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This report presents the design and implementation of a component-based distributed 

system for text mining in social networks. The system consists of three main types of 

components, data collection, data processing and data visualization. Three possible 

frameworks explore simple linear architecture, message feedback architecture, Kafka 

centric architecture and provide implementations of them. The final system adopts Kafka-

centric architecture in which all components are connected through Kafka brokers. In terms 

of functionality, data collection components are responsible for collecting data from 

Twitter and producing messages to Kafka brokers. Data processing components contain a 

series of basic text mining topologies. Based on JavaScript libraries, data visualization is 

presented on web pages and allows users to interact with graphs and charts. In order to 

improve the scalability and performance of text mining, the project selects Apache Storm 

framework to implement data processing components. In this report, we evaluate the 

availability of Kafka and Storm, the rates of data collection components and the 

performance of data processing components. The experimental results demonstrate our 

system is available and scalable, and the component-based structure of this system enables 

it to be extended easily.   
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Chapter 1  
 

 

 Introduction 

Social networks are defined as web-based services which allow users to compose their 

public profiles, connect with others and interact with their connected users [1]. The large 

amount of data on social networks provide opportunities for developers and companies to 

mine concealed relationships and values, while it presents challenges related to the 

capability of dealing with its large volume. The data from social networks can be divided 

into online and offline data. Commonly, online data are more valuable than offline data, as 

offline data can only provide analysis of history and habits. To address online data, Apache 

Storm, a real-time distributed framework is used universally. For example, Twitter, 

Yahoo!, Flipboard, and Taobao use Apache Storm to analyze real-time data [2]. 

Text data are more frequently observed on social network websites and express 

information more directly [3]. Other forms of data, such as audio, videos and images, are 

more complex and may incur ambiguity. On the contrary, the processing of videos and 

images are time-consuming. Thus these data are not suitable for real-time analysis. 

With the increasing complexity of text mining problems, a single system becomes 

incapable of providing entire solutions [4]. Thus most systems require integration with 

other systems to a greater or lesser extent. To avoid reconstruction in the future integration, 

the proposed solution requires expandability. 

Scalability is the other feature which system should be taken into consideration. 

With the increasing scale of problems, the developers should be able to add resources 

effortlessly. 
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This chapter describes the general ideas of this project. Section 1.1 discusses the 

motivation of this project, and Section 1.2 states the problems which are solved by the 

proposed project. Section 1.3 lists several contributions of this project, and finally Section 

1.4 presents the organization of whole report. 

 Motivation 

The project targets to provide a component-based distributed system for solving texting 

mining tasks in social networks. The system provides data collection, data processing, and 

data visualization components, which can be assembled into a social network text mining 

solution. In order to decrease the difficulties of grasping this system, the system allows 

users to manipulate all components with the index page. In the real world, the different text 

mining tasks have different data volume, thus the system is designed to be able to run both 

locally and in the cloud [5].  

In terms of specific cases, based on this system, the report also develops a novel 

word cloud application of Twitter accounts, which provides some basic data processing 

components. By combining these components, users can customize their data processing 

tools. For a Twitter account, the system can generate the top trends by analyzing its 

timeline. Additionally, the project provides an application of Twitter sentiment analysis. 

 Problem Statement 

In the real world, most people do not possess skills to analyze social networks, whereas 

their work may involve tasks of social analysis. Most existing social analysis tools have 

high pre-required knowledge which increases the difficulty of analyzing social networks. 
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To solve this predicament, the project aims to develop a series of social mining components 

which allows users to customize social analysis tools. 

Due to the fact that social networks contain several data types such as audio files, 

images, videos, text is the most popular form within these types [3], the project only covers 

text mining techniques.  

In order to implement a component-based social networks text mining system, all 

components in the system should be reusable. To increase reusability, every function is 

implemented as component. Users can customize data processing function by combining 

provided data processing functions. 

 Contributions 

The contributions of this project are: 

 Implementation of distributed social mining components: The project 

implements some social mining components, including sentiment analysis, TF-IDF 

algorithm, word count, and ranking algorithm. 

 Integration of different Apache Storm topologies: According to the problem 

statement of Section 1.2, which requires data processing functions to be customized 

by users, the system has to implement dynamic topologies which allow users to 

change topologies while it is running. However, once Storm topology is submitted 

to the nimbus node, it is impossible to change Storm topology anymore. According 

to the single responsibility principle, Apache Storm uses bolt as the smallest data 

processing unit, which means each bolt only implements one function. In order to 

solve this problem, the project treats Storm topology as the basic data processing 
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unit, and each topology implements a set of natural language processing functions, 

instead of only one function per topology. 

 Implement an entire social mining system: Instead of directly implementing 

natural language processing with Storm, the project contains four series of 

components: data collection, data processing, data visualization, and data 

persistence.  

 Novel features of architecture: The authors of [6] simply apply NLP algorithm 

on the Storm, however this project provides an entire solution of text mining on 

social networks including collecting data from Twitter, NLP operators, data 

visualization components. This project treats every Storm topology as a component, 

in addition to the combination of Storm topologies that can be customized by users. 

 Novel features of trend analysis: There are some existing tools for trend analysis, 

whereas only a few of them filter out stop words and almost none of them fetch the 

content of URL. Furthermore, most of the tools do not allow users to customize 

their solutions. Targeting these drawbacks, the project applies TF-IDF algorithm 

on contents of URLs which are contained in tweets and allow users to customize 

their trend analysis tools. 

 Report Outline 

This report is organized as follows: Chapter 2 introduces the background information of 

social mining and cloud computing. Chapter 3 provides the general solution of 

component-based distributed social mining system and evolution phases of the final 

architecture. The implementation details of simple linear architecture, message feedback 

architecture, and Kafka centric architecture are described in Chapter 4. Chapter 5 
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describes the details of experimental environments, deployment of dependencies and 

evaluates the scalability and availability of the project. Finally, Chapter 6 concludes the 

report and introduces ideas of future work.  
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Chapter 2  
 

 

 Background and Related Work 

This chapter presents all related fields of the project. Section 2.1 describes the most popular 

social networks and methods of acquiring data from them. Section 2.2 presents background 

of text mining techniques including tokenization, TF-IDF. The most popular distributed 

stream frameworks are listed in the Section 2.3. Section 2.4 presents related libraries of 

data visualization and Section 2.5 introduces popular messaging techniques which are 

available to integrate different components. Finally all related work is discussed in Section 

2.6. 

 Social Networks 

There are various social networking websites and applications including Twitter, LinkedIn, 

Facebook and Instagram as some of the most popular social networks in the world [7, 8].  

Twitter is a real-time microblog which contains up to 140 characters. The tweets 

can contain images or videos as well as the most significant feature is its instantaneity. 

Additionally, Twitter contents are limited by the number of characters restriction, most 

tweets contain around 14 words and uses URL or hashtags to express the main idea. The 

hashtags indicate the keywords of tweets, however most hashtags are abbreviations [9]. 

Facebook data are more complex and contain all kinds of data. Compared to 

Twitter, messages on Facebook are much longer and contain more media contents. The 

most significant feature of Facebook is its relationship network. The data from Facebook 

is suitable for analyzing relationships between users [10]. LinkedIn focuses on job 
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interview information which contains educational background, work experience and 

professional skills of users. Both Facebook and LinkedIn require users to register accounts 

with their real name, while Twitter and Instagram only allow account names to be unique 

and not contain any special symbols [10]. Aside from these social network sites, Reddit 

and Stackoverflow are popular as well. 

2.1.1. Social Network Data 

To collect data from social networks, there are several methods, official public APIs are 

implemented but the request rate is limited [11], web spiders which analyze the structure 

of web page and extract useful information [12], and static open data which are provided 

by third parties. In terms of public APIs, most social network tools, such as Twitter, 

Facebook and Instagram, provide APIs interface which allow developers to acquire their 

data, despite the fact that all these APIs have rate limits. Using public APIs is the most 

reliable way to get data. For example the authors of [13] built its data crawler based on 

Twitter stream APIs. 

If users want to collect more data beyond rate limits, a web spider is an alternative. 

However not all social network websites permit the usage of web spiders. For example, 

LinkedIn announced that they do not allow developers to scrawl their information with 

web spiders. Additionally, almost all websites set traps or restrictions to prohibit web 

spiders.  Compared to public APIs, the implementation of web spiders is more complicated 

than invoking APIs. The Social Media Lab builds their system to collect Twitter messages 

and stores them by different data fields [14].  

 Among all methods, acquiring static open data is the simplest way that only need 

few clicks, however the volume is limited and its instantaneity is the worst. Some websites 
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provide open source data to users, such as Kaggle [15], Ontario Open Data [16], whose 

offline data sources are filtered and processed. The advantage of this method is that 

developers can download data directly without writing a line of code. The drawbacks are 

limited size and data lag. These offline data are suitable for examining accuracy and 

performance of algorithms though it is not advisable for analyzing recent information. 

 Text Mining 

Text mining is “the process of extracting interesting and non-trivial patterns or knowledge 

from unstructured text documents” [3]. This Section introduces the basic concepts of text 

mining which are involved in further Sections, including tokenization, n-gram, part-of-

speech, stop word, and TF-IDF. 

2.2.1. Normal steps 

The normal steps of text analyzing are [17]: 

 Tokenization: Tokenization transmits sentence to words 

 N-gram: “an n-gram is a contiguous sequence of n items from a given sequence of 

text or speech” [18].  

 Part-of-speech:  Part-of-speech tags the speech of word in the sentence. In most 

cases, noun is more important than other speeches. 

 Stop words: Stop words are a list of meaningless words. Normally, NLP projects 

will remove stop words from the text to increase the accuracy of classification or 

clustering. Paper [19] contains dataset of stop words from multiple languages. 
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2.2.2. TF-IDF 

Term Frequency Inverse Document Frequency (TF-IDF) is “a numerical statistic that is 

intended to reflect how important a word is to a document in a collection or corpus” [20]. 

There are several weighing schemes to calculate the IDF score. We employ document 

frequency smooth scheme: 𝑡𝑓(𝑡, 𝑑) ∗ log
D

1+𝑑𝑓(𝑡)
.  Applied in the calculation, tf(w,d) means 

the times word w occurs in document d, idf = log(n / df(w,D)), and df means the number 

of document which contains word w [21, 22]. 

 Distributed Stream Data Processing 

In distributed computing, Hadoop [23] is the most famous framework which only addresses 

batch data. However the data processed in this system are stream data which means data 

flow continuously and unboundedly. Additionally, the latency requirements of stream data 

are stricter than batch data. This Section lists several existing distributed stream 

frameworks, namely Apache Storm, Twitter Heron, and Spark Streaming. The authors of 

[24] list more stream data processing frameworks and categorize them into three types. 

