control, data analysis and statistics 

Raw Ct values were exported from CFX Manager Software as RDML files and 

imported into qbase+, where amplification efficiencies were used to correct Ct values. 

Technical replicates were excluded if the standard deviation of their Ct values was over 

0.2, but the mean of at least two technical replicates for each sample was used for 

comparison. Data analysis was carried out using the ΔΔCt method (Livak and Schmittgen, 

2001) employed in the Bio-Rad CFX Manager 3.1 Gene Study software using efficiency-

corrected Ct values. For the time-course experiment with IAA and ABA, data for each time-

point was made relative to the DMSO-treated control sample from the same time-point and 

validated reference genes were used for normalization. For the pulse experiment, Ct values 

from ethephon and phosphate-chloride RT-qPCR assays were made relative to Ct values 

obtained from the acidified ultra-pure water (pH 2.5) control samples, while Ct values from 

IAA and ABA RT-qPCR assays were made relative to Ct values from their respective 

DMSO-treated controls. The data obtained from the pulse experiment was normalized to 

the geometric mean of the efficiency-corrected expression data of the validated reference 

genes. Results from the gene study were imported into GraphPad Prism 6.0 software and 

the data was plotted. Expression differences were tested for statistical significance in 

qbase+ using an unpaired, two-tailed t-test. Differences were considered statistically 

significant if p < 0.05. 
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3 RESULTS  

 IAA and ABA influence the periplasmic protein profiles of K. xylinus 

K. xylinus has been shown to be affected by IAA and ABA (Qureshi et al., 2013), 

but a molecular basis for these effects has yet to be described. The periplasmic space acts 

as a buffer between the extracellular and intracellular environment, and likely contains 

proteins involved in IAA and ABA signalling. Thus, the effect of IAA and ABA on the 

expression of K. xylinus periplasmic proteins was assessed. K. xylinus cultures 

supplemented with 0.01 µM and 10.0 µM IAA and ABA were subjected to periplasmic 

protein extraction and SDS-PAGE analysis. Numerous differences in protein band intensity 

was observed when K. xylinus was grown in the presence of IAA and ABA (Figure 12). 

Differences in band intensity were more obvious on the silver-stained gel (Figure 12A) 

compared to the Coomassie-stained gel (Figure 12B) due to silver-staining being a more 

sensitive staining method (Chevalier, 2010) or because the ionization states of silver and 

Coomassie Blue are different during staining. For example, the protein bands at a molecular 

weight greater than 212 kDa were stained by silver-stained (Figure 12A) but were 

negatively stained by Coomassie Blue (Figure 12B). 

 

Proteins corresponding to the bands labelled SS-261 (261 kDa) and SS-278 (278 

kDa) were only expressed in the presence of IAA (Figure 12A) and showed increasing 

intensity with a higher IAA concentration (10.0 µM). These proteins were absent in the 

untreated- and ABA-treated samples and could only be observed with the more sensitive 

silver stain (Figure 12A), suggesting the protein concentration was too low to be detected 

by Coomassie Blue staining (Figure 12B). The protein band labelled as PB-29 was also 

only affected by IAA. As clearly illustrated in the silver-stained gel (Figure 12A), the 

intensity of PB-29 was greater in the lane containing the 10.0 µM IAA sample compared 

to the lanes containing the untreated- and ABA-treated samples. This suggests that IAA 

may upregulate the expression of the protein(s) within the PB-29 band.  

 

In contrast, protein bands PB-25 and CS-36 were only affected by ABA (Figure 

12A) exhibiting greater intensity in the ABA-treated samples compared to the untreated- 
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and IAA-treated samples suggesting that the protein(s) that constitute PB-25 and CS-36 

may be upregulated by ABA.  

 

Interestingly, the protein bands designated CS-46 and PB-55 were affected by both 

IAA and ABA (Figure 12A). In comparison to the untreated control, these protein bands 

were less abundant in the lanes containing IAA-treated samples and more abundant in the 

lanes containing ABA-treated samples.  

 

The protein bands designated CS-36 and CS-46 were excised from the Coomassie-

stained gel and represent protein(s) that were affected by only ABA and both IAA and 

ABA, respectively. Bands SS-261 and SS-278 were extracted from the silver-stained gel 

and represent protein(s) that were only affected by IAA. These proteins were identified by 

mass spectrometry. 

 

The protein containing bands that differed in intensity due to IAA or ABA treatment 

were excised from the gel and subjected to LC-MS analysis to identify the constituent 

proteins. The CS-36 and CS-46 protein bands were excised from the Coomassie-stained 

SDS-PAG gel. Twelve proteins were identified from band CS-36 (Table 7) with molecular 

weights (MW) in the range of 33-40 kDa. CS-36 showed an increased intensity in ABA-

treated samples compared to the untreated control (Figure 12). The proteins identified in 

the CS-36 band belong to various functional classes including sugar and alcohol 

metabolism, redox reactions, branched-chain amino acid biosynthesis, S-methyl-5’-

thioadenosine degradation and terpenoid biosynthesis. Singular protein(s) affected by ABA 

could not be determined from this experiment. 
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Figure 12. IAA and ABA influence the periplasmic protein profiles of K. xylinus. Cultures were grown for five days in SH medium 

that was either untreated or supplemented with 0.01 µM or 10.0 µM of IAA or ABA. Periplasmic proteins were extracted with 

chloroform (see methods for details) and analyzed using Bio-Rad Mini-PROTEAN TGX polyacrylamide gradient gels (4-20%) and 

SDS-PAGE. The gel on the left was loaded with 5.0 µg of protein and stained with silver (A). The gel on the right was loaded with 

30 µg of protein and stained with Coomassie Blue (B). Black arrows show protein bands whose intensities are altered by IAA and/or 

ABA. Molecular weight (MW); Silver-stained (SS); Coomassie-stained (CS); Protein band (PB). 
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Table 7. Proteins identified in the CS-36 protein band by LC-MS. 

Identified Protein Accession Number Molecular Weight (kDa) % Coverage Protein Function 

Pyruvate dehydrogenase E1 component α subunit GLX_27610 34 17 Sugar metabolism 

Pyruvate dehydrogenase E1 component β subunit GLX_27620 37 36 Sugar metabolism 

Fructose-1,6-bisphosphatase GLX_02870 35 17 Sugar metabolism 

6-phosphogluconate dehydrogenase GLX_20720 36 25 Sugar metabolism 

Glyceraldehyde 3-Phosphate dehydrogenase GLX_24640 36 32 Sugar metabolism 

Isocitrate dehydrogenase GLX_27020 37 24 Sugar metabolism 

Alcohol dehydrogenase zinc-dependant GLX_07290 37 16 Alcohol metabolism 

Alcohol dehydrogenase zinc-dependant  GLX_06680 40 41 Alcohol metabolism 

Ketol-acid reductoisomerase GLX_16830 37 34 Amino acid biosynthesis 

D-isomer-specific 2-hydroxyacid dehydrogenase GLX_01160 33 30 Redox reactions 

S-methyl-5’-thioadenosine phosphorylase GLX_26470 33 25 S-methyl-5’-thioadenosine 

degradation 

4-hydroxy-3-methylbut-2-enyl diphosphate 

reductase 

GLX_09340 40 15 Terpenoid Biosynthesis 

 

 

The CS-46 protein band was more abundant in ABA-treated samples and less abundant with IAA-treated samples compared to 

the untreated control (Figure 12). LC-MS analysis identified 19 different proteins with a MW range of 37-55 kDa (Table 8). Similar to 

the CS-36 protein band, numerous proteins involved with many areas of fundamental bacterial metabolism (sugar, amino acid, protein, 

fatty acid, nucleotide, DNA, alcohol) were identified. The functions of other identified proteins include S-adenosyl-L-methionine and 

S-adenosyl-L-homocysteine metabolism, periplasmic protein turnover and cellular uptake of carbohydrates. The specific protein(s) 

affected by IAA and ABA could not be determined from this experiment since proteins of similar molecular weight could not be 

sufficiently resolved by one-dimensional gel electrophoresis.
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Table 8. Proteins identified in the CS-46 protein band by LC-MS. 

Identified Protein Accession Number Molecular Weight (kDa) % Coverage Protein Function 

Isocitrate dehydrogenase GLX_27020 37 22 Sugar metabolism 

Isocitrate dehydrogenase [NADP] GLX_15100 46 31 Sugar metabolism 

Pyruvate dehydrogenase E1 component β 

subunit 

GLX_27620 37 27 Sugar metabolism 

Enolase GLX_05920 45 31 Sugar metabolism 

Acetyl-CoA hydrolase GLX_06800 55 18 Acetyl-CoA metabolism 

DNA polymerase III subunit β GLX_00020 40 14 DNA replication 

Adenylosuccinate synthetase GLX_25000 46 33 Purine biosynthesis 

Transcription termination factor Rho GLX_18850 48 21 Transcription 

termination 

Threonine synthase GLX_26260 51 13 Amino acid metabolism 

Aldehyde/betaine dehydrogenase GLX_24740 52 23 Amino acid metabolism 

Elongation factor Tu GLX_10690 43 58 Protein synthesis 

Aspartyl/glutamyl-tRNA amidotransferase 

subunit B 

GLX_05220 53 18 Protein synthesis 

Argininosuccinate synthase GLX_06620 45 18 Nitrogen metabolism 

Adenosyl-homocysteinase GLX_14510 47 21 S-adenosyl-

homecysteine 

metabolism 

S-adenosyl-methionine synthase GLX_18200 43 23 S-adenosyl-methionine 

metabolism 

Acetyl-CoA carboxylase GLX_19250 49 15 Fatty acid metabolism 

Aldehyde dehydrogenase  GLX_16210 50 21 Alcohol metabolism 

Endopeptidase DegP/Do GLX_19020 54 16 Periplasmic protease 

Porin B carbohydrate selective GLX_01170 55 22 Carbohydrate uptake 
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The SS-261 and SS-278 protein bands were only observed in silver-stained IAA-

treated samples. A single protein with a MW of 51 kDa was identified (13% coverage) in 

the SS-261 band was a mannosyltransferase B (mtfB; GLX_18490) that is closely related 

to the GT-1 family of glycosyltransferases. No other proteins were identified in the SS-261 

band suggesting that IAA induces the expression of MtfB in K. xylinus. Interestingly, the 

SS-261 band ran at a calculated MW of 261 kDa on the SDS-PAG but was identified as a 

51 kDa protein. No proteins were identified in SS-278 band; this is likely due to a low 

protein concentration. 

 

 The MtfB protein from K. xylinus has predicted disordered regions 

The abberent migration of MtfB through the SDS-PAGE gel prompted investigation 

of possible disordered regions within the proteins sequence. The IDP prediction algorithm 

FoldIndex© found four regions of disorder within the MtfB sequence (Figure 13).  

 

Figure 13. Disordered regions are predicted in the amino acid sequence of MtfB from 

K. xylinus E25. Potentially disordered regions (red) and folded regions (green) within 

the amino acid sequence of MtfB were predicted by the FoldIndex© algorithm. 

 

 K. xylinus produces low levels of endogenous ethylene 

K. xylinus was assessed for endogenous ethylene production using GC and the 

Arabidopsis thaliana triple response assay (Guzmán and Ecker, 1990). Multiple attempts 

to detect ethylene using GC failed. This is likely due to K. xylinus producing ethylene 

concentrations below the limit of detection by GC analysis, as well as non-ideal GC 

conditions. However, the triple response assay showed that K. xylinus produces low 



67 

 

 

concentrations of ethylene (Figure 14). A. thaliana seedlings were grown in the dark in 

sectored petri dishes in the presence of K. xylinus grown on adjacent plate sections (Figure 

10). Seedlings displayed a full triple response phenotype (shorter and thicker hypocotyl 

with exaggerated apical hook) when grown in the presence of ACC and an intermediate 

response in the presence of K. xylinus (Figure 14A). The hypocotyl length of seedlings 

grown in the presence of ACC and K. xylinus were significantly shorter than the untreated 

control, but hypocotyl shortening was significantly greater in the presence of ACC 

compared to K. xylinus (Figure 14B). Due to the dose-dependent nature of the triple 

response phenotype (Larsen and Chang, 2001), this suggests that K. xylinus produces low 

levels of endogenous ethylene that induces a slight triple response in dark-grown A. 

thaliana seedlings. Off gassing was not an issue when using plastic petri dishes since 

comparable results were obtained when K. xylinus was plated on SH agar in plastic and 

glass plates. 

 

 K. xylinus has proteins similar to other ethylene-forming enzymes 

All ethylene-forming enzymes (EFEs) are members of the 2-oxoglutarate 

dioxygenase (2OG-dioxygenase) family. BlastP analysis comparing the protein sequence 

of the P. syringae pathovar pisi EFE (Q9Z3T0) to the K. xylinus E25 genome sequence 

reveals two similar K. xylinus proteins: 1) Fe(II)-dependent 2OG-dioxygenase 

(WP_025437122.1; E = 1-23; 28% identities, 40% positives with 88% query coverage), and 

2) iron/ascorbate oxidoreductase (WP_025439960.1; E = 1-16; 27% identities, 40% 

positives with 84% query coverage). A similar search using the A. thaliana ACC oxidase 

1 enzyme (ACO1) sequence identified the same two K. xylinus proteins: 1) Fe(II)-

dependent 2OG-dioxygenase (WP_025437122.1; E = 8-17; 24% identities, 39% positives 

with 88% query coverage), and 2) iron/ascorbate oxidoreductase (WP_025439960.1; E = 

2-24; 26% identities, 44% positives with 87% query coverage). 

