
User Behavior Pattern Based Security

Provisioning for Distributed Systems

by

Weina Ma

A thesis

presented to

University of Ontario Institute of Technology

in ful�lment for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Oshawa, Ontario, Canada, 2016

c©Weina Ma 2016

Abstract

Behaviors of authorized users must be monitored and controlled due to the rise

of insider threats. Security analysts in large distributed systems are overwhelmed

by the number of system users, the complexity and changing nature of user ac-

tivities. Identifying user behavior patterns by analyzing audit logs is challenging.

Lacking a general user behavior pattern model restricts the e�ective usage of data

mining techniques. Limited access to real world audit logs due to privacy concerns

also blocks user behavior leaning. The central problem addressed in this thesis is

the need to assist security analysts obtain deep insight into user behavior patterns.

To address the research problem, the thesis de�nes a user behavior pattern

as consisting of four factors: actor, action sequence, context, and time interval.

Based on this behavior pattern model, the thesis proposes a knowledge-driven

user behavior pattern discovery approach, with step-by-step guidance for security

analysts throughout the whole process. The user behavior pattern mining process

are all uniformly represented using a formalism. A user/tool collaborative envi-

ronment on top of data mining techniques is designed for constructing a baseline

of common behavior patterns to individuals, peer groups, and speci�c contexts.

A prototype toolkit that is developed as part of this thesis provides an envi-

ronment for user behavior pattern mining and analysis. To evaluate the proposed

approach, a behavior-based dataset generator is developed to simulate audit logs

containing designed user behavior patterns. Moreover, two real world datasets

collected from distributed medical imaging systems and public cloud services are

respectively applied to test the proposed model.

Keywords: User behavior pattern, data mining, synthetic dataset generation,

security provisioning

ii

Author's Statement

I, Weina Ma, hereby declare that I am the sole author of this thesis.

iii

Acknowledgements

I would like to express my sincere appreciation to Dr. Kamran Sartipi, my super-

visor for the �rst two and half years, for giving me the opportunity to pursue my

PhD degree, providing fund and guidance throughout the entire process. Dr. Sar-

tipi spent countless hours discussing di�erent aspects of my research and helped

to complete this research. Without Dr. Sartipi's guidance and constant feed-

back this thesis would not have been completed. Also, special gratitude to Dr.

Ramiro Liscano, my supervisor at last year, for his helpful recommendation and

continuous support and made this PhD achievable. I also would like to thank

my committee members, Dr. Jeremy Bradbury and Dr. Masoud Makrehchi for

agreeing to serve on my thesis and for their valuable expertise and precious time.

I gracefully acknowledge the funding received from ORF (Ontario Research Fund)

project, Secure Intelligent Content Delivery System for Timely Delivery of Large

Data Sets in a Regional/National Electronic Health Record, that was initiated

from McMaster university. Finally, thank you to the University of Ontario Insti-

tute of Technology (UOIT) for allowing me to conduct my research and providing

remarkable support.

iv

Glossary

insider threat is a malicious threat

to an organization that comes

from people within the organi-

zation

UBA User Behavior Analytics

user behavior pattern refers to

consistent observations of a se-

quence of actions that a user

or peer groups conducted under

certain context within a time in-

terval

common behavior pattern is fre-

quently occurring user behavior

patterns

frequent itemset is a group of items

occurring frequently in event

database

frequent itemset mining is a algo-

rithm for discovering frequent

itemsets in event database

MAG (Maximum Association

Group) is the maximum set of

events that all share the same

itemset

association of MAG measures the

closeness of events in the same

MAG

association between MAGs

measures the closeness of events

in one MAG to the events in

another MAG

BPLQ (Behavior Pattern Query

Language) describes the high

level of event clusters with intra-

cluster and inter-cluster con-

straints

frequent sequential pattern is a

group of subsequences occurring

frequently in sequence database

frequent sequential pattern mining

is a algorithm for discovering

frequent sequential patterns in

sequence database

LCS (Longest Common Subsequence

) is a algorithm of �nding the

longest subsequence common to

all sequences in a set of se-

quences

v

sequence clustering is an algo-

rithm of collecting sequences in

groups such that sequences in

the same group are more similar

to each other than to those in

other groups

representative sequence is a set of

non-redundant typical sequences

that largely cover the sequences

in a cluster

dataset generator is a simulation

tool to generate events with em-

bedded user behavior patterns,

which is developed as part of the

thesis

Z notation is is a formal speci�ca-

tion language used for describing

and modelling computing sys-

tems

PACS (Picture Archiving and Com-

munication System) is medical

imaging systems including ac-

quiring, transmission, and stor-

ing images and diagnostic report

AWS CloudTrail is a web service

that records Amazon AWS API

calls and delivers log

vi

Contents

1 Introduction 1

1.1 User Behavior Analytics . 2

1.2 Motivations . 3

1.3 Thesis Statement and Challenges 4

1.4 Proposed Solution . 5

1.4.1 Abstract Behavior Pattern 5

1.4.2 Behavior Pattern Mining . 6

1.4.3 Testing Benchmark . 8

1.5 Thesis Contributions . 9

1.6 Thesis Structure . 9

2 Background 11

2.1 Anomaly Detection . 11

2.2 Frequent Pattern Mining . 13

2.2.1 Association Mining . 13

2.2.2 Sequential Pattern Mining 14

2.3 Frequent Pattern Based Anomaly Detection 15

2.4 Clustering . 16

2.4.1 Constrained Clustering . 16

2.4.2 Sequence Clustering . 17

2.5 Extracting Representative Sequences 18

vii

2.6 Z notation . 20

2.7 Process Algebra and BPQL . 22

2.8 R Packages . 22

3 Behavior Pattern Mining 24

3.1 Motivating Example . 26

3.1.1 Event Representation . 27

3.1.2 Maximal Association . 28

3.1.3 Sequential Pattern Mining 31

3.2 Behavior Representation . 33

3.3 Behavior Pattern Recovery Process 38

3.4 Behavior Pattern Query Language 42

4 System Modeling 46

4.1 Formal Speci�cation . 47

4.2 Computing Maximal Association 59

4.2.1 Association Measure of MAG 60

4.2.2 Association Measure between two MAGs 61

4.3 Extended LCS . 62

4.4 Computational Complexity Overview 63

5 Synthesizing Behavior-based Dataset 65

5.1 Introduction . 66

5.2 Dataset Design . 69

5.2.1 Acquiring Valid Source Information 69

5.2.2 Normal Distribution . 69

5.2.3 Behavior Pattern Representation 71

5.3 Dataset Generation . 73

5.3.1 Dataset Generation Algorithm 73

viii

5.3.2 Dataset Generation Output 76

5.4 Case Studies . 78

5.4.1 Dataset Design and Generation 79

5.4.2 More Application Domains 81

6 Case Studies 84

6.1 Experimentation Platform and Tools 85

6.2 Distributed Medical Imaging System 86

6.2.1 Maximal Association . 88

6.2.2 Constrained-clusters . 90

6.2.3 Behavior Pattern Mining . 92

6.2.4 Behavior Pattern Analysis 95

6.3 Public Cloud Computing Services 96

6.3.1 Data Collection . 97

6.3.2 Using Sequential Pattern Mining Directly 100

6.3.3 Statistical Analysis . 102

6.3.4 Maximal Association . 106

6.3.5 Constrained Cluster . 109

6.3.6 Behavior Pattern Mining and Analysis 113

6.4 Synthetic Dataset . 121

6.4.1 Dataset Design . 122

6.4.2 Result Measure and Compare 123

7 Conclusion and Future Work 127

7.1 Conclusion . 127

7.2 Limitation of the Approach . 129

7.3 Future Work . 130

A BPQL 133

ix

B Generated Dataset with Embedded Behavior Patterns 135

B.1 Attribute Distribution . 135

B.2 Behavior Pattern De�nition . 135

B.3 Inserted Behavior Patterns . 143

C Publications 144

Bibliography 147

x

List of Tables

3.1 An example of event database in medical imaging system 25

3.2 Attribute representation used in the example 26

3.3 Transformed event database used in mining operation 27

4.1 Glossary of Z notation used in this thesis 51

4.2 Types and Relations . 51

5.1 Variables used in dataset generator algorithm 74

5.2 Attribute distribution de�nition to simulate audit logs from medical

image system . 79

5.3 Behavior pattern de�nition to simulate audit logs from medical

imaging system . 80

5.4 Behavior pattern de�nition to simulate dataset of banking services . 81

5.5 Behavior pattern de�nition to simulate dataset of tra�c collision . . 82

6.1 Attributes converted from audit log of distributed medical imaging

system . 87

6.2 Attributes converted from AWS CloudTrail Events 100

6.3 Patterns discovered from AWS CloudTrail Events using sequential

pattern mining directly . 102

6.4 Extracted MAGs from CloudTrail event repository with minsup=5%107

6.5 Parameters used for association measure 109

6.6 Attribute distribution de�nition of synthetic dataset 123

xi

6.7 Behavior pattern mining result evaluation using synthetic dataset . 125

A.1 Keywords of BPQL . 134

B.1 Behavior pattern de�nition schema 137

xii

List of Figures

1.1 User common behavior pattern mining and anomaly detection: an

iterative and interactive process . 7

3.1 Maximal association groups extracted from encoded event database 29

3.2 Extracted behavior patterns of radiology-work�ow: subsequence

<<O-1, S-1>, <O-2, S-2>,<O-3, S-1>> appears both in U-1 se-

quence and U-2 sequence. <E-1, E-2, E-3> contains <<O-1, S-1>,

<O-2, S-2>,<O-3, S-1>> as <O-1, S-1> in E-1, <O-2, S-2> in

E-2, and <O-3, S-1> in E-3. 32

3.3 Class diagram of an abstract behavior model suitable for user be-

havior pattern mining task . 36

3.4 Proposed user common behavior pattern recovery process: i) o�-line

preprocessing discover signi�cant group of events to reduce search

space; ii) online-behavior pattern mining and analysis interactively

and iteratively extract common behavior patterns using data min-

ing techniques and domain knowledge. 38

3.5 Maximal association groups: magx ,magy ,magz 39

3.6 Constrained event clusters: C1,C2 40

3.7 Common behavior extraction: B1,B2,B3,B4 42

5.1 Synthetic dataset design, generation and visual analysis process . . 68

5.2 Normal distribution of attribute time with mean=11 and deviation=4 70

xiii

5.3 A slice of generated events using dataset generator algorithm 77

6.1 Programming language, software and libraries used in experiment . 85

6.2 Visualization of association-based similarity between events 88

6.3 Number of discovered sequence patterns in each cluster with di�er-

ent minsup . 92

6.4 Average length of discovered sequence patterns in each cluster with

di�erent minsup . 93

6.5 Maximum length of discovered sequence patterns in each cluster

with di�erent minsup . 93

6.6 Execution time of mining each cluster with di�erent minsup 93

6.7 Event types recorded in AWS CloudTrail 98

6.8 User access request distribution . 103

6.9 Working time distribution . 104

6.10 Working date distribution . 104

6.11 Accessed service distribution . 105

6.12 Action distribution . 105

6.13 Most frequent attribute values . 106

6.14 Association measure of individual MAG 108

6.15 Association measure between MAGs 110

6.16 Date distribution of user william . 114

6.17 Discovered 40 frequent action sequence patterns of Amazon S3 Ser-

vice. Each colourful rectangle is an action of sequence; each row

is a frequent sequence pattern; t0, t1, ..., t4 means one step of the

sequence. 115

6.18 Hierarchical clustering of frequent action sequence patterns from

Figure 6.17 . 116

xiv

6.19 40 action sequence patterns are divided into 3 clusters based on

hierarchical clustering algorithm shown in Figure 6.18 117

6.20 Representative sequences discovered from clusters in Figure 6.19

with minimum coverage of 50% . 118

6.21 Frequent time sequence pattern of user John 120

6.22 Clustering result of frequent time sequences from Figure 6.21 121

B.1 Attributes with normal distribution 136

xv

Chapter 1

Introduction

Despite almost $80 billion spent globally on security in 2015 [1], attackers are still

penetrating various organizational defense. Particularly, insider threat is rising

dramatically mainly because the impressive pro�t of leaking sensitive informa-

tion, the increased use of cloud based applications that may leak data (e.g., web

email, dropbox, social media), and the exploding data growth that is leaving the

protected boundary [2].

With the availability of common security mechanisms such as authentication,

authorization and secure communication in most systems, authorized users still

intentionally or carelessly demonstrate risky behaviors that may cause data leakage

or damage to the protected resources. The risk of insider threat to data security

is growing, and nearly two-thirds of attacks or data leakage are originated from

insiders recently [3, 4]. Security consciousness is shifting from traditional perimeter

defence to holistic behavioral solutions to detect ongoing insider threats, and even

prevent them before they actually happen [5, 6, 7, 8].

Since insiders already possess the privileges to access to the organization's

information and assets, it is even harder to defend against than attacks from

outsiders. Therefore, activities of authorized users must be constantly monitored

and controlled. It has been a big challenge for system administrators in large

1

CHAPTER 1. INTRODUCTION 2

distributed systems to identify user's behavior pattern, due to: the large number

of users in using the system services including employees, contractors, customers,

and partners; the complexity and changing nature of user behavioral patterns; and

the lack of fully featured signature-based detection capabilities.

Understanding normal behavior is the key to determining insider threats. Ide-

ally, the observed user behavior should be similar to his past behavior or peer

group's behavior. The signi�cant deviation indicates possible malicious threat.

This thesis contributes to common user behavior pattern mining using unsuper-

vised machine learning techniques, which can be e�ectively applied to unlabelled

data in di�erent application domains. The output of this thesis research, extracted

common behavior patterns, might be used for insider detection by comparing with

user's run-time activities.

1.1 User Behavior Analytics

"User Behavior Analytics as de�ned by Gartner, is about detection of insider

threats, targeted attacks, and �nancial fraud. UBA solutions look at patterns

of human behavior, and then apply algorithms and statistical analysis to de-

tect meaningful anomalies from those patterns - anomalies that indicate potential

threats" [9].

UBA collects various types of data such as organization structure, user roles

and job responsibilities, privacy legislation, user activity trace and geographical lo-

cation. The analysis algorithms consider factors including contextual information,

continuous activities, duration of sessions, and peer group activity to compare

anomaly behavior [10]. UBA determines the baseline of normal behavior of in-

dividual user or peer group according to history data. The deviation of ongoing

user activities compared with past normal behavior is signi�cant if the user acts

abnormally.

CHAPTER 1. INTRODUCTION 3

Following are typical research problems have to be addressed in UBA: select

and extract behavioral elements hidden in various data; develop normal behavior

modeling and representation methods to capture behavior characteristics; propose

e�ective techniques and tools for user behavior analysis; determine what are nor-

mal behavior, and what constitutes behavior anomalies; evaluate potential impact

and risk of behavior anomalies; simulate user behaviors to understand all of the

above mechanisms.

In this thesis we cast normal behavior modeling and analysis as contextual

sequential pattern mining problem, and pose an interactive approach for e�ciently

guiding system administrators in identifying meaningful user behavior patterns.

1.2 Motivations

The number and variety of services in organizations are constantly increasing, and

di�erent distributed systems tend to integrate their services to form federated ser-

vices; therefore, understanding user behavior is just becoming more important and

complex. The challenge for system administrators has always been not knowing

what to look for, how to represent user behavior patterns, and how to discover

meaningful user behavior patterns from large dataset e�ciently. The motivation

for this research stems from following concerns:

• Applying a developed user behavior learning system to another application

domain is not straightforward. A generic solution that is applicable to dif-

ferent application domains is required.

• The lack of re�ective and uniform model for user behavior analysis, whereby

the user behavior pattern, and pattern mining process are all uniformly

represented using a formalism.

• The lack of automatic tools for user behavior pattern mining from large-scale

CHAPTER 1. INTRODUCTION 4

unlabeled data.

• The lack of knowledge-driven approaches and processes for guiding system

administrators step by step to explore user behavior patterns.

• The general lack of real-world high quality dataset. Developing a testing

benchmark, user controllable toolkit to simulate dataset containing embed-

ded interesting patterns and features, is quite useful to evaluate user behavior

pattern mining approaches.

1.3 Thesis Statement and Challenges

One traditional behavior learning approach is using supervised machine learn-

ing techniques to build a prediction model, which heavily rely on high quality

labeled training data. Unfortunately, labeled data is always short in supply in

real-world applications. Also the trained model in one application domain usu-

ally cannot be reused in another application domain. An alternative approach is

unsupervised machine learning that can be e�ciently applied to unlabeled data.

However, there is no goal to achieve in unsupervised learning process so that the

outcome is unknown. Domain knowledge has been successful in improving un-

supervised learning. Expressing and incorporating the domain knowledge into

the user behavior recovery process is the �rst challenge of the research. Without

prior knowledge about the dataset, unsupervised learning approach may produce

a large number of irrelevance patterns which makes the result very di�cult to

be analyzed. The second challenge is developing a knowledge-driven process and

environment for guiding system administrators step-by-step in establishing mean-

ingful user behavior patterns from unlabeled data. Another major challenge is to

perform evaluation on unsupervised user behavior pattern learning approach.

The thesis statement is de�ned as:

CHAPTER 1. INTRODUCTION 5

The common behavior is de�ned as frequent patterns that

are discovered from the dataset. We cast user common

behavior learning as a contextual frequent sequential pattern

mining problem. We propose a behavior model, as well

as an e�cient common behavior extraction method without

exhaustive mining. The proposed mining method improves the

accuracy, recall and e�ciency compared with normal frequent

mining technique. By extracting a small set of categorized

representative patterns, the result of this thesis work provides

valuable knowledge to anomaly detection research.

1.4 Proposed Solution

In this thesis, we consider a hypotheses: frequently occurring user behaviors that

are discovered from a large event dataset are regarded as user common behaviors.

If a speci�c behavior is repeatedly performed by user himself, or by peer group,

most probably it is a common behavior. The discovered common behavior patterns

of either an individual user or a group of users based on audit history are valuable

knowledge to system administrators in designing insider detection approach.

1.4.1 Abstract Behavior Pattern

Accurate and comprehensive user behavior pattern abstraction is required �rst.

We propose a generic behavior model that allows system administrator to map

domain speci�c access logs onto attributed events and consequently a behavior

model. We de�ne a behavior as: consistent observations of a sequence of actions

that an actor conducted in a common context during a speci�c time interval (e.g.,

a session, a day, a week). The user behavior pattern is represented using sequenc-

ing, timing and association rules: sequencing requires that a series of steps occur

CHAPTER 1. INTRODUCTION 6

in a certain order; timing limits the occurrence frequency of user behavior; and

association enforces that the occurrence of one value should result in one or more

other values which constitute the behavior context.

1.4.2 Behavior Pattern Mining

Sequential pattern mining is a data mining technique that is used to discover the

time-based correlations among customer transaction history. In this thesis, an

ordered list of events generated by the same user constitutes a sequence. The

aim of discovering frequent sequential patterns among user's event sequences is to

uncover sequences of user actions that occur frequently. The task of discovering

frequent sequential patterns from audit logs of large system is challenging, because

the algorithm needs to process an explosive number of possible subsequences.

To reduce the search space for sequential pattern mining without signi�cant

information loss, we applied association mining operation as pre-processing on

event database to discover highly related event groups. Based on the association

mining result, we propose an association-based similarity metric to measure the

similarity between events in the same associated group and between groups. We

also designed a behavior pattern query language capable of expressing analyst's

interest and focus. Using an iterative process, the analyst generates BPQ (Be-

havior Pattern Query) to collect highly related events into constrained clusters

according to the suggested attributes, association group of events, and user's do-

main knowledge. The cluster constraints are regarded as the common context of

all frequent action-sequences extracted from this cluster. The proposed approach

is capable of discovering more valuable user behavior patterns with focus from

limited search space.

User behavior studying focuses on modeling normal behavior patterns and

identifying meaningful anomalies. Figure 1.1 presents this thesis work, and how

CHAPTER 1. INTRODUCTION 7

Figure 1.1: User common behavior pattern mining and anomaly detection: an
iterative and interactive process

to apply the thesis work output into anomaly detection.

The left part of Figure 1.1 explains common user behavior pattern mining pro-

cess of this thesis work, which applies data mining, pattern analysis, and knowledge

representation approaches to build user common behavior patterns. The audit logs

are �rst processed into attributed events. Data mining operations are then applied

to the pre-processed database to compute the frequent sequential patterns under

certain context. The context is semi-automatically constructed by data mining

algorithm together with user speci�ed constraints. One of the common criticisms

pointed out to frequent pattern mining is the fact that the algorithm generates a

huge number of patterns, making it very hard to analyze and use the result. Clus-

tering and extracting representative techniques are then used to inductively learn

the most representative user behavior patterns under certain context. The discov-

ered knowledge is represented using our proposed abstract behavior model which

is discussed in subsection 1.4.1. Several iterations of the data mining and anal-

ysis process may be required to obtain reasonable contextual common behavior

CHAPTER 1. INTRODUCTION 8

patterns.

The right part of Figure 1.1 shows how the discovered common user behavior

patterns �t into the bigger picture of anomaly detection in future work. User's

dynamic run-time activities are monitored and sent to decision engine periodically.

Decision engine compares user's dynamic behavior with corresponding common

behavior patterns to decide whether or not to report the current dynamic behavior

as an anomaly to the system administrators. The decision engine report provides

valuable actionable insight. System administrators may investigate the properties

of the recovered common behavior patterns and false anomaly report, and feedback

to any step of common behavior pattern mining process to optimize the normal

behavior baseline.

1.4.3 Testing Benchmark

There is a general lack of access to real-world audit logs, and in particular in sen-

sitive and mission-critical industries, such as healthcare, banking, and military.

Moreover, the performances of di�erent data mining approaches depend heavily

on the testing dataset. Some algorithms are very sensitive to the target patterns

and critical features. A controllable simulation environment which enables acquir-

ing various simulated dataset with embedded interesting patterns and features is

required. We developed a dataset generator toolkit EventGenerator for control-

lable dataset generation, suitable for unbiased evaluation of user behavior pattern

mining algorithms. EventGenerator has three layers: i) behavior pattern represen-

tation layer; ii) dataset generation layer; and iii) dataset visualization and analysis

layer. We use EventGenerator as a testing benchmark for evaluation through gen-

erating synthetic dataset with designed pattens embedded, and then applying our

proposed approach to recover the embedded behavior patterns.

CHAPTER 1. INTRODUCTION 9

1.5 Thesis Contributions

This thesis presents an approach for user behavior pattern mining that employs

techniques from data mining, clustering, data visualization, pattern analysis, and

pattern representation. The major contributions of this thesis are as follows:

1. A user behavior pattern discovery environment that can be applied on large

distributed systems. Without any labeled training data and prior knowledge,

the proposed system guides system administrators to obtain deep insight into

the behavior patterns of the system users for security purposes.

• Proposed a new behavior model to represent user behavior pattern as

a combination of sequencing, association and timing rules.

• The user behavior pattern mining process are all uniformly represented

using a formalism.

• Designed a behavior pattern query language (BPQL) that allows sys-

tem administrators to describe a contextual behavior pattern to be

discovered by the pattern mining engine.

2. A developed behavior-based dataset generator toolkit EventGenerator that

allows data analysts to easily design and generate di�erent testing datasets

with embedded user behavior patterns. This toolkit provides a testing bench-

mark to evaluate behavior pattern mining approaches.

1.6 Thesis Structure

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides an overview of di�erent background knowledge and

technologies that are employed in this thesis.

CHAPTER 1. INTRODUCTION 10

• Chapter 3 starts with a dry run example to explain the maximal associa-

tion relationship and proposed behavior pattern mining method. Chapter 3

also discusses the abstract behavior pattern model, a new behavior pattern

query language to abstract high-level behavior pattern, and the proposed

methodology in using data mining techniques to identify user common be-

havior patterns.

• Chapter 4 formalizes common behavior pattern mining proeess using Z

notation [11, 12]. Chapter 4 also introduces two association-based similarity

measures at data instance level and data group level for event clustering.

• Chapter 5 presents a synthetic dataset generator that e�ectively assists

data analysts in designing behavior-based datasets with embedded user be-

havior patterns, and visually analyzing the generated datasets. A prototype

toolkit EventGenerator has been developed to synthesize and analyze the

datasets in di�erent application domains.

• Chapter 6 presents the experimentation with two real-world dataset from

medical imaging system and public cloud services respectively, and a syn-

thetic event dataset with embedded user behavior patterns. The experi-

ments are divided into three case studies to demonstrate the functionality,

performance and accuracy of the proposed user behavior pattern recovery

technique.

• Chapter 7 provides a conclusion for the whole thesis and outlines some

potential future directions of this research.

Chapter 2

Background

In the chapter we present an overview of di�erent background knowledge required

to this thesis in user behavior pattern based security provisioning.

2.1 Anomaly Detection

Anomaly detection has been widely researched in various application domains.

Intrusion detection is the process of monitoring network or system activities for

identifying as well as responding to malicious activities [13]. Beside of host based

and network based intrution detection systems, anomyly detection techniques are

also used to detecte attacks against web servers and web-based applications. Fraud

detection in business transactions, �nacial and insurance industry is another ap-

plication domain that anomaly detection is applied to identify fraud as it happens

[14]. In healthcare system, a behavior-based access control model is proposed,

which captures the dynamic behavior of the user, and determines access rights

through comparing with the expected behavior [15].

"Anomaly detection refers to the problem of �nding patterns in data that do

not conform to expected behavior. The non-conforming patterns are often re-

ferred to as anomalies or outliers in di�erent application domains." [16] Four key

11

CHAPTER 2. BACKGROUND 12

challenges with anomaly detection are: i) de�ning a whole set which includes all

possible normal behavior is infeasible; ii) producing clear and precise boundary

between normal behavior and anomaly is di�cult; iii) acquiring labeled data for

training and evaluating anomaly detection approaches is expensive; and iv) apply-

ing a technique developed in one domain to another is not straightforward because

of the dynamic nature of malicious behavior [16].

