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Abstract 
 

The behaviour of a large nuclear reactor can be described with sufficient accuracy using a 

nodal model, like the spatial model of a 540 MWe large Pressurized Heavy Water 

Reactor (PHWR). This model divides the reactor into divisions or nodes to create a 

spatial model in order to control the xenon induced oscillations that occur in PHWRs. 

However, being such a large scale system, a 72nd-order model, it makes controller design 

challenging. Therefore, a reduced order model is much more manageable. A convenient 

method of model reduction while maintaining the important dynamics characteristics of 

the process can be done by decoupling. Also, due to the nature of the system, 

decentralized controllers could serve as a better option because it allows each controller 

to be localized. This way, any control input to a zone only affects the desired zone and 

the zones most coupled with, thus not causing a respective change in neutron flux in the 

other zones. 

In this thesis, three decentralized controllers were designed using the spatial model of a 

540 MWe large PHWR. A decoupling algorithm was designed to divide the system into 

three partitions containing 20, 27, and 25 states each. Reduced order sub-systems were 

thus created to produce optimal decentralized controllers. An optimal centralized 

controller was created to compare both approaches. The decentralized versus centralized 

controllers’ system responses were analyzed after a reactivity disturbance. A fail-safe 

study was done to highlight one of the advantages of decentralized controllers. 

 

Keywords: Decentralized control, state-space control, spatial control, decoupling 

algorithm, reactor nodal core model, Large PHWR, liquid zone level control 
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Nomenclature 
 
i and j subscripts to denote zones, 

N number of zones in the reactor, 

md  number of delayed neutron precursor groups, 

P  power level, MW 

ρexi,  reactivity related to the external control mechanism, mk 

ρfi,  feedback due to fuel temperature, mk 

ρci  feedback due to primary coolant temperature, mk 

C delayed neutron precursors’ concentration, n/cm3 

β  total delayed neutron fractional yield, 

λg  decay constant for gth group of delayed neutron precursors, s-1 

X  xenon concentration, n/cm3 

Σa  thermal neutron absorption cross section, cm-1 

Σf   thermal neutron fission cross section, cm-1 

l  prompt neutron lifetime, s 

Eeff  energy liberated per fission, MJ 

V’  volume, cm 

σx  xenon microscopic thermal neutron absorption cross section, cm2  

αij  coupling coefficient,  

D  diffusion coefficient, cm 

υ  thermal neutron speed, cm/s 

Ψij  area of interface between ith and jth zones, cm2 

dij  distance between ith and jth zones, cm 
 



xi 
 

I iodine concentration, n/cm3 

γx xenon yield per fission 

γI  iodine yield per fission 

λx  xenon decay constant, s-1 

λI  iodine decay constant, s-1 

Tf  fuel temperature, K 

Tc coolant temperature, K 

T1 coolant inlet temperature, K 

Pg global power, MW 

ka, kb, kc, kd constants that depend on the thermal capacity and conductivity of the fuel and 

coolant, 

hi  instantaneous water level in the ith zone control compartment, cm 

mi  constant, 

qi  voltage signal given to the control valve of the ith zone, V 

µf  fuel reactivity coefficient, K-1 

µc coolant reactivity coefficient, K-1 

Tf0  steady state value of the fuel temperature, K 

Tc0 steady state value of the coolant temperature, K
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1 Chapter 1: Introduction 

1.1  Background 
 

A large Pressurized Heavy Water Reactor (PHWR) is a high order complex system with a 

large number of states and input variables.  Designing an efficient and safe controller for 

such a system has been a research topic for a long time. Various models have been 

constructed and used to design controllers for a reactor. An accurate method that has been 

used in both the research community and industry is the nodal method. This method 

solves the neutron diffusion equation by dividing the reactor core into a number of zones 

or nodes such that the coupling of the zones is considered by the coupling coefficients 

defined in the model. In this thesis, a reactor nodal core model of a large 540 MWe 

(Megawatt electrical) PHWR is employed.  

In the literature, different researchers have proposed various methods to reduce or 

decouple a sophisticated system in order to neglect the very slow modes of the system 

response or less coupled states of the system. These attempts have led to a number of 

system reduction and decoupling algorithms for complex systems. These methods have 

been used to design efficient controllers for complicated systems. 

A brief review of the existing studies on both the reactor nodal core modeling and 

decoupling methods is presented in this section. The reactor nodal core model of the 

system is utilized during this thesis to measure the coupling between the states of the 

system and a decoupling algorithm is introduced to design optimal decentralized 

controllers for a large 540 MWe PHWR. 
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1.1.1 Reactor Nodal Core Model of a Large 540 MWe PHWR 
 

Nodal methods are an accurate way of describing the behavior of a large nuclear reactor, 

like a large PHWR. A variety of nodal methods exist, all of which have the common goal 

of solving the neutron diffusion equation for averaged fluxes in homogenized zones [1]. 

The nodal model is based on the concept of coupled-core kinetics [2]. The reactor core is 

divided into divisions or nodes where the neutron flux and material composition are 

considered to be homogenous. These zones can then be considered as small cores and 

coupled through neutron diffusion. In this way, the model can be utilized for spatial 

control for a large nuclear reactor. 

 

A spatial reactor nodal core model was developed by Tiwari [3], and the 540 MWe 

PHWR model [4], was used. The reactor core is comprised of 14 zones, 7 zones per axial 

half, each zone representing one node in the model. Each zone includes 5 state equations 

with the inclusion of the thermal-hydraulic reactivity feedbacks, thus making it a 72nd 

order system. These states include the zonal iodine concentration, xenon concentration, 

delayed neutron precursors’ concentration, liquid zone water level, power or neutron flux, 

fuel, and coolant temperatures. The liquid zone control compartments of a CANDU 

(CANada Deuterium Uranium) reactor can be seen in Fig. 1.1 which is identical to the 

large PHWR in India [5]. 
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Figure 1.1: Liquid zonal control compartments of a CANDU reactor [6] 

 

The large PHWR is a pressurized heavy water reactor that uses natural uranium oxide as 

fuel and heavy water as the moderator and coolant. Its power outputs are 1800 MW 

thermal power and 540 MW electrical power. The core dimensions are 800 cm diameter 

and 600 cm length. Due to its vastness in comparison to the neutron migration length, 

there is a need for reactivity devices distributed spatially and flux detecting mechanisms. 

To be able to control and observe the neutron flux distribution, the core has been divided 

into 14 zones. Each zone contains a Liquid Zone Controller (LZC) compartment which is 

used as the primary method of continuous fine control of the reactivity by varying the 



4 
 

light water levels. The higher the water level, the lower the reactivity insertion and the 

lower the reactor power will be in that particular zone and surrounding area. The lower 

the water level, the higher the reactivity insertion and the higher the reactor power will be 

in that particular zone and surrounding area. The main purpose of the liquid zone control 

system is to spatially control the power distribution while averting any xenon induced 

oscillation [7]. It also compensates for any small perturbations that cause small reactivity 

changes, such as the refueling process. It is sufficient to model the liquid zone control 

system to study the effects of the xenon induced spatial oscillations. The liquid zone 

control system provides a reactivity range of around ±3.5 mk. This system is sufficient 

for the occurrences of regular reactivity perturbations. In the case of any unusual events 

that require an insertion of more than +3.5 mk, the adjuster rods system will be activated, 

and with less than -3.5 mk, the mechanical control rods system will be activated.   

 

The reactor power can be detected and measured using the following devices. In each 

zone, there are 2 in-core vertical flux detectors that measure the zonal power. It measures 

the neutron flux at various points in the core for the estimation of power distribution and 

total power. There are three ex-core ion chambers that are used to measure the global 

power [3]. However, there exists no instrument that can measure the iodine, xenon, and 

delayed neutron precursors’ concentrations which are pertinent in this system [8]. 

 

The 14 zones in the reactor are considered as small cores coupled through neutron 

diffusion. With the various neutron interactions like neutron production and absorption in 
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each zone and the leakage of neutrons among different zones, the rate of change of power 

in a zone can be given as [4]: 

����� = ��	
� + ��� + �
�� − � − ��
������� �� + �������� + 1� �(����� −�
� !

"#
� ! �����) 

(1.1) 

 

The microscopic thermal neutron cross section of 135Xe for each zone is given as: 

��
� = �
�%	��Σ��V′� ;                                   () = 1, 2, … , -) (1.2) 

  

The accuracy of the nodal model depends highly on the coupling coefficients. They 

depend on the geometry, material composition, and distance between the zones. The 

degree of coupling among the zones is described as [9]: 

��� = ./0�Ψ23���4′�  0 6           )7 ) ≠ 9)7 ) = 9 (1.3) 

        

Delayed neutron precursors occur by nuclear fission but are lost through radioactive 

decay. Since the dynamics of iodine and xenon are substantially slower than that of the 

precursors, only one effective group of delayed neutron precursors is considered, i.e. md = 

1. Therefore, the delayed neutron precursors’ concentration in different zones is given by 

[3]: 

������ = ��� �� − �����;                        () = 1, 2, … -, : = 1, 2, … , ;<) 
(1.4) 
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135Xe is a significant fission product due to its extremely large thermal neutron absorption 

cross section, fairly large fission yield, and unstable nature. It is produced as a direct 

fission product and through the radioactive β-decay of 135Te where the decay of 135Te 

into 135 I is practically instantaneous [9, 10]: 

135Te A! "�BCDDDE 135 I → 135Xe → 135Cs → 135Ba   (1.5) 

This xenon reactivity feedback causes changes in the neutron flux distribution and in turn 

causes spatial oscillations in the power distribution of a large thermal reactor. 

 

The iodine and xenon concentrations in each zone can be represented as: 

�M��� = NOΣ��P� − �OM� (1.6) 

����� = NQΣ��P� + �OM� − (�Q + ��
���)�� (1.7) 

The rate of change of iodine concentration is defined as its rate of production through 

fission and its loss through radioactive decay. The rate of change of xenon concentration 

is defined as its rate of production through fission and iodine decay; its loss due to its 

radioactive decay and transformation of 135Xe into stable 136Xe [11]. 

