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Abstract 

The greatest challenge in the production of future generation electric and hybrid vehicle (EV and 

HEV) technology is the control and management of operating temperatures and heat generation. 

Vehicle performance, reliability and ultimately consumer market adoption are dependent on the 

successful design of the thermal management system. In addition, accurate battery thermal models 

capable of predicting the behavior of lithium-ion batteries under various operating conditions are 

necessary. Therefore, this work presents the thermal characterization of a prismatic lithium-ion 

battery cell and pack comprised of LiFePO4 electrode material. Thermal characterization is 

performed via experiments that enable the development of an empirical battery thermal model.  

This work starts with the design and development of an apparatus to measure the surface 

temperature profiles, heat flux, and heat generation from a lithium-ion battery cell and pack at 

different discharge rates of 1C, 2C, 3C, and 4C and varying operating temperature/boundary 

conditions (BCs) of 5ºC, 15°C, 25°C, and 35°C for water cooling and ~22°C for air cooling. For 

this, a large sized prismatic LiFePO4 battery is cooled by two cold plates and nineteen 

thermocouples and three heat flux sensors are applied to the battery at distributed locations. The 

experimental results show that the temperature distribution is greatly affected by both the discharge 

rate and BCs. The developed experimental facility can be used for the measurement of heat 

generation from any prismatic battery, regardless of chemistry. In addition, thermal images are 

obtained at different discharge rates to enable visualization of the temperature distribution. 

In the second part of the research, an empirical battery thermal model is developed at the above 

mentioned discharge rates and varying BCs based on the acquired data using a neural network 

approach. The simulated data from the developed model is validated with experimental data in 

terms of the discharge temperature, discharge voltage, heat flux profiles, and the rate of heat 

generation profile. It is noted that the lowest temperature is 7.11°C observed for 1C-5°C and the 

highest temperature is observed to be 41.11°C at the end of discharge for 4C-35°C for cell level 

testing. The proposed battery thermal model can be used for any kind of Lithium-ion battery. An 

example of this use is demonstrated by validating the thermal performance of a realistic drive cycle 

collected from an EV at different environment temperatures. 
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In the third part of the research, an electrochemical battery thermal model is developed for a large 

sized prismatic lithium-ion battery under different C-rates. This model is based on the principles 

of transport phenomena, electrochemistry, and thermodynamics presented by coupled nonlinear 

partial differential equations (PDEs) in x, r, and t. The developed model is validated with an 

experimental data and IR imaging obtained for this particular battery. It is seen that the surface 

temperature increases faster at a higher discharge rate and a higher temperature distribution is 

noted near electrodes. 

In the fourth part of the research, temperature and velocity contours are studied using a 

computational approach for mini-channel cold plates used for a water cooled large sized prismatic 

lithium-ion battery at different C-rates and BCs. Computationally, a high-fidelity turbulence model 

is also developed using ANSYS Fluent for a mini-channel cold plate, and the simulated data are 

then validated with the experimental data for temperature profiles. The present results show that 

increased discharge rates and increased operating temperature results in increased temperature at 

the cold plates. 

In the last part of this research, a battery degradation model of a lithium-ion battery, using real 

world drive cycles collected from an EV, is presented. For this, a data logger is installed in the EV 

and real world drive cycle data are collected. The vehicle is driven in the province of Ontario, 

Canada, and several drive cycles were recorded over a three-month period. A Thevenin battery 

model is developed in MATLAB along with an empirical degradation model. The model is 

validated in terms of voltage and state of charge (SOC) for all collected drive cycles. The presented 

model closely estimates the profiles observed in the experimental data.  Data collected from the 

drive cycles show that a 4.60% capacity fade occurred over 3 months of driving.   
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𝐷𝑠,𝑝 : reference diffusivity for positive electrode [m2/s] 

𝐷𝑠,𝑛 : reference diffusivity for negative electrode [m2/s] 

𝐷𝑠,𝑟𝑒𝑓 : reference solid diffusion coefficient 

𝐷𝑒
𝑒𝑓𝑓 : effective diffusion coefficient 

E : open-circuit potential [V] 

𝐸𝑑 : activation energy that controls temperature sensitivity of Ds [kJ/mol] 

𝐸𝑟 : activation energy that controls temperature sensitivity of 𝑘𝑚 [kJ/mol] 

𝑓± : molecular activity coefficient of the electrolyte also called electrolyte activity 

coefficient 

F : Faraday`s constant [96485 Columb/mol] 

G : Gibb’s free energy 
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𝐺𝑘 : the generation of turbulence kinetic energy due to the mean velocity gradients 

𝐺𝑏 : the generation of turbulence kinetic energy due to buoyancy 

H : hidden layer neurons 

h : heat transfer coefficient [W/m2 °C] 

𝑖0 : exchange current density [A/m2] 

I : current [A] 

𝑗𝐿𝑖 : transfer current resulting from lithium insertion/de-insertion at the 

electrode/electrolyte interface [A/m2] 

𝑘 : ionic conductivity of electrolyte [S/m] or turbulent kinetic energy [J] 

𝑘𝑝 : reference rate constant for positive electrode [mol/m2s/(mol/m3)1.5] 

𝑘𝑛 : reference rate constant for negative electrode [mol/m2s/(mol/m3)1.5] 

𝑘𝑚,𝑟𝑒𝑓 : reference reaction rate coefficient 

𝑘𝑒𝑓𝑓 : effective diffusional conductivity [S/m] 

𝑘𝐷
𝑒𝑓𝑓

 : effective ionic conductivity [S/m] 

𝑙𝑛 : length of negative electrode [µm] 

𝑙𝑠 : length of separator [µm] 

𝑙𝑝 : length of the positive electrode [µm] 

𝐿 : overall length (𝐿 = 𝑙𝑛 + 𝑙𝑠 + 𝑙𝑝) in [µm] 

m : mass [kg] 

�̇� : mass flow rate [kg/s] 

n : number of electrons 

NT : number of temperature readings in the summation 

𝑁𝐶 : total number of coulombs transported into or out of the battery 

𝑃 : pressure [Pa] 

𝑃𝑟 : Prandtl  number 

𝑃𝑟𝑡 : turbulent Prandtl  number 

Q : heat [kJ] 

�̇� : heat generation rate [W] 

q : heat flux [W/m2] 

𝑟 : radial coordinate  along active material particle 
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𝑅 : universal gas constant [8.3143 kJ/kg mole. K] or resistance [Ω] 

R2 : coefficient of determination 

Re : Reynold’s number 

𝑅𝑡 : terminal resistor [Ω] 

𝑅𝑠 : radius of solid active material particle [µm] 

𝑅𝑠,𝑝 : particle radius for positive electrode [µm]  

𝑅𝑠,𝑛 : particle radius for negative electrode [µm]  

S : entropy [kJ/kg K] 

𝑆𝑘 : user-defined source terms 

𝑆ɛ : user-defined source terms 

T : temperature [°C or K] 

𝑡+
0 : transfer number of lithium-ion 

t : time [s] 

U : electrode potential of the reaction or thermodynamic open circuit potential [V] 

V : cell voltage [V] or speed [m/s] 

�̅� : average velocity [m/s] 

X : net rate of energy change through conduction (heat) [kW] 

Y : net rate of energy change through convection (fluid flow) [kW] 

𝑌𝑀 : the contribution of the fluctuating dilatation in compressible turbulence to the 

overall dissipation rate 

Z : net rate of work by body forces and surface forces [kW] 

𝑑𝐸 𝑑𝑇⁄  : temperature coefficient [V/°C] 

𝑑𝑇 𝑑𝑥⁄  : temperature gradient [°C/m] 

y+ : enhanced wall treatment 

�̅� : mean of all observations 

𝑌𝑖
 : actual observations 

�̂�𝑖
 : estimated observation at time i 

Greek Symbols 

α : thermal diffusivity [m2/s] 

𝜑 : energy dissipation rate 
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β : thermal expansion coefficient or bias or Burggeman porosity exponent 

i : layer index 

𝜌 : density [kg/m³] 

μ : dynamic viscosity [Ns/m2] 

𝜇𝑡 : turbulent or eddy viscosity 

ν : kinematic viscosity [m2/s] 

𝑣𝑠 : mean fluid velocity [m/s] 

𝛻 : gradient operator 

λ : Reynold’s stress 

𝛤 : average surface temperature of a battery [°C or K] 

𝜃𝑘 : discharge/charge current [A] or Ah capacity of battery 

𝜉𝑘 : boundary conditions [°C or K] 

𝜔 : weights 

∅𝑠 : solid phase potential [V] 

∅𝑒 : electrolyte phase potential [V] 

𝜎𝑒𝑓𝑓 : effective conductivity [S/m] 

𝜎+ : effective electrical conductivity for positive electrode [S/m] 

𝜎− : effective electrical conductivity for negative electrode [S/m] 

𝜎𝑘 : turbulent Prandtl numbers for 𝑘 

ɛ𝑘 : turbulent Prandtl numbers for ε 

𝜖𝑒 : volume fraction of electrolyte phase in electrode 

𝜖𝑠 : volume fraction of solid particle (active material) in electrode 

𝜖𝑓 : volume fraction of filler material in electrode 

∝𝑎 : transfer coefficient of anode 

∝𝑐 : transfer coefficient of the cathode 

𝜔 : turbulent eddy frequency [1/s] 

Subscripts 

∞  : ambient 

0 : initial 
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act : actual 

avg : average 

b : battery 

bs : battery surface 

c : cell 

cp : cooling plate 

chg : charging 

conv : convection 

dchg : discharging 

e : environment 

exp : experimental 

f : fluid 

gen : generated 

i : layer index 

in : inlet 

int : internal 

max : maximum 

n : negative electrode 

oc : open circuit 

out : outlet or output 

p : positive electrode 

rev : reversible 

s/c : surface 

sim : simulated 

tot : total 

th : thermal 

thk : thickness 

w : water 

w,o : outlet water 

w,i : inlet water 

x,y,z : cartesian coordinate directions 
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Superscripts 

° : degree 

+ : related to wall treatment 

𝑒𝑓𝑓 : effective value 

Acronyms 

A123 A lithium-ion pouch cell manufactured by A123. It is obtained after market. 

ANSYS Inc. American computer-aided engineering software developer 

ANSYS-CFX A computation fluid dynamics software tools  

APS Accelerator pedal position 

ARC Accelerated rate calorimeter 

BC Boundary condition 

BAS Belt-alternator-starter 

BPS Brake pedal position 

BEV Battery electric vehicle 

BOL Beginning of life 

BMS Battery management system 

BTMS Battery thermal management system 

C Capacity 

CC Constant current 

CD Charge depleting 

CV Constant voltage 

CAD Computer aided design 

CFD Computational fluid dynamics 

CNTs Carbon nanotubes 

DP Dual polarization 

DAQ Data acquisition 

DOD Depth of discharge 

DEC Diethyl carbonate 

DMC Dimethyl carbonate 

DES Detached eddy simulation 

https://en.wikipedia.org/wiki/Computer-aided_engineering
https://en.wikipedia.org/wiki/Software
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DRU Data recording unit 

EC Ethylene carbonate 

ECT Electrochemical thermal 

ECM Equivalent circuit-based modeling 

ESS Energy storage system 

EPA Environment protection agency 

EMC Ethyl-methyl carbonate 

EV Electric vehicle 

EOL End of life 

EOD End of discharge 

E-stop Emergency shut down 

FCV Fuel cell vehicle 

FEA Finite element analysis 

FEM Finite element method 

FSP Field synergy principle 

FUDS Federal urban driving schedule  

GM General motors 

GHG Greenhouse gas 

GUI Graphical user interface 

GPS Global positioning system 

HEV Hybrid electric vehicle 

HFS Heat flux sensor 

HPPC Hybrid pulse power characterization 

HWFET Highway fuel economy cycle 

I/O Input/output 

ICE Internal combustion engine 

ICEM-CFD Popular proprietary software package used for CAD and mesh generation 

IHC Isothermal heat conduction calorimeter 

IMA Integrated motor assist 

IR Infra-red 

Li-ion Lithium ion 
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LiCoO2    Lithium cobalt oxide 

LiMn2O4 Lithium manganese oxide 

LiNiMnCoO2  Lithium manganese cobalt oxide 

LiFePO4 Lithium iron phosphate  

LCC Liquid cooled cylinder  

LCM Lumped capacitance model 

LCP Liquid cold plate 

LCO     Lithium cobalt oxide 

LFP Lithium phosphate 

LPM Lumped parameter model 

LPV Linear parameter varying  

LES Large eddy simulation 

LiBOB Lithium bis (oxalate) borate 

MATLAB Matrix laboratory 

LabVIEW Laboratory virtual instrument engineering workbench 

MSE Mean square error 

MLP Multilayer perceptron  

MSMD Multi scale multi domain 

NN Neural network 

NI National Instrument 

NMC Lithium manganese cobalt oxide 

NYCC New York city cycle 

NiMH Nickel metal hydride 

NiCad Nickel cadmium 

OCV/OCP Open circuit voltage/Open circuit potential 

PC Personal computer 

P2D Pseudo two dimensional 

PDE Partial differential equation 

PHEV Plug-in hybrid electric vehicle 

PVC Polyvinyl chloride 

PE Polyethylene 
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PP  Polypropylene 

RC Resistance capacitance  

RBF Radial basis function  

RANS Reynolds-averaged Navier-Stokes 

RNG Renormalization group 

RPM  Revolution per minute 

RS-232 Recommend standard number 232 

SEI Solid electrolyte interface  

SPI Solid permeable interphase 

SOC State of charge 

SOD Start of discharge 

SOH State of health 

SLE Special limit of errors 

SST Shear stress transport  

𝑡𝑎𝑛𝑠𝑖𝑔 Tan sigmoid function  

TC Thermocouple 

TDR Turbulent dissipation rate 

TKE Turbulent kinetic energy 

TMS Thermal management system 

US06 United States of America 06 drive cycle 

UDDS Urban dynamometer driving schedule 

UQM Power phase motor developed by UQM  

WNN Wavelet neural networks 

1D One-dimensional 

2D  Two-dimensional 

3D Three-dimensional 
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Introduction  

Energy and the environment are current key issues due to limited fossil fuels sources and concerns 

over greenhouse emissions [1, 2, 3]. Therefore, car manufacturers are under extreme pressure to 

improve the fuel economy and emission performance of their cars. In Canada, the transportation 

sector is the largest contributor to greenhouse gases (GHG) and air pollution in Canada [4]. 

Subsequently, automobile manufacturers have to create and apply recent advancements to meet 

their objectives. Electric vehicles (EVs), along with fuel cell vehicles (FCVs), hybrid electric 

vehicles (HEVs), and also plug-in hybrid electric vehicles (PHEVs), are answers to energy and 

environmental issues and have recently received much attention due to their “zero emission” label 

as well as being more energy proficient [5, 6]. Therefore, demand for EVs and HEVs has 

significantly increased due to rising costs and environmental concerns [7]. 

The heart of EVs is the battery or battery pack because batteries, a major powertrain component 

of EVs and HEVs, will undergo thousands of charge/discharge cycles during the life-time of a 

vehicle. Over this lifetime, a battery degrades potentially to the point of requiring replacement. 

Given the high cost of batteries and their importance in determining electric vehicle range, it is 

very desirable to extend battery degradation as long as possible.  One element of controlling battery 

degradation is controlling the battery temperature [8, 9]. Among accessible technologies, the 

lithium-ion battery plays a key part in the improvement of EVs, HEVs, and PHEVs [10] as a result 

of their broad use because of :1) high specific energy and power densities [11, 12]; 2) high nominal 

voltage and low self-discharge rate [13]; and 3) long cycle-life and no memory effect [14]. 

However, lithium-ion batteries must be precisely observed and managed (electrically and 

thermally) to avoid safety (inflammability) and performance related issues [15, 16, 17].  

Understanding vehicle battery temperatures and heat generations both with experimental and 

modeling during discharge is the focus of this research. In order to better understand the battery 

thermal problem, it is useful to first understand the basic vehicle applications for large battery 
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packs. Electrified vehicles are classified in three groups:  1) Hybrid electric vehicles (HEVs); 2) 

Plug-in hybrid electric vehicles (PHEVs); and 3) Electric vehicles (EVs). 

1.1 Hybrid Electric Vehicles (HEVs) 

A hybrid electric vehicle has one or more power sources, such as an internal combustion engine 

and an electric motor [18, 19]. In a hybrid vehicle, the engine is smaller so consequently gives 

better mileage. These vehicles utilize less fuel and produce less pollution. Modern produced 

hybrids vehicles prolong the charge on their batteries by taking kinetic energy through regenerative 

braking. During cruising or idling where only a light thrust is required, “full” hybrids can use the 

internal combustion engine to generate power by spinning an electric generator in order to recharge 

the battery or to feed power to an electric motor which drives the vehicle. Almost all hybrids still 

require gas and diesel as a source of fuel and other fuels for example, ethanol or occasionally plant 

based oils. There are three principle types of hybrid configurations [20] available on the market: 

1) parallel hybrid vehicle arrangement; 2) series hybrid vehicle arrangement; and 3) series-parallel 

hybrid vehicle arrangement. 

1.1.1 Parallel Hybrid Vehicle Arrangement 

A parallel hybrid vehicle arrangement is shown in Figure 1.1. In this arrangement, power to the 

wheels can be simultaneously supplied by the engine and the electric motor. The electric motor 

and internal combustion engine drive shafts are coupled together on either side of the transmission. 

Electric motors are powered from the batteries and the motor running backward can likewise be 

utilized to charge the battery through the regenerative braking system. In a parallel hybrid, for 

short in city driving, it is also possible to turn off the engine and run the electric motor from the 

battery pack. In such a case, the parallel hybrid works as a fully electric vehicle and becomes 

emission free [21, 22, 23]. The driving range is up to 400 miles or more for a parallel hybrid. 

Parallel hybrids are usually lower power vehicles, such as passenger cars, whereas a hybrid system 

is utilized to enhance performance. Examples of this type of arrangement can be found in Honda’s 

Integrated Motor Assist (IMA) system used in Civic, Accord, Insight and the Belt-Alternator-

Starter (BAS) system used in the Chevrolet Malibu. 
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Figure 1.1: Schematic of parallel hybrid vehicle arrangement (modified from [19]). 

1.1.2 Series Hybrid Vehicle Arrangement 

An arrangement of a series hybrid vehicle is shown in Figure 1.2. Here, the electric motor gives 

power to the wheels. That is, the engine does not directly provide power to the wheels, but rather 

the wheels are completely powered by the electric motor. An internal combustion engine drives a 

generator which produces power that can be stored in the battery and delivered to the electric motor 

to drive the wheels [21, 22, 23]. Series hybrids are generally higher power systems, sometimes 

even using a gas turbine between 150 kW and 1000 kW. Series hybrids have a small combustion 

engine and a large battery pack when contrasted with parallel hybrids. Because of this, series 

hybrids are more costly than parallel hybrids. This makes series hybrids more efficient in city 

driving [24]. The Chevrolet Volt developed by General Motors is the best example of this type of 

vehicle. 
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Figure 1.2: Schematic of series hybrid vehicle arrangement (modified from [19]). 
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1.1.3 Series-Parallel (Power Split) Hybrid Vehicle Configuration 

An arrangement of a series-parallel hybrid system is shown in Figure 1.3. This is a most 

complicated design. In this type of system, power to the wheels can be delivered by the engine and 

it can power a generator which supplies power/electricity to the battery. This battery supplies 

power to the motor and then gives power to the wheels [21, 22, 23]. The regenerative braking 

energy to the battery for later utilization can be delivered by an electric motor. This is similarly 

called a “power-split” hybrid system in which the hybrid makes use of a power splitting device, 

typically a planetary gear mechanism and has turned into a prominent design because of its unique 

modes of operation as well as its use in the successful Toyota Prius. Toyota’s hybrid system is able 

to function as a continuously variable transmission and provide smooth power delivery and very 

efficient operation. One of the greatest advantages of this kind of hybrid system is the great 

potential reduction in vehicle emission. Examples of such a system are Toyota’s Hybrid Synergy 

Drive [25] (as used, for example, in the Camry hybrid and Prius), Ford’s Escape/Mariner hybrid 

system, and the GM two mode hybrid system (used in the Chevrolet Tahoe). 

Wheel
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Motor
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TransmissionEnergy Storage Transformation

Generator PS
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Figure 1.3: Schematic of series-parallel hybrid vehicle arrangement (modified from [19]). 

1.2 Plug-In-Hybrid Electric Vehicles (PHEVs) 

Plug-in-hybrid electric vehicles may comprise of any of three hybrid systems (series hybrid, 

parallel hybrid or series-parallel hybrid). Plug-in-hybrids have a large battery pack capacity that 

can be charged from electrical power output. They can drive a specific distance in an all-electric 

mode, after which the vehicles works like a non-plug-in-hybrid. This means that while driving in 

all electric modes, the PHEV consumes no fuel and there is zero emission [26, 27, 28, 29]. PHEVs 



 

5 

 

are classified by their Charge-Depleting (CD) range. For example, a PHEV10 has a charge-

depleting range of 10 miles (16 km) and a PHEV40 has a charge-depleting range of 40 miles (64 

km). If you drive less than 64 km a day, the PHEV40 would normally operate in charge-depleting 

mode [30]. 

1.3 Electric Vehicles (EVs) 

Electric Vehicles (EVs) do not utilize an internal combustion engine to supply energy to the wheels 

and drivetrain.  However, they depend on an electric motor to supply the power to the wheels [31, 

19, 17, 32]. Most EVs have a more elaborate method to control the amount of electricity going to 

the motor and an arrangement of gears to drive the wheels in a most effective way. The high price 

of oil and increased concern over the environmental impact of gasoline-based transportation has 

led to renewed interest in electric transportation [33, 34].  EVs vary from fossil fuel powered 

vehicles in that the power they consume is produced from various sources, such as solar power, 

wind power, and tidal power, or any combination of those energies [35]. The electricity can be 

stored on board the vehicle utilizing a battery, flywheel or a capacitor. The main benefit of EVs 

and HEVs is regenerative braking and the capability to recover the lost energy during braking as 

electricity stored in the on-board battery. Gas and diesel engines are just 30% to 40% productive 

at transferring fuel energy into kinetic energy (i.e. as work on driveshaft or as motion), while 

electric motors can convert more than 94% of electrical energy supplied into useful work. EVs can 

be a substantially more proficient method for transportation, provided that the electricity can be 

efficiently stored and provided to the motor.  

1.4 Drive Cycle 

A drive cycle is basically a series of data points of vehicle speed versus time. The use for drive 

cycles is in vehicle simulations. More precisely, they are utilized in propulsion system simulations 

to obtain the performance of internal combustion engines, electric drive systems, batteries, 

transmissions, and fuel cell systems. The dominant standards within the United States and Canada 

are the UDDS (Urban Dynamometer Driving Schedule) and HWFET (Highway Fuel Economy 

Test) drive cycles. While the EPA (Environmental Protection Agency) label mentions two drive 

cycles, there are numerous others. These cycles intend to compare other aspects of the vehicle; for 
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example, efficiency while using accessories such as air conditioning (SC03) or during low speed 

stop-and-go traffic conditions (NYCC-New York City Cycle). UDDS and HWFET remain 

dominant as with US06 as a possible addition, which is depicted as a “high acceleration and 

aggressive” driving schedule. The trace speed and time correlation for these cycles (UDDS, 

HWFET, and US06) are shown in Figure 1.4 (a, b, and c) for EVs. 

 

(a) UDDS drive schedule 

 

(b) HWFET drive schedule 

 

(C) US06 drive schedule 

Figure 1.4: (a) UDDS (b) HWFET, (c) US06 drive schedule for EV [36]. 
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1.5 Motivation  

Lithium-ion battery packs for EVs and HEVs are greatly influenced by the battery operating 

temperatures [8, 9] as discussed below. In order to understand the thermal behaviour of batteries 

and its impact on battery performance and life, the first step experimentally is to study the battery 

temperature distributions and the heat generation profiles at different charge and discharge rates. 

