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Abstract 

To improve the directional performance of multitrailer articulated heavy vehicles (MTAHVs), the 

model-based active safety systems, including the active trailer steering, trailer differential braking 

and the active roll control are developed. The active safety systems are integrated and coordinated 

for optimal overall performance. The coordinated control system is designed in a modular, 

hierarchical and multilevel approach. At the upper level, a moment controller is designed to 

stabilize the yaw and the roll dynamics. At the intermediate level, an allocator is designed to 

distribute the demanded moments to the actuating systems. At the lower level, the active 

suspension system realizes the demanded roll moment, and the active trailer steering and the trailer 

differential braking share the demanded yaw moment. The directional performance of the MTAHV 

with the coordinated control system is evaluated in closed-loop simulations. A unified driver 

model for road vehicles is developed to ‘drive’ the vehicle in the closed-loop simulations. 

Considering the characteristics of the single unit and the multiunit vehicle drivers, a set of design 

parameters are introduced to govern the characteristics of the driver model to mimic human drivers 

in driving single unit and multiunit road vehicles, especially to simulate MTAHV drivers’ driving 

performance under a high-speed evasive and a low-speed path-following maneuvers, respectively. 

The directional performance of the MTAHV with the coordinated control system and the driver 

model may be valuated and optimized using a genetic algorithm with the performance measures 

in the time-domain and the frequency-domain, thanks to the introduction of the automated 

frequency response measuring method (AFRM) into the articulated heavy vehicle dynamics. The 

proposed design methods/techniques and findings derived from the research will contribute to the 

advancement of active safety systems for MTAHVs. 



 
 

vi 
 

Table of Contents 

 

ACKNOWLEDGEMENTS .......................................................................................................... IV 

ABSTRACT ................................................................................................................................... V 

TABLE OF CONTENTS .............................................................................................................. VI 

LIST OF FIGURES ..................................................................................................................... XII 

LIST OF TABLES ................................................................................................................... XVIII 

CHAPTER 1 INTRODUCTION .................................................................................................... 1 

1.1 MULTI-TRAILER ARTICULATED HEAVY VEHICLES ................................................................. 1 

1.2 MANOEUVRABILITY AND STABILITY OF MTAHVS ................................................................ 3 

1.3 LIMITATIONS OF THE EXISTING ASSS AND THE DESIGN METHODS ........................................ 5 

1.4 RESEARCH OBJECTIVES .......................................................................................................... 6 

1.4.1 Integrated Control of the ATS, ARC and the TDB ........................................................ 6 

1.4.2 Development of a Driver Model for MTAHVs .............................................................. 6 

1.4.3 Development of the Innovative Design Methods for ASSs ........................................... 6 

1.5 METHODOLOGY ...................................................................................................................... 7 

1.5.1 Integrated Control of the ATS, TDB, and the ARC ....................................................... 7 

1.5.2 Validation of the ICS Using Numerical Simulations ..................................................... 7 

1.6 MAJOR CONTRIBUTIONS OF THIS RESEARCH .......................................................................... 8 

1.7 ORGANIZATION OF THE THESIS............................................................................................... 9 

CHAPTER 2 LITERATURE REVIEW ....................................................................................... 10 

2.1 DIRECTIONAL PERFORMANCE OF MTAHVS ........................................................................ 10 

2.2 ACTIVE CONTROL OF MTAHVS .......................................................................................... 11 

2.2.1 Control Strategies ......................................................................................................... 11 

2.2.1.1 Active Steering Control ............................................................................................. 12 

2.2.1.2 Differential Braking Control ..................................................................................... 12 

2.2.1.3 Active Suspension Control ........................................................................................ 13 

2.2.1.4 Active Roll Control ................................................................................................... 13 



 
 

vii 
 

2.2.2 Reference Generation ................................................................................................... 14 

2.2.2.1 Reference Model Simulation ..................................................................................... 14 

2.2.2.2 Direct Measurement or Observation .......................................................................... 15 

2.2.3 Control Algorithms ....................................................................................................... 15 

2.3 MODELS OF MTAHVS ......................................................................................................... 16 

2.4 DRIVER MODELS .................................................................................................................. 18 

2.5 AUTOMATED DESIGN SYNTHESIS ......................................................................................... 19 

CHAPTER 3 VEHICLE MODELING ......................................................................................... 20 

3.1 INTRODUCTION ..................................................................................................................... 20 

3.2 MODELING OF A TRACTOR/SEMITRAILER ............................................................................. 23 

3.2.1 Three DOF Linear Yaw-Plane Model .......................................................................... 23 

3.2.2 Three DOF Nonlinear Yaw Plane Model ..................................................................... 26 

3.2.3 TruckSim Model ........................................................................................................... 26 

3.2.4 Validation of the Tractor/Semitrailer Models .............................................................. 28 

3.2.4.1 Model Validation in the Time-Domain ..................................................................... 28 

3.2.4. ...................................................................................................................................... 30 

2 Frequency Analysis of the Tractor/Semitrailer Models ..................................................... 30 

3.3 MODELING OF THE B-TRAIN DOUBLE ................................................................................... 32 

3.3.1 Vehicle Modeling Using the Newtonian Mechanics .................................................... 32 

3.3.1.1 The Coordinate Systems ............................................................................................ 32 

3.3.1.2 Kinematical Constraint Equations ............................................................................. 36 

3.3.1.3 Linear Yaw-roll, Linear Yaw-plane, and Nonlinear Yaw-plane Models .................. 39 

3.3.2 Vehicle Modeling Using the EoM Software Package .................................................. 46 

3.3.2.1 Linear EoM Yaw-roll Model ..................................................................................... 47 

3.3.3.2 Nonlinear EoM Yaw-Roll Model .............................................................................. 48 

3.3.4 Validation of the B-train Double Models ..................................................................... 55 

3.3.4.1 Model Validation at a Low Lateral Acceleration ...................................................... 55 

3.3.4.2 Model Validation at a High Lateral Acceleration Operation .................................... 63 

3.4 SUMMARY ............................................................................................................................ 66 

CHAPTER 4 ARTICULATED HEAVY VEHICLE LATERAL DYNAMIC ANALYSIS 

USING AN AUTOMATED FREQUENCY RESPONSE MEASURING TECHNIQUE........... 68 

4.1. INTRODUCTION .................................................................................................................... 68 

4.2 AUTOMATED FREQUENCY RESPONSE MEASURING TECHNIQUE ........................................... 72 

4.3 VERIFICATION OF THE AFRM TECHNIQUE ........................................................................... 74 

4.3.1 Comparison of the AFRM Technique against other Methods ...................................... 75 



 
 

viii 
 

4.3.2 Comparison of Linear and Nonlinear Models Using Time-Domain Simulations ........ 79 

4.3.3 Comparison of Linear and Nonlinear Models Using Frequency-Domain Simulations 85 

4.4 DETERMINATION OF THE RWA RATIO RECOMMENDED BY ISO14791 ................................. 86 

4.5 PARAMETRIC ANALYSIS BASED ON THE FREQUENCY RESPONSES OF THE TRUCKSIM MODEL

 ................................................................................................................................................... 88 

4.6 SUMMARY ............................................................................................................................ 92 

CHAPTER 5 A UNIFIED LATERAL PREVIEW DRIVER MODEL FOR ROAD VEHICLES

....................................................................................................................................................... 95 

5.1 INTRODUCTION ..................................................................................................................... 95 

5.2 FOUR DOF LINEAR YAW-PLANE MODEL ............................................................................. 99 

5.3 SMC-BASED PREVIEW DRIVER MODEL ............................................................................. 100 

5.3.1 Desired Trajectory and Predicted Vehicle State Variables ........................................ 101 

5.3.2 LUPT Driver Model ................................................................................................... 103 

5.3.3 DLULP Driver Model ................................................................................................ 104 

5.4 DRIVER MODEL VALIDATION ............................................................................................. 106 

5.4.1 Comparison of the TO and MacAdam Driver Models ............................................... 108 

5.4.1.1 Analytical Formulation of the TO Driver Model .................................................... 108 

5.4.1.2 Simulation Results based on the TO and MacAdam Driver Models ...................... 110 

5.4.2 Comparison of the LUPT and DLULP Driver Models .............................................. 114 

5.4.2.1 Simulation Results based on the TO, LUPT and DLULP Driver Models .............. 115 

5.4.2.2 Performance Analysis for the D and L Modes ........................................................ 118 

5.4.2.3 Effects of Trailing Unit Motion Controls on the L Mode Performance .................. 122 

5.5 CONCLUSIONS .................................................................................................................... 123 

CHAPTER 6 COORDINATED CONTROL OF ACTIVE SAFETY SYSTEMS FOR MULTI-

TRAILER ARTICULATED HEAVY VEHICLES ................................................................... 125 

6.1 INTRODUCTION ................................................................................................................... 125 

6.2 COORDINATED CONTROL DESIGN ...................................................................................... 128 

6.2.1 Control Module........................................................................................................... 128 

6.2.2 Allocation Module ...................................................................................................... 129 

6.2.3 Realization Module..................................................................................................... 131 

6.3 COORDINATED CONTROL OPTIMIZATION ........................................................................... 133 

6.3.1 Test Maneuvers........................................................................................................... 134 

6.3.2 Optimization Process .................................................................................................. 134 

6.4 SIMULATION RESULTS ........................................................................................................ 135 



 
 

ix 
 

6.4.1 MTAHV with Pure ATS or TDB ............................................................................... 136 

6.4.2 MTAHV with Coordinated ATS, TDB and ARC ...................................................... 138 

6.4.3 Impact of the TDB on the Longitudinal Dynamics .................................................... 141 

6.4.4 Yaw moment allocation .............................................................................................. 142 

6.5 SUMMARY .......................................................................................................................... 144 

CHAPTER 7 ON ROBUST CONTROLLERS FOR ACTIVE STEERING SYSTEMS OF 

ARTICULATED HEAVY VEHICLES ..................................................................................... 145 

7.1 INTRODUCTION ................................................................................................................... 145 

7.2. ACTIVE STEERING CONTROLLERS DESIGN ........................................................................ 148 

7.2.1 Controller based on the Sliding Mode Control Technique ......................................... 148 

7.2.2 Controller based on the Nonlinear Sliding Mode Control Technique ........................ 150 

7.2.3 Controller based on the Mu-Synthesis Technique ...................................................... 152 

7.2.4 Design Variable Tuning Using the Frequency-Domain Design Optimization ........... 155 

7.3 SIMULATION RESULT ANALYSIS AND DISCUSSION ............................................................. 155 

7.3.1 Simulation Results under the SCSLA Maneuver ....................................................... 156 

7.3.2 Simulation Results based on the Frequency Responses ............................................. 159 

7.3.3 Simulation Results under the High Lateral Acceleration Maneuver .......................... 160 

7.3.3.1 Case Study on the Uncertain Semitrailer Sprung Mass ........................................... 161 

7.3.3.2 Case Study on the Uncertain Semitrailer CG Longitudinal Position ...................... 166 

7.3.3.3 Case Study on the Uncertain Semitrailer CG Vertical Position .............................. 167 

7.4 CONCLUSIONS .................................................................................................................... 169 

CHAPTER 8 AN INVESTIGATION OF TEST MANEUVERS FOR DETERMINING 

REARWARD AMPLIFICATION OF MULTI-TRAILER ARTICULATED HEAVY 

VEHICLES ................................................................................................................................. 171 

8.1 INTRODUCTION ................................................................................................................... 171 

8.2 VEHICLE MODELING AND TEST MANEUVERS ..................................................................... 173 

8.2.1 TruckSim Model ......................................................................................................... 173 

8.2.2 Test Maneuvers for Determining RA ......................................................................... 174 

8.3. TRACTOR LATERAL ACCELERATION KINEMATIC ANALYSIS AND DRIVER’S 

CHARACTERISTICS ................................................................................................................... 175 

8.3.1 Kinematic Analysis..................................................................................................... 175 

8.3.2 Driver’s Characteristics .............................................................................................. 178 

8.3.2.1 Influence of the Preview Time ................................................................................ 178 

8.3.2.2 Influence of the Time Lag ....................................................................................... 180 



 
 

x 
 

8.4 RA MEASURES OF THE B-TRAIN DOUBLE .......................................................................... 183 

8.4.1 RA Frequency Functions with the MCSSI and the AFRM ........................................ 183 

8.4.2 Single Cycle Sine Wave Steer Input (SCSSI) Test Maneuver ................................... 187 

8.4.3 Single Cycle Sine Wave Lateral Acceleration (SCSLA) Input Maneuver ................. 190 

8.4.4 Frequency-Perspective Intepretation of the Disparity ................................................ 192 

8.5 SUMMARY .......................................................................................................................... 193 

CHAPTER 9 CONCLUSIONS .................................................................................................. 195 

9.1 COORDINATED CONTROL OF ACTIVE SAFETY SYSTEMS ..................................................... 195 

9.2 UNIFIED LATERAL PREVIEW DRIVER MODEL ..................................................................... 196 

9.3 AUTOMATED FREQUENCY RESPONSE MEASURING TECHNIQUE ......................................... 197 

9.4 POTENTIAL APPLICATIONS OF THE CCS STRATEGY, DRIVER MODEL, AND AFRM 

TECHNIQUE .............................................................................................................................. 197 

9.5 FUTURE WORK ................................................................................................................... 198 

REFERENCES ........................................................................................................................... 200 

APPENDIX A SYSTEM MATRICES AND PARAMETERS OF THE 

TRACTOR/SEMITRAILER MODELS ..................................................................................... 214 

APPENDIX B NOTATION AND NOMINAL VALUES OF THE PARAMETERS OF THE B-

TRAIN DOUBLE MODELS ...................................................................................................... 217 

APPENDIX C SYSTEM MATRICES OF THE YAW-ROLL MODEL OF THE B-TRAIN 

DOUBLE .................................................................................................................................... 226 

APPENDIX D SYSTEM MATRICES OF THE LINEAR YAW-PLANE MODEL OF THE B-

TRAIN DOUBLE ....................................................................................................................... 228 

APPENDIX E SYSTEM MATRICES OF THE NONLINEAR YAW-PLANE MODEL OF THE 

B-TRAIN DOUBLE ................................................................................................................... 229 

APPENDIX F STATE VARIABLES OF THE EOM YAW-ROLL MODEL AND RESULTED 

FORCES AND MOMENTS OF THE B-TRAIN DOUBLE ..................................................... 230 



 
 

xi 
 

APPENDIX G MATRICES OF THE AUGMENTED LINEAR YAW-PLANE MODEL FOR 

THE SMC-BASED PREVIEW DRIVER MODEL DESIGN ................................................... 232 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xii 
 

List of Figures 

Figure 3.1 Yaw-plane model of the tractor/semitrailer combination ............................................ 24 

Figure 3.2 TruckSim model of the tractor/semitrailer combination ............................................. 27 

Figure 3.3 Desired trajectory of the CG of the tractor under the SCSLA maneuver .................... 29 

Figure 3.4 Time histories of lateral accelerations of the linear, nonlinear and TruckSim 
tractor/semitrailer models under the SCSLA maneuver ............................................................... 29 

Figure 3.5 RA frequency functions of the TruckSim, linear, and the nonlinear tractor/semitrailer 
models ........................................................................................................................................... 31 

Figure 3.6 Frequency functions of the gain between the tractor lateral acceleration and the 
steering wheel angle of the TruckSim, linear and the nonlinear tractor/semitrailer models ........ 31 

Figure 3.7 Frequency functions of the gain between the semitrailer lateral acceleration and the 
steering wheel angle of the TruckSim, linear the nonlinear tractor/semitrailer models ............... 32 

Figure 3.8 Yaw-roll model of a B-train double with the inertia and vehicle fixed coordinate 
systems: (a) side view, (b) rear view, and (c) top view ................................................................ 34 

Figure 3.9 Axle roll angles of the TruckSim model of the B-train double under a 0.4 Hz single 
cycle sine wave steer input ........................................................................................................... 35 

Figure 3.10 Block diagram of the EoM model with the matrix decomposition ........................... 53 

Figure 3.11 Tractor front wheel steer angle input for the single lane change maneuver .............. 56 

Figure 3.12 Yaw rates of the EoM yaw-roll model, TruckSim model, linear yaw-plane model, 
linear yaw-roll model and the nonlinear yaw-plane model of the B-train double under the low 
lateral acceleration SLC maneuver at forward speed 110U = km/h ................................................ 57 

Figure 3.13 Lateral accelerations of the nonlinear EoM yaw-roll model, TruckSim model, linear 
yaw-plane model, linear yaw-roll model and the nonlinear yaw-plane model under the low lateral 
acceleration SLC maneuver at forward speed 110U = km/h .......................................................... 57 

Figure 3.14 Roll angles the sprung masses of the nonlinear EoM yaw-roll model, TruckSim 
model, and the linear yaw-roll model under the low lateral acceleration SLC maneuver at 
forward speed 110U =  km/h .......................................................................................................... 58 
Figure 3.15 Normal forces of the wheels of the B-train double simulated using the TruckSim 
model and the nonlinear EoM yaw-roll model under the SLC maneuver of forward speed U=110 
km/h showing the load transfers on: (a) axle 1, (b) axle 2, (c) axle 3, (d) axle 4, (e) axle 5, (f) 
axle 6, (g) axle 7, (h) axle 8, and (i) axle 9………………………………………………………59 
Figure 3.16 Forward speed of the B-train double simulated using the TruckSim and the nonlinear 
EoM yaw-roll model under the low lateral acceleration SLC maneuver of the nominal forward 
speed 110U = km/h ......................................................................................................................... 60 

Figure 3.17 Total drive torque for the drive wheels of the tractor of the B-train double simulated 
using the TruckSim and the nonlinear EoM yaw-roll model under the low lateral acceleration 
SLC maneuver at forward speed 110U =  km/h ............................................................................. 61 

Figure 3.18 Yaw rates of the B-train double models under the SLC maneuvers showing the 
forward speed dependence of the RWA property: (a) 80U = km/h, (b) 100U = km/h, (c) 110U =  
km/h, and (d) 120U =  km/h .......................................................................................................... 62 



 
 

xiii 
 

Figure 3.19 Lateral accelerations of the B-train double models under the low lateral acceleration 
SLC maneuvers showing the forward speed dependence of the RWA property: (a) 80U =  km/h, 
(b) 100U =  km/h, (c) 110U = km/h, and (d) 120U = km/h ............................................................ 62 

Figure 3.20 Yaw-rates of the B-train double models under the high lateral acceleration SLC 
maneuver at forward speed 110U = km/h .................................................................................... 64 

Figure 3.21 Lateral accelerations of the B-train double models under the high lateral acceleration 
SLC maneuver at forward speed 110U =  km/h ........................................................................... 65 

Figure 4.1 Schematic representation of the incorporation of the AFRM tool in the nonlinear 
TruckSim model............................................................................................................................ 72 

Figure 4.2 Linear vehicle model’s magnitude response in terms of RWA ratio: (a) RWA ratio 
versus frequency, (b) the relative error of the RWA ratio achieved using the AFRM approach 
with respect to the RWA ratio derived using the transfer function method ................................. 76 

Figure 4.3 Linear vehicle model’s phase responses achieved using the AFRM and TF methods.
....................................................................................................................................................... 77 

Figure 4.4 TruckSim model’s frequency responses of the lateral acceleration for each vehicle 
unit to tractor front wheel steer input ............................................................................................ 78 

Figure 4.5 Time history of the tractor front wheel steer angle input (a single sine-wave with an 
amplitude of 1.5 deg and a frequency of 0.1 Hz) .......................................................................... 80 

Figure 4.6 Lateral accelerations for the vehicle under a sine-wave steer angle input of the tractor 
front wheel with an amplitude of 1.5o and a frequency of 0.1 Hz at a forward speed of 150 km/h: 
(a) lateral acceleration at the tractor CG, and (b) lateral acceleration at the trailer CG ............... 81 

Figure 4.7 Lateral accelerations of the vehicle under a sine-wave steer angle input of the tractor 
front wheel with an amplitude of 1.5o and a frequency of 0.4 Hz at a forward speed of 150 km/h: 
(a) lateral acceleration at the tractor CG, and (b) lateral accelerate at the trailer CG ................... 81 

Figure 4.8 Lateral accelerations of the vehicle under a sine-wave steer angle input of the tractor 
front wheel with an amplitude of 1.5o and a frequency of 0.8 Hz at a forward speed of 150 km/h: 
(a) lateral acceleration at the tractor CG, and (b) lateral acceleration at the trailer CG ............... 82 

Figure 4.9 Tractor lateral accelerations under the variable frequency sine-wave steer angle input 
of the tractor front wheel............................................................................................................... 84 

Figure 4.10 Trailer lateral accelerations under the variable frequency sine-wave steer angle input 
of the tractor front wheel............................................................................................................... 84 

Figure 4.11 Frequency responses of the linear and TruckSim models showing the lateral 
acceleration response of each vehicle unit to the tractor front wheel steer input ......................... 85 

Figure 4.12 Frequency response of the TruckSim model showing the effect of the trailer mass 
moment of inertia (Izz2) on the lateral acceleration response of each vehicle unit to the tractor 
front wheel steer angle input ......................................................................................................... 90 

Figure 4.13 Frequency response of the TruckSim model showing the effect of the longitudinal 
distance between the trailer CG to the fifth wheel (lc21) on the lateral acceleration response of 
each vehicle unit to the tractor front wheel steer angle input ....................................................... 90 

Figure 4.14 Frequency response of the TruckSim model showing the effect of the trailer mass   
on the lateral acceleration response of each vehicle unit to the tractor front wheel steer angle 
input .............................................................................................................................................. 91 

Figure 5.1 Geometry representation of the B-Train Double and desired trajectory ................... 101 



 
 

xiv 
 

Figure 5.2 Block diagram of the closed-loop system with the LUPT driver and vehicle models
..................................................................................................................................................... 104 

Figure 5.3 Block diagram of the closed-loop system with the DLULP driver and vehicle model
..................................................................................................................................................... 106 

Figure 5.4 Specified trajectory of the SLC maneuver ................................................................ 107 

Figure 5.5 Simulation results of the B-Train Double based on the TO and MacAdam driver 
models under the SLC maneuver: (a) desired trajectory and TFAC path, (b) lateral accelerations 
at vehicle unit CGs, (c) yaw rates of vehicle units, and (d) tractor front-wheel steering angle .. 111 

Figure 5.6 (i) Time histories of lateral position of the TFAC for 100 uncertain cases based on: (a) 
TO driver model, and (b) MacAdam driver model; (ii) time histories of the standard deviations of 
100 uncertain cases based on the TO and MacAdam driver models .......................................... 112 

Figure 5.7 Dynamic responses of the tractor of the B-Train Double with the TO or MacAdam 
driver model  under the SLC maneuver: (a) trajectory of the tractor front axle center, (b) time 
history of tractor front-wheel steering angle, (c) time history of lateral acceleration of the tractor 
CG, and (d) time history of tractor yaw rate ............................................................................... 114 

Figure 5.8 Dynamic responses of the virtual B-Train Double with the TO/DLULP/LUPT driver 
model under the SLC maneuver: (a) trajectory of the vehicle units, LUPT, (b) trajectory of the 
vehicle units, TO, (c) trajectory of the vehicle units, DLULP, (d) time history of tractor front-
wheel steering angle, (e) time histories of lateral acceleration at vehicle unit CGs, and (f) time 
histories of yaw rate of vehicle units .......................................................................................... 117 

Figure 5.9 Time histories of vehicle unit lateral positions and tracking errors of the B-Train 
Double with either the D or L mode under the SLC maneuver: (a) TFAC lateral position, (b) 
TFAC lateral position tracking error, (c) 1st trailer CG lateral position, (d) 1st trailer CG lateral 
poistion tracking error, (e) 2nd trailer CG lateral psotion, and (f) 2nd trailer CG lateral psotion 
tracking error ............................................................................................................................... 119 

Figure 5.10 Time histories of vehicle unit yaw rates and lateral position rate tracking errors of 
the B-Train Double with either the D or L mode under the SLC maneuver: (a) tractor yaw rate, 
(b) TFAC lateral position rate tracking error, (c) 1st trailer yaw rate, (d) 1st trailer CG lateral 
position rate tracking error, (e) 2nd trailer yaw rate, and (f) 2nd trailer CG lateral position rate 
tracking error ............................................................................................................................... 121 

Figure 6.1 Trailer lateral tire forces with respect to corresponding side-slip angle ................... 129 

Figure 6.2 Desired trajectory of the tractor front axle center under: (a) a low-g SCSLA 
maneuver, and (b) a high-g SCSLA maneuver (based on Equation (6.14)) ............................... 135 

Figure 6.3 Responses of the MTAHV with ATS: (a) lateral acceleration of the vehicle units, (b) 
side-slip angles of the front and rear wheels of the 1st and 2nd semitrailer ............................... 136 

Figure 6.4 Responses of the MTAHV with the ATS under the high lateral acceleration SCSLA 
maneuver: (a) lateral acceleration, and (b) steering angle of trailer front and rear wheels ........ 137 

Figure 6.5 Lateral accelerations of the MTAHV with the TDB under the low and high lateral 
acceleration SCSLA maneuvers: (a) 0.1g amplitude, and (b) 0.3g amplitude ........................... 137 

Figure 6.6 Brake torques of the trailer left and right wheels of the MTAHV with the TDB under 
the low and high lateral acceleration maneuvers: (a) 0.1g amplitude, and (b) 0.3g amplitude .. 138 

Figure 6.7 Trailer dynamic responses under the low lateral acceleration SCSLA maneuver: (a) 
side-slip angle, and (b) steering angle ......................................................................................... 139 



 
 

xv 
 

Figure 6.8 Under the low-g SCSLA maneuver: (a) yaw moment allocation, and (b) Brake torques 
of the trailer front and rear wheels .............................................................................................. 140 

Figure 6.9 Roll angle responses under the low-g SCSLA maneuver: (a) MTAHV integrated with 
ATS and TDB with/without ARC, and (b) baseline MTAHV ................................................... 140 

Figure 6.10 Lateral accelerations under the low-g SCSLA maneuver: (a) baseline MTAHV and 
MTAHV with coordinated ATS, TDB and ARC, and (b) MTAHV coordinated with ATS and 
TDB with/without ARC .............................................................................................................. 141 

Figure 6.11 Longitudinal speeds of the MTAHV with the TDB and the coordinated control under 
the low- and high-g maneuvers ................................................................................................... 142 

Figure 6.12 Yaw moment time area allocation in terms of the lateral acceleration amplitude of 
the SCSLA maneuver: (a) 1st semitrailer, and (b) 2nd semitrailer............................................. 143 

Figure 6.13 Yaw moment time area ratios with respect to the lateral acceleration amplitude of the 
SCSLA maneuver ....................................................................................................................... 143 

Figure 7.1 Schematic representation of the TruckSim model with the NSMC Controller ......... 151 

Figure 7.2 The Single DOF control structure with the frequency weighting functions ............. 153 

Figure 7.3 Structure of the TruckSim Model integrated with the MS controller ....................... 154 

Figure 7.4 Desired trajectory tracked by the tractor CG under the SCSLA maneuver .............. 156 

Figure 7.5 Time-histories of the lateral accelerations under the SCSLA maneuver of 88 km/h for 
the TST with different ASS controllers: (a) LQR, (b) SMC, (c) NSMC and (d) MS................. 157 

Figure 7.6 Time histories of the active steering angles of the tractor rear wheels and the 
semitrailer wheels under the SCSLA maneuver demanded by the controllers of: (a) LQR, (b) 
SMC, (c) NSMC, and (d) MS ..................................................................................................... 158 

Figure 7.7 Energy consumption measure of the active steering system under the SCSLA 
maneuver with the controllers of the LQR, SMC, NSMC, and the MS ..................................... 159 

Figure 7.8 RA frequency response functions in lateral acceleration of the passive TST and the 
TST with the active steering controllers of the LQR, SMC and the NSMC .............................. 160 

Figure 7.9 Target trajectory to be followed by the CG of the tractor under the DLC maneuver 161 

Figure 7.10 Responses of the TST with the LQR controller subject to the trailer sprung mass 
uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor rear 
axle wheel steering angle, and (d) semitrailer axle wheel steering angle ................................... 162 

Figure 7.11 Responses of the TST with the SMC controller subject to the semitrailer sprung mass 
uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor rear 
wheel steering angle, and (d) semitrailer wheel steering angle .................................................. 163 
Figure 7.12 Responses of the TST with the NSMC controller subject to the semitrailer sprung 
mass uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor 
rear wheel steering angle, and (d) semitrailer wheel steering angle……………………………164 
Figure 7.13 Responses of the TST with the MS controller subject to the semitrailer sprung mass 
uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor rear 
wheel steering angle, and (d) semitrailer wheel steering angle………………………………...165 
Figure 7.14 Robustness indices of the TST with different controllers subject to the semitrailer 
sprung mass uncertainty………………………………………………………………………...165 
Figure 7.15 Robustness indices of the TST with different ASS controllers subject to the variation 
of the semitrailer CG longitudinal position ................................................................................ 167 



 
 

xvi 
 

Figure 7.16 Robustness indices in the lateral accelerations of the vehicle units of the TST with 
different ASS controllers subject to the variation of the semitrailer CG vertical position ......... 168 

Figure 7.17 Robustness indices in the steer angles of the tractor rear wheels and the semitrailer 
wheels of the TST with different active steering controllers subject to the variation of the 
semitrailer CG vertical position .................................................................................................. 169 

Figure 8.1 TruckSim model of the B-train double ...................................................................... 173 

Figure 8.2 Time histories of the lateral acceleration at the whole mass CG, that contributed by 
the roll motion and that induced by the yaw motion of the B-train double TruckSim model under 
a MCSSI maneuver at the forward velocity of 110km/h ............................................................ 177 

Figure 8.3 Time histories of lateral accelerations at the whole mass CG, at the roll center under 
the whole mass CG, and the at the tractor front axle roll center of the B-train double TruckSim 
model under a MCSSI maneuver at the forward velocity of 110km/h ....................................... 177 

Figure 8.4 Target and XY trajectories of the tractor front axle roll center under the single sine 
wave lateral acceleration test at forward velocity 110 km/h and driver’s time lag s and preview 
time varied from 0.1 to 1.5s ........................................................................................................ 179 

Figure 8.5 Lateral accelerations at the tractor whole mass CG under the SCSLA test at forward 
speed of 110 km/h and driver’s time lag   s and preview time  varied from 0.1 to 1.5s ............. 179 

Figure 8.6 Lateral accelerations at the tractor front axle roll center under the SCSLA test at 
forward speed of 110 km/h and driver’s time lag 0dτ =  s and preview time pT varied from 0.1 

to 1.5s .......................................................................................................................................... 180 

Figure 8.7 Target and XY trajectory of the tractor front axle center under the SCSLA test at the 
forward speed of 110 km/h and driver’s time lag dτ  varied from 0 to 0.05 s with preview time 

0.4pT =  s ..................................................................................................................................... 181 

Figure 8.8 Time histories of lateral accelerations at the tractor whole mass CG under the SCSLA 
maneuver at forward speed of 110 km/h and driver’s time lag dτ varied from 0 to 0.05s with 

preview time 0.4pT s=  .................................................................................................................. 182 

Figure 8.9 Time histories of lateral acceleration at the tractor front axle roll center under the 
SCSLA maneuver at forward speed of 110 km/h and driver’s time lag dτ  varied from 0 to 0.05s 

with preview time 0.4pT s=  ........................................................................................................ 182 

Figure 8.10 RA frequency functions of the B-train double obtained with the MCSSI and the 
AFRM of different number of cycles.......................................................................................... 183 

Figure 8.11 RA frequency functions of the B-train double obtained with the MCSSI and the 
PRBS steer input of varying input level ..................................................................................... 184 

Figure 8.12 RA frequency functions of the B-train double obtained under the MCSSI, the AFRM 
and the PRBS steer test maneuvers ............................................................................................. 185 

Figure 8.13 Coherence functions between: (a) the PRBS steer input and the lateral acceleration at 
the tractor front axle roll center, and (b) the PRBS steer input and the lateral acceleration at the 
2nd trailer whole mass CG .......................................................................................................... 186 

Figure 8.14 RA frequency functions obtained with the pseudo-random steer input and the MCSSI
..................................................................................................................................................... 187 



 
 

xvii 
 

Figure 8.15 Comparison of the RA frequency functions obtained the MCSSI, SCSSI, and the 
single-cycle AFRM maneuvers................................................................................................... 188 

Figure 8.16 Transient lateral acceleration responses with the variation of frequency: (a) at tractor 
front axle roll center, and (b) at 2nd trailer whole mass CG....................................................... 189 

Figure 8.17 Excitation modes of AFRM and SCSSI: (a) continuous mode, and (b) intermittent 
mode ............................................................................................................................................ 190 

Figure 8.18 RA frequency functions obtained under the SCSLA, SCSSI and MCSSI maneuvers
..................................................................................................................................................... 192 

Figure 8.19 Power spectral density of sine wave steer inputs with varying number of cycles .. 193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xviii 
 

List of Tables 

Table 4.1 Tire cornering stiffness coefficients of the validated linear model .............................. 75 
Table 4.2 RWA ratios measured using the AFRM and TF methods ............................................ 75 
Table 4.3 Lateral acceleration gains (at the selected points shown in Figure 4.4) acquired using 
the AFRM and manual measurement methods ............................................................................. 78 
Table 4.4 Lateral acceleration of vehicle units at the selected points on the curves in Figure 
4.8….............................................................................................................................................. 82 
Table 4.5 Lateral acceleration gains (at the selected points shown in Figure 4.11) measured using 
the AFRM method ........................................................................................................................ 86 
Table 4.6 Linear model’s RWA ratios determined under the open-loop SLC maneuver 
recommended by ISO14791 and the RWA ratios achieved using the AFRM technique ............. 88 
Table 5.1 Performance measures of the B-Train Double with the TO/DLULP/LUPT driver 
model under the SLC maneuver ( 1 20.6, 0.3, 1 , 0.1 , 10p d L Dk k T s sτ κ κ= − = − = = = = ) ...................... 116 

Table 5.2 Definition of the cases for the L mode with different vehicle unit tracking error 
controls ( 1 , 0.1 , 10p d LT s s andτ κ= = =  ) ......................................................................................... 123 

Table 5.3 Effects of trailing unit tracking error controls on the L mode performance ............... 123 
Table 6.1 Yaw moment allocation using nonlinear programming ............................................. 130 
Table 7.1 Robustness indices of the TSTs with the ASS controllers subject to semitrailer sprung 
mass uncertainty.......................................................................................................................... 164 
Table 7.2 Robustness indices of the TST with different ASS controllers subject to the variation 
of trailer CG longitudinal position .............................................................................................. 166 
Table 7.3 Robustness indices of the TST with different ASS controllers subject to the variation 
of trailer CG vertical position ..................................................................................................... 168 
Table 8.1 RA frequency function values and relative errors for the selected points in Figure 8.12
..................................................................................................................................................... 186 
 
 
 

 

 



PhD Thesis – Shenjin Zhu                                     University of Ontario Institute of Technology 
 

1 
 

Chapter 1 Introduction 

1.1 Multi-trailer Articulated Heavy Vehicles 

 

Multi-trailer articulated heavy vehicles (MTAHVs) demonstrate significant economic and 

environmental benefits. It is shown that compared with an articulated heavy vehicle (AHV) with 

a single trailer, a tractor/two-trailer combination can improve fuel economy, and reduce 

greenhouse gas emissions by approximately one-third, in addition to the benefits of congestion 

reduction, infrastructure protection, and savings on maintenance and driver costs. MTAHVs have 

potentials to save up to $320 million, including 70 million liters fuel yearly in Ontario, Canada 

(LCVP, 2011). An investigation of economic efficiency of  long combination vehicle (LCVs) in 

Alberta, Canada declares that the application of MTAHVs in Alberta has resulted in 80% decrease 

in the mileage travelled by heavy commercial vehicles, 40% saving for shippers, 32% cut on fuel 

consumption, and 40% reduction on pavement wear (Woodrooffe and Ash, 2001). A British 

research claims that raising the maximum truck weight from 41 to 44 tons has generated significant 

economic and environmental benefits (McKinnon, 2005). The research in Texas, USA has 

predicted that allowing operation of MTAHVs would save the Texas shippers $374 million to $1.9 

billion a year (Bienkowski and Walton, 2011). A case study has demonstrated that the application 

of MTAHVs connecting the Chinese Gulan Intermodal Container Depot with seaports would 

induce 36.2% vehicle mileage reduction, 17.1% transport cost decline, 22.7% less fuel 

consumption and CO2 emission (Nagl, 2007). 

However, the poor directional performance of MTAHVs restricts their wide applications. In 

Ontario, Canada, MTAHVs are only allowed to operate on the designated freeway networks and 

approved municipal roads, carrying gross vehicle weight (GVW) not greater than that of a 
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conventional tractor/trailer and running at night time to ensure road safety (LCVP, 2011). 

Concerning safety and pavement damage, the Intermodal Surface Transportation Efficiency Act, 

USA, has frozen the MTAHV use on the federal highway system since 1991 (Adams et al, 2012). 

To promote further utilization of LCVs, the safety concerns have to be eased through exploiting 

technical solutions.  

The main disadvantages of MTAHVs including pavement and road infrastructure damage, 

traffic congestion and road safety hazard (Grislis, 2010) are directly associated with their main 

features: heavy weight, poor manoeuvrability, and low stability. Heavy weights are responsible 

for pavement damage. A heaviest MTAHV has an equivalent impact of 2000 cars on road (Grislis, 

2010). The greatest impact of MTAHVs on road and bridge is directly related to the maximum 

single axle load which may be mitigated by raising the amount of axles employed. Thus, MTAHVs 

with multiple axles can be made less aggressive than traditional tractor/trailer combinations.  

Poor manoeuvrability causes large off-tracking when a MTAHV corners on urban roads. The 

road infrastructure designed for traditional tractor/trailer with limited radii of curves and narrow 

traffic lanes may not well accommodate the manoeuvring characteristics of MTAHVs. Damage of 

vehicles, road shoulders, curbs, and roadside signs may take place. Poor manoeuvrability is also 

responsible for urban road and two-lane highway congestion (Grislis, 2010).  

Low stability of MTAHVs creates safety hazards on road. It can lead to roll and lateral unstable 

modes. Particularly, MTAHVs tend to rollover when negotiating tight curves at high speeds due 

to high center of gravity (CG) and relatively narrow track width. The static rollover threshold is a 

basic measure of roll stability (Winkler, 2000). Rollover thresholds are well above 1.0 g (g is the 

gravitational acceleration constant) for most of passenger cars, 0.8 g-1.2 g for light trucks, vans 

and SUVs, and well below 0.5 g for fully loaded MTAHVs. The lateral acceleration in normal 
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cornering can easily exceed the rollover threshold of MTAHVs and result in rollover accidents. 

Roll stability is strongly dependent on the frequency content of manoeuvres (Winkler, 2000).  

The lateral unstable modes of MTAHVs manifest jackknife or trailer swing. Various factors 

may contribute to jackknife, including poor inertial characteristics, bad timing braking or steering 

(Chen and Hsu, 2008), brake failure, improper braking and poor road conditions (Bouteldja and 

Cerezo, 2011), and excessive speed on low frictional road. The lateral performance measures for 

lateral dynamics of MTAHVs include rearward amplification (RWA), off-tracking, and yaw 

damping (Kharrazi, 2012). 

1.2 Manoeuvrability and Stability of MTAHVs 

 
Manoeuvrability and stability are intrinsic characteristics of moving objects. A motion has to be 

controllable and stable for practical applications. A MTAHV should perform a maneuver with 

adequate stability. 

The correlations exist among the manoeuvrability, stability and the degrees of freedom (DOF) 

of a moving object. A unicycle has five DOF per unit, and demonstrates the best manoeuvrability 

and the poorest stability. From a bicycle to a passenger car, the reduced DOF has degraded the 

manoeuvrability and improved the stability. The same trend exists when transition from trucks to 

tractor/semitrailers (TSTs) and to MTAHVs. A larger number of DOF results in better 

manoeuvrability and poorer stability, and vice versa (Fancher, et al, 1984). The manoeuvrability 

is positively, and the stability negatively correlated with the number of DOF. The removal of roll 

DOF at pintle-hitch couplings in an A-train would reduce the RWA ratio from around 2 to under 

1.5 (Winkler, 2000).    

The manoeuvrability and stability of MTAHVs may be improved by introducing external yaw 

and/or roll moments. The moments generated by passive trailer steering systems improve the 
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manoeuvrability at the cost of the stability of MTAHVs (Fancher, and Winkler, 2007, Odhams, et 

al, 2010). Active yaw and/or roll moments generated by active safety systems (ASSs), e.g., active 

trailer steering (ATS), trailer differential braking (TDB), and active roll control (ARC) can 

improve both the manoeuvrability and stability. The active steering (Mokhiamar and Abe, 2002, 

Fukao, et al, 2004), differential braking (Barbarisi, et al, 2009, Hancock, et al, 2005, Jo, et al, 

2008), and the ARC (Yim, et al, 2011, Du and Zhang, 2008) have been developed for passenger 

cars. The application of ASSs in MTAHVs (Palkovics and Fries, 2001, MacAdam, and Hagan, 

2002) is relatively limited.  

Two requirements to make a MTAHV safe are appropriate technical parameters and proper 

driving (Grislis, 2010). The safety performance study in Alberta, Canada shows that the special 

operation permit program has made the MTAHVs 5 times safer than the TSTs (Woodrooffe, et al, 

2004). Road safety is an outcome of the driver-vehicle-road interactions. The ASS design is to 

construct controller/controllers to work with the driver and the road.  

The Multidisciplinary Vehicle Systems Design Laboratory (MVSDL) at University of Ontario 

Institute of Technology (UOIT) has conducted several initial works on the ASSs for MTAHVs. 

The MVSDL has developed an automated design synthesis method (ADS) for ATS systems (Islam 

et al, 2010, He et al, 2010, Oberoi and He, 2011, Oberoi et al, 2011, He and Islam, 2012, Islam et 

al, 2012). In this method, the vehicle modeling, ATS controller construction, performance 

evaluation and the design variable search are conducted simultaneously at the early design stages 

of AHVs. The MVSDL has developed a driver-software-in-the-loop (DSIL) real time simulation 

platform (Ding and He, 2012). The DSIL platform is a virtual testing tool equipped with fully 

configurable virtual vehicles, road conditions, test procedures, manoeuvres, interfacable software 

and hardware. The MVSDL has conducted comparative studies on the ASSs of articulated vehicles 
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for improving stability in time and frequency analysis (Islam et al, 2010, Shamim et al, 2011, Ding 

et al, 2011, Islam and He, 2011). The MVSDL has developed a multilevel design synthesis (MDS) 

method for mechatronic vehicles with integrated control systems (ICSs) (He, 2008). The MDS 

uses the decomposition-synthesis approach. Large systems are partitioned disciplinarily into multi-

level sub-systems for analysis. The design variables, criteria and the constraints are formulated 

and solved at the subsystem level. The information is shared and the optimization is conducted in 

the top-down and the bottom-up fashions. The optimization process is terminated when all the 

parties receive their acceptable solutions.  

1.3 Limitations of the Existing ASSs and the Design Methods 

There are several limitations on the existing ASSs and the design methods. The stability of AHVs 

has long been studied without considering the driver. The driver may play a destabilizing part on 

the vehicle systems (Plochl, and Edelmann, 2007). The driver models (Cheng, and Cebon, 2007, 

He et al 2010, He and Islam, 2012, Islam, Ding and He, 2012) in the closed-loop simulations are 

mainly adapted from those designed for passenger cars without considering the unique dynamic 

features of MTAHVs. A driver model by Ding and He (2012), based on the motion cues from the 

trailing units, does not provide anticipative results. The current ASSs (Aurell and Edund, 1989, 

Eisele and Peng, 2000, Jujnovich and Cebon, 2002, Wu and Lin, 2003, Rangavaj and Tsao, 2007, 

Oudghiri et al, 2007, He et al, 2010, Islam et al, 2010, Oberoi and He, 2011, Gu and Yang, 2011, 

Oberoi et al, 2011, Ding and He, 2011, He and Islam, 2012, and Islam et al, 2012) have not 

adequately addressed the driver-vehicle-road (DVR) interactions.  

The integration of ATS, ARC and TDB for MTAHVs has not been adequately investigated, in 

spite of the extensive research of the integrated control for single unit vehicles, e.g., He (2008), 

ATS (Rangavaj and Tsao, 2007, Kharrazi et al, 2010, Islam et al, 2010) and the TDB (MacADAM, 
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and Hagan, 2002, Zong et al, 2011) on MTAHVs. The robustness of the ASSs on parametric 

uncertainties and un-modeled dynamics has not been fully investigated.   

1.4 Research Objectives 

The proposed research will develop new coordinated ASSs for MTAHVs. The MVSDL’s previous 

work will be extended to MTAHVs considering the interactions of driver and vehicle. The 

following objectives are to be achieved. 

1.4.1 Integrated Control of the ATS, ARC and the TDB  

 
The ATS, ARC and the TDB will be integrated to accommodate various operating conditions of 

MTAHVs on road. The previous ATS, ARC and TDB technologies for AHVs will be extended to 

MTAHVs. The proposed integrated control systems (ICSs) will have a hierarchical architecture, 

performing ATS, TDB and ARC coordination, and actuator manipulation in the MDS framework. 

1.4.2 Development of a Driver Model for MTAHVs  

 
A driver model will be developed for MTAHVs. The model will capture the unique features of 

MTAHV drivers and perceive the motion cues of all vehicle units. The designed model will be 

responsible for the closed-loop simulations in this research. 

1.4.3 Development of the Innovative Design Methods for ASSs  

 
The ultimate research goal is to develop a multilevel design optimization method (MDO) for the 

ASSs of MTAHVs. The MDO is an extension of the MDS for mechatronic vehicles with the ICS. 

The MDO should be innovative, effective and robust, considering the parametric uncertainties, un-

modeled dynamics, and the driver skills.  
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1.5 Methodology 

The following design methodology will be applied during the development of the ASSs for 

MTAHVs. 