Supervised and unsupervised machine learning algorithms are widely applied

in anomaly detection approaches[17]. The input of anomaly detection system is

a collection of data instances that can be described using a set of domain spe-

ci�c attributes. For supervised anomaly detection, the training data instances

have already been associated with labels, denoting if that instance is normal or

not. Typical approach in such cases is to build a predictive model using machine

learning algorithm that learns speci�c properties from training data including

both normal properties and anomaly properties. Unknown testing data instance

is compared with the predictive model to identify which category it belongs to.

Unsupervised anomaly detection techniques do not require any training data, but

have an implicit assumption that normal instances are the majority in unlabelled

data. Unsupervised machine learning algorithm learns from unlabelled data to

identify hidden patterns and properties, which heavily depends on instance dis-

tance, density and statistics. If the unlabelled data has more anomalies than

normal instances, the prediction model su�ers from high false alarm rate. As a

result of anomaly detection approach, each testing data instance is labelled as

normal or anomalous; or each testing data instance is assigned an anomaly score

which provides knowledge for the next analysis step.

CHAPTER 2. BACKGROUND 13

2.2 Frequent Pattern Mining

Frequent patterns include itemsets, subsequences and substructures that appear in

a dataset with frequency no less than a user speci�ed threshold [18]. For example,

a set of purchase items, such as milk and bread, which appear frequently together

in a transaction dataset, is a frequent itemset. A subsequence, such as buying �rst

a TV, then a DVD player, and then various CDs and DVDs, if it occurs frequently

in a shopping history database, is a frequent sequential pattern. A substructure

refers to di�erent structural forms, such as subtrees, subgraphs, or sublattices,

which may be combined with itemsets or subsequences. If a substructure occurs

frequently in a graph database, it is called a frequent structural pattern. Frequent

pattern mining plays an essential role in mining associations, sequences, and many

other interesting relationships among data.

2.2.1 Association Mining

The concept of association mining was �rst introduced by Agrawal [19] in the

form of association rules mining, aiming at analyzing customer purchase habit by

extracting associations between items in customer shopping baskets. An itemset

is a set of items that frequently appear in shopping baskets. An itemset with

the cardinality of k is called k-itemset. The support of an itemset is the number

of transactions that contain that itemset in the transaction database. The Apri-

ori algorithm [19] passes over the transaction database multiple times to discover

frequent k-itemsets that appear in transactions more than a user speci�ed thresh-

old, namely minimum support (minsup). In the �rst pass, the algorithm counts

the support of individual items and determines the frequent 1-itemsets. In each

subsequent pass, the algorithm selects di�erent frequent (k-1)-itemsets found in

the previous pass to generate candidate k-itemsets by joining those frequent (k-

1)-itemsets. The candidate k-itemset will be deleted from candidate list if any of

CHAPTER 2. BACKGROUND 14

its subsets is not frequent, i.e., each subset of a candidate itemset must itself be

frequent. Each candidate k-itemset must also have minimum support in order to

be considered as "frequent k-itemset". This iterative process will terminate when

the algorithm cannot generate any larger frequent k-itemset.

2.2.2 Sequential Pattern Mining

Agrawal [20] introduced sequential pattern mining of frequently occurring ordered

events or subsequences. Consider a database of customer transactions where each

transaction contains a customer-id, transaction time, and the items bought in the

transaction. The collection of a customer's transactions, where each transaction

contains a set of items and the transactions are ordered by increasing transaction

time, are together viewed as a customer-sequence. Mining sequential patterns

is the process of �nding the frequent subsequences that appear in the customer-

sequences more than a user speci�ed threshold namely minimum support (minsup).

In association mining, the support for an itemset is de�ned as the number

of transactions in which an itemset is present, whereas in the sequential pattern

mining the support for a sequence is the number of customer-sequences that con-

tain the sequence as a sub-sequence. The sequential pattern mining algorithm

Apriori [20] passes over the sequence database multiple times. In the �rst pass,

the algorithm �nds the frequent 1-length sequences. In each subsequent pass, the

algorithm generates the candidate k-length sequences by joining frequent (k-1)-

length sequences found in the previous pass, and then measures their support to

determine whether they are frequent k-length sequence or not. A frequent k-length

sequence must have minimum support (i.e., customer-sequences that contain the

sequence as their subsequence). The process continues until the algorithm can-

not �nd any larger frequent k-length sequence from the existing sequences. Hav-

ing found the set of all frequent sequences, the algorithm removes the frequent

CHAPTER 2. BACKGROUND 15

sequences that are contained within the larger frequent sequences, as they are

redundant.

Frequent pattern mining explores strong association among instances have been

successfully applied in various application domains: user navigational behavior

mining via analyzing Web log data [21]; software failure pattern detection [22];

and behavior-based access control systems [15]. A large number of recent studies

have contributed to extending association mining and sequential pattern mining,

including: constraint-based association mining and sequential pattern mining [23],

multi-dimensional sequential pattern mining [24], context-based sequential pattern

mining [25], and frequent episode discovery in event sequences [26].

2.3 Frequent Pattern Based Anomaly Detection

Frequent pattern mining based anomaly detection methods propose to mine all

frequent patterns from temporal data in order to compute the anomaly factor for

incoming behavior [27, 28, 29, 30]. A two-step procedure is typically involved: i)

model the normal behavior across time using frequent pattern mining technique;

ii) evaluate the anomaly degree of incoming behavior by measure the deviation

from the discovered normal behavior. However, the goal of discovering all frequent

patterns is too expensive, especially for mining temporal data. Despite all frequent

patterns can be e�ciently discovered, it is unfeasible to compare incoming behavior

with all discovered normal patterns to detect anomalies instantly at the second

step.

To address these issues, we applied i) association mining prior to sequential

pattern mining to reduce search space while making sure the information loss is

as small as possible; ii) clustering operation to categorize the normal behavior

patterns so that anomaly detection step only selects related normal behaviors to

measure deviation rather than all of them; and iii) representative sequences mining

CHAPTER 2. BACKGROUND 16

to reduce the number of discovered normal behavior patterns but still this small

set of patterns satisfy a desired coverage.

2.4 Clustering

Data clustering is a method of grouping objects in a way that objects in one cluster

are very similar to each other, but they are dissimilar to the objects in other

clusters [31]. Clustering is unsupervised learning approach that partitions data

into a certain number of clusters with little or no prior knowledge. The resulting

clusters are the matter of interest. Two typical cluster models are: centroid models

such as k-means algorithm in which a data instance belongs to the cluster with

the nearest mean [32]; density models which de�ne clusters as contiguous regions

of high density in the data space [33]. Both centroid models and density models

require a similarity or distance measure used for clustering. Similarity or distance

measure describes quantitatively how close two data instances are.

2.4.1 Constrained Clustering

Unsupervised clustering is a subjective process because of subjectively chosen of

similarity measure [34]. Semi-supervised learning, learning from a combination

of unlabeled data and a small amount of labeled data, produces considerable im-

provement in learning accuracy [35]. For example, constrained k-means clustering

shows signi�cant improvement in accuracy, which incorporates background knowl-

edge in the form of instance-level constraints into the k-means algorithms [36].

Constrained clustering is a type of semi-supervised learning technique that

injects background knowledge (e.g., analyst's experience or knowledge of testing

dataset) into clustering algorithm. Instance-level constraints are used to express

a prior knowledge of which instances should be grouped together or be separated.

For example, "must-link" constraint specify that two instances have to be in the

CHAPTER 2. BACKGROUND 17

same cluster; and "cannot-link" constraint specify that two instances have to be in

di�erent clusters [36]. Consequently, the constrained clustering algorithm takes in

a dataset, a set of "must-link" and "cannot-link" constraints, a similarity measure

between instances, a density threshold and the number of expected clusters; and

returns a partition of the dataset that the instances in the same cluster are more

similar to each other, at the same time they satisfy all speci�ed constraints. Some

constrained clustering algorithms will abort if it cannot partition the data with-

out any constraint violation. Soft constrained clustering algorithms are applied

when hard constraind clustering algorithm brings failure, which allows constraint

violation with minimal cost [37].

2.4.2 Sequence Clustering

A survey of time series data clustering introduces general-purpose clustering al-

gorithms commonly used in time series clustering studies, and the measures to

determine the similarity/distance between two time series point [38]. We applied

one of the introduced clustering algorithm into our approach: agglomerative hier-

archical clustering. This clustering algorithm starts by placing each sequence as

an individual cluster and then merges these clusters into larger clusters, until all

sequences are merged into a single cluster or until other termination conditions

are satis�ed. The algorithm measures the similarity between two clusters as the

closet (or farthest, average) pair of sequences belonging to separate clusters, and

merging the clusters having the minimum distance. One of the advantages of

agglomerative hierarchical clustering algorithm is no apriori knowledge about the

desired number of clusters is not required.

The similarity problem of sequential data requires determining whether dif-

ferent sequences have similar behavior. An obvious measure of the closeness of

two sequences is to �nd the maximum number of identical items in these two

CHAPTER 2. BACKGROUND 18

sequences (preserving the symbol order), which is de�ned as Longest Common

Subsequence (LCS) of the sequences [39]. Formally, let X = (x1, x2, ..., xm) and

Y = (y1, y2, ..., yn) be two sequences of lengths m and n, respectively. Common

subsequence "cs" of X and Y represented by cs(X ,Y) is a set of subsequences

that occur in both sequences. The longest common subsequence lcs of sequence

X and Y , lcs(X ,Y) is a common subsequence of both sequences with maximum

length. The length of lcs(X ,Y) is denoted by r(m, n). Solving r(m, n) is to

determine the longest common subsequence for all possible pre�x combinations of

the two sequences X and Y . Let r(i , j) be the length of the longest subsequence

lcs(Xi ,Yj), where the pre�xes of X are Xi = (x1, x2, ..., xi) and the pre�xes of Y

are Yj = (y1, y2, ..., yj). Then r(m, n) can be de�ned recursively as following [39]:

r(i , j) =

0 if i = 0 ∨ j = 0

r(i − 1, j − 1) + 1 if xi = yj

max{r(i − 1, j), r(i , j − 1)} ifxi 6= yj

r(i , j) is determined by comparing the items xi and yi : if they are same, then

the length of lcs(Xi ,Yj) equals r(i − 1, j − 1) adds 1; if they are not same, then

the length of lcs(Xi ,Yj) equals the longer of the two longest common sequences

lcs(Xi−1,Yj) and lcs(Xi ,Yj−1). Based on the recursive de�nition, the length of

lcs(X ,Y) is found by a backtracking programming algorithm with time complexity

O(m∗n). More algorithms are proposed with time complexity better thanO(m∗n)

[40, 41].

2.5 Extracting Representative Sequences

Frequent pattern mining and clustering are usually applied on the �rst steps to

analyze a large-scale dataset, which helps produce categories and discover impor-

CHAPTER 2. BACKGROUND 19

tant features in de�ning the belonging of an instance to a category. Extracting

representative is a task of summarizing a set of categories, which extracts a small-

est possible number of representatives that ensure a given coverage of the whole

category. Extracting representative is an important further analysis step to reduce

intermediate preliminary patterns and to express categories.

"Representative set is de�ned as a set of non redundant typical patterns that

largely, though not necessarily exhaustively covers the whole set" [42]. More specif-

ically, the representative pattern extracting algorithm takes in the �rst-step data

mining result, a similarity/distance measure method, a representativeness crite-

rion, and a similarity/distance threshold under which two instances are considered

as redundant or not [42].

Firstly, a list of candidate representatives are produces by computing represen-

tativeness score according to the selected criterion and similarity/distance mea-

sure. For example, if we consider selecting neighbourhood density as criterion,

the representativeness score is computed according to the number of neighbour-

hood within a radius. If an instance has more neighbours, it is assigned a higher

representativeness score. All instances are sorted in descending order, and an it-

eration process is performed on the ordered list to eliminate redundancy. The

redundancy eliminating procedure is as follows: select the �rst instance into the

representative list; then process each next instance in the ordered list of candi-

dates; if this instance is not similar to anyone that has already been assigned into

the representative list, add this instance into representative list. The iteration

process stops when the selected sequences in representative list already satisfy the

speci�ed coverage threshold.

CHAPTER 2. BACKGROUND 20

2.6 Z notation

Formal speci�cation uses mathematical notations to precisely and clearly describe

a computer system, which e�ectively helps to abstract and revise the system de-

sign. Formal speci�cation is independent of system implementation using pro-

gramming language, so that the system designer uses formal speci�cation to de-

scribe what the system should do, rather than how the system should do it. Z

notation is a formal speci�cation language, which allows system designer uses

mathematical data types, operators and expressions to model the data structure

in a system. Another main �avor of Z notation is a way of splitting the speci-

�cation into schemas to assist system designer in presenting the system piece in

piece. A schema in Z is used to describe both static and dynamic aspects of system

[11]. For example, the static aspects include the system states and invariant state

transition matrix; and the dynamic aspects are possible operations and the state

change when an operation happens.

Consider a system of checking hotel availability, we need to deal with cus-

tomer's names and with reserved rooms. So we introduce the set of people names

and the set of all rooms of the hotel as the basic types of the system speci�cation,

namely people and rooms:

[NAME ,ROOM]

The state of the system is de�ned as following schema, which describes system

static aspects of what kind of objects the types can contain. The part above

the central dividing line declares some variables, and the part below the central

dividing line provides relationships between the values of the variables which is

always true in every state of the system and is maintained by every operation on

it. Two variables are de�ned: customer is a set of people names who have already

made reservation; and reserved is a function which, when a certain people names

CHAPTER 2. BACKGROUND 21

are applied, gives the rooms reserved for them.

HotelReservation

customer : PNAME

reserved : NAME 7→ ROOM

customer = dom reserved

An operation of adding a new record of room reservation is de�ned as following

schema, which describes system dynamic aspects of an operation. The declaration

∆HotelReservation alerts that the schema is describing a state change. name? and

room? are two inputs of the operation AddReservation; customer and reserved are

observations before the operation; and customer' and reserved' are observations

after the operation which indicates an empty room is reserved by a new customer

now.

AddReservation

∆HotelReservation

name? : NAME

room? : ROOM

name? /∈ dom reserved

customer ′ = customer ∪ {name?}

reserved ′ = reserved ∪ {name? 7→ room?}

CHAPTER 2. BACKGROUND 22

2.7 Process Algebra and BPQL

Algebra is a formal symbolic language, which investigates the relations and prop-

erties of numbers by means of general symbols. Process algebra is an algebra

approach to the study of concurrent processes, concentrating on the behavior of

communication. In many complex concurrent systems like network protocols and

biology, process algebra is widely used for representing and reasoning about such

systems in mathematical manner [43]. Process algebra is widely considered in the

theory community but is not well known in the �eld of user behavior analysis.

The drawback of speci�cation represented by process algebra is not intuitive and

hard to understand, especially for system administrators without enough mathe-

matics and theory knowledge [44]. Thus we designed an intuitive BPQL (Behavior

Pattern Query Language) to abstract high-level patterns, which allows system ad-

ministrators to express their needs and somehow control the algorithm focusing

on what is really interesting. Compared with learning process algebra, BPQL is

easy to understand by system administrators because: i) employing intuitive and

readable key words and syntax; ii) particularly designed for user behavior patterns

which only includes a small set of symbols; and iii) deep integration with proposed

behavior pattern mining algorithm.

2.8 R Packages

R is a programming language and open source software environment for statistical

computing and graphics [45]. It provides a wide variety of data mining techniques

and graphical facilities, such as time-series analysis, clustering and classi�cation.

R can be easily expended via user-created packages. An R package includes a

set of powerful functions, which enables data analysts to go deep data mining by

writing only several lines of code. "CRAN Task Views" [46] is a directory of links to

CHAPTER 2. BACKGROUND 23

available packages in wide range of research topics, such as machine learning, high

performance computing, natural language processing, and medical image analysis.

Some of R packages are used in developing toolkit for this thesis: "arules" is an

R-package that provides the infrastructure for representing, manipulating and

analyzing frequent itemset patterns and association rules among transaction data

[47]; "arulesSequences" implements mining frequent sequence pattern algorithms

[48]; "cluster" package in R implemented a variety of algorithms for cluster analysis

[49]; and "TraMineR" is a toolbox for mining, describing and visualizing sequences

of events [50].

Chapter 3

Behavior Pattern Mining

This chapter introduces an abstract behavior model, which is generic, system

independent and con�gurable based on the target application domain. A behavior

pattern is de�ned as: consistent observations of a sequence of actions that a user

or a group of users conducted in a common context during a speci�c time interval

(e.g., an hour, a day, a week). An abstract behavior model is introduced to

represent user common behavior pattern. An interactive and iterative method

based on several data mining techniques is proposed that can e�ciently discover

user's common behavior pattern from unlabeled dataset.

This chapter is organized as follows. Section 3.1 presents a dry run testing

example to illustrate the maximal association relationship and user behavior pat-

tern mining techniques. Section 3.2 de�nes an abstract behavior model and the

basic concepts that are employed in the proposed model. Section 3.3 explains the

behavior pattern mining process. Section 3.4 introduces a behavior pattern query

language that allows analysts to describe the high level and abstract event clusters

for grouping highly related events.

24

CHAPTER 3. BEHAVIOR PATTERN MINING 25

Table 3.1: An example of event database in medical imaging system
Id Date Time User Role Location Operation Resource

1 Mon 10:00 John Radiologist CT Lab Order Exam CT on

Chest

2 Mon 10:10 John Radiologist CT Lab Search&View History

Exams

3 Mon 10:30 John Radiologist CT Lab Take Exam CT on

Chest

4 Mon 10:50 John Radiologist CT Lab Read Demographic

Data

5 Mon 11:20 Emma Radiologist X-Ray Lab Read Diagnose

Report

6 Mon 11:30 Emma Radiologist X-Ray Lab Order Exam X-Ray

On Eye

7 Mon 11:35 Emma Radiologist X-Ray Lab Search&View History

Exams

8 Mon 11:45 Emma Radiologist X-Ray Lab Take Exam X-Ray

On Eye

9 Mon 15:00 Philip Physician O�ce Read CT

on Chest

10 Mon 15:15 Philip Physician O�ce Search&View History

Exams

11 Mon 15:45 Philip Physician O�ce Create Diagnose

Report

12 Tue 9:00 John Radiologist CT Lab Order Exam CT

on Lung

13 Tue 9:05 John Radiologist CT Lab Search&View History

Exams

14 Tue 9:15 John Radiologist CT Lab Take Exam CT

on Lung

15 Tue 10:00 Emma Radiologist X-Ray Lab Order Exam X-Ray

On Brain

16 Tue 10:10 Emma Radiologist X-Ray Lab Search&View History

Exams

17 Tue 11:00 Emma Radiologist X-Ray Lab Take Exam X-Ray

On Brain

18 Tue 14:00 Philip Physician O�ce Read CT

on Eye

19 Tue 14:10 Philip Physician O�ce Search&View History

Exams

20 Tue 14:30 Philip Physician O�ce Create Diagnose

Report

CHAPTER 3. BEHAVIOR PATTERN MINING 26

3.1 Motivating Example

Table 3.1 demonstrates an example event database from medical imaging systems

[51, 52] that trace three users' access to the system resources. User John and

Emma are radiologist; user Philip is physician. Two typical imaging work�ows are

seen from this event database: radiology-work�ow, including events 1, 2, 3, where

the radiologist takes a new examination for a patient; and diagnostic-work�ow,

including events 9, 10, 11, where the physician writes a diagnostic report for a

new examination. The radiology-work�ow process is as follows: i) radiologist

acquires an order of examination from pending order list; ii) she usually reviews

the history images of the patient before taking examination; and iii) she takes

the examination for the patient. Examination results (medical images) can be

accessed for diagnosis from di�erent locations. The diagnostic-work�ow process is

as follows: i) physician selects and views a new image of the patient; ii) he reviews

patient's history examinations; and iii) he creates a diagnosis report for the new

examination.

Table 3.2: Attribute representation used in the example
Attribute Name Attribute Values Attribute Encoding

Event Id Incremental integer starting from 1 E-1, E-2, E-3,..., E-n

Date Monday, Tuesday D-1, D-2

Time Morning (00:00-12:00) T-1

Afternoon(12:00-24:00) T-2

User John, Emma, Philip U-1, U-2, U-3

Role Radiologist, Physician R-1, R-2

Location CT Lab, X-Ray Lab, L-1, L-2

O�ce L-3

Operation Order an Exam, Search & View, Take Exam, O-1, O-2, O-3

Read, Create O-4, O-5

Resource Type Image, History Exams, S-1, S-2

Diagnose Report, Demographic Data S-3, S-4

Let us now assume that we want to extract the common behavior patterns

among di�erent users as follows. I) What are the frequent actions? II) Are these

frequent actions always performed in order? III) Is there any common context

CHAPTER 3. BEHAVIOR PATTERN MINING 27

when the user performs the actions? IV) How often does the user perform the

same actions?

3.1.1 Event Representation

As the �rst step of data analysis, raw dataset is parsed and represented. Each

event is represented as a group of attributes. Attribute names, values and encod-

ing used in the example are shown in Table 3.2. The encoded event database used

in mining operation is shown in Table 3.3.

Table 3.3: Transformed event database used in mining operation
Id Date Time User Role Location Operation Resource

E-1 D-1 T-1 U-1 R-1 L-1 O-1 S-1

E-2 D-1 T-1 U-1 R-1 L-1 O-2 S-2

E-3 D-1 T-1 U-1 R-1 L-1 O-3 S-1

E-4 D-1 T-1 U-1 R-1 L-1 O-4 S-4

E-5 D-1 T-1 U-2 R-1 L-2 O-4 S-3

E-6 D-1 T-1 U-2 R-1 L-2 O-1 S-1

E-7 D-1 T-1 U-2 R-1 L-2 O-2 S-2

E-8 D-1 T-1 U-2 R-1 L-2 O-3 S-1

E-9 D-1 T-2 U-3 R-2 L-3 O-4 S-1

E-10 D-1 T-2 U-3 R-2 L-3 O-2 S-2

E-11 D-1 T-2 U-3 R-2 L-3 O-5 S-3

E-12 D-2 T-1 U-1 R-1 L-1 O-1 S-1

E-13 D-2 T-1 U-1 R-1 L-1 O-2 S-2

E-14 D-2 T-1 U-1 R-1 L-1 O-3 S-1

E-15 D-2 T-1 U-2 R-1 L-2 O-1 S-1

E-16 D-2 T-1 U-2 R-1 L-2 O-2 S-2

E-17 D-2 T-1 U-2 R-1 L-2 O-3 S-1

E-18 D-2 T-2 U-3 R-2 L-3 O-4 S-1

E-19 D-2 T-2 U-3 R-2 L-3 O-2 S-2

E-20 D-2 T-2 U-3 R-2 L-3 O-5 S-3

CHAPTER 3. BEHAVIOR PATTERN MINING 28

3.1.2 Maximal Association

Finding highly related event groups is necessary for discovering user common be-

haviors, especially in the case of large dataset. An example might be that a group

of events about people working at radiology department start viewing medical

images between 9:00am to 10:00am. The patterns discovered from this group of

events represent the common behavior of radiology department at speci�c time.

Finding all such highly related event groups is valuable to system administrators

to categorize system user behaviors. Without prior knowledge, we apply asso-

ciation mining on the encoded event database for discovering knowledge of the

dataset such as the most associated events and the interesting attributes. It is in-

tended to bring together highly related events, and the shared attributes indicate

the common context of the group of events.

We de�ne maximal association in a group of events in the form of a maximum

set of events that all share the same set of attribute values. No larger set of

events can be found that share all these attribute values, and vice-versa. We refer

to the group of events as the "container" and the shared set of attribute values

as the "itemset" (each attribute value is viewed as an item). In this sense, the

container of events and the itemset are denoted as a maximal association group

(MAG). We aim to �nd large MAGs where both the containers and itemsets are

large. Association mining algorithm [19, 53, 54] is applied on the encoded event

database with minimum support 8 (the value is adjusted based on mining result),

where the support of an itemset is how many times the itemset appears in the

event database. Finally the algorithm extracts 9 frequent itemsets. We remove

the MAGs whose itemsets are included in a proper superset that is also an itemset

in another MAG. This phase deletes a large number of redundant MAGs. Figure

3.1 illustrates the extracted 5 MAGs after the pruning phase. MAGs have overlaps

since both an event and an attribute may belong to more than one MAG. For

CHAPTER 3. BEHAVIOR PATTERN MINING 29

Figure 3.1: Maximal association groups extracted from encoded event database

CHAPTER 3. BEHAVIOR PATTERN MINING 30

example, we can see from Figure 3.1 that: events {E-1, E-2, E-3, E-4, E-5, E-6,

E-7, E-8} exist in "MAG-1" and "MAG-3"; and attributes {T-1, R-1} appear in

"MAG-3" and "MAG-5".

On the assumption that an event is more signi�cant if it is associated with

a large number of events through sharing more common attributes, each MAG

represents a group of similar events and is considered as the building block for

the proposed behavior pattern mining approach. An association-based similar-

ity between events inside a MAG and between two MAGs are de�ned in section

4.2, which encodes the size and structure of MAG. The association-based sim-

ilarity measure result provides analysts a clue to the signi�cance of events and

the common characteristics among such events. Considering both itemset length

and container size, "MAG-3" might receive the highest similarity value since its

itemset length is "2" and the size of container is "14". The analyst may assign all

events in "MAG-3" into a cluster to study the common behavior of radiologist in

the morning. "MAG-1" with itemset {D-1} is close to "MAG-3" as they share 8

events with two same attribute values totally, and "MAG-2" with itemset {D-2}

is also close to "MAG-3" as they share 6 events with two same attribute values.

The analyst may assign events in "MAG-1" and "MAG-3" into the �rst cluster

to study the common behavior of radiologist in the morning of the �rst day, and

assign events in "MAG-2" and "MAG-3" into the second cluster to learn if any

change can be seen from the common behavior the very next day. These clusters

of events are collected for subsequent behavior pattern mining phase.