2.3.1. Apache Storm 

“Apache Storm is a free and open source distributed real-time computation system” 

[25].  Apache Storm is first open sourced by Twitter and becomes one of the top projects 

in Apache organization. The structure of Apache Storm is shown in Figure 2.1 (adapted 

from [25]). The programming model of Apache Storm is called as spout and bolt where 

spout is the data source of topology and bolt is the data processing unit [26]. Along with 

the main processing structure, this is known as topology.  
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The followings are basic concepts of Apache Storm [27]: 

 Topology: A topology defines the structure of data flow and consists of 

spout and bolt. 

 Spout: A spout is the data source of topology, a topology can consist of 

multiple spouts. 

 Bolt: A bolt is the basic data processing unit of Storm. 

 Tuple: A tuple is the basic data unit of Storm, which can contain stacks of 

fields. The data structure can be string, list, or any types of objects. 

 Stream: A stream contains a collection of tuples. 

 Grouping methods: “A stream grouping defines how that stream should 

be partitioned among the bolt's tasks” [28]. Shuffle grouping which 

distributes tuples randomly to next bolt, field grouping which transmits 

tuples with same field to same bolt, and global grouping which concentrates 

all tuples to one bolt are the most frequently used grouping methods. 

Besides the basic programming model, Storm also provides high level functions. 

“Trident is a high-level abstraction for doing real-time computing on top of Storm” [29]. 

Trident dramatically decreases the lines of code. It encapsulates commonly used functions, 

such as word count and filter, and simplifies bolt interfaces to operators. 

In terms of programming language, Storm can almost support all programming 

languages as it integrates Apache Thrift. 
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Figure 2.1: Storm Topology  

2.3.2. Twitter Heron 

Twitter Heron [30] was open sourced by Twitter recently, which is the successor of Storm. 

Since the inner systems of Twitter rely on Storm heavily, the Heron is designed to be 

applied with Storm code. Its programming model is the same as Apache Storm, thus it can 

apply Storm topology code directly. Heron only keeps basic programming models of Storm 

while it truncates high level functions of Storm, such as DRPC, and Trident. As the 

successor of Storm, Heron reduces the difficulties of debugging Storm topology in 

production environment. Compared to Storm, Heron also dramatically reduces the usage 

of CPU resources. In the evaluation section, CPU usage is the bottleneck of Storm 

topology. 

2.3.3. Spark Streaming 

“Spark Streaming is an extension of the core Spark API that enables scalable, high-

throughput, fault-tolerant stream processing of live data streams” [31]. The architecture of 

Spark is shown in Figure 2.2 (adapted from [31]). Unlike other Stream frameworks, Spark 

has built-in machine learning and graph analysis algorithms. 
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Spark Streaming utilizes sliding window on stream data and transforms it to several 

batches of input data. Then the batches of data will be processed by Spark Engine. The 

core of Spark Streaming is still batch processing. The difference between Spark streaming 

and Hadoop is that the batches in Spark are much smaller [32]. 

The programming model of Spark is Map and Reduce. The map function applies 

methods on every data element, notwithstanding the reduce function combining the 

processed data together.  

In terms of programming language, Spark only supports Scala, Java, and Python, 

where its Python version only supports a part of Spark APIs. 

 
Figure 2.2: Spark Streaming General Processing Flow  

2.3.4. ZooKeeper 

“Apache ZooKeeper is an effort to develop and maintain an open-source server which 

enables highly reliable distributed coordination” [33]. Most distributed systems employ 

ZooKeeper to manage their clusters including Storm, Kafka, and Spark. The management 

details are packaged by these systems, thus developers only need to run zkServer.sh which 

runs ZooKeeper threads in the background. Besides this function, ZooKeeper also provides 

APIs which are suitable for building distributed lockers, distributed queues, and naming 

services. 

 Due to the fact that a ZooKeeper cluster is runnable when at least half of its 

ZooKeeper threads are running, a ZooKeeper cluster commonly consists of an odd number 
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of machines. This feature authorizes high availability to ZooKeeper clusters, such that all 

distributed systems based on ZooKeeper clusters inherit availability. 

 Data Visualization 

Data visualization is the simplest way to present data analysis results, as data can be 

visualized according to attributes, position, size, value, texture, color, orientation, and 

shape [34]. The following are visualization libraries: 

 D3.js: D3.js (Data-Driven Documents) [35] is a powerful DOM selector library 

which allows developers to manipulate elements freely in the front-end. 

 Echarts: Echarts [36] is a library developed by Baidu Inc. To operate it, developers 

only need set data set of x and y axises. 

 Google charts: The usage of Google charts [37] is similar to Echarts, however it is 

more powerful and provides functions of transformation matrix. 

 Matplotlib: Matplotlib [38] is a visualization library of Python, however it cannot 

be applied to browsers directly. 

 Messaging Techniques 

As the architecture may involve several different sub-systems, it is necessary to include 

connection components to integrate these systems where messaging techniques are suitable 

selections. There are several advantages of using messaging techniques [39]: 

 Heterogeneous interoperability: Different programming languages or different 

systems can be connected by messaging queues. 

 Component decoupling: Each component can run separately. 
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 High scalability through load balancing: Messaging queues can be extended to 

several producers and consumers. 

 Asynchronous capabilities: Since messages are stored in messaging brokers, the 

speed of producers does not influence the speed of consumers. 

 Guaranteed delivery of messages: Using Kafka as an example, Kafka guarantees 

delivery of messages using log files. By configuring Kafka properties, the 

developer can decide the maximum size and resident time of logs. 

 The following are common used message queues: 

 LinkedBlockingQueue: LinkedBlockingQueue is a Java built-in data structure and 

can be regarded as the simplest message queue. 

 Redis: Redis is a key-value NoSQL database which stores data in memory. It owns 

a publisher/subscriber pattern which can be used to connect different components 

[40]. 

 RabbitMQ/ZeroMQ/ActiveMQ: These three message queues are very similar, 

they both implement point-to-point and broker architecture and are applicable for 

production environment. 

 Kafka: “Apache Kafka is publish-subscribe messaging rethought as a distributed 

commit log” [41].Compared to RabbitMQ, ZeroMQ, and ActiveMQ, Kafka has 

lower runtime overhead, it can persist messages on the file system with complexity 

of O(1). According to the benchmark [42], the throughput of a single Kafka 

producer or consumer can reach around 1 million messages per second.  
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2.5.1.  Kafka 

Before applying Kafka in the system, the concepts of broker, topic, partition, producer, 

and consumer should be introduced [43]. 

 Broker: A cluster of Kafka containing several servers, every server is called a 

broker. 

 Topic: Every message in Kafka belongs to one topic. By designating topic name, 

producers or consumers can push or pull messages from Kafka broker. 

 Partition: One topic can include multiple partitions, which correspond to folders 

on the disk. 

 Producer: Producers are responsible for pushing messages to Kafka brokers. 

 Consumer: Consumers are responsible for pulling messages from Kafka brokers. 

 Related Work 

The following introduces related work on this system, including social mining, data 

visualization, related framework, and relevant products. 

2.6.1. Social Mining 

Twitter messages are noisy and informal, thus there are multiple papers which propose 

researches mining information from Twitter data. The authors of [44] proposed a 

framework which rebuilds the pipeline of NLP with sequences of part-of-speech tagging, 

chunking, and named entity recognition to detect name entity in Twitter text. Compared to 

normal NLP pipelines, the performance of this framework increases F1 score by 25%. 

The authors of [45] proposed an accurate open domain event extraction framework 

with 14% increase of F1 score. This project categorizes events and presents results on a 
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calendar. The processing flow of this project is tagging the part-of-speech first, and 

determining whether nouns represent events, and categorizing them. 

The authors of [46] both infer the estimated geographic information by analyzing 

tweet contents and metadata. The second project is implemented with Apache Storm. 

Furthermore, Google Cloud Prediction [47] and Monkey Learn [48] provide RESTful 

machine learning APIs of classification and clustering. The following are existing 

distributed machine learning libraries: 

Apache SAMOA [49, 50]: It is a data mining platform applicable to S4 [51], Storm 

and Samza, which is designed for distributed stream data frameworks. Developers can 

implement a machine learning algorithm once and transcribe the code to multiple stream 

platforms which decreases the learning costs of building distributed machine learning 

applications [52]. 

Trident-ML [53]: Is a distributed machine learning library based on Trident which 

is “a high-level abstraction for doing real-time computing on top of Storm” [22]. Trident 

decreases the volume of codes to build Storm application by encapsulating commonly used 

methods but requires greater training and education on the part of developers.  In terms of 

natural language processing, the Trident-ML provides TF-IDF, classifier, feature extractor, 

and a pre-trained Twitter sentiment classifier. However, its TF-IDF algorithm computes 

TF and IDF scores in the same bolt, which cannot modify the parallelism of TF and IDF 

separately [54]. 

StormCV [55]: StormCV is a combination of Apache Storm and OpenCV library, 

which processes images and videos in distributed systems. Unlike Trident-ML, StormCV 

implements all algorithms with spout and bolt programming model. 
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 Likewise, there are still many other related projects. The authors of [56] generated 

network graphs of Twitter followers with python and networkx. The authors of [57] 

visualized a number of tweets on maps. The authors of [58] generated panorama 

information of specific topics from multiple platforms.  

2.6.2.  Data Visualization 

Stacked graph [59] is a visualization method which presents stream data based on time 

series. The graph looks like a river and is stacked with a different theme. The authors of 

[60] and [61] both implemented themeriver with D3.js. 

The authors of [62] proposed a visualization method called roseriver which extract 

topics from Twitter text and presents them in a ranking manner. The main idea of this paper 

is building a hierarchical evolution tree for each topic in real-time. The difficulty of 

implementing this system is that the amount of topics on Twitter is tremendous and most 

of them are not logically related.  

The authors of [63] proposed a framework which visualizes the friendship between 

users with network graphs and allows users to search nodes and relationships with 

keywords. However once data corpus becomes enormous, the lines which represent the 

relationships of each node will become untidy. To solve this problem the authors of [64] 

simplified the number of lines by clustering them in groups based on the geometric 

information of nodes. The authors of [65] implemented the visualization graph of 

“Geometry-Based Edge Clustering” paper with d3.js. 
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2.6.3. Related Frameworks 

There are two related frameworks, Kafka Connect which is applied to connect different 

systems to Kafka brokers and Lambda architecture which combines distributed batch data 

processing and distributed stream data processing.  

2.6.3.1. Kafka Connect 

Kafka Connect “is a tool for scalable and reliably streaming data between Apache Kafka 

and other data systems” [66]. The structure of Kafka Connect is shown in Figure 2.3. It 

officially supports the connection of JDBC and HDFS and the connectors of some 

framework communities.  