1.5.1 Integrated Control of the ATS, TDB, and the ARC 

The TDB is effective in improving stability of MTAHVs (Palkovics et al, 1999, Eisele and Peng, 

2000), and can curtail jackknife and trailer swing on the low frictional road and prevent rollover 

on the high frictional road. 

The MTAHVs demonstrate worse manoeuvrability compared with the conventional AHVs. 

Poor manoeuvrability raises concerns for the safety and the highway infrastructure damage 

(Rangavaj, and Tsao, 2007) and promotes the accident rate on road (Jason et al, 1998). The ATS 

systems can significantly improve the manoeuvrability of MTAHVs (Rangavaj, and Tsao, 2007, 

He et al, 2010, Islam et al, 2010, He and Islam, 2012, Islam, Ding, and He, 2012). 

By integration in one MTAHV, the ATS and the TDB can compensate each other. The 

proposed coordinated ASS will have a hierarchical architecture, consisting of three levels. The 

virtual control is determined at the upper level, and allocated at the intermediate level. The 

actuators are manipulated at the bottom level. The hierarchical ICS is optimized iteratively. 

1.5.2 Validation of the ICS Using Numerical Simulations 

The designed ICS will be validated by using numerical simulations, including the driver model 

validation, ASS validation, driver/vehicle interaction examination, and the MDO development. 

1) Driver Model Validation. A driver model will be designed and simulated in the 

Matlab/Simulink under the specified test manoeuvres. 
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2) ASS Validation. The ICS is assessed under various cases: the baseline, ATS, ARC, TDB, and 

their integration. In these cases, the ICS will be evaluated in the directional performance measures 

of the MTAHV through benchmark comparisons. 

3) Development of Innovative Design Methods for the ASSs. A MDO method will be developed 

for the design of ASSs for MTAHVs based on the MVSDL’s previous work. A multilevel 

evaluation framework is proposed correspondingly. The MTAHV driver model and the ICS are 

designed and evaluated independently. The coordination of the ICS, driver model and MTAHV is 

optimized at the upper level and evaluated overall considering the control allocation and the 

realization in the multilevel approach.  

1.6 Major Contributions of This Research 

1) A unified driver model has been developed for road vehicles including single-unit passenger 

cars, SUVs, and light trucks and multi-unit heavy commercial vehicles.   

2) An automated frequency response measuring technique (AFRM) has been introduced to acquire 

frequency response of the nonlinear vehicle models automatically. The on-line application of the 

AFRM makes the frequency-domain design optimization of active safety systems (ASSs) for 

articulated heavy vehicles feasible.  

3) The functionality of the software package, EoM (Equation of Motion), has been extended from 

originally generating linear models of multi-body dynamic systems for stability analysis and 

control design to currently formulating nonlinear models for dynamics simulation by replacing the 

linear tire models with the nonlinear ones, e.g., the Dugoff and the Magic tire models. 

4) A coordinated control scheme, considering the active trailer steering (ATS), trailer differential 

braking (TDB), and the active roll control (ARC), for the multi-trailer articulated heavy vehicles 

(MTAHVs) has been developed in a multi-level/modular approach. A side-slip angle based 
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allocation algorithm is proposed to coordinate the functionality of the ATS and the TDB 

subsystems. 

1.7 Organization of the Thesis 

This thesis is organized as follows. An extensive literature review on the directional performance 

of MTAHVs, driver models, and ASSs is presented in Chapter 2. Vehicle modeling and validation 

are provided in Chapter 3. In Chapter 4, the lateral dynamic analysis of AHVs in the frequency-

domain is conducted with the introduction of the automated frequency measuring technique. A 

unified lateral preview driver model for road vehicles is designed in Chapter 5. The integrated 

control system for MTAHVs is formulated considering the ATS, TDB and the ARC in Chapter 6. 

Robust active steering systems for AHVs are studied in Chapter 7. An investigation of test 

maneuvers for determining rearward amplification of MTAHVs is conducted in Chapter 8. Finally, 

conclusions are drawn in Chapter 9.  
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Chapter 2  Literature Review 

2.1 Directional Performance of MTAHVs 

A MTAHV consists of a tractor and two or more trailers connected to each other at articulation 

points using mechanical couplings, such as pintle hitches, 5th wheels, etc. (Fancher and Winkler, 

2007). MTAHVs are increasingly used on highways across Canada due to economic and 

environmental benefits (OLCV, 2009). The complex configurations and large sizes of MTAHVs 

lead to poor manoeuvrability and low stability.  

The manoeuvrability is associated with the kinematic characteristics of MTAHVs. The 

performance measures for manoeuvrability of MTAHVs include low-speed off-tracking, frontal 

swing, tail swing, and steering tire friction demand in a low speed cornering (NRTC, 2001). The 

off-tracking is defined as the maximum offset between the paths of the tractor front axle center 

and the trailer rearmost axle center under low-speed cornering maneuvers, and is attributed to the 

inherent factors and external conditions. The low-speed off-tracking is dependent on the geometric 

parameters of MTAHVs and the manoeuvers conducted (Fancher et al, 1984, CDT, 1984, Erkert 

et al, 1989, Cheng and Huang, 2011). The low-speed off-tracking causes extra road space 

consumption (Fancher and Winkler, 2007). Poor maneuverability of MTAHVs may disrupt traffic 

flow (CTSWS, 2000).  

Due to multiple unit configurations, MTAHVs exhibit unique dynamic features.  The lateral 

stability of MTAHVs is an important research topic in road vehicle lateral dynamics. The 

performance measures to evaluate the lateral stability involve static rollover threshold, transient 

off-tracking, rearward amplification (RWA), and yaw damping (Fancher and Winkler, 2007). Poor 

stability may lead to unstable motion modes, including jackknifing, trailer swing and rollover 
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(Islam et al, 2012, He et al, 2010), causing serious accidents. Every year, approximately 120,000 

injuries and 5000 fatalities are related to AHVs (CTAA, 2010), amongst them, 23.1% involving 

fatality and 28% causing incapacitating injury (USDT, 2005). Heavy commercial vehicles are 

overrepresented in fatal accidents (Kharrazi, 2012). Correlations exist between AHV accident rates 

and maneuvers (Jason et al, 1998, CTSWS, 2000, Kharrazi, 2012).  

Manoeuvrability and lateral stability have contradictory requirements on the vehicle system 

parameters (Fancher and Winkler, 2007). For instance, shorter trailer wheelbase and more 

articulation joints would improve manoeuverability, but deteriorate stability of the AHV. 

Adequately addressing the trade-off relationship between manoeuvrability and lateral stability is a 

challenging task facing designers and researchers.  

2.2 Active Control of MTAHVs  

To date, extensive research and experiments have been conducted to solve the trade-off design 

problem of MTAHVs. Since 1980s, weights and dimensions of MTAHVs have been the research 

topics of the vehicle system dynamists around the world. The passive vehicle system parameters 

cannot fully accommodate the contradictory requirements from manoeuvrability and lateral 

stability under various operating conditions. Active control techniques may provide promising 

solutions to this conflicting MTAHV design problem. The past two decades have witnessed the 

advancement of active control of AHVs (Lam, 1988, Fancher and Winkler, 2007).  

2.2.1 Control Strategies 

The control strategies are defined as the selection and application of mechanisms of MTAHVs to 

realize the active control functionalities. The steering control, braking control, suspension control, 

and the active roll control are the commonly used control strategies for improving the dynamic 

performance of AHVs. 
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2.2.1.1 Active Steering Control 

Today’s steer-by-wire control systems are evolved from traditional mechanical steering linkages, 

speed-dependent four-bar steering mechanisms (Bozeman and Drench, 1998), the software-

implementation of mechanical controllers using virtual sensors and actuators (Jujnovich and 

Cebon, 2002, Fancher and Winkler, 2007), and the strategic transition from mechanical 

manipulation to modern steer-by-wire implementation (Fletcher et al, 2006). Since then, active 

steering has been widely investigated to improve the manoeuvrability (Cheng and Cebon, 2007, 

Rangavajhula and Tsao, 2008, Cheng et al, 2011), lateral stability (Islam et al, 2012, Kharrazi et 

al, 2012, Ding et al, 2013), and the trade-off between manoeuverability and lateral stability (He 

and Islam, 2012, Tabatabaei Oreh et al, 2012, and Tabatabaei Oreh et al, 2012a). The geometrical 

steering control systems (Percy and Spark, 2012, Percy and Spark, 2012a) translate the operator’s 

command on the leading unit to the wheel and hitch angles on the trailing units, aimed at reducing 

the low-speed scuffing and off-tracking of the trailer wheels. 

2.2.1.2 Differential Braking Control 

Differential braking (DB) techniques used on AHVs are developed from traditional pneumatic 

systems (Palkovics and Fries, 2001). In the differential braking system, the electronics are utilized 

to fulfill measurement, signal transmission, and control, and the hydraulics and pneumatics are 

kept as energy sources. The differential braking control systems provide several benefits such as 

being more compact, easier to control, faster response, safer performance and present platforms 

for future functionality expansion. The DB control strategy has been applied to AHVs to improve 

lateral stability (Elwell and Kimbrough, 1993, Petersen et al, 1998, Fancher et al, 1998, MacAdam 

et al, 2000, Eisele and Peng, 2000, Stevenson and Ridley, 2005, Azad et al, 2006, Zhou and Zhang, 
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2012), and prevent jackknife (Chen and Hsu, 2008, Hac et al, 2009, Chen and Shieh, 2010, Zong 

et al, 2011). 

2.2.1.3 Active Suspension Control  

Active suspension systems can be used to improve the ride quality and roll stability of AHVs. The 

commonly used methods including control of the damping coefficients of dampers or directly 

manipulating the vertical forces using hydraulic or electric actuators. Yi and Hedrick (1989) 

evaluated the active/semi-active suspensions of tractor/semitrailer combinations on the damage of 

pavement and achieved reduction on the pavement degradation by the modulation of semi-active 

shock absorbers. Chen et al (2008) presented fuzzy-logic-control based air suspensions for 

improving ride comfort and road friendliness of truck by actively adjusting the damping 

coefficients of semi-active suspensions. Sulaiman et al (2012) investigated the semi-active 

suspension systems in the improvement of ride quality and road holding of heavy vehicles. Chen 

et al (2013) compared two multi-axle heavy truck suspension control strategies on a functional 

virtual prototype model in terms of road friendliness and ride comfort.   

2.2.1.4 Active Roll Control 

Extensive research may be found in the field of active roll control for AHVs. Miege and Cebon 

(2005) investigated the benefits of active anti-roll bar systems for improving roll stability of an 

experimental tractor/semitrailer combination. Jeppesen and Cebon (2009) considered the observer-

based fault detection in the active roll control of a tractor/semitrailer combination. Huang et al 

(2012) used an active anti-roll-bar manipulation for rollover prevention of AHVs with multiple-

rollover-index minimisation.  
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2.2.2 Reference Generation 

Reference tracking is a common practice in the active control of MTAHVs. The reference, which 

demonstrates desired performance properties of the vehicle, is first generated. The performance 

measures of the vehicle are then forced by a controller (or controllers) to track the reference. There 

are two types of commonly used methods to generate the reference: 1) reference model simulation; 

and 2) direct measurement or observation of the vehicle.  

2.2.2.1 Reference Model Simulation 

The model matching approach has been widely applied to control systems design. A reference 

model, which provides the desired performance, is first designed. Then a controller is constructed 

to track the response of the reference model. Two types of reference models, namely, kinematic 

and dynamic models, are employed. In the kinematic model, a MTAHV may be modeled using 

geometric relationships (Odhams et al, 2010, Percy and Spark, 2012, Jujnovich and Cebon, 2013). 

The tractor, trailers, axles, and the wheels are modeled as links connected with joints. The low-

speed performance measures of the vehicle are forced to match the response of a geometric model.   

The dynamic model matching is usually used in the control of MTAHVs in high-speed 

operations. A linear dynamic model may be adopted as a reference model. Using the dynamic 

model matching, the active steering system forces the vehicle to follow the simulated steady-state 

response of the virtual dynamic model (Palkovics, 1992, Palkovics et al, 1994, Gianone et al, 

1995). A sliding mode control system tracks the desired states of the simulated dx -generator 

(Misawa, 1997). A path-following control system traces the response of the simulated first-order 

differential equation planner (Fancher et al, 1998). The reference trajectories are obtained by 

observing the states of a simulated, LQR compensated model using the Kalman filter (Miege and 
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Cebon, 2005). The philosophy of the loop transfer recovery (LTR) (Doyle and Stein, 1979, 

Sampson, 2000) may also be ascribed to the dynamic model matching.  

The zero-state-following is a principle utilized in the regulation systems. The variable(s) or 

state(s) of interest are forced by linear quadratic regulators (LQRs) to approach zero. The 

application of the zero-state-following can be found in the planar dynamics attenuation (El-Gindy 

et al, 2001), multiple-rollover-index minimisation (Huang et al, 2012), and the 

manoeuvrability/stability improvement (Cheng, and Cebon, 2007, Rangavajhula et al, 2008, Hac 

et al, 2009, He et al, 2010, Ding  et al , 2011, Islam et al, 2012, He and Islam, 2012). 

2.2.2.2 Direct Measurement or Observation 

In a path-following maneuver, the trajectory of a lead point is required for the follow point to track 

(Jujnovich and Cebon, 2013). This trajectory may be directly measured or observed. Cheng and 

Cebon (2008) proposed an active trailer steering strategy to improve roll stability of AHVs; two 

points on the semitrailer, the articulation point and the end point of the semitrailer, are selected; 

an optimal controller is designed to make the end point to track the articulation point. As the 

reference, the articulation point trajectory is observed by using the Kalman filter. The strategy of 

utilizing the direct measurements (or observation) as the reference trajectories is adopted by Chen 

and Tomizuka (2000), Cheng et al (2011), Cheng, Roebuck, Odhams and Cebon, (2011), Islam 

and He, (2011). 

2.2.3 Control Algorithms 

Among the active control systems of AHVs, the linear quadratic regulator (LQR) is the most 

popular algorithm (Cheng, and Cebon, 2007, He, 2008, Islam et al, 2010, Islam et al, 2010a, He et 

al, 2010, Ding and He, 2011, Islam and He, 2011, Ding et al, 2011, Ding and He, 2012, Islam et 

al, 2012, He and Islam, 2012, Tabatabaei Oreh et al, 2012, Tabatabaei Oreh et al, 2012a, Ding et 
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al, 2013). The proportional-integral-derivative controller (PID) is the second most frequently used 

algorithm (Hata et al, 1989, Notsu et al, 1991, Lin et al, 1996, Fancher et al, 1998, Miege and 

Cebon, 2005a, Odhams et al, 2010, Jujnovich and Cebon, 2013). Few attempts can be found in the 

sliding mode control (Acarman and Ozguner, 2003, Imine et al, 2012) and the fuzzy logic control 

(Tanka and Takahiro, 1997, Ding et al, 2011, Tabatabaei Oreh et al, 2012, 2012a) of AHVs.  

2.3 Models of MTAHVs 

The introduction of active control systems into the dynamics of AHVs has changed the role of 

AHV modeling (Fancher and Winkler, 2007). Currently, there are three classes of models, namely, 

control-oriented models, dynamics models and general purpose models, available (Fancher and 

Winkler, 2007). The models of AHVs are problem-dependent involving approximations, 

assumptions, simplifications and complexity associated with accuracy and precision.    

The control-oriented models are used to generate commands for manipulating control elements 

in the control systems. There are kinematic and dynamic control models available in the literature. 

The kinematic control models are built on the kinematic relationship of physical structures without 

considering the system dynamics, and thus limit their applicability to manoeuvrability 

improvement (Odhams et al, 2010, Percy and Spark, 2012, Percy and Spark, 2012a, Jujnovich and 

Cebon, 2013).  

There are two kinds of commonly used dynamic control-oriented models, namely, yaw-plane 

and yaw-roll. The dynamic control-oriented models may be linear or nonlinear dependent on the 

objectives of the control systems. The yaw-plane models are widely used in the active control 

systems for improving the directional performance of AHVs (Palkovics et al, 1994, Islam and He, 

2008, Chen and Hsu, 2008, Chen and Shieh, 2010, Liu, 2007, He et al, 2010, He and Islam, 2012, 

Ding et al, 2012, Tabatabaei Oreh et al, 2012).  
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The yaw-roll control models consider more DOF than that of the corresponding yaw-plane 

models and are appropriate for roll motion control (Kharrazi et al, 2010, Kharrazi et al, 2012), roll 

stability enhancement (Miege and Cebon, 2005, Cheng and Cebon, 2008, Cheng et al, 2011), and 

rollover prevention (Huang et al, 2012). The decoupled yaw-roll model, consisting of yaw 

dynamics and roll dynamics models in series, is applicable to rollover warning (Chen and Peng, 

2005). The simple roll-plane models are also used in active roll control (Miege and Cebon, 2005a), 

and lateral load transfer estimation (Kamnik et al, 2003).   

The dynamics models are used to simulate tire and vehicle dynamics. With the fidelity as 

primary concern, the dynamics models should describe the system dynamics with sufficient 

accuracy and precision. The commonly used dynamics models cover nonlinear yaw-plane, yaw-

roll, and yaw-roll-pitch dynamics of AHVs.  

The nonlinear dynamics models are usually employed when advanced dynamics models built 

with multi-body dynamics software package are unavailable. In common practice, a nonlinear 

dynamics model is first constructed using physical laws or the Lagrange method, and then 

linearized at certain operation point. A controller is constructed with the linearized model and 

validated with the nonlinear dynamics model simulation, e.g., in jackknife prevention (Chen and 

Hsu, 2008), directional performance enhancement (Kharrazi et al, 2010, Kharrazi et al, 2012), and 

directional characteristics improvement (Tabatabaei Oreh et al, 2012, Tabatabaei Oreh et al, 

2012a).  

Several multibody dynamics software packages, such as ADAMS, TruckSim and ArcSim, are 

available for building complex dynamics models of AHVs with high fidelity, accuracy and 

precision. A comprehensive 77-DOF 3D dynamics model of a tractor/semitrailer combination in 

ADAMS was employed to validate a partial feedback linearization controller (Fletcher et al, 2006). 
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A TruckSim model of the fully laden CVDC (Cambridge Vehicle Dynamics Consortium) 

tractor/semitrailer combination was used to test the virtual driver steering strategy (Cheng and 

Cebon, 2008). The TruckSim models were applied to validate the active safety systems of AHVs 

(Ding et al, 2012, Sulaiman et al, 2012, He et al, 2013). The CASCADE (a vehicle simulation 

system) model was used to evaluate the lateral load transfer coefficient estimation method 

(Kamnik et al, 2003). An ArcSim model was applied to assess the performance of the time-to-

rollover metric computation (Chen and Peng, 2005). 

The general purpose models are used to simulate the entire driving process, include the models 

of sensors, actuators, driving environment, tire road interfaces (NTC, 2005), aerodynamic 

disturbance (Palkovics et al, 1994) and drivers. Driver models mainly infer to the mathematical 

representation of driver’s path-following control behaviour.  

2.4 Driver Models 

Following the introduction of active control systems into the vehicle dynamics, driver models have 

served the analysis and synthesis of the performance and stability of vehicle systems for over 

decades. Since its origination in 1950s, research on understanding and modeling of drivers’ 

behaviours has never stagnated. Today, driver modeling has covered a broad topic. 

Based on control functionalities, driver models are classified into longitudinal dynamics 

control driver models, lateral dynamics control driver models, and combined lateral/longitudinal 

control driver models (MacAdam, 2003).   

Depending on the objects focused, driver models are categorized into vehicle-focused driver 

models, driver-focused driver models, driver/vehicle combination-focused driver models and 

environment/traffic-focused driver models (Plochl and Edelmann, 2007).   
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Driver models are organized in terms of model formulations, decision making process, 

response and reaction time determination, steering dynamics performance index construction and 

driver model parameter identification (Taheri, 2014).  

The aforementioned driver models are mainly focused on single unit vehicles, and with only 

feedback motion cues from single units. This approach is appropriate for passenger cars, SUVs, 

and trucks. The following listed articles launched strategic attempts of driver model construction 

with all unit motion cue feedback.           

The AHV-based driver models defined on the lateral positions and orientations of the trailing 

units showed oscillatory behaviour (Yang et al, 2003, Ding and He, 2012). Further investigation 

of the AHV driver models (Yang et al, 2003) showed that the lateral position and heading angle 

of the lead unit was the fundamental motion cue, and the driver model structure with the 

fundamental motion cue plus the lateral acceleration of the lead unit, articulation rate and roll angle 

of the trailing unit provided the best composite performance. Liu (2007) constructed an AHV 

driver model using full state feedback with a constant physiological time delay in the LQR 

framework.  

2.5 Automated Design Synthesis  

The automated design synthesis (ADS) uses the decomposition-synthesis approach in solving 

problems in a large and complex system. The ADS was systematically investigated in the virtual 

development of ground vehicle suspensions (He and McPhee, 2007). The ADS was also applied 

to ATS design for AHVs (He and Islam, 2012) in a way that the design variables of the AHV were 

optimized in a single loop.  
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Chapter 3 Vehicle Modeling 

3.1 Introduction 

MTAHVs have multiple unit configurations and large sizes, and demonstrate poor low-speed 

manoeuvrability and low high-speed stability (Fancher and Winkler, 2007). The Australia 

performance-based standards (PBSs) for articulated heavy vehicles (AHVs) specify the swept path, 

frontal swing, and the tail swing to measure low-speed manoeuvrability (Edgar, 2004). A unified 

measure for manoeuvrability, i.e., path-following off-tracking (PFOT), defined as the maximum 

radial offset between the path of the tractor’s front axle center and that of the rearmost trailer’s 

rear axle center under a given PFOT test maneuver, is well accepted (He and Islam, 2012, Islam, 

Ding and He, 2012). The PBSs suggest the static rollover threshold, rearward amplification 

(RWA), and the yaw damping coefficient as the measures of high-speed stability (Edgar, 2004). 

The RWA, defined as the ratio of the peak lateral acceleration at the rearmost trailer’s CG to that 

of the tractor under a lane-change maneuver, is applied as a unified measure for high-speed 

stability (He and Islam, 2012, Islam, Ding and He, 2012). 

To address the inherent drawbacks such as poor low-speed manoeuvrability and low high-speed 

stability and improve the directional performance of MTAHVs, the effect of variations in size and 

weight on stability and maneuverability has been investigated (Ervin et al, 1983), various 

innovative passive mechanisms such as mechanical couplings (Winkler et al, 1986) and steering axles 

(Jujnovich and Cebon, 2002) have been invented, and achieved limited benefits due to the conflicting 

requirements of manoeuvrability and stability.  

To alleviate the limitations, various active safety systems (ASSs) such as active trailer steering 

(ATS), trailer differential braking (TDB) and active roll control (ARC) systems have been proposed 
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(He et al, 2016) and achieved promising improvement in both manoeuvrability and stability. The 

ATS improves MTAHVs’ maneuverability and lateral stability in the low and high-speed 

operational modes, respectively (Rangavajhula and Tsao, 2007, Kharazi et al, 2012, Kharazi, et al, 

2013). The ARC tilts the trailers of MTAHVs to the inside of a corner to raise the static rollover 

threshold and reduce the lateral load transfer for AHVs (Sampson and Cebon, 1998, Miege and 

Cebon, 2005, and Huang et al, 2012). The TDB system, through right or left side braking, generates 

yaw torques for suppressing rearward amplification of trailers for AHVs (Ervin, et al, 1998, 

Fancher et al, 1998, and MacAdam and Hagan, 2002).  

Unfortunately, no one ASS can solve all lateral dynamics problems of MTAHV alone. The 

ATS, ARC, and the TDB systems may coexist in a MTAHV. The combination of the ATS, TDB 

and ARC without coordination may produce adverse interference and degrade the overall 

performance of MTAHV-ASS systems. An integration of the ATS, TDB and ARC may be 

inevitable. Recently, to enhance the directional performance of MTAHVs, an integration of the 

ATS, TDB, and ARC, has been investigated (Islam et al, 2012, Islam et al, 2013, Islam and He, 

2013). However, the applicability and contribution of the individual ASSs and the coordination of 

the ASSs have not been adequately addressed. 

The key components of ASSs are model-based controllers. Thus, simple and accurate models of 

MTAHVs are essential. Different ASSs may have different objectives and working ranges with 

respect to lateral acceleration for them to perform effectively (He et al, 2016). The ATS, ARC and 

TDB are effective at the lateral acceleration levels of 0-0.3g, 0.3-0.6g and 0.2-0.7g, respectively. 

For an ATS system to enhance maneuverability and stability in the 0-0.3g lateral acceleration 

range, a linear yaw-plane model of MTAHV with linear tire models may be sufficient. For the 

formulation of the ARC system in the range of 0.3-0.6g, the focus of the model is mainly put on 
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the prediction of roll dynamics considered in a linear range, a linear yaw-roll model may be 

competent. When design the TDB system to stabilize the lateral dynamics of MTAHV under 

extreme operating conditions of lateral acceleration 0.3-0.7g, considering the effect of longitudinal 

speed reduction and addressing the saturation property of pneumatic tires, a nonlinear yaw-plane 

model, considering the longitudinal, lateral and yaw dynamics and applying nonlinear tire models 

for predicting the lateral tire forces, may be indispensable.  

For the purpose of ASS design, optimization and coordination for MTAHVs, Islam et al (2014) 

have studied multiple MTAHV models. However, their work is limited to linear models; the 

saturation property of pneumatic tires is not addressed; the presented models may be effective for 

design of ATS and ARC; the performance of TDB based on these linear models may be 

compromised; and due to their simplicity, these models may not be suitable for simulating vehicle 

dynamics.    

Numerical simulations play increasingly important role in the MTAHV dynamics. To simulate 

the MTAHV dynamics, dynamics models with sufficient levels of accuracy and fidelity are 

imperative. To incorporate with the ATS, the dynamics model shall be capable of providing lateral 

dynamic performance measures, such as yaw rates and side-slip angles of all vehicle units. To 

evaluate the effectiveness of the ARC system, the performance measures such as the static rollover 

threshold of MTAHV and lateral load transfer ratios of individual axles are required. To assess the 

performance of the TDB system, the performance measures of lateral, yaw and longitudinal dynamics 

and the combined nonlinear longitudinal and lateral characteristics of pneumatic tires are required.  

In this chapter, modelling of a tractor/semitrailer and a B-train double is conducted. The 

tractor/semitrailer is modelled with a three DOF linear yaw-plane model, a three DOF nonlinear yaw-

plane model, and a twenty-one DOF TruckSim model. The linear yaw-plane model is used to design 
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a linear sliding mode active steering controller and a mu-synthesis active steering controller. The 

nonlinear yaw-plane model is utilized to formulate a nonlinear sliding mode active steering controller. 

The TruckSim model is applied to simulate the tractor/semitrailer dynamics. A linear yaw-plane 

model, a linear yaw-roll model, and a nonlinear yaw-plane model of the B-train double are derived 

using the Newtonian mechanics. The linear yaw-plane model is intended for use in an ATS and a 

sliding mode preview driver model design. The linear yaw-roll model is expected to construct an 

ARC system and an integrated control system considering the ATS, TDB and ARC. The nonlinear 

yaw-plane model will be used to formulate a TDB system. The nonlinear yaw-roll model is generated 

using the EoM software package (Minaker and Rieveley, 2010, Minaker and Rieveley, 2013) to 

simulate the dynamics of MTAHV. To verify the feasibility and applicability, the yaw-plane model, 

linear yaw-roll model, nonlinear yaw-plane model and the nonlinear EoM yaw-roll model are 

validated with a TruckSim model in various lateral acceleration conditions. To disclose the essential 

difference between the linear and nonlinear models, the linear yaw-plane and yaw-roll models are 

compared with the nonlinear yaw-plane and yaw-roll models under a high lateral acceleration 

manoeuvre to justify the allocation of the models to the ASSs. 

3.2 Modeling of a Tractor/Semitrailer 

3.2.1 Three DOF Linear Yaw-Plane Model 

The tractor/semitrailer combination consists of a tractor with two axles and a semitrailer with a 

single axle, and the tractor and semitrailer are connected with a fifth wheel. As shown in Figure 

3.1, the vehicle system is telescoped laterally and each axle set is denoted by one wheel. Based on 

the body-fixed coordinate systems 1 1x y−  and 2 2x y− for the tractor and semitrailer, respectively, 

the governing equations of motion for the model can be derived (Eills, 1969). The motions 
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considered are the tractor side-slip angle, 1β , tractor yaw rate, 1ψɺ , and articulation angle, ψ∆ , 

between the tractor and semitrailer. In this model, the aerodynamic forces, the rolling and pitching 

motions, and the longitudinal forces between tire and road are ignored. To derive the vehicle 

model, the following assumptions have been made: (1) the forward speed U  remains constant; (2) 

the tractor’s front wheel steer angle 
f1

δ  is small; (3) the articulation angle ψ∆ is small; (4) all 

products of variables, i.e., all second order terms of small variations, are ignored; and (5) the lateral 

tire force , 1,2,3iF i =  is a linear function of the tire side-slip angle , i 1,2,3iα = . 

 

Figure 3.1 Yaw-plane model of the tractor/semitrailer combination 

From the Newton’s law of dynamics, the equations of motion for the tractor are 

( )1 1 1 1 1 2 1ymU F F Fψ β+ = + +ɺɺ          (3.1a) 

1 1 1 11 2 12 1 1zz y cI F a F b F lψ = − −ɺɺ          (3.1b) 

The equations of motion for the semitrailer are    

2 2 2 2 3 1 1( ) y xm U F F Fψ β ψ+ = − + ∆ ⋅ɺɺ          (3.2a) 
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2 2 3 23 1 21 1 21zz y c x cI F b F l F lψ ψ= − − + ∆ ⋅ɺɺ         (3.2b) 

As shown Figure 3.1, the following kinematic relations hold, 

11 12
1 1 1 1 2 1 1 2

1 1

,f

a b

U U
α β ψ δ α β ψ δ

   
= + − = − −   

   
ɺ ɺ       (3.3a) 

21 23 1 21 23
3 1 1 3

1 2

c c cl b l l b

U U
α β ψ ψ ψ δ

+ + +
= −∆ − − ∆ −ɺ ɺ       (3.3b) 

1 21 21
2 1 1 2 1

1 2

,c c cl l l

U U
β β ψ ψ ψ ψ ψ ψ

+
= −∆ − − ∆ ∆ = −ɺ ɺ        (3.3c) 

 
where ψ∆  is defined as the articulation angle between the tractor and the trailer. The reader is 

referred to (Eills, 1969) for the details about the derivation of the above kinematic relations. The 

lateral tire forces are determined using the linear tire model as 

1 11 1 2 12 2 3 23 3, ,f r rF C F C F Cα α α= − = − = −         (3.4) 

where 11fC , 
12r

C  and 
23r

C  are the total cornering stiffness of the tires on the tractor front axle, 

tractor rear axle, and the semitrailer axle, respectively. Eliminating the coupling forces from 

Equations (3.1) and (3.2) and combining with Equations (3.3) and (3.4) leads to the three DOF 

linear yaw-plane model expressed as 

1 1 2 2 3 3fδ δ δ= + + +Mx Px H H Hɺ          (3.5) 

where system matrices M , P , 1H , 2H and 3H are given in Appendix A, and the state vector is 

defined as 

[ ]1 1

T
ψ ψ β ψ= ∆ ∆x ɺ ɺ           (3.6) 

The state-space form of Equation (3.5) can be rewritten as 

1 1 2 2 3 3= + +fδ δ δ+x Ax B B Bɺ           (3.7) 
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where 1−=A M P , 1
1 1

−=B M H , 1
2 2

−=B M H , 1
3 3

−=B M H . The output is defined as the lateral 

accelerations at the CG of the tractor and the CG of the semitrailer, i.e., [ ]1 2
T

y y=y ɺɺ ɺɺ . Hence, the 

output equation is derived as 

1 1 2 2 3 3= + + +fδ δ δy Cx D D D           (3.8) 

where the matrices C , 1D , 2D and 3D  are offered in Appendix A. The notation and nominal values 

of the parameters of the tractor/semitrailer are provided in Table A1 in Appendix A. The tire 

cornering stiffness coefficients are identified using the TruckSim model to be introduced. 

3.2.2 Three DOF Nonlinear Yaw Plane Model 

The three DOF nonlinear yaw-plane model can be obtained by replacing the linear tire model in 

Equation (3.4) with the magic formula (Pacejka, 2005). The state-space equation of the nonlinear 

yaw plane model is derived as 

= + ,  nl nl nl nlF F= +x A x B y C x Dɺ         (3.9) 

where 1
nl nl

−=A M P , 1
nl nl

−=B M H , and the system matrices nlC , nlD , M , nlP , nlH are given in 

Appendix A; and the lateral tire force vector [ ]1 2 3
T

F F F F= is calculated as 

( ){ }( )sin arctan arctan , 1,2,3i i i i i i i i i iF D C B E B B iα α α= − − =         (3.10) 

where , , ,i i iB C D and iE are the magic formula parameters (Pacejka, 2005) tuned to match the 

responses of the nonlinear yaw-plane model with the TruckSim tractor/semitrailer model.  

3.2.3 TruckSim Model 

The TruckSim software package is based on a symbolic multibody program, VehicleSim (VS) 

Lisp, to generate equations of motion for 3 dimensional multibody vehicle systems (MSC, 2014, 

Islam, et al., 2015). As shown in Figure 3.2, the configuration of the tractor/semitrailer 
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combination is defined as “S_S+S”, where “S” indicates a solid axle, an underscore “_” a 

separation of axle groups, a “+” a fifth wheel connecting two vehicle units. Thus, as the 

configuration indicated, the tractor/semitrailer combination consists of a 2 solid-axle tractor having 

one front axle and one rear axle, and one semitrailer having one solid axle.  

 

Figure 3.2 TruckSim model of the tractor/semitrailer combination 

The VS Lisp takes an input as the description of the AHV configuration mostly in geometric 

terms, e.g., body DOF, point locations, directions of force vectors, etc. (MSC, 2014). With the 

configuration information, the VS Lisp derives equations of motion in terms of ordinary 

differential equations (ODEs), and generates computer source code (C or Fortran) to solve them.  

The TruckSim software package involves the following three relevant elements: 1) VS 

browser, 2) TruckSim databases, and 3) VS solver. The VS browser is a graphical user interface 

(GUI), which serves as the primary interface to the TruckSim. The TruckSim databases are used 

to select vehicle configuration templates (e.g., S_S+S, for which the ODEs are generated by the 

VS Lisp), and define system parameters, tire-road interactions, test maneuvers, etc. The VS solver 

is utilised to solve relevant governing equations of motion of the vehicle model and execute the 
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defined dynamic simulations. The VS browser can be used to allow other applications, e.g., a 

design optimization defined in MATLAB, access to the TruckSim databases via an interface.   

In the TruckSim model, the nonlinear dynamics of the pneumatic tires, suspension systems, 

and mechanical joints, etc., are taken into account. For a nonlinear vehicle model, the motions 

considered are as follows. Each of the sprung masses is considered as a rigid body with six DOF, 

namely lateral, longitudinal, vertical, pitch, roll and yaw. The fifth wheel is modeled as a ball-

joint, about which roll, yaw, and pitch motions are allowed. Each axle is treated as a beam axle 

that can roll and bounce with respect to the sprung mass to which it is attached. Each wheel is 

modeled with a spinning DOF. Thus, the tractor/semitrailer combination has been modeled as a 

twenty-one DOF nonlinear model using the TruckSim software. 

3.2.4 Validation of the Tractor/Semitrailer Models 

3.2.4.1 Model Validation in the Time-Domain 

The yaw-plane models are first validated with the TruckSim model in the time-domain to gain 

composite information of the models under a specified maneuver. The single cycle sine wave 

lateral acceleration test (SCSLA) specified in SAE J2179 (SAE, 1993) with the desired trajectory 

shown in Figure 3.3, is conducted. The desired trajectory is integrated up from a 0.15g amplitude 

SCSLA. The driver model provided in the TruckSim is employed to ‘drive’ the virtual 

tractor/semitrailer and the yaw-plane models. The design parameters of the driver model, e.g., 

preview time and time lag, are manipulated in a way that the lateral acceleration response of the 

tractor mimics the designated lateral acceleration as close as possible while the trajectory of tractor 

CG remains in the 150mm± tolerance from the desired one. The lateral accelerations of the tractor 

and semitrailer of all models are shown in Figure 3.4. The nonlinear yaw-plane model has achieved 

better agreement with the TruckSim model, especially on the semitrailer unit.  
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Figure 3.3 Desired trajectory of the CG of the tractor under the SCSLA maneuver 

 

Figure 3.4 Time histories of lateral accelerations of the linear, nonlinear and TruckSim 
tractor/semitrailer models under the SCSLA maneuver 
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3.2.4.2 Frequency Analysis of the Tractor/Semitrailer Models 

To validate the linear and nonlinear yaw-plane models in the frequency-domain, the magnitude 

responses acquired using the automated frequency response measuring technique (AFRM) are 

compared with that of the TruckSim model in the frequency range of 0 to 1 Hz, inspired by 

previous works (Ervin and MacAdam, 1982 and ISO, 2000). The AFRM will be introduced in 

Chapter 4. The tractor/semitrailer models are excited using the multi-cycle sine wave steer input 

(MCSSI) in the continuous mode to minimize transient effect (Zhu et al, 2016). 

Figure 3.5 shows the RA (rearward amplification ratio in lateral acceleration) frequency 

functions of the tractor/semitrailer models. Figure 3.6 shows the frequency functions of the gain 

between the tractor lateral acceleration and the steering wheel angle, and Figure 3.7 the frequency 

functions of the gain between the semitrailer lateral acceleration and the steering wheel angle. The 

frequency analysis results disclose that the simple three DOF yaw-plane models only catch the 

main trend of the directional response of the complex twenty-one DOF nonlinear TruckSim model; 

the time-domain validated models cannot guarantee good agreement in a frequency range of 

interest; and the yaw plane models used to design ASSs are subjected to model inaccuracy and un-

modeled dynamics. This inaccuracy and un-modeled dynamics may be mainly induced by large 

amount of approximations, reduced DOF, neglected nonlinearities, and unconsidered load shifting. 

The model inaccuracy and un-modeled dynamics identified are main concern of capability of the 

model-based ASSs to be designed and motivated us to investigate robust ASSs in Chapter 7.    
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Figure 3.5 RA frequency functions of the TruckSim, linear, and the nonlinear tractor/semitrailer 
models 

 

Figure 3.6 Frequency functions of the gain between the tractor lateral acceleration and the 
steering wheel angle of the TruckSim, linear and the nonlinear tractor/semitrailer models 
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Figure 3.7 Frequency functions of the gain between the semitrailer lateral acceleration and the 
steering wheel angle of the TruckSim, linear the nonlinear tractor/semitrailer models 
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the unsprung, based on the experimental results on the TruckSim model of the B-train double. 

Figure 3.9 shows the axle roll angle time histories of the TruckSim model under a single cycle sine 

wave steer input. The roll angles of the nine axles are clustered quite well in three groups which 

suggests to model the three axles of each unit as a rigid-body.  

In the linear yaw-roll model, the sprung masses are connected to the corresponding unsprung 

masses with torsional springs of constant stiffness and damping coefficients. The unsprung masses 

hold constant roll stiffness in the range of roll motion. The three sprung masses are connected with 

two fifth-wheels, which restrict relative translational and pitch motions of the adjacent units, allow 

relative yaw motion, and govern relative roll with springs of constant roll stiffness. An inertia 

coordinate system ( )OXYZ , which is fixed on the ground, works as a basic reference frame. Three 

body-fixed coordinate systems, ( )1 1 1 1o x y z , ( )2 2 2 2o x y z  and ( )3 3 3 3o x y z  as shown in Figure 3.8 are 

employed with the corresponding x -axis coincident with the roll axis and the origin under the CG 

of whole mass of the corresponding unit. 

In the linear or nonlinear yaw-plane model, the B-train double is modeled with three rigid 

bodies, namely, the tractor, 1st and 2nd semitrailer. The roll dynamics is not considered. The two 

adjacent vehicle units are connected with a fifth-wheel, restricting relative translational, roll and 

pitch motions and allowing the freedom of relative yaw. 
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Figure 3.8 Yaw-roll model of a B-train double with the inertia and vehicle fixed coordinate 
systems: (a) side view, (b) rear view, and (c) top view 
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Figure 3.9 Axle roll angles of the TruckSim model of the B-train double under a 0.4 Hz single 
cycle sine wave steer input 

In the linear yaw-plane model, the B-train double is modeled with four DOF including the yaw 

and lateral motion of the tractor, yaw motions of the 1st and 2nd semitrailers. In the nonlinear yaw-

plane model, the B-train double is modeled with five DOF including longitudinal, lateral and yaw 

motions of the tractor and yaw motions of the 1st and 2nd semitrailers. The motions considered in 

the linear and nonlinear yaw-plane models are located at the CGs of the whole masses of the 

vehicle units. The variables of motion in the linear/nonlinear yaw-plane models are denoted in a 

state vector  

[ ] [ ]1 1 2 2 3 3 1 1 2 2 3 3

T T
Uβ ψ β ψ β ψ β ψ β ψ β ψ=x ɺ ɺ ɺ ɺ ɺ ɺ       (3.11) 

In the linear yaw-roll model, the B-train double is modeled with ten DOF including the yaw 

and lateral motion of the tractor sprung mass, yaw motions of the 1st and 2nd semitrailer sprung 

masses, and the roll motions of the six rigid-bodies. The lateral and yaw motions considered are 
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located at the CGs of the whole mass of the tractor, 1st and the 2nd semitrailers, and the variables 

of motions are denoted in the state vector 

1 1 1 1 2 2 2 2 3 3 3 3 1 1 2 2 3 3

T

t t t t t tφ φ β ψ φ φ β ψ φ φ β ψ φ φ φ φ φ φ =  x ɺ ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ  (3.12) 

3.3.1.2 Kinematical Constraint Equations 

The equations of motion of the B-train double consists of kinematical constraint equations induced 

by the fifth-wheels and dynamic equations responding to external forces and moments. The 

kinematical constraints can be modeled through the coordinate transformation of the velocities at 

the fifth-wheels using the rotational kinematics (Hibbeler, 2007). The velocities of the tractor, 1st 

and the 2nd semitrailers at the 1st and 2nd coupling points denoted in the respective body-fixed 

coordinate systems are converted into the inertia coordinate system to be comparable.  

The velocities of the tractor and the 1st semitrailer at the 1st coupling point in the linear yaw-

roll model given in the tractor-fixed coordinate system ( )1 1 1 1o x y z , and the 1st semitrailer-fixed 

coordinate system ( )2 2 2 2o x y z  are, respectively: 

( )1
1 1 1 1 1 1 1 1 1

yr

c r cV Ui V h h l jφ ψ = + + − − 
� � �

ɺ ɺ                (3.13a) 

( )1
2 2 2 2 2 2 21 2 2

yr

c r cV Ui V h h l jφ ψ = + + − + 
� � �

ɺ ɺ        (3.13b) 

Note that the superscript and the subscript of a velocity represents the coupling point and the body-

fixed coordinate system, respectively. The velocities of the 1st and 2nd semitrailers at the 2nd 

coupling point in the yaw-roll model given in the 1st semitrailer-fixed coordinate system 

( )2 2 2 2o x y z  and 2nd semitrailer-fixed coordinate system ( )3 3 3 3o x y z are: 

( )2
2 2 2 2 2 2 22 2 2

yr

c r cV Ui V h h l jφ ψ = + + − − 
� � �

ɺ ɺ        (3.14a) 
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( )2
3 3 3 3 3 3 3 3 3

yr

c r cV Ui V h h l jφ ψ = + + − + 
� � �

ɺ ɺ        (3.14b) 

In the yaw-plane model, similarly, the velocities of the tractor and 1st semitrailer at the 1st 

coupling point given in the tractor-fixed coordinate system ( )1 1 1o x y  and the 1st semitrailer-fixed 

coordinate system ( )2 2 2o x y  are, respectively: 

( )1
1 1 1 1 1 1

yp

cV Ui V l jψ= + −
� � �

ɺ                              (3.15a) 

( )1
2 2 2 21 2 2

yp

cV Ui V l jψ= + +
� � �

ɺ          (3.15b) 

The velocities of the 1st and 2nd semitrailers at the 2nd coupling point given in the 1st semitrailer-

fixed coordinate system ( )2 2 2o x y and 2nd semitrailer-fixed coordinate system ( )3 3 3o x y are 

respectively: 

( )2
2 2 2 22 2 2

yp

cV Ui V l jψ= + −
� � �

ɺ                                                  (3.16a) 

( )2
3 3 3 3 3 3

yp

cV Ui V l jψ= + +
� � �

ɺ          (3.16b) 

The velocities at the coupling points represented in the yaw-plane model are basically the same as 

those represented in the yaw-roll model but with the roll-associated terms removed or set to zero 

due to the negligence of the roll dynamics.  

The velocities of different unit at the same coupling point should be equal when represented in 

the same coordinate system, i.e., the inertia coordinate system ( )OXYZ . Converting the 

coordinates in the body-fixed coordinate systems into the inertia coordinate system ( )OXYZ using 

the rotational kinematics are explained in detail by Jazar (2011), and applied by Lin (1994) to 

derive the kinematic constraint for a tractor/semitrailer. When conducting the conversion, the 

rotation angles and lateral velocities are assumed small. The cosine and sine of the rotation angle 
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approximately equals one and the angle itself, respectively. The product terms between the rotation 

angles and lateral velocities are ignored.  

