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Abstract

The behaviour of a large nuclear reactor can beritbesl with sufficient accuracy using a
nodal model, like the spatial model of a 540 MWegda Pressurized Heavy Water
Reactor (PHWR). This model divides the reactor iditaisions or nodes to create a
spatial model in order to control the xenon induosdillations that occur in PHWRSs.
However, being such a large scale system,"&at@ler model, it makes controller design
challenging. Therefore, a reduced order model ishmaore manageable. A convenient
method of model reduction while maintaining the artant dynamics characteristics of
the process can be done by decoupling. Also, duehéo nature of the system,
decentralized controllers could serve as a bettéow because it allows each controller
to be localized. This way, any control input toane only affects the desired zone and
the zones most coupled with, thus not causing peative change in neutron flux in the
other zones.

In this thesis, three decentralized controllersengsigned using the spatial model of a
540 MWe large PHWR. A decoupling algorithm was deed to divide the system into
three partitions containing 20, 27, and 25 stateh.eReduced order sub-systems were
thus created to produce optimal decentralized obBlets. An optimal centralized
controller was created to compare both approadres.decentralized versus centralized
controllers’ system responses were analyzed afteyaativity disturbance. A fail-safe

study was done to highlight one of the advantadelecentralized controllers.

Keywords: Decentralized control, state-space control, spatiatrol, decoupling

algorithm, reactor nodal core model, Large PHW&yil zone level control
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Nomenclature

i andj subscripts to denote zones,

N

My

P

Pexi,

P,

Pci

number of zones in the reactor,

number of delayed neutron precursor groups,

power level, MW

reactivity related to the external control mechanimk
feedback due to fuel temperature, mk

feedback due to primary coolant temperature, mk

delayed neutron precursors’ concentration, A/cm

total delayed neutron fractional yield,

decay constant fajth group of delayed neutron precursors, s
xenon concentration, n/ém

thermal neutron absorption cross sectiori: cm

thermal neutron fission cross section;’tm

prompt neutron lifetime, s

energy liberated per fission, MJ

volume, cm

xenon microscopic thermal neutron absorptionseestion, ch
coupling coefficient,

diffusion coefficient, cm

thermal neutron speed, cm/s

area of interface betweéh andjth zones, cf

distance betweedth andjth zones, cm



Vx
pdl

Ax
Al

Tt
Te
Ta

Py

iodine concentration, n/cm
xenon yield per fission
iodine yield per fission
xenon decay constant, s
iodine decay constant's
fuel temperature, K

coolant temperature, K
coolant inlet temperature, K

global power, MW

ka, ko Kc kgconstants that depend on the thermal capacity amductivity of the fuel and

coolant,

h; instantaneous water level in tile zone control compartment, cm
m constant,

o] voltage signal given to the control valve of itiezone, V

My fuel reactivity coefficient, K-

He  coolant reactivity coefficient, K-

Tio steady state value of the fuel temperature, K

T  steady state value of the coolant temperature, K

Xi



1 Chapter 1: Introduction

1.1 Background

A large Pressurized Heavy Water Reactor (PHWR gl order complex system with a
large number of states and input variables. Désipan efficient and safe controller for
such a system has been a research topic for atioeg Various models have been
constructed and used to design controllers foaatoe. An accurate method that has been
used in both the research community and industthésnodal method. This method
solves the neutron diffusion equation by dividihg teactor core into a number of zones
or nodes such that the coupling of the zones isidered by the coupling coefficients
defined in the model. In this thesis, a reactorahaosbre model of a large 540 MWe

(Megawatt electrical) PHWR is employed.

In the literature, different researchers have psepgovarious methods to reduce or
decouple a sophisticated system in order to negihectvery slow modes of the system
response or less coupled states of the systemeTdtemmpts have led to a number of
system reduction and decoupling algorithms for dempgystems. These methods have

been used to design efficient controllers for coogped systems.

A brief review of the existing studies on both ttemctor nodal core modeling and
decoupling methods is presented in this sectiore fdactor nodal core model of the
system is utilized during this thesis to measuee d¢bupling between the states of the
system and a decoupling algorithm is introduceddesign optimal decentralized

controllers for a large 540 MWe PHWR.



1.1.1 Reactor Nodal Core Model of a Large 540 MWe PHWR

Nodal methods are an accurate way of describindpéh@vior of a large nuclear reactor,
like a large PHWR. A variety of nodal methods exadit of which have the common goal
of solving the neutron diffusion equation for aged fluxes in homogenized zones [1].
The nodal model is based on the concept of coupbeekinetics [2]. The reactor core is
divided into divisions or nodes where the neutrlux fand material composition are
considered to be homogenous. These zones can ¢heansidered as small cores and
coupled through neutron diffusion. In this way, ttm@del can be utilized for spatial

control for a large nuclear reactor.

A spatial reactor nodal core model was developedrimari [3], and the 540 MWe
PHWR model [4], was used. The reactor core is caagrof 14 zones, 7 zones per axial
half, each zone representing one node in the mé&aeh zone includes 5 state equations
with the inclusion of the thermal-hydraulic readgivfeedbacks, thus making it a"#2
order system. These states include the zonal iothneentration, xenon concentration,
delayed neutron precursors’ concentration, liquidezwater level, power or neutron flux,
fuel, and coolant temperatures. The liquid zonetrobrcompartments of a CANDU
(CANada Deuterium Uranium) reactor can be seenign E1 which is identical to the

large PHWR in India [5].
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Figure 1.1: Liquid zonal control compartments of aCANDU reactor [6]

The large PHWR is a pressurized heavy water redictdruses natural uranium oxide as

fuel and heavy water as the moderator and coolefower outputs are 1800 MW

thermal power and 540 MW electrical power. The atireensions are 800 cm diameter

and 600 cm length. Due to its vastness in comparisathe neutron migration length,

there is a need for reactivity devices distribugpdtially and flux detecting mechanisms.

To be able to control and observe the neutrondiskibution, the core has been divided

into 14 zones. Each zone contains a Liquid ZonetiGbber (LZC) compartment which is

used as the primary method of continuous fine obrdf the reactivity by varying the



light water levels. The higher the water level, tbeer the reactivity insertion and the
lower the reactor power will be in that particulaame and surrounding area. The lower
the water level, the higher the reactivity insartamd the higher the reactor power will be
in that particular zone and surrounding area. Thamurpose of the liquid zone control
system is to spatially control the power distribatiwhile averting any xenon induced
oscillation [7]. It also compensates for any smpaliturbations that cause small reactivity
changes, such as the refueling process. It iscgefiti to model the liquid zone control
system to study the effects of the xenon inducetia@poscillations. The liquid zone
control system provides a reactivity range of ambt3.5 mk. This system is sufficient
for the occurrences of regular reactivity pertuidiat. In the case of any unusual events
that require an insertion of more than +3.5 mk,atigister rods system will be activated,

and with less than -3.5 mk, the mechanical combad$ system will be activated.

The reactor power can be detected and measured tienfollowing devices. In each
zone, there are 2 in-core vertical flux detectbeg measure the zonal power. It measures
the neutron flux at various points in the coretfor estimation of power distribution and
total power. There are three ex-core ion chambwast dre used to measure the global
power [3]. However, there exists no instrument et measure the iodine, xenon, and

delayed neutron precursors’ concentrations whielpartinent in this system [8].

The 14 zones in the reactor are considered as stoeds coupled through neutron

diffusion. With the various neutron interactionieelineutron production and absorption in



each zone and the leakage of neutrons among diffeomes, the rate of change of power
in a zone can be given as [4]:

OxiX;
dp; (pexi+pfi+pci)_ﬁ_%
_ ai Pi"'z
g

mg 1 N (1.1)
(4Cig) + jz(“ﬁpj —ai;Py)

dt 1

The microscopic thermal neutron cross sectiofdfe for each zone is given as:

Oxi . (1.2)
o i=12..,N)
EersXeiV'y (

Oxi =

The accuracy of the nodal model depends highly hen doupling coefficients. They
depend on the geometry, material composition, asthrtte between the zones. The

degree of coupling among the zones is describ§@]:as

aij = dijV’i lfl :]
0

Delayed neutron precursors occur by nuclear fisgioh are lost through radioactive
decay. Since the dynamics of iodine and xenon @ostantially slower than that of the
precursors, only one effective group of delayednoeuprecursors is considered, ng.=

1. Therefore, the delayed neutron precursors’ qunagon indifferent zones is given by

[3]:

dc;
d—;" = 'BTgPi — A4Cig; (i=12..Ng=12..,my)

(1.4)



135 e is a significant fission product due to its extely large thermal neutron absorption
cross section, fairly large fission yield, and ahé¢ nature. It is produced as a direct
fission product and through the radioactfelecay of**°Te where the decay df°Te
into **°1 is practically instantaneous [9, 10]:

(1.5)

<1lmin
135T@ —— 135] — 135¥e — 135(Cs — 135B3
This xenon reactivity feedback causes changeseim¢iutron flux distribution and in turn

causes spatial oscillations in the power distriutrf a large thermal reactor.

The iodine and xenon concentrations in each zondeaepresented as:

dlI, (1.6)
d_tl = V125 P — Al
ax; (1.7)

e YxZsiP + ALy — (Ax + 05 PDX;
The rate of change of iodine concentration is @efias its rate of production through
fission and its loss through radioactive decay. fidte of change of xenon concentration

is defined as its rate of production through fissemd iodine decay; its loss due to its

radioactive decay and transformation"te into stablé**xe [11].

The fuel and coolant temperature reactivity feedlbdtave been considered for a more

realistic modeling. The rates of change of fuel eodlant temperatures are described as:

dTy (1.8)
E - kan - kb(Tf - TC)

daT, 1.9
d_tc = kc(Tf - Tc) - kd(Tc - Tl) ( )



The instantaneous rate of change of a ZCC (zonatr@locompartment) is directly
proportional to the net flow rate of water in th€Z The variation of inflow of water to
each zone is associated with the direct positiothefcontrol valve and the outflow is
kept constant. The change in water level in eacle zan be given as a function of input
signals to the control valves and is described as:

ah_ (1.10)
dt - 1

The reactivity due to the control mechanism of tZ& that is directly proportional to
the water level in the ZCC in its respected zordefined as:

Pexi = —K;(h; = hy); (i=12,..N) (1.11)

Substituting the value df from equation (1.11) in equation (1.1), it becomes

' OxiXi 1.12
o= l P + Z(/lgCig) + jz(“jipj —aijPi)
g:l ]:1

The variations in reactivity due to the fuel anslemt temperature are assumed to not
change appreciably over normal control relatedsients and thus these changes are
almost linear and can be defined as [3]:

pri = bri(Tr = Tro) = usi67Ty (1.13)

Pci = .uci(Tc - Tco) = Ui 6T, (1.14)



The physical data of the reactor are given in Taklé and 1.2 [4].