In general, the number of shared attributes contributes more on the closeness of

the events than the number of sharing events, if a group of events are considered for

their similarity. Moreover, the attributes may be assigned di�erent weight when

computing association measure, such as attribute "role" contributes more than

attribute "accessed resource". The detailed association computing is explained in

Chapter 4.

CHAPTER 3. BEHAVIOR PATTERN MINING 31

By decreasing the minimum support value during the association mining, we

may �nd a large number of MAGs and construct a ranking list of signi�cant MAGs

with rich associations. To inject data analyst's domain knowledge into the analysis

process, and also to reduce the search space in subsequent behavior mining phase,

we propose a behavior pattern query language that allows analysts to express their

interest using cluster constraints. For example, the analyst knows there are two

labs in radiology department, and he might want to know what are the common

behavior at di�erent labs in the morning. The behavior pattern query language

will be discussed in Section 3.4.

3.1.3 Sequential Pattern Mining

In order to mine frequent behavior patterns under speci�c context, we apply se-

quential pattern mining on each constrained cluster to discover frequent action-

sequences. An "action" denotes to one or more attributes extracted from one

event. For example, an action can be: a user is working at location "L-1"; or a

user accesses a patient's image "O-4, S-1". An "action sequence" is an ordered

list of actions. For example, two action sequences can be: i) a user works daily

at two locations with the order "<<L-1>, <L-2>>"; and ii) a user in a work�ow

performs the following operations "<<O-1, S-1>, <O-2, S-2>,<O-3, S-1>>".

A "user-sequence" is an ordered list of events. The problem of mining behavior

pattern of a user is to �nd the action-sequences that appear frequently within one

user's sequence; identifying common behavior patterns among multiple users is

mining action-sequences that appear frequently among all user-sequences. Figure

3.2 shows the extracted behavior patterns from associated event-group "MAG-3"

with common context <T-1, R-1>. Both "U-1" and "U-2" perform the following

action sequence: order an examination "<O-1, S-1>", search and view history

CHAPTER 3. BEHAVIOR PATTERN MINING 32

Figure 3.2: Extracted behavior patterns of radiology-work�ow: subsequence<<O-
1, S-1>, <O-2, S-2>,<O-3, S-1>> appears both in U-1 sequence and U-2 se-
quence. <E-1, E-2, E-3> contains <<O-1, S-1>, <O-2, S-2>,<O-3, S-1>> as
<O-1, S-1> in E-1, <O-2, S-2> in E-2, and <O-3, S-1> in E-3.

examinations of the patient "<O-2, S-2>", and then take the examination "<O-

3, S-1>". This action sequence re�ects the behavior of taking radiology-work�ow.

The common context attributes describe circumstances for the complete sequence.

It means the radiology-work�ow always happens in the morning and with assigned

role "radiologist".

The support of an action-sequence is de�ned as the appearance of such action-

sequence in user-sequences. So the support of the action sequence in our example

is 2: <E-1, E-2, E-3> and <E-12, E-13, E-14> in U-1's sequence; <E-6, E-7,

E-8> and <E-15, E-16, E-17> in U-2's sequence. The support of an subsequence

only count one occurrence in a user sequence even though the subsequence appears

twice in user's sequence. The analyst may divide the user sequence into several

time constrained user sequences (e.g., the duration of a time constrained user

sequence cannot exceed 10 minutes, an hour or a day). In this case, the support

of a subsequence may count more than once if they are split into separated time-

constrained user sequences.

CHAPTER 3. BEHAVIOR PATTERN MINING 33

3.2 Behavior Representation

The following statements are sample user-system interactions that can be ex-

pressed as the user behavior patterns:

• User ui in a work�ow process, reads resources ra and rb that belong to owner

ol , and then updates resource rb .

• User ui in a day takes roles in the following order: rk , rl ,rh .

• User ui in a week works at loca from Monday to Friday, and works at location

locb on Saturday.

• User ui accesses resources ra , rb about n1 times on average between times t1

and t2.

In the above examples, typical user behavior patterns can be expressed using

association pattern, sequence pattern and timing rules: association enforces that

the occurrence of one value should result in one or more other values (e.g., speci�c

users normally work at speci�c locations); sequence re�ects the continuous or

connected series of actions (e.g., what a user does next is impacted by what he

or she did in the past few steps); and time rules indicate the frequency that a

behavior repeats itself.

We de�ne the basic concepts that are employed in the proposed model.

Event

A single user-system interaction (i.e., any communication with the system

such as image storage, retrieval, query, etc.) is recorded as an event. An event is

extracted from audit log and represented by a set of attribute values. Whenever

any attribute of the event changes, a new event is recorded.

Attribute

Attribute is the extracted characteristic from application domain. A set of

domain speci�c attributes are fundamental elements that can be ascribed to events.

CHAPTER 3. BEHAVIOR PATTERN MINING 34

An attribute is represented by a name and a domain of attribute values. For

example, "operation", "location" and "service" are generic attributes extracted

from the audit logs. "Read exam" and "update report" are values of attribute

"service" in the medical domain. The attributes normally can be classi�ed into

three categorizes:

• Actor attributes are used to explain the subject of events. For example, User

is an actor attribute, which identi�es an individual who performs the action;

Role is also an actor attribute which determines a group of people having

similar privileges and responsibilities.

• Contextual attributes determine the context (or neighborhood) of events. For

example, Location can be a contextual attribute which limits the neighbor

events happened at the same location or nearby; Time can be considered

as a contextual attribute which determines the neighbor events happened

within a short period of time; Patient could be a contextual attribute which

explains the neighbor events should be accessing the health records of a

speci�c patient.

• Behavioral attributes de�ne the non-actor and non-contextual characteris-

tics of the events. For example, Action is a behavioral attribute, which

describes one step of the work�ow under a speci�c scenario; Location can

also be a behavioral attribute which indicates one location of ward-round

by nurses. Behavioral attributes in a dataset may be contextual attributes

in another dataset, for example, location is a behavioral attribute in robot

moving dataset but a contextual attribute in service accessing dataset.

User Behavior

User behavior is extracted from a collection of user-system interactions (i.e.,

events). This thesis proposes a user behavior pattern representation based on

CHAPTER 3. BEHAVIOR PATTERN MINING 35

association, sequencing and timing rules. Association indicates the concurrence

of a set of attribute values together. Sequencing requires that a series of steps

occur in a certain order. Timing allows sequencing the events; limits the events

occurrence frequency; and assigns the gaps between events. A user behavior is

represented as a quadruple:

Behavior =< Actor , Sequence,Context ,TimeInterval >

where Actor issues a behavior; Sequence is the sequence of steps performed by the

Actor; Context is the circumstances in which the behavior takes place; and Time

Interval is the time duration within which the behavior is recovered.

Common Behavior

Intuitively, frequently occurring user behaviors that are discovered from a large

event repository are reasonable to be regarded as user common behaviors. In other

words, if a speci�c behavior is repeatedly performed by a group of users, most

probably it is a common behavior. Also, given a large repository of events, we

can expect to discover a collection of common behaviors. The actor of a behav-

ior is extracted from the actor attributes of events to categorize the behaviors.

The context of a behavior is extracted from contextual attributes of the events to

determine the neighborhood. The sequence of a behavior is extracted from be-

havioral attributes to explain user's behavioral characteristics. The time interval

of a behavior is extracted from the time constraints.

Figure 3.3 illustrates the UML class diagram of the proposed behavior model,

which de�nes di�erent types of entities for describing behavioral elements.

• Class Attribute includes attribute name and attribute value that are ex-

tracted from audit log. Class Event includes a list of attributes and an

unique ID.

• Class MAG is an aggregation of class Event. Events that share a set of

attribute values (named as itemset) are assigned to a maximal association

CHAPTER 3. BEHAVIOR PATTERN MINING 36

Figure 3.3: Class diagram of an abstract behavior model suitable for user behavior
pattern mining task

CHAPTER 3. BEHAVIOR PATTERN MINING 37

group MAG. An event may be assigned to more than one MAG as it shares

di�erent itemset with di�erent group of events.

• Class Cluster is an aggregation of class MAG. One or more MAG instances

construct the search domain for constrained clustering. An Event in a source

MAG is assigned to a Cluster if it satis�es the cluster constraint. Cluster

constraint restricts the cluster size and expresses the analyst's focus. Cluster

constraint is de�ned by the analyst using signi�cant attribute values and it

is either an "intra-cluster-constraint" (de�ned for one cluster) or an "inter-

cluster-constraint" (de�ned between two clusters).

• Class Sequence Pattern is frequent subsequence pattern extracted from Clus-

ter which is the result of sequential pattern mining operation. Attribute sub-

sequence is a discovered sequential pattern occurring frequently in Cluster.

Attribute time constraint limits the maximum duration of Sequence Pattern.

• Class Behavior contains some common characteristics among events in Clus-

ter. Its attributes are designed to describe the four intergradient of a behav-

ior: Actor issues a behavior where an actor can be an individual person or

a group of people; Sequence represents the activities that an actor performs

on the system; Context indicates the environment in which a behavior usu-

ally happens; and Time-Interval describes the duration and frequency of the

behavior.

• Class Common Behavior is converted from Sequence Pattern, where subse-

quence maps to the behavior's Sequence; itemset and cluster constraint feeds

behavior's Context; and time constraint links to behavior's Time-Interval.

CHAPTER 3. BEHAVIOR PATTERN MINING 38

Figure 3.4: Proposed user common behavior pattern recovery process: i) o�-line
preprocessing discover signi�cant group of events to reduce search space; ii) online-
behavior pattern mining and analysis interactively and iteratively extract common
behavior patterns using data mining techniques and domain knowledge.

3.3 Behavior Pattern Recovery Process

Figure 3.4 illustrates the proposed knowledge-driven behavior pattern discovery

process and the techniques used in di�erent stages.

Step 1, O�-line Event Pre-processing. The audit logs from the target

distributed system are collected, parsed and converted into encoded attributed

events. A data mining engine applies association mining operation on the events

to extract a large number of highly related MAGs, where each MAG consists of

CHAPTER 3. BEHAVIOR PATTERN MINING 39

Figure 3.5: Maximal association groups: magx ,magy ,magz

a maximum set of events that all share a maximum set of attribute values. An

event may be assigned to more than one MAG as it shares di�erent attribute

values with di�erent group of events. Figure 3.5 presents 3 maximal association

groups magx ,magy and magz : magx and magy have overlap of sharing common

attributes, and magy and magz have overlap of sharing common events. Each

MAG represents highly similar events and is considered as the building block for

the proposed behavior recovery approach.

We de�ne an association-based similarity metric between events in the same

MAG, which encode both the size and the structure of a MAG. On the assump-

tion that the event is more signi�cant if it is associated with a large number of

events through sharing more common attributes, such a similarity metric is used in

generating constrained-clusters of events for subsequent behavior pattern mining.

Association is a strong constraint which may produce a large number of small

MAGs where very limited number of events are assigned to each MAG. Few be-

havior pattern is extracted from such small MAG. To address this issue, we also

de�ne an association-based similarity metric to measure the closeness between

two MAGs. With the result of similarity between any two MAGs, the analyst is

allowed to select several close MAGs as the source of constrained-cluster.

CHAPTER 3. BEHAVIOR PATTERN MINING 40

Figure 3.6: Constrained event clusters: C1,C2

In order to restrict the search space during populating the clusters, we create

a database of MAGs. This database will be used for four purposes: i) for ranking

MAGs based on association measure between events of one MAG to provide rec-

ommendations for highly related group of events; and ii) for collecting close MAGs

based on association measure between two MAGs to couple small MAGs; iii) for

providing attribute statistics which allows the analyst to focus on the signi�cant

feature in composing the behavior pattern query; and iv) as restricted search space

to collect events satisfying cluster constraints in online behavior pattern mining

phase.

Step 2, On-line Behavior Pattern Mining. Using an iterative process,

the user incrementally selects one or more MAGs from the ranking list; and gen-

erates a BPQ (Behavior Pattern Query) based on the suggested attributes (e.g.,

shared attributes among most events in a MAG) and user's domain knowledge to

collect highly related events from source MAGs. A link-constraint is de�ned us-

ing attribute values to restrict the events that are assigned to the clusters, which

is either an "intra-constraint" (de�ned for one cluster) or an "inter-constraint"

(de�ned between two clusters). The main purpose of such constraints is to fo-

cus on speci�c attribute values that the user is interested to investigate. The

CHAPTER 3. BEHAVIOR PATTERN MINING 41

inter-constraints allow separating the clusters from each others; then the analyst

can convert the inter-constraints into intra-constraints during the searching op-

eration. Figure 3.6 presents the constrained event clustering, where similarity is

measured based on association extracted from MAGs; intra-constraint speci�es the

conditions that instances in the same cluster should satisfy; and inter-constraint

speci�es the conditions that two instances from di�erent cluster should satisfy.

The Sequential pattern mining is applied on each constrained-cluster to extract

a number of frequent action-sequences. The sequential pattern mining algorithm

is only controlled by one input parameter "minsup". If we make minsup too high,

only very simple patterns are found, or none at all. But if we make minsup too low,

the output includes a huge number of patterns, making it very hard to analyze and

use the result. Sequential pattern mining may generate a huge number of short

and trivial patterns but fail to extract interesting patterns approximately shared

by a group of similar sequences. To address this issue, we applied clustering and

representative extraction technique to summarize the large number of extracted

frequent sequential patterns. A similarity-based clustering algorithm is applied on

the sequential pattern mining result, which divides the frequent sequential patterns

into a number of clusters. Clustering operation groups similar patterns in the same

cluster but does not reduce the number of patterns. Then representative extraction

algorithm is applied on each sequence cluster to eliminate redundancy from data

of clusters. Representative sequences are a set of non-redundant typical sequences

that largely cover the observed sequences in a cluster. Common behavior patterns

are �nally produced based on the extracted representative sequences.

A common action-sequence within the single user-sequence is that user's be-

havior. If a user's common action-sequence is also seen in other users' sequences,

then it is common behavior of the system users within the constrained-cluster. The

constraints of the cluster can be viewed as the common context of all representa-

tive sequences extracted from this cluster. Finally a number of common behavior

CHAPTER 3. BEHAVIOR PATTERN MINING 42

Figure 3.7: Common behavior extraction: B1,B2,B3,B4

patterns are extracted and represented as the quadruple: <actor, action-sequence,

context, time interval>.

Figure 3.7 is an example of extracting common behavior patterns from con-

strained event clusters C1 and C2. After applying frequent sequential pattern

mining on C1 and C2, some frequent subsequence patterns are discovered respec-

tively. Sequence clustering and representative extraction are applied on extracted

frequent subsequence patterns, and �nally 4 behavior patterns are produced: B1

and B2 are common behavior patterns under the same context (C1 cluster con-

straint); B3 and B4 are common behavior patterns under the same context(C2

cluster constraint).

3.4 Behavior Pattern Query Language

Constraints are essential in many data mining applications for e�ectiveness and

e�ciency considerations, which allows the analysts to express their needs and

CHAPTER 3. BEHAVIOR PATTERN MINING 43

somehow control the algorithm focusing on what is really interesting. In this

thesis, we present a constraint-based Behavior Pattern Query Language (BPQL)

which enables the analysts to de�ne queries in a declarative way addressing de-

sired patterns. These queries describe the high level and abstract clusters and

their intra-cluster/inter-cluster constraints that allow the analysts to identify the

system-user's behavior patterns that match with the de�ned high level constraints.

The constrained clustering using BPQL is explained as follows:

• Each cluster is intended to be a loose search space for the sequential pattern

mining (common behavior pattern mining).

• The clusters act as highly related groups of MAGs that satisfy particular

properties such as all events that are highly related and also they are at

CT Lab in Radiology department, or they are events that access certain type

of resources, or happen at particular time-interval, or all related to certain

roles, or a combination of the above. Therefore each cluster generates events

that are related by association and also they satisfy user-de�ned properties.

• The other clusters can also gather the events with speci�c properties, and

should satisfy the inter-cluster constrains (i.e., separation), which can be:

the events that are at the other lab (e.g., X-ray Lab), or at di�erent time-

interval, or some property that is distinct from the earlier clusters.

• The event number of cluster is restricted to control the search space for

common behavior pattern extraction, but should not be a strict value. The

cluster should be large enough to gather almost all the events that satisfy

the de�ned properties (both intra-cluster and inter-cluster constraints).

• The inter-cluster constraint will be translated into intra-cluster constraint

by a pre-clustering operation. In a primitive version, the user performs

this translation. For example, distance separation from the �rst cluster is

CHAPTER 3. BEHAVIOR PATTERN MINING 44

translated into events that happen in Toronto; or events that happen in a

limited time-interval which are distinct form those in the �rst cluster.

• The constrained clustering is an important step for common behavior pattern

mining, as it provides highly customizable and relevant search space.

Appendix A de�nes the keywords and syntax for the proposed BPQL. The

following is a behavior pattern query example. The example explores behavior

patterns during rush hour at speci�c location. In the attribute analysis phase,

a number of maximal association groups are generated with association measure.

For example, MAG mag-1 is on the top of the ranking list of the association value

within a MAG. And mag-2 and mag-3 have higher association value with mag-

1. According to the statistics of MAGs, the analyst knows most of the events

in mag-1 occur in rush hours at location CT Lab. Then he may wish to inves-

tigate the di�erence between behavior in rush hours (from 9:00am to 11:00am)

and behavior not in rush hours at CT Lab. The analyst selects mag-1 as the

source domain of cluster C-1; mag-2 and mag-3 as source domain of cluster C-2

and C-3. Constrained-cluster C-1 includes the events during rush hour at "CT

Lab" from mag-1; and constrained-cluster C-2 collects events before rush hour and

constrained-cluster C-3 collects events after rush hour at the same location. Inter-

cluster constraints are converted to intra-cluster constraint, such as "C-2.Location

= C-1.Location; C-2.Time < C-1.Time" is converted to "Location = 'CT Lab';

Time < 9:00" when selecting events to cluster. SIZE-CONSTRAINT speci�es the

preferred cluster size, which allows the analyst restrict the search space for further

behavior pattern mining process. The behavior patterns extracted from cluster

C-1 is common behavior at CT Lab during rush hour, and behavior patterns ex-

tracted from cluster C-2 and C-3 are common behavior at Lab CT before rush

hour and after rush hour respectively.

CHAPTER 3. BEHAVIOR PATTERN MINING 45

BEGIN-BPQ

CLUSTER := C-1;

MAG := mag-1;

SIZE-CONSTRAINT := 5000;

INTRA-CONSTRAINT

Location = 'CT Lab';

Time > 9:00; Time < 11:00;

CLUSTER: C-2;

MAG := mag-2, mag-3;

SIZE-CONSTRAINT := 1000;

CLUSTER: C-3;

MAG := mag-2, mag-3;

SIZE-CONSTRAINT := 1000;

INTER-CONSTRAINT

C-2.Location = C-1.Location;

C-3.Location = C-1.Location;

C-2.Time < C-1.Time;

C-3.Time > C-1.Time;

END-BPQ.

Chapter 4

System Modeling

A formal software speci�cation is a speci�cation expressed in a language whose

vocabulary, syntax and semantics are formally de�ned [55]. The speci�cation lan-

guage relies on mathematical concepts whose properties are well understood. The

principle bene�ts of formal methods are in avoiding ambiguity and reducing the

number of faults in system design. Model-based approach is one of the fundamen-

tal approaches of formal speci�cation where a model of the system is built using

mathematical constructs such as sets, sequences, system states, and the system

operations that modify the system state [56]. Z speci�cation is one of the widely

used notations for developing model-based speci�cation. This chapter models the

user behavior pattern based security provisioning system by de�ning the data,

types, functions, and relations using Z speci�cation language.

This chapter is organized as follows. Section 4.1 formalizes common behavior

pattern mining system using Z notation [11, 12]. Section 4.2 de�nes maximal asso-

ciation to measure the similarity between events in group. Section 4.3 de�nes the

measure of the closeness of two sequences. Section 4.4 discusses the computational

complexity of the proposed algorithms.

46

CHAPTER 4. SYSTEM MODELING 47

4.1 Formal Speci�cation

Following are several de�nitions of Z speci�cation [11] used in this thesis:

Type De�nition

T ::= ...

A type de�nition introduces a new type that must not have a previous global

declaration. T on the left becomes a global identi�er and its value is given by the

expression on the right. Every set can be used as a type. An example of type is

introducing of NAME and ROOM in the hotel reservation system in Section 2.6.

Axiomatic Description

Declaration

Predicate; ...; Predicate

An axiomatic description introduces one or more new global variables (the part

above the dividing line), and optionally speci�es a set of constraints on their values

(the part below the dividing line). Predicate speci�es the constraints on the values

of the global variables that are declared in Declaration or that have been declared

previously.

Schema De�nition

CHAPTER 4. SYSTEM MODELING 48

Schema − Name

Ident? : ...

Ident ! : ...

Declaration

Predicate; ...; Predicate

Schema de�nition allows a system to be described separately, then related and

combined. A single process in a complete system may be described in isolation

using a schema de�nition, then related to the evolution of the system as a whole.

A schema de�nition in this thesis introduces a new user-controlled process, where

the process output varies by given di�erent input. The word heading the box is

the schema name; input variables are declared with "?" (e.g., Ident?); and output

variables are declared with "!" (e.g., Ident !). The Declaration above the central di-

viding line declares some variables, and the Predicate gives a relationship between

the values and variables declared above. Examples of schema are introducing

the system state HotelReservation and an operation AddReservation in the hotel

reservation system in Section 2.6.

Following introduces a high-level algorithm of user behaivor pattern mining,

and formal speci�cation using Z notation[11, 12].

Algorithm 1 accepts system audit log �le as input to explore user common

behavior patterns. The description of the algorithm with reference to its line

numbers is as follows:

• Line 1 to 3: The audit logs are parsed, analyzed and converted into en-

coded attributed events. A data mining engine applies association mining

operation [19] on the events to extract a set of maximum association groups

(MAG), where each MAG consists of maximum set of events that all share

CHAPTER 4. SYSTEM MODELING 49

Algorithm 1 User behavior pattern mining
INPUT: Audit Log File == LOG
OUTPUT: User Common Behavior Patterns == B
1: Encoding&Attribute-Analysis: LOG ⇒ Event Database == E
2: Attribute-Association-Mining: E ⇒ A set of Maximal Association Group ==

MAG
3: BPQ&Constraint-Analysis: MAG ⇒ Constrained Event Clusters == CEC
4: for all constrained event cluster CECi in set CEC do
5: User-based-Sequencing: CECi ⇒ User Sequence Clusters == USCi

6: Time-Constrained-Analysis: USCi ⇒ Time-constrained User Sequence
Clusters == TCUSCi

7: end for
8: for all time-constrained user sequence cluster TCUSCi in set TCUSC do
9: Sequential-Pattern-Mining: TCUSCi ⇒ Frequent Subsequence Patterns ==

FSP
10: Similarity-based-Sequence-Clustering: FSP ⇒ Frequent Subsequence Pat-

tern Clusters == FSPC
11: for all frequent subsequence pattern cluster FSPCj in set FSPC do
12: Representative-Sequence-Mining: FSPCj ⇒ Set of representative se-

quences == RS
13: User Common Behavior Pattern Discovery: RS ⇒ B
14: end for
15: end for

CHAPTER 4. SYSTEM MODELING 50

a maximum set of attribute values. Each MAG represents highly similar

events and is considered as the building block for constrained event clusters.

The analyst selects one or more MAGs as source domain for event cluster op-

eration, and generates cluster constraints based on the suggested attributes

and domain knowledge to collect a large group of events that are highly or

loosely related into constrained event clusters. A high-level behavior pattern

query is explained in Section 3.4, which results in discovering more valuable

user behavior patterns with limited search space in a reasonable execution

time.

• Line 4 to 7: To explore user behavior patterns, the constrained event clusters

are converted into user sequence clusters where each user sequence is a list

of events performed by the same user. Without time restriction, the length

of user sequence is exploding as the duration of the user sequence may be

months even years depending on the collected audit logs. To address the

issue of sequence length explosion, a user sequence is split into a number of

time constrained user sequences with a maximum duration of a session, a

day, or a week.

• Line 8 to 9: The frequent sequential pattern mining [20] is applied on each

constrained user sequence clusters to extract a number of frequent subse-

quences. If a subsequence in a user sequence is also seen in other user

sequences, then the subsequence will probably be an abstract of common

behavior among system users within the constrained cluster.

• Line 10 to 13: A huge number of frequent subsequence patterns may be

generated in the step of sequential pattern mining, which is very hard to be

analysed. After dividing the frequent subsequences into a number of clusters

according to sequence similarity, a representative pattern mining operation

is applied on each subsequence cluster. These small amount of representative

CHAPTER 4. SYSTEM MODELING 51

patterns are the baseline to construct the common user behavior patterns.

Table 4.1: Glossary of Z notation used in this thesis
Notation De�nition Notation De�nition

p ⇔ q Logical equivalence p ⇒ q Logical implication

∀X • q Universal quanti�cation ∃X • q Existential quanti�cation

{ x, y, ... } Set display s a t Sequence concatenation

i1, i2, ..., in : a Instances of type N1 Set of positive natural numbers

A × B ... Cartesian product # A Number of elements in a set

R Real number div Division

P Power set f(x) Function application

A → B Total function A 7→ B Partial function

::= De�nition Rm×n Matrix

(e1, e2) Pair max A Maximum of a set

(x, y, ...) Tuple i .. j Number range

seq A Set of in�nite sequences 〈x , y , . . . 〉 Sequence display

≈ Approximate equality s in t Sequence/tuple segment relation

p ∧ q Logical conjunction second x Second element of pair

Table 4.2: Types and Relations
Notation De�nition Notation De�nition

U Set of users R Set of roles

L Set of locations T Set of time

S Set of systems services E Set of events

ITS Set of itemsets FITS Frequent itemset

MAG Maximal association group CEC Constrained event cluster

USC User sequence cluster TCUSC Time-constrained user sequence cluster

SBSP Subsequence patterns FSBSP Frequent subsequence pattern

RS Representative sequence FSBSPC Frequent subsequence pattern cluster

B Behavior pattern ItemC Item constraint expression

TimeC Time constraint expression SizeC Size constraint expression

minsup Minimum support threshold Dur User sequence duration

covT Coverage threshold rep Mapping of representative

Table 4.1 lists the Z notations that are utilized in this thesis, and Table 4.2

lists a number of types, functions and relations that are introduced to formalize

the behavior pattern mining model. These types and relations are employed to

express user behavior pattern mining system as follows:

Encoding&Attribute-Analysis

CHAPTER 4. SYSTEM MODELING 52

• U is a set of users where a user ui ∈ U is a person.

