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Abstract

We address one- and two-layer ultrasonic array imaging. We use an array of trans-

ducers to inspect the internal structure of a given specimen. In the case of one-layer

imaging we also address the problem of mode conversion. We propose a sparse sig-

nal representation based method for imaging solid materials in the presence of mode

conversion phenomenon.

In the case of two-layer imaging we model the signal propagation effect using

Huygens principle and Rayleigh-Sommerfeld diffraction formula. We then use this

model to develop a sparse signal representation based imaging technique for a test

sample immersed in water.

Moreover, we develop a new sparse Bayesian technique. In the model that we

develop, the reflectivity coefficients of the desired reflectors are nonnegative real num-

bers and sparse in nature. Therefore, we use Weibull distribution function with two

hyperparameters, namely the shape parameter and the scaling parameter, to model

the prior distribution function of the reflectivity coefficients of the reflectors. As we

show, the Weibull distribution, whose scale parameter obeys the inverse Gamma dis-

tribution, will enforce sparsity. We then propose a method for estimating the shape

parameter of the Weibull distribution using Mellin transform.
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Chapter 1

Introduction

1.1 Overview

Non-destructive testing (NDT) refers to the techniques that are used to inspect the

internal structures of a test sample without causing any damage. Common NDT

methods include ultrasonic, magnetic-particle, liquid penetrant, radiographic, remote

visual inspection (RVI), eddy-current testing, and low coherence interferometry. NDT

is commonly used in forensic engineering, mechanical engineering, petroleum engi-

neering, electrical engineering, civil engineering, systems engineering, aeronautical

engineering, medicine, and art [2].

A widely used NDT technique is ultrasonic array imaging, where an array of

transducers is used to obtain an image of the material under test.

At the beginning of the fifties the technician only knew radiography (x-ray or

radioactive isotopes) to detect internal flaws as well as the methods for nondestructive

testing of material surfaces, e.g. the dye penetrant and magnetic particle method.

Further development of the ultrasonic techniques happened after the Second World

War by Sokolovin 1935 and applied by Firestonein 1940. Consequently, instruments

were available for ultrasonic testing of materials. Solid materials are good conductors

1
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of sound waves and waves are reflected not only at the interfaces but also by internal

defects and this is the main principle of ultrasonic imaging [3].

One of the main advantage of ultrasonic testing over other material analysis meth-

ods is that it can often be performed on-line. Through the use of a water bath or

water stream as a coupling medium we can transmit high frequency sound waves into

and out of moving materials without direct contact. Since sound waves penetrate

through the test specimen, material properties are measured in bulk rather than just

on the surface, which means that we can inspect the internal structure of the ma-

terial. It is sometimes even possible, through the use of selective gating, to analyze

just one layer of a multi-layer, multi-material fabrication [4].

In ultrasonic imaging an ultrasound is generated inside the test sample using an

array of transducers that act both as transmitters and receivers. As soon as the

wave faces a discontinuity such as a hole or a crack inside the test sample, due to

impedance mismatch a fraction of the wave energy reflects back toward the array and

is received by the transducers. Hence by measuring the round trip delay of the wave,

one can measure the distance of the discontinuity from the array.

The frequencies used in ultrasonic imaging range from 20 KHz to 100 MHZ.

However, the most common frequency range is 0.5 MHz to 20 MHz [4]. The sensitivity

is defined as the ability of the ultrasound to detect a discontinuity. In order for a

discontinuity to be detected the size of the discontinuity should be greater than the

wavelength of the ultrasound. Therefore, higher sensitivity is achievable at higher

frequencies. At higher frequencies, however, the penetration depth of the ultrasound

reduces. Thus, there is a compromise between sensitivity and the penetration depth.

Ultrasonic arrays are increasingly being utilized in NDT as a means to inspect solid

structures in different industries. These arrays offer more flexibility and superior per-

formance compared to conventional monolithic probes [5]. Traditionally, ultrasonic

arrays are used to emulate a monolithic transducer by deploying parallel transmis-
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sion circuits which are designed to fire multiple transducers with programmable time

delays. Choosing different delay laws, the array output can be focused on different

regions of the test specimen and different types of image, such as plane or focused B-

scans, can be obtained [6]. Typically, in NDT applications, the defect to be imaged,

is time-invariant over the period of the test and it is logical to perform data analysis

off-line. To this end, several post-processing techniques have been proposed in the

literature which use the data (A-scans) from all combinations of transmit and receive

transducers in the array. This approach, often referred to as full matrix capture

(FMC), provides the largest possible set of independent data that can be obtained

from the array to image target objects [7, 8].

During post-processing, the data in the FMC approach is used by an array imaging

algorithm that assumes a linear acoustic model within the specimen. This means

that a given beam is never physically generated in the test piece but synthesized by

applying a DAS technique [9] to the full data set or a subset of it. For example, in the

synthetic aperture focusing technique (SAFT) [10], the pulse-echo data from every

array element is used and an image is generated based on the DAS approach. In the

DAS approach, different time-of-flights from each transducer element to each point

in the region of interest (ROI) are compensated and then a summation is performed

on all the aligned observations to form the image at that point. The total focusing

method (TFM) presented in [7, 11] follows the same principle as SAFT except that

the TFM technique uses the data from every transmitter and receiver combination

in the imaging process.

There are two different types of ultrasonic imaging approaches, namely contact

test and immersion test. In a contact test, the array is in contact with test sample.

In situations where the surface of the test sample is not smooth, contact test may

not be possible. In such situations, one can conduct an immersion test, where the

test sample and the transducer array are immersed in a liquid such as water.
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In immersion test, the gap between the transducer array and the test sample is

filled with water. The challenge in immersion test is the different velocities that wave

experiences while it passes through different layers. Moreover, when the wave hits the

surface of the test sample diffraction happens. Therefore, finding the array spatial

signature is a challenging task.

Another issue that we address in this dissertation is the mode conversion phe-

nomenon. In solids different types of ultrasonic waves can be generated. The lon-

gitudinal and transverse ultrasonic waves are commonly used in ultrasonic imaging.

In longitudinal waves particle vibrations are in the direction of the propagation. In

transverse waves, particle vibrations are perpendicular to the direction of the propa-

gation. We can either use one of these waves or combine them to generate new waves.

Surface waves for example can be generated as a result of combination of both lon-

gitudinal and transverse waves. Another example is plate waves that are produced

in materials with a few wavelength thickness. The most well known plate waves,

with both industrial and medical applications, is Lamb wave. Two common modes

of Lamb waves are symmetrical and asymmetrical. Surface waves and Lamb waves,

however, have their own limitations. Surface waves can penetrate one wavelength

into the solid and in the case of Lamb waves the thickness of the solid should be only

a few wavelength [12–14].

1.2 Motivation

In regards of mode conversion phenomenon we have been motivated by the following.

The common modes used in ultrasonic imaging are longitudinal and shear (trans-

verse) modes, as well as surface (Rayleigh) waves and plate (Lamb) waves [4]. Surface

waves can penetrate one wavelength into the solid and in the case of Lamb waves the

thickness of the solid should be only a few wavelength. Therefore, for applications



5

that the purpose is to inspect the internal structure of a test sample with thickness

more than a few wavelength, surface waves and Lamb waves can not be used. Instead

we can use only one of the longitudinal or transverse modes.

Although using only one of longitudinal or transverse waves can solve the afore-

mentioned problem, mode conversion can generate another unused mode. The mode

conversion is a common phenomenon in ultrasound. In fact when ultrasonic wave

hits an interface or a reflector, waves with different propagation speeds are produced.

Due to the difference in their propagation speeds, these modes are received by the

transducers with different delays. If these modes are not taken into account during

the imaging process, they can degrade the quality of the final image considerably. As

reported in [1], ignoring mode conversion phenomenon will result in artifacts in the

resulting image that could result in false interpretation.

As we mentioned before one of the widely used algorithms for ultrasonic imaging

is the traditional DAS beam-forming method [15]. The DAS beamformer is based on

the time of flight of the wave reflected from each hypothetical reflector. Therefore,

in the presence of mode conversion, the DAS beamformer yields spurious targets.

The reason goes back to the difference in the propagation speed for different modes.

Whenever the velocity of a specific mode is used, the DAS beamformer results in the

correct location of the target based on that mode. However, spurious reflectors will

appear in the image due to the presence of other modes [1]. The DAS beamformer

is not capable of taking the effect of all different modes into account. In [16], the

well-known Capon and MUSIC techniques have been modified such that they can

be used in multi-modal propagation environments. Referred to as MC-Capon and

MC-MUSIC techniques, these methods yield a higher resolution and lower sidelobe

level1 as compared to the DAS beamformer.

1The difference between the amplitude of the mainlobe and the first sidelobe which has the

maximum amplitude among all the sidelobes, is called the sidelobe level and is typically expressed
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The MC-MUSIC and MC-Capon methods are capable of taking the effect of all

different modes into account, and therefore, find the locations of the reflectors with a

high precision. These two techniques, however, suffer from all the shortcomings that

the MUSIC technique [17–19] and the Capon filter bank approach [19,20] suffer from.

These two approaches need high SNR to yield an acceptable result and fail in the

case of correlated targets. Also, the MUSIC method and the Capon technique require

the covariance matrix of the received data to be estimated and in order to estimate

the array data covariance matrix, several different snapshots are needed. Also, the

MUSIC approach is a signal subspace based technique and needs the knowledge

of the dimension of the signal subspace which is the number of the reflectors [21].

The knowledge of this dimension may not be available or the subspace can occupy

the whole observation space. To overcome these issues, we propose a sparse signal

representation based technique which not only is able to take the effect of all modes

into account but also does not suffer from the aforementioned shortcomings. Our

method can be implemented for the case in which one transducer is used to illuminate

the region of interest. Its sensitivity to SNR is less than that of the MC-MUSIC

and MC-Capon approaches. Furthermore, unlike the MC-MUSIC method, there

is no need to know the number of reflectors. We further develop a sparse signal

representation based approach for the case in which all the transducers are used to

illuminate the region of interest. To the best of our knowledge, sparse signal recovery

based technique has not been utilized for ultrasonic array imaging in the presence of

mode conversion.

In ultrasonic array imaging, the knowledge of the array spatial signature for every

point inside the region of interest (i.e., the vector of array response to a hypothetical

source located at that point) is essential to the imaging process. This spatial signature

depends on the geometry of the test setup and on properties of the environment

in dB.
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through which the wave travels. In a homogenous medium, where the wave velocity is

constant, modeling the array signature is rather straightforward. In non-homogenous

media, where the wave velocity changes along the wave travel path, modeling the

array spatial signature is not straightforward. One example of such non-homogenous

media is immersion test. Indeed, the main challenge in immersion test is the different

velocities that wave experiences while passing through different layers (here water

and the specimen). Due to this difference in the wave velocities in the two layers,

the wave does not follow a straight line, when entering from one medium to another

one. In fact, when crossing the interface between two layers, the wave is subject to

refraction, which hinders the task of modeling the array spatial signature.

One approach to account for the effect of different wave velocities is to use the

so-called root mean square (RMS) velocity method which was first introduced and

utilized in seismology [22]. This method was applied to multi-layer ultrasonic imag-

ing in [15]. The idea of the RMS velocity technique relies on a ray theory based

approximation of the length of the path traveled by the wave, in the presence of

refraction, when it leaves from a hypothetical reflector and arrives at a transducer.

This approximation however does not take into account that wave refraction occurs

at infinitely many points on the interface between the two layers and not at one

particular point on this interface. To overcome this issue, we herein use the Huygens

principle to model the array spatial signature [23].

This model for the array spatial signature can then be used in any imaging tech-

nique such as DAS beam-forming method, MUSIC technique and Capon method.

However, as we mentioned before all these techniques have their own disadvantages.

Motivated by the aforementioned shortcomings we exploit the sparse property of our

imaging problem and propose a sparse signal recovery based technique. We further

address the superiority of this technique based on the result that we obtain from the

experimental data.
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In regards of using Bayesian inference to enforce sparsity we have been motivated

by the following.

Sparse signal representation based techniques are either using an optimization

problem, in which they minimize the ℓp-norm of the desired signal, or they rely on

a Bayesian approach, where sparsity is enforced via introducing a prior function for

the desired signal. In the former techniques the objective function is the ℓp-norm of

the desired sparse signal. For p = 1, the ℓp-norm of the desired sparse signal becomes

a convex function and hence we can use any software packages dedicated to solving

convex optimization problem such as CVX software package [24] to solve the ℓp-norm

minimization problem. The CVX software package casts the ℓ1-norm minimization

problem, as a linear programming problem for which solutions are available even

for large scale problems [25]. However, the solution of the ℓ1-norm minimization

problem may not be the sparsest solution. In other words, when p = 1 we can easily

find the global minimum for the ℓ1-norm minimization problem, since it is a convex

optimization problem. However, there is no guarantee that such a solution is also

the sparsest one. Significant attention has been given to imposing conditions under

which the global minimum for the ℓ1-norm minimization problem yields the sparsest

solution as well. However, these conditions are extremely restrictive and hard to

impose in practical situations [26–30].

For p < 1 the ℓp-norm of the desired sparse signal becomes a non-convex function

and the ℓp-norm minimization problem becomes combinatorial in nature and will

be NP hard. Many approximations have been advised including greedy based tech-

niques. Greedy based algorithms offer locally optimal solutions to ℓ0-norm minimiza-

tion problem [28]. The orthogonal greedy algorithm (OGA) is a heuristic approach to

find the sparsest solution for ℓ0-norm minimization problem [27, 31]. Known as for-

ward stepwise regression, the OGA has been widely used in the setting of statistical

modeling since 1960’s [32]. In signal processing, the OGA is known as matching pur-
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suit (MP) [33]. However, conditions under which the OGA yields the exact recovery

are extremely restrictive [34].

Another way to overcome the difficulty with ℓp-norm for 0 ≤ p < 1, is to utilize the

idea of sparse signal representation in the Bayesian framework. In the Bayesian ap-

proach, the troublesome ℓ0-norm function is replaced with a distribution function [28].

In other words the sparsity of the signal is modeled using an appropriate distribution

function which uses prior information about the desired sparse signal [28, 35–40].

Bayesian approaches can be divided into two categories: 1) maximum a posteriori

(MAP) estimator using a fixed and computationally tractable prior and, 2) empirical

Bayesian approaches that uses a flexible and parameterized prior that is learned from

the data [28].

Among the first category we can mention Laplacian distribution where the MAP

estimation problem using this prior is known as basis pursuit (BP) denoising [41]

or least absolute shrinkage and selection operator (LASSO) [42]. The global min-

imum can be conveniently obtained, however, it sometimes fails to be the sparsest

solution [26–30]. Another choice is Jeffreys distribution. The problem with Jeffreys

prior is that Jeffreys-based cost function suffers from numerous local minima [28,43].

Finally we can mention the generalized Gaussian prior for which the corresponding

MAP optimization problem is called focal underdetermined system solver (FOCUSS)

algorithm [28, 44]. The FOCUSS algorithm contains the Laplace and the Jeffreys

prior as special cases [28].

There are serious problems with Bayesian estimation using the first category. In

the case of Laplacian prior the optimization problem is a convex optimization problem

which can easily be solved, however, the result may not be the sparsest solution. In

the case of Jeffreys prior we are hindered by numerous local minima. The FOCUSS

algorithm includes both Laplacian and Jeffreys prior as special cases. Therefore, we

have the same problems with the FOCUSS algorithm as well.
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Up to now, all the sparse signal recovery based techniques that we have mentioned

rely on ℓp-norm, for 0 ≤ p ≤ 1, of the desired signal to enforce sparsity. In the case

of ℓ1-norm the optimization problem is convex and the convergence to the global

minima is guaranteed, however, conditions under which the global minimum for the

ℓ1-norm minimization problem to yield the sparsest solution are extremely restrictive

and hard to impose in practical situations [26–30].

In regard with the Bayesian approaches based on the first category, as we discuss

in the body of the paper, we should say that these techniques are also based on ℓp-

norm of the desired signal. The MAP estimator for the Laplacian prior would reduce

to the ℓ1-norm minimization based approach. In the case of the FOCUSS algorithm

for 0 ≤ p < 1 the problem is not convex and the convergence is not guaranteed.