Zone Number | Power (MW) | Volume (m°)
1,6,8,13 132.75 14.7
2,7,9,14 135.99 14.7

3,10 123.30 17.6
4,11 98.55 8.8
5,12 123.30 17.6

Table 1.1: Steady-state zone power levels and voles

[=79x10"*s mg =1
A=91x10"2s"1 m; =2

2 =1262x102cm™! |K';=-35x107°
o, =12x10"18 cm? hjo = 100.0 cm

v =13.19x10° cm/s

y; = 6.18 x 1072

A, =21x10"5s71
B=75x10"2

Y, =3.2341x103cm™?
Eerr = 322107 M

Y, =6x1073

D =0.9328 cm

A, =2878x10°s71

Tro = 547.2831°K

T., = 541.4037 °K

T, = 539 °K

1y = —3.4722 x 107/K

ir = 333333 x 105 /K

k, = 1.38428 x 103 K/J
k, = 4238x 10 152
k.=1758x10"2 st

k; = 43016759 x 1072 571

Table 1.2: Physical data for the 540 MWe PHWR for thzones

1.1.2 Model Reduction

It is challenging to deal with higher order systemscontroller design. Therefore, a
reduced model is more manageable. The presentimodkiuces an innovative approach
to reduce the model by using a new decoupling dhgor This method decouples the

system by dividing the states into partitions byihg the most dependent states in the

8



same partition. These partitions are then usedtiferdesign of sub-controllers thus

creating decentralized controllers.

Decentralized controllers have gained more attaniioboth the nuclear industry and
research communities throughout the last few dexa8ence this structure has been
proven to be more reliable, cost effective, andlyasaintainable, attempts have been
launched to practically apply it in nuclear powdants, e.g. in Taiwan [12]. However,
dividing the controller into several sub-contradlevould raise a few concerns that can be
classified into two major groups: (a) selectiortled system states that are controlled in a
sub-controller and, (b) integration and communaatof different sub-controllers to

control the system as a whole.

In order to solve the former issue, various modatiuction methods have been
introduced. For example, Krylov spaces have beerd us reduce the system and
estimate it arbitrarily and precisely while maimiag the important properties of the
system such as stability and controllability [1GEenerally, model reduction methods can
be divided into three categories. The first catggisr called the continued fraction
expansion that is based on obtaining a reduced Inmddeh matches some time moments
and Markov parameters of the original model. Fateyns that can be estimated by low-
pass filters, it can be shown that the continuedtion expansion of the Cauer second
form is equivalent to matching time moments withaglor series expanding abait O.
On the other hand, for the systems that can bmat&d by high-pass filters, the Cauer

first form is equivalent to matching Markov paraerstwith a Taylor series expanding



abouts = «. The drawback of this reduction method is thades not guarantee the
stability of the reduced model even if the originmaddel is stable. In the second category,
called dominant mode, Davison suggested a methseldban neglecting the eigenvalues
of the system that are farther from the origin agtdining the dominant eigenvalues that
estimate the system behavior more precisely [14wéVer, the reduced model by
Davison's method fails to maintain the accuratadtestate gains due to neglecting the
contribution of eliminated eigenvalues. The thiedegory is called optimum fitting that
tries to minimize an error function defined basedtlee deviation of the reduced model
response from a set of given sample data of thggnali system either in time-domain or
frequency-domain [15]. However, the abovementioaégbrithms try to estimate the
system by a lower dimensional model instead ofding it into several coupled sub-
systems that can be safely controlled separatety.ti@ other hand, a decentralized
controller necessitates an algorithm that can thtee various sub-controllers that are as

decoupled as possible.

In the literature, researchers have studied thel@no of sensitivity and decoupling of the
linearized systems in the last four decades. Famgike, in [16], Hautus and Heymann
formalized a decoupling problem for linear systeengploying a suitable compensator.
The problem of data sensitivity and decouplingoisrfulated and solved in [17] and the
necessary and sufficient conditions of the stabilif the decoupled system are also
presented. In 1976, for aninput-m-output linear time-invariant system, the decouplin
and data sensitivity problem was solved using gelahic approach [18]. Nevertheless,

the problem of distributing a controller, sensitpyiand decoupling of the states of the

10



system is of concern and has not been studieddte-space controllers to the knowledge

of the author.

On the other hand, different methods in mathemdit#se been utilized to classify a set
of data points such as fuzzy and hard clusteringhous. Clustering is defined as
partitioning a collection of unlabeled data intemamber of groups or clusters such that
data points that are more similar are put into doster [19]. Hard clustering algorithms
assigned each data point to one and only one opdinitions, assuming well defined
boundaries between the clusters. However, the laigsdbetween the clusters may not
be clearly definable, the fuzzy environment of dmr making would then be an
appropriate tool to tackle the clustering probleemg. Fuzzy C-Means Clustering
algorithm and Fuzzy Mountain Clustering. The prablef finding the optimal fuzzy
clustering can be formulated as minimizing an dibjedunction subject to conditions on
membership functions. Fuzzy C-Means Clustering rélgm is based on the fuzzy-
equivalent of the nearest mean hard clusteringrithgo. This objective function is
defined considering the sum of squared errors t& pgaints with respect to the centers of

partitions [20].

There have been methods that reduce the dimengyoaghigh-order systems, such as
Principal Components Algorithm (PCA) [21]. This medt's reduction is based on
performing a covariance analysis between factdns. data taken can be plotted in multi-
dimensional space producing a cloud. The trends cli@acterized by extracting

directions where a cloud is more extended. Thectimes taken produce components

11



whereby reducing the multi-dimensional cloud. Hoem\this method is mainly useful
when wanting to discover unknown trends in a datddeerefore, in systems where these
trends are already known based on previous stutlissnethod is not useful.

Another type of reduction technique used in dedogphethods is dynamic decoupling.
These methods are used in systems that undergacdriaanges in its dynamic behaviour
causing excitations. Therefore, these methodsa@raseful in systems that do not
fluctuate very far from its steady-state point. fehare various methods that exist, each
with their own objectives based on the dynamicthefsystem, for example, a dynamic
decoupling method was proposed by Mikloslovic ard @ control complex uncertain

systems [22].

1.2 Motivation of Thesis

A large PHWR is a high order complex system witlarge number of states and input
variables. Reduction algorithms have already besenl tio reduce the order of this system
to design controllers. However, they neglect tlagest in the system that may have major
impacts on the system behavior in different situadi In this thesis, a decoupling
algorithm is introduced using state-space reprasient of the system that reduces the
coupling between the states of the system andeaddme time keeps all the states of the

system in the control loop.

12



1.3 Objectives of Thesis

1. Design and test a decoupling algorithm using thenmf sensitivity of the states
with respect to each other.

2. Implement the decoupling algorithm to a large PH¥/ partition the system.

3. Design optimal decentralized controllers for thb-systems and compare the

results to an optimal centralized controller.

1.4 Organization of Thesis

In chapter 1, an introduction to the research awkdpround is given with the motivation
and objectives of the thesis. In chapter 2, theestpace control theory, its application to
this thesis, and the optimal control theory is givén chapter 3, the design of the
decoupling algorithm is given with the sensitivigfinition, the decoupling criteria, the
objective function, the steps of the algorithm, #imel construction of the sub-systems. In
chapter 4, the simulation results of the partiticar® given, the centralized and
decentralized controllers are discussed and ardlyaad a fail-safe study of the
controllers is shown. In chapter 5, a conclusiotheffindings for this research and future

work recommendations is given.

13



2 Chapter 2: State-Space Control

2.1 Linear Time-Invariant Systems with Input

A linear time-invariant system with input and outpan be identified by:

z(t) = Az(t) + Bu(t) (2.1)
z(0) = z, (2.2)
y(t) = Cz(t) + Du(t) (2.3)

wherez(t) is a vector including all of the system stategusxstions of timeu(t) and

y(t) are the input (or the feedback of a controlleryl dhe output of the system,
respectively, where both are functions of tilAeB, C,andD are time-invariant matrices
that define the behaviour of a linear or non-linegstem around an equilibrium point.

The matrixD is usually considered as a zero matrix.
Therefore, the solution to this system of equaticars be immediately obtained by:

t 2.4
y(t) = Cellz, +f CeAt=9)Bu(s)ds (24)
0

wheree* is the exponential of matrix and can be defined as:

[o0] Xn
=5

n=0

(2.5)

whereX’ is defined to be the identity matrix.

14



2.1.1 Linearization of a Non-Linear System

A general non-linear system can be representetiébfpotlowing equations:

¥ = f(x,u) f:R" x R™ - R" (2.6)
y = h(x,u) h:R™ X R™ — RP (2.7)
wherex(n x 1) is the state vector of the systea(yn x 1) is the control input to the
systemx(n x 1) is the rate of change of the states in time pfidx 1) is the output of

the system.

Assume thatx is an equilibrium point and fou = u, the non-linear system can be

approximated by the Taylor series as:

faw ~ [Law|e-0+ [Law)a- @9

oh oh |
h(x,u) ~ h(x ) + [a % ﬁ)] (x—%) + [ﬁ x, ﬁ)] (u— ) (2:9)

If ¥x=(x—-Xx), Ui =u—u), andy = (y — h(x,u)), then, the linear approximation of
the system arournd andu can be shown by:

% = A% + Bil (2.10)

y = C¥%+ Dl (2.11)

whered = [g—ﬁ (%, ﬁ)], B = [Z—z (%, ﬁ)], C= [‘;—: (%, ﬁ)] andD = [Z—Z (%, ﬁ)].

15



2.1.2 Linearization of a Large PHWR

A large PHWR that was represented by equationg {t.{1.13) should be linearized in
order to describe the behavior of the reactor énatea of the steady-state operating point
due to any minor change in power, delayed precsrsmncentration, iodine, xenon
concentration, liquid zone water levels, fuel amblant temperatures [4]. The global
reactor powePy is considered to be constant, when operatingeaidyt state, hence the
power distribution does not vary in time. This ciiath can be accomplished when the
zonal power levels are constant and the delayetrareprecursors’, iodine, and xenon
concentrations are in equilibrium with them. Frdre hodal equations (1.4), (1.6), (1.7),

(1.10), and (1.12) the following steady state cbadican be attained:

Co = BPio (2.12)
T
YiZsiPio (2.13)
lip=—7—
1
Y. = (rx + ¥ ZriPio (2.14)
© Ax + 5Py
o 0xiXio (2.15)
i0 Kllzal :

Using these steady state values in equation (hmﬂ)setting% = 0, the steady-state

power distribution can be calculated based ondHeviing equations:

—a;iPo + X} a;; Pg=0; i=12..N, (2.16)

N
Pg0=zpi0
i=1

(2.17)
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The steady-state zonal power levels can be obtdored corresponding global power,

Pgo, by solving the above equations.

