

Design and Implementation of a Component-based Distributed

System for Text Mining in Social Networks

by

Yu Huang

A Project Report Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Engineering

in

Electrical and Computer Engineering

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

© Yu Huang, 2016

ii

Abstract

Design and Implementation of a Component-based Distributed System for Text

Mining in Social Networks

Yu Huang Advisor:

University of Ontario Institute of Technology, 2016 Professor Qusay H. Mahmoud

This report presents the design and implementation of a component-based distributed

system for text mining in social networks. The system consists of three main types of

components, data collection, data processing and data visualization. Three possible

frameworks explore simple linear architecture, message feedback architecture, Kafka

centric architecture and provide implementations of them. The final system adopts Kafka-

centric architecture in which all components are connected through Kafka brokers. In terms

of functionality, data collection components are responsible for collecting data from

Twitter and producing messages to Kafka brokers. Data processing components contain a

series of basic text mining topologies. Based on JavaScript libraries, data visualization is

presented on web pages and allows users to interact with graphs and charts. In order to

improve the scalability and performance of text mining, the project selects Apache Storm

framework to implement data processing components. In this report, we evaluate the

availability of Kafka and Storm, the rates of data collection components and the

performance of data processing components. The experimental results demonstrate our

system is available and scalable, and the component-based structure of this system enables

it to be extended easily.

iii

Dedication

To my parents and girlfriend.

They mean a lot to me!

iv

Acknowledgements

I would like to thank my parents and girlfriend first. Without their efforts and

encouragement, I wouldn’t have the opportunity to study here.

 I would like to thank my supervisor, Dr. Qusay H. Mahmoud as well, who gave me

instructions and offered advice through the project.

 I would also like to express my gratitude to Mr. Mark Neville, who is the writing

specialist at the UOIT student learning centre. He gave me a lot of advice on English

writing.

 Last but not least, I would like to thank all the people I met in my life.

v

Table of Contents

Abstract .. ii

Acknowledgements .. iv

Acronyms and Abbreviations ... ix

List of Figures ...x

List of Tables ... xii

Chapter 1 Introduction ..1

 Motivation ...2

 Problem Statement ..2

 Contributions ...3

 Report Outline ...4

Chapter 2 Background and Related Work ...6

 Social Networks ..6

2.1.1. Social Network Data ... 7

 Text Mining ...8

2.2.1. Normal steps ... 8

2.2.2. TF-IDF .. 9

 Distributed Stream Data Processing ..9

2.3.1. Apache Storm.. 9

2.3.2. Twitter Heron .. 11

2.3.3. Spark Streaming .. 11

2.3.4. ZooKeeper... 12

 Data Visualization ...13

 Messaging Techniques ..13

vi

2.5.1. Kafka ... 15

 Related Work...15

2.6.1. Social Mining .. 15

2.6.2. Data Visualization ... 17

2.6.3. Related Frameworks ... 18

2.6.4. Related Products ... 20

 Summary ...20

Chapter 3 Proposed Solution ...21

 Overview ...21

3.1.1. System Architectures .. 22

 Details of Architecture ..25

 Scalability, Expandability, and Availability ...26

 Trend Analysis ..27

 Summary ...30

Chapter 4 Prototype Implementation ...31

 Overview ...31

 Selection of Technologies ...32

 System Implementation ...34

 Component Implementation ..39

4.4.1. Data Collection Components .. 39

4.4.2. Data Processing Components ... 41

4.4.3. Data Visualization Components ... 47

4.4.4. Data Persistence Components ... 49

 Component Management ..49

 Data Format ...51

 Challenges and Solutions ..51

 Summary ...52

vii

Chapter 5 Evaluation and Results ...54

 Experiment Environments ...54

5.1.1. Vagrant and VirtualBox .. 54

5.1.2. AWS EC2.. 55

 Deployment ...56

5.2.1. Single Machine ... 56

5.2.2. Server Configuration ... 57

5.2.3. Deployment of ZooKeeper Cluster ... 58

5.2.4. Building Storm Cluster ... 59

5.2.5. Building Kafka Cluster ... 59

 Twitter Stream Throughput Evaluation...60

 Scalability of Data Processing Components ...62

5.4.1. Evaluation of Sentiment Component .. 62

5.4.2. Evaluation of Word Count Component .. 64

5.4.3. Evaluation of Trend Analysis Component .. 66

5.4.4. Evaluation of TF-IDF ... 67

 Availability ..68

5.5.1. Availability of Kafka .. 68

5.5.2. Availability of Storm .. 71

 Use Cases ..73

5.6.1. Sentiment Analysis of Real-time Twitter Messages 74

5.6.2. Word Cloud of Real-time Twitter Messages .. 75

 Summary ...76

Chapter 6 Conclusion and Future Work ...77

 Conclusion ...77

 Future Work ..78

Appendix A: Dependencies of Project...80

Appendix B: Configuration Files of ZooKeeper ..81

Appendix C: Configuration Files of Apache Storm Cluster83

viii

Appendix D: Configuration Files of Apache Kafka..84

Bibliography ...85

ix

Acronyms and Abbreviations

TF-IDF Term Frequency-Inverse Document Frequency

AWS EC2 Amazon Web Services Elastic Compute Cloud

NLP Natural Language Processing

REST Representational State Transfer

CAP Consistency, Availability, Partition tolerance

URL Uniform Resource Locator

CSS Cascading Style Sheets

JSON JavaScript Object Notation

JDK Java Development Kit

DOM Document Object Model

ML Machine Learning

API Application Program Interface

UI User Interface

DRPC Distributed Remote Procedure Call

JDBC Java Database Connectivity

HDFS Hadoop Distributed File System

CSV Comma Separated Values

TSV Tab Separated Values

vCPU Virtual CPU

x

List of Figures

Figure 2.1: Storm Topology .. 11

Figure 2.2: Spark Streaming General Processing Flow .. 12

Figure 2.3: Kafka Connect Framework .. 19

Figure 2.4: Lambda Architecture .. 20

Figure 3.1: High Level Architecture ... 22

Figure 3.2: Simple Linear Architecture of Proposed System ... 24

Figure 3.3: Message Feedback Architecture of Proposed System 24

Figure 3.4: Messaging Technique Centric Architecture of Proposed System 24

Figure 3.5: Flow Chart of Trend Analysis .. 29

Figure 4.1: File Structure for Proposed System .. 31

Figure 4.2: Implementation of Simple Linear Architecture.. 37

Figure 4.3: Implementation of Message Feedback Architecture 37

Figure 4.4: Kafka Centric Architecture .. 38

Figure 4.5: Implementation of Lambda Architecture ... 39

Figure 4.6: Storm Sentiment Analysis Topology ... 43

Figure 4.7: Storm TF-IDF Topology .. 44

Figure 4.8: Storm Top N Topology .. 45

Figure 4.9: Storm Word Count Topology ... 46

Figure 4.10: Trend Analysis ... 47

Figure 4.11: Trend Analysis with Components .. 47

Figure 4.12: Web Page Flow Chart... 50

Figure 5.1: Number of Messages Received By Twitter4J and Tweepy 61

xi

Figure 5.2: Connection Time of Twitter4J and Tweepy ... 62

Figure 5.3: Evaluation Results of Sentiment Component ... 63

Figure 5.4: Evaluation Results of Word Count Component (1) 65

Figure 5.5: Evaluation of Trend Analysis Component ... 66

Figure 5.6: Evaluation of TF-IDF Component ... 67

Figure 5.7: Stormnode1 Screen Shot .. 69

Figure 5.8: Stormnode2 Screen Shot .. 70

Figure 5.9: Stormnode3 Screen Shot .. 70

Figure 5.10: Checking Connection of Three ZooKeeper servers 70

Figure 5.11: Kafka Consumer and Producer, When Closing one ZooKeeper Server 71

Figure 5.12: Kafka Consumer and Producer, When Closing Two ZooKeeper Server 71

Figure 5.13: The Screen Shot of Storm Nimbus Machine .. 72

Figure 5.14: The Screen Shot of Storm supervisor Machine .. 72

Figure 5.15: Storm UI with Two ZooKeeper Servers... 73

Figure 5.16: Storm UI with One ZooKeeper Server ... 73

Figure 5.17: Web Index Page .. 73

Figure 5.18: Sentiment Map Visualization ... 74

Figure 5.19: Word Cloud .. 75

xii

List of Tables

Table 4.1: Type 1 Message String .. 51

Table 4.2: Type 2 Message String .. 51

Table 5.1: Configuration File of Vagrant with Comments ... 55

Table 5.2: Details of Cluster ... 56

Table 5.3: Details of t2.micro ... 56

Table 5.4: System Information of Single Machine ... 57

Table 5.5: Evaluation Results of Word Count Component (2) ... 66

1

Chapter 1

 Introduction

Social networks are defined as web-based services which allow users to compose their

public profiles, connect with others and interact with their connected users [1]. The large

amount of data on social networks provide opportunities for developers and companies to

mine concealed relationships and values, while it presents challenges related to the

capability of dealing with its large volume. The data from social networks can be divided

into online and offline data. Commonly, online data are more valuable than offline data, as

offline data can only provide analysis of history and habits. To address online data, Apache

Storm, a real-time distributed framework is used universally. For example, Twitter,

Yahoo!, Flipboard, and Taobao use Apache Storm to analyze real-time data [2].

Text data are more frequently observed on social network websites and express

information more directly [3]. Other forms of data, such as audio, videos and images, are

more complex and may incur ambiguity. On the contrary, the processing of videos and

images are time-consuming. Thus these data are not suitable for real-time analysis.

With the increasing complexity of text mining problems, a single system becomes

incapable of providing entire solutions [4]. Thus most systems require integration with

other systems to a greater or lesser extent. To avoid reconstruction in the future integration,

the proposed solution requires expandability.

Scalability is the other feature which system should be taken into consideration.

With the increasing scale of problems, the developers should be able to add resources

effortlessly.

2

This chapter describes the general ideas of this project. Section 1.1 discusses the

motivation of this project, and Section 1.2 states the problems which are solved by the

proposed project. Section 1.3 lists several contributions of this project, and finally Section

1.4 presents the organization of whole report.

 Motivation

The project targets to provide a component-based distributed system for solving texting

mining tasks in social networks. The system provides data collection, data processing, and

data visualization components, which can be assembled into a social network text mining

solution. In order to decrease the difficulties of grasping this system, the system allows

users to manipulate all components with the index page. In the real world, the different text

mining tasks have different data volume, thus the system is designed to be able to run both

locally and in the cloud [5].

In terms of specific cases, based on this system, the report also develops a novel

word cloud application of Twitter accounts, which provides some basic data processing

components. By combining these components, users can customize their data processing

tools. For a Twitter account, the system can generate the top trends by analyzing its

timeline. Additionally, the project provides an application of Twitter sentiment analysis.

 Problem Statement

In the real world, most people do not possess skills to analyze social networks, whereas

their work may involve tasks of social analysis. Most existing social analysis tools have

high pre-required knowledge which increases the difficulty of analyzing social networks.

3

To solve this predicament, the project aims to develop a series of social mining components

which allows users to customize social analysis tools.

Due to the fact that social networks contain several data types such as audio files,

images, videos, text is the most popular form within these types [3], the project only covers

text mining techniques.

In order to implement a component-based social networks text mining system, all

components in the system should be reusable. To increase reusability, every function is

implemented as component. Users can customize data processing function by combining

provided data processing functions.

 Contributions

The contributions of this project are:

 Implementation of distributed social mining components: The project

implements some social mining components, including sentiment analysis, TF-IDF

algorithm, word count, and ranking algorithm.

 Integration of different Apache Storm topologies: According to the problem

statement of Section 1.2, which requires data processing functions to be customized

by users, the system has to implement dynamic topologies which allow users to

change topologies while it is running. However, once Storm topology is submitted

to the nimbus node, it is impossible to change Storm topology anymore. According

to the single responsibility principle, Apache Storm uses bolt as the smallest data

processing unit, which means each bolt only implements one function. In order to

solve this problem, the project treats Storm topology as the basic data processing

4

unit, and each topology implements a set of natural language processing functions,

instead of only one function per topology.

 Implement an entire social mining system: Instead of directly implementing

natural language processing with Storm, the project contains four series of

components: data collection, data processing, data visualization, and data

persistence.

 Novel features of architecture: The authors of [6] simply apply NLP algorithm

on the Storm, however this project provides an entire solution of text mining on

social networks including collecting data from Twitter, NLP operators, data

visualization components. This project treats every Storm topology as a component,

in addition to the combination of Storm topologies that can be customized by users.

 Novel features of trend analysis: There are some existing tools for trend analysis,

whereas only a few of them filter out stop words and almost none of them fetch the

content of URL. Furthermore, most of the tools do not allow users to customize

their solutions. Targeting these drawbacks, the project applies TF-IDF algorithm

on contents of URLs which are contained in tweets and allow users to customize

their trend analysis tools.

 Report Outline

This report is organized as follows: Chapter 2 introduces the background information of

social mining and cloud computing. Chapter 3 provides the general solution of

component-based distributed social mining system and evolution phases of the final

architecture. The implementation details of simple linear architecture, message feedback

architecture, and Kafka centric architecture are described in Chapter 4. Chapter 5

5

describes the details of experimental environments, deployment of dependencies and

evaluates the scalability and availability of the project. Finally, Chapter 6 concludes the

report and introduces ideas of future work.