U ::= {u1, u2, ..., ui , ...}

• R is a set of roles where a role ri ∈ R de�nes the user's responsibility within

an organization.

R ::= {r1, r2, ..., ri , ...}

• L is a set of locations where a lotion li ∈ L indicates the place of the user

issuing an access request.

L ::= {l1, l2, ..., li , ...}

• T is a set of times where a time instance ti ∈ T indicates the time stamp

when the event was triggered. A time instance may be hours, minutes or

seconds, depending on the required time accuracy.

T ::= {t1, t2, ..., ti , ...}

• S is a set of services where a service si ∈ S indicates the user issured service.

More attributes may be added if the target system records more information

in audit logs. For example, healthcare systems may record the emerging

situation, and delegation rules or patient consent for privacy and security

requirements [15].

S ::= {s1, s2, ..., si , ...}

• E is a set of events where each event ei is a tuple of attribute values.

E ::= {e1, e2, ..., ei , ...}

ei = (a1i , a2i , a3i , a4i , a5i), where a1i ∈ U , a2i ∈ R, a3i ∈ T , a4i ∈ L, a5i ∈ S

E ⊆ U × R × T × L× S

• ITS is a set of itemsets where an itemset its is a tuple of attribute values

with di�erent size occurring in event database. For example, (u1, l3) and

(u2, t5, s3) are length-2 itemset and length-3 itemset respectively. An event

e contains an itemset its if e contains every attribute value in its .

CHAPTER 4. SYSTEM MODELING 53

its : ITS

∃ events : PE • ∀ event : events •

its in event

• FITS is a set of itemsets occurring frequently in event database E . The

following schema de�nes an operation FrequentItemsetMining. minsup? is

the input of the operation which ends in a question mark by convention;

FITS is the output of the operation which ends in a exclamation mark. A

frequent itemset �ts is an itemset appearing in at leaset minsup? events from

the event database. sup is a function mapping itemset to the number of times

the itemset appears in the event database. Divided by the total number of

events, the scope of itemset support is normalized to a real number between

0 and 1. FITS ! is the output of frequent itemset mining on event database

E by given an input parameter minsup?.

FrequentItemsetMining

minsup? : R

FITS ! : P(ITS)

sup : ITS → R

0 < minsup? < 1

sup(its) = #{e : E | its in e} div #E

∀ �ts : FITS ! • sup(�ts) ≥ minsup?

• MAG is a set of maximal association groups, where a maximal association

group mag ∈ MAG de�nes maximal association in a group of events in

the form of a maximal set of events that all share a maximum number of

CHAPTER 4. SYSTEM MODELING 54

attribute values. The group of events is denoted by container cnt and the

shared attribute values is denoted by �ts ∈ FITS .

mag : MAG

�ts : FITS

cnt : P(E)

mag = (�ts , cnt)

∀ e : cnt • �ts in e

Constrained Event Cluster

• CEC is a constrained event cluster where all events inside the cluster must

satisfy data analysts speci�ed constraints. The constraint re�ects the com-

mon context of behaviors discovered from a CEC. The data analyst may

produce a set of CEC for further behavior analysis respectively. The fol-

lowing schema de�nes an operation ConstrainedCluster. The input of the

operation are: source? indicates the events of constrained cluster are from

one or more maximal association groups; size constraint SizeC ? limits the

cluster size; and item constraint ItemC ? enforces the �ltering on events that

are assigned to CEC by attribute values. The output CEC ! is a set of events.

The operation ConstrainedCluster selects events from search domain source?

based on maximal association and assigns the ones that contain attributes

denoted in item constraint ItemC into CEC!; and the size of selected events

is controlled by size constraint SizeC. Maximal association measure is intro-

duced in Section 4.2, and cluster constraints are explained in Section 3.4.

CHAPTER 4. SYSTEM MODELING 55

ConstrainedCluster

source? : P{e : E | e ∈ second mag}

SizeC ? : N1

ItemC ? : P(U ∪ R ∪ L ∪ T ∪ S)

CEC ! : PE

#CEC ! ≈ SizeC ?

∀ e : CEC ! •

e in source? ∧ ItemC in e

• USC is a user sequence cluster that is obtained from constrained event cluster

CEC. Each user sequence us ∈ USC is a list of ordered events performed by

the same user.

USC : P(seqCEC)

∀ us : USC • ∃ u : U •

e in us ∧ u in e

• TCUSC is a cluster of time constrained user sequences. Without time con-

straint, the length of user sequence us ∈ USC is exploding as the timeline

may be months even years. The length of user sequence is controlled by

introducing the time constrain TimeC such as a minute, a day, or a week.

A schema of producing TimeConstrainedUserSequences is de�ned, with in-

put variable of time constraint tc?, and output variable TCUSC !. After

performing the operation TimeConstrainedUserSequences, a user sequence

us ∈ USC becomes a number of limited ordered list of events performed by

the same user within speci�ed time interval. The function Dur indicates the

CHAPTER 4. SYSTEM MODELING 56

duration of a sequence.

TimeC ::= {minute, hour , day ,week ,month}

TimeConstrainedUserSequences

tc? : TimeC

TCUSC ! : P(seqCEC)

Dur : TCUSC !→ N1

∀ us : USC • ∃ s1, s2, ...sn : TCUSC ! •

us = s1 a s2 a ...a sn

∀ tcus : TCUSC ! • ∃ us : USC •

tcus in us ∧ Dur(tcus) ≤ tc?

User Sequence Analysis

• SBSP is a set of subsequence patterns where a subsequence pattern sbsp is

the subsequence of a group of sequences in TCUSC . The length of sbsp is

determined by the number of sequence items. Each item of sbsp is either an

individual attribute value or an itemset (a set of attribute values). For ex-

ample, (s1, s3, s4) and ((u2, l5), (u2, l6)) are length-3 subsequence and length-2

subsequence respectively.

SBSP : P(seq ITS)

∀ sbsp : SBSP • ∃ seqs : PTCUSC • ∀ sequence : seqs •

sbsp in sequence

• FSBSP is a set of subsequence patterns occurring frequently in TCUSC. A

frequent subsequence pattern is a subsequence appearing in at least minsup

CHAPTER 4. SYSTEM MODELING 57

user sequences from TCUSC, where minsup is a parameter given by data

analysts. sup is a function mapping a subsequence to how many times the

subsequence appears in TCUSC. FSBSP is the output of frequent subse-

quence pattern mining on TCUSC by given an input parameter minsup?.

FrequentSubsequencePatternMining

minsup? : R

FSBSP ! : P(SBSP)

sup : SBSP → R

0 < minsup? < 1

sup(sbsp) = #{tcus : TCUSC | sbsp in tcus} div #TCUSC

∀ fsbsp : FSBSP ! • sup(fsbsp) ≥ minsup?

• Similarity-based clustering algorithm is performed on FSBSP to group sim-

ilar frequent subsequence patterns. The closeness of two sequences is rep-

resented by the maximum number of identical items in these two sequences

(preserving the symbol order), which is de�ned as Longest Common Sub-

sequence (LCS)[41] of the sequences. An extended LCS computing is in-

troduced in Section 4.3 to evaluate the closeness among frequent subse-

quences. When the number of clusters is �xed to n, a function sim is de-

�ned to measure the similarity between sequences (assume m is the num-

ber of frequent subsequence patterns). The clustering algorithm divides

FSBSP into a set of frequent subsequence pattern clusters FSBSPC =

{FSBSPC1,FSBSPC2, ...,FSBSPCn}.

CHAPTER 4. SYSTEM MODELING 58

FrequentSubsequencePatternClustering

n? : N1

sim : FSBSP × FSBSP → Rm×m

clustering : FSBSP → 1..n

∀ fsbsp : FSBSP • clustering(fsbsp) = 1..n

• Representative sequences RS is a small set of non redundant representatives

covering a desired percentage of all subsequence patterns in a frequent subse-

quence pattern cluster FSBSPCi . We use the same extended LCS (explained

in Section 4.3) to measure similarity between sequences (assume m is the

number of frequent subsubsequence patterns in cluster FSBSPCi). rep is

a partial function from FSBSPCi to RS ! which represents the mapping of

a frequent subsequence pattern to its representative. Density is selected as

representative criterion, which means an instance is more likely to be a can-

didate representative if it has more neighbourhoods in a dense region. covT

is coverage threshold that indicates the proportion of frequent subsequence

patterns in FSBSPCi should have a representative in RS !.

RepresentativeExtraction

sim? : FSBSPCi × FSBSPCi → Rm×m

covT? : R

RS ! : P(FSBSPCi)

rep : FSBSPCi 7→ RS !

0 ≤ covT? ≤ 1

#{fsbsp : FSBSPCi | rep(fsbsp) ∈ RS !} div #FSPCi ≥ covT

CHAPTER 4. SYSTEM MODELING 59

User Common Behavior Pattern

• B is a set of user behavior patterns �nally discovered. Bi represents a be-

havior pattern as a quadruple: Bia denotes the actor of behavior, which is

extracted from cluster item constraints ItemC about attributes user U and

role R; Bic denotes the context, which is extracted from constraints ItemC

about non-user and non-role attributes; Bis denotes the sequence, which

is extracted from representative sequences rs ∈ RS ; Bi t denotes the time

constraint, which is extracted from sequence time constraint TimeC.

B ::= {B1,B2, ...,Bi , ...}

ItemC : CEC

TimeC : TCUSC

rs : RS

∃Bi : B • Bi = (Bia,Bic,Bis ,Bi t)

Bia = (ItemC ∩ U) ∪ (ItemC ∩ R)

Bic = (ItemC ∩ L) ∪ (ItemC ∩ T) ∪ (ItemC ∩ S)

Bis = rs

Bi t = TimeC

4.2 Computing Maximal Association

Without prior knowledge, we apply association mining on the encoded event

database for discovering knowledge such as the most associated events and the

interesting attributes. It is intended to bring together highly related events, and

the shared attributes that indicate the common context of the group of events.

Maximal association can be extracted by data mining and is considered as an inter-

esting property for visualizing the structure of relations among groups of entities.

CHAPTER 4. SYSTEM MODELING 60

In this thesis, we use the notion of maximal association to de�ne two similarity

measures: similarity measure between events inside a mag (Maximal Association

Group); and the similarity measure between two mags.

4.2.1 Association Measure of MAG

On the assumption that an event is more signi�cant if it is associated with a large

number of events through sharing more common attributes, such a association

measure is used by data analysts in selecting events for subsequent behavior pat-

tern mining. In this thesis, we also assume attributes have di�erent signi�cance,

such as role contributes more than service in most systems. Intuitively, more im-

portant attributes will be assigned higher weights. An attribute weight setting

algorithm may be provided by data analysts through a empirical analysis of the

real world system. The events in a group are more associated if a large number of

events in the group share more signi�cant attribute values. The association-based

similarity measure between events in maximal association group magi , denoted as

assoc(magi), is de�ned as follows:

assoc(magi) =
∑

a∈�ts wa + wc ∗ log | cnt |

where 0 ≤ wa ≤ 1 is the weight of each shared attribute a ∈ �ts ; 0 ≤ wc ≤ 1

is the weight of the container of events cnt compared with the shared attributes.

The association measure encodes both the size and the structure of magi . In gen-

eral, the number of shared attributes contributes more on the closeness of events

than the number of sharing events, if a group of events are considered for their

similarity. Besides, the number of sharing events is much more than the number of

shared attributes so that we use logarithm to make a balance between the values.

Following formula normalizes the association value to the range between 0 and 1

CHAPTER 4. SYSTEM MODELING 61

by dividing the maximum association value of MAG.

assocf (magi) =
assoc(magi)
maxMAGassoc

4.2.2 Association Measure between two MAGs

Each mag represents highly similar events and is considered as the building block

for the proposed behavior pattern mining approach. In general, the association

mining will produce a large number of mags. Few behavior patterns can be

extracted from small mag. To address this issue. this thesis proposes an as-

sociation measure between two mags. After examining the association between

mags, data analysts have an opportunity to merge highly associated small mags

to form a larger cluster. We consider two mags are similar if they have more

common events sharing the same set of attributes. The association-based similar-

ity measure between two maximal association groups magi and magj , denoted as

assoc(magi ,magj), is de�ned as follows:

assoc(magi ,magj) =
∑

a∈�tsi∧a∈�tsj wa + wc ∗ log | cnti ∩ cntj |

where 0 ≤ wa ≤ 1 is the weight of each shared attribute among events in two mags

a ∈ �tsi ∧ a ∈ �tsj ; 0 ≤ wc ≤ 1 is the weight of the overlap of container events

cnti∩cntj compared with the shared attributes. Following formula normalizes the

association value to the range between 0 and 1 by dividing the maximum associ-

ation value between maximal association groups (MAG, MAG).

assocf (magi ,magj) =
assoc(magi ,magj)
max(MAG,MAG)assoc

CHAPTER 4. SYSTEM MODELING 62

4.3 Extended LCS

The length of LCS is considered as a measure of the closeness of two sequences,

which �nds the maximum number of identical items in these two sequences (pre-

serving the event order). Each element of the sequence may be an itemset, but

LCS algorithm can only compare simple items rather than itemset. For example,

a sequence of behavior about actions (de�ned as attribute A) and accessed objects

(de�ned as attribute O) looks like < <A-1, O-1> <A-2, O-1> <A-3, O-2> >.

The itemsets <A-1, O-1> and <A-1, O-2> are partially identical. In this the-

sis, LCS (i.e., r(i, j)) is enhanced as follows, which allows comparing itemsets in

sequence.

r(i , j) =

0 if i = 0 ∨ j = 0

r(i − 1, j − 1) +
| lcs(xi , yi) |

max{| xi |, | yi |}
if | lcs(xi , yi) |> 0

max{r(i − 1, j), r(i , j − 1)} if | lcs(xi , yi) |= 0

Let X = (x1, x2, ..., xm) and Y = (y1, y2, ..., yn) be two sequences of lengths

m and n, respectively. An element of the sequence, xi ∈ X and yj ∈ Y , can be

an itemset. Suppose the attribute values of an itemset (xi and yj) are ordered,

such as all elements in sequence X and Y follows the order of <Action, Resource,

Location>. For example, xi= <A-1, O-1, None> and yj= <A-1, None, L-2>.

The problem of comparing two itemset xi and yj can be converted to the problem

of lcs(xi , yj). A common subsequence cs of xi and yj represented by cs(xi , yj) is a

subsequence that occurs in both sequences. lcs(xi , yj) is a common subsequence

of both sequences with maximum length. The length of lcs(xi , yi) is denoted by

| lcs(xi , yj) |. Solving | lcs(xi , yj) | is to determine the longest common subsequence

for all possible pre�x combinations of the two sequences xi and yi . Let r(i , j) be

the length of the lcs of (x1, x2, ..., xi) and (y1, y2, ..., yj). Then LCS (X ,Y) can be

CHAPTER 4. SYSTEM MODELING 63

de�ned recursively using above formula.

4.4 Computational Complexity Overview

The complexity analysis is performed with respect to the formal speci�cation of

the algorithm in Section 4.1.

• FrequentItemsetMining: Apriori frequent itemset mining algorithm uses

a bottom up approach, where frequent subsets are extended one item at a

time, and groups of candidates are tested against the event database. There

are two maim steps of Apriori algorithm: i) use frequent (k-1)-itemsets to

generate candidates of frequent k-itemsets; and ii) scan event database and

count each frequent k-itemsets candidate, and prune candidates if its support

is below minsup. The bottleneck of Apriori algorithm is candidate genera-

tion. In the worst case, 104 frequent 1-itemset will generate 107 candidate

2-itemsets. Candidate test incurs k-times scan of event database. How-

ever, the average running time of Apriori algorithm is promising if given a

reasonable minsup as lots of candidates are pruned in each round.

• ConstrainedCluster: K-mean clustering algorithm complexity is O(nkdi),

where n is the number of d-dimensional vectors, k the number of clusters

and i the number of iteration needed until convergence. In our algorithm, we

de�ned association-based similarity and the matrix has been built based on

the extracted MAGs; n is the number of events from selected MAGs which

is normally much smaller than the size of event database.

• TimeConstrainedUserSequences: Scan the constrained cluster once to

split the user sequence into time constrained sequences.

• FrequentSubsequencePatternMining: The algorithm of frequent subse-

quence pattern mining is similar to Apriori frequent itemset mining, where

CHAPTER 4. SYSTEM MODELING 64

the bottleneck is still candidate generation which becomes even worse. The

maximum pattern size k of frequent itemset is the number of attributes

de�ned in an event. In our case de�ned in 4.1, the maximum value of k

is 5. As for sequence patterns, the pattern length is in�nite for temporal

data. For example, to discover a frequent subsequence pattern of length

100, the algorithm needs to generate 2100 ≈ 1030 candidates. Thus we apply

time constrains to user sequences before applying this algorithm to limit the

maximum length of discovered sequence patterns.

• FrequentSubsequencePatternClustering: We applied hierarchical clus-

tering algorithm on frequent subsequence patterns (size is m), where compu-

tational complexity is O(m2 logm). As for computing the similarity between

two sequences, the time complexity of O(pt) is required, where p and t are

the length of sequences respectively.

• RepresentativeExtraction: We applied neighborhood density as the cri-

teria to measure the representative score of frequent subsequence pattern.

The algorithm of extracting most representative sequences requires compu-

tational complexity of O(l2), where l is the number of frequent subsequence

patterns in a sequence cluster.

Chapter 5

Synthesizing Behavior-based

Dataset

There is a general lack of access to real-world audit logs, and in particular in sen-

sitive and mission-critical industries, such as healthcare, banking, and military.

Moreover, �nding or constructing a useful dataset from real-world systems is di�-

cult due to the nondeterministic nature of the real-datasets especially in the early

stages of the system during the production operation [57]. In general, the perfor-

mance of di�erent data mining approaches depend heavily on the testing dataset.

Some algorithms are very sensitive to the target patterns and critical features. To

decrease the algorithm evaluation time at the early stages, the data analysts can

take advantage of a controllable simulation environment which enables acquiring

various simulated dataset containing embedded interesting patterns and features.

This chapter presents an interactive data exploration environment consisting of a

design-generate-analyze-optimize process which assists data analysts in designing

behavior-based dataset with embedded behavior patterns. A prototype toolkit

named "EventGenerator" has been developed to synthesize dataset in di�erent

application domains.

This chapter is organized as follows. Section 5.1 introduces a behavior-based

65

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 66

dataset generator toolkit for controllable dataset generation. Section 5.2 presents

the dataset design using attribute distribution and behavior pattern de�nition.

Section 5.3 explains the algorithm of behavior-based dataset generation. Section

5.4 provides two case studies to prove that the dataset generator toolkit is useful

for generating dataset in di�erent application domains.

5.1 Introduction

Most of the existing dataset generators create sequential dataset or clustering

dataset with no speci�c goal. IBM Quest Synthetic Generator [58] is an open

source market-basket synthetic dataset generator, capable of creating sequence

dataset with randomly injected sequential patterns based on user speci�ed param-

eters: sequence count, sequence pattern count, average sequence pattern length,

sequence correlation, etc. The generated dataset is only suitable to evaluate the

performance of data mining algorithms because of the extremely limited control on

injected sequential patterns. SPMF (Sequential Pattern Mining Framework) [59]

is an open-source data mining library that o�ers implementation of 75 data min-

ing algorithms for sequential pattern mining, association mining, frequent itemset

mining, and clustering. SPMF also provides a sequence dataset generator by us-

ing completely random method. Another synthetic dataset generator for clustering

and outlier analysis creates datasets based on di�erent distribution and transfor-

mation [60]. Given the number of points and number of clusters, dataset could be

generated according to the user speci�ed distribution, density level, di�culty level

and outlier level which are based solely on the mathematical parameters. This

dataset generator targets for testing clustering and outlier analysis algorithms in-

stead of user behavior analytics. All these tools are not capable of being used to

evaluate the proposed approach as this thesis requires a controllable user-behavior-

based dataset generator.

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 67

Creating datasets that represent real-world systems is challenging. A represen-

tative synthetic dataset of user-system interactions should exhibit realistic features

such as: the frequency of user access requests that mimic both normal work days

and busy system times; statistic biases towards certain type of actions (e.g., more

reads than writes); highly associated features (e.g., speci�c users normally work

at speci�c locations); and more importantly, the sequence that re�ects the con-

tinuous or connected series of actions (e.g., what a user does next is impacted

by what he or she did in the past few steps). To design a controllable dataset

generator with realistic features, we analyzed the scenarios in several public and

private datasets in the �elds of healthcare [51, 61], banking [62] and tra�c collision

[63]. Based on the analysis results, we extract sequencing, timing and association

rules to de�ne a behavior pattern: sequencing requires that a series of steps occur

in a certain order; timing limits the occurrence frequency of certain values; and

association enforces that the occurrence of one value should result in one or more

other values.

We developed a dataset generator toolkit EventGenerator for controllable dataset

generation, suitable for unbiased evaluation of user behavior pattern mining al-

gorithms. EventGenerator has three layers: i) behavior pattern representation

layer; ii) dataset generation layer; and iii) dataset visualization and analysis layer.

The behavior pattern representation layer de�nes a scenario as a behavior pattern

based on sequencing, timing and association rules. This representation layer al-

lows data analysts to design interesting features and patterns that will be injected

into the dataset. The dataset generation layer creates dataset that are controlled

by data size, data distribution, and the designed behavior patterns. The visualiza-

tion and analysis layer provides an interactive exploration environment for visual

analysis of the quality of generated dataset and a means to revise and enhance the

generated dataset. Without such a generator it is impossible to test, evaluate and

calibrate the algorithms that explore a system's production dataset, as the nature

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 68

Figure 5.1: Synthetic dataset design, generation and visual analysis process

of a production dataset is unknown, and most probably it is not even available.

Figure 5.1 illustrates synthetic dataset design, generation and visual analysis

process. The �rst important task is how to easily de�ne the expected dataset. We

propose a behavior pattern representation using data mining concepts (association

pattern, and sequence pattern) as explained in Section 3.2 to constitute the be-

havior pattern, and mathematical tools (probability distribution) to indicate the

statistical characteristics of data. The generation process produces a dataset that

contains prede�ned attributes (representing the intended behavior patterns) and

ensures that such behavior patterns will be embedded into the generated dataset.

After producing the dataset according to the input parameters, the visual analysis

step allows the data analysts to explore and verify the injected behavior patterns.

The primary objective of the visualization is to extract simpli�ed workable in-

formation from the dataset to e�ectively summarize and identify the embedded

behavior patterns. How data analysts apply distinct data mining techniques (e.g.,

association mining, sequential pattern mining, and clustering) to visually analyse

dataset is explained in Section 6.3. Using an iterative process, data analysts in-

vestigate the properties of the recovered behavior patterns, and �nally re�ne the

input parameters to optimize the generation process.

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 69

5.2 Dataset Design

Dataset generation process is controlled by: attribute distribution, and behavior

pattern de�nition. Various continuous probability distributions (e.g., normal dis-

tribution, Poison distribution, beta distribution) can be applied to indicate the

desired distribution of attribute values. We select normal distribution to explain

our method because it is remarkably useful with a well-de�ned mean value and

well-de�ned variance. We also propose a new abstraction of behavior pattern to

assist data analysts in designing a desirable dataset.

5.2.1 Acquiring Valid Source Information

A key issue in using "EventGenerator" to produce high quality dataset is acquisi-

tion of valid source information about the key characteristics and user behaviors

of real-world applications. In sensitive and mission-critical industries, the dataset

designer analyzes audit log service speci�cation to obtain information recorded

in events, individual user-system interactions, and the sequence of user-system

interactions to perform speci�c tasks in a scenario. Based on the analysis result,

the dataset designer de�nes attributes, attribute distribution, behavior patterns

and desired event size to control the produced dataset. In some cases, the real-

world dataset is accessible, but the designer requires larger and more complicated

dataset to evaluate the approach. The designer may analyze the existing small

dataset to mine simple sequences of user-system interactions, and then merge

simple sequences into user behavior patterns to simulate complicated scenarios.

5.2.2 Normal Distribution

Normal distribution [64] is speci�ed by two parameters: the median value µ and

standard deviation σ. The probability density function of random variable x (the

attribute value) with a normal distribution is as follows:

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 70

Figure 5.2: Normal distribution of attribute time with mean=11 and deviation=4

f (x) =
1

σ
√

2π
e
−

(x − µ)2

2σ2

EventGenerator produces events with randomly selected attribute values but

following speci�ed distribution. By given an attribute name, attribute domain

(the scope of allowed attribute values), mean value and standard variety value,

data analysts are able to de�ne desired attribute distribution in generated events.

Figure 5.2 indicates an example of attribute distribution which simulates the time

of accessing patient's health records in a hospital. A real system may have the

following features: the hospital has to access patient's records the whole day (24

hours) as patient may come to hospital anytime; most of access requests are from

7:00 to 20:00; and the daily rush hour of system access is 11:00am. To simulate a

dataset with such features, the data analysts can de�ne an attribute named "time"

with 24 hours; the mean value is 11:00am; and the deviation is 4 to simulate

that daytime covers the most of access requests. Figure 5.2 shows the extracted

attribute distribution of "time" from the generated dataset using EventGenerator.

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 71

5.2.3 Behavior Pattern Representation

A typical user behavior pattern can be expressed using behavior pattern represen-

tation "Behavior = <Actor, Sequence, Context, Time-Interval, Support>", where

Actor is a speci�c user or a group of users; Context is explained by association

to enforce that the occurrence of one attribute value should result in one or more

other attribute values; Sequence requires that attribute values occur in a certain

sequence; Time-Interval restricts the duration of behavior such as hourly behav-

ior, daily behavior, or weekly behavior; and Support indicates the percentage of

generated events should constitute this behavior pattern.