 

The fuel and coolant temperature reactivity feedbacks have been considered for a more 

realistic modeling. The rates of change of fuel and coolant temperatures are described as: 

�R��� = S��� − ST(R� − R
) 
(1.8) 

�R
�� = S
�R� − R
� − S<(R
 − R!) (1.9) 
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The instantaneous rate of change of a ZCC (zonal control compartment) is directly 

proportional to the net flow rate of water in the ZCC. The variation of inflow of water to 

each zone is associated with the direct position of the control valve and the outflow is 

kept constant. The change in water level in each zone can be given as a function of input 

signals to the control valves and is described as: 

�ℎ��� = −;�V�  (1.10) 

 

The reactivity due to the control mechanism of the LZC that is directly proportional to 

the water level in the ZCC in its respected zone is defined as: 

�	
� = −W�′(ℎ� − ℎ�X);                      () = 1,2, … -) (1.11) 

 

Substituting the value of hi from equation (1.11) in equation (1.1), it becomes: 

����� = −W′�ℎ�  − � − ��
������� �� + �������� + 1� �(����� −�
� !

"#
� ! �����) 

(1.12) 

 

The variations in reactivity due to the fuel and coolant temperature are assumed to not 

change appreciably over normal control related transients and thus these changes are 

almost linear and can be defined as [3]: 

��� = Y���R� − R�X� = Y��ZR� (1.13) 

�
� = Y
�(R
 − R
X) = Y
�ZR
 (1.14) 
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The physical data of the reactor are given in Tables 1.1 and 1.2 [4]. 

 
Zone Number Power (MW) Volume (m3) 

1, 6, 8, 13 132.75 14.7 
2, 7, 9, 14 135.99 14.7 

3, 10 123.30 17.6 
4, 11 98.55 8.8 
5, 12 123.30 17.6 

 

Table 1.1: Steady-state zone power levels and volumes 

 
 � = 7.9 ^ 10_` a ;< = 1 � = 9.1 ^ 10_b a_! ;� = 2 Σ� = 1.262 ^ 10_e f;_! W′� = −3.5 ^ 10_h �
 = 1.2 ^ 10_!i f;b ℎ�X = 100.0 f; 0 = 3.19 ^ 10h f;/a R�X = 547.2831°W NO = 6.18 ^ 10_b R
X = 541.4037 °W �
 = 2.1 ^ 10_h a_! R! = 539 °W � = 7.5 ^ 10_e Y� = −3.4722 ^ 10_n/W Σ� = 3.2341 ^ 10_e f;_! Y� = 3.33333 ^ 10_h/W %	�� = 3.2 ^ 10_!o pq S� = 1.38428 ^ 10_e W/q N
 = 6 ^ 10_e ST = 4.238 ^ 10_! a_! / = 0.9328 f; S
 = 1.758 ^ 10_b a_! �O = 2.878 ^ 10_h a_! S< = 4.3016759 ^ 10_b a_! 
 

Table 1.2: Physical data for the 540 MWe PHWR for all zones 

 

 

1.1.2 Model Reduction 
 

It is challenging to deal with higher order systems in controller design. Therefore, a 

reduced model is more manageable. The present work introduces an innovative approach 

to reduce the model by using a new decoupling algorithm. This method decouples the 

system by dividing the states into partitions by having the most dependent states in the 
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same partition. These partitions are then used for the design of sub-controllers thus 

creating decentralized controllers.  

 

Decentralized controllers have gained more attention in both the nuclear industry and 

research communities throughout the last few decades. Since this structure has been 

proven to be more reliable, cost effective, and easily maintainable, attempts have been 

launched to practically apply it in nuclear power plants, e.g. in Taiwan [12]. However, 

dividing the controller into several sub-controllers would raise a few concerns that can be 

classified into two major groups: (a) selection of the system states that are controlled in a 

sub-controller and, (b) integration and communication of different sub-controllers to 

control the system as a whole.  

 

In order to solve the former issue, various model reduction methods have been 

introduced. For example, Krylov spaces have been used to reduce the system and 

estimate it arbitrarily and precisely while maintaining the important properties of the 

system such as stability and controllability [13]. Generally, model reduction methods can 

be divided into three categories. The first category is called the continued fraction 

expansion that is based on obtaining a reduced model which matches some time moments 

and Markov parameters of the original model. For systems that can be estimated by low-

pass filters, it can be shown that the continued fraction expansion of the Cauer second 

form is equivalent to matching time moments with a Taylor series expanding about s = 0. 

On the other hand, for the systems that can be estimated by high-pass filters, the Cauer 

first form is equivalent to matching Markov parameters with a Taylor series expanding 



10 
 

about s = ∞. The drawback of this reduction method is that it does not guarantee the 

stability of the reduced model even if the original model is stable. In the second category, 

called dominant mode, Davison suggested a method based on neglecting the eigenvalues 

of the system that are farther from the origin and retaining the dominant eigenvalues that 

estimate the system behavior more precisely [14]. However, the reduced model by 

Davison's method fails to maintain the accurate steady-state gains due to neglecting the 

contribution of eliminated eigenvalues. The third category is called optimum fitting that 

tries to minimize an error function defined based on the deviation of the reduced model 

response from a set of given sample data of the original system either in time-domain or 

frequency-domain [15]. However, the abovementioned algorithms try to estimate the 

system by a lower dimensional model instead of dividing it into several coupled sub-

systems that can be safely controlled separately. On the other hand, a decentralized 

controller necessitates an algorithm that can introduce various sub-controllers that are as 

decoupled as possible.  

 

In the literature, researchers have studied the problem of sensitivity and decoupling of the 

linearized systems in the last four decades. For example, in [16], Hautus and Heymann 

formalized a decoupling problem for linear systems employing a suitable compensator. 

The problem of data sensitivity and decoupling is formulated and solved in [17] and the 

necessary and sufficient conditions of the stability of the decoupled system are also 

presented. In 1976, for an m-input-m-output linear time-invariant system, the decoupling 

and data sensitivity problem was solved using an algebraic approach [18]. Nevertheless, 

the problem of distributing a controller, sensitivity, and decoupling of the states of the 
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system is of concern and has not been studied for state-space controllers to the knowledge 

of the author.  

 

On the other hand, different methods in mathematics have been utilized to classify a set 

of data points such as fuzzy and hard clustering methods. Clustering is defined as 

partitioning a collection of unlabeled data into a number of groups or clusters such that 

data points that are more similar are put into one cluster [19]. Hard clustering algorithms 

assigned each data point to one and only one of the partitions, assuming well defined 

boundaries between the clusters. However, the boundaries between the clusters may not 

be clearly definable, the fuzzy environment of decision making would then be an 

appropriate tool to tackle the clustering problem, e.g. Fuzzy C-Means Clustering 

algorithm and Fuzzy Mountain Clustering. The problem of finding the optimal fuzzy 

clustering can be formulated as minimizing an objective function subject to conditions on 

membership functions. Fuzzy C-Means Clustering algorithm is based on the fuzzy-

equivalent of the nearest mean hard clustering algorithm. This objective function is 

defined considering the sum of squared errors of data points with respect to the centers of 

partitions [20]. 

 

There have been methods that reduce the dimensionality of high-order systems, such as 

Principal Components Algorithm (PCA) [21]. This method’s reduction is based on 

performing a covariance analysis between factors. The data taken can be plotted in multi-

dimensional space producing a cloud. The trends are characterized by extracting 

directions where a cloud is more extended. The directions taken produce components 
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whereby reducing the multi-dimensional cloud. However, this method is mainly useful 

when wanting to discover unknown trends in a dataset. Therefore, in systems where these 

trends are already known based on previous studies, this method is not useful. 

Another type of reduction technique used in decoupling methods is dynamic decoupling. 

These methods are used in systems that undergo drastic changes in its dynamic behaviour 

causing excitations. Therefore, these methods are not useful in systems that do not 

fluctuate very far from its steady-state point. There are various methods that exist, each 

with their own objectives based on the dynamics of the system, for example, a dynamic 

decoupling method was proposed by Mikloslovic and Gao to control complex uncertain 

systems [22].   

 

1.2  Motivation of Thesis 
 

A large PHWR is a high order complex system with a large number of states and input 

variables. Reduction algorithms have already been used to reduce the order of this system 

to design controllers. However, they neglect the states in the system that may have major 

impacts on the system behavior in different situations. In this thesis, a decoupling 

algorithm is introduced using state-space representation of the system that reduces the 

coupling between the states of the system and at the same time keeps all the states of the 

system in the control loop.  
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1.3  Objectives of Thesis 

 

1. Design and test a decoupling algorithm using the notion of sensitivity of the states 

with respect to each other. 

2. Implement the decoupling algorithm to a large PHWR and partition the system. 

3. Design optimal decentralized controllers for the sub-systems and compare the 

results to an optimal centralized controller.  

 

1.4  Organization of Thesis 

 

In chapter 1, an introduction to the research and background is given with the motivation 

and objectives of the thesis. In chapter 2, the state-space control theory, its application to 

this thesis, and the optimal control theory is given. In chapter 3, the design of the 

decoupling algorithm is given with the sensitivity definition, the decoupling criteria, the 

objective function, the steps of the algorithm, and the construction of the sub-systems. In 

chapter 4, the simulation results of the partitions are given, the centralized and 

decentralized controllers are discussed and analyzed, and a fail-safe study of the 

controllers is shown. In chapter 5, a conclusion of the findings for this research and future 

work recommendations is given.  
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2 Chapter 2: State-Space Control 

2.1 Linear Time-Invariant Systems with Input 
 

A linear time-invariant system with input and output can be identified by: 

rs (�) = tr(�) + uv(�) (2.1) 

r(0) = rX (2.2) 

w(�) = �r(�) + /v(�) (2.3) 

where r(�) is a vector including all of the system states as functions of time, v(�) and 

w(�) are the input (or the feedback of a controller) and the output of the system, 

respectively, where both are functions of time. A, B, C, and D are time-invariant matrices 

that define the behaviour of a linear or non-linear system around an equilibrium point. 

The matrix D is usually considered as a zero matrix.  

Therefore, the solution to this system of equations can be immediately obtained by: 

w(�) = �xyzrX + { �xy(z_|)uv(a)�az
X  

(2.4) 

where xQ is the exponential of matrix X and can be defined as: 

xQ ≔ � �B~!�
B X  

(2.5) 

where X0 is defined to be the identity matrix. 
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2.1.1 Linearization of a Non-Linear System 
 

A general non-linear system can be represented by the following equations: 

�s = 7(�, v)                    7: �B × �" → �B (2.6) 

w = ℎ(�, v)                    ℎ: �B × �" → �� (2.7) 

where �(~ × 1) is the state vector of the system, v(; × 1) is the control input to the 

system, �s (~ × 1) is the rate of change of the states in time and w(� × 1) is the output of 

the system. 