6

Chapter 2

 Background and Related Work

This chapter presents all related fields of the project. Section 2.1 describes the most popular

social networks and methods of acquiring data from them. Section 2.2 presents background

of text mining techniques including tokenization, TF-IDF. The most popular distributed

stream frameworks are listed in the Section 2.3. Section 2.4 presents related libraries of

data visualization and Section 2.5 introduces popular messaging techniques which are

available to integrate different components. Finally all related work is discussed in Section

2.6.

 Social Networks

There are various social networking websites and applications including Twitter, LinkedIn,

Facebook and Instagram as some of the most popular social networks in the world [7, 8].

Twitter is a real-time microblog which contains up to 140 characters. The tweets

can contain images or videos as well as the most significant feature is its instantaneity.

Additionally, Twitter contents are limited by the number of characters restriction, most

tweets contain around 14 words and uses URL or hashtags to express the main idea. The

hashtags indicate the keywords of tweets, however most hashtags are abbreviations [9].

Facebook data are more complex and contain all kinds of data. Compared to

Twitter, messages on Facebook are much longer and contain more media contents. The

most significant feature of Facebook is its relationship network. The data from Facebook

is suitable for analyzing relationships between users [10]. LinkedIn focuses on job

7

interview information which contains educational background, work experience and

professional skills of users. Both Facebook and LinkedIn require users to register accounts

with their real name, while Twitter and Instagram only allow account names to be unique

and not contain any special symbols [10]. Aside from these social network sites, Reddit

and Stackoverflow are popular as well.

2.1.1. Social Network Data

To collect data from social networks, there are several methods, official public APIs are

implemented but the request rate is limited [11], web spiders which analyze the structure

of web page and extract useful information [12], and static open data which are provided

by third parties. In terms of public APIs, most social network tools, such as Twitter,

Facebook and Instagram, provide APIs interface which allow developers to acquire their

data, despite the fact that all these APIs have rate limits. Using public APIs is the most

reliable way to get data. For example the authors of [13] built its data crawler based on

Twitter stream APIs.

If users want to collect more data beyond rate limits, a web spider is an alternative.

However not all social network websites permit the usage of web spiders. For example,

LinkedIn announced that they do not allow developers to scrawl their information with

web spiders. Additionally, almost all websites set traps or restrictions to prohibit web

spiders. Compared to public APIs, the implementation of web spiders is more complicated

than invoking APIs. The Social Media Lab builds their system to collect Twitter messages

and stores them by different data fields [14].

 Among all methods, acquiring static open data is the simplest way that only need

few clicks, however the volume is limited and its instantaneity is the worst. Some websites

8

provide open source data to users, such as Kaggle [15], Ontario Open Data [16], whose

offline data sources are filtered and processed. The advantage of this method is that

developers can download data directly without writing a line of code. The drawbacks are

limited size and data lag. These offline data are suitable for examining accuracy and

performance of algorithms though it is not advisable for analyzing recent information.

 Text Mining

Text mining is “the process of extracting interesting and non-trivial patterns or knowledge

from unstructured text documents” [3]. This Section introduces the basic concepts of text

mining which are involved in further Sections, including tokenization, n-gram, part-of-

speech, stop word, and TF-IDF.

2.2.1. Normal steps

The normal steps of text analyzing are [17]:

 Tokenization: Tokenization transmits sentence to words

 N-gram: “an n-gram is a contiguous sequence of n items from a given sequence of

text or speech” [18].

 Part-of-speech: Part-of-speech tags the speech of word in the sentence. In most

cases, noun is more important than other speeches.

 Stop words: Stop words are a list of meaningless words. Normally, NLP projects

will remove stop words from the text to increase the accuracy of classification or

clustering. Paper [19] contains dataset of stop words from multiple languages.

9

2.2.2. TF-IDF

Term Frequency Inverse Document Frequency (TF-IDF) is “a numerical statistic that is

intended to reflect how important a word is to a document in a collection or corpus” [20].

There are several weighing schemes to calculate the IDF score. We employ document

frequency smooth scheme: 𝑡𝑓(𝑡, 𝑑) ∗ log
D

1+𝑑𝑓(𝑡)
. Applied in the calculation, tf(w,d) means

the times word w occurs in document d, idf = log(n / df(w,D)), and df means the number

of document which contains word w [21, 22].

 Distributed Stream Data Processing

In distributed computing, Hadoop [23] is the most famous framework which only addresses

batch data. However the data processed in this system are stream data which means data

flow continuously and unboundedly. Additionally, the latency requirements of stream data

are stricter than batch data. This Section lists several existing distributed stream

frameworks, namely Apache Storm, Twitter Heron, and Spark Streaming. The authors of

[24] list more stream data processing frameworks and categorize them into three types.

2.3.1. Apache Storm

“Apache Storm is a free and open source distributed real-time computation system”

[25]. Apache Storm is first open sourced by Twitter and becomes one of the top projects

in Apache organization. The structure of Apache Storm is shown in Figure 2.1 (adapted

from [25]). The programming model of Apache Storm is called as spout and bolt where

spout is the data source of topology and bolt is the data processing unit [26]. Along with

the main processing structure, this is known as topology.

10

The followings are basic concepts of Apache Storm [27]:

 Topology: A topology defines the structure of data flow and consists of

spout and bolt.

 Spout: A spout is the data source of topology, a topology can consist of

multiple spouts.

 Bolt: A bolt is the basic data processing unit of Storm.

 Tuple: A tuple is the basic data unit of Storm, which can contain stacks of

fields. The data structure can be string, list, or any types of objects.

 Stream: A stream contains a collection of tuples.

 Grouping methods: “A stream grouping defines how that stream should

be partitioned among the bolt's tasks” [28]. Shuffle grouping which

distributes tuples randomly to next bolt, field grouping which transmits

tuples with same field to same bolt, and global grouping which concentrates

all tuples to one bolt are the most frequently used grouping methods.

Besides the basic programming model, Storm also provides high level functions.

“Trident is a high-level abstraction for doing real-time computing on top of Storm” [29].

Trident dramatically decreases the lines of code. It encapsulates commonly used functions,

such as word count and filter, and simplifies bolt interfaces to operators.

In terms of programming language, Storm can almost support all programming

languages as it integrates Apache Thrift.

11

Figure 2.1: Storm Topology

2.3.2. Twitter Heron

Twitter Heron [30] was open sourced by Twitter recently, which is the successor of Storm.

Since the inner systems of Twitter rely on Storm heavily, the Heron is designed to be

applied with Storm code. Its programming model is the same as Apache Storm, thus it can

apply Storm topology code directly. Heron only keeps basic programming models of Storm

while it truncates high level functions of Storm, such as DRPC, and Trident. As the

successor of Storm, Heron reduces the difficulties of debugging Storm topology in

production environment. Compared to Storm, Heron also dramatically reduces the usage

of CPU resources. In the evaluation section, CPU usage is the bottleneck of Storm

topology.

2.3.3. Spark Streaming

“Spark Streaming is an extension of the core Spark API that enables scalable, high-

throughput, fault-tolerant stream processing of live data streams” [31]. The architecture of

Spark is shown in Figure 2.2 (adapted from [31]). Unlike other Stream frameworks, Spark

has built-in machine learning and graph analysis algorithms.

12

Spark Streaming utilizes sliding window on stream data and transforms it to several

batches of input data. Then the batches of data will be processed by Spark Engine. The

core of Spark Streaming is still batch processing. The difference between Spark streaming

and Hadoop is that the batches in Spark are much smaller [32].

The programming model of Spark is Map and Reduce. The map function applies

methods on every data element, notwithstanding the reduce function combining the

processed data together.

In terms of programming language, Spark only supports Scala, Java, and Python,

where its Python version only supports a part of Spark APIs.

Figure 2.2: Spark Streaming General Processing Flow

2.3.4. ZooKeeper

“Apache ZooKeeper is an effort to develop and maintain an open-source server which

enables highly reliable distributed coordination” [33]. Most distributed systems employ

ZooKeeper to manage their clusters including Storm, Kafka, and Spark. The management

details are packaged by these systems, thus developers only need to run zkServer.sh which

runs ZooKeeper threads in the background. Besides this function, ZooKeeper also provides

APIs which are suitable for building distributed lockers, distributed queues, and naming

services.

 Due to the fact that a ZooKeeper cluster is runnable when at least half of its

ZooKeeper threads are running, a ZooKeeper cluster commonly consists of an odd number

13

of machines. This feature authorizes high availability to ZooKeeper clusters, such that all

distributed systems based on ZooKeeper clusters inherit availability.

 Data Visualization

Data visualization is the simplest way to present data analysis results, as data can be

visualized according to attributes, position, size, value, texture, color, orientation, and

shape [34]. The following are visualization libraries:

 D3.js: D3.js (Data-Driven Documents) [35] is a powerful DOM selector library

which allows developers to manipulate elements freely in the front-end.

 Echarts: Echarts [36] is a library developed by Baidu Inc. To operate it, developers

only need set data set of x and y axises.

 Google charts: The usage of Google charts [37] is similar to Echarts, however it is

more powerful and provides functions of transformation matrix.

 Matplotlib: Matplotlib [38] is a visualization library of Python, however it cannot

be applied to browsers directly.

 Messaging Techniques

As the architecture may involve several different sub-systems, it is necessary to include

connection components to integrate these systems where messaging techniques are suitable

selections. There are several advantages of using messaging techniques [39]:

 Heterogeneous interoperability: Different programming languages or different

systems can be connected by messaging queues.

 Component decoupling: Each component can run separately.

14

 High scalability through load balancing: Messaging queues can be extended to

several producers and consumers.

 Asynchronous capabilities: Since messages are stored in messaging brokers, the

speed of producers does not influence the speed of consumers.

 Guaranteed delivery of messages: Using Kafka as an example, Kafka guarantees

delivery of messages using log files. By configuring Kafka properties, the

developer can decide the maximum size and resident time of logs.

 The following are common used message queues:

 LinkedBlockingQueue: LinkedBlockingQueue is a Java built-in data structure and

can be regarded as the simplest message queue.

 Redis: Redis is a key-value NoSQL database which stores data in memory. It owns

a publisher/subscriber pattern which can be used to connect different components

[40].

 RabbitMQ/ZeroMQ/ActiveMQ: These three message queues are very similar,

they both implement point-to-point and broker architecture and are applicable for

production environment.

 Kafka: “Apache Kafka is publish-subscribe messaging rethought as a distributed

commit log” [41].Compared to RabbitMQ, ZeroMQ, and ActiveMQ, Kafka has

lower runtime overhead, it can persist messages on the file system with complexity

of O(1). According to the benchmark [42], the throughput of a single Kafka

producer or consumer can reach around 1 million messages per second.

15

2.5.1. Kafka

Before applying Kafka in the system, the concepts of broker, topic, partition, producer,

and consumer should be introduced [43].

 Broker: A cluster of Kafka containing several servers, every server is called a

broker.

 Topic: Every message in Kafka belongs to one topic. By designating topic name,

producers or consumers can push or pull messages from Kafka broker.

 Partition: One topic can include multiple partitions, which correspond to folders

on the disk.

 Producer: Producers are responsible for pushing messages to Kafka brokers.

 Consumer: Consumers are responsible for pulling messages from Kafka brokers.

 Related Work

The following introduces related work on this system, including social mining, data

visualization, related framework, and relevant products.

2.6.1. Social Mining

Twitter messages are noisy and informal, thus there are multiple papers which propose

researches mining information from Twitter data. The authors of [44] proposed a

framework which rebuilds the pipeline of NLP with sequences of part-of-speech tagging,

chunking, and named entity recognition to detect name entity in Twitter text. Compared to

normal NLP pipelines, the performance of this framework increases F1 score by 25%.

The authors of [45] proposed an accurate open domain event extraction framework

with 14% increase of F1 score. This project categorizes events and presents results on a

16

calendar. The processing flow of this project is tagging the part-of-speech first, and

determining whether nouns represent events, and categorizing them.

The authors of [46] both infer the estimated geographic information by analyzing

tweet contents and metadata. The second project is implemented with Apache Storm.

Furthermore, Google Cloud Prediction [47] and Monkey Learn [48] provide RESTful

machine learning APIs of classification and clustering. The following are existing

distributed machine learning libraries:

Apache SAMOA [49, 50]: It is a data mining platform applicable to S4 [51], Storm

and Samza, which is designed for distributed stream data frameworks. Developers can

implement a machine learning algorithm once and transcribe the code to multiple stream

platforms which decreases the learning costs of building distributed machine learning

applications [52].

Trident-ML [53]: Is a distributed machine learning library based on Trident which

is “a high-level abstraction for doing real-time computing on top of Storm” [22]. Trident

decreases the volume of codes to build Storm application by encapsulating commonly used

methods but requires greater training and education on the part of developers. In terms of

natural language processing, the Trident-ML provides TF-IDF, classifier, feature extractor,

and a pre-trained Twitter sentiment classifier. However, its TF-IDF algorithm computes

TF and IDF scores in the same bolt, which cannot modify the parallelism of TF and IDF

separately [54].