 Although both Kafka Connect and Kafka centric architecture use Kafka systems to 

connect other systems, Kafka Connect is only responsible for transmitting data between 

systems, a mere enhancement version of Kafka while complex data transformation 

operations are still required to be implemented by developers. Kafka centric architecture 

provides an entire solution of collecting, analyzing, visualizing social data, and more 

complex algorithms such as sentiment and trend analysis. Furthermore, Kafka Connect 

does not provide integration packages for Apache Storm. Kafka Connect focuses on 

general data transportation, however our system focuses on natural language processing of 

social network data. Besides, Kafka centric architecture is easily extended by implementing 

a Kafka producer or consumer, which is easier than extending Kafka Connect. 
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Figure 2.3: Kafka Connect Framework 

2.6.3.2. Lambda Architecture 

Lambda architecture is proposed by Nathan Marz [67]. The purpose of this architecture is 

to solve the CAP theorem which indicates that consistency, availability and partition 

tolerance cannot be satisfied at the same time [68]. 

Lambda architecture divides system into three layers, namely serving layer, speed 

layer and batch layer as Figure 2.4 shows. The speed layer is responsible for handling real-

time data and storing message in the database. The batch layer is responsible for processing 

history data in batches. All results from speed and batch layer are sent to serving layer 

which interacts with clients. As a result, Lambda architecture has the capacity to address 

both stream and batch data. However lambda architecture requires developers to implement 

processing algorithm twice, once for spout and bolt model, another for map and reduce 

model. This drawback increases the costs of developing large systems dramatically [69]. 
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Figure 2.4: Lambda Architecture 

2.6.4. Related Products 

The following lists some existing social mining tools: 

1. Tweetstats: Tweetstat [70] graphically shows the daily or monthly number of 

tweets from designated accounts. 

2. Xefer: Xefer [71] graphically shows the behaviours of users when users post tweets 

every day. 

3. Twittercounter.com: Twittercounter [72] graphically shows the by line chart 

4. Word cloud bot: Word cloud bot [73] generates word cloud of Twitter account 

based on its tweets. 

 Summary 

This chapter introduced the background of social networks, text mining, distributed stream 

framework, data visualization, messaging technique, deployment, and Lambda 

architecture. All these techniques are taken into consideration when we formulate the 

proposed solutions presented in Chapter 3. 
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Chapter 3  
 

 

 Proposed Solution 

This chapter describes the high level architecture of whole system and chooses suitable 

tools from various options. Section 3.1 presents an overview description of high-level 

architecture and three proposed frameworks. The evolutionary procedures of these 

frameworks are presented in Section 3.2. Section 3.3 lists the libraries and systems which 

the project involves and explains the reasoning for choosing these components. 

Furthermore, the scalability, expandability, and availability are presented in Section 3.4. 

Section 3.5 shows the steps of trend analysis. Finally Section 3.6 presents the solution of 

deployment. 

 Overview 

This section presents a high-level architecture of component-based distributed social 

network text mining system. As Figure 3.1 shows, the main purpose of this framework is 

to provide a general component-based architecture which can extract data from social 

networks, and allow users to observe visualization results with web browsers. The system 

has four types of components: data collection components which collect data from social 

networks, data processing components which process data and provide results to the next 

component, data visualization components which present data with visualization methods 

and provide the interfaces of websites to users, and data persistence components which 

store data in databases and allow users to query or reuse stored data.  
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Figure 3.1: High Level Architecture 

3.1.1. System Architectures 

This section discusses the framework of the system. From the first simple linear 

architecture to the current Kafka centric architecture, the core architecture experiences the 

evolution of three architectures. Simple linear architecture and message feedback 

architecture are transitional products of Kafka centric architecture. They can only be 

applied to implement systems with single function. If users have more requirements, these 

architectures cannot be extended to satisfy their requirements. To solve the issue of 

expandability, we designed Kafka centric architecture. 

As Figure 3.2 shows, the first generation architecture is called simple linear 

architecture. For the first proposed solution, the architecture does not involve the concept 

of component. In order to increase the diversification of options of techniques, we separate 

websites which are used for visualization along with other functions and connect them with 

a database, however the back-end and front-end are separated naturally. The data collection 

and processing part collects and processes data, then stores them into a database, 
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furthermore the website queries data from the database then sends them to the front-end. 

In general, the main feature of this architecture is that the data flow between each 

component is uni-directional, which means the interactions with website do not influence 

data collection and processing. In this case, users can only view but not change the results. 

 As Figure 3.3 shows, compared to simple linear architecture the next generation 

architecture becomes more complex. On the basis of first generation, messaging techniques 

are involved to decouple data collection and data processing functions. As a result, the data 

collection components can be implemented with more techniques, the combinations of data 

collection and data processing become varied as well. The other feature of this architecture 

is that the front-end of websites are equipped with the ability to send feedback to messaging 

techniques to select data sources. 

As Figure 3.4 shows, the current proposed architecture is messaging technique 

centric architecture. This framework involves the concept of component formally and treats 

every function as a component. The architecture is based on a cluster of messaging systems 

which are the centre of the architecture. Instead of integrating both databases and 

messaging techniques to connect different components, the architecture only applies 

messaging techniques. However, the database functions are packed as independent 

components. Specifically every component acts as both a producer and a consumer of the 

messaging cluster, which means they can push data to the cluster or pull results from it. 

Therefore all components can communicate with other components freely. Compared to 

former models, this architecture can add components easily by integrating producers and 

consumers of messaging system.  
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Figure 3.2: Simple Linear Architecture of Proposed System 

 
Figure 3.3: Message Feedback Architecture of Proposed System 

 

 
Figure 3.4: Messaging Technique Centric Architecture of Proposed System 
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 Details of Architecture 

As the above figures present, all architectures contain functions of data collection, 

processing, visualization and persistence. In the simple linear architecture, data collection 

and processing functions are encapsulated in one sub-system of the architecture. Data 

persistence functions are contained in the databases which serve to connect website, while 

data visualization is implemented in the form of web page. In the message feedback 

architecture, aside from the data collection and data processing functions being dissociated, 

other functions are similar to the first architecture. The messaging technique centric 

architecture divided four functions into different components completely. The following 

are details of the four different functions: 

 Data collection components: The data collection components are responsible for 

collecting data from social networks. From the perspective of the single 

responsibility principle, data collection components should only collect data 

without any procession. However, since the transmission of data between different 

machines and systems is expensive the architecture requires data collection 

components to implement several simple operations. As the amount of original data 

from social networks is vast, the data collection components provide operations of 

filtering useless data and assembling different data fields to desired data formats. 

 Data processing components: The data processing components operate to process 

data and deliver it to following components. Although there is no limitation of 

techniques to implement data processing, considering the scalability and the 

amount of data, distributed frameworks are recommended to be applied to 

implement these components. For the sake of the tasks of this architecture, data 
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processing components should implement NLP algorithms and integrate messaging 

techniques.  

 Data visualization components: The data visualization components act as the 

platforms of presenting data results to users. In addition, these components can even 

supply interactions with users. Website is a suitable form to host visualization 

functions because techniques on the front-end are various and implementation of 

user interaction is accessible.  

 Data persistence components: The data persistence components are alternative 

and not the requisite components in the system. It is responsible for storing data in 

the database to accelerate the process of presenting history data. In addition, data 

persistence functions can be integrated into connection or data processing 

components. 

 Connection components: Beside the above functional components, connection 

components are important as well. When selecting techniques, the chosen should 

equip features that multiple languages and clients have implementation for. The 

connection components can be implemented with messaging techniques or 

databases, albeit the selected techniques should have capacity of extending to 

clusters to guarantee scalability. 

 Scalability, Expandability, and Availability 

One target of this project is to deploy a scalable, extendable, and available framework in 

the Cloud. The scalability of this project can be represented in two fields, web and data 

processing. With more components involved, the project can deploy more Kafka brokers 

to address more messages.   
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In terms of web scalability, every client who wants to visit this website has to act 

as one consumer of Kafka. Thus the scalability of website directly relies on the number of 

consumers Kafka broker can host. Adjusting the number of parallelism can influence the 

performance of Storm. 

The expandability is guaranteed by Kafka broker as well. Every component which 

involves Kafka producers or consumers can connect to the Kafka broker directly. 

 The availability of data on Kafka is adjusted by changing the numbers of replication 

and partition. In any distributed systems, machines may disconnect during runtime. To 

ensure high availability requirements, the simplest way is adding replications of messages 

and storing them in distributed machines. Thus the disconnection of one machine will not 

influence the whole system. 

Normally, one Storm cluster only has one nimbus, however HDInsight supports the 

configuration of two nimbuses in one cluster. Although using a single nimbus may cause 

one point of failure, the nimbus is designed to be stateless and fail-fast. Once the nimbus 

fails, other machines still function properly and the nimbus restarts soon. Supervisors in 

Storm cluster are stateless as well, once supervisors fail, the workers tied to this supervisor 

will be assigned to other supervisors.  

 Trend Analysis 

We introduce a solution of trend analysis and the flow chart of this solution is shown in 

Figure 3.5. The following are phases of analyzing the trends of tweets: 

1. Analyzing the trends of Twitter account by fetching its timeline through the Twitter 

API. 



28 

 

2. Fetching the content of URLs which are shared by users: Twitter’s contents are 

limited to 140 characters, most tweets can hardly describe entire viewpoints. 

Instead of describing ideas, users post tweets with URLs and hashtags. URLs 

content describe what users want to share in detail and hashtags are keywords of 

the tweet which are recognized by users. 

3. Tokenizing the contents of URLs. 

4. Filtering out stop-words. Besides the normal stop words, Twitter text may contain 

some special stop words, such as “http”, “RT”, usernames. 

5. Tagging the words left with their part of speech. In trend analysis, the noun is more 

important than the adjective and verb [60]. In order to improve accuracy, the 

algorithm also involves the concepts of unigrams, bigrams and trigrams. The 

combinations of speech tag are listed below. 

i) Unigrams: noun whose length is more than three. 

ii) Bigrams: noun + noun. 

iii) Trigrams: noun + noun + noun, noun + conjunction + noun. 

6. Stemming, lemmatization and normalization: remove words affix and transform all 

different variations of words to the canonical form. More preprocessing steps can 

be found in paper [75]. 