Considering an increme#ty, for thei™ input variable, the resulting zonal change of the
states of the system, power levels, delayed precguisdine, and xenon concentrations,
ZCC water levels, fuel and coolant temperatures,bmshown byP;, 3C;, 6l;, 8X;. dh,

oT;, ando T, respectively.

qi = qio + 64q; (2.18)
P; = Py + 6P, (2.19)
C; = Cyo + 6C; (2.20)
I; = Lip + 81; (2.21)
X; = X;o + 6X; (2.22)
h; = hy + 6hy (2.23)

Hence, the new state space variables can be imciedday:

81, 61,81;  SIy1" (2.24)
Zry =\ ... —
"l Lo Ip T Iyg
85X, 6X, 6X5 SXN]T (2.25)
Zy =
T X0 Xa0 X307 Xivo
5C, 8C, 5Cy 6CN]T (2.26)
Zr =
© T L1Cp Cop C3p 7 Civg
ZH = [5h15h25h3 5hN]T (227)
5P, 8P, 5P; 6PN]T (2.28)
Zp =
PPy Py Py Py
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ZTf

2y, = 8T, (2.30)

= 8T, (2.29)

Therefore, the new state, control, and output yeatan be defined as:

T 2.31
z= [z,Tz)T(zgz{,zgzg fz7T"C] (2.31)
u=[8q:6q;8q; ... Sqnl” (2.32)
y =2 (2.33)

The non-linear equations of the reactor can beatined around the steady state point

based on the following equations:

d <6Pi> _ 1, ZN: Po | 6P, B0 P8Cu _ Gxikio OX (2:34)
AV A %ip. l Y Py P, T T G 12 Xoo

—K—,ié‘hi +Hfi5Tf +Mci5Tc

I l l

i((?Clk) _ (SPL _ 6Cik (235)
dt \Cixo “Po T Cio
d (51, 5P SI; (2.36)
(0)-n
dt \Ijp P Iip
d /86X, Lo\ 6P, Iy 81, X, (2.37)
() = (2, =2 —) Ty R N k)
dt (Xi()) (X ) P A X T, e T iPio)
dsh; (2.38)
ar = Mo
d(8Ty) C (2.39)
=L kaz 8P, — ky8T; + kyOT,

=1
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d(6T,)
dt

= k. 8Ty — (ke + kq)ST,

(2.40)

The above equations can be written in the stanslaté space representation of a linear

time-invariant system as:
z=Az+ Bu

y=Cz

MatricesA, B, andC are given as:

ATfI ATfX ATfC ATfH ATfP

A,y Arx  Arc Arm  Arp

Apr,
Axr,
Acr;
Ay,
Apr;
Ar,r;

ATCTf

T
B=|[Bl By B¢ Bj Bp Bi, Bi]

c=[G Cx Cc Cy Cp Cr, Cp]

The abovementioned sub matrices of the systemedistbd as follows:

All = dlag. _A[IdN
AIX = O

A1C=0
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(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
(2.47)

(2.48)



Ay =0
App = A 1dy
Ar, =0
A, =0

110 INO

AXI = Aldlag [X_ X_
10 NO

Axx = diag.[(=Ax + 0x1Pio) ... (=Ax + GxnPno)]

Aye = 0
Ay = 0
I I
Ayp = diag. [(AX — 2 Xl—i) (AX —2 XL,D]
Axr, =0
Ayr. =0
Ay =0
Acy = 0
Ao = —Aldy
Ay = 0
Acp = Aldy
Acr, =0
Aer. =0
-
Apy = 0
Ape = 0

20

(2.49)
(2.50)

(2.51)
(2.52)

(2.53)

(2.54)
(2.55)
(2.56)

(2.57)

(2.58)

(2.59)
(2.60)
(2.61)
(2.62)
(2.63)
(2.64)
(2.65)
(2.66)
(2.67)
(2.68)

(2.69)



Ayn =0
Aup =0
AHT/, =0
Ay, =0
Ap; =20
Oox1X oxnX
Ay = diag. |~ () = (T2
Apc = Eldzv

l !

K
Apy = _TIdN

( N

1 Pjo L

7 B+ Z“ij? —aj ifi=j
App(i,)) = J=1 ©

Pio e

aijPLio ifi#]

1

i
l

1
1

1

1
l
}N — times

# N — times
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(2.70)
(2.71)
(2.72)
(2.73)
(2.74)
(2.75)
(2.76)
2.77)

(2.78)

(2.79)

(2.80)

(2.81)
(2.82)
(2.83)
(2.84)
(2.85)
(2.86)
(2.87)
(2.88)

(2.89)



ATCC = O (290)

Apy =0 (2.91)
Arp =0 (2.92)
Argr, = ke (2.93)
Ang, = — (ke + ko) (2.94)
B, =0 (2.95)
B, =0 (2.96)
By =0 (2.97)
By = —m;ldy (2.98)
Bp =0 (2.99)
Br, =0 (2.100)
By =0 (2.101)
€, =0 (2.102)
Cx=0 (2.103)
Cc=0 (2.104)
Cy=0 (2.105)
Cp = Idy (2.106)
Cr, =0 (2.107)
Cr. =0 (2.108)

whereldy is the identity matrix of dimensioN anddiag(a;...a,) is the diagonah x n

matrix witha;...a, being the diagonal elements.
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2.2 Controllability

Considering a linear-time-invariant system\,R), the notion of controllability can be
defined as the ability of the system to reachtalpbssible states, which is usuallyRf,

for finite control input in finite time. In other avds, for any possible state of the system
there exists at least a control input defined ot] [@hat can take the system from an
initial point to the final state. Therefore, if @lie states of system are reachal?eB) is
calledcontrollable In order to check the controllability of a systdtrcan be shown that
the rank of the followingh x nm matrix should be, which is the number of the system

states.

Q. = [B AB A?B ...A"'B] (2.109)
This matrix is called theontrollability matrix If this rank is less than, the system can
be divided into controllable and uncontrollable sygiems by Kalman Decomposition
algorithm. If the uncontrollable eigenvalues areiralthe open left hand complex plane,
then the system is at least stabilizable. That méaat the system can approach any state

but the closed-loop eigenvalues cannot be arlitrassigned.

Controllability of a Large PHWR

In order to control a reactor, first the controllap of the system in (2.41) should be
checked. It can be shown that for a 540 MWe larg®VR using the nodal model, the
assigned controllability matrix is of ramkand the system is fully controllable [23]. This

indicates that the zonal power levels can be ctiatrdy the variation of water levels in

23



the zones, independently. Hence, by a specificrabmmtput, the power distribution in a

reactor can be controlled.

However, in the case of distributing the contrglighere sub-systems are considered, the

controllability of each sub-system should also becked before designing a controller.

2.3 Observability

Another system property, just as important as otlatiility, is observability. It is

important to know whether you can estimate all ¢glgstem states using the measured
output and input signal. In the real world, measyill the system states at each instant
is not feasible. Therefore, if the systef@,4) is observable, then an observer can be
designed to estimate the states. It can be shoatrathystem is observable if and only if

the followingn x np matrix (©bservability matrixis of rankn.

Q=1[c cAa . ca" (2.110)

The estimated state equations of the system camitien as:

2=A2+Bu+L(y-%),20) =%, (2.111)
y=Cz (2.112)
If there exists am x p matrix L such that all the eigenvaluesAfL.C lie on the left half
complex plane, then((A) is observable and is called the full state observer of the

system.
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Observability of a Large PHWR

Observability of a reactor is also a vital propeosfythe system since all of the system
states should be fed back to the controller. Tloeeethey must be estimated knowing the
measured states of the system. It can be shownhindihearized model of the 540 MWe
PHWR is fully observable [23] and a mattixcan be optimally designed as the observer

of the system.

2.4 Optimal Control

An optimal control problem can be stated as follows

Find a control lawu = ¢(t) that is in the class of admissible contragjsi§ continuous,
stabilizing, and results in a unique closed-lodpitsan) and minimizes the following cost

function:

J (2o, ®) = f [27()Qz(t) + ¢T(t) Rp(t)]dt (2.113)

0

where Q is a symmetric positive semi-definite matrix aRdis a symmetric positive
definite matrix. Since) is positive semi-definitez” (t)Qz(t) > 0 represents the penalty
incurred at timet for state trajectories that deviate from 0. SinylaR is positive

definite, hencep” (t)Rp(t) > 0 represents the control effort at timim order to regulate

z(t) to 0.

It can be shown that a solution to this problenmisnatrix quadratic form. Therefore,
equation (2.113) results in the following matrixaguatic equation, called the algebraic

Riccati equation:
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ATP+PA—PB—R'BTP+Q =0 (2.114)
This equation should be solved férin order to find the minimizing control law given

by:

u=—-RBTPz (2.115)
and the optimal state feedback giican be expressed as:

K =—R71BTP (2.116)
Therefore, the closed-loop system equation istase

z=(A+BK)z (2.117)

Based on the duality theorem in state-space corfiraling an observer forQiA) is

equivalent to finding a controller foA[,C"). Therefore, it is natural to introduce the
notion of the optimal observer according to thesdin quadratic optimal control law.
Hence, an optimal observdr, can be designed considerih§ as the optimal feedback

law for (AT,C") as the dual controller t€(A).

Optimal Control of a Large PHWR

A control design methodology should be utilizegotoduce controllers with the desired
objectives. A cost criterion is formulated basedlwase objectives. The optimal control
law solves the optimization problem based on tha@mization of the given cost

criterion. In this way, controllers of the reactan be optimally designed for the system.
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3 Chapter 3: Decoupling Algorithm

The complexity of a large system can result iniclitties in controller design that gives
rise to the concept of model reduction in ordefatilitate the design process. In model
reduction methods, the dominant features of théesysare studied and the rest of the
states of the system are neglected. In the caserdfolling a large PHWR, due to its
safety-critical nature, neglecting the system festican be risky. Therefore, decoupling
algorithms are needed to reduce the model withagibd) the dominant characteristics of
the system. A number of decoupling algorithms hlaeen suggested in the literature to
study the sensitivity of linearized systems. Howewe order to design a decentralized
control system, the sensitivity of state varialbés linear system should be investigated
and the most coupled states should be grouped hergeThis chapter presents a
systematic decoupling algorithm for a linear timgdriant system without input to
partition the system and consequently divide annggt centralized controller to a
number of sub-controllers that can separately obttie partitions of the system. For this
purpose, the notion of sensitivity of a state widspect to other states is defined.
Subsequently, by mimicking the clustering algorithman objective function is
introduced to find the most decoupled and evergyrithuted partitioning. This algorithm
has been applied to the reactor nodal core modeh dirge PHWR to design
decentralized controllers. The results have be&segmted and discussed in the next

chapter.
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3.1 Sensitivity

Definition (Sensitivity): In general, in system engineering, sensitivityagiarameter X
of a system with respect to parameter Y at equuitbris the rate of change of X with
respect to Y after a small amount of time when p&tar Y is disturbed by a small
change, namel> 0. In a linear time-invariant (LTI) system, the siémgy of statez

with respect t@ while z is perturbed byz aftert seconds can be defined as,

(1)
Zj (™)

oz 3.1

S() =

(T)‘ =

aZj

The linear system without input variables should dmsidered to determine the
sensitivity of different states with respect to leather. The reasons for this is that this
algorithm is utilized to design a controller foretlystem and thus has no input to the
system; in order to design controllers for a systtma intrinsic behaviour of the system
must be studied which is done through the sensiti@nalysis; and since there is no
coupling between the input states and any of therddtates, these states must be pushed
somehow. Therefore, the following system of ordynaifferential equations needs to be

solved to calculaté;(7):