Assume that �� is an equilibrium point and for v = v�, the non-linear system can be 

approximated by the Taylor series as: 

7(�, v) ≈ ��7�� (��, v�)� (� − ��) + ��7�v (��, v�)� (v − v�) 
(2.8) 

ℎ(�, v) ≈ ℎ(��, v�) + ��ℎ�� (��, v�)� (� − ��) + ��ℎ�v (��, v�)� (v − v�) 
(2.9) 

 

If  �� = (� − ��), v� = (v − v�), and w� = (w − ℎ(��, v�)), then, the linear approximation of 

the system around �� and v� can be shown by: 

��s = t�� + uv� (2.10) 

w� = ��� + /v� (2.11) 

where t = ����� (��, v�)�, u = ����v (��, v�)�, � = ����� (��, v�)� and / = ����v (��, v�)�. 
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2.1.2 Linearization of a Large PHWR 
 

A large PHWR that was represented by equations (1.1) to (1.13) should be linearized in 

order to describe the behavior of the reactor in the area of the steady-state operating point 

due to any minor change in power, delayed precursors’ concentration, iodine, xenon 

concentration, liquid zone water levels, fuel and coolant temperatures [4]. The global 

reactor power Pg is considered to be constant, when operating at steady state, hence the 

power distribution does not vary in time. This condition can be accomplished when the 

zonal power levels are constant and the delayed neutron precursors’, iodine, and xenon 

concentrations are in equilibrium with them. From the nodal equations (1.4), (1.6), (1.7), 

(1.10), and (1.12) the following steady state condition can be attained: 

��X = ���X��  ; (2.12) 

M�X = NOΣ����X�O ; (2.13) 

��X = (NQ + NO)Σ����X�Q + ��Q���X ; (2.14) 

ℎ�X = ��Q���XW′�Σ�2  . (2.15) 

Using these steady state values in equation (1.12) and setting 
<��<z = 0, the steady-state 

power distribution can be calculated based on the following equations: 

−�����X + ∑ ����� ! ��X = 0;     ) = 1,2 … -, (2.16) 

��X = � ��X
�

� !  
(2.17) 
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The steady-state zonal power levels can be obtained for a corresponding global power, 

Pg0, by solving the above equations.  

 

Considering an increment δqi, for the ith input variable, the resulting zonal change of the 

states of the system, power levels, delayed precursor, iodine, and xenon concentrations, 

ZCC water levels, fuel and coolant temperatures, can be shown by δPi, δCi, δI i, δXi. δhi, 

δTf, and δTc, respectively.  

V� = V�X + ZV� (2.18) 

�� = ��X + Z�� (2.19) 

�� = ��X + Z�� (2.20) 

M� = M�X + ZM� (2.21) 

�� = ��X + Z�� (2.22) 

ℎ� = ℎ�X + Zℎ� (2.23) 

 

Hence, the new state space variables can be introduced by: 

�O = �ZM!M!X
ZMbMbX

ZMeMeX   …  ZM�M�X ��
 

(2.24) 

�Q = �Z�!�!X
Z�b�bX

Z�e�eX   …  Z����X ��
 

(2.25) 

�� = �Z�!�!X
Z�b�bX

Z�e�eX   …  Z����X ��
 

(2.26) 

�� = �Zℎ!ZℎbZℎe   …   Zℎ���  (2.27) 

�� = �Z�!�!X
Z�b�bX

Z�e�eX   …   Z����X ��
 

(2.28) 
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��� = ZR� (2.29) 

��� = ZR
 (2.30) 

 

Therefore, the new state, control, and output vectors can be defined as: 

r = �rO�rQ� r��r�� r��r��� r��� ��
 

(2.31) 

v = �ZV!ZVbZVe   …   ZV���  (2.32) 

w = r�  (2.33) 

 

The non-linear equations of the reactor can be linearized around the steady state point 

based on the following equations: 

��� �Z����X � = − 1� �� + � ��� ��X��X
�

� !   Z����X + 1� � ��� ��X��X
�

� !
Z����X + �� Z��¡��¡X − ��
���X�Σ��

Z����X
− W ′�� Zℎ� + Y��ZR�� + Y
�ZR
�  

(2.34) 

��� �Z��¡��¡X � = �¡ Z����X − �¡ Z��¡��¡X  
(2.35) 

��� �ZM�M�X � = �O Z����X − �¡ ZM�M�X  
(2.36) 
 
 ��� �Z����X � = ��Q − �O M�X��X� Z����X + �O M�X��X

ZM�M�X − (�
 + ��
���X) Z����X  
(2.37) 

�Zℎ��� = −;�ZV� (2.38) 

�(ZR�)�� = S� � Z�� − STZR� +�
� ! STZR
 

(2.39) 
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�(ZR
)�� = S
ZR� − (S
 + S<)ZR
 
(2.40) 

 

The above equations can be written in the standard state space representation of a linear 

time-invariant system as: 

rs = tr + uv (2.41) 

w = �r (2.42) 

 

Matrices A, B, and C are given as: 

t =
¢££
£££
££¤

tOO tOQ tO� tO� tO� tO�� tO��tQO tQQ tQ� tQ� tQ� tQ�� tQ��t�O t�Q t�� t�� t�� t��� t���t�O t�Q t�� t�� t�� t��� t���t�O t�Q t�� t�� t�� t��� t���t��O t��Q t��� t��� t��� t���� t����t��O t��Q t��� t��� t��� t���� t���� ¥¦¦
¦¦¦
¦¦§
 

(2.43) 

 

u = ¨uO� uQ� u�� u�� u�� u��� u��� ©�
 (2.44) 

 

� = ¨�O �Q �� �� �� ��� ���© (2.45) 

 

The abovementioned sub matrices of the system can be listed as follows: 

tOO = �)ª:. −�OM�� (2.46) 

tOQ = 0 (2.47) 

tO� = 0 (2.48) 
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tO� = 0 (2.49) 

tO� = �OM�� (2.50) 

tO�� = 0 (2.51) 

tO�� = 0 (2.52) 

tQO =  �O�)ª:. � M!X�!X … M�X��X� (2.53) 

tQQ = �)ª:. �(−�Q + ���Q!�!X) … (−�Q + ���Q���X)� (2.54) 

tQ� = 0 (2.55) 

tQ� = 0 (2.56) 

tQ� = �)ª:. ���Q − �O M!X�!X� … ��Q − �O M�X��X�� (2.57) 

tQ�� = 0 (2.58) 

tQ�� = 0 (2.59) 

t�O = 0 (2.60) 

t�Q = 0 (2.61) 

t�� = −�M�� (2.62) 

t�� = 0 (2.63) 

t�� =  �M�� (2.64) 

t��� = 0 (2.65) 

t��� = 0 (2.66) 

t�O = 0 (2.67) 

t�Q = 0 (2.68) 

t�� = 0 (2.69) 
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t�� = 0 (2.70) 

t�� = 0 (2.71) 

t��� = 0 (2.72) 

t��� = 0 (2.73) 

t�O = 0 (2.74) 

t�Q = �)ª:. �− ���Q!�!X�Σ�! � … − ���Q���X�Σ�� �� (2.75) 

t�� = �� M�� 
(2.76) 

t�� = − W′�� M�� 
(2.77) 

t��(), 9) =
«¬­
¬®− 1� �� + �� ��� ��X��X

�
� !   − ���       )7 ) = 9

1� ��� ��X��¯                                              )7 ) ≠ 9
6 

(2.78) 

t��� = Y�� 6°1⋮1²³ - − �);xa 
(2.79) 

t��� = Y
� 6°1⋮1²³ - − �);xa 
(2.80) 

t��O = 0 (2.81) 

t��Q = 0 (2.82) 

t��� = 0 (2.83) 

t��� = 0 (2.84) 

t��� = S���!X … ��X� (2.85) 

t���� = −ST (2.86) 

t���� = ST (2.87) 

t��O = 0 (2.88) 

t��Q = 0 (2.89) 
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t��� = 0 (2.90) 

t��� = 0 (2.91) 

t��� = 0 (2.92) 

t���� = S
 (2.93) 

t���� = −(S
 + S<) (2.94) 

uO = 0 (2.95) 

uQ = 0 (2.96) 

u� = 0 (2.97) 

u� = −;�M�� (2.98) 

u� = 0 (2.99) 

u�� = 0 (2.100) 

u�� = 0 (2.101) 

�O = 0 (2.102) 

�Q = 0 (2.103) 

�� = 0 (2.104) 

�� = 0 (2.105) 

�� = M�� (2.106) 

��� = 0 (2.107) 

��� = 0 (2.108) 

where IdN is the identity matrix of dimension N and diag.(a1…an) is the diagonal n x n 

matrix with a1…an being the diagonal elements.  
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2.2 Controllability 
 

Considering a linear-time-invariant system, (A,B), the notion of controllability can be 

defined as the ability of the system to reach all its possible states, which is usually in �B, 

for finite control input in finite time. In other words, for any possible state of the system 

there exists at least a control input defined on [0,t]  that can take the system from an 

initial point to the final state. Therefore, if all the states of system are reachable, (A,B) is 

called controllable. In order to check the controllability of a system, it can be shown that 

the rank of the following n x nm matrix should be n, which is the number of the system 

states. 

´
 = �u tu tbu … tB_!u� (2.109) 

This matrix is called the controllability matrix. If this rank is less than n, the system can 

be divided into controllable and uncontrollable subsystems by Kalman Decomposition 

algorithm. If the uncontrollable eigenvalues are all in the open left hand complex plane, 

then the system is at least stabilizable. That means that the system can approach any state 

but the closed-loop eigenvalues cannot be arbitrarily assigned.     

 

Controllability of a Large PHWR 

In order to control a reactor, first the controllability of the system in (2.41) should be 

checked. It can be shown that for a 540 MWe large PHWR using the nodal model, the 

assigned controllability matrix is of rank n and the system is fully controllable [23]. This 

indicates that the zonal power levels can be controlled by the variation of water levels in 
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the zones, independently. Hence, by a specific control input, the power distribution in a 

reactor can be controlled.  

However, in the case of distributing the controller, where sub-systems are considered, the 

controllability of each sub-system should also be checked before designing a controller.  

 

2.3 Observability 
 

Another system property, just as important as controllability, is observability. It is 

important to know whether you can estimate all the system states using the measured 

output and input signal. In the real world, measuring all the system states at each instant 

is not feasible. Therefore, if the system (C,A) is observable, then an observer can be 

designed to estimate the states. It can be shown that a system is observable if and only if 

the following n x np matrix (observability matrix) is of rank n. 