To make this study relevant to EVs and HEVs, the charge and discharge rates must be typical to 

those seen and expected in vehicles. Figure 1.5 shows the surface temperature of a lithium-ion 

battery cell at different discharge rates of 1C, 2C, 3C and 4C (C-rate is the measurement of the 

charge and discharge current of a battery), on the order of those seen in vehicles. The charge rate 

between discharges in all cases is 1C. 

 

Figure 1.5: Surface temperature profile of a LiFePO4 battery cell during 1C, 2C, 3C and 4C 

discharge rates and 1C charge rate. 

The figure illustrates the large thermal spikes that can accompany discharge. Over a short 15-

minute time period (short from a vehicle operation viewpoint) for 4C and 20-minute time period 

for 3C discharge, enough heat is generated to increase the cell temperature to 58°C (for 4C) and 

46°C (for 3C) from a 22°C start condition. This value is only for a single lithium-ion battery cell 

with free convection boundary condition, so even a greater temperature can result when 
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extrapolated to approximately 300 lithium-ion battery cells in a pack of EVs and HEVs, where 

there is no free boundary convection, but only conduction between pouch cells. This problem is 

explained in more detail subsequently.  

Operating lithium-ion batteries above 50°C can accelerate the aging process and lead to significant 

degradation of battery capacity and electric range reduction [37]. As illustrated in Figure 1.5 

battery cell temperatures above 50°C are very possible, especially when cells are stacked in 

modules and packs, and if the ambient temperature is closer to 50°C than the 22°C used in Figure 

1.5. The possibility of fire is also a major issue with a high operating temperature, where thermal 

runaway is a possibility [38]. Thus, adequate battery cooling and thermal management are an 

integral part of the vehicle operation during electric mode operation.  EVs and HEVs require a 

robust battery thermal management system in order to ensure optimal (safe, good performance, 

and long battery life) vehicle operation. 

Experimental data on the thermal characteristics of batteries is important not only to the battery 

pack designers and modellers, but also to those looking more fundamentally at electrochemical 

battery models. Battery modeling gives very important information on battery 

charging/discharging, SOC, SOH, and temperature. There are different methods for modeling 

batteries, for example: 1) neural network modeling; 2) electrochemical modeling; 3) turbulence 

modeling; and 4) equivalent circuit modeling. Electrochemical modeling provides a deep 

understanding of the chemical and physical process inside the battery and is useful when building 

a cell or pouch cell, but high computational time makes this approach impractical for applications 

that involve multiple pouch cells, such as vehicle battery packs. On the other hand, in equivalent 

circuit modeling, battery losses are represented in terms of electrical circuit components, making 

this method more efficient in terms of computation. 

1.6 Objectives 

Given the problems of 1) poor battery thermal performance, 2) aging or degradation of batteries, 

and 3) fire issues, all due to high battery operating temperature, as identified in the previous 

section, and given our limited knowledge of the thermal behaviour of vehicle batteries [9, 8], it is 

important to conduct further research into the performance of EV and HEV batteries undergoing 
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realistic vehicle charge and discharge cycles. To date, significant work has been performed on 

battery modeling [39, 40, 41, 42, 43, 44, 45] but limited published work exists experimentally with 

varying boundary conditions. Therefore, one of the key objectives in this research is to characterize 

the thermal behavior of a vehicle suitable lithium-ion battery pouch cells and packs using cold 

plates to provide a large range of boundary conditions. Based on the above reasons, the specific 

objectives along with their sub objectives/experimental milestones of the thesis research are listed 

as follows: 

a) To characterise the thermal behavior of a lithium-ion battery cell undergoing various 

charge and discharge rates with a wide range of boundary conditions. 

b) To develop and validate a battery thermal model at different discharge rates (1C, 2C, 3C, 

and 4C) and different ambient/cooling/boundary conditions (5ºC, 15°C, 25°C, and 35°C). 

The developed model should be scaled up to vehicle battery pack level and validated with 

a real world drive cycle. 

c) To examine the effect of discharge rate and operating temperature on battery cell and pack 

discharge capacity. 

In order to fulfill the above mentioned objectives, empirical data, including battery voltage, 

current, temperature, heat flux, and heat generation, are required. A thermal boundary 

condition test apparatus is designed and developed for a LiFePO4 prismatic battery cell 

with a dual cold plate approach to generate the data of interest. The data from each part is 

used in the development of battery models. Some specific sub objectives/experimental 

milestones for the above stated objectives are:  

To design an apparatus that directly measures: 

 The surface temperature distribution of prismatic batteries undergoing discharge 

and charge cycles. 

 The surface heat flux near the anode, the cathode, and at the center of the prismatic 

lithium-ion pouch cell. 

 The heat rejection to the dual cold plates at different discharge rates, with varying 

boundary conditions. 

d) To characterise the thermal behavior of a lithium-ion battery pack undergoing various 

charge and discharge rates with a wide range of boundary conditions. 
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In order to fulfill the above mentioned objective, empirical data, including battery pack 

voltage, pack current and temperature are required; for this, a thermal boundary condition 

test apparatus is designed and developed for a pack to generate the data of interest. A 

battery pack is designed and developed with three lithium-ion battery cells connected in 

series and 18 thermocouples that directly measure the surface temperature distribution on 

all prismatic batteries undergoing discharge and charge cycles. 

e) To identify and quantify the locations of highest heat generation using IR imaging 

techniques. 

For the IR images of a lithium-ion battery cell, a thermo-graphic camera is used to produce 

images of the principal battery surface to visually observe temperature distribution and heat 

generation. This is an effective tool for finding temperature distribution or hot spots on the 

surface of an object without using any intrusive temperature sensors. 

f) To develop and validate an electrochemical thermal (ECT) model for a large sized 

prismatic lithium-ion battery. 

For this ECT modeling, a commercial software, ANSYS Fluent, is used and the developed 

electrochemical-thermal model can be used to analyze the effect of different parameters on 

the electrochemical and thermal characteristics of batteries. These parameters may include 

charge/discharge rates and geometric design of the battery cells. From these studies, the 

model design can be optimized, contributing to a more uniform electrochemical reaction 

and temperature distributions. The developed model should be validated against the 

experiment results for the thermal profiles on the surface of the battery along with IR 

images. This validation ensures that the model is correctly developed and can be used in 

different studies such as battery design. 

g) To develop and validate a numerical model for mini channel cold plates placed on the top 

and bottom surface of a lithium-ion battery.  

For the numerical modeling, the flow in the cold plates is considered to be turbulent. 

Although analytical solutions for these flows are not accurate, on the basis of the continuum 

fluid assumption, the dynamics of turbulence is adequately described by the continuity and 

Navier-Stokes equations. The solutions of the Navier-Stokes equations are solved 

numerically. The solution is implemented by generating a mesh of the region of interest or 

domain. The governing equations are then discretized yielding a system of algebraic 
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equations which can be solved at each point within the domain. This study provides results 

showing the temperature and velocity distributions at different C-rates and BCs. The 

physical insight of this kind of study will provide more information to improve the design 

of an effective battery cooling system. 

h) To perform cycling degradation testing and modeling of a lithium-ion battery in real life 

conditions.  

For this degradation study, in-situ vehicle data is collected to enable characterization of 

vehicle batteries undergoing real-world drive cycles by outfitting an electric vehicle with 

data loggers and a data reporting infrastructure. The data from each part is used in the 

development of battery models. Some specific experimental milestones/sub objectives for 

above stated objectives are:  

 To install a data logger in an EV. 

 To collect driving and battery data from an EV, in order to analyze the battery 

performance. 

 To do performance assessment and evaluations under various drive cycles in terms 

of temperature, voltage, and SOC from lab battery versus vehicle battery, using real 

drive cycles from an EV. 

 To develop the Thevenin battery model utilizing MATLAB along with an empirical 

degradation model and validate in terms of the battery SOC and voltage. 

 To characterize the lithium-ion battery using different discharge-charge cycles with 

hybrid pulse power characterization (HPPC). 

1.7 Thesis Structure  

This thesis is organized into seven chapters as follows:  

Chapter 2 presents the background and literature reviews related to the lithium-ion battery used 

in electric vehicles. Battery definitions, lithium-ion cell operation, insertion process, materials for 

anode, cathode, and separator, types of lithium-ion batteries, thermal management of batteries (air 

cooling and liquid cooling), thermal study via thermocouples and calorimeters, heat generation 

and thermal runaway are explained. In addition to this, battery thermal modeling with different 

approaches, such as electrochemical modeling, equivalent circuit modeling, neural network 

modeling, ANSYS modeling, and battery degradation modeling and mechanism, is presented. 
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Chapter 3 introduces an experimental study in which Experiment 1 includes an experimental set-

up, procedure and plan for the thermal characterization of a battery cell. It also provides an 

explanation of thermocouple and heat flux sensors locations on the principle surface of the battery, 

governing equations, and the data analysis method. Experiment 2 includes the battery pack testing 

with all thermocouple locations. Experiment 3 focuses on degradation testing for capacity fade 

measurement and includes a data logger installation in EVs, data collection and data analysis 

method. 

Chapter 4 presents the modeling of a lithium-ion battery. The first model deals with the thermal 

behavior of a lithium-ion battery using a neural network approach. It includes input training data, 

output training data, training performance plot, training state plot, error histogram, regression plot, 

and mean square error. Finally, the mathematical functions are presented along weights and bias.  

The second model focuses on the electrochemical thermal model for a large sized prismatic 

lithium-ion battery. This includes all governing equations with boundary conditions for charge 

conservation in the solid phase, charge conservation in the electrolyte phase, lithium conservation 

in the solid phase, and lithium conservation in the electrolyte phase. To conclude, the Butler-

Volmer equation is used to couple the charge-species governing equation. The third model deals 

with ANSYS Fluent turbulence modeling for mini-channel cold plates. The water flow in the cold 

plates is turbulent and therefore the flow is modeled using the Reynolds-Averaged Navier-Stokes 

Equations (RANS).  It also includes the governing equations, geometry and boundary conditions, 

design of the set-up in NX8.5, mesh generation in ICEM CFD, and finally a grid independence 

study. The fourth model considers battery degradation based on the Thevenin model for drive 

cycles obtained from an EV.  

Chapter 5 presents the results and discussion. The first part explains experimental results obtained 

from the battery cell and pack level testing in terms of surface temperature distribution, discharge 

voltage profiles and heat generation profiles. The second part includes the battery thermal model 

validation, while the third part includes the electro chemical thermal model validation. The fourth 

part of this chapter discusses the CFD analysis for a mini channel cold plate, and the fifth part 

includes the degradation results obtained from an EV and validation. Finally, capacity fade 

measurement over three months of driving is presented. 

Chapter 6 presents conclusions and recommendations for future work. 
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Background and Literature Review  

This chapter reviews background information about the battery, including: chemistry and 

definitions; lithium-ion battery operation; insertion process; thermal management of batteries; 

thermal measurements via thermocouples and calorimeters; battery thermal modeling; and battery 

degradation mechanism. 

2.1 Batteries  

Moving from conventional vehicles to EVs and HEVs, the heart of the vehicle moves from the 

engine to the battery. In the nineties, developed EVs utilized lead-acid batteries. The typical range 

was around 100 kilometers. However because lead-acid batteries have a low energy density, the 

weight of the vehicle was large, hence different chemistries were utilized in subsequent years [46]. 

Because of the higher power and energy density and improved cycle life, EVs began to utilize 

nickel metal hydrate (NiMH). Today NiMH batteries are still utilized in HEVs and PHEVs for 

their low cost per watt. However, because of high self-discharge, limited SOC operating limit and 

low energy density, these batteries are unsuitable for EVs. ZEBRA or molten salt batteries are 

likewise utilized in EVs. These batteries have a low cost and high safety, but because the operating 

temperature is too high (270-350˚C) and power density is too low, they are not very popular in EV 

applications [46]. Table 2.1 presents the characteristics of various types of batteries used in EVs.   

Today, the lithium-ion battery is considered as an appropriate energy storage device for alternative 

energy sources, such as wind and solar, and has numerous advantages: i) high specific energy and 

power densities [11, 47]; ii) high nominal voltage and low self-release rate [13] ; and iii) long 

cycle-life and no memory effect [14]. For these reasons, the lithium-ion battery is the most 

advanced battery technology for EVs, HEVs, and PHEVs. The disadvantages of lithium-ion 

batteries also include the high cost and safety issues. It can be said that the battery performance, 

cost and life directly affect the life and performance of the EVs. Subsequently, the need to extend 

the battery lifetime and to utilize it at their full capacity is of the utmost importance. Figure 2.1 
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represents various storage devices with different energy and power. Despite these positive aspects  

that legitimize the recent spread of this technology, it is vital to notice that, during operation, 

lithium-ion polymer batteries must be deliberately checked and managed (electrically and 

thermally) to avoid issues related to safety (inflammability) and performance [15].  

Table 2.1: Characteristics of battery types used in EVs [46]. 

Characteristic Lead Acid NiMH ZEBRA Li-ion 

Nominal cell voltage 2 V 1.2 V 2.58 V 2.5 V/ 3.3 V/ 3.6-3.7 V 

Specific energy 30-45 Wh/kg 30-80 Wh/kg 90-100 Wh/kg 90-220 Wh/kg 

Energy density 60-75 Wh/L 140-300 Wh/L 160 Wh/L 280-400 Wh/L 

Specific power 180 Wh/kg 250-1000 Wh/kg 150 Wh/kg 600-3400 Wh/kg 

Cycle life 500-800 500-1000 1000 1000-8000 

Self-discharge 2-4% /month 20-30% /month 0% /month 2-5% /month 

Temperature range -20-60℃ -20-60℃ 270-350℃ -20-60℃ 

Relative costs Low Moderate Low High 

 

Figure 2.1: Ragone plot [48]. 

A comparison between the best EV suitable lithium-ion batteries is presented in Figure 2.2. The 

more the colored shape extends along a given axis, the better the execution in that direction. For 

instance, lithium-iron-phosphate (LiFePO4/LFP) does not experience thermal runaway and has no fire 

hazards, since no oxygen is released at high temperatures [49]. LiFePO4 cells have the lowest costs per 
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Ah and kW [50], great life expectancy, good power abilities and are extremely safe, yet they have 

lower specific energy and poor performance at low temperatures. 

 

Figure 2.2: Comparison of suitable lithium ions for EVs [51]. 

The most well-known lithium-ion type battery used in small consumer electronics such as laptops 

and cell phones, is the lithium-cobalt-oxide (LiCoO2/LCO) because of its high specific energy. 

Tesla Motors utilizes laptop sized LCO battery cells in their EVs in combination with a liquid 

cooling system safety issues. However, low specific power and life span prevents this type from 

being a good choice for EVs [46]. Lithium-iron-phosphate (LiFePO4/LFP) on the other hand does 

not experience thermal runaway and experiences no fire hazards, since of no oxygen is released at 

the higher temperature side [49]. LiFePO4 cells have good life span, low costs per Ah and kW [49] 

and great power abilities, and are extremely safe, yet the specific energy is low and the 

performance is poor at low temperatures. The batteries can either be of high power density type or 

high energy density type. Power density gives a good measure of how much energy can be released 

due to discharge at a given time with regards to kilograms or liters. Energy density is the amount 

of energy with regards to kg or liters. A high energy density battery is useful in applications where 

a longer driving distance is required, such as in a PHEV which is intended to be driven on pure 

electricity for longer distances. 
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2.2 Battery Definitions 

Some basic definitions related to the lithium-ion battery are presented in this section [52]. 

Cell, modules, and packs – Electric and hybrid vehicles have a high voltage battery pack that 

comprises individual modules and battery cells arranged either in series or parallel. A cell is the 

smallest, packaged form a battery can take and is usually in the order of one to six volts. A module 

comprises several cells generally connected in a series or parallel arrangement. A battery pack is 

then assembled by joining the modules together, again either in series or parallel [52]. An exploded 

view of a A123 prismatic battery module and pack is presented in Figure 2.3 (a). A battery pack 

comprised of A123 modules is appears in Figure 2.3 (b). 

  

a) Exploded view of A123 25S2P prismatic module b) Battery pack comprised of A123 modules 

Figure 2.3: a) Exploded view of A123 25S2P prismatic module [53], b) Battery pack comprised of 

A123 modules [54]. 

Secondary and Primary Cells – Batteries for electric and hybrid vehicles are all secondary 

batteries. A primary battery is one that cannot be recharged. A secondary battery is one that is 

rechargeable [52]. 

C and E-rates - The discharge and charge current of a battery is measured in C-rate. The majority 

of small batteries are rated at 1C, which means that a 100 Ah battery would provide 100A for 1 

hour if discharged at 1C rate. The same battery discharged at 0.5C (1/2C) would give 50A (100 x 

0.5=50) for 2 hours. At 2C, the 100Ah battery can deliver 200A for half an hour (30 minutes). 1C 

is also referred to as a 1 hour discharge; a 0.5C would be a 2 hour and 0.1C a 10 hour discharge. 
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Similarly, E-rate describes the discharge power. A 1E-rate is the discharge power to discharge the 

entire battery in 60 minutes (1 hour). It is also given by: 

 
𝐶 − 𝑟𝑎𝑡𝑒 =

𝐼

𝑄𝑚𝑎𝑥
 (2.1) 

State of charge (SOC) - The state of charge (SOC) is a percentage measure of charge remaining 

in a battery relative to its predefined “full” and “empty” states. Manufacturers typically provide 

voltages that indicate when the battery is empty (0% SOC) and full (100% SOC). SOC is generally 

calculated using current integration to determine the change in battery capacity over time. The 

most widely recognized and simplest 𝑆𝑂𝐶 estimation strategy depends on the notion that one can 

count the coulombs entering and leaving the battery. Since current, 𝐼, can be expressed in coulombs 

per second, the integration of that current with respect to time, 𝑡 , gives the aggregate number of 

coulombs, 𝑁𝐶 , transported into or out of the battery. 

 
𝑁𝐶 = ∫ 𝐼 𝑑𝑡

𝑡

𝑡0

 (2.2) 

The total number of coulombs can be expressed as a capacity, 𝑄, following a simple unit 

conversion. 

 
𝑄 = ∫

𝐼

3600
 𝑑𝑡

𝑡

𝑡0

 (2.3) 

Thus SOC can be estimated by considering the initial 𝑆𝑂𝐶, 𝑆𝑂𝐶0 as well as the capacity processed 

during usage as a percentage of the maximum battery capacity, 𝑄𝑚𝑎𝑥. 

 
𝑆𝑂𝐶 = 𝑆𝑂𝐶0 −

𝑄

𝑄𝑚𝑎𝑥
×  100 % (2.4) 

However, the limitation of this method is that it requires the initial SOC of the time period; which 

may be unavailable. Fortunately, current levels of vehicle technology, memory, and processing 

power make this form of SOC estimation an appropriate choice. 

Depth of discharge (DOD) – This is a percentage measure of the amount of energy extracted 

during a discharge process, compared to a fully charged state. For instance, a 100 Ah battery from 

which 40 Ah has been withdrawn has undergone a 40% depth of discharge (DOD). Depth of 
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discharge is the opposite of state of charge (SOC). A battery at 60% SOC is also at 40% DOD 

[52]. 

State of health (SOH) - The state of health (SOH) is a measurement of the battery condition 

compared to its initial or ideal state, measured in percentage points; i.e. the state of the battery 

between the beginning of life (BOL) and end of life (EOL) expressed as a percentage. The EOL 

of a battery is reached when the battery cannot perform according to the minimum requirement. 

There is no universally accepted technique for describing SOH. Any of the following, in single or 

in combination form, might be used: internal resistance; impedance/conductance; capacity; 

voltage; ability to accept charge; and number of charge/discharge cycles [52]. 

Cycle life - Cycle life alludes to the number of times a battery must be discharged and charged 

before its nominal capacity goes down below 80% (or some other predetermined threshold) of its 

rated value. Cycle life is given for a particular DOD and determined under particular charge and 

discharge conditions. Typically, higher DOD translates to a lower life cycle [52]. 

Open Circuit Voltage (OCV or Voc) - The open circuit voltage (OCV) is the voltage when there 

is no current passing in or out from the battery, and, subsequently no chemical reactions occur 

within the battery. It is a function of SOC and is expected to remain the same during the life-time 

of the battery. Moreover, with the change in time, other battery characteristics will also change, 

e.g. capacity gradually decreases as a function of the number of discharge-charge cycles [52]. 

Terminal Voltage (V) - The voltage between the battery terminals when load connected. Terminal 

voltage fluctuates with SOC and discharge/charge current [52]. 

Nominal Voltage (V) – Nominal voltage is the reference voltage or reported voltage of the battery. 

It also sometimes thought of as the “normal” voltage of the battery [52]. 

Cut-off Voltage (V) – Cut-off voltage is the minimum allowable voltage. It is this voltage that 

generally defines the “empty” state of the battery [52]. 

Charge Voltage (V) - The voltage to which the battery is charged when charged to full capacity. 

Charging schemes usually consist of a constant current charge until the cell voltage has reached 

the charge voltage, then constant voltage charge, which allows the charge current to taper until it 

is very small [52]. 
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Float Voltage (V) - The voltage at which the battery is maintained after being charged to 100% 

SOC to maintain that capacity by compensating for self-discharge of the battery [52]. 

Capacity or Nominal Capacity (Ah for a specific C-rate) – The coulometric capacity, the total 

Amp-hours available when the battery is discharged at a certain discharge current (specified as a 

C-rate) from 100% SOC to the cut-off voltage. Capacity is calculated by multiplying the discharge 

current (in Amps) by the discharge time (in hours) and decreases with increasing C-rate [52]. 

Energy or Nominal Energy (Wh (for a specific C-rate)) – The “energy capacity” of the battery, 

the total Watt-hours available when the battery is discharged at a certain discharge current 

(specified as a C-rate) from 100% SOC to the cut-off voltage. Energy is calculated by multiplying 

the discharge power (in Watts) by the discharge time (in hours). As with capacity, energy decreases 

with increase in C-rate [52]. 

Specific Energy (Wh/kg) - The specific energy of a battery is expressed as a nominal energy per 

unit mass, such as Wh/kg. It is highly dependent on the battery chemistry and packaging [52]. 

Specific Power (W/kg) - The specific power of a battery is expressed as a nominal power per unit 

mass, such as W/kg or kW/kg. It is highly dependent on the battery chemistry and packaging [52]. 

Energy Density (Wh/L) - The energy density of a battery is expressed as a nominal energy per 

unit volume, such as Wh/L. It is highly dependent on the battery chemistry and packaging [52]. 

Power Density (W/L) - The power density of a battery is expressed as a nominal power per unit 

volume, such as W/L or kW/L. It is highly dependent on the battery chemistry and packaging [52]. 

Internal resistance- The internal resistance is sometimes considered as the ohmic resistance of 

the cell, which is the immediate voltage change after use of a current step on a cell in equilibrium. 

In other words, the internal resistance is the summation of the ohmic, activation and diffusion 

polarization resistances [55, 52], which is the greatest possible voltage drop in the cell. 

Nevertheless, power dissipation in the form of heat will result because of the entire voltage drop. 

The voltage drop can be generally characterized as: 

 IR drop is a direct result of the current flowing across the internal resistance of the battery, 

by ohmic resistance.  
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 Activation polarization alludes to the different retarding factors inherent in the kinetics of 

an electrochemical reaction, similar to the work function that ions must overcome at the 

junction between the electrodes and the electrolyte. 

 Concentration polarization considers the resistance faced by the mass transfer (e.g. 

diffusion) process by which ions are transported across the electrolyte from one electrode 

to another. 

