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Abstract 

To avoid the computational effort associated with full-core neutron transport calculations, full-core 

neutronics calculations for Pressurized Heavy-Water Reactors (PHWRs) are usually performed in 

diffusion theory using an approximate core model, whereby only two energy groups are utilized 

and two-group neutronic properties (i.e. macroscopic cross sections and diffusion coefficients) are 

homogenized in two dimensions over large sub-domains, each corresponding to a 28.6 cm x 28.6 

cm lattice cell.  The lattice cell is the elementary geometrical unit describing the rectangular array 

of fuel channels comprising the PHWR core.  The use of lattice-cell homogenization introduces 

some computational errors.  One possible way to reduce such homogenization errors is to sub-

divide the lattice cell into sub-cells and perform sub-cell-level homogenization.  In this study, the 

PHWR lattice cell is divided into 3 x 3 sub-cells.  Full-cell-averaged, as well as sub-cell-averaged 

two-group cross-sections, are generated for subsequent use in an equivalent two group two-

dimensional diffusion model. Cross sections with Superhomogenization (SPH) [Hebert, 2009] 

factors are also utilised in an attempt to improve accuracy.   The effect of using different 

homogenization models (full cell, partial cell, partial-cell with SPH-corrected cross sections) is 

tested on a two-dimensional partial-core model consisting of 3 x 3 lattice cells (bundles).  Results 

from reference transport model with detailed geometry 69-group are compared with cell-

homogenized two-group diffusion results obtained using full-cell homogenization and sub-cell 

homogenization with and without SPH correction factors. The application of sub-cell 

homogenization, as well as the use of SPH correction factors, is found to have only a minimal effect 

on computational accuracy.  
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Chapter 1: Introduction 

Neutronics calculations carried out for the design and operation of thermal nuclear reactors usually 

proceed in two steps: a lattice-level step, and a core-level step.  The core-level step utilises large-

region-averaged neutronic properties generated by the lattice-level calculations.  The generation of 

such average cross sections is called homogenization.  Most aspects of the homogenization 

calculations are common to both Pressurized Water Reactors (PWRs) and Pressurized Heavy-

Water Reactors (PHWRs), but specific features also exist.  This study is focused on homogenization 

techniques for PHWRs.  

The following sections explain the neutron transport equations and diffusion equations used to 

model the reactor core, and subsequently, the description of homogenization related errors are 

presented.  

 Neutron Transport Equation 

The neutron transport equation is the most accurate representation of the behaviour of neutron 

population in the nuclear reactor core. It is based on several assumptions. Firstly, the relativistic 

effects can be neglected as maximum neutron speeds achieved in a nuclear reactor are less than 

1/10th of the speed of light. Secondly, to keep the equation linear, only neutron collisions with 

nuclei are considered, while neutron-neutron collisions are ignored, as the neutron density is several 

orders of magnitude smaller than the atom density of materials in a reactor. Finally, neutron paths 

between collisions are assumed to be straight lines [Hebert, 2009]. Equation (1.1) shows the 

continuous-energy transport equation which expresses the neutron balance equation for any 

arbitrary infinitesimal volume. 
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Equation (1.1) is called the integro-differential form of the neutron-trsanspoirt equation because it 

is a partial differential equation with respect to spatial variables and, at the same time, an integral 

equation with respect to the energy and angle variables.  The term on the left side represents the 

rate of change of angular neutron density with respect to time.  ),ˆ,,( tEr 


 represents the angular 

flux as a function of position, energy, solid angle and time. ),,( tErt


  is the macroscopic total 

removal cross section.  ),ˆˆ,,( tEErs 


 represents the down-scattering into the energy 

interval dE  from the energy interval dE .  )(E  is the normalised fission neutron energy 

distribution. )(E is the total neutron yield as a function of energy.  ),,( tErf



 is the 

macroscopic fission cross section and ),,( tEr 


 represents the total neutron flux, as the fission 

reaction is independent of the direction of neutrons in the target volume, there is no argument of 

solid angle in the above flux function. 

The first term on the right side of the equation (1.1) is shown separately in equation (1.2); it 

represents the loss of neutrons due to leakage from an infinitesimal volume , which leads to a 

negative sign before it. 

 ),ˆ,,(ˆleakageby  Loss tEr 


  (1.2) 

The second term on the right side of the equation (1.1) is shown separately in equation (1.3) below; 

it represents the loss of neutrons due to nuclear interactions such as absorption and scattering..  It 

is also referred to as the total removal rate, and a negative sign also precedes it. 
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 ),ˆ,,(),,(__ tErtErrateremovalTotal t 


  (1.3) 

The third term on the right side of the equation (1.1) is represented separately in equation (1.4); it 

shows the neutrons gained due to scattering interactions of neutrons  in an infinitesimal volume and 

a positive sign precedes it. 

  



0 4

ˆ),ˆ,,(),ˆˆ,,(____


 EddtErtEErscatteringtoduegainneutrons s


(1.4) 

The fourth term in Equation (1.1) represents the neutron generation from fission reactions. It is 

shown separately in equation (1.5), and a positive sign precedes it.  

 EdtErtErE
E

fissionfromneutrons f
 



),,(),,()(
4

)(
__

0







 (1.5) 

Finally, the last term represents an external (independent of the flux level) neutron source and is 

preceded by a positive sign.  

The leakage term, equation (1.2), includes the gradient of the angular flux.  The scattering term 

shown in equation (1.4) has two integrals, one over the solid angle 4 and another over the energy 

spectrum.  The fission neutrons source term shown in equation (1.5) has one integral over the 

energy range.  All these constitute a complex integrodifferential form of the neutron transport 

equation.   

Some fundamental problems like initial designs, reactivity device worth associated with the reactor 

physics can be solved considering the steady-state case. For these time-independent problems, the 

time-independent, the neutron balance equation simplifies to the form in equation (1.6).  
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(1.6) 

The production term is divided by a constant “k”, called the “effective multiplication constant”, in 

order to force equality between the production rate and the loss rate. Additionally, all the nuclear 

reactions depend on the neutron’s energy involved in the interactions and neutron energy spectrum 

in a reactor spans a wide range, from meV to MeV.  For numerical computations, the neutron 

energy range is divided into multiple “energy groups”, a process called energy discretization 

[Hebert, 2009]. The multi-group neutron balance transport equation is given in equation (1.7). 
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 (1.7) 

where  )ˆ,( rg


  is the condensed flux in group g, )ˆ,(  rtg is the total removal cross sections 

from group g,  )(ˆˆ,
r

gg




  is the scattering cross section. 

Furthermore, the neutron current can be defined as  

  


 drrJ gg )ˆ,(ˆ)(


   (1.8) 

Because reaction rates do not depend on the incident neutron flux’s direction, it is useful 

to define the integral group flux as 

  


drr gg )ˆ,()(


  (1.9) 
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In the first leakage component after taking the divergence operator outside, the product term of the 

solid angle and the group flux can be simplified by substituting it with the current term as per 

equation (1.8).  Moreover, the flux appearing in the source terms can be substituted by equation 

(1.9).  Equation (1.10) represents the multi-group neutron balance equation with the current and 

integral flux in the source term.  

 )()()()()()()( ˆˆ,
rr

k
rrrrrJ

g

ggf

g

g

ggggtgg










 


  (1.10) 

Solving the steady-state transport equation (1.10) for a full core is a daunting computational task.  

After energy, angle and space discretization, writing the neutron balance equation and solving it 

becomes very complicated.   Moreover, from (1.10) it is apparent that the number of unknowns 

will grow linearly with the number of groups and quadratically with number of dimensions.  For 

larger geometries, the number of unknowns goes into millions [Nichita, 2015], this makes solving 

the neutron balance equation very onerous [Nichita, 2009]. Thus, for simplicity in computation, the 

problem is divided into two parts, firstly, the complex neutron balance equation is solved at the 

lattice cell level, an intermediate  set of macro-region-average macroscopic cross sections are 

generated, and subsequently, these macroscopic cross sections are used in the diffusion equation 

(A simpler approximation of the neutron transport equation) to find the power distribution of the 

whole core.  