´¯ = �� �t … �tB_!�� (2.110) 

The estimated state equations of the system can be written as: 

rµs = trµ + uv + ¶(w − w·)̧, rµ(0) = rµ¹X (2.111) 

w· = �rµ (2.112) 

If there exists an n x p matrix L such that all the eigenvalues of A-LC lie on the left half 

complex plane, then (C,A) is observable and L is called the full state observer of the 

system.  
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Observability of a Large PHWR 

Observability of a reactor is also a vital property of the system since all of the system 

states should be fed back to the controller. Therefore, they must be estimated knowing the 

measured states of the system. It can be shown that the linearized model of the 540 MWe 

PHWR is fully observable [23] and a matrix L can be optimally designed as the observer 

of the system.  

2.4 Optimal Control 
 

An optimal control problem can be stated as follows: 

Find a control law º = »(�) that is in the class of admissible controls (» is continuous, 

stabilizing, and results in a unique closed-loop solution) and minimizes the following cost 

function: 

q(rX, ») = { �r�(�)´r(�) + »�(�)�
X ¼»(�)��� 

(2.113) 

where Q is a symmetric positive semi-definite matrix and R is a symmetric positive 

definite matrix. Since Q is positive semi-definite, r�(�)´r(�) ≥ 0 represents the penalty 

incurred at time t for state trajectories that deviate from 0. Similarly, R is positive 

definite, hence »�(�)¼»(�) > 0 represents the control effort at time t in order to regulate 

r(�) to 0.  

It can be shown that a solution to this problem is in matrix quadratic form. Therefore, 

equation (2.113) results in the following matrix quadratic equation, called the algebraic 

Riccati equation: 
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t�� + �t − �u − ¼_!u�� + ´ = 0   (2.114) 

This equation should be solved for P in order to find the minimizing control law given 

by: 

v = −¼_!u��r (2.115) 

and the optimal state feedback gain K can be expressed as: 

W = −¼_!u�� (2.116) 

Therefore, the closed-loop system equation is stated as:  

rs = (t + uW)r (2.117) 

   

Based on the duality theorem in state-space control, finding an observer for (C,A) is 

equivalent to finding a controller for (AT,CT). Therefore, it is natural to introduce the 

notion of the optimal observer according to the linear quadratic optimal control law. 

Hence, an optimal observer, L, can be designed considering LT as the optimal feedback 

law for (AT,CT) as the dual controller to (C,A).  

 

 

Optimal Control of a Large PHWR 

A control design methodology should be utilized to produce controllers with the desired 

objectives. A cost criterion is formulated based on these objectives. The optimal control 

law solves the optimization problem based on the minimization of the given cost 

criterion. In this way, controllers of the reactor can be optimally designed for the system.  
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3 Chapter 3: Decoupling Algorithm 
 

The complexity of a large system can result in difficulties in controller design that gives 

rise to the concept of model reduction in order to facilitate the design process. In model 

reduction methods, the dominant features of the system are studied and the rest of the 

states of the system are neglected. In the case of controlling a large PHWR, due to its 

safety-critical nature, neglecting the system features can be risky. Therefore, decoupling 

algorithms are needed to reduce the model without losing the dominant characteristics of 

the system. A number of decoupling algorithms have been suggested in the literature to 

study the sensitivity of linearized systems. However, in order to design a decentralized 

control system, the sensitivity of state variables of a linear system should be investigated 

and the most coupled states should be grouped together. This chapter presents a 

systematic decoupling algorithm for a linear time-invariant system without input to 

partition the system and consequently divide an optimal centralized controller to a 

number of sub-controllers that can separately control the partitions of the system. For this 

purpose, the notion of sensitivity of a state with respect to other states is defined. 

Subsequently, by mimicking the clustering algorithms, an objective function is 

introduced to find the most decoupled and evenly distributed partitioning. This algorithm 

has been applied to the reactor nodal core model of a large PHWR to design 

decentralized controllers. The results have been presented and discussed in the next 

chapter.   
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3.1 Sensitivity 
 

Definition (Sensitivity):  In general, in system engineering, sensitivity of a parameter X 

of a system with respect to parameter Y at equilibrium is the rate of change of X with 

respect to Y after a small amount of time when parameter Y is disturbed by a small 

change, namely ∆> 0. In a linear time-invariant (LTI) system, the sensitivity of state zi 

with respect to zj while zj is perturbed by Zzj after τ seconds can be defined as, 

À(Á) = Â������ (Á)Â = Â�s�(Á)�s�(Á)Â (3.1) 

 

The linear system without input variables should be considered to determine the 

sensitivity of different states with respect to each other. The reasons for this is that this 

algorithm is utilized to design a controller for the system and thus has no input to the 

system; in order to design controllers for a system, the intrinsic behaviour of the system 

must be studied which is done through the sensitivity analysis; and since there is no 

coupling between the input states and any of the other states, these states must be pushed 

somehow. Therefore, the following system of ordinary differential equations needs to be 

solved to calculate �s�(Á): 

rs (�) = tr(�) (3.2) 

r(0) = rX� = (0, 0, … , Z�� , 0, … , 0)� (3.3) 

where rX�  is the initial condition of the differential equation when �� is perturbed by Z��. 
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The solution of r at time t is: 

r(�) = xyzrX�   (3.4) 

  

Therefore, based on (3.2), rs  after τ seconds is: 

rs (Á) = txyÃrX� (3.5) 

 

By substituting (3.3) in (3.5), sensitivity of state zi with respect to zj at time τ can be 

formulated as: 

À(Á) = Â�s�(Á)�s�(Á)Â = ÂÄÅÆ��t� × fÅ�º;~�  �xyÃ�ÄÅÆ��t� × fÅ�º;~�  �xyÃ�Â (3.6) 

 

It can be observed in (3.6) that the calculated sensitivity is independent of the amount of 

perturbation of state zj and is only a function of time. The sensitivity should be 

determined after a small amount of time, τ, that is selected based on the response speed of 

the system. In order to pick a suitable instant, eigenvalues of matrix A that represent the 

speed of convergence or divergence of the states of the system are considered. The 

eigenvalues with negative real parts correspond to the states that can be stabilized and 

therefore they are of no concern. On the other hand, in the set of all eigenvalues with 

positive real parts, the one that has the largest real part shows the fastest divergence and 

can be considered as a measure for the speed of the system. Consequently, the time 

instant τ is when the value of the state corresponding to the eigenvalue, which possesses 

the largest positive real part, changes by 0.1%.    
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Therefore, the calculated sensitivity can be utilized as a dependency measure of states to 

put all decoupled states in different partitions that are going to be controlled separately. 

The larger the sensitivity is, the more zi is dependent to zj. Note that in (3.6), all of the 

states are non-dimensionalized with respect to the equilibrium point. 

 

3.2 Decoupling Criteria and Objective Function 
 

The notion of sensitivity can be considered as a metric in the space of system states to 

represent the amount of coupling of every two states of the system. This is similar to the 

distance between data points in clustering algorithms. However, the larger the value of 

sensitivity is, the more coupled a state is with respect to another.  In the clustering 

methods, an objective function is normally defined to find an optimum clustering result in 

the space of different possible clusterings based on the following two criteria: a) 

separation between the clusters, and b) compactness of the clusters. In each optimization 

iteration, a set of points is selected to be the cluster centers, and hence, the 

abovementioned criteria can be calculated with respect to them. The compactness of the 

clusters can be checked through the sum of distances between the data points in a cluster 

and the center. In addition, the separation between the clusters is formulated based on the 

distances between the centers of the clusters. It is worth mentioning that occasionally the 

number of clusters should be known before the clustering process.    

 

In the case of partitioning of the states of a system, the aim is to find the most coupled 

sub-systems. In other words, the states with the largest value of sensitivity with respect to 
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each other must be placed in the same partition. Therefore, to define a suitable objective 

function for partitioning purposes, a criterion can be deemed based on the average 

amount of sensitivity in the partitions with respect to the chosen center states of the 

partitions. Furthermore, various systems may have different constraints in terms of 

placing certain states next to each other in the partitioning process. These constraints are 

taken into account by defining weight functions in averaging the sensitivity values of 

partitions. Consequently, a weighted average function is used to average the sensitivity 

values in the partitions as an objective function. This average is summed on all of the 

partitions and the resulting criterion is called mean sensitivity. Therefore, mean sensitivity 

can be calculated as:  

where,  

m = number of partitions, 

ni = number of states in the ith partition, 

�¡� = the kth state in the ith partition, 

�
�  = the center state in the ith partition, 

wik = weight of zik belonging to the ith partition. 

The weight function is selected in the range of 0 to 1. The higher the value of the weight 

function, the more probable the according state is to be placed in a partition. However, 

since the weight function shows a relative desire of including a state in a partition, if its 

value is constant for all of the states, it implies no priority in the partitioning process.    

 

p = Ç 1∑ ∑ Æ�¡B�¡ !"� ! � � Æ�¡Àb(�¡� , �
� )B�
¡ !

"
� !  

(3.7) 
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Another objective that should be considered in partitioning of a system is the dimension 

of the system. It is more desirable to have equal dimensions of the sub-systems. 

Therefore, another criterion, namely uniformity, is defined based on the distribution of 

the states of the system in the different partitions. The well-known statistical function, 

variance function, has been utilized for this purpose. In this criterion the deviation of each 

sub-system’s dimension from the average number of the states in the partitions is 

calculated and averaged based on the mean square average function. Generally speaking, 

this criterion checks the distribution of the states in different partitions.    

Therefore, the uniformity is the variance of the number of elements in the partitions with 

respect to the average number of elements that can be defined as: 

È = Ç 1; �(~� − ~;)b"
� !  

(3.8) 

 

Based on the above definitions, in order to obtain the optimum partitioning of a system 

the mean sensitivity should be maximized while the uniformity is minimized. To simplify 

the optimization process, a linear combination of the criteria can be used to define one 

objective function that incorporates both aspects. In this way, the dimensions of these 

criteria are unified [24]. This function is defined as:  

q = 1~ È − p 
(3.9) 

where n is the total number of states and the factor 
!B normalizes the uniformity. 
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Since the uniformity and mean sensitivity are considered with plus and minus sign, 

respectively, minimizing J, would result in minimizing and maximizing the uniformity and 

mean sensitivity, sequentially.   

 

3.3 Decoupling Algorithm 
 

In this section, a step-by-step algorithm for the decoupling method discussed above is 

given. This algorithm consists of two optimization loops. For a given set of centers of the 

partitions, the inner optimization is performed to place the states in the suitable partitions. 