Therefore, we resort to the Bayesian methods based on the second category which

from now on we address them by the sparse Bayesian learning based approaches. The

sparse Bayesian learning based approaches do not rely on ℓp-norm of the desired signal

to enforce sparsity. Instead in the sparse Bayesian learning the sparsity is enforced

by assigning a parameterized prior, with unknown hyperparameters, to the desired

signal. The unknown hyperparameters are estimated from the data [28, 37, 45].

1.3 Objective and Methodology

Part of our goal in this dissertation is to utilize the sparse signal representation based

approach for ultrasonic imaging, in the presence of mode conversion phenomenon. We

are assuming a contact ultrasonic test using an array of transducers which can trans-

mit and receive ultrasonic waves. The aim is to obtain an image for a given material

under test using the array measurements collected by all transducers corresponding

to different transducers illuminating the region of interest. The transducers are fired

in a round-robin fashion one after the other.
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We first present a multi-modal model for the single snapshot case. Then we cast

our problem of finding the reflectivity coefficients of the reflectors in the presence of

mode conversion, as a sparse signal representation problem. We further extend the

approach to the multiple snapshot case. As a result, the output of the algorithm will

be more accurate, simply because by using all the measurement vectors we obtain

higher SNR.

Furthermore, we apply block sparsity methodology to the multi-modal problem

for the multiple snapshot case. This algorithm exploits block sparsity in the image

by considering a range of possible modes for the wave.

We further manage to address the problem of multi-layer imaging. Based on

Huygens principle we present a linear model for the array spatial signature. Assuming

that the wave velocity in the ROI is perfectly known, we cast our imaging problem as

a sparse signal recovery problem. To do so, we first consider the single snapshot case.

We then address multi-layer imaging for the multiple snapshot case. Since sparse

signal representation in the multiple snapshot case utilizes all the measurements,

compared to the single snapshot case, a better performance is expected in the sense

that the sidelobe level is lower and the accuracy in the estimation of the target

location is significantly enhanced.

We then propose a sparse Bayesian learning based approach. We develop a high

resolution method for imaging a test sample immersed in water. We use an array of

ultrasonic transducers to detect any flaws or cracks inside a test object. Our goal is

to find a maximum a posteriori (MAP) estimate of the reflectivity coefficients of the

flaws inside the test sample.

In the model that we develop in this dissertation, the reflectivity coefficients of the

desired reflectors are nonnegative real numbers and sparse in nature. Therefore, we

use Weibull distribution [46] with two hyperparameters, namely the shape parameter

and the scaling parameter, to model the prior distribution function of the reflectivity
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coefficients of the reflectors. As we show, the Weibull distribution, whose scale pa-

rameter obeys the inverse Gamma distribution, will enforce sparsity. To the best of

our knowledge this is the first time that Weibull distribution function is used to build

a sparse model. By assigning inverse gamma distribution to the scaling parameter,

we will convert Weibull distribution to a prior that enforces sparsity. We then pro-

pose a method for estimating the shape parameter of the Weibull distribution using

Mellin transform [47].

The conditional posterior function, of the reflectivity coefficients of the reflectors

inside the test sample, that we derive, is not among the well known distribution

functions and finding its maximum (which represents the MAP estimator for the

reflectivity coefficients of the reflectors) analytically is a hard task. To overcome

this difficulty we manage to draw samples from this conditional posterior function

and then calculate the mean of these samples. To accomplish this goal, we can use

the well known sampling techniques in statistics such as Markov chain Monte Carlo

(MCMC) and Gibbs sampler [48,49]. However, due to the curse of dimensionality the

MCMC and Gibbs sampler are not appropriate choices for our work [48,49]. Instead,

we use hybrid Markov chain (HMC). The HMC technique is a combination of the

Hamiltonian Monte Carlo and the Metropolis-Hastings random walk [48–50]. After

drawing samples from the conditional posterior function of the reflectivity coefficients

of the reflectors inside the test sample we can find the maximum of this conditional

posterior function which will be the MAP estimate of the reflectivity coefficients of

the reflectors.

At the end we compare the performance of the proposed sparse Bayesian learning

based approach with the well known sparse signal representation based techniques in

the literature.
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1.4 Summery of Contributions

Our contribution can be summarized as follows

1 - We address the problem of ultrasonic imaging of a test sample based on sparse

signal representation techniques for both single and multiple snapshot scenarios while

the effect of multi-mode is taken into account.

2 - We manage to apply sparse signal representation based techniques along with

Huygens principle for imaging a two-layer material. We present the sparse signal

recovery problem based on Bayesian inference and apply the proposed technique to

the experimental data. We show that Bayesian inference based technique provides

better performance compared to the sparse signal representation based techniques in

the literature.

1.5 List of Publications

- S. Hamidi, and S. Shahbazpanahi, ”Sparse Signal Recovery based Imaging in the

Presence of Mode Conversion with Application to Non-Destructive Testing”, IEEE

Transactions on Signal Processing, vol. 64, no. 5, pp. 1352-1364, March 2016.

1.6 Outline of Dissertation

Focusing on the sparse signal representation based techniques we will inspect the

internal structure of a test sample using an array of transducers. We address both

the contact and immersed imaging. In the contact imaging we consider the imaging

problem in the presence of mode conversion phenomenon. We further consider multi-

layer imaging using sparse Bayesian learning based technique. Therefore, this study

has been organized as follows.
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Chapter 2 is a review of the works that have addressed ultrasonic imaging in the

presence of mode conversion. We further review the works on ultrasonic imaging

for multi-layer case. We also give a literature review related to the sparse signal

representation based techniques.

In Chapter 3, we describe our model for ultrasonic imaging of a test sample in the

presence of mode conversion. We then write the SOS based algorithms [16] based on

our model. We develop a technique based on sparse signal representation to handle

the problem of ultrasonic imaging in the presence of mode conversion for a contact

setup. We describe the proposed algorithm for both the single and multiple snapshot

scenarios. Finally we apply all the methods to the experimental data from a test

solid illuminated by an array of transducers (contact setup) in the presence of mode

conversion.

In Chapter 4, we develop a sparse signal representation based model for the two-

layer imaging. We then mention previous algorithms used in the field of array imag-

ing. Afterwards, we present our proposed algorithm which is based on Bayesian

learning. At the end we apply all the techniques to the experimental data gathered

from a test sample immersed in water and discuss the results.

Finally, we have dedicated Chapter 5 to conclusions and future work.



Chapter 2

Background and Literature Review

2.1 Ultrasonic Array Imaging

Previous results in array-based NDT mostly focus on applying the traditional DAS

beamformer for imaging. However, the DAS-based approach is independent of the

statistical properties of the data. This means that they are robust and their per-

formance is predictable as it is data independent. However, they provide lower res-

olution and have inferior interference suppression capabilities, as compared to the

high-resolution techniques such as the well-celebrated MUSIC technique [17] and the

well-investigated Capon algorithm [51], [52]. Indeed, MUSIC and Capon techniques

exploit the second order statistics (SOS) of the data. It is worth mentioning that the

FMC approach has been used to estimate the sample covariance matrix in several

earlier works including [52].

Recently [23] has successfully applied MUSIC and Capon based methods along

with the traditional DAS beamformer to two-layer structure using the Huygens prin-

ciple to model the array spatial signature. It has been shown in [23] that MUSIC

and Capon based techniques outperform the DAS beamformer in lower sidelobe levels

and higher resolution. In fact these techniques have been applied to the experimental

15
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ultrasonic data gathered from a test specimen immersed in water.

In the case of sparse signals, sparse signal representation based techniques can be

utilized. Sparse signal representation based techniques have found their applications

in different fields, such as synthetic aperture radar imaging [53], image reconstruction

and restoration [54], sparse antenna array design [55], and array processing applica-

tion [56], to mention a few.

[21,57] are among the early sources that have addressed the better performance of

sparse signal representation based techniques. In [21,57] the authors develop a sparse

signal representation based technique for direction of arrival (DOA) estimation and

compare the performance of the proposed algorithm to that of the MUSIC and Capon

based methods as well as the traditional DAS beamformer. They have shown that

sparse signal representation based techniques do not suffer from Rayleigh resolution

limit, their sensitivity to SNR and correlated targets are lower than that of the Capon

and MUSIC based methods, they can also be applied to nonlinear arrays, even with

non-Gaussian measurement noises.

Another work, which has been done in the field of ultrasonic imaging, is [58].

The authors of [58] exploit sparsity for imaging human tissues. The variation of the

wave propagation velocity in such a biomedical application, is not significant. Indeed,

the authors of [58] use an average velocity for the wave, thereby treating the ROI,

essentially, as a homogenous medium.

One of the important features of sparse signal representation based approaches is

that they can generate a very reliable image even in the MIMO case. MUSIC and

Capon based techniques use the covariance matrix of the received data. Therefore,

they both need multiple snapshots to estimate the sample covariance matrix. Hence,

compared to the MUSIC and the Capon methods, sparse signal representation based

approaches provide a unique opportunity to obtain the image in applications where

getting access to multiple measurements are either impossible or very hard. However,
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in applications that multiple measurements are available, enormous works have been

dedicated to exploit the information of the whole data set [21, 57, 59–62].

Sparse signal representation problem can also be describe using Bayesian infer-

ence. Among different studies conducted in this area, we can mention [63]. In [63], a

technique based on Bayesian inference has been used for medical image restoration.

One of the features that distinguishes our work from [63], is the fact that the problem

studied in [63], is not target localization. It is the speckle noise that the investigation

in [63] wants to remove. To put it differently, what [63] does, is image processing not

signal processing which is our concern in this work.

In [64], a Bayesian method has been used in a homogeneous environment. A

Bernoulli-Gaussian prior has been assigned to the Fourier transform of the ultrasound

image to enforce sparsity. Then, by multiplying the received data by a random matrix,

the authors of [64], reduce the dimension of the image, and consequently, compress

the ultrasound image. Our work, however, is different from that of [64], as we deal

with a non-homogeneous environment. Also, instead of Bernoulli-Gaussian model

for the desired reflectivity coefficients, we use a Weibull model. Moreover, as we

mentioned before, since we are dealing with high dimensional problem therefore, the

Gibbs sampler is inefficient and instead we use the HMC technique.

2.2 Ultrasonic Array Imaging in the Presence of

Mode Conversion

In regards of mode conversion, [1] is the first paper that develops an algorithm based

on traditional DAS beamformer to tackle this issue. The authors in [1] clearly show

the adverse effect of mode conversion. In fact they reveals that this phenomenon will

create spurious reflectors in the final image.

In [16], they apply the MUSIC technique and the Capon method to NDT applica-
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tions. These approaches have been successfully utilized in radar, sonar, and medical

ultrasound applications, resulting in higher resolution and better sidelobe suppres-

sion capabilities, as compared to the standard DAS method. However, in NDT, there

are a number of competing factors that need to be carefully balanced based on the

challenges specific to this application. First, the standard MUSIC and Capon meth-

ods fail in highly correlated signals and this is one of the main reasons hindering the

widespread use of these techniques in active array applications such as NDT. In [16],

they interpret the full data matrix differently by using each column of this matrix

as an independent snapshot for obtaining the sample estimate of the data covariance

matrix required for the MUSIC and the Capon approaches. Using this approach, the

rank of the covariance matrix is increased and the MUSIC method as well as the

Capon approach can be applied for NDT applications.

Second, in addition to the desired signal reflections from the defect, array inspec-

tions result in a range of imaging artifacts due to combined effects of multiple rever-

berations, mode conversions, and noise which interfere with the signal of interest [65].

Considering the aforementioned challenges, only a handful approaches in NDT have

applied adaptive beam-forming for the imaging algorithms. For example, the authors

of [66] applied the minimum variance distortionless response (MVDR) principle to

image plate structures using Lamb waves. To the best of our knowledge, [16] and [1]

are the only works that have addressed the mode conversion phenomenon and multi-

modal propagation effects.

In [16], They take a different approach and address the question of what can

be gained if the SOS-based techniques, such as the MUSIC and the Capon meth-

ods, exploit the additional information existing in all modes to their advantage- a

problem not previously addressed in the context of NDT applications. [16] exploits

the dominant acoustic modes in the received data and propose two multi-modal

methods based on the MUSIC and the Capon techniques (hereafter referred to as



19

MC-MUSIC and MC-Capon techniques) thereby taking mode conversion effects into

account. [16] considers the scenario whereby waves transmitted by the array elements

are assumed uni-modal but can act as multi-modal receivers. Although this scenario

is non-physical, since such array elements would violate reciprocity, it is used for illus-

trative purposes to demonstrate the underlying principle. In the proposed imaging

algorithms, the array steering vector depends not only on the location of a hypo-

thetical reflector but also on the mode relative amplitude (MRA) coefficients of that

reflector in the ROI.

In [16], the authors define these coefficients as mode-dependent parameters repre-

senting the ultrasonic reflectivity or the scattering strength at locations of the defects

in all modes. Using the normalized mode-dependent steering vectors, [16] then uses

the MUSIC and the Capon techniques to first estimate the MRA coefficients for each

point in the ROI, and then, to obtain the signal scattering strength of different points

in the ROI. The MUSIC algorithm relies on the notions of signal and noise subspaces.

The signal subspace is defined as the subspace spanned by the principal eigenvectors

of the data covariance matrix and the noise subspace is the complement of the signal

subspace. The MUSIC approach requires the proper choice of the dimension of the

signal subspace, and hence, in their MUSIC-based imaging techniques, this dimension

is considered as a design parameter.

Capon-based imaging method is closely related to adaptive beam-forming: for

any point in the ROI, this method aims to find the maximum power of the output of

an adaptive beamformer while considering other points as interferers whose reflected

signals should be attenuated at the output of the beamformer as much as possible.

The Capon method is very sensitive to errors in the presumed (search) steering vector.

In fact, even a slight mismatch between the search and the true steering vectors may

cause an underestimation of the amplitude of the desired signal [67–71]. In practical

implementation, some kind of regularization is needed and the most common method
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is the so-called diagonal loading (DL) method [72]. Hence in [16], they apply the DL

technique to the data covariance matrix to correct the effect of the mismatch between

the true and the search steering vectors. Through numerical simulations, they show

that the SOS-based approaches, such as MUSIC and Capon methods, outperform

the DAS-based approaches in terms of RMSE and they also provide higher resolution

and better sidelobe suppression capabilities. In addition, the modified MUSIC- and

Capon-based imaging algorithms provide higher resolution images as compared to

their standard mode-neglecting counterparts.

2.2.1 MC-MUSIC and MC-Capon

Suppose that we have an array of M elements which receives a narrow band signal at

frequency ω0 from L reflectors. The vector of array signal, ymc ∈ CM×1, received at

the location of the M receivers can then be described as

ymc = Amcρ+wmc (2.1)

where the vector ρ ∈ RL×1 is the reflectivity coefficients of the reflectors, the vector

wmc ∈ CM×1 is the noise vector and the lth column of the matrix Amc ∈ CM×L is

given as

a = [e−jkd1l e−jkd2l · · · e−jkdMl ]T . (2.2)

In (2.2), k � ω0

c
and c are the wavenumber and the propagation speed for the wave,

respectively, dnl is the Euclidean distance between the l
th reflector, and the nth re-

ceiver.