7. Calculating the TF-IDF score of every gram. 

8. Returning the top N grams to the data visualization component. 
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Figure 3.5: Flow Chart of Trend Analysis 
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 Summary 

This chapter describes the general solution of distributed text mining system and trend 

analysis in high level. The architecture consists of data collection, processing and 

visualization components and equips features of both scalability, expandability, and 

availability. In Chapter 4, the implementation details of proposed solution architectures are 

presented.  
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Chapter 4  
 

 

 Prototype Implementation 

This chapter presents the details of implementation of this system. Section 4.1 presents an 

overview of system file structure. Section 4.2 lists implementations of all components, 

however component management details are described in Section 4.3. Furthermore, 

Section 4.4 defines a unified data format for data transmission. Finally, Section 4.5 presents 

the scalability and availability of the framework. 

 Overview 

The system file structure is shown in Figure 4.1. The folder whose name begins with storm 

is the code of Storm component. Kafka-twitter-producer contains the code of Java 

implementation of Kafka producer. Since all Java code is packaged in the web/jar folder, 

web folder contains all necessary files of operating the system.  

 

Figure 4.1: File Structure for Proposed System 
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4.1.1. Web Files 

The full files are shown above, this sub-section describes the function of each file. The web 

folder stores all web page files and packed jar files. The jar folder stores packed jar files 

of data processing components. The static folder stores resources of this website that the 

CSS folder stores CSS files, the js folder stores JavaScript files, the data folder stores test 

data sets in CSV or TSV formats, the images folder stores images of websites, the map 

folder stores map data in JSON or GeoJSON formats. Simultaneously, the template folder 

contains all HTML files of web pages. The app.py is the controller of this website which 

binds the HTML file with python functions, manages jar files and redirects webpages based 

on the submitted forms. All dependencies of python libraries are recorded in the 

requirements.txt and can be installed with python-pip tool.  

 Selection of Technologies 

All related techniques are listed in the background section, this section introduces the 

techniques which are selected to implement the prototype and explains the reason behind 

choosing these techniques. We apply Twitter APIs to collect data from Twitter website and 

use Apache Kafka to connect different components. Apache Storm is utilized to implement 

data processing components. We choose a light weight framework Flask to implement the 

server side and integrate D3.js and Google Charts to the front-end. 

The following are components which are used in the framework: 

 Twitter APIs: To simplify the problem, the system only collects data from Twitter 

through its public APIs. Although the public APIs of Twitter limit the data accessing rate, 

the volume of fetched data can still meet the requirement.  
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Apache Kafka: Apache Kafka acts as a message queue to connect different 

components. Apache Kafka is based on Zookeeper clusters, thus the availability and 

scalability of Kafka are guaranteed. All data which flow through Kafka will be stored as 

logs in the system, therefore it is unnecessary to involve persistent components in the 

system. Kafka is formatted into Kafka spout and grouped in Apache Storm as Storm 

topology’s data source. Kafka equips the ability of storing messages in replications and 

partitions. With replication capacity, the transmission of messages in the project is fault-

tolerant. By taking advantages of partitions capacity, Kafka can store messages separately 

and increase the parallelism of Storm spout. Compared to Redis, Kafka has a better 

scalability. The structure of Redis is different than Kafka. The framework of Kafka is based 

on topics which allow multiple consumers to receive messages at the same time. However 

the framework of Redis is based on queues, which means the messages in queues can only 

be consumed by a single client. 

Apache Storm: “Apache Storm is the leading real time processing tool” [76]. In 

the system, Storm is adopted to implement data processing components. Apache Storm 

exploits the same programming model with Twitter Heron, which means one package can 

be submitted to both Storm and Heron clusters. Storm is called real-time Hadoop, the result 

can be processed and reflected to the website quickly. 

Front-end is implemented with D3.js and Google Charts: As websites are 

scalable and interactive, visualizing data with websites has an edge over local platforms. 

Furthermore, the pre-requirement to view the visualization result is only opening browsers. 

In terms of JavaScript libraries, the Google Charts provide more powerful built-in 

functions; D3.js is more flexibly used to customize visualization methods. 
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Flask: The system utilizes Flask to achieve the server side of web site. Compared 

to other web frameworks, Flask hosts a few web pages with fewer costs. The other reason 

to use Flask is that Python provides libraries of invoking operating system commands 

which are used to orchestrate components in the system. Compared to other programming 

languages, the libraries of Python cover almost all fields such as system management, data 

mining and machine learning, which is suitable to attach different fields together. 

 System Implementation 

There are implementation details of these proposed architectures and Lambda architecture. 

The justifications of implementing all these architectures are explained in the challenges 

and solutions Section.  

 Figure 4.2 shows the implementation of simple linear architecture. Data collection 

and data processing functions are implemented in the Storm topology. Redis database acts 

as the connection component which connects Storm topology and Flask server. Instead of 

storing data and querying data with database, the publisher and subscriber pattern of Redis 

is applied, where the report bolt of Storm acts as publisher and Flask server acts as 

subscriber. In this case the processed data are only stored in the memory, once the system 

is interrupted, all data will be lost. Side by side, the data visualization webpages are hosted 

on the Flask server. This implementation is straightforward, however it is not suitable for 

expansion. Data collection methods have to be embedded in Storm topology. In order to 

incorporate novel functions, the whole structure of Storm topology needs to be modified. 

 As Figure 4.3 shows, the message feedback architecture is implemented with 

Kafka, Storm, Redis, Cassandra, Flask, and frontend techniques. Data collection functions 

are decoupled from Storm topology with Kafka, which integrates Kafka producer and 
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Twitter API. Similar to the former implementation, Redis database acts as the connection 

component as well. The main difference is that website frontend can send feedback to 

Kafka broker to change the behaviour of data collection. Further, Apache Cassandra is 

selected to persist data. 

Kafka centric architecture is the implementation of messaging technique centric 

architecture. As shown in Figure 4.4, the cluster of Kafka brokers is the centre of the 

architecture.  For the reason that the message feedback architecture applies Redis and 

Kafka, both of them are messaging techniques. To simplify the structure, the architecture 

removes Redis and only employs Kafka. Besides performing data communication, Kafka 

also stores data as log file on the hard disk, while Redis only stores data in the memory. 

The phases of data transmission in this architecture are shorter than the message feedback 

architecture, which means once machines in the second architecture suffer from power off 

or failure, the data can be lost. In the current system, once data flows through Kafka 

brokers, they will persist on disks. In terms of scalability, to increase the data volume the 

former needs to increase the number of every connection component, while the latter only 

needs to scale the Kafka clusters. The architecture is loose coupled, which means the 

extended function can be easily added. The system aims to provide a dynamic social mining 

solution which grants users the ability to change the entire topology when project is 

running. However Storm cannot dynamically change its topology once topology is updated 

to clusters, the topology cannot be altered. To solve this problem, the system treats every 

Storm topology as a basic processing unit and connects them with Kafka brokers. In order 

to connect different topologies and other components, the Storm topology has to specify 

unified data formats as well. The functions of this system are listed in as following: 
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1. Generating analysis of trends of specific Twitter accounts.  

2. Mining information of real-time Twitter data. 

3. Visualizing data with different graph formats, including line graph, pie chart, bar 

chart, map, word cloud. 

4. Integrating any components which implement Kafka producer or consumer. 

5. Increasing scale by increasing the number of Kafka brokers 

6. Storing data in Kafka brokers as logs. 

7. Customizing Storm topologies. 

Every function is encapsulated as one component and every component is 

connected to the Kafka broker.  There are 3 types of components in the system, data 

collection components which collect real-time data or query results from social networks, 

data processing components which process NLP tasks concurrently, data visualization 

components which present analysis results in pie charts, bar charts, word clouds and maps.  

 Figure 4.5 shows the implementation of Lambda architecture. The speed layer is 

implemented with Apache Storm which provides real-time analysis results and stores 

processed results into Cassandra databases, however the batch layer is implemented with 

Hadoop and Hive. The HDFS loads history data from Cassandra to distributed file system 

while Hive provides data query interfaces. The server layer provides user interfaces which 

are similar to the data visualization components in above architectures. The main drawback 

of Lambda architecture is that developers need to implement the same algorithm twice, 

both in Storm and Hadoop frameworks. 
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Figure 4.2: Implementation of Simple Linear Architecture 

 

 

 

 

 

Figure 4.3: Implementation of Message Feedback Architecture 
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Figure 4.4: Kafka Centric Architecture 
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Figure 4.5: Implementation of Lambda Architecture 

 

 Component Implementation 

The following section presents the details of every component in the Kafka centric system, 

including data collection components, data processing components, and data visualization 

components. 

4.4.1. Data Collection Components 

With Twitter APIs, developers can only access 1% of public Twitter data. Twitter also 

formulates rules of rate limits to restrict the handling of APIs. Twitter APIs utilize 15 
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minute windows to judge whether an application exceeds rate limits. Normally Twitter 

APIs authorize 180 queries in 15 minute time ranges, albeit for some expensive request, 

the rate limits are controlled within 15 queries per 15-minute windows [77]. Twitter status 

is the basic entity of Twitter message object, the system extracts five fields from it, namely 

tweet content which may contain URL, hashtags, mentioned user, whether it is retweeted, 

text, and emoji, screen name which is the account ID of user and is unique, created time 

which indicates when this message is made, geographic information including latitude and 

longitude, country code which is formatted in ISO alpha-2. The reason why we do not use 

country name is that sometimes country name may change by location, for example, the 

country name of Japan may become Japanese characters.  

The system involves Twitter API implementations of Java version which is called 

Twitter4j and Python version which is called Tweepy. The usages and functions of these 

two libraries are almost the same, while their performance and accuracy are slightly 

difference, as discussed in Chapter 5.  

To increase the varieties of data collection methods, the following are several 

implementations. In the Twitter API, there some useful parameters, count which indicates 

the number of tweets, unti which filters tweets created before given data, lang which filters 

tweets with given language, geocode which filters tweets within given area, q which 

indicates the contents of query string. 

All implemented data collection components are listed as follow: 

 Real-time Data Collection Component: Real-time data is most valuable in 

Twitter. Real-time data collection component collect real-time data by a Twitter 
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stream listener and extracts desired information from Twitter statuses, then merges 

all information into one message.   

 User Timeline Collection Component: According to the screen name input by 

users, user timeline collection component acquires all tweets in the timeline of this 

account and produces messages to Kafka clusters. 

 Text Query Collection Component: By calling search APIs of Tweepy, text query 

collection component collects related tweets of input text and produces messages 

to Kafka clusters. 

 Favourite List Collection Component: Based on input account name, favourite 

list collection component collects all tweets in user’s favourite list and sends them 

to Kafka brokers. 

4.4.2. Data Processing Components 

Twitter data is up-to-date and informative, however it includes lots of fragments and noise. 

Before processing Twitter data, the project has to filter and clean the data first. In this 

project, we chose Apache Storm framework to implement data processing components and 

manipulate Maven to package Java files. 