For the yaw-roll model, conversions about the yaw and the roll axis are conducted and the 

sequence of conversion has no effect. For the yaw-plane model, only one conversion about the 

yaw-axis is conducted. Converting the velocities at the 1st coupling point in the tractor-fixed 

coordinate systems ( )1 1 1 1o x y z of the yaw-roll model and ( )1 1 1o x y of the yaw-plane model are given 

respectively:  

( )
1 1

1 1
1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1

cos sin 0 1 0 0

sin cos 0 0 cos sin

0 0 1 0 sin cos

yr yr

O c r c

UI

V V U V h h l J

V K

ψ ψ
ψ ψ φ φ ψ φ ψ

φ φ φ

 −   
      = − = + + − −     
          

�

� � �
ɺ ɺ

�
 

            (3.17a) 

( )
1 1

1 1
1 1 1 1 1 1 1 1

cos sin 0

sin cos 0

0 0 1 0

yp yp

O c

UI

V V U V l J

K

ψ ψ
ψ ψ ψ ψ

 − 
  = = + −  
     

�

� � �
ɺ

�
      (3.17b) 

All other coordinates are converted in the same manner. By setting the velocities at the same 

coupling point equal, the kinematic constraints for the yaw-roll model and the yaw-plane model 

are derived, respectively, as 

1 2 21
1

1
1 2 1 21 2 2 0cr cr cch hl

U U

l

U U
φβ ψ ψψ ψφβ − − +− + − =−ɺ ɺ ɺɺ ɺɺɺɺ ɺɺ ɺ ɺ      (3.18a) 

2 3 32
2 3 2 2 3

2
2 3 3 0cr cr cch h l

U

l

U UU
β β φ ψ ψψ φ ψ− + − +− =− −ɺ ɺ ɺɺɺɺ ɺɺ ɺ ɺɺɺ      (3.18b) 

1 21
1 1 2 2 1 2 0c cl l

U U
β ψ β ψ ψ ψ− − − + − =ɺ ɺɺɺ ɺɺ ɺ ɺ          (3.18c) 
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22 3
2 2 3 3 2 3 0c cl l

U U
β ψ β ψ ψ ψ− − − + − =ɺ ɺɺɺ ɺɺ ɺ ɺ        (3.18d) 

3.3.1.3 Linear Yaw-roll, Linear Yaw-plane, and Nonlinear Yaw-plane Models 

1) Linear Yaw-Roll Model 

For simplicity, the following assumptions are made for the linear yaw-roll and yaw-plane models: 

1) the forward speed of the vehicle is fixed; 2) the longitudinal, vertical and the pitch dynamics 

are ignored; 3) the wheel dynamics are negligible; 4) the articulation angles and the side-slip angles 

are small; and 5) the aerodynamics are ignored. The linear tire models are applied for the linear 

yaw-roll model. The dynamic equations of the linear yaw-roll model are derived using the three-

dimensional kinetics (Hibbeler, 2007). Taking the tractor sprung mass as an example, in three-

dimensional rotation in the tractor-fixed coordinate system ( )1 1 1 1o x y z , the general equations of 

rotation are given by: 

( ) ( ) ( ) ( )
( )

2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

sxx s r s syy szz sxy syz

szx x

I h h m I I I I

I M

φ θψ θ ψ φ θ ψ

ψ φθ

 + − − − − − − − 

− + =∑

ɺɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺ

ɺ ɺɺɺ

 (3.19a) 

( ) ( ) ( ) ( )2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1syy szz sxx syz szx sxy yI I I I I I Mθ ψ φ ψ φθ ψ φ φ θψ− − − − − − − + =∑ɺɺ ɺ ɺ ɺ ɺ ɺɺ ɺɺ ɺɺ ɺ ɺ  (3.19b) 

( ) ( ) ( ) ( )2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1szz sxx syy szx sxy syz zI I I I I I Mψ φθ φ θψ φ ωθ θ ψ φ− − − − − − − + =∑ɺ ɺ ɺɺ ɺ ɺɺ ɺ ɺɺ ɺɺɺ ɺ ɺ   (3.19c) 

where 1xM∑ , 1yM∑ , 1zM∑ denotes, respectively, the external roll, pitch, and yaw moments, 

1sxyI  the roll-pitch product of inertia, 1syyI the pitch moment of inertia, 1syzI the pitch-yaw product of 

inertia, and 1θɺ the pitch rate of the tractor sprung mass. Note in the subscripts, s  denotes the sprung 

mass, and 1 the 1st unit, i.e., the tractor. Taking into consideration the neglected pitch dynamics, 
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and the lateral symmetry of the sprung mass of the tractor results in 1 1 1 0sxy syzI I θ= = =ɺ . Thus only 

the 1st and 3rd equations in (3.19) remain and are simplified to: 

( )2

1 1 1 1 1 1 1 1sxx s r s szx xI h h m I Mφ ψ + − − =  ∑ɺɺ ɺɺ                  (3.20a) 

1 1 1 1szz szx zI I Mψ φ− =∑ɺɺɺɺ          (3.20b) 

Equation (3.20) governs the roll and yaw dynamics of the tractor sprung mass and serves as a 

template for building up the equations of rotational motion for all the rigid bodies considered. Also 

note that the sprung and unsprung masses of one vehicle unit share approximately the same yaw 

motion and thus are lumped into a whole unit with a single yaw dynamics equation.  

Applying Equation (3.20) and translational dynamics, the governing equations of motion of 

the tractor in the linear yaw-roll model are given as 

( ) ( )
1 1 111 1 1 1 1 1 1 1 1 11 1s s r cymU m h h Y Y Y Fβ ψ δβ ψ φ β ψ δ+ = − − + + + +ɺ

ɺ ɺɺɺ ɺ                                                (3.21a) 

1 1 111 1 1 1 1 1 1 1 11sxz zz c cyI I N N l F Nβ ψ δφ ψ β ψ δ− + = + − +ɺ
ɺɺ ɺɺ ɺ       (3.21b) 

( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 12 1 2 1 1 1 1

sxx s r s sxz s s r s s r

r f r r t r f r r t cy cr x f x r

I h h m I m g h h m U h h

K K L L K F h M M

φ ψ φ β ψ

φ φ φ φ φ φ

 + − − = − − − + 

+ + − + + − − − + + +

ɺɺ ɺɺɺ ɺ

ɺ ɺ
 (3.21c) 

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )( )

1 1 11

2

1 1 1 1 1 1 1 1 1 1 11 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

u xx r u u t u xz r t f t r t

u u r u u r t r f r r t

r f r r t x f x r

I h h m I h Y Y Y K K

m U h h m g h h K K

L L M M

β ψ δφ ψ β ψ δ φ

β ψ φ φ φ

φ φ

 + − − = − + + − + 

− − + + − − + −

− + − − −

ɺ
ɺɺ ɺɺ ɺ

ɺ ɺ

ɺ ɺ

   (3.21d) 

The governing equations of the 1st semitrailer in the linear yaw-roll model are provided as 

( ) ( )
2 22 2 2 2 2 2 2 2 2 1 2s s r cy cym U m h h Y Y F Fβ ψβ ψ φ β ψ+ = − − + + − +ɺ

ɺ ɺɺɺ ɺ     (3.22a) 

2 22 2 2 2 2 2 21 1 22 2 2sxz zz c cy c cy zI I N N l F l F Mβ ψφ ψ β ψ− + = + − − +ɺ
ɺɺ ɺɺ ɺ      (3.22b) 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 12 2 1 23 2 3 1 2 2 3 2

sxx s r s sxz s s r s s r

r t r t cy cr cy cr x

I h h m I m g h h m U h h

K L K K F h F h M

φ ψ φ β ψ

φ φ φ φ φ φ φ φ

 + − − = − − − + 

− − − − − − − − − + +

ɺɺ ɺɺɺ ɺ

ɺ ɺ
 (3.22c) 

( ) ( )
( )( ) ( ) ( ) ( )

2

2

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

u xx u r u t u xz r t t

u u r u u r t r t r t x

I h h m I h Y Y K

m U h h m g h h K L M

β ψφ ψ β ψ φ

β ψ φ φ φ φ φ

 + − − = − + − 

− − + + − − − − − −

ɺ
ɺɺ ɺɺ ɺ

ɺ ɺ ɺɺ

  (3.22d) 

The governing equations of the 2nd semitrailer in the linear yaw-roll model are derived as 

( ) ( )
3 33 3 3 3 3 3 3 3 3 2s s r cym U m h h Y Y Fβ ψβ ψ φ β ψ+ = − − + + −ɺ

ɺ ɺɺɺ ɺ
     (3.23a) 

3 33 3 3 3 3 3 3 2 3sxz zz c cy zI I N N l F Mβ ψφ ψ β ψ− + = + − +ɺ
ɺɺ ɺɺ ɺ       (3.23b) 

( ) ( ) ( ) ( )
( ) ( ) ( )

2

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 23 3 2 2 3 3

xx s r s sxz s s r s s r

r t r t cy cr x

I h h m I m g h h m U h h

K L K F h M

φ ψ φ β ψ

φ φ φ φ φ φ

 + − − = − − − + 

− − − − − − − +

ɺɺ ɺɺɺ ɺ

ɺ ɺ
  (3.23c) 

( ) ( )
( )( ) ( ) ( ) ( )

3 3

2

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

u xx u r u t u xz r t t

u u r u u r t r t r t x

I h h m I h Y Y K

m U h h m g h h K L M

β ψφ ψ β ψ φ

β ψ φ φ φ φ φ

 + − − = − + − 

− − + + − − − − − −

ɺ
ɺɺ ɺɺ ɺ

ɺ ɺ ɺɺ

  (3.23d) 

In Equations (3.21)-(3.23), the partial derivatives of the lateral forces and yaw moments with 

respect to the side-slip angle, yaw rate, and the steering angle(s), also be applicable for the linear 

yaw-plane model, are defined as 

1 2 311 1 12 2 13 3 24 4 25 5 26 6 37 7 38 8 39 9, ,N a C b C b C N b C b C b C N b C b C b Cβ β β= − − = − − − = − − −    (3.24a) 

1 2 3

2 2 2 2 2 2 2 2 2
11 1 12 2 13 3 24 4 25 5 26 6 37 7 38 8 39 9, ,

a C b C b C b C b C b C b C b C b C
N N N

U U U
ψ ψ ψ

+ + + + + +
= = =ɺ ɺ ɺ   (3.24b) 

11 1 1N a Cδ = −             (3.24c) 

1 2 31 2 3 4 5 6 7 8 9, ,Y C C C Y C C C Y C C Cβ β β= + + = + + = + +       (3.24d) 

1 2 3

11 1 12 2 13 3 24 4 25 5 26 6 37 7 38 8 39 9, ,
a C b C b C b C b C b C b C b C b C

Y Y Y
U U U

ψ ψ ψ

− − − − − − − −
= = =ɺ ɺ ɺ   (3.24e) 
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11 1Y Cδ = −            (3.24f) 

The state-equation of the linear yaw-roll model is obtained by eliminating the lateral coupling 

forces in Equations (3.21)-(3.23), and rearranging with Equations (3.18a) and (3.18b): 

11ddδ= + +x Ax B Buɺ           (3.25a) 

11ddδ= + +y Cx D Du            (3.25b) 

where 1−= −A M N , 1
dd

−= −B M Q , [ ]Mz Mx=B B B , 1
Mx

−= −B M R , 1
Mz

−= −B M W , 

2 3 1 1 2 3

T

z z x f x r x xM M M M M M =  u , [ ]1 2 3

T

t=x x x x x , 1 1 1 1 1φ φ β ψ =  x ɺɺ , 

2 2 2 2 2φ φ β ψ =  x ɺɺ , 3 3 3 3 3φ φ β ψ =  x ɺɺ , 2 2 3 31 1t tt t t t tφ φ φ φ φ φ =  x ɺ ɺ ɺ , 

1 2 3 1 1 2 2 3 3

T

y y y t t ta a a φ φ φ φ φ φ =  y and matrices C , D , ddD , M , N , Q , R  and 

W  are given in Appendix C.   

2) Linear Yaw-Plane Model 

In the linear yaw-plane model of the B-train double, the roll and pitch-dynamics are not considered. 

The dynamic equations consist of the governing equations for lateral, and yaw dynamics of the 

tractor, and yaw dynamics of the 1st and the 2nd semitrailers. The dynamic equations of the yaw-

plane model can be obtained by removing roll dynamic equations from the yaw-roll model. The 

dynamic equations of the linear yaw-plane model of the tractor are given by: 

( )
1 1 111 1 1 1 1 11 1cymU Y Y Y Fβ ψ δβ ψ β ψ δ+ = + + +ɺ

ɺ ɺ ɺ         (3.26a) 

1 1 111 1 1 1 1 1 11zz c cyI N N l F Nβ ψ δψ β ψ δ= + − +ɺ
ɺɺ ɺ        (3.26b) 

The dynamic equations of the linear yaw-plane model of the 1st semitrailer are derived as: 

( )
2 2 4 5 62 2 2 2 2 4 5 6 1 2cy cym U Y Y Y Y Y F Fβ ψ δ δ δβ ψ β ψ δ δ δ+ = + + + + − +ɺ

ɺ ɺ ɺ     (3.27a) 
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2 2 4 5 6 22 2 2 2 21 1 22 2 4 5 6zz c cy c cyI N N l F l F N N N Mβ ψ δ δ δ γψ β ψ δ δ δ= + − − + + + +ɺ
ɺɺ ɺ     (3.27b) 

The dynamic equations of the linear yaw-plane model of the 2nd semitrailer are provided by: 

( )
3 3 7 8 93 3 3 3 3 7 8 9 2cym U Y Y Y Y Y Fβ ψ δ δ δβ ψ β ψ δ δ δ+ = + + + + −ɺ

ɺ ɺ ɺ       (3.28a) 

3 3 7 8 9 33 3 3 3 3 2 7 8 9zz c cyI N N l F N N N Mβ ψ δ δ δ γψ β ψ δ δ δ= + − + + + +ɺ
ɺɺ ɺ      (3.28b) 

The state-equation of the linear yaw-plane model can be obtained by eliminating the lateral 

coupling forces from Equations (3.26)-(3.28) and rearranging with the constraint equations (3.18c) 

and (3.18d): 

11p p p p p s m Mδ= + + +x A x C B u B uɺ           (3.29) 

where 1
p

−= −A J K , 1
p

−= −C J L , 1
p

−= −B J T , 1
m

−= −B J V , [ ]1 1 2 2 3 3

T

p β ψ β ψ β ψ=x ɺ ɺ ɺ  

with [ ]4 5 6 7 8 9

T

s δ δ δ δ δ δ=u ,
2 3

T

M
M Mγ γ =  u , and J , K , L , T  and V are given 

in Appendix D. 

3) Non-linear Yaw-Plane Model 

The linear yaw-roll model and the linear yaw-plane model may be effective in the design of active 

roll control system and active trailer steering system, respectively, under low to middle range 

lateral acceleration conditions, due to the application of linear tire models. Under high lateral 

acceleration conditions, the pneumatic tire forces may saturate and cannot be predicted accurately 

with linear tire models. When designing a trailer differential braking system to stabilize the vehicle 

under high lateral acceleration condition, a nonlinear yaw-plane model is preferred in which the 

saturation property of pneumatic tires is clearly addressed.  

In this section, a five DOF nonlinear yaw-plane model, considering the longitudinal, lateral 

and the yaw dynamics of the tractor, the yaw dynamics of the 1st and the 2nd semitrailers, is derived. 
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For simplicity, the following assumptions are made: (1) the side-slip angles, steering angle of the 

tractor front axle, and the articulation angles are small; (2) the longitudinal speeds of the vehicle 

units are equal; (3) the product of small variables are negligible; (4) the pitch and roll motions are 

not considered; (5) the wheel dynamics are neglected; (6) the axles other than the front axle of the 

tractor are non-steerable; and (7) the differential braking is only conducted on the trailing units. 

The longitudinal dynamics are considered and controlled by a longitudinal driver model; and the 

lateral tire forces are modeled with the Magic tire model (Pacejka, 2005). For the left and right 

tires on an axle, the following relationships hold, i.e., xi xil xirF F F= + , yi yil yirF F F= + , 1,2 ,9i = ⋯ . 

Using the Newtonian mechanics, the equations of motion of the tractor are derived as 

( )1 1 1 1 2 3 1 1x x x cx rm U U F F F F f m gβψ− = + + + −ɺ ɺ        (3.30a) 

( )1 1 1 1 2 3 1y y y cymU F F F Fβ ψ+ = + + +ɺ ɺ         (3.30b) 

1 1 11 1 12 2 13 3 1 1zz y y y c cyI a F b F b F l Fψ = − − −ɺɺ        (3.30c) 

The equations of motion of the 1st semitrailer are given as 

( )2 2 2 4 5 6 1 2 2x x x cx cx rm U U F F F F F f m gβ ψ− = + + − + −ɺ ɺ        (3.31a) 

( )2 2 2 4 5 6 1 2y y y cy cym U F F F F Fβ ψ+ = + + − +ɺ ɺ        (3.31b) 

2 2 24 4 25 5 26 6 21 1 22 2 2zz y y y c cy c cy bI b F b F b F l F l F Mγψ = − − − − − +ɺɺ       (3.31c)  

where ( ) ( ) ( )2 2 2
2 4 4 5 5 6 62 2 2b x l x r x l x r x l x r

d d d
M F F F F F Fγ = − + − + − . The equations of motion of the 

2nd semitrailer are provided as 

( )3 3 3 7 8 9 2 3x x x cx rm U U F F F F f m gβ ψ− = + + − −ɺ ɺ       (3.32a) 

( )3 3 3 7 8 9 2y y y cym U F F F Fβ ψ+ = + + −ɺ ɺ         (3.32b) 
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3 3 37 7 38 8 39 9 3 2 3zz y y y c cy bI b F b F b F l F M γψ = − − − − +ɺɺ       (3.32c) 

where ( ) ( ) ( )3 3 3
3 7 7 8 8 9 92 2 2b x l x r x l x r x l x r

d d d
M F F F F F Fγ = − + − + − . Since the wheel dynamics are 

much faster than the vehicle dynamics (Chung and Yi, 2006), the wheel torque balance can be 

written as 

1
0 , 2 ,2 ,3 ,3

2 d b i w xiT K P r F i l r l r= − − =         (3.33a) 

0 , 1 ,1 ,4 , ,9b i w xiK P r F i l r l r= − − = ⋯          (3.33b) 

Combining Equations (3.30) to (3.32), canceling the coupling forces and rearranging with 

Equations (3.18c) and (3.18d) give 

( )

( )

31 2
1 1 2 2 3 3

1 2 3 1 2 3 1 2 3 1 2 3

9

41 2 3

d

w

r
b

i r

i lw

m Tm m
U U U U

m m m m m m m m m r m m m

K
P f g

r m m m

βψ β ψ β ψ

=

= + + +
+ + + + + + + +

− −
+ + ∑

ɺ ɺ ɺ ɺ

 (3.34a) 

p n p F F M M= + +x A x B u B uɺ           (3.34b) 

where 1

nn

−=A J K ,  1
F n

−=B J L ,  1
M n

−=B J R , and matrix J  is given in Appendix D, and 

matrices nK , nL , nR  are provided in Appendix E, 2 3

T

M b bM Mγ γ =  u , and 

1 2 3 4 5 6 7 8 9

T

F y y y y y y y y yF F F F F F F F F =  u . The lateral tire forces can be generated 

using the Magic tire model (Pacejka, 2005) with the side-slip angles calculated as 

13 2511 12 24
1 11 1 1 2 1 1 3 1 1 4 2 2 5 2 2

26 37 38 39
6 2 2 7 3 3 8 3 3 9 3 3

, , , , ,

, , ,

b ba b b

U U U U U

b b b b

U U U U

α δ β ψ α ψ β α ψ β α ψ β α ψ β

α ψ β α ψ β α ψ β α ψ β

 = − − = − = − = − = −

 = − = − = − = −


ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

 (3.35) 
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With Equation (3.33), the external yaw-moment in the second equation of (3.34) can be 

represented in terms of the brake pressures of the semitrailer wheels as 

6 6 9 9
2 3

2 3
4 4 7 7

,
2 2

b b
b bir bil b bir bil

i i i iw w

d K d K
M P P M P P

r r
γ γ

= = = =

   
= − = −   

   
∑ ∑ ∑ ∑      (3.36) 

Assuming that the brake pressures on the same side of a semitrailer are equal, i.e., 4 5 6l l lP P P= = , 

4 5 6r r rP P P= = , 7 8 9b l b l b lP P P= = , 7 8 9b r b r b rP P P= = . The brake pressures required to realize the yaw 

moments are determined as 

4 5 6 2 2 4 5 6 2 2
2 2

2 2
, 0, , 0

3 3
w w

l l l r r r

b b

r r
P P P M for M P P P M for M

d K d K
γ γ γ γ= = = − < = = = >  (3.37a) 

7 8 9 3 3 7 8 9 3 3
3 3

2 2
, 0, , 0

3 3
w w

l l l r r r

b b

r r
P P P M for M P P P M for M

d K d K
γ γ γ γ= = = − < = = = >   (3.37b) 

3.3.2 Vehicle Modeling Using the EoM Software Package 

In this section, a nonlinear EoM yaw-roll model of the B-train double is generated automatically 

using the EoM software package (Minaker and Rieveley, 2013) in the ISO coordinate system 

(HeiBing and Ersoy, 2011). The variables of the EoM model are converted into the SAE coordinate 

system to make the models comparable. The EoM software package is developed by the Vehicle 

Dynamics and Control Research Group at the University of Windsor. The EoM can be used to 

generate linear equations of motion for three-dimensional dynamic systems, composed of rigid 

bodies coupled with flexible or rigid connectors. The mathematical formulation of a linear model 

is well documented by Minaker and Rieveley (2010). The EoM can run in Matlab/Octave. The 

EoM requires the configuration of a system in an input file, defining the system elements such as 

bodies, connectors, loads, actuators, and sensors, and automatically exports the state-space 

equation of the system. One of the contributions of this research is to extend the functionality of 
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the EoM software package to generate nonlinear models of multi-body dynamic systems, 

especially MTAHVs.  

The EoM yaw-roll model of the B-train double is formulated with six rigid bodies as listed in 

Table F1 in Appendix F with eleven DOF including longitudinal, lateral, yaw and roll DOF for the 

tractor sprung mass, yaw and roll DOF for the 1st and 2nd semitrailer, roll DOF for the tractor, the 

1st and 2nd semitrailer unsprung masses, plus eighteen (18) wheel spinning DOF. In the EoM 

model, the motion of each rigid body is modeled with twelve variables including three positions, 

three orientations and their first-order time derivatives. For a system of 6-rigid bodies, the state 

vector is defined as 

[ ] [ ]1 2 6 1 2 6 , , 1,2, ,6
T

i i i i i i ix y z iφ θ ψ= = =x p p p p p p pɺ ɺ ɺ⋯ … ⋯   (3.38) 

where ip contains the positions and orientations of the rigid body iB . The whole list of the state 

variables of the EoM yaw-roll model of the B-Train Double is illustrated in Table F1 in Appendix 

F.   

3.3.2.1 Linear EoM Yaw-roll Model 

Manually modeling of a MTAHV is a tedious and error-prone process. Computer codes are 

preferred to solve this kind of problems. The automatic generation of nonholonomic equations of 

motion proposed by Minaker and Rieveley (2010) is suitable for modeling the vehicle dynamics 

for stability analysis and control design purposes. This method has been originally coded in the 

EoM software package for automatic generation of linear equations for multibody dynamic 

systems. A linear yaw-roll model using linear tire models of the B-train double can be represented 

in a general form (Minaker and Rieveley, 2010) as 

,= + =z Az Bu x Rzɺ            (3.39) 
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where, the state vector x is defined in Equation (3.38), z the generalized state vector, u  the applied 

time-varying loads, and R  the orthogonal complement matrix of the state vector. The process 

matrix A  and the input matrix B  are given by: 

1 1

,T T T T

− −
  −         

= − =          
          

I 0 V I I 0 0
A L R L R B L R L

0 M K C 0 M I
    (3.40) 

where C  is the damping matrix, I the identity matrix, K the stiffness matrix, L the orthogonal 

complement matrix of the constraints and M  the mass matrix, and V  the linearization matrix of 

the kinematical differential equations. For the detailed formulation of Equation (3.39), interested 

readers can refer to the paper (Minaker and Rieveley, 2010).  

3.3.3.2 Nonlinear EoM Yaw-Roll Model 

1) Magic Tire Model 

Generally, the linear tire model used in the linear EoM yaw-roll model may not effectively reflect 

the saturation effect of pneumatic tires. The Magic formula tire model can describe the dynamic 

characteristics of pneumatic tires under combined side-slip and longitudinal-slip (Bakker et al, 

1987, and Pacejka, 2005). With the distributed normal load, a spinning wheel receives a resistant 

rotating moment. This resistant moment can be converted to a longitudinal resistant force which 

is negatively added to the longitudinal force generated by the pneumatic tire. The longitudinal 

resistant force may be modeled as a proportional term of the normal load. With the Magic formula 

tire model, also taking account the longitudinal resistance, the longitudinal and lateral forces of 

the thi  tire may be calculated, ignoring camber influence, as 
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( )

( )
( ) ( ) ( )
( ) ( ) ( )

sin C arctan

sin arctan
1 ,1 , 2 , ,9

1 arctan

1 arctan

xi xi xi xi xi r zi

yi yi yi yi yi

xi xi i xi xi xi i

yi yi i yi yi yi i

F D B f F

F D C B
for i l r l r

E E B B

E E B B

φ

φ

φ σ σ

φ α α

 = −  
  =   =

= − +


= − +

⋯      (3.41) 

where the coefficients xiB , xiC , xiD , xiE , yiB , yiC , yiD , yiE are polynomials of the normal force of 

the thi  tire (dual tire).  

When calculating the normal forces of the wheels, the tandem group on the tractor and the 

tridem groups on the semitrailers are simplified as single axles at the longitudinal centers of the 

groups, e.g., 12 13
1 2

b b
b

+
= , 24 25 26

2 3

b b b
b

+ +
= , 37 38 39

3 3

b b b
b

+ +
= , 12 13

1 2
s s

s

b b
b

+
= , 24 25 26

2 3
s s s

s

b b b
b

+ +
= , 

and 37 38 39
3 3

s s s
s

b b b
b

+ +
= , for simplicity. Considering the lateral, longitudinal, and the roll load 

transfers, the normal forces of the wheels are determined (He et al, 2006) as 

( )1 1 1 1 1 1 1 1 1 11 1
1 1 1 1 1

11 1 11 1 11 11 1 11 1 11

1 1 1

2 2
cg x y s s r s u u

z l r f r f

h m a a m b h b m hb m g
F K L

a b a b d a b a b d
φ φ

 
= − + + − + + + + + 

ɺ         (3.42a) 

( )1 1 1 1 1 1 1 1 1 11 1
1 1 1 1 1

11 1 11 1 11 11 1 11 1 11

1 1 1

2 2
cg x y s s r s u u

z r r f r f

h m a a m b h b m hb m g
F K L

a b a b d a b a b d
φ φ

 
= − − + + + + + + + 

ɺ         (3.42b) 

( )

1 1 1 2 2 211 1 2 2
2 3

11 1 11 1 2 2 2 2

1 1 1 1 1 1 1
1 1 1 1

1 11 1 11 1 1

1 1 1

4 4 4

1 1 1

2 2

cg x cg x

z l z l

y s s r s u u
r r r r

h m a h m aa m g b m g
F F

a b a b a b a b

a m a h a m h
K L

d a b a b d
φ φ

 
= = + + − + + + + 

 
+ + − + + + 

ɺ

     (3.42c) 

 

( )

1 1 1 2 2 211 1 2 2
2 3

11 1 11 1 2 2 2 2

1 1 1 1 1 1 1
1 1 1 1

1 11 1 11 1 1

1 1 1

4 4 4

1 1 1

2 2

cg x cg x

z r z r

y s s r s u u
r r r r

h m a h m aa m g b m g
F F

a b a b a b a b

a m a h a m h
K L

d a b a b d
φ φ

 
= = + + − + + + + 

 
− + + + + + 

ɺ

    (3.42d) 
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( ) ( )

3 3 3 2 2 23 32 2
4 5 6

2 2 3 3 3 3 2 2

2
2 2 2 2 2 2 2 2

2 2

1 1 1

6 6 6

1 1 1

3 3

cg x cg x

z l z l z l

y

r s u u r r

h m a h m ab m ga m g
F F F

a b a b a b a b

a
h m h m K L

d d
φ φ

 
= = = + − + 

+ + + + 

+ + − + ɺ

    (3.42e) 

( ) ( )

3 3 3 2 2 23 32 2
4 5 6

2 2 3 3 3 3 2 2

2
2 2 2 2 2 2 2 2

2 2

1 1 1

6 6 6

1 1 1

3 3

cg x cg x

z r z r z r

y

r s u u r r

h m a h m ab m ga m g
F F F

a b a b a b a b

a
h m h m K L

d d
φ φ

 
= = = + − + 

+ + + + 

− + + + ɺ

    (3.42f) 

( ) ( )3 3 3 33 3
7 8 9 3 3 3 3 3 3 3 3

3 3 3 3 3 3

1 1 1 1 1

6 6 3 3
cg x y

z l z l z l r s u u r r

h m a aa m g
F F F h m h m K L

a b a b d d
φ φ= = = + + + − +

+ +
ɺ   (3.42g)  

( ) ( )3 3 3 33 3
7 8 9 3 3 3 3 3 3 3 3

3 3 3 3 3 3

1 1 1 1 1

6 6 3 3
cg x y

z r z r z r r s r u r r

h m a aa m g
F F F h m h m K L

a b a b d d
φ φ= = = + − + + +

+ +
ɺ   (3.42h)  

The tire sideslip angles are determined as 

1 1 1 11 1 1 1 1 12 1
1 1 1 11 2 2 2,t u t u t t u t u t
l r l r

y h a y h b

U U

φ ψ φ ψ
α α α δ α α α

− + − −
= = = − = = = −

ɺ ɺɺ ɺɺ ɺ
  (3.43a) 

1 1 1 13 1 2 2 2 2
3 3 3 4 4 4 4,t u t u t t u t x t

l r l r

y h b y h d

U U

φ ψ φ ψ
α α α α α α δ

− − − +
= = = − = = = −

ɺ ɺɺ ɺɺ ɺ
  (3.43b) 

2 2 2 2 2 2 2
5 5 5 5 6 6 6 6,t u t t u t x t

l r l r

y h y h d

U U

φ φ ψ
α α α δ α α α δ

− − −
= = = − = = = −

ɺ ɺ ɺɺ ɺ
   (3.43c) 

3 3 3 3 3 3 3
7 7 7 7 8 8 8 8,t u t x t t u t

l r l r

y h d y h

U U

φ ψ φ
α α α δ α α α δ

− + −
= = = − = = = −

ɺ ɺɺɺ ɺ
   (3.43d) 

3 3 3 3
9 9 9 9

t u t x t
l r

y h d

U

φ ψ
α α α δ

− −
= = = −

ɺ ɺɺ
       (3.43e) 

where 4 9, ,δ δ⋯  are the active steering angles generated by the active trailer steering system. The 

tire longitudinal slip ratios are determined as  
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,

, 1 ,1 , 2 , 2 , ,9 ,9

,

w wi

w wi
i

w wi

r U
when accelerating

r
i l r l r l r

r U
when braking

U

θ
θ

σ
θ

 −



= =
−



ɺ

ɺ
⋯

ɺ
     (3.44) 

The wheel dynamics are determined, using the linear tire model, as 

( ) ( )

( ) ( )

2

2

1
, 2 ,2 ,3 ,3

4 max , max ,

, 1 ,1 ,4 , ,9
max , max ,

bi i w wi i w
wi d bi

wi wi wi w wi wi w wi

bi i w wi i w
wi bi

wi wi w wi wi w w

K C r C r U
T P i l r l r

I I I r U I r U

K C r C r U
P i l r l r

I I r U I r U

σ σ

σ σ

ω
ω

ω ω

ω
ω

ω ω


= − − + =



 = − − + =


ɺ

ɺ ⋯

   (3.45)  

2) Nonlinear EoM Yaw-roll Model 

The EoM software package was originally designed to automatically generate linear models of 

nonholonomic multi-body dynamic systems. When used for MTAHVs, the small-angle and small-

slip-ratio assumptions have been made for generating linear models. These assumptions are valid 

under normal highway operation condition. However, under extreme driving conditions, for 

example, driving with high accelerations, the side-slip angles and the longitudinal slip ratios of 

tires may become large and the tire forces may saturate. An effective approach to tackle the 

saturation effect of the pneumatic tires is to use a nonlinear tire model, e.g., the Magic tire model 

(Bakker et al, 1987, and Pacejka, 2005). In this research, the functionality of the EoM software 

package is extend to generate nonlinear models of non-holonomic multibody dynamic systems. 

The linear EoM model of the B-train double may be extended to a nonlinear model when replacing 

the linear tire model with the nonlinear Magic tire model. 

The linear tire forces are fed into the linear model through the dampers laterally and 

longitudinally connecting the tires with the ground. The damping coefficients of the dampers 

consist of the cornering stiffness and longitudinal slip coefficients. Considering a pneumatic tire 
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in a linear operating range, the product of the cornering stiffness and the side-slip angle is the 

lateral tire force and the product of the longitudinal slip ratio and the longitudinal slip coefficient 

is the longitudinal tire force. The lateral and longitudinal tire forces are contained in the damping 

matrix C  in Equation (3.40). By setting the cornering stiffness and the longitudinal slip 

coefficients to unity in the input configuration file, the damping matrix C  contains only the side-

slip angles and the longitudinal slip ratios and is denoted as unityC . To expose the linear tire model 

and further replace it with the Magic tire model, a matrix reformulation is conducted as 

unity unity

− −     
= +     −Θ Θ    

V I V I 0 0

K C K C 0
        (3.46) 

where Θ  is the damping matrix formulated on the deflection matrix and the diagonal matrix 

containing the cornering stiffness and the longitudinal slip ratios. Figure 3.10 shows the block 

diagram of the EoM vehicle model with matrix reformulation, clearly demonstrating the 

formulation of the tire forces and the resulted moments, where matrices 1A  and 2A are formulated 

as 

1 1

1 2,T T T T

− −
  −       

= − = −        −Θ        

I 0 V I I 0
A L R L A L R L

0 M K C 0 M
    (3.47) 

For the EoM yaw-roll model of the B-train double, the input to the tire model is the state vector 

defined in Equation (3.38). By using the state variables, the side-slip angles and slip-ratios are 

formulated using Equations (3.43) and (3.44), respectively. The outputs of the tire models feed the 

rigid bodies with the tire forces. These bodies include the unsprung masses of the vehicle units 

which receive lateral and longitudinal tire forces. The state variables employed are limited only to 
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those contributing to the side-slip angles and longitudinal slip-ratios as listed in Equations (3.43) 

and (3.44).  

 

Figure 3.10 Block diagram of the EoM model with the matrix decomposition 

Interestingly, the outputs of the tire models enter the EoM model as the forms of external forces 

(lateral or longitudinal) and moments (roll, and yaw) in a sequence exactly same as that of the 

variables employed for the side-slip angles and slip-ratios appearing in the state vector. For 

example, the calculation of the side-slip angle of the tire on the first rear axle of the tractor in 

Equation (3.43), 1 1 1 12 1
2

t u t u ty h b

U

φ ψ
α

− −
= −

ɺ ɺɺ
, employs the state variables 1tyɺ , 1tφɺ , and 1tψɺ in the 

sequence, 44-46-48, in the state vector as shown in Table F1; for the tractor unsprung mass B2, 

the resulted lateral force 1ytF , roll moment 1xtM , and yaw moment 1ztM to the tractor unsprung 

mass due to the side-slip angle 2α are organized in the same sequence, 44-46-48, in the external 

force vector to the EoM model. Considering the wheel steering effects, the longitudinal and the 
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lateral forces, the roll and the yaw moments to the unsprung masses (B2, B4, and B4) are 

determined as 

( ) ( ) ( )
( ) ( )

3 3

1 1 1 1 1
1 1

11 1
1 1 1 2 3 2 3 11 1 1

12 2 2 13 3 3

, ,

2 2

r r

xt xi yt yi xt u yt

i l i l

zt x r x l x r x r x l x l u y l y r

u y l y r u y l y r

F F F F M h F

d d
M F F F F F F a F F

b F F b F F

= =


= = =


 = − + + − − + +



− + − +

∑ ∑
    (3.48a) 

( ) ( ) ( )

6 6

2 2 2 2 2
4 4

6
2

2 4 4 6 6
4

, , ,

2

r r

xt xi yt yi xt u yt

i l i l

zt xir xil x y l y r x y l y r

i

F F F F M h F

d
M F F d F F d F F

= =

=


= = =


 = − + + − +


∑ ∑

∑
     (3.48b) 

( ) ( ) ( )

9 9

3 3 3 3 3
7 7

9
3

3 7 7 9 9
7

, ,

2

r r

xt xi yt yi xt u yt

i l i l

zt xir xil x y l y r x y l y r

i

F F F F M h F

d
M F F d F F d F F

= =

=


= = =


 = − + + − +


∑ ∑

∑
     (3.48c) 

The complete list of the state variables employed for the tire model and the resulted external forces 

(moments) to the EoM model is illustrated in Table F2 in Appendix F. With the side-slip angles 

and slip-ratios in Equations (3.43) and (3.44), to obtain a nonlinear EoM model, the linear tire 

model is simply replaced with the magic tire model. Introducing the nonlinear tire model into the 

EoM model is a significant step expanding the functionality of the EoM software package.  

To improve the roll dynamics of the vehicle units, direct roll moments

1 1 2 3

T

x x f x r x xM M M M M =    as in Equation (3.25) are applied through the tractor front 

suspension with 1x fM , tractor rear suspension group with 1x rM , 1st semitrailer suspension group 

with 2xM , and the 2nd semitrailer suspension group with 3xM . In the EoM model, these active roll 

moments are distributed on the tractor, 1st and the 2nd semitrailer units as action-reaction moment 
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pairs between respective sprung mass and unsprung mass bodies ( 1 1 1 1,x f x r x f x rM M M M+ − − ), (

2 2,x xM M− ), and ( 3 3,x xM M− ),  respectively, as modeled similarly in the linear yaw-roll model in 

Equations (3.21)-(3.23). The active roll moments are added to the internal action-reaction roll-

moment pair within the vehicle units. The modified roll moments are determined as 

1 1 1 1 1 1 1 1

2 2 2 2 3 3 3 3

, ,

,

x x f x r xt u yt x f x r

xt u yt x xt u yt x

M M M M h F M M

M h F M M h F M

= + = − −


= − = −
       (3.49) 

3.3.4 Validation of the B-train Double Models 

3.3.4.1 Model Validation at a Low Lateral Acceleration 

The nonlinear EoM yaw-roll model, linear yaw-plane model, linear yaw-roll model and the 

nonlinear yaw-plane model of the B-train double are first validated using the TruckSim model at 

a low lateral acceleration operation. Since the linear tire models match the magic tire models well 

in a linear region at low lateral acceleration operation, it is expected that the nonlinear EoM yaw-

roll model, linear yaw-plane model, linear yaw-roll model, and the nonlinear yaw plane model 

may provide good agreement with the TruckSim model at a low lateral acceleration operation. A 

high-speed open-loop single lane change (SLC) maneuver is used to create a low lateral 

acceleration scenario. The models are excited using a 0.4 Hz single cycle sine wave tractor front 

wheel steer angle input. The amplitude of the input and the forward speed of the vehicle are 

manipulated to investigate the RWA property of the B-train double, simulated with the linear and 

the nonlinear models.  

Figure 3.11 shows the time history of the tractor front wheel steer angle with amplitude of 1.79 

deg. Figure 3.12 and Figure 3.13 shows the time histories of yaw-rate of the vehicle units, and 

lateral acceleration at the CGs of the tractor, 1st and the 2nd semitrailer of the EoM yaw-roll model, 

TruckSim model, linear yaw-roll model, and the nonlinear yaw-plane model of the B-train double, 
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respectively. Figure 3.14 shows the roll angles of the sprung masses of the vehicle units of the 

nonlinear EoM yaw-roll model, TruckSim model, and the linear yaw-roll model of the B-train 

double. Excellent match has been achieved on the lateral dynamics by the nonlinear EoM yaw-roll 

model, TruckSim model, linear yaw-plane model, linear yaw-roll model, and the nonlinear yaw-

plane model and on the roll dynamics by the nonlinear EoM yaw-roll model, TruckSim model and 

the linear yaw-roll model. 

 

Figure 3.11 Tractor front wheel steer angle input for the single lane change maneuver 
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Figure 3.12 Yaw rates of the EoM yaw-roll model, TruckSim model, linear yaw-plane model, 
linear yaw-roll model and the nonlinear yaw-plane model of the B-train double under the low 

lateral acceleration SLC maneuver at forward speed 110U = km/h 

 

Figure 3.13 Lateral accelerations of the nonlinear EoM yaw-roll model, TruckSim model, linear 
yaw-plane model, linear yaw-roll model and the nonlinear yaw-plane model under the low lateral 

acceleration SLC maneuver at forward speed 110U = km/h 
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Figure 3.14 Roll angles the sprung masses of the nonlinear EoM yaw-roll model, TruckSim 
model, and the linear yaw-roll model under the low lateral acceleration SLC maneuver at 

forward speed 110U =  km/h 

Figure 3.15 shows the normal forces of the wheels of the B-train double simulated using the 

TruckSim model and the nonlinear EoM yaw-roll model under the low lateral acceleration SLC 

maneuver of forward speed 110U = km/h. Note that the front, 1st rear and the 2nd rear axle of the 

tractor is denoted as axle 1, axle 2, axle 3; the front, middle, and the rear axle of the 1st semitrailer 

as axle 4, axle 5, and axle 6; and the front, middle, and the rear axle of the 2nd semitrailer as axle 

7, axle 8, and axle 9, respectively. Excellent agreement has been achieved by the TruckSim model 

and the nonlinear EoM yaw-roll model. It can be observed that, for the TruckSim and the EoM 

yaw-roll model, the wheels on the 1st semitrailer take the highest amount of normal forces within 

all the wheels; the left wheels of the 2nd semitrailer have their minimal normal forces closest to 

zero and 2nd semitrailer may be the first unit to roll over if continuing increasing lateral acceleration 

of the vehicle; and the 2nd semitrailer has more severe load transfer than other units. The load 
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transfer under the SLC maneuver verifies the observations on the lateral dynamics shown in 

Figures 3.12-3.13 and indicates the rearward amplification (RWA) phenomenon. 

   

   

   

  
Figure 3.15 Normal forces of the wheels of the B-train double simulated using the TruckSim 

model and the nonlinear EoM yaw-roll model under the SLC maneuver of forward speed U =110 
km/h showing the load transfers on: (a) axle 1, (b) axle 2, (c) axle 3, (d) axle 4, (e) axle 5, (f) 

axle 6, (g) axle 7, (h) axle 8, and (i) axle 9 
 

0 1 2 3 4 5 6 7 8 9 10

2

2.2

2.4

2.6

2.8

3

3.2

x 10
4

(a
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 1
 (

N
)

 

 

TruckSim model, Fz1l

EoM model, Fz1l

TruckSim model, Fz1r

EoM model, Fz1r

0 1 2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

4

(b
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 2
 (

N
)

 

 

TruckSim model, Fz2l

EoM model, Fz2l

TruckSim model, Fz2r

EoM model, Fz2r

0 1 2 3 4 5 6 7 8 9 10
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

4

(c
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 3
 (

N
)

 

 

TruckSim model, Fz3l

EoM model, Fz3l

TruckSim model, Fz3r

EoM model, Fz3r

0 1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(d
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 4
 (

N
)

 

 

TruckSim model, Fz4l

EoM model, Fz4l

TruckSim model, Fz4r

EoM model, Fz4r

0 1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(e
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 5
 (

N
)

 

 

TruckSim model, Fz5l

EoM model, Fz5l

TruckSim model, Fz5r

EoM model, Fz5r

0 1 2 3 4 5 6 7 8 9 10

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(f
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
l6

 (
N

)

 

 

TruckSim model, Fz6l

EoM model, Fz6l

TruckSim model, Fz6l, axle Fz6r

EoM model, Fz6r

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

x 10
4

(g
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 7
 (

N
)

 

 

TruckSim model, Fz7l

EoM model, Fz7l

TruckSim model, Fz7r

EoM model, Fz7r

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

x 10
4

Time (s)

(h
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 8
 (

N
)

 

 

TruckSim model,Fz8l

EoM model, Fz8l

TruckSim model,Fz8r

EoM model, Fz8r

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

x 10
4

Time (s)

(i
) 

N
o

rm
a

l 
fo

rc
e

, 
a

x
le

 9
 (

N
)

 

 

TruckSim model,Fz9l

EoM model, Fz9l

TruckSim model,Fz9r

EoM model, Fz9r



PhD Thesis – Shenjin Zhu                                     University of Ontario Institute of Technology 
 

60 
 

Figure 3.16 and Figure 3.17 shows respectively the time history of the forward speed, and the 

total drive torque distributed on the drive wheels of the tractor of the B-train double simulated 

using the TruckSim and the nonlinear EoM yaw-roll model under the low lateral acceleration SLC 

maneuver of forward speed 110U = km/h. Good match has been achieved by both models. The 

TruckSim model has slightly faster response and more transient drop on the forward speed. The 

drive torque of the TruckSim model shown in Figure 3.17 also demonstrates faster response and 

more quickly converges to the steady value, which interprets the evolution of the forward speed in 

Figure 3.16.  Comparatively, the drive torque of the nonlinear EoM yaw-roll model is larger than 

that of the TruckSim model in time integration sense, which results in less forward speed drop and 

crosses over the forward speed of the TruckSim model in the period from 15 to 50s. 