 

 Ethylene is produced from ethephon decomposition in SH medium (pH 7) 

The production of ethylene from ethephon decomposition on SH medium (pH 5 and 

pH 7) was assessed using GC and the A. thaliana triple response assay. Ethylene could not 
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be detected using GC. However, ethylene production from ethephon was verified using the 

triple response assay. A. thaliana seedlings were grown in sectored petri dishes in the 

presence of no ethylene source, an endogenous ethylene source (ACC) and an exogenous 

ethylene source (ethephon; Figure 11). The growth of seedlings in medium containing 

ACC allowed ethylene production and induction of the triple response phenotype (Figure 

15A). Ethephon decomposition was performed on SH agar (pH 5 and pH 7) in the sectored 

petri dishes containing A. thaliana seeds on MS-sucrose agar. The hypocotyl thickness was 

increased and the apical hook was exaggerated for seedlings grown in the presence of 

ethylene produced from ethephon decomposition on pH 7 SH agar compared to the 

untreated control (Figure 15A). In addition, the hypocotyl length of seedlings grown in the 

presence of ACC and ethephon (decomposed on pH 7 SH agar) were significantly shorter 

than the untreated control (Figure 15B). The triple response was not induced in seedlings 

grown on plates where ethephon was spread onto pH 5 SH agar, indicating the rate and 

efficiency of ethephon decomposition was higher on pH 7 SH agar. This result confirms 

that ethephon decomposition occurs in SH medium (pH 7) and that sufficient ethylene is 

released to induce a biological response at this pH.  
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Figure 14. K. xylinus produces low-levels of endogenous ethylene. Dark-grown A. thaliana seedlings display the triple 

response phenotype (shorter and thicker hypocotyl with exaggerated apical hook) when grown in the presence of ACC (full 

response) and K. xylinus (intermediate response) compared to the untreated control (A). The hypocotyl length of seedlings 

grown in the presence of ACC and K. xylinus were significantly shorter than the untreated control, while hypocotyl shortening 

was significantly greater in the presence of ACC compared to K. xylinus (B). Scale bar represents 1 mm. Different treatments 

containing K. xylinus were not statistically different from each other. Plastic petri dishes (P) and glass petri dishes (G) were 

used for the assay. “A” indicates a treatment is significantly different from the untreated control. “B” indicates a treatment is 

significantly different than the ACC-treated positive control. 1 = p < 0.05; 2 = p < 0.01; 3 = p < 0.001; 4 = p < 0.0001. Error 

bars show SD (n = 3). 
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Figure 15. Ethylene is released by ethephon decomposition in SH medium (pH 7). Dark-grown A. thaliana seedlings exhibit 

the triple response phenotype (shorter and thicker hypocotyl with exaggerated apical hook) when grown in the presence of 

ACC and when ethephon is decomposed into ethylene on SH medium at pH 7 but not SH medium at pH 5 compared to the 

untreated control (A). Scale bar represents 1 mm. The hypocotyl length of seedlings grown in the presence of ACC and 

ethephon-derived ethylene were significantly shorter than the untreated control (B). Error bars show SD (n = 3). ****p < 

0.0001. From Augimeri and Strap (2015). 
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 K. xylinus culture pH allows for ethephon decomposition 

K. xylinus is an acetic acid bacterium and is known to decrease the pH of its culture 

medium (Kawano et al., 2002b). Therefore, a time-course pH analysis was performed over 

a 14 day period to ensure the culture pH remained above 3.5 so that ethephon 

decomposition into ethylene would proceed unimpaired. This experiment was conducted 

using SH medium at pH 7 which was shown to facilitate ethephon decomposition into 

ethylene (Figure 15). The pH of all cultures decreased from pH 7 to approximately pH 5.5 

for the first 7 days, wherein the pH increased back to pH 7 (Figure 16A). Thus, 

acidification of the culture medium by K. xylinus would not have significantly affected 

ethephon decomposition and consequently, ethylene evolution. Comparable results were 

obtained for cultures treated with phosphate and chloride (Figure 16B). However, when 

K. xylinus was cultured in SH medium (pH 5), the pH dropped to about 4 (Appendix 

Figure A1), which may have a negative impact on ethephon decomposition. 

 

 K. xylinus cultures have an increased final pH in the presence of ethylene 

The pH of K. xylinus cultures treated with ethephon and phosphate-chloride were 

assessed over a 14-day period (Figure 16). Ethephon-treated cultures had a significantly 

higher final pH compared to the untreated control (Figure 17A). The final pH of cultures 

treated with phosphate and chloride were not different from the control (Figure 17B), 

indicating that the higher final pH observed with ethephon-treated cultures was due to the 

presence of ethylene.  
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Figure 16. The pH of K. xylinus cultures grown in SH medium (pH 7) stays above 3.5, 

allowing for efficient decomposition of ethephon into ethylene. K. xylinus was grown at 

30oC and 150 rpm in SH medium (pH 7) that was supplemented with 0.2% (v/v) 

cellulase, as well as ethephon (A) or phosphate and chloride (B). The change in culture 

pH was monitored for 14 days. Note that the y-axis begins at pH 5. Error bars show SD 

(n = 3). From Augimeri and Strap (2015). 
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Figure 17. Ethephon-derived ethylene causes an increase in the final pH of K. xylinus 

broth cultures. Cultures were grown at 30oC and 150 rpm in SH broth (pH 7) 

supplemented with ethephon (A) or phosphate-chloride (B) and 0.2% (v/v) cellulase. 

The final culture pH of phosphate-chloride-treated cultures was not different from the 

untreated control, indicating that the increased final pH of ethephon-treated cultures was 

caused by the presence of ethylene. Data presented indicates the final culture pH after 

14 days of growth and was normalized to, and expressed as percent of the untreated 

control. Note that the y-axis begins at pH = 5. Error bars show SD (n = 3). ***p < 0.001.  

 



74 

 

 

 Ethephon is relatively non-toxic to K. xylinus 

An MIC assay was performed to assess whether ethephon concentrations of 0.195 to 

100 mM inhibited the growth of K. xylinus. In both a pH 5 and pH 7 SH medium, K. xylinus 

growth was prevented with ethephon and phosphate-chloride at a concentration of 100 mM 

(Figure 18). In contrast, growth was inhibited with 50 mM ethephon but not phosphate-

chloride at the same concentration. This suggests that ethylene prevents the growth of K. 

xylinus when it is cultured in the presence of 50 mM ethephon in both SH media. This 

result is contradicted by the A. thaliana triple response assay (Figure 15), which indicated 

that ethylene was not liberated from ethephon on a pH 5 SH medium. However, ethephon 

decomposition for the triple response assay was conducted on solid medium and was 

spatially separated from the seedlings. For the MIC assay, ethylene liberation was 

performed using broth and occurred locally with the bacteria present. It is possible that 

more ethylene is released at pH 5 when ethephon is decomposed in a liquid compared to 

solid medium. In addition, the triple response assay utilized an ethephon concentration of 

1 mM, while growth inhibition was observed using 50 mM ethephon during the MIC assay. 

Therefore, it is also possible that more ethylene was released during the MIC assay 

compared to the triple response assay and prevented K. xylinus growth. It cannot be ruled 

out that the observed growth inhibition in the 100 mM chloride-phosphate treatment may 

be due to the Na+ counter-ion. Since NaCl and NaH2PO4 were both added at 100 mM, the 

[Na+] would have been 200 mM, which could have prevented the growth of K. xylinus due 

to osmolarity effects. Therefore, phosphate and chloride may not be responsible for K. 

xylinus growth inhibition. All subsequent experiments utilized non-inhibitory ethephon 

concentrations. 
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Figure 18. Ethephon is relatively non-toxic to K. xylinus. Inhibitory growth effects of 

ethephon and phosphate-chloride on K. xylinus was assessed using a MIC assay in a pH 

5 and pH 7 SH medium. Black boxes indicate wells with no bacterial growth.  

 

 Ethylene does not affect the growth of K. xylinus in agitated broth cultures 

The effect of ethephon-derived ethylene on the growth of agitated K. xylinus broth 

cultures grown in SH medium (pH 7) was investigated. Since ethylene is a gas and the 96-

well plates had to be opened to read the optical density, some ethylene was inevitably lost 

during this process. To determine if this loss was a significant factor, ethephon was added 

only on the day of inoculation or on the day of inoculation and every two days thereafter. 
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When compared to controls, no significant difference in growth was observed when 

ethephon was added to cultures at the time of inoculation (Figure 19A) or when ethephon 

was added every two days (Figure 19B). The same result was obtained when comparing 

the ethephon-treated cultures to phosphate-chloride controls (Figure 19C and Figure 

19D). Therefore, ethylene does not influence K. xylinus growth in agitated culture.  

 

 

Figure 19. Ethephon does not affect the growth of K. xylinus when grown in SH broth 

with agitation. Cultures were grown in a 96-well plate in SH broth (pH 7) supplemented 

with 0.4% (v/v) cellulase at 30oC and 150 rpm.  Ethephon was added at the time of 

inoculation (A) or at the time of inoculation and every two days thereafter (B). Control 

experiments where phosphate-chloride was added at the time of inoculation (C) or at the 

time of inoculation and every two days thereafter (D) were run in parallel. Ethephon and 

phosphate-chloride do not affect the growth of K. xylinus under these conditions. The 

legend indicates the concentrations of ethephon and phosphate-chloride. Error bars show 

SD (n = 3). 
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 Ethylene increases BC yield and decreases K. xylinus pellicle hydration due to 

an increase in crystallinity  

Pellicles formed by K. xylinus grown in the presence of ethephon-derived ethylene 

were analyzed in regards to their wet weight, thickness, dry weight, hydration and 

crystallinity. The wet weight of pellicles were obtained after harvest, before removal of 

water and were affected by ethephon-derived ethylene when cultured in SH medium at pH 

7; ethylene was shown to be produced by ethephon decomposition in this medium (Figure 

15). The wet weight of pellicles produced in the presence of ethephon was decreased by 

10% with 0.01 mM ethephon, 14% in the presence of 0.1 mM ethephon and 9% with 1.0 

mM ethephon, in comparison to the untreated control (Figure 20A). The relationship 

between ethephon concentration and wet weight was not linear, and differences between 

ethephon treatments were not significant. Ethephon did not influence the thickness of K. 

xylinus pellicles (Figure 20B). 

 

Pellicle dry weights were obtained after cells were removed by lysis in NaOH, 

neutralization and drying to constant weight. Similar to the wet weights, pellicle dry weight 

was affected by ethephon-derived ethylene. All concentrations of ethephon resulted in a 

significant increase in pellicle dry weight (Figure 20C), which increased linearly with 

ethephon concentration. Differences between ethephon treatments were not statistically 

significant. In comparison to the untreated control, a 23% increase in BC yield was 

observed when K. xylinus was grown in the presence of 0.01 mM ethephon, while a 27% 

and 29% increase was observed after ethephon treatment at concentrations of 0.1 mM and 

1.0 mM, respectively. Phosphate and chloride did not influence pellicle wet weight (Figure 

20D), thickness (Figure 20E) or dry weight (Figure 20F), further supporting the 

conclusion that the decreased wet weight and increased dry weight observed with ethephon 

treatment was caused by ethylene.  
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Figure 20. Ethephon-derived ethylene influences the properties and yield of K. xylinus 

BC pellicles. Cultures were grown statically in SH broth (pH 7) and incubated at 30oC 

for 7 days before pellicles were harvested and analyzed. Ethephon-derived ethylene 

decreases the wet weight (A), has no effect on thickness (B) and increases the dry weight 

of pellicles (C). Phosphate-chloride does not affect the wet weight (D), thickness (E) or 

dry weight (F) of K. xylinus pellicles. Data was normalized to and expressed as percent 

of the untreated control. Note the y-axis begins at 50%. Error bars show SD (n = 3). *p 

< 0.05; **p < 0.01. 
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Pellicle hydration was assessed by subtracting pellicle dry weight from the wet 

weight. Ethephon-derived ethylene caused a significant decrease in pellicle hydration 

compared to the untreated control (Figure 21A). It was hypothesized that the decrease in 

pellicle hydration was related to differences in crystallinity, so the crystallinity index of K. 

xylinus pellicles produced in the presence of ethephon was determined using FT-IR.  

 

Figure 21. Ethephon-derived ethylene reduces pellicle hydration by causing an increase 

in pellicle crystallinity. Pellicle hydration was calculated as the difference of wet weight 

to dry weight and the crystallinity index, CI(IR), was determined by analyzing dry 

pellicles using FT-IR. Ethylene decreases the hydration (A) and increases the 

crystallinity (B) of K. xylinus pellicles, while phosphate-chloride does not affect 

hydration (C) or crystallinity (D). Data was normalized to and expressed as percent of 

the untreated control. Note the y-axis begins at 50%. Error bars show SD (n = 3). *p < 

0.05; **p < 0.01. 

 

Representative FT-IR spectra of an untreated BC pellicle (Figure 22A) show peaks 

indicative of microcrystalline cellulose (Ciolacu et al., 2011). An O-H stretching vibration 

peak at 3343 cm-1 indicates the presence of hydroxyl groups. Bands indicative of C-H 
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stretching vibrations were obtained at 2924 cm-1 and 2899 cm-1, and represent amorphous 

and crystalline cellulose, respectively. Water bound to the BC pellicle produced a peak at 

1590 cm-1. Alterations in cellulose crystallinity do not influence this peak (Ciolacu et al., 

2011). A peak at 1437 cm-1 represents symmetric CH2 bending vibrations and is referred 

to as the crystallinity band since its intensity decreases in amorphous samples (Ciolacu et 

al., 2011). The BC pellicle produced transmittance bands from approximately 1500 cm-1 to 

900 cm-1 and indicates it is crystalline cellulose; these bands are strongly reduced in 

intensity or absent with amorphous cellulose (Ciolacu et al., 2011). A band at 895 cm-1 is 

indicative of the C-O-C stretching vibrations caused by the β-1,4-glycosidic bonds that 

connect glucopyranose monomers and is referred to as the amorphous band since its 

intensity increases in amorphous cellulose samples (Ciolacu et al., 2011). Similar to the 

untreated BC pellicle, those synthesized by K. xylinus grown in the presence of ethephon 

produced numerous bands indicative of microcrystalline cellulose (Figure 22B). 

Interestingly, the peaks of the O-H stretching bands from the ethephon-treated BC samples 

are shifted to a lower wavenumber, which is characteristic of cellulose that is more 

crystalline (Ciolacu et al., 2011). This is due to the differences in intermolecular hydrogen 

between crystalline and amorphous cellulose. Pellicles synthesized by ethephon-treated K. 

xylinus cultures produced C-H stretching vibration bands at 2924 cm-1 and 2899 cm-1 with 

a greater intensity than the control pellicle. 
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Figure 22. FT-IR spectra of BC pellicles produced by K. xylinus. A representative FT-IR spectrum of a BC pellicle produced by K. 

xylinus under untreated conditions (A) shows numerous bands indicative of the functional groups that make up the cellulose structure 

(inset). Representative FT-IR spectra of BC pellicles produced by ethephon-treated K. xylinus cultures also show bands indicative of 

cellulose with slight alterations (B). See text for details. 
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Compared to the untreated control, pellicles grown in the presence of all 

concentrations of ethephon had a higher crystallinity (Figure 21B). The CI(IR) of untreated 

pellicles was 0.62, while pellicles grown with ethephon treatments of 0.01 mM, 0.1mM  

and 1.0 mM had a significantly increased CI(IR) of 0.69, 0.68 and 0.73, respectively. 

Therefore pellicle crystallinity increased by 11%, 10% and 16% when synthesized in the 

presence of 0.01 mM, 0.1 mM, and 1.0 mM ethephon, respectively. This is consistent with 

the decrease in pellicle hydration observed after ethephon treatment. In the presence of 

ethephon, the pellicles were more crystalline and therefore less able to retain water. 

Phosphate-chloride did not affect pellicle hydration (Figure 21C) or crystallinity (Figure 

21D), indicating that the differences obtained with ethephon treatment were due to the 

presence of ethylene. 