Figure 2.4 represents the typical polarization curve of a battery with the contributions of all 

three above mentioned components exhibited as a function of the current withdrawn from the 

battery. Since these components are current-dependent, the voltage drop caused by them 

usually increases with increasing output current. The internal resistance of a battery relies on 

temperature, SOC, and C-rate. Different values for the internal resistance can be discovered 

depending on the measurement strategy. 
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Figure 2.4: Ohmic, activation, and concentration polarization of a battery (modified from [56]). 

2.3 Lithium-Ion Cell Operation  

A lithium-ion battery cell usually consists of five distinctive layers: two current collectors (the 

negative current collector and positive current collector); a negative electrode (anode); a separator; 

and a positive electrode (cathode). The cathode is made of a composite material and defines the 

name of the lithium-ion battery cell. There are generally four types of positive electrode materials 

[8, 57]: 1) a metal oxide with a layered structure, such as, Lithium cobalt oxide (LiCoO2 / LCO) 
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[58]; 2) a metal with a three dimensional spinel structure, such as, Lithium manganese oxide 

(LiMn2O4) [59]; 3) Lithium nickel manganese cobalt oxide (LiNiMnCoO2/NMC); and 4) a metal 

with an olivine structure, such as Lithium iron phosphate (LiFePO4/LFP) [60]. The anode is 

generally made of graphite or a metal oxide. The electrolyte can be liquid, polymer or solid. Figure 

2.5 (a) shows the composition of a lithium-ion battery. 

 

 

a) A schematic of lithium-ion battery [61] b) Charge/discharge mechanism of lithium-ion battery [61] 

Figure 2.5: Lithium-ion battery structure and charge/discharge mechanism. 

The lithium ions diffuse from the anode towards the cathode via the electrolyte during the 

discharge process. The lithium ions will intercalate (Intercalation alludes a reversible chemical 

process of binding a molecule between other molecules. Deintercalation is the opposite process, 

causing the cathode to become more positive). Because of the potential difference between the 

cathode and anode, an electric current will pass through the external circuit, supplying power to 

the load. During charging, the opposite mechanism occurs. The current will cause the lithium ions 

to deintercalate from the cathode and diffuse to the anode. At the anode intercalation of the lithium 

ions occurs, charging the battery. The charge and discharge mechanism of a lithium-ion battery is 

shown in Figure 2.5 (b). 

2.4 Insertion Process 

Heat generation within the battery cell is a complex process and is dependent on the 

electrochemical reaction rates; it changes with time and temperature. As shown in Figure 2.6, the 

active materials in both electrodes (positive and negative electrode) behave like an important 
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element for the lithium content of the battery in a lithium-ion cell. The lithium ions can be removed 

from or inserted into active material particles without significant change of the structure of the 

element. This process, called the exchange process, forms the basis of lithium-ion batteries. During 

the charging process, lithium-ion removed from the active side in the positive electrode and 

inserted into the negative electrode. 
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Figure 2.6: Charge and discharge mechanism in lithium-ion battery (modified from [56]). 

In Figure 2.6 [56], 𝐿𝑖𝑀𝑂2 is a metal oxide material used in the positive electrode and 𝐶 is a 

carbonaceous material used in the negative electrode. In the discharge process, lithium-ion travels 

via the electrolyte to the positive electrode. The electrochemical reactions for the positive 

electrode, negative electrode, and the overall reaction are given by [47, 62]: 

Positive electrode : 𝐿𝑖𝑀𝑂2 
𝐶ℎ𝑎𝑟𝑔𝑒
→     

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
←         𝐿𝑖1−𝑥𝑀𝑂2 + 𝑥 𝐿𝑖++ 𝑥𝑒− (2.5) 

Negative electrode :  𝐶 + 𝑥 𝐿𝑖+ + 𝑥𝑒−  +  𝐿𝑖𝑀𝑂2 
𝐶ℎ𝑎𝑟𝑔𝑒
→     

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
←         𝐿𝑖𝑥𝐶  (2.6) 

Overall : 𝐿𝑖𝑀𝑂2 + 𝐶 
𝐶ℎ𝑎𝑟𝑔𝑒
→     

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
←         𝐿𝑖𝑥𝐶 +𝐿𝑖1−𝑥𝑀𝑂2 (2.7) 

2.5 Anode 

Anode materials are typically carbonaceous in nature. It is important for the anode, and similarly 

the cathode, to have the following: capacity to hold large amounts of lithium without significant 
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change in structure; good chemical and electrochemical stability with the electrolyte; a good 

electrical and ionic conductor; and low cost. 

Graphite: Today, graphite is one of the most commonly utilized anode materials in lithium-ion 

batteries, stacked in layers. It undergoes a reversible lithium-intercalation reaction from 0 to 0.2 V 

vs Li/Li+ and is favoured for its small volume change during lithiation and delithiation [63]. With 

graphite anodes, high coulombic efficiencies of over 95% have been achieved, but they have a 

relatively low theoretical specific capacity of 372 mAh/g [64]. Although this is already higher than 

the specific capacity of the commonly used cathode materials, higher specific capacity anodes are 

still desirable because they contribute to a lower overall battery density. Among carbonaceous 

materials, CNTs (carbon nano tubes) are the most promising materials being developed. Purified 

CNTs of the single walled variety can reversibly intercalate lithium ions with a maximum 

composition of Li1.7C6, equivalent to 632 mAh/g. Etching can increase the reversible capacity to 

744 mAh/g, and capacities as high as 1000 mAh/g have been reported using ball milling treatments 

[65]. Multiwalled CNTs have a reported reversible capacity of up to 640 mAh/g. Although CNTs 

have high reversible capacities, they also have large irreversible capacities as high as 1488 mAh/g 

for purified single walled CNTs [65]. This lithium, which cannot be cycled, causes growth of SEI 

(solid electrolyte interface) and reduces overall capacity. Two major issues that must be solved 

before CNT anodes can be widely adopted are excessive irreversible capacity and methods of 

large-scale fabrication [66].  

Silicon: Silicon is another leading alternative anode material to carbon and has been extensively 

researched. Pure Si anodes readily alloy with lithium and have an extremely large theoretical 

capacity of 4200 mAh/g, but are impractical as they undergo great volumetric changes and thus 

have poor cycleability. Composite materials have been developed to mitigate the effects of the 

mechanical stresses of lithiation and delithiation. One method is to house the active silicon material 

in inert matrices made of materials such as C (e.g. graphite, pitch, CNTs), TiC, SiC, TiN, or Cu/C. 

The inactive matrix absorbs the mechanical stresses and strains experienced by the active phase, 

resulting in improved cycleability. Nanowires have also been proposed as an anode material 

because lithium diffusion occurs only in one dimension and mechanical stresses can be well 

accommodated. Low cycleability even at small currents and significant irreversible capacities 

remain challenges in the development of silicon based anodes [66]. 
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2.6 Cathode 

A cathode material is usually a metal oxide capable of intercalating lithium ions. It is important 

that the cathode be able to hold a large amount of lithium without significant change in structure, 

have a good chemical and electrochemical stability with the electrolyte, be a good electrical 

conductor and diffuser of lithium ions, and be of low cost. The thermal stability and the rate 

capability of the battery is also largely dependent on the cathode material [67]. A layered structure 

of LiCoO2, LiMn2O4, and LiFePO4, is shown in Figure 2.7. 

  

 

a) Layered structure of 

LiCoO2 

b) Cubic crystal structure of 

LiMn2O4 

c) Olivine structure of 

LiFePO4 

Figure 2.7: a) Layered structure of LiCoO2 [58], b) Cubic crystal structure of LiMn2O4 [59], and c) 

Olivine structure of LiFePO4 [60]. 

LiCoO2: LiCoO2 is most the most commonly used cathode material [68], shown in Figure 2.7 (a). 

LCO batteries are widely used in portable applications. Lithium ions are intercalated between 

sheets of CoO2 274 mAh/g, but an anisotropic structural change occurs at Li0.5CoO2, so the 

realizable capacity is limited to about 140-160 mAh/g [69, 70, 71, 72]. Coatings such as AlPO4 

have been developed to improve capacity retention and thermal stability [67]. The discharge 

capacity of LiCoO2 is good; 136 mAh/g at a 5C rate has been demonstrated with multiwalled 

carbon nanotube (CNT) augmented cathodes. However, cobalt is relatively expensive as compared 

to other transition metals, such as, manganese and iron, despite the attractive electrical properties 

of LiCoO2 cathodes. 

LiMn2O4: LiMn2O4 is a promising cathode material with a cubic spinel structure, as shown in 

Figure 2.7 (b), where the corners of each tetrahedral and octahedral are oxygen atoms. The 
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theoretical specific capacity is 148 mAh/g. Current designs achieve between 115 and 130 mAh/g 

at modest discharge rates of 1C or less [73, 74, 75]. LiMn2O4 nanowire cathodes have 

demonstrated to possess excellent high power capabilities of 107 and 102 mAh/g at 5C and 10C, 

respectively and with virtually no capacity loss after 100 cycles. Other transition metals such as 

Ni, Co, and Fe can also be added to LiMn2O4 in varying amounts to increase capacity and improve 

capacity retention during cycling [68]. 

LiFePO4: LiFePO4 is one of the most recent cathode materials to be introduced. Its olivine 

structure, as shown in Figure 2.7 (c), is very different from the layered and spinel structures of 

other lithium-ion chemistries, and its intercalation mechanism is also different, involving phase 

changes. It has a theoretical specific capacity of 170 mAh/g, a figure which has been approached 

by recent advances [76]. A composite material such as LiFePO4/C with a nano-carbon wire 

network has been shown to have excellent high rate performance, achieving 129 mAh/g at a 10C 

rate and retaining over 90% of its capacity after 400 cycles at 10C [77]. LiFePO4 has the added 

advantage of being inexpensive and environmentally friendly. 

2.7 Separator 

Lithium-ion cells use a separator known as microporous film to prevent physical contact between 

the cathode and anode while permitting free ion flow. The battery performance can be adversely 

affected by the presence of separator material as it increases electrical resistance as well as battery 

density [78]. Therefore, care must be taken in order to select an appropriate material. 

Commercially available liquid electrolyte cells utilize microporous polyolefin materials, such as 

polyethylene (PE) or polypropylene (PP). Pore sizes of 0.03 to 0.1 μm, and 30 to 50% porosity are 

commercially available [79]. The separator films form an important element of the battery in an 

over-temperature scenario. The low melting point of polyethylene (PE) materials allows their use 

as a thermal fuse. As the temperature rises to the softening point of the polymer, the membrane 

begins to shrink, and consequently pore size is reduced. The flow of Li+ ions is disrupted and the 

reaction rate is decreased. If the temperature continues to rise, the separator is required to be 

capable of shutting down the reaction entirely, below the thermal runaway threshold. For currently 

utilized PE-PP bilayer separators shutdown occurs at about 130°C and melting occurs at about 

165°C [78]. 
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2.8 Types of Lithium-ion Batteries 

Lithium-ion batteries are available in various forms. The internal structure of the different types 

of batteries is shown in Figure 2.8. The cylindrical and prismatic batteries are built from wound 

electrodes and separators, immersed in electrolyte, containing several electrochemical cells within. 

The coin battery is a small flat construction containing a single electrochemical cell within it, while 

the pouch battery is also a flat construction, but containing several electrochemical cells within. 

Cylindrical, prismatic, and pouch packaging are often used in automotive applications because of 

the larger surface areas of the positive and negative electrodes. The intended operating conditions 

for the battery determine which packaging is selected by the automotive manufacturer. For 

example, the Chevrolet Volt and Nissan Leaf use pouch batteries while the Tesla Model S uses 

cylindrical batteries. Usually, cylindrical cells designs are limited to below 4 Ah while prismatic 

cells designs are used for higher capacity ratings [79]. 

  

(a) Coin Battery (b) Cylindrical Battery 

  

(c) Pouch Battery (d) Prismatic Battery 

Figure 2.8: Internal structure of different types of battery [80]. 

2.9 Thermal Management of Batteries 

Thermal management of batteries is crucial in acquiring the required performance at a lower 

environmental temperature and the desired life at a higher environmental temperature. Lithium-
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ion batteries degrade quickly at high temperatures, while cold temperatures diminish power and 

energy output, in this manner limiting their driving range or performance capabilities [39, 81]. The 

heat produced within a battery must be dissipated to improve reliability and prevent failure [82, 

83, 84]. A thermal management system is necessary in transportation applications in order to 

regulate the batteries to operate within the required temperature range; and to decrease uneven 

distribution of temperature [82]. In a battery pack, uneven temperature variations may lead to 

electrically unbalanced modules which bring down the required performance of the pack and 

vehicle [85, 86, 87, 88, 89]. 

There are two principle sorts of cooling: i) air cooling, and ii) liquid cooling. The liquid cooling 

option appears to be more compelling, because of higher specific heat content contrasted with air 

cooling. It occupies less volume, yet brings more complexities and additionally high cost and 

weight [90]. The temperature increase in a lithium-ion battery during charging/discharging follows 

three processes: 1) the rate at which heat is produced within the cell; 2) the rate at which heat 

conducts from inside the cell to the external surface; and 3) the rate at which heat is removed from 

the cell's external surface to the environment. Many cooling systems, especially those which are 

active, require heat to be rejected outside the vehicle, which requires additional flow ducting and 

a heat exchanger. Vehicles have limited physical space available and packaging can become an 

issue. Some air cooling methods, such as those in the Toyota Prius, pass cooled cabin air (cooled 

by the vehicle’s air conditioner) through the battery pack. In liquid or fin cooling systems, a 

secondary refrigeration loop to remove the heat may be needed [82]. Battery pack thermal 

management and control systems have been demonstrated, commercially and in the literature 

utilizing: air or liquid systems, insulation, and phase-change materials, within both active and 

passive approaches. Several papers that investigate these various strategies are presented in the 

following section. 

2.9.1 Air Cooling  

The main advantage of air cooling systems is their simplicity over liquid coolant systems. Another 

advantage is electrical safety. However, air cooling systems have a lower heat transfer coefficient, 

making it more difficult to achieve a uniform temperature on the pack. There are various papers 

available in open literature for air cooling. 
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Pesaran [90] described a systematic approach with a detailed schematic of a battery thermal 

management system using air as a coolant fluid. He divided the design process of a BTMS into 

seven general steps: 

1. To define the objective and constraints of a BTMS is to identify the specification of the 

desired system. (As an example, a few key considerations, including the temperature range 

of safe operation, space and ventilation requirements of the battery pack, need to be 

considered in case of release of hazardous gases). 

2. To measure or estimate the module/pack heat dissipation rate and heat capacity. The heat 

generated over a period of time is measured experimentally e.g. calorimetry method.  

3. To carry out a first-order BTMS evaluation. To select the heat carrying fluid the battery 

pack and modules are tested for their steady state and transient response. This step also 

tests the flow models; e.g. parallel, series and combination. 

4. To characterize the module and battery pack heat transfer behaviour. The overall thermal 

conductivity of the system is defined and software is employed to predict the heat transfer 

rate between the battery pack and the environment.  

5. To design a basic BTMS.  

6. To construct, install and test the BTMS. Based on the basic design a BTMS prototype is 

built and tested under predefined operational conditions. 

7. To optimize the BTMS.  

Pesaran [90] also described the pros and cons of different BTMSs, such as a cooling system with 

series or parallel air distribution. He claimed that for parallel cooling, where the total air flow is 

split into equal portions, more uniform temperature distribution in the pack is achievable. Parallel 

configurations, however, require very careful design of air manifolds. Hence, large battery packs 

usually use a series-parallel configuration. 

In a cooling channels approach, Sun et al.  [91] modeled a battery pack to optimize cooling channel 

configuration. The pack was composed of stacks which were assembled beside each other. The air 

enters and exits the pack using the lower and upper ducts, respectively, and flows between the 

stacks to cool them down. The simulations showed that the average temperature of the stacks close 

to the inlet and outlet of the pack is lower compared to the farther locations. This was due to the 

uneven flow rate in the channels that resulted from the pressure drops in the ducts. Therefore, the 
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uniformity of flow rates was improved by tapering the upper duct. In this way, the temperature 

difference across the pack was reduced from 4°C to 1.3°C. The method presented in [91] is a good 

example of utilizing thermal models in BTMS development. 

Yeow et al. [92] also conducted a series of studies to improve cooling lithium-ion batteries using 

indirect methods. In the indirect method, the cooling fluid is not in direct contact with the battery 

while in the direct method the coolant flows over the surface of the battery. In this method, the 

coolant moves through a series of tubes embedded in a cold plate which is in contact with the 

battery or thermal fins. In their work, stacks were cooled using a thin aluminum plate in contact 

with the surface. The thermal fins extract heat from the stack and transfer it to the liquid cooled 

cold plates at the side of the stacks. Some parametric studies, such as the effect of employing one 

or two cold plates, were conducted on this BTMS [8, 92]. The results of their study showed that 

the dual cold plate cooling had about twice the cooling capacity of the single cold plate cooling. It 

was also concluded that the cell temperature distribution can be significantly influenced by the 

location of the cold plate. Furthermore, they proposed a thermal fin which can rapidly conduct 

heat to the cold plates. These fins contain embedded heat spreaders that improve the uniformity of 

temperature distribution on the stack surface. 

2.9.2 Liquid Cooling 

Active thermal management methods utilize forced fluid convection to absorb heat from individual 

batteries or subgroups of batteries within a pack. The work of Karimi and Dehghen [93]  evaluated 

thermal management using both air and liquid cooling. A pack consisting of twenty, prismatic 

LiCoO2-20 Ah batteries were modeled with a battery thermal model based on 1) ohmic heating 

and, 2) reaction entropy changes alone. A flow network model was used to determine the effect of 

several coolant flows on the final temperature distribution of a pack undergoing constant current 

discharge. Air and silicon oil were chosen as a cooling medium in a battery pack. Two flow 

configurations were modeled: a U-configuration, where flow enters and exits the same side of the 

pack casing, and a Z-configuration where the inlet and outlet are at opposite ends of the pack and 

on opposite sides of each end. The aim is to evaluate thermal distribution in the pack by measuring 

the standard deviation of temperature. Numerical results from the temperature distributions show 

that for both air and silicon oil, the Z-configuration for flow results in a more uniform temperature 
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distribution than the U-configuration. Furthermore, silicon oil results in a much smaller 

temperature deviation (0.15°C vs.7.33°C after 2C discharge). The authors conclude that the penalty 

for the improved thermal control is that parasitic power is much higher for silicon oil, due to the 

high viscosity. 

In addition to this study, the tab location and tab size are important and should be optimized for 

effective thermal management of batteries and cooling of the battery pack. Kim et al. [94] 

examined four different cell designs with different aspect ratios, as well as tab size and location. 

They showed that some measurable responses, such as output potential, do not vary between cell 

designs. However, the internal kinetics and temperature distribution of the battery is significantly 

influenced. The author also found that the width of tabs has a minor effect on temperature 

distribution, while increasing the surface area of the cells significantly raises the temperature non-

uniformities on the battery surface. 

2.9.3 Thermal Analysis of Batteries  

Temperature estimations and the prediction of the lithium-ion battery cell are addressed by various 

papers including analytical and numerical modeling [95, 96, 97, 98, 99, 100, 101, 102, 45].  

Ye et al. [103] developed and validated a thermal model based on battery surface temperature 

measurements using thermocouples. The experiment consisted of measurement of the surface 

temperature of a prismatic battery (11.5 Ah) at a single location, the center of the battery’s largest 

surface. The battery was discharged at various rates of 0.2C, 0.5C, 1C, and 2C inside a 

temperature-controlled box with several initial temperatures (0°C, 10°C, 25°C, and 55°C). To 

minimize heat transfer to the box and ambient air, insulation was wrapped around the battery. The 

quasi-insulation allows the assumption that all generated heat remains within the battery, and the 

resulting measured temperature represents the total heat generated during the operation.  

Mi et al. [104] presented numerical and analytical thermal results for a pack consisting of 48 

batteries. The thermal response of an individual cell with a single thermocouple was measured as 

the battery underwent discharge. The measured response was used as an input heat term to a 

commercial FEA code. In the physical experiment, the battery was placed in a test chamber in a 

vertical position with natural convection cooling. A single thermocouple was used to measure the 
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surface temperature of the battery, while another thermocouple monitored ambient temperature. 

This difference between the battery surface temperature and ambient temperature was used to 

quantify the heat dissipation by radiation and natural convection means. 

Wiliford et al. [105] used distributed thermocouples (16 K-type thermocouples) on a prismatic 

LiCoO2-4.5 Ah battery with C/3, 1C, 2C, and 4C discharge rates. The battery was suspended in a 

Plexiglas frame for natural convection cooling. The experiment was performed to provide 

validation of a thermal model based on electrode entropy changes. The surface temperature 

variation was measured during each discharge. Temperatures around the positive, aluminum tab 

were found to be consistently higher (about 5°C) than those at the negative, copper tab. In 

comparing experimental and model results, the authors only utilize point 14 in defining the battery 

temperature. For this work, the author used the below Equation (2.8) for the heat generation rate. 

 
�̇� = 𝐼2𝑅 − 𝑇 ∆𝑆 [ 

𝐼

𝑛 𝐹
 ] (2.8) 

where, 𝐼 is the current density (A/cm2), 𝑅 is the material resistivity (Ω-cm), 𝑇 is temperature (K), 

∆𝑆 is entropy change (J/mole K), 𝑛 equals one electron per reaction, and 𝐹 is the Faraday’s 

constant. 

In calorimetric methods, two approaches are used to measure the heat generation rates of lithium-

ion batteries: 1) Accelerated rate calorimeter (ARC) and 2) Isothermal heat conduction calorimeter 

(IHC), both apply a control volume around the battery and calculate the heat generation rate �̇� 

[106] by using: 

 
�̇� = 𝑚 𝐶𝑝  

𝑑𝑇

𝑑𝑡
+ ℎ 𝐴 (𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑠𝑖𝑛𝑘) (2.9) 

where 𝑚 is the mass of the battery (kg), 𝐶𝑝 is the heat capacity of the battery (J/kg K), 𝑑𝑇/𝑑𝑡 is 

the change in battery temperature with respect to time (K/s), ℎ𝐴 is the calorimeter constant (W/K), 

𝑇𝑠𝑢𝑟𝑓 is the surface temperature of the battery (K), and 𝑇𝑠𝑖𝑛𝑘 is the sink temperature surrounding 

the battery (K). 

The ARC method measures the rate of heat generation by measuring the temperature increase in 

the battery and heat rejected from the battery to the surroundings, according to Equation (2.9). 
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Hong et al. [107] used an accelerated rate calorimeter to measure the heat generation rate, and a 

1.35Ah Sony 18650 cylindrical battery at 308 K and discharge rates of C/3, C/2, and C/1 with 

maximum measured rate of heat generation of 1.63 (W/L) [107]. Al Hallaj et al. [108] conducted 

some experiments on 18650 cylindrical batteries and found a maximum heat generation rate of 

0.26 W/L for less than C/10 discharge and charge rate of C/3 [108]. 

Eddahech et al. [109] performed an analysis of the thermal behaviour of high-powered lithium-ion 

cells using an ARC calorimeter in order to measure the heat produced by the lithium battery cell 

during the discharging and charging processes at several current rates. Basically overall heat 

generation in a battery is connected to both joule heating and entropy change. The electrochemical 

reactions that happen during charging and discharging, changes battery entropy leads to heat 

generation, while joule heating takes place due to internal resistance to current flow. From this 

study, it is found that at the higher current rate the effect of change in entropy is negligible, which 

leads to a larger irreversible heat component during the charging and discharging. 