 Neutron Diffusion Equation 

The diffusion equation is an approximation of the transport equation, and it has a simpler structure 

achieved  by approximating  the neutron current using  Fick’s law.  Fick’s law states that there is a 

directed flow of neutrons (neutron current) from a region of higher  (integral) neutron flux to a 

region of lower (integral) neutron flux.   Its mathematical expression is shown in equation (1.11) 
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 ggg DJ 
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 (1.11) 

where gJ


 is the group neutron current, g is integral neutron flux and gD is the diffusion 

coefficient of condensed energy group g.  The gradient operator on the group flux g , is oriented 

along the direction of the neutron flux increase.  As the direction of the neutron current is towards 

the region of lower flux , a negative sign precedes the  gradient . Substituting the neutron current 

and integral fluxes for the macro regions into the equation (1.10) gives the multi-group diffusion 

equation as shown in equation (1.12) 

 )()()()()()()]()([ rr
k

rrrrrrD
g

ggf

g

g

ggggtggg 






  


  (1.12) 

which simplifies to 
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 (1.13) 

Equation (1.13) represents the multi-group diffusion equation used for computation of whole core, 

where the total cross section tg  is decomposed to absorption cross section ag and scatting cross 

section (loss due to scattering of neutrons) glosss __  over condensed energy group g.  Furthermore, 

the condensation of cross sections, fluxes and regions reduces the number of unknown from 

millions to thousands depending on the spatial discretization.  This condensation process is across 

the neutronic properties are called homogenization, which is an averaging process over coarse 

energy groups and macro-regions.  
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For production calculations, two energy group are most often used: a fast energy group and a 

thermal energy group.  Neutrons having more energy than 0.625 eV are grouped as fast, and the 

rest are grouped as thermal [Donnelly, 1996]The wording thermal represents the fact that neutrons 

in this group is in equilibrium with their ambient energy/temperature. Thermal neutrons are the 

primary sources of fission. Neutrons from the thermal group are lost to capture, leakage and up-

scattering,  the last one due to target-nuclei vibrations.  However, all the neutrons generated from 

fission are fast.  They are lost from the fast group due to leakage, resonance capture and down 

scattering. Equation (1.13) transforms to Equation (1.14) for the fast group and (1.15) for the 

thermal group.   
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11221
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 ))()(()()()()()()( 2211222221 rrDrrrrrr a    (1.15) 

 
21  and  are the flux for fast and thermal group. 1a is the absorption cross-section for the fast 

group,
12 is the down-scattering cross section from fast group to thermal group. 

21 &  are the 

average total neutron yield for the fast and thermal group.  21 & ff   are the fission cross section 

for fast and thermal group. 
21 is the up-scattering from thermal group to fast group. 2a is the 

absorption cross-section for the thermal group, 1 2 and D D  are the diffusion coefficients for fast 

and thermal group.  All the cross sections used in equation (1.14) and (1.15) are homogenised and 

dependent on position. k  is called the multiplication constant.  For a finite geometry, it is keff and 

for infinite geometry it is k∞. In simpler terms, k is the ratio of the production rate of neutrons to 

the loss rate of neutrons. The following sections give a brief outline of the thesis, stating work 

carried out during the research. 
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  Thesis outline  

The thesis consists of  seven chapters including the current one. A brief description of the content 

of each chapter is presented in this section. 

Chapter 1: Introduction 

This chapter contains a description of the type of calculations used for nuclear power plant design 

and operations, an explanation of neutron transport equation, neutron diffusion equation and Thesis 

outline.   

Chapter 2: Problem Statement  

This chapter contains description of typical PHWR lattice cell, the standard homogenization (SH) 

method, and problems with the SH methodology, 

Chapter 3: Progress to date in PHWR Homogenization 

In this chapter, a brief description of the previous research in the relevant field is presented. Both 

techniques related to Superhomogenization factor and discontinuity factor are discussed. 

Chapter 4:  Method 

In this chapter, the definition of Superhomogenization (SPH) factors, Sub-cell homogenization, 

spatial discretization used for SPH factor generation are discussed. Additionally, this chapter 

includes a brief introduction to the transport code DRAGON and the diffusion code DONJON. The 

code structures and data structures are discussed. There is a short discussion on the modules used 

in the input file. 
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Chapter 5: Models 

This chapter includes the design of the DARGON model for lattice cell calculations and cross 

section generation. Short description of burnup calculations is presented. The design of the 

DONJON lattice cell model is presented. Furthermore, in this chapter design of the DRAGON 

partial core model (reference model) is described. The design of the DONJON partial core models 

with sub-cell cross sections (with and without SPH factors) and standard homogenization are 

explained.  

Chapter 6: Results and Discussion 

In this chapter, explanation of the normalisation of the results to the fission rate is given.  Results 

tables comprised of calculations without SPH factors, with SPH factors and standard 

homogenization method, are presented. Results are compared and discussed. 

Chapter 7: Conclusion and Future Work 

This chapter has the summary of the work done during the research, and subsequently, conclusion 

and future scope of work are stated. 
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Chapter 2: Problem Statement 

 Introduction 

The PHWR lattice is square, the pitch is 28.575 cm, but the fuel elements do not follow a 

rectangular arrangement.  Figure 2.1 shows a typical PHWR lattice cell which consists of 

moderator, calandria tube, pressure tube, fuel bundle, and high temperature and pressure coolant at 

the centre. A large volume of heavy water moderator surrounds the fuel channel which consists of 

the fuel bundle, pressure tube and calandria tube  the last two being separated by a gas annulus.  

The fuel bundle consists of thirty-seven fuel pins.  The central pin is surrounded by three more 

rings of fuel pins. The first ring from the centre has six pins, the second and third ring from the 

centre have twelve and eighteen pins respectively. Each fuel pin is made of a zircaloy tube which 

contains the natural uranium fuel pellets. The coolant is heavy water with ~99.7 % purity at ~550K.  

The moderator is also heavy water, but with ~99.9 % purity at 346 K.  The pressure tube is an alloy 

of Zr-Nb 2.5%, and the calandria tube is made of zircaloy. The ratio between the volumes of the 

moderator to total lattice cell is 0.82, which suggests a significant part of the lattice cell is 

moderator, and the fuel channel amounts to only 18% of the lattice cell volume. This configuration 

amplifies the heterogeneity present in the PHWR lattice cell.  

 Standard Homogenization 

Solving the multigroup neutron transport equation (1.10) for the full core is computationally 

challenging.  To simplify the problem, the detailed geometrical representation of the core is replace 

with a simplified one, whereby the cross sections are averaged over each lattice cell.  This averaging 

procedure is referred to as standard homogenization, and it is useful in reducing the size of the 

mathematical problem.  



11 

 

 

Figure 2.1  A typical 2D PHWR lattice cell. 

Subsequently, for full core calculation, the two-group diffusion equations (1.14) and (1.15) are used 

with the lattice cell-homogenized cross sections. The multi-dimensional, multigroup transport 

equation is first solved to calculate the cell-homogenized and group-condensed cross sections, 

using many energy groups (typically more than 50) with a detailed geometrical model for a lattice 

cell.  The average cross sections are then calculated as flux-weighted averages over the lattice cell 

as shown in equations (2.1) and (2.2). 
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RG is the average flux over a large region (in this case, one lattice cell) with volume 
RV and a 

coarse energy group G . 
rg is flux in a smaller region (calculated to capture neutron behaviors in 

small regions) with volume 
rV   and a fine energy group g . x

RG is a generic, homogenised 

macroscopic cross section for the large region 
RV  and coarse energy group G . x  can be 

considered as total or scattering or fission cross sections, 
x

rg  is the generic macroscopic cross 

section in the small region 
rV over the fine energy group g .  The error associated with this 

procedure is mostly due to the heterogeneity present in the large region
RV  e.g. solid fuel bundle at 

the centre and liquid moderator at the peripheral region. Figure 2.2 shows a graphic depiction of 

the standard homogenization used in PHWR; the different colour represents a different level of the 

irradiation e.g. freshly fueled channel, channel with mid-burnup and discharge burnup bundles; this 

is primarily due to daily fueling operations carried out in PHWR operations. 