 

Figure 3.16 Forward speed of the B-train double simulated using the TruckSim and the nonlinear 
EoM yaw-roll model under the low lateral acceleration SLC maneuver of the nominal forward 

speed 110U = km/h 
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Figure 3.17 Total drive torque for the drive wheels of the tractor of the B-train double simulated 
using the TruckSim and the nonlinear EoM yaw-roll model under the low lateral acceleration 

SLC maneuver at forward speed 110U =  km/h 

Figures 3.18 and 3.19 shows respectively the time histories of the yaw-rate and lateral 

acceleration of the B-train double simulated using the nonlinear EoM yaw-roll model, TruckSim 

model, linear yaw-plane model, linear yaw-roll model, and the nonlinear yaw-plane model under 

the low lateral acceleration SLC maneuvers indicating the dependence of RWA on the vehicle 

forward speed. Note that in each sub-figure, three groups of timely distributed curves from left to 

right denote the performance measures of the tractor, 1st and the 2nd semitrailers, respectively. With 

a low vehicle forward speed, the rear units (the 1st and 2nd semitrailers) yield lower yaw rate, lateral 

acceleration and better stability than the tractor. Following the increase of the forward speed, 

responses of the yaw-rate and lateral acceleration of the rear units starts to grow over that of the 

tractor, gradually demonstrates the RWA property, improves in maneuverability and degrades in 

stability.   
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Figure 3.18 Yaw rates of the B-train double models under the SLC maneuvers showing the 
forward speed dependence of the RWA property: (a) 80U = km/h, (b) 100U = km/h, (c) 110U =  

km/h, and (d) 120U =  km/h 

 

Figure 3.19 Lateral accelerations of the B-train double models under the low lateral acceleration 
SLC maneuvers showing the forward speed dependence of the RWA property: (a) 80U =  km/h, 

(b) 100U =  km/h, (c) 110U = km/h, and (d) 120U = km/h 
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3.3.4.2 Model Validation at a High Lateral Acceleration Operation 

At high lateral acceleration operations, the pneumatic tire forces may saturate. The linear tire 

models used in the linear yaw-plane model, and the linear yaw-roll model may not effectively 

predict the saturation property. The prediction capabilities of the linear models may be 

compromised and questionable. In the following high lateral acceleration operation simulations, 

the performance measures in yaw-rate and lateral acceleration of the B-train double simulated 

using the nonlinear EoM yaw-roll model, TruckSim model, linear yaw-plane mode, linear yaw-

roll model, and the nonlinear yaw-plane model are compared. In all the models considered, the 

linear yaw-plane model, and the linear yaw-roll model use linear tire models and are deemed as 

linear models. The nonlinear EoM model, TruckSim model, and the nonlinear yaw-plane model 

apply the Magic tire models and are ascribed to nonlinear models. To achieve a high lateral 

acceleration, a 0.4 Hz single cycle sine wave steer angle of amplitude of 3.58 deg for the tractor 

front axle is used to excite the B-train double simulated using the linear and nonlinear models.  

Figure 3.20 shows the yaw-rate time histories of the B-train double simulated using the 

nonlinear EoM model, TruckSim model, linear yaw-plane model, linear yaw-roll model and the 

nonlinear yaw-plane model under the high lateral acceleration SLC maneuver. Note that in the 

figure, three groups of timely distributed curves from left to right denote the performance measures 

of the tractor, 1st and the 2nd semitrailers, respectively. The nonlinear yaw-plane model provides a 

closer match with the nonlinear EoM yaw-roll model in the yaw-rate measure than the linear yaw-

plane and the linear yaw-roll models. Compared with the other nonlinear models, the TruckSim 

model demonstrates heavier asymmetry with respect to the time axis on the 1st and the 2nd 

semitrailers, but matches the nonlinear EoM yaw-roll model and the nonlinear yaw-plane very 

well in the amplitude-sense. The linear yaw-plane and linear yaw-roll models match each other 



PhD Thesis – Shenjin Zhu                                     University of Ontario Institute of Technology 
 

64 
 

well on all units due to the application of the same linear tire models. The difference made by 

different kinds of tire models is evident under this high lateral acceleration operation. 

 

Figure 3.20 Yaw-rates of the B-train double models under the high lateral acceleration SLC 
maneuver at forward speed 110U = km/h 

Figure 3.21 shows the lateral acceleration time histories of the B-train double simulated using 

the nonlinear EoM yaw-roll model, TruckSim model, linear yaw-plane model, linear yaw-roll 

model, and the nonlinear yaw-plane model under the high lateral acceleration SLC maneuver of 

forward speed 110U = km/h. Note that in the figure, three groups of timely distributed curves 

from left to right denote the performance measures of the tractor, 1st and the 2nd semitrailers, 

respectively. Excellent match has been achieved by the nonlinear EoM yaw-roll model, TruckSim 

model, and the nonlinear yaw-plane model, except that on the 2nd semitrailer, TruckSim model 

demonstrates heavier asymmetry with respect to the time axis than those of other nonlinear models. 

The linear yaw-plane model and the linear yaw-roll model match each other very well.  
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The difference made by the tire models (linear and nonlinear) on the lateral acceleration 

measures demonstrated by the linear and nonlinear models are apparent. This fact suggests that the 

linear models using the linear tire models are not sufficient for predicting the vehicle performance 

under a high lateral acceleration operation condition. The prediction capability of the nonlinear 

models including the nonlinear EoM yaw-roll model, TruckSim model and the nonlinear yaw-

plane model for the performance of the B-train double under high lateral acceleration operation 

conditions is verified.  

The insightful findings in the model validation at low and high lateral acceleration operation 

conditions build the foundation in the allocation of the vehicle models to the ASSs (active safety 

systems) design, optimization and coordination in the following research, i.e., the linear yaw-plane 

model is for the ATS, linear yaw-roll model for the ARC and the nonlinear yaw-plane model for 

the TDB.   

 

Figure 3.21 Lateral accelerations of the B-train double models under the high lateral acceleration 
SLC maneuver at forward speed 110U =  km/h 
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3.4 Summary 

In order to design, optimize, and coordinate active safety systems (ASSs) for tractor/semitrailer 

combination and multi-trailer articulated heavy vehicles (MTAHVs), a linear yaw-plane model 

and a nonlinear yaw-plane model of the tractor/semitrailer, a linear yaw-plane model, a linear yaw-

roll model, a nonlinear yaw-plane model, and a nonlinear EoM yaw-roll model have been derived 

and validated using the TruckSim models. All the models demonstrate the forward-speed-

dependent property in rearward amplification. The linear models and the nonlinear models present 

lateral acceleration dependence property in predicting capability. At low lateral acceleration 

operation, the linear yaw-plane model, linear yaw-roll model, nonlinear yaw-plane model, 

nonlinear EoM yaw-roll model and the TruckSim model produce close match in predicting the 

performance of the B-train double. At high lateral acceleration operations, the linear yaw-plane 

model matches the linear yaw-roll very well; the nonlinear EoM yaw-roll model, nonlinear yaw-

plane model and the TruckSim model yield close prediction capability; and the linear models 

separate themselves from the nonlinear ones clearly due to the application of different kinds of tire 

models.  

The simulation results at low and high lateral acceleration operations suggest the following 

allocations of the models to the active safety system design for MTAHVs: 1) the linear yaw-plane 

model, effective in the low lateral acceleration range of 0-0.3g, is used to design the active trailer 

steering system to improve maneuverability and stability at low lateral acceleration operation; 2) 

the linear yaw-roll model, with main focus on predicting the roll dynamics,  is applied to construct 

the active roll control system to stabilize the MTAHV in the medium lateral acceleration range of 

0.2 to 0.6g; 3) the nonlinear yaw-plane model, sufficient in predicting the lateral dynamics of 

MTAHVs at high lateral acceleration operation, is employed to derive the trailer differential 
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braking system for stabilizing the MTAHV at the high lateral acceleration range from 0.3-0.7g; 

and 4) the nonlinear EoM yaw-roll model, which considers the longitudinal, lateral and roll 

dynamics of the MTAHV and the saturation property of the tire dynamics, is suitable for simulating 

the vehicle dynamics.  
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Chapter 4 Articulated Heavy Vehicle Lateral Dynamic 

Analysis Using an Automated Frequency Response 

Measuring Technique 

4.1. Introduction 

An articulated heavy vehicle (AHV) consists of a towing unit, namely tractor or truck, and one or 

multiple trailing units, called trailers. The adjacent units are connected at articulation points using 

mechanical couplings, e.g., dollies, fifth wheels, pintle hitches, etc. Due to multi-unit 

configurations, AHVs exhibit a unique dynamic phenomenon, i.e., rearward amplification (RWA), 

in which the rearmost unit experiences an amplified lateral acceleration with respect to that 

achieved at the tractor or truck (Fancher and Winkler, 2007). It is reported that the static rollover 

threshold of AHVs, expressed as lateral acceleration in gravitational acceleration (g), can be as 

low as 0.25g (Winkler, 2000). Lightly damped yaw responses of trailing units may easily 

precipitate rollover of the rearmost trailer (Winkler et al., 1983, Kang and Deng, 2007). RWA is 

of critical importance to the directional performance of AHVs. The RWA ratio, defined as the ratio 

of the peak lateral acceleration at the rearmost trailer’s center of gravity (CG) to that of the leading 

unit (Fancher and Winkler, 2007),  is often used as an important performance measure for assessing 

the lateral stability of AHVs (El-Gindy et al., 2001).  

It is difficult for a driver to sense the motions of trailers, because his/her perception is based 

mainly on the response of the tractor (or truck) rather than the trailer(s) (Palkovics and Fries, 2001). 

Articulation joint(s) and tractor cab suspension isolate the driver from the trailer motions. AHVs 

may exhibit an exaggerated response of the rearward units (i.e., RWA) when performing a lane-

change maneuver. The rearmost trailer is usually the first unit to rollover, and by the time the driver 
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realizes what is happening, it is too late to take corrective action. It is shown that only a minority 

of rollovers could be avoided with a warning device, and approximately half of the rollovers are 

not preventable by driver’s action alone (Winkler et al., 1983, Palkovics and Fries, 2001).  In order 

to attenuate rearward amplification tendencies in AHVs, a variety of potential solutions have been 

investigated. The effect of variations in size and weight constraints on the stability of AHVs was 

investigated (Ervin et al., 1983). Various types of coupling mechanisms, e.g., the modified A-

dollies and B-dollies, were proposed for reducing the RA tendencies of AHVs (Winkler et al., 

1986). The improvement of the lateral stability of AHVs achieved by the aforementioned solutions 

is limited, since these passive mechanisms cannot accommodate varied operating conditions, e.g., 

vehicle forward speed, trailer payload, and radius of road curvature (Fancher and Winkler, 2007). 

To address the limitations of the passive mechanisms, over the past two decades various active 

safety systems, including trailer differential braking (MacAdam and Hagan, 2002) and active 

trailer steering (Rangavajhula and Tsao, 2007), have been investigated to suppress the unwanted 

trailer yaw motions in AHVs.  

Because of the cost and safety concerns, it may not be practical to conduct field or road tests 

to examine the directional performance of AHVs with or without the above active safety systems 

during concept design phases. Numerical simulation, thus, may be more practical in certain 

situations (Islam et. al., 2012). To determine the directional performance envelope of an AHV 

without active safety system, numerical optimization was conducted by searching optimal passive 

design variables; in the design synthesis, the lateral stability evaluations were conducted, based on 

numerical simulations of a nonlinear TruckSim AHV model (He, et al., 2013). To determine the 

optimal directional performance of an AHV with an active safety system, linear-model-based 

design optimization was performed by finding optimal passive and active design variables (He and 
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Islam, 2012). In the design optimization, a linear vehicle model was used for deriving the optimal 

controller for the ASS; and the optimal passive design variables for the mechanical trailer system 

and the optimal active design variables for the optimal controller were identified simultaneously 

in a single design process.      

In the aforementioned design optimizations, the evaluations of the RWA ratio were based on 

the time-domain simulations of either a linear or a nonlinear AHV model. It is disclosed that the 

RWA ratio of an AHV is strongly dependent on steering input frequency (Ervin and MacAdam, 

1982, Fancher, 1982). One of the distinguished features of dynamic response analysis in the 

frequency-domain is data reduction, i.e., a large number of time-domain samples are replaced by 

a small number of spectral lines (Pintelon at el., 1994). To comprehensively evaluate the lateral 

stability of an AHV, the lateral dynamic analysis over a frequency band of interest is necessary. In 

the case of a linear AHV model, the lateral dynamic analysis in the frequency-domain can be easily 

implemented using the transfer function method. However, in the case of a nonlinear AHV model, 

in order to achieve the required dynamic responses over a frequency band, numerous simulations 

in the time-domain have to be conducted in a tedious and time consuming process.  

To date, there are a number of commercial multibody dynamic packages, e.g., ADAMS, 

DADS, TruckSim, etc., available for deriving sophisticated nonlinear AHV models for time-

domain numerical simulations with high fidelity. However, these nonlinear AHV models are not 

suitable, instead, manually derived linear AHV models through very tedious, difficult, time-

consuming, and error-prone process (Kortum, 1993) are required, for performing frequency 

response analysis. Recently, a spectrum-analyzer-based automated frequency response measuring 

(AFRM) tool is offered in Matlab, which acquires the frequency response of a second-order system 

driven by a complex sinusoidal signal (MathWorks, 2014).  It is expected that the integration of 
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the AFRM tool with a multibody AHV model may be a useful method for achieving a relevant 

lateral dynamic response over a frequency band of interest. Conventionally, a linear and a 

nonlinear AHV model are usually compared and validated using only time-domain simulations 

due to the difficulty for directly obtaining the frequency responses of the nonlinear model (Islam 

et al., 2015). The AFRM tool may also provide an alternative way to compare and validate a 

nonlinear vehicle model with the corresponding linear model using frequency-domain simulations. 

Most importantly, the on-line application of the AFRM makes the frequency domain design 

optimization of ASSs for AHVs feasible. 

This chapter examines the feasibility and effectiveness of incorporating the AFRM capabilities 

in multibody AHV models for the frequency-domain lateral dynamic analysis. The emphasis is 

placed on examining the applicability of the AFRM technique for linear systems. To demonstrate 

the effectiveness of the AFRM technique, it is applied to acquire the frequency responses in terms 

of the lateral accelerations of both the tractor and trailer using the linear yaw-plane and nonlinear 

TruckSim models of the tractor/semitrailer combination. The respective frequency responses are 

compared with those derived using a chirp signal (or swept-sine) steer input method, the transfer 

function method, and time-domain simulations of the linear and the nonlinear models. The 

frequency responses acquired using the AFRM technique from the three DOF linear and the 

twenty-one DOF nonlinear models are compared. A frequency response function (FRF) of the 

RWA ratio has been determined using the AFRM method. The FRF of RWA ratios in a frequency 

band of interest have been compared with those obtained using the single sine-wave steer input 

procedure recommended by ISO14791 (ISO, 2000). With the aid of the AFRM technique, the 

frequency-domain parametric analysis of the nonlinear TruckSim model is also conducted. 
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4.2 Automated Frequency Response Measuring Technique 

Figure 4.1 shows the incorporation of the automated frequency response measuring (AFRM) 

capabilities (MathWorks, 2014) in the nonlinear TruckSim model for the lateral dynamic analysis 

in frequency-domain. The combined AFRM-TruckSim system consists of a signal generator, a 

system/plant (e.g., the nonlinear TruckSim model) to be examined, a spectrum analyzer and a data 

processor. The signal generator and the spectrum analyzer are coded with the state-flow 

programming language in Simulink. The data processing is conducted in Matlab. The system to 

be examined can be a linear or nonlinear dynamic system model, or a physical system. In this 

research, the system to be investigated is either the 3-DOF linear yaw-plane model coded in 

Simulink or the twenty one DOF nonlinear TruckSim model of the tractor/semitrailer combination 

derived in Chapter 3. In the case of the TruckSim model, the AFRM tool is interfaced with 

TruckSim software using an S-function, which enables the data communications between 

Simulink and TruckSim, and dynamically links TruckSim software as a subroutine of Matlab. 

 

Figure 4.1 Schematic representation of the incorporation of the AFRM tool in the nonlinear 
TruckSim model 
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In the signal generator, the frequency band of input signal to be generated is determined by the 

bandwidth of the system to be examined. To properly excite the dynamics of the system, the 

frequency band of the input is selected at least one decade over the bandwidth of the system, and 

the frequency characteristics of the steering action of a human driver should also be considered.  

The frequency band is discretized with a frequency interval f∆ . The selection of f∆ is a trade-off 

solution between the smoothness of frequency-response curve and the length of test time. If a 

smaller f∆ is selected, we may achieve a smoother frequency-response curve at the expense of 

longer test time. In this research, the frequency interval is selected as 0.01f∆ =  Hz, and the 

frequency band is chosen as 0.0 ~ 1.0 Hz based on previous studies (Ervin and MacAdam, 1982, 

ISO, 2000). The input signal in the time-domain can be expressed as  

( ) ( )( ) sin 2 ( ) , 1,2,3,..., 0, ( )ku t A f k t k t nT kπ= = ∈        (4.1) 

where ( ) ,f k k f= ∆  the thk frequency, ( )
( )
1

T k
f k

= the period of the thk sine-wave, n is an integer 

representing the number of cycles of the sine-wave with a specified frequency ( )f k , and A  is the 

amplitude of the sine-wave. Direct application of sine-waves as the steer input avoids time-

consuming process of Fourier transform, and facilitates the validation of the AFRM technique 

using the manual measurement method. The number of cycles, n, is selected as small as possible 

to shorten the length of test time, while n should also be large enough to suppress the transient 

effect. Here n takes the value of 1 in order to achieve a compromised solution. 

In this research, the objective is to examine the applicability of the AFRM technique for linear 

systems, and to use this method to extract the linearized characteristics in the frequency-domain 

from a nonlinear system. The amplitude of the input signal must be restricted below a limit in order 

to not excite nonlinear dynamics of the system. It should be noted that the applicability of the 
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AFRM technique for nonlinear systems will be investigated by the authors in a subsequent 

research.  

In the spectrum analyzer, the magnitude and phase responses are acquired over a range of 

frequency. The frequency responses are kept unchanged in the given cycle(s) of a sine-wave until 

the frequency has been updated. At the thk frequency, the magnitude and phase responses are 

computed as 

( )
( )( )
( )( )

1 0, ( 1)

0, ( )

1 0, ( 1)

( )
( )

( )

k t nT k

k t nT k

k t nT k

magnitude y t
M t

magnitude u t

− ∈ −

∈
− ∈ −

=        (4.2a) 

( ) ( )( )10, ( ) 0, ( 1)
( ) ( )

2k kt nT k t nT k
P t angle y t

π
−∈ ∈ −

= −         (4.2b) 

Hence, the magnitude and phase curves from the spectrum analyzer are stair functions of time, 

which are called time-domain frequency data. During the data processing, the frequency responses 

are obtained by removing the repeated frequency data points from the time-domain data. 

4.3 Verification of the AFRM Technique 

In this section, the applicability of the AFRM technique for linear vehicle systems is examined 

through the following steps:  

1) Comparison of the AFRM technique against other methods. In the case of the three DOF linear 

yaw-plane model, the simulation results based on the AFRM technique are compared with 

those using the transfer function method; in the case of the twenty one DOF nonlinear 

TruckSim model, the simulation results derived using the AFRM technique are compared 

against with those based on a chirp signal (or swept-sine) steer input method and a manual 

measurement approach.  
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2) Comparison of the linear and nonlinear models using time-domain simulations. In order to 

examine the degree of agreement between the linear and nonlinear models, the time-domain 

simulation results derived from the linear and nonlinear models under an emulated low lateral 

acceleration single-lane change maneuver are compared.  

3) Comparison of the linear and nonlinear models using frequency-domain simulations. Under 

the condition that the amplitude of the steering input signal is strictly restricted to ensure not 

to excite the nonlinear dynamic characteristics of the nonlinear model, the linear and nonlinear 

models’ frequency responses based on the AFRM technique are compared.  

4.3.1 Comparison of the AFRM Technique against other Methods  

The effectiveness of the AFRM technique is verified: 1) with the frequency responses achieved 

using the transfer functions (TF) of the linear model, 2) with the frequency responses achieved 

using the chirp signal steer input method based on the TruckSim model, and 3) the numerical 

results based on the time-domain simulations of the TruckSim model. 

Table 4.1 Tire cornering stiffness coefficients of the validated linear model 

 

 
Table 4.2 RWA ratios measured using the AFRM and TF methods 

 

*The relative error is defined as the ratio of the difference between the results based on the AFRM 
technique and the transfer function (TF) method to that based on the TF method. 
 

 

11fC  (N/rad) 12rC  (N/rad) 23rC  (N/rad) 

242,597 578,760 554,484 

Frequency (Hz) 0.2 0.8 
RWA ratio with AFRM 1.060  (point A in Figure 4(a)) 0.758 (point B in Figure 4(a)) 

RWA ratio with TF 1.068  (point A in Figure 4(a)) 0.724 (point B in Figure 4(a)) 
Relative error* (%) -0.75   (point C in Figure 4(b)) 4.70   (point D in Figure 4(b)) 
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Figure 4.2 illustrates the linear model’s frequency responses in terms of RWA ratio derived 

using the AFRM and the TF methods when the tire cornering stiffness coefficients take the values 

listed in Table 4.1. Table 4.2 offers the numerical results at points A and B in Figure 4.2(a) and at 

points C and D in Figure 4.2(b). Note that points C and D in Figure 4.2(b) correspond to points A 

and B in Figure 4.2(a), respectively. It is indicated that within the frequency range of 0.01~1.0 Hz, 

the maximum relative error of the RWA ratio acquired by the AFRM tool with respect to the RWA 

ratio calculated by the TF method is 4.72% at the frequency of 0.76 Hz. Figure 4.3 shows the phase 

responses of the linear model achieved using the AFRM and TF methods. In the case of the linear 

model, the benchmark shown in Figures 4.2, 4.3, and Table 4.2 demonstrates an excellent 

agreement between the AFRM and TF methods.   

 

Figure 4.2 Linear vehicle model’s magnitude response in terms of RWA ratio: (a) RWA ratio 
versus frequency, (b) the relative error of the RWA ratio achieved using the AFRM approach 

with respect to the RWA ratio derived using the transfer function method 
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Figure 4.3 Linear vehicle model’s phase responses achieved using the AFRM and TF methods 

Figure 4.4 shows the TruckSim model’s frequency responses, showing the lateral acceleration 

response of each vehicle unit to the tractor steer input. The frequency responses are obtained using 

the AFRM technique, the chirp signal (or swept-sine) steer input method (Gloth and Sinapius, 

2004), and the manual measurement based on the time-domain numerical simulations of the 

TruckSim model. Table 4.3 lists the lateral acceleration gains at the selected frequencies derived 

using the three methods, the relative errors between the frequency responses obtained using the 

AFRM technique and the chirp signal steer input method, and the relative errors between the 

frequency responses acquired with the AFRM technique and the manual measurement approach. 

Note that in the case of the chirp signal steer input method, the linear sweep approach is applied, 

the steer input amplitude is 0.86o, the start frequency 0 0.01f =  Hz, the end frequency 0.1=ef Hz, 

the time, T, sweeps from 0f  to ef is 180 seconds, and the frequency responses are acquired using 

fast Fourier transform.  
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Figure 4.4 TruckSim model’s frequency responses of the lateral acceleration for each vehicle 
unit to tractor front wheel steer input 

Table 4.3 Lateral acceleration gains (at the selected points shown in Figure 4.4) acquired using 
the AFRM and manual measurement methods 

 
*The relative error is defined as the ratio of the difference between the gain based on the chirp 
method and the AFRM method to that based on the AFRM method. 
#The relative error is defined as the ratio of the difference between the gain based on the manual 
measurement and the AFRM method to that based on the AFRM method. 
 

As shown in Figure 4.4 and Table 4.3, the comparison of the lateral acceleration responses 

based on the AFRM, the chirp signal input, and the manual measurement methods indicates that 

the three approaches achieve a very good agreement. It has been observed that the AFRM method 

is sensitive to the asymmetry of the sinusoidal responses of the TruckSim model. The asymmetric 
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Methods AFRM Chirp signal input Manual measurement 
Point Frequency 

(Hz) 
Vehicle 

Unit 
Gain 

(g/rad) 
Gain 

(g/rad) 
Relative 
error* 

Gain 
(g/rad) 

Relative 
Error# 

A 0.06 Tractor 7.51 7.49 -0.27% 7.38 -1.73% 
Trailer 7.51 7.56 0.67% 7.41 -1.33% 

B 0.21 Tractor 7.30 7.42 1.64% 7.25 -0.68% 
C 0.21 Trailer 7.70 8.27 7.4% 8.0 3.9% 
D 0.41 Tractor 6.75 6.15 -8.9% 6.42 -4.9% 
E 0.41 Trailer 8.59 8.88 3.38% 8.70 1.28% 
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sinusoidal responses will decrease the measurement accuracy of the AFRM method. The 

asymmetry of time-domain lateral acceleration responses of AHVs was reported in past researches 

(Ervin and MacAdam, 1982).       

The aforementioned comparisons indicate that: (1) in the case of the linear vehicle model, the 

results achieved using the AFRM technique is very close to those of the TF method, and the relative 

error between the two methods is less than 5.0%; and (2) in the case of the nonlinear vehicle model, 

if symmetric sinusoidal responses of a nonlinear vehicle model can be achieved, the AFRM 

technique, the chirp signal input method, and the manual measurement based on the time-domain 

simulation of the nonlinear vehicle model can reach a very good agreement. Moreover, compared 

with the chirp signal steer input method, the AFRM technique has the distinguished features as 

follows: 1) in the AFRM method, the system/plant concerned is excited using pure sinusoids; 2) 

the discrete Fourier transform (DFT) is conducted using correlation which is technically less 

demanding and easier to manage than the fast Fourier transform (FFT) used for the modal analysis 

with the chirp signal inputs or random signal excitations; 3) only the time-domain signals of the 

current frequency (single frequency) are processed in the DFT for computing the frequency 

response function (FRF); 4) there is no high-frequency filtering, no window weighting, and no 

spectrum averaging processes necessary, and, thus, less possibility of information loss; and 5) 

verification of the effectiveness of the AFRM method by using manual measurement is 

straightforward. 

4.3.2 Comparison of Linear and Nonlinear Models Using Time-Domain Simulations  

Table 4.1 and Table A1 (in Appendix A) provide the system parameters for the linear model 

validated using the TruckSim model. The parameters listed in Table A1 are also used for the 

TruckSim model. The other related parameters can be obtained in (Sampson, 2002). 
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In order to examine the dynamic behaviors of the linear and nonlinear vehicle models under 

typical SLC maneuvers, numerical simulations in time-domain have been conducted. Figure 4.5 

shows the time history of tractor front wheel steer angle input, i.e., a 0.1 Hz single cycle sine-wave 

with amplitude of o5.1 , and Figure 4.6 the time histories of the lateral acceleration for each vehicle 

unit based on the linear and nonlinear models. Figures 4.7 and 4.8 show the time histories of the 

lateral acceleration for each vehicle unit of the two vehicle models excited with 0.4 and 0.8 Hz 

inputs of o5.1  amplitude, respectively. Table 4.4 provides the lateral acceleration values at each 

vehicle unit’s CG at the selected points on the curves shown in Figure 4.8.  

 

Figure 4.5 Time history of the tractor front wheel steer angle input (a single sine-wave with an 
amplitude of 1.5 deg and a frequency of 0.1 Hz) 
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Figure 4.6 Lateral accelerations for the vehicle under a sine-wave steer angle input of the tractor 
front wheel with an amplitude of 1.5o and a frequency of 0.1 Hz at a forward speed of 150 km/h: 

(a) lateral acceleration at the tractor CG, and (b) lateral acceleration at the trailer CG 

 

Figure 4.7 Lateral accelerations of the vehicle under a sine-wave steer angle input of the tractor 
front wheel with an amplitude of 1.5o and a frequency of 0.4 Hz at a forward speed of 150 km/h: 

(a) lateral acceleration at the tractor CG, and (b) lateral accelerate at the trailer CG 
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Figure 4.8 Lateral accelerations of the vehicle under a sine-wave steer angle input of the tractor 

front wheel with an amplitude of 1.5o and a frequency of 0.8 Hz at a forward speed of 150 km/h: 
(a) lateral acceleration at the tractor CG, and (b) lateral acceleration at the trailer CG 

Table 4.4 Lateral acceleration of vehicle units at the selected points on the curves in Figure 4.8 

 
*Error is defined as the difference between the lateral acceleration based on the linear model and 
that based on the TruckSim model  
 

Based on the time-domain numerical simulation results shown in Table 4.4 and in Figures 4.6, 

4.7, and 4.8, the following observations have been made: (1) under low lateral acceleration (less 

than 0.3g) maneuvers, the linear and nonlinear models reach a very good agreement, consistent 

with the conclusion made in (Islam et al., 2015); (2) the extent of the agreement between the 

simulation results based on the two models is frequency dependent; and (3) under a given single 

cycle sine-wave front wheel steer angle input, the time history of the lateral acceleration for each 

 Point A Point B Point C Point D 
 Tractor Trailer Tractor Trailer Tractor Trailer Tractor Trailer 

Lateral acceleration 
(linear model) (g) 

0.115 0.075 -0.035 -0.101 0 0.012 0.001 0.002 

Lateral acceleration  
(TruckSim model) (g) 

0.127 0.065 -0.038 -0.095 0.007 0.014 0.009 0.009 

Error* (g) -0.012 0.010 0.003 -0.006 -0.007 -0.002 -0.008 -0.007 
Time (s) 1.51 2.51 3.51 4.51 
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vehicle unit of the linear model is also approximately symmetric sine-wave, while that of the 

nonlinear model is a distorted sine-wave, asymmetric with respect to the time axis. 

To further investigate the time-domain lateral dynamic behaviors of the linear and nonlinear 

vehicle models, numerical simulations under a variable frequency sine-wave steer angle input of 

the tractor front wheel have been conducted. The tractor front wheel steer angle input is made 

using the signal generator shown in Figure 4.1. At each frequency, a single cycle sine-wave steer 

angle signal, with frequency varying from 0.01 to 1.0 Hz with an interval of 0.05 Hz and amplitude 

of1.72o , is generated to excite the lateral dynamics responses of the linear and nonlinear models. 

The vehicle forward speed maintains constant at 150 km/h. 

Simulation results shown in Figures 4.9 and 4.10 clearly illustrate that the lateral acceleration 

responses of the TruckSim model to the variable frequency sine-wave steer angle input are 

deformed sine-waves, asymmetric with respect to the time-axis. This observation is consistent with 

the disclosed phenomenon introduced previously in the case of the single cycle sine-wave steer 

angle input.  

This asymmetry is detrimental to the performance of the AFRM method. To mitigate and avoid 

negative impact of the asymmetry on the accuracy of the frequency response acquisition using the 

AFRM method, an offset time-axis is introduced in such a way that the asymmetric dynamic 

responses of the nonlinear vehicle model are symmetric with respect to the offset axis. In the 

research, the offset axis is used when the AFRM method is utilized to acquire the frequency 

responses of the TruckSim model. 
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Figure 4.9 Tractor lateral accelerations under the variable frequency sine-wave steer angle input 
of the tractor front wheel 

 

 

Figure 4.10 Trailer lateral accelerations under the variable frequency sine-wave steer angle input 
of the tractor front wheel 
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4.3.3 Comparison of Linear and Nonlinear Models Using Frequency-Domain 

Simulations  

In order to further examine the performance of the AFRM technique, this frequency response 

acquiring method is applied to compare the lateral acceleration responses of the linear and 

nonlinear models, which have been validated using the time-domain numerical simulations 

described in Section 4.3.2. Figure 4.11 shows the linear and nonlinear models’ frequency responses 

obtained using the AFRM method, showing the lateral acceleration response of each vehicle unit 

to the tractor front wheel steer angle input. Table 4.5 lists the lateral acceleration gains at the 

selected frequencies and the relative errors between the frequency responses of the two vehicle 

models. 

 

Figure 4.11 Frequency responses of the linear and TruckSim models showing the lateral 
acceleration response of each vehicle unit to the tractor front wheel steer input 
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Simulation results shown in Figure 4.11 and in Table 4.5 illustrate that within the selected 

frequency range, the linear and nonlinear vehicle models achieve a good agreement. Moreover, 

the degree of the agreement between the frequency-domain simulation results based on the two 

models is frequency dependent, which confirms the observation discussed previously in Section 

4.3.2.  

Table 4.5 Lateral acceleration gains (at the selected points shown in Figure 4.11) measured using 
the AFRM method 

 A B C D E 
Vehicle unit Tractor Trailer Tractor Trailer Tractor Trailer 

TruckSim model (g/rad) 7.508 7.505 6.737 8.579 4.623 3.592 
Linear model (g/rad) 7.478 7.481 6.958 8.755 4.545 3.138 
Relative error*(%) -0.4 -0.32 3.28 2.05 -1.69 -12.64 

Frequency (Hz) 0.06 0.41 0.81 
*The relative error is defined as the difference between the results based on the linear model and 
the TruckSim model to that of the TruckSim model  
 

The above analysis indicates that the AFRM method may provide an alternative way to acquire 

the FRF of the RWA ratio for AHVs. It should be noted that when used to acquire the frequency 

responses of a nonlinear system model, the AFRM technique is to extract the linear dynamic 

characteristics of the nonlinear model. In the application of the AFRM method, the amplitude of 

the input signal should be strictly restricted to ensure not to excite the nonlinear dynamic 

characteristics.  

4.4 Determination of the RWA Ratio Recommended by ISO14791 

In order to determine the RWA ratio of AHVs, ISO14791 recommends three different test 

procedures (ISO, 2000): 1) pseudo-random steer input, 2) single sine-wave steer input, and 3) 

single sine-wave lateral acceleration input. For the pseudo-random input procedure, the maximum 

lateral acceleration of the first vehicle unit should be restricted below a limit level in such a way 

that all vehicle units are keep within the linear regime (ISO, 2000). This method may achieve a 
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complete representation of the frequency dependency of the RWA ratio in the frequency-domain. 

The second test procedure is an open-loop SLC maneuver under a full period sinusoidal steer input 

applied to the steering wheel. The third test procedure is a closed-loop SLC maneuver, under which 

the first unit follows a predefined trajectory at a constant vehicle forward speed. Both the second 

and third test procedures can provide only a RWA ratio for a given frequency, at which the 

specified lane-change is performed.     

For the pseudo-random input test procedure, stochastic excitation signals are applied to acquire 

the frequency response function (FRF) of the RWA ratio over a wide frequency band. It is reported 

that several waveforms are available to excite a given system in order to determine the required 

FRFs, and the most common types of waveforms are harmonic excitation, e.g., discretely stepped 

sine, period excitation like multi-sine, transient excitation like chirp signal (or sinusoidal sweeps), 

and random excitation (Gloth and Sinapius, 2004). As shown in Figure 4.4, both the AFRM 

approach and the chirp signal input method can be used to acquire the FRFs of the lateral 

acceleration of each vehicle unit of the TruckSim model, and the results based on the two methods 

reach a very good agreement. This implies that, similar to the pseudo-random steer input test 

procedure recommended by ISO14791, the AFRM method may also be effectively used to 

determine the FRF of the RWA ratio for AHVs. Actually, the FRF of the RWA ratio for the three 

DOF linear model has already been acquired using the AFRM technique as shown in Figure 4.2(a). 

It has been validated that for an AHV, at a given frequency, the RWA ratio determined under 

the closed-loop SLC maneuver and the ratio evaluated using the FRF derived under the pseudo-

random steer input test procedure should research an excellent agreement (Aurell and Koppenaal, 

1998). Similarly, it is expected that for the three DOF linear model, at a given frequency, the RWA 

ratio based on the AFRM technique and the open-loop SLC maneuver recommended by ISO14791 
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should achieve a good agreement. In order to elucidate this issue, we correlate the simulation 

results based on the AFRM technique introduced in Section 4.3.1 and those achieved using the 

time-domain simulations described in Section 4.3.2. Actually, results shown in Figures 4.6, 4.7, 

and 4.8 are achieved under the emulated open-loop single SLC maneuvers recommended by 

ISO14791, i.e., the single sine-wave steer input, at frequency of 0.1, 0.4, and 0.8 Hz, respectively. 

With the time-domain results shown in Figures 4.6, 4.7, and 4.8, the linear model’s RWA ratios at 

frequency of 0.1, 0.4, and 0.8 Hz can be determined and the corresponding values are listed in 

Table 4.6. With the FRF for the linear vehicle model based on the AFRM technique shown in 

Figure 4.2(a), the RWA ratios at the frequency of 0.1, 0.4, and 0.8 Hz can also be determined, and 

the corresponding values are listed in Table 4.6. An observation of the results shown in Table 4.6 

discloses that the maximum relative error (absolute value) between the results based on the two 

methods is 9.38%, the open-loop SLC maneuver recommended by ISO14791 and the AFRM 

method achieve a very good agreement. The benchmark of the simulation results listed in Table 

4.6 is consistent with the aforementioned expectation. 

Table 4.6 Linear model’s RWA ratios determined under the open-loop SLC maneuver 
recommended by ISO14791 and the RWA ratios achieved using the AFRM technique 

 RWA ratio at 0.1 Hz RWA ratio at 0.4 Hz RWA ratio at 0.8 Hz 
Single sine-wave input 1.023 1.189 0.842 

AFRM technique 1.013 1.229 0.763 
Relative error* -0.99% 3.36% -9.38% 

*The relative error is defined as the ratio of the difference between the results based on the AFRM 
technique and the single sine-wave steer input method to that based on the single sine-wave steer 
input method.  
 

4.5 Parametric Analysis based on the Frequency Responses of the TruckSim Model 

In order to demonstrate other applications of the AFRM method to the lateral dynamic analysis of 

the tractor/semitrailer combination, parametric analysis based on the frequency responses of the 
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TruckSim model has been conducted. Figure 4.12 illustrates the frequency response of the 

TruckSim model, showing the effect of the trailer mass moment of inertia (Izz2) on the lateral 

acceleration response of each vehicle unit to the tractor front wheel steer angle input. It is observed 

that the variation of Izz2 has negligible influence on the lateral acceleration gain of the tractor and 

trailer within the low frequency range of 0.01 to 0.1 Hz. In the case of the tractor, the lateral 

acceleration gain increases with the mass moment of inertia in the frequency range of 0.2 to 0.8 

Hz. In the case of the trailer, increasing Izz2 leads to the increase of the peak value of the lateral 

acceleration gain in the frequency range of 0.05 to 0.5 Hz, while the increase of Izz2 results in the 

increase of the slope for dropping the lateral acceleration gain in the frequency band of 0.5 to 1.0 

Hz. 

Figure 4.13 offers the frequency response of the TruckSim model, illustrating the impact of 

the longitudinal distance between the trailer CG to the fifth wheel (lc21) on the lateral acceleration 

response of each vehicle unit to the tractor front wheel steer angle input. A close observation of 

Figure 4.13 indicates that increasing lc21 results in shifting up the lateral acceleration gain of the 

tractor and trailer up to the frequency of 0.37 Hz and 0.5 Hz, respectively. In the case of the trailer, 

within the frequency range of 0.5 to 1.0 Hz, the higher the value of lc21, the larger the slope of 

dropping the lateral acceleration gain. In the case of the tractor, within the high frequency range 

of 0.37 to 1.0 Hz, the effect of lc21 varies: first the increase of the parameter will speed up the drop 

of the lateral acceleration gain, then the increase of the parameter will shift up the gain.  
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Figure 4.12 Frequency response of the TruckSim model showing the effect of the trailer mass 
moment of inertia (Izz2) on the lateral acceleration response of each vehicle unit to the tractor 

front wheel steer angle input 

 

Figure 4.13 Frequency response of the TruckSim model showing the effect of the longitudinal 
distance between the trailer CG to the fifth wheel (lc21) on the lateral acceleration response of 

each vehicle unit to the tractor front wheel steer angle input 
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Figure 4.14 shows the effect of the trailer mass, 2m , on the frequency responses of the lateral 

accelerations of the vehicle units. At the low frequency up to 0.6 Hz, increasing the trailer mass 

leads to shifting down the frequency responses of the both units. Within the frequency range of 

0.6 to 1.0 Hz, when the trailer mass is larger than the nominal value, the following observations 

can be made: 1) the frequency response of the tractor starts to move up with the increase of the 

frequency; and 2) the increase of the trailer mass makes the frequency response of the tractor move 

up earlier and faster. On the other hand, within the frequency range of 0.6 to 1.0 Hz, if the trailer 

mass is smaller than the nominal value, the frequency response of the tractor decreases with the 

increase of the frequency. In the case of the trailer, within the frequency range of 0.6 to 1.0 Hz, 

the frequency response of the trailer drops monotonously with the increase of the frequency; the 

increase of the parameter will speed up the drop of the frequency response. 

 

Figure 4.14 Frequency response of the TruckSim model showing the effect of the trailer mass   
on the lateral acceleration response of each vehicle unit to the tractor front wheel steer angle 

input 
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The above parametric analysis shows that the trailer parameters, i.e., trailer mass moment of 

inertia ( 2zzI ), trailer mass ( 2m ), and the longitudinal distance between the trailer CG to the fifth 

wheel ( 21cl ), have impacts on the lateral acceleration of the tractor and the trailer. All the three 

parameters are directly related to the trailer payload, which is randomly varied depending on 

operating conditions. In the trailer lateral dynamic control system design, the uncertainties of these 

parameters and their impacts on the lateral dynamics of the AHV should be considered in order to 

improve the robustness of the active safety system.    

The above case studies indicate that the integration of the AFRM method and the multibody 

vehicle model can be used to acquire the required frequency responses over the frequency band of 

interest. Moreover, the combination of the AFRM method with the AHV model provides an 

effective tool to conduct lateral dynamic analysis and directional performance evaluation, in 

particular, through parametric studies based on frequency-domain numerical simulations. By 

means of using the AFRM technique, the distinguished feature of frequency response analysis in 

data reduction, i.e., a large number of time-domain samples being replaced by a small number of 

spectral lines, can be realized and fully utilized. The data reduction of frequency response analysis 

with respect to time response analysis is of significant importance for directional performance 

optimization of AHVs due to computational efficiency improvement.          

4.6 Summary 

This chapter proposes a method for articulated heavy vehicle (AHV) lateral dynamic analysis using 

frequency-domain simulations by means of integrating an automated frequency response 

measuring (AFRM) technique with a multibody AHV model. The feasibility and effectiveness of 

the proposed method for linear systems has been demonstrated by way of comparing the AFRM 
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technique with three different approaches: 1) the chirp signal (or swept-sine) steer input method, 

2) the transfer function method based on a linear AHV model, and 3) the manual measurement 

built upon the time-domain simulations of the corresponding nonlinear AHV model, i.e., the 

TruckSim model. In order to avoid exciting nonlinear dynamics of the TruckSim model, the 

amplitude of the variable frequency sine-wave steer input of the AFRM method must be restricted 

below a limit. With the aid of the AFRM technique, the linear dynamic characteristics can be 

extracted from the corresponding nonlinear AHV model. Thus, the proposed method provides an 

alternative approach to the validation of the linear dynamic characteristics of a nonlinear AHV 

model using the corresponding linear model based on frequency-domain simulations. The AFRM 

method can be used to acquire the frequency response function (FRF) of the rearward amplification 

(RWA) ratio, the resulting FRF has been validated using the simulation results derived from an 

emulated single sing-wave steer input test procedure recommended by ISO14791. With the AFRM 

technique, multibody AHV models can be directly used to conduct parametric analysis in the 

frequency-domain, which provides a valuable tool for the design analysis of AHVs for improving 

directional performance. Compared with the chirp signal (or swept-sine) input excitation method 

for modal identification, the AFRM technique is more computationally efficient with less 

information loss during the data processing. With the proposed AFRM tool, the frequency response 

of the RWA measure over a specified frequency band can be acquired in such a way that the 

vehicle steer input signal generation, AHV model simulation, and the FRF acquisition can be 

implemented through an automatic process executed on a computer. Therefore, the AFRM 

technique provides an ideal tool for the design optimization of AHVs based on frequency response 

analysis in order to effectively improve the lateral stability.    
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It is observed that the time history of the lateral acceleration response of the nonlinear AHV 

model to a variable frequency sine-wave steer angle input of the tractor front wheel is a deformed 

sine-wave, which is asymmetric with respect to the time-axis. This asymmetry is detrimental to 

the performance of the AFRM method. To mitigate the negative impact of the asymmetry on the 

accuracy of the frequency response measurement of the AFRM method, an offset time-axis may 

be introduced in such a way that the asymmetric dynamic responses of the nonlinear vehicle model 

are symmetric with respect to the offset axis.   

The applicability of the AFRM technique for nonlinear systems will be investigated using 

nonlinear dynamic analysis techniques, e.g., the describing function method, in the near future. 

For example, under given conditions it is possible to use describing functions to predict the 

response of certain nonlinear systems to purely sinusoidal excitation. It is expected that insightful 

findings will be disclosed in the subsequent research on examining the feasibility and effectiveness 

of the AFRM technique for nonlinear systems.  
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Chapter 5 A Unified Lateral Preview Driver Model for Road 

Vehicles 

5.1 Introduction 

To date, closed-loop driver/vehicle simulations have been widely used for design and development 

of vehicle systems and, in particular, driver assistance systems (Horiuchi and Yuhara, 2000, Islam 

et al, 2012, MacAdam, 1980, MacAdam, 1981, MacAdam, 2003, Peng, 2002, Plochl and 

Edelmann, 2007, Ungoren and Peng, 2005, and Yang et al, 2001). In order to perform closed-loop 

driver/vehicle simulations, we have to model and simulate driver behaviours. In 1980, MacAdam 

generated an optimal preview driver model (MacAdam, 1981), which has been implemented in 

commercial software packages, CarSim and TruckSim, for closed-loop simulations of both Single-

Unit Vehicles (SUVs) and Multi-Unit Vehicles (MUVs) (MacAdam, 1980). The driver model was 

derived by minimizing a cost function, which was defined as a mean squared lateral position error 

between a predicted lateral position and a target lateral position. Experimental and simulation 

results based on the driver model demonstrate that driver steering control under path-following 

maneuvers can be accurately simulated as a time-delayed optimal preview control process 

(MacAdam, 1981). In 2005, Ungoren and Peng generalized the MacAdam’s driver model by 

introducing an additional weighed yaw error in the cost function (Ungoren and Peng, 2005). In the 

generalized driver model, a parameter is tunable to assign relative importance of lateral position 

and yaw error in the cost function to be minimized, which permits the driver model to have 

additional flexibility to simulate different driver behaviours. The aforementioned two driver 

models were generated based on SUVs (MacAdam, 1980, Ungoren and Peng, 2005), and the vast 
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majority of driver models reported in the literature have also been derived for SUVs (MacAdam, 

2003, Plochl and Edelmann, 2007, and Yang et al, 2001). Fewer SUV-based driver models have 

been applied to closed-loop simulations for articulated heavy vehicles (AHVs), and these driver 

models use control schemes based on lateral position error and/or yaw error of the leading unit 

alone (Islam et al, 2012, MacAdam, 1980). These SUV-based driver models may not well mimic 

the driving performance characteristics of human drivers for AHVs and, in particular, Multi-

Trailer Articulated Heavy Vehicles (MTAHVs).  