2(t) = Az(b) (3.2)
2(0) =z} = (0,0, ..., 62,0, ..., 0)" (3.3)

Wherez{; is the initial condition of the differential eqi@t whenz; is perturbed byz;.
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The solution ok at timet is:

z(t) = ettz,/ (3.4)

Therefore, based on (3.2)afterz seconds is:

z(1) = Ae?7z,/ (3.5)

By substituting (3.3) in (3.5), sensitivity of stat with respect tag at timer can be

formulated as:

(1)
Zj ()

row;[A] x column; [e“"] (3.6)

row;[A] X column; [e47]

S(r) =

It can be observed in (3.6) that the calculatedisigity is independent of the amount of
perturbation of state; and is only a function of time. The sensitivityoskd be
determined after a small amount of timethat is selected based on the response speed of
the system. In order to pick a suitable instargeevalues of matriyA that represent the
speed of convergence or divergence of the stateheofsystem are considered. The
eigenvalues with negative real parts corresponthéostates that can be stabilized and
therefore they are of no concern. On the other hanthe set of all eigenvalues with
positive real parts, the one that has the largedtpart shows the fastest divergence and
can be considered as a measure for the speed dfystem. Consequently, the time
instantz is when the value of the state corresponding ¢oeflgenvalue, which possesses

the largest positive real part, changes by 0.1%.
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Therefore, the calculated sensitivity can be @dias a dependency measure of states to
put all decoupled states in different partitionattare going to be controlled separately.
The larger the sensitivity is, the magds dependent t@. Note that in (3.6), all of the

states are non-dimensionalized with respect t@thglibrium point.

3.2 Decoupling Criteria and Objective Function

The notion of sensitivity can be considered as &ima the space of system states to
represent the amount of coupling of every two stafethe system. This is similar to the
distance between data points in clustering algmsthHowever, the larger the value of
sensitivity is, the more coupled a state is witepext to another. In the clustering
methods, an objective function is normally definedind an optimum clustering result in
the space of different possible clusterings basedthe following two criteria: a)
separation between the clusters, and b) compactrfigbs clusters. In each optimization
iteration, a set of points is selected to be thestel centers, and hence, the
abovementioned criteria can be calculated witheesstp them. The compactness of the
clusters can be checked through the sum of distape®veen the data points in a cluster
and the center. In addition, the separation betweerrlusters is formulated based on the
distances between the centers of the clusterswbrth mentioning that occasionally the

number of clusters should be known before the ety process.

In the case of partitioning of the states of aaystthe aim is to find the most coupled

sub-systems. In other words, the states with tigge$a value of sensitivity with respect to
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each other must be placed in the same partitioarefbre, to define a suitable objective
function for partitioning purposes, a criterion che deemed based on the average
amount of sensitivity in the partitions with respéc the chosen center states of the
partitions. Furthermore, various systems may hawierent constraints in terms of
placing certain states next to each other in thigtjpaing process. These constraints are
taken into account by defining weight functionsawveraging the sensitivity values of
partitions. Consequently, a weighted average fonci$ used to average the sensitivity
values in the partitions as an objective functidhis average is summed on all of the
partitions and the resulting criterion is callegan sensitivityTherefore, mean sensitivity

can be calculated as:

3.7)

m N

1 o
M = Em—nizzwiksz(zllozé)

i=1 Zek=1 Wik = k21

where,

m = number of partitions,

n; = number of states in thi partition,

zL= thekth state in théth partition,

zL = the center state in tlign partition,

wix = weight ofzx belonging to theth partition.

The weight function is selected in the range o Q.t The higher the value of the weight
function, the more probable the according stat ise placed in a partition. However,
since the weight function shows a relative desfranduding a state in a partition, if its

value is constant for all of the states, it implspriority in the partitioning process.
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Another objective that should be considered inif@ning of a system is the dimension
of the system. It is more desirable to have equaledsions of the sub-systems.
Therefore, another criterion, namelpiformity, is defined based on the distribution of
the states of the system in the different partgiofhhe well-known statistical function,

variance function, has been utilized for this pwgadn this criterion the deviation of each
sub-system’s dimension from the average numberhef dtates in the partitions is
calculated and averaged based on the mean squexeggavunction. Generally speaking,
this criterion checks the distribution of the staite different partitions.

Therefore, the uniformity is the variance of themier of elements in the partitions with

respect to the average number of elements thaieaefined as:

(3.8)

m

1 n
U= [ 2

i=1

Based on the above definitions, in order to obtag optimum partitioning of a system
the mean sensitivity should be maximized whileuh#ormity is minimized. To simplify
the optimization process, a linear combinationh#f triteria can be used to define one
objective function that incorporates both aspektsthis way, the dimensions of these

criteria are unified [24]. This function is defined:

1 (3.9)

wheren is the total number of states and the fa%tnormalizes the uniformity.

32



Since the uniformity and mean sensitivity are cdesed with plus and minus sign,
respectively, minimizing), would result in minimizing and maximizing the forimity and

mean sensitivity, sequentially.

3.3 Decoupling Algorithm

In this section, a step-by-step algorithm for tleea@lpling method discussed above is
given. This algorithm consists of two optimizatioops. For a given set of centers of the
partitions, the inner optimization is performedotace the states in the suitable partitions.
However, since there exists a number of differdmdices to pick the center states, an
outer loop optimization with respect to an objeetiunction is done to select the best

partitioning. The algorithm can be detailed asdiat:

1. In this partitioning method, the number of partisoshould be known ia priori.
Therefore, before starting the partitioning procdbe number of partitions or
sub-systems should be chosen.

2. At each outer loop iteration, a system state isqadn the empty partitions as the
center of the partition with respect to which sewisy analysis is performed.

3. The sensitivity of each of the remaining statehwéispect to the center states is
calculated.

4. In the inner loop optimization, the maximum senrglyiof each state with respect
to the center states is selected and the staransférred to the corresponding

partition.
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5. In this way, if the number of partitions is shownrbh and the number of states by
n, then (:l) different partitionings can be constructed outMbiich the one that

optimizes the associated objective function shdndcpicked. Hence, in this step
the objective function for each possible partitrgnis calculated.

6. The best partitioning is identified as the one thatimizes the objective function.

Determining the number of partitions depends elytioa the type of system. In order to
be adaptable and flexible for different system®osing this amount has been made so
that it can be applicable to most systems. Evestesy has its own objectives and

constraints and by using these criteria, a suitaisleunt of partitions can be chosen.

3.4 Sub-systems Construction

Subsequently, the LTI system should be divided smtoumber of reduced-dimension
linear sub-systems based on the partitions in teeiqus section. These sub-systems can
be identified by a set of matricd$A;, B;, C;)|i = 1, ..., m}. TheA matrix is evaluated by
considering only the rows and columns/othat correspond to the states that appear in
the i™ partition. In order to constru@, first the input states in partitidnare identified.
The rows ofB that correspond to all of the states in Agartition and columns d& for

the input states are selected and the rest ofi¢énecats are neglected. FGy, the output
states in the partitionare found. The rows @ corresponding to the output states in the
i partition and the columns &F for all existing states in partitidnare kept and the rest

of the elements df are neglected to construci
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4 Chapter 4. Simulation and Results

In this chapter, the abovementioned decouplingrdhgu is utilized to divide a large 540
MWe PHWR into three sub-systems. An optimal coigrols designed for the system.
Based on the achieved sub-systems, the centratimattoller is split to three sub-

controllers that separately control the sub-systems

4.1 Partitioning of a Large 540 MWe PHWR

The system was modeled and simulated using MATEABhe sensitivity was taken at
t = 0.1 seconds. Three partitions were chosen aaedsimulation yielded the first
partition having 20 states, the second having aestand the third having 25 states. The

partitions are given in Table 4.1,

Zone Partition 1 Partition 2 Partition 3
1 Z1y 215, 229, Z43,
Zs57
2 22y Z16y 2301 Z44)
Zsg
3 23y 217, 231 Z45,
Zs59
4 Z41 218 2321 246,
Z60
5 251219y 2331 247,
Z61
6 Z6y 2201 2341 248,
Z62
7 27,221, 235, Z49;
Z63
8 28, 2221 24361 250,
Z64
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Z9g, 223, 237, Z51,

Z65

10 2101 2241 238, Z52;
Z66

11 Z11, 225, 239 Z53;
Z67

12 212y 2261 240y Z54,
Z68

13 213, 2271 Z41, 255
Z69

14 Z14, 228, Z42, Z561
Z70

Z71, 272

where states 1-14 are the corresponding zonal @éodancentrations, 15-28 the xenon
concentrations, 29-42 the delayed neutron condemmg 43-56 the water levels, 57-70
the powers, 71 the fuel temperature, and 72 théanbtemperature. The center of each
partition that was randomly chosen was state 1Bpmxeconcentration in zone 1, for
partition 1, state 20, xenon concentration in zénéor partition 2, and state 27, xenon
concentration for zone 13. It is completely readbmahat the center states of the
partitions were the xenon concentrations since syigem’s purpose revolves around

controlling this.

The corresponding zonal water levels were logicplced in the partition that had the

most states for its zone since they depend ontphemnput to the system and would yield

Table 4.1: Simulation results of partitions

zeros for sensitivity thus being grouped together.
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From the partition results, it can be seen that dtates were divided into the three
partitions according to which states they were mostipled with. These states
correspond to the most coupled zones which werénetefthrough the coupling

coefficients. The coupling coefficients between smaghbouring zones and its own zone
are assumed to be zero. For neighbouring zonesptl@ing coefficients were calculated
based on the area of interface and the distanseebattheith andjth zones. Through

these relationships, the model was decoupled. Tdrerean optimal distribution of states

were acquired that can be used for controller aesig

4.2 Centralized Controller

The whole system is modeled in MATLAB SimulfhkA MATLAB function, called
care, is used to solve the Algebraic Ricatti Equation the system and identify the
corresponding control gain. The same function ipleged to obtain an optimal full-state
observer for the control system. In Appendix A, thié elements of the controller and
observer matrices are listed. Both the controltet abserver are placed in the centralized
control loop of the modeled system. The Simulinkdeloof the system with the
centralized controller is shown in Fig. 4.1. Thesteyn is disturbed by changing the
reactivity of zone 1. Different amounts of distunba to the system limits, £3.5 mk, are
considered and the behaviour of the system is edludihe disturbance functions are
shown in Fig. 4.2. The change in global power @f thactor as the system response for
different disturbance functions is depicted in Ad@ and Fig. 4.4. The overall behaviour

of the system is almost the same for various distoce magnitudes. The overshoot of
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the system increases proportional to the amoumlistéirbance. However, the response
time is almost the same for all different disturb@functions. Fig. 4.5 shows an example
of the response of the system to the +3.5 mk vefzbBsmk disturbance functions. These
figures illustrate that the system response issgotmetric with respect to the line Global
Power = 1800 MW. The overshoot of the system respdio all of the disturbance
functions is plotted in Fig. 4.6 that shows an atrinear trend for both positive and
negative disturbances. The values of overshoohetreymmetric with respect to the line
Global Power = 1800 MW. The values of the seconakpa&f the system response to
different positive and negative disturbances caoliserved in Fig. 4.7. They also show a
linear behaviour with respect to different disturta functions, however, they are not

symmetric with respect to the line Global Power86d MW.