 

Figure 2.2 Pictorial representation of the standard homogenization method applied in PHWR 

[Nichita, 2015] 
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 Problems with Standard Homogenization 

In standard homogenization, the transport equation is solved to generate the desired cross section 

sets for a single lattice cell with reflective boundary conditions, without considering the state of 

fuel bundles in the adjacent lattice cells, which makes it susceptible to homogenization errors 

[Shen, 2006].   The replacement of cobalt adjuster rods  with stainless steel rods in Pickering A has 

shown that the homogenised cross sections generated through equation (2.1) and (2.2) do not 

produce accurate results for strong neutron absorbing materials [Robinson, 1995]. Moreover, the 

homogenised cross sections generated through the standard homogenization technique could not 

preserve the reaction rates across the transport and diffusion models.  Overall,  standard 

homogenization cannot handle large reactivity changes in small spaces such as may arise due to 

the presence of a freshly fueled channel adjacent to a channel with high (discharge) burnup fuel 

[Dall’Osso, 2006]. Furthermore, the presence of large regions of reflector  material  near the 

peripheral channels always contributes to inaccuracies in generated cross sections by standard 

homogenization method.     
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Chapter 3: Progress to date in PHWR Homogenization 

The use of diffusion in conjunction with homogenized macroscopic cross sections obtained using 

standard homogenization produces less accurate results close to boundaries, neutron sources and 

neutron absorbers. Finding improved homogenization methods to improve the accuracy of 

diffusion-theory results has been an active area of reseaerch for the last 40 years. In the case of 

PWRs, Smith  (1980) developed Generalised Equivalence Theory (GET) to address the issue of 

preservation of reaction rates in both models. In GET the inter lattice leakage is accommodated by 

making the integral flux discontinuous at the inter lattice boundary.  The discontinuity is achieved 

by multiplying  the integral flux by “discontinuity factors”. These factors can be generated for both 

reflective boundary conditions and for proper boundary conditions with leakage representative of 

the target problem. Assembly Discontinuity Factors are the factors generated when applying GET 

to PWR fuel assembly with reflective boundary conditions. When proper boundary conditions with 

leakage are used in GET for the generation of discontinuity factors, these factors are called exact 

discontinuity factors. 

  Aragones and Anhert (1986) improved  the  accuracy of diffusion calculations by setting upan 

iterative process (using a linear discontinuous finite difference diffusion formulation ) to counter 

the innacuracies of standard homogenization by application of interface flux discontinuity 

factors.In the diffusion model, they successfully ensured diagonal dominance for the matrices 

generated by the application of discrete finite difference expansion and spatial discretization by 

applying limited incremental corrections to the diffusion coefficients. Moreover, this technique led 

to faster and steady convergence of the eigenvalues in PWR lattice cells surrounded by high 

reflector boundaries. However, their method needed the incremental corrections calculations to be 

carried out separately in-between each local and global calculation steps.     
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 Rahnema (1989) generated lattice cell cross sections as a function of boundary conditions with the 

formulation of boundary condition perturbation theory for improvement in capturing the 

environmental effects due inter-lattice leakage that may arise due to high differences in burnup 

between fuel bundles in adjacent channels. Kim and Cho (1993) improved on that by applying a 

better iterative scheme for generation of lattice cell cross sections with the application of flux 

weighted constants and variational principles (Pomraning, 1967) for PWR and BWR. They 

formulated the boundary conditions for fuel assembly cross section generation from both surface 

flux and leakage calculation using diffusion codes for the full core. Subsequently, they achieved 

results with similar accuracy by using assembly discontinuity factors (ADF) compared to applying 

global and local iteration (a computationally intensive method) to their set of PWR problems.  

Smith (1994) introduced a different method for lattice cell homogenization called 

“rehomogenization”. The homogenised cross sections are generated through recalculation in each 

step and avoided the adjustment of discontinuity factors in each iteration based on the adjustment 

of the transport model’s net-zero boundary surface current to emulate the flux shape generated by 

the diffusion model of the whole core. However, the computational  process depended on accurate 

geometry definition of the inter-lattice regions without the advantage of corrections that could have 

achieved by improving the discontinuity factors in each step.  

Rahnema and Nichita (1997) presented a method of corrections of the homogenised cross section 

and discontinuity factors using a linear interpolation scheme. The interpolation was applied to the 

homogenised parameters precomputed during the transport calculations. The discontinuity factors 

and homogenised parameters are independently related to surface current flux ratio at each surface. 

The technique corrected both the homogenised cross sections and discontinuity factors based on 

the actual boundary conditions at each lattice cell boundary. This method was successfully applied 

for the BWR in diffusion theory only, as the approximations used in this method could not handle 

strong  heterogeneity.  
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Clarno and Adams (2003) computed for environment effect on leakage in the presence of multiple 

fuel assemblies containing MOX and UO2 fuel using 1D and 2D models with various 

configurations.  They found encouraging results for fuel assemblies at certain positions in their 

configurations. Instead of generating discontinuity factors Herrero et al. (2012) developed a 

function fitting method that incorporates the environmental effects on the computed cross sections. 

Their method used a simplified Analytic Coarse Mesh Finite Difference (ACMFD) function that 

eliminated the interacting energy group terms by compensating for them in the cell buckling 

calculations and yielded a good set of cross sections for pin-by-pin diffusion calculation. Gomes 

(2012) determined the efficacy of the Assembly Discontinuity Factor (ADF) in the case of highly 

heterogeneous fuel assemblies with multiple fuel types with different burnups by using finite 

element codes, he concluded the use of ADF are necessary to get better results in highly 

heterogeneous configurations in PWR.  

Dall’Osso (2006) presented a modified rehmogenization technique, he introduced a delta cross 

sections coeffeicent to be used with the cross sections generated from the standard homogenization 

method to account for environmental effects.  His methods showed good improvement in 

preserving reaction rates across the models and showed better estimation of control rod worth. 

Another innovative technique was applied by Merk and Rohde (2011), in which they introduced 

reflective boundary condition inside the PWR fuel assembly for transport calculation and 

analytically solved the two group diffusion equation with an external source on a homogenous 2D 

model. The technique showed some improvement in efficiency in computation as there was no need 

of extra iteration compared to methods using discontinuity factors.  

One of the important approaches to preserve the reaction rates across the transport and diffusion 

models is the application of Superhomogenization. Superhomogenization adjusts homogenized 

cross sections by multiplying them by superhomogenization (SPH) factors (Hebert, 1993) in order 
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to achieve equality between the reaction rates in the homogenized model and in the heterogenous 

model.  SPH factors  address the problems with diffusion models without multiple iterations or 

modification of the diffusion code. Use of Superhomogenization factor was demonstrated by 

Hebert (1993) for PWR.  It showed promising results in control rod worth measurements against a 

reference transport model for pin-by-pin homogenization. Superhomogenization (SPH) factors are 

used with sub-cell (intra fuel assembly) homogenization, which leads to a penalty of additional 

computation needed due to extra spatial discretization.  With the advancement of computing power, 

the additional computation may not be an issue in future. It is important to notice that Hebert (1993) 

showed improvements in accuracy for PWR lattice cells, but there was no investigation of PHWR 

at lattice cell level.  Robinson and Tran (1995) used reaction rate conservation technique (similar 

to SPH method) in the calculation of homogenised cross-sections of stainless steel adjuster rod for 

Pickering Nuclear power Generating Station.  They found some better results compared to standard 

homogenization technique with respect to actual measurement data of the plant. However, they did 

not use the technique on PHWR fuel channels. Donnelly, J. V., et al. (1996) discussed the use of 

SPH factors in reactivity devices measurement in PHWR, they generated 1D (radial) SPH factors  

for a set of cross section generated in the 2D WIMS-AECL model and used the SPH adjusted cross 

sections in the  RFSP (Reactor Fueling Simulation Program) 3D model to get the reactivity device 

worth. They were able to get good results for the zone control units only.   Results for mechanical 

absorber rods were having very high errors compared to the actual on-site measurements.  

However, they did not use 2D SPH factor adjusted cross sections for standard full/partial core 

calculations with multiple channels and their calculations showed 15% error compared with 

equivalent DRAGON model. 

Berman (2013) pointed out some deficiencies of the SPH application with respect to preserving 

surface currents. He recommended using surface current adjusted diffusion coefficient to preserve 

the surface currents. However, SPH factor generation procedure assumes that the boundaries are 
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all reflective, during the generation of SPH factors the overall buckling is adjusted so that the 

eigenvalue is reduced to one, which is supposed to account for nonzero surface currents.  