Following shows an example representation of user behavior patterns in health-

care system. The �rst behavior pattern P-00001 describes a typical doctor's work-

�ow in radiology department, of taking a medical exam for a patient in the follow-

ing order: order an exam; read patient's historical exams; create a new exam for

the patient; write diagnostic report for the new exam. This medical examination

work�ow should �nish within 3 working days. The support speci�es the percent-

age of events in which this behavior pattern exists. The second behavior pattern

P-00002 indicates daily nursing ward-round in hospital. In this example, nurses

normally perform ward-round in order: ward-A, ward-B, ward-C. The support

means around 15% of generated events should include behavior pattern P-00002.

In the example, the behavior pattern is expressed in JSON (JavaScript Object

Notation) format [65]. JSON is built on two types of structures that �t our

requirements very well: i) a collection of name-value pairs; and ii) an ordered list

of values. The data analysts design and express various behavior patterns in this

simple JSON format. The dataset generator would automatically transform the

behavior de�nition to association patterns, sequence patterns and time constraints.

These patterns and constraints control the dataset generation process.

1 [

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 72

2 {

3 "id": "P -00001",

4 "description": "doctor 's workflow in radiology

department",

5 "actor": [

6 {"role": "doctor"}

7],

8 "context": {

9 "department": "radiology"

10 },

11 "sequence": [

12 {

13 "action": "create an order"

14 },

15 {

16 "action": "read historical exam"

17 },

18 {

19 "action": "create an exam"

20 },

21 {

22 "action": "create a report"

23 }

24],

25 "duration": "3 days",

26 "support": "10%",

27 },

28 {

29 "id": "P -00002",

30 "description": "daily nursing ward -round",

31 "actor": [

32 {"role": "nurse"}

33],

34 "sequence": [

35 {

36 "location": "ward -A"

37 },

38 {

39 "location": "ward -B"

40 },

41 {

42 "location": "ward -C"

43 }

44],

45 "duration": "daily",

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 73

46 "support": "15%"

47 }

48]

5.3 Dataset Generation

In this section, we formally de�ne the proposed attribute distributions and be-

havior pattern de�nition. Let A = {a1, a2, ..., am} be a set of attributes designed

by the data analyst. Let V = {V1,V2, ...,Vm} denotes the collection of the al-

lowed domains of values for di�erent attributes, where Vi = {vi1, vi2, ..., vix , ..., vin}

denotes the attribute domain of attribute ai , and vix denotes a speci�c value

of attribute ai . Let B = {B1,B2, ...,Bj , ...} be a set of behavior patterns de-

signed by the data analyst. Each behavior pattern is represented as a tuple

Bj =< Bja,Bj s ,Bj c,Bj t ,Bj sup >, where Bja is actor, Bj s is sequence, Bj c is

context, Bj t is time interval, and Bj sup is support.

5.3.1 Dataset Generation Algorithm

Table 5.1 lists the variables that are used in dataset generation algorithm. Algo-

rithm 2 generates dataset with three main steps: i) parse and convert behavior

patterns into association patterns, sequential patterns and time constraints, and

randomly select users to support these behavior patterns; ii) build biased random

attribute value selection function; and iii) generate event dataset according to the

rules constructed in steps i) and ii). First, the Algorithm loads the data analyst's

input parameters including the attribute de�nition A, attribute domain V , user

behavior pattern design B , all system users UAll , and the average event number

per user per day avg and all event days DAll to control the dataset size. The

description of the Algorithm with reference to its line numbers is as follows:

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 74

Table 5.1: Variables used in dataset generator algorithm
Variables Description

E = {e1, e2, ..., ei , ...} E is a set of events.

ei =< vi1, vi2, ..., vim > An event ei is a tuple of attribute values.

uo-dp-sx = <eop1, eop2, ..., eopx> uo-dp-sx denotes a daily event sequence sx

(length is x) of user uo at day dp .

B = {B1,B2, ...,Bj , ...} B is a set of prede�ned behavior patterns.

Bj =< Bja,Bj s,Bj c,Bj t ,Bj sup > Bja denotes the actor of behavior Bj ; Bj s denotes

the sequence; Bj c denotes the context; Bj t denotes

the time constraint; Bj sup denotes the support.

I = {i1, i2, ..., ij , ...} I denotes a set of association patterns.

ij =< vj1, vj2, ... > Each association pattern ij enforces a group of

attribute values (e.g., vj1 and vj2) to occur together

within a group of events, where the behavior context

constraint Bj c determines ij and the selected events.

S = {s1, s2, ..., sj , ...} S denotes a set of sequence patterns.

sj =< vj1, vj2, vj3, ... > Each sequence pattern sj enforces a group of

attribute values (e.g, vj1, vj2 and vj3) to occur

in time order and be inserted into an event sequence

uo-dp-sx , where the behavior sequence constraint

Bj s determines sj and the selected event sequence.

UAll = {u1, u2, ..., un} UAll is the set of all users in the system.

U = {U -B1,U -B2, ...,U -Bj , ...} U denotes the collection of users that are selected

U -Bj = {uj1, uj2, ..., ujl} to insert di�erent behavior patterns. Unselected users

do not have behavior patterns.

U -Bj denotes a group of selected users {uj1, uj2, ..., ujl}
to have prede�ned behavior pattern Bj .

l is the number of selected users, which is controlled

by the support of the behavior pattern Bj sup.

Fk Fk denotes a distribution function for

generating random values for attribute ak .

avg avg denotes the average number of

generated events per user per day.

DAll DAll denotes the collection of days.

avg and DAll are used to control the dataset size.

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 75

Algorithm 2 Dataset Generator Algorithm
INPUT: A,V ,B , avg ,DAll ,UAll

OUTPUT: E
1: I = φ, S = φ,E = φ,U = φ
2: for all Bj in B do
3: association pattern ij = Bj c
4: sequence pattern sj = Bj s
5: apply time constraint Bj t to sj
6: randomly select Bj sup users for U -Bj

7: end for
8: for all ak in A do
9: build biased random value select function Fk

10: end for
11: for all uo in UAll do
12: for all dp in DAll do
13: x = randomly selected an integer around avg
14: generate an empty event sequence uo-dp-sx
15: for all U -Bj in U do
16: if uo exists in U -Bj then
17: insert constrained sequence pattern sj into uo-dp-sx
18: insert association pattern ij into uo-dp-sx
19: end if
20: end for
21: for all event ei in uo-dp-sx do
22: for all empty attribute ak in ei do
23: call function Fk to assign random value vik to ei
24: end for
25: end for
26: end for
27: end for

• Line 2 to 7: transforms each behavior pattern into association patterns and

constrained sequence patterns. As each behavior pattern is de�ned with a

support parameter, the algorithm randomly selects Bj sup users from the

system users UAll to support the behavior pattern Bj .

• Line 8 to 10: builds a set of biased random attribute value selection func-

tions that follow the attribute distribution de�nition.

• Line 11 to 14: starts to generate the events user by user, day by day.

Line-13 assigns a random integer x around the value of avg as the number

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 76

of events for user uo at day dp . Line-14 generates an empty event sequence

uo-dp-sx for user uo at day dp with length of x .

• Line 15 to 20: if the user uo is selected to support one or more behavior

patterns, the algorithm inserts the corresponding association patterns and

constrained sequence patterns into the event sequence uo-dp-sx . Based on the

time-constraints, the Algorithm must restrict the duration of events when

inserting sequence patterns into event sequence. After inserting the patterns,

the event sequence is only partially generated since some attributes that are

not de�ned in patterns are still empty.

• Line 21 to 25: calls the biased random attribute value selection function

to assign values to the remaining attributes. If the user is not selected to

insert any pattern, the algorithm executes section from line-21 to line-25 to

randomly assign all attribute values to each event.

5.3.2 Dataset Generation Output

Figure 5.3 shows a slice of the generated events for users U-1, U-2, U-3 and U-4 for

a month (30 days), using above dataset generator algorithm. The average events

per user per day is 20; day D-1 of user U-1 has 18 events; day D-2 of user U-1 has

21 events; day D-1 of user U-4 has 20 events. Each row represents an event in the

format of "seuqnece id event id user date time role location action patient". The

�rst column is sequence id and the second column is event id within a sequence.

Each attribute value is encoded in the format of a representation letter followed

by an integer. For example, D-2 represents the second day of the month. Consider

three prede�ned behavior patterns B1, B2 and B3 such that B1s = {L-1, L-3, L-

4}, B1t = {4 hours}, B2s = {A-1, A-10, A-2}, B2c = {L-6}, B3c = {A-11, L-11}.

When performing the event generator Algorithm, consider users U-1 and U-4 are

selected to contain these three behavior patterns (i.e., U -B1 = {U-1, U-4}, U -B2

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 77

F
ig
ur
e
5.
3:

A
sl
ic
e
of

ge
ne
ra
te
d
ev
en
ts
us
in
g
da
ta
se
t
ge
ne
ra
to
r
al
go
ri
th
m

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 78

= {U-1, U4}, U -B3 = {U-1, U-4}). First, the Algorithm parses these 3 behavior

patterns and converts them into: association patterns i1 = {A-1, L-6}, i2 = {A-

10, L-6}, i3 = {A-2, L-6}, i4 = {A-11, L-11}; and constrained sequence pattern

s1 = {L-1, L-3, L-4} which happened within 4 hours and sequence pattern s2 =

{A-1, A-10, A-2}. Then the Algorithm generates the event sequences for users

U-1, U-2, U-3 and U-4 day by day, respectively. It generates an empty event

sequence for user U-1 at day D-1 with the length of 18. Then the Algorithm

randomly inserts association patterns i1, i2, i3, i4 and sequence patterns s1 and s2

into the event sequence. As shown in Figure 5.3, the inserted behavior patterns

are highlighted: B1 is marked as yellow, B2 as gray, and B3 as green. After that,

the Algorithm assigns values to the remaining empty attributes based on their

attribute distributions. Following the same �ow, the Algorithm generates event

sequence for User U-1 at day D-2 with 21 events, and after 30 days it generates

event sequences for user U-2, which is not selected to insert any behavior pattern

so that all attribute values of events for U-2 are randomly selected by function Fk

based on the intended attribute distributions. The events for user U-3 are also

randomly generated based on random attribute selection function Fk . After 30

days for user U-3, the Algorithm generates 20 events for user U-4 at day D-1 with

embedded behavior patterns, as shown in Figure 5.3.

5.4 Case Studies

To evaluate the functionality and feasibility of EventGenerator, we produced a

dataset to simulate user-system interactions in distributed medical imaging sys-

tems. The attribute characteristics and designed user behavior patterns are se-

lected after analyzing the audit log speci�cation in distributed PACS systems

(Picturing Archiving and Communication System). We use this case study to

demonstrate the dataset design, dataset generation, and analysis. Besides, we

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 79

designed two more datasets to simulate banking services and tra�c collisions to

prove that our dataset generator toolkit is useful for generating datasets in di�er-

ent application domains.

5.4.1 Dataset Design and Generation

It is very challenging to access the production audit logs from healthcare organiza-

tions due to the patient's sensitive information, privacy issues, and ethics board's

approval. Therefore, a synthetic dataset is required to assist researchers and de-

velopers for systematic testing, analyzing and evaluating di�erent techniques and

software solutions to be approved for healthcare domain. Distributed PACS sys-

tems follow RFC3881 "Security Audit and Access Account ability Message XML

Data De�nitions for Health Applications" [66]. This document de�nes the mini-

mum set of attributes that need to be captured for security auditing in healthcare

application systems. In our experiment, an event is composed of a group of at-

tributes based on RFC3881 de�nition, as follows: Event=<User, Location, Action,

Patient, Date, Time>, where User is the user identi�er; Location is the current lo-

cation of user; Action is the service that the user requested; Patient is the patient

identi�er indicating the owner of the requested resource; Date and Time record

the timestamp.

Table 5.2: Attribute distribution de�nition to simulate audit logs from medical
image system

Attribute Representation Domain Type Mu Sigma

User U- 100 Random - -

Location L- 15 Normal 8 8

Action A- 16 Normal 8 3

Patient P- 300 Normal 150 50

Date D- 30 Normal 15 5

Time T- 24 Normal 11 4

Table 5.2 indicates the input parameters of the attribute distribution. At-

tribute value is encoded by an "identifying letter" plus an integer number (e.g.,

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 80

U-1, D-2, L-4). The attribute domain speci�es the scope of the allowed attribute

values. In our experiment, we simulated a system consisting of 100 users with

di�erent roles (physicians, lab specialists, etc.) and 300 patients. The timeline

of the simulated events is one month. The attribute Time records the hour when

the event occurs. Minute and second can be added if data analysts require more

precise time-stamp. The attributes with normal distributions need to be con�g-

ured with two parameters: mean (mu) and variance (sigma). For example, the

attribute Time with normal distribution and "mu=11" means "11:00am" is the

rush hour in real systems within the hospitals.

Table 5.3: Behavior pattern de�nition to simulate audit logs from medical imaging
system
Pattern Category Pattern Id Sequence Support

Location P-00001 o�ce-1-Juravinski-Hamilton, 30%

Sequence o�ce-3-Juravinski-Hamilton,

o�ce-4-Juravinski-Hamilton

P-00002 o�ce-3-Lakeridge-Oshawa, 25%

o�ce-4-Lakeridge-Oshawa,

o�ce-5-Lakeridge-Oshawa

P-00003 o�ce-2-McMaster-Hamilton, 20%

o�ce-1-McMaster-Hamilton,

o�ce-3-McMaster-Hamilton

Action P-00004 read exam, read report, update report 30%

Sequence P-00005 read exam, read order, create exam 25%

P-00006 create pro�le, read pro�le, update pro�le 20%

Time P-00007 11:00, 12:00, 14:00 30%

Sequence P-00008 10:00, 11:00, 12:00 25%

P-00009 14:00, 15:00, 16:00 20%

Table 5.3 shows 9 typical user behavior patterns that constitute ordering, tim-

ing, sequence and combination relationships among events. Pattern P-00001 ex-

presses that a user in a single day works at three di�erent locations in the fol-

lowing order: o�ce-1-Juravinski-Hamilton, o�ce-3-Juravinski-Hamilton, o�ce-4-

Juravinski-Hamilton. Support is the percentage of users whose event sequences

include this location sequence pattern. Pattern P-00002 and P-00003 are two more

examples of location sequence patterns with di�erent supports. P-00004 shows a

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 81

typical physician work�ow in radiology department in the following order: read a

new exam; read its diagnostic report; update the diagnostic report. P-00005 and

P-0006 are also two typical work�ows in a radiology department with di�erent

supports. P-00007 to P-00009 indicate three time sequence patterns during which

physicians have accessed the medical images.

Our dataset generator transforms these 9 user behavior patterns onto the JSON

formats as the input parameters. By adding more parameters with average event

count per user per day to control the size of the dataset, our generator engine

generated 30,000 events with embedded designed features.

5.4.2 More Application Domains

Various application domains can bene�t from our designed toolkit by generat-

ing datasets with domain speci�c features and behavior patterns. For example,

a Consultant Service in a banking organization is proposed that is capable of

matching the customer's attributes with those of previous customers under simi-

lar circumstance to provide the new customer with the best possible recommenda-

tions [62]. Our dataset generator can be used to design and generate the desired

dataset to train the recommendation system. Based on the investigation of sev-

eral services o�ered by a Banking organization, we designed the attribute-tuple

for banking event as "<Status, Occuption, TypeOfService, Age, AmountOfMoney,

UseOfMoney, CreditHisotry, Degree>".

Table 5.4: Behavior pattern de�nition to simulate dataset of banking services
Pattern Id sequence Time Constraint Support

P-00001 BB, BBB, AA, AAA 4 months 10%

P-00002 AAA, BB, CCC 3 months 5%

P-00003 Good, Good, Excellent 3 years 15%

P-00004 Fair, Good, Poor 3 years 10%

P-00005 Travel, Travel, House, House 4 years 15%

P-00006 Tuition, Tuition 2 years 5%

Using our dataset generator interface, the system designer is able to de�ne the

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 82

distribution of di�erent attributes of the banking event and the banking service

scenarios to be injected into a training dataset. Table 5.4 indices 6 example

behavior patterns in the banking service systems. Suppose that a CreditHisotry

System for bank customers records the customer's credit ratings from excellent to

poor, as: AAA, AA, A, BBB, BB, B, CCC, CC, C and D, respectively. Pattern

P-00001 expresses that a pattern of credit rating is improving since the past 4

months. On the other hand, pattern P-00002 is a pattern of credit rating is

deteriorating in the past 3 months. People's income AmountOfMoney is divided

into ranges of Excellent, Good, Fair, and Poor. Pattern P-00003 and P-00004 are

two example patterns of income changing in recent 3 years. Attribute UseOfMoney

tracks customer's expenses. Pattern P-00005 reveals young people mostly spend

money on travel when they are single, and then spend a large amount of money

on purchasing a house after marriage. P-00006 indicates normally students bear

the burden of tuition.

Table 5.5: Behavior pattern de�nition to simulate dataset of tra�c collision
Pattern Id sequence Support

P-00001 Snowing, Climbing lane 5%

P-00002 Young, Sport, Injury 10%

P-00003 8:00am, No injury 20%

Table 5.5 presents another example regarding the tra�c safety recommenda-

tion, which requires a detailed testing dataset when collisions happen, such as:

collision level, vehicle's attributes, driver's attributes, weather and location. After

investigating several Canada's tra�c collision reports, we designed the attribute-

tuple for tra�c collision event as <CollisionTime, CollisionLocation, Critical, Ve-

hiclesInvolved, VehileModel, Weather, RoadSurface, DriverAge, DriverGender>.

Depending on our generator interface, the safety recommendation system designer

can produce various testing datasets with designed collision features. Table 5.5

shows 3 example behavior patterns based on association pattern to describe traf-

�c collisions. Pattern P-00001 reveals that tra�c collision is easy to happen in

CHAPTER 5. SYNTHESIZING BEHAVIOR-BASED DATASET 83

the climbing lane during snow fall. Pattern P-00002 explains more young people

driving sport vehicles have injury in tra�c collision because of over speed. And

many tra�c collisions happen at 8:00am but with few injuries as 8:00am is rush

hour.

Chapter 6

Case Studies

This chapter presents three case studies to demonstrate the functionality, perfor-

mance and accuracy of the user behavior pattern recovery technique in the thesis.

A prototype toolkit has been implemented to assist the system administrators in

analyzing audit logs from distributed systems. The experiment in this chapter has

been organized to:

• Demonstrate the generality of the proposed approach by experimenting with

systems in di�erent domains such as distributed medical imaging system, and

public cloud computing service.

• Evaluate the usefulness of the approach in terms of producing high-quality

results with recommendations, e�ciency and accuracy of behavior pattern

mining.

• Demonstrate the user involvement and the incorporation of domain/system

knowledge in the user behavior pattern recovery process.

84

CHAPTER 6. CASE STUDIES 85

Figure 6.1: Programming language, software and libraries used in experiment

6.1 Experimentation Platform and Tools

The hardware platform for the experiment consists of a Ubuntu 14.04 virtual ma-

chine on Oracle VirtualBox with 2.90GHz, 2GB memory, and 40G disk. As part

of this work, the proposed user behavior pattern mining approach has been imple-

mented in a toolkit. The toolkit o�ers an interactive environment for recovering

and evaluating user behavior patterns, which provides the following functional-

ists: i) parsing and converting target system audit logs into encoded attributed

events; ii) association-based similarity measure and constrained event clustering;

iii) frequent sequential pattern mining as presented in [48]; iv) sequence clustering

and representative extraction as presented in [49, 50]; and v) an evaluation of the

recovered user behavior pattern using developed EventGenerator.

Figure 6.1 presents the proragmming languge, software and libraries used in ex-

CHAPTER 6. CASE STUDIES 86

perimentation. Our toolkit is developed using two progamming languges: python

and R. "Python is a widely used high-level, general-purpose, interpreted, dynamic

programming language, which lets you work quickly and integrate systems more

e�ectively." [67] The collected audit logs from target systems are in JSON/XML

format. Python provides standard libraries for parsing XML and JSON. Therefore,

the audit log preprocessing and attributed event encoding are written in Python.

R language is widely used in statistical computing, data mining and data analysis.

Besides, many free R packages are supplied with collection of R functions, data

structure and compiled code. Our developed toolkit about data analysis, pattern

mining, clustering and visualization are built using R [45]. The packages that are

used are also listed in �gure 6.1.

EventGenerator is a useful utility which allows data analyst to produce cus-

tomized events with user behavior patterns embedded. The data analyst can

easily design user behavior patterns and generate events through con�guration

without having to write any code. EventGenerator is written in Python, which is

deployed at GitHub [68]. The data analyst provides an attribute de�nition �le, a

user behavior pattern de�nition �le, and a set of parameters to control the gen-

erated event size. EventGenerator can produce a 100K event dataset containing

10 attributes within 10 seconds. Each row of the output event �le represents an

event, with attribute values separated by space. At the same time, another �le is

generated which records where the patterns are inserted into. This �le is used for

evaluating the accuracy and completeness of our approach in subsection 6.4.2.

6.2 Distributed Medical Imaging System

We collected audit logs from distributed PACS (Picture Archiving and Communi-

cation System) and IHE (Integrating the Healthcare Enterprise) integrated imag-

ing systems using MARC-HI Everest Framework [69]. This framework builds a

CHAPTER 6. CASE STUDIES 87

higher level API that can be used directly by application developers for communi-

cation with remote systems in a standard manner. The source systems, PACS and

IHE integrated imaging systems, follow the "RFC3881-Security Audit and Access

Accountability Message XML Data De�nitions for Healthcare Applications" [66]

to generate audit logs. This document de�nes the format of data to be collected

and the minimum set of attributes that need to be captured for security auditing

in healthcare application systems.

Table 6.1: Attributes converted from audit log of distributed medical imaging
system
Attribute Data De�nition in XML schema Attribute MinSup

Name according to RFC3881 Domain

User ActiveParticipant/UserIsRequestor='true'/UserID 329 0.003

Role ActiveParticipant/RoleIDCode/code 4 0.25

Location ActiveParticipant/ 18 0.05

UserIsRequestor='true'/NetworkAccessPointId

Action EventIdenti�cation/EventActionCode 3 0.3

Paitent ParticipantObjectIdenti�cation/ 84

ParticipantObjectTypeCode='1'/ParticipantObjectID 0.01

Resource ParticipantObjectIdenti�cation/ 492 0.002

ParticipantObjectTypeCode='2'/ParticipantObjectID

Date EventIdenti�cation/EventDateTime 25 0.04

Time EventIdenti�cation/EventDateTime 24 0.04

In the preprocessing stage, the collected audit logs are converted into attributed

events according to the schema de�ned in RFC3881. In total we collected 695 user

access events from the distributed medical imaging system running at Mohawk

College within a month. Table 6.1 indicates: attribute names; mapped attributes

onto the XML schema of RFC3881; domains of attribute values; and selected

minimum supports for association mining which will be further discussed in the

following subsection.

CHAPTER 6. CASE STUDIES 88

Figure 6.2: Visualization of association-based similarity between events

6.2.1 Maximal Association

Apiori algorithm [19] considers only one minimum support value (minsup) to �nd

frequent itemset, which implicitly assumes that all items in the dataset are of the

same nature and/or have similar frequencies. However, this is not the case in some

real-life applications: some attribute values appear very frequently in the events,

while others rarely appear but carry more signi�cant meanings. For example,

several of the collected events are related to the role of physician; but only a

few of them are related to a speci�c patient, which are important information.

If minsup is set too high, the patterns that involve rare attribute values will be

deleted. On the other hand, if minsup is set too low, it may cause explosion of

discovered patterns.

CHAPTER 6. CASE STUDIES 89

The method of mining association pattern with multiple minsup is introduced

by Liu [70]. We de�ne minsup for each category of attributes. The value of minsup

of an attribute category is selected as the average probability of an attribute value

inside the attribute domain. For example, the attribute domain of "Role" is 4,

then the minsup of attribute "Role" is 0.25 since the average probability of each

attribute value of "Role" is 0.25. The selectedminsup of each attribute is presented

in Table 6.1. We can see the minsup of attribute "Action" is high (0.3) since the

audit logs just record three actions: read, update and delete. Meanwhile, only

a small group of events are related to accessing the same health record. We can

see the minsup of attribute "Resource" is very low (0.002) because there are 492

patient resources which means the probability of an event related to an patient

resource is 1/492≈0.002. The method of association mining with multiple minsup

assumes the minimum support of an itemset is the lowest minsup value among the

items in the itemset. So the itemset "A-1, R-2" (i.e., "Action" with minsup 0.3 and

"Resource" with minsup 0.002) is frequent if its support is equal or greater than

min{0.3, 0.002} = 0.002. After applying the modi�ed Apriori association mining

algorithm with minsup for each attribute category, we obtained 1276 maximal

association groups.

Compared with both the synthetic and real-world datasets to be analyzed in

Section 6.3 and Section 6.4, the events used in this case study is relatively small.

We de�ned an association-based similarity between two events which is explained

in Section 4.2, based on the structural property of the extracted maximal associa-

tion groups. The similarity between two events ei and ej , denoted as sim(ei , ej) is

de�ned as the maximum of the association values between ei and ej , considering

that ei and ej may belong to more than one associated group gx with a di�erent

association value in each group gx . Figure 6.2 illustrates the undirected graph

representation of the complete event set in our case study. We used Gephi [71]

which is an open source network analysis and visualization software package to

CHAPTER 6. CASE STUDIES 90

illustrate the mass relationships among the events according to our de�ned similar-

ity metric. Each node represents an event and each edge represents the similarity

strength between two events. If a node is connected to more highly similar nodes,

its color becomes heavier. Gephi also provides some layout algorithms that push

out unconnected nodes or weak connected nodes (sim(ei , ej) is low) far away from

the rest of the graph. After applying algorithms, we obtained the view of Figure

6.2 which shows several group of events are highly associated. However, this au-

tomatic tool does not provide any information about the common characteristics

of the highly associated event groups.