 

Furthermore, pellicle wet weight (Appendix Figure A2A), thickness (Appendix 

Figure A2B), dry weight (Appendix Figure A2C) and crystallinity (Appendix Figure 

A2D) were not affected by ethephon treatment when K. xylinus was grown in a pH 5 SH 

medium. Decomposition of 1.0 mM ethephon was demonstrated to be insignificant when 

on a pH 5 SH medium (Figure 15), suggesting that ethephon itself does not affect these 

pellicle properties. 
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 Ethylene increases K. xylinus BC production on solid medium 

In order to assess how ethylene affected K. xylinus colony morphology and BC 

production on solid medium, agar plates were pre-treated with ethephon, acidified ultra-

pure water (pH 2.5), or phosphate-chloride, then streaked for isolated colonies. Figure 23 

shows representative colonies from the various treatments. Colonies formed under control 

conditions (untreated) were about 1 mm in diameter, convex in elevation, irregular in form, 

and slightly orange in color (Figure 23A). All treatments, including the acidified water 

(Figure 23B) and phosphate-chloride (Figure 23C, D and E) controls influenced BC 

production of agar-grown cultures. Colonies grown on untreated plates produced some BC, 

as shown by the hazy material surrounding the central part of the colony (Figure 23A). 

Interestingly, when plates were pre-treated with acidified ultra-pure water (Figure 23B) or 

phosphate-chloride (Figure 23C, D and E), K. xylinus colonies produced minimal BC. 

Colonies grown in the presence of ethephon (Figure 23F, G and H) produced more BC 

than all of the controls, with the largest increase being caused by 0.01 mM ethephon 

(Figure 23F). Colonies grown on the phosphate-chloride control plates were similar to 

those grown with acidified ultra-pure water, demonstrating that the ethephon-induced BC 

overproduction phenotype was caused by ethylene. This result is reinforced by the 

increased BC yield observed for statically grown liquid cultures exposed to ethylene 

(Figure 20). Colonial morphologies were generally not affected, except that colonies 

grown with ethephon (Figure 23F, G and H) were slightly smaller than colonies grown 

on the control medium (Figure 23A). 
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Figure 23. Ethephon enhances K. xylinus BC production when grown on solid medium. 

K. xylinus was streaked onto SH agar plates (pH 7) that were untreated (A), or pre-treated 

with ultra-pure water (pH 2.5; B), phosphate and chloride (C-E) or ethephon (F-H). 

Plates were incubated at 30oC for 7 days. Representative colonies are shown. The arrow 

shows BC, seen as the hazy substance around the central cell colony. Scale bar represents 

0.5 mm. 
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 The genome of K. xylinus contains potential ethylene-receptor genes 

The observation that K. xylinus responds to exogenous ethylene prompted investigation of its genome for potential ethylene 

receptors. The most well-characterized ethylene receptors are ETR1, ERS1, ETR2, EIN4 and ERS2 from A. thaliana. Comparison of 

the amino acid sequences of these proteins to the K. xylinus E25 proteome revealed the presence of two potential ethylene receptors in 

K. xylinus (Table 9). ETR1 and ERS1 from A. thaliana showed similarity to a PAS/PAC sensor hybrid histidine kinase and a two-

component sensor histidine kinase from K. xylinus. No K. xylinus proteins showed significant sequence similarity to the A. thaliana 

ETR2, EIN4 and ERS2 recptors.  

Table 9. DELTA-Blast results comparing the K. xylinus E25 proteome to protein sequences of known ethylene receptors from 

Arabidopsis thaliana. K. xylinus proteins shown are those that produced max scores over 180 and had over 20% sequence identity. 

N/A indicates no hits were obtained. 

A. thaliana Protein K. xylinus Protein Name K. xylinus Protein Accession Max Score Query Coverage (%) E value Identity (%) 

Ethylene receptor 1 

(ETR1) 

PAS/PAC sensor hybrid 

histidine kinase 

AHI26059.1 223 56 2-62 21 

Two-component sensor 

histidine kinase 

WP_051459895.1 184 33 7-52 23 

Ethylene response 

sensor 1 (ERS1) 

Two-component sensor 

histidine kinase 

WP_051459895.1 185 39 8-53 21 

Ethylene receptor 2 

(ETR2) 

N/A N/A N/A N/A N/A N/A 

Ethylene Insensitive 

Protein (EIN4) 

N/A N/A N/A N/A N/A N/A 

Ethylene response 

sensor 2 (ERS2) 

N/A N/A N/A N/A N/A N/A 

 

 

 

http://www.ncbi.nlm.nih.gov/protein/582022717?report=genbank&log$=prottop&blast_rank=3&RID=A8PF2PPD01R
http://www.ncbi.nlm.nih.gov/protein/916852839?report=genbank&log$=prottop&blast_rank=7&RID=A8PF2PPD01R
http://www.ncbi.nlm.nih.gov/protein/916852839?report=genbank&log$=prottop&blast_rank=7&RID=A8PF2PPD01R
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 RT-qPCR  

3.13.1 Steady-state mRNA levels are affected by IAA and ABA in K. xylinus 

The effect of IAA and ABA on the steady-state expression of nine K. xylinus genes 

(Table 4) was assessed using a seven day time-course RT-qPCR experiment. K. xylinus 

cultures were supplemented with 0.01 µM and 10.0 µM IAA and ABA at the time of 

inoculation and were harvested and subjected to RNA extraction after 3 (72 h), 4 (96 h), 5 

(120 h), 6 (144 h) and 7 days (168 h) of growth. These time-points correspond to different 

phases of K. xylinus growth as determined from growth curve analysis with IAA and ABA 

(Appendix Figure A16). Early log phase corresponds to day 3, mid-log phase to day 4, 

late log phase to day 5, early stationary phase to day 6 and stationary phase to day 7. RNA 

was converted to first-strand cDNA and analyzed using optimized RT-qPCR assays. Data 

was normalized using the optimal reference genes as determined from the reference gene 

analysis studies (Appendix Table A2) and the Ct values of IAA- and ABA-treated samples 

were made relative to the Ct values of the respective untreated (DMSO-treated) controls.   

 

3.13.1.1 IAA and ABA induce differential steady-state expression of bcs operon 

genes that depends on hormone concentration and bacterial growth phase 

Genes within the bcs operon (bcsA, bcsB, bcsC and bcsD) produce proteins that are 

directly responsible for the synthesis, translocation and crystallization of BC by K. xylinus 

(Römling and Galperin, 2015). Though these genes were thought to belong to an operon 

and that they were co-regulated, the time-course RT-qPCR results demonstrate their 

differential gene expression depending on the type of hormone, the concentration of 

hormone and the phase of growth.  

 

None of the bcs genes were affected by IAA or ABA at day 4 (Figure 24B), day 6 

(Figure 24D) or day 7 (Figure 24E). However, bcsA was downregulated 2-fold (p < 0.05) 

by 0.01 µM and 10.0 µM IAA after 3 days of growth (Figure 24A), which corresponds to 

early log phase (Appendix Figure A16). Though not affected by IAA, the expression of 

bcsD was downregulated 2-fold (p < 0.05) by both concentrations of ABA at day 3 (Figure 

24A). Neither bcsB nor bcsC were affected by IAA or ABA at this time-point.  
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Furthermore, bcsB was upregulated 2-fold (p < 0.05) by 0.01 µM IAA and 0.01 µM 

ABA at the day 5 time-point (Figure 24C), which corresponds to mid-log phase of growth 

(Appendix Figure A16). Similar to bcsB, the expression of bcsC was upregulated 2-fold 

(p < 0.05) by IAA and 3-fold (p < 0.01) by ABA at day 5 (Figure 24C). Both bcsA and 

bcsD were not affected by IAA or ABA at this time-point. Overall, the bcs operon genes 

display differential expression in response to IAA and ABA that is dependent on hormone 

concentration and bacterial growth phase. 
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Figure 24. IAA and ABA influence the steady-state expression levels of genes within 

the bcs operon. RT-qPCR was used to measure the relative normalized expression of 

bcsA, bcsB, bcsC and bcsD in cDNA samples made from RNA extracted from K. 

xylinus after 3 (A), 4 (B), 5 (C), 6 (D) and 7 days (E) of growth in the presence of IAA 

and ABA. Expression values were made relative to the respective untreated (DMSO-

treated) controls and normalized using validated reference genes (Appendix Table 

A2). The dotted line indicates the relative normalized expression of the untreated 

control. Error bars show SD (n = 3). *p < 0.05; **p < 0.01.  
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3.13.1.2 IAA and ABA affect the steady-state expression levels of bglAx, but do not 

affect expression of cmcAx and ccpAx 

Upstream of the bcs operon are cmcAx and ccpAx, which encode proteins that are 

involved in the crystallization and regulation of K. xylinus BC biosynthesis (Table 4). In 

addition, bglAx is found down downstream of the bcs operon and its gene product has a 

role in the regulation of BC biosynthesis (Table 4). The steady-state expression of these 

genes was assessed as part of the RT-qPCR time-course experiment. The expression of 

cmcAx and ccpAx were not affected by IAA or ABA at any time-point (Figure 25). 

However, similar to the bcs operon genes, bglAx was expressed differentially depending 

on the type of hormone, the hormone concentration and bacterial growth phase (Figure 

25). The expression of bglAx was downregulated 1.8-fold (p < 0.05) by 0.01 µM ABA after 

3 days of growth (early log phase; Figure 25A). Interestingly, bglAx expression in response 

to ABA was not different than the control at day 4, was upregulated 2-fold (p < 0.01) by 

the treatment at day 5, significantly (p < 0.01) downregulated again by both ABA 

concentrations at day 6, and finally not affected by ABA at day 7. The fluctuation in steady-

state expression levels of bglAx may be attributed to the different growth phases that 

correspond to the different time-points analyzed during the time-course RT-qPCR study 

(Appendix Figure A16). The expression of bglAx was affected by IAA only at the 6 day 

time-point (Figure 25D), wherein it was significantly (p < 0.05) downregulated 1.8-fold 

by 0.01 µM IAA. This suggest that IAA influences bglAx expression during early stationary 

phase (Appendix Figure A16). 
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Figure 25. IAA and ABA influence the steady-state expression level of bglAx. RT-

qPCR was used to measure the relative normalized expression of ccpAx, cmcAx and 

bglAx in cDNA samples made from RNA extracted from K. xylinus after 3 (A), 4 (B), 

5 (C), 6 (D) and 7 days (E) of growth in the presence of IAA and ABA. Expression 

values were made relative to the respective untreated (DMSO-treated) controls and 

normalized using validated reference genes (Appendix Table A2). The dotted line 

indicates the relative normalized expression of the untreated control. Error bars show 

SD (n = 3). *p < 0.05; **p < 0.01. 
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3.13.1.3 IAA and ABA upregulate the steady-state levels of crp/fnrKx during the 

exponential growth phase of K. xylinus 

The steady-state expression levels of crp/fnrKx was also assessed during the RT-

qPCR time-course experiment. This gene was bioinformatically identified in the K. xylinus 

E25 genome based on high sequence similarity to a CRP/FNR transcription factor gene 

from K. hansenii ATCC 23769. CRP/FNRKh was demonstrated to control BC biosynthesis 

at a transcriptional level in K. hansenii (Deng et al., 2013) and it was hypothesized to have 

a similar function in K. xylinus. The expression of crp/fnrKx was upregulated 1.6-fold (p < 

0.05) in response to 0.01 µM IAA and upregulated 1.9 fold (p < 0.05) by 10.0 µM ABA 

after 5 days of growth (Figure 26A). IAA and ABA did not affect crp/fnrKx expression at 

any other time-point. This suggests that IAA and ABA influence the steady-state 

expression level of crp/fnrKx during the exponential growth phase (Appendix Figure A16). 

 

3.13.1.4 The steady-state expression levels of oprB are downregulated by IAA and 

upregulated by ABA during the early stages of K. xylinus growth 

The oprB gene was identified in K. xylinus from analysis of periplasmic profiles 

obtained after treatment with IAA and ABA. SDS-PAGE revealed numerous periplasmic 

proteins whose intensities were altered by IAA and ABA treatment (Figure 12). Select 

protein bands were excised from the SDS-PAGE gel and the proteins within them were 

identified by LC-MS. The OprB protein was identified within the CS-46 protein band 

(Table 8) whose intensity varied inversely with IAA- and ABA-treatment (Figure 12). 

OprB is a porin that is involved in cellular carbohydrate uptake, therefore, it was of interest 

to examine the steady-state expression levels of oprB during the time-course RT-qPCR 

experiment. Interestingly, oprB expression correlated with the intensity of the protein band, 

CS-46 from which it was identified. The expression of oprB was downregulated by ~2-fold 

(p < 0.05 and p < 0.01) by both concentrations of IAA, and upregulated 2-fold (p < 0.05 

and p < 0.01) by 10.0 µM ABA at the 3, 4, and 5 day time-points (Figure 26B). This 

suggests that IAA and ABA influence oprB expression during exponential growth 

(Appendix Figure A16). The gene expression data supports the hypothesis that the 

hormone-induced differential intensity of the CS-46 protein band (Figure 12) was caused 

by alterations in OprB expression, rather than changes in the expression of other proteins 
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identified in the CS-46 band. This hypothesis is further supported since the periplasmic 

proteins used for SDS-PAGE analysis were harvested 5 days after treatment with hormone 

and oprB expression was influenced between day 3 and 5. Therefore, the changes in oprB 

expression on days 3 and 4 could have resulted in altered OprB expression on day 5. 
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Figure 26. IAA and ABA influence the steady-state expression levels of crp/fnrKx and 

oprB. RT-qPCR was used to measure the relative normalized expression of crp/fnrKx (A) 

and oprB (B) in cDNA samples made from RNA extracted from K. xylinus after 3, 4, 5, 

6 and 7 days of growth in the presence of IAA and ABA. Expression values were made 

relative to the respective untreated (DMSO-treated) controls and normalized using 

validated reference genes (Appendix Table A2). The dotted line indicates the relative 

normalized expression of the untreated control. Error bars show SD (n = 3). *p < 0.05; 

**p < 0.01. 
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3.13.2 Phytohormones influence the active mRNA levels of K. xylinus genes 

The levels of actively produced mRNA of K. xylinus genes (Table 4) in response to 

IAA, ABA and ethylene were assessed using an RT-qPCR experiment in which early-log 

phase cultures were supplemented with hormone and quickly harvested. This was done to 

compliment the RT-qPCR time-course experiment that measured steady-state gene 

expression levels in response to IAA and ABA. RT-qPCR data was normalized using the 

optimal reference genes as determined from the reference gene analysis studies (Appendix 

Table A2). The Ct values of IAA- and ABA-treated samples were made relative to the Ct 

values of the respective untreated (DMSO-treated) controls and the Ct values of ethephon-

treated samples were made relative to the Ct values of the acidified water control samples.  