Overall, from all the previous works it is evident that there had been a lot of work based on 

discontinuity factors, and the use of discontinuity factors showed some improvements in LWR 

computation accuracy, with additional computational steps. There had been some exceptional 

technique applied to reduce those extra computational expenses but the SPH factors method looks 

promising because of its ability to circumvent those additional steps of calculations, preserve the 

reaction rates across the transport and diffusion models and some encouraging results for PWRs 

discussed by Hebert (2009).  Apart from the use of SPH factors in the estimation of the worth of 

control devices, the method has never been applied in diffusion models in PHWR geometry and 

thus more investigations of SPH factors in PHWR lattice cell geometry are desirable.  The 

homogenization method described in the present work is based on the use of SPH factors for PHWR 

lattices, with a specific focus on sub-cell homogenization. 
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Chapter 4: Method 

One possible approach to reduce the errors due to lattice cell homogenization in PHWR is to sub-

divide the lattice cell into sub-cells and perform a sub-cell level homogenization. The aim of this 

research is to investigate the 3 x 3 sub-cell homogenization for a typical PHWR lattice cell using 

superhomogenization (SPH) factors.  

 Theoretical background 

4.1.1. Sub-cell homogenization 

In the standard homogenization method, the homogenised cross sections are generated over the 

volume of a single lattice cell. Splitting the lattice cell into multiple smaller regions and creating 

homogenised cross sections for those regions is called sub-cell homogenization. The use of sub-

cell homogenised cross section for full core calculation is also referred as heterogeneous diffusion 

calculations, and superhomogenization factors are used in heterogeneous diffusion calculation to 

establish equivalency between the transport and diffusion models. In this research, the typical 

PHWR lattice is divided into nine sub-cell regions in a 3×3 configuration. The eight peripheral 

regions consist of only the moderator and the central part includes some moderator and  the entire 

fuel channel  . Figure 4.1 shows a graphic depiction of the sub-cell homogenization in PHWR.  It 

can be seen that each PHWR fuel channel is divided into nine sub-cell regions. The different colours 

in figure 4.1 represent various levels of burnup in corresponding lattice cells.      
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Figure 4.1 Schematic representation of sub-cell homogenization in PHWR fuel channels. 

[Nichita, 2015] 

4.1.2. Superhomogenization 

The diffusion models and the transport models have dissimilarities, which generate different  values 

for the effective multipliction constant  for the same geometry and material properties, The 

superhomogenization (SPH) method is used for establishing the equivalence between the diffusion 

and the transport models at the sub-cell level. SPH helps to create the equivalence between fine 

region, fine energy group transport model and coarse region, coarse energy group diffusion model. 

The equality is achieved by preserving the reaction rates across the models. This equivalence means 

both the heterogeneous flux RG  for coarse region R and group G and diffusion flux RG  for same 

coarse region and the group should yield same reaction rate. For this, the volume and flux weighted 

cross section RG  for coarse region R and group G has to be multiplied by a factor. That factor is 

called the SPH factor. The SPH adjusted cross section for coarse region R and group G is defined 

as  

 RGRGRG  
~

  ( 4.1) 

where RG is SPH factor for coarse region R and group G. The reaction rate is conserved. 
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 RGRGRGRG 
~

 (4.2) 

The relationship between the average heterogeneous flux for coarse region R and group G and 

average diffusion flux for same region and group becomes 

  RGRGRG     (4.3) 

The SPH adjusted cross sections can be substituted to the two energy group diffusion equation 

(1.14) and (1.15).  Equation (4.4) and (4.5) shows the two energy group diffusion equation after 

the substitution, and subsequently, they are solved for fast flux 
1  and thermal flux

2 .  
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For the same geometry and material composition, the fast and thermal fluxes found after solving 

equation (4.4) and (4.5) are same as the fast and thermal fluxes generated by solving the transport 

equation (1.10), after normalisation. SPH factors address major issues of diffusion models with 

standard homogenization as input; SPH adjusted sub-cell cross sections had enabled more accurate 

total core calculations for PWR [Hebert, 2009].   

 Computational Tools 

Two standard codes are used for the computational purpose in this research; one is transported code 

DRAGON [Marleau, 2009], and the other is diffusion code DONJON [Varin, 2005]. Both the codes 

are developed at École Polytechnique de Montreal and are used in the Canadian nuclear industry 

to perform lattice cell and full-core calculations. The codes have datatype as linked lists and 
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functions as modules. They use CLE-2000 language as scripts, and the modules are linked together 

by the GAN generalised driver, a brief description of the codes is given in this chapter.  

4.2.1.   DRAGON 

DRAGON follows the deterministic approach for solving the integral neutron transport equations; 

the code can solve the integral neutron transport equation in two ways for a specified geometry. 

Firstly using 2D and 3D collision probability techniques and secondly by using the method of 

characteristics. It includes all of the functions that characterise a lattice cell code divided into 

several calculation modules.  The exchange of information between the different modules is 

ensured by exchange of well-defined data structures. For this study, the collision probability 

method is used to solve the neutron transport equation for fluxes and multiplication factors 

(eigenvalues). 

The code requires nuclear data from cross-section libraries, geometry information and module 

definitions for the desired calculation steps.  The nuclear data is used to generate the macroscopic 

cross sections for all materials (mixtures) in the model, while the geometry information defines the 

fuel assembly structures.  For this study a PHWR-lattice-cell geometry was modeled.   

4.2.2. DONJON 

DONJON is used in the nuclear industry to perform full reactor core diffusion calculations, it has 

its roots in diffusion solver code TRIVAC-3 and reactor modelling code XSIMUL.  The code 

follows the deterministic approach for solving 2D and 3D multi-group diffusion equation, 

DONJON includes all the functions to characterise a reactor core. Several calculation modules 

perform these functions. The modules are linked together by the GAN generalised driver and the 

exchange of information between the modules is ensured by exchange of well-defined data 

structures. The code requires the following inputs, like cross section of lattice cells/homogenized 

volumes, geometry information and module definitions for the desired solution by the developer. 
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Geometry information primarily defines the fuel assembly/lattice cells and reflector arrangements. 

For this study, my geometries portray homogenized volumes of PHWR fuel bundles and heavy 

water moderator. The geometries are divided into several regions and the desired group fluxes and 

are found by solving the multi-group diffusion equation in each region. There are multiple methods 

available in DONJON to solve the diffusion equation. In this research, the mesh cornered finite 

difference method is applied due to the application of sub-cell homogenizations.  

4.2.3. DRAGON/DONJON Code-Input Structure 

There are three principal parts of the DONJON and DRAGON input.  Those are the definition of 

materials, the definition of geometry and definition of solution control.  Some prerequisites and 

post requisites precede and follow respectively the major parts described above.  The prerequisites 

are declarations of variables and reference to microscopic cross sections library files.  The post 

requisite is the output file design as per the user’s requirements. Figure 4.2 represents a typical 

schematic of the DRAGON/DONJON input structure [Marleau, 2009]. 

 

 

 

 

 

 

 

Figure 4.2   Schematic of the input file structure for DRAGON/DONJON 

Declaration of variables 

Inclusion of Library files 

Definition of material mixtures 

Definition of geometry using 

the materials 

Definition of solution controls 

Configuration of Output files 
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Start 
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4.2.4. Modules  

There are several modules available in the two codes to carry out different functions associated 

with solving the transport or diffusion equations.  Some of the necessary modules used in 

DARGON are the LIB: GEO: NXT:  SHI:  ASM:  FLU:  EDI: and EVO: The LIB: module is used 

in the inclusion of microscopic library to the definition of material mixtures. The GEO: module is 

used for geometry definition. The spatial discretization needed for the computational accuracy, and 

it is applied in the geometry definition. The NXT: module is required to generate the tracking files 

for the defined geometry. The SHI: module used to capture the self-shielding phenomena on the 

fuel pin boundary. ASM: module is used for generating the collision probability matrix for the 

defined geometry. The FLU: module solves the transport equation for the flux and eigenvalues. 

The EVO: module is used for burnup calculations. EDI: modules gives the user flexibility in 

generating condensed cross sections for the desired energy levels.     

The modules employed by DONJON are GEOD: BIVACT: BIVACA: FLUD: MACD: and OUT: 

. The GEOD: module is used for geometry definition and additional spatial discretization. MACD: 

is used for reading the macroscopic cross sections of homogenised sections as a part of the martial 

definition.  BIVACT: and BIVACA: are used for tracking information generation based on the type 

calculation chosen to solve the diffusion equation in 2D. FLUD: module is used for solving the 

diffusion equation for the flux and eigenvalues. OUT: module is used for generating output files 

based on the user requirements. 