StormCV [55]: StormCV is a combination of Apache Storm and OpenCV library,

which processes images and videos in distributed systems. Unlike Trident-ML, StormCV

implements all algorithms with spout and bolt programming model.

17

 Likewise, there are still many other related projects. The authors of [56] generated

network graphs of Twitter followers with python and networkx. The authors of [57]

visualized a number of tweets on maps. The authors of [58] generated panorama

information of specific topics from multiple platforms.

2.6.2. Data Visualization

Stacked graph [59] is a visualization method which presents stream data based on time

series. The graph looks like a river and is stacked with a different theme. The authors of

[60] and [61] both implemented themeriver with D3.js.

The authors of [62] proposed a visualization method called roseriver which extract

topics from Twitter text and presents them in a ranking manner. The main idea of this paper

is building a hierarchical evolution tree for each topic in real-time. The difficulty of

implementing this system is that the amount of topics on Twitter is tremendous and most

of them are not logically related.

The authors of [63] proposed a framework which visualizes the friendship between

users with network graphs and allows users to search nodes and relationships with

keywords. However once data corpus becomes enormous, the lines which represent the

relationships of each node will become untidy. To solve this problem the authors of [64]

simplified the number of lines by clustering them in groups based on the geometric

information of nodes. The authors of [65] implemented the visualization graph of

“Geometry-Based Edge Clustering” paper with d3.js.

18

2.6.3. Related Frameworks

There are two related frameworks, Kafka Connect which is applied to connect different

systems to Kafka brokers and Lambda architecture which combines distributed batch data

processing and distributed stream data processing.

2.6.3.1. Kafka Connect

Kafka Connect “is a tool for scalable and reliably streaming data between Apache Kafka

and other data systems” [66]. The structure of Kafka Connect is shown in Figure 2.3. It

officially supports the connection of JDBC and HDFS and the connectors of some

framework communities.

 Although both Kafka Connect and Kafka centric architecture use Kafka systems to

connect other systems, Kafka Connect is only responsible for transmitting data between

systems, a mere enhancement version of Kafka while complex data transformation

operations are still required to be implemented by developers. Kafka centric architecture

provides an entire solution of collecting, analyzing, visualizing social data, and more

complex algorithms such as sentiment and trend analysis. Furthermore, Kafka Connect

does not provide integration packages for Apache Storm. Kafka Connect focuses on

general data transportation, however our system focuses on natural language processing of

social network data. Besides, Kafka centric architecture is easily extended by implementing

a Kafka producer or consumer, which is easier than extending Kafka Connect.

19

Figure 2.3: Kafka Connect Framework

2.6.3.2. Lambda Architecture

Lambda architecture is proposed by Nathan Marz [67]. The purpose of this architecture is

to solve the CAP theorem which indicates that consistency, availability and partition

tolerance cannot be satisfied at the same time [68].

Lambda architecture divides system into three layers, namely serving layer, speed

layer and batch layer as Figure 2.4 shows. The speed layer is responsible for handling real-

time data and storing message in the database. The batch layer is responsible for processing

history data in batches. All results from speed and batch layer are sent to serving layer

which interacts with clients. As a result, Lambda architecture has the capacity to address

both stream and batch data. However lambda architecture requires developers to implement

processing algorithm twice, once for spout and bolt model, another for map and reduce

model. This drawback increases the costs of developing large systems dramatically [69].

20

Figure 2.4: Lambda Architecture

2.6.4. Related Products

The following lists some existing social mining tools:

1. Tweetstats: Tweetstat [70] graphically shows the daily or monthly number of

tweets from designated accounts.

2. Xefer: Xefer [71] graphically shows the behaviours of users when users post tweets

every day.

3. Twittercounter.com: Twittercounter [72] graphically shows the by line chart

4. Word cloud bot: Word cloud bot [73] generates word cloud of Twitter account

based on its tweets.

 Summary

This chapter introduced the background of social networks, text mining, distributed stream

framework, data visualization, messaging technique, deployment, and Lambda

architecture. All these techniques are taken into consideration when we formulate the

proposed solutions presented in Chapter 3.

21

Chapter 3

 Proposed Solution

This chapter describes the high level architecture of whole system and chooses suitable

tools from various options. Section 3.1 presents an overview description of high-level

architecture and three proposed frameworks. The evolutionary procedures of these

frameworks are presented in Section 3.2. Section 3.3 lists the libraries and systems which

the project involves and explains the reasoning for choosing these components.

Furthermore, the scalability, expandability, and availability are presented in Section 3.4.

Section 3.5 shows the steps of trend analysis. Finally Section 3.6 presents the solution of

deployment.

 Overview

This section presents a high-level architecture of component-based distributed social

network text mining system. As Figure 3.1 shows, the main purpose of this framework is

to provide a general component-based architecture which can extract data from social

networks, and allow users to observe visualization results with web browsers. The system

has four types of components: data collection components which collect data from social

networks, data processing components which process data and provide results to the next

component, data visualization components which present data with visualization methods

and provide the interfaces of websites to users, and data persistence components which

store data in databases and allow users to query or reuse stored data.

22

Figure 3.1: High Level Architecture

3.1.1. System Architectures

This section discusses the framework of the system. From the first simple linear

architecture to the current Kafka centric architecture, the core architecture experiences the

evolution of three architectures. Simple linear architecture and message feedback

architecture are transitional products of Kafka centric architecture. They can only be

applied to implement systems with single function. If users have more requirements, these

architectures cannot be extended to satisfy their requirements. To solve the issue of

expandability, we designed Kafka centric architecture.

As Figure 3.2 shows, the first generation architecture is called simple linear

architecture. For the first proposed solution, the architecture does not involve the concept

of component. In order to increase the diversification of options of techniques, we separate

websites which are used for visualization along with other functions and connect them with

a database, however the back-end and front-end are separated naturally. The data collection

and processing part collects and processes data, then stores them into a database,

23

furthermore the website queries data from the database then sends them to the front-end.

In general, the main feature of this architecture is that the data flow between each

component is uni-directional, which means the interactions with website do not influence

data collection and processing. In this case, users can only view but not change the results.

 As Figure 3.3 shows, compared to simple linear architecture the next generation

architecture becomes more complex. On the basis of first generation, messaging techniques

are involved to decouple data collection and data processing functions. As a result, the data

collection components can be implemented with more techniques, the combinations of data

collection and data processing become varied as well. The other feature of this architecture

is that the front-end of websites are equipped with the ability to send feedback to messaging

techniques to select data sources.

As Figure 3.4 shows, the current proposed architecture is messaging technique

centric architecture. This framework involves the concept of component formally and treats

every function as a component. The architecture is based on a cluster of messaging systems

which are the centre of the architecture. Instead of integrating both databases and

messaging techniques to connect different components, the architecture only applies

messaging techniques. However, the database functions are packed as independent

components. Specifically every component acts as both a producer and a consumer of the

messaging cluster, which means they can push data to the cluster or pull results from it.

Therefore all components can communicate with other components freely. Compared to

former models, this architecture can add components easily by integrating producers and

consumers of messaging system.

24

Figure 3.2: Simple Linear Architecture of Proposed System

Figure 3.3: Message Feedback Architecture of Proposed System

Figure 3.4: Messaging Technique Centric Architecture of Proposed System

25

 Details of Architecture

As the above figures present, all architectures contain functions of data collection,

processing, visualization and persistence. In the simple linear architecture, data collection

and processing functions are encapsulated in one sub-system of the architecture. Data

persistence functions are contained in the databases which serve to connect website, while

data visualization is implemented in the form of web page. In the message feedback

architecture, aside from the data collection and data processing functions being dissociated,

other functions are similar to the first architecture. The messaging technique centric

architecture divided four functions into different components completely. The following

are details of the four different functions:

 Data collection components: The data collection components are responsible for

collecting data from social networks. From the perspective of the single

responsibility principle, data collection components should only collect data

without any procession. However, since the transmission of data between different

machines and systems is expensive the architecture requires data collection

components to implement several simple operations. As the amount of original data

from social networks is vast, the data collection components provide operations of

filtering useless data and assembling different data fields to desired data formats.

 Data processing components: The data processing components operate to process

data and deliver it to following components. Although there is no limitation of

techniques to implement data processing, considering the scalability and the

amount of data, distributed frameworks are recommended to be applied to

implement these components. For the sake of the tasks of this architecture, data

26

processing components should implement NLP algorithms and integrate messaging

techniques.

 Data visualization components: The data visualization components act as the

platforms of presenting data results to users. In addition, these components can even

supply interactions with users. Website is a suitable form to host visualization

functions because techniques on the front-end are various and implementation of

user interaction is accessible.

 Data persistence components: The data persistence components are alternative

and not the requisite components in the system. It is responsible for storing data in

the database to accelerate the process of presenting history data. In addition, data

persistence functions can be integrated into connection or data processing

components.

 Connection components: Beside the above functional components, connection

components are important as well. When selecting techniques, the chosen should

equip features that multiple languages and clients have implementation for. The

connection components can be implemented with messaging techniques or

databases, albeit the selected techniques should have capacity of extending to

clusters to guarantee scalability.

 Scalability, Expandability, and Availability

One target of this project is to deploy a scalable, extendable, and available framework in

the Cloud. The scalability of this project can be represented in two fields, web and data

processing. With more components involved, the project can deploy more Kafka brokers

to address more messages.

27

In terms of web scalability, every client who wants to visit this website has to act

as one consumer of Kafka. Thus the scalability of website directly relies on the number of

consumers Kafka broker can host. Adjusting the number of parallelism can influence the

performance of Storm.

The expandability is guaranteed by Kafka broker as well. Every component which

involves Kafka producers or consumers can connect to the Kafka broker directly.

 The availability of data on Kafka is adjusted by changing the numbers of replication

and partition. In any distributed systems, machines may disconnect during runtime. To

ensure high availability requirements, the simplest way is adding replications of messages

and storing them in distributed machines. Thus the disconnection of one machine will not

influence the whole system.

Normally, one Storm cluster only has one nimbus, however HDInsight supports the

configuration of two nimbuses in one cluster. Although using a single nimbus may cause

one point of failure, the nimbus is designed to be stateless and fail-fast. Once the nimbus

fails, other machines still function properly and the nimbus restarts soon. Supervisors in

Storm cluster are stateless as well, once supervisors fail, the workers tied to this supervisor

will be assigned to other supervisors.

 Trend Analysis

We introduce a solution of trend analysis and the flow chart of this solution is shown in

Figure 3.5. The following are phases of analyzing the trends of tweets:

1. Analyzing the trends of Twitter account by fetching its timeline through the Twitter

API.

28

2. Fetching the content of URLs which are shared by users: Twitter’s contents are

limited to 140 characters, most tweets can hardly describe entire viewpoints.

Instead of describing ideas, users post tweets with URLs and hashtags. URLs

content describe what users want to share in detail and hashtags are keywords of

the tweet which are recognized by users.

3. Tokenizing the contents of URLs.

4. Filtering out stop-words. Besides the normal stop words, Twitter text may contain

some special stop words, such as “http”, “RT”, usernames.

5. Tagging the words left with their part of speech. In trend analysis, the noun is more

important than the adjective and verb [60]. In order to improve accuracy, the

algorithm also involves the concepts of unigrams, bigrams and trigrams. The

combinations of speech tag are listed below.

i) Unigrams: noun whose length is more than three.

ii) Bigrams: noun + noun.

iii) Trigrams: noun + noun + noun, noun + conjunction + noun.

6. Stemming, lemmatization and normalization: remove words affix and transform all

different variations of words to the canonical form. More preprocessing steps can

be found in paper [75].

7. Calculating the TF-IDF score of every gram.

8. Returning the top N grams to the data visualization component.

29

Figure 3.5: Flow Chart of Trend Analysis

30

 Summary

This chapter describes the general solution of distributed text mining system and trend

analysis in high level. The architecture consists of data collection, processing and

visualization components and equips features of both scalability, expandability, and

availability. In Chapter 4, the implementation details of proposed solution architectures are

presented.

31

Chapter 4

 Prototype Implementation

This chapter presents the details of implementation of this system. Section 4.1 presents an

overview of system file structure. Section 4.2 lists implementations of all components,

however component management details are described in Section 4.3. Furthermore,

Section 4.4 defines a unified data format for data transmission. Finally, Section 4.5 presents

the scalability and availability of the framework.

 Overview

The system file structure is shown in Figure 4.1. The folder whose name begins with storm

is the code of Storm component. Kafka-twitter-producer contains the code of Java

implementation of Kafka producer. Since all Java code is packaged in the web/jar folder,

web folder contains all necessary files of operating the system.

Figure 4.1: File Structure for Proposed System

32

4.1.1. Web Files

The full files are shown above, this sub-section describes the function of each file. The web

folder stores all web page files and packed jar files. The jar folder stores packed jar files

of data processing components. The static folder stores resources of this website that the

CSS folder stores CSS files, the js folder stores JavaScript files, the data folder stores test

data sets in CSV or TSV formats, the images folder stores images of websites, the map

folder stores map data in JSON or GeoJSON formats. Simultaneously, the template folder

contains all HTML files of web pages. The app.py is the controller of this website which

binds the HTML file with python functions, manages jar files and redirects webpages based

on the submitted forms. All dependencies of python libraries are recorded in the

requirements.txt and can be installed with python-pip tool.