However, since there exists a number of different choices to pick the center states, an 

outer loop optimization with respect to an objective function is done to select the best 

partitioning. The algorithm can be detailed as follows:  

1. In this partitioning method, the number of partitions should be known in a priori. 

Therefore, before starting the partitioning process, the number of partitions or 

sub-systems should be chosen. 

2. At each outer loop iteration, a system state is placed in the empty partitions as the 

center of the partition with respect to which sensitivity analysis is performed. 

3. The sensitivity of each of the remaining states with respect to the center states is 

calculated. 

4. In the inner loop optimization, the maximum sensitivity of each state with respect 

to the center states is selected and the state is transferred to the corresponding 

partition. 
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5. In this way, if the number of partitions is shown by m and the number of states by 

n, then É ~;Ê different partitionings can be constructed out of which the one that 

optimizes the associated objective function should be picked. Hence, in this step 

the objective function for each possible partitioning is calculated. 

6. The best partitioning is identified as the one that minimizes the objective function. 

Determining the number of partitions depends entirely on the type of system. In order to 

be adaptable and flexible for different systems, choosing this amount has been made so 

that it can be applicable to most systems. Every system has its own objectives and 

constraints and by using these criteria, a suitable amount of partitions can be chosen. 

 

3.4 Sub-systems Construction 
 

Subsequently, the LTI system should be divided into a number of reduced-dimension 

linear sub-systems based on the partitions in the previous section. These sub-systems can 

be identified by a set of matrices, Ë(t� , u� , ��)|) = 1, … , ;Í. The Ai matrix is evaluated by 

considering only the rows and columns of A that correspond to the states that appear in 

the ith partition. In order to construct Bi, first the input states in partition i are identified. 

The rows of B that correspond to all of the states in the ith partition and columns of B for 

the input states are selected and the rest of the elements are neglected. For Ci, the output 

states in the partition i are found. The rows of C corresponding to the output states in the 

ith partition and the columns of C for all existing states in partition i are kept and the rest 

of the elements of C are neglected to construct Ci. 
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4 Chapter 4: Simulation and Results 
 

In this chapter, the abovementioned decoupling algorithm is utilized to divide a large 540 

MWe PHWR into three sub-systems. An optimal controller is designed for the system. 

Based on the achieved sub-systems, the centralized controller is split to three sub-

controllers that separately control the sub-systems.  

 

4.1 Partitioning of a Large 540 MWe PHWR 
 

The system was modeled and simulated using MATLAB®. The sensitivity was taken at  

τ = 0.1 seconds. Three partitions were chosen and the simulation yielded the first 

partition having 20 states, the second having 27 states and the third having 25 states. The 

partitions are given in Table 4.1, 

Zone Partition 1 Partition 2 Partition 3 
1 �!, �!h, �bÎ, �`e, �ho 

  

2 �b, �!n, �eX, �``, �hi 

  

3  �e, �!o, �e!, �`h, �hÎ 

 

4  �`, �!i, �eb, �`n, �nX 

 

5  �h, �!Î, �ee, �`o, �n! 

 

6  �n, �bX, �e`, �`i, �nb 

 

7  �o, �b!, �eh, �`Î, �ne 

 

8 �i, �bb, �en, �hX, �n` 
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9 �Î, �be, �eo, �h!, �nh 

  

10   �!X, �b`, �ei, �hb, �nn 
11   �!!, �bh, �eÎ, �he, �no 
12   �!b, �bn, �`X, �h`, �ni 
13   �!e, �bo, �`!, �hh, �nÎ 
14   �!`, �bi, �`b, �hn, �oX 
  �o!,  �ob  

 

Table 4.1: Simulation results of partitions 

 

where states 1-14 are the corresponding zonal iodine concentrations, 15-28 the xenon 

concentrations, 29-42 the delayed neutron concentrations, 43-56 the water levels, 57-70 

the powers, 71 the fuel temperature, and 72 the coolant temperature. The center of each 

partition that was randomly chosen was state 15, xenon concentration in zone 1, for 

partition 1, state 20, xenon concentration in zone 6, for partition 2, and state 27, xenon 

concentration for zone 13. It is completely reasonable that the center states of the 

partitions were the xenon concentrations since this system’s purpose revolves around 

controlling this.  

 

The corresponding zonal water levels were logically placed in the partition that had the 

most states for its zone since they depend only on the input to the system and would yield 

zeros for sensitivity thus being grouped together.  
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From the partition results, it can be seen that the states were divided into the three 

partitions according to which states they were most coupled with. These states 

correspond to the most coupled zones which were defined through the coupling 

coefficients. The coupling coefficients between non-neighbouring zones and its own zone 

are assumed to be zero. For neighbouring zones, the coupling coefficients were calculated 

based on the area of interface and the distance between the ith and jth zones. Through 

these relationships, the model was decoupled. Therefore, an optimal distribution of states 

were acquired that can be used for controller design. 

 

4.2 Centralized Controller 
 

The whole system is modeled in MATLAB Simulink®. A MATLAB function, called 

care, is used to solve the Algebraic Ricatti Equation for the system and identify the 

corresponding control gain. The same function is employed to obtain an optimal full-state 

observer for the control system. In Appendix A, all the elements of the controller and 

observer matrices are listed. Both the controller and observer are placed in the centralized 

control loop of the modeled system. The Simulink model of the system with the 

centralized controller is shown in Fig. 4.1. The system is disturbed by changing the 

reactivity of zone 1. Different amounts of disturbance to the system limits, ±3.5 mk, are 

considered and the behaviour of the system is studied. The disturbance functions are 

shown in Fig. 4.2. The change in global power of the reactor as the system response for 

different disturbance functions is depicted in Fig. 4.3 and Fig. 4.4. The overall behaviour 

of the system is almost the same for various disturbance magnitudes. The overshoot of 
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the system increases proportional to the amount of disturbance. However, the response 

time is almost the same for all different disturbance functions. Fig. 4.5 shows an example 

of the response of the system to the +3.5 mk versus -3.5 mk disturbance functions. These 

figures illustrate that the system response is not symmetric with respect to the line Global 

Power = 1800 MW. The overshoot of the system response to all of the disturbance 

functions is plotted in Fig. 4.6 that shows an almost linear trend for both positive and 

negative disturbances. The values of overshoot are not symmetric with respect to the line 

Global Power = 1800 MW. The values of the second peak of the system response to 

different positive and negative disturbances can be observed in Fig. 4.7. They also show a 

linear behaviour with respect to different disturbance functions, however, they are not 

symmetric with respect to the line Global Power = 1800 MW. 

Based on the response of the system, the maximum overshoot occurs for the disturbance 

of ±3.5 mk. For the positive maximum disturbance, the overshoot of the system is 79 

MW and similarly for the negative maximum disturbance, the overshoot value is 80.5 

MW. The response time of the system for all disturbances is almost the same around 200 

seconds. The steady state error of the response is also constant for different disturbances 

and is -0.5 MW which is negligible for this system. 
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Figure 4.1: Centralized system 

 

 

Figure 4.2: Disturbance functions 
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Figure 4.3: System response for negative reactivity disturbances of a centralized 
controller 

 

Figure 4.4: System response for positive reactivity disturbances of a centralized 
controller 
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Figure 4.5: System response of ± 3.5 mk disturbance using a centralized controller 

 

Figure 4.6: Overshoot of the system response for both positive and negative 
reactivity disturbances using a centralized controller 

1710

1730

1750

1770

1790

1810

1830

1850

1870

1890

0 50 100 150 200 250 300

G
lo

ba
l P

ow
er

 (
M

W
)

Time (s)

-3.5 mk

3.5 mk

1700

1720

1740

1760

1780

1800

1820

1840

1860

1880

1900

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

G
lo

ba
l P

ow
er

 (
M

W
)

Reactivity (mk)

Negative

Positive

Linear (Negative)

Linear (Positive)



42 
 

 

Figure 4.7 Second peak of the system response for both positive and negative 
reactivity disturbances using a centralized controller 
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in a partition and the corresponding gain is picked from the centralized controller for all 

states in different sub-controllers. Finally, the designed decentralized controller for a 

large PHWR can be shown by three gain matrices: W!(14 × 20), Wb(14 × 27), and 

We(14 × 25). Each sub-controller is working with the corresponding sub-system. The 

calculated input variables from all sub-controllers are summed to determine the final 

input to the system. Note that the sub-controllers do not contribute to the input variables 

that do not exist in the corresponding partitions.  

The Simulink model of the system with the decentralized controllers is shown in Fig. 4.8. 

The same observer and disturbance functions are utilized for the decentralized system. 

The system partitioning is performed after calculating the estimated values for the system 

states. The change in global power of the reactor as the system response for different 

disturbance functions is depicted in Fig. 4.9 and Fig. 4.10. The overall behaviour of the 

system is almost the same for various disturbance magnitudes. The overshoot of the 

system increases proportional to the amount of disturbance. However, the response time 

is almost the same for all different disturbance functions. Fig. 4.11 shows an example of 

the response of the system to the +3.5 mk versus -3.5 mk disturbance functions. These 

figures illustrate that the system response is not symmetric with respect to the line Global 

Power = 1800 MW. The overshoot of the system response to all of the disturbance 

functions is plotted in Fig. 4.12 that shows an almost linear trend for both positive and 

negative disturbances. The values of overshoot are not symmetric with respect to the line 

Global Power = 1800 MW. The values of the second peak of the system response to 

different positive and negative disturbances can be observed in Fig. 4.13. They also show 
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a linear behavior with respect to different disturbance functions, however, they are not 

symmetric with respect to the line Global Power = 1800 MW. 

Based on the response of the system, the maximum overshoot occurs for the disturbance 

of ±3.5 mk. For the positive maximum disturbance, the overshoot of the system is 87 

MW and similarly for the negative maximum disturbance, the overshoot value is 87.6 

MW. The response time of the system for all disturbances is almost the same and around 

500 seconds. The steady state error of the response is also constant for different 

disturbances and is -0.6 MW which is negligible for this system. 