Based on the response of the system, the maximensloyot occurs for the disturbance
of +3.5 mk. For the positive maximum disturbande bvershoot of the system is 79
MW and similarly for the negative maximum disturbanthe overshoot value is 80.5
MW. The response time of the system for all distndes is almost the same around 200
seconds. The steady state error of the resporasasconstant for different disturbances

and is -0.5 MW which is negligible for this system.
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Figure 4.1: Centralized system
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Figure 4.2: Disturbance functions
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Figure 4.3: System response for negative reactivityisturbances of a centralized
controller
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Figure 4.4: System response for positive reactivitglisturbances of a centralized
controller
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Figure 4.5: System response of + 3.5 mk disturbanessing a centralized controller
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reactivity disturbances using a centralized contrdér
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Figure 4.7 Second peak of the system response faitb positive and negative
reactivity disturbances using a centralized contrdér

4.3 Decentralized Controllers

In order to design decentralized controllers, thet@lized controller should be broken
down based on the system partitioning of the stafebe system in Section 4.1. The
14 x 72 matrix of the control gains shown in Table A.ldwided into three sub-

controllers considering the control gains corresiiog to the existing states in each
partition of the states. The rows of the sub-cdiranatrices correspond to the input
variables to the system that should be determimeldtiae number of them is 14 for all

sub-controllers. Therefore, if a partition does matlude an input variable, then the
relevant row is equal to zero. Each column of a®uttroller is associated to a state of
the system in a partition. Hence, the number ofirools is equal to the number of states
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in a partition and the corresponding gain is pickedh the centralized controller for all
states in different sub-controllers. Finally, thesidined decentralized controller for a
large PHWR can be shown by three gain matridg€14 x 20), K,(14 x 27), and
K3(14 x 25). Each sub-controller is working with the corresgiog sub-system. The
calculated input variables from all sub-controllen® summed to determine the final
input to the system. Note that the sub-controltersiot contribute to the input variables

that do not exist in the corresponding partitions.

The Simulink model of the system with the decei#eal controllers is shown in Fig. 4.8.
The same observer and disturbance functions dlieedtifor the decentralized system.
The system patrtitioning is performed after calgotathe estimated values for the system
states. The change in global power of the reactotha system response for different
disturbance functions is depicted in Fig. 4.9 aigl #£.10. The overall behaviour of the
system is almost the same for various disturbanagnitudes. The overshoot of the
system increases proportional to the amount otidhance. However, the response time
is almost the same for all different disturbancections. Fig. 4.11 shows an example of
the response of the system to the +3.5 mk verssm8 disturbance functions. These
figures illustrate that the system response issgotmetric with respect to the line Global
Power = 1800 MW. The overshoot of the system respdo all of the disturbance
functions is plotted in Fig. 4.12 that shows anadtrinear trend for both positive and
negative disturbances. The values of overshoohetreymmetric with respect to the line
Global Power = 1800 MW. The values of the seconakpe&f the system response to

different positive and negative disturbances canlizerved in Fig. 4.13. They also show
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a linear behavior with respect to different disambe functions, however, they are not

symmetric with respect to the line Global Power86 MW.

Based on the response of the system, the maximenslovot occurs for the disturbance
of £3.5 mk. For the positive maximum disturbandes bvershoot of the system is 87
MW and similarly for the negative maximum disturbanthe overshoot value is 87.6
MW. The response time of the system for all distndes is almost the same and around
500 seconds. The steady state error of the respinsdso constant for different

disturbances and is -0.6 MW which is negligibletfus system.

In Fig. 4.14, the response of the system to +3.5dmsturbance is shown for both the
centralized and decentralized controllers. Sinee dbupling between the states of the
system in different sub-systems is neglected indgsgn of the decentralized controller,
using this type of controller makes the system slowith a larger overshoot. However,
in terms of implementation of the controller in tteal world, any sub-controller can be
mounted at the corresponding sub-system which waeduce the wiring and

maintenance required. Since the zones in a largetae are coupled, any change in
control input to any zone would cause a respeatha@nge in the neutron flux to the
neighboring zones, which may not desirable in thetrol of reactor. In the case of the
decentralized controllers, the most coupled statebe system are controlled together,
which would help make it easier to achieve a unifggower distribution across the

reactor core.
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Figure 4.9: System response for negative reactivityisturbances of decentralized
controllers
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4.4 Fail-Safe Study of Decentralized Versus Centralize@ontrollers

Fail-safe study of a system attempts to simulagentbrst case scenarios that can happen
to the system and investigate whether the systemsoavive. This study is valuable
especially when the result of any failure in theteyn can be disastrous. In this thesis, a
centralized controller has been divided into sdvdezentralized controllers located at
different sections of a reactor. This will redube tisk of losing all the control signals at

once.
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In this section, a worst case scenario is simulfdethe system under study in this thesis
considering both centralized and decentralized robbets. The simulation is done in

MATLAB Simulink® and the results are shown in Fig. 4.15 and Fi5.4.

Consider a scenario that a large PHWR is compergsair a disturbance of £3.5 mk and
suddenly the centralized controller stops workifigra&200 seconds for a few minutes. As
the result, it can be observed in Fig. 4.15, fer tiaximum positive reactivity, +3.5 mk,

the global power reaches to 2150 MW in about 10ute® as the system is being
rectified. At this point, the reactor core would igto meltdown. However, as shown in
Fig. 4.16, in the case of employing decentralizedtiollers for the maximum positive

reactivity, +3.5 mk, if one of the controllers shigtown for 10 minutes, the global power

reaches to 1815 MW that is in the safe range.

2200
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/ \ ——3.0mk
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S ////\ —2.0 mk
S 1900 ——1.5mk

()

2 1800 D e - 1.0 mk
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—-1.5mk
1500 -2.0 mk
-2.5 mk
1400 ' ' ' ' ‘ -3.0 mk

0 200 400 600 800 1000
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Figure 4.15: Fail-safe response of a centralized wtwoller
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Figure 4.16: Fail-safe response of decentralized miwollers

In the case of the centralized controller, if tlomteoller shuts down for a few minutes,
since the system does not receive any control lsigitagoes unstable, rapidly, and hits
the safety margins of the system. On the other haen a centralized controller is
substituted with a number of decentralized corgrs|l any failure of a controller can be
compensated by other controllers for a much longee. Therefore, one of the

advantages of decentralized controllers is thay #re more fail-safe than a centralized

controller.
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5 Chapter 5: Conclusion and Future Work

This thesis has designed and implemented optimegrdialized controllers using the
reactor nodal model of a large 540 MWe PHWR to @rthe xenon induced spatial
oscillations. A decoupling algorithm was developed tested using this model to create
a decentralized system of controllers. A centrdlizentroller was designed to compare

both approaches.

In this thesis, it can be seen that the decengdlizontrollers have a similar system
response to the centralized controller after atngfcdisturbance to the system’s limits
of £3.5 mk in the first zone. The most significalifference was in the response time
where the decentralized system was around 500 dseuanile the centralized system was
around 200 seconds. For both controllers, the beetsof the system response to all of
the disturbance functions showed an almost lineadtfor both the positive and negative
disturbances. The decentralized controllers haghttji larger overshoots of around 10
MW than the centralized controllers. The steadyestarors were relatively close, -0.5
MW for the centralized and -0.6 MW for the decelitel systems. Overall, the
centralized controller showed a faster and bet&gfopmance. Given that the coupling
between the states of the system in the diffeneiisystems is neglected in the design of
the decentralized controllers, this could be exxkcHowever, the advantages that a
decentralized system has over a centralized systesuld be considered such as the
ability to fail-safe. This example was given prayithat the decentralized controllers are
more fail-safe than the centralized. In additionthis, less wiring, lower maintenance,

and lower costs are also advantages. With thisarelsevork, these advantages can be

51



further explored in future work. A communicationtwerk of a Distributed Control
System (DCS) can be implemented so that the dedizeti controllers can communicate
with each other by networks. In this way, the infation of the states of the system will
not be lost and can be accessed and shared thraublemetwork. This could potentially
improve the system’s performance in addition toudtoog the advantages proposed by

modern control technologies.
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Appendices

Appendix A: Controller and Observer Gains

T
K= [K,T KT KT KT KpT KTfKTC]