The basic building block for both MUSIC and Capon approach is the covariance

matrix of the array measurements. By collecting N different snapshots, the array

covariance matrix can be estimated by its sample covariance matrix, which is defined
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as

R̂ �
1

N

N
∑

p=1

ymcy
H
mc (2.3)

where H stands for complex conjugate transpose and ymc is given in (2.1). To present

the final result for the MC-MUSIC and MC-Capon techniques, we first introduce the

M × R matrix Ã(r) as

Ã(r) � [a(1)(r) a(2)(r) · · · a(R)(r)] (2.4)

where the rth column, a(r)(r), is the steering vector (or the response) of the array to

a hypothetical reflector located at point r and mode r and is given as

a(r) = [e−jkrd1l e−jkrd2l · · · e−jkrdMl ]T . (2.5)

In (2.5), kr �
ω0

cr
and cr are the wavenumber and the propagation speed for the mode

r, respectively. We now present the result of MC-MUSIC method as [16]

IMC−MUSIC(r) = λmax

{

(

ÃH(r)EnE
H
n Ã(r)

)−1
ÃH(r)Ã(r)

}

(2.6)

where En is an M × (M − Ls) matrix whose columns are the eigenvectors of the

matrix R̂ corresponding to the smallest M − Ls eigenvalues, with Ls being the di-
mension of the signal subspace and λmax(B) stands for the largest eigenvalue of matrix

B. The locations of the scatterers can be estimated as those values of r for which

IMC−MUSIC(r) has its L highest peaks.
The result of MC-Capon is also described as

IMC−Capon(r) = λmax

{

(

ĀH(r)R−1
DLĀ(r)

)−1
ÃH(r)Ã(r)

}

(2.7)

where

RDL � R̂+ κI, (2.8)
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is the so-called diagonally loaded sample covariance matrix and κ is the so-called

diagonal loading factor and it is a tunable parameter to calibrate the resulting Capon

image. Despite the good performance in the presence of mode conversion, the MC-

MUSIC and MC-Capon methods, have their own shortcomings. Since they are based

on MUSIC and Capon approaches, they suffer from the same shortcomings which

hinder the MUSIC and Capon methods. They both need high SNR and fail in the

case of correlated targets. To estimate the covariance matrix, both methods require

a sufficient number of snapshots. However, in certain practical situations, it may not

be possible or affordable to collect enough snapshots. To form the noise subspace

used in the MUSIC method, the dimension of signal subspace, i.e., the number of

scatterers should be known in advance. In NDT, signal enumeration is still an open

problem. With respect to the Capon method, the sidelobe level is limited to σ2/M ,

where σ2 is the power of the noise.

2.3 Sparse Signal Representation Based Techniques

The application of sparsity and the techniques that can recover the desired informa-

tion from a sparse signal goes back to 1990’s, [41, 73, 74]. The existence of a mathe-

matical basis for over-complete representation have been considered in [27,75,76]. In

fact the basic idea comes from the following algebraic problem

y = Ax (2.9)

where y ∈ Cn×1 and for m > n, the matrix A ∈ Cn×m is the over-complete matrix.

The problem described in (2.9) is obviously an ill-posed problem. However, if we

know that the vector x ∈ Cm×1 is sparse, a unique solution is achievable. More

specifically, we can enforce sparsity via ℓ0-norm of x. The notation ℓ0-norm was first

used by D. Donoho, and is described as the number of nonzero elements of vector x
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which is also equal to the cardinality of x. Hence the following optimization problem

is offered to recover x-norm from the ill-posed eqnarray given in (2.9):

min
x
. ‖x‖0

subject to y = Ax. (2.10)

2.3.1 Basis Pursuit

The difficulty with (2.10) is that the ℓ0-norm is not a convex function and the op-

timization problem given in (2.10) is combinatorial in nature. To overcome this

difficulty, it was proposed to replace ℓ0-norm with ℓ1-norm [77,78]. Since ℓ1-norm is

a convex function, (2.10) can be easily solved. Hence the optimization problem given

in (2.11) is modified as

min
x
. ‖x‖1

subject to y = Ax. (2.11)

The question that remains is whether the result of minimizing ℓ1-norm is the sparsest

solution for (2.9) or not. In general the answer is no. However under some restrictions

on the nonzero elements of the desired signal and the structure of the matrix A the

minimization of ℓ1-norm will provide us with the sparsest solution [77,78]. In Fig. 2.1-

(a)-(b) we have shown how (2.10) finds the sparsest solution when the ℓ1-norm is used

as an objective function. In Fig. 2.1-(a) the intersection point between y = Ax and

the x1 axis is higher than c. Therefore, by increasing the ℓ1-norm of the vector x,

both of the y = Ax and ‖x‖1 cross the x1 axis at c′.
In fact for p < 1 the ℓp-norm is a better candidate for the objective function

in (2.10), however, for p < 1 the ℓp-norm is a concave function. Fig. 2.1-(c) shows

different values for p. As can be seen when p = 2 the outward curvature of the ℓp-

norm hits the constraint function, i.e., y = Ax, at a point which is not the sparsest

solution. Therefore, the best choice is the ℓ1-norm.
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In order for the result of (2.10) to be unique the matrix A should have a sub-

matrix of rank greater than 2k where ‖x‖0 = k [79]. However, in practice the model
given in (2.9) is modified as

y = Ax +w (2.12)

where w ∈ Cn×1 represents the noise of the model. For the model given in (2.12) the

optimization problem presented in (2.11) is modified as

min
x
. ‖x‖1

subject to ‖y−Ax‖2 < β (2.13)

where β is the regularization parameter and is chosen such that the probability of the

norm of the noise vector being larger than β is small [21,57]. The CVX software pack-

age casts (2.13), as a linear programming problem for which solutions are available

even for large scale problems and the computational complexity is O(m3) [25].

The optimization problem given in (2.13) is called basis pursuit (BP) denoising

[41].

For the optimization problem given in (2.13) not only the uniqueness of the result

should be considered but we should also find the conditions under which the stability

of the result is guaranteed as well. The stability of (2.13) is guaranteed, in a sense

that the error is bounded in ℓ1 or ℓ2 norm, if n = O(k logm) [79].

To show that the sparse signal representation based methods yield the better

resolution and lower sidelobe level compared to those of the DAS beamformer, the

MUSIC method and the Capon technique, we have simulated a DOA estimation

problem. An array with 64 elements and element pitch equal to half of the wavelength

has been considered. The SNR is equal to 15 dB and 64 different snapshots have been

generated. For the DAS beamformer, the MUSIC method, the Capon technique all

the 64 snapshots have been used. For the ℓ1-norm minimization based method,
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(a)

(b) (c)

Figure 2.1: a) and b) show how (2.10) is solved when the objective function is chosen

to be the ℓ1-norm of the desired signal, c) shows the optimization problm given in

(2.10) for different objective functions.
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Figure 2.2: DOA estimation for two targets at a) 55 and 66 degree, b) 55 and 56

degree.

however, only one snapshot has been used. Fig. 2.2-(a) shows the result for two

uncorrelated targets located at 55 and 66 degree. From Fig. 2.2-(a) we see the lower

sidelobe levels of the ℓ1-norm minimization based approach. Fig. 2.2-(b) shows the

result for two uncorrelated targets located at 55 and 56 degree. From Fig. 2.2-(b)

we see that the ℓ1-norm minimization based approach also has much finer resolution

than the DAS beamformer, the MUSIC method and the Capon technique.

2.3.2 Orthogonal Greedy Algorithm

The OGA is a heuristic approach to find the sparsest vector x. In the OGA one

solves the following optimization problem [27, 32]

ik = arg max
1≤i≤N

| < r(k−1), A(i) > | (2.14)

where < ·, · > stands for the inner product in Euclidean space and A(i) is the ith

column of the matrix A. Moreover r(k) = y − ŷ(k) where ŷ(k) =
k
∑

i=1

χk
ilAil in which

the coefficients χk
il are fitted by least squares to minimize ‖y− ŷ(k)‖2. The algorithm
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stops when the ℓ2-norm of error term falls below a predetermined threshold ξg, i.e.,

‖y − ŷ(k)‖2 ≤ ξg. Known as forward stepwise regression, the OGA has been widely

used in the setting of statistical modeling since 1960’s [31]. In signal processing, the

OGA is known as MP [33]. The algorithm (2.14) is in fact called orthogonal matching

pursuit (OMP) [80, 81]. The computational complexity of OMP, given in (2.14), is

O(kmn) and the number of measurements should satisfy n = O(k logm) [80, 82, 83].

The mutual incoherence is defined as

µ = max
i �=j

| < A(i),A(j) > |
‖A(i)‖2‖A(j)‖2

. (2.15)

Suppose that ‖w‖2 ≤ b2 and ξg ≤ b2 for a scalar b2. Theorem 1 in [34] then guarantees

that if µ < 1
2k−1 and if all the nonzero coefficients xi satisfy |xi| ≥ 2b2

1−(2k−1)µ , the OMP

algorithm recovers exactly all the true reflectors.

2.3.3 Maximum A Posteriori Estimator

In this subsection, we review the methods for sparse signal recovery techniques based

on MAP estimator that uses a fixed and computationally tractable prior.

Laplacian Prior In this method, a Laplacian distribution is assigned to the vector

x which is described as [84]

p(x) ∝ e

(

−
N
∑

i=1

|xi|
)

. (2.16)

Based on this prior for x, the MAP estimator problem for x using the model given

in (4.14) reduces to the BP method given in (2.13) [28, 35].
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Jeffreys Prior In this technique we assign the Jeffreys prior to the vector x that

is expressed as [43, 85]

p(x) ∝
N
∏

i=1

(

1

|xi|

)

. (2.17)

The MAP estimator problem for x based on this prior distribution is then described

as

min
x
.

N
∑

i=1

log(|xi|)

subject to ‖y −Ax‖2 ≤ βj. (2.18)

The problem with (2.18) is that it suffers from numerous local minima [28, 86].

The FOCUSS Method In the FOCUSS method, a generalized Gaussian distri-

bution is assigned to the vector x as a prior which is described as [87]

p(x) ∝ e

(

−
N
∑

i=1

|xi|p
)

. (2.19)

Consequently, the MAP estimator problem for x is given as

min
x
.

N
∑

i=1

|xi|p

subject to ‖y −Ax‖2 ≤ βf . (2.20)

As can be seen from (2.20), for p = 1 the MAP estimator problem reduces to BP and

the optimization problem can be solved using CVX software package for example.

However, for 0 ≤ p < 1 the optimization problem given in (2.20) is non-convex and

to find the MAP estimator for x we follow [28] and present the result which is based

on the expectation maximization (EM) algorithm. However, before expressing the

result we should set the stage. We first rewrite (2.20) as

min
x
.

{

‖y −Ax‖2 + λf
N
∑

i=1

|xi|p
}

(2.21)
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in which λf is a parameter to be tuned. Each generalized Gaussian prior is then

expressed as a set of latent variables γ = [γ1, γ2, · · · , γN ]T which are treated as

hidden data. We have given the pseudo-code for the implementation of the FOCUSS

method using EM in Algorithm 1 where Γ = diag(γ). The stopping criterion is based

on ‖γ−γold‖2
‖γ‖2 , where γold is the value for γ in the last iteration. The algorithm stops

when ‖γ−γold‖2
‖γ‖2 < ξf .

Algorithm 1 Implementation of the FOCUSS method using EM

*Initialization

Set γ = 1N×1

Set γold = 0N×1

while
‖γ−γold‖2

‖γ‖2
< ξf do

γold = γ

γi = |x̂i|2−p, i ∈ {1, 2, · · · , N}.
x̂ = ΓA†

(

λf I+AΓA†
)−1

y,

end while



Chapter 3

Sparse Signal Recovery based

Imaging in the Presence of Mode

Conversion with Application to

Non-Destructive Testing

In this chapter we develop a sparse signal representation based algorithm for one

layer ultrasonic imaging which takes the effect of mode conversion into account. We

use an array of transducers to inspect a given test sample in the presence of mode

conversion phenomenon. We first develop a model for one layer ultrasonic array

imaging for single mode scenario. We further extend this model to the multi-modal

scenario. We then cast our problem as a sparse signal representation problem. At

the end we apply the proposed algorithm along with the existing algorithms in the

literature to both simulated and experimental data and show the superiority of the

proposed technique.

The organization of this chapter is as follows. In Section 3.1, we describe our data

30
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model and formulate the mode conversion phenomenon. Also, a presentation of MC-

MUSIC and MC-Capon methods, based on the model that we develop in this section,

is given. In Section 3.2, we cast our problem as a sparse signal representation problem

without considering the effect of mode conversion. Then, we extend the sparse signal

representation model to handle the effect of multi-mode for both single- and multi-

snapshot scenarios. In Section 3.3, we show the superiority of our proposed algorithm

using simulated data as well as experimental measurements. Finally the conclusion

is given in Section 3.4.

3.1 Preliminary

3.1.1 Data Model

Using an array of M transducers, let us assume that we aim to locate L scatterers

in a medium. We simplify the problem of interest by assuming that the length of

the transducers is much larger than the thikness of the sample [88, 89]. Indeed, the

basic idea in 2-dimensional imaging using a 1-dimensional linear array relies on the

assumption that in a 2-dimensional model, all quantities are invariant in the third di-

mension. Our results can be extended in a straightforward manner to a 3-dimensional

setup, when a 2-dimensional array is utilized for 3-dimensional volumetric imaging.

We present our model in frequency domain. Fig. 4.1 illustrates the geometry of the

array and the reflectors. Any hypothetical reflector has the potential to convert the

incident wave into multiple modes. The wave corresponding to each mode propagates

with a velocity which is different from those of the other modes. We first describe

the model for the array received signals in one mode. To do so, in the presence of

white noise, the vector of array signals due to backscattering from all L scatterers,
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Point reflector
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pth element nth element

dlp
dln

r1

rl

rL

Figure 3.1: Array geometry.

when the pth transducer transmits, can be written as

yp(ω) = A(ω)s̃p(ω) +wp(ω) (3.1)

where yp(ω) = [y1p(ω) y2p(ω) ... yMp(ω)]
T is the M × 1 vector of the array received

signals, yip(ω) is the signal received by the i
th transducer when the pth transducer is

transmitting, and A(ω) is an M × L matrix whose lth column, denoted as a(rl, ω),
is the M × 1 array steering vector (or the array spatial signature) of the lth scatterer
located at rl and is given by

a(rl, ω) � [
1√
d1l
e−jk1(ω)d1l

1√
d2l
e−jk1(ω)d2l ...

1√
dMl

e−jk1(ω)dMl ]T . (3.2)

In (4.8), k1(ω) �
ω
c1
and c1 are the wavenumber and the propagation speed for Mode

1, respectively, 1√
dnl

and e−jk1(ω)dnl are the attenuation and phase shift for the signal

scattered by the lth reflector and received by the nth transducer, dnl is the Euclidean

distance between the lth reflector, located at rl, and the n
th transducer. The L × 1

vector s̃p(ω) is expressed as

s̃p(ω) = [s̃p1(ω) s̃p2(ω) ... s̃pL(ω)]
T (3.3)
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where

s̃pl(ω) =
1
√

dpl
sle

−jk1(ω)dpl , for l ∈ {1, 2, · · · , L}. (3.4)

In (3.4), the real positive scalar sl is the reflectivity coefficient of the l
th scatterer,

while 1√
dpl

and e−jk1(ω)dpl are, respectively, the attenuation and the phase shift that

the signal transmitted by the pth transducer goes through after it arrives at the lth

reflector. Finally, the M × 1 noise vector is described as

wp(ω) � [wp1(ω) wp2(ω) ... wpM (ω)]
T (3.5)

where wpi(ω) is the noise received by the i
th transducer, when the pth transducer

is transmitting. When multi-mode phenomenon occurs, each scatterer disperses the

wave into multiple modes. Each mode has its own propagation speed with a distinct

wavenumber, given as kr(ω) =
ω
cr
, where cr is the propagation speed for the r

th mode.

Therefore, the steering vector for the rth mode and for the hypothetical reflector at

location rl is described as

a(r)(rl, ω) � [
1√
d1l
e−jkr(ω)d1l

1√
d2l
e−jkr(ω)d2l ...

1√
dlM

e−jkr(ω)dMl ]T (3.6)

where the superscript (r) stands for the rth mode. We assume that each reflector has

a reflection coefficient for each mode which is different from that of the other modes.