 

3.13.2.1 Ethylene and IAA cause differential expression of bcs operon genes 

The expression of the bcs operon genes (bcsA, bcsB, bcsC and bcsD) encoding 

proteins that form the BC synthesis complex responsible for BC biosynthesis (Table 4) 

were analyzed from K. xylinus cultures grown in the presence of 10.0 µM ethephon, 10.0 

µM IAA and 10.0 µM ABA using an RT-qPCR experiment. When cultures were treated 

with ethephon, bcsA and bcsB were upregulated by 1.4-fold (p < 0.001) and 1.2-fold (p < 

0.05), respectively, compared to the untreated control (Figure 27A). Interestingly, bcsC 

and bcsD were not affected. The phosphate-chloride control treatment had no effect on the 

expression of the bcs operon genes (Appendix Figure A17), supporting the conclusion 

that the observed differential expression of these genes was caused by ethephon-derived 

ethylene. IAA treatment significantly downregulated bcsA by 1.3-fold (p < 0.01) compared 

to the untreated control, while the expression of bcsB, bcsC and bcsD were not affected 

(Figure 27A). The expression of all bcs operon genes were unaffected by ABA treatment 

(Figure 27A). Ethylene and IAA therefore, uniquely cause differential expression of the 

genes within the K. xylinus bcs operon. Ethylene upregulates bcsA and bcsB, which is 

consistent with the increase in BC yield observed in liquid (Figure 20) and solid (Figure 

23) medium. IAA downregulates bcsA while ABA has no effect on the expression of bcs 

genes which is consistent with the previous observation that IAA directly decreases BC 
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production, while ABA has an indirect effect on BC yield in K. xylinus (Qureshi et al., 

2013).  

 

Figure 27. K. xylinus genes are regulated by phytohormones. Gene expression was 

quantified using an RT-qPCR pulse experiment after treatment with 10.0 µM ethephon, 

10.0 µM IAA or 10.0 µM ABA. Expression values were made relative to the respective 

untreated controls and normalized using the expression values of reference genes, 

23SrRNA and gyrB (Appendix Table A2). Ethephon-derived ethylene and IAA induce 

differential expression of the genes within the bcs operon (A). Ethephon-derived 

ethylene and ABA influence the expression of genes flanking the K. xylinus bcs operon 

(B). Ethephon-derived ethylene, IAA and ABA regulate the expression of crp/fnrKx (C). 

The expression of oprB is not influenced by any phytohormone under the conditions 

studied (D). The dotted line indicates the relative normalized expression value for the 

untreated control. Error bars show SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001. 

 

3.13.2.2 Ethylene and ABA affect the expression of genes flanking the bcs operon 

Three other genes known to be involved in K. xylinus BC biosynthesis were also 

analyzed during the RT-qPCR pulse experiment. The ccpAx and cmcAx genes form an 

operon upstream, while bglAx is located downstream of the bcs operon. Ethephon-derived 
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ethylene significantly upregulated ccpAx, cmcAx and bglAx 1.3-fold (p < 0.001), 1.4-fold 

(p < 0.001) and 1.2-fold (p < 0.01), respectively, compared to the untreated control (Figure 

27B). These genes were not affected by phosphate-chloride (Appendix Figure A17), 

indicating these ethephon-induced phenotypes were caused by ethylene. The expression of 

bglAx was upregulated 1.2-fold (p < 0.01) compared to the control after treatment with 

ABA, while IAA had no effect on these genes (Figure 27B). 

 

3.13.2.3 The CRP/FNRKx transcription factor gene is hormonally-regulated 

The expression of the crp/fnrKx gene, bioinformatically identified in the genome of 

K. xylinus E25, was assessed during the RT-qPCR pulse study to ascertain if it is regulated 

by ethylene, IAA or ABA. This gene was studied since it has high similarity to a crp/fnrKh 

gene in K. hansenii ATCC 23769 that has recently been shown to be essential for BC 

biosynthesis (Deng et al., 2013). The expression of crp/fnrKx in K. xylinus is regulated by 

ethylene, IAA and ABA (Figure 27C). Compared to the untreated controls, ethephon-

derived ethylene upregulated crp/fnrKx 1.4-fold (p < 0.01), while IAA and ABA 

downregulated its expression by 1.5-fold (p < 0.001) and 1.2-fold (p < 0.001), respectively. 

The expression of crp/fnrKx was not affected by phosphate-chloride (Appendix Figure 

A17) confirming that ethephon-induced effects were caused by ethylene. Taken together, 

these results indicate that crp/fnrKx is phytohormonally-regulated. Ethylene directly 

increases BC production (Figure 20 and Figure 23) and upregulates crp/fnrKx expression 

(Figure 27C), while IAA directly decreases BC production (Qureshi et al., 2013) and 

downregulates crp/fnrKx expression (Figure 27C). This suggests that like CRP/FNRKh in 

K. hansenii ATCC 23769 (Deng et al., 2013),  CRP/FNRKx may directly regulate BC 

biosynthesis in K. xylinus ATCC 53582.  
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4 DISCUSSION  

The overall goal of this thesis was to elaborate on the potential interactions that 

Komagataeibacter xylinus has with fruit in the environment using in vitro experiments. 

Phytohormones involved with fruit ripening influence the growth and BC production of K. 

xylinus when added exogenously to cultures. IAA enhances bacterial growth while 

decreasing BC production, while ABA increases growth and indirectly increases BC yield 

(Qureshi et al., 2013). One goal of this work was to establish a molecular basis to explain 

the previously observed IAA- and ABA-induced phenotypes in K. xylinus. In plants, 

ethylene is produced in response to changes in IAA and ABA concentrations (Zhang et al., 

2009b). Therefore, another goal of this research was to assess K. xylinus for endogenous 

ethylene production, to determine the effect of exogenous ethylene on its growth and BC 

production and to expand on the proposed model of phytohormone-mediated fruit-bacteria 

interactions. Novel protocols to study bacterial ethylene response using ethephon were 

developed accordingly.  

  

The effect of IAA and ABA on the expression of K. xylinus periplasmic proteins was 

assessed using SDS-PAGE to determine if these hormones induced differential expression 

changes compared to the untreated control. Indeed, the K. xylinus periplasmic protein 

profiles were markedly influenced by IAA and ABA (Figure 12). The intensity of various 

proteins was altered in response to hormones compared to the DMSO-treated control, 

indicating that IAA and ABA signaling occurs in the periplasm. One protein from a 261 

kDa protein band (SS-261) was induced by IAA treatment and identified as a 51 kDa α-

mannosyltransferase B (MtfB; Figure 12A). This enzyme is closely related to the GT-1 

family of glycosyltransferases. Numerous attempts to make RT-qPCR primers for mtfB 

were unsuccessful, likely because the sequence of mtfB is not evolutionarily conserved, 

and primers were designed using the genome sequence of K. medellinensis NBRC 3288 

(formerly K. xylinus NBRC 3288) since the genome sequence of K. xylinus ATCC 53582 

has not been published. The genome of K. xylinus E25 was not published at the time when 

mtfB primers were being designed and no attempts were made after it was.  
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In E. coli, mtfB is found within the mtfABC operon and encodes a protein that directs 

the growth of the O9-specific polysaccharide chain of LPS (Kido et al., 1995). Similar to 

the BCSC, MtfB is a part of an enzyme complex that synthesizes a polysaccharide at the 

cytoplasmic face of the inner membrane. MtfB-mediated polymerization of the O9-specific 

polysaccharide chain is coupled to its export through an ABC transport system (Kido et al., 

1995). LPS was demonstrated to be vital for pellicle formation in the wrinkly spreader 

isolate of Pseudomonas fluorescens which produces an acetylated BC matrix (Spiers and 

Rainey, 2005; Spiers et al., 2003). A LPS-deficient mutant of P. fluorescens produced 

wildtype levels of BC but formed very weak pellicles, indicating that interactions between 

LPS and the BC matrix are required for biofilm strength (Spiers and Rainey, 2005). 

Therefore, induction of MtfB expression by IAA may alter the LPS composition of K. 

xylinus in a way that weakens its BC pellicle (Qureshi et al., 2013). MtfB has not been 

implicated in K. xylinus BC biosynthesis or biofilm formation. Future studies should 

consider knocking out mtfB (GLX_18490 in K. medellenensis NBRC 3288; 

H845_RS13330 in K. xylinus E25) or other genes involved in LPS biogenesis from the K. 

xylinus genome and analyze pellicle production from the mutants.  

 

Furthermore, mtfB from E. coli is similar to aceA from K. xylinus (Petroni and Ielpi, 

1996). AceA is an α-mannosyltransferase that adds mannose residues during the synthesis 

of acetan, a soluble EPS that contains four glucoses, one mannose, one glucuronic acid and 

one rhamnose (Petroni and Ielpi, 1996). Alternatively, IAA may induce MtfB expression 

to increase acetan production and divert carbon away from BC production, resulting in 

decreased BC yield as observed previously (Qureshi et al., 2013). The effect of IAA on 

acetan production was not assessed by Qureshi et al. (2013), nor in this study but warrants 

further investigation. IAA may also induce MtfB to incorporate mannose into the K. xylinus 

pellicle. Pellicles produced by Shewanella oneidensis are rich in mannose (Liang et al., 

2010). Therefore, the sugar composition of pellicles produced in the presence of IAA 

should be determined. Incorporation of mannose into the K. xylinus biofilm would deplete 

pools of UDP-mannose, which is a substrate for bacterial N-glycosylation (Nothaft and 
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Szymanski, 2013). Reducing the amount of N-glycosylation could result in decreased 

cellulose production, as has been observed in Arabidopsis thaliana (Lukowitz et al., 2001). 

 

K. xylinus has not been shown to contain curli fimbriae, described as extracellular 

proteinaceous appendages involved in bacterial adhesion to biotic and abiotic substrates. 

Curli fimbrae are vital to E. coli and S. enterica biofilms by facilitating cell to cell 

adherence (Jonas et al., 2007; Macarisin et al., 2012) and contain a terminal oligomannose-

binding FimH adhesin (Knudsen and Klemm, 1998; Krogfelt et al., 1990). Binding of 

oligomannose by FimH inhibits biofilm formation by E. coli by preventing cell to cell 

adherence (Wellens et al., 2008). Consistently, the fimbriae of Pseudomonad-like bacteria 

isolated from chicken carcasses bind oligomannoses, resulting in the formation of weak 

pellicles that are easily dispersed (Heath, 1990). Whether curli fimbriae are present on the 

surface of K. xylinus cells should be determined in future studies. It is possible that IAA-

induced MtfB may synthesize oligomannoses that bind K. xylinus curli fimbriae, 

preventing cell to cell adhesion and cause the formation of the weak pellicle previously 

shown to be produced in the presence of IAA (Qureshi et al., 2013). 

 

Interestingly, MtfB migrated as a 261 kDa protein on SDS-PAGE gels, but was 

identified as a 51 kDa protein by LC-MS. This abnormal mobility is typical of intrinsically 

disordered proteins (IDPs) due to their significantly polar amino acid composition that 

binds less SDS (Rath et al., 2009; Uversky and Dunker, 2012). For example, the 

intrinsically disordered Xeroderma pigmentosum group A protein (XPA) of Xenopus 

electrophoresed as a 42 kDa protein during SDS-PAGE (denaturing), but was identified as 

a 31 kDa protein by MS. Therefore, the aberrant migration of MtrB through the SDS-PAGE 

gel may have been caused be its predicted disordered regions (Figure 13). Furthermore, 

numerous glycosyltransferase-type proteins from animals and bacteria contain disordered 

regions with various functions, such as excluding water from the catalytic center, and 

chaperoning substrates to the active site (Breton et al., 2006; Brockhausen, 2014; Uversky 

and Dunker, 2012; Yazer and Palcic, 2005). Proteins with post-translational modifications 

and those bound to oligosaccharides and nucleic acids can also experience abnormal 
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mobility on SDS-PAGE gels (Hellman and Fried, 2007; Shi et al., 2012). Therefore, it is 

possible that MtfB was bound to an oligomannose chain or contains post-translational 

modifications that affect its electrophoretic mobility. 

 

Numerous other protein bands displayed differential intensities in samples derived 

from IAA- and ABA-treated cultures (Figure 12). A 36 kDa band (CS-36) showed greater 

intensity in ABA-treated samples compared to IAA-treated or untreated samples (Figure 

12A), suggesting that ABA increases the expression of one or more of the proteins within 

the band. A 46 kDa protein band (CS-46) displayed greater intensity upon ABA-treatment 

and less intensity from IAA-treated samples compared to protein derived from the 

untreated control (Figure 12A), suggesting ABA and IAA increase and decrease the 

expression of one or more proteins within the CS-46 band, respectively. Numerous proteins 

central to bacterial metabolism were identified in the CS-36 and CS-46 bands, including 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase, respectively (Table 

7). Interestingly, GAPDH and enolase are well-studied moonlighting enzymes; proteins 

that perform a variety of often unrelated functions without altering the structure of their 

domains (Huberts and van der Klei, 2010). For example, in addition to being a cytoplasmic 

glycolytic enzyme, GAPDH from virulent E. coli strains is also found on the bacterial 

surface where in binds human plasminogen and fibrinogen, and acts as a virulent adhesin 

(Egea et al., 2007). Similarly, enolase of Borrelia burgdorferi is released from membrane 

vesicles and acts as a plasminogen receptor that aids in pathogen survival (Floden et al., 

2011; Toledo et al., 2012). Therefore, it is possible that ABA increases the expression of 

one or more of the potential moonlighting proteins identified in the CS-36 and CS-46 

protein bands. Future studies are required to confirm this possibility.  

 

A terpenoid biosynthesis protein (TBP; GLX_09340) was also identified in the CS-36 

band (Table 7). Pentacyclic C35 terpenes were identified in K. xylinus (Foster et al., 1973) 

and were demonstrated to aid in the alignment of BC microfibrils in the extracellular space 

(Haigh, 1973). The terpenoid biosynthesis protein identified in the CS-36 band may 

therefore be upregulated by ABA to assist with microfibril orientation during BC 
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crystallization. It would be interesting to knock out the terpenoid biosynthesis gene from 

the K. xylinus genome and assess how pellicle production is affected. Terpene synthases 

are widely distributed in bacteria, but the functions of the produced terpenes are not known 

(Cane and Ikeda, 2011; Yamada et al., 2015). Additional experiments are required to 

determine if the K. xylinus TBP is upregulated by ABA, and if the TBP plays a role in BC 

biosynthesis.  