To guarantee the connectivity of topologies, every topology uses a Kafka spout as 

data source which consumes data from Kafka broker, and outputs processed data with 

Kafka producer. The project only involves three types of grouping methods, shuffle 

grouping, fields grouping, and global grouping. The definitions of these three grouping 

methods are introduced in the background section. 
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4.4.2.1. Sentiment Topology 

The sentiment topology can process data from Twitter directly and generate personal and 

country sentiment. The personal sentiment is generated by classifying tweets contents, 

while country sentiment is calculated by counting average values of personal sentiments in 

the same country. 

Tweets contain text, emoticons, emoji, URLs, hashtags, and punctuations.  Among 

them, only text, emoticons, emojis, and exclamation points contribute to sentiment 

classification. The topology handles extractor of Twitter library to remove irrelevant 

content and keep related ones. 

This topology applies Stanford NLP library to classify the content of tweets into 

different sentiments. The project manages its pipeline with “annotator”, “tokenize”, 

“ssplit”, “parse”, and “sentiment” operators. Emoticons are matched by regular expression. 

Owing to that emojis are images, there are no rules of detecting the sentiments of emojis. 

The system assists the list of emoji classification of Udacity’s code [78] to categorize 

emojis in tweets manually. Exclamation can enhance the extent of emotion, thus the project 

deduces that exclamation can increase level of sentiment. 

The project stipulates five categories of sentiment, namely very unhappy, 

unhappy, neutral, happy, and very happy, and represents them with five numbers from 

0 to four respectively. 

 The structure of sentiment analysis topology is shown in Figure 4.6. The 

following are details of its bolts, input and output: 

 Input: The inputs of this topology are basic Twitter contents. The country 

sentiment function only works for tweets which have country code. 
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 Output: The outputs are messages which end with personal sentiment and 

country sentiment. 

 Sentiment Bolt: The sentiment bolt adopts the pipeline of Stanford NLP library 

to analyze the sentiment of the tweet message. 

 Regex Bolt: The regex bolt matches emoticons and emojis with regular 

expression and emoji classification lists. 

 Count Bolt: The count bolt handles a distributed word count method to 

calculate the average sentiment of countries. 

 

Figure 4.6: Storm Sentiment Analysis Topology 

4.4.2.2. TF-IDF Topology 

This topology implements a distributed version of TF-IDF algorithm. As mentioned in the 

background section, there are three values that should be collected to calculate the value of 

TF-IDF. Although storing intermediate results in the database is much easier, in order to 

increase speed the project keeps all data in the memory. On the grounds that TF-IDF 

function is important for documents and tweets are really short, the project only applies 

TF-IDF function on documents which are linked by URLs in tweets. 

 The structure of TF-IDF topology is shown in Figure 4.7. The following are 

details of its bolts, input and output: 

 Input: The inputs of this topology are original Twitter messages. 

 Output: The outputs are key-value pairs of TF-IDF score. 
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 Document Fetch Bolt:  The document fetch bolt extracts web page contents 

through URL within tweets. The main library is Apache Tika which can 

incorporate a variety of formats. 

 Tokenize Bolt: The tokenize bolt converts the document contents to words. 

 DfCount Bolt:  The dfcount bolt calculates df values. 

 TfCount Bolt: The tfCount bolt calculates tf values. 

 Tfidf Bolt: The tfidf bolt converge the result of dfCount bolt and tfCount bolt 

to generate TF-IDF score of each word. 

 

Figure 4.7: Storm TF-IDF Topology 

4.4.2.3. Top N Topology 

This component implements the algorithm of ranking keys by their values and returns top 

n keys. By reason that all processed tuples will be aggregated to the Kafka producer bolt, 

the parallelism of the final bolt would be 1. In order to increase the number of parallelism, 

the topology adds an intermediate ranking bolt which processes tuples first and then gathers 

them to a total ranking bolt. The structure of top n topology is shown in Figure 4.8. The 

following are details of its bolts, input and output: 
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 Input: The inputs of this topology can be any key-value pairs or messages 

containing key-value pairs. 

 Output: The outputs are top n key-value pairs. 

 Parse Bolt: The parse bolt converts string data to sortable objects which are 

easily processed by ranking algorithm. 

 Intermediate Ranking Bolt: The intermediate ranking bolt increases the 

degree of parallelism of ranking algorithm. 

 Total Ranking Bolt: The total ranking bolt converges all results of 

Intermediate Ranking Bolt and sends result to Kafka producer. 

 

Figure 4.8: Storm Top N Topology 

4.4.2.4. Word Count Topology 

The word count is the “hello world” level algorithm in distributed systems. The structure 

of this topology is similar to MapReduce, because the splitter bolt can be treated as Map 

function which applies split function on each tuple and count bolt can be treated as Reduce 

function which gathers all count of keywords. 

 The structure of word count topology is shown in Figure 4.9. The following are 

details of its bolts, input and output: 

 Input: The inputs of this topology are basic Twitter messages. 

 Output: The outputs are Key-value pairs. 

 Splitter Bolt: The splitter bolt converts tweet contents to word. 
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 Count Bolt: The count bolt calculates the number of each word. 

 

Figure 4.9: Storm Word Count Topology 

4.4.2.5 Trend Analysis  

Trend analysis topology is the most complex topology in this project, it is comprised of 

two components. The structure of word count topology is shown in Figure 4.10.  As Figure 

4.11 shows, if tfidf topology or word count topology are treated as upstream and top n 

topology is connected as downstream, there are two types of trend analysis topologies. The 

following are bolts which comprise trend analysis and their functions are similar to the 

bolts in tfidf and top n topologies. 

 The following are details of its bolts, input and output: 

 Input: The inputs of this topology are basic Twitter messages. 

 Output: The outputs are key-value pairs. 

 Document Fetch Bolt: The document fetch bolt extracts web page contents 

through URL within tweets.  

 Tokenize Bolt: The tokenize bolt converts the document contents to words 

 DfCount Bolt: The dfCount bolt calculates df values. 

 TfCount Bolt: The tfCount bolt calculates tf values. 

 Tfidf Bolt: The tfidf bolt converges the result of dfCount bolt and tfCount bolt 

to generate TF-IDF score of each word. 
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 Intermediate Ranking Bolt: The intermediate ranking bolt increases the 

degree of parallelism of ranking algorithm. 

 Total Ranking Bolt: The total ranking bolt converges all results of 

intermediate ranking bolt and sends results to a Kafka producer. 

 

Figure 4.10: Trend Analysis 

 

Figure 4.11: Trend Analysis with Components 

4.4.3. Data Visualization Components 

Data visualization components are implemented by D3.js and Google Charts. D3.js allows 

users to build visualization by themselves. Google Charts: To use Google Charts, 

developers only need to assign data set to the x-axis and y-axis. Google Charts provides 
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function arrayToDataTable which can convert array to the desired visualization format. 

Compared to Google Charts, Baidu Echarts needed developers to separate data and assign 

it to x-axis and y-axis. In terms of map visualization, Echarts only provide Chinese map, 

which cannot satisfy the requirements of this project. The data of this project is sent from 

the server continuously.  

To address real-time data, there are four options: polling, long polling, WebSocket 

and Server-Sent Event. Polling and long polling are techniques that the client side sends 

requests to the server side periodically. They are the easiest to implement, even though 

they are costly. WebSocket and Server-Sent Event (SSE) are more popular, in which 

WebSocket allows both clients and servers to send messages to each other, while SSE, as 

its name shows, is only responsible for sending messages from the server side to the client 

side. For only the server side to send data to the front-end periodically, the project exploits 

SSE to update stream data, which only need to set Content-Type to text/event-stream in 

HTTP header. In order to update data on graphs, the website checks whether data updated 

every second with window.setInterval function. The following are visualization 

components. 

 Map: The map component is implemented by d3.js. JavaScript code check stream 

data update periodically. 

 Word cloud: The word cloud is implemented by d3.js as well. The visualization 

function only needs key and value. The key will be presented on the screen and 

value decides the font size of key. The positions and angles of words are randomly 

assigned by algorithm. Word cloud library [79] is used in the project. 

 Pie chart:  The pie chart is implemented with Google Chart 
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 Bar chart: The bar chart is implemented with Google Chart 

4.4.4.  Data Persistence Components 

Data persistence is an option in the project. As Kafka brokers store all messages as logs, 

there is no need to implement additional data persistence components. 

 Component Management 

As mentioned in the data visualization section, webpages are the manifestation of data 

visualization, whereas its server side is responsible for managing components. By 

submitting selection forms, users request back-end calling corresponding components. In 

the index page, users can customize data collection, data processing, and data visualization 

components. Specifically, users can combine several Storm topologies into one data 

processing component. 

To manipulate components, Python’s subprocess module is involved. The project 

runs data collection and data processing components in the system background with 

function Popen of module subprocess [80]. The process IDs of component threads are 

stored in global variables, once users call function clear_threads, the threads will be 

terminated [81]. 
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Figure 4.12: Web Page Flow Chart 
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 Data Format 

In order to allow data processing components to be connected freely, this project defines a 

general data format. In the system, data can only be transformed with single string in 

Apache Kafka, every message is a string. The system defines two types of messages, the 

first type is shown in Table 4.1, it contains at least 5 fields, and “DELIMITER” is used as 

separator of each data field. The first five fields are fixed: tweet contents, screen names, 

created time, latitude and longitude, and country codes. If corresponding data are not 

available, it will be set as “n/a”. Other fields will be added after in sequence. Furthermore, 

the second type consists of only two fields and fields are split with ‘|’, as Table 4.2 shows. 

Table 4.1: Type 1 Message String 

Tweet 

Content 

Screen 

Name 

Created 

Time 

Latitude, 

Longitude 

Country Code 

(ISO alpha-3) 

Sentiment 

Value 

 

Table 4.2: Type 2 Message String 

Keyword Value 

 Challenges and Solutions 

Since the system involves several different technologies, integrating all technologies is the 

main challenge. The system involves web servers, data crawlers, and distributed 

frameworks which should be managed reasonably. We solve this problem by integrating 

all technologies with Kafka and treat Kafka brokers as the centre of the whole system. The 

functions of the entire system should be divided into reasonable pieces, depending on the 

size of the component the system will be more flexible but more expensive. Every 



52 

 

component is integrated with Kafka. Different components communicate with other 

components by indicating the same topic of Kafka. They are connected by message 

transmission. In order to allow components to transmit messages universally, we define a 

unified data form which allows messages to be processed properly in different components. 