Therefore, in the presence of multiple modes, we modify (3.4) as

s̃
(r)
pl (ω) �

1
√

dpl
s
(r)
l e

−jkr(ω)dpl , for l ∈ {1, 2, · · · , L} (3.7)

where s
(r)
l is the reflectivity coefficient of the lth hypothetical reflector corresponding

to the rth mode. For a specific reflector located at rl, the energy conservation implies

that

R
∑

r=1

(

s
(r)
l

)2

= 1, for l ∈ {1, 2, · · · , L}. (3.8)
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Subsequently, we modify (3.3) for the rth mode as

s̃(r)p (ω) � [s̃
(r)
p1 (ω) s̃

(r)
p2 (ω) ... s̃

(r)
pL(ω)]

T (3.9)

where we have introduced the superscript (r) to signify the rth mode. Therefore, to

accommodate the effect of all modes, the proposed model in (3.1) is modified as

yp(ω) =

R
∑

r=1

A(r)(ω)s̃(r)p (ω) +wp(ω). (3.10)

In (3.10),A(r)(ω) is anM×Lmatrix whose lth column is the steering vector, a(r)(rl, ω)
given in (3.6), and summation is over R modes.

3.1.2 Previous work

In this section we present the work done in the literature, namely the MC-MUSIC

and the MC-Capon methods [16], based on the model we have developed in (3.10).

Since we have M different snapshots, therefore, the sample covariance matrix can

be calculated as

R̂(ω) �
1

M

M
∑

p=1

yp(ω)y
H
p (ω) (3.11)

with yp(ω) given in (3.10). To present the final result for the MC-MUSIC and MC-

Capon techniques, we first introduce the M ×R matrix Ā(r, ω) as

Ā(r, ω) � [a(1)(r, ω) a(2)(r, ω) · · · a(R)(r, ω)] (3.12)

where the rth column, a(r)(r, ω), is the steering vector (or the response) of the array

to a hypothetical reflector located at point r at frequency ω and mode r. We now

introduce the MC-MUSIC image as [16]

IMC−MUSIC(r) =
∑

ω∈Ω
λmax

{

(

ĀH(r, ω)En(ω)E
H
n (ω)Ā(r, ω)

)−1
ĀH(r, ω)Ā(r, ω)

}

(3.13)
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where Ω is the set of all frequencies within the bandwidth of the probing signal.

The locations of the scatterers can be estimated as those values of r for which the

MC-MUSIC-based image IMC−MUSIC(r) has its L highest peaks.
The MC-Capon based image is also described as

IMC−Capon(r) =
∑

ω∈Ω
λmax

{

(

ĀH(r, ω)R−1
DL(ω)Ā(r, ω)

)−1
ĀH(r, ω)Ā(r, ω)

}

(3.14)

The locations of the scatterers can be estimated as those values of r for which the

MC-Capon-based image IMC−Capon(r) has its L highest peaks.

3.2 Sparse Signal Recovery Based Algorithms

3.2.1 Single-mode

In this section, we present a method based on sparse signal recovery to image a

material under test. We first formulate our problem as a sparse signal representation

for a single-mode propagation environment, and then, extend that for a multi-modal

propagation environment. In fact, since the goal in ultrasonic imaging is to image

a limited number of reflectors inside materials, the problem can be easily viewed

as a sparse signal recovery. To cast our data as a sparse signal representation, we

need to replace A(ω) with a new matrix which contains the steering vector for all

hypothetical scatterers. In fact,A(ω) contains the steering vectors of L true scatterers

whose locations are not known, therefore A(ω) itself is unknown. Now, we define an

over complete basis (OCB) matrix which contains the steering vectors of all potential

scatterers. To do so, we consider a sufficiently fine grid in the ROI in two dimensions

where each pixel represents a potential scatterer. Fig. 3.2 shows this grid, with nx

pixels in the horizontal direction and nz pixels in the vertical direction, resulting in

a total number of pixels equal to nx × nz = N .
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Figure 3.2: 2-dimensional grid covering the ROI

The steering vectors of these N potential scatterers will form the columns of the

OCB matrix. This matrix should be over complete, meaning that N should be much

greater than the number of transducers. Thus, the M × N OCB matrix Ã(ω) is

defined as

Ã(ω) � [a(r̃1, ω) a(r̃2, ω) · · · a(r̃N , ω)]. (3.15)

Here, a(r̃l, ω) is the steering vector given in (4.8), when rl is replaced with r̃l, for

a potential scatterer located at (i, j)th pixel in the ROI, where i = ⌊ l−1
nx

⌋ + 1 and
j = l − (i − 1)nx with coordinate vector r̃l = ((i − 1)δ, (j − 1)δ) and δ is the width

of each pixel in x and y directions. Therefore, a sparse representation of our model

in (3.1) is given as

yp(ω) = Ã(ω)xp +wp(ω) (3.16)

where xp is an N × 1 complex vector whose lth element is nonzero if there is a

scatterer located at the (i, j)th pixel where i = ⌊ l−1
nx

⌋+ 1 and j = l− (i− 1)nx and it
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is zero, otherwise. Each nonzero element of xp is one of the entries of s̃p(ω), given in

(3.3). Now, to recover the sparse vector xp, we can use the basis pursuit de-noising

method [41, 42], i.e., we can solve the following optimization problem:

min
xp

. ‖xp‖1
subject to ‖yp(ω)− Ã(ω)xp‖2 ≤ β (3.17)

where β is the regularization parameter and is chosen such that the probability of the

norm of the noise vector being larger than β is small. After obtaining xp, we reshape

it into an nz ×nx matrix which represents the final image. Therefore, in light of (3.3)
and (3.4), sl can be estimated as |

√

dplxpl| for the (i, j)th pixel in the ROI, where
i = ⌊ l−1

nx
⌋ + 1 and j = l − (i− 1)nx and xpl is the lth entry of xp. Note however that

the optimization problem (3.17) cannot be used when mode conversion exists. Note

that in (3.17), any of the transducers can be chosen to fire the sound wave with the

same OCB matrix Ã(ω).

3.2.2 Multi-modal imaging using one snapshot

So far, we have formulated a single-mode imaging problem using sparse signal repre-

sentation. We now take the effect of all modes into account. In the presence of mode

conversion, the reflected signals received by the transducers from a specific scatterer

is the superposition of all modes. To formulate the imaging problem in the presence

of mode conversion using a sparse signal recovery problem, we need a new OCB ma-

trix which contains the steering vectors for all the potential scatterers in all different

modes. The OCB matrix in (3.15) was defined only for Mode 1. Using the same idea

used in the previous section, the OCB matrix for the rth mode is defined as

Ã(r)(ω) � [a(r)(r̃1, ω) a(r)(r̃2, ω) · · · a(r)(r̃N , ω)] (3.18)

where a(r)(r̃l, ω) is the steering vector for the r
th mode and for the potential scatterer

located at (i, j)th pixel in the ROI, where i = ⌊ l−1
nx

⌋ + 1 and j = l − (i− 1)nx, when



38

we replace rl with r̃l in (3.6). Therefore, we define a new M ×NR OCB matrix as

Ǎ(ω) � [Ã(1)(ω) Ã(2)(ω) · · · Ã(R)(ω)] (3.19)

where R is the number of modes. Based on (3.19), our model in (3.10) can be

equivalently written as

yp(ω) = Ǎ(ω)x̌p +wp(ω) (3.20)

where the NR× 1 complex vector x̌p is given as

x̌p =

















x
(1)
p

x
(2)
p

...

x
(R)
p

















. (3.21)

where x
(r)
p , for r ∈ {1, 2, · · · , R}, is a N × 1 vector whose lth element is nonzero if

there is a scatterer located at the (i, j)th pixel where i = ⌊ l−1
nx

⌋+1 and j = l−(i−1)nx
and it is zero otherwise. Indeed, each nonzero element of x

(r)
p is one of the entries of

s̃
(r)
p (ω), given in (3.9). Based on (3.7) and (3.8), we assume energy conversion holds

implying that

R
∑

r=1

∣

∣

∣

√

dplx
(r)
pl e

jkr(ω)dpl

∣

∣

∣

2

=

R
∑

r=1

∣

∣

∣

√

dplx
(r)
pl

∣

∣

∣

2

= 1, for l ∈ {1, 2, · · · , L} (3.22)

where x
(r)
pl is the l

th entry of x
(r)
p corresponding to the lth pixel in the ROI. However,

since the locations of the reflectors are unknown, we cannot use (3.22) in our ℓ1

minimization problem. As such, we modify (3.22) and relax it as

R
∑

r=1

∣

∣

∣

√

dplx
(r)
pl

∣

∣

∣

2

≤ 1, for l ∈ {1, 2, . . . , N}. (3.23)
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Note that (3.23) is a relaxation of (3.22) which holds not only for the non-zero entries

of {x(r)p }Rr=1 but also for the zero entries. Another advantage of using (3.23) instead
of (3.22) is that unlike (3.22), the restriction in (3.23) is a convex constraint. Then,

to take the effect of all modes into account, we use (3.23) and modify the ℓ1-norm

minimization in (3.17) as

min
x̌p

. ‖x̌p‖1
subject to ‖yp(ω)− Ǎ(ω)x̌p‖2 ≤ β

R
∑

r=1

|
√

dplx
(r)
pl |2 ≤ 1, for l ∈ {1, 2, · · · , N}. (3.24)

The optimization problem in (3.24) is convex and it can be efficiently solved using

any convex problem solver. Note that the patterns of sparsity for all {x(r)p }Rr=1 are the
same, because all of them are describing the location of the same scatterers but in

different modes. We hence introduce the final estimated vector u � [u1, u2, · · · , uN ],
where the lth entry is given as ul =

∑R
r=1 |x

(r)
pl |, (for, l ∈ {1, 2, · · · , N}). Then, we

reshape u into an nz × nx matrix to represent the final image.

3.2.3 Multi-mode imaging using multiple snapshots

In the previous section, we used only the data corresponding to one snapshot, i.e.,

when one transducer is illuminating the ROI. Using only one snapshot is one of the

advantages for the sparse representation based approach presented in the previous

subsection. However, when different snapshots are available, it makes sense to in-

corporate them into the imaging algorithm. Each snapshot of the data corresponds

to one vector of the data measured by all transducers when one of the transducers

emits an ultrasonic wave. In order to incorporate all snapshots (i.e., all measurement

vectors corresponding to different transducers emitting ultrasonic waves one after the

other) we stack the snapshots on top of each other. As such, we need to reformulate
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our data model to allow different snapshots to be incorporated in the sparse signal

recovery problem. To be able to use all snapshots, we need a new version of the

OCB matrix. To introduce this new OCB matrix, we need to take a closer look at

the geometry of our model. When a signal is transmitted by the pth transmitter and

received at the location of the lth scatterer, it first undergoes a phase shift equal to

e−jk1(ω)dpl which is due to the distance between the transmitter and the scatterer.

Another phase shift is experienced by the signal when it bounces off the scatterer

and is received by the nth receiver and this phase shift is equal to e−jkm(ω)dnl . In

(3.4), the effect of the former phase shift has been given to the reflectivity coefficients

of the scatterers. However, we can also bring this part of the phase shift into the

steering vectors. Another factor that should be included in the steering vector is the

attenuation for the signal transmitted by the pth transducer and received at the lth

reflector which is equal to 1√
dpl

. Therefore, when the pth transducer transmits and

the lth hypothetical scatterer (located at r̃l = ((i− 1)δ, (j− 1)δ), where i = ⌊ l−1
nx

⌋+1
and j = l−(i−1)nx ) reflects the signal back toward the receivers, the M×1 steering
vector for the rth mode (which takes the effect of these new phase shifts into account)

is described as

a(r)p (rl, ω) =

[

1
√

d1ldpl
e−j(k1(ω)d1l+kr(ω)dpl)

1
√

d2ldpl
e−j(k1(ω)d2l+kr(ω)dpl) ...

1
√

dMldpl
e−j(k1(ω)dMl+kr(ω)dpl)

]T

. (3.25)

We now modify our data model in (3.10) for the multiple snapshot case as

y(ω) =

R
∑

r=1

A(r)(ω)s(r) +w(ω). (3.26)
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Here, y(ω) is an M 2 × 1 vector which is described as

y(ω) �

















y1(ω)

y2(ω)
...

yM(ω)

















(3.27)

and the M 2 × L matrix A(r)(ω) is defined as

A(r)(ω) �

















A
(r)
1 (ω)

A
(r)
2 (ω)
...

A
(r)
M (ω)

















(3.28)

where, for r ∈ {1, 2, · · · , R}, A(r)
p (ω) is an M × L matrix whose lth column is the

M × 1 array steering vector a
(r)
p (rl, ω), given in (3.25). Also, the L× 1 vector s(r) is

defined as1

s(r) = [s
(r)
1 s

(r)
2 · · · s(r)L ]

T . (3.29)

Finally, the M 2 × 1 noise matrix w(ω) is described as

w(ω) �

















w1(ω)

w2(ω)
...

wM (ω)

















(3.30)

where wp(ω) is the M × 1 vector of the noise received by the array when the pth

transducer transmits. Then, based on the steering vector given in (3.25) a new OCB

1Defining the signal vector s̃
(r)
p (ω) as in (3.9) allows us to use the same OCB matrix A

(r)(ω)

in (3.10) for all values of p. Doing so will allow us to save on the amount of the memory used for

storing this OCB matrix. Such a definition cannot be used for s
(r) when all transducers data is

used.
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matrix, for the rth mode and for the case when the pth transducer transmits, is defined

as

˜̃
A(r)

p (ω) � [a
(r)
p (r̃1, ω) a(r)p (r̃2, ω) · · · a(r)p (r̃N , ω)]. (3.31)

Finally, we can define our augmentedM×NR OCB matrix, composed of all R modes
when the pth transducer transmits, as

¯̄Ap(ω) � [
˜̃
A(1)

p (ω)
˜̃
A(2)

p (ω) · · · ˜̃
A(R)

p (ω)]. (3.32)

A sparse representation of our model given in (3.25), is described as

y(ω) = Ă(ω)x̆ +w(ω) (3.33)

where Ă(ω) is an M 2 ×NR OCB matrix defined as

Ă(ω) �

















¯̄A1(ω)

¯̄A2(ω)
...

¯̄AM(ω)

















. (3.34)

and NR × 1 vector x̆ is expressed as

x̆ =

















x̄(1)

x̄(2)

...

x̄(R)

















(3.35)

Each nonzero element of x̄(r) is one of the real- and positive-valued entries of s(r), given

in (3.29). Consequently, the energy conservation assumption for the wave amplitude

given in (3.7) is described as

R
∑

r=1

|x̄(r)l |2 = 1, for l ∈ {1, 2, · · · , L} (3.36)
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where x̄
(r)
l is the lth entry of x̄

(r)
r corresponding to the lth pixel in the ROI. However,

since the locations of the reflectors are unknown, we cannot use (3.36) in our ℓ1

minimization problem. Therefore, we modify (3.36) and relax it as

R
∑

r=1

|x̄(r)l |2 ≤ 1, for l ∈ {1, 2, · · · , N} (3.37)

It should be noted that (3.37) is a relaxation of (3.36) which holds not only for the

non-zero entries of {x̄(r)}Rr=1 but also for the zero entries. Based on (3.33) and (3.37),
our new ℓ1 optimization problem is written as

min
x̆
. ‖x̆‖1 (3.38)

subject to ‖y(ω)− Ă(ω)x̆‖2 ≤ β
R
∑

r=1

|x̄(r)l |2 ≤ 1, for l ∈ {1, 2, · · · , N}

x̄(r) � 0, for r ∈ {1, 2, · · · , R}.

The fact that each nonzero element of x̄(r) is one of the real- and positive-valued

entries of s(r), given in (3.29), has inspired us to introduce the last set of constraints

in (3.38). When it comes to implementation, (3.38) seems to be computationally

prohibitive as the size of the problem is very large. Instead of solving (3.38) directly,

we use the basic idea behind compressive sensing which is used for size reduction [30].

The idea is based on reducing the size of the problem by using a transformation which

is given by matrix Φ. The only constraint on Φ is that it should be an isometry

which simply means that it should be distance preserving. It has been proved that

a random Gaussian matrix with a sufficient number of rows satisfies the so-called

restricted isometry property (RIP) condition [90]. In general, the computational

complexity of verifying the RIP is combinatorial for a given measurement matrix. A

surprising result in compressing sensing is that for K-sparse signals a random matrix

Φ with Gaussian entries and with L̃ ≥ O(K log(N/K)) rows satisfies the RIP with
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overwhelming probability, see [91] and [92] for the detail of this analysis. Based on

this idea, we can multiply our data model in (3.26) by an L̃×M 2 random matrix Φ.