0.090 0.002 0.002 0.001 0.000 0.000 0.000 0.001 000J0 0.000 0.000 0.00( 0.00p 0.000
0.002 0.092 0.000 0.001 0.002 0.000 0.000 0.000 0100 0.000 0.000 0.00( 0.00p 0.000
0.002 0.000 0.068 0.002 0.000 0.002 0.000 0.000 0000 0.001 0.000 0.00( 0.00p 0.000
0.000 0.000 0.001] 0.097 0.00L 0.000 0.000 0.000 000J0 0.000 0.001 0.00( 0.00p 0.000
0.000 0.003 0.000 0.002 0.078 0.000 0.003 0.000 000J0 0.000 0.000 0.001 0.00p 0.000
0.000 0.000 0.002 0.001 0.000 0.090 0.002 0.000 0000 0.000 0.000 0.00( 0.00[L 0.000
0.000 0.000 0.000 0.001 0.002 0.002 0.092 0.000 000J0 0.000 0.000 0.00( 0.00p 0.001
KI 0.001 0.000 0.000 0.00 0.000 0.000 0.000 0.090 020,0 0.002 0.001 0.00( 0.00p 0.000
0.000 0.001 0.000 0.00 0.000 0.000 0.000 0.002 9200 0.000 0.001 0.007 0.00p 0.000
0.000 0.000 0.001] 0.00! 0.000 0.000 0.000 0.002 000/0 0.068 0.002 0.00( 0.00p 0.000
0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0000 0.001 0.097 0.001 0.00p 0.000
0.000 0.000 0.000 0.00! 0.00[L 0.000 0.000 0.000 030/0 0.000 0.002 0.07§ 0.00p 0.003
0.000 0.000 0.000 0.00! 0.000 0.001 0.000 0.000 0000 0.002 0.001 0.00( 0.09p 0.002
0.000 0.000 0.000 0.00! 0.000 0.000 0.001 0.000 000J0 0.000 0.001 0.007 0.00p 0.092
3.223 1.723 1.529 0.552 1.189 1.369 1.150 1.301 341/0 0.825 0.304 0.81§ 0.918 0.834
1.720 3.234 0.980 0.56! 1.857 1.148 1.424 1.033 401/3 0.666 0.312 1.05] 0.833 0.966
1.560 1.002 2.084 0.472 0.853 1.560 1.002 0.842 810/6 0.738 0.238 0.596 0.84p 0.681
0.546 0.554 0.457 0.687 0.554 0.546 0.554 0.300 0803 0.229 0.127 0.289 0.30p 0.308
1.200 1.878 0.843 0.56 2.713 1.200 1.878 0.826 631J0 0.590 0.296 1.109 0.82p 1.063
1.369 1.150 1.529 0.552 1.189 3.223 1.723 0.913 3408 0.825 0.304 0.81§ 1.301 1.034
1.148 1.424 0.980 0.56 1.857 1.720 3.234 0.833 660/9 0.666 0.312 1.051 1.03B8 1.340
KX 1.301 1.034 0.825 0.304 0.818 0.913 0.834 3.223 231J7 1.529 0.552 1.189 1.36p 1.150
1.033 1.340 0.6664 0.312 1.051 0.883 0.966 1.720 3432 0.980 0.560 1.857 1.148 1424
0.842 0.681 0.738 0.238 0.596 0.842 0.681 1.%60 021/0 2.084 0.472 0.853 1.56D 1.0092
0.300 0.308 0.229 0.127 0.289 0.300 0.308 0.546 540,55 0.457 0.687 0.554 0.54p 0.584
0.826 1.063 0.590 0.29 1.109 0.826 1.063 1.200 781/8 0.843 0.566 2.713 1.20D 1.8%8
0.913 0.834 0.825 0.304 0.818 1.301 1.034 1.369 501/1 1.529 0.552 1.189 3.228 1.723
0.833 0.966 0.666 0.312 1.051 1.033 1.340 1.148 2414 0.980 0.560 1.857 1.72D 3.234
-0.131 | -0.112| -0.089 -0.034 -0.094 -0.101 -0.097 .096 | -0.090| -0.068 -0.02 -0.079  -0.084  -0.083
-0.111 | -0.136| -0.07q -0.034 -0.112 -0.096 -0.107 .089 | -0.100| -0.064] -0.027 -0.088 -0.082  -0.089
-0.091 | -0.079| -0.078§ -0.02Y -0.072 -0.091 -0.079 .0#0 | -0.066| -0.055 -0.02 -0.06p  -0.070  -0.066
-0.037 | -0.038] -0.029 -0.01 -0.036  -0.037 -0.038 .028 | -0.029| -0.022 -0.009 -0.028 -0.028 -0.0R9
-0.094 | -0.113| -0.069 -0.03 -0.116  -0.094 -0.113 .0#8 | -0.089| -0.058 -0.02% -0.085 -0.078 -0.089
-0.101 | -0.097| -0.089 -0.034 -0.094 -0.131 -0.112 .089 | -0.083| -0.068 -0.02 -0.079  -0.095 -0.000
-0.096 | -0.107| -0.074 -0.034 -0.112 -0.111 -0.1)36 .082 | -0.089| -0.064] -0.027% -0.088 -0.089  -0.100
KC -0.095 | -0.090| -0.068 -0.02 -0.079 -0.084 -0.083 .13D | -0.112| -0.089 -0.034 -0.094  -0.101  -0.097
-0.089 | -0.100| -0.064 -0.027Y -0.088 -0.082 -0.089 .110 | -0.136| -0.076 -0.034 -0.11  -0.096  -0.107
-0.070 | -0.066| -0.05§ -0.02 -0.060 -0.070  -0.066 .090 | -0.079| -0.078 -0.02} -0.072  -0.091  -0.079
-0.028 | -0.029| -0.022 -0.009 -0.028 -0.028 -0.029 .03® | -0.038| -0.029] -0.01% -0.036  -0.037 -0.088
-0.078 | -0.089| -0.058 -0.02 -0.085 -0.078 -0.089 .090 | -0.113| -0.069 -0.03 -0.116  -0.094  -0.1113
-0.084 | -0.083| -0.068 -0.02 -0.079 -0.095 -0.090 .10D | -0.097| -0.089 -0.034 -0.094  -0.131  -0.1712
-0.082 | -0.089| -0.064 -0.027 -0.088 -0.089 -0.100 .096 | -0.107| -0.076/ -0.034 -0112  -0.111  -0.186
-0.005 | -0.002| -0.002 -0.001 -0.002 -0.002 -0.002 .00R | -0.001| -0.001 0.00 -0.000  -0.001  -0.001
-0.002 | -0.005| -0.003 -0.001 -0.003 -0.002 -0.002 .000 | -0.002| -0.001 0.00 -0.002  -0.001  -0.001
-0.002 | -0.001| -0.003 -0.001 -0.000 -0.002 -0.001 .00D | -0.001| -0.001 0.00 -0.000  -0.001  -0.001
-0.001 | -0.001| -0.0014 -0.001 -0.001 -0.001 -0.001 000.] 0.000 0.000] 0.00 0.00p 0.000 0.0p0
-0.002 | -0.003| -0.003 -0.001 -0.004 -0.002 -0.003 .000 | -0.002| -0.001 0.00 -0.002  -0.001  -0.002
-0.002 | -0.002| -0.002 -0.001 -0.002 -0.005 -0.002 .00D | -0.001| -0.001 0.00 -0.000  -0.002  -0.001
-0.002 | -0.002| -0.001 -0.001 -0.003 -0.002 -0.005 .000 | -0.001| -0.001 0.00 -0.00p  -0.001  -0.002
KH -0.002 | -0.001| -0.001 0.00! -0.001  -0.001 -0.001 00%.| -0.002| -0.002] -0.00] -0.002  -0.002  -0.0p2
-0.001 | -0.002| -0.001 0.00 -0.002 -0.001 -0.001 00R.| -0.005| -0.001 -0.001] -0.008  -0.002  -0.0p2
-0.001 | -0.001| -0.001 0.00! -0.001  -0.001 -0.001 00R.| -0.001| -0.003] -0.00] -0.00p  -0.002  -0.0p1
0.000 0.000 0.000 0.00 0.000 0.000 0.000 -0.001.00#0| -0.001| -0.001] -0.001 -0.001  -0.001
-0.001 | -0.002| -0.001 0.00! -0.002 -0.001 -0.002 00PR.| -0.003| -0.001] -0.00] -0.004 -0.002  -0.0p3
-0.001 | -0.001| -0.001 0.00 -0.001  -0.002 -0.001 06R.| -0.002| -0.002] -0.001] -0.002  -0.005 -0.0p2
-0.001 | -0.001| -0.001 0.00! -0.002 -0.001 -0.002 00R.| -0.002| -0.001] -0.00] -0.008  -0.002  -0.0p5
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 0GD.| -0.001| -0.001 0.00 -0.00p0  -0.001  -0.0p1
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 0GD.| -0.001| -0.001 0.00 -0.00p0  -0.001  -0.0p1
-0.001 | -0.001| -0.001 0.00! -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.00p  -0.001  -0.0p1
KP 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0000 0.000 0.000 0.00( 0.00p 0.000
-0.001 | -0.001| -0.001 0.00! -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.00p  -0.001  -0.0p1
-0.001 | -0.001| -0.001 0.00! -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.00p  -0.001  -0.0p1
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-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.000  -0.001  -0.0p1
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.001  -0.001 -0.0p1
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.001 -0.001 -0.0p1
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 00D.| -0.001| -0.001] 0.00 -0.000  -0.001  -0.0p1
0.000 0.000 0.00Q 0.00 0.000 0.000 0.000 0.000 000j0 0.000 0.000 0.004 0.00D 0.0Q0
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.000  -0.001 -0.0p1
-0.001 | -0.001| -0.001 0.00 -0.001  -0.001 -0.001 00D.| -0.001| -0.001 0.00 -0.000  -0.001 -0.0p1
-0.001 | -0.001| -0.001 0.00 -0.001 -0.001 -0.001 00D.| -0.001| -0.001] 0.00 -0.001  -0.001 -0.0p1
T
KTf 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 000J0 0.000 0.000 0.004 0.00D 0.0Q0
T
KTC -0.008 | -0.009| -0.006 -0.00 -0.008 -0.008 -0.009 .008 | -0.009| -0.006] -0.00: -0.008  -0.008 -0.009
Table A.1: Controller gains
T T T
L=|Ls Ly Lc Ly Lp Ly, Ly,"]
-0.892 | -0.003 0.049 0.059 0.003 0.003 0.001 0.000 .0000| 0.004 0.005 0.00 0.00p 0.000
0.008 | -0.895 0.008 0.062 0.014 0.003 0.002 0.001 00, 0.001 0.005] 0.004 0.001L 0.000
-0.037 | -0.004| -0.867 0.061 0.000 -0.037 -0.004 04.0 -0.001 0.001 0.004 0.00p -0.004 -0.0p1
-0.060 | -0.063| -0.052 -0.899 -0.077 -0.060 -0.063 .008 | -0.005| -0.003 0.00% -0.006  -0.005 -0.0p5
0.002 | -0.009 0.005 0.082 -0.880 0.002 -0.009 0.00@.001 0.001 0.006 0.00 0.000 -0.001
0.003 0.001 0.040 0.059 0.003 -0.892 -0.003 0.000 .000| 0.004 0.005 0.00 0.000 0.000
T 0.003 0.002 0.008 0.062 0.014 0.008  -0.895 0.001 00, 0.001 0.005] 0.004 0.001L 0.000
LI 0.000 0.000 0.004 0.00 0.000 0.000 0.000 -0.892.003| 0.040 0.059 0.00: 0.008 0.001
0.001 0.000 0.001 0.00 0.002 0.001 0.000 0.008 895, 0.008 0.062 0.014 0.00B 0.002
-0.004 | -0.001 0.001 0.004 0.000 -0.004 -0.001 -p.03-0.004| -0.867 0.061 0.00 -0.037 -0.0p4
-0.005 | -0.005| -0.003 0.002 -0.005 -0.005 -0.005 060.| -0.063| -0.052 -0.89 -0.077  -0.060 -0.063
0.000 | -0.001 0.001 0.00 0.001 0.000 -0.001 0.0020.009 0.005 0.082 -0.880 0.002 -0.009
0.000 0.000 0.004 0.00 0.000 0.000 0.000 0.003 010j0 0.040 0.059 0.003 -0.892  -0.003
0.001 0.000 0.001 0.00 0.002 0.001 0.000 0.003 020)0 0.008 0.062 0.014 0.008  -0.895
-0.996 | -0.004 0.04§ 0.064 0.004 0.003 0.001 0.001 .000| 0.005 0.005 0.00 0.00L 0.000
0.008 | -0.996 0.009 0.068 0.016 0.004 0.003 0.001 000) 0.002 0.005] 0.003 0.001L 0.000
-0.042 | -0.005| -0.995 0.067 0.000 -0.042 -0.005 04.0 -0.001 0.001 0.004 0.00p -0.004 -0.0p1
-0.067 | -0.070| -0.060 -0.984 -0.087  -0.067 -0.070 .006 | -0.006| -0.004 0.00% -0.006  -0.005 -0.0p6
0.002 | -0.010 0.00§ 0.089  -0.995 0.002 -0.010 0.00e0.001 0.001 0.007, 0.00 0.000 -0.001
0.003 0.001 0.04§ 0.0641 0.004 -0.996 -0.004 0.001 .000| 0.005 0.005 0.00 0.001L 0.000
T 0.004 0.003 0.009 0.068 0.016 0.008 -0.996 0.001 00, 0.002 0.005] 0.004 0.001L 0.000
LX 0.001 0.000 0.005 0.00 0.000 0.001 0.000 -0.996 .00| 0.046 0.064] 0.004 0.00B 0.001
0.001 0.000 0.002 0.00 0.002 0.001 0.000 0.008 9960 0.009 0.068 0.014 0.004 0.003
-0.004 | -0.001 0.001 0.00 0.000 -0.004 -0.001 -P.04-0.005| -0.995 0.067 0.00 -0.042 -0.0p5
-0.005 | -0.006| -0.004 0.002 -0.006 -0.005 -0.006 06D.| -0.070| -0.060[ -0.984 -0.087  -0.067 -0.0[70
0.000 | -0.001 0.001 0.007 0.001 0.000 -0.001 0.0020.010 0.006 0.089 -0.99 0.002 -0.010
0.001 0.000 0.005 0.00 0.000 0.001 0.000 0.003 010j0 0.046 0.064 0.004 -0.996 -0.004
0.001 0.000 0.002 0.00 0.002 0.001 0.000 0.004 030,0 0.009 0.068 0.014 0.008  -0.996
0.223 0.004| -0.001 -0.00 -0.001  -0.001 0.000 0.0020.000 | -0.001| -0.00% 0.00 0.000 0.000
0.002 0.222| -0.001 -0.00 0.003  -0.001 0.000 0.00m.002 0.000|{ -0.001 0.00 0.000 0.000
0.011 0.001 0.220 -0.00 0.000 0.011 0.001 0.001 000M] 0.002 -0.001 0.00 0.001L 0.000
0.012 0.012 0.012 0.20 0.016 0.012 0.012 0.001 010j0 0.001 0.001 0.001 0.00 0.001
0.000 0.006| -0.001 -0.00 0.220 0.000 0.006 0.000 .000| 0.000| -0.001 0.003 0.000 0.000
-0.001 0.000| -0.001 -0.00 -0.001 0.223 0.004 0.0000.000 | -0.001| -0.00% 0.00 0.002 0.000
T -0.001 0.000] -0.001 -0.00 0.003 0.002 0.222 0.00m.000 0.000| -0.001 0.00 0.000 0.002
LC 0.002 0.000| -0.001 -0.001 0.000 0.000 0.000 0.223.004| -0.001| -0.006] -0.001] -0.00[L 0.000
0.000 0.002 0.000Q -0.001 0.000 0.000 0.000 0.002 2220) -0.001 -0.006] 0.003 -0.00L 0.000
0.001 0.000 0.002 -0.001 0.000 0.001 0.000 0.011 0010 0.220| -0.005| 0.00 0.01pt 0.001
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.012 1200 0.012 0.203 0.014 0.01p 0.012
0.000 0.000 0.000Q -0.001 0.002 0.000 0.000 0.000 0060 -0.001 -0.008] 0.22 0.00p 0.006
0.000 0.000| -0.001 -0.001 0.000 0.002 0.000 -0.0010.000 | -0.001| -0.006 -0.00 0.223 0.004
0.000 0.000 0.00Q -0.001 0.000 0.000 0.002  -0.001.00@| -0.001| -0.006| 0.00 0.00p 0.222
0.997 0.003| -0.045 -0.06 -0.004 -0.003 -0.001 0D 0.000| -0.004| -0.004 0.00p -0.001 -0.0p1
-0.009 0.997| -0.009 -0.068 -0.016 -0.004 -0.003 00D. 0.000| -0.002 -0.005 -0.00p  -0.001 0.0p0
0.042 0.005 0.994 -0.067 0.000 0.042 0.005 0.004 0010) -0.001 -0.005] 0.00 0.004 0.001
0.066 0.070 0.060 0.98 0.088 0.067 0.070 0.005 060J0 0.004| -0.002 0.004 0.00p 0.006
T -0.002 0.010| -0.006 -0.089 0.996 -0.002 0.010 0.0000.001 | -0.001| -0.00§ -0.001 0.000 0.001
LH -0.003 | -0.001| -0.046 -0.06$ -0.004 0.997 0.004 0D 0.000| -0.005| -0.00% 0.00p -0.001 0.0p0
-0.003 | -0.003| -0.009 0.068 -0.016 -0.008 0.998 00D. 0.000| -0.002 -0.00§ -0.00p  -0.001 0.0p0
-0.001 0.000| -0.005 -0.00 -0.001  -0.001 0.000 .99 0.004| -0.046/ -0.065 -0.004  -0.003 -0.0p1
-0.002 0.000| -0.002 -0.00 -0.002  -0.001 0.000 0®.0 0.998| -0.009| -0.069 -0.01p -0.004 -0.0p3
0.005 0.001] -0.001 -0.00 0.000 0.004 0.001 0.041 .00%| 0.996| -0.067| 0.00 0.04p 0.005
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0.006 0.006 0.004 -0.002 0.006 0.05 0.006 0.067 070/ 0.060 0.985] 0.088 0.06[7 0.070