The IHC method uses a large heat sink in contact with the battery surface in order to keep the 

battery at steady temperature (isothermal) operation during measurements, therefore eliminating 

the first term in Equation (2.9). This method restricted the estimations to low discharge rates, since 

the fast discharge rates of the battery prompts higher heat generation rates which the heat sink 

cannot extract, resulting in temperature gradient within the battery [106].  

Kim et al. [110] used a three-cell isothermal micro calorimeter to examine the dependence of 

thermal behavior on the discharge/charge rate with LixMn2O4 coin cells of 2016 size (20 mm 

diameter and 1.6 mm height). The rate of heat generation of the battery was measured utilizing 

temperature sensors placed between the battery and the heat sink, with selected discharge rates of 

C/10, C/5, C/2, and 1C from 300 to 308 K. The corresponding maximum heat generation rates 

were 0.82 W/L between C/10 and C/5 discharge rates, 0.97 W/L for a discharge rate of C/5 to C/2, 

and 3.21 W/L for a discharge rate of C/2 to 1C [110].  

Kobayashi et al. [111] measured the rate of heat generation of Sony 18650 lithium-ion batteries 

using a calvet type conduction micro-calorimeter, which contains an isothermal aluminium vessel 

in contact with a test battery. A thermocouple was utilized to measure the amount of heat transfer 

from the battery to the heat sink. The battery was discharged at 1/50C and 1/10C with an ambient 
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temperature of 300 K, and the measured maximum rate of heat generation was 0.97 W/L for a 

discharge rate between C/10 and C/5. 

Keller et al. [112] studied the effect of battery operation in extreme temperature conditions over 

the characteristics of a vehicle, such as the range of Griffon electric vehicles equipped with a CMP 

3ET205 lead-acid battery. In order to conduct a comparison, tests have been conducted on a vehicle 

without TMS and with air and liquid TMS and it is found that the vehicle range decreased in the 

absence of TMS due to the high ambient temperatures and heat spread across the battery pack. 

This can lead to a premature cell failure and seasonal driving variability. From the study, it is also 

found that the mileage of a vehicle can be increased up to 20% by using TMS. In addition, with 

the use of TMS, the temperature distribution can be reduced to 4.0ºC and 2.3ºC compared to 11.6ºC 

for the non-managed pack, by circulating-air and circulating-liquid, respectively. 

Kuper et al. [113] examined different active cooling systems with air, liquid and refrigerant cooling 

mediums as well as heat generation in battery cells.  The increase in battery temperature over time 

based on internal heating and cooling rates has been formulated. The study shows that maximum 

and minimum cell temperatures should be maintained within a 3 – 5 K range, in order to prevent 

25% acceleration of the aging kinetics and up to 50% variance in power capability. It is also 

recommended that the coolant inlet and outlet temperature difference be kept at less than 3 K in 

order to maintain a uniform cell temperature. 

Fathabadi [114] proposed a novel design of a lithium-ion battery pack including hybrid active 

passive TMS for EVs and HEVs. In the suggested distributed ducts and PCM/EG composite, 

airflow was used as active as well as passive cooling/heating components, respectively. Thermal 

investigation of the suggested battery pack, consisting of 20 battery units, 19 distributed ducts and 

PCM/EG composite, was carried out and calculations were performed for the temperature 

distribution by numerically solving the related partial differential equations. Results show a high 

thermal performance of the battery pack for ambient temperatures up to 55°C and for battery 

temperature remaining in the recommended temperature range (below 60°C).  

Liu et al. [115] developed and simulated a two-dimensional and transient model for the thermal 

management of a 20-flat-plate lithium-ion battery stack in order to investigate the effect of the 

Reynolds number, discharge rate and ambient temperature over the temperature distribution in the 
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battery stack by using different cooling materials. Results shows that, in the case of mild ambient 

temperature, liquid cooling is most effective in decreasing the temperature inside the battery 

compared to PCM. It is also advised to avoid fast and deep discharge in order to keep the 

temperature within an acceptable range. The study shows that air cooling is more preferred at a 

zero or sub-zero ambient temperature because, at such a temperature, heat needs to be retained 

rather than removed. There is minor difference between the effect of using air and liquid cooling 

material when SOC is high and ambient temperature is mild. The effect of change in the Reynolds 

number is present in the case of liquid cooling while it is negligible in air cooling. Also, selections 

of a suitable cooling material have a significant effect in the case of fast discharge and low ambient 

temperature. 

2.9.4 Thermal Imaging of Lithium-ion Battery 

IR (Infra-red) imaging technique is an excellent tool for the temperature measurement on the 

surface of an object. It provides several advantages over other types of temperature sensors. It is 

basically non-contact and also gives very helpful details of the surface being studied [116]. Some 

examples are: 

Niculuta et al. [117] used this technique to measure the surface temperature profile with a discharge 

current of 14A and 35A, of a 70 Ah LiFePO4 battery. This enabled visual determination of the 

spatial temperature distribution, and resulted in validation of a three-dimensional electro-thermal 

model. They compared images and it was found that the maximum surface temperature measured 

during the experiment was 32.1°C and the model gave a maximum temperature of 33.5°C. The 

authors found that when currents of 35A (C/2) or higher are used to charge/discharge the cell, the 

temperature profile is not uniform. 

Streza et al. [118] used an IR camera (FLIR 7200 series) to capture the thermal images of lead-

acid batteries to investigate the distribution of current in the electrodes. They designed a special 

cell (14 cm x 14 cm) with electrodes in direct contact with an air. The information was extracted 

during the discharge process by analysis of the heat dissipation in the electrode. The effect of the 

current in the metallic grid can be de-convoluted by the total heat generated in the electrode by 

numerical processing of the temperature profile on the surface of an electrode. Their proposed 
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method had the potential to become an important tool in optimising electrode geometry because 

of its simplicity and effectiveness. 

Keyser et al. [119] used utilize thermal images of Generation I (4.5 Ah), Generation II (5 Ah), 

Generation III (8 Ah) lithium polymer cells to measure heat generation and temperature 

distribution. It was found that, during the discharge process, the first and second generation cells 

demonstrated signs of localized heat during IR imaging below the positive electrode, while the 

Gen III cell remained generally uniform in temperature. As the cell was improved and better 

electrodes designed, the Gen III turned into the most efficient of the cells that were tried. It 

surpassed an efficiency of 91% for all currents under 48 amps. In contrast, the Gen II cell was just 

78% effective at 30 amps. Moreover, the Gen III cell presented signs of being slightly endothermic 

during the initial 2 hours at a discharge of C/5 and demonstrated that the heat generation at C/5 

discharge is not consistent and highly reliant on the SOC of the cell. 

Bazinski et al. [120] also utilized a combined method of thermography technique along with a 

closed-form lumped capacitance model (LCM) in order to predict the heat generation inside the 

14.5 Ah lithium-ion phosphate pouch cell. They used a FLIR A320 Infrared thermal camera to 

capture the images at high discharge rates of 1C, 2C, 3C, and 5C, as well as at a low discharge rate 

of C/4. The authors found that, at lower C-rate, the temperature is uniform while at higher C-rates 

the localized hot spots developed in the cell and the spatial temperatures were not uniform. 

2.10 Heat Generation and Thermal Runaway 

Heat is generated within a battery cell by (1) ohmic heating (or Joule’s effect) due to transfer of 

the current across internal resistances and over potential (2) entropy change from electrochemical 

reactions (i.e., reversible endothermic/exothermic part of the reaction). For some electrochemical 

pairs, another electrical energy loss (and thus heat generation) could result from overcharging a 

fully charged battery cell. The rate of heat generation within a battery cell can be calculated by 

[39, 121, 122, 123, 124, 125] : 

 
�̇� = 𝐼 (𝐸 − 𝑉) − 𝐼 [ 𝑇 (

𝑑𝐸

𝑑𝑇
) ] (2.10) 
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The first term, 𝐼 (𝐸 − 𝑉), is heat generation due to internal resistance (irreversible heat dissipation) 

while the second term, –𝐼[𝑇(𝑑𝐸/𝑑𝑇)], is known as reversible heat resulting from changes in open 

circuit potentials with respect to the temperature at the two electrodes. At practical EV and HEV 

rates, the second term is usually smaller as compared to the first term. Hence, the heat is generated 

and released from the cell during both charging and discharging [122]. Thermal runaway can occur 

if this heat is not properly removed, as elevated temperatures trigger additional heat generating 

exothermic reactions [38, 126, 127, 128]. These reactions then further increase the battery 

temperature; creating a positive feedback mechanism that causes the battery temperature to climb 

sharply if the heat is not well dissipated. As a result, thermal runaway can occur, resulting in 

complete cell failure accompanied by fire or explosive gas release. Furthermore, even if thermal 

runaway does not occur, significant degradation of battery capacity can take place by consistent 

operation at an elevated temperature (>50°C) [37]. The rate of heat generation was later 

reformulated by Fathabadi [129] and is given by: 

 
�̇� = 𝐼2𝑅 − 𝑇 ∆𝑆 [

𝐼

 𝑛 𝐹
] (2.11) 

where, 𝐼 is the current and 𝐼 > 0 for discharge, 𝐼 < 0 for charge, (i.e. +ve value is taken for 

discharging and –ve value is taken for charging), 𝑅 is the resistance, ∆𝑆 is the change in entropy, 

𝑛 is the number of flow of electrons, and 𝐹 is the Faraday’s constant (96485 Columb/mol). 

Current collectors create additional Ohmic heating due to the high current densities that occur in 

planar prismatic type batteries. In another work, Equation (2.12) was developed to include two 

added terms that account for heat generated in the current collector tabs [130, 131, 132]: 

 

�̇� = 𝐼 (𝐸 − 𝑉 − 𝑇 (
𝑑𝐸

𝑑𝑇
)) + 𝐴𝑝𝑅𝑝𝐼𝑝

2 + 𝐴𝑛𝑅𝑛𝐼𝑛
2 

(2.12) 

As heat is generated in the cell during both charge and discharge, the need for adequate cooling 

arises. The temperature of the cell will continue to increase without adequate processes to remove 

the heat. The heat generation of cell stacks and the collection of stacks into a pack lead to the need 

for battery pack thermal management.  Researchers have examined achieving thermal control with 

air or liquid systems, thermal insulation, thermal storage (phase-change material), active or passive 

techniques, or a combination [133]. 
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2.11 Battery Modeling  

A major obstacle in PHEV, EV, and HEV commercialization is the high cost of the battery pack. 

To address this issue, different solutions, such as energy density improvements and reduction of 

material cost, could be considered. To come up with an optimal solution, one approach is to 

develop battery models. Battery simulation has been conducted on different scales, namely: cells, 

stacks, modules, and packs. There are various papers in the open literature available for battery 

thermal modeling, using different approaches such as: an artificial neural network [134, 135, 136, 

137]; a finite element model (FEM) [138, 139] or lumped parameter model (LPM) [140]; a linear 

parameter varying (LPV) model [141]; or a partial differential equation (PDE) model [142]. Many 

researchers [39, 40, 41, 42, 43, 44, 45, 143] investigated the thermal behavior of lithium-ion 

batteries only for a single cell. 

Battery modeling, in fact, provides valuable information on battery discharging/charging and 

transient behavior as well as SOH status of the battery (battery degradation) as a function of 

different parameters (such as temperature and discharge rate). EV designers use battery models for 

sizing the required battery and predict the battery performance. Battery models are also used for 

on-line self-learning performance and SOC estimation in BMS [144, 145, 146]. Common battery 

models used in the automotive applications are reviewed in the following sections. There are two basic 

types of modeling.1) Electrochemical modeling and 2) equivalent circuit modeling. 

2.11.1 Electrochemical Modeling 

Battery modeling based on electrochemical equations provides a deep understanding of the 

physical and chemical process inside the battery which makes it useful when designing a cell, but 

high computational time makes these models improper for applications with high dynamics. The 

first electrochemical modeling approach to porous electrodes with battery applications was 

presented by Newman and Tiedemann in 1975 [147]. In the porous electrode theory, the electrode 

is treated as a superposition between the electrolytic solution and solid matrix; the matrix itself is 

modeled as microscopic spherical particles where lithium ions diffuse and react on the surface of 

the sphere. This approach was expanded to include two composite models and a separator by Fuller 

et al. in 1994 [148]. This model was later adapted for Ni-MH batteries [149] , and then lithium-

ion batteries [150]. 
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Li et al. [151] studied physics-based CFD simulation of a lithium-ion battery with the drive cycle 

of Federal Urban Driving Schedule (FUDS) and used Newman’s pseudo-2D (P2D) porous 

electrode model for a large sized lithium-ion battery. They also addressed two major problems to 

implement such models in the electrochemical-thermal coupled battery simulation. The first was 

how to use such an electrode-scale model in a large scale simulation and the second was how to 

make the physics-based model cost-efficient in a CFD simulation. In their study, to address the 

first technical issue, they used the multi-scale multi-dimensional approach (MSMD), and to 

address the second issue, they used a linear approximation. 

Majdabadi et al. [152] built up a physics-based model to anticipate the thermal and electrical 

performance of a LiFePO4 battery under different operating conditions. They simplified Newman's 

full-order porous-electrode model at the electrode-level by using polynomial approximations for 

electrolyte variables, while at the molecule level, a multi-particle model featuring variable solid-

state diffusivity was utilized. The computational time was reduced by almost one order of 

magnitude when contrasted with the full-order model without sacrificing the preciseness of the 

results. Their model was general and can be utilized to expedite the simulation of any composite 

electrode with active-material particles of non-uniform properties (e.g., contact resistance, size). 

Mastali et al. [153] similarly created an electrochemical-thermal model of a commercial 

Graphite/LiFePO4 prismatic cell (20 Ah capacity) using FORTRAN code. They conducted the 

validation against the experimental data for charge/discharge rates varying from 1C to 5C. Physics-

based one-dimensional electrochemical models were coupled with charge conservation and heat 

diffusion equations to describe the electrochemical and thermal variable distributions throughout 

the battery domain. All the electrochemical properties of the graphite and LiFePO4 electrodes were 

obtained from half-cell simulations performed on the same electrode materials. 

Xu et al. [154] built up a pseudo 3D electro-chemical-thermal model for a large sized prismatic 

LiFePO4 battery during the discharge process by coupling the mass, charge, and energy 

conservations, and the cell electrochemical kinetics. They studied both the electrochemical and 

thermal performance of the battery. Their model treated the battery with the current collecting tabs 

as 3D and the local cell units as 1D. They also introduced a consistency index describing the SOC 

distributions among 1D cell units.  This index was utilized to explore the effects of the tab 

arrangement on the consistency of the battery cell. They similarly found that the location of the 
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current collecting tabs (of the negative and positive) on the prismatic battery had a great impact on 

the distributions of its potential and local reaction rates, which therefore affect the rate of heat 

generation, and subsequently the distribution of temperature inside the battery. 

Vyroubal et al. [62] studied an analysis of the temperature field in a lithium-ion battery during 

discharging. They used a Kokam prismatic battery with 4000 mAh capacity, and prepared a 

numerical model by utilizing SolidWorks and ANSYS Fluent software. This was later matched by 

real measurement utilizing electrical impedance spectroscopy and thermal imaging. 

Yang et al. [155] similarly performed an examination of the uneven discharging and aging as a 

result of the difference in temperature among the parallel-connected battery cells. They built a 

thermal–electrochemical model for the parallel-connected battery pack and found that, at a higher 

temperature, the cell encounters a bigger current in the early discharging process before around 

75% of DOD for the parallel-connected cells. They additionally reported that the changes in the 

discharging current through the cell at a lower temperature were inverse to that of the cell at a 

higher temperature. Their simulations also demonstrated that the temperature difference between 

the parallel-connected battery cells incredibly aggravates the irregularity discharge between the 

cells, which accelerated the losses of the battery pack capacity. For the pack with parallel-

connected batteries, the rate of capacity loss approximately increased linearly as the difference in 

temperature between each cell increased. 

Huo et al. [156] also presented a 3D model of the thermal performance of a lithium-ion battery.  

The effect of the discharge conditions on the thermal behavior was determined by utilizing the 

FEM. They analyzed the dynamic thermal behavior by utilizing UDDS, HWFET, and US06 drive 

cycles and concluded that the temperature increase was rapid under the US06 drive cycle as 

compared to UDDS and HWFET drive cycles. In less aggressive driving conditions for UDDS and 

HWFET, natural convection was adequate to keep a secure temperature range at 25°C. 

Lastly, Lai et al. [2] also built up a pseudo two-dimension (P2D) electrochemical model combined 

with a 3D heat transfer model. Their numerical model solved conservation of energy throughout 

the battery by considering the sources of heat generation; for example, electrochemical reactions, 

active polarization, and ohmic losses. Their outcomes showed an identical behavior of the 

temperature profile with thermal imaging and voltage distribution. They additionally found that 
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the heat generation of the current collectors and separator was generally lower in magnitude, 

demonstrating little effect on temperature changes. The reversible heat variations on the positive 

side affected the aggregate reversible heat, while the negative irreversible heat had a predominant 

position in the total irreversible heat.  

2.11.2 Equivalent Circuit Modeling 

Equivalent circuit-based modeling (ECM) is suitable for automotive real time applications (such 

as BMS design), since it does not need deep understanding of the electrochemistry of the cell and 

at the same time is well capable of simulating the battery dynamics. ECMs simulate the battery as 

a circuit often composed of resistors and capacitors, as well as other elements. There is a wide 

selection of models depending on trade-offs of accuracy and time required. Ideal voltage source 

or a large capacitor is selected to represent the open-circuit voltage (OCV), with the remainder of 

the circuit representing battery internal resistance and dynamic effects (e.g. terminal voltage 

relaxation). Generally, each observed phenomena is modeled with an individual circuit 

component. For example, the bulk electrolyte resistance is represented with a simple resistor, 𝑅0. 

To keep the model simple, similar phenomena (e.g. concentration and electrochemical polarization 

effects) could be grouped, although this decreases model accuracy. Resistances of other 

components, such as electrodes and separator, are additive and included in 𝑅0. Other phenomena, 

including the polarization effect of the battery, are usually represented by capacitors and resistors 

in parallel. In addition, diffusion effects are represented by a Warburg element. In the following 

section, common ECMs used in PHEV applications are presented. 

2.11.2.1 𝑹𝒊𝒏𝒕 model 

The 𝑅𝑖𝑛𝑡 model, as shown in Figure 2.9, is one of the simplest models. The model consists of an 

OCV (𝑉𝑂𝐶), and resistor (𝑅0) to account for different resistance values under discharging and 

charging, respectively [157]. These two parameters model all forms of internal resistance, 

including internal ohmic and polarization resistances. 𝐼𝐿 is the load current with a positive sign at 

discharging and a negative sign at charging. The battery terminal voltage (𝑉𝐿) is represented in 

Equation (2.13) as the OCV plus the voltage rise or drop across the resistor. Finally, the 𝑅𝑖𝑛𝑡 model 

can be parameterized directly from the experimental data and is very efficient as there is no need 
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to evaluate the differential equations. However, the model is unable to provide a simulation of 

transient or time-variant behaviour [158]. 
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Figure 2.9: Line diagram of 𝑹𝒊𝒏𝒕 model (modified from [157]). 

 𝑉𝐿 = 𝑉𝑜𝑐 − 𝐼𝐿 𝑅0 (2.13) 

2.11.2.2 The RC model 

The resistor capacitor (RC) model is presented in Figure 2.10. It has two capacitors (𝐶𝑐, 𝐶𝑏) and 

three resistors (𝑅𝑡,𝑅𝑒,𝑅𝑐). The capacitor 𝐶𝑐, that has a small capacitance and generally presents 

the surface effects of a battery, is named the surface capacitor [157]. The capacitor 𝐶𝑏, which has 

an extensive capacitance and represents the battery’s ample capability to store charge chemically, 

is known as a bulk capacitor. SOC can be calculated by the voltage across the bulk capacitor. Three 

resistors 𝑅𝑡,𝑅𝑒,𝑅𝑐 are known as the terminal resistor, end resistor and capacitor resistor, 

respectively. 𝑉𝑏 and 𝑉𝑐 are the voltages across 𝐶𝑏 and 𝐶𝑐, respectively. The electrical behaviour 

[157] of the circuit can be presented by: 
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Figure 2.10: Line diagram of RC model (modified from [157]). 
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𝑉𝑏
𝑉𝑐
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−1

𝐶𝑏(𝑅𝑒 + 𝑅𝑐)

1

𝐶𝑏(𝑅𝑒 + 𝑅𝑐)
1

𝐶𝑐(𝑅𝑒 + 𝑅𝑐)

−1

𝐶𝑐(𝑅𝑒 + 𝑅𝑐)]
 
 
 

[
𝑉𝑏
𝑉𝑐
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−𝑅𝑒
𝐶𝑏(𝑅𝑒 + 𝑅𝑐)

−𝑅𝑒
𝐶𝑐(𝑅𝑒 + 𝑅𝑐)]

 
 
 

[𝐼𝐿] (2.14) 

 [𝑉𝐿] = [
𝑅𝑐

(𝑅𝑒 + 𝑅𝑐)
  

𝑅𝑒
(𝑅𝑒 + 𝑅𝑐)

] [
𝑉𝑏
𝑉𝑐
] + [−𝑅𝑡 − 

𝑅𝑒 𝑅𝑐
(𝑅𝑒 + 𝑅𝑐)

] [𝐼𝐿] (2.15) 

2.11.2.3 Thevenin model:  

The Thevenin model connects a parallel RC network in series based on the 𝑅𝑖𝑛𝑡 model, presenting 

the dynamic characteristics of the battery [157, 158]. As appeared in Figure 2.11, it mainly consists 

of three parts; an open-circuit voltage 𝑉𝑜𝑐, internal resistances and equivalent capacitances. The 

internal resistances incorporate the ohmic resistance 𝑅𝑜 and the polarization resistance 𝑅𝑇ℎ. The 

equivalent capacitance 𝐶𝑇ℎ is used to describe the transient response during both discharging and 

charging. 𝑉𝑇ℎ represents the voltages across 𝐶𝑇ℎ.  𝐼𝑇ℎ is the outflow current of 𝐶𝑇ℎ. The electrical 

behavior of the Thevenin model can be represented by: 
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Figure 2.11: Line diagram of Thevenin model (modified from [157]). 

 
𝑉𝑇ℎ = −

𝑉𝑇ℎ
𝑅𝑇ℎ𝐶𝑇ℎ

+
𝐼𝐿
𝐶𝑇ℎ

 
(2.16) 

 
𝑉𝐿 = 𝑉𝑜𝑐 − 𝑉𝑇ℎ − 𝐼𝐿𝑅𝑜 

(2.17) 

2.11.2.4 DP model:  

Based on the test analysis of the characteristics of a lithium-ion power battery, an obvious 

polarization can be observed. The polarization characteristic could be simulated by the Thevenin 
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model to some degree.  However, the difference between the concentration polarization and 

electrochemical polarization leads to an inaccurate simulation in the moments at the end of the 

charge or discharge. An improved circuit model is introduced in Figure 2.12, which is 

characterized as a dual polarization (DP) model, to refine the description of polarization 

characteristics and independently simulate the concentration polarization and the electrochemical 

polarization [157]. 
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Figure 2.12: Line diagram of DP model (modified from [157]). 