By choosing a small L̃, the size of the problem can be reduced drastically from M 2

to L̃. Consequently the new data model is expressed as

y̆(ω) = B(ω)x̆+ w̆(ω) (3.39)

where the L̃× 1 vector y̆(ω) is defined y̆(ω) � Φy(ω) and the L̃×NR matrix B(ω)
is defined as B(ω) � ΦĂ(ω) and finally the L̃ × 1 noise vector w̆(ω) is defined as

w̆(ω) � Φw(ω). Therefore, we modify (3.38) as

min
x̆
. ‖x̆‖1

subject to ‖y̆(ω)− B(ω)x̆‖2 ≤ β
R
∑

r=1

|x̄(r)l |2 ≤ 1, for l ∈ {1, 2, · · · , N}

x̄(r) � 0, for r ∈ {1, 2, · · · , R}. (3.40)

Once x̆ is obtained, we can obtain the vectorized version of the image of the ROI as

ū =
∑R

r=1 x̄
(r). Reshaping u into an nz × nx matrix, we obtain the final image.

3.2.4 Block Sparsity

Note that the ℓ1 norm minimization problem in (3.40) ignores the fact that the vectors

{x̄(r)}Rr=1 have the same sparsity pattern. In order to exploit such a block sparsity
structure in x̆, we can use the so-called mixed ℓ2/ℓ1 minimization approach which
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solves the following minimization problem [93]:

min
x̆
.

N
∑

l=1

√

√

√

√

R
∑

r=1

|x̄(r)l |2

subject to ‖y̆(ω)− B(ω)x̆‖2 ≤ β
R
∑

r=1

|x̄(r)l |2 ≤ 1, for l ∈ {1, 2, · · · , N}

x̄(r) � 0, for r ∈ {1, 2, · · · , R}. (3.41)

The optimization problem (3.41) can be turned into a second order convex cone

(SOC) programming described as

min
x̆,ζ,q

. ζ

subject to; 1Tq ≤ ζ
√

√

√

√

R
∑

r=1

(x̄
(r)
l )

2 ≤ qi, for i ∈ {1, 2, · · · , N}

‖y̆(ω)− B(ω)x̆‖2 ≤ β
R
∑

r=1

(x̄
(r)
l )

2 ≤ 1, for l ∈ {1, 2, · · · , N}

x̄(r) � 0, for r ∈ {1, 2, · · · , R}. (3.42)

Once x̆ is obtained, we can obtain the vectorized version of the image of the ROI as

ū =
∑R

r=1 x̄
(r). Reshaping u into an nz × nx matrix, we obtain the final image.

Remark: In Sections III.A and III.B, we incorporated the phase of the forward

path into the unknown sparse image in order to ensure that the OCB matrix is the

same regardless of the index of the transducer which is chosen to fire the ultrasonic

wave, thereby saving storage required for saving this matrix when different trans-

ducers are used to illuminate the ROI. In Section III.C, this phase was incorporated

into the spatial signatures of different points in the image. This is the only way that

we can formulate the problem with multiple snapshots (i.e., with data measurements
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Table 3.1: Simulated array parameters.

Array parameters Value

Element type rectangular

Number of elements 64

SNR 15 dB

Element Pitch 1.25 mm

Center Frequency 1 MHz

Sampling Frequency 10 MHz

X-position of the reflectors -15 mm and 10 mm

Y-position of the reflectors 20 mm and 40 mm

corresponding to different emitting transducers) as a sparse signal recovery problem.

3.3 Numerical and Experimental Results

3.3.1 Numerical Results

In this subsection, we use numerical examples to show the superiority of the proposed

algorithms compared to the MC-MUSIC and MC-Capon techniques. We consider

a linear array of transducers which are illuminating an ROI containing two point

reflectors. The specifications of the linear array have been summarized in Table 3.1.

The acoustic wave generated by each transducer is a one-sided Gaussian modulated

signal with a center frequency of 1 MHz. Fig. 3.3 shows the transmitted signal in

both time- and frequency-domains. The pulse shape we use is a typical signal that

a transducer produces, see for example [1]. The sampling frequency is 10 MHz.
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Figure 3.3: a) time domain signal. b) The spectrum of the signal in frequency domain.

The incident wave is assumed to be in longitudinal mode while the reflected wave is

both longitudinal and shear wave. The velocities of longitudinal and shear waves are

assumed to be 5010 and 2270 m/s, respectively.

The two-dimensional ROI stretch, horizontally (in x direction) from −50 mm to

50 mm and vertically (in y direction) from 0.0 to 100 mm, respectively. Two point

reflectors are assumed to be located at (−15, 20) mm and (10, 40) mm. The SNR is

15 dB. We define the received SNR as

SNR =

∑

ω∈Ω

N
∑

p=1

‖yp(ω)−wp(ω)‖2

∑

ω∈Ω

N
∑

p=1

‖wp(ω)‖2

We use all 64 snapshots to estimate the sample covariance matrix based on (3.11).

The true locations of the reflectors along with the images obtained by the MC-MUSIC

and MC-Capon methods based on (3.13) and (3.14), are shown in Figs. 3.4 (a), (b),

and (c), respectively. In these figures, for both reflectors, the reflectivity coefficients of

longitudinal and shear waves are assumed to be equal to
√
2/2 and

√
2/2, respectively,
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implying an equal power split between the two modes. A total of 20 frequency bins

is used in the MC-MUSIC and MC-Capon methods while the sparse signal recovery

based imaging techniques (3.24), (3.40), and (3.42) rely only on the data from the

central frequency bin. The dimension of the signal subspace for the MC-MUSIC

technique has been set to 2. The size of the image in all methods is chosen to be

100 × 100. Fig. 3.4-(d) shows the result for the technique in (3.24), where only one

transducer (transducer number 32) is fired. Fig. 3.4-(e) shows the result of the ℓ1

norm minimization problem (3.40), which uses the data corresponding to the case

when all transducers are fired. Fig. 3.4-(f) illustrates the result of the ℓ2/ℓ1 norm

minimization problem (3.42), which also uses the data corresponding to the case when

all the transducers are fired. For the last two figures, the size of y̆(ω) is 4096 × 1

and matrix Φ has been generated based on a Gaussian distribution. The size of

Φ has been selected as 200 × 4096. As can be seen from Fig. 3.4, for the sparse

representation based techniques, the difference between the peak and the sidelobe

levels is more than 110 dB, but this value for MC-MUSIC is less than 30 dB and that

for MC-Capon is less than 25 dB. The RMSE of the location estimates versus SNR

has been given in Fig. 3.5 for all the aforementioned techniques. As can be seen from

this figure, the error for sparse representation methods based on (3.40) and (3.42) is

lower than those of the MC-MUSIC and MC-Capon based techniques. It can also

be seen from this figure that the method of (3.24) provides a satisfactory RMSE if

the SNR is sufficiently high. Note that compared to the other four algorithms, the

technique of (3.24) requires a significantly lower amount of data, thus having a higher

RMSE. As can be seen from this figure, the method of (3.42) offers the lowest RMSE

value for low values of SNR. This observation can be explained based on the fact that

the method of (3.42) exploits the block sparsity in the sparse vector x̆.

Fig. 3.6 shows the probability of reflector detection for all five aforementioned

methods. A reflector is said to have been detected if its location estimate is within
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1 mm from its true location. This figure also shows the superior performance of the

methods (3.40) and (3.42) compared to the other three methods.

Figs. 3.7 and 3.8 illustrate the RMSE curves for different methods for non-equal

power split between the two modes. In Fig. 3.7, the reflectivity coefficients cor-

responding to longitudinal and shear waves are 0.6 and 0.8, respectively, while in

Fig. 3.8, these coefficients are 1 and 0 (i.e., no mode conversion has occurred). As

can be seen from these figures, in both scenarios, similar to the equal power split sce-

nario shown in Fig. 3.5, the error for sparse signal representation methods based on

(3.40) and (3.42) is lower than those of MC-MUSIC and MC-Capon based techniques.

Therefore, from Figs. 3.5, 3.7 and 3.8 we conclude that regardless of how much con-

tribution we have from the converted mode, our proposed methods outperform both

MC-MUSIC and MC-Capon techniques by a large margin.

Fig. 3.9 illustrates the RMSE curves versus SNR for the ℓ2/ℓ1 mixed norm min-

imization approach with and without energy preserving constraints. As can be seen

from this figure, eliminating these constraints has little to no effect for modest to

high values of SNR.

Assuming that the velocity of the shear wave is known with error, Fig. 3.10 shows

the RMSE curves versus the percentage of error in the knowledge of shear wave

velocity. As can be seen from this figure, the proposed sparse signal recovery based

methods are less sensitive to this type of error.

In Fig. 3.11, we show the performance for the ℓ1 norm minimization method (3.40)

for different values of L̃. As can be seen from this figure, for the scenario we consider,

choosing L̃ = 200 results in a very low value for RMSE even for low and moderate

values of SNR.

In Fig. 3.12, we illustrate the RMSE curves versus SNR for the ℓ1 norm mini-

mization method (3.40) for different number of transducers when L̃ = 100. As can

be seen from this figure, by increasing the number of transducers, the performance
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can be improved over a larger value of SNR.

3.3.2 Experimental Results

To show the performance of our sparse signal representation based methods, we use

the same array measurements used in [1]. The real measurements have been taken

with an ultrasonic phased array system. The array probe consists of 64 transducers

with a pitch of 0.85 mm and gaps of 0.15 mm separating the transducers. The center

frequency of the probe is 4 MHz with a 2 MHz bandwidth. The test setup is shown

in Fig. 3.13. The measurements have been taken over a 20 mm thick carbon steel

plate where the velocities of longitudinal and shear waves equal to 5900 and 3250

m/s, respectively and a 1.5 mm diameter bore hole drilled in the center, as shown in

Fig. 3.13.

Figs. 3.14(a) and (b) show the images, as 3-dimensional plots, obtained by using

the MC-MUSIC and MC-Capon methods based on (3.13) and (3.14), respectively.

Fig. 3.14(c), (d) and (e) show the images, as 3-dimensional plots, for the sparse signal

recovery based imaging techniques (3.24), (3.40), and (3.42), respectively. A total of

20 frequency bins are used in the MC-MUSIC and MC-Capon methods while the

sparse signal recovery based imaging techniques (3.24), (3.40), and (3.42) rely only

on the data from one frequency bin corresponding to the probe center frequency at 4

MHz. The dimension of the signal subspace for the MC-MUSIC technique has been

set to 5. The value of the diagonal loading factor κ is chosen to be equal to 5000.

Fig. 3.15 shows the same images in 2 dimensions. Note that the background noises in

the images shown in Fig. 3.15 for our sparse signal representation based methods have

very low amplitudes in the range -100 dB to -120 dB. As can be seen from Figs. 3.14

and 3.15, the proposed sparse signal representation based methods proposed in this

paper are superior to the MC-Capon and MC-MUSIC methods.
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3.4 Conclusions

Mode conversion is a common phenomenon in ultrasonic imaging. In this paper, we

used sparse signal representation based approach to develop several imaging tech-

niques which take mode conversion into account. The proposed methods have higher

resolution and lower sidelobe levels in comparison with the state-of-the-art techniques,

such as MUSIC and Capon based methods. Our sparse signal representation based

techniques are robust to correlated targets. We have shown the performance superi-

ority of our sparse signal representation based methods over existing methods using

both simulated and experimental data.
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Figure 3.4: The normalized images for a) the true reflectors’ locations, b) the MC-

MUSIC based technique given in (3.13), c) the MC-Capon based method given in

(3.14), d) the proposed technique in (3.24), e) the proposed technique in (3.40), and

f) the proposed technique in (3.42).
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Figure 3.6: The probability of reflector detection versus SNR, using the ℓ1 norm

minimization methods (3.24) and (3.40) and ℓ2/ℓ1 mixed norm minimization method

(3.42), MC-MUSIC and MC-Capon based approaches for equal power spilt between

the two modes..
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(3.42), the MC-MUSIC and MC-Capon based approaches for reflectivity coefficients

of longitudinal and shear waves equal to 0.6 and 0.8, respectively.
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(a) (b)

Figure 3.13: a) Test setup, b) transmitted signal, courtesy of [1].
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Figure 3.14: The normalized images obtained from data a) the MC-MUSIC based

technique given in (3.13), b) the MC-Capon based method given in (3.14), c) the

proposed technique in (3.24), d) the proposed technique in (3.40), and e) the proposed

technique in (3.42).
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Figure 3.15: The normalized 2-dimensional images obtained from data a) the MC-

MUSIC based technique given in (3.13), b) the MC-Capon based method given in

(3.14), c) the proposed technique in (3.24), d) the proposed technique in (3.40), and

e) the proposed technique in (3.42).



Chapter 4

Sparse Bayesian Learning with

Application to Two-Layer

Ultrasonic Array Imaging

In this chapter, we develop a sparse signal representation based imaging algorithm

which relies on Bayesian inference. We use an array of ultrasonic transducers to

inspect the internal structure of a test sample immersed in water. The goal is to

find the reflectivity coefficients of the reflectors inside the test sample. We model the

array spatial signature using Rayleigh-Sommerfeld diffraction formula. We then as-

sign a Weibull distribution function to the desired reflectivity coefficients. To enforce

sparsity, we model the scaling parameter of the Weibull distribution function with

inverse Gamma distribution function. We also propose a new technique to estimate

the shape parameter of the Weibull distribution function using Mellin transform. We

aim to obtain the MAP estimator for the desired reflectivity coefficients. To accom-

plish this goal, we find the conditional posterior function of the desired reflectivity

coefficients. We then use the HMC technique to find the maximum of the conditional

posterior function, thereby obtaining the MAP estimate of the reflectivity coefficients
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of the reflectors in the ROI. At the end, we use experimental data gathered from a

solid test sample immersed in water to show the better performance of the proposed

technique compared to the existing algorithms in the literature.

The chapter is organized as follows. In Section 4.1, we describe our data model.

We further cast our problem as a sparse signal representation based problem using

multiple measurements. In Section 4.2, we discuss the previous results published in

the literature. In Section 4.3, we define the conditional posterior distribution function

of the reflectivity coefficients of the hypothetical reflectors in the ROI. In Section 4.4,

using the conditional posterior distribution function we obtained in Section 4.3, we

address the problem of finding the MAP estimate of the reflectivity coefficients of

the hypothetical reflectors using the HMC technique. In Section 4.5, we apply the

proposed algorithm to the experimental data gathered from a solid test sample im-

mersed in water. We then compare the result of the proposed algorithm with the

existing algorithms in the literature and show the superiority of the proposed algo-

rithm. Finally, conclusions are drawn in Section 5.

4.1 Model description

We consider an array of transducers and a test sample both immersed in water. The

geometry of the test setup is shown in Fig. 4.1. Each transducer sends a signal

toward the test sample and all transducers record the reflected wave. We consider

a 2-dimensional imaging problem in horizontal and vertical directions, shown as x

and z, respectively. Furthermore, we assume that our transducers are infinitely long

in the third direction. Consequently, each transducer generates a cylindrical wave.