 

A carbohydrate-selective porin (OprB; 55 kDa) was also identified in the CS-46 

protein band (Table 8). OprB acts as a glucose-inducible and carbohydrate-selective outer-

membrane porin that facilitates the diffusion of various monosaccharides into the periplasm 

in Pseudomonas aeruginosa and plant-associated P. putida (van den Berg, 2012; Saravolac 

et al., 1991; Wylie and Worobec, 1995; Wylie et al., 1993). The present study demonstrated 

that K. xylinus OprB was isolated from a protein band that showed increased and decreased 

intensity in response to ABA and IAA treatment, respectively (Figure 12). Moreover, the 

time-course RT-qPCR experiment showed the steady-state expression of oprB was 

increased and decreased during exponential growth in response to ABA and IAA treatment, 

respectively (Figure 26B). Consistency between IAA- and ABA-induced effects on OprB 

expression at the mRNA and protein levels suggests that OprB is a direct target of these 

hormones and may contribute to the phenotypes they elicit from K. xylinus. IAA 

downregulates the expression of oprB beginning at the initiation of exponential growth 

(Figure 26 and Appendix Figure A16) and leads to decreased OprB expression by late-

log phase (Figure 12 and Table 8). This reduces monosaccharide uptake and the amount 

of carbon source available for BC production, resulting in available carbon being used for 

enhanced growth growth and a decreased BC yield (Qureshi et al., 2013). Similar to the 

repression of K. xylinus OprB by heteroaromatic IAA, P. putida OprB is repressed by 

various aromatic compounds that also downregulate intracellular glucose-metabolizing 

enzymes to encourage utilization of the aromatic compound (Shrivastava et al., 2011). In 

contrast to IAA, ABA upregulates the expression of oprB during exponential growth 

(Figure 26 and Appendix Figure A16) and leads to increased OprB expression by late-

log phase. This enhances monosaccharide uptake and the amount of carbon source 
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available to increase K. xylinus growth rate (Qureshi et al., 2013). A proposed model for 

this process is shown in Figure 28. Future studies should consider determining 

carbohydrate uptake by OprB in response to IAA and ABA treatment to verify this model. 

 

 

Figure 28. Proposed model 

illustrating the influence of 

IAA and ABA on K. xylinus 

growth and BC yield by 

altering the mRNA and 

protein expression of OprB. 

ABA increases OprB 

expression and leads to 

increased sugar uptake and 

growth. IAA decreases 

OprB expression, lowers 

sugar uptake, reduces the 

amount of carbon for BC 

production and decreases 

BC yield. Green triangles 

indicate a process is 

stimulated, while red 

triangles indicate a process 

is repressed. Red arrows 

represent expression of 

oprB. 

 

Qureshi et al. (2013) demonstrated that K. xylinus produces endogenous ABA, zeatin 

and GA3, but not IAA, which may a play a role in its interaction with fruit in the 

environment. Production of phytohormones may allow K. xylinus to increase their 

endogenous concentrations in fruit and alter developmental traits. For example, production 

of ABA may accelerate the ripening process to produce a substrate more suitable for 

colonization, while production of zeatin and GA3 may increase fruit size to produce more 

biomass to colonize (Augimeri et al., 2015). In the present study, endogenous ethylene 

production was assessed using a novel modification of the A. thaliana triple response assay, 

wherein K. xylinus was inoculated onto sectored petri dishes containing A. thaliana 

seedlings (Figure 10). The length of A. thaliana seedling hypocotyls are negatively 

correlated with ethylene concentration in a dose dependent manner (Guzmán and Ecker, 
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1990). Seedlings exposed to ethylene produced by K. xylinus were shorter than the 

untreated seedlings, but longer than the ACC-treated positive control seedlings (Figure 

14), indicating that only low levels of ethylene were produced. Plants and some fungi are 

known to produce ethylene from L-methionine (Arshad and Frankenberger Jr, 2002; Yang 

and Hoffman, 1984), E. coli produces ethylene from the methionine derivative KMBA 

(Ince and Knowles, 1985, 1986), and P. syringae and Penicillium digitatum use α-

ketoglutarate as a biosynthetic precursor. Supplementation of L-methionine and α-

ketoglutarate to the growth medium did not enhance K. xylinus ethylene production, 

suggesting that they are not used as biosynthetic precursors by this bacterium, or that the 

growth conditions used were not suitable for ethylene production. The direct precursor of 

ethylene biosynthesis in plants, ACC, was not tested as a potential precursor for K. xylinus 

ethylene production, but should be considered in future studies. Blast analysis revealed that 

K. xylinus contains potential ethylene-forming enzymes (EFEs) similar to that of P. 

syringae and A. thaliana. The similarity values obtained were above the 25% twilight zone 

threshold (Rost, 1999), indicating that these proteins may be responsible for ethylene 

biosynthesis in K. xylinus. Future studies should consider knocking-out or overexpressing 

the genes that encode these potential EFEs in K. xylinus.  

 

Application of exogenous ethylene is well known to promote fruit ripening (Brady, 

1987; Dhall and Singh, 2013; Dhillon and Mahajan, 2011; Lohani et al., 2004; Pech et al., 

2008). The ability to produce endogenous ethylene would provide K. xylinus with a 

survival advantage in its natural niche in the carposphere by allowing it to accelerate the 

ripening of the fruit it is colonizing. Exposing fruit to ethylene leads to increased 

production of pectinases that weaken the plant cell wall (Brummell and Harpster, 2001; 

Brummell, 2006), as well as amylases and cellulases that degrade starch and cellulose in 

soluble monosaccharides (Ahmed and Labavitch, 1980; Lohani et al., 2004), respectively. 

All of these features make fruit more susceptible to colonization by bacteria like K. xylinus. 

However, no studies have evaluated the ability of plant-associated ethylene-producing 

bacteria to accelerate ripening in planta. 
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Ethephon, an ethylene-releasing compound, was used to investigate the effect of 

ethylene on K. xylinus ATCC 53582 growth, BC production, pellicle properties and gene 

expression. K. xylinus is a plant-associated carposphere bacterium (Dellaglio et al., 2005; 

Jahan et al., 2012; Neera et al., 2015; Park et al., 2003). This close association with fruit 

exposes K. xylinus to a plethora of plant-derived compounds, including phytohormones 

that regulate plant growth and development when present at low concentrations (Davies, 

2010). Ethylene is the main ripening hormone in climacteric fruit and is released in high 

concentrations during the ripening stage (McAtee et al., 2013; Pech et al., 2008). In non-

climacteric fruit, ABA is believed to be the most important ripening hormone (Jia et al., 

2011; Li et al., 2011; McAtee et al., 2013). However, recent data has shown that even non-

climacteric fruit, such as strawberry, grapes and citrus respond to ethylene and experience 

a spike in ethylene production during ripening, though the magnitude of response and 

production is cultivar-dependent (Chervin et al., 2004; Iannetta et al., 2006; Paul et al., 

2012; Trainotti et al., 2005). Nevertheless, K. xylinus would be exposed to exogenous 

ethylene when it inhabits both climacteric and non-climacteric fruit in the environment. 

  

The ripening stage of fruit development is characterized by modulation of endogenous 

hormone levels (McAtee et al., 2013). Numerous metabolic changes occur that result in 

the fruit being sweeter, due to starch hydrolysis by amylase (Agravante et al., 1990) and 

softer, due to the activity of pectinase and cellulase enzymes that degrade the fruit cell wall 

(Ahmed and Labavitch, 1980; Lohani et al., 2004; Sitrit and Bennett, 1998). Due to the 

intense turgor pressure in plant cells, weakening of the cell wall results in the release of 

exudate onto the fruit surface (Brummell and Harpster, 2001; Brummell, 2006), providing 

an attractive nutrient environment for microorganisms. The levels of ethylene are typically 

low during fruit growth and maturation, but spike at the onset of ripening (McAtee et al., 

2013). Ethylene, due to its positive role in fruit ripening, would therefore be a signal 

indicating an ideal nutrient environment for K. xylinus as fruit at this developmental stage 

contain high levels of soluble monosaccharides that can be used for growth and BC 

production.  
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Investigations using ethephon in plants have shown ethylene-dependent phenotypes 

even though the dosage and magnitude of ethephon decomposition was not precisely 

controlled (Zhang and Wen, 2010; Zhang et al., 2010). In this study, ethephon was used as 

a convenient vehicle to produce in situ ethylene when added to K. xylinus cultures growing 

in SH medium. Ethephon decomposition is linear, in that the amount of ethylene produced 

is proportional to the amount of ethephon used (Klein et al., 1979; Zhang and Wen, 2010). 

The half-life in aqueous medium at 30oC is 5.1±0.9 hours at pH 7 and 6.0±0.9 hours at pH 

6 (Klein et al., 1979). Biddle et al. (1976) demonstrated that ethephon decomposition 

below pH 5 is extremely slow, while the rate is greatly increased at pH 7 and above. The 

A. thaliana triple response assay verified that ethephon decomposition and ethylene 

production occurred in a pH SH medium (Figure 15) and time-course pH analysis showed 

that the decrease in culture pH would not have hampered this process (Appendix Figure 

A1). Ethylene evolution was not significant on the pH 5 SH medium, likely because this 

pH resulted in extremely slow ethephon decomposition. Phosphate and chloride ions are 

produced in addition to the desired ethylene during ethephon decomposition. Therefore, 

control experiments using phosphate-chloride were completed alongside the ethephon 

experiments. In all cases, the effects of phosphate and chloride were insignificant, 

supporting our conclusion that the observed results were due to ethylene.   

 

The analysis of pH changes over the course of K. xylinus growth revealed that the final 

culture pH is higher after treatment with ethylene. We observed a decrease in pH during 

exponential growth and then an increase in pH during stationary growth phase. This was 

also observed by Kawano et al. (2002b), who correlated this trend in pH alteration to 

glucose oxidation into gluconic acid, and subsequent resorption of gluconic acid. They also 

showed that unlike K. hansenii ATCC 23769, K. xylinus ATCC 53582 is able to synthesize 

BC after glucose depletion by using gluconic acid as carbon source. Keshk (2014) reported 

that this occurs after treatment with 0.5% (w/v) ascorbic acid, indicating that ascorbic acid 

enhances the ability of K. xylinus to utilize gluconic acid for BC production. The higher 

final pH and increased production of BC observed in this study may therefore be attributed 
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in part to increased gluconic acid metabolism in the presence of ethylene. However, this 

requires further investigation. 

 

MIC assays were performed to ensure ethephon was not toxic to K. xylinus. Ethephon 

concentrations of 50 and 100 mM prevented K. xylinus growth (Figure 18). Control assays 

revealed that the bacterium could grow when chloride and phosphate concentrations were 

at 50 mM but not 100 mM, suggesting that ethylene was responsible for K. xylinus growth 

inhibition when the medium was supplemented with 50 mM ethephon. To our knowledge, 

this is the first time ethephon has been used to treat bacteria with ethylene. However, there 

are numerous literature reports that describe treating plants with millimolar concentrations 

of ethephon (Denney and Martin, 1994; Dhillon and Mahajan, 2011; Khan, 2004; Kong et 

al., 2009; Wang et al., 2013). Burg et al. (1962) showed that ethylene production levels in 

fruit vary depending on the cultivar. The internal ethylene concentration of various fruit 

varieties is in the micromolar range, with the exception of apples and passion fruit which 

produce ethylene in the high mircomolar to low millimolar range. Furthermore, Wheeler 

et al. (2004) demonstrated that the peak ethylene concentration in ripening tomatoes is 

approximately 10 µM. Based on this, an ethylene concentration of 50 mM is not 

physiologically relevant, and therefore the non-toxic ethephon-derived ethylene 

concentrations of 0.01, 0.1 and 1.0 mM were utilized in this study.  

 

Ethylene reduced pellicle hydration by increasing pellicle crystallinity (Figure 21), 

suggesting a higher degree of hydrogen bonding between adjacent glucan chains that 

resulted in a reduced ability to hydrogen bond to water. Qureshi et al. (2013) showed that 

exogenous IAA, ABA, GA3 and zeatin influenced the hydration and crystallinity of K. 

xylinus pellicles in a concentration-dependant manner. In contrast, all concentrations of 

ethylene decreased hydration and increased the crystallinty of the pellicles in this study. 

Increased crystallinity enhances the recalcitrance of BC, which provides a survival 

advantage to K. xylinus in the environment since it would be less susceptible to cellulase-

producing microorganisms.  
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Increased BC yield by K. xylinus is a direct result of exposure to ethylene in both liquid 

(Figure 20) and solid media (Figure 23); growth is not affected (Figure 19). An increase 

in BC production after ethylene treatment was observed, further supporting the conclusion 

that it has a direct effect on BC biosynthesis. This is in contrast to ABA, zeatin and GA3 

which indirectly enhance BC production due to an increased growth rate (Qureshi et al., 

2013). Hu and Catchmark (2010) investigated the effect of 1-methylcyclopropene (1-

MCP), a known inhibitor of ethylene-dependant responses in plants (Tassoni et al., 2006), 

on the growth and BC production of K. xylinus. This compound is thought to 

antagonistically bind ethylene receptors and blocks ethylene response in plants (Sisler, 

1991). Though an ethylene receptor has not been reported in K. xylinus, Hu and Catchmark 

(2010) showed that 1-MCP decreased K. xylinus growth rate and increased BC yield, 

indicating that similar to ethylene, 1-MCP has a direct effect on BC biosynthesis. This 

suggests that an ethylene receptor exists in K. xylinus and that ethylene and 1-MCP act as 

agonists since they induce similar phenotypes. This is in contrast to their effects on fruit, 

since treatment with 1-MCP inhibits ethylene-dependent ripening phenotypes (Tassoni et 

al., 2006). 

  

The direct target of ethylene and 1-MCP in K. xylinus has not yet been identified. 

However, it should be noted that although ethylene receptors have not been identified in 

bacteria, ethylene receptors in plants are highly similar to the two-component regulatory 

systems in bacteria (Chang et al., 1993). Interestingly, Delta-Blast comparison of the amino 

acid sequences of the A. thaliana ETR1 and ERS1 ethylene receptors to the proteome of 

K. xylinus E25 revealed two potential ethylene receptors that resemble two-component 

regulatory proteins (Table 9). Therefore, future studies should investigate these two-

component systems as mediators of the ethylene-induced phenotypes in K. xylinus.  

 

It is also possible that proteins involved K. xylinus chemotaxis may be involved in the 

ethylene response, as they are in Pseudomonas aeruginosa (Kim et al., 2007). Interestingly, 

the P. pseudoalcaligenes KF707 histidine kinase (CheA) involved in chemotaxis is also 

required for biofilm formation (Tremaroli et al., 2011), suggesting a link between 
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chemotaxis and biofilm development. It is possible that chemoreceptors are involved in K. 

xylinus ethylene response and that this signaling pathway is connected to BC biosynthesis. 

However, more research is required to investigate this possibility. 

 

The effect of IAA, ABA and ethylene on K. xylinus gene expression was assessed 

using optimized RT-qPCR assays. First, a time-course RT-qPCR study was performed to 

assess how IAA and ABA influenced the steady-state expression levels of K. xylinus genes 

involved in BC biosynthesis (Table 4). Next, an RT-qPCR pulse experiment was 

completed to determine how these genes responded to IAA, ABA and ethylene treatment 

at mid-log phase. The differences in yield (Appendix Table A1) and quality (Appendix 

Figure A4 and Appendix Figure A5) between the time-course and pulse RNA samples 

was caused by variability in the Norgen Biotek RNA Purification Plus kits that were used. 