The DP model [157] is made out of three parts: (1) Open-circuit voltage 𝑉𝑜𝑐; (2) Internal 

resistances, such as the ohmic resistance 𝑅𝑜 and the polarization resistances, which join 𝑅𝑝𝑎 to 

represent the effective resistance characterizing electrochemical polarization and 𝑅𝑝𝑐 to represent 

the effective resistance characterizing concentration polarization; and (3) The effective 

capacitances such as 𝐶𝑝𝑎 and 𝐶𝑝𝑐, which are used to characterize the transient response during 

transfer of power to/from the battery and to depict the electrochemical polarization and the 

concentration polarization independently. 𝑉𝑝𝑎 and 𝑉𝑝𝑐 are the voltages across 𝐶𝑝𝑎 and 𝐶𝑝𝑐 

respectively. 𝐼𝑝𝑎 and 𝐼𝑝𝑐 are the outflow currents of 𝐶𝑝𝑎 and 𝐶𝑝𝑐 respectively. The electrical 

behavior of the circuit can be represented by: 

 
𝑉𝑝𝑎 = −

𝑉𝑝𝑎

𝑅𝑝𝑎𝐶𝑝𝑎
+

𝐼𝐿
𝐶𝑝𝑎

 
(2.18) 

 
𝑉𝑝𝑐 = −

𝑉𝑝𝑐

𝑅𝑝𝑐𝐶𝑝𝑐
+

𝐼𝐿
𝐶𝑝𝑐

 
(2.19) 

 𝑉𝐿 = 𝑉𝑜𝑐 − 𝑉𝑝𝑎 − 𝑉𝑝𝑐 − 𝐼𝐿𝑅𝑜 (2.20) 
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2.11.3 Neural Network Modeling 

In this research, a neural network is used for the battery thermal modeling. The neural network 

(NN) or artificial neural network (ANN) is defined as a computational model made up of a number 

of simple, highly interconnected processing elements, which process information by their dynamic 

state response to external inputs. Neural networks can be used to model the complex relation 

between the input and output data using a relatively simple construction and algorithm. Neural 

networks have a relatively high tolerance limit to noisy data as well as the ability to discern a 

pattern even for the data that have not been initially used to train the model. This is one of the main 

advantages of using neural networks. The correctness of the model output function depends 

extensively on the goodness of the input data being fed into the model; this is one of the essential 

characteristic of neural networks. Therefore, learning about the network can be impaired if the 

input data does not contain enough information representing the output [159].  

Neural networks are usually organized in layers with nodes or neurons that connect different layers 

through an activation function. Data or patterns are presented at the input layer which travels to 

the hidden layers through weighted connections and is finally processed at the output layer which 

represents the output of the network. Different neural network structures, such as multilayer 

perceptron (MLP), radial basis function (RBF) and wavelet neural networks (WNN), have been 

designed and applied to specific applications, as summarized in [160]. MLP is the most widely 

used neural network architecture and the same has been applied in this work. In what follows, a 

brief description of the MLP architecture, its components and training function has been presented. 

A general structure of MLP is shown in Figure 2.13. MLP [161] belongs to a general class of 

neural networks, called feed forward networks, with one or more layers between the input and the 

output capable of the approximating generic class of functions, including continuous and 

integrable functions. Here, the first layer is called the input layer. This is a layer that receives a 

stimulus from outside of the neural network. Every other subsequent layer receives stimuli from 

its preceding layer. For example, from Figure 2.13, a layer 𝑙 receives stimuli from its preceding 

layer 𝑙 − 1. The neurons, which receive stimuli from the previous layer’s neurons and the output 

of which is used as stimuli for the outer layer neurons, constitute the hidden layer neurons. 

Neurons, whose outputs are used external to the network, are called the output layer neurons. The 
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term stimuli in this context refers to a weighted sum of the inputs passed through an activation 

function to form an output function. 
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Figure 2.13: MLP architecture (modified from [162]). 

Activation functions are used in the network to scale the data output from a layer [163]. Some 

commonly used activation functions in neural networks are described in the following section: 

Log sigmoid function: The sigmoid function is given below. The function is real valued and 

differentiable, characterized by horizontal asymptotes as 𝑥 → ± ∞ 

 
𝜎 (𝑥) =

1

1 + 𝑒−𝑥
 (2.21) 

 
𝜎 (𝑥) =  0 when 𝑥 → - ∞ 

 

 𝜎 (𝑥) =  1 when 𝑥 →  ∞  

where 𝜎 (. ) is the activation function and 𝑥 is the weighted sum of inputs from the preceding 

layers. 

Tan sigmoid function: This function is represented by: 
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𝜎 (𝑥) =

2

1 + 𝑒−2𝑥
 −  1 (2.22) 

 
𝜎 (𝑥) =  − 1 when 𝑥 → - ∞ 

 

 𝜎 (𝑥) =  1 when 𝑥 →  ∞  

This function can also be represented by a hyperbolic tan function 

 
𝑡𝑎𝑛 (ℎ) 𝑜𝑟 𝜎 (𝑥) =

𝑒𝑥 + 𝑒−𝑥 

𝑒𝑥 − 𝑒−𝑥
 (2.23) 

The previous equation can also be represented as: 

 𝑡𝑎𝑛 (ℎ) 𝑜𝑟 𝜎 (𝑥) =  
2

𝜋
 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑥)  (2.24) 

  

a) Log sigmoid function b) Tan hyperbolic function 

Figure 2.14: Log sigmoid and tan hyperbolic function [163]. 

Levenberg−Marquardt is the default training algorithm for the feed-forward network in many 

commercial solvers including MATLAB, due to its robust nature. According to the universal 

approximation theorem of the feed-forward neural networks [160], a single hidden layer can 

approximate any measurable function regardless of the activation function and input space with 

desired accuracy. Theoretically, there seems to be no constraint on the success of the feed-forward 

networks. However, it must be noted that the universal approximation theorem does not fix the 

number of neurons in a layer to guarantee success. In fact, in many black-box models which seldom 

have any information about the functional relationship and parameters, the number of neurons is 
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selected by trial and error with an objective to minimize the error gradient. A balance has to be 

struck between an increase in the number of neurons of the hidden layer and the convergence rate 

for a given accuracy, since either of them is directly proportional. Failure to obtain a good model 

could be attributed to inadequate learning, too few hidden layer neurons or the presence of a 

stochastic relation between the input and output functions. 

Once the network has been trained to deduce the weights and biases, the next step is to be tested 

and validated to ascertain the quality of the model. Typically, based on the size of the input data 

set, the data is divided to perform training, testing and validation analysis. Testing of a model is 

carried out only once against the trained model to obtain the predicted error using non-training 

data. This gives an indication of the performance of the model against unseen data. Once the model 

testing has been completed, the model is subjected to validation tests. A good model is expected 

to produce a generalized functional relationship between the input and the output. Cross validation 

of the model is essential to check the generalization of the estimated model. Unlike the test data, 

the validation data is generally used repeatedly to minimize the non-training performance function 

such as the mean square error (MSE) of the model. Training can be stopped once the validation 

error performance function stops decreasing or once it reaches the tolerance. Training, along with 

testing and validation concludes the overlying process in developing a neural network model. 

There are four functions available in MATLABTM for dividing the data set into training, validation 

and test sets, namely: dividerand, divideblock, divideint, and divideind, which have the following 

characteristics [164, 159]: 

 dividerand: This function divides the data set into three subsets using random indices. 

 divideblock: This function divides the data set into three subsets using blocks of indices. 

 divideint: This function divides the data set into three subsets using interleaved indices. 

 divideind: This function divides the data set into three subsets using specified indices. 

2.11.4 ANSYS Modeling  

In this research, the flow inside the cold plates is turbulent and therefore for numerical modeling, 

the ANSYS is used. The turbulent flow is characterized by chaotic property changes or by irregular 

movement of fluid within a flow region in fluid dynamics. Non-turbulent flow is basically a 
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laminar or streamline flow where the fluid is flowing in parallel layers with no interruption 

between each layer. In order to exhibit whether a flow is treated as laminar or turbulent, the 

Reynolds number is used. This is the proportion of inertia forces to viscous forces and given by: 

 
𝑅𝑒  =

𝜌𝑣𝑠
2 𝐿⁄

µ𝑣𝑠 𝐿2⁄
 =  

𝜈𝑠𝐿

𝜈
 (2.25) 

where, 𝑣𝑠 is the mean fluid velocity (m/s), 𝐿 is the characteristic dimension (m), µ is the dynamic 

fluid viscosity (Ns/m2), 𝜈 is the kinematic fluid viscosity (m2/s) also defined as 
μ

𝜌
, and 𝜌 is the fluid 

density (kg/m3). The transition from laminar to turbulent flow relies on flow configuration. The 

transition occurs at the Reynolds number of the order of 105 to 106 for the flow over a flat plate. 

For flows in circular pipes, the critical Reynolds number are between 2000 to 3000. 

Two methods are available for the solution of the Navier-Stokes equations without directly 

simulating the fluctuations in small scale turbulent: Reynolds Averaging (ensemble averaging) and 

filtering. The Reynolds-averaged Navier-Stokes (RANS) based modeling approach decreases the 

computational times and resources by time averaging the flow quantities for an entire range of 

scales of the turbulence being modeled. Two main RANS based turbulence models are available: 

(1) K-Epsilon and (2) K-Omega. 

2.11.4.1 K-Epsilon Turbulence Model 

The K-Epsilon model is a standout amongst the most broadly utilized turbulence models as it gives 

robustness, economy and precision for an extensive range of turbulent flows. Upgrades have been 

made to the standard model which improves its execution. Two variations are accessible in Fluent; 

the RNG (renormalization group) model and the realizable model. The standard, RNG, and 

realizable models have the same transport equations for 𝑘 and 𝜖. The two transport equations 

separately solve for the turbulent velocity and length scales. The principle contrasts between the 

three models are as per the following: 

 The turbulent Prandtl numbers representing the turbulent diffusion of 𝑘 and 𝜖. 

 The generation and destruction terms in the equation for 𝜖. 

 The technique of calculating turbulent viscosity. 



 

49 

 

2.11.4.2 K-Omega Turbulence Model 

The K-Omega turbulence model, which is the second turbulence model, demonstrates two 

variations: the standard K-Omega model, and the shear stress transport (SST) model. Both of these 

models use the same transport equations for 𝑘- . However, the SST model varies from the standard 

model as follows: 

 There is a slow change in the inner region of the boundary layer to the outer part of the 

boundary layer from the standard k-omega model to the k-epsilon model. 

 The transport effects of the principal turbulent shear stress the SST model includes a 

modified turbulent viscosity equation. 

There are different papers in the open literature accessible for battery thermal modeling, utilizing 

CFD models [165, 151, 62, 166, 167, 8]. A liquid cooling system, with two cold plates set one on 

the top and the other at the bottom of the battery, rejects heat produced within the lithium-ion 

battery using a structure of a metal thin-wall with various channels. This kind of system is able to 

reduce the operating temperature, which keeps consistent temperature distributions.  

Jarrett et al. [168] designed and modeled a battery cooling plate using CFD. Basically, a liquid 

cooling system model employed a serpentine channel and used CFD simulation to optimize the 

model. It is based on weighted average pressure drop, and the mean and standard deviation of the 

cold plate temperature. A numerical optimization was applied to improve its design. Their results 

indicate that a single design can satisfy both the average temperature and pressure objectives, but 

at the expense of temperature consistency. 

Zhao et al. [169] proposed another sort of cooling strategy for cylindrical batteries based on a mini-

channel liquid cooled cylinder (LCC) to maintain the maximum temperature and local temperature 

difference within an appropriate range. The heat dissipation performance was numerically 

investigated by varying the effects of channel quantity, mass flow rate, flow direction and entrance 

size. Their outcome demonstrated that the most extreme temperature can be controlled under 40°C 

for 42,110 cylindrical batteries when the inlet mass flow rate is 1 × 10−3 kg/s and the number of 

mini-channels is also limited to four. They additionally found that the cooling style by a LCC can 
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exhibit favorable circumstances contrasting with free convection cooling just when the channel 

number is higher than eight. 

Saw et al. [170] considered CFD analysis in order to explore the air cooling method for a battery 

pack with 38,120 cells. With an accelerating rate calorimeter, they additionally measured the heat 

generated by the cell while charging. Utilizing steady state simulation, the thermal performances 

of the battery pack were analyzed with various mass flow rates of cooling air. The correlation 

between the Nusselt number and Reynolds number was derived from the numerical modeling 

results. Also, an experimental testing of the battery pack at different charging rates validated the 

correlation. Their strategy provided a basic approach to estimate the thermal performance of a 

battery pack when the battery pack is large and full transient simulation is not feasible. 

In another study, Jin et al. [167] composed an oblique fin cold plate to cool down the batteries of 

an EV. In their outline, a basic configuration of oblique cuts across the straight fins of a 

conventional straight channel design was created, to enhance the performance of the conventional 

channel with minimal pressure penalty. These oblique cuts across the straight fins formed an 

oblique fin array. The composed liquid cold plate (LCP) contained these simple oblique fins with 

optimized angle and width. This segmentation of the continuous fin into oblique sections led to 

the re-initialization of boundary layers, giving an answer for the elevated temperatures caused by 

a thick boundary layer in the fully developed region. Their test results demonstrated that the heat 

transfer coefficients of an oblique minichannel were higher than those of a conventional straight 

minichannel. The oblique LCP can keep the battery surface average temperature below 50°C for 

1240 W heat load at lower than 0.9 l/min flow rate.  

Mohammadian et al. [171] reviewed internal and external cooling methods for thermal 

management of lithium-ion battery packs using 2D and 3D transient thermal analysis. For this, 

water and liquid electrolytes have been used as coolants for external and internal cooling, 

respectively. They also examined the effects of the techniques on diminishing the temperature 

inside the battery and temperature consistency. Their outcomes demonstrated that, at the same 

pumping power, utilizing internal cooling not only reduces the bulk temperature inside the battery 

more than external cooling, but also significantly decreases the standard deviation of the 

temperature field inside the battery. In conclusion, using internal cooling decreased the intersection 
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angle between the velocity vector and the temperature gradient which, according to the field 

synergy principle (FSP), caused an increase the convection heat transfer. 

Lastly, Huo et al. [172] similarly designed a battery thermal management system based on a 

minichannel cold plate. Their design was to cool a rectangular lithium-ion battery. In their study, 

they developed a 3D thermal model of the cooling system and studied the effects of flow direction, 

inlet mass flow rate, number of channels and ambient temperature on temperature increase and 

distribution of the battery during the discharge process.  The authors found that the most extreme 

temperature of the battery decreases with increases in the number of channels and the rate of inlet 

mass flow. They also concluded that the effect of flow direction on cooling performance was 

smaller after mass flow rate increased, and that, with the increase of inlet mass flow rate, the 

cooling execution improved but the increasing trend became smaller, and the mass flow rate as 

5 × 10−4 kg/s was optimal. 

2.12 Battery Degradation Modeling and Mechanism 

Modeling of degradation is mainly based on the aging experiments and measurements and the 

complexity of the model depends on the various factors and degradation mechanisms to be 

incorporated in the modeling. It is worth specifying that each type of battery experiences a 

particular degradation mechanism and not all stress factors have comparable impact on various 

battery chemistries. To date, understanding and assessment of battery performance in EVs essentially 

depends on lab testing. As with standard driving schedule tests and analyses, these tests and duty cycle 

analyses have constraints in their validity to real-life operation. A key issue in both cases is that even 

under particular driving cycles, consumption of energy strongly depends on uncontrolled surrounding 

working conditions. On the other hand, conducting drive cycle analysis using trip data collected from 

real-life vehicle operation is a challenging task [173, 174]. Although quite helpful in evaluating SOH, 

very limited effort has been put into field testing with the collection of data and statistical analysis, 

mainly because such experiments are expensive and there is virtually no control [175, 176, 177].  

It is important to study the various types of degradation mechanisms of lithium-ion cells because 

the heat generation from the cell/module/pack is directly related to the degradation and life of the 

battery. Lithium-ion cells undergo degradation in terms of capacity and power capability during 

usage and storage. The degradation of a cell occurs much faster during cycling than storage under 
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the same conditions. The normal and accelerated degradation mechanisms for cycling and storage 

are described in the following subsections. 

2.12.1 Degradation of Lithium-ion Cell due to Storage 

During storage, the active anode material is exposed to the electrolyte through the porous solid 

electrolyte interphase (SEI) layer, and side reactions enhance this SEI layer [174]. High 

temperatures or high SOCs result in more severe capacity fading as well as resistance growth 

(power fading) in the cell. Therefore, to improve battery life and to slow down the electrochemical 

processes, lithium-ion cells should be stored with less than 100% SOC and around 15°C (optimal 

conditions 40% SOC and 15°C) [178]. This will allow a lithium-ion cell to last many times longer 

than one stored at 100% charge, particularly at high temperature. 

2.12.2 Normal Degradation of Lithium-ion Cell due to Cycling 

Capacity fade primarily occurs on the electrode/electrolyte interphase under the influence of 

intercalation and deintercalation of lithium ions. Ideally, loss of lithium ions and active materials 

are the only mechanisms that degrade a lithium-ion cell. However, in practice, other degradation 

mechanisms accelerate the capacity fading. Power fade is also coupled to capacity fading. The 

growth of the SEI layer results in the internal impedance rise of the battery cell and the deformation 

of the electrodes in a lower conductivity. As a result, due to the loss of active material, the power 

fading occurs. Capacity fading can be divided into four stages as shown in Figure 2.15 [179, 180, 

174]. 

Stage-A: During stage A, on the interphase of the anode with the electrolyte of the separator, a 

SEI film will form as a side reaction; as a result, there is a fast decrease in capacity. This stage 

does not last for many cycles because, as the cell is cycled more, the side reaction rate will 

gradually decay [181] . A schematic of a SEI film layer in a lithium-ion cell is given in Figure 

2.16. 

Stage-B: In stage B, the anode is the limiting electrode [181]. Because of the SEI film layer formed 

on the anode, less active material is available and fewer lithium ions are intercalated into the anode 

during charging. As a result, the loss rate of lithium ions will be slower, and the SEI layer protects 
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the anode from reduction reactions with the electrolyte. During continuous intercalation and 

deintercalation the SEI layer cracks and more active material will be exposed. This will cause more 

side reactions and the SEI layer will continue to grow, leading to a less porous SEI layer and loss 

of lithium ions [182]. 

A

B
C

D

Capacity

Cycle number  

Figure 2.15: The general shape for capacity versus cycle number (modified from [179]). 
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Figure 2.16: Schematic of SEI film layer in lithium-ion battery (modified from [180]). 

Stage-C: In stage C, the degradation rate of the active cathode material is higher than the loss of 

lithium ions. On the cathode/electrolyte interphase, a layer similar to the SEI layer is formed, which 

is named the solid permeable interphase (SPI) [183]. Due to cycling, this layer will also grow and 

limit the active cathode material. The anode is however still the limiting electrode in this stage, as 

there is still more active cathode material available than lithium ions. 

Stage-D: In stage D, the cathode becomes the limiting electrode due to the high degradation rate 

of the cathode. Less active cathode material is available than the number of ‘cycle able’ lithium 

ions [181]. Not all the lithium ions that were intercalated into the anode during charging can be 



 

54 

 

intercalated into the cathode during discharge. Hence, more and more lithium ions are stuck inside 

the anode. The cathode will be fully intercalated during discharge, which raises the active cathode 

material loss rate. These added effects cause an accelerated capacity fading and the capacity will 

rapidly decrease. 

The severity of these stages is not the same for different types of lithium-ion cells. For example, 

for LiFePO4, the main capacity fading mechanism of cells is the loss of lithium ions by the later 

lithium-ion consuming SEI film formation, which also results in a loss of active anode material 

[184]. Loss of cathode material happens at a lower rate for LiFePO4 cells, since neither cycling 

nor temperature change enhances the formation of the SPI layer [183]. This causes LiFePO4 cells 

to have a much higher cycling life compared to other chemistries.  

2.12.3 Accelerated Degradation of Lithium-ion Cell due to Cycling 

In real life applications, lithium-ion cells experience accelerated degradation due to certain stress 

factors. Stress factors such as deep DODs, elevated C-rates, high or low temperatures, and 

operating at high SOCs can have negative impact on the cell capacity and cause accelerated 

degradation. These stress factors are described in the following subsections. 

2.12.3.1 Depth of Discharge (DOD)  

The cycle life of a cell strongly depends on the DOD.  Figure 2.17 shows cycle life versus DOD 

curve for different battery cell chemistries (NiMH, Li-ion, Lead-Acid AGM/Gel, and Lead-Acid 

flooded).  

 

Figure 2.17: Cycle life vs. ΔDOD curve for different battery cell [185]. 
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More intercalation and deintercalation takes place in the electrodes due to deeper discharge. The 

loss of lithium ions and active electrode material is higher for larger DOD cycles. At high DODs, 

additional degradation mechanisms can occur resulting in decomposition and dissolution of 

cathode material and capacity fading [186]. DOD has no influence on the capacity fading of 

LiFePO4 cells, but the charge or energy processed is the determining factor [187]. 

2.12.3.2 Elevated C-rate Effect  

High C-rates generate more heat and cause the temperature of the cell to rise invoking the high 

temperature degradation mechanisms. High currents also cause local over potential of the 

electrodes’ earlier stage at certain areas of the cell.  High C-rates will also cause the SEI layer on 

the anode to crack faster. More active anode material is exposed and the SEI layer will restore 

itself, reducing lithium ions from the battery cell process. High C-rates will cause additional strain 

on the electrode materials, resulting in increased deformation and loss of active material [186]. 

These effects will result in power fading and capacity fading. 

2.12.3.3 Temperature Effect 

The discharge capacity of lithium-ion cells is strongly influenced by temperature. Lithium-ion 

cells have an optimal temperature operating range, outside of which the battery cell undergoes 

severe loss of capacity. A typical operating temperature range is between 20°C and 40°C [188] for 

lithium-ion batteries, while an extended range is between -10°C and +50°C [189, 190]. Higher and 

lower temperatures have different effect on the life of the battery. In Figure 2.18, an example of 

the temperature range for an optimal life cycle is shown. It can be seen that the decay of cycle life 

is different for high and low temperatures, as different degradation mechanisms deteriorate the 

battery. 

At the lower temperature side, due to the higher activation energy needed for the chemical 

reactions and lower ion diffusion, there will be a loss of capacity and deliverable power. However, 

when the temperature is restored to nominal level, the capacity and power capabilities will be 

recovered. Under normal discharge, low temperature on its own does not have any permanent 

influence on capacity fading but, during charging, lithium plating is likely to happen because the 

intercalation rate at the anode is inherently slower than the deintercalation rate [191]. 
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Figure 2.18: A battery cell’s temperature range for optimal cycle life (modified from [192]). 

In the long term operating at the higher temperature side can cause severe damage to the cell 

[193]. As shown in Figure 2.19, increase in temperatures results in higher capacity fading.  Due to 

high temperature, the SEI layer will slowly break down and dissolve into the electrolyte. The active 

material of the anode will be partly exposed to the electrolyte again, causing side reactions. The 

damaged SEI layer will be restored due to the side reactions or a precipitation of the dissolved SEI 

particles will take place. In addition, parts of the cathode can dissolve into the electrolyte and 

become incorporated into the SEI layer. As a result, the intercalation at the anode will be more 

difficult and the ionic conductivity will be lowered. The same degradation mechanism happens at 

the cathode side with the SPI layer. Another degradation mechanism is the deformation of the 

anode and cathode.  
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Figure 2.19: The accelerated capacity fading due to high temperatures (modified from [193]). 
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2.12.3.4 State of Charge (SOC) 

At higher SOC, a battery cell is more reactive, which will accelerate degradation of the cell. At 

high SOC, the anode will be highly energized, self-discharge will also be higher and the SEI layer 

will grow faster. Furthermore, electrolyte oxidation occurs at high SOC, leading to impedance 

increase [194]. These effects result in capacity and power fading. During storage for a long time, 

a high SOC will have a more profound effect. In case of overcharge or over discharge, other 

degradation mechanisms come into play as follows: 

2.12.3.5 Overcharge 

When the cell is charged over the specified voltage, a small increase in capacity is initially 

obtained, but the cycle life is strongly reduced. This effect is stronger as the end of charge voltage 

increases. During overcharge, electrical energy is pumped into the battery, but more intercalation 

cannot take place. This will be represented by a sharp increase of internal resistance and the 

temperature [195]. Decomposition of the binder and electrolyte, forming insoluble products, 

blocking the pores of the electrodes and causing gas generation, may subsequently take place 

[196]. 