The dynamics of MTAHVs differs significantly from that of SUVs. Due to MTAHVs’ multi-

unit configurations, large sizes, and high centers of gravity (CGs), these large vehicles show poor 

maneuverability and low lateral stability (Wang and He, 2016). MTAHVs exhibit unstable motion 

modes, e.g., jack-knifing and trailer swing, which could cause fatal accidents. MTAHVs may 

display an exaggerated lateral motions of the rearward units when executing evasive maneuvers 

(Winkler, 2001). The rearmost trailing unit is usually the first one to rollover and by the time the 

driver realizes what is occurring, it is generally too late for him/her to take corrective action. The 

maneuverability of MTAHVs may be well represented with the performance measure of path-

following off-tracking (PFOT), which is defined as the maximum radial offset between the path 

of the leading unit’s front axle center and that of the rearmost trailing unit’s rear axle center under 

a specified path-following maneuver; the lateral stability of MTAHVs could be effectively 

evaluated with the indicator of rearward amplification (RWA), which is specified as the ratio of 

the peak lateral acceleration at the rearmost trailing unit’s CG to that of the leading unit under an 

obstacle avoidance lane-change maneuver (Islam et al, 2012). Driving MTAHVs, which exhibit 

the above unique dynamic characteristics, may pose stringent requirements on the drivers in the 

aspects of training, experience and driving skills. For an AHV and, especially, a MTAHV, the 
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various motion state variables of the trailing units could affect the driving behavior of the driver. 

However, very few driver models have been reported in the literature to simulate the driving 

performance characteristics of drivers for AHVs and, in particular, MTAHVs, considering 

perception of motions of both leading and trailer units (MacAdam, 2003, Plochl and Edelmann, 

2007, and Yang et al, 2001).  

In 2001, Yang et al proposed a driver model for tractor/semitrailer combinations (Yang, 1999, 

Yang et al, 2001, and Yang et al, 2002). The driver model is featured with multi-loop structure, 

which incorporates the path preview, low and high frequency compensatory gains and time delays, 

and prediction of tractor lateral acceleration, articulation rate and the trailer sprung mass roll angle. 

The effect of the driver model parameters of reaction time, preview distance, and compensatory 

gain on the directional performance of the tractor/semitrailer combination was examined using 

closed-loop simulations under an obstacle avoidance maneuver. In 2007, Liu also proposed a 

driver model for tractor/semitrailer combinations, in which the steering angle is determined by the 

feedback of the tractor and trailer instantaneous states with a time delay (Liu, 2007). The feedback 

gains were derived by minimizing a predefined cost function, and sensitivity analysis on the 

feedback gains were carried out using numerical simulations. However, the tractor/semitrailer 

driver model does not differentiate the perceived motion states of the leading and trailing units. In 

reality, it may be difficult for a human driver to fully sense the trailer motions, as the driver’s 

perception is based mainly on the leading unit response rather than the trailer(s) (Palkovics and 

Fries, 2001). Articulation joint(s) and the tractor cab suspensions may isolate the human driver 

from trailing units’ motions. In 2012, Ding and He reported a driver model for tractor/semitrailer 

combinations in order to differentiate the perceived motion states of the leading and trailing units 

and examine the corresponding effect on the directional performance of the tractor/semitrailer 
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(Ding and He, 2012). Unfortunately, the driving performance characteristics of the driver model 

was not adequately investigated. In recent years, closed-loop simulation of MTAHVs has been 

applied to the design and development of active safety systems for MTAHVs (Ding et al, 2013). 

However, to the best of the authors’ knowledge, there is no any driver model dedicated to 

MTAHVs reported in the literature.    

This chapter proposes a unified driver model, which considers the dynamic characteristics of 

both SUVs and MUVs, and thus can be applied to closed-loop simulations of each type of vehicles 

by selecting appropriate parameter values of the driver model. The unified driver model is designed 

using a sliding mode control (SMC) technique. The SMC-based preview driver model 

distinguishes itself from conventional driver models with the following features: 1) by means of 

the SMC controller design, the ‘driver’ steering angle is determined considering the lateral position 

and yaw errors of all the leading and trailing units of MTAHVs; 2) a set of tunable parameters are 

specified to assign relative weights to the lateral position and yaw errors of the leading and trailing 

units, which differentiate the perceived motion states of the leading and trailing units; 3) the SMC-

based driver model is designed with two modes, namely, stability- and path-following-oriented, 

which may be used to simulate MTAHV drivers’ driving performance under a high-speed evasive 

and a low-speed path-following maneuver, respectively; and 4) the SMC-based preview driver 

model can simulate performance characteristics for drivers of both SUVs and MUVs, and this 

model turns into the MacAdam optimal preview driver model if a control parameter takes the value 

of infinity. Without loss of generality, the SMC-based preview driver model is derived based on a 

B-Train Double represented by a four degrees of freedom (DOF) linear yaw-plane model presented 

previously in Chapter 3. In order to examine the performance of the SMC-based preview driver 

model, closed-loop simulations under an evasive maneuver are conducted via the integration of 
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the driver model and the nonlinear EoM yaw-roll B-Train Double model developed in a multibody 

dynamic package, EoM (Minaker and Rieveley, 2010, Minaker and Rieveley, 2013) presented also 

in Chapter 3. The distinguished features of the SMC-based preview driver model are demonstrated 

via benchmark numerical simulations. 

5.2 Four DOF Linear Yaw-plane Model              

The four DOF linear yaw-plane model presented in Chapter 3 is applied to design the driver model. 

Removing the active input terms, the state-space representation of the yaw-plane model of the B-

Train Double is re-written as 

11p p p pδ= +x A x Cɺ                     (5.1) 

where [ ]1 1 2 2 3 3
T

p β ψ β ψ β ψ=x ɺ ɺ ɺ . In the SMC-based preview driver model to be designed in 

Subsection 5.3, the ‘driver’ steering angle will be determined by the errors of lateral position and 

yaw rate of each vehicle unit. Thus, the state-space equation of the yaw-plane model expressed in 

Equation (5.1) is reformulated as 

11d d d d

d d

δ= +


=

x A x B

y C x

ɺ
                         (5.2) 

where [ ]1 1 1 1 2 2 2 2 3 3 3 3
T

d Y v Y v Y vψ ψ ψ ψ ψ ψ=x ɺ ɺ ɺ  denotes the resulting state variable 

vector, [ ]1 2 3
T

Y Y Y=y represents the output vector, 1Y , 2Y and 3Y   are lateral position of the tractor 

front axle center, lateral position of the CG of the 1st semitrailer, and lateral position of the CG of 

the 2nd semitrailer, respectively. The matrices dA , dB  and dC  are provided in Appendix G. Note 

that 1Y , 2Y and 3Y  are measured in the inertial coordinate system, and they are determined as 

follows 
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5.3 SMC-Based Preview Driver Model 

As introduced previously, MTAHVs are featured with large sizes, multi-unit vehicle structures, 

and wide range of trailer payload variations. In closed-loop driver/vehicle system modelling, the 

aforementioned features of MTAHVs may introduce parametric uncertainties and frequently lead 

to un-modeled dynamics. It is reported that the main advantages of sliding mode control (SMC) 

systems are insensitivity to parameter variations, disturbance rejection, and simple design 

implementation (Young et al, 1999). A SMC-based driver model was proposed for SUVs 

(Menhour et al, 2010). In this section, a SMC technique is applied to the design of the unified 

driver model for SUVs and, in particular, for MTAHVs. In the design of the unified driver model, 

we consider the following two control schemes: 1) Leading Unit Path Tracking (LUPT), and 2) 

Delayed Leading Unit Lateral Previews (DLULP). In the LUPT scheme design, it is assumed that 

in order to track a given trajectory under an evasive maneuver, the steering angle of the front 

wheels of the leading vehicle unit is determined in such a way that the leading unit front axle center 

is forced to track the target trajectory based on the conventional lateral position preview control 

concept, while the CGs of the trailing units are tracking the path of the leading unit front axle 

center. The DLULP scheme is based on the idea that to track the given trajectory, the steering 

angle of the front wheels of the leading vehicle unit is determined by minimizing the combined 

lateral position errors of the leading and trailing units based on the conventional lateral preview 

control concept, and the previewed lateral position for the leading unit with the related time delay 

is used as the previewed lateral position for the respective trailing unit. The following subsections 
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introduce the representation of the desired trajectory and vehicle state variables as well as the 

design of the unified driver model with the LUPT and DLULP schemes.        

5.3.1 Desired Trajectory and Predicted Vehicle State Variables 

 

Figure 5.1 Geometry representation of the B-Train Double and desired trajectory 

As shown in Figure 5.1, the solid line represents a given desired trajectory in the X-O-Y inertial 

coordinate system. The desired trajectory determines the relation between the X and Y coordinates 

of a point of interest on the trajectory. The data of the trajectory may be pre-saved in a lookup 

table, which is a single-input-single-output system. To determine a target point on the trajectory, 

the input of the lookup table is the reading of the horizontal coordinate, ( )X t  and the output is the 

vertical coordinate, ( )Y t . Note that for the point ( ) ( )( ),X t Y t  on the trajectory, ( )Y t  is represented 

as ( )f t , which is treated as the previewed lateral position for the driver model. At time instant pt T+

, the horizontal coordinate of the tractor front axle center (TFAC) is determined as 

∫
+

−+=+
pTt

t
p dtvUtXTtX )()()( 11ψ                                                                                           (5.4) 
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As seen in Figure 5.1, with the horizontal coordinate of ( )pX t T+ , the vertical coordinate of the 

point on the desired trajectory is ( )pf t T+ . 

At time instant pt T+ ,  the output and state variables of the linear yaw-plane vehicle model can 

be predicted based on the state variables at time instant t , ( )d tx , using direct numerical integration 

of the equation of motions expressed in Equation (5.2) (Ogata, 2010), assumed that the steering 

angle is constant in the time interval ( ), pt t T+ . Note that PT  is the preview interval. The states at 

time instants 
pt T+ , 

1pt T τ+ − and 
2pt T τ+ −  are predicted as 

11
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transition matrix and transition vector, respectively, and I is the identity matrix, 1τ  and 2τ  

represent the time required for the CG of the 1st and the 2nd trailer to travel at the speed of U from 

their current positions to the corresponding location of the tractor front axle center. The time delays 

 and  can be approximately calculated as  









++++
=

++
=

U

lllla
U

lla

cccc

cc

3222111
2

2111
1

τ

τ
                                                                                                    (5.6) 

With Equation (5.5), based on the state variables ( )d tx  and steering angle ( )11 tδ  at time instant t

(determined by Equation (5.2)), the position of the TFAC at time instant 
pt T+  can be predicted.   

1τ 2τ
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5.3.2 LUPT Driver Model 

In the design of the driver model based on the LUPT scheme, it is assumed that at time instant of 

�, the predicted lateral positions of the tractor front axle center, the 1st trailer CG, and the 2nd trailer 

CG, i.e., ( )1 pY t T+ , ( )2 pY t T+  and ( )3 pY t T+  should follow the previewed lateral position for the 

tractor, the delayed lateral position of the TFAC for the 1st trailer CG, and the delayed lateral 

position of the TFAC for the 2nd trailer CG, i.e., ( )pf t T+ , ( )1 1pY t T τ+ − and ( )1 2pY t T τ+ − , 

respectively. If the lateral position tracking errors for the tractor front axle center, the 1st trailer 

CG, and the 2nd trailer CG are denoted as 1e , 2Le  and 3Le , respectively, they can be specified as 








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−+−+=
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)()(
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TtYTtYe

TtYTtYe
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                                                                                                (5.7) 

Considering the interrelation of individual lateral position tracking errors for the three vehicle 

units, we define a combined lateral position tracking error as 

LL ekekee 22211 ++=                          (5.8)                                                                                                           

where 1k and 2k  are constants. The sliding surface S in the state space is defined as  

LS e eκ= +ɺ                                                                                                                                (5.9) 

where Lκ is a positive constant, which is an important driver model parameter that governs the 

convergence rate of the sliding surface.  In order to make the combined tracking error e  and its 

derivative eɺ  vanish exponentially, the necessary condition is to steer the �  variable to zero 

(Slotine, 1984), that is      

0Le eκ+ =ɺ                                                                                                                                 (5.10) 

Combining Equations (5.2), (5.5), (5.7), (5.8) and (5.10), taking into account the features of 

matrix B , i.e., all elements are zeros for rows 1, 5, and 9, and assuming that the steering angle is 

constant in the time interval ( ), pt t T+ , lead to the steering angle as 

[ ]
Den

ttTttTttTtTtfTtf
t

ppppLp )(),(),(),()()(
)( 23121

11

xΦWΦWΦW ττκ
δ

−++−+++−+++
=
ɺ

      (5.11) 
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where ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 21,: 5,: 9,: 1,: 2,: 3,:d d d L d L d L dk k k kκ κ κ= + + + + +W A A A C C C , 

( ) ( )2 1 1,: 1,:d L dk κ= − +  W A C , ( ) ( )3 2 1,: 1,:d L dk κ= − +  W A C , 

( ) ( ) ( )1 2 1 3 2, , ,p p pDen t T t t T t t T tτ τ= + + + − + + −W K W K W K . Note that ( ),:d iA  and ( ),:d iC  represent 

the thi  row of matrices dA  and dC , respectively. 

Considering Equation (5.11) and the delay effect of human driver, we can describe the closed-

loop system with the LUPT driver model and a vehicle model in terms of the block diagram shown 

in Figure 5.2. In the closed-loop system, the vehicle dynamics may be simulated with different 

vehicle models. In this research, the twenty-nine DOF nonlinear EoM yaw-roll model is used to 

mimic the dynamic of the B-Train Double. As seen in Figure 5.2, the LUPT driver model includes 

the following parameters: preview time pT , time lag dτ , control gain Lκ , and the constants 1k and

2 .k  

 

Figure 5.2 Block diagram of the closed-loop system with the LUPT driver and vehicle models 

5.3.3 DLULP Driver Model 

In the design of the driver model based on the DLULP scheme, it is assumed that at time instant 

of �, the predicted lateral positions of the tractor front axle center, the 1st trailer CG, and the 2nd 

trailer CG, i.e., ���� � ��	, �
�� � ��	, and ���� � ��	, should follow the previewed lateral position for 
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the tractor front axle center, the delayed preview of the lateral position of the TFAC for the 1st 

trailer CG, and the delayed preview of the lateral position of the TFAC for the 2nd trailer CG, i.e., 

��� � ��	, ��� � �� − ��	, and ��� � �� − �
	, respectively. As seen in Figure 5.1, if the lateral position 

tracking errors for the tractor front axle center, the 1st trailer CG, and the 2nd trailer CG are denoted 

as ��, �
� and ���, respectively, they are specified as 
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                                                                                            (5.12) 

Considering the interrelation of individual lateral position tracking errors for the three vehicle 

units, we define a combined lateral position tracking error as 

DD ekekee 32211 ++=                                                                                                                  (5.13) 

where �� and �
 are constants. The sliding surface � in the state space is defined as  

� = �� � ���                                                                                                                             (5.14) 

where ��  is a positive constant, which is an important driver model parameter that governs the 

convergence rate of the sliding surface.  In order to make the combined tracking error � and its 

derivative �� vanish exponentially, the necessary condition is to steer the � variable to zero, that is      

�� � ��� = 0                                                                                                                           (5.15) 

Combining Equations (5.2), (5.5), (5.12), (5.13) and (5.15), taking into account the features 

of matrix B , and assuming that the steering angle is constant in the time interval ( ), pt t T+ , leads to 

the steering angle as 

1 1 2 2 1 1 2 2 1
11

1

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( )
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( , )

D p p p p p p p
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f t T k f t T k f t T f t T k f t T k f t T t T t t
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κ τ τ τ τ
δ

 + + + − + + − + + + + − + + − − + =
+

WΦ x

WK

ɺ ɺ ɺ
    (5.16) 

where ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 21,: 5,: 9,: 1,: 2,: 3,:d d d D d D d D dk k k kκ κ κ= + + + + +W A A A C C C .  
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Considering Equation (5.16) and the delay effect of human driver, we can describe the closed-

loop system with the DLULP driver model and a vehicle model in terms of the block diagram 

shown in Figure 5.3. In the closed-loop system, the vehicle dynamics may also be simulated with 

different vehicle models. In this research, the ten DOF nonlinear yaw-roll model is used to mimic 

the dynamics of the B-Train Double. As seen in Figure 5.3, the DLULP driver model includes the 

following parameters: preview time pT , time lag dτ , control gain Dκ , and the constants 1k and 2k . 

 

Figure 5.3 Block diagram of the closed-loop system with the DLULP driver and vehicle models 

5.4 Driver Model Validation 

To compare the proposed LUPT and DLULP driver models with that by MacAdam (MacAdam, 

1980, MacAdam, 1981), we will examine and evaluate the closed-loop simulation results of the 

B-Train Double based on the twenty-nine DOF nonlinear EoM yaw-roll vehicle model and each 

of these driver models under a single lane-change (SLC) maneuver. The specified SLC trajectory 

similar to that reported in (MacAdam, 1981) is shown in Figure 5.4. Under the simulated SLC 

maneuver, the vehicle forward speed maintains constant at 88 km/h, and the corresponding driver 

model makes the TFAC follow the predefined trajectory (shown in Figure 5.4) as close as possible. 

The MacAdam driver model was designed considering only the lateral position tracking error of a 
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Single-Unit Vehicle or a leading vehicle unit of an articulated vehicle. In order to make the 

simulation results based on the MacAdam driver model comparable with those derived from the 

proposed driver models, the following prerequisites are made: 1) in the case of Single-Unit 

Vehicles (SUVs), Equation (5.1) represents a linear SUV model (e.g., bicycle model), and �� and 

�
 in both Equations (5.11) and (5.16) should take the value of zero, since there exists no trailing 

vehicle unit in SUVs; 2) in the case of the B-Train Double, only the state variables of the tractor 

are available for all the driver models, and similarly �� and �
 in both Equations (5.11) and (5.16) 

should take the value of zero, since no state variables of the trailing units are available for the 

LUPT and DLULP driver models. Note that for the second prerequisite aforementioned, with �� 

and �
  taking the value of zero, the LUPT and DLULP driver models will reduce to a same 

simplified driver model, in which the tractor front-wheel steering angle is determined by the state 

variables of the tractor only. For the purpose of simplicity, we call the simplified driver model as 

TO (tractor only) driver model. In the following subsections, we will compare the TO and the 

MacAdam driver models. Then, the validated TO driver model will be served as a reference to 

assess the performance of the LUPT and DLULP driver models.                  

 

Figure 5.4 Specified trajectory of the SLC maneuver 
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5.4.1 Comparison of the TO and MacAdam Driver Models 

5.4.1.1 Analytical Formulation of the TO Driver Model 

For the purpose of simplicity, we will derive the analytical formulation of the TO driver model 

based on the LUPT driver model. As shown in Equation (5.11), with the second prerequisite 

aforementioned, the following conditions are true: 1 0k = , 2 0k = , ( ) ( )1 1,: 1,:d dκ= +W A C , 2 0=W  and

3 0=W . Subject to the above conditions, Equation (5.11) reduces to  

( )
[ ]

( )
[ ]11

(1,:) ( , ) ( ) ( )(1,:) ( , ) ( ) ( )
( )

(1,:) (1,:) ( , ) (1,:) (1,:) ( , )

d p d pL d p d p

d L d p d L d p

t T t t f t Tt T t t f t T
t

t T t t T t

κ
δ

κ κ

+ − ++ − +
= − −

+ + + +

A Φ xC Φ x

A C K A C K

ɺ
        (5.17) 

where the lateral position error and the lateral position error rate are 

1 1 1

1 1 1

( ) ( ) ( ) (1,:) ( ) ( ) ( )

( ) ( ) ( ) (1,:) ( ) ( ) ( )
p p d p d p d p

p p d p d p d p

e t T Y t T Y t T t T t f t T

e t T Y t T Y t T t T t f t T

+ = + − + = + − +
 + = + − + = + − +

C Φ x

A Φ x ɺɺ ɺɺ
                                          (5.18) 

where ���� � ��	 and ����� � ��	 are the predicted and desired (or previewed) lateral positions of the 

TFAC at time instant � � �� as shown in Figure 5.1. Essentially, the TO driver model defined in 

Equation (5.17) is a proportional-derivative controller with the proportional and derivative gains 

given as 

[ ]

[ ]
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1
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d
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 = −

+ +

A C K

A C K

                                                                                    (5.19) 

Considering the first equation on Equation (5.3) and assuming that a desired particle is moving 

along the given trajectory shown in Figure 5.1 at the speed of �� , we can rewrite the second 

equation of Equation (5.18) as 

)()()()()()()( 111111111 dpppdpp UavTtfTtYTtYTtYTte ψψψ −++=+−+=+−+=+ ɺɺɺɺɺɺ               (5.20) 
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where �� � ���� represents the lateral velocity of the tractor front axle center, �� the yaw angle 

of the tractor, and �� is the angle swept from the X axis of the inertial coordinate shown in Figure 

5.1 to the velocity of the desired particle, which reaches the point on the trajectory with the 

horizontal coordinate of ��� � ��	. It is desired that the TFAC can behave as the desired particle, 

moving along the trajectory at the speed of ��. Therefore, the term �� − �� can be treated as the 

tractor yaw angle error. It is expected that if the vehicle forward speed �� or � is large, the rate of 

change of the lateral position of the TFAC will be proportional to the tractor yaw angle error.   

When the control gain �� approaches infinity, Equation (5.17) becomes 

11

(1,:) ( , ) ( ) ( )
( )

(1,:) ( , )L

d p p

d p

t T t t f t T
t

t T tκ
δ

→∞

+ − +
= −

+

C Φ x

C K
                                                                    (5.21)  

which is exactly the same as Equation (10) reported in (MacAdam, 1980). A comparison of 

Equations (5.17) and (5.21) indicates that with the above second prerequisite, the MacAdam model 

is a special case of the TO driver model, and the former only considers the lateral position error of 

the tractor front axle center, while the latter takes into account both the lateral position error and 

the tractor yaw angle error.     

Similarly, with the aforementioned first prerequisite, in the case of SUVs, Equation (5.11) 

also reduces to Equation (5.17). With the first prerequisite and the control gain �� approaching 

infinity, Equation (5.17) will further reduces to Equation (5.21). This implies that in the case of 

SUVs, the MacAdam model is also a special case of the LUPT driver model. Note that with the 

first and second prerequisites, based on the LUPT driver model, the TO model and the MacAdam 

model are formulated. Similarly, with the first and second prerequisites, based on the DLULP 

driver model, the TO model and the MacAdam model can also be formulated.   
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In the case of Single-Unit Vehicles, the applications of the LUPT driver model have already 

been demonstrated via the closed-loop simulation results based on the driver model and an eight 

DOF model for a sport utility vehicle (Zhu and He, 2016). This paper focuses on examining the 

applicability and performance of the proposed LUPT and DLULP driver models for closed-loop 

simulations of Multi-Unit Vehicles.     

5.4.1.2 Simulation Results based on the TO and MacAdam Driver Models 

This subsection compares the TO and MacAdam driver models by means of examining the closed-

loop simulation results of the B-Train Double under the SLC maneuver with the parameters of 

preview time (��	, time lag ���	, and control gain ���	 taking the values of 1.0 s, 0.1 s, and 10, 

respectively. Figure 5.5 shows the simulation result in terms of TFAC trajectory, time histories of 

lateral accelerations at the vehicle unit CGs, time histories of yaw rates of the vehicle units, and 

time history of tractor front-wheel steering angle. 

Closed-loop simulation results shown in Figure 5.5 indicate that the TO and MacAdam driver 

models achieve an excellent agreement in the directional performance of the B-Train Double under 

the SLC maneuver. A close observation of Figure 5.5 reveals that compared with the result based 

on the MacAdam model, the TO driver model uses less steering effort (i.e., smaller peak steering 

angle of the tractor front-wheel) ‘driving’ the virtual B-Train Double to complete the SLC 

maneuver with approximately the same level of path-following off-tracking, but with less peak 

values of lateral acceleration and yaw rate of the vehicle units. The directional performance 

improvement is attributed to the tractor yaw angle tracking error control considered in the TO 

driver model. This observation is consistent with the finding reported in (Ungoren and Peng, 2005).   
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(a)  

 

(c) 

 
(b) 

 
(d) 

Figure 5.5 Simulation results of the B-Train Double based on the TO and MacAdam driver 
models under the SLC maneuver: (a) desired trajectory and TFAC path, (b) lateral accelerations 

at vehicle unit CGs, (c) yaw rates of vehicle units, and (d) tractor front-wheel steering angle 

In practical operations of MTAHVs, various uncertainties, e.g., trailer payload variation, may 

arise. It is required that the driver adaptively drive the MTAHV under varied operating conditions. 

Thus, a reliable driver model should mimic this driving characteristic of a human driver. In this 

research, the robust driving performance of the TO driver model is evaluated in terms of the 

variation of trailer payloads and the change of trailer CG longitudinal positions. As listed in 

Appendix B, the uncertain masses and the CG longitudinal positions of the 1st and 2nd trailers are 

modeled as 
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                                                                                                                      (5.22) 

where �� 
= ��!

= �" 
= �"!

= 50%. Note that the notation of the above parameters is provided in 

Appendix A. In the simulation, each of the four parameter in Equation (5.22) varies from its 

nominal value up to relative error of 50%.  

To compare the driving performance robustnesses of the TO and MacAdam driver models, 

Figure 5.6(i) shows the corresponding time histories of lateral position of the TFAC for 100 

randomly selected uncertain cases from the variation range defined above, and Figure 5.6(ii) 

illustrates the respective time histories of the standard deviations of the 100 uncertain cases. A 

comparison of the results based on the TO and MacAdam driver models indicates that the former 

exhibits more robust control of the B-Train Double under the SLC maneuver than the latter.     

 
(i) 

 
(ii) 

Figure 5.6 (i) Time histories of lateral position of the TFAC for 100 uncertain cases based on: (a) 
TO driver model, and (b) MacAdam driver model; (ii) time histories of the standard deviations of 

100 uncertain cases based on the TO and MacAdam driver models 

Considering the aforementioned second prerequisite and reviewing Figure 5.2, we deduce that 

three parameters, i.e. preview time (��	, time lag ���	, and control gain ���	, may impose effects on 

the performance of the TO driver model. In the case of closed-loop simulation for SUVs, the effects 
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of the parameters of �� and �� of the proposed driver model has been studied and reported in (Zhu 

and He, 2016). Simulation results indicate that the driver model parameters, ��  and �� , can be 

adjusted to manipulate the trade-off between path-following and stability of the vehicle 

(MacAdam, 2003, Ogata, 2010). In the rest of the subsection, the effect of  �� is examined. 

As shown in Equation (5.17), ��  may be viewed as a weighting factor, which imposes a 

relative weight between the tractor lateral position tracking error control and the tractor yaw angle 

tracking error control. A larger �� assigns a heavier weight on the tractor lateral position tracking 

error control. It is expected that with the increase of the value of ��, the TO driver model becomes 

closer to that by MacAdam, and once �� approaches infinity, the two models will be identical. On 

the other hand, a smaller �� puts a heavier weight on the tractor yaw angle tracking error control. 

Figure 5.7 shows the simulation result for the tractor of the B-Train Double under the SLC 

maneuver with the parameter of �� for the TO driver model taking the values of 1.0, 10.0 and 

100.0. For the purpose of comparison, the corresponding simulation result based on the MacAdam 

driver model is also provided in Figure 5.7. Note that for the simulation results illustrated in Figure 

5.7, the parameters of ��  and ��  for the two driver models take the value of 1.0 s and 0.1 s, 

respectively. 

As shown in Figure 5.7, with the decrease of the value of ��, the over-shoot of the trajectory 

of the TFAC becomes smaller, the peak values of the tractor yaw rate and lateral acceleration 

reduce, and the required driver steering effort drops. The simulation results illustrated in Figure 

5.7 match the above expectation that with the increase of the value of ��, the TO driver model 

becomes closer to that by MacAdam, and once �� approaches infinity, the two models will be 

identical. Compared with the MacAdam driver model, the tractor yaw rate tracking error control 
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introduced in the TO driver model makes the directional control of the driver/vehicle combination 

more stable and more efficient. Numerical simulation results also indicate that with a given value 

of �� for the TO driver model, as the vehicle forward speed ��	 increases, the effect of tractor yaw 

angle tracking error control becomes more obvious. This observation is consistent with the 

analytical analysis based on Equation (5.20). 

  

  
Figure 5.7 Dynamic responses of the tractor of the B-Train Double with the TO or MacAdam 
driver model  under the SLC maneuver: (a) trajectory of the tractor front axle center, (b) time 

history of tractor front-wheel steering angle, (c) time history of lateral acceleration of the tractor 
CG, and (d) time history of tractor yaw rate 

5.4.2 Comparison of the LUPT and DLULP Driver Models 

In Section 5.4.1, the TO driver model is compared against the MacAdam driver model in both 

analytical and numerical analyses. In the following subsections, the TO driver model serves as a 
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baseline to evaluate the performance of the LUPT and DLULP driver models when the tracking 

errors of trailing unit(s) are considered. 

5.4.2.1 Simulation Results based on the TO, LUPT and DLULP Driver Models  

As shown in Equation (5.8) and (5.13) for the LUPT and DLULP driver model, respectively, the 

absolute values of �� and �
 may be viewed as the weighting factor for the lateral position tracking 

error of the 1st and 2nd trailer, respectively. If the absolute value for both �� and �
 is 1.0, this 

implies that for either the LUPT or the DLULP driver model, the lateral position tracking errors 

for all vehicle units are treated equally in determining the tractor front-wheel steering angle. As 

introduced in Section 5.1, it may be difficult for a human driver to fully sense the trailer motions, 

as the driver’s perception is based mainly on the leading unit response rather than the trailer(s). 

Articulation joint(s) and the tractor cab suspensions may isolate the human driver from trailing 

units’ motions. Thus, it may be reasonable to impose a constraint on the assigned values for the 

parameters as |��| < 1.0 and |�
| < 1.0. Closed-loop simulation based on the yaw-roll vehicle model 

of the B-Train Double and either the LUPT or the DLULP driver model indicates that to ensure 

acceptable directional performance of the vehicle, both �� and �
 should take negative values. Note 

that for the purpose of simplicity, hereafter the TO, LUPT and DLULP driver models are called as 

TO, L and D mode of the SMC-based driver model, respectively. 

Considering the aforementioned factors about the parameters of �� and �
, we assume that 

for both the L and D modes, �� = −0.6 and �
 = −0.3. With the above assigned values for �� 

and �
 as well as �� = 1+,  �� = 0.1+, and �� = �� = 10, either the L or the D mode can be 

combined with the yaw-roll model of the B-Train Double for closed-loop simulation under the 

SLC maneuver. Figure 5.8 shows the simulation results based on both the L and D modes. For the 

purpose of comparison, the simulation result based on the TO mode is also provided in the figure. 
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A close observation of Figure 5.8 discloses that compared the TO mode, the L mode makes the B-

Train Double more stable with less steering effort under the SLC maneuver. In comparison with 

the TO mode, the D mode makes the B-Train Double achieve better path-following performance, 

especially, in terms of removing the trajectory overshoots of the vehicle units. For the purpose of 

comparing the TO, L and D modes, Table 5.1 lists performance measures of the B-Train Double 

with each of the driver modes under the simulated SLC maneuver. As shown in Table 5.1, among 

the three modes, the D mode achieves the lowest overshoot of the trajectory of each vehicle unit, 

while the L mode makes each vehicle unit have the smallest average peak lateral acceleration and 

yaw rate. 

Table 5.1 Performance measures of the B-Train Double with the TO/DLULP/LUPT driver model 
under the SLC maneuver ( 1 20.6, 0.3, 1 , 0.1 , 10p d L Dk k T s sτ κ κ= − = − = = = = )   

 TO DLULP LUPT  
 
 
 
 
 

Peak values 

����", − ��	  (m)/overshoot 0.135 0.016 0.164 

��
�", − ��	  (m)/overshoot 0.182 0.016 0.204 

����", − ��	  (m)/overshoot 0.222 0.022 0.238 

�-.��",
*   (g) 0.165 0.164 0.157 

�-.
�"/
*   (g) 0.158 0.155 0.151 

�-.��",
*   (g) 0.160 0.155 0.152 

 ��
��",

*   (deg/s) 4.591 4.832 4.339 

��

�",

*    (deg/s) 4.292 4.337 4.067 

��
��",

*   (deg/s) 4.167 4.136 3.956 

Steering angle time 
integration ∫

t

dtt
0 11 )(δ  **  ( )deg s⋅  

2.997 2.779 2.893 

*The average of the absolute upper and lower peak values of the curve of lateral acceleration or yaw rate of a vehicle 
unit, which may be used as a stability indicator for the B-Train Double.  
**The total area enclosed by the tractor front-wheel steering angle curve (absolute value) and the time axis may be 
viewed as an indicator for driver steering effort (Wang and He, 2015). 

Based on the simulation results shown in Figure 5.8 and Table 5.1, with respect to the TO 

mode, the L and D mode may be viewed as the stability- and path-following-oriented driver model, 

respectively. In the following subsection, these two modes are further examined. 
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Figure 5.8 Dynamic responses of the virtual B-Train Double with the TO/DLULP/LUPT driver 
model under the SLC maneuver: (a) trajectory of the vehicle units, LUPT, (b) trajectory of the 
vehicle units, TO, (c) trajectory of the vehicle units, DLULP, (d) time history of tractor front-
wheel steering angle, (e) time histories of lateral acceleration at vehicle unit CGs, and (f) time 

histories of yaw rate of vehicle units 
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5.4.2.2 Performance Analysis for the D and L Modes 

As shown in Equation (5.7) and (5.12), the main difference between the D and L mode is that the 

target lateral positions of the trailing units for the D mode are the delayed lateral positions of the 

desired trajectory, while the target lateral positions of the trailing units for the L mode are the 

delayed lateral positions of the leading unit. For a closed-loop vehicle directional performance test 

under a SLC maneuver, the optimal case is that the vehicle unit(s) is viewed as a massless particle 

moving along the predefined trajectory at a given constant speed (Wang and He, 2016). With the 

optimal case in mind, for the D mode, the leading unit tracks the motion of the particle, and the 

trailing units the delayed motions of the particle; similarly, for the L mode, the leading unit tracks 

the motion of the particle, and the trailing units the delayed motions of the leading unit.  

Figure 5.9 shows the time histories of vehicle unit lateral positions and tracking errors of the 

B-Train Double with either the D or L mode under the SLC maneuver. In the case of the D mode, 

disregarding the time delays, the time histories of the lateral position tracking error of the three 

vehicle units show minor differences, as seen in Figure 5.9(b), 5.9(d) and 5.9(f). Accordingly, as 

shown in Figure 5.9(a), 5.9(c) and 5.9(e), the time histories of the lateral position of the vehicle 

units have no overshoot and they look the same except for the time delays. In the case of the L 

mode, the lateral position tracking errors for the trailing units are smaller (compared against the 

counterparts for the D mode, as shown in Figure 5.9(d) and 5.9(e)). These smaller tracking errors 

are relative to the respectively delayed lateral position of the tractor, which shows the same level 

of tracking error as its counterpart for the D mode, as illustrated in Figure 5.9(b). As shown in 

Figure 5.9(a), 5.9(c) and 5.9(e), in the case of the L mode, the time history of the lateral position 

of the tractor shows an overshoot, and those of the 1st and 2nd trailers exhibit even larger overshoots 
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compared against the respectively delayed lateral position of the tractor. Thus, between the D and 

L modes, the former may achieve better path-following performance. 

  

  

  

Figure 5.9 Time histories of vehicle unit lateral positions and tracking errors of the B-Train 
Double with either the D or L mode under the SLC maneuver: (a) TFAC lateral position, (b) 

TFAC lateral position tracking error, (c) 1st trailer CG lateral position, (d) 1st trailer CG lateral 
position tracking error, (e) 2nd trailer CG lateral position, and (f) 2nd trailer CG lateral position 

tracking error 
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Figure 5.10 shows the time histories of vehicle unit yaw rates and lateral position rate tracking 

errors of the B-Train Double with either the D or L mode under the SLC maneuver. As shown in 

Equation (5.20), if the second term on the right-hand side of the equation is dominant, the lateral 

position rate of the TFAC is proportional to the yaw angle tracking error, i.e., the angle made 

between the tractor heading and the tangent line at the target point on the desired trajectory. 

Considering the aforementioned optimal case of a closed-loop vehicle directional performance test 

under a SLC maneuver, in the case of the D mode, we make the moving directions of the leading 

and trailing units align with those of the moving particle and delayed moving particles on the 

desired trajectory. Similarly, in the case of the L mode, the moving direction of the tractor is 

required to track that of the moving particle on the desired trajectory, while the moving directions 

of the trailers follow those with respective time delays of the tractor. Compared with the L mode, 

the steering control of the D mode is more aggressive. As shown in Figure 5.10(b), 5.10(d) and 

5.10(f), the time histories of the tractor lateral position rate tracking errors for the D and L modes 

are close, while tracking errors of the trailers for the D mode are much larger than those for the L 

mode. The simulation results in vehicle unit position tracking errors are consistent with the above 

steering control scheme analysis for the two modes. As shown in Figure 5.10(a), 5.10(c) and 

5.10(f), compared with the D mode, the conservative steering control of the L mode make the B-

Train Double more stable with less peak yaw rate values. Numerical experiments conducted in the 

research further indicate that to ensure the stability and convergence of the steering control, the 

maximum absolute values of  �� and �
 of the D mode should be constrained below 0.7 for the 

closed-loop simulation for the B-Train Double, whereas for the L mode, the maximum absolute 

values of the two parameters may be as high as 1.0.      
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Figure 5.10 Time histories of vehicle unit yaw rates and lateral position rate tracking errors of 
the B-Train Double with either the D or L mode under the SLC maneuver: (a) tractor yaw rate, 

(b) TFAC lateral position rate tracking error, (c) 1st trailer yaw rate, (d) 1st trailer CG lateral 
position rate tracking error, (e) 2nd trailer yaw rate, and (f) 2nd trailer CG lateral position rate 

tracking error 
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5.4.2.3 Effects of Trailing Unit Motion Controls on the L Mode Performance 

To examine the impact of trailing unit tracking error controls on the SMC-based driver model 

performance, we take the L mode as an example to conduct numerical analysis. To this end, Table 

5.2 defines four cases with different value combination of �� and �
, while other model parameters 

take the following values: �� = 1+, �� = 0.1+, and �� = 10. In the case of L0 defined in Table 

5.2, both �� and �
 take the value of 0.0, and only the tractor tracking errors are considered in 

determining the TFAC steering angle. Thus, the L0 case corresponds to the TO mode. In the cases 

of L1, L2 and L3, we consider the tracking errors of both the tractor and 1st trailer, both the tractor 

and 2nd trailer, and all the vehicle units, respectively. Note that the values of the model parameters 

are offered in Table 5.2. With the given set of parameter value shown in Table 5.2, the case of L3 

is the same as the L mode studied in Subsections 5.4.2.1 and 5.4.2.2. In order to conduct benchmark 

investigation of the above cases, we conduct closed-loop simulation of the yaw-roll model of the 

B-Train Double with each of the above mode cases under the SLC maneuver.    

For the purpose of the benchmark investigation, we define the L0 case or the TO mode as the 

baseline case. Table 5.3 lists the relative errors of the case concerned with respect to the L0 case 

in terms of the average peak values of lateral acceleration at the tractor CG, 1st trailer CG and 2nd 

trailer CG, the average peak values of yaw rate of the tractor, 1st trailer CG and 2nd trailer CG, as 

well as the time integration of the tractor front-wheel steering angle. As shown in Table 5.3, in the 

case of L3, the average peak value of lateral acceleration and yaw rate of each vehicle unit of the 

B-Train Double may be reduced by approximately 5% and with 3.4% less steering effort with 

respect to the baseline values. A close observation of the results shown in Table 5.3 discloses the 

following findings: 1) introducing the lateral position and yaw angle tracking errors of individual 

trailer contributes to the stability improvement of the B-Train Double with less steering effort; and 
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2) introducing the lateral position and yaw angle tracking errors of both trailer units further 

enhances the stability of the MTAHV with even less steering effort.      

Table 5.2 Definition of the cases for the L mode with different vehicle unit tracking error controls 
( 1 , 0.1 , 10p d LT s s andτ κ= = =  ) 

 L0 L1 L2 L3 
Parameters �� = 0, �
 = 0 �� = −0.6, �
 = 0 �� = 0, �
 = −0.3   �� = −0.6, �
 = −0.3 

 

Table 5.3 Effects of trailing unit tracking error controls on the L mode performance 

 1ya
* 

2ya
* 

3ya
* 

1ψɺ * 
2ψɺ * 

3ψɺ * 
11δ ** 

L1 2.63% 2.56% 2.44% 3.28% 2.89% 2.69% 1.20% 
L2 2.52% 2.56% 2.51% 2.28% 2.46% 2.49% 2.65% 
L3 4.85% 4.43% 5.00% 5.49% 5.24% 5.06% 3.40% 

*The relative error is defined as the ratio of the difference between the average peak values of the L0 case and the 
given case to the average peak value of the L0 case. 
**The relative error is defined as the ratio of the difference between the steering angle (absolute value) time integrations 
of the L0 case and the given case to the steering angle (absolute value) time integration of the L0 case. 

 

5.5 Conclusions 

This chapter proposes a unified lateral preview driver model for closed-loop dynamic simulation 

of road vehicles. In order to design the proposed driver model, a four DOF yaw-plane model for a 

B-Train Double is applied. The driver model is derived using a sliding mode control technique. To 

examine the SMC-based driver model, it is integrated with a ten DOF yaw-roll model of the B-

Train Double for closed-loop simulation under a single lane-change maneuver.  

The SMC-based driver model is validated with the MacAdam optimal preview driver model 

via both analytical formulation analysis and numerical simulation. Compared with the MacAdam 

driver model, the proposed one is more flexible to mimic driving performance of a driver under 

varied operating conditions, e.g., varied vehicle payload, and to simulate a wider range of driver’s 

driving skills by manipulating the relative weight between lateral position and yaw tracking error 

controls. The SMC-based driver model considers the dynamics features of both Single-Unit 
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Vehicles and Multi-Unit Vehicles, and thus can be applied to closed-loop simulations of both types 

of vehicle by selecting appropriate parameter values of the driver model. Given the unique 

dynamic characteristics of MTAHVs, the SMC-based driver model is designed with two modes, 

namely, stability- and path-following-oriented. The stability- and path-following-oriented mode 

may be used to simulate MTAHV drivers’ driving performance under a high-speed evasive and a 

low-speed path-following maneuver, respectively. Tunable parameters are specified to assign 

relative weights to the lateral and yaw errors of the leading and trailing units, which differentiate 

the perceived motions states of the leading and trailing units. Introducing trailing units’ lateral 

position and yaw tracking error controls into the proposed driver model contributes to the 

directional performance improvement of MTAHVs. Numerical simulation demonstrates the 

applicability and effectiveness of the proposed driver model.   

The parameters of the SMC-based driver model are tuned using the trial and error method. 

Optimization algorithms will be applied to facilitate the finely tuning of the model parameters. The 

sliding surface design and the stability and convergence of the proposed driver model will be 

further improved and explored. 
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Chapter 6 Coordinated Control of Active Safety Systems for 

Multi-trailer Articulated Heavy Vehicles 

6.1 Introduction 

The past decade has witnessed the coordinated control in single unit vehicle dynamics. He et al 

(2006) proposed an integrated control strategy to improve handling and stability, considering 

active front steering (AFS), and vehicle stability control (VSC). The AFS controller was designed 

to improve the steerability under low to medium range lateral acceleration operation; and the VSC 

controller was formulated on the driveline or braking to stabilize the vehicle under high lateral 

acceleration operation. The AFS and VSC were coordinated using a rule-based integration scheme.  

Wang and Longoria (2006) investigated a hierarchical coordination of generalized force/moment 

actuation. A high level controller is formulated to calculate the virtual force. A weighted pseudo-

inverse allocation algorithm distributed the virtual force to longitudinal and lateral slips. Tavasoli 

and Naraghi (2013) presented an integrated VSC scheme in a multistage design approach. A high 

level controller integrated the steering and braking controllers using the phase-plane method. The 

control objectives were allocated to steering and braking through solving a minimization problem. 

Alberding et al (2014) solved a rollover prevention using control allocation by treating the rollover 

prevention as a constraint in a yaw stabilising differential braking controller. The constraint 

eliminated the need for a stabilising roll controller and reserved the control authority to the yaw 

stabilising controller. Binder and Khajepour (2014) coordinated the roll, pitch and vertical 

dynamics using active and semi-active suspensions. The high level controller calculated the 

generalized vertical force, pitch and roll moments, each with a nonlinear controller for a single 
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dynamics. The generalized force/moments were allocated to suspensions using the quadratic 

programming.  

The aforementioned coordinated control systems were designed for single unit vehicles. To the 

best knowledge of the author, there is no allocation-based coordinated control scheme for 

MTAHVs yet. In the allocation-based coordinated control framework, a single unit vehicle is 

commonly modeled with a chassis model and a tire model (Binder and Khajepour, 2014 and 

Schofield et al, 2006). The chassis model describes the vehicle dynamics and the tire model defines 

the tire force generation through the tire-road contact patch. The generalized (virtual) 

force/moment enters the chassis model in a decoupled manner, i.e., each force/moment only affects 

specific dynamics of the vehicle. A high level controller consists of several controllers, designed 

for individual dynamics, each described as a single-input-single-output (SISO) system. The 

generalized forces/moments are distributed to the actuators/effectors using an allocator. The entire 

process can be conducted in a hierarchical, multilevel, and modular approach. The aforementioned 

works, in addition to the incorporation of vehicle dynamics control and rollover mitigation 

(Schofield and Hagglund, 2008), and the control allocation for actuator coordination in heavy 

vehicles (Tagesson et al, 2009) fall into this category.  