6.2.2 Constrained-clusters

We created a database of seed-domains that are used as the search domain for

populating the constrained-clusters. Each event (as a potential seed) has a cor-

responding domain (as seed-domain). We assigned events that have non-zero

similarity values with the seed into the seed-domain. Each event can be assigned

to more than one domain. For each seed-domain we collected statistical data that

are used for ranking. The collected statistics are: i) the number of events in the

domain; ii) the average similarity value between events in the domain; and iii) the

major attribute values that participate in the maximal association groups.

Seed-domain provides restricted search space for constructing constrained clus-

ters, but creating seed-domain for each event is time consuming in large distributed

systems. We prune events at the step of maximal association through increasing

minimum support. The events having low association with other events are less

signi�cant so that they would be pruned and excluded from initial seed event

selection.

In our experiment, after ranking the seed-domains based on domain size, event-

387 is suggested as the initial seed for constrained-cluster since this domain con-

CHAPTER 6. CASE STUDIES 91

taining 427 events is the largest domain. The itemsets shared among MAGs

containing event-387 are as follows: <U-22 P-17> <A-1 D-11> <A-1 T-10 U-22

L-6>.

With the above suggested signi�cant event and attribute values, the user is

able to produce some constraints using our proposed BPQL discussed in Section

3.4 to construct event groups for subsequent behavior pattern mining. In order to

evaluate the e�ectiveness of the knowledge on behavior pattern discovery result,

four groups of events from loosely constrained to tightly constrained are selected

as follows:

• Cluster#1 (Without knowledge). Collect all events to this cluster.

• Cluster#2 (With knowledge of maximal association). Select event-

387 as initial seed event, and collect events that have non-zero similarity

with the seed event. Totally 427 events are collected.

• Cluster#3 (With knowledge of both maximal association and con-

straints). Select event-387 as initial seed event, and add one intra-cluster

constraint "user = U-22 && location = L-6" to this cluster. Events issued

by user U-22 from location L-6, and having non-zero similarity with seed

event are assigned to this cluster. Totally 156 events are collected.

• Cluster#4 (With knowledge of both maximal association and con-

straints). Select event-387 as initial seed event, and add one intra-cluster

constraint "time = T-10" to this cluster. Events happened during rush hour

10:00am, and having non-zero similarity with seed event are assigned to this

cluster. Totally 47 events are collected.

CHAPTER 6. CASE STUDIES 92

Figure 6.3: Number of discovered sequence patterns in each cluster with di�erent
minsup

6.2.3 Behavior Pattern Mining

Sequential pattern mining algorithm Apriori [20] is employed to discover user's

daily behavior in each cluster. The input of Apriori algorithm is a sequence

database and a user-speci�ed threshold minsup, and the output is a list of fre-

quent sequential patterns that occurs in a sequence database.

In our experimentation, we �rst convert event database to sequence database

where each sequence is a set of ordered events performed by the same user within

one day. Therefore, the discovered frequent sequence patterns can be viewed as

the user's daily behavior. To evaluate the advantage of using maximal association

groups and constraints in the process of user behavior discovery, we considered

di�erent event clusters from cluster#1 to cluster#4, and relative minsup values

from 0.25 to 0.8. Figure 6.3 shows the number of discovered frequent sequence

patterns from the four clusters. The number of sequence patterns for cluster#3

was not shown due to low values of minimum support, as it generates too many

candidates and run out of memory (same reason for Figure 6.4 and 6.5). We

found more sequence patterns in cluster#4 than the other clusters. This result

demonstrates that the recommendation of an initial seed event and signi�cant

attribute values allow us to discover more sequence patterns.

CHAPTER 6. CASE STUDIES 93

Figure 6.4: Average length of discovered sequence patterns in each cluster with
di�erent minsup

Figure 6.5: Maximum length of discovered sequence patterns in each cluster with
di�erent minsup

Figure 6.6: Execution time of mining each cluster with di�erent minsup

CHAPTER 6. CASE STUDIES 94

Figure 6.4 presents the average length of discovered frequent sequence patterns

for the four clusters. The length of a sequence is the number of itemsets in the

sequence. A sequence of length k is called a k-sequence. We aim at identifying more

sequence patterns and with longer lengths. Equivalently, we want to �nd user's

behavior pattern involved more actions. We can see from Figure 6.4 that cluster#4

contains sequence patterns with higher average length for low values of minimum

support, and cluster#3 contains sequence patterns with higher average length for

high value of minimum support. It proves that knowledge-driven recommendations

helps to discover longer sequence patterns.

Figure 6.5 demonstrates the maximum length of discovered frequent sequence

patterns for the four clusters. As shown, cluster#2 contains an 18-sequence for

low minimum support (0.25); cluster#4 has longer maximum length sequence

pattern for medium minimum support; and cluster#3 includes 8-sequence for high

minimum support (0.8) which is much longer than other clusters.

Through comparing the discovered sequence pattern number and sequence

pattern length for four clusters, the experiment result proves that our proposed

knowledge-driven approach, maximal association and user produced cluster con-

straints based on recommendations, improves the discovery of behavior patterns.

Figure 6.6 shows the execution time for mining sequence patterns from each

cluster. As the minimum support decreases, the execution time of mining all

event clusters increase because of the growing in the total number of candidate

sequences. Very few sequence patterns are discovered from cluster#1 so that

its execution time is shortest. The execution time of mining cluster#4 increases

slower than mining cluster#2 because of the cluster size.

The e�ciency of behavior pattern mining depends on the scale of event dataset

and the minimum support parameter. The Apriori algorithm used for behavior

pattern mining in our experiment is a basic algorithm but the performance is

acceptable with our limited dataset size. For large distribute systems, we have

CHAPTER 6. CASE STUDIES 95

evaluated some more e�cient algorithms to improve the performance. After col-

lecting more events from target system (e.g., events during a couple of months), we

would apply more e�cient pattern mining algorithms such as FPGrowth [72] and

Pre�xSpan[73]. FPGrowth is a very fast and memory e�cient frequent itemset

mining algorithm which uses a special internal structure called FP-Tree. Pre�xS-

pan proposed a projection-based sequential pattern-growth for e�cient mining of

sequential patterns.

6.2.4 Behavior Pattern Analysis

In a post-analysis, based on the salient attribute values of constrained clusters the

analyst investigates the characteristics of the discovered sequence patterns in each

cluster. For example, what is common among the users who accessed the system

around the rush hour? What is the frequent behavior pattern of a speci�c user

in the system? Through analyzing the common attribute values in each item of

sequence patterns discovered in subsection 6.2.3, context attributes are extracted

to describe the circumstances of the complete sequence. Following examples are

some sample behavior patterns discovered from cluster#3 and cluster#4 which

assist administrators to examine the user behaviors in accessing system:

• User "U-22" at most has 6 access requests each day at location "L-6" in 80%

working days; User "U-22" accesses the record of patient "P-12" at location

"L-6" twice each day in 80% working days.

SUPPORT=0.8

Actor = <U-22>

Context = <L-6>

Action-sequence = <<A-1> <A-1 P-12> <A-1 P-12> <A-1> <A-1> <A-

1>>

Time-interval= <Daily>

CHAPTER 6. CASE STUDIES 96

• 80% of access requests from user "U-22 at location "L-6" are at time "1:00pm".

SUPPORT=0.8

Actor = <U-22>

Context = <L-6 T-13>

Time-interval= <Daily>

• 50% of access requests during rush hour "10:00am" are from user "U-22".

SUPPORT=0.5

Actor = <U-22>

Context = <T-10>

Time-interval= <Daily>

• 50% of users have access requests at most 6 times during rush hour "10:00am".

SUPPORT=0.5

Context = <T-10>

Action-sequence = <<A-1> <A-1> <A-1> <A-1> <A-1> <A-1>>

Time-interval = <Daily>

• 25% of access requests during rush hour "10:00am" are reading the records

of patient "P-2" from location "L-1".

SUPPORT=0.25

Context = <T-10 L-1>

Action-sequence = < <O-2 P-2> >

Time-interval = <Daily>

6.3 Public Cloud Computing Services

Public cloud services provide auditing to keep track of the access of authorized

users. For example, the AWS (AmazonWeb Services) API call history produced by

CloudTrail enables third-party tool understanding what's happening in an AWS

CHAPTER 6. CASE STUDIES 97

account. In the section, we �rst apply sequential pattern mining on collected

dataset directly, which generates a large number of patterns. It is almost infea-

sible to analyse the result and acquire meaningful user behavior patterns. Then

we apply our approach to guide data analyst step by step: i) statistical analysis

of single attribute describes the nature of the data to be analysed; ii) association

measure establishes groups of highly related events and reduces search space for

constrained clustering; iii) constrained clustering injects data analyst's domain

knowledge into clustering process; and iv) behavior pattern mining and analy-

sis process produces a small set of non-redundant representative user behavior

patterns.

6.3.1 Data Collection

"Amazon AWS CloudTrail is a web service that records AWS API calls for your

account and delivers log �les to you. The recorded information includes the iden-

tity of the API caller, the time of the API call, the source IP address of the API

caller, the request parameters, and the response elements returned by the AWS

service." [74] The AWS API call history produced by CloudTrail can be used for

user behavior analysis. For example, a CreateStack call (creating virtual machines)

may result in following API calls about Amazon EC2 service (managing virtual

machines) and Amazon EBS service (accessing block level storage volumes) as

required by the AWS CloudFormation template.

AWS Identity and Access Management (IAM) service provides shared access to

an AWS account. The administrator can give access to the AWS account to speci�c

users. IAM users have their own user name and password but share the same

account. We collected user activities using AWS CloudTrail of a company account

for 4 months. This software company has two types of businesses: i) o�ering

services hosting on public cloud to serve individual users; and ii) developing and

CHAPTER 6. CASE STUDIES 98

Figure 6.7: Event types recorded in AWS CloudTrail

delivering solutions for enterprise. Totally we acquired 286K events. Figure 6.7

presents three types of events about company businesses: i) events of employees

who are doing development and testing on AWS; ii) events of anonymous that

record individual user accessing the company o�ered services; and iii) API calls by

internal services. Considering the feasibility of evaluation, we applied the proposed

user behavior pattern recovery process on the events of employees. Because we

can show them our extracted patterns and ask them to assess the correctness.

Following is an example AWS CloudTrail event which contains �elds that de-

termine what action was requested by whom, and when and where the request

was made.

1 {

2 "awsRegion": "us-east -1",

3 "eventID": "f4713996 -669e-4f63 -acc8 -b81852463050",

4 "eventName": "DescribeAlarms",

5 "eventSource": "monitoring.amazonaws.com",

6 "eventTime": "2015 -09 -03 T15:06:20Z",

7 "eventType": "AwsApiCall",

8 "eventVersion": "1.03",

9 "recipientAccountId": "122931797421",

10 "requestID": "5556a7ec -524d-11e5-b0f8 -7 b8b5c2ddbea",

11 "requestParameters": {

12 "maxRecords": 100

13 },

CHAPTER 6. CASE STUDIES 99

14 "responseElements": null,

15 "sourceIPAddress": "162.249.90.40",

16 "userAgent": "signin.amazonaws.com",

17 "userIdentity": {

18 "accessKeyId": "XXXXXXXXXXXXXXXXXXXXXX",

19 "accountId": "XXXXXXXXXXX",

20 "arn": "XXXXXXXXXXXXXXXXXXXX:user/john",

21 "invokedBy": "signin.amazonaws.com",

22 "principalId": "AIDAI44264P2REP7NJCRO",

23 "sessionContext": {

24 "attributes": {

25 "creationDate": "2015 -09 -03 T13:32:51Z",

26 "mfaAuthenticated": "false"

27 }

28 },

29 "type": "IAMUser",

30 "userName": "john"

31 }

32 }

• awsRegion records where the request was made to, and sourceIPAddress

records where the request was made from. AWS currently supports 10 re-

gions where us-east-1 is US EAST(N. Virginia).

• eventSource is the service that the request was made to. For example, moni-

toring.amazonaws.com is a cloud monitoring service for AWS cloud resources

and the applications running on AWS.

• eventName records the requested action, which is one of the actions listed

in the API Reference for the services. For example, AWS allows users to

con�gure alarms based on metrics data for resource usage monitoring pur-

pose. DescribeAlarms is an action of retrieving alarm with the speci�ed

alarm name.

• userIdentity provides detailed information about the user who made the

request.

CHAPTER 6. CASE STUDIES 100

We developed an AWS CloudTrail preprocessor to convert the collected logs

into attributed events. Only employee's events are selected into the event repos-

itory to be analyzed. Finally we got 30K events tracing the activities of 5 em-

ployees in 4 months. Table 6.2 indicates the extracted attribute names, attribute

domain, and example attribute values. These �ve attributes are selected to learn

user behavior pattern in our experiment. Attribute selection is performed by do-

main expert. Feature selection algorithms may be applied if the dataset has more

complicated features. More attributes can be added into attributed events, such

as awsRegion and sourceIPAddress if the data analyst concerns the service location

and user location.

Table 6.2: Attributes converted from AWS CloudTrail Events
Attribute Attribute Attribute

Name Domain Values

User 5 William (manager)

John, Meng (developer)

David (part-time developer)

Ka (sales)

Date 75 from 2015-09-03 to 2016-01-08

Time 24 24 hours a day

Service 15 elasticmapreduce.amazonaws.com (elastic MapReduce)

ec2.amazonaws.com (virtual machine (VM) management)

s3.amazonaws.com (storage service)

autoscaling.amazonaws.com (auto-scale cluster capacity)

cloudformation.amazonaws.com (resource template)

...

Action 147 DescribeInstanceAttribute (retrieve VM attributes)

DescribeInstances (retrieve one or more VMs)

TerminateInstances (delete VMs)

GetBucketLocation (retrieve storage location)

CreateSecurityGroup (create a security group)

...

6.3.2 Using Sequential Pattern Mining Directly

Sequential pattern mining is one of the most important data mining method for

discovering behavior patterns. To compare the result between our approach and

CHAPTER 6. CASE STUDIES 101

normal data mining method, we �rst applied frequent sequential pattern mining

algorithm Apriori [20] to learn user behavior patterns directly. Each event in

the event repository consists of the following �elds: event-id, event-time, and the

attributes to be analyzed. A user-sequence is an ordered list of events performed

by the same user. Aiming at discovering user daily behavior, user-daily-sequence

is de�ned as an ordered list of events performed by the same user within a calendar

day. We convert the event repository into a sequence repository, where a user-

daily-sequence consists of the following �elds: sequence-id, a set of event-id, and

a set of ordered events to be analyzed.

We found user may repeat some actions many times in a sequence. For ex-

ample, in the scenario of searching a document on Amazon S3, a series of actions

ListBuckets are performed until the user �nd the location where the target doc-

ument is stored. Thereby we may see many redundant sequence patterns in the

mining result such as <ListBuckets>, <ListBuckets, ListBuckets>, <ListBuckets,

ListBuckets, ListBuckets>, <ListBuckets, ListBuckets, ListBuckets, ListBuckets>,

etc. To solve this problem, we merge continuous actions and represent them in

the format of action+ in the prepossessing step. So that continuous ListBuckets

is represented as ListBuckets+. After the sequence preprocessing, we will only see

ListBuckets and ListBuckets+ in the sequential pattern mining result no matter

how many times they appear.

By given a minsup from 0.2 to 0.5, Table 6.3 presents the sequential pattern

mining result on user-daily-sequence repository. We can see only 1 frequent sub-

sequence about user sign-in is discovered with minsup as 0.5. We found more

patterns as decreasing minsup threshold. However, if we set minsup low to 0.2,

the sequential pattern mining algorithm cannot �nish in 20 minutes, and the pro-

gram crashes due to out of memory in the end. The mining result by given minsup

between 0.3 and 0.4 are analysable in terms of the extracted pattern amount. But

understanding and summarizing the extracted sequence patterns manually is al-

CHAPTER 6. CASE STUDIES 102

Table 6.3: Patterns discovered from AWS CloudTrail Events using sequential pat-
tern mining directly

Minsup Execute Pattern Example

Time Count Patterns

(second)

0.5 0.213 1 <ConsoleLogin+,signin.amazonaws.com>

0.4 0.237 7 <s3.amazonaws.com+>

<signin.amazonaws.com,

ListBuckets,s3.amazonaws.com>

<elasticloadbalancing.amazonaws.com,

{DescribeAlarms,monitoring.amazonaws.com}>

<{john,signin.amazonaws.com},john+>

<ConsoleLogin+,signin.amazonaws.com,

elasticloadbalancing.amazonaws.com+>

<signin.amazonaws.com,

elasticloadbalancing.amazonaws.com,

monitoring.amazonaws.com,

DescribeLoadBalancers,

elasticloadbalancing.amazonaws.com>

<ec2.amazonaws.com+>

0.35 0.275 17 ...

0.3 138.323 437 ...

0.2 >1000 N/A ...

most impossible, and even worse if the mining result is huge. It is tough to answer

the following questions without proper method and automatic tools. What are

the most close sequence patterns? How many categories are there in the sequence

patterns? What is the common features among a group of close sequence pat-

terns? Our approach will guide and assist the data analysts in answering these

questions.

6.3.3 Statistical Analysis

A bar chart is a graphical representation of the distribution over a categorical vari-

able, which describes centering, dispersion (spread) and shape (relative frequency)

of the data. Figure 6.8 to 6.12 show the bar charts of each attribute: user, hour,

date, service and action. X-axis indicates the attribute values (not all attribute

values are displayed due to space limit) and Y-axis shows how many times such

CHAPTER 6. CASE STUDIES 103

Figure 6.8: User access request distribution

attribute value appears in event dataset. Figure 6.8 reveals features of user ac-

cess request distribution, such as William is the most active user; John and Meng

take the second and third place respectively. Figure 6.9 reveals the rush hour

is 16:00, and people prefer to work from afternoon until late-night (from 14:00

to 2:00). Figure 6.10 shows two obvious spikes at the �rst half of October, and

access request amount at other days are relatively stable. About AWS services

as shown in Figure 6.11, ec2.amazonaws.com, elasticmapreduce.amazonaws.com,

cloudformation.amazonaws.com, and s3.amazonaws.com are the top-4 most re-

quested services. DescribeInstances, DescribeInstanceAttribute, DescribeCluster,

and TerminateInstances are the top-4 most performed actions as shown in Figure

6.12.

Consider the most frequent attributes in global, Figure 6.13 presents an overview

of the most frequent attribute values where at least 5% of events in the event

repository contain such attribute values. Such �gures give the data analyst a �rst

impression about the most signi�cant individual attribute values.

CHAPTER 6. CASE STUDIES 104

Figure 6.9: Working time distribution

Figure 6.10: Working date distribution

CHAPTER 6. CASE STUDIES 105

Figure 6.11: Accessed service distribution

Figure 6.12: Action distribution

CHAPTER 6. CASE STUDIES 106

Figure 6.13: Most frequent attribute values

6.3.4 Maximal Association

In subsection 6.3.3, the statistical analysis of individual attribute describes the

nature of the data to be analyzed. For example, the bar charts provide impressive

visual display of large amount of data that helps to learn the underlying distribu-

tion, skewness, spikes, outliers, etc. But it only shows individual attribute values.

Aiming to mining user common behaviors, we are also interested in discovering

the relationship between entities found together. In our proposed approach, asso-

ciation is measured in group to establish a group of highly related events.

In Section 6.2 we applied association mining with multiple minsup to discover

frequent patterns without losing signi�cant rare patterns. Weight is another useful

factor in representing importance of attributes in real world. Considering weights

in data mining process provides a way to obtain more practical, meaningful pat-

terns. In this case study, we assume each attribute has a weight that represents

its signi�cance when computing maximal association. For example, a MAG that

CHAPTER 6. CASE STUDIES 107

groups events related to a speci�c service is more valuable than a MAG that groups

events related to a speci�c date in most cases.

Maximal frequent itemset mining is an algorithm for discovering frequent max-

imal itemsets in a transaction database. A frequent maximal itemset is a frequent

itemset that is not included in a proper superset that is also a frequent itemset.

The set of frequent maximal itemsets is thus a subset of the set of frequent itemset.

Maximal frequent pattern mining is a main approach to reduce search space and

to remove redundant patterns, and the mining result is much less than the result

of normal frequent pattern mining. We applied frequent maximal pattern mining

on CloudTrail event repository, and the result is only 20% of frequent pattern

mining result with lossless representation.

Table 6.4: Extracted MAGs from CloudTrail event repository with minsup=5%
MAG Itemset Itemset MAG

Id Length Size

1 <john,s3.amazonaws.com> 2 1653

2 <cloudformation.amazonaws.com,meng> 2 2014

3 <elasticmapreduce.amazonaws.com,john> 2 3565

4 <2015-10-06,ec2.amazonaws.com,william> 3 1752

5 <2015-10-05,ec2.amazonaws.com,william> 3 1757

6 <ec2.amazonaws.com,TerminateInstances,william> 3 1966

7 <DescribeInstanceAttribute,ec2.amazonaws.com,william> 3 2276

8 <2015-10-07,ec2.amazonaws.com,william> 3 2369

9 <14,ec2.amazonaws.com,william> 3 2732

10 <20,ec2.amazonaws.com,william> 3 1880

11 <17,ec2.amazonaws.com,william> 3 2561

12 <16,ec2.amazonaws.com,william> 3 2631

13 <DescribeInstances,ec2.amazonaws.com,meng> 3 2208

14 <DescribeInstances,ec2.amazonaws.com,william> 3 3577

15 <00,2015-10-08,ec2.amazonaws.com,william> 4 2195

16 <2015-10-14,CreateTags,ec2.amazonaws.com,william> 4 1555

Maximal association can be extracted by frequent maximal itemset mining and

is considered as an interesting property for visualizing the structure of relations

among groups of events. Table 6.4 presents the result of 16 MAGs after applying

frequent maximal pattern mining on CloudTrail event repository with a minsup

CHAPTER 6. CASE STUDIES 108

Figure 6.14: Association measure of individual MAG

of 5%. The second column of table 6.4 shows the maximal frequent itemset that

is shared by all events inside the MAG; the third column indicates the length

of maximal frequent itemset; and the fourth column presents how many events

are collected into the MAG. We may obtain more smaller MAGs by decreasing

minsup.

The events in a group are more associated if a large number of events in

the group that share more signi�cant attribute values. The association-based

similarity measure between events in a MAG is de�ned in Section 4.2, which is

decided by: i) the size of itemset; ii) the weight of each attribute in itemset; iii)

the number of events collected into the MAG; and iv) the weight of the collected

events compared with the shared attributes. We assign a weight to each attribute

and a weight to collected events as shown in Table 6.5. These parameters could

be optimized through analysing the pattern mining result. Figure 6.14 shows a

visual display of association measure of individual MAGs according to the formula

CHAPTER 6. CASE STUDIES 109

de�ned in subsection 4.2.1 using parameters de�ned in Table 6.5. The association

value is normalized between 0 and 1. We can see MAG-15 has the maximum

association value.

Table 6.5: Parameters used for association measure
Name Represent Value

Weight of User wa | a = U 0.3

Weight of Date wa | a = D 0.1

Weight of Time (hours) wa | a = T 0.2

Weight of Service wa | a = S 0.3

Weight of Action wa | a = A 0.1

Weight of collected events wc 0.2

Each MAG represents highly similar events and is considered as the building

block for behavior pattern mining. In some cases, some MAGs are also similar as

they have some common events sharing the same set of attributes. Merging similar

MAGs into a cluster to be analyzed may provide more opportunities to extract

common behavior patterns. The association-based similarity measure between

MAGs is de�ned in Section 4.2, which is decided by: i) the number of shared

attributes between MAGs; ii) the weight of each shared attribute; iii) the number

of shared events between MAGs; and iv) the weight of the shared events compared

with the shared attributes. Figure 6.15 presents a visual display of association

measure between two MAGs according to the formula de�ned in subsection 4.2.2.

The size of circle indicates the relative association values. Some MAGs are similar

to others evenly, such as MAG-10 is highly associated with a set of MAGs but

we cannot �nd the closest a�nities. Some MAGs are lower associated with other

MAGs but is more close to speci�c MAG, such as MAG-1 is more associated with

MAG-3 compared with other MAGs.

6.3.5 Constrained Cluster

With the acquired knowledge by statistical analysis and association mining, the

data analyst is able to produce some constraints using our proposed BPQL dis-

CHAPTER 6. CASE STUDIES 110

Figure 6.15: Association measure between MAGs

CHAPTER 6. CASE STUDIES 111

cussed in Section 3.4 to construct event clusters for subsequent behavior pattern

mining. MAGs also provide restricted search space for constructing constrained

clusters. In order to evaluate the e�ectiveness of the knowledge on behavior pat-

tern mining result, three event clusters are produced as follows:

• Cluster#1. We know William is the most active user by statistical anal-

ysis. MAG-15 gets the maximum association value as individual MAG,

which contains a set of highly related events about William accessing ser-

vice ec2.amazonaws.com at a speci�c time. Furthermore, MAG-15 is close to

MAG-6, MAG-7, MAG-10, and MAG-14 according to the association mea-

sure between MAGs. With such knowledge we want to see what is the most

common behavior of William about requesting "ec2.amazonaws.com" ser-

vice for virtual machine management. Cluster#1 collects around 5000 events

about user William accessing to service ec2.amazonaws.com from MAG-6,

MAG-7, MAG-10, MAG-14, and MAG-15.

• Cluster#2. We can see most MAGs collect events about service

"ec2.amazonaws.com", and only MAG-1 collects events about storage ser-

vice s3.amazonaws.com. Aiming to studying the common behavior about

accessing storage service, Cluster#2 collects around 1500 events about user

John accessing to service s3.amazonaws.com from MAG-1.

• Cluster#3. MAG-1 is distinctly close to MAG-3 compared with others

even though the association value of MAG-1 and MAG-3 are not distinct as

individual MAG. Aiming to studying the common behavior of a speci�c user

John, Cluster#3 collects around 4000 events about user John from MAG-1

andMAG-3.