In Fig. 4.14, the response of the system to ±3.5 mk disturbance is shown for both the 

centralized and decentralized controllers. Since the coupling between the states of the 

system in different sub-systems is neglected in the design of the decentralized controller, 

using this type of controller makes the system slower with a larger overshoot. However, 

in terms of implementation of the controller in the real world, any sub-controller can be 

mounted at the corresponding sub-system which would reduce the wiring and 

maintenance required. Since the zones in a large reactor are coupled, any change in 

control input to any zone would cause a respective change in the neutron flux to the 

neighboring zones, which may not desirable in the control of reactor. In the case of the 

decentralized controllers, the most coupled states of the system are controlled together, 

which would help make it easier to achieve a uniform power distribution across the 

reactor core.  
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Figure 4.8: Decentralized system 

 

 

Figure 4.9: System response for negative reactivity disturbances of decentralized 
controllers 
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Figure 4.10: System response for positive reactivity disturbances of decentralized 
controllers 

 

 

Figure 4.11: System response of ± 3.5 mk disturbance using decentralized 
controllers 
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Figure 4.12: Overshoot of the system response for both positive and negative 
reactivity disturbances using decentralized controllers 

 

 

Figure 4.13: Second peak of the system response for both positive and negative 
reactivity disturbances using decentralized controllers 
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Figure 4.14: System response to ±3.5 mk disturbance for both the centralized and 
decentralized controllers 
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In this section, a worst case scenario is simulated for the system under study in this thesis 

considering both centralized and decentralized controllers. The simulation is done in 

MATLAB Simulink® and the results are shown in Fig. 4.15 and Fig. 4.16. 

Consider a scenario that a large PHWR is compensating for a disturbance of ±3.5 mk and 

suddenly the centralized controller stops working after 200 seconds for a few minutes. As 

the result, it can be observed in Fig. 4.15, for the maximum positive reactivity, +3.5 mk, 

the global power reaches to 2150 MW in about 10 minutes as the system is being 

rectified. At this point, the reactor core would go into meltdown. However, as shown in 

Fig. 4.16, in the case of employing decentralized controllers for the maximum positive 

reactivity, +3.5 mk, if one of the controllers shuts down for 10 minutes, the global power 

reaches to 1815 MW that is in the safe range.  

 

Figure 4.15: Fail-safe response of a centralized controller 
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Figure 4.16: Fail-safe response of decentralized controllers 
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5 Chapter 5: Conclusion and Future Work 
 

This thesis has designed and implemented optimal decentralized controllers using the 

reactor nodal model of a large 540 MWe PHWR to control the xenon induced spatial 

oscillations. A decoupling algorithm was developed and tested using this model to create 

a decentralized system of controllers. A centralized controller was designed to compare 

both approaches.  

In this thesis, it can be seen that the decentralized controllers have a similar system 

response to the centralized controller after a reactivity disturbance to the system’s limits 

of ±3.5 mk in the first zone. The most significant difference was in the response time 

where the decentralized system was around 500 seconds while the centralized system was 

around 200 seconds. For both controllers, the overshoot of the system response to all of 

the disturbance functions showed an almost linear trend for both the positive and negative 

disturbances. The decentralized controllers had slightly larger overshoots of around 10 

MW than the centralized controllers. The steady-state errors were relatively close, -0.5 

MW for the centralized and -0.6 MW for the decentralized systems. Overall, the 

centralized controller showed a faster and better performance. Given that the coupling 

between the states of the system in the different sub-systems is neglected in the design of 

the decentralized controllers, this could be expected. However, the advantages that a 

decentralized system has over a centralized system should be considered such as the 

ability to fail-safe. This example was given proving that the decentralized controllers are 

more fail-safe than the centralized. In addition to this, less wiring, lower maintenance, 

and lower costs are also advantages. With this research work, these advantages can be 
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further explored in future work. A communication network of a Distributed Control 

System (DCS) can be implemented so that the decentralized controllers can communicate 

with each other by networks. In this way, the information of the states of the system will 

not be lost and can be accessed and shared throughout the network. This could potentially 

improve the system’s performance in addition to acquiring the advantages proposed by 

modern control technologies.  
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Appendices 

Appendix A: Controller and Observer Gains 
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-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 
-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 
-0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001 W�� � 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 W�� � -0.008 -0.009 -0.006 -0.003 -0.008 -0.008 -0.009 -0.008 -0.009 -0.006 -0.003 -0.008 -0.008 -0.009 

 

Table A.1: Controller gains 
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-0.892 -0.003 0.040 0.059 0.003 0.003 0.001 0.000 0.000 0.004 0.005 0.000 0.000 0.000 
0.008 -0.895 0.008 0.062 0.014 0.003 0.002 0.001 0.000 0.001 0.005 0.002 0.001 0.000 

-0.037 -0.004 -0.867 0.061 0.000 -0.037 -0.004 -0.004 -0.001 0.001 0.004 0.000 -0.004 -0.001 
-0.060 -0.063 -0.052 -0.899 -0.077 -0.060 -0.063 -0.005 -0.005 -0.003 0.002 -0.005 -0.005 -0.005 
0.002 -0.009 0.005 0.082 -0.880 0.002 -0.009 0.000 -0.001 0.001 0.006 0.001 0.000 -0.001 
0.003 0.001 0.040 0.059 0.003 -0.892 -0.003 0.000 0.000 0.004 0.005 0.000 0.000 0.000 
0.003 0.002 0.008 0.062 0.014 0.008 -0.895 0.001 0.000 0.001 0.005 0.002 0.001 0.000 
0.000 0.000 0.004 0.005 0.000 0.000 0.000 -0.892 -0.003 0.040 0.059 0.003 0.003 0.001 
0.001 0.000 0.001 0.005 0.002 0.001 0.000 0.008 -0.895 0.008 0.062 0.014 0.003 0.002 

-0.004 -0.001 0.001 0.004 0.000 -0.004 -0.001 -0.037 -0.004 -0.867 0.061 0.000 -0.037 -0.004 
-0.005 -0.005 -0.003 0.002 -0.005 -0.005 -0.005 -0.060 -0.063 -0.052 -0.899 -0.077 -0.060 -0.063 
0.000 -0.001 0.001 0.006 0.001 0.000 -0.001 0.002 -0.009 0.005 0.082 -0.880 0.002 -0.009 
0.000 0.000 0.004 0.005 0.000 0.000 0.000 0.003 0.001 0.040 0.059 0.003 -0.892 -0.003 
0.001 0.000 0.001 0.005 0.002 0.001 0.000 0.003 0.002 0.008 0.062 0.014 0.008 -0.895 

¶Q� 

-0.996 -0.004 0.046 0.064 0.004 0.003 0.001 0.001 0.000 0.005 0.005 0.000 0.001 0.000 
0.008 -0.996 0.009 0.068 0.016 0.004 0.003 0.001 0.000 0.002 0.005 0.002 0.001 0.000 

-0.042 -0.005 -0.995 0.067 0.000 -0.042 -0.005 -0.004 -0.001 0.001 0.005 0.000 -0.004 -0.001 
-0.067 -0.070 -0.060 -0.984 -0.087 -0.067 -0.070 -0.005 -0.006 -0.004 0.002 -0.006 -0.005 -0.006 
0.002 -0.010 0.006 0.089 -0.995 0.002 -0.010 0.000 -0.001 0.001 0.007 0.001 0.000 -0.001 
0.003 0.001 0.046 0.064 0.004 -0.996 -0.004 0.001 0.000 0.005 0.005 0.000 0.001 0.000 
0.004 0.003 0.009 0.068 0.016 0.008 -0.996 0.001 0.000 0.002 0.005 0.002 0.001 0.000 
0.001 0.000 0.005 0.005 0.000 0.001 0.000 -0.996 -0.004 0.046 0.064 0.004 0.003 0.001 
0.001 0.000 0.002 0.005 0.002 0.001 0.000 0.008 -0.996 0.009 0.068 0.016 0.004 0.003 

-0.004 -0.001 0.001 0.005 0.000 -0.004 -0.001 -0.042 -0.005 -0.995 0.067 0.000 -0.042 -0.005 
-0.005 -0.006 -0.004 0.002 -0.006 -0.005 -0.006 -0.067 -0.070 -0.060 -0.984 -0.087 -0.067 -0.070 
0.000 -0.001 0.001 0.007 0.001 0.000 -0.001 0.002 -0.010 0.006 0.089 -0.995 0.002 -0.010 
0.001 0.000 0.005 0.005 0.000 0.001 0.000 0.003 0.001 0.046 0.064 0.004 -0.996 -0.004 
0.001 0.000 0.002 0.005 0.002 0.001 0.000 0.004 0.003 0.009 0.068 0.016 0.008 -0.996 

¶�� 

0.223 0.004 -0.001 -0.006 -0.001 -0.001 0.000 0.002 0.000 -0.001 -0.001 0.000 0.000 0.000 
0.002 0.222 -0.001 -0.006 0.003 -0.001 0.000 0.000 0.002 0.000 -0.001 0.000 0.000 0.000 
0.011 0.001 0.220 -0.005 0.000 0.011 0.001 0.001 0.000 0.002 -0.001 0.000 0.001 0.000 
0.012 0.012 0.012 0.203 0.016 0.012 0.012 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
0.000 0.006 -0.001 -0.008 0.220 0.000 0.006 0.000 0.000 0.000 -0.001 0.002 0.000 0.000 

-0.001 0.000 -0.001 -0.006 -0.001 0.223 0.004 0.000 0.000 -0.001 -0.001 0.000 0.002 0.000 
-0.001 0.000 -0.001 -0.006 0.003 0.002 0.222 0.000 0.000 0.000 -0.001 0.000 0.000 0.002 
0.002 0.000 -0.001 -0.001 0.000 0.000 0.000 0.223 0.004 -0.001 -0.006 -0.001 -0.001 0.000 
0.000 0.002 0.000 -0.001 0.000 0.000 0.000 0.002 0.222 -0.001 -0.006 0.003 -0.001 0.000 
0.001 0.000 0.002 -0.001 0.000 0.001 0.000 0.011 0.001 0.220 -0.005 0.000 0.011 0.001 
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.012 0.012 0.012 0.203 0.016 0.012 0.012 
0.000 0.000 0.000 -0.001 0.002 0.000 0.000 0.000 0.006 -0.001 -0.008 0.220 0.000 0.006 
0.000 0.000 -0.001 -0.001 0.000 0.002 0.000 -0.001 0.000 -0.001 -0.006 -0.001 0.223 0.004 
0.000 0.000 0.000 -0.001 0.000 0.000 0.002 -0.001 0.000 -0.001 -0.006 0.003 0.002 0.222 