Multi-trailer articulated heavy vehicles (MTAHVs) demonstrate poor high-speed stability, 

which may induce trailer swing, jackknifing and roll-over. Low maneuverability may cause high-

speed off-tracking. The stability or maneuverability of a MTAHV may be improved by using 

ASSs, such as ATS, TDB, and ARC.  

Improving the stability or maneuverability of a B-train double using the linear quadratic 

regulator (LQR) based ASSs has been investigated extensively (Islam, 2013 and He et al, 2016). 

Unfortunately, their work hasn’t adequately addressed the applicability, contribution and 
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coordination of individual ASSs. In fact, there is no ASS capable of solving all problems of 

MTAHVs; and the ATS, TDB and ARC may have to coexist. Simple combination of ASSs without 

coordination may cause interference and degrade overall performance of the MTAHV. The 

interferences among ASSs could be a safety critical issue (Alberding et al, 2014) 

In this research, the coordination of ATS, TDB, and ARC for MTAHVs is considered. A 

MTAHV has multiple units. The method of coordinated control for single unit vehicles cannot be 

directly applied to the MTAHVs due to: 1) the MTAHV model is more complex with more 

generalized forces/moments, 2) the generalized forces/moments enter the model in a coupled 

manner, 3) one generalized force/moment affects more than one aspect of MTAHV dynamics, and 

4) the SISO control systems designed for single unit vehicles are not applicable on the MTAHVs. 

This research conducts the coordinated control of ASSs for MTAHVs in three modules: 1) the 

control module; 2) the allocation module; and 3) the realization module. The control module is a 

direct yaw/roll moment LQR controller. The moment controller is built on a simplified MTAHV 

model, taking inputs of yaw/roll moments of the vehicle units. The generalized lateral force is 

made zero, and the longitudinal dynamics is considered exclusively with a longitudinal driver 

model. The control module is optimized to achieve an optimal trade-off of high-speed 

maneuverability, lateral, and roll stability.  

The allocation module is a task scheduler which allocates the direct moments to individual 

effectors/actuators, i.e., the roll moment to the ARC actuator and the yaw moment to the ATS and 

TDB actuators. A side-slip angle based allocation algorithm is developed for the yaw moment 

allocation in a way that the capability of the ATS is consumed up to its linear limit, before utilizing 

the TDB. The TDB is restricted to extreme operating conditions in order to minimize its adverse 

impact on the longitudinal dynamics.  
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The realization module contains the ARC, ATS and TDB actuators. The ARC realizes the roll 

moment, and the ATS and TDB share the yaw moment in a way that the ASSs generate pure 

moments with zero lateral and vertical forces. 

6.2 Coordinated Control Design 

The coordinated controller of the ASSs of the MTAHV is formulated in three modules: the control 

module, the allocation module, and the realization module. The individual modules are designed 

independently, i.e., modification of one without affecting others. 

6.2.1 Control Module 

The control module is designed using the linear yaw-roll model in Equation (3.25) in Chapter 3, 

removing the ‘disturbance’, rewritten as  

,= + = +x Ax Bu y Cx Duɺ            (6.1) 

where 2 3 1 1 2 3

T

z z x f x r x xM M M M M M =  u , [ ]1 2 3
T

t=x x x x x  with 1 1 1 1 1φ φ β ψ =  x ɺɺ  , 

2 2 2 2 2φ φ β ψ =  x ɺɺ  , 3 3 3 3 3φ φ β ψ =  x ɺɺ  , 2 2 3 31 1t tt t t t tφ φ φ φ φ φ =  x ɺ ɺ ɺ , and 

1 2 3 1 1 2 2 3 3

T

y y y t t ta a a φ φ φ φ φ φ =  y . The linear quadratic regulator technique (LQR) 

(Ogata, 2010) is used to stabilize the yaw and roll dynamics for desired performance. A 

performance index is formulated as 

0
( )T TJ dt

∞
= +∫ y Qy u Ru            (6.2) 

where [ ]( )1 2 3 4 5 6 7 8 9diag q q q q q q q q q=Q  and [ ]( )1 2 3 4 5 6diag r r r r r r=R  are 

positive-definite symmetric matrices, intended to weight the lateral accelerations of the vehicle 

units, roll angles of the sprung and unsprung masses, and the direct moment control commands. 

With the control law = −u Kx , Equation (6.2) is written as 
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( )
0

2T T T T T TJ dt
∞
 = + + + ∫ x C QC K D QDK K RK C QDK x       (6.3) 

The feedback gain matrix K can be obtained by minimizing the performance index J  with respect 

to K by solving a minimization problem with the aid of Matlab software. The design parameters of 

the control module consist of the weighting factors as 

[ ]1 2 3 4 5 6 7 8 9 1 2 3 4 5 6rP q q q q q q q q q r r r r r r=      (6.4) 

6.2.2 Allocation Module 

The allocation module distributes the direct moments to individual actuators. Specifically, the 

allocation module distributes the roll moments to the ARC actuators, the yaw moments to the ATS 

and TDB actuators. The capability of the ATS is first consumed up to its linear limit, before 

applying the TDB to restrain its adverse effect on the longitudinal dynamics. The yaw moments 

are allocated as follows.  

 

Figure 6.1 Trailer lateral tire forces with respect to corresponding side-slip angles 

(The normal load of the each dual-tire of the 1st and 2nd semitrailer is 29395N and 17824 N, 
respectively) 
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The linear range side-slip angle thresholds are obtained from the ‘experimental’ data. Figure 

6.1 shows the trailer lateral tire forces (dual tires are treated as single tires) with respect to the side-

slip angle, assuming equal normal loads distribution in a tridem group. Within 0-10 deg side-slip 

angle range, the tires demonstrate approximately linear characteristics. Considering the load 

transfers, a safety margin of 20% is given, and an 8 deg or 0.14 rad is chosen as the side-slip angle 

threshold, i.e., 

4. 6. 7. 9. 0.14thr thr thr thr radα α α α= = = =         (6.5) 

Table 6.1 Yaw moment allocation using nonlinear programming 

Initialize: 

( )4 0 0δ = , ( )6 0 0δ = , ( )7 0 0δ = , ( )9 0 0δ =  

Compute: 

For 1,2,k = ⋯ , ( ) ( ) ( )24
40 2 2

b
k k k

U
α ψ β= −ɺ , ( ) ( ) ( )26

60 2 2
b

k k k
U

α ψ β= −ɺ , ( ) ( ) ( )37
70 3 3

b
k k k

U
α ψ β= −ɺ , 

( ) ( ) ( )39
90 3 3

b
k k k

U
α ψ β= −ɺ , ( ) ( )

( )
2

4
4 44 cos 1

z

x

M k
k

C d k
δ

δ
= −

−
, ( ) ( )

( )
2

6
6 64 cos 1

z

x

M k
k

C d k
δ

δ
=

−
, 

( ) ( )
( )

3
7

7 74 cos 1
z

x

M k
k

C d k
δ

δ
= −

−
, ( ) ( )

( )
3

9
9 94 cos 1

z

x

M k
k

C d k
δ

δ
=

−
, ( ) ( ) ( )4 4 40k k kα δ α= + ,    

( ) ( ) ( )6 6 60k k kα δ α= + , ( ) ( ) ( )7 7 70k k kα δ α= + , ( ) ( ) ( )9 9 90k k kα δ α= +  

Update: 

( )
( ) ( ) ( )
( ) ( ) ( )

4 4. 4 4 4.
4

4 4 4. 4 4.

thr thr

thr thr

k k for k
k

k k for k

δ α α α α
δ

δ α α α α

 + − − < −   = 
− − >   

, ( )
( ) ( ) ( )
( ) ( ) ( )

6 6. 6 6 6.
6

6 6 6. 6 6.

thr thr

thr thr

k k for k
k

k k for k

δ α α α α
δ

δ α α α α

 + − − < −   = 
− − >   

 

( ) ( ) ( ) ( ) ( )2. 4 4 4 6 6 62 cos 1 2 cos 1z ATS x xM k k C d k k C d kδ δ δ δ= − − −       , ( ) ( ) ( )2. 2 2.z TDB z z ATSM k M k M k= − ,

( )
( ) ( ) ( )
( ) ( ) ( )

7 7. 7 7 7.
7

7 7 7. 7 7.

thr thr

thr thr

k k for k
k

k k for k

δ α α α α
δ

δ α α α α

 + − − < −   = 
− − >   

, ( )
( ) ( ) ( )
( ) ( ) ( )

9 9. 9.
9

9 9 9. 9 9.

9 9thr thr

thr thr

k k for k
k

k k for k

δ α α α α
δ

δ α α α α

 + − − < −   = 
− − >   

 

( ) ( ) ( ) ( ) ( )3. 7 7 7 9 9 92 cos 1 2 cos 1z ATS x xM k k C d k k C d kδ δ δ δ= − − −       , ( ) ( ) ( )3. 3 3.z TDB z z ATSM k M k M k= −  

The passive side-slip angles (without active steering) of the tires on the axles 4, 6, 7, and 9 are 

denoted as 40α , 60α , 70α , and 90α , and calculated using Equation (3.35), respectively. The side-slip 

angle based yaw moment allocation algorithm using nonlinear programming is listed in Table 6.1. 
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To ensure overall zero lateral force generation by steering, the wheels on axle 5 and axle 8 are un-

steered, and the wheels on axles 4 and 6 and on axles 7 and 9 are steered oppositely. 

6.2.3 Realization Module 

The realization module contains the ARC, ATS and TDB actuators. In the ARC actuator, the roll 

moments are realized as action/reaction roll moment pairs between the sprung and unsprung 

masses of the vehicle units. In the ATS, the yaw moments are realized by using steering angles, 

assuming linear lateral tire models, for the thk ( 1,2,k = ⋯ ) sampling step, as 

( )
( )
( )

( ) ( )
( )
( )

( ) ( )
( )

( ) ( ) ( )
( )

2. 2.
4 5 6

4 4 6 6

3. 3.
7 8 9

7 7 9 9

, 0,
2 cos 1 2 cos 1

, 1,2,

, 0,
2 cos 1 2 cos 1

z ATS z ATS

x x

z ATS z ATS

x x

M k M k
k k k

C d k C d k
for k

M k M k
k k k

C d k C d k

δ δ δ
δ δ

δ δ δ
δ δ

= − = =
− −      

=

= − = =
− −      

⋯   (6.6) 

The lateral forces of the trailer front and rear tires are determined as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

6 264 24
4 4 4 2 2 6 6 6 2 2

7 37 9 39
7 7 7 3 3 9 9 9 3 3

,
2 2

,
2 2

yw l yw r yw l yw r

yw l yw r yw l yw r

C bC b
F k F k k k k F k F k k k k

U U

C b C b
F k F k k k k F k F k k k k

U U

δ ψ β δ ψ β

δ ψ β δ ψ β

   = = − − + = = − − +      


    = = − − + = = − − +       

ɺ ɺ

ɺ ɺ

 (6.7) 

In the TDB, the yaw moments are realized iteratively. With the allocated yaw moments 

(leftovers by the ATS), the brake pressures are first determined. Then the longitudinal forces of 

the trailer front and rear wheels are derived and compared with the available longitudinal forces 

governed by the friction ellipse (Schofield et al, 2006, Wong, 2008, and Alberding, et al, 2014), 

and modified accordingly. With the modified longitudinal forces, the brake pressures are re-

calculated. The yaw moments are generated as follows, with the steering in Equation (6.6),  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
2. 4 4 4 4 4 4 5 5

2
6 6 6 6 6 6

cos sin
2 2

cos sin
2

TDB xw l xw r x xw l xw r xw l xw r

xw l xw r x xw l xw r

d d
M k F F k d F F k F F

d
F F k d F F k

δ δ

δ δ

= − + + + −

+ − − +

   (6.8a) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3
3. 7 7 7 7 7 7 8 8

3
9 9 9 9 9 9

cos sin
2 2

cos sin
2

TDB xw l xw r x xw l xw r xw l xw r

xw l xw r x xw l xw r

d d
M k F F k d F F k F F

d
F F k d F F k

δ δ

δ δ

= − + + + −

+ − − +

   (6.8b) 

Considering the fast wheel spinning dynamics (Chung and Yi, 2006), the torque balance of the 

wheels on the semitrailers is determined as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

4 4 4 4 5 5

5 5 6 6 6 6

7 7 7 7 8 8

8 8 9

0, 0, 0,

0, 0, 0,

0, 0, 0,

0,

b l w xw l b r w xw r b l w xw l

b r w xw r b l w xw l b r w xw r

b l w xw l b r w xw r b l w xw l

b r w xw r b l w

K P k r F k K P k r F k K P k r F k

K P k r F k K P k r F k K P k r F k

K P k r F k K P k r F k K P k r F k

K P k r F k K P k r

− − = − − = − − =

− − = − − = − − =

− − = − − = − − =

− − = − − ( ) ( ) ( )9 9 90, 0xw l b r w xw rF k K P k r F k






 = − − =

   (6.9) 

Substituting Equation (6.9) into (6.8) gives 

( ) ( ) ( )

( ) ( )

2 2
2. 4 4 4 4 4 4 5 5

2
6 6 6 6 6 6

cos sin
2 2

cos sin
2

b x b b
TDB r l l r r l

w w w

b x b
r l l r

w w

K d K Kd d
M P P P P P P

r r r

K d Kd
P P P P

r r

δ δ

δ δ

= − − + + −

+ − + +

     (6.10a) 

( ) ( ) ( )

( ) ( )

3 3
3. 7 7 7 7 7 7 8 8

3
9 9 9 9 9 9

cos sin
2 2

cos sin
2

b x b b
TDB r l l r r l

w w w

b x b
r l l r

w w

d K d K d K
M P P P P P P

r r r

d K d K
P P P P

r r

δ δ

δ δ

= − − + + −

+ − + +

     (6.10b) 

Assuming 4 5 6l l l IIlP P P P= = = , 4 5 6r r r IIrP P P P= = = , 7 8 9l l l IIIlP P P P= = = , 7 8 9r r r IIIrP P P P= = = , and 

considering 4 6δ δ≈ −   , 7 9δ δ≈ − , Equation (6.10) is rewritten as 

( )( ) ( )2
2. 4 4

2
cos 0.5 sinb x b

TDB IIr IIl IIl IIr
w w

d K d K
M P P P P

r r
δ δ= − + − +       (6.11a) 

( )( ) ( )3
3. 7 7

2
cos 0.5 sinb x b

TDB IIIr IIIl IIIl IIIr
w w

d K d K
M P P P P

r r
δ δ= − + − +       (6.11b) 

The brake pressures can be determined from the yaw moments as 

( )
2.

2.
2 4 4

0, , 0
cos 0.5 2 sin

w TDB
IIl IIr TDB

b x

r M
P P for M

K d dδ δ
= = >

 + − 
      (6.12a) 

( )
2.

2.
2 4 4

, 0, 0
cos 0.5 2 sin

w TDB
IIl IIr TDB

x b

r M
P P for M

d d Kδ δ
= − = <

 + + 
       (6.12b) 
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( )
3.

3.
3 7 7

0, , 0
cos 0.5 2 sin

w TDB
IIIl IIIr TDB

b x

r M
P P for M

K d dδ δ
= = >

 + − 
      (6.12c) 

( )
3.

3.
3 7 7

, 0, 0
cos 0.5 2 sin

w TDB
IIIl IIIr TDB

x b

r M
P P for M

d d Kδ δ
= − = <

 + + 
      (6.12d) 

The longitudinal forces of the trailer front and rear wheels are determined as 

2 2

4 6
4 6

4 .m 6 .m

min , 1 , min , 1
yw l yw lb b

xw l IIl zwIIl xw l IIl zwIIl
w yw l ax w yw l ax

F FK K
F P F F P F

r F r F
µ µ

         = − = −                  

  (6.13a) 

2 2

4 6
4 6

4 .m 6 .m

min , 1 , min , 1
yw r yw rb b

xw r IIr zwIIr xw r IIr zwIIr
w yw r ax w yw r ax

F FK K
F P F F P F

r F r F
µ µ

         = − = −                  

  (6.13b) 

2 2

7 9
7 9

7 .m 9 .m

min , 1 , min , 1
yw l yw lb b

xw l IIIl zwIIIl xw l IIIl zwIIIl
w yw l ax w yw l ax

F FK K
F P F F P F

r F r F
µ µ

         = − = −                  

  (6.13c) 

2 2

7 9
7 9

7 .m 9 .m

min , 1 , min , 1
yw r yw rb b

xw r IIIr zwIIIr xw r IIIr zwIIIr
w yw r ax w yw r ax

F FK K
F P F F P F

r F r F
µ µ

         = − = −                  

  (6.13d) 

where µ  is the friction coefficient of the tire/road contact patch taking a value of 0.85;

4 5 6zwIIl z l z l z lF F F F= = = , 4 5 6zwIIr z r z r z rF F F F= = = , 7 8 9zwIIIl z l z l z lF F F F= = = and 7 8 9zwIIIr z r z r z rF F F F= = =

are tire normal loads and given in Equation (3.42); and 4 .myw l axF , 4 .myw r axF , 6 .myw l axF , 6 .myw r axF ,

7 .myw l axF , 7 .myw r axF , 9 .myw l axF  and 9 .myw r axF  are the maximum lateral tire forces calculated using the 

magic formula in Equation (3.10). We substitute Equation (6.13) into Equation (6.8) to recalculate 

the final brake pressures in Equation (6.12) which obey the friction ellipse of the lateral and 

longitudinal tire forces (Schofield et al, 2006, Wong, 2008, and Alberding, et al, 2014).   

6.3 Coordinated Control Optimization 

The coordinated ATS, TDB, and ARC are optimized to achieve optimal trade-off of the high-speed 

maneuverability and stability. The high-speed maneuverability and stability can be described using 

the rearward amplification (RA) ratio in yaw and roll dynamics. The RA ratio close to 1.0 
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represents an ideal trade-off of maneuverability and stability. The coordinated control of the ATS, 

TDB and ARC are optimized to achieve optimal trade-off performance of maneuverability, lateral 

and roll dynamics. 

6.3.1 Test Maneuvers 

A standard test maneuver (Preston-Thomas and E-Gindy, 1995, ISO-14791, 2000, and MacAdam 

and Hagan, 2002) is used to excite RA response. The desired trajectory followed by the tractor 

front axle center is generated using  

( )
1_

2
2 sin 2

2

y axa X X
Y f f

U Uf
π π

π

  = −   
  

         (6.14) 

where 1_y axa  denotes the amplitude of the single cycle sine wave lateral acceleration input 

(SCSLA), f  the frequency, U  the forward speed, and X , Y  the longitudinal and lateral position, 

respectively.   

The SMC-based lateral preview driver model is used to ‘drive’ the virtual vehicle. The design 

variables of the driver model, together with those of the control module, form the design variable 

vector of the closed-loop coordinated control system as 

1 2 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6p dX T k k q q q q q q q q q r r r r r rτ κ =      (6.15) 

6.3.2 Optimization Process 

For a parallel computing system consisting of n  workers, there are n i⋅  ( i  is an integer) 

populations represented by n i⋅  sets of the design variables ( )1 2, , , n iX X X ⋅⋯  in each generation of 

the genetic algorithm (GA). Each worker is assigned with one computing task by receiving a design 

variable set. With the variable set, the driver model and the coordinated control system can be 

formulated, and integrated with the nonlinear EoM yaw-roll B-train double model. A closed-loop 
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SCSLA maneuver specified in Equation (6.14) is conducted. Upon completion of the simulation, 

a fitness value is calculated based on the lateral accelerations and roll angles of the active and 

baseline MTAHV using the CDG technique (Islam, 2013 and He et al, 2016). The fitness value is 

sent back to the optimizer (the GA). Up receiving all fitness values of the generation, a best value 

is obtained. The optimizer makes decision based on the termination criterion: 1) the optimization 

process terminates if the process is converged or the maximum generation has been reached, 2) 

otherwise a set of n i⋅  population ( )1 2, , , n iX X X ⋅⋯  are re-generated and assigned to n  workers, and 

the optimization process continues.  

6.4 Simulation Results 

To evaluate the applicability, effectiveness, contribution and coordination of the individual ASSs, 

the MTAHV with the coordinated control system ‘driven’ by the SMC-based preview driver model 

is studied under low and high lateral acceleration SCSLA maneuvers with the desired trajectories 

defined in Figure 6.2. The coordinated ATS, TDB and ARC are compared with the individual ATS 

and TDB systems. 

Figure 6.2 Desired trajectory of the tractor front axle center under: (a) a low-g SCSLA maneuver 
( 1_ 0.1y axa = g, 0.4f = Hz, and 1 120U = km/h), and (b) a high-g ( 1_ 0.3y axa = g, 0.4f = Hz, and 

1 120U = km/h) SCSLA maneuver (based on Equation (6.14)) 
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6.4.1 MTAHV with Pure ATS or TDB 

Figure 6.3(a) shows lateral accelerations and Figure 6.3(b) the trailers front and rear wheels side-

slip angles of the MTAHV with the ATS under the low-g SCSLA maneuver ( 1_ 0.1y axa = g, 0.4f =

Hz, and 1 120U = km/h). The ATS has achieved excelled directional performance at the cost of 

excessive tire side-slip angles, which are larger than the threshold values, exciting the nonlinear 

tire dynamics. The excessive side-slip angles may be caused: 1) the ATS takes over the full amount 

of yaw moments required, and 2) only two of the three axles in a tridem group are steered. The 

ATS is effective only under low level lateral acceleration operations.  

  

Figure 6.3 Responses of the MTAHV with ATS: (a) lateral acceleration of the vehicle units, (b) 
side-slip angles of the front and rear wheels of the 1st and 2nd semitrailer 
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acceleration operations. As shown in Figure 6.6, compared with the low lateral operation case, the 

brake torques consumed under the high lateral operation are increased. The impact of the brake 

torques will be investigated with the coordinated control cases in next section. The TDB are 

effective to stabilize the MTAHV in low and high lateral acceleration operations.  

  

Figure 6.4 Responses of the MTAHV with the ATS under the high lateral acceleration SCSLA 
maneuver: (a) lateral acceleration, and (b) steering angle of trailer front and rear wheels 

  

Figure 6.5 Lateral accelerations of the MTAHV with the TDB under the low and high lateral 
acceleration SCSLA maneuvers: (a) 1_ 0.1y axa = g, and (b) 1_ 0.3y axa = g 
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Figure 6.6 Brake torques of the trailer left and right wheels of the MTAHV with the TDB under 
the low and high lateral acceleration maneuvers: (a) 1_ 0.1y axa = g, and (b) 1_ 0.3y axa = g 

6.4.2 MTAHV with Coordinated ATS, TDB and ARC 

Figure 6.7(a) shows the side-slip angles of the trailer front, middle and rear tires, and Figure 6.7(b) 
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Figure 6.7 Trailer dynamic responses under the low lateral acceleration SCSLA maneuver: (a) 
side-slip angle, and (b) steering angle 

Figure 6.8(a) shows the allocation of the yaw moments between the ATS and TDB actuators 

under the low lateral acceleration SCSLA maneuver. The side-slip angle threshold sets a boundary, 

within which the yaw moments are ascribed to the ATS and outside of which allocated to the TDB. 

The summation of the ATS and TDB portions makes up the total yaw moments, showing a 

seamless transition from one actuator to the other. Comparing the zones enclosed by the black 

curves and red curves with the time axis declares that the ATS is the main player under the low-g 
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semitrailers, realizing the yaw moments 3.z TDBM (red curves in Figure 6.8(a)). The ATS takes over 
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The coordinated ATS, TDB and ARC have improved the roll dynamics significantly, especially, 

on the tractor unit. 

  

Figure 6.8 Under the low-g maneuver: (a) yaw moment allocation, and (b) Brake torques of the 
trailer front and rear wheels 

  

Figure 6.9 Roll angle responses under the low-g SCSLA maneuver: (a) MTAHV integrated with 
ATS and TDB with/without ARC, and (b) baseline MTAHV 
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Figure 6.10 Lateral accelerations under the low-g SCSLA maneuver: (a) baseline MTAHV and 
MTAHV with coordinated ATS, TDB and ARC, and (b) MTAHV coordinated with ATS and 

TDB with/without ARC 
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TDB under the high-g maneuver. With the proposed coordinated control strategy, the adverse 

impact of the TDB has been greatly reduced. 

  

Figure 6.11 Longitudinal speeds of the MTAHV with the TDB and the coordinated control under 
the low- and high-g maneuvers 
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of 0.05g, with a much larger raising slope than that of the ATS. When the amplitude is 0.2g or 

larger, the TDB becomes dominant over the ATS.    

  

Figure 6.12 Yaw moment (absolute value) time integration allocation in terms of the lateral 
acceleration amplitude of the SCSLA maneuver: (a) 1st semitrailer, and (b) 2nd semitrailer 

Figure 6.13 shows the yaw moment (absolute value) time integration ratios of the ATS and 

TDB of the 1st and 2nd semitrailers. The ATS ratios decrease and the TDB ratios increase with the 

increase of the lateral acceleration amplitudes for both semitrailers. At a given lateral acceleration 

amplitude, the yaw moment (absolute value) time integration ratio for the ATS or TDB is 

calculated with the corresponding allocated yaw moment (absolute value) time integration divided 

by the total yaw moment (absolute value) time integration.   

  

Figure 6.13 Yaw moment time integration ratios with respect to the lateral acceleration 
amplitude of the SCSLA maneuver 
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6.5 Summary 

This chapter presents a coordinated control strategy for active safety systems of multi-trailer 

articulated heavy vehicles. Three vehicle models of a B-train double, namely, the linear yaw-plane 

model, linear yaw-roll model, and the nonlinear EoM yaw-roll model are formulated. A sliding 

mode control based lateral preview driver model ‘drives’ the virtual MTAHV. A high level direct 

moment controller based on the linear yaw-roll model determines the virtual moments to stabilize 

the yaw and roll dynamics. A side-slip angle based allocation algorithm distributes the roll 

moments to the ARC actuators, and the yaw moments to the ATS and the TDB actuators, achieving 

a seamless transition from one actuator to the other. The allocated moments are realized with the 

ARC, ATS and TDB actuators. The coordinated control system is optimized using the parallel 

genetic algorithm to achieve an optimal trade-off performance of high-speed maneuverability, 

lateral and roll stability. 

Simulation results show that the ATS is effective but not sufficient in stabilizing the yaw 

dynamics of the MTAHV in low to medium lateral acceleration range, and fails to stabilize the 

vehicle at high lateral acceleration operation. The TDB is effective and sufficient to stabilize the 

vehicle yaw dynamics at low to high lateral acceleration operations. The coordinated ATS and 

TDB improves the lateral dynamics significantly at low to high lateral acceleration operations. 

Compared with the TDB, the impact of the coordinated ATS and TDB is much less on the 

longitudinal dynamics. The coordinated ATS and TDB affect the roll dynamics significantly. The 

ARC has minor improvement on the lateral dynamics and is essential to improve the roll dynamics.   
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Chapter 7 On Robust Controllers for Active Steering 

Systems of Articulated Heavy Vehicles 

7.1 Introduction 

Active steering systems (ASSs) have been investigated to improve maneuverability (Rangavajhula 

and Tsao, 2008 and Cheng et al, 2011), enhance lateral stability (Islam et al, 2012, Kharrazi et al, 

2012, Ding et al, 2013), and achieve a better trade-off between the aforementioned conflicting 

measures (He and Islam, 2012) of AHVs. The majority of studies in this field is built on the LQR 

technique (Maciejowski, 1989) without adequate consideration of the controller robustness. 

The AHVs with ASSs usually experience uncertainties, e.g., the variations of the forward speed, 

road adhesion coefficient, trailer payload (Wang and Tomizuka, 2000), road roughness, wind 

gusts, and the braking/accelerating forces (Yin et al, 2010). The deterministically determined 

optimal solutions may be meaningless (Palkovics and El-Gindy, 1996 and Busch and Bestle, 

2014). In the reality, an ASS should be designed with an acceptable level of robustness under 

various operating conditions.  

The H∞ technique has become a powerful tool in handling robustness issue since its invention 

in the 1980s (Doyle, 1985 and Doyle, 1987). The H∞ technique treats the model uncertainties, un-

modeled dynamics, and the exogenous disturbances in a systematic manner (Skogestad and 

Postlethwaite, 2001). It has received recognition and still is a hot topic in the single unit vehicle 

dynamics (Gao et al, 1995, Yin et al, 2010 and Doumiati et al, 2013), AHV lateral stability 

(Palkovics et al, 1994) and the automated lane guidance (Wang and Tomizuka, 2000). Compared 
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to the single unit vehicle dynamic control, the ASS controllers based on the H∞ technique for 

AHVs, have not received enough consideration.  

Besides the H∞ technique, the sliding mode control (SMC) technique also demonstrates good 

robustness and invariant properties (Utkin et al, 1999). Since its origination in the former Soviet 

Union in 1930s (Utkin et al, 1999) and spread to the western world with a historic review paper 

(Utkin, 1977), the SMC technique has received wide recognition in multiple engineering fields 

(Habibi and Richards, 1992, Lin et al, 2002, Fernandes and Alcalde, 2007), and applications in the 

automotive engineering (Mao and Lu, 2008) and the AHV dynamics (Oreh et al, 2014).  

The lateral dynamics of AHVs, and the rearward amplification (RA) in particular, demonstrates 

the frequency-dependent property (Aurell and Winkler, 1995). The majority of studies on the 

lateral dynamics of AHVs (Palkovics and El-Gindy, 1996, Miege and Cebon, 2005, Cheng and 

Cebon, 2008, He et al, 2010, Islam et al, 2012, Huang et al, 2012, Ding et al, 2012) focus on the 

performance measures evaluated mainly in the time-domain. However, as pointed out by Aurell 

and Winkler (1995), the time-domain performance measures of the RA provide only composite 

information under a specific maneuver; for the complete RA information of an AHV in a frequency 

range of interest, the frequency-domain measures are preferred.  

To address this issue, Zhu and He (2015) proposed a novel automated frequency response 

measurement method (AFRM) for acquiring the frequency domain RA measures for AHVs. With 

the AFRM, a repetitive frequency measurement using the sine waves of various frequencies and 

amplitudes is assigned to a computer in a way that the signal generation, model simulation, and 

the frequency response measurement can be conducted in the real-time and on-line manners. Most 

importantly, the AFRM makes the frequency-domain optimization of AHV dynamics achievable.       

This chapter intends to examine the robustness of different ASS controllers. The steering 
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angles of the tractor rear wheels and the semitrailer wheels are manipulated to improve the 

directional performance of the tractor/semitrailer combination. To this end, a three degrees of 

freedom (DOF) linear yaw-plane tractor/semitrailer model is applied to design the controllers 

using the SMC and MS techniques; a three DOF nonlinear yaw plane model is utilized to devise 

the controller based on the nonlinear sliding mode control (NSMC) method; the performances of 

the controllers are assessed using the co-simulations in the time- and frequency-domain through 

the integration of the controllers designed in the Matlab/Simulink and a nonlinear 

tractor/semitrailer model developed in TruckSim. The performance measure of the 

tractor/semitrailer with the active steering system in the frequency-domain is acquired using the 

AFRM and the controllers are optimized using a genetic algorithm (GA) in a way that the rearward 

amplification (RA) ratio remains in the vicinity of 1.0 for an optimal trade-off between the high-

speed maneuverability and stability in a frequency range of interest. The controllers are also 

evaluated using simulations in the time-domain at low and high lateral accelerations operations. In 

the case of simulations in the time-domain, a robustness index is defined to quantify the robustness 

in terms of the performance measure of the AHV with different active steering controllers.  

Subsection 7.2 describes the active steering controllers designed in the Matlab/Simulink 

software using the SMC, NSMC and MS techniques. The active steering controllers designed in 

the Matlab/Simulink and the nonlinear tractor/semitrailer model developed in TruckSim are 

integrated for co-simulation. Subsection 7.3 examines the robustness of the active steering 

controllers based on the SMC, NSMC, MS and LQR techniques by analyzing the simulation results 

in the time- and the frequency-domain. Finally, conclusions are drawn in Subsection 7.4. 
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7.2. Active Steering Controllers Design 

To improve the high-speed maneuverability and lateral stability of the tractor/semitrailer 

combination, the following performance measures are minimized: 1) the state variables of the yaw-

plane models; 2) the lateral accelerations of the tractor and semitrailer; and 3) the difference 

between the rearward amplification ratio and the value of 1.0. The first two requirements are for 

enhancing the high-speed stability and the third one for the trade-off between the high-speed 

maneuverability and the lateral stability. Three robust controllers, namely, the SMC, NSMC and 

the MS, are designed to achieve robust performance measures of the maneuverability and stability 

subject to parameter uncertainties and un-modeled dynamics. The LQR-based active steering 

controller similar to the one reported in (He and Islam, 2012) is also devised as a baseline design 

for the benchmark study. The tractor front wheel steering angle input is treated as and exogenous 

disturbance; and the active steering angles of the tractor rear wheels and the semitrailer wheels are 

treated as control variables. 

7.2.1 Controller based on the Sliding Mode Control Technique 

The first robust controller is designed using the sliding mode control (SMC) technique (Utkin et 

al, 1999). Removing the exogenous disturbance term of driver, the linear yaw-plane model of the 

tractor/semitrailer combination expressed previously in Chapter 3 is rewritten as 

= +x Ax Buɺ               (7.1) 
 

where [ ]2 3
Tδ δ=u denotes the control variable vector, and [ ]1 1

Tψ ψ β ψ= ∆ ∆x ɺ ɺ the state 

variable vector. The system is time-invariant, and the pair ( ),A B  is controllable, and ( )rank m=B

( dim( )m = u ). To fulfill the control design, the state equation should be so arranged that matrix B  

can be partitioned as 1 2

T
T T =  B B B with ( )2rank m=B , which requires rearranging the state variable 
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vector as [ ]1 1
Tψ ψ ψ β= ∆ ∆x ɺ ɺ . After the rearrangement (the re-arranged state equation is still 

represented with the pair ( ,A B ) for brevity), a transformation matrix can be formed on the 

partitioned input matrices as 

 

          (7.2) 

 

The transformations are made as 1

2

 
= 

 

x
Tx

x
, 11 12 1

21 22

− 
= 

 

A A
TAT

A A
, 

m m×

 
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 

0
TB

I
 and the system 

expressed in Equation (7.1) is transformed into the regular form (Utkin et al, 1999) as 

         (7.3) 

The 1st subsystem in Equation (7.3) can be stabilized by using the pole placement technique (Nise, 

2011) to determine a feedback law 2 0 1= −x K x . Thus, a sliding surface can be obtained for the 

original system as 

[ ] 1
0 m m

−
×= =s K I T x Gx            (7.4) 

A control law that continuously minimizes the Lyapunov function candidate  can be 

obtained (Utkin et al, 1999) as 

( ) ( )signα δ= − +u x s                                        (7.5) 

where α and δ are positive design parameters, 
1

n

ii
x

=
=∑x (where dim( )n = x ), and 

( ) ( ) ( )1 msign sign s sign s =  s ⋯ . The sign function Equation (7.5) can be replaced with a saturation 
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function ( )
1
, 1,2, ,

sgn(s ) 1
i i T

i
i i T

s s
sat s i m

s

ε
ε

 <
= =

≥
⋯ to eliminate chattering with 0Tε > denoting the 

boundary thickness.  

7.2.2 Controller based on the Nonlinear Sliding Mode Control Technique 

The nonlinear sliding mode control (NSMC) technique presented by Slotine and Li (1991) is a 

nonlinear model based controller. The NSMC controller designed in this section is based on a yaw-

plane model with the lateral tire forces realized using nonlinear lookup tables. The three DOF 

nonlinear yaw plane model of the tractor/semitrailer combination presented in Chapter 3 is applied 

to design the so-called NSMC controller. The state equation of the nonlinear yaw-plane model is 

decomposed into  

( ) ( ) 1nl nd nc Ft t F= + +x A x B B uɺ             (7.6) 

where ( ):,1nd nl=B B (1st column of nlB ) is the disturbance input matrix, ( ):, 2 : 3nc nl=B B  (2nd and 3rd 

columns of nlB ) the control input matrix, and [ ]2 3
T

F F F=u the control vector,  the lateral tire 

forces of the tractor front wheels 1F , tractor rear wheels 2F  and the semitrailer wheels 3F , are 

calculated, the same as Equation (3.10), as 

( ){ }( )sin arctan arctan , 1, 2,3i i i i i i i i i iF D C B E B B iα α α= − − =       (7.7) 

where , , ,i i iB C D and iE are the magic formula (Pacejka, 2005) parameters tuned to match the 

responses of the nonlinear yaw-plane model with those of the TruckSim model. Dropping out the 

disturbance term, the state space equation for the NSMC controller design is given as  

( ) ( )nl nc Ft t= +x A x B uɺ                                                                                             (7.8) 
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The SMC controller is designed using the same method presented in Section 7.2.1 to determine 

the lateral forces generated by the tractor rear wheels and the semitrailer wheels as 

( ) ( )F F F Fsignα δ= − +u x s                                       (7.9) 

where Fα and Fδ  are positive design variables and Fs the sliding surface built similarly to that in 

Equation (7.4). Since the lateral tire forces are calculated by using the magic formula in Equation 

(7.7), i.e., given a side-slip angle, the lateral tire force can be determined. On the other hand, to 

realize the lateral tire force demanded by the SMC controller, a side-slip angle is derived in an 

inversed magic formula, which can be achieved using a look-up table based on the tuned magic 

formula. 

 

Figure 7.1 Schematic representation of the TruckSim model with the NSMC Controller 

The side-slip angles derived from the look-up tables fulfill the ‘extra’ portion of the side-slip 

angle of tires from active steering in the kinematical relationships (Zhu and He, 2015) as 
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The total side-slip angles are contributed from: 1) the state variables, and 2) the active steering 

angles. Removing the state-contributed portion from the side-slip angles, the required active 

steering angles by the SMC controller can be determined. Considering the nonlinear property of 

the look-up tables, we entitle the active steering controller NSMC. The schematic diagram of the 

closed-loop system with the TruckSim model and the NSMC controller is shown in Figure 7.1.  

7.2.3 Controller based on the Mu-Synthesis Technique  

The active steering controller is based on the Mu-Synthesis (MS) technique. The MS is one of the 

commonly used ∞H controllers, which iteratively solves a mixed sensitivity problem for optimal 

solution in a frequency range of interest (Skogestad and Postlethwaite, 2001). The uncertain 

parameters are selected using the frequency domain parametric sensitivity analysis (Gu et al, 2013) 

from the groups describing the vehicle kinematics, tire dynamics and the vehicle inertia properties 

based on the two criteria: 1) the parameter is most sensitive, and 2) the nominal value of the 

parameter is the most difficult to obtain. 

The model scaling/normalization makes the model analysis and the controller design much 

simpler (Skogestad and Postlethwaite, 2001). The scaled/normalized variables have their (absolute) 

values in the range of (0, 1). The variables, such as the exogenous disturbance, control input and 

the output, are normalized with the corresponding expected magnitudes. With the linear yaw-plane 

model of the tractor/semitrailer combination in Chapter 3, a scaled linear yaw-plane model is given 

as 

max

1 1
max max max
− −

= +


= +

x Ax BU u

y Y Cx Y DU u

ɺ
           (7.11) 
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Where 1 2 3

T

δ δ δ =  u denotes the scaled input vector, 1 2

T

y ya a =  y the scaled output 

vector, [ ]( )max 1max 2max 3maxdiag δ δ δ=U and ( )max 1max 2 maxy ydiag a a =  Y the scaling matrices. 

Open-loop simulations indicate that the tractor/semitrailer combination starts to roll over at the 

tractor front wheel steering angle of 0.04 radian, which causes the tractor and semitrailer to 

produce the lateral acceleration of 0.5g ( 24.9 m s ). The expected maximum steering angle for the 

tractor rear wheels and the semitrailer wheels is 0.1 radian. Hence, the scaling matrices are selected 

as [ ]( )max 0.04 0.1 0.1diag=U  and [ ]( )max 4.9 4.9diag=Y . 

 

Figure 7.2 The Single DOF control structure with the frequency weighting functions 

Since the RA ratio of the tractor/semitrailer without the active steering system is greater than 

1.0 at low to the crossover frequency (Islam et al, 2015), the objective of the MS controller design 

is to restrict the lateral acceleration of the semitrailer and force the RA ratio to approach 1.0. This 

is a disturbance attenuation problem and may be solved using the single DOF control (Skogestad 

and Postlethwaite, 2001 and Gu et al, 2013) as shown in Figure 7.2. The exogenous disturbance 

1δ  is weighted by the frequency function dW , the output 1 2
T

y ya a   by pW , the control input 

[ ]2 3
Tδ δ  by uW , and the measurement noise n  by nW . A multi-input and multi-output MS 
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controller K  may be obtained to minimize the weighted control input ue and the weighted output

ye . The RA characteristics of the tractor/semitrailer with the MS active steering controller can be 

manipulated by appropriate selection of the design parameters of the frequency weighting 

functions (Skogestad and Postlethwaite, 2001). 

The frequency weighting functions are selected following the fundamental principles (Gu et al, 

2013): 1) an integral-shape high-gain low-pass filter weights the controlled output for accurate 

reference tracking; 2) a high-pass filter limits the control input at high frequencies and at the 

closed-loop bandwidth frequency. Thus, the weighting functions for the MS active steering 

controller are selected as 

( ) ( )

1 2
1 2

1 2

1 21 1 2 2
1 2

1 1 2 2 1 2

1 1
,

1 1

1 1 1/ 1
,

1 1

wn wn
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wn wn

b b
p u wu wu

b b

n s n s
W k diag k k

d s d s

N s N ss M w s M w
diag diag k k

s w A s w A Q s Q s

   + +
= =    + +   


    + +  + +

= =          + + + +      

W

W W

  (7.12) 

where 1wnd , 2wnd , wdk , 1wnk , 2wnk , 1wuk , 2wuk , 1wnn , 2wnn , 1bw , 2bw , 1A , 2A , 1M , 2M , 1N , 2N , 1Q , 

2Q  are the design parameters tuned using the trail-and-error method for ideal performance.  

 

Figure 7.3 Structure of the TruckSim Model integrated with the MS controller 
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The structure of the MS controller is shown in Figure 7.3, integrated with the tractor/semitrailer 

model developed in TruckSim. 

7.2.4 Design Variable Tuning Using the Frequency-Domain Design Optimization 

The RA ratio in lateral acceleration is an important indicator of roll-over tendency for the 

semitrailer. The RA frequency function of the tractor/semitrailer provides complete information 

in a frequency range of interest. For an optimum trade-off between the high-speed maneuverability 

and stability, the RA frequency function should be restricted in the vicinity of 1.0. The design 

criterion for the frequency-domain design optimization may be chosen as 

( ){ }
0
min 1 ,

u
ASS

f f
obj RMS RA f with respect to X

≤ ≤
= −          (7.13) 

where ASSX  is the design variable vector of the active steering controller to be optimized. Note 

that RMS  stands for the root mean square operation. For the SMC and NSMC based controllers, 

the ASSX  involves the closed-loop poles and the SMC gains. For the MS controller, the design 

parameters consist of the parameters of the frequency weighting functions. The frequency upper 

bound uf  is chosen from somewhere close to the crossover frequency using the with trail-and-

error method. The tractor/semitrailer is excited with the multi-cycle sinewave steering input 

(MCSSI) in the continuous mode (Zhu et al, 2016). The RA frequency function ( )RA f is acquired 

using the AFRM (Zhu and He, 2015), and the fitness value is calculated using Equation (7.13). 

The genetic algorithm is utilized to search the optimal design variable vector to minimize the 

fitness value. 

7.3 Simulation Result Analysis and Discussion 

The active steering controllers are evaluated using the simulation results in the time-domain 

achieved under a low lateral acceleration Single Cycle Sinewave Lateral Acceleration (SCSLA) 
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maneuver specified in SAE J2179 (SAE, 1993 and Zhu et al, 2016) with the forward speed of 88 

km/h, and under a high lateral acceleration double lane change maneuver (Zhu and He, 2016). The 

driver model built in TruckSim is employed to ‘drive’ the tractor/semitrailer combination with the 

active steering controllers. The active steering controllers are also examined with the simulation 

results in the frequency-domain acquired under the continuous Multi-cycle Sinewave Steer Input 

(MCSSI) maneuver (Zhu et al, 2016) using the AFRM technique.  

7.3.1 Simulation Results under the SCSLA Maneuver 

Figure 7.4 shows the desired trajectory to be tracked by the tractor CG under the SCSLA maneuver. 

Figure 7.5 shows the time histories of lateral accelerations of the TST with the active steering 

controllers based on the LQR, SMC, NSMC, and the MS techniques under the simulated SCSLA 

maneuver. Compared with the result of the passive TST provided in Chapter 3, the active steering 

controllers have the vehicle unit lateral accelerations reduced, especially that of the semitrailer. 

The RA ratios of all active steering controllers approach 1.0 under the simulated SCSLA maneuver. 

Almost an identical RA ratio has been achieved by all the controllers. It is difficult to differentiate 

the controllers under such a low lateral acceleration maneuver. 

 

Figure 7.4 Desired trajectory tracked by the tractor CG under the SCSLA maneuver 
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Figure 7.6 shows the time histories of the active steering angles of the tractor rear wheels and 

the semitrailer wheels demanded by the different controllers under the SCSLA maneuver. The 

performance measure representing the energy consumed by the steering actuators on the tractor 

rear axle and on that of the semitrailer axles can be calculated as ( )1 2
22

1

k

k

δ

∞

=
∑  and ( )1 2

32
1

k

k

δ

∞

=
∑  ( k is the 

sampling index), respectively. Figure 7.7 illustrates the energy consumption measure 

corresponding to the controllers of the LQR, SMC, NSMC, and the MS under the SCSLA 

maneuver. It is indicate that in terms of the energy consumption, the SMC controller is the most 

efficient, and the MS the least efficient. 