Thus, the wave intensity received at point r̂f , on the surface of the test sample, when
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r̃p = (x̃p, z̃p) r̃m = (x̃m, z̃m)

r̂f = (x̂f , ẑf ) r̂b = (x̂b, ẑb)

rs = (xs, zs)

Layer 1

Layer 2

x axis

z axis

y axis

D

Figure 4.1: The geometry of the array and the test sample.

the pth transducer transmits, is given as

gp(r̂f ;ω) =
ejω‖r̃p − r̂f‖/c1
‖r̃p − r̂f‖0.5

(4.1)

where r̃p is the location of the p
th transmitter, ‖ ·‖ stands for the Euclidean distance,

c1 is the propagation velocity for the wave in Layer 1 and ω is the angular frequency

of the incident wave. The surface of the test sample is modeled as a union of sec-

ondary point sources which “illuminate” the ROI. Each secondary source generates

a cylindrical wave. According to the Rayleigh-Sommerfeld diffraction formula [94],

the wave intensity received at the location of a hypothetical reflector at rl inside the

solid at the frequency ω is a superposition of all the cylindrical waves generated by

the secondary point sources on the interface1 and is described as

ḡp(rl;ω) =

+∞
∫

−∞

Tp(r̂f , rl)ω

j2πc2
gp(r̂f ;ω)

ejω‖r̂f − rl‖/c2
‖r̂f − rl‖0.5

dx̂f (4.2)

where c2 is the propagation velocity for the wave in the test sample and Tp(r̂f , rl)

is the transmission coefficient for a wave originating from the pth transducer at the

point r̂f which travels towards the point rl inside the test sample and is expressed

1We assume that the point reflectors on the interface are infinitely long in the −y direction.
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as [94]

Tp(r̂f , rl) =

2c1
D

‖r̃p − r̂f‖
c1
zl −D

‖r̂f − rl‖
+ c2

D

‖r̃p − r̂f‖
(4.3)

where D is the distance between the array and the surface of the test sample. Fur-

thermore, we can also use the Huygens principle to model each hypothetical reflector

as a secondary source. Therefore, each hypothetical reflector, inside the test sample

located at rl, generates a cylindrical wave. Consequently, the wave intensity received

at the location of a point on the interface located at r̂b, at frequency ω, is given as

ĝp(r̂b;ω) = ρlḡp(rl;ω)
ejω‖rl − r̂b‖/c2
‖rl − r̂b‖0.5

(4.4)

where ρl is the reflectivity coefficient of the reflector located at rl. Finally, according

to the Rayleigh-Sommerfeld diffraction formula [94], the wave received at the location

of the mth receiver, is a superposition of all the cylindrical waves generated by the

secondary point sources on the interface, at frequency ω, and is described as

g̃p(r̃m;ω) =

+∞
∫

−∞

T̄p(r̃m, r̂b, rl)ω

j2πc1
ĝp(r̂b;ω)

ejω‖r̂b − r̃m‖/c1
‖r̂b − r̃m‖0.5

dx̂b � ρlapm(rl;ω) (4.5)

where r̃m is the location of the mth receiver and T̄p(r̃m, r̂b, rl) is the transmission

coefficient for a wave originating from a point reflector located at rl inside the test

sample which travels towards the mth receiver and is expressed as

T̄p(r̃m, r̂b, rl) =

2c1
D

‖r̃m − r̂b‖
c2
zs −D
‖r̂b − rl‖

+ c1
D

‖r̃m − r̂b‖
(4.6)
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and apm(rl;ω) is defined as

apm(rl;ω) �

(

+∞
∫

−∞

−Tp(r̂f , rl)T̄p(r̃m, r̂b, rl)ω2
4π2c1c2

×

ejω‖r̃p − r̂f‖/c1
‖r̃p − r̂f‖0.5

× ejω‖r̂f − rl‖/c2
‖r̂f − rl‖0.5

dx̂f

)

×
(

+∞
∫

−∞

ejω‖rl − r̂b‖/c2
‖rl − r̂b‖0.5

× ejω‖r̂b − r̃m‖/c1
‖r̂b − r̃m‖0.5

dx̂b

)

. (4.7)

We define matrix Ap(ω) ∈ CM×L as Ap(ω) � [ap(r1;ω), ap(r2;ω), · · · , ap(rL;ω)],
where the vector ap(rl;ω) ∈ CM×1 is given as

ap(rl;ω) = [ap1(rl;ω), ap2(rl;ω), · · · , apM (rl;ω)]T . (4.8)

In (4.8), apm(rl;ω) at frequency ω and for the reflector located at rl when the p
th

transducer transmits and the rth transducer receives the wave is given in (4.7) and L

is the number of the true reflectors inside the test sample. Consequently, the vector

of the signals received by the array, in the presence of the receiver noise, when the

pth transducer transmits, is given as

yp(ω) = Ap(ω)ρ+wp(ω) (4.9)

where the vector y(ω) ∈ CM×1 is described as yp(ω) = [yp1(ω), yp2(ω), · · · , ypM (ω)]T

in which ypm(ω) ∈ C is the signal received by the mth receiver at the frequency ω

when the pth transducer transmits. The lth element of the vector ρ ∈ RL×1 is the

reflectivity coefficient of the reflector located at rl inside the test sample. The vector

wp(ω) ∈ CM×1 is the noise vector and its mth element is the noise for the mth receiver

when the pth transducer transmits.

To cast our problem as a sparse signal recovery problem, at each frequency bin, we

define Φp(ω) ∈ CM×N as the dictionary matrix where N represents the number of the

potential reflectors. We divide the ROI into nx×nz = N pixels. Each pixel represents
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a potential reflector. Fig. 3.2 shows this grid, with nx pixels in the horizontal direction

and nz pixels in the vertical direction.

The matrix Φp(ω) ∈ CM×N is defined as

Φp(ω) � [ap(ř1;ω) ap(ř2;ω) · · · ap(řN ;ω)]. (4.10)

In (4.10), řl is the location of the l
th potential reflector, ap(řl;ω) ∈ CM×1 is the array

steering vector for the lth potential reflector at řl (corresponding to the (i, j)
th pixel

in the ROI where i = ⌊ l−1
nx

⌋+ 1 and j = l− (i− 1)nx) and it is given in (4.8). Using
the dictionary defined in (4.10), the model presented in (4.9) can be rewritten as

yp(ω) = Φp(ω)s+wp(ω) (4.11)

where the lth element of s ∈ CN×1 is nonzero if there is a scatterer located at řl,

corresponding to the (i, j)th pixel, where i = ⌊ l−1
nx

⌋ + 1 and j = l − (i − 1)nx, and

it is zero otherwise. Each nonzero element of s is one of the entries of ρ defined in

(4.9). By choosing N ≫ L the sparsity of our problem is guaranteed. Our goal is to

estimate the vector s by exploiting its sparse structure.

In order to take the effect of all M measurement vectors into account, we define

the vector y(ω) ∈ CM2×1 as

y(ω) � [yT
1 (ω) y

T
2 (ω) · · · yT

M (ω)]
T (4.12)

where yp(ω) ∈ CM×1, for p ∈ {1, 2, · · · ,M}, is given as in (4.9). We also define a
dictionary matrix Φ(ω) ∈ CM2×N as

Φ(ω) = [ΦT
1 (ω) Φ

T
2 (ω) · · · ΦT

M(ω)]
T (4.13)

where each Φp(ω), for p ∈ {1, 2, · · · ,M}, is given in (4.10). Based on (4.12) and
(4.13), the data model for the multiple measurement vector y(ω) is given as

y(ω) = Φ(ω)s +w(ω). (4.14)
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The noise vector w(ω) ∈ CM2×1 is defined as w(ω) = [wT
1 (ω) w

T
2 (ω) · · · wT

M (ω)]
T .

In the next section we address the previous algorithms that have been used either for

ultrasonic image reconstruction or for sparse signal recovery.

4.2 Previous Work

In this section we present the works done in the literature based on the data model

given in (4.14).

4.2.1 The DAS Beamformer

The image provided by the DAS beamformer, i.e., the estimate of the reflectivity

coefficients for a potential reflector located at r, is denoted as IDAS(r;ω) and is given
as

IDAS(r;ω) =
∣

∣

∣

∣

∣

M
∑

p=1

∑

ω∈Ω

a†p(r;ω)yp(ω)

∣

∣

∣

∣

∣

2

(4.15)

where yp(ω) and ap(r;ω) are given as in (4.9) and (4.8), respectively.

4.2.2 MUSIC Based Imaging

The image provided by the MUSIC method is given as [19]

IMUSIC(r;ω) =
∑

ω∈Ω

a†p(r;ω)ap(r;ω)

a
†
p(r;ω)En(ω)E

†
n(ω)ap(r;ω)

. (4.16)

The L highest peaks of these function give us the location of the L reflectors.

4.2.3 Capon Based Imaging

The Capon image at frequency ω is given as

ICapon(r;ω) =
∑

ω∈Ω

a†p(r;ω)ap(r;ω)

a
†
p(r;ω)R̂

−1
DL(ω)ap(r;ω)

. (4.17)
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The location of the L highest peaks of the image in (4.17) are introduced as the

locations of the L reflectors.

4.2.4 ℓ1-norm Minimization Based Technique

The ℓ1-norm optimization problem for (4.14) is expressed as

min
s
. ‖s‖1

subject to ‖y(ω)−Φ(ω)s‖2 ≤ βm

s � 0, s ∈ RN×1
+ . (4.18)

4.2.5 Orthogonal Greedy Algorithm

The OGA [27,32] for the data model given in (4.14) is described as

ik = arg max
1≤i≤N

| < r(k−1),Φ(i)(ω) > | (4.19)

where Φ(i)(ω) is the ith column of the matrix Φ(ω). The algorithm stops when the ℓ2-

norm of error term falls below a predetermined threshold ξg, i.e., ‖y(ω)− ŷ(k)(ω)‖2 ≤
ξg. In signal processing the algorithm given in (4.19) is in fact called OMP.

4.2.6 The FOCUSS Method

The FOCUSS method for the data model given in (4.14), is expressed as

min
s
.

N
∑

i=1

|si|p

subject to ‖y(ω)−Φ(ω)s‖2 ≤ βf

s � 0, s ∈ RN×1
+ . (4.20)

We then use the expectation maximization (EM) algorithm to solve (4.20). To set

the stage we first rewrite (4.20) as

min
s
.

{

‖y(ω)−Φ(ω)s‖2 + λf
N
∑

i=1

|si|p
}

, s ∈ RN×1
+ (4.21)
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which is another equivalent form of (4.20) in which λf is a parameter to be tuned.

Each generalized Gaussian prior is then expressed as a set of latent variables γ =

[γ1, γ2, · · · , γN ]T which are treated as hidden data. We have given the pseudo-code
for the implementation of the FOCUSS method using EM in Algorithm 2 where

Γ = diag(γ). The stopping criterion is based on
‖γ − γold‖2

‖γ‖2
, where γold is the value

for γ in the last iteration. The algorithm stops when
‖γ − γold‖2

‖γ‖2
< ξf .

Algorithm 2 Implementation of the FOCUSS method using EM

*Initialization

Set γ = 1N×1

Set γold = 0N×1

while
‖γ − γold‖2

‖γ‖2
< ξf do

γold = γ

γi = |ŝi|2−p, i ∈ {1, 2, · · · , N}.
ŝ = ΓΦ(ω)†

(

λf I+Φ(ω)ΓΦ(ω)†
)−1

y,

end while

4.3 Proposed Algorithm

We now present our imaging algorithm (i.e., our algorithm to estimate s) based on

Bayesian philosophy. Indeed, our goal is to estimate the vector s, which upon reshap-

ing, yields the image of the ROI. To accomplish this goal, we model the posterior

distribution function for s. Once we have the posterior distribution function for s, we

then find a realization of s which maximizes this posterior distribution. Indeed, we

are looking for the MAP estimator of s. The lth nonzero element of this realization

of s is the reflectivity coefficient for a reflector located at řl.

Our prior information about s comes from the fact that s is sparse. Furthermore,

from (4.14) we see that the vector s is real and positive. To enforce sparsity, we model

each reflectivity coefficients as a Weibull random variable with a scale parameter

which obeys the inverse Gamma distribution. As we will show later, such distribution
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for the scale parameter enforces sparsity. Hence, the positivity of the vector s and

ability to build a sparse model are our reason to assign a Weibull distribution function

to the vector s. In fact this is one way to enforce sparsity which we have come up

with.

We assume that the noise given in (4.14) is Gaussian. Therefore, the likelihood

function is also Gaussian. Having the likelihood and the prior distribution function

for s, we obtain the posterior function for s. The details are given below.

4.3.1 Prior Distribution for σ2

Assuming that the elements of w(ω) ∈ CM2×1 are independent identically dis-

tributed (i.i.d.) random variables with a Gaussian distribution function, we have

w(ω)|σ2 ∼ N (0, σ2I) (4.22)

where σ2 is the variance of the noise and I ∈ RM2×M2
is the identity matrix. We

further assume that the variance of the noise, i.e., σ2, is a random variable and that

the prior distribution for σ2 is assumed to be inverse Gamma function, i.e., [63, 64]

p(σ2) =
dc

Γ(c)
σ2
(−c−1)

e−
d

σ2

= IG(c, d) (4.23)

where Γ(·) is the Gamma function2 and IG(c, d) stands for the inverse Gamma dis-
tribution3 function with parameters c and d. We also assume that the ith element of

the vector s conforms to a Weibull distribution, with parameters α and βi, that is

given as

pα(si|βi) =
α

βi
sα−1i e

− sα
i

βi , si ≥ 0 (4.24)

2Γ(ς) =

+∞
∫

0

ξς−1e−ξdξ.

3f(x; a, b) =
b
a

Γ(a)
x(−a−1)e−

b

x .
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where by pα(·|·), we mean a conditional pdf parameterized by α. The scalar α is called
the shape parameter and βi is referred to as the scaling parameter. Since {si}Ni=0 are
the reflectivity coefficients of the potential reflectors in the ROI, therefore, they are

nonnegative real numbers. In fact, si ≥ 0, for i ∈ {1, 2, · · · , N}.

4.3.2 Prior Distribution of s

Using the i.i.d. assumption for the elements of s, the prior conditional distribution

function for the vector s is given as

pα(s|β) =
N
∏

i=1

α

βi
sα−1i e

− sα
i

βi (4.25)

where we define β � [β1 β2 · · · βN ]T .
To enforce sparsity, β is considered as a random vector with inverse Gamma

distribution function with parameters a and b, that is

p(β) =

N
∏

i=1

ba

Γ(a)
β−a−1
i e

−b
βi . (4.26)

The reason for using inverse Gamma distribution function for β is that this distri-

bution is conjugate to Weibull distribution function. In fact, using (4.26), the prior

distribution function in (4.25) can be written as

pα(s) =
+∞
∫

−∞
p(s|β)p(β)dβ

=
N
∏

i=1

Γ(a+ 1)

Γ(a)
(sαi + b)

a−1sα−1i αba. (4.27)

Choosing small values for both a and b, we can write (b+ sαi )
a−1sα−1i α ≃ α

si
, implying

that those values of si which are zero, will have a relatively higher probability to occur.

Consequently, such a prior function will make sparse vectors most probable than the

non-sparse vectors. Therefore, this choice for the distribution function of β is a good

way of enforcing sparsity.
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Indeed, we have assumed a Weibull distribution function for each individual ele-

ment of s. Therefore, if the scaling parameter of the ith element, i.e., βi, is zero that

element will be zero. Here, sparsity of s is ensured by the sparsity of β. For those

elements of s that are representing the amplitude of the reflectors, the scale parame-

ter of these elements should be nonzero. Moreover, these nonzero scaling parameters

may not be equal. In fact, βi represents the scaling parameter for si and {si}Ni=1 are
different and independent of each other. Thus, we consider different scaling parame-

ters for different elements of s and this is the reason for considering a distinct scaling

parameter for each element of s. Regarding the shape parameter α, however, we have

assumed the same parameter for all the elements. Since we do not have any prior

information about α, we estimate this parameter. The following lemma allows us to

estimate α based on the second-kind cumulant of the elements of s:

Lemma 1: Let the vector s with i.i.d. elements have the Weibull distribution

given as in (4.25). Then the parameter α can be described as

α =

√

π2

6κ2
(4.28)

where κ2 is the 2
ndorder second-kind cumulant of s which is given as

κ2 = E(ln(si)− E(ln(si)))2. (4.29)

Proof : See Appendix 4.7.1.

Since s is a vector of i.i.d. random variables, therefore it is ergodic. Hence, any

moment of s can be consistently estimated as the corresponding sample moment.

More specifically an estimation of (4.29) is given as

κ̂2 =
1

N − 1
N
∑

i=1

(ln(si)− κ̂1)2 (4.30)

where κ̂1 is expressed as

κ̂1 =
1

N

N
∑

i=1

ln(si). (4.31)
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Consequently, using (4.30) and (4.31), an estimate of α is given as

α̂ =

√

π2

6κ̂2
. (4.32)

From now on, for simplicity of notation, we use α instead of α̂.