0.000 0.001] -0.001 -0.007Y -0.001 0.000 0.001 -0.0030.010 | -0.006/ -0.089 0.99 -0.002 0.010

-0.001 0.000| -0.00§ -0.00 -0.001  -0.001 0.000 0®.0 -0.001| -0.046] -0.065 -0.004 0.997 0.0p4

-0.001 0.000| -0.001 -0.00 -0.002  -0.001 0.000 04€.0 -0.003| -0.009| -0.06§ -0.015 -0.008 0.9p7

1.348 0.304 0.390 0.254 0.11f7 0.130 0.071 0.197 8300 0.100 0.072 0.044 0.048 0.031

0.304 1.337 0.119 0.26! 0.399 0.071 0.142 0.083 950{1 0.044 0.075 0.109 0.03[L 0.0§2

0.390 0.119 1.111 0.267 0.086 0.390 0.119 0.100 440{0 0.155 0.072 0.036 0.10p 0.044

0.254 0.263 0.267 0.749 0.292 0.254 0.263 0.072 7500 0.072 0.096 0.074 0.072 0.075

0.117 0.399 0.0864 0.292 1181 0.117 0.399 0.044 030{1 0.036 0.078 0.169 0.044 0.103

0.130 0.071 0.390 0.254 0.11f7 1.348 0.304 0.048 3100 0.100 0.072 0.044 0.19¢ 0.083

T 0.071 0.142 0.119 0.26! 0.399 0.304 1.337 0.031 520/0 0.044 0.075 0.109 0.083 0.195
LP 0.197 0.083 0.100 0.072 0.044 0.048 0.031 1.348 04043 0.390 0.254 0.117 0.13p 0.071
0.083 0.195 0.044 0.07! 0.103 0.031 0.052 0.304 3713 0.119 0.263 0.399 0.071L 0.142

0.100 0.044 0.155 0.072 0.036 0.100 0.044 0.390 190{1 1.111 0.267 0.086 0.390 0.119

0.072 0.075 0.072 0.09 0.078 0.072 0.075 0.254 6302 0.267 0.749 0.297 0.25¢4 0.263

0.044 0.103 0.036 0.07: 0.168 0.044 0.103 0.117 990/3 0.086 0.292 1.18] 0.11F 0.399

0.048 0.031 0.100 0.072 0.044 0.197 0.083 0.130 7100 0.390 0.254 0.117 1.348 0.304

0.031 0.052 0.044 0.07! 0.103 0.083 0.195 0.071 420{1 0.119 0.263 0.399 0.304 1.337

LTf 0.001 0.001 0.001] 0.001 0.001 0.001 0.001 0.001 0100 0.001 0.001 0.001 0.00[L 0.001
LTC 0.001 0.001 0.001] 0.001 0.001 0.001 0.001 0.001 0100 0.001 0.001 0.00] 0.00[L 0.001

Table A.2: Observer gains
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Appendix B: MATLAB Code of the Model

% Physical constants
|=7.9E-4;
lambda=9.1E-2;
Sigma_f=1.262E-3;
sigma_x=1.2E-18;
v=3.19E5;
gamma_|=6.18E-2;
lambda_x=2.1E-5;
beta=7.5E-3;
Sigma_a=3.2341E-3;
E_eff=3.2E-17;
gamma_Xx=6E-3;
D=0.9328;
lambda_1=2.878E-5;
m_d=1,

m_i=2;

K_i=-3.5E-5;
h_i0=100;
T_f0=547.2831,
T_c0=541.4037,;
T_1=539;
mu_f=-3.4722E-6;
u_c=3.33333E-5;
1.38428E-3;
4.238E-1,;
1.758E-2;
4.3016759E-2;

m
K
K
K
K

o0 UQJl
o1

% Zonal volumes
V=[14.723280,14.72328,17.633616,8.833968,17.63361162328,14.723280,14.723280
,14.72328,17.633616,8.833968,17.633616,14.72322,3280]'.* 1.0e+06;

% Xenon absorption microscopic cross section
fori=1:14

sigmabar_x(i,1) = sigma_x/(E_eff*Sigma_f*V(i)1)
end

% Coupling coefficients

alpha=[0 5.607 8.41052.803 0 0 0 3.89@ 0 0 O
5.6070 0 2803841050 0 0930000
9.6500 0 4824 096500 0 339000 O
5.1805.1807.772 0 7.772 5.1850180 0 3.39 0 0 O
0 9.6500 4824 00 965 0 00 33900 O
0 0 841052803 00 5607 0 000 339 O
0 00 28038.41055.607 0 0 00O O 3.39

0

[eNe]
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O O O 5.6041052.803 0 0 O

0O O 5.600@®.8038.4105 0 O

0 0 9.65004.824 09.65 0

0 0 5.180 5.18071207.7725.18 5.18
0O 0 9.65 €824 0 0 9.650

0O O O 8411803 0 0 5.607
390 0 0238041055.607 O0]*;

w ©

% Steady state values
p0 =[132.75, 135.99, 123.30, 98.55, 140.40, 1321.35,99 132.75, 135.99, 123.30,
98.55, 140.40, 132.75, 135.99];

10 = (gamma_I*Sigma_f/lambda_1).*p0;

fori=1:14

X0(i,1) =
((gamma_l+gamma_x)*Sigma_f*p0(i,1)/(lambda_x+sigm@atx(i,1)*p0(i,1)));
end

CO = (beta/(I*lambda)).*p0;