 Calculation Steps 

The following methodology is used for the investigation of the 3 x 3 sub-cell homogenization for 

a typical PHWR lattice cell using superhomogenization (SPH) factors. Firstly, for a PHWR lattice 

cell, the sub-cell macroscopic cross sections with and without SPH factors are generated using 

transport code DRAGON and the boundary conditions used in the lattice cell model are reflective. 
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However, during normal operations, every lattice cell remains critical.  To simulate that effect, all 

the calculation done at the lattice cell level are type B1 calculations and  this calculation method 

solves the transport equation by adjusting the leakage to ensure criticality at the lattice cell level 

[Hebert, 2009].  

Secondly, these sub-cell cross sections are put in the diffusion model for the lattice cell generated 

using the diffusion code DONJON. It’s important to notice that the diffusion and transport 

equations are different as previously discussed in section 1.1 and 1.2, therefore, in the solution the 

eigenvalues and fluxes are different. Subsequently, the fluxes are normalised to the fission rate in 

both results to observe the equivalency. After the successful equivalency test, further sub-cell 

macroscopic cross sections both with and without SPH factors and full-cell cross sections (SH) at 

different burnup level are generated for subsequent use in diffusion models.   

A partial core reference DRAGON model is developed, to be used as a reference.  This model has 

nine PHWR lattice cells in a 3×3 configuration.  Out of the nine lattice cells, two of the lattice cells 

have fresh fuel, and the rest have fuel at the discharge burnup level.  Equivalent DONJON partial 

core models are developed and these models are capable of handling both sub-cell (with and 

without SPH factors) and full cell cross sections. Total fission rate is calculated and normalised to 

one for each PHWR fuel bundle model, in the next page figure 4.3 shows a brief description of the 

methodology followed during the research.   In the following chapter figure 5.1 and 5.5 shows the 

lattice cell model developed in the DRAGON and DONJON respectively and the figures for partial 

core models are shown in section 5.2. 
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Figure 4.3 Methodology flow chart 

 SPH factor generation in DRAGON 

There are two major steps for sub-cell SPH factor generation. Firstly, for desired geometry the 

transport equation is solved using the lattice code DRAGON. The results obtained from the lattice 

code sets the target reaction rates. Secondly, SPH factors are generated in an iterative process to 

get the equivalency with target reaction rates established in the first step. Subsequently, the full-

core calculations can be performed using the SPH  adjusted cross sections and diffusion 

coefficients. As PHWR fuel bundle is cylindrical, fine Cartesian meshes can’t be applied to get the 

sub-cell  SPH adjusted cross sections. DRAGON can generate SPH factors for rectangular 

geometry only. Therefore, in this research, SPH factors for square and rectangular sub-cell regions 

are produced.  
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Chapter 5: Models  

This chapter includes a description of the DARGON model for lattice cell calculations and cross 

section generation.  A short description of burnup calculations is also included. A description of 

the DONJON lattice cell model is presented as well.  Furthermore, in this chapter, the description 

of the DRAGON partial core model (reference model) is described and the design of the DONJON 

partial core models with sub-cell cross sections (with and without SPH factors) and standard 

homogenization are explained. 

 Lattice Cell Models 

There are two lattice cell models, one transport model and one diffusion model. The homogenised 

macroscopic cross sections for both sub-cell and full cell are generated using DRAGON. The sub-

cell cross sections are used in the DONJON (diffusion) lattice cell model. As stated earlier, in this 

research, the typical PHWR lattice cell is divided into nine sub-cell regions in a 3×3 configuration 

where the eight peripheral regions consist of only moderator, and the central part includes all 

components of a typical PHWR lattice cell.  The homogenised cross sections and flux distribution 

are condensed to two energy groups with the group boundary at 0.625 eV.  Energies below the 

0.625 eV energy level from the thermal group, while those above from the fast group.  

The PHWR lattice cell consists of a fuel bundle residing within a pressure tube containing high 

temperature and high-pressure D2O coolant (see figure 2.1).  The fuel bundle consists of 37 fuel 

pins arranged in three concentric rings surrounding a central pin.  The first ring from the centre has 

6 pins while the second and third rings have 12 and 18 pins, respectively.  Each fuel pin consists of 

around 30 UO2 pellets that are encased by a layer of cladding which is modelled as 100% natural 

zirconium.  The fuel is modelled with a density of 10.6 g/cm3 and a U-235 weight percent of 0.711 

corresponding to natural uranium.  A calandria tube surrounds the pressure tube, which in turn is 
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surrounded by D2O moderator that is kept thermally isolated from the coolant by the presence of 

an annular gap between the two tubes.  The pressure tube is modelled as an alloy of natural 

zirconium with 2.5% niobium while the calandria tube is modelled as 100% natural zirconium 

[Haroon et al., 2016].  

5.1.1. DRAGON Lattice cell model 

A DRAGON lattice cell model with 3x3 sub-cell splitting is developed.  It takes the sub-cell 

geometry, material mixtures and microscopic cross section libraries as input and generates 

macroscopic cross sections data of two groups for the full cell as well as the individual sub-cell 

regions using collision probability method. The microscopic cross section library used, is 

developed by the WIMS-D Library Update (WLUP) project at the IAEA. The microscopic thermal 

scattering cross sections for light water and heavy water are taken from the library file using INFO: 

module in DRAGON. Figure 5.1 shows the single lattice cell DRAGON model utilised in this 

study. There are some extra splitting in the x and y-axis at the centre of lattice cell model for 

computational purposes.  The lattice cell model also generates the library file and burnup file 

containing the burned cross sections as well as isotope densities. The DRAGON version used in 

this research is the 32 bit v-3.05.   The lattice cell model is used for the burnup estimation, the 

desired group fluxes and keff calculations.  Macroscopic cross sections for the entire cell as well as 

for the sub-cells are generated both with and without SPH factors. 
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Figure 5.1 PHWR Lattice cell model generated using DARGON 3.05.  Colours represent 

different material mixtures 

5.1.1.1. Spatial discretization 

The geometry is divided into several regions for adequate spatial discretization. For cylindrical 

PHWR fuel bundles, Cartesian mesh refinement can not be used, but SPH can be applied by using 

larger sub-cell divisions, that is why the PHWR lattice cell is split into nine regions in the 

configuration of 3×3. The coolant region must be divided into annuli of thickness equal to 0.25 to 

0.5 times the mean free path of the neutron to model the nuclear interactions accurately and in the 

case of heavy water, the average mean free path around 2 cm, therefore, for PHWR this corresponds 

to individual spatial regions with a width of 0.5 cm to 1.00 cm [Jonkmans, 2006].  A 4x4 division 

is sufficient for the moderator, where the spatial variation of the neutron flux is much slower.  Finer 

spatial discretization at lattice cell levels leads to marginally more accurate results at the expense 

of computing time.  In this research, these practices are applied, and the fuel channel part  of the 

PHWR lattice cell (region 5 in figure 5.1) is divided into 128 regions.  Out of the 128 regions, only 
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4 are rectangular regions and 124 are circular regions in the 2D lattice cell transport model.  Overall, 

the lattice cell is divided into 140 regions. This spatial discretization at PHWR lattice cell level is 

shown in figure 5.2.  

 

Figure 5.2   Spatial discretization applied in DRAGON lattice cell. 

5.1.1.2. Self-shielding Calculations 

Material mixture definitions are an essential part of the lattice cell modelling. There is a common 

practice to use multiple identifiers for the same material composition and this practice helps in 

avoiding unintended smearing of material compositions spatially distributed across the fuel channel 

[Jonkmans, 2006].  Figure 5.3 shows a single fuel pin with 8 fine radial spatial regions with 4 

material mixtures and out of the 4 material mixtures, 3 are the fuel compositions which is natural 

uranium dioxide.  
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Due to neutron absorption in fuel resonances, high localised absorption occurs at the periphery of 

the fuel pin.  These   resonance absorptions lead to a lower number of thermalized neutrons reaching 

the centre of the fuel pin. This phenomenon is called self-shielding, and it is captured by the SHI: 

module in DRAGON. The use of multiple identifiers for the same fuel composition enables the 

computation of the loss of neutron due to self-shielding. In the lattice model the fuel at the clad 

boundary is indexed separately to perform the self-shielding calculations [Marleau, 2009]. 

 

Figure 5.3 Fine spatial discretization at fuel pin level in the lattice cell model. 