4.3.3 Joint Posterior Distribution Function

Having estimated α as in (4.32), the joint posterior distribution function for

(s,β, σ2) is expressed as

pα(s,β, σ
2|y(ω)) = p(y(ω)|s, σ2) pα(s|β) p(β) p(σ2)

p(y(ω))
. (4.33)

Here, p(y(ω)|s, σ2) is the likelihood function which is described as

p(y(ω)|s, σ2) = 1

(2πσ2)M
2/2
e
−‖y(ω)−Φ(ω)s̃‖22

2σ2 . (4.34)

Substituting (4.25), (4.26) and (4.34) into (4.33), we obtain the joint posterior pdf

for s, β and σ2 as

pα(s,β, σ
2|y(ω)) = 1

p(y(ω))

1

(2πσ2)M
2/2
e
−
‖y(ω)−Φ(ω)s‖22

2σ2 ×
(

N
∏

j=1

α

βi
sα−1i e

− sα
i

βi

)

×
(

N
∏

i=1

ba

Γ(a)
β−a−1
i e

− b
βi

)

× dc

Γ(c)
σ2
(−c−1)

e−
d

σ2 . (4.35)

We resort to MAP approach to find the MAP estimate for s, β and σ2. To this end,

we have to solve the following optimization problem:

max
s

{max
β,σ2

pα(s,β, σ
2|y(ω))}. (4.36)

To solve (4.36), we rewrite the joint posterior distribution function pα(s,β, σ
2|y(ω)),

given in (4.35), as

pα(s,β, σ
2|y(ω)) = pα(β|s, σ2,y(ω))pα(s, σ2|y(ω)). (4.37)
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Since given s, the vector β is independent of y(ω) and σ2, therefore, the first term

on the right hand side of (4.37) can be written as pα(β|s, σ2,y(ω)) = pα(β|s). Con-
sequently, we can rewrite (4.37) as

pα(s,β, σ
2|y(ω)) = pα(β|s)× pα(s, σ2|y(ω)). (4.38)

In (4.38), the term pα(β|s) is independent of σ2 and the term pα(s, σ
2|y(ω)) is in-

dependent of β. Therefore, using (4.38), the optimization problem given in (4.36) is

modified as

max
s

(

{max
β

pα(β|s)} × {max
σ2

pα(s, σ
2|y(ω))}

)

. (4.39)

To solve (4.39), we start with {maxβ pα(β|s)}. The function pα(β|s) is expressed as

pα(β|s) = pα(s|β)p(β)

=
N
∏

i=1

α

βi
sα−1i e

− sα
i

βi × β−a−1
i e

−b
βi

∝
N
∏

i=1

IG(a + 1

α
, sαi + b) (4.40)

which is an inverse Gamma distribution function. Since the maximum of an inverse

Gamma function with parameters a and b is
b

a+ 1
, the maximum of pα(β|s) with

respect to β, which is the MAP estimator for β, for given s, is expressed as4

βi =
sαi + b

a + 1 + 1/α
. (4.41)

The other maximization in (4.39) is {maxσ2 pα(s, σ
2|y(ω))}. The function pα(s, σ2|y(ω))

is described as

pα(s, σ
2|y(ω)) = pα(σ2|s,y(ω))pα(s|y(ω)). (4.42)

Based on (4.42), for given s, the only term that depends on σ2 is pα(σ
2|s,y(ω)).

Therefore, the MAP estimator for σ2 is expressed as

σ̂2 = argmax
σ2

pα(σ
2|s,y(ω)). (4.43)

4From now on, with a slight abuse of notation, we use βi instead of β̂i for simplicity.
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The conditional distribution pα(σ
2|s,y(ω)) is described as

pα(σ
2|s,y(ω)) =

pα(y(ω)|s, σ2)pα(σ2|s)
pα(y(ω)|s)

=
pα(y(ω)|s, σ2)p(σ2)

pα(y(ω)|s)
(4.44)

where we have used the assumption that s and σ2 are statistically independent. From

(4.44), we see that the denominator is independent of σ2. Therefore, to obtain the

MAP estimate of σ2, we maximize the following expression with respect to σ2

pα(σ
2|s,y(ω)) ∝ pα(y(ω)|s, σ2)p(σ2)

=
1

(2πσ2)M
2/2
e
−
‖y(ω)−Φ(ω)s‖22

2σ2
dc

Γ(c)
σ2
(−c−1)

e−
d

σ2

∝ IG(c+M2/2,
‖y(ω)−Φ(ω)s‖22 + 2d

2
). (4.45)

By maximizing (4.45) with respect to σ2, we find the MAP estimator for σ2, given s,

and the result is given as5

σ2 =
d+

‖y(ω)−Φ(ω)s‖22
2

(c+M 2/2)
. (4.46)

Having obtained the MAP estimator of β and σ2, given in (4.41) and (4.46) respec-

tively, we are left with maximization over s in (4.39). To solve this last maximization,

we rewrite the objective function in the initial optimization problem, given in (4.36),

as

pα(s,β, σ
2|y(ω)) = pα(s|β,y(ω), σ2)pα(β, σ2|y(ω)). (4.47)

The only term which depends on s in (4.47) is pα(s|β,y(ω), σ2). Therefore, the MAP
estimator for s is expressed as

ŝ = argmax
s

pα(s|y(ω),β, σ2). (4.48)

5From now on, with a slight abuse of notation, we use σ2 instead of σ̂2 for simplicity.
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The conditional distribution pα(s|y(ω),β, σ2) in (4.48) can be written as

pα(s|y(ω),β, σ2) =
pα(y(ω)|s,β, σ2)pα(s|β, σ2)

pα(y(ω)|β, σ2)
. (4.49)

The denominator in (4.49) does not depend on s. Therefore, we can maximize the

following expression

pα(s|y(ω),β, σ2) ∝ pα(y(ω)|s, σ2)pα(s|β, σ2). (4.50)

Using the expression given in (4.34) for the likelihood function and (4.25) for the

prior distribution function of s, the conditional posterior function given in (4.50) can

be described as

pα(s|y(ω),β, σ2) ∝ 1

(2πσ2)M
2/2
e
−‖y(ω)−Φ(ω)s‖22

2σ2 ×
N
∏

i=1

α

βi
sα−1i e

− sα
i

βi . (4.51)

Using (4.41) and (4.46), for estimates of β and σ2 respectively, in (4.51), we obtain

pα(s|y(ω),β, σ2) ∝ e
− ‖y(ω)−Φ(ω)s‖22
2(d+ ‖y(ω)−Φ(ω)s‖22/2)/(c+ 1 +M 2/2)

(2π(2d+ ‖y(ω)−Φ(ω)s‖22)/(c+ 1 +M 2/2))
M2/2

×
N
∏

i=1

αsα−1i e
− sαi
(sαi + b)/(a+ 1 + 1/α)

(sαi + b)/(a + 1 + 1/α)
. (4.52)

Therefore, our aim is to maximize the conditional distribution function pα(s|y(ω),β, σ2)
given in (4.52) with respect to s. However, pα(s|y(ω),β, σ2) is not concave. There-
fore, any gradient based technique may trap in a local maximum. Thus, our aim is

not to find the maximum of pα(s|y(ω),β, σ2) directly. Instead, we consider the con-
ditional posterior function pα(s|y(ω),β, σ2) as a pdf. Then we try to find different
realizations of s based on this pdf. The MAP estimator can then be approximated

by evaluating the target distribution, i.e, pα(s|y(ω),β, σ2) given in (4.52), with the
generated s. The s which provides the highest score will be the desired result.
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Among the well known techniques for finding realizations of a complicated dis-

tribution functions such as the pdf in (4.52), we can name MCMC method and

Gibs sampler [48,49]. However, since pα(s|y(ω),β, σ2) has local maxima, generating
random-walk in MCMC method, which is the main part of this technique, is pron to

error. Moreover, because of the curse of dimensionality, both MCMC method and

Gibs sampler turn out to be computationally inefficient [48–50]. We overcome these

difficulties by utilizing the HMC technique. The HMC technique is a combination of

Hamiltonian Monte Carlo and MCMC method [48–50].

In the next section, we address the implementation of the HMC technique.

4.4 Hybrid Monte Carlo Implementation

To implement the HMC method [48–50], we define an auxiliary vector u ∈ CN×1

independent of s. Then, we define the following function

K(u) =
1

2
uTu. (4.53)

A common choice for the pdf of u is a Gaussian distribution with zero mean and

unit variance. Using the analogy from physics, we obtain the Hamiltonian which is

expressed as

H(s,u) = U(s) +K(u) (4.54)

where U(s) is defined as

U(s) � − ln(pα(s|y(ω),β, σ2)). (4.55)
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Using the expression given in (4.52) for pα(s|y(ω),β, σ2) in (4.55), function U(s) is
expressed as

U(s) =
‖y(ω)−Φ(ω)s‖22

(2d+ ‖y(ω)−Φ(ω)s‖22)/(c+ 1 +M 2/2)

+
M2

2
ln(2π(2d+ ‖y(ω)−Φ(ω)s‖22)/(c + 1 +M2/2))

−N ln(α)− (α− 1)
N
∑

i=1

si +
N
∑

i=1

sαi
(sαi + b)/(a+ 1 + 1/α)

+
N
∑

i=1

ln

(

sαi + b

a + 1 + 1/α

)

. (4.56)

By borrowing analogy from physics, U(s) plays the role of the potential energy and

K(u) plays the role of the kinetic energy. In fact, u is an auxiliary variable which by

analogy from classical mechanic plays the role of the momentum of a point particle

and subsequently s describes the location of this point particle. However, estimating

u is not the goal of the HMC method, but u is being updated in the HMC method

along side s and this helps with the estimation of s which is the desired vector.

To implement the HMC we utilize the so called leapfrog equations described as

[48–50]

u = uj−1 − ǫ
2
∇U(s)

∣

∣

s=sj−1

sj = sj−1 + ǫu

uj = u− ǫ
2
∇U(s)

∣

∣

s=sj
(4.57)

where the vector u ∈ CN×1 is an auxiliary variable and ∇U(s) is the gradient of
U(s) that we calculate later. To explain (4.57), let (s(t−1),u(t−1)) be the state of the

Hamiltonian at the t − 1 step. Then we set (s0,u0) = (s(t−1),u(t−1)) and run (4.57)

for L̃ times. At the end we obtain (sL̃,uL̃) and we have to decide wether we should

accept this new value, meaning (s(t),u(t)) = (sL̃,uL̃), or remain at the previous value,

meaning (s(t),u(t)) = (s(t−1),u(t−1)). The decision making procedure is based on the



80

Metropolis-Hastings technique in which we calculate the following parameter

λ = min{1, e
H(s(t−1),u(t−1))

eH(sL̃,uL̃)
} (4.58)

then with probability λ, we accept the new values.

We have described our proposed method in Algorithm 3. Each column of the

matrix X ∈ R
N×T stores an estimate of s at each iteration. The number of the

columns of the matrix X, i.e., T , is in fact the number of different realizations that

we generate for s. At the end, the MAP estimate for s is a column of the matrix X

with highest score.

For the implementation of (4.57) we need the gradient of U(s). The gradient of

U(s), given in (4.56), is described as

∇U(s) = 4d(c+ 1 +M 2/2)
Φ(ω)†(y(ω)−Φ(ω)s)

(2d+ ‖y(ω)−Φ(ω)s‖22)2

−M 2 Φ(ω)
†(y(ω)−Φ(ω)s)

2d+ ‖y(ω)−Φ(ω)s‖22
+ ϑ. (4.59)

In (4.59), the ith element of the vector ϑ ∈ CN×1 is given as

ϑi = −N dα/dsi
α

− (α− 1)− (dα/dsi)
N
∑

i=1

si

+

−dα/dsi
α2

1 + b/sαi
+
b(a + 1 + 1/α)dsαi /dsi

(b+ sαi )
2

+
dsαi /dsi
sαi + b

−
−dα/dsi
α2

a+ 1 + 1/α
(4.60)

where dsαi /dsi is given as

dsαi
dsi

=

(

dα

dsi
ln si +

α

si

)

sαi (4.61)

To calculate dα/dsi, we rewrite the expression for α given in (4.32) as

α̂ =

√

√

√

√

√

π2(N − 1)

6
N
∑

i=1

[ln(si)− 1
N

N
∑

i=1

ln(si)]2
(4.62)
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where we have used the expressions (4.30) and (4.31) in (4.32). Using (4.62), dα/dsi

is given as

dα/dsi = −
√

π2(Ñ − 1)
6





N
∑

i=1

(

ln(si)−
1

N

N
∑

i=1

ln(si)

)2




−3
2

×
(

N
∑

i=1

(

ln(si)−
1

N

N
∑

i=1

ln(si)

))

×
(

N
∑

i=1

(

1

si
− 1

N

N
∑

i=1

1

si

))

. (4.63)

Algorithm 3 Proposed Method

*Initialization

Generate an initial value for s(0) ∼ N (0N×1, IN×N )

Generate an initial value for u(0) ∼ N (0N×1, IN×N )

for i = 1 to T do

(s0,u0) = (s(i−1),u(i−1))

Estimation of α based on (4.32)

for j = 2 to L̃ do

u = uj−1 − ǫ
2
∇U(s)

∣

∣

s=sj−1

sj = sj−1 + ǫu

uj = u − ǫ
2
∇U(s)

∣

∣

s=sj

end for

(ŝ, û) = (s
L̃
,u

L̃
)

Metropolis-Hastings decision making criteria

u ∼ U [0, 1]
λ = min{1, eH(s(i−1),u(i−1))

eH(ŝ,û) }
if u < min(1, λ) then

s(i) = ŝ, u(i) = û

else

s(i) = s(i−1), generate u(i) ∼ N (0N×1, IN×N )

end if

X(:, i) = s(i)

end for

ŝ is a column of the matrix X with highest score.
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Figure 4.2: Test setup geometry.

4.5 Experimental results

In this section we apply the proposed technique described in Algorithm 3, along with

the DAS beamformer given in (4.15), the MUSIC method described by (4.16), the

Capon technique using (4.17), the ℓ1-norm minimization based technique given in

(4.18), the OMP based on (4.19) and the FOCUSS technique based on Algorithm

2 to the experimental data gathered from a specimen immersed in water. Then we

generate the corresponding images and discuss the results.

The test setup has been shown in Fig. 4.2. A solid test sample with three holes

has been immersed in water. The depth of the water above the test sample is 10

mm. The horizontal and vertical distances between the holes are 14 mm and 5 mm,

respectively. The distance of the first hole inside the test sample from the surface of

the test sample is 8 mm. The specifications for the array have been summarized in

Table 4.1.

We use FFT to map our data into frequency domain. The width of each frequency

bin is 83.34 KHz. The energy of the probing signal has occupied 60 bins from 2.5

MHz to 7.5 MHz. Therefore, the frequency bins out of this range belong to noise.

To check that our assumptions about the receiver noise are correct we estimate the

pdf of the noise. To do that, we use the output of FFT at frequency 20 MHz. Fig. 4.3-
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Table 4.1: Array parameters specification.

Array parameters Value

Element type rectangular

Number of elements 64

Element Pitch 0.6 mm

Element width 0.53 mm

Element length 0.012 m

Center Frequency 5 MHz

Sampling frequency 100 MHz

Bandwith 5MHz

Speed of wave in water 1482 m/s

Speed of wave in solid 6400 m/s
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(a) shows the estimated pdf of the real part of the noise. To generate Fig. 4.3-(a), we

have taken the real part of the signal, received at each receiver, as an independent

realization of the real part of the noise. In fact, since at frequency 20 MHz the signal,

received at each receiver, contains only the energy of the noise, therefore, we have

indeed obtained the real part of the noise at each receiver. Furthermore, since all the

receivers are the same, we can take the real part of the noise at each receiver as an

independent realization. Consequently, we have 64 different realizations of the real

part of the noise that upon averaging them we obtain Fig. 4.3-(a). As can be seen

from Fig. 4.3-(a), Gaussian pdf fits the real part of the noise perfectly.