 The other challenge is that the architecture of the system should be modified with 

an increase in the complexity of system requirements. In the process of designing the 

system, we improve the structure of the system step by step. At first, we only want to 

implement a single system which can analyze the sentiment of real-time tweets. Thus, the 

simple linear architecture is implemented with Storm, Redis, Flask, and D3.js. However, 

this system only allows users to receive passive analysis results. In order to increase the 

interactivity of the system, we propose message feedback architecture which allows users 

to control the behaviours of data collection function. At this time, Kafka is integrated into 

the system. When the data analysis requirements increase, data processing and data 

collecting components become too complex to modify. Therefore, we decouple the 

functions into different components and connect them to compose an entire system. As a 

result, we implement the Kafka centric architecture. We also implement Lambda 

architecture with Hadoop, Storm, and Kafka. The reason is that Lambda architecture is a 

combination of batch processing and stream processing architectures, we employ it to 

improve the functionality of Kafka centric architecture 

 Summary 

This chapter describes the details of the implementation of component-based distributed 

text mining system. Data collection components are implemented with Tweepy library and 

integrated with Kafka producer, data processing components which contain Kafka 
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producer and consumer are implemented with Apache Storm, and data visualization 

components are implemented with D3.js or Google Charts. All components are managed 

with index web page. To simplify the data processing steps and decrease the volume of 

data which should be transmitted, the system accepts two types of message strings. 

Experiments, evaluation and results are presented in Chapter 5.  
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Chapter 5  
 

 

 Evaluation and Results 

This chapter presents evaluation results of this component-based distributed text mining 

system. Section 5.1 presents the environments of experiments and evaluation, in local and 

cloud. The deployment methods are presented in Section 5.2. Section 5.3 evaluates the 

throughput of Twitter Stream APIs based on Tweepy and Twitter4j. In Section 5.4, 

scalability of the system is evaluated by testing the performance of data processing 

components, availability is evaluated in Section 5.5. Finally, several cases are studied in 

Section 5.6. 

 Testing Environment 

All experiments are deployed with local virtual machines or cloud computing platforms. 

To run the system locally, we apply Vagrant [82] and VirtualBox [83] to host virtual 

machines of Ubuntu 14.04. In the cloud, we chose AWS EC2 as the cloud computing 

platform to build the cluster of Ubuntu machines. 

5.1.1. Vagrant and VirtualBox 

The project engages Vagrant and VirtualBox to deploy the local experimental environment. 

Vagrant is a virtual machine management tool and VirtualBox is a virtualization product. 

The project exploits synced folder which shares folders between the host and client 
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machine, and forwarded port which map host port to guest port with aid from Vagrant. 

Table 5.1 shows the configuration file of virtual machine. 

 
Table 5.1: Configuration File of Vagrant with Comments 

Vagrant.configure(2) do |config| 

 

  # indicates used image 

  config.vm.box = "ubuntu/trusty64" 

 

  # forward guest port 5000, 8080 to host port 5000, 8080 

  config.vm.network "forwarded_port", guest: 5000, host: 5000 

  config.vm.network "forwarded_port", guest: 8080, host: 8080 

 

  # indicates shared folder, defaultly, the guest /vagrant folder map with the root folder of 

vagrantfile 

  config.vm.synced_folder "../data", "/vagrant_data" 

 

  # set the memory size, default as 1024 MB 

  config.vm.provider "virtualbox" do |vb| 

    vb.memory = "2048" 

  end 

end 

 

5.1.2. AWS EC2 

Both AWS EC2 and Azure HDInsight can be used to host servers in the cloud. Although 

HDInsight provides automatic configuration, since HDInsight restricts the version of 

Storm and Kafka, we use AWS EC2 to host clusters in the cloud. Furthermore, the cluster 

of HDInsight is based on Apache Ambari [84] which takes at least 8 gigabytes of memory 

per machine. In the experiments, the system deploys three machines to build the cluster. 

These machines should be in the same local area network. The details of virtual machines 

on AWS EC2 are listed in Table 5.2. Due to the limitation of AWS free tier, the system 

can only apply t2.micro type instance whose details are listed in the Table 5.3. The 

following is the table of details of cluster.  
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Table 5.2: Details of Cluster 

Hostname Private IP 

Address 

Operating 

System 

Character Instance 

Type 

stormnode1 172.31.22.225 Ubuntu 14.04 

TLS 

Nimbus/ZooKeeper t2.micro 

stormnode2 172.31.24.92 Ubuntu 14.04 

TLS 

Supervisor/ZooKeeper t2.micro 

stormnode3 172.31.25.230 Ubuntu 14.04 

TLS 

Supervisor/ZooKeeper t2.micro 

 
Table 5.3: Details of t2.micro 

Instance Type Images vCPU Memory Size Instance Storage 

t2.micro Ubuntu 1 1 GB EBS 

 Deployment 

To centrally manage all packages, ZooKeeper, Storm and Kafka are installed in the folder 

/opt. Section 5.2.1 has listed methods of installation of main dependencies, coupled with 

more details listed in Appendix A. The deployments of ZooKeeper, Storm and Kafka are 

more complex, thus deployments are described in detail in separate sections. Moreover, 

their configuration files are presented in Appendix B. 

5.2.1. Single Machine 

To build the system with a single machine, there is no need to change the network 

configuration of machines. Both Kafka and Storm can be run in standalone mode. In the 

standalone mode, it is unnecessary to change any configuration files. In this project, we 

apply Vagrant to manage virtual machine. Table 5.4 shows the basic information of virtual 

machine. 
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The following are steps of installing dependencies of this project: 

1. Installing JDK: As long as JDK is the basic dependency of all Java programs, 

the project is built based upon JDK 1.7.  

2. Installing Maven: “Apache Maven is a software project management and 

comprehension tool” [85]. Instead of keeping Java libraries locally, the system 

uses Apache Maven to manage the dependencies of Java which are declared in 

the pom.xml file.  

3. Installing Python dependencies: All python dependencies are listed in the 

requirements.txt file and can be installed with python pip tool. 

4. Installing ZooKeeper and setting configurations: Both clusters of Storm and 

Kafka are based upon ZooKeeper. We install Zookeeper by downloading 

ZooKeeper package from website [86] and unzipping it. 

5. Downloading Kafka and Storm packages: To download Kafka and Storm 

software, we just download packages [87, 88] and unzip them.  

Table 5.4: System Information of Single Machine 

OS version vCPU Memory 

Ubuntu 14.04 LTS 6 2048 MB 

 

 Server Configuration 

Before setting distributed cluster, it is necessary to configure servers first. To decrease the 

difficulties of debugging, we map hostname to IP address. When client first consult the 

name of the machine, it will consult /etc/hosts first. If the client does receive results, it will 

send queries to DNS server. Thus, in this project we save the hostnames and map them 
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with their private IP address. Additionally, the hostnames can be mapped with their public 

IP address, however the instance of AWS EC2 will change its public IP address when it 

restarts. 

5.2.2. Deployment of ZooKeeper Cluster 

ZooKeeper is the basis of both Kafka and Storm, thus building ZooKeeper cluster is the 

first phase. Every ZooKeeper server is a thread on machines and there is no restriction to 

how many ZooKeeper clusters can be run on the same machine. Standalone mode is a 

special case which runs all ZooKeeper threads on a single machine. However, every 

ZooKeeper matches with one configuration file and one dataDir which stores data and logs 

of the ZooKeeper server. Normally, to decrease the loads of ZooKeeper log files are stored 

in the path of dataLogDir separately. Considering Zookeeper cluster is available when half 

of Zookeeper servers are available, ZooKeeper cluster is built upon odd number of 

ZooKeeper servers. Furthermore, configuration files are defined in Appendix B. The 

following are steps of deploying ZooKeeper: 

1. Configuring hostnames by mapping private IP addresses with hostnames in 

/etc/hosts file, then testing the connectivity of nodes by pinging hostname. 

2. Downloading and extracting ZooKeeper package to specified folder 

3. Modifying configuration file, zoo.cfg. 

4. Building myid file under dataDir’s folder. 

5. Setting environment variables. 
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5.2.3. Building Storm Cluster 

To configure Storm, only storm.yaml should be changed. Details are presented in Appendix 

B3. In the configuration file, IP addresses or hostnames of ZooKeeper servers and 

nimbuses of Storm should be indicted. If ZooKeeper uses default port 2888, there is no 

need to indicate port of ZooKeeper servers. Otherwise, Storm needs to indicate port 

number. Aside from nimbuses, other ZooKeeper servers can be supervisors. By default, 

each supervisor has four ports, 6700, 6701, 6702, and 6703, which means each supervisor 

can run four workers. More details about Storm configuration are presented in Appendix 

C. 

For the sake that ZooKeeper cluster is the basis of Storm cluster, the ZooKeeper 

servers should run first. ZooKeeper clients are integrated into Storm. To run ZooKeeper, 

zkServer.sh is the shell script which can be used to start, stop, or check status of ZooKeeper 

threads. Once cluster runs zookeeper thread, zookeeper will elect a leader and followers. 

The followers are Storm commands： 

 storm nimbus: ‘storm nimbus’ runs Storm nimbus thread. 

 storm supervisor: ‘storm supervisor’ command runs Storm supervisor thread. 

 storm ui: ‘storm ui’ command runs Storm UI on http://localhost:8080, in default. 

 storm jar: ‘storm jar’ command submits jar package to Storm clusters. 

5.2.4. Building Kafka Cluster 

Similar to Apache Storm, the cluster of Kafka is based on ZooKeeper cluster as well.  A 

single ZooKeeper cluster can run multiple Kafka brokers. There is no restriction on the 

physical location of Kafka brokers, Kafka brokers can be invoked on ZooKeeper servers 
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or remote machines. In contrast to the deployment of ZooKeeper and Storm, running Kafka 

servers only need to configure the server.properties to replace the line of zookeeper.connect 

with designated Zookeeper server list.  Furthermore, it is possible to run multiple Kafka 

servers with the creation of multiple server.properties files. Additionally, more details and 

comments of configuration items can be found in the Appendix D. 

 Twitter Stream Throughput Evaluation 

We evaluate the rates of Twitter stream, namely how many messages can be received from 

Twitter. To design the experiment, we select two libraries of Twitter API, Twitter4J and 

Tweepy. As mentioned before, all data collection components integrate Twitter libraries 

with Kafka producer, thus the project handles a simple Kafka consumer to count the 

number of messages. 

 We evaluate the efficiency of Twitter APIs by calculating the number of messages 

which are fetched within 1 minute and 5 minutes respectively. The results are presented in 

Figure 5.1, which indicates that Twitter4J can fetch more Twitter messages than Tweepy 

within the same period, while Tweepy can more easily acquire messages with geographic 

information. There are two methods of retrieving tweets which contain geographic 

information and country name. The first one is filtering messages containing geographic 

information from all received messages. The other is listening to the Twitter stream with 

location filter directly. Due to the fact that the location filter of Twitter4j does not work 

properly, the evaluation of Twitter4j applies the first method. As a result, the first method 

can only fetch few messages. However, Tweepy practices the second method and receives 

more than 300 messages per minute.  
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 In the system, geographic information is important for data visualizations which 

require the locations of the messages, such as map visualization. Although, Twitter4J API 

can collect more generic tweets than Tweepy, the performance of its geographic 

information collection is abysmal, we deploy Tweepy API in the system to collect data. 