5.1.1.3. Burnup calculations 

The burnup calculation is performed using the EVO: module, using multiple steps to calculate the 

burnup-dependence of the fuel composition in the lattice cell. For the calculation of the fuel 

composition beyond fresh-fuel conditions, the lattice cell, is irradiated at a power density of 25 

kW/kg (U) with the time step adjusted such that the final burnup of 7,500 MWd/t (U) is reached in 

twenty burnup steps.  Between 0 and 1250 MWd/t(U), the burnup steps range from 25 to 250 

MWd/t(U) to capture the initial, sharp decline of the reactivity due to the accumulation of saturating 

fission products, followed by its subsequent rise resulting from plutonium buildup.  Beyond 1250 

MWd/t(U), the burnup steps are increased to 375 MWd/t(U) and then to 625 MWd/t(U) between 
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the mid-burnup value of 3750 MWd/t(U) and the final discharge burnup of 7500 MWd/t(U) 

[Haroon et al., 2016]. 

5.1.1.4. Leakage adjustment and output file 

The boundary conditions used in the lattice cell model are reflective, corresponding to an infinite 

lattice.   Theoretically, that means the loss of neutrons due to leakage is zero. However, in all real 

reactors there is always a significant number of neutrons leaking out.  During normal, steady-state, 

operation every lattice cell remains critical. To simulate that effect, all the calculation done at the 

lattice cell level are type B1 calculations and  this calculation method solves the transport equation 

by adjusting the buckling to ensure criticality at the lattice cell level. Full cell cross sections and 

sub-cell cross sections both with and without SPH factors are generated at all burnup levels with 

the EDI: and BIVACT: modules. Figure 5.4 shows a diagram of the data flow in the lattice cell 

model used in this research. The final output file consists of results generated by the numerical 

calculation, plus generic information like the version of the code, title of the input file, and date 

and time of execution.  
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Figure 5.4 Diagram of the data flow in the DRAGON lattice cell model 
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5.1.2. DONJON lattice cell model 

DONJON is used for diffusion calculations.  In this study, the sub-cell cross sections generated 

during the lattice calculations are used to construct a diffusion model of the lattice cell.  The aim is 

to compare lattice-level diffusion results with lattice-level transport results and verify whether the 

two types of reaction rates are equal. Lattice cell level DONJON models using sub-cell cross 

sections both with and without SPH factors are developed.  Figure 5.5 shows the DONJON lattice 

cell model. 

 

Figure 5.5 DONJON lattice cell model. Each colour represents a different  set of  homogenized 

cross sections 

 Partial core models 

For testing the application of SPH factors, multiple partial core models are developed. All partial 

core models have nine PHWR lattice cells arranged in a 3×3 configuration. Out of the nine PHWR 

lattice cells, seven fuel bundles are modelled with discharge burnup level, and two fuel bundles are 
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modelled as fresh fuel bundles, to add heterogeneity to the partial core models.  All the outer 

boundary conditions are taken to be reflective.  The partial core reference model is developed using 

DRAGON, and the other partial core models are developed using DONJON.  Several types of cross 

sections and discretizations are used for the DONJON models: full-cell cross sections (standard 

homogenization), sub-cell cross sections with and without SPH factors, and with different spatial 

discretization (81 and 144 regions).  

5.2.1. Reference Partial Core Model 

A partial core transport model is developed in DRAGON as a reference for k∞ and fission rate 

results. Figure 5.6 shows the reference partial core model; ZB represents zero burnup cross sections, 

and DB represents discharge burnup cross-sections, which is 7500 MWd/t(U) for a typical PHWR 

fuel bundle.  In the reference model, the nine PHWR lattice cells are divided into 144 major square 

regions. All fuel channels are split into 1116 annular regions; this detailed spatial discretization is 

used to improve the accuracy of the reference model. The burnup-dependent cross sections and 

isotope density files generated in the lattice cell DRAGON model are used as input data to the 

partial core diffusion model. 
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Figure 5.6 3×3 Partial core reference model designed in DRAGON  ZB represents zero burnup 

sections, and DB represents discharge burnup. 

5.2.2. Partial Core DONJON Models  

There are three DONJON partial core models.  The first one uses full cell cross sections of both the 

depleted and fresh fuel bundles.  It is based on the current industry practices of standard 

homogenization.  Figure 5.7 shows the partial core model with standard-homogenization cross 

sections. The two colours represent two burnup levels; ZB represents zero burnup cross-sections, 

and DB represents discharge burnup cross-sections. 



37 

 

 

Figure 5.7 Partial core DONJON model with Standard Homogenization.  Each colour represents a  

different set of  homogenized cross sections 

The other DONJON partial core models use sub-cell cross sections both with and without SPH 

factors. One of the models has further splitting around the centre of each PHWR channel (for test 

purposes), with  the total number of regions being increased from 81 to 144.   Figure 5.8 and Figure 

5.9 represent the DONJON partial core models with 81 and 144 regions splitting respectively.  
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Figure 5.8 DONJON partial core model with sub-cell homogenization with 81 regions.  Each 

colour represents a different set of homogenized  cross sections 

 

Figure 5.9 DONJON partial core model sub-cell homogenization with 144 regions.  Each colour 

represents a different  set of  homogenized cross sections 
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Chapter 6: Results and Discussion 

 Flux Normalisation  

The neutron balance transport equation and the diffusion equation are eigenvalue problems. Their 

solutions represent the neutron flux and keff.  The neutron flux being the solution to an eigenvalue 

problem, it can only be determined up to a multiplicative constant, leaving open the question of its 

normalisation.  In order to perform fair comparisons between results of different eigenvalue 

problems (such as transport and diffusion), both fluxes have to be normalised the same way.  This 

work normalises all results to a total fission rate of one fission per second (corresponding to 

~3.204E-11 watts).  The detailed normalisation procedure is shown below. 

Let rg be the average flux for the region r and energy group g and let rg  be the average flux 

normalised to a total given fission rate for the region r and energy group g.  Then  

 rgrg C    (6.1)  

where C  is the fission rate normalisation factor which can be adjusted in order to achieve the 

desired total fission rate, 0R .  

Then  

  
 
















R

r

G

g

grfgrrVR
1 1

0    (6.2) 

where Vr is the volume of a fine region r. After substituting equation (6.1) in (6.2), the following 

is obtained 
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As C  is independent of region or energy group, one can write: 

  
 
















R

r

G

g

grfgrrVCR
1 1

0   (6.4)  

It follows that C can be calculated as: 
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  (6.5) 

The normalised average flux rg   for region r and energy group g is then calculated using equation 

(6.1) and the value of C determined above.  In this work 0 1R   always.  

 Lattice cell results 

Tables 6.1 and 6.2 show the lattice cell results for the case without and with SPH factors 

respectively. 

Table 6.1 Normalised fluxes and %error for the lattice cell without using SPH factors 

 (arbitrary units) 

Dragon fast flux Donjon fast flux %Error in fast flux 

2.30E-01 2.60E-01 2.30E-01 2.46E-01 2.67E-01 2.46E-01 6.70 2.90 6.70 

2.60E-01 3.83E-01 2.60E-01 2.67E-01 2.98E-01 2.67E-01 2.90 -22.37 2.90 

2.30E-01 2.60E-01 2.30E-01 2.46E-01 2.67E-01 2.46E-01 6.70 2.90 6.70 

Dragon thermal flux Donjon thermal flux % Error in thermal flux 

6.55E-01 6.23E-01 6.55E-01 5.51E-01 5.22E-01 5.51E-01 -15.90 -16.25 -15.90 

6.23E-01 4.71E-01 6.23E-01 5.22E-01 4.80E-01 5.22E-01 -16.25 1.86 -16.25 

6.55E-01 6.23E-01 6.55E-01 5.51E-01 5.22E-01 5.51E-01 -15.89 -16.25 -15.89 
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Table 6.2 Normalised fluxes  for the lattice cell with using SPH factors (arbitrary units)  

% error is zero in all cases 

Dragon fast flux  Donjon fast flux  % Error in fast flux  

2.59E-01 2.81E-01 2.59E-01 2.59E-01 2.81E-01 2.59E-01 0.00 0.00 0.00 

2.81E-01 3.13E-01 2.81E-01 2.81E-01 3.13E-01 2.81E-01 0.00 0.00 0.00 

2.59E-01 2.81E-01 2.59E-01 2.59E-01 2.81E-01 2.59E-01 0.00 0.00 0.00 

Dragon thermal flux Donjon thermal flux %Error in thermal flux  

6.22E-01 5.96E-01 6.22E-01 6.22E-01 5.96E-01 6.22E-01 0.00 0.00 0.00 

5.96E-01 5.59E-01 5.96E-01 5.96E-01 5.59E-01 5.96E-01 0.00 0.00 0.00 

6.22E-01 5.96E-01 6.22E-01 6.22E-01 5.96E-01 6.22E-01 0.00 0.00 0.00 

 