  

  

Figure 7.5 Time-histories of the lateral accelerations under the SCSLA maneuver of 88 km/h for 
the TST with different ASS controllers: (a) LQR, (b) SMC, (c) NSMC and (d) MS 
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The main feature of the MS controller different from all other controllers is the phase-shift 

which makes the control command asynchronous with the system output measurements. This 

creates an issue regarding applying the AFRM. When measuring the frequency response using the 

AFRM, the vehicle is excited by the continuous mode MCSSI. In the case of without phase-shift, 

the control effort induced over one sine wave cycle does not affect other cycles of the system. 

Thus, the input signal may has a zero initial value when starting a new cycle, which makes the 

AFRM technique applicable. The phase-shift makes the AFRM inapplicable. The phase-shift may 

be caused by frequency weighting without considering the phase response. 

  

  

Figure 7.6 Time histories of the active steering angles of the tractor rear wheels and the 
semitrailer wheels under the SCSLA maneuver demanded by the controllers of: (a) LQR, (b) 

SMC, (c) NSMC, and (d) MS 
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Figure 7.7 Energy consumption measure of the active steering system under the SCSLA 
maneuver with the controllers of the LQR, SMC, NSMC, and the MS 

7.3.2 Simulation Results based on the Frequency Responses 

The frequency response of the TST with the active steering controllers of the LQR, SMC, and the 

NSMC are acquired using the AFRM technique. The amplitude of the MCSSI input is restricted 

to avoid exciting the nonlinear dynamics of the TST. Figure 7.8 shows the RA frequency responses 

in lateral acceleration of the passive TST and the TST with the active steering controllers of the 

LQR, SMC, and the NSMC. The active steering controllers greatly improve the directional 

performance of the TST by keeping the RA ratio close to 1.0 within the frequency range of 0~0.6 

Hz. Within the high frequency range of 0.6~1.0 Hz, the active steering controllers of the SMC and 

the NSMC outperform the LQR. For the passive TST, within the low frequency range, the RA is 

higher than that of the TST with active steering controllers, but at the high frequency the RA is 

lower than that of the TST with ASS. Figure 7.8 shows that among the four cases, the SMC 

controller exhibit the highest robustness over the frequency range of 0~1.0 Hz. 
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Figure 7.8 RA frequency response functions in lateral acceleration of the passive TST and the 
TST with the active steering controllers of the LQR, SMC and the NSMC 
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robustness index has a unit of 2s mt . Thus, the robustness index in the lateral acceleration of the 

tractor with the LQR controller is given as 

 
( )1 _

1_ _ max 1_ _ min
0

1

( ) ( )
y lqra

y lqr y lqr

R

a t a t dt
∞

=
−∫

      (7.14) 

where max__1 lqrya  and min__1 lqrya denote the upper- and lower-bound of the tractor lateral 

acceleration responses in a case study with the LQR controller. All other robustness indices of the 

TST with the ASS controllers can be similarly defined. 

 

Figure 7.9 Target trajectory to be followed by the CG of the tractor under the DLC maneuver 
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and the active steering angles of the TST with the LQR controller can be achieved, and the resulting 

respnses are shown in Figure 7.10. It shows that the LQR controller does not exhibit good 

robustness to the semitrailer sprung mass variation. 
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Figure 7.10 Responses of the TST with the LQR controller subject to the trailer sprung mass 
uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor rear 

axle wheel steering angle, and (d) semitrailer axle wheel steering angle 

Figures 7.11, 7.12, and 7.13 show the upper-, mean- and lower-bound curves of the lateral 

accelerations and active steering angles of the TST with the controllers of SMC, NSMC and MS, 

respectively. The corresponding robustness indices are listed in Table 7.1, and ploted in Figure 

7.14. Among all the controllers considered, the responses of the NSMC are most noisiest, while 

the responses of the MS are smoothest. The SMC controller is most robust in the tractor lateral 
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robustness in the tractor lateral acceleration over that of the LQR by 93.22%, 77.3%, and 67.72%, 

respectively. Simliarly, the MS is most robust in the semitrailer lateral acceleration, followed by 

the SMC, NSMC, and the LQR; the MS, SMC, and the NSMC improve the robustness in the 

semitrailer lateral acceleration over that of the LQR by 122.51%, 118.91%, and 7.01%, 

respectively. The MS controller is most robust in the tractor rear wheel steering angle, followed 

by the SMC, NSMC, and the LQR. In terms of the semitrailer wheel steering angle, the MS is most 

robust, followed by the LQR, SMC, and the NSMC. 

  

  

Figure 7.11 Responses of the TST with the SMC controller subject to the semitrailer sprung mass 
uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor rear 

wheel steering angle, and (d) semitrailer wheel steering angle 
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Table 7.1 Robustness indices of the TSTs with the ASS controllers subject to semitrailer sprung 
mass uncertainty 

 LQR SMC NSMC MS 
* idxR  * idxR  # impR  * idxR  # impR  * idxR  # impR  

1yaR  1.2728 2.4593 93.22% 2.1348 67.72% 2.2569 77.32% 

2yaR  1.4045 3.0746 118.91% 1.5030 7.01% 3.1252 122.51% 

2
Rδ  1.0380 1.2149 17.04% 1.1716 12.87% 1.5322 47.61% 

3
Rδ  0.3733 0.3567 -4.45% 0.2154 -42.30% 0.8113 117.33% 

* idxR is the robustness index defined in Equation (7.14) 
# impR is the relative improvement of the robustness over that of the LQR controller 

  

  

Figure 7.12 Responses of the TST with the NSMC controller subject to the semitrailer sprung 
mass uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor 

rear wheel steering angle, and (d) semitrailer wheel steering angle 
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Figure 7.13 Responses of the TST with the MS controller subject to the semitrailer sprung mass 
uncertainty: (a) tractor lateral acceleration, (b) semitrailer lateral acceleration, (c) tractor rear wheel 

steering angle, and (d) semitrailer wheel steering angle 

 

Figure 7.14 Robustness indices of the TST with different controllers subject to the semitrailer sprung 
mass uncertainty 
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7.3.3.2 Case Study on the Uncertain Semitrailer CG Longitudinal Position 

The robustness of the directional performance of the TST with different active steering controllers 

is examined under the simulated DLC maneuver subjet to the variation of the semitrailer CG 

longitudinal position in the range of 0.4 to 1.25 times of the nominal value ( )21 21 210.4 1.25nom noml l l≤ ≤ . 

The robustness indices of the lateral acceleration and the steering angles of the tractor rear wheels 

and the semitrailer wheels demanded by the LQR, SMC, NSMC, and the MS are listed in Table 

7.2 and shown in Figure 7.15.  

Compared with the indices shown in Figure 7.14, those seen in Figure 7.15 are lower. This 

implies that the active steering controllers are more sensitive to the variation of the semitrailer CG 

longitudinal position than to the change of the semitrailer sprung mass. Furthermore, subject to the 

variation of the semitrailer CG longitudinal position, the simulation results confirm that the MS 

controller is the most robust, whereas the LQR is the least robust; in between, the SMC and the 

NSMC exhibit comparable robustness. The SMC, NSMC and the MS improves the robustness in 

the tractor lateral acceleration by 51.58%, 58.78%, and 60.13%, and in the semitrailer lateral 

acceleration by 6.93%, -7.51% and 22.26%, respectively, with respect to the corresponding indices 

of the LQR controller. 

Table 7.2 Robustness indices of the TST with different ASS controllers subject to the variation of 
trailer CG longitudinal position 

 LQR SMC NSMC MS 
* idxR  * idxR  # impR  * idxR  # impR  * idxR  # impR  

1yaR  0.9574 1.4512 51.58% 1.5202 58.78% 1.5331 60.13% 

2yaR  1.2444 1.3307 6.93% 1.1509 -7.51% 1.5214 22.26% 

2
Rδ  0.5134 0.6330 23.29% 0.5752 12.04% 0.9036 76.00% 

3
Rδ  0.1824 0.2507 37.44% 0.1364 -25.22% 0.2374 30.15% 

* idxR  is the robustness index defined in Equation (7.14) 
# impR  is the relative improvement of the robustness over that of the LQR controller 
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Figure 7.15 Robustness indices of the TST with different ASS controllers subject to the variation 
of the semitrailer CG longitudinal position 

7.3.3.3 Case Study on the Uncertain Semitrailer CG Vertical Position 

The robustness of the active steering controllers is evaluated under the simulated DLC maneuver 

subject to the variation of the semitrailer CG vertical position in the range of 1 to 2 times of the 

nominal value, i.e., 2CGnom CG CGnomh h h≤ ≤ . The resulting robustness indices are listed in Table 7.3 

and plotted in Figures 7.16 and 7.17. Compared with the other parametric uncertainties considered, 

the active steering controllers are more robust to the uncertainty of the semitrailer CG vertical 

position.  

The results disclose a phenomenon that the LQR and MS controllers outperform the SMC and 

the NSMC controllers. In terms of the steer angles of the tractor rear wheels and the semitrailer 

wheels, the SMC and NSMC controllers are not sensitive to the variation of the semitrailer CG 

vertical position. This observation may be interpreted by the fact that the semitrailer CG vertical 

position mainly affect the inertia properties of the roll dynamics of the semitrailer; and the coupling 

of the roll dynamics and the yaw dynamics of the TST is loose. The SMC and NSMC controllers 

work on the full states of the yaw-plane models which are least affected by the roll dynamics- 
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related parametric uncertainty. However, the LQR and MS controllers are designed considering 

the vehicle units’ lateral accelerations, which are dependent on the roll dynamics of the TST. The 

MS controller has the robustness index increased by 21.12% in the tractor acceleration, decreased 

by 22.23% in the semitrailer lateral acceleration, increased by 39.29% in the tractor rear wheel 

steering angle, and increased by 45.29% in the semitrailer wheel steering angle, with respect to the 

corresponding robustness indices of the LQR controller.   

Table 7.3 Robustness indices of the TST with different ASS controllers subject to the variation of 
trailer CG vertical position 

 LQR SMC NSMC MS 
* idxR  * idxR  # impR  * idxR  # impR  * idxR  # impR  

1yaR  4.8055 3.3703 -29.86% 3.8163 -20.58% 5.8206 21.12% 

2yaR  5.3614 1.9484 -63.66% 2.4276 -54.72% 4.1696 -22.23% 

2
Rδ  3.0907 811.8262 261.67 652.8228 210.22 4.3049 39.29% 

3
Rδ  1.1038 299.7797 270.59 111.4278 99.95 1.6108 45.93% 

* idxR  is the robustness index defined in Equation (16) 

# impR  is the relative improvement of the robustness over that of the LQR controller 

 

 

Figure 7.16 Robustness indices in the lateral accelerations of the vehicle units of the TST with 
different ASS controllers subject to the variation of the semitrailer CG vertical position 
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Figure 7.17 Robustness indices in the steer angles of the tractor rear wheels and the semitrailer 
wheels of the TST with different active steering controllers subject to the variation of the 

semitrailer CG vertical position 

7.4 Conclusions 

Three robust active steering system controllers, namely, the SMC, NSMC and the MS, have been 

studied for improving the high-speed maneuverability and stability of AHVs. To evaluate the 

robustness of the ASS controllers, co-simulations are conducted by integrating the ASS controllers 

designed in Matlab/Simulink software and a nonlinear tractor/semitrailer model developed in 

TruckSim package. The MS-based controller differs from the others by introducing phase-shift 

into the control command, which makes the AFRM inapplicable. With the AFRM, the design 

variables of the controllers based on the LQR, SMC, and the NSMC techniques are optimized by 

using a genetic algorithm for the optimal trade-off between the high-speed maneuverability and 

the stability in a frequency range of interest. A robustness index has been defined to quantify the 

robust performance of the ASS controllers based on the LQR, SMC, NSMC and the MS techniques 

under a high lateral acceleration maneuver. 

The simulation results show that it is hard to differentiate the ASS controllers under a low lateral 
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acceleration maneuver. Under a high lateral acceleration maneuver, the ASS controllers 

demonstrate different robustness to the parametric uncertainties. Amongst the uncertainties 

considered, the ASS controllers are the most robust to the uncertainty of the semitrailer CG vertical 

position and the least robust to the variation of the semitrailer CG longitudinal position. Amongst 

all the ASS controllers investigated, the MS is the most robust to the uncertainties of the semitrailer 

sprung mass and the semitrailer CG longitudinal position. Subject to the uncertainty of the 

semitrailer CG vertical position, the robustness of the LQR and MS based controllers is 

comparable, and these controllers outperform the SMC and NSMC based controllers. 
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Chapter 8 An Investigation of Test Maneuvers for 

Determining Rearward Amplification of Multi-trailer 

Articulated Heavy Vehicles 

8.1 Introduction 

Rearward amplification (RA) ratio has been utilized to quantify the obstacle avoidance capability 

of articulated heavy vehicles (AHVs) since the 1970s (Ervin et al, 1978, Winkler et al, 1992). The 

RA ratio, defined as the gain of the lateral motion of the rearmost unit and that of the leading unit 

(Ervin and Guy, 1986, Winkler et al, 1992, Fancher and Winkler, 1992, Woodrooffe and Milliken, 

2007 and Wang and He, 2015), describes the tendency of the last trailer to swing out of line or roll 

over under obstacle avoidance maneuvers (Winkler et al, 1992). AHVs having a lower value of 

the RA face less risk of rollover under obstacle avoidance maneuvers (Fancher and Winkler, 1992, 

Woodrooffe and Milliken, 2007). The accident involvement rate is directly associated with the 

level of RA ratios (Winkler et al, 1992). 

The research on the RA can be traced back to the later 1970s. Since then various ad hoc 

procedures and scenarios have been developed to test the RA measure of AHVs (Ervin et al, 1978, 

Ervin and Guy, 1986, Winkler et al, 1986, Fancher and Winkler, 1992, Winkler et al, 1992, 

Winkler et al, 1993). After two decades accumulation of knowledge and experience, there came 

two milestone events: 1) the Society of Automotive Engineers issued SAE-J2179 in 1993 (SAE-

J2179, 1993), setting the single cycle sine wave lateral acceleration input (SCSLA) as the 

recommended practice, and 2) the International Organization for Standardization released ISO-14791 

in 2000 (ISO-14791, 2000), proposing the single cycle sine wave steer input (SCSSI), the SCSLA and 
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the pseudo random steer input (PRSI) as standard maneuvers for evaluating the RA measure of multi-

trailer articulated heavy vehicles (MTAHVs).  

Zhu and He (2015) proposed a method for determining the RA measure of AHVs using the 

automated frequency response measuring (AFRM) technique. With the AFRM technique, a repetitive 

frequency measurement using sine waves with various frequencies and amplitudes can be assigned 

to a computer in a way that signal generation, model simulation, and frequency response 

measurement can be conducted in real-time, and thus an accurate RA frequency function can be 

achieved. 

When determining the RA, one has the time- and frequency-domain maneuvers available. The 

frequency-domain maneuvers provide a complete RA frequency function of AHVs in a frequency 

range of interest. The time-domain maneuvers yield composite information of the AHV at a 

specified frequency. The RA measure under one maneuver differs from that under another (Aurell 

and Winkler, 1995). Even with the time-domain maneuvers, the result of the SCSLA does not 

match that of the SCSSI. Wang and He (2015) attributed this disparity to the transient response 

effect and attempted to minimize it by using the so-called multi-cycle sine wave steer input 

(MCSSI). 

This chapter focuses on identifying the root causes of the disparity and mismatch of the RA 

measures derived from different testing maneuvers. Various maneuvers, including the SCSSI, 

MCSSI, and SCSLA in the time-domain as well as the PRSI and the AFRM procedures in the 

frequency-domain are considered. The factors causing the disparity and mismatch are identified 

using numerical simulation in the time-domain, and the identified causes are further proved and 

interpreted using the results derived from the simulated maneuvers in the frequency-domain. 

Through the simulation and data analysis process, a testing maneuver will be determined, which 
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bears the strengths of the aforementioned testing maneuvers. A nonlinear yaw-roll model for a B-

train double is constructed in TruckSim in order to acquire the RA measures under various 

simulated testing maneuvers. The resulting data sets are processed in the Matlab/Simulink. 

8.2 Vehicle Modeling and Test Maneuvers 

8.2.1 TruckSim Model 

The B-train double model is constructed in TruckSim to simulate the directional performance of 

the vehicle under a specified testing maneuver. As shown in Figure 8.1, the configuration of the 

B-train double is defined as “S_SS+SSS+SSS”, where “S” indicates a solid axle, an underscore 

“_” a separation of the axle groups, a “+” a fifth-wheel connecting two vehicle units. Thus, as the 

configuration indicated, the B-train double consists of a 3 solid-axle tractor having one front axle 

and two rear axles, and two semitrailers each having one tridem axle group.  

 

Figure 8.1 TruckSim model of the B-train double 
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In the TruckSim model, the nonlinear dynamics of the pneumatic tires, suspension systems and 

the mechanical joints are taken into account. For the nonlinear vehicle model, the motions 

considered are as follows. Each sprung mass is considered as a rigid body with six DOF, namely 

lateral, longitudinal, vertical, pitch, roll and yaw motions. The fifth-wheel is modeled as a ball-

joint, about which roll, yaw, and pitch motions are allowed. Each axle (group) is treated as a beam 

axle which can roll and bounce with respect to the sprung mass to which it is attached. Each wheel 

is modeled with a spinning DOF. Thus, the B-train double is represented by the nonlinear 

TruckSim model with  thirty-eight DOF. 

8.2.2 Test Maneuvers for Determining RA 

The RA is an effective performance measure to assess the lateral stability of AHVs. The high-

speed stability of AHVs may be characterized using the RA measures either in yaw rate or in 

lateral acceleration gain of the rearmost trailing unit to that of the leading unit under a lane-change 

maneuver. To measure the RA of multi-unit combination vehicles or articulated buses, the ISO-

14791 recommends three test maneuvers, namely, 1) pseudo-random steer input (PRSI), 2) single 

cycle sine wave steer input (SCSSI), and 3) single cycle sine-wave lateral acceleration (SCSLA). 

The time-domain test maneuvers, the SCSSI and SCSLA, provide a composite RA gain at a 

specific frequency; and the frequency-domain test maneuver, the PRSI, provides complete 

information of RA in a frequency range of interest (Aurell and Koppenaal, 1998). With the PRSI 

test maneuver, the frequency response functions are obtained using the Fourier transform after the 

response data of all frequency contents has been recorded, and thus suitable for off-line 

applications.  

The AFRM technique discussed in Chapter 4 may also be applied to obtain the RA frequency 

function of MTAHVs. With the AFRM technique, steer signal generation, vehicle excitation, and 
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RA frequency function acquisition are conducted automatically at a given frequency. All the 

relevant processes should be completed before the frequency being updated. Thus, the AFRM 

technique is suitable for on-line and real-time applications, and appropriate for frequency-domain 

design optimization of MTAHVs. For detailed information of the AFRM technique, readers are 

referred to Zhu and He (2015).  

8.3. Tractor Lateral Acceleration Kinematic Analysis and Driver’s Characteristics 

8.3.1 Kinematic Analysis 

MTAHVs are usually modeled with multiple interconnected rigid bodies. Each body may be 

viewed as a lumped mass at the center of gravity (CG). Depending on the level of details 

considered, a single (e.g., in a yaw-plane model) or multiple bodies (e.g., in a yaw-roll model) are 

utilized to describe a vehicle unit. In either way, the RA of a MTAHV may be defined as the ratio 

of the lateral acceleration or yaw rate measured at the whole mass CG of the rearmost unit to that 

of the leading unit measured at the whole mass CG (Islam et al, 2015). In the SCSLA test, a desired 

trajectory is predefined for the CG or the front axle center of the leading unit in a kinematic 

relationship (Preston-Thomas and E-Gindy, 1995, and ISO-14791, 2000). In practice, the front 

axle center of the tractor is usually pursued by human drivers and driver models (MacAdam, 1981 

and He et al, 2016) in conducting lane-change maneuvers. While considering the low-speed 

maneuverability of a MTAHV, the low-speed off-tracking (a performance measure), defined as 

the maximum radial offset between the trajectories of the tractor front axle center and that of the 

rearmost trailer axle center (He et al, 2015), may be used.  

Defining the RA measure in the lateral acceleration at the front axle roll center may bring some 

benefits. It not only ensures convenience and consistency in the modeling for maneuverability and 

stability investigation, but also removes the influence of the roll and yaw dynamics of the vehicle 
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concerned on the RA measure. The lateral acceleration at the front axle roll center can be calculated 

based on the lateral acceleration at the tractor CG and other relative states of the vehicle unit. Given 

the lateral acceleration at the whole mass CG of the tractor 1_y CGa , and assuming that the roll axis 

is parallel to the ground surface, the lateral acceleration at the tractor front axle roll center can be 

determined as 

( )1
1_ 1_ 1 1 1 11

1

s
y ax y CG r s

m
a a h h a

m
φ ψ= + − +ɺɺ ɺɺ           (8.1) 

where 11a denotes the longitudinal distance from the whole mass CG of the tractor to its front axle 

center, 1_y axa  the lateral acceleration at tractor front axle roll center, 1rh  the height of roll center 

measured from the ground, 1sh the height of the tractor sprung mass CG measured from the ground, 

1sm the tractor sprung mass, 1m the tractor whole mass, 1φ  the roll angle of the tractor sprung mass, 

1ψ  the yaw angle of the tractor unit. The 2nd and 3rd terms at the right hand side of Equation (8.1) 

are contributed by the roll- and yaw-motion, respectively.  

The comparison of the individual lateral acceleration terms achieved under a MCSSI maneuver 

at forward speed of 110km/h is shown in Figure 8.2. The summation of the first two terms forms 

the lateral acceleration at the roll center under the tractor whole mass CG, which bears the 

influence of the roll dynamics. The lateral accelerations at the whole mass CG, at the roll center 

under the tractor whole mass CG and at the tractor front axle roll center are shown in Figure 8.3. 

The yaw motion introduces phase lead into the lateral acceleration at the tractor front axle roll 

center.  
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To maintain consistency throughout the chapter, the RA ratio is defined as the gain of the 

lateral acceleration at the whole mass CG of the 2nd semitrailer to that of the lateral acceleration at 

the tractor front axle roll center as proposed by Fancher and Winkler (1992).  

 
Figure 8.2 Time histories of the lateral acceleration at the whole mass CG, that contributed by 

the roll motion and that induced by the yaw motion of the B-train double TruckSim model under 
a MCSSI maneuver at the forward velocity of 110km/h 

 
Figure 8.3 Time histories of lateral accelerations at the whole mass CG, at the roll center under 
the whole mass CG, and the at the tractor front axle roll center of the B-train double TruckSim 

model under a MCSSI maneuver at the forward velocity of 110km/h 
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8.3.2 Driver’s Characteristics 

When utilizing the McAdam preview driver model provided in the TruckSim software to ‘drive’ 

the virtual MTAHV, the driver’s characteristics, related to the preview time and time lag, and may 

affect the combined performance of the driver-vehicle system. The target trajectory of the tractor 

front axle roll center is defined by the kinematic relationship (Preston-Thomas and E-Gindy, 1995, 

ISO-14791, 2000, and MacAdam and Hagan, 2002), the same as Equation (6.14), as 

( )
1_

2
2 sin 2

2

y axa X X
Y f f

U Uf
π π

π

  = −     
        (8.2) 

where 1_y axa denotes the amplitude of the single cycle sine wave lateral acceleration input 

(SCSLA), f denotes the frequency of the SCSLA in Hz, U the forward speed of the vehicle (m/s),

X the longitudinal position, and Y the lateral position. The effect of the parameters of the driver 

model, preview time and time lag, and their influence on the XY trajectory of the tractor front axle 

roll center, and the lateral accelerations at the whole mass CG and at the tractor front axle roll 

center are considered. 

8.3.2.1 Influence of the Preview Time 

With 0.4f =  Hz, 1_ 0.15y axa =  g, and 110U =  km/h, time lag 0dτ = s and preview time pT

varying from 0.1 to 1.5s, the target and XY trajectories of the tractor front axle roll center are 

shown in Figure 8.4. The lateral accelerations at the tractor whole mass CG and at the tractor front 

axle roll center are shown in Figures 8.5 and 8.6, respectively. The response speed of the XY 

trajectory gradually decreases following the growth of the preview time. The lateral accelerations 

grow following the speed up of the responses of the XY trajectory, and demonstrate high-

frequency vibration when the lateral accelerations overpass 0.15g in magnitude.  
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Figure 8.4 Target and XY trajectories of the tractor front axle roll center under the single sine 
wave lateral acceleration test at forward velocity 110 km/h and driver’s time lag 0dτ = s and 

preview time pT varied from 0.1 to 1.5s 

 

Figure 8.5 Lateral accelerations at the tractor whole mass CG under the SCSLA test at forward 
speed of 110 km/h and driver’s time lag 0dτ = s and preview time pT varied from 0.1 to 1.5s 
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Figure 8.6 Lateral accelerations at the tractor front axle roll center under the SCSLA test at 
forward speed of 110 km/h and driver’s time lag 0dτ =  s and preview time pT varied from 0.1 

to 1.5s 

The filtering effect of the roll dynamics is clearly shown when the lateral acceleration at the 

whole mass CG reaches a high level in amplitude. Since the roll dynamics has been removed from 

the lateral acceleration at the tractor front axle roll center, thus higher amplitude of vibration can 

be expected. The influence of the preview time of the driver model is significant. To achieve the 

designated single cycle lateral acceleration specified in the kinematic equation (8.2), the preview 

time has to be carefully manipulated.  

8.3.2.2 Influence of the Time Lag 

The influence of the time lag of the driver model on the response of the tractor is shown in Figures 

8.7 through 8.9. As shown in Figure 8.7, the influence of the time lag varied from 0 to 0.05s on 

the XY trajectory of the tractor front axle roll center is not apparent, but evident on the lateral 

accelerations at the tractor front axle roll center and the tractor whole mass CG. Increasing the 
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time lag may cause instability of the tractor. As shown in Figures 8.8 and 8.9, when the time lag 

reaches 0.05s the lateral accelerations start to vibrate when the lateral acceleration sine-wave 

completes a full cycle. Further increasing the time lag would amplify the vibration and lead to yaw 

instability. The amount of time lag can be sustained without loss of stability may be related to the 

length of preview time: the longer the preview time, the longer time lag can be tolerated before 

loss of stability. Furthermore, the influence of the time lag on the lateral acceleration at the front 

axle roll center is more evident than that at the tractor whole mass CG due to lack of filtering effect 

of the roll dynamics. 

 

Figure 8.7 Target and XY trajectory of the tractor front axle center under the SCSLA test at the 
forward speed of 110 km/h and driver’s time lag dτ  varied from 0 to 0.05 s with preview time 

0.4pT =  s 
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Figure 8.8 Time histories of lateral accelerations at the tractor whole mass CG under the SCSLA 
maneuver at forward speed of 110 km/h and driver’s time lag dτ varied from 0 to 0.05s with 

preview time 0.4pT s=  

 

Figure 8.9 Time histories of lateral acceleration at the tractor front axle roll center under the 
SCSLA maneuver at forward speed of 110 km/h and driver’s time lag dτ  varied from 0 to 0.05s 

with preview time 0.4pT s=  
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8.4 RA Measures of the B-Train Double 

In the following section of this chapter, the forward speed of the B-train double is assumed constant 

at 110km/h. The following test maneuvers are used to to determine the RA: 1) SCSSI, 2) SCSLA, 

3) MCSSI, 4) pseudo-random binary sequence (PRBS) steer input, 5) PRSI; and 6) AFRM. The 

RA frequency functions from different test maneuvers are compared; and the disparity and 

mismatch are identified, interpreted and minimized in the time- and frequencey-domain 

approaches.  

8.4.1 RA Frequency Functions with the MCSSI and the AFRM 

 

Figure 8.10 RA frequency functions of the B-train double obtained with the MCSSI and the 
AFRM of different number of cycles 

A simple way to acquire the RA frequency function is the MCSSI (Wang and He, 2015). Following 

the increment of the number of cycles of the sine-wave steer input, the RA frequency functions 

gradually converge to the red curve in Figure 8.10. With enough number of cycles and frequency 

instants in the frequency range of interest, the MCSSI RA frequency function provides a precise 
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and complete frequency response information. The MCSSI RA frequency function is employed as 

a referrence when genenerating RA frequency functions using all other maneuvers. 

The RA frequency functions obtained with the AFRM maneuver are also shown in Figure 8.10. 

In the AFRM maneuver, the steer input consists of sine waves organized in frequency sequence. 

The number of cycles of the sine wave steer input is manipulated. Following the growth of the 

number of cycles, the RA frequency function reduces in peak value and gradually converges to the 

MCSSI RA frequency function when the number of cycles approching 5 which is deemed as the 

appropriate cycle number for the AFRM maneuver.  

 

Figure 8.11 RA frequency functions of the B-train double obtained with the MCSSI and the 
PRBS steer input of varying input level 

The RA frequency functions obtained with the PRBS steer test are shown in Figure 8.11 with 

the MCSSI frequency function. The RA frequency function can be manipulated by adjusting the 

PRBS level, frequency band and the test length to achieve excellent match with the MCSSI 

frequency function. The manipulability of the PRBS RA frequency function may have something 
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to do with inherent nonlinear characteristics of the vehicle, such as deadzone or backlash. A higher 

level of  steer input may better overcome such nonlinear characteristics. 

Figure 8.12 compares the RA frequency functions derived under the MCSSI, AFRM, and 

PRBS test maneuvers. The coherence functions between the PRBS steer input and the output data, 

i.e., the lateral accelerations at the tractor front axle roll center and at the 2nd trailer whole mass 

CG, are shown in Figure 8.13, indicating strong confidence on the RA frequency function based 

on the PRBS maneuver. To quantatively compare the RA frequency functions based on different 

test maneuvers in the frequency-domain, the respectively RA values at five individual frequencies 

in Figure 8.13 are listed in Table 8.1. It is shown that with the RA measures based on the MCSSI 

as references, the maximum relative error is only 3.4%, showing an excellent agreement achieved 

by the three maneuvers.  

 

Figure 8.12 RA frequency functions of the B-train double obtained under the MCSSI, the AFRM 
and the PRBS steer test maneuvers 
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Table 8.1 RA frequency function values and relative errors for the selected points in Figure 8.12 

Methods MCSSI AFRM PRBS 
Point Frequency (Hz) RA RA Relative 

error* 
RA Relative 

error# 
A 0.10 1.059 1.058 -0.10% 1.061 0.19% 
B 0.34 1.524 1.529 0.33% 1.509 -0.98% 
C 0.52 0.936 0.947 1.17% 0.929 -0.75% 
D 0.64 0.449 0.457 1.78% 0.453 0.89% 
E 0.91 0.087 0.087 0% 0.090 3.40% 

* The relative error is defined as the ratio of the difference between the RA values based on the 
AFRM test and the MCSSI test to that based on the MCSSI test. 
# the relative error is defined as the ratio of the difference between the RA values based on the 
PRBS test and the MCSSI test to that based on the MCSSI test. 

 

 

Figure 8.13 Coherence functions between: (a) the PRBS steer input and the lateral acceleration at 
the tractor front axle roll center, and (b) the PRBS steer input and the lateral acceleration at the 

2nd trailer whole mass CG 

Among the three maneuvers, the MCSSI is straightforward, purely manual and inefficient. The 

AFRM is an automated version of the MCSSI; the steer input consists of pure sine waves organized 

in a frequency series; steer input generation, vehicle excitation, output spectral analyis are carried 

out in a synchronized fashion on single frequency basis; and the AFRM is suitable for on-line and 

real-time operations and thus appropriate for frequency-domain design optimization. In the PRBS 
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maneuver, steer input generation, vehicle excitation, output spectral analysis are conducted in 

separate stages; the PRBS maneuver is not suitable for on-line operation; and this maneuver has 

the numerious factors to consider, such as the frequency band, the time length, and the input level. 

Figure 8.14 shows the RA frequency functions achieved under the PRSI  and the MCSSI 

maneuvers. Compared with the result based on the PRBS, the RA frequency function based on the 

PRSI has larger difference from that based on the MCSSI. This may be partially caused by the 

random variation of the PRSI input level. Uneven distribution of power spectral density of the 

PRSI in the frequency range of interest may also play a role, i.e., the RA frequency function 

demonstrates less accuracy in the arrea where there is less spectral power distributed. This problem 

may be easily solved when using the MCSSI or the AFRM maneuvers where the steer input level 

and its power spectral density can be adjusted and distributed as desired.   

 

Figure 8.14 RA frequency functions obtained with the pseudo-random steer input and the MCSSI 

8.4.2 Single Cycle Sine Wave Steer Input (SCSSI) Test Maneuver 

As recommanded by ISO 14791, when applying the SCSSI maneuver, the frequencies selected 
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maximum RA ratio. Referred to Figure 8.12, the frequencies are selected as 0.01, 0.1, 0.2, …, 0.9 

and 1 Hz to cover the frequency range of interest. Figure 8.15 shows the RA frequency functions 

obtained under the SCSSI, MCSSI, AFRM and the single-cycle AFRM maneuvers. Note that the 

so called single-cycle AFRM maneuver means that  at each frequency, only one cycle of sine wave 

steer input is offered, and this special AFRM case is essential an automated version of the SCSSI 

maneuver.  

 

Figure 8.15 Comparison of the RA frequency functions obtained the MCSSI, SCSSI, and the 
single-cycle AFRM maneuvers 

Compared with the RA frequency function based on the single-cycle AFRM, the RA frequency 

function based on the SCSSI maneuver has larger discranpancy from that based on the MCSSI. 

Wang and He (2016) attibute this phenomenon to transient response effect. The transient response 

is frequency dependent, and is more evdient at high frequencies. Therefore, the 2nd trailer has more 

severe transient tresponse than the tractor which may be related to rearward amplification. Figure 
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8.16 shows the transient lateral accelerations at the tractor front axle roll center and at the whole 

mass CG of the 2nd trailer.   

There are two major factors affecting the transient characteristics: the excitation mode and the 

number of cycles of the sine wave. The excitation mode is defined as the way of handling the sine 

waves at individual frequencies to excite the vehicle. There are two excitation modes: namely, 

continuous mode and intermittent mode. In the continuous mode, the sine wave steer inputs are 

organized in a frequency sequence from low to high without intermittence between frequencies. 

In the intermittent mode, the vehicle is excited as many times as the number of frequency instants. 

Between frequency instants, there is a intermittence during which the input and the output data can 

be processed and the RA frequency function value may be calculated.  

  

Figure 8.16 Transient lateral acceleration responses with the variation of frequency: (a) at tractor 
front axle roll center, and (b) at 2nd trailer whole mass CG 

The single-cycle AFRM maneuver uses the continuous mode and the SCSSI procedure uses 

the intermittent mode. Figure 8.17 shows the AFRM and the SCSSI in the conitinuous and 

intermittent mode, respectively. Comparatively, the excitation mode has more significant 
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influence on the RA frequency function than the number of cycles. Improving RA frequency 

function by selecting proper exitation mode is shown in Figure 8.15, i.e., the RA frequency 

function obtained with continous AFRM is much closer than that of the intermittent SCSSI to that 

of the MCSSI. The impact of transient characteristis on the RA frequncy function can be attenuated 

by selecting the continuous mode and/or increasing the number of cycles. The MCSSI attenuates 

transient by increasing the number of cycles in the intimittent mode. Attenuating the transient 

response of the AFRM in the contiunuous mode is shown in Figure 8.10. Eliminating the transient-

induced discranpancy is possible when the continous mode is applied and the number of cycles of 

sine-wave is large enough.  

  

Figure 8.17 Excitation modes of AFRM and SCSSI: (a) continuous mode, and (b) intermittent 
mode 
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front axle roll center is governed by Equation (8.2), which forms target trajectory of the SLC 

maneuvers.  

The driver model plays an imperative role in trajectory tracking. As discussed in Section 8.3.2, 

the time lag ( )dτ  affects the tracking performance with a limited effect, but influences the lateral 

stability significantly, and is set to zero for simplicity. The preview time ( )pT  affects not only the 

tracking performance, but also the lateral stability of the vehicle. At each frequency instant, the 

preview time is carefully manipulated to achieve a trade-off of the tracking performance and the 

lateral stability. The lateral acceleration at the tractor front axle roll-center shall achieve a peak 

absolute value close to 0.15g, and the XY trajectory shall remain within 150mm± tolerance of the 

target trajectory (SAE-J2179, 1993, and ISO-14791, 2000). 

The RA frequency functions obtained under the SCSLA, SCSSI and MCSSI maneuvers are 

shown in Figure 8.18. The RA frequency functions based on the SCSLA and SCSSI maneuvers 

are comparable, and the results derived from the two maneuvers are different from that based on 

the MCSSI procedure. The tranisent effect has partially intepreted the disparity among the results 

of different maneuvers in the time-response perspective in Section 8.4.2. It has been proved by the 

MCSSI and the AFRM methods that given a proper excitation mode and enough number of input 

cycles, the RA measures in the time-domain can match the RA frequency function in the 

frequency-domain excellently. This prediction is also applicable to the (multiple-cycle) sine-wave 

lateral acceleration maneuver.     
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Figure 8.18 RA frequency functions obtained under the SCSLA, SCSSI and MCSSI maneuvers 

8.4.4 Frequency-Perspective Intepretation of the Disparity 

To inteprete the disparity of the RA frequency function based on the SCSSI maneuver from that 

obtained using the frequency-domain maneuvers, spectral analysis is conducted on the sine-wave 

steer input. Figure 8.19 shows the power spectral density of the 0.5 Hz sine-wave of 1, 3 and 5 

cycles. The power spectral density is more narrowly concentrated on the center frequency 

following the increment of the number of cycles. A single cycle sine wave consists of a preceding 

quiescent period, a sine cycle and a following quiescent period (Aurell and Winkler, 1995). The 

power spectral density of the SCSSI is distributed on a frequency range in the vincinity of the 

center frequency. Thus the SCSSI is ‘intepreted’ by the vehicle as a weighted average of multiple 

frequency components instead of a pure sine wave. This explains why the RA functions based on  

the SCSSI and SCSLA maneuver deviate from that based on the MCSSI procedure as shown in 

Figure 8.19. It is observed that if more cycles are applied, less frequency components will be 

induced and the singal can better present itself in the frequency perspective.  
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Figure 8.19 Power spectral density of sine wave steer inputs with varying number of cycles 

The quiescent periods have significant impact on the RA frequency functions. Improving the 

RA frequency functions by selecting the contiunuous mode is the way of removing the quiescent 

periods from the steer input. Forthermore, increasing the number of cycles, the power spectral 
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and variable number of cycles, has achieved identical match with the MCSSI maneuver in the 

time-domain and the PRBS procedure in the frequency-domain.     
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considered. The research focus is on identifying the root casue of the disparity or mismatch among 

the test maneuvers. 

The following insightful findings have been achieved. In the time-domain maneuvers, the 

excitation mode, defined as the way of handling the sine waves at individual frequencies to excite 

the vehicle, plays an imperative role. The excitation mode and the number of cycles of sine wave 

are the primary and the secondary factors affecting the RA frequency functions determined in time-

domain. By using proper excitation mode and enough number of cycles, excellent match between 

the RA frequency functions achieved in the frequency-domain and the time-domain maneuvers 

has been achieved. 

With frequency-domain response analysis, it has been proved that a SCSSI consists of a 

preceding quiescent period, a complete sine cycle, and a following queiscent period, all of which 

contribute to its frequequcy spectrum. The power spectral density of a SCSSI is a weighted average 

of multiple frequency contents distributed in the vincinity of the center frequency. The single cycle 

sine wave inputs intends to smooth the RA frequency functions, creating a so-called single-cycle 

effect.  

Minimizing the single-cycle effect has resulted in an evolutionary process from the SCSSI, the 

MCSSI to the AFRM. Bearing the strengths of the time- and frequency-domain methods and using 

appropriate excitation mode and variable number of cycles, the AFRM has achieved excellent 

match with the MCSSI in the time-domain and with the PRBS in the frequency-domain.    
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Chapter 9 Conclusions 

This thesis proposes a coordinated control strategy (CCS) for multitrailer articulated heavy vehicle 

(MTAHV) active safety systems (ASSs). To fulfill the CCS, an automated frequency response 

measuring technique (AFRM) has been introduced which not only solves the long-term disparity 

and mismatch issues faced by the relevant standards (SAE-J2179, 1993 and ISO-14791, 2000) 

governing the practice of determining rearward amplification (RA), an unique feature of 

articulated heavy vehicles (AHVs), but also extends the design optimization of ASSs of MTAHVs 

traditionally in time-domain to frequency-domain. A unified driver model considering the dynamic 

features of single unit vehicles and multi-unit vehicles has been presented to investigate the 

interactions of the MTAHV, coordinated control system, and driver using closed-loop simulations 

under various operating conditions.     

9.1 Coordinated Control of Active Safety Systems 

The coordinated control system (CCS) consists of subsystems of active trailer steering (ATS), 

trailer differential braking (TDB) and active roll control (ARC). The CCS is designed in a modular, 

hierarchical, and multilevel approach: 1) at the upper level, a controller is designed to determine 

direct yaw/roll moments to stabilize the MTAHV; 2) at the intermediate level, an allocator is 

designed to distribute the moments to individual actuators; and 3) at the lower level, the actuators 

for the subsystems of the ATS, TDB and ARC realize the allocated moments. The control module, 

allocator module, and the realization module are designed independently in such a way that re-

design or modification of one without affecting the others, which facilitates the future modification 

and functionality expansion of the CCS. 
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The upper level controller is a linear quadratic regulator (LQR) built on a ten degrees of 

freedom (DOF) linear yaw-roll MTAHV model, which minimizes a quadratic performance index 

formulated on the performance measures of the yaw and roll dynamics and the control variables. 

The allocator module distributes the direct roll moment to the ARC actuators, considering the 

rotating mechanisms around the corresponding roll axles between the sprung and unsprung masses 

of the vehicle units. The allocator assigns the direct yaw moments to the ATS and TDB actuators 

using a side-slip angle based nonlinear programing allocation algorithm in such a way that the yaw 

moments are allocated to the ATS up to its linear limit before applying the TDB to restrict the 

adverse impact on the longitudinal dynamics. The realization module implements the functions of 

the ATS, TDB, and ARC.  

To achieve an optimal overall performance of high-speed maneuverability, yaw and roll 

stability of the MTAHV, a parallel genetic algorithm is implemented to optimize the upper-level 

controller, minimizing a performance index formulated on the time-domain performance measures 

of the yaw and roll dynamics using the cross differential gap (CDG) technique in order to achieve 

optimal parameters including the design variables of the direct yaw/roll moment controller and the 

unified driver model. 

9.2 Unified Lateral Preview Driver Model 

The unified lateral preview driver model is proposed for road vehicles of single or multi-unit using 

the SMC technique to accommodate parametric uncertainties, un-modeled dynamics, and various 

operating conditions that MTAHVs inevitably face. By selecting appropriate values of the relevant 

model parameters, the proposed driver model determines the steering angle considering the motion 

cues from both the leading and trailing units. The unified driver model is designed with two modes, 

namely, stability- and path-following oriented, which may be used to simulate the driving 
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performance of a MTAHV driver under a high-speed evasive and a low-speed path-following 

maneuver, respectively. The numerical simulations demonstrates the applicability and 

effectiveness of the proposed driver model. 

9.3 Automated Frequency Response Measuring Technique 

To acquire more comprehensive information of dynamic responses of MTAHVs in the frequency-

domain, an automated frequency response measurement technique (AFRM) is introduced. With 

the AFRM, active safety systems (ASSs) of MTAHVs can be designed and optimized not only in 

the time-domain but also in the frequency-domain. The investigation of the test maneuvers for 

MTAHVs using the time-domain maneuvers, such as the single cycle sine-wave steer input 

(SCSSI), single cycle sine-wave lateral acceleration (SCSLA), and multiple cycle sine-wave steer 

input (MCSSI), as well as the frequency-domain maneuvers, such as the pseudo-random steer input 

(PRSI) and pseudo-random binary sequence (PRBS) steer input, discloses that the AFRM 

technique bears the strengths of the time- and frequency-domain methods. With appropriate 

excitation mode and variable number of cycles, the AFRM technique achieves excellent match 

with the MCSSI in the time-domain and the PRBS in the frequency-domain in acquiring the 

frequency functions of the rearward amplification of MTAHVs. Furthermore, with the aid of the 

AFRM technique, the robust active steering systems for a tractor/semitrailer combination, such as 

the SMC based and the nonlinear SMC based active steering systems, have been optimized for 

optimal overall performance of high-speed maneuverability and stability in a frequency band of 

interest. 

9.4 Potential Applications of the CCS Strategy, Driver Model, and AFRM Technique 

Firstly, the proposed CCS for ASSs of MTAHVs may be directly applied by practice engineers to 

the chassis systems design of MTAHVs. With the proposed CCS, the active safety subsystems, 
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i.e., ATS, TDB and ARC compensate each other, restricting adverse impact and enhancing overall 

performance. The stability and maneuverability of MTAHVs may be improved significantly, and 

the accident involvement rate of the MTAHVs may be reduced considerably by using the CCS 

system. The potential benefits induced by promoted application of MTAHVs on economy and 

environment could be enormous. Secondly, the proposed unified driver model may be easily 

adopted by autonomous vehicle (single unit or multiunit) manufacturers fulfilling autonomous 

driving tasks, accommodating parametric uncertainties, un-modeled dynamics and various 

operating conditions that road vehicles inevitably face. Thirdly, the introducing the AFRM 

technique into the AHV dynamics not only solves the issues faced by the relevant standards (SAE-

J2179 and ISO-14791), i.e., disparity or mismatch between the rearward amplification (RA) 

measures of the time-domain and frequency-domain methods, but also pushes the design 

optimization of active safety systems of MTAHVs from traditionally in time-domain to frequency-

domain for more comprehensive performance evaluation.  