 Selection of Technologies

All related techniques are listed in the background section, this section introduces the

techniques which are selected to implement the prototype and explains the reason behind

choosing these techniques. We apply Twitter APIs to collect data from Twitter website and

use Apache Kafka to connect different components. Apache Storm is utilized to implement

data processing components. We choose a light weight framework Flask to implement the

server side and integrate D3.js and Google Charts to the front-end.

The following are components which are used in the framework:

 Twitter APIs: To simplify the problem, the system only collects data from Twitter

through its public APIs. Although the public APIs of Twitter limit the data accessing rate,

the volume of fetched data can still meet the requirement.

33

Apache Kafka: Apache Kafka acts as a message queue to connect different

components. Apache Kafka is based on Zookeeper clusters, thus the availability and

scalability of Kafka are guaranteed. All data which flow through Kafka will be stored as

logs in the system, therefore it is unnecessary to involve persistent components in the

system. Kafka is formatted into Kafka spout and grouped in Apache Storm as Storm

topology’s data source. Kafka equips the ability of storing messages in replications and

partitions. With replication capacity, the transmission of messages in the project is fault-

tolerant. By taking advantages of partitions capacity, Kafka can store messages separately

and increase the parallelism of Storm spout. Compared to Redis, Kafka has a better

scalability. The structure of Redis is different than Kafka. The framework of Kafka is based

on topics which allow multiple consumers to receive messages at the same time. However

the framework of Redis is based on queues, which means the messages in queues can only

be consumed by a single client.

Apache Storm: “Apache Storm is the leading real time processing tool” [76]. In

the system, Storm is adopted to implement data processing components. Apache Storm

exploits the same programming model with Twitter Heron, which means one package can

be submitted to both Storm and Heron clusters. Storm is called real-time Hadoop, the result

can be processed and reflected to the website quickly.

Front-end is implemented with D3.js and Google Charts: As websites are

scalable and interactive, visualizing data with websites has an edge over local platforms.

Furthermore, the pre-requirement to view the visualization result is only opening browsers.

In terms of JavaScript libraries, the Google Charts provide more powerful built-in

functions; D3.js is more flexibly used to customize visualization methods.

34

Flask: The system utilizes Flask to achieve the server side of web site. Compared

to other web frameworks, Flask hosts a few web pages with fewer costs. The other reason

to use Flask is that Python provides libraries of invoking operating system commands

which are used to orchestrate components in the system. Compared to other programming

languages, the libraries of Python cover almost all fields such as system management, data

mining and machine learning, which is suitable to attach different fields together.

 System Implementation

There are implementation details of these proposed architectures and Lambda architecture.

The justifications of implementing all these architectures are explained in the challenges

and solutions Section.

 Figure 4.2 shows the implementation of simple linear architecture. Data collection

and data processing functions are implemented in the Storm topology. Redis database acts

as the connection component which connects Storm topology and Flask server. Instead of

storing data and querying data with database, the publisher and subscriber pattern of Redis

is applied, where the report bolt of Storm acts as publisher and Flask server acts as

subscriber. In this case the processed data are only stored in the memory, once the system

is interrupted, all data will be lost. Side by side, the data visualization webpages are hosted

on the Flask server. This implementation is straightforward, however it is not suitable for

expansion. Data collection methods have to be embedded in Storm topology. In order to

incorporate novel functions, the whole structure of Storm topology needs to be modified.

 As Figure 4.3 shows, the message feedback architecture is implemented with

Kafka, Storm, Redis, Cassandra, Flask, and frontend techniques. Data collection functions

are decoupled from Storm topology with Kafka, which integrates Kafka producer and

35

Twitter API. Similar to the former implementation, Redis database acts as the connection

component as well. The main difference is that website frontend can send feedback to

Kafka broker to change the behaviour of data collection. Further, Apache Cassandra is

selected to persist data.

Kafka centric architecture is the implementation of messaging technique centric

architecture. As shown in Figure 4.4, the cluster of Kafka brokers is the centre of the

architecture. For the reason that the message feedback architecture applies Redis and

Kafka, both of them are messaging techniques. To simplify the structure, the architecture

removes Redis and only employs Kafka. Besides performing data communication, Kafka

also stores data as log file on the hard disk, while Redis only stores data in the memory.

The phases of data transmission in this architecture are shorter than the message feedback

architecture, which means once machines in the second architecture suffer from power off

or failure, the data can be lost. In the current system, once data flows through Kafka

brokers, they will persist on disks. In terms of scalability, to increase the data volume the

former needs to increase the number of every connection component, while the latter only

needs to scale the Kafka clusters. The architecture is loose coupled, which means the

extended function can be easily added. The system aims to provide a dynamic social mining

solution which grants users the ability to change the entire topology when project is

running. However Storm cannot dynamically change its topology once topology is updated

to clusters, the topology cannot be altered. To solve this problem, the system treats every

Storm topology as a basic processing unit and connects them with Kafka brokers. In order

to connect different topologies and other components, the Storm topology has to specify

unified data formats as well. The functions of this system are listed in as following:

36

1. Generating analysis of trends of specific Twitter accounts.

2. Mining information of real-time Twitter data.

3. Visualizing data with different graph formats, including line graph, pie chart, bar

chart, map, word cloud.

4. Integrating any components which implement Kafka producer or consumer.

5. Increasing scale by increasing the number of Kafka brokers

6. Storing data in Kafka brokers as logs.

7. Customizing Storm topologies.

Every function is encapsulated as one component and every component is

connected to the Kafka broker. There are 3 types of components in the system, data

collection components which collect real-time data or query results from social networks,

data processing components which process NLP tasks concurrently, data visualization

components which present analysis results in pie charts, bar charts, word clouds and maps.

 Figure 4.5 shows the implementation of Lambda architecture. The speed layer is

implemented with Apache Storm which provides real-time analysis results and stores

processed results into Cassandra databases, however the batch layer is implemented with

Hadoop and Hive. The HDFS loads history data from Cassandra to distributed file system

while Hive provides data query interfaces. The server layer provides user interfaces which

are similar to the data visualization components in above architectures. The main drawback

of Lambda architecture is that developers need to implement the same algorithm twice,

both in Storm and Hadoop frameworks.

37

Figure 4.2: Implementation of Simple Linear Architecture

Figure 4.3: Implementation of Message Feedback Architecture

38

Figure 4.4: Kafka Centric Architecture

39

Figure 4.5: Implementation of Lambda Architecture

 Component Implementation

The following section presents the details of every component in the Kafka centric system,

including data collection components, data processing components, and data visualization

components.

4.4.1. Data Collection Components

With Twitter APIs, developers can only access 1% of public Twitter data. Twitter also

formulates rules of rate limits to restrict the handling of APIs. Twitter APIs utilize 15

40

minute windows to judge whether an application exceeds rate limits. Normally Twitter

APIs authorize 180 queries in 15 minute time ranges, albeit for some expensive request,

the rate limits are controlled within 15 queries per 15-minute windows [77]. Twitter status

is the basic entity of Twitter message object, the system extracts five fields from it, namely

tweet content which may contain URL, hashtags, mentioned user, whether it is retweeted,

text, and emoji, screen name which is the account ID of user and is unique, created time

which indicates when this message is made, geographic information including latitude and

longitude, country code which is formatted in ISO alpha-2. The reason why we do not use

country name is that sometimes country name may change by location, for example, the

country name of Japan may become Japanese characters.

The system involves Twitter API implementations of Java version which is called

Twitter4j and Python version which is called Tweepy. The usages and functions of these

two libraries are almost the same, while their performance and accuracy are slightly

difference, as discussed in Chapter 5.

To increase the varieties of data collection methods, the following are several

implementations. In the Twitter API, there some useful parameters, count which indicates

the number of tweets, unti which filters tweets created before given data, lang which filters

tweets with given language, geocode which filters tweets within given area, q which

indicates the contents of query string.

All implemented data collection components are listed as follow:

 Real-time Data Collection Component: Real-time data is most valuable in

Twitter. Real-time data collection component collect real-time data by a Twitter

41

stream listener and extracts desired information from Twitter statuses, then merges

all information into one message.

 User Timeline Collection Component: According to the screen name input by

users, user timeline collection component acquires all tweets in the timeline of this

account and produces messages to Kafka clusters.

 Text Query Collection Component: By calling search APIs of Tweepy, text query

collection component collects related tweets of input text and produces messages

to Kafka clusters.

 Favourite List Collection Component: Based on input account name, favourite

list collection component collects all tweets in user’s favourite list and sends them

to Kafka brokers.

4.4.2. Data Processing Components

Twitter data is up-to-date and informative, however it includes lots of fragments and noise.

Before processing Twitter data, the project has to filter and clean the data first. In this

project, we chose Apache Storm framework to implement data processing components and

manipulate Maven to package Java files.

To guarantee the connectivity of topologies, every topology uses a Kafka spout as

data source which consumes data from Kafka broker, and outputs processed data with

Kafka producer. The project only involves three types of grouping methods, shuffle

grouping, fields grouping, and global grouping. The definitions of these three grouping

methods are introduced in the background section.

42

4.4.2.1. Sentiment Topology

The sentiment topology can process data from Twitter directly and generate personal and

country sentiment. The personal sentiment is generated by classifying tweets contents,

while country sentiment is calculated by counting average values of personal sentiments in

the same country.

Tweets contain text, emoticons, emoji, URLs, hashtags, and punctuations. Among

them, only text, emoticons, emojis, and exclamation points contribute to sentiment

classification. The topology handles extractor of Twitter library to remove irrelevant

content and keep related ones.

This topology applies Stanford NLP library to classify the content of tweets into

different sentiments. The project manages its pipeline with “annotator”, “tokenize”,

“ssplit”, “parse”, and “sentiment” operators. Emoticons are matched by regular expression.

Owing to that emojis are images, there are no rules of detecting the sentiments of emojis.

The system assists the list of emoji classification of Udacity’s code [78] to categorize

emojis in tweets manually. Exclamation can enhance the extent of emotion, thus the project

deduces that exclamation can increase level of sentiment.

The project stipulates five categories of sentiment, namely very unhappy,

unhappy, neutral, happy, and very happy, and represents them with five numbers from

0 to four respectively.

 The structure of sentiment analysis topology is shown in Figure 4.6. The

following are details of its bolts, input and output:

 Input: The inputs of this topology are basic Twitter contents. The country

sentiment function only works for tweets which have country code.

43

 Output: The outputs are messages which end with personal sentiment and

country sentiment.

 Sentiment Bolt: The sentiment bolt adopts the pipeline of Stanford NLP library

to analyze the sentiment of the tweet message.

 Regex Bolt: The regex bolt matches emoticons and emojis with regular

expression and emoji classification lists.

 Count Bolt: The count bolt handles a distributed word count method to

calculate the average sentiment of countries.

Figure 4.6: Storm Sentiment Analysis Topology

4.4.2.2. TF-IDF Topology

This topology implements a distributed version of TF-IDF algorithm. As mentioned in the

background section, there are three values that should be collected to calculate the value of

TF-IDF. Although storing intermediate results in the database is much easier, in order to

increase speed the project keeps all data in the memory. On the grounds that TF-IDF

function is important for documents and tweets are really short, the project only applies

TF-IDF function on documents which are linked by URLs in tweets.

 The structure of TF-IDF topology is shown in Figure 4.7. The following are

details of its bolts, input and output:

 Input: The inputs of this topology are original Twitter messages.

 Output: The outputs are key-value pairs of TF-IDF score.

44

 Document Fetch Bolt: The document fetch bolt extracts web page contents

through URL within tweets. The main library is Apache Tika which can

incorporate a variety of formats.

 Tokenize Bolt: The tokenize bolt converts the document contents to words.

 DfCount Bolt: The dfcount bolt calculates df values.

 TfCount Bolt: The tfCount bolt calculates tf values.

 Tfidf Bolt: The tfidf bolt converge the result of dfCount bolt and tfCount bolt

to generate TF-IDF score of each word.

Figure 4.7: Storm TF-IDF Topology

4.4.2.3. Top N Topology

This component implements the algorithm of ranking keys by their values and returns top

n keys. By reason that all processed tuples will be aggregated to the Kafka producer bolt,

the parallelism of the final bolt would be 1. In order to increase the number of parallelism,

the topology adds an intermediate ranking bolt which processes tuples first and then gathers

them to a total ranking bolt. The structure of top n topology is shown in Figure 4.8. The

following are details of its bolts, input and output:

45

 Input: The inputs of this topology can be any key-value pairs or messages

containing key-value pairs.

 Output: The outputs are top n key-value pairs.

 Parse Bolt: The parse bolt converts string data to sortable objects which are

easily processed by ranking algorithm.

 Intermediate Ranking Bolt: The intermediate ranking bolt increases the

degree of parallelism of ranking algorithm.

 Total Ranking Bolt: The total ranking bolt converges all results of

Intermediate Ranking Bolt and sends result to Kafka producer.

Figure 4.8: Storm Top N Topology

4.4.2.4. Word Count Topology

The word count is the “hello world” level algorithm in distributed systems. The structure

of this topology is similar to MapReduce, because the splitter bolt can be treated as Map

function which applies split function on each tuple and count bolt can be treated as Reduce

function which gathers all count of keywords.