 Lattice cell results interpretation 

The sub-cell cross sections are same in both the DRAGON (transport) and DONJON (diffusion) 

models. Therefore, the conditions of preservation of reaction rates depend on the convergence of 

fast and thermal fluxes in each model. Sub-cell cross sections with SPH factors and without SPH 

factors are used in different DONJON models. The results in Table 6.1 are from the DONJON 

model which  uses sub-cell cross sections without SPH factors and the results in Table 6.2 are from 

the model which  uses SPH adjusted sub-cell cross sections. It is evident from the tables that 

preservation of reaction rates is achieved in the DONJON model in which SPH adjusted sub-cell 

cross sections are used. The DONJON model without SPH adjusted sub-cell cross sections show 

an error of 22.37% in Fast fluxes thus the  SPH adjusted sub-cell cross sections are found to be 

useful in lattice-cell level calculations. Moreover, from the tables 6.1 and 6.2 it is also observable 

that fast and thermal fluxes are symmetric along the corner sub-cells, top-bottom and left and right 

sub-cells, it is due to symmetricity in the lattice cell geometry. The fact that the diffusion results 

match the transport results when SPH factors are used, and the fact that the results reflect the 

symmetry of the geometrical model indicate that both the transport and diffusion models are 

correct. 
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 Partial-Core Results 

The transport (DRAGON) 3×3 partial-core model is the reference model. The k-eff, fluxes, 

normalised fission rates found in the reference partial core model is considered absolute and the 

results found in the DONJON partial core models are compared with respect to the reference 

model’s results. This error in the normalised fission rate is calculated based on the equation 6.7. 

rateNfission_  stands for normalised fission rate.  

 100
__

____
% 




DragonrateNfission

DragonrateNfissionDonjonrateNfission
Error  (6.7) 

The error in the k effective is calculated based on equation 6.8.  

 )__()__( DragoneffetivekDonjoneffectivekerror    (6.8) 

There are two types of calculations carried out in the reference model. First one is the type B 

calculations. In this calculations, the leakage is adjusted through a buckling search for criticality 

conditions. The k-eff becomes 1 and the  critical buckling is calculated. The second set of 

calculation is called type K calculation, in this calculation, the k-eff is calculated without 

considering the leakage. As all the boundary conditions are reflective the k type calculation, yield 

a supercritical value for k-eff. All results related to the partial core model is presented in this 

section. Table 6.3 and Table 6.4 show the k-eff and normalised fission rate of the partial core 

reference model with type K and type B calculations respectively.  The channels at the bottom left 

and at the centre have the fresh fuel bundles and the rest seven channels have the fuel bundles at 

the discharge burnup levels. This configuration is chosen so that symmetry in the results can be 

expected as it is helpful for the result analysis.  Table 6.5 represents the results of partial core 

DONJON model with Standard Homogenization. Table 6.6 and Table 6.7 show the results of the 

DONJON partial core model for sub-cell homogenization both with and without SPH factors.  
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Table 6.3 k-eff and normalised fission rates for type K calculations of partial core reference 

model 

 

 

 

 

 

Table 6.4 k-eff and normalised fission rates for type B calculations of partial core reference 

model 

keff 1.00000 

Normalised fission rate 

0.967 0.966 0.953 

1.000 1.064 0.966 

1.117 1.000 0.967 

 

Table 6.5 k-eff and normalised fission rates of partial core DONJON model with standard 

homogenization. 

keff 0.99983 

Normalised fission rate 

0.985 0.986 0.985 

0.992 1.040 0.986 

1.049 0.992 0.985 

 

keff 1.01193 

Normalised fission rate 

0.967 0.966 0.953 

1.000 1.064 0.966 

1.116 1.000 0.967 
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 Table 6.6 k-eff and normalised fission rates of partial core DONJON model for sub-cell 

homogenization (a) with SPH factors (b) without SPH factors for 81 region splitting 

 (a)                        (b) 

 

 

 

Table 6.7 keff and normalised fission rates of partial core DONJON model for sub-cell 

homogenization (a) with SPH factors (b) without SPH factors for 144 region splitting 

                                  (a)                 (b) 

 

 

 

All the results show symmetry around the fresh fuel bundles in the central channel and left bottom 

channel in the 3×3 configuration. Table 6.8 lists the errors in the keff and normalised fission rate of 

the results of DONJON models with respect to the partial core reference model with type k 

calculations. In Table 6.8, in results of the sub-cell homogenization models with and without SPH 

factors, the values in the left column represent the error of the DONJON model with 81 regions 

keff 0.99990 

Normalised fission rate 

0.982 0.984 0.982 

0.986 1.054 0.984 

1.059 0.986 0.982 

keff 1.03031 

Normalised fission rate 

0.983 0.985 0.981 

0.992 1.043 0.985 

1.056 0.992 0.983 

keff 0.99034 

Normalised fission rate 

0.981 0.982 0.982 

0.983 1.062 0.982 

1.064 0.983 0.981 

keff 1.02016 

Normalised fission rate 

0.982 0.984 0.981 

0.989 1.051 0.984 

1.059 0.989 0.982 
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and the values in the right column represent the error of the DONJON model with 144 regions. 

Two fresh fuel channels coloured in cyan and seven fuel channels with fuel at discharge burnup 

level coloured in magenta. Table 6.9 shows the same set of results as presented in Table 6.8 but in 

this case, the reference DARGON model has the type B calculations where the leakage is 

introduced to ensure criticality. 

Table 6.8 k-eff and normalised fission rate errors in 81regions and144 regions w.r.t reference 

model with type K calculations 

 

 

 

 

 

 

k-eff Dragon reference 1.01193 

k-eff error in SH -0.01210 

k-eff error with SPH -0.01202 -0.02158 

k-eff error without SPH 0.01838 0.00823 

Fission rate in Dragon 0.967 0.966 0.953 

% error in SH 1.89 2.14 3.34 

% error with SPH 1.57 1.44 1.86 1.74 3.05 3.00 

% error without SPH 1.63 1.54 1.99 1.89 2.94 2.94 

Fission rate in Dragon 1.000 1.064 0.966 

% error in SH -0.87 -2.28 2.15 

% error with SPH -1.39 -1.75 -0.95 -0.19 1.87 1.74 

% error without SPH -0.79 -1.15 -2.00 -1.29 1.99 1.89 

Fission rate in Dragon 1.117 1.000 0.967 

% error in SH -6.10 -0.87 1.89 

% error with SPH -5.15 -4.74 -1.39 -1.75 1.58 1.44 

% error without SPH -5.48 -5.16 -0.78 -1.15 1.64 1.54 
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Table 6.9 k-eff and normalised fission rate errors in 81regions and144 regions w.r.t reference 

model with type B calculations 

 

  Partial-core results interpretation 

Both the error tables show similar effects; there is no significant improvement in errors due to the 

implementation of sub-cell homogenization both with and without SPH factors over the Standard 

lattice cell Homogenization. In the case of the middle lattice cell in the bottom row and middle 

lattice cell in the left column, the errors increase after applying sub-cell cross sections with SPH 

factors. The model with sub-cell cross sections without SPH factors gives good results for 81 

regions but in the case of 144 regions the errors increase in some cases. However, the diffusion 

models with sub-cell cross sections without SPH factors do not have reaction rate equivalence with 

the transport models at lattice cell level. 

k-eff Dragon reference 1.0000 

k-eff error in SH -0.00017 

k-eff error with SPH -0.00010 -0.00966 

k-eff error without SPH 0.03031 0.02016 

Fission rate in Dragon 0.967 0.966 0.953 

% error in SH 1.88 2.13 3.33 

% error with SPH 1.56 1.42 1.85 1.72 3.04 2.99 

% error without SPH 1.62 1.52 1.98 1.88 2.93 2.93 

Fission rate in Dragon 1.000 1.064 0.966 

% error in SH -0.87 -2.26 2.14 

% error with SPH -1.39 -1.76 -0.93 -0.17 1.86 1.73 

% error without SPH -0.79 -1.15 -1.98 -1.27 1.98 1.88 

Fission rate in Dragon 1.116 1.000 0.967 

% error in SH -6.07 -0.87 1.88 

% error with SPH -5.12 -4.71 -1.39 -1.75 1.56 1.43 

% error without SPH -5.45 -5.12 -0.79 -1.15 1.63 1.53 
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  Discussion  

The results in Table 6.1 and 6.2 show that use of SPH factors helps in preserving the reaction rates 

across the diffusion and transport models for single PHWR lattice cell. However, results from the 

partial core model with nine PHWR lattice cells in 3×3 configuration did not yield any significant 

advantages over the standard homogenization method. Tables 6.8 and 6.9 show similar 

homogenization errors in the case of standard homogenization and sub-cell homogenization with 

SPH factors. This demonstrates the limited effectiveness of sub-cell homogenization with SPH 

factors.  