 The second experiment calculates the connection time of these APIs. As Figure 5.2 

shows, the connection time of Twitter4J is more than twice that of Tweepy. The shorter 

connection time means better connectivity of the API. It is obvious that Tweepy connects 

to Twitter faster. 

 

 

Figure 5.1: Number of Messages Received By Twitter4J and Tweepy 

Twitter4J (Without
Restriction)

Tweepy (Without
Restriction)

Twitter4J (With Geo
Information)

Tweepy (With Geo
Information)

Test 1 14133 5847 40 1414

Test 2 13996 5777 48 1310

Test 3 13505 6108 28 1464

Average 13878 5910 38 1396
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Figure 5.2: Connection Time of Twitter4J and Tweepy 

 Scalability of Data Processing Components 

We evaluate the scalability of data processing components by modifying the number of 

worker threads of data processing components. 

5.4.1. Evaluation of Sentiment Component 

To simplify the evaluation process, the parallelism of every bolt will not be modified, while 

the results are evaluated by changing the number of workers and virtual CPU. At first, by 

analyzing the first two results, increasing the number of workers leads to the decrease of 

output rates. The main reason is that a single CPU cannot support multiple worker threads, 

in which one worker thread needs at least 120% usage of one core. In order to achieve more 

Twitter4J Tweepy

Test 1 8.16852 3.04486

Test 2 7.39131 2.85479

Test 3 8.25763 2.67665
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accurate results, the number of CPUs should be controlled 1.2 times beyond the number of 

workers.  

 

Figure 5.3: Evaluation Results of Sentiment Component 

 

 As the results in Figure 5.3 show, raising the number of workers increases the 

performance of sentiment component dramatically. When the number of virtual CPUs 

cannot satisfy the computing requirements of the component, increasing number of 

workers cannot enhance the performance of the component, it may even decrease the 

number of output messages. For example, comparing the first two rows of Figure 5.3, the 

1 Worker 1
vCPU

10 Workers 1
vCPU

1 Worker 4
vCPUs

2 Workers 4
vCPUs

3 Workers 6
vCPUs

4 Workers 6
vCPUs

Test 1 581 311 557 1235 1607 1661

Test 2 609 369 848 1136 1293 1546

Test 3 584 430 788 1012 1335 1693
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number of workers is added from 1 to 10, the average outputs decrease from 589 to 381 

messages per minute. By comparing the first row to the third row, which keeps the same 

workers and increases the number of virtual CPUs, the average message output increases 

from 589 to 748. We can conclude that one virtual CPU cannot cover the computing 

resources of one Storm sentiment worker. In the third and fourth row, we increase the 

number of workers, with 4 virtual CPUs, the average output increases from 748 to 1184 

per minute. Likewise, in rows five and six, with 6 virtual CPUs, increasing worker number 

raises the output from 1454 to 1654 per minute. When computing resources are adequate, 

increasing the number of workers leads to increased output as well. As the system applies 

Tweepy to collect data, whose average data fetching rate is 1071 messages per minute, our 

system can completely process all collected messages, with more than 4 virtual CPUs and 

2 worker threads. 

5.4.2. Evaluation of Word Count Component 

The word count calculation is a simple task which does not involve complex calculations. 

With the environment of six virtual cores, applying more worker threads does not bring 

better performance, even diminishing the number of output messages.  

  In Figure 5.4, the number of virtual CPUs is fixed at 6, however, with the number 

of workers increasing, the average output decreases from 8517 to 3131 messages every 

minute. Thus we assume that the word count algorithm only fits the single thread 

environment. To demonstrate this assumption, we constructed another experiment which 

manipulated the parallelism of each bolt or spout.  

 As Table 5.5 presents, all the results are evaluated with three worker threads, in 

which the parallelism numbers correspond to Kafka spout, word split bolt, word count bolt, 
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report bolt, in sequence. By adjusting the number of parallelism of word split and word 

count bolt, the performance of word count component reaches the peak when all bolts run 

with a single thread. It is easy to conclude that the word count algorithm performs best with 

a single thread. 

 We can conclude that the word count component can process all real-time data with 

one worker thread. 

 

 

Figure 5.4: Evaluation Results of Word Count Component (1) 
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Test 1 7510 4745 3538 2773
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Table 5.5: Evaluation Results of Word Count Component (2) 

Number 

of 

Worker

s 

vCPU Parallelism of 

Bolts and Spout 

Number of Output Messages (Every 

Minute) 

Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

AVG 

3 6 1 1 1 1 6131 6877 8531 7590 7836 7393 

3 6 1 1 10 1 4455 4721 4524 5201 4272 4634 

3 6 1 10 1 1 4014 4746 4877 5614 5350 4920 

 

5.4.3. Evaluation of Trend Analysis Component 

 

Figure 5.5: Evaluation of Trend Analysis Component 

Due to the implementation of trend analysis which returns top 20 results each time and 

only updates at most 10 results every second, the evaluation results of trend analysis would 

be multiples of 20 and around 600. Therefore, changing the number of workers will not 

1 Worker 6 vCPUs 2 Workers 6 vCPUs 3 Workers 6 vCPUs 4 Workers 6 vCPUs

Test 1 500 560 560 600

Test 2 540 540 540 540

Test 3 540 520 540 580
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influence the output rate of trend analysis topology. In Figure 5.5, the number of workers 

increases with the number of experiments. However, the output of each experiment is 

almost the same. Thus the results of Figure 5.5 demonstrate that the output rates of trend 

analysis are not influenced by the number of workers. 

5.4.4. Evaluation of TF-IDF 

 

Figure 5.6: Evaluation of TF-IDF Component 

 

As mentioned in the implementation chapter, TF-IDF component is a part of trend analysis 

component. It extracts messages from the URLs of tweets and generates the TF-IDF score 

of each word, thus its output depends on the content of URLs. If the webpage contents of 
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URLs are longer, the size of output messages will be larger.  Thus, the results of TF-IDF 

component are not stable. In the first row of Figure 5.6, the result of test 3 is 92, which 

means there are few contents in this test. By analyzing the average results of Figure 5.6, it 

is easy to conclude that with the increase in number of workers, the number of output 

messages raises as well. The TF-IDF component can be scaled up by adding more worker 

threads to address more data. 

 Availability  

We designed two experiments to test the availability of Apache Kafka and Apache Storm. 

As a result of the visualization website being built upon the clusters of Kafka and Storm, 

if both Kafka and Storm equip high availability, the website is highly available as well. 

5.5.1. Availability of Kafka 

In the experiment, we prepare four machines containing three ZooKeeper servers and one 

Kafka server. With this experiment, we can conclude that the availability of Kafka is based 

on ZooKeeper cluster, when more than half of ZooKeeper machines disconnect, the Kafka 

broker will disconnect as well. In order to guarantee the availability of Kafka, it is 

necessary to increase the number of machines in ZooKeeper clusters. The following are 

steps of experiment: 

1. Getting root authority and active environment variable. 

2. Running zkServer.sh script to start ZooKeeper threads on all ZooKeeper servers. 

3. Checking status of ZooKeeper servers: Command ‘zkServer.sh status’ is used to 

check the status of Zookeeper server. As Figure 5.7, 5.8 and 5.9 display, node1 and 

node 3 are followers, while node 2 is the leader. 
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4. Checking whether machine that hosts Kafka server can connect to three ZooKeeper 

machines: In Figure 5.10, we use ping command to test the connection between 

three machines. 

5. Configuring server.properties file: only change line ‘zookeeper.connect’ as 

following,‘zookeeper.connect=stormnode1:2181,stormnode2:2181,stormnode3:2

181’. 

6. Using tmux to open multiple console on the machine hosting Kafka server 

7. Running Kafka broker to connect ZooKeeper cluster 

8. Running Kafka console consumer and producer to check the connection 

9. Stopping one ZooKeeper server: at this time, as Figure 5.11 shows, the consumer 

and producer can still communicate. 

10. Stopping one more ZooKeeper server: As Figure 5.12 shows, the consumer loses 

connection to ZooKeeper cluster. 

11. Restarting one ZooKeeper server: Kafka consumer becomes available again. 

 

 

 
Figure 5.7: Stormnode1 Screen Shot 
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Figure 5.8: Stormnode2 Screen Shot 

 

 
Figure 5.9: Stormnode3 Screen Shot 

 
Figure 5.10: Checking Connection of Three ZooKeeper servers 
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Figure 5.11: Kafka Consumer and Producer, When Closing one ZooKeeper Server 

 
Figure 5.12: Kafka Consumer and Producer, When Closing Two ZooKeeper Server 

5.5.2. Availability of Storm 

In this experiment, we launch three machines installed with ZooKeeper and Storm. Since 

the nimbus node does not interact with ZooKeeper while supervisor connects to ZooKeeper 

cluster. Therefore in this experiment, availability of supervisor of Storm is examined. By 

analyzing the results of this experiment, we can conclude that the availability of Storm 

cluster relies on ZooKeeper clusters. All Storm supervisors connect to one ZooKeeper 

cluster. If more than half of ZooKeeper machines disconnect, all Storm supervisors threads 

will disconnect at the same time. However, the nimbus node of Storm is not influenced by 
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ZooKeeper clusters. The steps of starting ZooKeeper servers are the same as the former 

experiment: 

1. Running nimbus on stormnode1 and supervisor threads on stormnode2 and 

stormnode3, and then checking background threads with jps command. As Figure 

5.13 and 5.14 show, the core thread is the Storm UI, the nimbus thread runs the 

Storm nimbus, QuorumPeerMain is the thread of ZooKeeper, and supervisor is the 

thread of Storm supervisor.  

2. Stopping one ZooKeeper thread and checking the Storm UI on the port 8080. 

Finding that there are still two supervisors, as Figure 5.15 shows. 

3. Stopping one more ZooKeeper thread and checking Storm UI again. The result is 

shown as Figure 5.16. 

4. Restarting ZooKeeper threads. The supervisor will become available again. 

 

 
Figure 5.13: The Screen Shot of Storm Nimbus Machine 

 
Figure 5.14: The Screen Shot of Storm supervisor Machine 
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Figure 5.15: Storm UI with Two ZooKeeper Servers 

 
Figure 5.16: Storm UI with One ZooKeeper Server 

 Use Cases 

We present the use cases of sentiment analysis and word cloud. The index page of website 

is shown in Figure 5.17, the options of each selection column corresponds to the flow chart 

of web page.  