¶�� 

0.997 0.003 -0.045 -0.066 -0.004 -0.003 -0.001 -0.001 0.000 -0.004 -0.005 0.000 -0.001 -0.001 
-0.009 0.997 -0.009 -0.068 -0.016 -0.004 -0.003 -0.001 0.000 -0.002 -0.005 -0.002 -0.001 0.000 
0.042 0.005 0.996 -0.067 0.000 0.042 0.005 0.004 0.001 -0.001 -0.005 0.000 0.004 0.001 
0.066 0.070 0.060 0.985 0.088 0.067 0.070 0.005 0.006 0.004 -0.002 0.006 0.005 0.006 

-0.002 0.010 -0.006 -0.089 0.996 -0.002 0.010 0.000 0.001 -0.001 -0.006 -0.001 0.000 0.001 
-0.003 -0.001 -0.046 -0.065 -0.004 0.997 0.004 -0.001 0.000 -0.005 -0.005 0.000 -0.001 0.000 
-0.003 -0.003 -0.009 -0.068 -0.016 -0.008 0.998 -0.001 0.000 -0.002 -0.005 -0.002 -0.001 0.000 
-0.001 0.000 -0.005 -0.005 -0.001 -0.001 0.000 0.997 0.004 -0.046 -0.065 -0.004 -0.003 -0.001 
-0.002 0.000 -0.002 -0.005 -0.002 -0.001 0.000 -0.008 0.998 -0.009 -0.068 -0.016 -0.004 -0.003 
0.005 0.001 -0.001 -0.005 0.000 0.004 0.001 0.041 0.005 0.996 -0.067 0.000 0.042 0.005 
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0.006 0.006 0.004 -0.002 0.006 0.005 0.006 0.067 0.070 0.060 0.985 0.088 0.067 0.070 
0.000 0.001 -0.001 -0.007 -0.001 0.000 0.001 -0.003 0.010 -0.006 -0.089 0.996 -0.002 0.010 

-0.001 0.000 -0.005 -0.005 -0.001 -0.001 0.000 -0.003 -0.001 -0.046 -0.065 -0.004 0.997 0.004 
-0.001 0.000 -0.001 -0.005 -0.002 -0.001 0.000 -0.004 -0.003 -0.009 -0.068 -0.016 -0.008 0.997 

¶�� 

1.348 0.304 0.390 0.254 0.117 0.130 0.071 0.197 0.083 0.100 0.072 0.044 0.048 0.031 
0.304 1.337 0.119 0.263 0.399 0.071 0.142 0.083 0.195 0.044 0.075 0.103 0.031 0.052 
0.390 0.119 1.111 0.267 0.086 0.390 0.119 0.100 0.044 0.155 0.072 0.036 0.100 0.044 
0.254 0.263 0.267 0.749 0.292 0.254 0.263 0.072 0.075 0.072 0.096 0.078 0.072 0.075 
0.117 0.399 0.086 0.292 1.181 0.117 0.399 0.044 0.103 0.036 0.078 0.168 0.044 0.103 
0.130 0.071 0.390 0.254 0.117 1.348 0.304 0.048 0.031 0.100 0.072 0.044 0.197 0.083 
0.071 0.142 0.119 0.263 0.399 0.304 1.337 0.031 0.052 0.044 0.075 0.103 0.083 0.195 
0.197 0.083 0.100 0.072 0.044 0.048 0.031 1.348 0.304 0.390 0.254 0.117 0.130 0.071 
0.083 0.195 0.044 0.075 0.103 0.031 0.052 0.304 1.337 0.119 0.263 0.399 0.071 0.142 
0.100 0.044 0.155 0.072 0.036 0.100 0.044 0.390 0.119 1.111 0.267 0.086 0.390 0.119 
0.072 0.075 0.072 0.096 0.078 0.072 0.075 0.254 0.263 0.267 0.749 0.292 0.254 0.263 
0.044 0.103 0.036 0.078 0.168 0.044 0.103 0.117 0.399 0.086 0.292 1.181 0.117 0.399 
0.048 0.031 0.100 0.072 0.044 0.197 0.083 0.130 0.071 0.390 0.254 0.117 1.348 0.304 
0.031 0.052 0.044 0.075 0.103 0.083 0.195 0.071 0.142 0.119 0.263 0.399 0.304 1.337 ¶�� 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 ¶�� 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

 

Table A.2: Observer gains 
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Appendix B: MATLAB Code of the Model 

% Physical constants 
l=7.9E-4;  
lambda=9.1E-2;  
Sigma_f=1.262E-3;  
sigma_x=1.2E-18;  
v=3.19E5;  
gamma_I=6.18E-2; 
lambda_x=2.1E-5;  
beta=7.5E-3; 
Sigma_a=3.2341E-3;  
E_eff=3.2E-17; 
gamma_x=6E-3;  
D=0.9328;  
lambda_I=2.878E-5;  
m_d=1; 
m_i=2; 
K_i=-3.5E-5; 
h_i0=100;  
T_f0=547.2831;  
T_c0=541.4037;  
T_1=539;  
mu_f=-3.4722E-6;  
mu_c=3.33333E-5;  
k_a=1.38428E-3;  
k_b=4.238E-1;  
k_c=1.758E-2;  
k_d=4.3016759E-2;  
  
% Zonal volumes  
V=[14.723280,14.72328,17.633616,8.833968,17.633616,14.72328,14.723280,14.723280
,14.72328,17.633616,8.833968,17.633616,14.72328,14.723280]'.* 1.0e+06; 
  
% Xenon absorption microscopic cross section 
for i = 1:14 
    sigmabar_x(i,1) = sigma_x/(E_eff*Sigma_f*V(i,1)); 
end 
  
% Coupling coefficients 
alpha = [0  5.607 8.4105 2.803  0  0   0    3.390  0  0  0  0  0  0 
          5.607 0  0  2.803 8.4105  0   0    0  3.390  0  0  0  0  0 
          9.650 0  0  4.824   0  9.650  0    0     0   3.39  0  0  0     0 
          5.180 5.180 7.772   0  7.772  5.18 5.18  0   0  0  3.39  0  0  0 
          0  9.650 0  4.824   0  0   9.65    0     0   0  0  3.390 0     0 
          0  0  8.4105 2.803  0  0   5.607   0     0   0  0  0   3.39    0 
          0  0  0  2.803 8.4105 5.607    0   0     0   0  0  0   0   3.39 
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          3.390 0  0  0    0    0    0   0   5.607 8.4105 2.803  0   0   0 
          0  3.390 0  0    0    0    0   5.607  0  0  2.803 8.4105  0   0 
          0  0  3.390 0    0    0    0   9.65   0  0  4.824    0 9.65  0 
          0  0  0  3.39    0   0   0  5.180  5.180 7.772 0 7.772 5.18  5.18 
          0  0  0  0  3.39 0    0    0   9.65   0    4.824  0   0  9.650 
          0  0  0  0  0    3.39 0    0   0   8.4105  2.803  0   0  5.607 
          0  0  0  0  0    0    3.39 0   0   0 2.803 8.4105 5.607    0]*l ; 
  
% Steady state values 
p0 =[132.75, 135.99, 123.30, 98.55, 140.40, 132.75, 135.99 132.75, 135.99, 123.30, 
98.55, 140.40, 132.75, 135.99]';  
 
I0 = (gamma_I*Sigma_f/lambda_I).*p0;  
 
for i=1:14 
    X0(i,1) = 
((gamma_I+gamma_x)*Sigma_f*p0(i,1)/(lambda_x+sigmabar_x(i,1)*p0(i,1)));  
end 
 
C0 = (beta/(l*lambda)).*p0;  
  
% A matrix 
A=zeros(72,72); 
for i = 1:14 
    for j = 1:14 
        P0(i,j) = p0(j,1)/p0(i,1); 
    end 
end 
for i = 1:14 
    for j=1:14 
        if  i==j 
            A(56+i, 56+i) = (-1/l)*(beta+sum((alpha(i,:).*P0(i,:))')) + (1/l)*alpha(i,i)*P0(i,i); 
        else 
            A(56+i, 56+j) = (1/l)*alpha(i,j)*P0(i,j); 
        end 
    end 
    A(56+i, 28+i) = (beta/l); 
    A(56+i, 14+i) = -(sigmabar_x(i,1)*X0(i,1))/(l*Sigma_a); 
    A(56+i, 42+i) = -K_i/l; 
    A(56+i, 71) = mu_f/l; 
    A(56+i, 72) = mu_c/l; 
    A(28+i, 56+i) = lambda; 
    A(28+i, 28+i) = -lambda; 
    A(i, 56+i) = lambda_I; 
    A(i,i) = -lambda_I; 
    A(14+i, 56+i)= lambda_x - lambda_I * I0(i,1)/X0(i,1); 



58 
 

    A(14+i,i) = lambda_I * I0(i,1)/X0(i,1); 
    A(14+i, 14+i) = -(lambda_x + sigmabar_x(i,1)*p0(i,1)); 
    A(71, 56+i) = k_a*P0(i,1); 
end 
A(71,71) = -k_b; 
A(71,72) = k_b; 
A(72,71) = k_c; 
A(72,72) = -(k_c+k_d); 
  
% B matrix 
B=[zeros(42,14);-m_i*eye(14,14);zeros(16,14)]; 
  
% C matrix 
C=[zeros(14,14) zeros(14,14) zeros(14,14) zeros(14,14) eye(14,14) zeros(14,1) 
zeros(14,1)]; 
  
% Sensitivity matrix 
tau=0.1; 
eAt=expm(A.*tau); 
S=A*eAt; 
  
% Decoupling algorithm 
J0=1e10; 
for i0 = 1:72 
    for j0 = i0+1:72 
        for k0 = j0+1:72 
            if  (i0<=42 && i0>=57) 
                Set1=[i0 14*3+mod(i0,14)];  
            else 
                Set1=[i0]; 
            end 
            if  (j0<=42 && j0>=57) 
                Set2=[j0 14*3+mod(j0,14)];  
            else 
                Set2=[j0]; 
            end 
            if  (k0<=42 && k0>=57) 
                Set3=[k0 14*3+mod(k0,14)];  
            else 
                Set3=[k0]; 
            end 
             
            for l= 1:14  
                [row col]=find((l~=[Set1,Set2,Set3])==0); 
                if  isempty(col)  
                    SS=[abs(S(l,i0)/S(i0,i0)) abs(S(l,j0)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];  
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                    [m n]=max(SS);  
                    if  n==1 
                        Set1=[Set1 l 14*3+l];  
                    elseif n==2 
                        Set2=[Set2 l 14*3+l]; 
                    elseif n==3 
                        Set3=[Set3 l 14*3+l]; 
                    end 
                end 
            end 
            for l= 15:42 
                [row col]=find((l~=[Set1,Set2,Set3])==0); 
                if  isempty(col) 
                    SS=[abs(S(l,i0)/S(i0,i0)) abs(S(l,j0)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))]; 
                    [m n]=max(SS); 
                        if  n==1 
                            Set1=[Set1 l]; 
                        elseif n==2 
                            Set2=[Set2 l]; 
                        elseif n==3 
                            Set3=[Set3 l]; 
                    end 
                end 
            end 
            for l= 57:72 
                [row col]=find((l~=[Set1,Set2,Set3])==0); 
                if  isempty(col) 
                    SS=[abs(S(l,i0)/S(i0,i0)) abs(S(l,j0)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))]; 
                        [m n]=max(SS); 
                        if  n==1 
                            Set1=[Set1 l]; 
                        elseif n==2 
                            Set2=[Set2 l]; 
                        elseif n==3 
                            Set3=[Set3 l]; 
                    end 
                end 
            end 
                       