From the table 6.8, the k-eff has the error of 12.1mk in the case of the Standard Homogenization 

as this method could not handle configurations where the heterogeneity is high because of side by 

side fresh and discharge fuel bundles (Chapter 2). The maximum error of 21mk is observable in 

the case of the DONJON model with 144 regions and SPH factors whereas in the case of sub-cell 

homogenization without SPH factors the error in k-eff reduces. The minimum error in the k-eff is 

8.1mk and observed with DONJON model with 144 regions splitting without using SPH factors; 

this shows the inefficiency of the SPH factors in handling additional spatial discretization.   

The errors in normalised fission rates for the fuel channels in the middle of the bottom row and the 

middle of the left column increases compared to the errors from standard homogenization. In the 

case of DONJON model constituting of the sub-cell cross sections without SPH factors for 81 

regions, the results are better than the standard homogenization. However, it is already 

demonstrated in section 6.2 that at lattice cell level the sub-cell cross sections without SPH factors 

don’t preserve the reaction rates with the transport model. Furthermore, the addition of extra spatial 

discretization and increasing the number of regions to 144 in the same DONJON model without 

SPH factors increases the errors in some channels. This result indicates the opposite behaviour in 

the diffusion model for PHWR, as in the case of transport models increase of spatial discretization 
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always leads to improved results. Therefore, the use of sub-cell cross sections without SPH factors 

may not result in better outcomes in case of PHWR. 

The likely explanation is the SPH factors calculated in the single lattice cell transport model differ 

from the SPH factors found in the 3×3 partial core transport model. Table 6.10 shows the error in 

the thermal SPH factors calculated in 81 regions in the partial core model with respect to the SPH 

factors calculated in single lattice cell model. The left bottom fuel channel has the maximum error 

in the thermal SPH factors, and the normalised fission rate error in the same channel is also 

maximum.  Similarly, the second highest error in normalised fission rate is in the right top row; the 

same fuel channel also has the second largest error in thermal SPH factors. This one to one error 

relations between the fuel channels shows the dependence of error in normalised fission rate with 

errors in thermal SPH factors.  

Table 6.10   Percentage error in thermal SPH factors in partial core model (81 regions) with 

respect to single lattice model. 

2.33 2.34 2.38 2.47 2.74 3.12 3.44 3.79 4.04 

1.84 1.84 1.82 1.83 2.12 2.57 3.03 3.50 3.79 

1.07 1.03 0.79 0.57 0.96 1.47 2.23 3.02 3.43 

0.24 0.12 -0.29 -0.34 -0.09 0.74 1.47 2.57 3.12 

-1.44 -1.39 -1.60 -1.63 -1.27 -0.09 0.95 2.12 2.74 

-3.47 -3.17 -3.08 -2.51 -1.63 -0.34 0.56 1.82 2.46 

-4.89 -4.42 -3.63 -3.09 -1.60 -0.29 0.78 1.82 2.38 

-6.36 -5.73 -4.43 -3.17 -1.39 0.11 1.03 1.84 2.33 

-7.23 -6.36 -4.90 -3.48 -1.45 0.23 1.06 1.83 2.32 

 

On the other hand, the boundary condition in partial core model is reflective, that eliminates the 

effect of leakage at the edge of the model, moreover, discharge fuel has less fissile material and 

more fission products that absorb neutrons and fresh fuel has more fissile material and fewer fission 

products. Moreover, due to the presence of fresh and discharge fuel side by side, high heterogeneity 
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is generated, which affects the neutron leakage at inter-lattice boundaries.  No other parameter has 

changed between the conditions of the single lattice cell model and partial core model except the 

inter-lattice leakage, therefore the errors in SPH factors can be attributed to the inter-lattice leakage 

rate at the partial core model. This effects also makes the SPH factors depend on the positions of 

the fresh fuel bundles and discharge fuel bundles.  

Overall, from the results, it’s observable that the SPH factors work well in single lattice cell model 

but, their effect in multiple lattice cell model is not significant. Application of SPH factors in the 

3×3 partial core model did not yield any good results. The SPH factors can’t handle the 

heterogeneity in the partial core model as they depend on the position of the lattice cells with 

different burnups in the partial core model.  That reduces the use of SPH factors for full-core 

calculations with the traditional two-stage computational scheme in the PHWR. 
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Chapter 7: Summary, Conclusion and Future Work 

  Summary 

In this research, the use of Superhomogenization factors for sub-cell homogenization of PHWR 

lattice cell is investigated. The PHWR lattice cell is large and strongly heterogeneous, which leads 

to homogenization errors when applying full-cell homogenization. One possible method to reduce 

those errors is to sub-divide the lattice cell into sub-cells and perform sub-cell-level 

homogenization. In this study, the PHWR lattice cell is divided into 3 x 3 sub-cells. The eight 

peripheral regions consist of only the moderator, and the central part includes all components of a 

typical PHWR lattice cell but, due to the sub-cell division, its size is reduced to 14.28cm×14.28cm.  

A lattice cell model with the desired sub-cell division is developed using the lattice code DRAGON. 

Full-cell, as well as sub-cell two-group cross-sections, are generated for subsequent use in an 

equivalent two group two-dimensional DONJON (diffusion) model.   

In nominal states, the reactors are operated at criticality, for this reason, to simulate steady state 

operation at lattice cell level all cross sections are generated using a B1 leakage model. For the sub-

cell homogenization, one set of cross sections are generated using the superhomogenization 

approach which uses additional parameters called superhomogenization (SPH) factors and other 

sets of sub-cell cross sections are generated without the SPH factors to demonstrate the efficacy of 

the SPH methods. 

After the successful application of SPH factors at the lattice cell level, the effect of using SPH 

adjusted sub-cell homogenization is tested on partial core models consisting of 3 x 3 lattice cells 

(bundles), some of which have zero-burnup, and rest have discharge-burnup fuel. The results from 

the transport (DRAGON) partial core model are compared with the results from diffusion 

(DONJON) partial core models obtained using full-cell homogenization (SH) and sub-cell 

homogenization both with and without SPH factors.  
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 Conclusion 

From Table 6.8, it is observable that the error in the k-eff is maximum in case of the DONJON 

model with 144 regions and SPH factors. In the case of error in the normalised fission rate, results 

from the two lattice cells are worse than the standard homogenization method, one of them is the 

channel in the middle of the bottom row, and the other is the middle channel of the left column.  

These results show that the use of SPH adjusted sub-cell homogenization does not produce any 

significant improvement over the Standard Homogenization method when applied to PHWR lattice 

cell using a 3×3 sub-cell division. The SPH factors depend on the position of the region in a model 

with multiple PHWR lattice cells. This outcome is due to the effect of leakage at the inter-lattice 

boundary. Further investigation with finer splits at the lattice cell boundary might improve the 

results. 

 Future Work 

SPH factors depend on the position of the region in case of models with multiple PHWR lattice 

cells, as they do not address heterogeneity due to different burnup levels.  On the other hand, the 

biggest advantage of SPH factor is the ease of implementation through any diffusion code without 

needing any modifications. Using finer spatial discretization at lattice cell boundaries for SPH 

factors generation might improve the results. This research also showed that SPH factors could be 

computed in models with multiple lattice cells,  this technique can be used to generate the SPH 

factors for models with multiple lattice cells (2×2 lattice cells or 3×3 lattice cells) with different 

heterogeneous configurations, and these results can be used to constitute a diffusion model for the 

full core. Another application might be using SPH factors (based on 2D geometry) for calculation 

of incremental cross section of reactivity devices. This application might be the simplest use of 

SPH factors as most of the models used for determination of incremental cross sections use all the 

fuel bundles at mid-burnup level. This homogenous burnup level in all lattice cells eliminates any 
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chance to heterogeneity that might affect the SPH factors, which have already been proven to be 

good at persevering reaction rates across the transport and diffusion models. 
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