 The structure of word count topology is shown in Figure 4.9. The following are

details of its bolts, input and output:

 Input: The inputs of this topology are basic Twitter messages.

 Output: The outputs are Key-value pairs.

 Splitter Bolt: The splitter bolt converts tweet contents to word.

46

 Count Bolt: The count bolt calculates the number of each word.

Figure 4.9: Storm Word Count Topology

4.4.2.5 Trend Analysis

Trend analysis topology is the most complex topology in this project, it is comprised of

two components. The structure of word count topology is shown in Figure 4.10. As Figure

4.11 shows, if tfidf topology or word count topology are treated as upstream and top n

topology is connected as downstream, there are two types of trend analysis topologies. The

following are bolts which comprise trend analysis and their functions are similar to the

bolts in tfidf and top n topologies.

 The following are details of its bolts, input and output:

 Input: The inputs of this topology are basic Twitter messages.

 Output: The outputs are key-value pairs.

 Document Fetch Bolt: The document fetch bolt extracts web page contents

through URL within tweets.

 Tokenize Bolt: The tokenize bolt converts the document contents to words

 DfCount Bolt: The dfCount bolt calculates df values.

 TfCount Bolt: The tfCount bolt calculates tf values.

 Tfidf Bolt: The tfidf bolt converges the result of dfCount bolt and tfCount bolt

to generate TF-IDF score of each word.

47

 Intermediate Ranking Bolt: The intermediate ranking bolt increases the

degree of parallelism of ranking algorithm.

 Total Ranking Bolt: The total ranking bolt converges all results of

intermediate ranking bolt and sends results to a Kafka producer.

Figure 4.10: Trend Analysis

Figure 4.11: Trend Analysis with Components

4.4.3. Data Visualization Components

Data visualization components are implemented by D3.js and Google Charts. D3.js allows

users to build visualization by themselves. Google Charts: To use Google Charts,

developers only need to assign data set to the x-axis and y-axis. Google Charts provides

48

function arrayToDataTable which can convert array to the desired visualization format.

Compared to Google Charts, Baidu Echarts needed developers to separate data and assign

it to x-axis and y-axis. In terms of map visualization, Echarts only provide Chinese map,

which cannot satisfy the requirements of this project. The data of this project is sent from

the server continuously.

To address real-time data, there are four options: polling, long polling, WebSocket

and Server-Sent Event. Polling and long polling are techniques that the client side sends

requests to the server side periodically. They are the easiest to implement, even though

they are costly. WebSocket and Server-Sent Event (SSE) are more popular, in which

WebSocket allows both clients and servers to send messages to each other, while SSE, as

its name shows, is only responsible for sending messages from the server side to the client

side. For only the server side to send data to the front-end periodically, the project exploits

SSE to update stream data, which only need to set Content-Type to text/event-stream in

HTTP header. In order to update data on graphs, the website checks whether data updated

every second with window.setInterval function. The following are visualization

components.

 Map: The map component is implemented by d3.js. JavaScript code check stream

data update periodically.

 Word cloud: The word cloud is implemented by d3.js as well. The visualization

function only needs key and value. The key will be presented on the screen and

value decides the font size of key. The positions and angles of words are randomly

assigned by algorithm. Word cloud library [79] is used in the project.

 Pie chart: The pie chart is implemented with Google Chart

49

 Bar chart: The bar chart is implemented with Google Chart

4.4.4. Data Persistence Components

Data persistence is an option in the project. As Kafka brokers store all messages as logs,

there is no need to implement additional data persistence components.

 Component Management

As mentioned in the data visualization section, webpages are the manifestation of data

visualization, whereas its server side is responsible for managing components. By

submitting selection forms, users request back-end calling corresponding components. In

the index page, users can customize data collection, data processing, and data visualization

components. Specifically, users can combine several Storm topologies into one data

processing component.

To manipulate components, Python’s subprocess module is involved. The project

runs data collection and data processing components in the system background with

function Popen of module subprocess [80]. The process IDs of component threads are

stored in global variables, once users call function clear_threads, the threads will be

terminated [81].

50

Figure 4.12: Web Page Flow Chart

51

 Data Format

In order to allow data processing components to be connected freely, this project defines a

general data format. In the system, data can only be transformed with single string in

Apache Kafka, every message is a string. The system defines two types of messages, the

first type is shown in Table 4.1, it contains at least 5 fields, and “DELIMITER” is used as

separator of each data field. The first five fields are fixed: tweet contents, screen names,

created time, latitude and longitude, and country codes. If corresponding data are not

available, it will be set as “n/a”. Other fields will be added after in sequence. Furthermore,

the second type consists of only two fields and fields are split with ‘|’, as Table 4.2 shows.

Table 4.1: Type 1 Message String

Tweet

Content

Screen

Name

Created

Time

Latitude,

Longitude

Country Code

(ISO alpha-3)

Sentiment

Value

Table 4.2: Type 2 Message String

Keyword Value

 Challenges and Solutions

Since the system involves several different technologies, integrating all technologies is the

main challenge. The system involves web servers, data crawlers, and distributed

frameworks which should be managed reasonably. We solve this problem by integrating

all technologies with Kafka and treat Kafka brokers as the centre of the whole system. The

functions of the entire system should be divided into reasonable pieces, depending on the

size of the component the system will be more flexible but more expensive. Every

52

component is integrated with Kafka. Different components communicate with other

components by indicating the same topic of Kafka. They are connected by message

transmission. In order to allow components to transmit messages universally, we define a

unified data form which allows messages to be processed properly in different components.

 The other challenge is that the architecture of the system should be modified with

an increase in the complexity of system requirements. In the process of designing the

system, we improve the structure of the system step by step. At first, we only want to

implement a single system which can analyze the sentiment of real-time tweets. Thus, the

simple linear architecture is implemented with Storm, Redis, Flask, and D3.js. However,

this system only allows users to receive passive analysis results. In order to increase the

interactivity of the system, we propose message feedback architecture which allows users

to control the behaviours of data collection function. At this time, Kafka is integrated into

the system. When the data analysis requirements increase, data processing and data

collecting components become too complex to modify. Therefore, we decouple the

functions into different components and connect them to compose an entire system. As a

result, we implement the Kafka centric architecture. We also implement Lambda

architecture with Hadoop, Storm, and Kafka. The reason is that Lambda architecture is a

combination of batch processing and stream processing architectures, we employ it to

improve the functionality of Kafka centric architecture

 Summary

This chapter describes the details of the implementation of component-based distributed

text mining system. Data collection components are implemented with Tweepy library and

integrated with Kafka producer, data processing components which contain Kafka

53

producer and consumer are implemented with Apache Storm, and data visualization

components are implemented with D3.js or Google Charts. All components are managed

with index web page. To simplify the data processing steps and decrease the volume of

data which should be transmitted, the system accepts two types of message strings.

Experiments, evaluation and results are presented in Chapter 5.

54

Chapter 5

 Evaluation and Results

This chapter presents evaluation results of this component-based distributed text mining

system. Section 5.1 presents the environments of experiments and evaluation, in local and

cloud. The deployment methods are presented in Section 5.2. Section 5.3 evaluates the

throughput of Twitter Stream APIs based on Tweepy and Twitter4j. In Section 5.4,

scalability of the system is evaluated by testing the performance of data processing

components, availability is evaluated in Section 5.5. Finally, several cases are studied in

Section 5.6.

 Testing Environment

All experiments are deployed with local virtual machines or cloud computing platforms.

To run the system locally, we apply Vagrant [82] and VirtualBox [83] to host virtual

machines of Ubuntu 14.04. In the cloud, we chose AWS EC2 as the cloud computing

platform to build the cluster of Ubuntu machines.

5.1.1. Vagrant and VirtualBox

The project engages Vagrant and VirtualBox to deploy the local experimental environment.

Vagrant is a virtual machine management tool and VirtualBox is a virtualization product.

The project exploits synced folder which shares folders between the host and client

55

machine, and forwarded port which map host port to guest port with aid from Vagrant.

Table 5.1 shows the configuration file of virtual machine.

Table 5.1: Configuration File of Vagrant with Comments

Vagrant.configure(2) do |config|

 # indicates used image

 config.vm.box = "ubuntu/trusty64"

 # forward guest port 5000, 8080 to host port 5000, 8080

 config.vm.network "forwarded_port", guest: 5000, host: 5000

 config.vm.network "forwarded_port", guest: 8080, host: 8080

 # indicates shared folder, defaultly, the guest /vagrant folder map with the root folder of

vagrantfile

 config.vm.synced_folder "../data", "/vagrant_data"

 # set the memory size, default as 1024 MB

 config.vm.provider "virtualbox" do |vb|

 vb.memory = "2048"

 end

end

5.1.2. AWS EC2

Both AWS EC2 and Azure HDInsight can be used to host servers in the cloud. Although

HDInsight provides automatic configuration, since HDInsight restricts the version of

Storm and Kafka, we use AWS EC2 to host clusters in the cloud. Furthermore, the cluster

of HDInsight is based on Apache Ambari [84] which takes at least 8 gigabytes of memory

per machine. In the experiments, the system deploys three machines to build the cluster.

These machines should be in the same local area network. The details of virtual machines

on AWS EC2 are listed in Table 5.2. Due to the limitation of AWS free tier, the system

can only apply t2.micro type instance whose details are listed in the Table 5.3. The

following is the table of details of cluster.

56

Table 5.2: Details of Cluster

Hostname Private IP

Address

Operating

System

Character Instance

Type

stormnode1 172.31.22.225 Ubuntu 14.04

TLS

Nimbus/ZooKeeper t2.micro

stormnode2 172.31.24.92 Ubuntu 14.04

TLS

Supervisor/ZooKeeper t2.micro

stormnode3 172.31.25.230 Ubuntu 14.04

TLS

Supervisor/ZooKeeper t2.micro

Table 5.3: Details of t2.micro

Instance Type Images vCPU Memory Size Instance Storage

t2.micro Ubuntu 1 1 GB EBS

 Deployment

To centrally manage all packages, ZooKeeper, Storm and Kafka are installed in the folder

/opt. Section 5.2.1 has listed methods of installation of main dependencies, coupled with

more details listed in Appendix A. The deployments of ZooKeeper, Storm and Kafka are

more complex, thus deployments are described in detail in separate sections. Moreover,

their configuration files are presented in Appendix B.

5.2.1. Single Machine

To build the system with a single machine, there is no need to change the network

configuration of machines. Both Kafka and Storm can be run in standalone mode. In the

standalone mode, it is unnecessary to change any configuration files. In this project, we

apply Vagrant to manage virtual machine. Table 5.4 shows the basic information of virtual

machine.

57

The following are steps of installing dependencies of this project:

1. Installing JDK: As long as JDK is the basic dependency of all Java programs,

the project is built based upon JDK 1.7.

2. Installing Maven: “Apache Maven is a software project management and

comprehension tool” [85]. Instead of keeping Java libraries locally, the system

uses Apache Maven to manage the dependencies of Java which are declared in

the pom.xml file.

3. Installing Python dependencies: All python dependencies are listed in the

requirements.txt file and can be installed with python pip tool.

4. Installing ZooKeeper and setting configurations: Both clusters of Storm and

Kafka are based upon ZooKeeper. We install Zookeeper by downloading

ZooKeeper package from website [86] and unzipping it.

5. Downloading Kafka and Storm packages: To download Kafka and Storm

software, we just download packages [87, 88] and unzip them.

Table 5.4: System Information of Single Machine

OS version vCPU Memory

Ubuntu 14.04 LTS 6 2048 MB

 Server Configuration

Before setting distributed cluster, it is necessary to configure servers first. To decrease the

difficulties of debugging, we map hostname to IP address. When client first consult the

name of the machine, it will consult /etc/hosts first. If the client does receive results, it will

send queries to DNS server. Thus, in this project we save the hostnames and map them

58

with their private IP address. Additionally, the hostnames can be mapped with their public

IP address, however the instance of AWS EC2 will change its public IP address when it

restarts.

5.2.2. Deployment of ZooKeeper Cluster

ZooKeeper is the basis of both Kafka and Storm, thus building ZooKeeper cluster is the

first phase. Every ZooKeeper server is a thread on machines and there is no restriction to

how many ZooKeeper clusters can be run on the same machine. Standalone mode is a

special case which runs all ZooKeeper threads on a single machine. However, every

ZooKeeper matches with one configuration file and one dataDir which stores data and logs

of the ZooKeeper server. Normally, to decrease the loads of ZooKeeper log files are stored

in the path of dataLogDir separately. Considering Zookeeper cluster is available when half

of Zookeeper servers are available, ZooKeeper cluster is built upon odd number of

ZooKeeper servers. Furthermore, configuration files are defined in Appendix B. The

following are steps of deploying ZooKeeper:

1. Configuring hostnames by mapping private IP addresses with hostnames in

/etc/hosts file, then testing the connectivity of nodes by pinging hostname.

2. Downloading and extracting ZooKeeper package to specified folder

3. Modifying configuration file, zoo.cfg.

4. Building myid file under dataDir’s folder.

5. Setting environment variables.

59

5.2.3. Building Storm Cluster

To configure Storm, only storm.yaml should be changed. Details are presented in Appendix

B3. In the configuration file, IP addresses or hostnames of ZooKeeper servers and

nimbuses of Storm should be indicted. If ZooKeeper uses default port 2888, there is no

need to indicate port of ZooKeeper servers. Otherwise, Storm needs to indicate port

number. Aside from nimbuses, other ZooKeeper servers can be supervisors. By default,

each supervisor has four ports, 6700, 6701, 6702, and 6703, which means each supervisor

can run four workers. More details about Storm configuration are presented in Appendix

C.