 
Figure 5.17: Web Index Page  
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5.6.1. Sentiment Analysis of Real-time Twitter Messages 

 

Figure 5.18: Sentiment Map Visualization 

After launching the application, users can visit the website by entering the public IP of the 

machine. By choosing real-time tweets, sentiment analysis, and map options, the web page 

will be redirected to the map visualization page. At the same time, the real-time data 

collection component and sentiment analysis component are running in the background of 

the server side. The processed data are transmitted to the front end with Server-sent event. 

The launch of Storm topology requires around half a minute and then the webpage shows 

the processed results. After 5 minutes, the results are visualized on the map, as Figure 5.18 

shows. 

 In this case, the system collects real-time data from Twitter with Twitter API. Since 

the user chooses map as the visualization method, tweets without geographical information 

are filtered out. The messages remaining are processed by sentiment analysis topology, and 
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the system generates the sentiment of each message and the average sentiment of each 

country. On the visualization page, the personal sentiment is represented with coloured 

points, while the average sentiment of the country is represented with the colors of block. 

As Figure 5.18 shows, most tweets are sent in America, and there are fewer tweets in Africa 

and Asia. 

 

5.6.2. Word Cloud of Real-time Twitter Messages 

 

Figure 5.19: Word Cloud 

 

Similar to the sentiment visualization case, users select real-time data collection, trend 

analysis, and word cloud components to build their social mining tools. Aside from the 

word cloud component, other components run in the background. Once the web page is 

redirected to the word cloud page, the data is visualized as word cloud, as Figure 5.19 

shows. 
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 In this case, the system collects Twitter real-time data as well. The collected data 

are processed with trend analysis topology which fetches data from the URLs of tweets 

and ranks words by its TF-IDF score. The system only transmits the top 20 words to the 

web page. As the system analyzes the trends of real-time data, the scope of data is really 

broad. Thus the results of visualization present general words. 

 Summary 

In this chapter, we presented the methods of deploying system and evaluated the 

performance of data collection components and data processing components. The 

scalability, availability, and expandability of the systems are demonstrated in this chapter 

as well. In the final portion, there are several case studies of this project.  
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Chapter 6  

 
 

 

 Conclusion and Future Work 

 Conclusion 

We implement a component-based Twitter text mining system, which can collect data, 

process data with Apache Storm, and visualize data on the website. The whole system can 

be run locally with Vagrant and VirtualBox or in the cloud with AWS EC2.  

 The main contributions of this project are: 

 The project implements a component-based distributed text mining system. The 

system involves multiple data collection, data processing and data visualization 

components. The data format within this system is defined as two types of 

message strings. 

 The system equips scalability, availability, and expandability. The scalability is 

guaranteed by the clusters of Kafka and Apache Storm. By increasing the 

number of machines in the Kafka cluster, the scalability of web access as well 

as data transmission within the system will increase. To scale the processing 

speed and the number of processing units, both parallelism and machine 

numbers can be adjusted. The availability of this system is guaranteed by 

ZooKeeper clusters which are the basis of Kafka and Storm clusters. The 

expandability is guaranteed by the unified data format and the mechanism of 

Kafka. Every component implementing producers or consumers of Kafka and 
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following the restriction of data format is available to integrate with other 

components. 

 The project involves a novel Twitter trend analysis topology. Compared to 

common trend analysis method, our trend analysis calculates TF-IDF score of 

words in documents which are fetched on the basis of URLs in Twitter 

messages. The most common method is counting the number of words 

appearing in tweets, however most words in tweets are meaningless and the 

ideas of users are contained in its URLs. 

 The project formulates the Kafka centric architecture, as a result of the 

evolution of simple linear architecture and message feedback architecture and 

compares them with the Lambda architecture. 

 Instead of using bolts as basic data processing components, the framework 

treats Storm topologies as the basic computing units, and every topology 

implements both Kafka producers and consumers. Thus, every topology can be 

integrated with other topologies freely. 

 Future Work 

This section describes the future work of this project, in three functionalities, data 

collection, data processing, and data visualization, respectively. 

In terms of data collection, the project only involves data from Twitter, yet there 

are still a great number of social network websites or applications. In the future, data 

collection will involve more data sources, such as Facebook, Instagram, and LinkedIn. 

From data processing perspectives, the project focuses on implementing a part of 

natural language processing algorithms, which limits the range of this project. Besides text 



79 

 

files, images and videos contain beneficial information in the social networks as well. For 

example, Instagram is a kind of social network focused on presenting images and videos. 

Some social applications even contain a large amount of audio. 

To implement the data visualization component, the project involves Google Charts 

and D3.js to present data. Data visualization can be improved by combining other libraries, 

such as Leaflet.js and Mapbox. Furthermore, the appearance of the website is another 

potential improvement of the system. 

Once data flows through Apache Kafka, the data will be stored as logs, for this 

reason, the system does not provide additional data persistence function, the drawback of 

log storage is that it is hard to get specific information. On the one hand, some databases 

like Apache Cassandra, Neo4j, provide high speed queries. On the other hand, some search 

engines, like Apache Solr, and ElasticSearch, build index for information and enable users 

to search related information. 

Finally, in order to implement dynamic topologies, Storm topologies are used as 

basic processing units which increases the flexibility of the system and decreases the time 

of developing new processing functions, however, the size of every topology becomes 

much bigger. In the future, the project intends to change the source code of Storm to allow 

topology to be changed dynamically. 
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Appendix A : Dependencies of Project 

The following are development kits and software packages used in the system. 

Name Version Description 

JDK 1.7.0_95 Java SE Development Kit 

Apache 

Maven 

3.0.5 Apache Maven is used to pack Java file, in 

the project. 

Apache 

ZooKeeper 

3.4.6 The basis of several distributed system, 

such as Apache Storm and Apache Kafka 

Apache Storm 0.9.2-incubating Apache Storm is the basis of data 

processing components of the project. 

Apache Kafka kafka_2.9.1 

version 0.8.2.1 

Apache Kafka is used to connect different 

components, in the project. 

Stanford NLP 3.4.1 Stanford NLP is applied to calculate the 

sentiment of Twitter message. 

Apache Tika 1.12 Apache Tika is used to pre-process Twitter 

messages. 

Apache 

Lucene 

3.6.2 Apache Lucene is applied to fetch the 

contents of webpages. 

Twitter4J 3.0 Twitter4J is used to collect stream data 

from Twitter. 

Flask 0.10.1 A lightweight Python web framework 

Python-pip 1.5.4 A Python package management tool, 

similar to apt-get as Ubuntu. 

Kafka-python supports Kafka version 

0.10, 0.9, 0.8.2, 0.8.1, 0.8 

Python version: 2.6, 2.7, 

3.3, 3.4, 3.5 

It is a Kafka client which is implemented 

by Python language. 

Tweepy 3.5.0 Tweepy is used to collect data from 

Twitter. 

Pycountry 1.20 Pycountry is used to transmit country code 

from ISO alpha-2 to alpha-3. 
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Appendix B : Configuration Files of ZooKeeper 

There are configuration files of ZooKeeper server. ZooKeeper has cluster mode and 

standalone mode. In the cluster mode, every machine should be configured by modifying 

its zoo.cfg file to the first table. The standalone mode runs multiple threads on different 

ports of one machine, which requires developers to create three configuration files, as 

zoo1.cfg, zoo2.cfg, and zoo3.cfg. 

 

zoo.cfg: 

# the number of milliseconds of each tick 

# here means zookeeper cluster will send hello message every 2 seconds 

tickTime=2000 

initLimit=10 

syncLimit=5 

dataDir=/opt/zookeeper/zkdata 

dataLogDir=/opt/zookeeper/logs 

clientPort=2181 

# server list 

# format server.<server number>=<ip address/hostname>:<connect port>:<election 

port> 

server.1=stormnode1:2888:3888 

server.2=stormnode2:2888:3888 

server.3=stormnode3:2888:3888 

 

zoo1.cfg 

tickTime=2000 

initLimit=10 

syncLimit=5 

dataDir=/opt/zookeeper/zkdata1 

dataLogDir=/opt/zookeeper/logs1 

# the port at which the clients will connect 

clientPort=2181 

 

server.1=localhost:2888:3888 

server.2=localhost:2889:3889 

server.3=localhost:2890:3890 
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zoo2.cfg 

tickTime=2000 

initLimit=10 

syncLimit=5 

dataDir=/opt/zookeeper/zkdata2 

dataLogDir=/opt/zookeeper/logs2 

clientPort=2182 

 

server.1=localhost:2888:3888 

server.2=localhost:2889:3889 

server.3=localhost:2890:3890 

 

zoo3.cfg 

tickTime=2000 

initLimit=10 

syncLimit=5 

dataDir=/opt/zookeeper/zkdata2 

dataLogDir=/opt/zookeeper/logs2 

clientPort=2183 

 

server.1=localhost:2888:3888 

server.2=localhost:2889:3889 

server.3=localhost:2890:3890 
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Appendix C : Configuration Files of Apache Storm Cluster 

To deploy Storm clusters, only storm.yaml file needs to be changed. The meaning of each 

configuration item is written with comments. 

  

Storm.yaml 

# zookeeper server list 

# If ZooKeeper use default port, there is no need to indicate port. Otherwise, Storm need 

to indicate port number here. 

storm.zookeeper.servers: 

    - "stormnode1" 

    - "stormnode2" 

    - "stormnode3" 

 

# nimbus ip or hostname 

nimbus.host: "stormnode1" 

storm.local.dir: "/opt/storm/status" 

# one port can run one worker 

supervisor.slots.ports: 

       - 6700 

       - 6701 

       - 6702 

       - 6703 
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Appendix D : Configuration Files of Apache Kafka 

The following table only lists important configuration items and adds comments for them. 

In theory, the configuration file of Kafka server can be placed anywhere, nonetheless, it is 

recommended to store them in the config folder with suffix of properties.  

 

Server.properties 

# The broker id  

broker.id=0 

 

# The port the socket server listens on 

port=9092 

 

# The receive buffer (SO_RCVBUF) used by the socket server 

socket.receive.buffer.bytes=102400 

socket.request.max.bytes=104857600 

log.dirs=/tmp/kafka-logs 

num.partitions=1 

 

# The maximum time where log can be kept 

log.retention.hours=168 

 

# The maximum size of log which can be kept in the system 

log.retention.bytes=1073741824 

 

#indicates the zookeeper server of Kafka broker need to connect. The Kafka broker is 

available when more than half zookeeper server is alive 

zookeeper.connect=localhost:2181 

 

# enable deletion of topics 

delete.topic.enable=true 
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