The RNA-binding column used to purify the time-course RNA samples would elute silica 

carbide resin during the RNA elution step, which likely affected the RNA yield. This 

malfunction was corrected by the manufacturer by adding another O-ring to the RNA-

binding columns. This updated RNA purification kit was used at a later date to extract the 

RNA used in the pulse experiment and was demonstrated to isolate a higher yield of RNA 

that contained more small RNAs.   

 

RT-qPCR reference genes were also thoroughly validated for both RT-qPCR studies. 

Interestingly, geNorm assigned M values below 0.5 for all reference genes and all time 

points, indicating that all reference genes were considered stable using the geNorm model. 

NormFinder and RefFinder produced different stability rankings in some cases, but all 

programs generally agreed on what genes were most and least stable. Therefore, the use of 

multiple algorithms to assess reference gene stability in future studies may not be 

necessary. The geNorm algorithm provides a cut-off value of 0.5 for reference gene 

stability (M) and 1.5 for pair-wise variation values (V; Hellemans et al., 2007), which 

provide an indication of how many reference genes should be used for data normalization. 

Therefore, geNorm is the best program for determining reference gene stability since it 

provides a reference to which gene stability can be compared, while simultaneously 
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determing the required number of reference genes needed for accurate gene expression 

analysis. 

 

In this study, only two reference genes were required in all cases. In retrospect, a small-

scale RT-qPCR pilot experiment should be performed with multiple reference genes to 

determine the number and identity of reference genes required for a large-scale experiment. 

This will reduce the number of assays required for the large-scale RT-qPCR study, and will 

save time and reagents.  

 

The time-course RT-qPCR experiment was performed over seven days, wherein RNA 

samples were extracted from IAA- and ABA-treated cultures after 3, 4, 5, 6 and 7 days. 

These time-points correspond to different growth phases of K. xylinus (Appendix Figure 

A16). Genes within the bcs operon were only affected at the 3 day and 5 day time points 

(Figure 24). IAA downregulated bcsA during early log phase (day 3) which may contribute 

to the decreased BC yield observed with IAA treatment (Qureshi et al., 2013), since BcsA 

is the enzyme responsible for BC synthesis (Morgan et al., 2013; Omadjela et al., 2013). 

Downregulation of bcsD by ABA during early log phase (day 3) may reduce the activity 

of the BCSC, since BcsD is required for optimal BC production (McManus et al., 2016). 

Reduced rates of BC biosynthesis may leave more carbon available to be used to increase 

K. xylinus growth (Qureshi et al., 2013). However, ABA was not shown to decrease BC 

yield, but rather, it increased it (Qureshi et al., 2013). It is possible that decreases in BC 

yield are hidden by an increase in growth rate when K. xylinus is grown in the presence of 

ABA. If the magnitude of the reduction in BC biosynthesis rate was less than the magnitude 

of the increased growth rate, it is possible that an indirect increase in BC yield could be 

observed since there would be more cells producing BC. This corresponds to the observed 

indirect effect of ABA on K. xylinus BC production (Qureshi et al., 2013).  

 

By mid-log phase (day 5), IAA upregulated bcsB and bcsC which seems to contradict 

previous results, since increasing the expression of these two genes would be expected to 

increase BC production, but IAA decreases it. It is possible that the steady-state levels of 
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bcsB and bcsC mRNA do not correspond to the levels of their encoded proteins as observed 

for numerous others due to differential mRNA stability (Mikulits et al., 2000). ABA 

upregulated bcsC at mid-log phase (day 5). Since the effect of ABA on K. xylinus BC 

production is indirect (Augimeri et al., 2015; Qureshi et al., 2013), the physiological 

conquence of ABA-induced bcsC upregulation is not known. Overall, the time-course RT-

qPCR experiment demonstrated that the steady-state expression levels of bcs operon genes 

are different, possibly due to differential mRNA stability. However, future studies are 

required to confirm this hypothesis. 

 

The steady-state level of bglAx, located downsteam of the bcs operon (Saxena et al., 

1994), was influenced by IAA and ABA (Figure 25). In response to ABA, bglAx was 

downregulated at early log phase (day 3), upregulated at mid log phase (day 5), and 

downregulated again at early stationary phase (day 6). Fluctuations in bglAx expression 

was likely caused by effects of different growth stages. It is possible that the requirement 

for BglAx under ABA-treated conditions may be temporally sensitive. The bglAx gene was 

downregulated during early stationary phase (day 6) by IAA, which may play a role in 

causing IAA-induced decreases in BC yield (Qureshi et al., 2013) since BglAx is required 

for optimal BC production (Deng et al., 2013). The genes upstream of the bcs operon, 

cmcAx and ccpAx, were not affected by IAA or ABA during the RT-qPCR time-course. 

 

A transcription factor belonging to the CRP/FNR family was previously identified in 

K. hansenii ATCC 23769 and shown positively regulate BC biosynthesis (Deng et al., 

2013). A homologous protein was identified bioinformatically in K. xylinus during this 

thesis. The steady-state expression level of crp/fnrKx mRNA was upregulated by IAA and 

ABA during the exponential growth phase (Figure 26). However, since IAA decreases BC 

yield and ABA has no direct effect on BC biosynthesis, it is likely that CRP/FNRKx affects 

other processes in K. xylinus that are independent of BC biosynthesis. Analysis of the 

steady-state expression of a transcription factor is not the best way to determine how it is 

affected by a certain treatment, since they tend to exert their effects quickly in response to 
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changing environmental conditions. Thus, crp/fnrKx expression was also analyzed using 

pulse RT-qPCR experiments.  

 

Using data from the RT-qPCR pulse experiments, the differential expression of genes 

within the K. xylinus bcs operon is reported for the first time. This operon encodes proteins 

that comprise the complex responsible for BC production in K. xylinus. The bcs operon in 

K. xylinus encodes four genes (bcsABCD) to form a polycistronic mRNA. However, little 

is known in regards to how the bcs operon is regulated, particularly how relative gene 

expression is affected by external signals. Ethylene upregulated the expression of bcsA and 

bcsB which encode enzymes responsible for BC biosynthesis, but not bcsC and bcsD, 

which encode enzymes for BC export and crystallization. Therefore, an increase in BC 

production only requires additional synthesis proteins (BcsA and BcsB), but not increased 

levels of export/crystallization proteins (BcsC and BcsD). Similarly, IAA downregulated 

bcsA but did not affect the other bcs genes. Since bcsA encodes the BC synthase (BcsA) 

that is responsible for synthesis of BC, it follows that its downregulation results in 

decreased BC production as observed with IAA, and that its upregulation results in 

increased BC production as observed with ethylene. This data indicates that ethylene and 

IAA directly influence BC biosynthesis at a transcriptional level. In order to increase BC 

biosynthesis, both bcsA and bcsB must be upregulated, since functional BcsA is stabilized 

by BcsB in the periplasm (Morgan et al., 2013). However, decreasing BC biosynthesis only 

requires the downregulation of bcsA, since its protein product is enzymatically responsible 

for BC biosynthesis. It is possible that K. xylinus preserves cellular energy by maintaining 

constitutive levels of bcsB transcription so that the transcript is readily available for 

translation into BcsB once bcsA repression is relieved. 

 

The differential relative expression of genes within operons is especially useful for 

regulating encoded proteins that serve different functions, such as the protein products of 

the bcs operon genes. Recall that BcsA synthesizes BC, BcsB chaperones BC chains 

through the periplasm, BcsC facilitates export of BC into the extracellular environment and 

BcsD is responsible for crystallization of BC. In some cases, differential relative expression 
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of genes within an operon can be attributed to different translation efficiencies of operon-

encoded mRNA due to variations in ribosome-binding sites (Vellanoweth, 1993). 

Inhibition of individual genes in a polycistronic mRNA by anti-sense RNA causes 

differential relative gene expression of the E. coli galactose operon (Møller et al., 2002) 

and various other operons, including those regulated by excludons (Lasa and Villanueva, 

2014; Sesto et al., 2013). Lastly, polycistronic mRNA can undergo RNase cleavage and 

produce individual mRNAs that differ in terms of stability, leading to differential protein 

expression. For example, the genes within the Escherichia coli atp operon that encode 

proteins that make up the ATP synthase (Gay and Walker, 1981) are differentially regulated 

(McCarthy et al., 1991). Like the BC synthesis complex, the ATP synthase is made up of 

numerous protein subunits and is embedded in the cell membrane of Gram-negative 

bacteria. The differential expression of the atpIBEFHAGDC operon genes has been 

attributed to segmental differences in mRNA stability (Lagoni et al., 1993; McCarthy et 

al., 1991), in that the mRNA of the first two genes of the operon are rapidly degraded by 

RNase enzymes (Ziemke and McCarthy, 1992), while the remaining seven genes are more 

stable (McCarthy et al., 1991). In addition, the translational efficiencies of mRNA from 

the atp genes vary (Brusilow et al., 1982) so that the differential expression of the operon 

is controlled at two post-transcriptional levels. This type of regulation has also been 

observed for the malEFG operon in E. coli (Newbury et al., 1987), the gap-pgk operon of 

Zymomonas mobilis (Burchhardt et al., 1993; Eddy et al., 1991) and Clostridium 

acetobutylicum (Schreiber and Dürre, 2000), the dnaK operon of B. subtilis (Homuth et al., 

1999), the puf operon in Rhodobacter capsulatus (Belasco et al., 1985; Klug et al., 1987) 

and the uropathogenic E. coli pap operon (Båga et al., 1988; Nilsson et al., 1996). It is 

therefore possible that the bcs operon in K. xylinus is differentially-regulated through one 

of these mechanisms. However, determining the mechanism that is responsible requires 

further investigation. 

 

The deletion of ccpAx in K. hansenii ATCC 23769 significantly decreased levels of 

BcsB and BcsC, but not BcsA, which are controlled by the same promoter (Deng et al., 

2013; McManus et al., 2016). The expression of bcsD is regulated by a different promoter 
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(Deng et al., 2013) supporting the notion that differential expression of the genes that make 

up the BCSC does occur. Therefore, it is possible that in K. hansenii, ccpAx plays a role in 

regulating differential relative expression of the bcsABC operon, resulting in the 

differential protein expression observed in the study by Deng et al. (2013).  

 

Ethylene also upregulated cmcAx and ccpAx which form their own operon upstream 

of the bcs operon (Kawano et al., 2002b; Sunagawa et al., 2013). CcpAx is essential for 

BC biosynthesis (Standal et al., 1994) and is believed to be involved in crystallizing BC 

due to its localization with BcsD (Sunagawa et al., 2013). The precise function and 

transcriptional regulation of CcpAx is not known. Similarly, the exact function of CmcAx 

is not known. However, it is required for BC biosynthesis as CmcAx inhibition by 

antibodies results in decreased BC production (Koo et al., 1998) and addition of minute 

amounts of CmcAx, or its overexpression increases BC production (Kawano et al., 2002a, 

2008; Tonouchi et al., 1995). CmcAx is believed to play a role in editing distorted glucan 

chains since cmcAx deletion results in the formation of highly twisted ribbons (Nakai et al., 

2013). Expression of cmcAx is induced by gentiobiose produced by BglAx (Kawano et al., 

2008). The expression of bglAx is induced by the CRP/FNRKh transcription factor in K. 

hansenii ATCC 23769 (Deng et al., 2013). We demonstrated that ethylene and ABA 

upregulate the expression of bglAx. The ethylene-dependant upregulation of all three genes 

may be required to cope with the enhancement of BC biosynthesis. In addition, 

upregulation of cmcAx and bglAx may lead to increased levels of secreted CmcAx and 

BglAx which have cellulose-hydrolyzing activity (Kawano et al., 2002b; Tahara et al., 

1998; Tajima et al., 2001). These proteins may aid in the degradation of plant cellulose in 

order to weaken the fruit cell wall and provide more glucose for BC production. 

 

The CRP/FNR family of transcription factors regulate the expression of genes critical 

to bacterial growth and survival in response to changing environmental conditions (Körner 

et al., 2003). Ethylene upregulated crp/fnrKx expression and increased BC production. IAA 

downregulated crp/fnrKx expression and decreased BC production. Together, these results 

suggest that CRP/FNRKx directly regulates BC biosynthesis in K. xylinus at a 
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transcriptional level, similar to how CRP/FNRKh regulates BC biosynthesis in K. hansenii 

(Deng et al., 2013). Positive regulation of biofilm formation by CRP/FNR family protein, 

CRP, has also been observed in E. coli (Jackson et al., 2002) and Shewanella oneidensis 

(Thormann et al., 2005) when bound to cAMP. In contrast, CRP-cAMP negatively 

regulates transcription of genes involved in the biosynthesis of Vibrio polysaccharide 

(VPS) in Vibrio cholerae (Fong and Yildiz, 2008). Contradictory to the hypothesis that 

CRP/FNRKx positively regulates BC production in K. xyinus is the observation that ABA 

downregulates crp/fnrKx but does not decrease BC yield (Qureshi et al., 2013). However, 

our study only focused on a small subset of genes. Therefore, it is possible that ABA 

regulates a yet to be identified gene whose protein product counteracts the downregulation 

of crp/fnrkx. This unknown protein may mitigate the negative effect that crp/fnrKx 

downregulation would have on BC biosynthesis. However, this requires further 

investigation.  

 

The CRP/FNR family transcription factor, Bcam1349, binds c-di-GMP and regulates 

biofilm formation by enhancing the production of BC and curli fimbriae in Burkholderia 

cenocepacia (Fazli et al., 2011). Binding of c-di-GMP enhanced the ability of Bcam1349 

to bind the promoter region and increase the expression of bcs operon genes (Fazli et al., 

2011) and the Bcam1330-Bcam1341 gene cluster that is involved with exopolysaccharide 

production (Fazli et al., 2013). Interestingly, various diguanylate cyclase and 

phosphodiesterase proteins that are involved with c-di-GMP metabolism, are regulated by 

the CRP/FNR family protein, CRP, in V. cholerae (Fong and Yildiz, 2008).  Therefore, we 

postulate that CRP/FNRKx may have the ability to bind c-di-GMP and increase the 

expression of genes within the K. xylinus bcs operon. Furthermore, the CRP/FNR family 

transcription factor, Lmo0753, has been shown to regulate biofilm formation in Listeria 

monocytogenes (Salazar et al., 2013). 