For the sake that ZooKeeper cluster is the basis of Storm cluster, the ZooKeeper

servers should run first. ZooKeeper clients are integrated into Storm. To run ZooKeeper,

zkServer.sh is the shell script which can be used to start, stop, or check status of ZooKeeper

threads. Once cluster runs zookeeper thread, zookeeper will elect a leader and followers.

The followers are Storm commands：

 storm nimbus: ‘storm nimbus’ runs Storm nimbus thread.

 storm supervisor: ‘storm supervisor’ command runs Storm supervisor thread.

 storm ui: ‘storm ui’ command runs Storm UI on http://localhost:8080, in default.

 storm jar: ‘storm jar’ command submits jar package to Storm clusters.

5.2.4. Building Kafka Cluster

Similar to Apache Storm, the cluster of Kafka is based on ZooKeeper cluster as well. A

single ZooKeeper cluster can run multiple Kafka brokers. There is no restriction on the

physical location of Kafka brokers, Kafka brokers can be invoked on ZooKeeper servers

60

or remote machines. In contrast to the deployment of ZooKeeper and Storm, running Kafka

servers only need to configure the server.properties to replace the line of zookeeper.connect

with designated Zookeeper server list. Furthermore, it is possible to run multiple Kafka

servers with the creation of multiple server.properties files. Additionally, more details and

comments of configuration items can be found in the Appendix D.

 Twitter Stream Throughput Evaluation

We evaluate the rates of Twitter stream, namely how many messages can be received from

Twitter. To design the experiment, we select two libraries of Twitter API, Twitter4J and

Tweepy. As mentioned before, all data collection components integrate Twitter libraries

with Kafka producer, thus the project handles a simple Kafka consumer to count the

number of messages.

 We evaluate the efficiency of Twitter APIs by calculating the number of messages

which are fetched within 1 minute and 5 minutes respectively. The results are presented in

Figure 5.1, which indicates that Twitter4J can fetch more Twitter messages than Tweepy

within the same period, while Tweepy can more easily acquire messages with geographic

information. There are two methods of retrieving tweets which contain geographic

information and country name. The first one is filtering messages containing geographic

information from all received messages. The other is listening to the Twitter stream with

location filter directly. Due to the fact that the location filter of Twitter4j does not work

properly, the evaluation of Twitter4j applies the first method. As a result, the first method

can only fetch few messages. However, Tweepy practices the second method and receives

more than 300 messages per minute.

61

 In the system, geographic information is important for data visualizations which

require the locations of the messages, such as map visualization. Although, Twitter4J API

can collect more generic tweets than Tweepy, the performance of its geographic

information collection is abysmal, we deploy Tweepy API in the system to collect data.

 The second experiment calculates the connection time of these APIs. As Figure 5.2

shows, the connection time of Twitter4J is more than twice that of Tweepy. The shorter

connection time means better connectivity of the API. It is obvious that Tweepy connects

to Twitter faster.

Figure 5.1: Number of Messages Received By Twitter4J and Tweepy

Twitter4J (Without
Restriction)

Tweepy (Without
Restriction)

Twitter4J (With Geo
Information)

Tweepy (With Geo
Information)

Test 1 14133 5847 40 1414

Test 2 13996 5777 48 1310

Test 3 13505 6108 28 1464

Average 13878 5910 38 1396

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

er
 o

f
M

es
sa

ge
s

in
 5

 M
in

s

Libraries

Number of Messages Received By Twitter4J and Tweepy

Test 1 Test 2 Test 3 Average

62

Figure 5.2: Connection Time of Twitter4J and Tweepy

 Scalability of Data Processing Components

We evaluate the scalability of data processing components by modifying the number of

worker threads of data processing components.

5.4.1. Evaluation of Sentiment Component

To simplify the evaluation process, the parallelism of every bolt will not be modified, while

the results are evaluated by changing the number of workers and virtual CPU. At first, by

analyzing the first two results, increasing the number of workers leads to the decrease of

output rates. The main reason is that a single CPU cannot support multiple worker threads,

in which one worker thread needs at least 120% usage of one core. In order to achieve more

Twitter4J Tweepy

Test 1 8.16852 3.04486

Test 2 7.39131 2.85479

Test 3 8.25763 2.67665

Average 7.93915 2.85877

0

1

2

3

4

5

6

7

8

9

C
o

n
n

ec
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

Libraries

Connection Time of Twitter4J and Tweepy

Test 1 Test 2 Test 3 Average

63

accurate results, the number of CPUs should be controlled 1.2 times beyond the number of

workers.

Figure 5.3: Evaluation Results of Sentiment Component

 As the results in Figure 5.3 show, raising the number of workers increases the

performance of sentiment component dramatically. When the number of virtual CPUs

cannot satisfy the computing requirements of the component, increasing number of

workers cannot enhance the performance of the component, it may even decrease the

number of output messages. For example, comparing the first two rows of Figure 5.3, the

1 Worker 1
vCPU

10 Workers 1
vCPU

1 Worker 4
vCPUs

2 Workers 4
vCPUs

3 Workers 6
vCPUs

4 Workers 6
vCPUs

Test 1 581 311 557 1235 1607 1661

Test 2 609 369 848 1136 1293 1546

Test 3 584 430 788 1012 1335 1693

Test 4 568 388 789 1222 1523 1695

Test 5 604 411 760 1315 1513 1676

Average 589 381 748 1184 1454 1654

0

200

400

600

800

1000

1200

1400

1600

1800

N
u

m
b

er
 o

f
O

u
tp

u
t

M
es

sa
ge

s
(E

ve
ry

 M
in

u
te

)

Number of Workers and vCPUs

Evaluation Results of Sentiment Component

Test 1 Test 2 Test 3 Test 4 Test 5 Average

64

number of workers is added from 1 to 10, the average outputs decrease from 589 to 381

messages per minute. By comparing the first row to the third row, which keeps the same

workers and increases the number of virtual CPUs, the average message output increases

from 589 to 748. We can conclude that one virtual CPU cannot cover the computing

resources of one Storm sentiment worker. In the third and fourth row, we increase the

number of workers, with 4 virtual CPUs, the average output increases from 748 to 1184

per minute. Likewise, in rows five and six, with 6 virtual CPUs, increasing worker number

raises the output from 1454 to 1654 per minute. When computing resources are adequate,

increasing the number of workers leads to increased output as well. As the system applies

Tweepy to collect data, whose average data fetching rate is 1071 messages per minute, our

system can completely process all collected messages, with more than 4 virtual CPUs and

2 worker threads.

5.4.2. Evaluation of Word Count Component

The word count calculation is a simple task which does not involve complex calculations.

With the environment of six virtual cores, applying more worker threads does not bring

better performance, even diminishing the number of output messages.

 In Figure 5.4, the number of virtual CPUs is fixed at 6, however, with the number

of workers increasing, the average output decreases from 8517 to 3131 messages every

minute. Thus we assume that the word count algorithm only fits the single thread

environment. To demonstrate this assumption, we constructed another experiment which

manipulated the parallelism of each bolt or spout.

 As Table 5.5 presents, all the results are evaluated with three worker threads, in

which the parallelism numbers correspond to Kafka spout, word split bolt, word count bolt,

65

report bolt, in sequence. By adjusting the number of parallelism of word split and word

count bolt, the performance of word count component reaches the peak when all bolts run

with a single thread. It is easy to conclude that the word count algorithm performs best with

a single thread.

 We can conclude that the word count component can process all real-time data with

one worker thread.

Figure 5.4: Evaluation Results of Word Count Component (1)

1 Worker 6 vCPUs 2 Workers 6 vCPUs 3 Workers 6 vCPUs 4 Workers 6 vCPUs

Test 1 7510 4745 3538 2773

Test 2 8333 5056 4065 3049

Test 3 8861 5474 4427 3052

Test 4 9660 5378 4530 3500

Test 5 8224 5195 3968 3285

Average 8517 5169 4105 3131

0

2000

4000

6000

8000

10000

12000

N
u

m
b

er
 o

f
O

u
tp

u
t

M
es

sa
ge

s
(E

ve
ry

 M
in

u
te

)

Number of Workers and vCPUs

Evaluation Results of Word Count Component

Test 1 Test 2 Test 3 Test 4 Test 5 Average

66

Table 5.5: Evaluation Results of Word Count Component (2)

Number

of

Worker

s

vCPU Parallelism of

Bolts and Spout

Number of Output Messages (Every

Minute)

Test

1

Test

2

Test

3

Test

4

Test

5

AVG

3 6 1 1 1 1 6131 6877 8531 7590 7836 7393

3 6 1 1 10 1 4455 4721 4524 5201 4272 4634

3 6 1 10 1 1 4014 4746 4877 5614 5350 4920

5.4.3. Evaluation of Trend Analysis Component

Figure 5.5: Evaluation of Trend Analysis Component

Due to the implementation of trend analysis which returns top 20 results each time and

only updates at most 10 results every second, the evaluation results of trend analysis would

be multiples of 20 and around 600. Therefore, changing the number of workers will not

1 Worker 6 vCPUs 2 Workers 6 vCPUs 3 Workers 6 vCPUs 4 Workers 6 vCPUs

Test 1 500 560 560 600

Test 2 540 540 540 540

Test 3 540 520 540 580

Test 4 540 540 540 560

Test 5 540 540 540 580

Average 532 540 540 572

440

460

480

500

520

540

560

580

600

620

N
u

m
b

er
 o

f
O

u
tp

u
t

M
es

sa
ge

s
(E

ve
ry

 M
in

u
te

)

Number of Workers and vCPUs

Evaluation of Trend Analysis Component

Test 1 Test 2 Test 3 Test 4 Test 5 Average

67

influence the output rate of trend analysis topology. In Figure 5.5, the number of workers

increases with the number of experiments. However, the output of each experiment is

almost the same. Thus the results of Figure 5.5 demonstrate that the output rates of trend

analysis are not influenced by the number of workers.

5.4.4. Evaluation of TF-IDF

Figure 5.6: Evaluation of TF-IDF Component

As mentioned in the implementation chapter, TF-IDF component is a part of trend analysis

component. It extracts messages from the URLs of tweets and generates the TF-IDF score

of each word, thus its output depends on the content of URLs. If the webpage contents of

1 Worker 6 vCPUs 2 Workers 6 vCPUs 3 Workers 6 vCPUs 1 Worker 6 vCPUs

Test 1 1598 2634 4443 3560

Test 2 1931 1463 6138 6102

Test 3 92 2158 4351 4248

Test 4 734 4347 3612 5696

Test 5 1051 2498 4022 6270

Average 1081 2620 4513 5175

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

er
 o

f
O

u
tp

u
t

M
es

sa
ge

s
(E

ve
ry

 M
in

u
te

)

Number of Workers and vCPUs

Evaluation of TF-IDF Component

Test 1 Test 2 Test 3 Test 4 Test 5 Average

68

URLs are longer, the size of output messages will be larger. Thus, the results of TF-IDF

component are not stable. In the first row of Figure 5.6, the result of test 3 is 92, which

means there are few contents in this test. By analyzing the average results of Figure 5.6, it

is easy to conclude that with the increase in number of workers, the number of output

messages raises as well. The TF-IDF component can be scaled up by adding more worker

threads to address more data.

 Availability

We designed two experiments to test the availability of Apache Kafka and Apache Storm.

As a result of the visualization website being built upon the clusters of Kafka and Storm,

if both Kafka and Storm equip high availability, the website is highly available as well.

5.5.1. Availability of Kafka

In the experiment, we prepare four machines containing three ZooKeeper servers and one

Kafka server. With this experiment, we can conclude that the availability of Kafka is based

on ZooKeeper cluster, when more than half of ZooKeeper machines disconnect, the Kafka

broker will disconnect as well. In order to guarantee the availability of Kafka, it is

necessary to increase the number of machines in ZooKeeper clusters. The following are

steps of experiment:

1. Getting root authority and active environment variable.

2. Running zkServer.sh script to start ZooKeeper threads on all ZooKeeper servers.

3. Checking status of ZooKeeper servers: Command ‘zkServer.sh status’ is used to

check the status of Zookeeper server. As Figure 5.7, 5.8 and 5.9 display, node1 and

node 3 are followers, while node 2 is the leader.

69

4. Checking whether machine that hosts Kafka server can connect to three ZooKeeper

machines: In Figure 5.10, we use ping command to test the connection between

three machines.

5. Configuring server.properties file: only change line ‘zookeeper.connect’ as

following,‘zookeeper.connect=stormnode1:2181,stormnode2:2181,stormnode3:2

181’.

6. Using tmux to open multiple console on the machine hosting Kafka server

7. Running Kafka broker to connect ZooKeeper cluster

8. Running Kafka console consumer and producer to check the connection

9. Stopping one ZooKeeper server: at this time, as Figure 5.11 shows, the consumer

and producer can still communicate.

10. Stopping one more ZooKeeper server: As Figure 5.12 shows, the consumer loses

connection to ZooKeeper cluster.