Following is the produced behavior pattern query using BPQL discussed in Sec-

tion 3.4. We developed a search engine to collect events that satisfy constraints

CHAPTER 6. CASE STUDIES 112

from source MAGs into constrained event clusters. SIZE-CONSTRAINT limits

the number of events that are collected into clusters. Events are ranked based on

its maximal association value. The maximal association value between two events

is de�ned as the maximum of the association values, considering that each event

may belong to more than one MAG with a di�erent association value in each

MAG. The events satisfy constraints and with higher maximal association value

are assigned into the cluster until reach SIZE-CONSTRAINT.

BEGIN-BPQ

CLUSTER := C-1;

MAG := MAG-6, MAG-7, MAG-10, MAG-14, MAG-15;

SIZE-CONSTRAINT := 5000;

INTRA-CONSTRAINT

User = 'william';

Service ='ec2.amazonaws.com';

CLUSTER := C-2;

MAG := MAG-1;

SIZE-CONSTRAINT := 1500;

INTRA-CONSTRAINT

User = 'john';

Service ='s3.amazonaws.com';

CLUSTER := C-3;

MAG := MAG-1, MAG-3;

SIZE-CONSTRAINT := 4000;

INTER-CONSTRAINT

C-2.User = C-3.User;

END-BPQ.

CHAPTER 6. CASE STUDIES 113

6.3.6 Behavior Pattern Mining and Analysis

We convert each event cluster to sequence cluster where each sequence is a set

of ordered events performed by the same user within one day. Then we apply

frequent maximal sequential pattern mining on each sequence cluster with di�er-

ent input parameter minsup. The discovered frequent subsequence patterns from

each sequence cluster can be viewed as user's daily behavior. Following is behavior

pattern mining result of each constrained cluster.

Cluster #1

By given a minsup as 0.8, the frequent maximal sequential pattern mining al-

gorithm extracted more than 9K subsequence patterns from Cluster #1 which is

very di�cult to be analysed by human (patterns are not displayed due to the large

number). In this case, to reduce the extracted pattern number the data analyst

may add more cluster constraints to reduce the cluster size or shorten the user

sequence time interval such as user's hourly sequence or session sequence. At the

same time we found userWilliam has a large number of unusual access requests at

speci�c days from Cluster #1. Figure 6.16 shows the access request distribution of

William. At the �rst week of October and October 14th, William had thousands

access requests each day. Such user behavior pattern is suspicious as it causes

thousands dollar bill. The data analyst con�rmed with user William himself, he

was doing scalability and stress test of a distributed cluster which requires hun-

dreds of virtual machines running for a long time. That explained why William

has large number of access request at speci�c days. So these unusual behavior

patterns are normal at speci�c software test stage.

Cluster #2

By given a minsup as 0.4, the frequent maximal sequential pattern mining al-

CHAPTER 6. CASE STUDIES 114

Figure 6.16: Date distribution of user william

gorithm extracted 40 action subsequence patterns from Cluster #2. Figure 6.17

provides a visualization of user John's frequent action sequences when accessing

Amazon S3 service. X-axis t0, t1, ..., t4 means a step of the sequence, and Y-axis

represents the discovered sequence number such as 1 means the �rst frequent se-

quence pattern. Each colourful rectangle represents one single action; each row is a

frequent sequence pattern. For example the second sequence pattern is <ListBuck-

ets+, GetBucketLocation+, GetBucketVersioning, GetBucketLocation+>, which

describes a typical behavior of searching documents/resources stored at Amazon

S3 service. The discovered sequence patterns are meaningful and important for

analyzing the common behavior related to Amazon S3 service. In contrast, the

discovered patterns in subsection 6.3.2 are dispersed over various Amazon services,

such as signin service, S3 service, load balancing service, monitoring service and

ec2 service, which is very hard to be analyzed and interpreted. However, the pat-

terns discovered from Cluster #2 are all related to a speci�c service and a speci�c

user. The task of analyzing the discovered patterns from Cluster #2 is to extract

and summarize how user John utilizes S3 service.

The discovered 40 patterns are the most signi�cant sequences existing in Clus-

ter #2, but we cannot answer following questions from Figure 6.17. Can these

CHAPTER 6. CASE STUDIES 115

Figure 6.17: Discovered 40 frequent action sequence patterns of Amazon S3 Ser-
vice. Each colourful rectangle is an action of sequence; each row is a frequent
sequence pattern; t0, t1, ..., t4 means one step of the sequence.

patterns be categorized? Which patterns are more similar than others? What

are the common characteristics among similar patterns? We may get answers by

dividing the sequence patterns into a number of clusters and exploring the repre-

sentative patterns of each cluster. Clustering is one of the most common methods

of grouping similar entities. Representative pattern mining helps to remove the

redundant patterns from each cluster, and �nally helps to acquire a small group

of most signi�cant patterns with least representation loss.

Figure 6.18 indicates the hierachical clustering result on discovered 40 frequent

sequence patterns. Agglomerative hierarchical clustering is a bottom-up approach

where initially each observation is a cluster by itself; then pairs of nearest clusters

are merged as one until only one cluster containing all observations remains [75].

The distance between two sequences are measured on longest common subsequence

(LCS). After producing the hierarchy tree, clustering process is done by cutting

the tree at a given height according to desired cluster number [76]. We can see

CHAPTER 6. CASE STUDIES 116

Figure 6.18: Hierarchical clustering of frequent action sequence patterns from
Figure 6.17

CHAPTER 6. CASE STUDIES 117

Figure 6.19: 40 action sequence patterns are divided into 3 clusters based on
hierarchical clustering algorithm shown in Figure 6.18

from Figure 6.18 that the best choice for total number of clusters are 3. Figure

6.19 shows the action sequence patterns assigned to three clusters.

Extracting representative sequences is a process of mining as small as possi-

ble set of non-redundant sequences covering a desired percentage of all sequences.

A sequence covers another sequence if they are similar. Representative sequence

extraction algorithm is applied on each cluster of frequent sequence patterns in

Figure 6.19. The representative sequences are obtained by an heuristic algorithm:

i) each sequence is assigned a representative score according to neighborhood den-

sity; ii) all sequences are sorted in descending order by assigned representative

score which constructs the candidate list; iii) representative sequence is selected

from the head of candidate list if it is not redundant with already retained rep-

CHAPTER 6. CASE STUDIES 118

Figure 6.20: Representative sequences discovered from clusters in Figure 6.19 with
minimum coverage of 50%

resentative sequences; and iv) the selection stops until the desired coverage is

reached.

Figure 6.20 presents a set of non-redundant representative sequences of each

cluster with at least 50% coverage. After checking the Amazon API speci�cation,

we can see these three clusters include some behavior patterns about real use cases.

• Monitoring. cluster-1 shows the behavior patterns about storage monitor-

ing: i)GetBucketNoti�cation reads the bucket noti�cation where a bucket

is a cloud storage; ii) GetBucketCors reads the con�guration about bucket

cross-origin resource sharing; iii) GetBucketLogging checks the bucket log-

ging status; and iv) GetBucketReplication checks bucket replication for high-

CHAPTER 6. CASE STUDIES 119

availability purpose, etc.

• Permission Management. cluster-2 indicates the behavior patterns about

storage access permission management: i) GetBucketPolicy reads the policy

of speci�ed bucket; ii) GetBucketAcl checks the bucket access control list;

and iii) GetBucketPayment reads the payment con�guration of a bucket, etc.

• Searching and Querying. cluster-3 includes behavior patterns about

bucket searching and querying.

Cluster #3

Cluster #3 collects highly related events about user John. Instead of analyzing the

behavior of accessing Amazon service as we did in analyzing Cluster #2, we want

to see if there is any pattern related to John's working time. By given a minsup

as 0.15, the frequent maximal sequential pattern mining algorithm extracted 7

time sequence patterns from Cluster #2 as shown in Figure 6.21. 02+ means user

John has more than 1 access request on Amazon service at 2:00am. The �rst

sequence pattern at the bottom of the �gure is <02+, 03+, 04+, 05+>, which

means user John has more than 1 access request on Amazon service at 2:00am,

3:00am, 4:00am and 5:00am respectively. The maximum length of the frequent

time sequence patterns is 4, and the minimum length is 1. It shows John sometimes

continuous being working on Amazon for four hours, but mostly he works for one

or two hours consecutively.

Also using LCS to measure sequence similarity and hierachical clustering al-

gorithm, these frequent time subsequences are divided into 2 clusters as shown in

Figure 6.22. After con�rming with user John, the extracted patterns indeed have

reasonable meanings.

• Preferred Working Time. cluster-1 shows the behavior patterns about

John: i) he can spend more time on development in the morning from 09:00

CHAPTER 6. CASE STUDIES 120

Figure 6.21: Frequent time sequence pattern of user John

to 10:00, and at night from 19:00 to 23:00; and ii) even though the time from

16:00-18:00 is the rush hour for most employees of the company as shown in

Figure 6.9, John normally has meetings with customer in the afternoon so

that focusing on development work for successive hours is di�cult for him.

• Testing Program. cluster-2 indicates the behavior patterns about a testing

program running from 02:00 to 05:00. Amazon spot virtual machines are

often available at a discount during idle time such as midnight.

Conclusion

The conclusion of this case study is as follows: i) without priori knowledge, MAGs

provide recommendation of signi�cant attributes and highly related events in

group; ii) ranking group of events by association measure helps to reduce search

space with less signi�cant information loss; iii) sequence clustering and representa-

tives extraction summarizes the large number of frequent sequence patterns; and

iv) compared with applying sequential pattern mining method directly, our pro-

CHAPTER 6. CASE STUDIES 121

Figure 6.22: Clustering result of frequent time sequences from Figure 6.21

posed approach is more e�cient and capable of guiding data analyst in discovering

more meaningful user behavior patterns.

Besides, our approach detects unusual resource usage pattern in cluster-1:

William has large number of access request at speci�c days, which costs thousands

of dollars. This discovered pattern is quite di�erent from his previous behavior;

also such behavior is suspicious to a small software company. Even though this

behavior is regarded as normal at last because it happens at speci�c software test

stage, the discovered patterns still provide useful knowledge to system adminis-

trators.

6.4 Synthetic Dataset

In Section 6.2 and 6.3, we applied our approach on two real-world datasets, one

from medical imaging system and the other from public cloud computing service,

which prove our approach helps the data analysts in discovering more meaningful

CHAPTER 6. CASE STUDIES 122

user behavior patterns. Moreover, a labelled dataset is required to evaluate our

behavior pattern mining result quantitatively. Without normal labels we cannot

evaluate our approach nor compare with others. However, getting labelled datasets

from real-world system is di�cult and time consuming. Labels for datasets are

often obtained by asking domain expert to make judgements about small pieces

of unlabelled data, which is too expensive and even infeasible for discovering user

behavior patterns from large number of events. Thus, we created a dataset using

our EventGenerator tool to insert meaningful user behavior patterns into the gen-

erated event dataset, along with proper labels to the inserted behavior patterns.

6.4.1 Dataset Design

We created an event dataset to simulate real medical imaging system, where each

event records the following information: user name, role assigned to the user, user

location, requested service, action, accessed patient, date, and time. Table 6.6 in-

dicates input parameters of EventGenerator tool, specifying the desired attribute

value distribution in generated event dataset. The attributes and their distribu-

tions are designed after analysing the characteristics of real-world event logs used

in Section 6.2. The detailed attribute de�nition is explained in Chapter 5. Event-

Generator randomly selects attribute values but follows the speci�ed distribution

in generation process. Appendix B presents generation result: the histograms of

attribute distribution extracted from generated event dataset.

We de�ned 10 typical user behavior patterns in di�erent scenarios, including:

i) 3 behavior patterns about nurse wand-round between locations; ii) 3 behavior

patterns about radiologist work�ow with di�erent action steps; and iii) behavior

patterns about accessing request time sequence. Each behavior pattern de�nition

speci�es behavior actor, behavior context, behavior sequence, behavior time con-

straints, and behavior support. Appendix B presents the entire behavior pattern

CHAPTER 6. CASE STUDIES 123

Table 6.6: Attribute distribution de�nition of synthetic dataset
Attribute Representation Domain Type Mu Sigma

User U- 100 Random - -

Role R- 13 Normal 5 6

Location L- 15 Normal 8 6

Service S- 14 Normal 11 6

Action A- 16 Normal 10 10

Patient P- 300 Normal 150 50

Date D- 60 Random - -

Time T- 24 Normal 11 6

de�nition in JSON format. By adding one more parameter, average event number

per user per day as 15 to control the size of the generated dataset, EventGener-

ator tool generated 45,000 events totally with prede�ned user behavior patterns

embedded.

6.4.2 Result Measure and Compare

Precision and recall are the basic measures used in pattern recognition and evalu-

ating search algorithms [77]. In our case, precision measure re�ects how useful the

user behavior pattern mining result are, and recall measure re�ects how complete

the result are. Suppose the user de�ned behavior patterns are relevant patterns,

precision is the ratio of the number of relevant patterns discovered to the total

number of extracted patterns; recall is the ratio of the number of relevant patterns

discovered to the total number of relevant patterns. F-measure [77] conveys the

balance between precision and recall, which is de�ned as following:

F = 2 ∗ precision ∗ recall
precision + recall

Consider our generated event dataset containing 10 user behavior patterns,

and 20 patterns are discovered by a behavior pattern mining approach. If 5 of

the discovered patterns are relevant patterns, but 15 are meaningless patterns

CHAPTER 6. CASE STUDIES 124

generated randomly. Then the precision is 5/20=25%; the recall is 5/10=50%;

and the F-measure is 2*(25%*50%)/(25%+50%)=33%.

Table 6.7 shows the behavior pattern mining result evaluation of di�erent ap-

proaches. The �rst approach seq-mining applies frequent maximal sequential pat-

tern mining on the whole dataset with di�erent minimum support, which is the

normal method used for determining user behavior in sequence database. Due

to the lack of focus and the large dataset size, thousands of sequence patterns

are discovered but none is relevant. If we continue to decrease minsup until rel-

evant patterns are extracted, the large number of irrelevant patterns makes the

result is very di�cult to be analyzed in practice. In contrast, our proposed ap-

proach applies association mining assoc-mining on the whole dataset to extract

common behavior context �rst. As speci�ed in Appendix B, 3 common behavior

context are de�ned which are relevant patterns. With minsup as 0.05, our ap-

proach extracted 2 patterns and all are relevant patterns; with minsup as 0.015,

our approach extracted 20 patterns and all relevant patterns are included in the

result.

3 event clusters are produced by selecting events related to the extracted be-

havior pattern context (assoc-mining result) into clusters. The events in cluster

are highly related by sharing attribute values. After converting event cluster to

user's daily sequence cluster, we apply frequent maximal sequential pattern mining

seq-mining on each cluster. Table 6.7 shows the extracted sequence patterns from

each cluster with di�erent minsup. As decreasing minsup, all relevant sequences

are discovered with relatively small amount of irrelevant patterns. In the worst

case of our experiment (cluster2 sequence mining), if all relevant patterns are con-

tained in the result, 417−3 = 414 irrelevant sequences patterns are extracted from

cluster1. But compared with the large number of sequence patterns discovered by

seq-mining directly (more than 10,000), our approach signi�cantly improves the

mining result both in accuracy and in completeness.

CHAPTER 6. CASE STUDIES 125

T
ab
le
6.
7:

B
eh
av
io
r
pa
tt
er
n
m
in
in
g
re
su
lt
ev
al
ua
ti
on

us
in
g
sy
nt
he
ti
c
da
ta
se
t

A
p
p
ro
a
ch

m
in
su
p

R
e
tr
ie
v
e
d

E
m
b
e
d
d
e
d

R
e
le
v
a
n
t

P
re
c
is
io
n

R
e
c
a
ll

F
-m

e
a
su
re

P
a
tt
e
rn
s

P
a
tt
e
rn
s

P
a
tt
e
rn
s

se
q
-m

in
in
g

0
.6

3
3
5

1
0

0
0

0
0

d
ir
ec
tl
y

0
.5

9
2
0

1
0

0
0

0
0

0
.4

2
7
1
5

1
0

0
0

0
0

0
.3

9
8
7
5

1
0

0
0

0
0

a
ss
o
c-
m
in
in
g

0
.0
5

2
3

2
1
0
0
%

6
6
.7
%

7
9
.9
%

0
.0
1
5

2
0

3
3

1
5
%

1
0
0
%

2
6
.1
%

cl
u
st
er
1

0
.8

2
3

1
5
0
%

3
3
.3
%

4
0
%

se
q
-m

in
in
g

0
.2

1
0
6

3
2

1
.8
9
%

6
6
.7
%

3
.8
%

0
.1

4
1
7

3
3

0
.7
2
%

1
0
0
%

1
.4
%

cl
u
st
er
2

0
.4

2
1

3
1

4
.8
%

3
3
.3
%

9
.5
%

se
q
-m

in
in
g

0
.3

4
5

3
2

4
.4
%

6
6
.7
%

8
.7
%

0
.2

1
0
1

3
3

3
.0
%

1
0
0
%

5
.8
%

cl
u
st
er
3

0
.6

6
4

2
5
0
%

5
0
%

5
0
%

se
q
-m

in
in
g

0
.4

1
8

4
4

2
2
.2
%

1
0
0
%

3
6
.3
%

CHAPTER 6. CASE STUDIES 126

Conclusion

The conclusion of this case study is as follows: i) our proposed approach has

high recall but low precision; ii) recall is more important than precision to sys-

tem administrator in security analysis as missing any user behavior pattern may

cause negative impact; and iii) compared with applying sequential pattern min-

ing directly, our proposed approach signi�cantly reduced the number of irrelevant

patterns in mining result.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis contributes to the user behavior pattern analytics research area by

providing a recommendation system for interactive user behavior pattern recovery.

User behavior analytics helps organizations to explore user behavior patterns, and

then apply algorithms and statistical analysis to detect meaningful anomalies.

However, the security analysts in large distributed systems are overwhelmed by

the number of system users, the complexity and changing nature of user activities.

Lacking a general user behavior pattern model restricts the e�ective usage of data

mining techniques. Limited access to real world audit logs due to privacy concerns

also blocks user behavior analytics development (Chapter 1).

A behavior pattern is consistent observations of a sequence of actions that a

user or a group of users conducted in a common context during a speci�c time

interval (e.g., an hour, a day, a week). Accordingly, a new behavior model (Chap-

ter 3) is de�ned as a combination of sequencing, association and timing rules,

which is generic, system independent and con�gurable based on the target appli-

cation domain. An interactive and iterative method based on several data mining

techniques (Chapter 2) is proposed that can e�ciently discover user's common

127

CHAPTER 7. CONCLUSION AND FUTURE WORK 128

behavior pattern from unlabeled dataset. A behavior pattern query language is

also proposed that allows data analysts to describe the high level and abstract

event clusters for behavior pattern mining (Chapter 3). A formal speci�cation is

introduced to formalize common behavior pattern mining system using Z notation

(Chapter 4). Formalism e�ectively helps to abstract and revise the system design.

Without prior knowledge, the thesis applies association mining for discovering

knowledge such as the most associated events and the interesting attributes. It

is intended to bring together highly related events, and the shared attributes

that indicate the common context of the group of events. Maximal association

is considered as an interesting property for visualizing the structure of relations

among groups of entities. We use the notion of maximal association to de�ne

two similarity measures (Chapter 4): similarity measure between events inside

a maximal association group; and the similarity measure between two maximal

association groups.

There is a general lack of access to real-world audit logs, and in particular

in sensitive and mission-critical industries. Moreover, �nding or constructing a

useful dataset from real-world systems is di�cult due to the nondeterministic

nature of the real-datasets. A prototype toolkit named "EventGenerator" has

been developed to synthesize dataset in di�erent application domains (Chapter

5), which assists data analysts in designing and producing behavior-based dataset

with embedded behavior patterns. "EventGenerator" is used as a benchmark for

evaluating the quality of user behavior pattern discovery result (Chapter 6).

Experimentation is presented with two real-world datasets from the medical

imaging and public cloud service domains respectively, as well as a synthetic event

dataset with embedded user behavior patterns (Chapter 6). The experiments

are divided into three case studies to demonstrate the functionality, performance

and accuracy of the proposed user behavior pattern recovery technique. The

case studies of analyzing real-world datasets prove that our proposed approach

CHAPTER 7. CONCLUSION AND FUTURE WORK 129

is generic to be applied into di�erent application domains. Moreover, compared

with applying sequential pattern mining method directly, our proposed approach

is more e�cient and capable of guiding data analyst in discovering meaningful

high-quality patterns. The case study of analysing synthetic dataset shows that

our proposed approach has high recall but relatively low precision. Recall is more

important than precision to security analysts as missing any user behavior pattern

may cause negative impact.

7.2 Limitation of the Approach

The proposed approach in this thesis has the following limitations that could form

the basis for further research:

• The proposed approach is limited to discover independent and determinis-

tic behavior patterns. This approach currently cannot identify cooperative

user behavior pattern such as in a speci�c scenario a group of users coop-

erate with each other on a sequence of tasks. Also the proposed behavior

model is deterministic, then this approach cannot discover non-deterministic

patterns.

• This thesis work is based on an assumption that frequent behavior is com-

mon behavior. Thus this approach cannot detect rare but normal behavior

patterns. For example, in medical systems the users may acquire higher pri-

ority to access resources in emergency situation. If the emergency scenario

happens much less than others, this approach will fail to detect behavior

patterns under such scenario.

• The abstract behavior of EventGenerator is based on our proposed behavior

model, where a behavior pattern is de�ned as a combination of association,

sequencing, timing rules and frequency. Thus this tool currently is limited to

CHAPTER 7. CONCLUSION AND FUTURE WORK 130

evaluate behavior mining approaches that are built on this behavior model.

But if the behavior model is enriched in future work, such as being able to

represent cooperative behavior and non-deterministic patterns, a plugin of

EventGenerator may be developed to ensure such complicated patterns with

new features being inserted into generated dataset.

7.3 Future Work

Holistic behavioral solutions to discover user access behavior patterns and then

detect ongoing insider threats is timely and promising, especially with the rapidly

developing techniques of cloud computing and big data. In cloud environment,

perimeter defence is not feasible. The increased use of cloud based applications

exposes data in a risky environment. Moreover, the exploding data growth is

leaving the protected boundary. Possible extension to the work presented in this

thesis may focus on following areas:

• This thesis presents an approach to assist system administrators in explor-

ing user common behavior patterns by analyzing event logs. The extracted

common behavior patterns might be used for anomaly detection by compar-

ing with user's dynamic behavior. We may consider a hypothesis to de�ne

behavior anomaly: a behavior anomaly is an observation that is considerably

dissimilar to or inconsistent with individual's history behavior, or dissimi-

lar to common behavior of his peer group. If an individual performs quite

di�erently from his previous behavior, his current behavior is suspicious. If

a person is categorized by role, he is supposed to perform similarly with

the people who are assigned the same role. If a person has a collection of

neighborhoods who are sharing the same context, he is expected to behave

similarly with these neighborhoods. If a person behaves quite di�erent from

his peer, or di�erent from the neighborhoods under the same context, his

CHAPTER 7. CONCLUSION AND FUTURE WORK 131

current behavior is also suspicious.

• Automation of above anomaly detection process is required when deploy the

approach into real-world applications. We propose an online monitoring ser-

vice named Behavior Manager which monitors user's dynamic activities, and

trigger a behavior check periodically. The check interval is decided by the

common behavior time interval. Behavior Manager compares user's dynamic

behavior with this user's history behavior, and with common behavior of the

group of people who are assigned the same role, and with common behavior

under the same context. An anomaly score is assigned to user's dynamic

behavior by measuring the deviation between user's dynamic behavior and

correspondent common behaviors. The anomaly score is categorized into

quanti�ed ranges. As a result, the dynamic behavior is marked with one of

the tags: normal, suspicious, and anomaly.

• The analysis and algorithms introduced for constrained event clustering can

be improved to determine more complex and meaningful behavior context

by: i) adding more corresponding data sources into constrained event clus-

ters to enrich attributes, such as the geographic distance between locations,

user features out of event logs; and ii) applying soft constraints to collect

most important events into constrained event clusters with soften restric-

tions. By using soft constraints to formalize desired features rather than

hard constraints that cannot be violated, the signi�cant bene�t is introduc-

ing incomplete or partial behavior context information into clustering that

may improve common behavior pattern extraction result.

• The proposed approach aims to discover common behavior patterns from

multidimensional temporal data. The discovered patterns can be used for

various purpose. Beside of anomaly detection, mining common behavior

patterns are important in many application domains such as marketing and

CHAPTER 7. CONCLUSION AND FUTURE WORK 132

customer segmentation, user preference and habit analysis by mining com-

mon web navigation patterns, crime rate and crime model analysis by mining

common criminal patterns, etc. Even though these data and applications are

very diverse, and also the discovered patterns can di�er largely, this generic

approach is capable of guiding system administrators in learning domain-

speci�c common behavior patterns.

• EventGenerator can produce large volumes of quality synthetic data that

contains interesting and realistic patterns in a relatively short amount of time

and at low cost. The expected time series, attribute frequencies, association

and sequence patterns have been validated that they are produced correctly.

Although the datasets by EventGenerator are produced as expected for the

parameters de�ned, more work is required to analyze real-world data in

speci�c domains and to develop more sophisticated models that represents

real user behavior in those domains. The tool relies on some degree on

randomness to select attributes and generate events therefor the result is

not necessarily repeatable or deterministic.

• This thesis examined the proposed model with medium sized system (300+

users) and a medium sized dataset (300K events in 4 months). In future

work, the proposed model should be examined and extended to exploring

user behavior patterns in big data area. Scalability will be a bottleneck.

Apache Spark [78] is a fast and general engine for large-scale data processing

in distributed cluster. MLlib [78] is Apache Spark's scalable machine learning

library, where association mining, sequential pattenr mining and clustering

algorithms have been implemented in MLlib. We might extend the scalabil-

ity of our proposed approach by migrating to Apache Spark framework for

discovering user behavior patterns from big dataset.