% A matrix
A=zeros(72,72);
fori=1:14
forj=1:14
PO(i.j) = p0(,1)/p0(i,1);
end
end
fori=1:14
for j=1:14
if i==j
A(56+i, 56+i) = (-1/1)*(beta+sum((alptia).*P0(i,:))")) + (1/1)*alpha(i,i)*PO(i,i);
else
A(56+i, 56+j) = (1/)*alpha(i,j)*PO(i)j
end
end
A(56+i, 28+i) = (beta/l);
A(56+i, 14+i) = -(sigmabar_x(i,1)*X0(i,1))/(I*gma_a);
A(56+i, 42+i) = -K_ill;
A(56+i, 71) = mu_f/l;
A(56+i, 72) = mu_c/l;
A(28+i, 56+i) = lambda;
A(28+i, 28+i) = -lambda;
A(i, 56+i) = lambda_1;
A(i,i) = -lambda_1;
A(14+i, 56+i)= lambda_x - lambda_1I * 10(i,1)/XQL);
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A(14+i,i) = lambda_1 * 10(i,1)/X0(i,1);
A(14+i, 14+i) = -(lambda_x + sigmabar_x(i,1)1pQ));
A(71, 56+i) = k_a*PO0(i,1);

end

A(71,71) = -k _b;

A(71,72) = k_b;

A(72,71) = k_c;

A(72,72) = -(k_c+k_d);

% B matrix
B=[zeros(42,14);-m_i*eye(14,14);zeros(16,14)];

% C matrix
C=[zeros(14,14) zeros(14,14) zeros(14,14) zerosf)4ye(14,14) zeros(14,1)
zeros(14,1)];

% Sensitivity matrix
tau=0.1;
eAt=expm(A.*tau);
S=A*eAt,

% Decoupling algorithm
JO=1e10;
fori0 =1:72
for jO =i0+1:72
for kO = jO+1:72
if (I0<=42 && i0>=57)
Set1=[i0 14*3+mod(i0,14)];
else
Set1=[i0];
end
if (j0<=42 && j0>=57)
Set2=[j0 14*3+mod(j0,14)];
else
Set2=[j0];
end
if (k0O<=42 && k0>=57)
Set3=[k0 14*3+mod(k0,14)];
else
Set3=[k0];
end

forl=1:14
[row col]=find((I~=[Set1,Set2,Sex3}0);
if isempty(col)
SS=[abs(S(1,i0)/S(i0,i0)) ab$(8)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];
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[m n]=max(SS);
if n==1
Setl=[Setl | 14*3+l];
elseifn==2
Set2=[Set2 | 14*3+l];
elseifn==3
Set3=[Set3 | 14*3+l];
end
end
end
for I= 15:42
[row col]=find((I~=[Set1,Set2,Sex3}0);
if isempty(col)
SS=[abs(S(1,i0)/S(i0,i0)) ab@(8)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];
[m n]=max(SS);
if n==1
Setl=[Setl I];
elseifn==
Set2=[Set2 [];
elseifn==
Set3=[Set3 I];
end
end
end
for 1= 57:72
[row col]=find((I~=[Set1,Set2,Sex3}0);
if isempty(col)
SS=[abs(S(1,i0)/S(i0,i0)) ab@(8)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];
[m n]=max(SS);
if n==1
Setl=[Setl I];
elseifn==
Set2=[Set2 [];
elseifn==3
Set3=[Set3 [];
end
end
end

T=sqrt((1/72)*(sum((S(Set1,i0)/S(i0,i0)).A2)+sum(@8t2,j0)/S(j0,j0)).2)+sum((S(Set3,
k0)/S(k0,k0)).”2)));
Num=[size(Setl"); size(Set2'); sizeBJkt
Av=(1/3)*sum(Num(:,1));
E=sqrt((1/3)*sum((Num(:,1)-Av).*2));
J=(1/24)*E-T;
if J<JO
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Jo=J;
best=[i0,j0,k0];
end
end
end
end

i0=best(1);j0=best(2);k0=best(3);

% Reconstructs the optimum partitioning
if (I0<=42 && i10>=57)
Set1=[i0 14*3+mod(i0,14)];
else
Set1=[i0];
end
if (j0<=42 && j0>=57)
Set2=[j0 14*3+mod(j0,14)];
else
Set2=][j0];
end
if (k0<=42 && k0>=57)
Set3=[k0 14*3+mod(k0,14)];
else
Set3=[kO0];
end

forl=1:14
[row col]=find((I~=[Set1,Set2,Sex3}0);
if isempty(col)
SS=[abs(S(1,i0)/S(i0,i0)) ab@(8)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];
[m n]=max(SS);
if n==1
Setl=[Setl | 14*3+l];
elseifn==2
Set2=[Set2 | 14*3+l];
elseifn==3
Set3=[Set3 | 14*3+l];
end
end
end
for I= 15:42
[row col]=find((I~=[Set1,Set2,Sex3}0);
if isempty(col)
SS=[abs(S(1,i0)/S(i0,i0)) ab@(8)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];
[m n]J=max(SS);
if n==1
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Setl=[Setl I];
elseifn==
Set2=[Set2 [];
elseifn==
Set3=[Set3 [];
end
end
end
for I=57:72
[row col]=find((I~=[Set1,Set2,Sex3}0);
if isempty(col)
SS=[abs(S(1,i0)/S(i0,i0)) ab&(8)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];
[m n]=max(SS);
if n==1
Setl=[Setl I];
elseifn==2
Set2=[Set2 [];
elseifn==
Set3=[Set3 [];
end
end
end

SET1=[];
[r1 cl]=size(Setl);
fori=1:cl
[ms1 nsl]=min(Setl);
SET1=[SET1 ms1];
Setl=[Set1(1,1:ns1-1) Set1(1,ns1+1:end)];
end
SET2=[];
[r2 c2]=size(Set2);
fori=1:c2
[Ms2 ns2]=min(Set2);
SET2=[SET2 ms2];
Set2=[Set2(1,1:ns2-1) Set2(1,ns2+1:end)];
end
SET3=][];
[r3 c3]=size(Set3);
fori=1:c3
[Ms3 ns3]=min(Set3);
SET3=[SET3 ms3];
Set3=[Set3(1,1:ns3-1) Set3(1,ns3+1:end)];
end

% Creates sub-systems for controller design
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Al=[];

fori=1:cl
for j=1:c1
AL(i,))=A(SETL(i),SETL1()));
end

end

A2=[];

for i=1:c2
for j=1:c2
A2(i,))=A(SET2(i),SET2()));
end

end

A3=[];

for i=1:c3
for j=1:c3
A3(1,))=A(SET3(i),SET3()));
end

end

[rp cpl vp]=find(SET1>=57 & SET1<=70);
[ri cil vi]=find(SET1>=43 & SET1<=56);
[rcp ccpl]=size(cpl);
if isempty(cpl)
Cl=zeros(14,cl);
Ql=eye(cl);
else
SET1p=zeros(1,14); SET1p(1,SET1(1,cpl)-56)=R0{1,cpl)-56,1)"
Cl1=diag(SET1p);l1=[for i=1:14if sum(C11(:,i)~=zeros(14,1)); 11=[I1 ignd end
C11=C11(:,I2);
Cl=[zeros(14,cp1(1)-1) C11 zeros(14,cl-cpl(gnd)
Q1=C1*C1;
end
[rcil ccil]=size(cil);
if isempty(cil)
Bl=zeros(cl1,14);
else
SET1li=zeros(1,14); SET1i(1,SET1(1,cil)-42)=¢hexil);
Bll=diag(SET1i);lil=[]for i=1:14if sum(B11(:,i)~=zeros(14,1)); lil=[lil ignd
end B11=B11(;,li1);
Bl=[zeros(cil(1)-1,14);B11";zeros(cl-cil(end)]1l
end

[rp cp2 vp]=find(SET2>=57 & SET2<=70);
[ri ci2 vi]=find(SET2>=43 & SET2<=56);
[rcp ccp2]=size(cp2);

if isempty(cp2)
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C2=zeros(14,c2);
Q2=eye(c2);
else
SET2p=zeros(1,14); SET2p(1,SET2(1,cp2)-56)=pUE1,cp2)-56,1)";
C22=diag(SET2p);I12=[for i=1:14if sum(C22(:,i)~=zeros(14,1)); 12=[I2 ignd end
C22=C22(:,12);
C2=[zeros(14,cp2(1)-1) C22 zeros(14,c2-cp2(gnd)
Q2=C2*C2;
end
[rci2 cci2]=size(ci2);
if isempty(ci2)
B2=zeros(c2,14);
else
SET2i=zeros(1,14); SET2i(1,SET2(1,ci2)-42)=¢hexi2);
B22=diag(SET2i);li2=[]for i=1:14if sum(B22(:,i)~=zeros(14,1)); li2=[li2 ignd
end B22=B22(:,li2);
B2=[zeros(ci2(1)-1,14);B22";zeros(c2-ci2(end)]1
end

[rp cp3 vp]=find(SET3>=57 & SET3<=70);
[ri ci3 vi]=find(SET3>=43 & SET3<=56);
[rcp ccp3]=size(cp3);
if isempty(cp3)
C3=zeros(14,c3);
Q3=eye(c3);
else
SET3p=zeros(1,14); SET3p(1,SET3(1,cp3)-56)=RUFE1,cp3)-56,1)’;
C33=diag(SET3p);I3=[for i=1:14if sum(C33(:,i)~=zeros(14,1)); I3=[I3 i&nd end
C33=C33(;,13);
C3=[zeros(14,cp3(1)-1) C33 zeros(14,c3-cp3(gnd)
Q3=C3*C3;
end
[rci3 cci3]=size(ci3);
if isempty(ci3)
B3=zeros(c3,14);
else
SET3i=zeros(1,14); SET3i(1,SET3(1,ci3)-42)=¢hexi3);
B33=diag(SETS3i);li3=[]for i=1:14if sum(B33(:,i)~=zeros(14,1)); li3=[li3 ignd
end B33=B33(;,li3);
B3=[zeros(ci3(1)-1,14);B33";zeros(c3-ci3(end)]1
end

if B1==0
Kl=zeros(14,14);
else
[P1,L1,K1] = care(A1,B1,Q1);

63



end
if B2==0
K2=zeros(14,14);
else
[P2,L2,K2] = care(A2,B2,Q2);
end
if B3==0
K3=zeros(14,14);
else
[P3,L3,K3] = care(A3,B3,Q3);
end

[nrl, ncl]=size(K1);
[nr2, nc2]=size(K2);
[nr3, nc3]=size(K3);

K_add=zeros(14,72);K_add(:,SET1)=K1;K_add(:;,SET2;K add(:,SET3)=K3;

nAl=size(Al); nA2=size(A2); nA3=size(A3);
[LP1,LL1,LK1] = care(Al',C1',eye(nAl(1)));
[LP2,LL2,LK2] = care(A2',C2',eye(nA2(1)));
[LP3,LL3,LK3] = care(A3',C3',eye(nA3(1)));

[P,L,K] = care(A,B,C*C);
[LP,LL,LK] = care(A',C',eye(72));

K1_c=zeros(nrl, ncl);
K1 c(find(SET1i==1),1:nc1)=K(find(SET1i==1),SET1);
K2_c=zeros(nr2, nc2);
K2_c(find(SET2i==1),1:nc2)=K(find(SET2i==1),SET?2);
K3_c=zeros(nr3, nc3);
K3_c(find(SET3i==1),1:nc3)=K(find(SET3i==1),SET3);
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