11. Restarting one ZooKeeper server: Kafka consumer becomes available again.

Figure 5.7: Stormnode1 Screen Shot

70

Figure 5.8: Stormnode2 Screen Shot

Figure 5.9: Stormnode3 Screen Shot

Figure 5.10: Checking Connection of Three ZooKeeper servers

71

Figure 5.11: Kafka Consumer and Producer, When Closing one ZooKeeper Server

Figure 5.12: Kafka Consumer and Producer, When Closing Two ZooKeeper Server

5.5.2. Availability of Storm

In this experiment, we launch three machines installed with ZooKeeper and Storm. Since

the nimbus node does not interact with ZooKeeper while supervisor connects to ZooKeeper

cluster. Therefore in this experiment, availability of supervisor of Storm is examined. By

analyzing the results of this experiment, we can conclude that the availability of Storm

cluster relies on ZooKeeper clusters. All Storm supervisors connect to one ZooKeeper

cluster. If more than half of ZooKeeper machines disconnect, all Storm supervisors threads

will disconnect at the same time. However, the nimbus node of Storm is not influenced by

72

ZooKeeper clusters. The steps of starting ZooKeeper servers are the same as the former

experiment:

1. Running nimbus on stormnode1 and supervisor threads on stormnode2 and

stormnode3, and then checking background threads with jps command. As Figure

5.13 and 5.14 show, the core thread is the Storm UI, the nimbus thread runs the

Storm nimbus, QuorumPeerMain is the thread of ZooKeeper, and supervisor is the

thread of Storm supervisor.

2. Stopping one ZooKeeper thread and checking the Storm UI on the port 8080.

Finding that there are still two supervisors, as Figure 5.15 shows.

3. Stopping one more ZooKeeper thread and checking Storm UI again. The result is

shown as Figure 5.16.

4. Restarting ZooKeeper threads. The supervisor will become available again.

Figure 5.13: The Screen Shot of Storm Nimbus Machine

Figure 5.14: The Screen Shot of Storm supervisor Machine

73

Figure 5.15: Storm UI with Two ZooKeeper Servers

Figure 5.16: Storm UI with One ZooKeeper Server

 Use Cases

We present the use cases of sentiment analysis and word cloud. The index page of website

is shown in Figure 5.17, the options of each selection column corresponds to the flow chart

of web page.

Figure 5.17: Web Index Page

74

5.6.1. Sentiment Analysis of Real-time Twitter Messages

Figure 5.18: Sentiment Map Visualization

After launching the application, users can visit the website by entering the public IP of the

machine. By choosing real-time tweets, sentiment analysis, and map options, the web page

will be redirected to the map visualization page. At the same time, the real-time data

collection component and sentiment analysis component are running in the background of

the server side. The processed data are transmitted to the front end with Server-sent event.

The launch of Storm topology requires around half a minute and then the webpage shows

the processed results. After 5 minutes, the results are visualized on the map, as Figure 5.18

shows.

 In this case, the system collects real-time data from Twitter with Twitter API. Since

the user chooses map as the visualization method, tweets without geographical information

are filtered out. The messages remaining are processed by sentiment analysis topology, and

75

the system generates the sentiment of each message and the average sentiment of each

country. On the visualization page, the personal sentiment is represented with coloured

points, while the average sentiment of the country is represented with the colors of block.

As Figure 5.18 shows, most tweets are sent in America, and there are fewer tweets in Africa

and Asia.

5.6.2. Word Cloud of Real-time Twitter Messages

Figure 5.19: Word Cloud

Similar to the sentiment visualization case, users select real-time data collection, trend

analysis, and word cloud components to build their social mining tools. Aside from the

word cloud component, other components run in the background. Once the web page is

redirected to the word cloud page, the data is visualized as word cloud, as Figure 5.19

shows.

76

 In this case, the system collects Twitter real-time data as well. The collected data

are processed with trend analysis topology which fetches data from the URLs of tweets

and ranks words by its TF-IDF score. The system only transmits the top 20 words to the

web page. As the system analyzes the trends of real-time data, the scope of data is really

broad. Thus the results of visualization present general words.

 Summary

In this chapter, we presented the methods of deploying system and evaluated the

performance of data collection components and data processing components. The

scalability, availability, and expandability of the systems are demonstrated in this chapter

as well. In the final portion, there are several case studies of this project.

77

Chapter 6

 Conclusion and Future Work

 Conclusion

We implement a component-based Twitter text mining system, which can collect data,

process data with Apache Storm, and visualize data on the website. The whole system can

be run locally with Vagrant and VirtualBox or in the cloud with AWS EC2.

 The main contributions of this project are:

 The project implements a component-based distributed text mining system. The

system involves multiple data collection, data processing and data visualization

components. The data format within this system is defined as two types of

message strings.

 The system equips scalability, availability, and expandability. The scalability is

guaranteed by the clusters of Kafka and Apache Storm. By increasing the

number of machines in the Kafka cluster, the scalability of web access as well

as data transmission within the system will increase. To scale the processing

speed and the number of processing units, both parallelism and machine

numbers can be adjusted. The availability of this system is guaranteed by

ZooKeeper clusters which are the basis of Kafka and Storm clusters. The

expandability is guaranteed by the unified data format and the mechanism of

Kafka. Every component implementing producers or consumers of Kafka and

78

following the restriction of data format is available to integrate with other

components.

 The project involves a novel Twitter trend analysis topology. Compared to

common trend analysis method, our trend analysis calculates TF-IDF score of

words in documents which are fetched on the basis of URLs in Twitter

messages. The most common method is counting the number of words

appearing in tweets, however most words in tweets are meaningless and the

ideas of users are contained in its URLs.

 The project formulates the Kafka centric architecture, as a result of the

evolution of simple linear architecture and message feedback architecture and

compares them with the Lambda architecture.

 Instead of using bolts as basic data processing components, the framework

treats Storm topologies as the basic computing units, and every topology

implements both Kafka producers and consumers. Thus, every topology can be

integrated with other topologies freely.

 Future Work

This section describes the future work of this project, in three functionalities, data

collection, data processing, and data visualization, respectively.

In terms of data collection, the project only involves data from Twitter, yet there

are still a great number of social network websites or applications. In the future, data

collection will involve more data sources, such as Facebook, Instagram, and LinkedIn.

From data processing perspectives, the project focuses on implementing a part of

natural language processing algorithms, which limits the range of this project. Besides text

79

files, images and videos contain beneficial information in the social networks as well. For

example, Instagram is a kind of social network focused on presenting images and videos.

Some social applications even contain a large amount of audio.

To implement the data visualization component, the project involves Google Charts

and D3.js to present data. Data visualization can be improved by combining other libraries,

such as Leaflet.js and Mapbox. Furthermore, the appearance of the website is another

potential improvement of the system.

Once data flows through Apache Kafka, the data will be stored as logs, for this

reason, the system does not provide additional data persistence function, the drawback of

log storage is that it is hard to get specific information. On the one hand, some databases

like Apache Cassandra, Neo4j, provide high speed queries. On the other hand, some search

engines, like Apache Solr, and ElasticSearch, build index for information and enable users

to search related information.

Finally, in order to implement dynamic topologies, Storm topologies are used as

basic processing units which increases the flexibility of the system and decreases the time

of developing new processing functions, however, the size of every topology becomes

much bigger. In the future, the project intends to change the source code of Storm to allow

topology to be changed dynamically.

80

Appendix A : Dependencies of Project

The following are development kits and software packages used in the system.

Name Version Description

JDK 1.7.0_95 Java SE Development Kit

Apache

Maven

3.0.5 Apache Maven is used to pack Java file, in

the project.

Apache

ZooKeeper

3.4.6 The basis of several distributed system,

such as Apache Storm and Apache Kafka

Apache Storm 0.9.2-incubating Apache Storm is the basis of data

processing components of the project.

Apache Kafka kafka_2.9.1

version 0.8.2.1

Apache Kafka is used to connect different

components, in the project.

Stanford NLP 3.4.1 Stanford NLP is applied to calculate the

sentiment of Twitter message.

Apache Tika 1.12 Apache Tika is used to pre-process Twitter

messages.

Apache

Lucene

3.6.2 Apache Lucene is applied to fetch the

contents of webpages.

Twitter4J 3.0 Twitter4J is used to collect stream data

from Twitter.

Flask 0.10.1 A lightweight Python web framework

Python-pip 1.5.4 A Python package management tool,

similar to apt-get as Ubuntu.

Kafka-python supports Kafka version

0.10, 0.9, 0.8.2, 0.8.1, 0.8

Python version: 2.6, 2.7,

3.3, 3.4, 3.5

It is a Kafka client which is implemented

by Python language.

Tweepy 3.5.0 Tweepy is used to collect data from

Twitter.

Pycountry 1.20 Pycountry is used to transmit country code

from ISO alpha-2 to alpha-3.

81

Appendix B : Configuration Files of ZooKeeper

There are configuration files of ZooKeeper server. ZooKeeper has cluster mode and

standalone mode. In the cluster mode, every machine should be configured by modifying

its zoo.cfg file to the first table. The standalone mode runs multiple threads on different

ports of one machine, which requires developers to create three configuration files, as

zoo1.cfg, zoo2.cfg, and zoo3.cfg.

zoo.cfg:

the number of milliseconds of each tick

here means zookeeper cluster will send hello message every 2 seconds

tickTime=2000

initLimit=10

syncLimit=5

dataDir=/opt/zookeeper/zkdata

dataLogDir=/opt/zookeeper/logs

clientPort=2181

server list

format server.<server number>=<ip address/hostname>:<connect port>:<election

port>

server.1=stormnode1:2888:3888

server.2=stormnode2:2888:3888

server.3=stormnode3:2888:3888

zoo1.cfg

tickTime=2000

initLimit=10

syncLimit=5

dataDir=/opt/zookeeper/zkdata1

dataLogDir=/opt/zookeeper/logs1

the port at which the clients will connect

clientPort=2181

server.1=localhost:2888:3888

server.2=localhost:2889:3889

server.3=localhost:2890:3890

82

zoo2.cfg

tickTime=2000

initLimit=10

syncLimit=5

dataDir=/opt/zookeeper/zkdata2

dataLogDir=/opt/zookeeper/logs2

clientPort=2182

server.1=localhost:2888:3888

server.2=localhost:2889:3889

server.3=localhost:2890:3890

zoo3.cfg

tickTime=2000

initLimit=10

syncLimit=5

dataDir=/opt/zookeeper/zkdata2

dataLogDir=/opt/zookeeper/logs2

clientPort=2183

server.1=localhost:2888:3888

server.2=localhost:2889:3889

server.3=localhost:2890:3890

83

Appendix C : Configuration Files of Apache Storm Cluster

To deploy Storm clusters, only storm.yaml file needs to be changed. The meaning of each

configuration item is written with comments.

Storm.yaml

zookeeper server list

If ZooKeeper use default port, there is no need to indicate port. Otherwise, Storm need

to indicate port number here.

storm.zookeeper.servers:

 - "stormnode1"

 - "stormnode2"

 - "stormnode3"

nimbus ip or hostname

nimbus.host: "stormnode1"

storm.local.dir: "/opt/storm/status"

one port can run one worker

supervisor.slots.ports:

 - 6700

 - 6701

 - 6702

 - 6703

84

Appendix D : Configuration Files of Apache Kafka

The following table only lists important configuration items and adds comments for them.

In theory, the configuration file of Kafka server can be placed anywhere, nonetheless, it is

recommended to store them in the config folder with suffix of properties.

Server.properties

The broker id

broker.id=0

The port the socket server listens on

port=9092

The receive buffer (SO_RCVBUF) used by the socket server

socket.receive.buffer.bytes=102400

socket.request.max.bytes=104857600

log.dirs=/tmp/kafka-logs

num.partitions=1

The maximum time where log can be kept

log.retention.hours=168

The maximum size of log which can be kept in the system

log.retention.bytes=1073741824

#indicates the zookeeper server of Kafka broker need to connect. The Kafka broker is

available when more than half zookeeper server is alive

zookeeper.connect=localhost:2181

enable deletion of topics

delete.topic.enable=true

85

Bibliography

[1] Boyd, D., & Ellison, N. (2007). Social network sites: Definition, history, and

scholarship. Journal of Computer‐Mediated Communication, 13(1), 210-230.

doi:10.1111/j.1083-6101.2007.00393.x

[2] Apache Storm Use Cases - Edureka Blog. (2014). Retrieved June 29, 2016, from

http://www.edureka.co/blog/apache-storm-use-cases.

[3] Tan, A. H. (1999, April). Text mining: The state of the art and the challenges.

Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery, 65-70.

[4] Zeng, L., Li, L., Duan, L., Lu, K., Shi, Z., Wang, M. & Luo, P. (2012). Distributed

data mining: A survey. Information Technology and Management, 13(4), 403-409.

doi:10.1007/s10799-012-0124-y

[5] Yu, L., Zheng, J., Shen, W. C., Wu, B., Wang, B., Qian, L., & Zhang, B. R.

(2012). BC-PDM: Data mining, social network analysis and text mining system

based on cloud computing. Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining - KDD '12, 1496-1499.

doi:10.1145/2339530.2339764

[6] Artola, X., Beloki, Z., & Soroa, A. (2014). A stream computing approach towards

scalable NLP. LREC, 8-13.