2.12.3.6 Over Discharge 

When the cell is discharged under the specified cut-off voltage, two degradation mechanisms 

severely damage the cell. 1) Corrosion of the copper current collectors and dissolution into the 

electrolyte resulting in loss of contact with anode and power fade [197]. 2) Decomposition of the 

SEI layer on the anode. The high anode potential will cause dissolution of the SEI layer. Upon 

recharge the exposed active material will cause side reactions to restore the SEI layer and reduce 

lithium ions, causing capacity fading [198]. 
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Experimental Studies  

The focus of this chapter is on experimental set-up, procedure, and data analysis. The first 

experiment focuses on thermal characterization of a lithium-ion battery cell. The experiment 

measures the temperature and heat flux on the surface of the lithium-ion battery cell at various 

discharge and charge rates in four discharge conditions with five different cooling 

conditions/boundary conditions (four for water cooling and one for air cooling). The heat 

generated in the four discharge conditions with four different cooling conditions is also 

determined. A special apparatus is developed to enable this experiment. In addition to this, thermal 

imaging of the principle surface of the battery cell while undergoing discharging are presented. 

The second experiment deals with thermal characterization of a lithium-ion battery pack with the 

above mentioned C-rates and BCs while the focus of the third experiment is a battery degradation 

test based on actual drive cycles from an EV. 

3.1 Experiment 1 : Battery Cell Thermal Characterization 

Depending on ambient conditions, there may be a need to remove or add heat to the battery in 

order to maintain the optimal temperature range and distribution. Non-uniform temperature 

distribution results over time in low charge and discharge performance and cell unbalancing. 

Existing thermal management techniques include applying liquids, insulations and phase-change-

materials. Therefore, this experiment consists of measurement of the surface temperature 

distribution and heat flux on the principle surface of the battery cell. The experimental set-up, 

procedure, and data analysis method for this experiment are presented in the following sections. 

3.1.1 Experimental Set-up 

The thermodynamics of lithium-ion cells is complicated due to the complexity and diversity of the 

material involved. To obtain a reliable prediction of the temperature profile, the total heat 

generation must be evaluated. Therefore, the temperature variation and heat dissipation of cells 
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under a variety of loading conditions must be measured to provide a baseline for simple but high 

fidelity of batteries at higher scales (module, packs) [109]. In this study, a large sized prismatic 

lithium-ion battery cell utilized in EVs and HEVs is characterized. The 20Ah LiFePO4 lithium-ion 

prismatic cell is shown in Figure 3.1. The cell’s specifications are described in Table 3.1.  

 

Figure 3.1: 20Ah LiFePO4 lithium-ion prismatic cells. 

Table 3.1: LiFePO4- 20Ah lithium-ion prismatic pouch cell specifications [199]. 

Specification Value Unit 

Cathode Material LiFePO4 - 

Anode Material Graphite - 

Electrolyte Carbonate based - 

Nominal Capacity ~20  Ah 

Nominal Voltage 3.3  V 

Nominal Energy 65 Wh 

Energy Density 247  Wh/L 

Mass 496  g 

Discharge Power 1200  W 

Dimensions 7.25 x 160 x 227 mm 

Specific Power 2400  W/kg 

Specific Energy 131  Wh/kg 

Operating Temperature - 30 to 55 °C 

Storage Temperature - 40 to 60 °C 

Volume 0.263  L 

Number of Cycles Min. 300, approx. 2000 Cycles 

Max Discharge 300  A 

Max Charge 300  A 

Internal resistance 0.5 mΩ 
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The experiments for thermal characterization of lithium-ion battery cells were performed at the 

University of Waterloo’s Green Electrochemical Energy Storage Laboratory. The schematic of the 

hybrid test bench for thermal management is shown in Figure 3.2. The hybrid test bench was 

originally designed and built to test various hybrid technologies and assess their usefulness in 

vehicle design. However, the hybrid test bench has been modified to test batteries on different duty 

cycles and to measure battery thermal performance and degradation. It provides an overview of 

the hardware and connections installed on the bench.  

Computer 1 
For the control base of experiment 

Controller 
MotoTron 

ECM-0555-80

Battery 
A123 

AMP20

Supply 
TDK-Lambda 

ZUP20-40-800

Load
TDI Dynaload

XBL 50-150-800

Legend: 

Analog I/O

RS-232 cable

Ethernet cable

Power line

Voltage sensor

Switch rely & fuses

For thermal data

Computer 2 
For the thermal data collection

Cooling Bath 
Isotemp 3016

Keithley 2700 
Data logger

 

Figure 3.2: Schematic of the hybrid test bench. 

The Computer-1 provides the basic controls using LabVIEW VI to the controller and load box via 

RS-232 cables, and the power supply with an ethernet cable. The computer also offers a GUI for 

the user to monitor the progress of the experiment. The controller uses analog I/O signal wiring to 

communicate with the relays and measure the battery voltage, and transmits the measured battery 

voltage back to the Computer-1. The Computer-1 sets the current or voltage values on the load 

box and power supply depending on the experiment. The current measured internally of the load 

box and power supply is transmitted back to the Computer-1. Depending on the Computer-1 

requests, the power supply or load box will provide power to or draw power from the battery, 
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respectively. The image with detailed components of the experimental set-up for battery cell 

thermal characterization is shown in Figure 3.3. 

 

Figure 3.3: Experimental set-up for battery cell thermal characterization. 

Test stand Computer-2 manages the Keithley-2700 (Data Acquisition) program used for the 

measurements of battery cell surface temperature, heat flux, and water inlet and outlet temperature 

for the top and bottom cold plates. There are two E-stop (Emergency shutdown) buttons in the test 

stand; one is near the MotoTron controller and the other is near the cell housing. The E-stop circuit 

controls the 12V supply to the normally-open contactors, subsequently acting in series 

arrangement with the MotoTron control circuit that usually controls the ground path of the 

contractor control circuit. The E-stop circuit was coordinated to cause a prompt opening of the 

contactors on the power lines if one of two E-stop buttons was hit. 

The screen capture of LabVIEW interface is shown in Figure 3.4. It represents the real parameters 

taken during these experiments, for example, battery voltage, charge current, discharge current, 

and temperature. In the top left corner, there are three battery voltage windows: battery A, B and 

C, in other words, there is a possibility to connect three lithium-ion batteries together in series. 
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Here, but for the current experimental work, we used only one battery, therefore, the solid green 

light is seen only for battery A. The maximum voltage was set to 3.6 V and the over voltage 

protection was set to a value of 4.2 V. The battery temperature rise measured by thermocouples 

can also be seen for battery A. One can also run a different drive cycle which is also shown in the 

bottom right corner in Figure 3.4. The voltage and current (charge and discharge) window, which 

states that once the voltage reaches to cut-off voltage then the cycle changes from discharging to 

charging cycle. Figure 3.4 also displays the corresponding current window in which, the red color 

line is for discharging current and the white color line is for charging current. 

 

Figure 3.4: Screen capture of LabVIEW interface 

The commercial cooling plates were selected from industry (Dana Holdings Inc., Oakville, 

Ontario, Canada) to remove heat from the battery. The coolant plates were manufactured from two 

stamped aluminum plates that are joined in a nickel-brazing process. The plate tested was the “zig-

zag” plate. This plate was characterized as having a single flow channel with one inlet and one 

outlet placed on the top and bottom of the battery. The single flow channel runs down the length 

of the plate before turning back on itself, stepping one channel width across the plate with each 

turn. This flow pattern results in a thermal profile where coolant temperature gradient is largest 

across the width of the plate. The water cooling set-up  along with cold is shown in Figure 3.5 (a). 
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For air cooling, the battery was placed in a vertical position fixed in a wooden stand and is appeared 

in Figure 3.5 (b), where the free air convection was considered. The environment was controlled 

by lab temperature for air cooling. 

  

a) Water cooling b) Air cooling 

Figure 3.5: Water and air cooling set-up. 

3.1.2 Experimental Procedure and Plan 

In this experiment, two different cooling types are tested: air cooling and water cooling. For air 

cooling ~22°C boundary condition is selected. For water cooling, four different coolant 

temperatures or boundary conditions are selected: 5°C, 15°C, 25°C, and 35°C.  Four different 

discharge rates are selected: 1C, 2C, 3C, and 4C. The charge rate is 1C. The flow chart for 

experimental procedure is shown in Figure 3.6. The charge/discharge rate and their corresponding 

current is shown in Table 3.2. 

This procedure was followed to initiate battery cycling and the thermal data collection, but it does 

not directly describe the procedure for assembling the battery and cooling/instrumentation 

components within the compression rig. As such, this procedure assumes the cell and cooling 

components are correctly installed and fully connected to all other components as required. 
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Figure 3.6: Flow chart for experimental procedure. 

Table 3.2: Discharge rates and equivalent current values. 

Discharge Rate Constant Current 

1C 20 A 

2C 40 A 

3C 60 A 

4C 80 A 

1. The isothermal fluid bath and pump was turned on for a minimum 3 hours prior to 

beginning cycling in order to bring the battery cell/pack, bath and cooling apparatus to a 

steady state temperature. The valves leading to the cold plates were observed and set to 

open. The isothermal fluid bath was set to the desired cooling temperature or boundary 

conditions of 5°C, 15°C, 25°C, and 35°C for the test. 
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2. The LabVIEW code for the charge discharge stand was started and relevant test parameters 

were input to the LabVIEW program. Relevant test parameters include: 

a. Discharge current 

b. Charge current 

c. Number of cycles  

d. Drive cycle (charge and discharge cycle) 

e. Maximum voltage at end of charge 

f. Minimum voltage at end of discharge 

g. Measurement sample rate 

3. The thermal data acquisition PC and Keithly 2700 were turned on and allowed to initialize. 

On the PC, ExcelLink recording software was prepared for data acquisition. The following 

parameters were recorded within the recording software: 

a. Battery surface temperature (top and bottom surface of the LiFePO4 battery cell) 

b. Heat flux at the top surface of the battery: near the electrodes (positive and negative 

electrode) and the middle of the battery cell 

c. Water inlet and outlet temperature at the top and bottom cold plates. 

4. The internal clocks on both PCs were synchronized to the same time to allow combining 

data files. 

5. The charge-discharge test stand and thermal data acquisition were then activated at the 

same time, such that charging/discharging and data acquisition begin at the same instant. 

6. The test continued until the desired number of battery cycles was completed. 

7. Two files were created for each test: 

a. Data from the thermal data acquisition PC 

b. Electrical charge discharge data. 

3.1.3 Thermocouple Locations 

Thermocouples were installed on the principal surface of the battery to measure the surface 

temperatures at ten discrete points. The majority of the thermocouples were located near the 

electrodes because the heat generation is higher near the electrodes. On one side, T-type 30 gauge, 

special limits of error (SLE) thermocouple wire was used and, on the other side, three additional 

K-type thermocouples integral to the heat flux sensors were present. The K-type thermocouple 
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locations are discussed in the next section. The location of T-type thermocouples is shown in 

Figure 3.7 and listed in Table 3.3. Kapton backed adhesive tape was used to adhere the 

thermocouples to the battery cell surface. 

 

Figure 3.7: Thermocouple placement. 

Table 3.3 : Distance of thermocouple locations from bottom left corner of the cell surface. 

Thermocouple X [cm] Y [cm] 

1,1 2.65 19.4 

1,2 7.85 19.4 

1,3 13.05 19.4 

2,1 2.65 16.9 

2,2 13.05 16.9 

3,1 2.65 13.0 

3,2 7.85 13.0 

3,3 13.05 13.0 

4,1 7.85 7.0 

5,1 7.85 3.5 

Finally, total nineteen thermocouples were used for this experimental work, out of which ten were 

places on the principle surface of the battery, two were placed for tab temperature measurement, 

three were placed on the another surface of the battery, and four were used for the water inlet and 

outlet temperature measurement for the top and bottom cold plates. 
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3.1.4 Heat Flux Sensors Locations 

Three thin-film heat flux sensors were located on the surface opposite to the locations of the 

thermocouples. These heat flux sensors were located near the electrodes because the heat 

generation is higher near the electrodes. The heat flux sensors were selected because it directly 

provided heat flux in W/m2. The locations of these three sensors are shown in Figure 3.8 and the 

corresponding x and y coordinates of HFS center points are given in Table 3.4.  

 

Figure 3.8: Heat flux sensors placement. 

Table 3.4 : Locations of heat flux sensor centre-points distance from bottom left corner of the cell 

surface. 

Heat Flux Sensor Location Type of HFS X [cm] Y [cm] 

1 (+) Electrode HFS-1 5.43 16.98 

2 (-) Electrode HFS-2 10.47 16.98 

3 Mid-surface HFS-3 7.85 12.27 

These sensors function as a self-generating thermopile transducer. They require no special wiring, 

reference junctions or signal conditioning. The HFS utilizes a multi-junction thermopile 

construction on a polyimide film laminate. The output of the sensors provides an average 

measurement of surface heat flux in a 25.4 x 25.4 mm area (1 inch2). Kapton backed adhesive tape 

was used to adhere the thermocouples to the battery surface. 
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3.2 Experiment 2 : Battery Pack Thermal Characterization 

In EV applications, the battery system consists of a number of single cells connected either in 

series or in parallel in order to achieve the power and capacity requirements. In these experiments, 

the surface temperature and voltage distributions are measured for a lithium-ion battery pack with 

three LiFePO4 battery cells. The pack thermal characterization testing was performed at Green and 

Intelligent Automotive (GAIA) Laboratory at the University of Waterloo and the experimental set-

up is shown in Figure 3.9.  

 

Figure 3.9: Experimental set-up for battery pack thermal characterization. 

This test bench consists of mainly five components: A & D cell cycler, National Instrument (NI) 

field point, battery pack, Computer-1 and Computer-2. T-type thermocouple used to measure the 

temperature is connected to NI temperature measurement device, which is further connected to 

Computer-2. LabVIEW 8.2 software is used to control and operate the NI temperature 

measurement device through Computer-2. Computer-1 is used to measure the battery pack voltage, 

current, SOC at one second intervals. A & D cell cycler (Bitrode) having a maximum capacity to 

charge/discharge up to 20V and 1200 A, is used to charge and discharge the battery pack. The cell 

cycler is controlled by Computer-1 through VisuaLCN software. Heavy duty copper cables are 
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used to connect battery pack with cell cycler. To charge and discharge the battery pack at different 

rates, a profile is created using VisuaLCN program editor. An exploded view of the battery pack 

appears in Figure 3.10 and different views (front view, side view, and top view) of battery pack 

are shown in Figure 3.11. 

 

Figure 3.10: An exploded view of three lithium-ion battery cells with four cold plates in a pack. 

  

a) Picture of battery pack b) Front view 

  

a) Top view b) Side view 

Figure 3.11: Different views of battery pack. 

The pack consists of three prismatic lithium-ion cells electrically connected in series. A LiFePO4 

battery cell as shown in Figure 3.1 is used and the cell’s specifications are described in Table 3.1. 



 

70 

 

The tab extensions were also made from copper plates and can be seen in top and front view in 

Figure 3.11. The pack was sandwiched between two-inch-thick insulation foam to prevent heat 

loss to surrounding. Same insulation foam is used in both sides and at the back to insure proper 

insulation. To make secure and tight connection, cells along with insulation foam were tightened 

in 12 mm thick Acrylic sheet by using ½ × 8 inch nuts and bolts. 

3.2.1 Thermocouple Locations 

To measure the temperature variations, the pack was instrumented with eighteen thermocouples 

(specification: T-type 30 gauge, special limits of error thermocouple wire with uncertainty of 0.5°C 

according to manufacturer’s specifications). Out of eighteen, six thermocouples were installed on 

each cell: three on each side. Out of three thermocouples, the first thermocouple was placed near 

the cathode, the second near the anode, and the third at the mid surface of the cell as shown in 

Figure 3.12. A special thermal tape was used to attach the thermocouple to all three cell’s surface. 

2
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a) Drawing with dimensions b) Picture of actual cell with thermocouple 

Figure 3.12: Thermocouple locations; (a) drawing with dimensions, (b) picture of actual cell with 

thermocouple. 

The pack was also made with individual cell voltage sensors and current sensors for three cells. In 

this series, each battery cell is experimentally characterized, in order to predict the cell voltage and 

capacity during discharging and charging operations at an ambient temperature (~22°C). In all the 
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experiments conducted, the cells are initially charged, then utilized until completely discharged. It 

is very well known that the temperature distribution is not uniform in a battery pack. Therefore, 

the operating temperature of the cells are different from each other. The output voltage of the series 

connected cells and the discharge current is given by: 

 𝑉𝑜𝑢𝑡 = 𝑉𝑐𝑒𝑙𝑙 1 + 𝑉𝑐𝑒𝑙𝑙 2 +⋯+ 𝑉𝑐𝑒𝑙𝑙 𝑛 (3.1) 

 𝐼𝑜𝑢𝑡 = 𝐼𝑐𝑒𝑙𝑙 1 = 𝐼𝑐𝑒𝑙𝑙 2 = ⋯ = 𝐼𝑐𝑒𝑙𝑙 𝑛 (3.2) 

In the experimental measurements, four different discharge rates are selected: 1C, 2C, 3C, and 4C. 

The charge rate is 1C. The internal resistance is calculated based on Ohm’s law (covering the 

voltage drop is divided by current values) and the voltage drop is the difference between the open 

circuit voltage and the actual or measured terminal voltage. The internal resistance is calculated 

by: 

 𝑟𝑖𝑛𝑡 = 
∆𝑉

𝐼
=
𝑉𝑜𝑐 − 𝑉𝑎𝑐𝑡

𝐼
 (3.3) 

Figure 3.13 shows four cold plates used for this experimental work. The flow rate of water to all 

the cold plates is 150 mL/min. The pack is insulated by all five sides (left, right, back, top, and 

bottom of the pack along the height of the lithium-ion battery cell) using thermocol sheet in order 

to prevent heat loss from the pack to the surrounding sides. In addition to eighteen, two additional 

thermocouples were used to measure the temperature of the water inlet and outlet at the cold plates. 

The same experimental procedure and plan was followed for pack testing, as described in the 

previous Section 3.1.2. 

 

Figure 3.13: Four cold plates with three battery cells. 
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3.2.2 Temperature Measurement with NI Field Point  

Three NI field point (NI-FP-TC-120) with 8-channel thermocouple input modules were used to 

measure the temperature of the battery pack. These three modules were connected together through 

a terminal base to form a 24 channel thermocouple input module as shown in Figure 3.14. Each 

field Point thermocouple input module has eight thermocouple or millivolt inputs. These modules 

have inbuilt linearization and cold-junction compensation for eight type of thermocouple (J, K, R, 

S, T, N, E, and B). These modules can operate between –40 to 70°C.  

 

Figure 3.14: NI field point for temperature recording. 

To operate all three modules, a code has been developing in LabVIEW software with a capability 

to measure and record temperature from all 24 thermocouples connected to modules. A user 

interface has been also created in LabVIEW software to observe the temperature and control the 

test as shown in Figure 3.15 . 

 

Figure 3.15: LabVIEW for NI field point. 



 

73 

 

3.3 Experiment 3 : Battery Degradation 

Although lithium-ion batteries have many advantages as explained in the literature review, their 

thermal and electrical performance as well as reliability with an actual EV requires further study. 

For this, a data logger is installed in an EV and different drive cycles are collected at different 

ambient temperatures of -6°C, 2°C, 10°C, and 23°C. The vehicle is driven in the province of 

Ontario, Canada and several drive cycles are collected. The collected drive cycles consist of 

different modes: acceleration, constant speed, and deceleration in both highway and city driving 

at the above mentioned ambient temperatures, turning on all electrical accessories such as radio, 

air conditioning and heater. In addition, a comprehensive investigation and simulation is conducted 

on the lithium-ion battery performance under different drive cycles with various ambient 

temperatures.  

3.3.1 Data Collection 

The EV used for this work is shown in  Figure 3.16 (a) and the main features of the EV are : (i) 

mass 1814 kg; (ii) total battery pack energy capacity 25kWh; (iii) battery module nominal voltage 

19.2 V; (iv) battery module nominal capacity 69 Ah; (v) battery module energy density 89 Wh/kg. 

There are three packs of lithium-ion batteries installed on the vehicle, including a total of 20 battery 

modules. The first six modules are associated in series arrangement and are shown in Figure 3.16 

(b).  

  

a) The EV b) First six modules connected in series 

Figure 3.16: The EV and first six modules connected in series. 

Every module contains 6 series × 49 parallel IFR 18650 cylindrical valence cells (“I” stands for 

Li-ion rechargeable, “F” stands for the element “Fe” which is Iron, “R” just means the cell is 
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round, 18650 means 18 mm diameter and 650 means 65 mm height); i.e., every battery module 

incorporates 6 strings of battery cells in series and each string contains 49 cells in parallel, resulting 

in an aggregate of 294 cells in every battery module. The cells utilized as a part of this EV are 

18650 cylindrical cells in configuration; their specifications are displayed in Table 3.5. 

Table 3.5: EV cell specification. 

ESS Specification, Valence IFR18650e Value 

Number of Battery Packs 3 

Number of Modules 20 

Number of cell per module 6 in series 

Charge Voltage 3.65V Standard (3.4V Float, 4.2V Max) 

Nominal Operating Voltage 3.2 V 

Nominal Rated capacity (C/5) 1350 mAh (1.4 Ah) 

Discharge Cur-off Voltage 2.5 V 

Cell Dimensions Length: 65mm , Diameter :18.2 mm 

Cell Weight  40 g 

The ISAAC data logger, as shown in Figure 3.17 (a), is installed in the vehicle underneath the 

front passenger seat and appears in Figure 3.17 (b). The cellular antenna enables wireless data 

transmission and is located on top of the car. The data logger is powered by the existing 12V 

battery in the vehicle and the shutdown wire. The EV has a 125 kW UQM power phase electric 

motor beneath the front battery pack. 

  
a) Data logger connection and shutdown 

wire 

b) The data logger installation beneath 

passenger seat 

Figure 3.17: ISAAC data logger installation beneath passenger seat and shut down wire. 
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3.3.2 Hybrid Pulse Power Test 

A prismatic lithium-ion battery, as shown in Figure 3.1, was characterized for this work. It was 

chosen because it is suitable as a basic block for a large battery pack for commercial automotive 

vehicle applications. The basic specifications of the cell are displayed in Table 3.1. Figure 3.18 

shows the HPPC cell testing for resistance measurement, consisting of a Biologic VMP 3B-100 

load box, which works during charging and discharging of the cell. Data acquisition was conducted 

in the EC Lab software.  

 

Figure 3.18: HPPC cell testing for resistance measurement. 

The controller is utilized to log the battery electrical data, including time, charge current, discharge 

current, charge voltage, and discharge voltage. Cell cycling included charge-discharge cycles at 

1C (20A), C/2 (10A) and C/25 (0.8A), all following a constant current, constant voltage (CCCV) 

protocol.  Electrical data was recorded at regular intervals of one second. The battery cell was 

experimentally characterized, so as to predict the cell voltage and capacity during discharging and 

charging operations at an ambient temperature (~22°C). In all the conducted tests, the cells were 

first fully charged, and then used until totally discharged. Later, the A CSZ Micro Climate chamber 

was used to maintain the temperature of the cell during HPPC, in order to estimate the resistance 

at different conditions.  The temperatures tested were 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 
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40°C, 45°C, and 50°C. The discharges between pulses to reach the next lowest SOC value were 6 

minutes long at 1C. An hour of rest followed each of these discharges, in order to assure that the 

battery’s temperature had equilibrated at the ambient temperature before each pulse. It was 

assumed that the battery’s internal temperature did not change during the HPPC, due to the low 

current and very short time. 