 

CRP/FNRKh regulates BC biosynthesis in K. hansenii ATCC 23769 by positively 

regulating the expression of bglAx and other genes required for BC production that have 

yet to be identified (Deng et al., 2013). This is consistent with the effects of ethylene, which 
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upregulates both crp/fnrKx and bglAx. This provides evidence that active CRP/FNRKx may 

positively regulate bglAx transcription in K. xylinus. In contrast, ABA induces inverse 

expression of crp/fnrKx and bglAx, while IAA down-regulates crp/fnrKx, but has no effect 

on bglAx. This suggests that the mechanisms involved in CRP/FNRKx-mediated 

transcriptional regulation are influenced differently by ethylene, IAA and ABA. This may 

be explained by the complex regulatory role that CRP/FNR family transcription factors 

have in bacteria, due to their ability to regulate numerous target genes depending on 

activation by a ligand. For example, the E. coli CRP transcription factor activates the 

transcription of over 100 promoters (Brown and Callan, 2004; Harman, 2001; Kolb et al., 

1993). The activation of CRP is dependent on allosteric binding of cAMP (Harman, 2001). 

Apo-CRP has low DNA binding affinity and displays minimal sequence specificity. 

Binding of cAMP results in conformational changes that result in high affinity, sequence-

specific DNA binding and interaction with RNA polymerase (Won et al., 2009). Sigma 

factors produced under the specific conditions then coordinate sequence-specific gene 

expression mediated by active CRP and RNA polymerase (Colland et al., 2000). Therefore, 

it is possible that ethylene, IAA and ABA alter the DNA binding specificity of CRP/FNRKx 

resulting in differential regulation of bglAx. To our knowledge, this is the first report of a 

bacterial CRP/FNR family transcription factor that is regulated by phytohormones. 

 

Based on the results of the current study, as well as data provided by Qureshi et al. 

(2013), an update to the model for the phytohormone-mediated fruit-bacteria interactions 

of K. xylinus is proposed (Figure 29). On unripe fruit (Figure 29A), K. xylinus is exposed 

to high concentrations of IAA, zeatin (Z) and GA3. As a fruit ripening inhibitor (Davies et 

al., 1997; Frenkel and Dyck, 1973; Symons et al., 2012; Ziliotto et al., 2012), IAA directly 

inhibits energetically-costly BC biosynthesis by downregulating bcsA, since carbon source 

is limited on unripe fruit. Exogenous IAA, zeatin and GA3 increase K. xylinus growth, 

enhancing bacterial production of zeatin and GA3. These two hormones increase fruit size 

by controlling cytokinesis (zeatin) and cell enlargement (GA3; McAtee et al., 2013). 

Previous studies showed that rhizosphere bacteria that produce endogenous zeatin and GA3 

can enhance plant growth (Arkhipova et al., 2005; Bottini et al., 2004) and that application 
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of GA3 increases the size of grape berries (Casanova et al., 2009) and tomatoes (Serrani et 

al., 2007). Therefore, we postulate that endogenous production of zeatin and GA3 by K. 

xylinus may contribute to the pool of endogenous hormone levels in the fruit so that there 

is more biomass to colonize once ripening begins. Endogenous production of ABA and 

ethylene is also increased as a result of enhanced cell growth. Exposing fruit to exogenous 

ABA and ethylene increases their endogenous levels in fruit tissues, triggering ethylene 

biosynthesis and inducing ripening (Leng et al., 2014; McAtee et al., 2013; Zhang et al., 

2009b). ABA and ethylene production by K. xylinus may therefore play a role in triggering 

and accelerating ripening, resulting in a preferred growth environment compared to unripe 

fruit. Furthermore, IAA-, ABA-, zeatin- and GA3-mediated growth enhancement ensures 

that cell density is at its peak when ripening begins. On ripe fruit (Figure 29B), K. xylinus 

would be exposed to high concentrations of ABA and ethylene (McAtee et al., 2013). Fruit-

produced ABA increases K. xylinus growth (Qureshi et al., 2013), increasing bacterial 

production of ABA and ethylene, which in turn upregulates plant-produced ethylene and 

accelerates ripening, respectively (Zhang et al., 2009b). Our hypothesis that ABA does not 

directly influence BC biosynthesis is supported by the observation that it did not affect the 

expression of genes within the bcs operon during the RT-qPCR pulse experiment. In 

contrast, exogenous ethylene directly enhances BC biosynthesis in K. xylinus by 

upregulating the expression of bcsA and bcsB. Therefore, ABA and ethylene act together 

as environmental signals to promote colonization of ripe fruit by K. xylinus through 

increased cell growth and direct enhancement of BC biosynthesis. Overproduction of BC 

provides a competitive advantage to K. xylinus as shown by apple colonization studies 

(Williams and Cannon, 1989). Enhancement of BC production and crystallization by 

ethylene therefore increases the environmental fitness of K. xylinus within the carposphere.  

 

In contrast to phytopathogens, saprophytes generally do not enter the intracellular 

space of plant cells. This leaves them more susceptible to environmental stresses. Thus, 

they must employ strategies that confer increased resistance to an ever changing 

environment (Beattie and Lindow, 1995); K. xylinus produces a BC biofilm that increases 

its epiphytic fitness (Williams and Cannon, 1989). Saprophytic organisms typically require 
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an abundance of water (BC helps retain water), oxygen (K. xylinus is aerobic), acidic 

conditions (K. xylinus is an acetic acid bacterium) and temperatures of 1-35oC (K. xylinus 

grows optimally at 28-30oC). In addition, saprophytes typically have an ability to resist 

host defenses; K. xylinus produces ABA which supresses plant immunity, and forms a 

biofilm that can protect it from chemical defenses. Thus, based on the current data, it is 

reasonable to suggest that K. xylinus is an epiphytic and saprophytic bacterium that exists 

within the carposphere. This is consistent with the observation that K. xylinus is 

heterotrophic. However, in addition to actively breaking down plant biomass, K. xylinus 

produces ethylene and ABA, increasing their levels in fruit, which results in the production 

of degradative enzymes that produce soluble nutrients that the bacteria can metabolize.  
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Figure 29. Updated model for the phytohormone-mediated fruit-bacteria interactions of K. xylinus. Only direct effects are shown. 

Unripe fruit (A) contain high concentrations of IAA, zeatin (Z) and GA3. IAA decreases K. xylinus BC production, while IAA, zeatin 

and GA3 increase bacterial cell growth enhancing endogenous production of ABA, ethylene, zeatin and GA3 by K. xylinus. These 

hormones increase fruit size and induce ripening, characterized by degradation of polysaccharides and weakening of the fruit cell 

wall. On ripe fruit (B), plant-produced ethylene up-regulates biosynthesis and crystallization of BC. Exogenous ABA increases K. 

xylinus growth, allowing it to accelerate the fruit ripening process by increasing endogenous ABA and ethylene production, which 

facilitates colonization. Green triangles, and inverted red triangles indicate a process is enhanced or repressed, respectively. Adapted 

from Augimeri and Strap (2015). 
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5 CONCLUSIONS AND FUTURE DIRECTIONS 

In summary, this thesis has demonstrated that ethylene produced through the in situ 

decomposition of ethephon can be used to study the effects of this hormone on bacteria. 

Ethylene directly increased K. xylinus BC biosynthesis by upregulating the expression of 

bcsA and bcsB and indirectly by upregulating the expression of cmcAx, ccpAx and bglAx. 

IAA decreases BC biosynthesis directly by downregulating bcsA expression. It was also 

demonstrated that the bcs operon in K. xylinus is differentially regulated by ethylene and 

IAA. Altogether, this thesis has expanded on the putative fruit-bacteria interactions of K. 

xylinus, provided new insights into the transcriptional regulation of the bcs operon and 

identified a new phytohormone-regulated CRP/FNRKx transcription factor that plays a role 

in BC biosynthesis in K. xylinus ATCC 53582. 

 

Future studies should attempt to identify receptors for IAA, ABA and ethylene in K. 

xylinus; no receptors for these hormones have been discovered in bacteria to date. In 

addition, it should be determined how these hormones affect DGCs and PDEs in K. xylinus, 

as well as c-di-GMP concentration. Since IAA directly decreases BC yield and ethylene 

directly increases BC production, it can by hypothesized that IAA-treated cultures will 

have lower c-di-GMP concentrations, while ethylene-treated cultures will have higher c-

di-GMP concentrations than the untreated controls. 

 

Studies regarding the phytohormone-mediated fruit-bacteria interactions of K. xylinus 

have only been performed in vitro and were used to develop a model for how K. xylinus 

behaves when growing on rotting fruit in the environment. Future studies should consider 

testing the model in planta to confirm whether the observed phenotypes are replicated. In 

terms of endogenous hormone production, K. xylinus was shown to produce ABA in a 

previous study (Qureshi et al., 2013), and ethylene in the present study. This suggests that 

K. xylinus could accelerate fruit ripening by increasing endogenous ABA and ethylene 

concentrations in the fruit it has colonized. This could be tested in planta using methods 

similar to those used to determine whether an E. coli strain, genetically-modified to 

produce large quantities of ethylene, could ripen fruit (Digiacomo et al., 2014). Briefly, K. 
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xylinus cultures could be grown in Büchner flasks and connected with tubing to sterilized 

glass jars containing surface-sterilized fruit. This would allow the fruit to be exposed to 

headspace gas from K. xylinus cultures. After set time-points, the fruit would be assessed 

for different ripening characteristics, such as a change in color, sugar concentration and 

firmness. This would determine if K. xylinus can ripen fruit through ethylene production. 

In addition, if an ABA non-producing mutant of K. xylinus was obtained, the mutant and 

wildtype strains could be inoculated onto fruit. The ripening characteristics of fruit from 

each group could then be assessed. If the fruit inoculated with the ABA-producing wildtype 

strain is riper than the fruit inoculated with the ABA non-producing mutant, K. xylinus 

would be shown to accelerate ripening through ABA production. These types of studies 

could provide data that could immensely strengthen the model proposed in this thesis. 

 

Altogether, this thesis has elaborated on the fruit-bacteria interactions of K. xylinus by 

demonstrating that it has the ability to respond to and synthesize ethylene. This information 

is relevant to the agriculture industry in regards to post-harvest crop management, since 

fruit containing K. xylinus on its surface would ripen at a faster rate due to endogenous 

ethylene production by the bacterium. This research study has established a molecular basis 

for the effect that IAA, ABA and ethylene have on K. xylinus, and proved the effectiveness 

of using ethephon as a tool to study bacterial ethylene response. In addition, the 

aforementioned data has shed new light on the regulation of the bcs operon in K. xylinus 

by establishing that it can be differentially-regulated. Evidence has been provided that 

suggests CRP/FNRKx positively regulates BC biosynthesis and represents the first 

transcription factor implicated in this process in K. xylinus. This thesis has significantly 

contributed to the field of BC biosynthesis and the study of K. xylinus ecophysiology, and 

has inspired numerous avenues for promising future research.   
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7 APPENDIX  

 

 

Appendix Figure A1. The drop in pH of K. xylinus cultures grown in SH medium (pH 

5) may impair decomposition of ethephon into ethylene. K. xylinus was grown at 30oC 

and 150 rpm in SH medium (pH 5) that was supplemented with 0.2% (v/v) cellulase. 

The change in culture pH was monitored for 14 days. Note that the y-axis begins at pH 

5. Error bars show SD (n = 3). 
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Appendix Figure A2. Ethephon itself does not affect the properties of K. xylinus 

pellicles. K. xylinus was cultured in SH medium (pH 5) and grown statically at 30oC for 

7 days before pellicles were harvested and analyzed. Ethephon had no effect on the wet 

weight (A), thickness (B), dry weight (C) or crystallinity of K. xylinus pellicles when 

they are grown in a pH 5 SH medium. Ethephon decomposition was shown to be 

insignificant in a pH 5 SH medium (Figure 15), indicating ethephon itself does not 

influence these pellicle properties. Data was normalized to and expressed as percent of 

the untreated control. Note how the y-axis begins at 50%. Error bars show SD (n = 3). 
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All primer sets designed for RT-qPCR analysis of various K. xylinus genes (Table 4) were tested by end-point PCR to ensure 

they produced amplicons of the expected size (Table 5). PCR samples were electrophoresed on 2% (w/v) agarose gels and showed that 

all primer sets produced the expected amplicons (Appendix Figure A3). This result verified that all primer sets amplify the correct 

genes and that they could be used for RT-qPCR analysis. 

 

Appendix Figure A3. All primer sets designed for RT-qPCR analysis produce the expected amplicons. End-point PCR using RT-

qPCR primer sets and K. xylinus gDNA as the template was performed and reactions were electrophoresed on a 2% (w/v) agarose gel 

in 1X TAE. Lane labels indicate the gene that was amplified. The expected molecular weights (MW) of each amplicon are shown in 

Table 5. MW of ladder is in base pairs. 
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The quality and purity of each RNA sample was assessed using agarose gel 

electrophoresis and UV-visible spectrophotometry, respectively. Electrophoresis results 

for the time-course (Appendix Figure A4) and pulse (Appendix Figure A5) RNA 

samples show the presence of bands corresponding to the 5S, 16S and 23S rRNA subunits. 

All RNA samples showed no sign of significant degradation or genomic DNA 

contamination. However, the RNA samples from the pulse experiment (Appendix Figure 

A5) have much more distinct bands compared to the time-course RNA samples (Appendix 

Figure A4), indicating they contain higher quality RNA. The band above the 23S rRNA 

band likely corresponds to rRNA traveling as a certain secondary structure that impedes its 

movement through the agarose gel since it was performed using non-denaturing conditions. 

UV-visible spectrophotometry showed that all time-course and pulse RNA samples 

produced A260/A280 values of 1.9-2.3 (data not shown), indicating high purity and limited 

protein contamination. The average A260/A280 values were similar for both the time-course 

and pulse samples, but the average concentration of pulse RNA was significantly higher (p 

< 0.001) and more variable than the time-course RNA (Appendix Table A1). Taken 

together, these results verify that all RNA samples were suitable for cDNA synthesis and 

RT-qPCR analysis.  

 

Appendix Table A1. Average A260/A280 values and RNA concentrations of time-course 

and pulse RNA samples. Error shown is SD (n = 75 for time-course and n = 21 for pulse). 

Experiment Average A260/A280 Average [RNA] (ng/µL)1 

Time-course 2.032 ± 0.008  184 ± 6.71  

Pulse 2.092 ± 0.093  325 ± 102  

1 Difference between time-course and pulse average [RNA] is significant (p < 0.001) as determined by an 

unpaired, two-tailed Student’s t-test. 
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Appendix Figure A4. 

Agarose gel electrophoresis 

results for time-course 

RNA. The samples were 

electrophoresed in a 2% 

(w/v) agarose gel in 1X 

TAE. The gels correspond 

to the RNA samples 

extracted from K. xylinus 

after 3 (A), 4 (B), 5 (C), 6 

(D) and 7 days (E) of 

growth in the presence of 

IAA or ABA. The two 

bands at approximately 

1000 bp correspond to the 

23S (top) and 16S (bottom) 

rRNA subunits. The band 

at about 100 bp 

corresponds to the 5S 

rRNA subunit and tRNAs. 