[7] Aggarwal, C. C. (2011). An Introduction to Social Network Data Analytics. Social

Network Data Analytics, 1-15. doi:10.1007/978-1-4419-8462-3_1

[8] Haythornthwaite, C. (1996). Social network analysis: An approach and technique

for the study of information exchange. Library and Information Science

Research, 18(4), 323-342. doi:10.1016/S0740-8188(96)90003-1

[9] Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using

distant supervision. CS224N Project Report, Stanford, 1, 12.

[10] Papacharissi, Z. (2009). The virtual geographies of social networks: a comparative

analysis of Facebook, LinkedIn and ASmallWorld. New media & society, 11(1-2),

199-220.

[11] Wang, Y., Callan, J., & Zheng, B. (2015). Should we use the sample? Analyzing

datasets sampled from twitter's stream API. ACM Transactions on the Web

(TWEB), 9(3), 1-23. doi:10.1145/2746366

[12] Vural, A. G., Cambazoglu, B. B., & Karagoz, P. (2014). Sentiment-focused web

crawling. ACM Transactions on the Web (TWEB), 8(4), 1-21.

doi:10.1145/2644821

86

[13] Achrekar, H., Gandhe, A., Lazarus, R., Yu, S., & Liu, B. (2011). Predicting Flu

Trends using Twitter data. 2011 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), 702-707. doi:10.1109/infcomw.2011.5928903

[14] Driscoll, K., & Walker, S. (2014). Big data, big questions working within a black

box: Transparency in the collection and production of big twitter data.

International Journal of Communication, 8(2014), 1745-1764.

[15] Kaggle home page. (2016). Retrieved June 29, 2016, from

https://www.kaggle.com.

[16] Ontario open data. (2015, October 2). Retrieved June 29, 2016, from

https://www.ontario.ca/page/sharing-government-data.

[17] Extracting Information from Text. (2015, July 1). Retrieved June 29, 2016, from

http://www.nltk.org/book/ch07.html.

[18] N-gram. (2016, May 9). Retrieved June 29, 2016, from

https://en.wikipedia.org/wiki/N-gram.

[19] Twitter Wordcloud Bot. (2014, December 27). Retrieved June 29, 2016, from

https://github.com/defacto133/twitter-wordcloud-bot/tree/master/assets.

[20] Tf–idf. (2016, May 5). Retrieved June 29, 2016, from

https://en.wikipedia.org/wiki/Tf–idf.

[21] TF-IDF Explantion (2012, October 24). Retrieved June 29, 2016, from

http://coolshell.cn/articles/8422.html.

[22] Zhang, W., Yoshida, T., & Tang, X. (2011). A comparative study of TFIDF, LSI

and multi-words for text classification. Expert Systems with Applications, 38(3),

2758-2765. doi:10.1016/j.eswa.2010.08.066

[23] Apache™ Hadoop®! (2014). Retrieved July 05, 2016, from

 http://hadoop.apache.org.

[24] Ranjan, R. (2014). Streaming big data processing in datacenter clouds. IEEE

Cloud Computing, 1(1), 78-83.

[25] Apache Storm. (2015). Retrieved June 29, 2016, from http://storm.apache.org.

[26] Karunaratne, P., Karunasekera, S., & Harwood, A. (2016, June 18). Distributed

stream clustering using micro-clusters on apache storm. Journal of Parallel and

Distributed Computing, doi:10.1016/j.jpdc.2016.06.004

[27] Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., &

Bhagat, N. (2014, June). Storm@ twitter. Proceedings of the 2014 ACM SIGMOD

87

international conference on Management of data, 147-156.

doi:10.1145/2588555.2595641

[28] Storm concepts. (2015). Retrieved June 29, 2016, from

http://storm.apache.org/releases/0.9.6/Concepts.html.

[29] Trident tutorial. (2015). Retrieved June 29, 2016, from

http://storm.apache.org/releases/0.9.6/Trident-tutorial.html.

[30] Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., &Taneja,

S. (2015). Twitter Heron. Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data - SIGMOD '15, 239-250.

doi:10.1145/2723372.2742788

[31] Spark streaming programming guide. (2015). Retrieved June 29, 2016, from

http://spark.apache.org/docs/latest/streaming-programming-guide.html.

[32] Nair, L. R., & Shetty, S. D. (2015). Streaming twitter data analysis using spark for

effective job search. Journal of Theoretical and Applied Information

Technology, 80(2), 349.

[33] Apache ZooKeeper™. (2016). Retrieved June 29, 2016, from

https://zookeeper.apache.org.

[34] Visual Variables. (2012, September 5). Retrieved June 29, 2016, from

http://www.infovis-wiki.net/index.php?title=Visual_Variables.

[35] Bostock, M. (2015). D3.js - Data-Driven Documents. Retrieved July 05, 2016,

from https://d3js.org.

[36] ECharts. (2015). Retrieved July 05, 2016, from http://echarts.baidu.com.

[37] Google Charts. (2016, June 13). Retrieved July 05, 2016, from

https://developers.google.com/chart.

[38] Hunter, J., Dale, D., Firing, E., & Driettboom, M. (2016, June 18). Matplotlib:

Python plotting — Matplotlib 1.5.1 documentation. Retrieved July 05, 2016, from

http://matplotlib.org.

[39] Learning Path: Enterprise Messaging Techniques [Video]. (2016, June). Retrieved

June 29, 2016, from https://www.safaribooksonline.com/library/view/learning-

path-enterprise/9781491964965.

[40] Baron, C. A. (2016). NoSQL key-value DBs riak and redis. Database Systems

Journal, (4), 3-10.

[41] Apache Kafka. (2016). Retrieved June 29, 2016, from http://kafka.apache.org.

88

[42] Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap

Machines). (2014, April 27). Retrieved June 29, 2016, from

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-

writes-second-three-cheap-machines.

[43] Namiot, D. (2015). On Big Data Stream Processing. International Journal of Open

Information Technologies, 3(8), 48-51.

[44] Ritter, A., Clark, S., & Etzioni, O. (2011, July). Named entity recognition in

tweets: an experimental study. Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 1524-1534.

[45] Ritter, A., Etzioni, O., & Clark, S. (2012, August). Open domain event extraction

from twitter. Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, 1104-1112. doi:10.1145/2339530.2339704

[46] Socialsensor: multimedia-geotagging. (2015, July 29). Retrieved June 29, 2016,

from https://github.com/socialsensor/multimedia-geotagging/tree/demo.

[47] Prediction API - Pattern Matching in the Cloud. (2016). Retrieved June 29, 2016,

from https://cloud.google.com/prediction.

[48] Monkey Learning Documentation. (2016). Retrieved June 29, 2016, from

http://docs.monkeylearn.com.

[49] SAMOA. (2016, March 14). Retrieved June 29, 2016, from

https://github.com/apache/incubator-samoa.

[50] De Francisci Morales, G. (2013, May). SAMOA: A platform for mining big data

streams. Proceedings of the 22nd International Conference on World Wide Web,

777-778.

[51] Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010, December). S4:

Distributed Stream Computing Platform. 2010 IEEE International Conference on

Data Mining Workshops, 170-177. doi:10.1109/icdmw.2010.172

[52] Bifet, A., & Morales, G. D. (2014, December). Big Data Stream Learning with

SAMOA. 2014 IEEE International Conference on Data Mining Workshop, 1199-

1202. doi:10.1109/icdmw.2014.24

[53] Trident-ml. (2015, October 2). Retrieved June 29, 2016, from

https://github.com/pmerienne/trident-ml.

[54] Han, Z., & Xu, M. (2015, December). Machine Learning Techniques in Storm.

2015 Seventh International Symposium on Parallel Architectures, Algorithms and

Programming (PAAP), 139-142. doi:10.1109/paap.2015.35

89

[55] StormCV. (2015, Sepetember 26). Retrieved June 29, 2016, from

https://github.com/sensorstorm/StormCV.

[56] Generating a network graph of Twitter followers using Python and NetworkX.

(2014). Retrieved June 29, 2016, from http://mark-kay.net/2014/08/15/network-

graph-of-twitter-followers.

[57] Calculating a Network Map by analyzing Tweets. (2014). Retrieved June 29, 2016,

from http://mark-kay.net/2014/01/15/calculating-a-network-map-by-analyzing-

tweets.

[58] Liu, S., Wang, X., Chen, J., Zhu, J., & Guo, B. (2014). TopicPanorama: A full

picture of relevant topics. 2014 IEEE Conference on Visual Analytics Science and

Technology (VAST), 183-192. doi:10.1109/vast.2014.7042494

[59] Byron, L., & Wattenberg, M. (2008). Stacked Graphs – Geometry & Aesthetics.

IEEE Trans. Visual. Comput. Graphics IEEE Transactions on Visualization and

Computer Graphics, 14(6), 1245-1252. doi:10.1109/tvcg.2008.166

[60] D3 Interactive Streamgraph. (2016, June 14). Retrieved June 29, 2016, from

http://bl.ocks.org/WillTurman/4631136.

[61] Streamgraph. (2016, March 2). Retrieved June 29, 2016, from

http://bl.ocks.org/mbostock/4060954.

[62] Cui, W., Liu, S., Wu, Z., & Wei, H. (2014). How hierarchical topics evolve in

large text corpora. IEEE transactions on visualization and computer

graphics, 20(12), 2281-2290.

[63] Heer, J., & Boyd, D. (2005, October). Vizster: Visualizing online social networks.

IEEE Symposium on Information Visualization, 1277-1284.

doi:10.1109/infvis.2005.1532126

[64] Cui, W., Zhou, H., Qu, H., Wong, P. C., & Li, X. (2008). Geometry-based edge

clustering for graph visualization. IEEE Transactions on Visualization and

Computer Graphics, 14(6), 1277-1284.

[65] Force Directed Edge Bundling (FDEB) in Javascript. (2016, March 11). Retrieved

June 29, 2016, from https://github.com/upphiminn/d3.ForceBundle.

[66] Kafka Connect. (2015). Retrieved June 29, 2016, from

http://docs.confluent.io/2.0.0/connect.

[67] How to beat the CAP theorem - thoughts from the red planet - thoughts from the

red planet. (2011, October 13). Retrieved June 29, 2016, from

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html.

90

[68] Gilbert, S., & Lynch, N. (2012). Perspectives on the CAP

theorem. Computer, 45(2), 30-36. doi:10.1109/MC.2011.389

[69] Liu, X., Iftikhar, N., & Xie, X. (2014). Survey of real-time processing systems for

big data. Proceedings of the 18th International Database Engineering &

Applications Symposium on - IDEAS '14, 356-361. doi:10.1145/2628194.2628251

[70] TweetStats. (2008). Retrieved July 05, 2016, from http://www.tweetstats.com.

[71] Twitter Charts. (2008). Retrieved July 05, 2016, from http://xefer.com/twitter.

[72] Twitter Counter. (2016). Retrieved July 05, 2016, from http://twittercounter.com.

[73] Word Cloud Bot. (2014, November). Retrieved July 5, 2016, from

https://twitter.com/wordnuvola?lang=en.

[74] Automatic terms extraction for Domain-specific corpora. (2014). Retrieved June

29, 2016, from https://www.datacrucis.com/research/automatic-terms-extraction-

for-domain-specific-corpora.html.

[75] Preprocessing — Text Analysis with Topic Models for the Humanities and Social

Sciences. (2016). Retrieved June 29, 2016, from

https://de.dariah.eu/tatom/preprocessing.html.

[76] Iqbal, M. H., & Soomro, T. R. (2015). Big Data Analysis: Apache Storm

Perspective. International Journal of Computer Trends and Technology IJCTT,

19(1), 9-14. doi:10.14445/22312803/ijctt-v19p103.

[77] Twitter Rate Limits. (2016). Retrieved June 29, 2016, from

https://dev.twitter.com/rest/public/rate-limits.

[78] Udacity and Twitter bring you Real-Time Analytics with Apache Storm. (2014,

November 20). Retrieved June 29, 2016, from https://github.com/udacity/ud381.

[79] Word Cloud Layout. (2015, October 15). Retrieved June 29, 2016, from

https://github.com/jasondavies/d3-cloud.

[80] Storm Command Line Client. (2015). Retrieved June 29, 2016, from

http://storm.apache.org/releases/1.0.1/Command-line-client.html.

[81] Stopping Storm: The right way. (2013, November 12). Retrieved June 29, 2016,

from http://stackoverflow.com/questions/19926548/stopping-storm-the-right-way.

[82] Vagrant. (2016). Retrieved July 05, 2016, from https://www.vagrantup.com.

[83] VirtualBox (2016, June 28). Retrieved July 05, 2016, from

https://www.virtualbox.org.

[84] Apache Ambari. (2016). Retrieved July 05, 2016, from https://ambari.apache.org.

91

[85] Apache Maven. (2016). Retrieved June 29, 2016, from https://maven.apache.org.

[86] Apache ZooKeeper™ Releases. (2016). Retrieved June 29, 2016, from

http://zookeeper.apache.org/releases.html.

[87] Storm downloads. (2015). Retrieved June 29, 2016, from

http://storm.apache.org/downloads.html.

[88] Kafka Releases. (2016). Retrieved June 29, 2016, from

http://kafka.apache.org/downloads.html.