3.4 Data Analysis Method for Cell and Pack Testing 

In this section, the data analysis method is presented for the total heat generation from battery 

including heat stored in the battery, heat removed from the cold plates, and heat from environment 

are presented. In addition, the experimental uncertainty analysis is presented. 

The total heat generation rate is calculated by: 

 �̇�𝑡𝑜𝑡 = �̇�𝑏 + �̇�𝑐𝑝 + �̇�𝑒 (3.4) 

where, �̇�𝑏 is the heat stored in the battery, �̇�𝑐𝑝 is the heat from cold plates, and �̇�𝑒 is the heat from 

environment and are explained with details in below subsections. 

3.4.1 Sensible Heat  

The heat stored in the battery is termed 𝑄𝑠𝑡𝑜𝑟𝑒𝑑. It is calculated based on the change in the 

temperature of the battery in conjunction with the specific heat value. Equation (3.5) is used to 

evaluate the stored heat energy in the battery when the battery temperature changes from some 

initial temperature to a final temperature. 

 𝑄𝑠𝑡𝑜𝑟𝑒𝑑
𝑡1 𝑡𝑜 𝑡2

= 𝑚𝑏𝑐𝑝,𝑏(𝑇𝑡2 − 𝑇𝑡1) (3.5) 

A standard method of determining the average temperature across the entire battery surface has 

been devised to enable stored heat calculations. For each thermocouple, it is assumed that the 

measured temperature represents the average of an area extending around the sensor. The areas are 

determined by defining each area boundary by calculating the x and y midpoint distance between 

adjacent sensors. Equation (3.6) is used to evaluate the average battery surface temperature by 

summing the temperature-area products and dividing by the total area of the surface. 
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𝑇 𝑠/𝑐
𝑎𝑣𝑔

= 
∑(𝑇𝑖𝑗𝐴𝑖𝑗)

𝐴𝑡𝑜𝑡𝑎𝑙
 (3.6) 

The ten thermocouples measuring the surface temperatures shown in Figure 3.7 are each assigned 

the areas that correspond to their locations. In Table 3.6, the physical size of the thermocouple 

areas is presented.  

Table 3.6: X and Y component lengths of thermocouple areas. 

Thermocouple Area X [cm] Y [cm] Area [m2] (x10-3) 

1,1 A1,1 5.25 2.55 1.34 

1,2 A1,2 5.2 2.55 1.33 

1,3 A1,3 5.25 2.55 1.34 

2,1 A2,1 7.85 3.2 2.51 

2,2 A2,2 7.85 3.2 2.51 

3,1 A3,1 5.25 4.95 2.60 

3,2 A3,2 5.2 4.95 2.57 

3,3 A3,3 5.25 4.95 2.60 

4,1 A4,1 15.7 4.75 7.46 

5,1 A5,1 15.7 5.25 8.24 

The rate of sensible heat accumulation is directly influenced by the battery heat generation rate 

and the heat transfer coefficient out of the system. The temperature of the battery increases as heat 

is generated due to the finite heat transfer coefficient to the surrounding. The rate of sensible heat 

accumulation is determined from Equation (3.7), where  
𝑑𝑇 

𝑑𝑡
 is the rate at which the battery 

temperature changes. 

 
�̇�𝑠𝑡𝑜𝑟𝑒𝑑 𝑜𝑟 �̇�𝑏 = 𝑚𝑏𝑐𝑝,𝑏

𝑑𝑇 

𝑑𝑡
 (3.7) 

The rate of temperature change is evaluated by measuring the temperature at two times and is 

calculated by:  
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 𝑑𝑇 

𝑑𝑡
=  

(𝑇𝑡2 − 𝑇𝑡1)

𝑡2 − 𝑡1
 (3.8) 

The rate of stored heat accumulation can then be determined as follows: 

 
�̇�𝑠𝑡𝑜𝑟𝑒𝑑
𝑡1 𝑡𝑜 𝑡2

= 𝑚𝑏 𝑐𝑝,𝑏  
(𝑇𝑡2 − 𝑇𝑡1)

𝑡2 − 𝑡1
 (3.9) 

3.4.2 Heat from Cooling Plates 

Cooling plate heat removal rate is determined by the inlet and outlet thermocouple data, in 

conjunction with the recorded flow rates. The difference in inlet and outlet temperatures is due to 

heat conducted from the battery surface. The heat removed by a single cooling plate is calculated 

by using:  

 �̇�𝐶𝑃 = �̇�𝑤𝐶𝑝,𝑤(𝑇𝑤,𝑜 − 𝑇𝑤,𝑖) (3.10) 

The total amount of heat removed by the cooling plates for a time period ∆𝑡 can be determined 

using the following:  

 𝑄𝐶𝑃 = �̇�𝑤 𝐶𝑝,𝑤 (𝑇𝑤,𝑜𝑢𝑡,𝑎𝑣𝑔 − 𝑇𝑤,𝑖𝑛,𝑎𝑣𝑔) ∆𝑡 (3.11) 

The term 𝑇𝑤,𝑜𝑢𝑡,𝑎𝑣𝑔 is the average measured outlet temperature during the period ∆𝑡, as in Equation 

(3.12). 𝑁𝑇 represents the number of temperature readings in the summation.  

 
𝑇𝑤,𝑜𝑢𝑡,𝑎𝑣𝑔 =

∑𝑇𝑤,𝑜
𝑁𝑇

 (3.12) 

3.4.3 Heat from Environment  

The compression rig is not perfectly insulated and, as such, cooling plate measurements 

incorporate a component of heat gain or loss from the environment (�̇�𝑒). When the cooling is set 

to 5°C, a temperature difference of approximately 17°C is established between the inside surface 

of the compression rig and the ambient air. This results in heat transfer between the ambient 

environment and the cooling fluid. This additional heat is measured as an increased temperature 
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difference between the inlets and outlets. For tests above the ambient temperature, the opposite 

occurs. This additional heat affects the temperature difference between the inlets and outlets.  

In order to evaluate this effect, the cooling system and thermal data acquisition was activated with 

the battery in place but no charging or discharging occurring. In this way, the temperature 

difference between the inlet and outlet of each cooling plate could be recorded. The average 

difference for each plate, along with the respective flow rates, were used to quantify the heat 

removed or added by the environment using the method presented in the above section on cooling 

plates. The heat removed or added by the environment for different coolant temperatures is shown 

in Figure 3.19. 

 

Figure 3.19: Ambient heat flow to compression rig for four coolant temperatures. 

3.5 Experimental Uncertainty Analysis 

In this section, the uncertainty analysis of the experimental measurements and derived correlations 

is presented. The accuracy of the measurement equipment is determined and used to establish the 

uncertainty of calculated relationships and properties. 

The overall uncertainty of the experimental results and theoretical predictions will be calculated 

using the method described by Moffat in [200]. In this method, the result R of an experiment is 

determined from a set of measurements as: 

 R = R(X1, X2, X3, … , XN) (3.13) 

Each measurement can be represented as Xi ±  δXiwhere δXiis the uncertainty. The effect of each 

measurement error on the calculated result is determined as follows: 
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δRXi =

δR

δXi
δXi (3.14) 

Hence the overall uncertainty of the result is determined by: 

 

δR =  { ∑( 
δR

δXi
δXi)

2N

i=1

 }

1 2⁄

 (3.15) 

If R is described by an equation of the form R = X1
a X2

b X3
c ⋯⋯XN

m then the overall uncertainty of 

the result can be directly determined from the set of individual measurement uncertainties as: 

 

 

δR

R
=  {(a

δX1
X1

)
2

+ (b
δX2
X1

)
2

+⋯+ (m
δXN
X1

)
2

}

1 2⁄

 (3.16) 

The average battery surface temperature is evaluated using: 

 
𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

= 
∑(𝑇𝑖𝑗𝐴𝑖𝑗)

𝐴𝑡𝑜𝑡𝑎𝑙
 (3.17) 

Evaluating the uncertainty of surface temperature measurements and area measurements was 

required to determine the overall uncertainty of the average surface temperature measurement. The 

uncertainties are as follows: 

a) Surface Temperature, 𝐓𝐢𝐣 

Surface temperature measurements were made with T-type SLE (special limits of error) 

thermocouples and recorded with a Keithley 2700 data acquisition system. The uncertainty 

due to the thermocouple readout is 1°C [201], according to manufacturer’s specifications. 

The uncertainty is shown as:  

 𝛿𝑇

𝑇
=  ±

1℃

𝑇[℃]
 (3.18) 

b) Area, 𝑨𝒊𝒋 

An electronic digital caliper with a resolution of 0.005 was used to measure the positions 

of the thermocouples as installed on the battery surface. As 𝐴𝑖𝑗 = 𝑙𝑤, Equation (3.19) was 

used to determine the uncertainty in each area. 
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 𝛿𝐴

𝐴
=  ± {(

𝛿𝑙

𝑙
)
2

+ (
𝛿𝑤

𝑤
)
2

}

1 2⁄

 (3.19) 

For the purpose of evaluating uncertainty in the average surface temperature, let Pi,j represent the 

individual TijAij Atotal⁄  components of the surface temperature average, where i and j subscripts 

describe the particular thermocouple. Equation (3.20) was used to determine the error in each Pi,j 

product.  

 
𝛿𝑃𝑖,𝑗

𝑃𝑖,𝑗
= ± {(

𝛿𝑇𝑖𝑗

𝑇𝑖𝑗
)

2

+ (
𝛿𝐴𝑖𝑗

𝐴𝑖𝑗
)

2

+ (
𝛿𝐴𝑡𝑜𝑡𝑎𝑙
𝐴𝑡𝑜𝑡𝑎𝑙

)
2

}

1 2⁄

 (3.20) 

A relative uncertainty for the average surface temperature was established via Equation (3.21). 

The highest surface temperature absolute error occurs when the surface temperature is smallest. 

The range of relative uncertainty is large and thus was calculated for each operating temperature. 

These values are summarized in Table 3.7. 

 𝛿𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

= ±{(
𝛿𝑃1,1
𝑃1,1

)

2

+ (
𝛿𝑃1,2
𝑃1,2

)

2

+⋯+ (
𝛿𝑃5,1
𝑃5,1

)

2

}

1 2⁄

 (3.21) 

Table 3.7: Average uncertainty in surface temperature for five operating temperatures. 

Operating 

Temperature  

[°C] 

± Relative 

Uncertainty 

 (%) 

± Absolute 

Uncertainty  

[°C] 

5 20.3 1.5 

15 2.6 0.5 

25 1.2 0.4 

35 0.7 0.3 

~22 1.1 0.4 

The uncertainty analysis explained above was also used for measuring the uncertainty in mass flow 

rate of water to the cold plates, temperature of the cold plates, heat from battery, heat from cold 
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plates, heat from environment, total heat generated, and heat flux distributions. They are presented 

in Table 3.8. 

Table 3.8: Summary of uncertainty. 

Variable Range 
Temperature 

[°C] 

± Relative 

Uncertainty (%) 

�̇� [mL/min] 170 mL/min – 218 mL/min – 8.3% - 10.2% 

∆𝑇𝑤[°C] 0.1°C – 2.6°C – 0 % – 21.9% 

𝑇𝑖,𝑗[°C] 5.6°C – 47°C – 2.1% - 17.8% 

𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

[°C] 5.6°C – 44.5°C – 0.48 % - 28.5% 

�̇�𝑏 [W] 0.51 W – 24.08 W 5 28.7 % 

  15 3.69 % 

  25 1.71 % 

  35 1.02 % 

�̇�𝑐𝑝 [W] 2.91 W – 50.61 W – 24.4 % 

�̇�𝑒[W] 4.13 W – 21.60 W – 24.4 % 

�̇�𝑡𝑜𝑡 [W] 2.321 W – 58.558 W 5 44.9 % 

  15 34.7 % 

  25 34.5 % 

  35 34.5 % 

𝑞𝐻𝐹𝑆[W/m2 ] 0 W/m2  - 4994 W/m2 – 0% - 0.04% 
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Model Development  

In this chapter, four different types of models for prismatic lithium-ion battery are developed and 

discussed in detail. The first model is about a mathematical model for a lithium-ion battery based 

on experiments performed at different discharge rates and varying BCs using a neural network 

approach. The second model is an electrochemical thermal model for a large sized prismatic 

lithium-ion battery, and it is basically a Newman’s Pseudo two dimensional (P2D) model. The 

third model is a turbulence model for mini channel cold plates using ANSYS Fluent. The fourth 

model is a battery degradation model based on actual drive cycles collected from an EV. 

4.1 Model 1 : Battery Thermal Model  

Here, a detailed mathematical model demonstrating the fundamental governing relationship 

between charge/discharge current, boundary conditions, and battery capacity (Ah) on the surface 

temperature prediction is presented. This model is estimated using a novel approach known as a 

neural network, which is trained by supervised learning. The proposed battery thermal model can 

be used for any kind of lithium-ion battery. The neural network architecture is shown in Figure 

4.1.  

4.1.1 Input and Output Training Data 

 Boundary Conditions (BCs) or Temperature: The external temperature has a great effect 

on battery performance. Therefore, to increase the accuracy of the modeling, the BCs or 

temperature have been considered over the same time period and granularity as in the 

output. Here, the selected thermal boundary conditions or operating temperature are 5°C, 

15°C, 25°C, 35°C (for water cooling), and 22°C (for air cooling). 

 Charge/Discharge Current: This is basically the charge and discharge rate for the battery 

that is being discharged at a constant current. This rate basically increases the battery 
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surface temperatures as discharge progresses. The charge rate is 1C while the discharge 

rates are 1C, 2C, 3C, and 4C.  

 Battery Capacity (Ah): The battery discharge capacity is measured over the entire time 

period which measures the capacity of the battery. This typically measures the discharge 

current multiplied by the time in hours over the entire discharge of the battery for the above 

mentioned discharge rates. The capacity is the time integral of the current and is calculated 

by: 

 𝐶 = ∫ (𝑖)𝑑𝑡
𝑡

0
  (4.1) 

 Battery Surface Temperature: The average surface temperature of the battery is 

simulated based on the target. The data is measured with a sampling period of 1 second 

over a time horizon of 24 hours. 
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Figure 4.1: Neural network architecture for battery thermal model. 

The output from the model is the simulated average temperature distributions on the principle 

surface of the battery. The same procedure was followed for the voltage simulations and the 

outputs are discussed in detail in the results and discussion section. The internal resistance is 

calculated by: 

 𝑅𝑖𝑛𝑡 = (𝑉𝑜𝑐 − 𝑉𝑎𝑐𝑡)/𝐼𝑑𝑐ℎ𝑔 (4.2) 
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The model was trained by selecting the number of hidden neurons starting from one to twelve. 

There are three methods for training the algorithm: 1) the Levenberg-Marquardt Method; 2) the 

Bayesian Regularization Method; and 3) the Scaled Conjugate Gradient. For training the model, 

the Levenberg-Marquardt Method was selected.  This algorithm typically takes more memory but 

less time. It automatically trains when generalization stops improving, as indicated by an increase 

in the mean square error (MSE) of the validation samples. As mentioned in the above paragraph, 

the model was trained several times, until the regression value (R) is close to one and the MSE is 

close to minimum. The R value close to one means a close relationship between outputs and 

targets.  

The network performance plot is shown in Figure 4.2. It shows the MSE for all datasets on a 

logarithmic scale as a function of epoch, where epoch refers to the number of training trials. 

Validation and test performance are the points of interest, and the plot shows the iteration at which 

the validation performance function reaches minimum even as the training is continued for 6 more 

epochs. The best validation has been depicted in Figure 4.2, which corresponds to an MSE = 

0.48955. 

 

Figure 4.2: Neural network performance plot showing best validation. 

The training state plot is shown in Figure 4.3. It comprises three subplots, the first of which is the 

backpropagation gradient expressed in logarithmic scale. It shows the gradient descent across the 

iterations and arrives at a gradient value of 0.21586 at epoch 324 where the training has stopped. 

The second subplot shows the scalar µ dynamics across the epochs, where µ corresponds to the 
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scalar in the Levenberg-Marquardt algorithm at the update step. A small value of µ leads to 

Newton’s method, while a large µ leads to the gradient descent method. This scalar value is 

decreased when the performance function decreases, resulting in a faster and accurate Newton’s 

method. The value of µ increases when the performance function is expected to increase, thus 

switching to the gradient method as the minimum error is far. At the stopping condition, the scalar 

magnitude is 0.001. The third subplot shows the validation failure count. As can be seen at epoch 

324, the stipulated count of the maximum number of validation fail is reached and the training has 

stopped. 

 

Figure 4.3: Training state plot comprises gradient, scalar µ, and validation check. 

At the end of the training procedure, it is propagative to compare the actual model output with the 

target system output. In the study, a total of 117,344 samples obtained from experiments are 

considered, out of which 70% samples (82,141) were used for training the model. Also, 15% 

samples (17,601) were used for validation and, finally, 15% samples (17,601) were used for testing 

the model. These data should be sufficient for training, validation, and testing of the model. In 

order to unambiguously illustrate the fit, 1473 data points for 1C, 689 data points for 2C, 434 data 

points for 3C, and 373 data points for 4C are considered. 

The neural network inherently subjects the trained model with test and validation datasets to 

evaluate its flexibility and outputs the best validation performance model. Randomness can be 
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introduced into this model to visualize the model behavior under constrained random data. In this 

case, the model is subjected to uniformly distributed random in [0, 1] data at the input and the 

estimated target output obtained has been plotted. It is noted that with constrained random input 

data, i.e., noise, the neural network performance does not deteriorate and thus indicates a fair 

degree of robustness. 

A histogram showing the difference between the actual and the target output is plotted in Figure 

4.4 and, as noted, among the total samples considered, the majority of the errors lie in the range of 

-0.3823 to 0.5251.  

 

Figure 4.4: Error histogram showing the difference between the actual and the target output. 

A regression plot is shown in Figure 4.5. It plots the regression relation between the actual output 

and the targets. The sampled output is essentially a binary signal in the sense that it has a fixed 

amplitude touching zero over few alternating sample sizes. The neural network reproduces this 

behavior in the actual output and in the process the network output lags as the target output slightly 

shifts at the end. When MSE is low, the model is better. The corresponding table for MSE, R, and 

R2 for all outputs is shown in Table 4.1. The coefficient of determination (R2) is the ratio between 

both the expected and total variations and is a measure of better observation.  It is given by: 

 𝑅2 =
𝑆𝑢𝑚 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠
=

∑(�̂�𝑖−�̅�)
2

∑(𝑌𝑖−�̅�)
2,   (4.3) 
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where �̅� is the mean of all observations, �̂�𝑖 is the estimated observation at time i and 𝑌𝑖 is the actual 

observations. The value of 𝑅2 ranges from 0 to 1. The nearer the value of 𝑅2 is to 1, the better the 

observations fit with the selected forecasting model.  

 

Figure 4.5: Regression plot showing regression relation between the actual output and the targets. 

Table 4.1: Mean square error and regression. 

Outputs MSE R R2 

0 2.3524 0.9887 0.9776 

1 1.6191 0.9922 0.9845 

2 0.7937 0.9962 0.9924 

3 0.8192 0.9961 0.9922 

4 1.2981 0.9938 0.9876 

5 0.5859 0.9972 0.9944 

6 0.8319 0.9960 0.9920 

7 0.4470 0.9978 0.9957 

8 0.4236 0.9979 0.9959 

9 0.3782 0.9982 0.9964 

10 0.2738 0.9987 0.9974 

11 0.4570 0.9978 0.9956 

12 0.4655 0.9977 0.9955 
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4.1.2 Mathematical Functions of NN Model 

In order to obtain a mathematical function of the average surface temperature of the battery, 𝛤 

from the trained NN, the output from each hidden layer neuron 𝐻𝑘
1 𝑡𝑜 𝐻𝑘

12 is first determined. Here, 

the average surface temperature of a battery is a function of time (𝑡), discharge/charge current (or 

Ah capacity) (𝜃𝑘) and boundary conditions (𝜉𝑘), given by: 

 
𝛤 = 𝑓 (𝑡, 𝜃𝑘 , 𝜉𝑘 ) (4.4) 

The incoming inputs with suitable weights 𝜔𝑖,𝑗 ∀𝑖 ∈ 1,…, 𝑁𝐻, 𝐽 ∈ 1,…, 𝑁𝐼, are summed up at each 

hidden layer neuron. Moreover, each hidden layer neuron has additional input, the bias 𝛽1 𝑡𝑜 𝛽12, 

which is used in the network to generalize the solution and to avoid a zero value of the output, 

even when an input is zero. This summed signal is passed through an activation function (tansig) 

associated with each hidden layer neuron, which transforms the net weighted sum of all incoming 

signals into an output signal from the hidden layer neuron. 𝐻𝑘
1 𝑡𝑜 𝐻𝑘

12 are given by: 

 𝐻𝑘
1 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔1,1𝜃𝑘  + 𝜔1,2 𝜉𝑘 + 𝜔1,3 𝑡 + 𝛽1) (4.5) 

 𝐻𝑘
2 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔2,1𝜃𝑘  + 𝜔2,2 𝜉𝑘 + 𝜔2,3 𝑡 +  𝛽2) (4.6) 

 𝐻𝑘
3 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔3,1𝜃𝑘  + 𝜔3,2 𝜉𝑘 + 𝜔3,3 𝑡 +  𝛽3) (4.7) 

 𝐻𝑘
4 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔4,1𝜃𝑘  + 𝜔4,2 𝜉𝑘 + 𝜔4,3 𝑡 +  𝛽4) (4.8) 

 𝐻𝑘
5 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔5,1𝜃𝑘  + 𝜔5,2 𝜉𝑘+ 𝜔5,3 𝑡 +  𝛽5) (4.9) 

 𝐻𝑘
6 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔6,1𝜃𝑘  + 𝜔6,2 𝜉𝑘 + 𝜔6,3 𝑡 +  𝛽6) (4.10) 

 𝐻𝑘
7 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔7,1𝜃𝑘  + 𝜔7,2 𝜉𝑘 + 𝜔7,3 𝑡 +  𝛽7) (4.11) 

 𝐻𝑘
8 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔8,1𝜃𝑘  + 𝜔8,2 𝜉𝑘 + 𝜔8,3 𝑡 +  𝛽8) (4.12) 

 𝐻𝑘
9 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔9,1𝜃𝑘  + 𝜔9,2 𝜉𝑘+ 𝜔9,3 𝑡 + 𝛽9) (4.13) 

 𝐻𝑘
10 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔10,1𝜃𝑘  + 𝜔10,2 𝜉𝑘+ 𝜔10,3 𝑡 + 𝛽10) (4.14) 

 𝐻𝑘
11 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔11,1𝜃𝑘  + 𝜔11,2 𝜉𝑘+ 𝜔11,3 𝑡  + 𝛽11) (4.15) 

 𝐻𝑘
12 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝜔12,1𝜃𝑘  + 𝜔12,2 𝜉𝑘+ 𝜔12,3 𝑡  + 𝛽12) (4.16) 

The weight matrix connecting the input layer neurons to the hidden layer neurons, i.e. 𝜔𝑖,𝑗 ∀𝑖 ∈ 

1,…, 𝑁𝐻, 𝐽 ∈ 1,… , 𝑁𝐼 is given by: 



 

90 

 

 

𝜔𝑖,𝑗 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2202.47963.36990.0

9361.09251.00341.0

3483.03394.03002.5

6318.39240.08059.1

8208.97963.110748.8

3849.03359.07381.3

9349.30847.219040.6

3060.03717.08469.0

4583.41500.47129.0

2344.03153.09256.0

4249.01589.169281.1

3962.06015.10880.0























]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(4.17) 

The bias 𝛽𝑖 ∀𝑖 ∈ 1,…, 𝑁𝐻, associated with each hidden layer neuron, is given by: 

 
𝛽𝑖 = [−0.8333  − 14.4060   0.0762  − 6.9389   0.0146   10.6084  1.2144   

− 4.9179   3.7398   1.7859   1.5864  − 6.5392]𝑇 

(4.18) 

Finally, 𝛤 can be obtained from the output neuron of the trained NN by: 

 𝛤 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 (𝐻𝑘
1 𝑊1,1  + 𝐻𝑘

2 𝑊1,2  + 𝐻𝑘
3 𝑊1,3   + 𝐻𝑘

4 𝑊1,4  + 𝐻𝑘
5 𝑊1,5  +

𝐻𝑘
6 𝑊1,6 +  𝐻𝑘

7 𝑊1,7  + 𝐻𝑘
8 𝑊1,8  + 𝐻𝑘

9 𝑊1,9 + 𝐻𝑘
10 𝑊1,10 + 𝐻𝑘

11 𝑊1,11 + 𝐻𝑘
12 𝑊1,12 +

𝜇 ) 

(4.19) 

where 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 is a linear transfer function available in MATLAB. The weight matrix connecting 

the hidden layer neurons with the single output neuron 𝑊𝑖,𝑙 ∀𝑖 ∈ 1,…, 𝑁𝐻, 𝑙 ∈ 1,…, 𝑁𝑜 is given 

by: 

 𝑊𝑖,𝑙 = [0.2020   0.5385   − 5.4995   7.0429   − 4.9519   − 0.0193 

−5.7628   − 0.0096   − 0.1831   5.7932   0.5029   − 7.7780]  
(4.20) 

The bias associated with the output layer neuron is given by: 

 μ = - 0.2929 (4.21) 
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4.2 Model 2 : Electrochemical Thermal (ECT) Model 

This section describes a coupled electrochemical-thermal model for a commercial 20 Ah prismatic 

cell that considers all the electrochemical-geometrical details of the cell. This model is basically a 

Newman’s pseudo two dimensional (P2D) for a large sized prismatic lithium-ion battery. In this 

model, the physics-based two-dimensional electrochemical models are combined with the charge 

conservation and heat diffusion equations throughout the battery domain in order to calculate the 

temperature distributions. The governing equations and boundary conditions, along with the 

parameters used for the model development and material properties, are presented. The utilized 

physics-based two-dimensional models accurately predict the behavior of the negative and positive 

electrodes considering the material phase-change inside the active electrode particles and the 

particle-size distribution observed in scanning electron microscope (SEM) images of electrodes. 