T=sqrt((1/72)*(sum((S(Set1,i0)/S(i0,i0)).^2)+sum((S(Set2,j0)/S(j0,j0)).^2)+sum((S(Set3,
k0)/S(k0,k0)).^2)));  
            Num=[size(Set1'); size(Set2'); size(Set3')]; 
            Av=(1/3)*sum(Num(:,1));  
            E=sqrt((1/3)*sum((Num(:,1)-Av).^2));  
            J=(1/24)*E-T;  
            if  J<J0  
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                J0=J;  
                best=[i0,j0,k0]; 
            end 
        end 
    end 
end 
        
i0=best(1);j0=best(2);k0=best(3);  
  
 % Reconstructs the optimum partitioning 
    if  (i0<=42 && i0>=57) 
                Set1=[i0 14*3+mod(i0,14)];  
            else 
                Set1=[i0]; 
            end 
            if  (j0<=42 && j0>=57) 
                Set2=[j0 14*3+mod(j0,14)];  
            else 
                Set2=[j0]; 
            end 
            if  (k0<=42 && k0>=57) 
                Set3=[k0 14*3+mod(k0,14)];  
            else 
                Set3=[k0]; 
            end 
             
            for l= 1:14  
                [row col]=find((l~=[Set1,Set2,Set3])==0); 
                if  isempty(col)  
                    SS=[abs(S(l,i0)/S(i0,i0)) abs(S(l,j0)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))];                    
                    [m n]=max(SS);  
                    if  n==1 
                        Set1=[Set1 l 14*3+l];  
                    elseif n==2 
                        Set2=[Set2 l 14*3+l]; 
                    elseif n==3 
                        Set3=[Set3 l 14*3+l]; 
                    end 
                end 
            end 
            for l= 15:42 
                [row col]=find((l~=[Set1,Set2,Set3])==0); 
                if  isempty(col) 
                    SS=[abs(S(l,i0)/S(i0,i0)) abs(S(l,j0)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))]; 
                    [m n]=max(SS); 
                        if  n==1 
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                            Set1=[Set1 l]; 
                        elseif n==2 
                            Set2=[Set2 l]; 
                        elseif n==3 
                            Set3=[Set3 l]; 
                    end 
                end 
            end 
            for l= 57:72 
                [row col]=find((l~=[Set1,Set2,Set3])==0); 
                if  isempty(col) 
                    SS=[abs(S(l,i0)/S(i0,i0)) abs(S(l,j0)/S(j0,j0)) abs(S(l,k0)/S(k0,k0))]; 
                        [m n]=max(SS); 
                        if  n==1 
                            Set1=[Set1 l]; 
                        elseif n==2 
                            Set2=[Set2 l]; 
                        elseif n==3 
                            Set3=[Set3 l]; 
                    end 
                end 
            end 
   
 SET1=[]; 
[r1 c1]=size(Set1); 
for i=1:c1 
    [ms1 ns1]=min(Set1);  
    SET1=[SET1 ms1];  
    Set1=[Set1(1,1:ns1-1) Set1(1,ns1+1:end)];  
end 
SET2=[]; 
[r2 c2]=size(Set2); 
for i=1:c2 
    [ms2 ns2]=min(Set2); 
    SET2=[SET2 ms2]; 
    Set2=[Set2(1,1:ns2-1) Set2(1,ns2+1:end)]; 
end 
SET3=[]; 
[r3 c3]=size(Set3); 
for i=1:c3 
    [ms3 ns3]=min(Set3); 
    SET3=[SET3 ms3]; 
    Set3=[Set3(1,1:ns3-1) Set3(1,ns3+1:end)]; 
end 
  
% Creates sub-systems for controller design  
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A1=[]; 
for i=1:c1 
    for j=1:c1 
    A1(i,j)=A(SET1(i),SET1(j));  
    end 
end 
A2=[]; 
for i=1:c2 
    for j=1:c2 
    A2(i,j)=A(SET2(i),SET2(j));  
    end 
end 
A3=[]; 
for i=1:c3 
    for j=1:c3 
    A3(i,j)=A(SET3(i),SET3(j));  
    end 
end 
  
[rp cp1 vp]=find(SET1>=57 & SET1<=70);  
[ri ci1 vi]=find(SET1>=43 & SET1<=56);  
[rcp ccp1]=size(cp1); 
if  isempty(cp1) 
    C1=zeros(14,c1); 
    Q1=eye(c1); 
else 
    SET1p=zeros(1,14); SET1p(1,SET1(1,cp1)-56)=p0(SET1(1,cp1)-56,1)'; 
    C11=diag(SET1p);I1=[]; for i=1:14 if  sum(C11(:,i)~=zeros(14,1)); I1=[I1 i]; end; end; 
C11=C11(:,I1);  
    C1=[zeros(14,cp1(1)-1) C11 zeros(14,c1-cp1(end))];  
    Q1=C1'*C1;  
end 
[rci1 cci1]=size(ci1); 
if  isempty(ci1) 
    B1=zeros(c1,14); 
else 
    SET1i=zeros(1,14); SET1i(1,SET1(1,ci1)-42)=ones(1,cci1); 
    B11=diag(SET1i);Ii1=[]; for i=1:14 if  sum(B11(:,i)~=zeros(14,1)); Ii1=[Ii1 i]; end; 
end; B11=B11(:,Ii1);  
    B1=[zeros(ci1(1)-1,14);B11';zeros(c1-ci1(end),14)];  
end 
  
[rp cp2 vp]=find(SET2>=57 & SET2<=70);  
[ri ci2 vi]=find(SET2>=43 & SET2<=56);  
[rcp ccp2]=size(cp2); 
if  isempty(cp2) 
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    C2=zeros(14,c2); 
    Q2=eye(c2); 
else 
    SET2p=zeros(1,14); SET2p(1,SET2(1,cp2)-56)=p0(SET2(1,cp2)-56,1)'; 
    C22=diag(SET2p);I2=[]; for i=1:14 if  sum(C22(:,i)~=zeros(14,1)); I2=[I2 i]; end; end; 
C22=C22(:,I2);  
    C2=[zeros(14,cp2(1)-1) C22 zeros(14,c2-cp2(end))];  
    Q2=C2'*C2; 
end 
[rci2 cci2]=size(ci2); 
if  isempty(ci2) 
    B2=zeros(c2,14); 
else 
    SET2i=zeros(1,14); SET2i(1,SET2(1,ci2)-42)=ones(1,cci2); 
    B22=diag(SET2i);Ii2=[]; for i=1:14 if  sum(B22(:,i)~=zeros(14,1)); Ii2=[Ii2 i]; end; 
end; B22=B22(:,Ii2);  
    B2=[zeros(ci2(1)-1,14);B22';zeros(c2-ci2(end),14)];  
end 
  
[rp cp3 vp]=find(SET3>=57 & SET3<=70);  
[ri ci3 vi]=find(SET3>=43 & SET3<=56);  
[rcp ccp3]=size(cp3); 
if  isempty(cp3) 
    C3=zeros(14,c3); 
    Q3=eye(c3); 
else 
    SET3p=zeros(1,14); SET3p(1,SET3(1,cp3)-56)=p0(SET3(1,cp3)-56,1)'; 
    C33=diag(SET3p);I3=[]; for i=1:14 if  sum(C33(:,i)~=zeros(14,1)); I3=[I3 i]; end; end; 
C33=C33(:,I3);  
    C3=[zeros(14,cp3(1)-1) C33 zeros(14,c3-cp3(end))];  
    Q3=C3'*C3; 
end 
[rci3 cci3]=size(ci3); 
if  isempty(ci3) 
    B3=zeros(c3,14); 
else 
    SET3i=zeros(1,14); SET3i(1,SET3(1,ci3)-42)=ones(1,cci3); 
    B33=diag(SET3i);Ii3=[]; for i=1:14 if  sum(B33(:,i)~=zeros(14,1)); Ii3=[Ii3 i]; end; 
end; B33=B33(:,Ii3);  
    B3=[zeros(ci3(1)-1,14);B33';zeros(c3-ci3(end),14)];  
end 
  
if  B1==0 
    K1=zeros(14,14); 
else 
    [P1,L1,K1] = care(A1,B1,Q1); 
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end 
if  B2==0 
    K2=zeros(14,14); 
else 
    [P2,L2,K2] = care(A2,B2,Q2); 
end 
if  B3==0 
    K3=zeros(14,14); 
else 
    [P3,L3,K3] = care(A3,B3,Q3); 
end 
  
[nr1, nc1]=size(K1); 
[nr2, nc2]=size(K2); 
[nr3, nc3]=size(K3); 
  
K_add=zeros(14,72);K_add(:,SET1)=K1;K_add(:,SET2)=K2;K_add(:,SET3)=K3; 
  
nA1=size(A1); nA2=size(A2); nA3=size(A3); 
[LP1,LL1,LK1] = care(A1',C1',eye(nA1(1))); 
[LP2,LL2,LK2] = care(A2',C2',eye(nA2(1))); 
[LP3,LL3,LK3] = care(A3',C3',eye(nA3(1))); 
  
[P,L,K] = care(A,B,C'*C); 
[LP,LL,LK] = care(A',C',eye(72));         
  
K1_c=zeros(nr1, nc1); 
K1_c(find(SET1i==1),1:nc1)=K(find(SET1i==1),SET1); 
K2_c=zeros(nr2, nc2); 
K2_c(find(SET2i==1),1:nc2)=K(find(SET2i==1),SET2); 
K3_c=zeros(nr3, nc3); 
K3_c(find(SET3i==1),1:nc3)=K(find(SET3i==1),SET3); 
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