Moreover, Fig. 4.3-(b) shows the estimated pdf for the variance of the noise along

with the inverse Gamma pdf based on the noise specifications. To obtain Fig. 4.3-(b),

we have calculated the variance of the signal, received at each receiver, at frequency

20 MHz. Since at frequency 20 MHz the signal contains only the energy of the

noise, therefore, we have indeed calculated the variance of the noise at each receiver.

Furthermore, since all the receivers are the same, we can take the calculated variance

at each receiver as an independent realization of the variance of the noise. Therefore,

we have 64 different realizations of the noise which upon averaging them we obtain

Fig. 4.3-(b).

Fig. 4.3-(b) shows clearly that the inverse Gamma distribution function models

the variance of the noise precisely. Therefore, from Fig. 4.3-(a) and Fig. 4.3-(b)

we realize that our assumptions about the distribution function of the noise and its

variance are valid.

To obtain the image of the test sample, we set the size of ROI to nx = 100 and

nz = 100. Therefore, the size of the vector s is N = nx × nz = 10000. The length of
the measurement vector, i.e., y(ω), is M 2 = 4096. Hence one of the conditions that

we need for sparse signal recovery which is N > M 2 is satisfied.

For our proposed technique based on Algorithm 3, the parameters a and b for
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(4.26) have been set to 10−8. The parameters c and d for (4.23) have been set to

10−4. We have set L̃ and ǫ to 100 and 6.5× 10−4, respectively. The value for T has

been set 150. The parameters L̃ and ǫ are obtained by cross validation. We use the

frequency bin corresponding to the center frequency of the probing signal which is 5

MHz.

The 2-dimensional image based on Algorithm 3 has been shown in Fig. 4.4-(a).

The estimated value for the shape parameter, α, is 1.8761.

Fig. 4.4-(b) shows the result of applying the OMP technique given in (4.19). The

frequency bin corresponding to the center frequency of the probing signal, which is

5 MHz has been used. The parameter ξg has been set to 10
−4. From Fig. 4.4-(b) we

see clearly that the OMP fails to reconstruct the whole three targets. The value for

mutual incoherence is µ = 0.99. Therefore, using the fact that L = 3, we find that

µ < 1
2L−1 does not hold true. Hence there is no guarantee that OMP recovers exactly

the true support of s and Fig. 4.4-(b) shows this clearly.

The image based on ℓ1-norm minimization problem given in (4.18), for p = 1, has

been shown in Fig. 4.4-(c), in which we have used the frequency bin corresponding to

the center frequency of the probing signal, which is 5 MHz, and we have set βm = 1.58.

We have used the CVX software package to implement (4.18). The CVX software

package casts the ℓ1-norm minimization problem as a linear programming and the

cost of implementation is O(N3).

For the FOCUSS method we use Algorithm 2. In Fig. 4.4-(d) we have shown the

result of the implementation of the FOCUSS method for p = 0.001. We have used

the energy of the signal corresponding to the center frequency which is 5 MHz.

For the MAP estimation based on Laplacian prior we have used the FOCUSS

method for p = 1 at f = 5 MHz and the result has been shown in Fig. 4.5-(a). As we

mentioned before the FOCUSS technique for p = 1 reduces to the MAP estimator

based on Laplacian prior.



86

For the DAS beamformer (4.15), the MUSIC method (4.16) and the Capon tech-

nique (4.17), the total number of 60 bins are used which covers the whole 5 MHz

bandwidth of our probing signal from 2.5 MHz to 7.5 MHz. Figs. 4.5-(b)-(c)-(d)

show the 2-dimensional images for the MUSIC method, the Capon technique and

the DAS beamformer, respectively. The size of the signal subspace for the MUSIC

technique has been set to 3 and for the Capon technique we have set κ to 2000.

The poor results for both the MUSIC technique and the Capon method is partly

due to relatively low number of snapshots as only 64 snapshots are not sufficient to

obtain a good estimate of the covariance matrix given in (3.11). As to the Capon

method, the other issue is the parameter κ. Since the Capon technique is sensitive

to κ and since there is only a rule of thumb for choosing κ, which says κ should be

10 to 12 dB above the noise level, therefore the performance of the Capon method

changes by κ and the value 2000 is the best value that we have been able to choose

for κ to yield the image in Figs. 4.5-(c).

In Fig. 4.6, we show the root mean squared error (RMSE) curves versus SNR

for all the methods. To achieve Fig. 4.6, we have used the same experimental data

that we have used so far. We have added noise to the data. In each step a Monte

Carlo with 50 runs has been performed. From Fig. 4.6, it is clear that our proposed

algorithm based on Algorithm 3 has better performance. Since the OMP has failed

to recover the whole number of reflectors therefore, we have excluded it from RMSE

analysis.

We have already discussed the superiority of the sparse signal recovery based

techniques over the DAS beamformer, the MUSIC method and the Capon technique

in [95].

In regard to the OMP method we clearly see that the correlation between the

columns of the matrix Φ(ω), given in (4.13), hinders this method from recovering all

the reflectors.
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As to the FOCUSS method for p = 0.001 as we mentioned before there is no

guarantee for the FOCUSS technique to converge. In addition, as it is clear from

Fig. 4.6 we have smaller RMSE for the proposed method compared to the FOCUSS

method for p = 0.001. Furthermore, the intensity of the reconstructed reflectors in

Fig. 4.4-(a) is higher than that of Fig. 4.4-(d).

Based on Fig. 4.6 the result of the ℓ1-norm minimization based approach has

higher RMSE than that of the proposed technique. Besides, in order for the result

of the ℓ1-norm minimization based method to be the sparsest solution, conditions

M 2 > (2L + 1) and M 2 = O(L logN) should be satisfied. These conditions are

extremely restrictive and hard to impose in practical situations [26–30]. On the other

hand, for the proposed technique based on Algorithm 3 we do not need to impose

any condition.

In the case of the FOCUSS algorithm for p = 1 which reduces to the MAP esti-

mator using Laplacian prior, we see that the intensity of the reconstructed reflectors

using the proposed method given in Fig. 4.4-(a) are higher compared to Fig. 4.5-

(a). Moreover, like the ℓ1-norm minimization based technique the result of the MAP

estimator using Laplacian prior will not converge to the sparsest solution unless con-

ditions M 2 > (2L+ 1) and M 2 = O(L logN) are satisfied.

4.6 Conclusions

In this chapter, we developed a sparse signal representation based imaging algorithm

which relies on Bayesian inference. We used an array of ultrasonic transducers to

inspect the internal structure of a test sample immersed in water. We modeled the

array spatial signature using Rayleigh-Sommerfeld diffraction formula. A Weibull

distribution function was assigned to the reflectivity coefficients of the potential re-

flectors. We also developed a new method based on Mellin transform to estimate



88

the shape parameter of Weibull distribution function. To draw samples from the

posterior function of the desired reflectivity coefficients we used the HMC technique.

At the end, we used experimental data gathered from a solid test sample immersed

in water to show the better performance of the proposed technique compared to the

existing algorithms in the literature.

4.7 Appendix

4.7.1 Proof of Lemma 1

We estimate the parameter α for the Weibull distribution given in (4.24). The Mellin

transform for a given function f(t) is defined as [47]

φ(λ) =

+∞
∫

0

f(t)tλ−1dt. (4.64)

Moreover, the second-kind second-characteristic function is defined as [87]

ψ(λ) = ln(φ(λ)) (4.65)

where ln(·) stands for Napierian logarithm. Furthermore, the νthorder second-kind
cumulant, denoted as kν , can be obtained as [87]

κν =
dνψ(λ)

dλν

∣

∣

∣

∣

λ=1

. (4.66)

Replacing f(t) in (4.64) with p(s|β, α), we obtain

φ(λ) =

+∞
∫

0

α

βi
s
(α−1)
i e

− sα
i

βi sλ−1i dsi. (4.67)

Defining q �
sα

i

βi
, we can write (4.67) as

φ(λ) = β
λ−1

α

i

+∞
∫

0

e−qq
λ−1

α dq. (4.68)
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Based on the definition of Gamma function, i.e., Γ(ς) =
+∞
∫

0

ξς−1e−ξdξ, we can write

(4.68) as

φ(λ) = β
λ−1

α

i Γ(
λ− 1
α

+ 1). (4.69)

Consequently, the second-kind second-characteristic function, defined in (4.65), is

given as

ψ(λ) =
λ− 1
α

ln(βi) + ln(Γ(
λ− 1
α

+ 1)). (4.70)

Using (4.66), the 1storder and 2ndorder second-kind cumulants [87] for the ith element

of s are described as

κ1 =
dψ(λ)
dλ

∣

∣

∣

λ=1
= 1

α
ln(βi) +

d
dλ
ln(Γ(λ−1

α
+ 1))

∣

∣

λ=1
(4.71)

κ2 =
d2ψ(λ)
dλ2

∣

∣

∣

λ=1
= d2

dλ2 ln(Γ(
λ−1
α
+ 1))

∣

∣

∣

λ=1
. (4.72)

In order to calculate d
dλ
ln(Γ(λ−1

α
+ 1))

∣

∣

λ=1
, we use one of the useful definitions for

Gamma function in differential form which is given as [96]

Γ(ξ + 1) = lim
n→∞

n!

(ξ + 1)(ξ + 2) · · · (ξ + n)n
ξ. (4.73)

Taking logarithm from both sides of (4.73) yields

ln(Γ(ξ + 1)) = lim
n→∞

[ln(n!) + ξ ln(n)− ln(ξ + 1)− ln(ξ + 2)− · · · − ln(ξ + n)].(4.74)

Then differentiating (4.74) with respect to ξ, yields

d ln(Γ(ξ + 1))

dξ
= lim

n→∞

(

ln(n)− 1

(ξ + 1)
− 1

(ξ + 2)
− · · · − 1

(ξ + n)

)

. (4.75)

We can rewrite (4.75) as

d ln(Γ(ξ + 1))

dξ
= lim

n→∞

(

ln(n)−
n
∑

m=1

1

(ξ +m)

)

. (4.76)
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We know that [96]

lim
n→∞

(

ln(n)−
n
∑

m=1

1

m

)

= −γ (4.77)

where γ = 0.57721566940 is Euler-Mascheroni constant [96]. Therefore, we can

rewrite (4.76) as

d ln(Γ(ξ + 1))

dξ
= −γ +

∞
∑

m=1

ξ

m(ξ +m)
. (4.78)

Differentiating (4.78) with respect to ξ, we obtain that

d2 ln(Γ(ξ + 1))

dξ2
=

∞
∑

m=1

1

(ξ +m)2
. (4.79)

Then, using the definition given (4.71), the 2thorder second-kind cumulant is ex-

pressed as

κ2 =
d2

dλ2
ln(Γ(

λ− 1
α

+ 1))

∣

∣

∣

∣

λ=1

=
1

α2

∞
∑

m=1

1

m2
(4.80)

where we have used ξ = λ−1
α

in (4.79), and consequently λ = 1 corresponds to

ξ = 0. Furthermore, we have ζ(2) =

∞
∑

m=1

1

m2
=
π2

6
, where ζ(·) is the Riemann zeta

function [96], hence based on (4.80), the estimate of α is given as

α =

√

π2

6κ2
(4.81)

where κ2 is obtained as

κ2 = E(ln(si)− E(ln(si)))2. (4.82)
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Figure 4.3: a) The estimated and the Gaussian pdf for the real part of the noise, b)

the estimated and the inverse Gamma pdf for the noise variance.
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Figure 4.4: Normalized image in 2D for a) the proposed method based on Algorithm

3 at f = 5 MHz, b) the OMP based on (4.19) with ξg = 10
−4 at f = 5 MHz , c) the

ℓ1-norm minimization based approach using (4.18), d) the FOCUSS method based

on Algorithm 2 at f = 5 MHz with ǫf = 10
−4 and p = 0.001, λ = 0.0014, Nf = 16.
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Figure 4.5: Normalized image in 2D for a) the FOCUSS method based on Algorithm

2 at f = 5 MHz with ǫf = 10−4 and p = 1, λ = 5, Nf = 42, b) the MUSIC based

image using (4.16) with L = 3 and using the whole bandwidth from 2.5 MHz to 7.5

MHz, c) the Capon based image using (4.17) with κ = 2000 and using the whole

bandwidth from 2.5 MHz to 7.5 MHz, d) the DAS based image using (4.15) and

utilizing the whole bandwidth from 2.5 MHz to 7.5 MHz.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this study we addressed the problem of ultrasonic array imaging for both one and

two layer scenarios.

In the case of one layer ultrasonic imaging, we used sparse signal representation

based approach to develop several imaging techniques which take mode conversion

into account. The proposed methods have higher resolution and lower sidelobe levels

in comparison with the state-of-the-art techniques, such as MUSIC and Capon based

methods. Our sparse signal representation based techniques are robust to corre-

lated targets and they can generate a high resolution image using only one snapshot.

Moreover, the sparse signal representation based techniques that we presented in this

study, only utilize the energy of the probing signal corresponding to one frequency

bin. We have shown the performance superiority of our sparse signal representation

based methods over the existing methods using both simulated and experimental

data.

We then developed a sparse signal representation based imaging algorithm which

relies on Bayesian inference. A Weibull distribution function was assigned to the
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reflectivity coefficients of the potential reflectors. We have shown that by taking the

scale parameter of the Weibull distribution function as a hyper parameter, that has

inverse Gamma distribution function, we can develop a sparse signal representation

based method using Bayesian inference. Such a technique provide us with more

flexibility and less restrictions compared to the previous sparse signal representation

based methods. Not only using Bayesian philosophy for sparse signal reconstruction

is a new subject which is almost a decade old, but also using Weibull distribution

function to generate such a model is totally new and has been done for the first time

in this dissertation.

We also developed a new method based on Mellin transform to estimate the

shape parameter of Weibull distribution function. Regardless of shape parameter

estimation, the technique that we have developed based on Mellin transform is new

and very rich in nature. This a first time that the shape parameter of the Weibull

distribution function is estimated using the Mellin transform.

The conditional posterior distribution function of the desired reflectivity coeffi-

cients that we calculated, turned out to be non-concave function. To maximize it we

used the HMC technique. In fact instead of addressing the problem of finding the

maximum of the conditional posterior distribution function, we changed the problem

to sampling the conditional distribution function. At the end, we used the sample

with the highest score as the MAP estimator. This way of finding the maximum of

a given function can also be taken as a novel idea.

At the end, we used experimental data gathered from a solid test sample immersed

in water to show the better performance of the proposed technique compared to the

algorithms developed in the previous works.
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5.2 Future Work

As a future work it might be a good idea and a novel technique to combine the

Rayleigh-Sommerfeld diffraction formula with a sparse signal recovery based approach

to reconstruct the image. Indeed, in the present work we treated the diffraction

phenomenon and the sparse signal recovery based technique separately.

However, if we model the diffraction phenomenon as a random process and try

to assign a distribution function to this random phenomenon, it is then possible to

treat the over-determined matrix as a random matrix. Therefore, we can treat the

over-determined matrix exactly as the other unknown random parameters such as

the variance of the noise of the model.

Although the probing signal in all the experimental examples that we presented

in this work was a wide-band signal, however, the proposed sparse signal recovery

based techniques only utilized the energy of the signal corresponding to one frequency

bin. Hence, as future work one can present a method that uses the energy of all the

frequency bins in a unique way to obtain better performance.

In this study, the propagation velocity of the wave in both layers are taken as

known parameters. However, one step toward future work can be the idea of taking

the propagation velocity of the wave as unknown and develop an algorithm that can

estimate these velocities within itself.

Moreover, the location of the surface of the test sample, i.e., the second layer,

was assumed to be known in the present work. Although it is not hard to estimate

the location of the surface of the test sample by looking at the strongest reflections

that we obtain during data gathering but still it is a good idea to try to remove the

dependency of the proposed method from the location of the surface.

Furthermore, in the realm of Bayesian philosophy developing a sparse signal rep-

resentation based technique is not unique. One clue for the future work is to come
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up with a different way of enforcing sparsity.
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