Appendix A

BPQL

Extended Backus-Naur Form (EBNF) [79] notation is used for denoting the syntax

of the proposed BPQL. EBNF is widely used to make formal description of the

grammar of programming language. The following represents EBNF notations

used in this thesis.

• Terminal identi�ers/symbols are quoted '...'.

• < and > delimits the non-terminals.

• ::= is the de�nition symbol.

• { and } indicate repetition. Zero or more elements.

• | is the de�nition separator symbol. It separates alternatives elements.

• , is the concatenate symbol.

• ; is the termination symbol.

Table A.1 provides the keywords de�ned in BPQL. A programming like be-

havior pattern query language is de�ned as follows using EBNF.

133

APPENDIX A. BPQL 134

Table A.1: Keywords of BPQL
Keywords Description

BEGIN-BPQ BPQ starts.

END-BPQ. BPQ ends.

MAG A maximal association group.

CLUSTER A group of related events satisfying constraints.

INTRA-CONSTRAINT The constraints are applied on events in the same cluster.

INTER-CONSTRAINT The constraints are applied on events from di�erent clusters.

SIZE-CONSTRAINT The number of events in a cluster.

<behavior query> ::= BEGIN-BPQ, <cluster speci�cation>,END-BPQ.

<cluster speci�cation> ::= {<cluster statement>}, <inter cluster constraint>;

<cluster statement> ::= <cluster name>, <source domain>,

<intra cluster constraint>, <size constraint>;

<cluster name> ::= CLUSTER, ':=', <cluster identi�er>;

<source domain> ::= MAG, ':=', {<mag identi�er>, ','},<mag identi�er>;

<size constraint> ::= SIZE-CONSTRAINT, ':=', <numeric>;

<intra cluster constraint> ::= INTRA-CONSTRAINT, {<intra constraint expr>};

<inter cluster constraint> ::= INTER-CONSTRAINT, {<inter constraint expr>};

<intra constraint expr> ::= <attribute name>, <operator>, <attribute value>;

<inter constraint expr> ::= <cluster identi�er>, '.', <attribute name>,

<operator>, <cluster identi�er>, '.', <attribute name>;

<attribute name> ::= 'User' | 'Role' | 'Location' | 'Time' | 'Service'

<operator> ::= ′ =′|′ 6=′|′≥′|′≤′|′>′|′<′

<attribute value> ::= <numeric>

<cluster identi�er> ::= <identi�er>

<mag identi�er> ::= <identi�er>

<identi�er> ::= a string of character

<numeric> ::= a numeric value

Appendix B

Generated Dataset with Embedded

Behavior Patterns

This Appendix describes the events and user de�ned behavior patterns to be

inserted into events. These behavior patterns are inserted into the generated

events by EventGenerator randomly.

B.1 Attribute Distribution

Figure B.1 presents the histograms of attribute distribution extracted from gen-

erated event dataset. Attribute user and date are randomly assigned into events,

and attributes service, action, location, time, patient and time follows normal

distribution with desired mean and deviation.

B.2 Behavior Pattern De�nition

Table B.1 presents the �elds that are used to de�ne user behavior pattern. Fol-

lowing is the con�guration of user behavior patterns in JSON format.

135

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 136

Figure B.1: Attributes with normal distribution

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 137

Table B.1: Behavior pattern de�nition schema
Field Description

id Behavior pattern identi�er

description Behavior pattern description

actor Behavior actor

context Behavior pattern context

sequence Behavior pattern sequence

groupSupport Percentage of users have this behavior

userSupport Percentage of speci�c user events contain this behavior

duration Duration of behavior sequence

gap Gap between successive events

1 [

2 {

3 "id": "P-01",

4 "description": "location pattern of ward -round",

5 "actor": [

6 {"role": "Nurse"}

7],

8 "context": {

9 "service": "Brain and Nerves",

10 "time": "10:00"

11 },

12 "sequence": [

13 {

14 "location": "Patient room #1"

15 },

16 {

17 "location": "Patient room #3"

18 },

19 {

20 "location": "Patient room #4"

21 }

22],

23 "groupSupport": "0.2",

24 "userSupport": "0.4",

25 "duration": "4"

26 },

27 {

28 "id": "P-02",

29 "description": "location pattern of ward -round",

30 "actor": [

31 {"role": "Nurse"}

32],

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 138

33 "context": {

34 "service": "Brain and Nerves",

35 "time": "10:00"

36 },

37 "sequence": [

38 {

39 "location": "Patient room #2"

40 },

41 {

42 "location": "Patient room #5"

43 },

44 {

45 "location": "Patient room #6"

46 }

47],

48 "groupSupport": "0.2",

49 "userSupport": "0.4",

50 "duration": "6"

51 },

52 {

53 "id": "P-03",

54 "description": "location pattern of ward -round",

55 "actor": [

56 {"role": "Nurse"}

57],

58 "context": {

59 "service": "Brain and Nerves",

60 "time": "10:00"

61 },

62 "sequence": [

63 {

64 "location": "Patient room #3"

65 },

66 {

67 "location": "Patient room #5"

68 },

69 {

70 "location": "Patient room #4"

71 }

72],

73 "groupSupport": "0.2",

74 "userSupport": "0.4",

75 "duration": "10"

76 },

77 {

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 139

78 "id": "P-04",

79 "description": "Radiologist 's workflow",

80 "actor": [

81 {"role": "Radiologist"}

82],

83 "context": {

84 "service": "X-Ray",

85 "service": "Lungs and Breathing"

86 },

87 "sequence": [

88 {

89 "action": "read exam",

90 "gap": "2"

91 },

92 {

93 "action": "read report",

94 "gap": "2"

95 },

96 {

97 "action": "update report"

98 }

99],

100 "groupSupport": "0.25",

101 "userSupport": "0.4",

102 "duration": "8"

103 },

104 {

105 "id": "P-05",

106 "description": "Radiologist 's workflow",

107 "actor": [

108 {"role": "Radiologist"}

109],

110 "context": {

111 "service": "X-Ray",

112 "service": "Lungs and Breathing"

113 },

114 "sequence": [

115 {

116 "action": "read exam"

117 },

118 {

119 "action": "read order"

120 },

121 {

122 "action": "read exam"

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 140

123 }

124],

125 "groupSupport": "0.25",

126 "userSupport": "0.4",

127 "duration": "10"

128 },

129 {

130 "id": "P-06",

131 "description": "Radiologist 's workflow",

132 "actor": [

133 {"role": "Radiologist"}

134],

135 "context": {

136 "service": "X-Ray",

137 "service": "Lungs and Breathing"

138 },

139 "sequence": [

140 {

141 "action": "read profile"

142 },

143 {

144 "action": "read profile",

145 "gap": "2"

146 },

147 {

148 "action": "update profile"

149 }

150],

151 "groupSupport": "0.25",

152 "userSupport": "0.4",

153 "duration": "12"

154 },

155 {

156 "id": "P-07",

157 "description": "work time sequence",

158 "actor": [

159 {"role": "Surgical"}

160],

161 "context": {

162 "service": "Emergency",

163 "service": "Blood Heart and Circulation"

164 },

165 "sequence": [

166 {

167 "time": "10:00"

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 141

168 },

169 {

170 "time": "11:00"

171 },

172 {

173 "time": "12:00"

174 }

175],

176 "groupSupport": "0.3",

177 "userSupport": "0.3"

178 },

179 {

180 "id": "P-08",

181 "description": "work time sequence",

182 "actor": [

183 {"role": "Surgical"}

184],

185 "context": {

186 "service": "Emergency",

187 "service": "Blood Heart and Circulation"

188 },

189 "sequence": [

190 {

191 "time": "10:00"

192 },

193 {

194 "time": "12:00"

195 },

196 {

197 "time": "13:00"

198 }

199],

200 "groupSupport": "0.3",

201 "userSupport": "0.3"

202 },

203 {

204 "id": "P-09",

205 "description": "work time sequence",

206 "actor": [

207 {"role": "Surgical"}

208],

209 "context": {

210 "service": "Emergency",

211 "service": "Blood Heart and Circulation"

212 },

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 142

213 "sequence": [

214 {

215 "time": "12:00"

216 },

217 {

218 "time": "13:00"

219 },

220 {

221 "time": "15:00"

222 }

223],

224 "groupSupport": "0.3",

225 "userSupport": "0.3"

226 },

227 {

228 "id": "P-10",

229 "description": "work time sequence",

230 "actor": [

231 {"role": "Surgical"}

232],

233 "context": {

234 "service": "Emergency",

235 "service": "Blood Heart and Circulation"

236 },

237 "sequence": [

238 {

239 "time": "9:00"

240 },

241 {

242 "time": "11:00"

243 },

244 {

245 "time": "12:00"

246 }

247],

248 "groupSupport": "0.3",

249 "userSupport": "0.3"

250 },

251]

APPENDIX B. GENERATED DATASET WITH EMBEDDED BEHAVIOR

PATTERNS 143

B.3 Inserted Behavior Patterns

[[R-4, S-11,T-10,L-5], [R-4, S-11,T-10,L-7], [R-4, S-11,T-10,L-8]]

[[R-4, S-11,T-10,L-6], [R-4, S-11,T-10,L-9], [R-4, S-11,T-10,L-10]]

[[R-4, S-11,T-10,L-5], [R-4, S-11,T-10,L-9], [R-4, S-11,T-10,L-8]]

[[R-5,L-4, S-10,A-9], [R-5,L-4, S-10,A-10], [R-5,L-4, S-10,A-8]]

[[R-5,L-4, S-10,A-9], [R-5,L-4, S-10,A-11], [R-5,L-4, S-10,A-9]]

[[R-5,L-4, S-10,A-12], [R-5,L-4, S-10,A-12], [R-5,L-4, S-10,A-5]]

[[R-6,L-11, S-12,T-10], [R-6,L-11, S-12,T-11], [R-6,L-11, S-12,T-12]]

[[R-6,L-11, S-12,T-10], [R-6,L-11, S-12,T-12], [R-6,L-11, S-12,T-13]]

[[R-6,L-11, S-12,T-12], [R-6,L-11, S-12,T-13], [R-6,L-11, S-12,T-15]]

[[R-6,L-11, S-12,T-9], [R-6,L-11, S-12,T-11], [R-6,L-11, S-12,T-12]]

Appendix C

Publications

• Knowledge-Driven User Behavior Pattern Discovery for System Security En-

hancement. W. Ma, K. Sartipi, D. Bender. International Journal of Soft-

ware Engineering and Knowledge Engineering (IJSEKE), World Scienti�c

Publisher. 26 pages. Volume 26, Issue 03, Page 379-405, April 2016.

• OpenID Connect as a Security Service in Cloud-based Medical Imaging Sys-

tems. W. Ma, K.Sartipi, H. Sharghi, D. Ko�, P. Bak. Journal of Medical

Imaging (JMI) 3(2), 026501 (2016), doi: 10.1117/1.JMI.3.2.026501. SPIE

Digital Library, Jun 2016.

• Security Middleware Infrastructure for Medical Imaging System Integration

and Monitoring. W. Ma, K.Sartipi. Journal of Transaction on Advanced

Communications Technology (ICACT-TCAT). Volume 4, Issue 6, Page 736-

744, November 2015.

• Synthesizing Scenario-based Dataset for User Behavior Pattern Mining. W.

Ma, K. Sartipi. International Journal of Computer and Information Tech-

nology (IJCIT). ISSN: 2279-0764, Volume 04, Issue 06, Pages 855-866. Novem-

ber 2015.

• Cloud-based Identity and Access Control for Diagnostic Imaging Systems.

144

APPENDIX C. PUBLICATIONS 145

W. Ma, K. Sartipi. Proceedings of the International Conference on Security

and Management (SAM). The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing (World-

Comp), 2015 Jan 1 (p. 320).

• Federated Service-based Authentication Provisioning for Distributed Diag-

nostic Imaging Systems. H. Sharghi, W. Ma, K. Sartipi. IEEE International

Symposium on Computer-Based Medical Systems (CBMS 2015), 4 pages.

June 22-25, 2015, Sao Carlos, Brazil.

• Security Middleware Infrastructure for Medical Imaging System Integration.

W. Ma, K. Sartipi. H. Sharghi. IEEE International Conference On Ad-

vanced Communication Technology (ICACT 2015), 5 pages, July 1-3, 2015,

Seoul, Korea.

• OpenID Connect as a Security Service in Cloud-based Diagnostic Imaging

Systems. W. Ma, K. Sartipi, H. Sharghi, D. Ko�, P. Bak. SPIE. Medical

Imaging 2015 (International Society of Optics and Photonics). (SPIE.Digital

Library: 9 pages). Feb 21-26, 2015, Orlando, USA.

• An Agent-based Infrastructure for Secure Medical Imaging System Integra-

tion.W. Ma, K. Sartipi. IEEE International Symposium on Computer-Based

Medical Systems (CBMS 2014), 6 pages. New York, USA.

• An Infrastructure for Secure Sharing of Medical Images between PACS and

EHR Systems. K. Sartipi, K. A. Kuriakose, and W. Ma. IBM CASCON

2013 Conference. November 18-20, 2013, pages 245-259, Toronto, Canada.

• Poster presentation on CASCON 2014 & CSER2014, titled "Behavior Pat-

tern based Security Enhancement", Ma, Weina, and Kamran Sartipi.

APPENDIX C. PUBLICATIONS 146

• Poster presentation on CASCON 2013, titled "Simulation of an Infrastruc-

ture for Secure Sharing of Medical Images between PACS and EHR Sys-

tems", Sartipi, Kamran, and Krupa A. Kuriakose, and Weina Ma.

Bibliography

[1] Market Guide for User and Entity Behavior Analytics. Technical report,

Gartner Inc., 2015. https://www.gartner.com/, accessed 2016-July-29.

[2] Insider Threat Spotlight Report. Technical report, SpectorSoft Corporation.,

2015. http://www.spectorsoft.com/, accessed 2016-July-29.

[3] Using Spluk UBA to Detect Insider Threats. Technical report, Splunk Inc.,

2015. http://www.splunk.com/, accessed 2016-July-29.

[4] Brancik K. Insider computer fraud: an in-depth framework for detecting and

defending against insider IT attacks. CRC Press, 2007.

[5] V. Stavrou, M. Kandias, G. Karoulas, and D. Gritzalis. Business Process

Modeling for Insider threat Monitoring and Handling. In In Trust, Privacy,

and Security in Digital Business, pages 119�131. Springer International Pub-

lishing, 2014.

[6] M. Bishop and et al. Insider Threat Identi�cation by Process Analysis. In

Insider Threat Identi�cation by Process Analysis. In Security and Privacy

Workshops (SPW), IEEE, pages 251�264, 2014.

[7] P. Parveen, N. Mcdaniel, Z. Weger, J. Evans, B. Thuraisingham, K. Hamlen,

and L. Khan. Evolving insider threat detection stream mining perspective.

International Journal on Arti�cial Intelligence Tools, 22(05), 2013.

147

BIBLIOGRAPHY 148

[8] D. Agrawal, C. Budak, A. El Abbadi, T. Georgiou, and X. Yan. Big data

in online social networks: user interaction analysis to model user behavior in

social networks. In In Databases in Networked Information Systems, pages

1�16. Springer International Publishing, 2014.

[9] The Rise of User Behavior Analytics. Technical report, SpectorSoft Corpo-

ration., 2015. http://www.spectorsoft.com/, accessed 2016-July-29.

[10] There is a traitor in our midst - exploring the insider-threat market. Technical

report, 451 Research LLC., 2014. https://451research.com/, accessed 2016-

July-29.

[11] J.M. Spivey and J.R. Abrial. The Z notation. Hemel Hempstead: Prentice

Hall, 1992.

[12] ISO/IEC 13568:2002. Z formal speci�cation notation � Syntax, type system

and semantics, 2002.

[13] D.E. Denning. An intrusion-detection model. In Software Engineering, IEEE

Transactions on, pages 222�232, 1987.

[14] C. Phua, V. Lee, K. Smith, and R. Gayler. A comprehensive survey of data

mining-based fraud detection research. arXiv preprint arXiv:1009.6119, 2010.

[15] M. H. Yarmand, K. Sartipi, and D. G. Down. Behavior-based access control

for distributed healthcare systems. In Journal of Computer Security, pages

1�39, 2013.

[16] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. In

ACM computing surveys (CSUR), 41(3), 15, 2009.

[17] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine

learning. MIT press, 2012.

BIBLIOGRAPHY 149

[18] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current

status and future directions. In Data Mining and Knowledge Discovery, pages

55�87, 2007.

[19] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between

sets of items in large databases. In ACM SIGMOD Record. Vol. 22. No. 2.

ACM, 1993.

[20] R. Agrawal and R. Srikant. Mining sequential patterns. In Data Engineering.

IEEE, 1995.

[21] S. Vijaylakshmi, V. Mohan, and S. Suresh Raja. Mining of users access be-

havior for frequent sequential pattern from web logs. In International Journal

of Database Management System (IJDM), 2010.

[22] B. Livshits and T. Zimmermann. DynaMine: �nding common error patterns

by mining software revision histories. ACM SIGSOFT Software Engineering

Notes, 5(1):296�305, 2005.

[23] M. N. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: Sequential pattern

mining with regular expression constraints. In VLDB. Vol. 99, 1999.

[24] C.C. Yu and Chen. Y.L. Mining sequential patterns from multidimensional

sequence data. In Knowledge and Data Engineering, IEEE Transactions,

pages 136�140, 2005.

[25] J. Stefanowski and R. Ziembinski. Mining context based sequential patterns.

In Advances in Web Intelligence. Springer Berlin Heidelberg, pages 401�407,

2005.

[26] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of frequent episodes

in event sequences. In Data Mining and Knowledge Discovery, pages 259�289,

1997.

BIBLIOGRAPHY 150

[27] Z. He, X. Xu, J.Z. Huang, and S. Deng. FP-outlier: Frequent pattern based

outlier detection. In Comput. Sci. Inf. Syst 2(1), pages 103�118, 2005.

[28] M. Gupta, J. Gao, and J. Han. Community trend outlier detection using

soft temporal pattern mining. In In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 692�708. Springer

Berlin Heidelberg, 2012.

[29] S. Xie, G. Wang, S. Lin, and PS. Yu. Review spam detection via temporal

pattern discovery. In InProceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 823�831. ACM,

2012.

[30] D. Brauckho�, X. Dimitropoulos, A. Wagner, and K. Salamatian. Anomaly

extraction in backbone networks using association rules. In IEEE/ACM

Transactions on Networking (TON), pages 1788�1799, 2012.

[31] C.C. Aggarwal and C.K. Reddy. Data clustering: algorithms and applications.

CRC Press, 2013.

[32] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, and

A.Y. Wu. An e�cient k-means clustering algorithm: Analysis and implemen-

tation. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

24(7):881�892, 2002.

[33] H.P. Kriegel and et al. Density-based clustering. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 1(3):231�240, 2011.

[34] R. Xu and D. Wunsch. Survey of clustering algorithms. Neural Networks,

IEEE Transactions on, 16(3):645�678, 2005.

[35] S. Basu, A. Banerjee, and R.J. Mooney. Active Semi-Supervision for Pairwise

Constrained Clustering. SDM, 4:333�344, 2004.

BIBLIOGRAPHY 151

[36] K. Wagsta�, C. Cardie, S. Rogers, and S. Schrodl. Constrained k-means

clustering with background knowledge. ICML, 1:577�584, 2001.

[37] K.L Wagsta�. Intelligent clustering with instance-level constraints. PhD the-

sis, Cornell University, 2002.

[38] TW. Liao. Clustering of time series dataâ��a survey. In Pattern recognition,

pages 1857�1874, 2005.

[39] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subse-

quence algorithms. In String Processing and Information Retrieval (SPIRE),

IEEE, pages 39�48, 2000.

[40] E.W. Myers. AnO (ND) di�erence algorithm and its variations. Algorithmica,

1(1-4):251�266, 1986.

[41] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common sub-

sequence algorithms. In String Processing and Information Retrieval, pages

39�48, 2000.

[42] A. Gabadinho, G. Ritschard, M. Studer, and N.S. MÃ¼ller. Extracting and

rendering representative sequences. In Knowledge Discovery, Knowlege En-

gineering and Knowledge Management, pages 94�106, 2011.

[43] FokkinkW. Introduction to process algebra. In Springer Science and Business

Media, 2013.

[44] A. Dogac, L. Kalinichenko, T. Ã�zsu, and A. Sheth. Work�ow management

systems and interoperability. In Springer Science and Business Media, 2012.

[45] The R project for statistical computing website. http://www.r-project.org/,

accessed 2016-July-29.

BIBLIOGRAPHY 152

[46] CRAN Task Views of R-package. https://cran.r-project.org/web/views/, ac-

cessed 2016-July-29.

[47] R-package arules: Mining Association Rules and Frequent Itemsets.

http://cran.r-project.org/web/packages/arules/index.html, accessed 2016-

July-29.

[48] R-package arulesSequences: Mining frequent sequences. http://cran.r-

project.org/web/packages/arulesSequences/index.html, accessed 2016-July-

29.

[49] M. Maechler, P. Rousseeuw, A. Struyf, Hornik K. Hubert, M., M. Studer,

and P. Roudier. cluster: "Finding Groups in Data", 2015. R package version

2.0.3.

[50] A. Gabadinho, G. Ritschard, N.S. Mueller, and M. Studer. Analyzing and vi-

sualizing state sequences in R with TraMineR. Journal of Statistical Software,

40(4):1�37, 2011.

[51] W. Ma and K. Sartipi. An Agent-Based Infrastructure for Secure Medi-

cal Imaging System Integration. In IEEE 27th International Symposium on

Computer-Based Medical Systems (CBMS), pages 72�77, 2014.

[52] K. Sartipi, K. Kuriakose, and W. Ma. An Infrastructure for Secure Sharing

of Medical Images between PACS and EHR Systems. In International Con-

ference on Computer Science and Software Engineering (CASCON), pages

245�259, 2013.

[53] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.W. Wu, and V.S.

Tseng. SPMF: a Java open-source pattern mining library. The Journal of

Machine Learning Research, 15(1):3389�3393, 2014.

BIBLIOGRAPHY 153

[54] M. Hahsler, C. Buchta, B. Gruen, and K. Hornik. arules: Mining Association

Rules and Frequent Itemsets, 2015. R package version 1.3-1.

[55] I. Sommerville and et al. Software Engineering: Chapter 27 Formal Speci�-

cation. Pearson, 2009.

[56] I. Sommerville and et al. Software Engineering: Chapter 11 Model-based

Speci�cation. Pearson, 1995.

[57] M. A. Whiting, J. Haack, and C. Varley. Creating realistic, scenario-based

synthetic data for test and evaluation of information analytics software. In

Proceedings of the 2008 Workshop on BEyond time and errors: novel evaLu-

ation methods for Information Visualization. ACM, 2008.

[58] Market-Basket Synthetic Data Generator, 2011.

https://synthdatagen.codeplex.com/, accessed 2016-July-29.

[59] An Open-Source Data Mining Library, 2015. http://www.philippe-fournier-

viger.com/spmf/, accessed 2016-July-29.

[60] Y. Pei and O. Zaiane. A synthetic data generator for clustering and out-

lier analysis. In Department of Computing science, University of Alberta,

edmonton, AB, Canada, 2006.

[61] Sharghi H., Ma W., and Sartipi K. Federated Service-based Authentication

Provisioning for Distributed Diagnostic Imaging Systems. In IEEE Interna-

tional Symposium on Computer-Based Medical Systems (CBMS), 2015.

[62] Yarazavi A. and Sartipi K. Consultant-as-a-service: an interactive and

context-driven approach to mobile decision support services. In Interna-

tional Conference on Computer Science and Software Engineering (CAS-

CON), pages 274�282, 2013.

BIBLIOGRAPHY 154

[63] J. de Ona, G. Lopez, and J. Abellan. Extracting decision rules from police

accident reports through decision trees. In Accident Analysis and Prevention,

50, pages 1151�1160, 2013.

[64] W. J. Dixon and F. J. Massey. Introduction to statistical analysis. New York:

McGraw-Hill., 1969.

[65] Introducing JSON website. http://json.org/, accessed 2016-July-29.

[66] RFC 3881: Security Audit and Access Accountability Message XML Data

De�nition for Healthcare Applications. https://tools.ietf.org/html/rfc3881,

accessed 2016-July-29.

[67] Python programming language website. https://www.python.org/, accessed

2016-July-29.

[68] EventGenerator at GitHub. https://github.com/maweina/EventGenerator,

accessed 2016-July-29.

[69] MARC-HI Everest Framework. http://te.marc-hi.ca/, accessed 2016-July-29.

[70] B. Liu, H. Wynne, and Y. Ma. Mining association rules with multiple mini-

mum supports. In Proceedings of the �fth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, 1999.

[71] Gephi - The Open Graph Viz Platform. http://gephi.github.io/, accessed

2016-July-29.

[72] C.C. Aggarwal and C.K. Reddy. Data clustering: algorithms and applica-

tions., volume 29. 2000.

[73] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu.

Pre�xspan: Mining sequential patterns e�ciently by pre�x-projected pattern

BIBLIOGRAPHY 155

growth. In 2013 IEEE 29th International Conference on Data Engineering

(ICDE). IEEE Computer Society, 2001.

[74] AWS CloudTrail. https://aws.amazon.com/cloudtrail/, accessed 2016-July-

29.

[75] P. Roudier. Agglomerative Nesting (Hierarchical Clustering).

https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/agnes.html,

accessed 2016-July-29.

[76] Cut a Tree into Groups of Data. https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/cutree.html, accessed 2016-July-29.

[77] J. Davis and M. Goadrich. The relationship between Precision-Recall and

ROC curves. In 23rd international conference on Machine learning, ACM,

pages 233�240, 2006.

[78] Apache Spark Website. http://spark.apache.org/, accessed 2016-July-29.

[79] L.M Garshol. BNF and EBNF: What are they and how do they work. In

acedida pela Ãºltima vez em, 16, 2003.