9.5 Future Work 

MTAHVs have large sizes and complex configurations, and face inevitably parametric 

uncertainties and un-modeled dynamics in their modeling. Rearward amplification is an important 

dynamic feature of MTAHVs, which is forward-speed and frequency dependent. With these 

concerns in mind, a robust coordinated control of MTAHVs based on the H-infinity technique, 

considering the ATS, TDB, and ARC will be designed and optimized in a speed range and a 

frequency band of interest with the aid of the AFRM technique in the future work. Compared with 

the current CCS, the newly designed CCS will bear the following changes: 1) a H-infinity based 

upper-level direct yaw/roll moment controller will replace the current LQR base direct yaw/roll 

moment controller to accommodate parametric uncertainties and un-modeled dynamics; 2) the 
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implementation of the realization module will be investigated, considering the ATS, TDB and the 

ARC systems dynamics. 
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Appendix A System Matrices and Parameters of the 

Tractor/Semitrailer Models 

The system matrices of the 3-DOF linear yaw-plane model of the tractor/semitrailer shown in 

Equations (3.7) and (3.8) are given as 

( ) ( )
( )
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, where ( ),: , 1, 2,3A i i =  means the thi row of matrix A , 

( ),: , 1,2,3, 1,2,3j i j i= =B denotes the thi  row of matrix jB .  

The system matrices of the nonlinear yaw-plane model of the tractor/semitrailer in Equation 

(9) are given as 
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The system parameters of the tractor/semitrailer combination are listed in Table A1. 

Table A1 System parameters of the tractor/semitrailer combination 

Symbol Description Nominal Value 

11a   Longitudinal distance between tractor front axle and tractor  CG ( m ) 1.115 

12b   Longitudinal distance between tractor rear axle and tractor CG ( m ) 2.585 

23b   Longitudinal distance between trailer CG and trailer axle ( m ) 4.507 

iF  Lateral tire force of the thi axle, 1,2,3i =  ( N )  

1yF  Lateral coupling force at fifth-wheel ( N )  

1zzI   Yaw mass moment of inertia of tractor ( 2.kg m ) 20,616 

2zzI  Yaw mass moment of inertia of trailer ( 2.kg m ) 113,580 

1cl   Longitudinal distance between tractor CG and fifth wheel ( m ) 1.959 

21cl   Longitudinal distance between trailer CG and fifth wheel ( m ) 5.493 

1m   Tractor total mass ( kg ) 6,525 

2m  Trailer total mass ( kg ) 11,665 
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1U  Tractor’s forward speed ( /m s )  

2U  Trailer’s forward speed ( /m s )  

1y   Lateral position of the tractor ( m )  

2y  Lateral position of the trailer ( m )  

1α  Equivalent side-slip angle of tires on the 1st axle of tractor ( rad  )  

2α  Equivalent side-slip angle of tires on the 2nd axle of tractor ( rad  )  

3α  Equivalent side-slip angle of tires on the axle of trailer ( rad )  

1β  Side-slip angle at tractor center of gravity (CG) ( rad  )  

2β  Side-slip angle at trailer CG ( rad  )   

1 fδ  Equivalent steer angle of tractor front wheels( rad  )  

2δ  Equivalent steer angle of tractor rear wheels( rad  )  

3δ  Equivalent steer angle of trailer wheels( rad  )  

1ψ  Tractor yaw angle( rad )  

2ψ  Trailer yaw angle( rad )  

ψ∆   Articulation angle between the tractor and semitrailer unit ( rad )  
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Appendix B Notation and Nominal Values of the Parameters 

of the B-Train Double Models 

Symbol Description  Nominal Value 

1α         Side slip angle of the tires of the tractor front axle ( )rad   

1lα    Side slip angle of the left tire of the tractor front axle   

1rα  Side slip angle of the right tire of the tractor front axle   

2α  Side slip angle of the tires of the tractor 1st rear axle   

2lα  Side slip angle of the left tire of the tractor 1st rear axle   

2rα  Side slip angle of the right tire of the tractor 1st rear axle   

3α    Side slip angle of the tires of the tractor 2nd rear axle   

3lα  Side slip angle of the left tire of the tractor 2nd rear axle   

3rα  Side slip angle of the  right tire of the tractor 2nd rear axle   

4α  Side slip angle of the tires of the 1st semitrailer front axle   

4lα  Side slip angle of the left tire of the 1st semitrailer front axle   

4rα  Side slip angle of the right tire of the 1st semitrailer front axle   

5α  Side slip angle of the tires of the 1st semitrailer middle axle   

5lα  Side slip angle of the left tire of the 1st semitrailer middle axle   

5rα  Side slip angle of the right tire of the 1st semitrailer middle axle   

6α  Side slip angle of the tires of the 1st semitrailer rear axle   

6lα  Side slip angle of the left tire of the 1st semitrailer rear axle   

6rα  Side slip angle of the right tire of the 1st semitrailer rear axle   

7α  Side slip angle of the tires of the 2nd semitrailer front axle   

7lα  Side slip angle of the left tire of the 2nd semitrailer front axle   

7rα  Side slip angle of the right tire of the 2nd semitrailer front axle   

8α  Side slip angle of the tires of the 2nd semitrailer middle axle   

8lα  Side slip angle of the left tire of the 2nd semitrailer middle axle   

8rα  Side slip angle of the right tire of the 2nd semitrailer middle axle   

9α  Side slip angle of the tires of the 2nd semitrailer rear axle   

9lα  Side slip angle of the left tire of the 2nd semitrailer rear axle   

9rα  Side slip angle of the right tire of the 2nd semitrailer rear axle   

1β  Side slip angle at the whole mass CG of the tractor   

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad

( )rad
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2β  Side slip angle at the whole mass CG of the 1st semitrailer   

3β  Side slip angle at the whole mass CG of the 2nd semitrailer   

1sβ  Side slip angle at the sprung mass CG of the tractor   

2sβ  Side slip angle at the sprung mass CG of the 1st semitrailer ( )rad   

3sβ  Side slip angle at the sprung mass CG of the 2nd semitrailer ( )rad   

11δ  Front wheel steer angle of the tractor ( )rad   

4δ  Steer angle of the 1st semitrailer front axle ( )rad   

5δ  Steer angle of the 1st semitrailer middle axle ( )rad   

6δ  Steer angle of the 1st semitrailer rear axle ( )rad   

7δ  Steer angle of the 2nd semitrailer front axle ( )rad   

8δ  Steer angle of the 2nd semitrailer middle axle ( )rad   

9δ  Steering angle of the 2nd semitrailer rear axle ( )rad   

1ψɺ  Yaw rate of the whole mass of the tractor ( )rad s   

2ψɺ  Yaw rate of the whole mass of the 1st semitrailer ( )rad s   

3ψɺ  Yaw rate of the whole mass of the 2nd semitrailer ( )rad s   

1φ  Roll angle of the sprung mass of the tractor about its roll axis ( )rad    

2φ  Roll angle of the sprung mass of the 1st semitrailer about its roll axis ( )rad   

3φ  Roll angle of the sprung mass of the 2nd semitrailer about its roll axis ( )rad   

1tφ  Roll angle of the unsprung mass of the tractor about its roll axis ( )rad   

2tφ  Roll angle of the unsprung mass of the 1st semitrailer about its roll axis ( )rad   

3tφ  Roll angle of the unsprung mass of the 2nd semitrailer about its roll axis ( )rad   

iσ  Longitudinal slip ratio of the 
thi wheel, 1 ,1 ,2 ,2 , ,9 ,9i l r l r l r= ⋯     

11a  Longitudinal distance between the whole mass CG of the tractor and its front axle 

( )m  
1.999 

11sa  Longitudinal distance between the tractor sprung mass CG and its front axle ( )m  1.384 

11ua  Longitudinal distance between the tractor unsprung mass CG and its front axle 

( )m  
3.988 

2a  Longitudinal distance between the whole mass CG of the 1st semitrailer and the 
1st coupling point ( )m  

6.973 

2sa  Longitudinal distance between the 1st semitrailer sprung mass CG and the 1st 

coupling point ( )m  

6.385 

2.ua  Uncertain longitudinal distance between the 1st coupling point and the whole mass 
CG of the 1st semitrailer ( )m  

 

3a  Longitudinal distance between the whole mass CG of the 2nd semitrailer and the 
2nd coupling point ( )m  

6.973 

3sa  Longitudinal distance between the 2nd semitrailer sprung mass CG and the 2nd 

coupling point ( )m  

6.385 

( )rad

( )rad

( )rad
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3.ua  Uncertain longitudinal distance between the 2nd coupling point and the whole 
mass CG of the 2nd semitrailer ( )m  

 

1xa  Longitudinal acceleration at the whole mass CG of the tractor ( )2/ sm   

2xa  Longitudinal acceleration at the whole mass CG of the 1st semitrailer ( )2/ sm  
 

2xa  Longitudinal acceleration at the whole mass CG of the 2nd semitrailer ( )2/ sm  
 

1ya  Lateral acceleration at the whole mass CG of the tractor ( )2/ sm  
 

2ya  Lateral acceleration at the whole mass CG of the 1st semitrailer ( )2/ sm  
 

3ya  Lateral acceleration at the whole mass CG of the 2nd semitrailer ( )2/ sm  
 

1y sa  Lateral acceleration at the sprung mass CG of the tractor ( )2/ sm   

2y sa  Lateral acceleration at the sprung mass CG of the 1st semitrailer ( )2/ sm   

3y sa  Lateral acceleration at the sprung mass CG of the 2nd semitrailer ( )2/ sm   

12b  Longitudinal distance between the tractor whole mass CG and its 1st rear axle 

( )m  

3.001 

12 sb  Longitudinal distance between the tractor sprung mass CG and its 1st rear axle 

( )m  

3.616 

12ub  Longitudinal distance between the tractor unsprung mass CG and its 1st rear axle 

( )m  

1.012 

13b  Longitudinal distance between the tractor whole mass CG and its 2nd rear axle 

( )m  

4.271 

13sb  Longitudinal distance between the tractor sprung mass CG and its 2nd rear axle 

( )m  

4.886 

13ub  Longitudinal distance between the tractor unsprung mass CG and its 2nd rear axle 

( )m  

2.282 

24b  Longitudinal distance between the 1st semitrailer whole mass CG  and its front 

axle ( )m   

3.257 

24sb  Longitudinal distance between the 1st semitrailer sprung mass CG and its front 

axle ( )m  

3.85 

24ub  Longitudinal distance between the 1st semitrailer unsprung mass CG  and its front 

axle ( )m  

 

25b  Longitudinal distance between the whole mass CG of the 1st semitrailer and its 

middle axle ( )m  

4.527 

25sb  Longitudinal distance between the 1st sprung mass CG and its middle axle ( )m  5.12 

26b  Longitudinal distance between the whole mass CG of the 1st semitrailer and its 

rear axle ( )m  

5.797 

26sb  Longitudinal distance between the sprung mass CG of the 1st semitrailer and its 

rear axle ( )m  

6.39 
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37b  Longitudinal distance between the whole mass CG of the 2nd semitrailer and its 

front axle ( )m  

3.257 

37 sb  Longitudinal distance between the 2nd sprung mass CG of the 2nd semitrailer and 

its front axle ( )m  

3.85 

38b  Longitudinal distance between the whole mass CG of the 2nd semitrailer and its 

middle axle ( )m  

4.527 

38sb  Longitudinal distance between the 2nd sprung mass CG and its middle axle ( )m  5.12 

39b  Longitudinal distance between the whole mass CG of the 2nd semitrailer and its 

rear axle ( )m  

5.797 

39 sb  Longitudinal distance between the 2nd sprung mass CG  of the 2nd semitrailer and 

its rear axle ( )m  

6.39 

1C  Combined cornering stiffness of the tires of the tractor front axle ( )N rad       424,000 

2C  Combined cornering stiffness of the tires of the 1st rear axle of the tractor ( )N rad      420,200 

3C  Combined cornering stiffness of the tires of the 2nd rear axle of the tractor 

( )N rad       

420,200 

4C  Combined cornering stiffness of the tires of the front axle of the 1st semitrailer 

( )N rad       

581,900 

5C  Combined cornering stiffness of the tires of the middle axle of the 1st semitrailer 

( )N rad       

581,900 

6C  Combined cornering stiffness of the tires of the rear axle of the 1st semitrailer 

( )N rad       

581,900 

7C  Combined cornering stiffness of the tires of the front axle of the 2nd semitrailer 

( )N rad       

346,500 

8C  Combined cornering stiffness of the tires of the middle axle of the 2nd semitrailer 

( )N rad       

346,500 

9C  Combined cornering stiffness of the tires of the rear axle of the 2nd semitrailer 

( )N rad       

346,500 

1sC  Combined longitudinal slip coefficient of the tires on the tractor front axle 170,000 

2sC  Combined longitudinal slip coefficient of the tires on the 1st rear axle of the tractor 180,000 

3sC  Combined longitudinal slip coefficient of the tires on the 2nd rear axle of the 
tractor 

180,000 

4sC  Combined longitudinal slip coefficient of the tires on the 1st semitrailer front axle 290,000 

5sC  Combined longitudinal slip coefficient of the tires on the 1st semitrailer middle 
axle 

290,000 

6sC  Combined longitudinal slip coefficient of the tires on the 1st semitrailer rear axle 290,000 

7sC  Combined longitudinal slip coefficient of the tires on the 2nd semitrailer front axle 190,000 

8sC  Combined longitudinal slip coefficient of the tires on the 2nd semitrailer middle 
axle 

190,000 

9sC  Combined longitudinal slip coefficient of the tires on the 2nd semitrailer rear axle 190,000 

11d  Track width of the tractor front axle ( )m  1.98 

1d  Track width of the tractor rear axles ( )m  1.65 
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2d  Track width of the 1st semitrailer ( )m   1.65 

3d  Track width of the 2nd semitrailer ( )m  1.65 

xd  Longitudinal distance between each axle of the semitrailer ( )m  1.27 

1cxF  Longitudinal coupling force at the 1st coupling point ( )N   

2cxF  Longitudinal coupling force at the 2nd coupling point ( )N   

1cyF  Lateral coupling force at the 1st coupling point ( )N   

2cyF  Lateral coupling force at the 2nd coupling point ( )N   

xiF  Longitudinal force of the tires on the 
thi ( )1, 2, ,9i = ⋯  axle ( )N   

yiF  Lateral force of the tires on the 
thi ( )1, 2, ,9i = ⋯  axle ( )N   

ziF  Normal force of the thi ( )1 ,1r, 2 , ,9i l l r= ⋯  tire ( )N   

rf  Longitudinal resistance coefficient 0.02 

1ch  Height of the 1st coupling point measured upwards from the ground ( )m  1.1 

2ch  Height of the 2nd coupling point measured upwards from the ground ( )m  1.1 

1cgh  Height of the whole mass CG of the tractor ( )m    0.9 

2cgh  Height of the whole mass CG of the 1st semitrailer ( )m    1.435 

3cgh  Height of the whole mass CG of the 2nd semitrailer ( )m    1.435 

rih  Height of the roll center of the sprung/unsprung masses of the ( )1,2,3thi i =  

unit measured upwards from the ground ( )m  

0.705 

crih   Height of the coupling point measured upwards from the roll center of the 

( )1,2,3thi i =  unit ( )m  

0.395 

1sh   Height of the sprung mass CG of the tractor measured upwards from the ground 

( )m  

1.019 

2sh   Height of the sprung mass CG of the 1st semitrailer measured upwards from the 

ground ( )m  

1.555 

3sh   Height of the sprung mass CG of the 2nd semitrailer measured upwards from the 

ground ( )m  

1.555 

1uh  Height of the tractor unsprung mass CG measured upwards from the ground 

( )m  

0.519 

2uh  Height of the 1st semitrailer unsprung mass CG measured upwards from the 

ground ( )m  

0.51 

3uh  Height of the 2nd semitrailer unsprung mass CG measured upwards from the 

ground ( )m  

0.51 

sxxiI  Roll moment of inertia of the sprung mass of the ( )1,2,3thi i = unit measured 

about the CG of the sprung mass ( )2kgm  

6,879 
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sxziI   Yaw-roll product of inertia of the sprung mass of the ( )1,2,3thi i = unit measured 

about the CG of the sprung mass ( )2kgm  

130 

1u xxI   Roll moment of inertia of the unsprung mass of the tractor measured about the 

CG of the unsprung mass ( )2kgm  

867 

2u xxI  Roll moment of inertia of the unsprung mass of the 1st semitrailer measured about 

the CG of the unsprung mass ( )2kgm  

798 

3u xxI  Roll moment of inertia of the unsprung mass of the 2nd semitrailer measured about 

the CG of the unsprung mass ( )2kgm  

798 

1u xzI   Yaw-roll product of inertia of the unsprung mass of the tractor measured about 

the CG of the unsprung mass ( )2kgm  

0 

2u xzI   Yaw-roll product of inertia of the unsprung mass of the 1st semitrailer measured 

about the CG of the unsprung mass ( )2kgm  

0 

3u xzI   Yaw-roll product of inertia of the unsprung mass of the 2nd semitrailer measured 

about the CG of the unsprung mass ( )2kgm  

0 

1zzI   Yaw moment of inertia of the whole mass of the tractor, measured about the 

whole mass CG ( )2kgm  

43,996 

2zzI  Yaw moment of inertia of the whole mass of the 1st semitrailer, measured about 

the whole mass CG ( )2kgm  

490,940 

3zzI   Yaw moment of inertia of the whole mass of the 2nd semitrailer, measured about 

the whole mass CG ( )2kgm  

490,940 

12K  Roll stiffness of the fifthwheel between the tractor and 1st semitrailer ( )Nm rad  550,000 

23K  Roll stiffness of the fifthwheel between the 1st and 2nd semitrailers ( )Nm rad  550,000 

bK  Brake gain of each wheel in the tridem wheel groups ( )/ aNm MP  14,286 

1r fK   Roll stiffness of the front suspension of the tractor adjusted with the tire vertical 

stiffness ( )Nm rad  

700,000 

1r rK  Roll stiffness of the rear suspension group of the tractor adjusted with the tire 

vertical stiffness ( )Nm rad  

1100,000 

2rK   Roll stiffness of the suspension (group) of the 1st semitrailer adjusted with the tire 

vertical stiffness ( )Nm rad  

2000,000 

3rK  Roll stiffness of the suspension (group) of the 2nd semitrailer adjusted with the 

tire vertical stiffness ( )Nm rad  

2200,000 

1t fK  Tire roll stiffness of the tractor front axle ( )Nm rad  900,000 

1t rK  Tire roll stiffness of the tractor rear axle ( )Nm rad  1,500,000 

2tK  Tire roll stiffness of the axle (group) of the 1st semitrailer ( )Nm rad  6,000,000 

3tK  Tire roll stiffness of the axle (group) of the 2nd semitrailer ( )Nm rad  5,200,000 
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1cl   Longitudinal distance between the whole mass CG of the tractor and the 1st 

coupling point ( )m  

3.636 

21cl  Longitudinal distance between the whole mass CG of the 1st semitrailer and the 

1st coupling point ( )m  

6.973 

22cl   Longitudinal distance between the whole mass CG of the 1st semitrailer and the 

2nd coupling point ( )m  

5.597 

3cl  Longitudinal distance between the whole mass CG of the 2nd semitrailer and the 

2nd coupling point ( )m  

6.973 

1r fL  Roll damping coefficient of the tractor front suspension ( )Nms rad  50,000 

1r rL  Roll damping coefficient of the tractor rear suspension group ( )Nms rad        80,000 

2rL  Roll damping coefficient of the 1st semitrailer suspension group ( )Nms rad  120,000 

3rL  Roll damping coefficient of the 2nd semitrailer suspension group ( )Nms rad  120,000 

1m  Whole mass of the tractor ( )kg   8,258 

1sm  Sprung mass of the tractor ( )kg  6,308 

1um  Unsprung mass of the tractor ( )kg  1,950 

2m  Whole mass of the 1st semitrailer ( )kg  17,997 

2sm  Sprung mass of the 1st semitrailer ( )kg  15,927 

2um  Unsprung mass of the 1st semitrailer ( )kg  2,070 

2.um  Uncertain whole mass of the 1st semitrailer ( )kg   

3sm  Sprung mass of the 2nd semitrailer ( )kg  15,927 

3um  Unsprung mass of the 2nd semitrailer ( )kg  2,070 

3.um  Uncertain whole mass of the 2nd semitrailer ( )kg   

1 /x f rM  External roll moment of the front/rear axle (group) of the tractor ( )Nm   

2xM  External roll moment of the 1st semitrailer ( )Nm   

3xM  External roll moment of the 2nd semitrailer ( )Nm   

1yM  Pitch moment of the tractor sprung mass ( )Nm    

2zM  External yaw moment of the 1st semitrailer ( )Nm   

3zM  External yaw moment of the 2nd semitrailer ( )Nm   

1
Nβ  Partial derivative of the net tyre yaw moment with respect to the sideslip angle at 

the whole mass CG of the tractor ( )/Nm rad  

2208,200 

2
Nβ  Partial derivative of the net tyre yaw moment with respect to the sideslip angle at 

the whole mass CG of the 1st semitrailer ( )/Nm rad  

7,902,300 

3
Nβ  Partial derivative of the net tyre yaw moment with respect to the sideslip angle at 

the whole mass CG of the 2nd semitrailer ( )/Nm rad  

4,705,500 

11
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer angle 

of the tractor front axle ( )Nm rad  

847,530 
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4
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer angle 

of the 1st semitrailer front axle ( )Nm rad  

-1,895,100 

5
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer angle 

of the 1st semitrailer middle axle ( )Nm rad  

-2,634,100 

6
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer 

angle of the 1st semitrailer rear axle ( )Nm rad  

-3,373,100 

7
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer angle 

of the 2nd semitrailer front axle ( )Nm rad  

-1,128,400 

8
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer angle 

of the 2nd semitrailer middle axle ( )Nm rad  

-1,568,500 

9
Nδ  Partial derivative of the net tyre yaw moment with respect to the wheel steer angle 

of the 2nd semitrailer rear axle ( )Nm rad  

-2,008,600 

1
Nψɺ  Partial derivative of the net tyre yaw moment with respect to the yaw rate at the 

whole mass CG of the tractor ( )Nms rad  

-1,314,400 

2
Nψɺ  Partial derivative of the net tyre yaw moment with respect to the yaw rate at the 

whole mass CG of the 1st semitrailer ( )Nms rad  

-3,764,800 

3
Nψɺ  Partial derivative of the net tyre yaw moment with respect to the yaw rate at the 

whole mass CG of the 2nd semitrailer ( )Nms rad  

-2,241,800 

2ap  Relative error from the nominal value of the longitudinal distance 
2a    

3ap  Relative error from the nominal value of the longitudinal distance 
3a   

2mp  Relative error from the nominal value of the whole of the 1st semitrailer  

3mp  Relative error from the nominal value of the whole of the 2nd semitrailer  

wr  Effective rolling radius of the semitrailer wheel ( )m   0.51 

dT  Drive torque ( )N m⋅   

U  Forward speed at the whole mass CG of the unit  

iV  Lateral speed at the whole mass CG of the ( )1,2,3thi i = unit   

yp j
iV
�

 Velocity of the thi ( 1, 2,3i = ) unit at the thj  ( 1,2j = ) coupling point 

represented in the
thi body-fixed coordinate system ( m s ) in the yaw-plane model  

 

yr j
iV
�

 Velocity of the 
thi ( 1, 2,3i = ) unit at the thj  ( 1,2j = ) coupling point 

represented in the
thi body-fixed coordinate system ( m s ) in the yaw-roll model 

 

yp j
iOV
�

 Inertia coordinate system representation of yp j
iV
�

  

yr j
iOV
�

 Inertia coordinate system representation of yr j
iV
�

  

1Y  Lateral position of the tractor front axle center ( )m   

2Y  Lateral position of the whole mass CG of the 1st semitrailer ( )m   

3Y  Lateral position of the whole mass CG of the 2nd semitrailer ( )m   

1
Yβ  Partial derivative of the net tyre lateral force with respect to the sideslip angle at 

the whole mass CG of the tractor ( )N rad  

-1,264,400 
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2
Yβ  Partial derivative of the net tyre lateral force with respect to the sideslip angle at 

the whole mass CG of the 1st semitrailer ( )N rad  

-1,745,700 

3
Yβ  Partial derivative of the net tyre lateral force with respect to the sideslip angle at 

the whole mass CG of the 2nd semitrailer ( )N rad  

-1,039,500 

11
Yδ   Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the tractor front axle ( )N rad  

424,000 

4
Yδ   Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the 1st semitrailer front axle ( )N rad  

581,900 

5
Yδ  Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the 1st semitrailer middle axle ( )N rad  

581,900 

6
Yδ  Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the 1st semitrailer rear axle ( )N rad  

581,900 

7
Yδ  Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the 2nd semitrailer front axle ( )N rad  

346,500 

8
Yδ  Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the 2nd semitrailer middle axle ( )N rad  

346,500 

9
Yδ  Partial derivative of the net tyre lateral force with respect to the wheel steer angle 

of the 2nd semitrailer rear axle ( )N rad  

346,500 

1
Yψɺ  Partial derivative of the net tyre lateral force with respect to the yaw rate at the 

whole mass CG of the tractor ( )Ns rad  

220,820 

2
Yψɺ  Partial derivative of the net tyre lateral force with respect to the yaw rate at the 

whole mass CG of the 1st semitrailer ( )Ns rad  

790,230 

3
Yψɺ  Partial derivative of the net tyre lateral force with respect to the yaw rate at the 

whole mass CG of the 2nd semitrailer ( )Ns rad  

470,550 
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Appendix C System Matrices of the Yaw-roll Model of the 

B-Train Double 

The system matrices of the yaw-roll model of the B-train double are given as follows. 18 18×∈M R , 
and the nonzero elements of M are given:  
 

( ) ( )1 1 1 1 1  1, 2 sxz c s s rI l m hM h= − − , ( ) 1 11,3 clM m U= − , ( ) 11, 4 zzM I= − , ( ) 1 12,1 r f r rM L L= + , 

( ) ( ) ( )2
1 1 1 1 1 1 1 12, 2 sxx s s r cr s s rM I m h h h m h h= + − −− , ( ) ( )1 1 1 1 12,3 s s r crM m U h h h m U= − − , ( ) 12, 4 sxzM I= − , 

( ) 1 12,13 r f r rM L L= − − , ( ) 1 13,1 r f r rM L L+= , ( ) ( )1 1 13,3 u u rm U hM h− −= , ( ) 13, 4 u xzM I= , 

( ) ( )1 13,13 r f r rM L L− += , ( ) ( )1 1 14, 2 s s rm hM h−= , ( ) 14,3M m U= , ( ) ( )2 2 24,6 s s rm hM h−= , ( ) 24,7M m U=

, ( ) ( )3 3 34,10 s s rM m h h−= , ( ) 34,11M m U= , ( ) ( )21 1 1 15,2 c s s rl m hM h−= , ( ) 21 15,3 cM l m U= , ( ) 25,6 sxzM I−= , 

( ) 25,8 zzM I= , ( ) ( )22 3 3 35,10 c s s rM l m h h−−= , ( ) 22 35,11 cM l m U= − , ( ) ( )2 1 1 16,2 cr s s rh m hM h−= , ( ) 2 16,3 crM h mU= , 

( ) 26,5 rM L= , ( ) ( )2
2 2 2 26, 6 xx s s rI m hM h+ −= , ( ) ( )2 2 26,7 s s rm U hM h−= , ( ) 26,8 sxzM I−= , 

( ) ( )3 3 3 36,10 cr s s rh m hM h−= , ( ) 3 36,11 crhM m U= , ( ) 26,15 rM L= − , ( ) 27,5 rM L= , ( ) ( )2 2 27,7 u u rM m U h h−−= , 

( ) 27,8 u xzM I= , ( ) 27,15 rM L= − , ( ) ( )2
2 2 2 27,16 u xx u u rM I m h h−= − − , ( ) ( )3 3 3 3 38,10 c s s r xzl m h hM I− += , 

( ) 3 38,11 clM m U= , ( ) 38,12 zzM I= − , ( ) 39,9 rM L= , ( ) ( ) ( )2
3 3 3 3 3 3 3 39,10 sxx s s r cr s s rI m h h h m h hM + − −= − , 

( ) ( )3 3 3 3 39,11 s s r crM m U h h h m U− −= , ( ) 39,12 sxzIM −= , ( ) 39,17 rM L= − , ( ) 310,9 rM L= − , ( ) ( )3 3 310,11 u u rM m U h h−= , 

( ) 310,12 u xzM I= − , ( ) 310,17 rM L= , ( ) ( )2
3 3 3 310,18 u xx u u rI m hM h+ −= , ( ) 111,2 crM h= , ( )11,3M U= , ( ) 111, 4 cM l= −

, ( ) 211,6 crM h= − , ( )11,7M U= − , ( ) 2111,8 cM l= − , ( ) 212,6 crM h= , ( )12,7M U= , ( ) 2212,8 cM l= − , 

( ) 312,10 crM h= − , ( )12,11M U= − , ( ) 31 2,1 2 cM l= − , ( )13,1 1M = , ( )14, 5 1M = , ( )15, 9 1M = , ( )1 6,1 3 1M = , 

( )17,15 1M = , ( )18,17 1M = . 

 
18 18×∈N R , and the nonzero elements of N are given:   

 
( )

1 111,3 cN N l Yβ β= + , ( )
1 11 1 11, 4 c cN l Y lN m Uψ ψ −= +ɺ ɺ , ( ) ( ) ( )1 1 12 1 1 12,1 r f r r s s rN K K K m g h h+= + − − , 

( )
112, 3 crN h Yβ= , ( ) ( )

11 1 1 1 1 12, 4 s s r cr crN m U h h h Y h m Uψ= − + −ɺ , ( ) 122,5N K= − , ( ) 1 12,13 r rf rN K K= − − ,

( ) 1 13,1 r f r rN K K+= , ( )
113,3 rhN Yβ−= , ( ) ( )

11 1 1 13, 4 r u u rN h Y m U h hψ= −− −ɺ , 

( ) ( )1 1 1 1 1 1 13,13 u u r r f r r t f t rN m g h h K K K K− −= − − − , ( )
1

4,3 YN β= − , ( )
114,4 m UN Yψ−= ɺ , ( )

2
4,7 YN β= − , 

( )
224,8 m UN Yψ= − ɺ , ( )

3
4,11 YN β= − , ( )

334,12 m UN Yψ−= ɺ , ( )
1215,3 clN Yβ−= ; ( )

121 1 215,4 c cl m U l YN ψ−= ɺ , 

( )
2

5,7 NN β= − , ( )
2

5,8 NN ψ= − ɺ , ( )
3225,11 clN Yβ= , ( )

322 22 35,12 c cl Y l m UN ψ −= ɺ , ( ) 126,1N K= − , ( )
126,3 crhN Yβ−= , 

( )
12 1 26, 4 cr crh m U h YN ψ= − ɺ , ( ) ( )2 12 23 2 2 26,5 r s s rK K K m gN h h= + + − − , ( ) ( )2 2 26,8 s s rm U hN h−= , 

( ) 236,9N K= − , ( )
336,11 crhN Yβ−= , ( )

33 3 36,12 cr crh m U h YN ψ= − ɺ , ( ) 26,15 rN K= − , ( ) 27,5 rN K= , 
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( )
227, 7 rhN Yβ−= , ( ) ( )

22 2 2 27,8 u u r rm U h h YN h ψ− −= − ɺ , ( ) ( ) ( )2 2 2 2 27,15 u u r r trm g h K KN h − +−= , 

( )
3 338,11 cN N l Yβ β= − , ( )

3 33 3 38,12 c cN l m U N l Yψ ψ+= −ɺ ɺ , ( ) 239,5N K= − , ( ) ( )23 3 3 3 39,9 r s s rN K K m g h h= + − − , 

( )
339,11 crhN Yβ= , ( ) ( )

33 3 3 3 3 39,12 s s r cr crm U h h h YN h m Uψ− + −= ɺ , ( ) 39,17 rN K= − , ( ) 310,9 rN K= − , ( )
3310,11 rN h Yβ= , 

( ) ( )
33 3 3 310,12 u u r rm U h YN h h ψ−= + ɺ , ( ) ( )3 3 3 3 310,17 r t u u rK m g h hN K − −= + , ( )11, 4N U= , ( )11,8N U= − , 

( )12,8N U= , ( )12,12N U= − , ( )13, 2 1N = − , ( )14,6 1N = − , ( )15,10 1N = − , ( )16,14 1N = − , ( )17,16 1N = − , 

( )18,18 1N = −  

 
18 1×∈Q R , and the nonzero elements of Q  are given:  

  
( )

1 111,1
f fcN lQ Yδ δ= + , ( )

112,1
fcrQ h Yδ= , ( )

113,1
frQ h Yδ= − , ( )

1
4,1

f
Q Yδ= − , ( )

1215,1
fcQ l Yδ−= ,

( )
126,1

fcrQ h Yδ= − . 

 
18 4×∈R R , and the nonzero elements of R  are given:   

 
( )2,1 1R = − , ( )2, 2 1R = − , ( )3,1 1R = − , ( )3, 2 1R = − , ( )6,3 1R = − , ( )7,3 1R = , ( )9, 4 1R = − , ( )10, 4 1R = . 

 
18 2×∈W R , and the nonzero elements of W are ( )5,1 1W = −  and ( )8, 2 1W = . 

( ) ( )
( ) ( )
( ) ( )

3,: 1,:

7,: 2,:

11,: 3,:

UA U

UA U

UA U

+ 
 + =
 +
 
 

S

S
C

S

P

 , 

( )
( )
( )
6 6

3,:

7,:

11,:

U

U

U

×

 
 
 =
 
 
  

B

B
D

B

0

 and 

( )
( )
( )

6 1

3,:

7,:

11,:

dd

dd
dd

dd

U

U

U

×

 
 
 =
 
 
  

B

B
D

B

0

  

 
where 3 18×∈S R  and its nonzero elements are ( )1, 4 1=S , ( )2,8 1=S , and ( )3,12 1=S . 6 18×∈P R and its 

nonzero elements are ( )1,1 1=P , ( )2,13 1=P , ( )3,5 1=P , ( )4,15 1=P , ( )5,9 1=P  and ( )6,17 1=P . 
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Appendix D System Matrices of the Linear Yaw-plane 

Model of the B-train Double 

The system matrices of the yaw-plane model of the B-train double are given as follows. 6 6×∈J R , 

and the zero elements of J are given:  

( ) 1 11,1 cJ l m U= , ( ) 11, 2 zzJ I= , ( ) 12,1J m U= , ( ) 22, 3J m U= , ( ) 32, 5J m U= , ( ) 21 13,1 cJ l m U= , ( ) 23, 4 zzJ I=

, ( ) 22 33, 5 cJ l m U= − , ( ) 3 34, 5 cJ l m U= − , ( ) 34, 6 zzJ I= , ( )5,1 1J = , ( ) 15,2 clJ
U

= − , ( )5, 3 1J = − , 

( ) 215, 4 clJ
U

= − , ( )6, 3 1J = , ( ) 226,4 clJ
U

= − , ( )6, 5 1J = − , ( ) 36, 6 clJ
U

= − . 

6 6×∈K R , and the nonzero elements of K are given:  

( ) ( )
1 111,1 cK N l Yβ β= − + , ( ) ( )

1 11 1 11,2 c cK N l mU l Yψ ψ= − − +ɺ ɺ , ( )
1

2,1K Yβ= − , ( )
112 , 2K m U Yψ= − ɺ

, 

( )
2

2 , 3K Yβ= − , ( )
222 , 4K m U Yψ= − ɺ

, ( )
3

2 , 5K Yβ= − , ( )
332 , 6K m U Yψ= − ɺ

,  ( )
1213,1 cK l Yβ= − , 

( )
121 1 2 13, 2 c cK l m U l Yψ= − ɺ

, ( )
2

3, 3K N β= − , ( )
2

3, 4K Nψ= − ɺ
, ( )

32 23, 5 cK l Yβ= , ( )
322 22 33, 6 c cK l Y l m Uψ= −ɺ

, 

( )
3 334 , 5 cK l Y Nβ β= − , ( )

3 33 3 34, 6 c cK l Y l m U Nψ ψ= − −ɺ ɺ
, ( )5, 2 1K = , ( )5, 4 1K = − , ( )6, 4 1K = , ( )6, 6 1K = − . 

6 1×∈L R , and the nonzero elements of L are given: 

( ) ( )
11 1111,1 cL N l Yδ δ= − + , ( )

11
2,1L Yδ= − , ( )

1 1213,1 cL l Yδ= − . 

6 6×∈T R , and its nonzero elements are given: 

( )
4

2,1T Yδ= − , ( )
5

2, 2T Yδ= − , ( )
6

2, 3T Yδ= − , ( )
7

2, 4T Yδ= − , ( )
8

2, 5T Yδ= − , ( )
9

2, 6T Yδ= − , ( )
4

3,1T N δ= − , 

( )
5

3, 2T N δ= − , ( )
6

3, 3T N δ= − , ( )
7223, 4 cT l Yδ= , ( )

8223, 5 cT l Yδ= , ( )
9223, 6 cT l Yδ= , ( )

7 734, 4 cT l Y Nδ δ= − , 

( )
8 834, 5 cT l Y Nδ δ= − , ( )

9 934, 6 cT l Y Nδ δ= − . 

6 2×∈V R  and its nonzero elements are given: 

( )3,1 1V = − , ( )4, 2 1V = .  
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Appendix E System Matrices of the Nonlinear Yaw-plane 

Model of the B-train Double 

1 1

1 2 3

21 1 22 3

3 3

0 0 0 0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 1 0 1 0 0

0 0 0 1 0 1

c

c c
n

c

l m U

mU m U m U

l m U l m U

l m U

− 
 − − − 
 −

=  
 
 −
 

−  

K , 

0 0

0 0

1 0

0 1

0 0

0 0

n

 
 
 
 

=  
 
 
 
  

R , 

( ) ( ) ( )

11 1 1 12 1 13

21 21 21 24 25 26 22 22 22

37 3 38 3 39 3

0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

c c c

c c c c c c

n
c c c

a l l b l b

l l l b b b l l l

b l b l b l

+ − − 
 
 
 − − − − − −

=  
− + − + − + 

 
 
  

L . 
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Appendix F State Variables of the EoM Yaw-roll Model and 

Resulted Forces and Moments of the B-train Double 

State variables of the EoM yaw-roll model of the B-train double are listed in Table F1. 

Table F1 State variables of the EoM yaw-roll model of the B-train double 
Rigid bodies Locations and orientations ( )ip   First-order time derivatives ( )ipɺ  

 
 
 

Tractor sprung mass ( )1B   

1: longitudinal position ( 1x ) 

2: lateral position ( 1y ) 

3: vertical position ( 1z ) 

4: roll angle ( 1φ ) 

5: pitch angle ( 1θ ) 

6: yaw angle ( 1ψ ) 

37: longitudinal speed ( 1xɺ ) 

38: lateral speed ( 1yɺ ) 

39: vertical speed ( 1zɺ ) 

40: roll rate ( 1φɺ ) 

41: pitch rate ( 1θɺ ) 

42: yaw rate ( 1ψɺ ) 

 
 
 

Tractor unsprung mass ( )2B  

7: longitudinal position ( 1tx ) 

8: lateral position ( 1ty ) 

9: vertical position ( 1tz ) 

10: roll angle ( 1tφ ) 

11: pitch angle ( 1tθ ) 

12: yaw angle ( 1tψ ) 

43: longitudinal speed ( 1txɺ )  

44: lateral speed ( 1tyɺ ) 

45: vertical speed ( 1tzɺ ) 

46: roll rate ( 1tφɺ ) 

47: pitch rate ( 1tθɺ ) 

48: yaw rate ( 1tψɺ ) 

 
 
 

1st semitrailer sprung mass 
( )3B  

13: longitudinal position ( 2x ) 

14: lateral position ( 2y ) 

15: vertical position ( 2z ) 

16: roll angle ( 2φ ) 

17: pitch angle ( 2θ ) 

18: yaw angle ( 2ψ ) 

49: longitudinal speed ( 2xɺ ) 

50: lateral speed ( 2yɺ ) 

51: vertical speed ( 2zɺ ) 

52: roll rate ( 2φɺ ) 

53: pitch rate ( 2θɺ ) 

54: yaw rate ( 2ψɺ ) 

 
 

1st semitrailer unsprung 
mass ( )4B  

 

19: longitudinal position ( 2tx ) 

20: lateral position ( 2ty ) 

21: vertical position ( 2tz ) 

22: roll angle ( 2tφ ) 

23: pitch angle ( 2tθ ) 

24: yaw angle ( 2tψ ) 

55: longitudinal speed ( 2txɺ )  

56: lateral speed ( 2tyɺ ) 

57: vertical speed ( 2tzɺ ) 

58: roll rate ( 2tφɺ ) 

59: pitch rate ( 2tθɺ ) 

60: yaw rate ( 2tψɺ ) 

 
 

2nd semitrailer sprung mass 
( )5B  

25: longitudinal position ( 3x ) 

26: lateral position ( 3y ) 

27: vertical position ( 3z ) 

28: roll angle ( 3φ ) 

29: pitch angle ( 3θ ) 

30: yaw angle ( 3ψ ) 

61: longitudinal speed ( 3xɺ ) 

62: lateral speed ( 3yɺ ) 

63: vertical speed ( 3zɺ ) 

64: roll rate ( 3φɺ ) 

65: pitch rate ( 3θɺ ) 

66: yaw rate ( 3ψɺ ) 

 
 

31: longitudinal position ( 3tx ) 

32: lateral position ( 3ty ) 

33: vertical position ( 3tz ) 

67: longitudinal speed ( 3txɺ )  

68: lateral speed ( 3tyɺ ) 

69: vertical speed ( 3tzɺ ) 
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2nd semitrailer unsprung 
mass ( )6B  

34: roll angle ( 3tφ ) 

35: pitch angle ( 3tθ ) 

36: yaw angle ( 3tψ ) 

70: roll rate ( 3tφɺ ) 

71: pitch rate ( 3tθɺ ) 

72: yaw rate ( 3tψɺ ) 

 

Complete list of the state variables employed for the tire model and the resulted forces and 
moments to the EoM yaw-roll model are illustrated in Table F2.  

Table F2 Complete list of the state variables for the tire model and the resulted forces and moments to the EoM model 

Rigid bodies State variables  External forces (moments) 
Tractor unsprung mass 
( )2B   

43: longitudinal speed ( 1txɺ )  

44: lateral speed ( 1tyɺ ) 

46: roll rate ( 1tφɺ ) 

48: yaw rate ( 1tψɺ ) 

43: longitudinal force ( 1x tF )  

44: lateral force (
1y tF ) 

46: roll moment  ( 1xtM ) 

48: yaw moment ( 1ztM ) 

1st trailer unsprung mass 
( )4B  

55: longitudinal speed ( 2txɺ )  

56: lateral speed ( 2tyɺ ) 

58: roll rate ( 2tφɺ ) 

60: yaw rate ( 2tψɺ ) 

55: longitudinal force ( 2xtF )  

56: lateral force (
2y tF ) 

58: roll moment  ( 2xtM ) 

60: yaw moment ( 2ztM ) 

2nd trailer unsprung mass 
( )6B  

67: longitudinal speed ( 3txɺ )  

68: lateral speed ( 3tyɺ ) 

70: roll rate ( 3tφɺ ) 

72: yaw rate ( 3tψɺ ) 

67: longitudinal force ( )3xtF  

68: lateral force ( )3ytF  

70: roll moment ( 3xtM ) 

72: yaw moment ( 3ztM ) 

 

 

 

 

 

 

 

 

 

 



PhD Thesis – Shenjin Zhu                                     University of Ontario Institute of Technology 
 

232 
 

Appendix G Matrices of the Augmented Linear Yaw-plane 

Model for the SMC-Based Preview Driver Model Design 

The process matrix 12 12
d

×∈A R  and its nonzero elements are given as  

( ) 11, 2dA u= , ( )1,3 1dA = , ( ) 111, 4dA a= , ( )2, 4 1dA = , ( ) ( )3,3 1,1d pA A= , ( ) ( ) 13,4 1,2d pA A u= , 

( ) ( )3,7 1,3d pA A= , ( ) ( ) 13,8 1,4d pA A u= , ( ) ( )3,11 1,5d pA A= , ( ) ( ) 13,12 1,6d pA A u= , ( ) ( ) 14,3 2,1d pA A u= , 

( ) ( )4,4 2,2d pA A= , ( ) ( ) 24,7 2,3d pA A u= , ( ) ( )4,8 2,4d pA A= , ( ) ( ) 34,11 2,5d pA A u= , 

( ) ( )4,12 2,6d pA A= , ( ) 25,6dA u= , ( )5,7 1dA = , ( )6,8 1dA = , ( ) ( )7,3 3,1d pA A= , ( ) ( ) 27,4 3,2d pA A u= , 

( ) ( )7,7 3,3d pA A= , 

( ) ( ) 27,8 3,4d pA A u= , ( ) ( )7,11 3,5d pA A= , ( ) ( ) 27,12 3,6d pA A u= , ( ) ( ) 18,3 4,1d pA A u= ,  

( ) ( )8,4 4,2d pA A= , ( ) ( ) 28,7 4,3d pA A u= , ( ) ( )8,8 4,4d pA A= , ( ) ( ) 38,11 4,5d pA A u= ,  

( ) ( )8,12 4,6d pA A= , ( ) 39,10dA u= , ( )9,11 1dA = , ( )10,12 1dA = , ( ) ( )11,3 5,1d pA A= , ( ) ( ) 311,4 5,2d pA A u= , 

 ( ) ( )11,7 5,3d pA A= , ( ) ( ) 311,8 5,4d pA A u= , ( ) ( )11,11 5,5d pA A= , ( ) ( ) 311,12 5,6d pA A u= ,

( ) ( ) 112,3 6,1d pA A u= , ( ) ( )12,4 6,2d pA A= , ( ) ( ) 212,7 6,3d pA A u= , ( ) ( )12,8 6,4d pA A= ,

( ) ( ) 312,11 6,5d pA A u= , ( ) ( )12,12 6,6d pA A= .   

( ) ( ) ( ) ( ) ( ) ( )1 2 30 0 1 2 0 0 3 4 0 0 5 6
T

d p p p p p pC u C C u C C u C =  B and

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0
d

 
 =  
  

C . 

 