All samples display 

minimal signs of 

degradation. MW of ladder 

is in base pairs. 
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Appendix Figure A5. Pulse experiment RNA. The extracted RNA was electrophoresed 

on a 2% (w/v) agarose gel in 1X TAE. The gels correspond to RNA samples extracted 

from K. xylinus after 1 hour of growth in the presence of DMSO (untreated) and 10.0 

µM IAA (A), DMSO (untreated) and 10.0 µM ABA (B), as well as after 24 hours of 

growth in the presence of acidified (pH 2.5) water (untreated), 10.0 µM ethephon and 

10.0 µM of phosphate-chloride (C). The two bands that ran at approximately 1000 bp 

correspond to the 23S (top) and 16S (bottom) rRNA subunits. The band at about 100 bp 

corresponds to the 5S rRNA subunit and tRNAs. All gels show that the RNA is of 

extremely high quality. MW of ladder is in base pairs. 
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Cycling conditions for each RT-qPCR was optimized through the use of annealing 

temperature gradients, in order to determine the optimal annealing temperature, standard 

curves, to determine a suitable dilution factor for cDNA samples and to verify the 

efficiency of each assay, and melt-curves to ensure reaction specificity. Initially, annealing 

temperature gradients were performed for each primer set. The annealing temperatures that 

produced the lowest Ct value and a single amplification peak (Table 6) were then used for 

the standard curves. Based on the expression levels of each gene observed during annealing 

temperature gradients, standard curves utilized particular fold-dilutions (Table 6) of pooled 

cDNA samples. Genes with higher expression levels were subject to a higher fold-dilution 

and generally had a larger LDR (Table 6). For example, the 16SrRNA and 23SrRNA genes 

were expressed significantly higher than any other gene, so a 10X fold-dilution was utilized 

which produced a large LDR. Highly expressed rRNA genes are expected since they are 

more highly expressed than mRNA. Lesser expressed genes required a smaller fold-

dilution so that the Ct value of the most diluted standard remained under 35 cycles; the 

generally accepted upper-limit for reliable RT-qPCR data. All primer sets produced an 

amplification efficiency of 90-110% (Table 6) and R2 values of 0.97-1.0 when the linear 

dynamic range of template concentrations were analyzed (Appendix Figure A6). Each 

primer set produced a single PCR product as determined by melt-curve analysis, indicating 

the each RT-qPCR is specific for the target product (Appendix Figure A7). The non-

pooled cDNA samples were then diluted to within the linear dynamic range of each primer 

set for the RT-qPCR experiment. The difference in Ct values between the cDNA samples 

and the no-reverse transcription controls (NRT) was a minimum of 8 Ct indicating the 

cDNA samples contained insignificant levels gDNA contamination. Furthermore, 

amplification of the no template controls (NTC) always occurred after 35 cycles indicating 

the cDNA samples were void of nucleic acid contamination. 
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Appendix Figure A6. RT-

qPCR standard curves. 

Panels show standard 

curves for the 16SrRNA 

(A), 23SrRNA (B), gapdh 

(C), gyrB (D), rho (E), 

rpoA (F), rpoD (G), bcsA 

(H), bcsB (I), bcsC (J), 

bcsD (K), cmcAx (L), ccpAx 

(M), bglAx (N), crp/fnrKx 

(O) and oprB (P) RT-qPCR 

assays. All standard curves 

produced amplification 

efficiencies (E) of 90-110% 

and R2 values of over 0.97 

using at least four dilutions. 
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Appendix Figure A7. RT-

qPCR melt-curve analysis. 

Panels show melt-curves 

for the 16SrRNA (A), 

23SrRNA (B), gapdh (C), 

gyrB (D), rho (E), rpoA (F), 

rpoD (G), bcsA (H), bcsB 

(I), bcsC (J), bcsD (K), 

cmcAx (L), ccpAx (M), 

bglAx (N), crp/fnrKx (O) and 

oprB (P) RT-qPCR assays. 

Green lines indicate 

amplification of cDNA 

samples, while NTCs are 

shown as red lines. All 

primer sets produced a 

single amplicon indicating 

that all assays are specific 

for the gene being targeted.  
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All seven reference genes (Table 4) were analyzed in regards to their expression 

stability at each time point using three different programs; geNorm, NormFinder and 

RefFinder. These programs employ different algorithms in order to rank reference gene 

stability. The geNorm algorithm uses a pair-wise comparison approach, NormFinder 

compares intra- and intergroup variations and RefFinder integrates results from geNorm, 

NormFinder, BestKeeper and the comparative ΔΔCt method to provide a comprehensive 

reference gene stability ranking. The final reference gene selection was decided using the 

comprehensive stability ranking computed by RefFinder and the number of genes 

suggested by analysis of geNorm V values. The geNorm M value was also computed for 

the reference genes selected for data normalization to ensure their M value was below the 

0.5 cut-off value suggested for homogenous sample types (Hellemans et al., 2007). 

 

The stability of reference genes was assessed with RT-qPCR using the 3 day time-

course cDNA samples. The most stable reference gene as determined by geNorm was gyrB 

(Appendix Figure A8A). NormFinder ranked gapdh as being most stable reference gene, 

but ranked gyrB as tied for the second most stable (Appendix Figure A8B). Both 

algorithms ranked rpoD as the second most stable reference gene. The comprehensive 

stability value determined by RefFinder ranked rpoD, gyrB and gapdh as the first, second 

and third most stable genes, respectively (Appendix Figure A8C). The least stable genes, 

in all cases, were 23SrRNA and rpoA. The optimal number of reference genes to use for 

normalization of the 3 day time-course RT-qPCR data was determined to be two, since the 

geNorm V2/3 value was below 0.15 (Appendix Figure A8D). This indicated the inclusion 

of a third reference gene did not significantly improve data normalization. In all cases, 

rpoD and gyrB were ranked in the top three of the most stable genes and were the top two 

most stable using RefFinder. As such, rpoD and gyrB were selected to normalize the 3 day 

time-course RT-qPCR data and had a final geNorm M value of 0.153 (Appendix Table 

A2), which is below the 0.5 cut-off.  

 

Reference gene stability was also assessed for the 4 day time-course RT-qPCR 

experiment. Both geNorm and NormFinder ranked gyrB as the most stably-expressed gene 
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and classified rpoD within the top three most stable genes (Appendix Figure A9A and 

Appendix Figure A9B). Consistently, RefFinder ranked gyrB and rpoD as the two most 

stable reference genes (Appendix Figure A9C). The least stable genes, in all cases, were 

23SrRNA and rho. The geNorm V2/3 value was below 0.15 (Appendix Figure A9D), 

indicating two reference genes were sufficient for effective data normalization. Therefore, 

rpoD and gyrB were selected for normalization of the 4 day time-course data and had a 

final geNorm M value of 0.196 (Appendix Table A2), which is below the 0.5 cut-off value.  

 

Optimal reference genes were also determined for the 5 day time-course RT-qPCR 

experiment. Reference gene analysis showed that geNorm (Appendix Figure A10A), 

NormFinder (Appendix Figure A10B) and RefFinder (Appendix Figure A10C) ranked 

gyrB and rho as the most stably-expressed genes and 23SrRNA as the least stable gene. The 

geNorm V2/3 was below 0.15 (Appendix Figure A10D) so gyrB and rho were selected to 

normalize the 5 day time-course RT-qPCR data. This pair of reference genes had a final 

geNorm M value of 0.204 (Appendix Table A2), which is below the 0.5 cut-off value.  

 

All three programs ranked gyrB and gapdh to be the most stable reference genes 

and 23SrRNA and rho as the least stable genes for the 6 day time-course RT-qPCR 

experiment (Appendix Figure A11A, B and C). The two most stable genes, gyrB and 

gapdh, were used to normalize the 6 day RT-qPCR data since the geNorm V2/3 value was 

below 0.15 (Appendix Figure A11D). The final geNorm M value for gyrB and gapdh was 

calculated to be 0.212 (Appendix Table A2) which is below the 0.5 cut-off value. 

 

Reference gene stability was determined for the 7 day time-course RT-qPCR 

experiment. It was shown that geNorm (Appendix Figure A12A), NormFinder (Appendix 

Figure A12B) and RefFinder (Appendix Figure A12C) ranked rpoA, gapdh and gyrB as 

the three most stably-expressed reference genes. All programs ranked 23SrRNA and rho 

within the three least stable genes. The geNorm V2/3 value was below 0.15 (Appendix 

Figure A12D), so the two most stable genes as determined by RefFinder (rpoA and gapdh) 
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were chosen to normalize the 7 day time-course RT-qPCR data. These two genes had a 

final geNorm M value of 0.249 (Appendix Table A2), which is below the 0.5 cut-off value.  

 

In regards to the IAA pulse experiment, geNorm ranked 16SrRNA and 23SrRNA as 

the two most stable reference genes, but all genes produced stability values well under the 

0.5 cut-off (Appendix Figure A13A). NormFinder suggested gyrB as the most stable gene 

and 16SrRNA, gapdh and 23SrRNA as the second most stable genes (Appendix Figure 

A13B). The comprehensive stability ranking as determined by RefFinder indicated gyrB 

was the most stable reference gene, followed by 23SrRNA (Appendix Figure A13C). All 

programs ranked rpoD, rpoA and rho as the least stable reference genes. The two most 

stable genes as determined by RefFinder (gyrB and 23SrRNA) were chosen to normalize 

the IAA pulse RT-qPCR data since the geNorm V2/3 value was below 0.15 (Appendix 

Figure A13D). Reference genes gyrB and 23SrRNA produced a final geNorm M value of 

0.099 (Appendix Table A2), which is well below the 0.5 cut-off value. 

 

Comparable results were obtained for the ABA pulse RT-qPCR experiment. The 

geNorm (Appendix Figure A14A), NormFinder (Appendix Figure A14B) and RefFinder 

(Appendix Figure A14C) algorithms ranked rpoD, gyrB and 23SrRNA as the most stable 

reference genes, although in different orders. All programs ranked rho, 16SrRNA and rpoA 

as the least stable genes. The geNorm V2/3 value was below the 0.15 cut-off value, 

indicating that only two reference genes were required for effective data normalization 

(Appendix Figure A14D). RefFinder suggested gyrB and 23S rRNA were the most stable 

genes and were therefore chosen to normalize the ABA pulse RT-qPCR data. These genes 

produced a final geNorm M value of 0.128, which is below the 0.5 cut-off value.  

 

For the ethephon pulse RT-qPCR experiment, all programs ranked 23SrRNA, 

gapdh and gyrB as the most stable reference genes, and rho and 16SrRNA within the three 

least stable genes (Appendix Figure A15A, B and C). The geNorm V2/3 value was below 

0.15, indicating the two most stable reference genes should be used for data normalization 

(Appendix Figure A15D). Similar to the IAA and ABA pulse experiment reference gene 
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analysis, RefFinder suggested 23SrRNA and gyrB as the two most stable genes. Therefore, 

23SrRNA and gyrB were used for normalization of the ethephon pulse RT-qPCR data and 

produced a final geNorm M value of 0.098, which is well below the 0.5 cut-off value.  

 

For all experiments, geNorm produced stability values of less than 0.5 for all 

reference genes, indicating that they were all stable under the tested conditions. Thus, the 

use of NormFinder and RefFinder allowed for the precise identification of the most stable 

reference genes using all available algorithms. The overall most stable reference gene was 

gyrB since it was used to normalize 7 out of 8 experiments. Furthermore, gyrB was ranked 

as the third most stable reference gene for the 7 day time-course RT-qPCR; the experiment 

where it was not used for data normalization. 
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Appendix Figure A8. Reference gene analysis for 3 day time-course RT-qPCR. The 

geNorm stability values (M) of all reference genes was below 0.5 (A), indicating they 

are all stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A9. Reference gene analysis for 4 day time-course RT-qPCR. The 

geNorm stability values (M) of all reference genes was below 0.5 (A), indicating they 

are all stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A10. Reference gene analysis for 5 day time-course RT-qPCR. The 

geNorm stability values (M) of all reference genes was below 0.5 (A), indicating they 

are all stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A11. Reference gene analysis for 6 day time-course RT-qPCR. The 

geNorm stability values (M) of all reference genes was below 0.5 (A), indicating they 

are all stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A12. Reference gene analysis for 7 day time-course RT-qPCR. The 

geNorm stability values (M) of all reference genes was below 0.5 (A), indicating they 

are all stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A13. Reference gene analysis for IAA pulse RT-qPCR. The geNorm 

stability values (M) of all reference genes was below 0.5 (A), indicating they are all 

stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A14. Reference gene analysis for ABA pulse RT-qPCR. The geNorm 

stability values (M) of all reference genes was below 0.5 (A), indicating they are all 

stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Figure A15. Reference gene analysis for ethephon pulse RT-qPCR. The 

geNorm stability values (M) of all reference genes was below 0.5 (A), indicating they 

are all stable reference genes. NormFinder (B) and RefFinder (C) were also used to rank 

reference gene stability. The geNorm pair-wise variation ratio (V) values were calculated 

by dividing the pair-wise variation when n reference genes are analyzed by the pair-wise 

variation when n+1 reference genes are used. Two reference genes should be used for 

normalization since V was less than 0.15, indicating the addition of another reference 

gene did not significantly influence data normalization. 
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Appendix Table A2. Summary analysis of reference genes used to normalize RT-

qPCR data. 

Experiment Time Point Number of Reference Genes Genes Used Final geNorm M 

Time-course 

3 day 2 gyrB/rpoD 0.153 

4 day 2 gyrB/rpoD 0.196 

5 day 2 gyrB/rho 0.204 

6 day 2 gyrB/gapdh 0.212 

7 day 2 rpoA/gapdh 0.249 

IAA Pulse 1 hour 2 gyrB/23SrRNA 0.099 

ABA Pulse 1 hour  2 gyrB/23SrRNA 0.128 

Ethephon Pulse 1 hour 2 gyrB/23SrRNA 0.098 
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Appendix Figure A16. K. xylinus growth in the presence of IAA and ABA. Cultures 

were grown in 25.0 mL of SH medium supplemented with 0.2% (w/v) cellulase and 

IAA, ABA or DMSO. Growth was monitored for 14 days. The time-points analyzed 

during the RT-qPCR time-course experiment correspond to the following growth 

phases: 3 days (early log phase), 4 days (mid-log phase), 5 days (late log phase), 6 days 

(early stationary phase) and 7 days (stationary phase).  
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Appendix Figure A17. The expression of genes known to be involved in K. xylinus BC 

biosynthesis are not affected by phosphate and chloride. Gene expression was quantified 

using an RT-qPCR pulse experiment after treatment with 10.0 µM phosphate-chloride. 

Expression values were made relative to the respective untreated controls and 

normalized using the expression values of reference genes, 23SrRNA and gyrB. Error 

bars show SD (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001. 

 

 