This approach provides the opportunity of precisely studying even the particle-level phenomena 

effects on the prismatic cell electrochemical-thermal behaviors. The developed model for the 20 

Ah prismatic battery cell is compared against the experimental data for the temperature distribution 

on the surface of the prismatic cell during discharge at 2C, 3C, and 4C. Good agreement between 

the simulation results and experimental data shows that the approach utilized in this section can 

also be implemented for the other battery materials and geometries. 

4.2.1 Model Development 

The Newman pseudo-two dimensional (P2D) model, initially presented by Doyle at el. [40, 148] 

and utilized by different researchers [202, 203], separates the battery into the particle and electrode 

domains. In the particle domain, the conservation of lithium is solved. The particles are usually 

considered to be spherical and Fick’s law governs the particle lithium diffusion. In the electrode 

domain, the conservation of charge in the solid-phase and electrolyte, as well as the conservation 

of mass in the electrolyte, is solved. This model, based on the principles of transport phenomena, 

electrochemistry, and thermodynamics, is introduced by couples nonlinear partial differential 

equation (PDEs) in x, r, and t that can take from a second to a minute for simulation. This model 

expands on the ohmic porous-electrode model by including diffusion in electrolyte and solid 

phases, as well as Butler-Volmer kinetics. Doyle created a P2D model based on a concentrated 

solution theory to describe the internal behavior of a lithium-ion sandwich consisting of positive 
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(+) and negative (-) electrodes, a separator and current collector. This physics-based model is by 

far the most used by battery researchers and solves for the electrolyte concentration, electrolyte 

potential, solid state potential, and solid state concentration within the porous electrodes and 

electrolyte concentration, and electrolyte potential within the separator. A large sized 20 Ah-

LiFePO4 battery is used to verify the model results. The geometry of the battery is shown in Figure 

4.6 and the actual cell is presented in Figure 3.1. 
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Figure 4.6: Lithium-ion prismatic cell geometry for ECT model. 

The current collecting tabs of the prismatic battery cell are also considered and the dimensions of 

the battery cell along with tabs also appears in Figure 4.6. The studied prismatic cell includes a 

number of individual cells connected in parallel. Each cell contains a negative electrode, a 

separator, and a positive electrode, surrounded on either side by the current collectors. In the 

prismatic cell studied in this model, the negative and positive electrodes active materials are made 

from graphite and LiFePO4, respectively. Copper is used as the negative current collector and 

aluminum as the positive current collector. This cell includes 48 individual cells, resulting in a 20 

Ah nominal capacity. In order to decrease the material demand and reduce the electrical losses, 

current collectors are covered by electrode materials on both sides. Therefore, the number of 
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aluminum current collectors for 48 cells is 24, while there are 25 copper collectors since copper 

collectors are on each end of the stack. All the layers are then enclosed in a separator sheet and a 

casing covers all. Figure 4.7 is a schematic diagram of lithium-ion battery cell configuration for 

the pseudo-two dimensional multi-particle model [154]. 

Negative Electrode Separator Positive Electrode 

Positive 
Current 

Collector  

Negative 
Current 
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𝐿𝑖+
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𝑒− 𝑒− 

 

Figure 4.7: Schematic diagram of lithium-ion battery cell configuration for the pseudo-two 

dimensional multi-particle model (modified from [154]). 

During the discharge process, Lithium diffuses to the surface of the negative-electrode particles 

and undergoes an electrochemical reaction. This reaction releases an electron and transfers lithium 

to the electrolyte phase. The lithium ions diffuse and conduct through the electrolyte solution to 

the positive electrode, where a similar reaction transfers lithium to the positive solid phase. 

Lithium is stored inside the positive electrode particles until the cell is later recharged. The lithium-

ion transport phenomena in the porous electrode and active particle material can be described by 

the charge and mass conservation laws. Charge conservation governs the electrolyte phase 

potential and the solid phase potential, ∅𝑒 and ∅𝑠, while mass conservation governs the electrolyte 

phase concentration and the solid phase concentration, 𝐶𝑒 and 𝐶𝑠. 
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4.2.2 Governing Equations and Boundary Conditions 

In this section, all governing equations for charge conservation in solid phase, charge conservation 

in electrolyte phase, lithium conservation in solid phase, lithium conservation in electrolyte phase, 

and the Butler-Volmer equation are described with their boundary conditions. 

4.2.2.1 Charge conservation in solid phase  

The charge conservation equation in the solid electrode material is governed by Ohm’s law [151, 

204]: 

 ∇(𝜎𝑒𝑓𝑓 ∇∅𝑠 ) − 𝑗𝐿𝑖 = 0 (4.22) 

in other words, 

 
𝜕

𝜕𝑥
(𝜎𝑒𝑓𝑓  

𝜕∅𝑠
𝜕𝑥

) =  𝑗𝐿𝑖 
(4.23) 

 − 𝜎−
𝑒𝑓𝑓 (

𝜕∅𝑠

𝜕𝑥
)
𝑥=0

=
𝐼

𝐴
      and      + 𝜎+

𝑒𝑓𝑓 (
𝜕∅𝑠

𝜕𝑥
)
𝑥=𝐿

=
𝐼

𝐴
 (4.24) 

 (
𝜕∅𝑠

𝜕𝑥
)
𝑥=𝑙𝑛

= 0       and     (
𝜕∅𝑠

𝜕𝑥
)
𝑥=𝑙𝑛+𝑙𝑠

= 0 (4.25) 

where 𝜎𝑒𝑓𝑓 is the effective conductivity of the solid phase. 𝑗𝐿𝑖  is the transfer current resulting 

from Lithium insertion/de-insertion at the electrode/electrolyte interface. 𝜎+ and 𝜎− are effective 

electrical conductivity for the positive and negative electrodes. ∅+ and ∅− are the phase potential 

positive and negative electrodes. 𝑙𝑛 is the length of the negative electrode, 𝑙𝑠 is the length of the 

separator, 𝑙𝑝 is the length of the positive electrode. 𝐿= 𝑙𝑛 + 𝑙𝑠 + 𝑙𝑝 is the overall length. 

4.2.2.2 Charge conservation in electrolyte phase  

The charge conservation in the electrolyte solution is expressed as [151, 204]: 

 ∇(𝑘𝑒𝑓𝑓∇∅𝑒) + ∇(𝑘𝐷
𝑒𝑓𝑓

∇ ln 𝑐𝑒) + 𝑗
𝐿𝑖 = 0  (4.26) 

in other words, 
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𝜕

𝜕𝑥
(𝑘𝑒𝑓𝑓  

𝜕∅𝑒
𝜕𝑥

) + 
𝜕

𝜕𝑥
(𝑘𝐷

𝑒𝑓𝑓
 
𝜕 ln 𝑐𝑒
𝜕𝑥

) = − 𝑗𝐿𝑖 
(4.27) 

 (
𝜕∅𝑒

𝜕𝑥
)
𝑥=0

= 0       and     (
𝜕∅𝑒

𝜕𝑥
)
𝑥=𝐿

= 0 (4.28) 

where 𝑘𝑒𝑓𝑓 is the effective diffusional conductivity called the Burggeman relation and is given by 

𝑘𝑒𝑓𝑓 = 𝑘𝜖𝑒
𝛽, where 𝛽 is the Burggeman porosity exponent. 𝑘𝐷

𝑒𝑓𝑓
 is the effective ionic 

conductivity, given by: 

 𝑘𝐷
𝑒𝑓𝑓 =

2𝑅𝑇𝑘𝑒𝑓𝑓

𝐹
 (𝑡+

0 − 1) (1 +
𝑑 ln 𝑓±
𝑑 ln 𝐶𝑒

) (4.29) 

where 𝑓± is the molecular activity coefficient of the electrolyte, also called the electrolyte activity 

coefficient. 𝜖𝑒 is the volume fraction of the electrolyte phase in the electrode, 𝑅 is the universal 

gas constant with a value of 8.3143 kJ/kg mole. K. 𝐹 is the Faraday’s constant and its value is 

96485 Columb/mole. 𝑡+
0 is the transfer number of lithium-ion. 𝐶𝑒 is the concentration of lithium 

in the electrolyte phase. 

4.2.2.3 Lithium conservation in solid phase (Phase transition and ion transport) 

The material balance for lithium ions in an active solid material particle is governed by Fick’s 

second law in spherical coordinate [151, 205]: 

 

𝜕𝐶𝑠
𝜕𝑡

−
𝐷𝑠
𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝐶𝑠
𝜕𝑟

) = 0 (4.30) 

with boundary conditions: 

 𝐷𝑠 (
𝜕𝐶𝑠

𝜕𝑟
)
𝑟=0

= 0       and     −𝐷𝑠 (
𝜕𝐶𝑠

𝜕𝑟
)
𝑟=𝑅𝑠

=
𝑗𝐿𝑖 

𝑎𝑠𝐹
 (4.31) 

where 𝐶𝑠 is the concentration of lithium in solid phase.  𝐷𝑠 is the mass diffusion coefficient of 

lithium-ion in the electrolyte, 𝑟 is the radial coordinate  along the active material particle, 𝑅𝑠 is the 

radius of the solid active material particle, 𝑗𝐿𝑖  is the transfer current resulting from Lithium 
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insertion/de-insertion at the electrode/electrolyte interface, which consumes/generates the species 

Li+,  

 𝑗𝐿𝑖 = 𝑎𝑠𝑖𝑜  {

𝑎𝑠,𝑎 𝑖𝑛,𝑎 
0

𝑎𝑠,𝑐 𝑖𝑛,𝑐  
 in the anode, separator and cathode (4.32) 

4.2.2.4 Lithium conservation in electrolyte phase 

The lithium-ion balance in the liquid phase is described as follows [151]: 

 
𝜕(𝜖𝑒 𝑐𝑒)𝐶𝑠

𝜕𝑡
− ∇(𝐷𝑒

𝑒𝑓𝑓∇ 𝑐𝑒) −
1 − 𝑡+

0

𝐹
𝑗𝐿𝑖 +

𝑖𝑒 ∇𝑡+
𝐹

 = 0 (4.33) 

in other words, 

 
𝜕(𝜖𝑒  𝑐𝑒)𝐶𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑒

𝑒𝑓𝑓 𝜕𝐶𝑒
𝜕𝑥

) +
1 − 𝑡+

0

𝐹
𝑗𝐿𝑖 +

𝑖𝑒 ∇𝑡+
𝐹

 
(4.34) 

 (
𝜕𝐶𝑒

𝜕𝑥
)
𝑥=0

= 0       and     (
𝜕𝐶𝑒

𝜕𝑥
)
𝑥=𝐿

= 0 (4.35) 

where 𝜖𝑒 is the volume fraction/porosity of the electrolyte, 𝐷𝑒
𝑒𝑓𝑓 is the effective diffusion 

coefficient (Burggeman relation, 𝐷𝑒
𝑒𝑓𝑓 = 𝐷𝑒𝜖𝑒

𝛽), 𝑡+
0 is the transfer number of Li+ with respect 

to the velocity of the solvent (a function of electrolyte concentration, if assuming constant, 
𝑖𝑒 ∇𝑡+

𝐹
 =

0). Also, 𝜖𝑠 is the volume fraction of solid particle (active material) in the electrode. 𝜖𝑓 is the 

volume fraction of filler material in the electrode. 

4.2.2.5 Electrochemical Kinetics: Reaction Rate (Butler-Volmer Equation) 

The electrochemical reaction rate on the surface of electrode particles is usually governed by the 

Butler-Volmer equation [154, 156, 158]; i.e the Butler-Volmer equation is used to couple a charge-

species governing equation and is given by: 

 𝑗𝐿𝑖 = 𝑎𝑠𝑖𝑜  {exp [
∝𝑎 𝐹

𝑅 𝑇
 𝜂] − exp [

∝𝑐 𝐹

𝑅 𝑇
 𝜂]} 

(4.36) 
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where 𝜂 is the local surface over potential which is given by [172]: 

 𝜂 =  ∅𝑠 − ∅𝑒 −𝑈 
(4.37) 

and the exchange current density is given by [204]: 

 𝑖0 = 𝑘𝑚(𝐶𝑒)
∝𝑎(𝐶𝑠,𝑚𝑎𝑥 − 𝐶𝑠,𝑒)

∝𝑎(𝐶𝑠,𝑒)
∝𝑐 

(4.38) 

where 𝑎𝑠 is the active surface area per electrode unit volume for electron transfer reactions (1/cm), 

𝑖0 is the exchange current density (a function of lithium concentrations in both electrolyte and solid 

active materials), ∝𝑎 is the transfer coefficient of the anode, T is the temperature (K), 𝜂 is the over 

potential (V), ∝𝑐 is the transfer coefficient of the cathode, U is thermodynamics OCV, 𝐶𝑠,𝑚𝑎𝑥 is 

the maximum concentration of lithium in solid phase and 𝐶𝑠,𝑒 is the concentration of lithium at the 

surface of solid particles, and ∅𝑠 and ∅𝑒 are the phase potential for solid and electrolyte phase. 

 

For coupling the model, temperature dependent physicochemical properties, such as diffusion 

coefficient (𝐷𝑠) and ionic conductivity of an electrolyte (𝑘) are needed and dependence can be 

generally described by Arrhenius Equation [204]: 

𝐷𝑠 = 𝐷𝑠,𝑟𝑒𝑓 exp [
−𝐸𝑑

𝑅 (
1
𝑇 −

1
𝑇𝑟𝑒𝑓

)
] (4.39) 

𝑘𝑚 = 𝑘𝑚,𝑟𝑒𝑓 exp [
−𝐸𝑟

𝑅 (
1
𝑇 −

1
𝑇𝑟𝑒𝑓

)
] (4.40) 

also diffusion coefficient in electrolyte phase, 𝐷𝑒, is given by: 

 𝐷𝑒
𝑒𝑓𝑓 = 𝐷𝑒𝜖𝑒

𝛽 
(4.41) 

 𝑎𝑠 = 3 
𝜖𝑠
𝑟𝑠

 (4.42) 

where 𝑎𝑠 is the solid/electrolyte interfacial area per unit volume, 𝐷𝑠 is the diffusion coefficient in 

solid phase, 𝐷𝑠,𝑟𝑒𝑓 is the reference solid diffusion coefficient, 𝑘𝑚,𝑟𝑒𝑓 is the reference reaction rate 
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coefficient, 𝐷𝑒 is the diffusion coefficient in the electrolyte phase, 𝐸𝑑 is the activation energy that 

controls temperature sensitivity of Ds, 𝐸𝑟 is the activation energy that controls the temperature 

sensitivity of 𝑘𝑚, and 𝑇𝑟𝑒𝑓 is the reference temperature = 298 K. 

4.2.3 Energy Equation  

The energy balance equation is given by [151]: 

 ∇2𝑇 +
�̇�

𝑘
=
1

𝛼

𝜕𝑇

𝜕𝑡
 

(4.43) 

in other words, 

 

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
+
�̇�

𝑘
=
1

𝛼

𝜕𝑇

𝜕𝑡
 (4.44) 

The above equation is further modified to  

 �̇� =  
𝜕(𝜌𝑐𝑝𝑇)

𝜕𝑡
− ∇ (𝑘 ∇𝑇) (4.45) 

also,  

 
∇ (𝜎+∇∅+) = - 𝑗 

(4.46) 

 ∇ (𝜎−∇∅−) = + 𝑗 (4.47) 

 �̇� =  (𝜎+ ∇
2
∅+) + (𝜎− ∇

2
∅−) + �̇�𝐸𝐶𝐻 (4.48) 

where �̇�𝐸𝐶𝐻 is the electro chemical heat and is given by [151]: 

 
�̇�𝐸𝐶𝐻 = 

𝑖𝑝(∅+ − ∅−) + (𝜎− ∇
2
∅−) + ∫ 𝑗𝐿𝑖 (𝑇𝑟𝑒𝑓

𝜕𝑈
𝜕𝑡

− 𝑈𝑟𝑒𝑓)
𝐿

0
𝑑𝑥 

𝐿
 

(4.49) 

also, 

 
𝑖𝑝 = ∫ 𝑗𝐿𝑖

𝑙𝑝

0

𝑑𝑥 
(4.50) 

 𝑗 =  − 𝑎 𝑖𝑝 (4.51) 
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where �̇� is the heat generation rate during battery operation which includes joule heating, 

electrochemical reaction heating and entropic heating, 𝜌 is the density,  𝑐𝑝 is the specific heat. The 

parameters used for the modeling are shown in Table 4.2. 

Table 4.2: Parameters used in the 2D Model [151, 152, 45, 154, 206, 155, 207, 208]. 

Parameter Notation Value Unit 

Thickness of +ve electrode 𝑙𝑝 183 µm 

Thickness of separator 𝑙𝑠 52 µm 

Thickness of -ve electrode 𝑙𝑛 100 µm 

Particle radius for +ve electrode 𝑅𝑠,𝑝 1.6e-05/2 µm 

Particle radius for -ve electrode 𝑅𝑠,𝑛 2.5e-05/2 µm 

Maximum solid Li+ Concentration for 

+ve electrode 
𝐶𝑠,𝑝,𝑚𝑎𝑥 22806 mol/m3 

Maximum solid Li+ Concentration for -

ve electrode 
𝐶𝑠,𝑛,𝑚𝑎𝑥 31370 mol/m3 

Initial solid Li+ concentration for +ve 

electrode 
𝐶𝑠,𝑝,0 3886.2 mol/m3 

Initial solid Li+ concentration for -ve 

electrode 
𝐶𝑠,𝑛,0 14870.76 mol/m3 

Initial electrolyte Li+ concentration for 

+ve electrode 
𝐶𝑜 2000 mol/m3 

Initial electrolyte Li+ concentration for -

ve electrode 
𝐶𝑜 2000 mol/m3 

Initial electrolyte Li+ concentration for 

separator 
𝐶𝑜 2000 mol/m3 

Volume fraction for +ve electrode 𝜖𝑝 0.444 - 

Volume fraction for -ve electrode 𝜖𝑛 0.357 - 

Volume fraction for separator 𝜖𝑠 1 - 

Filler fraction for +ve electrode 𝜖𝑓,𝑝 0.259 - 

Filler fraction for -ve electrode 𝜖𝑓,𝑛 0.172 - 

Reference diffusivity for +ve electrode 𝐷𝑠,𝑝 1e-13 m2/s 

Reference diffusivity for -ve electrode 𝐷𝑠,𝑛 3.9e-14 m2/s 
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Activation energy for +ve electrode  𝐸𝑑,𝑝 8.6e4  

Activation energy for -ve electrode  𝐸𝑑,𝑛 2e4  

Conductivity for +ve electrode 𝜎𝑝 3.8 S/m 

Conductivity for -ve electrode 𝜎𝑛 100 S/m 

Reference rate constant for +ve 

electrode 
𝑘𝑝 2.072818e-11 mol/m2s/(mol/m3)1.5 

Reference rate constant for -ve electrode 𝑘𝑛 2.072818e-11 mol/m2s/(mol/m3)1.5 

Activation energy for +ve electrode  𝐸𝑟,𝑝 9e3  

Activation energy for -ve electrode  𝐸𝑟,𝑛 2e4  

Electrolyte diffusivity for +ve electrode 𝐷𝑒 7.5e-11 m2/s 

𝑡+ factor for +ve electrode 𝑡+ 0.363 - 

Nominal capacity of cell  C 20 Ah 

Minimum stop voltage 𝑉𝑚𝑖𝑛 2.0 V 

Maximum stop voltage 𝑉𝑚𝑎𝑥 4.1 V 

Reference temperature 𝑇𝑟𝑒𝑓 298 K 

Universal gas constant 𝑅 8.3143 kJ/kg mole K 

Faraday’s constant 𝐹 96485 Columb/mole 

The material properties are also presented in Table 4.3. These properties are used in the simulation. 

Table 4.3: Material Properties used in the simulation [151, 152, 207]. 

Property Symbol Value Unit 

Density for positive tab 𝜌𝑝 2719 kg/m3 

Density for negative tab 𝜌𝑛 8978 kg/m3 

Density for active zone 𝜌𝑎 2092 kg/m3 

Specific heat for positive tab 𝐶𝑝,𝑝 871 J/kg-K 

Specific heat for negative tab 𝐶𝑝,𝑛 381 J/kg-K 

Specific heat for active zone 𝐶𝑝,𝑎 678 J/kg-K 

Thermal conductivity for positive tab 𝐾𝑝 202 W/m-K 

Thermal conductivity for negative tab 𝐾𝑛 387.6 W/m-K 

Thermal conductivity for active zone 𝐾𝑎 18.2 W/m-K 
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4.3 Model 3: Numerical Model for Mini Channel Cold Plates 

In this section, ANSYS CFD modeling for mini-channel cold plates placed on the top and bottom 

of a large sized prismatic LiFePO4 lithium-ion battery is presented along with governing equations, 

geometry created in ICEM-CFD, boundary conditions, meshing, and finally grid independence 

study. The results obtained from simulation are also compared with experimental data. This kind 

of study provides an insight into improvement of design of cold plates for thermal management of 

a lithium-ion battery pack for automotive applications.   

4.3.1 Governing Equations 

The flow in this study is turbulent. Although analytical solutions for these flows are not accurate, 

on the basis of the continuum fluid assumption, the dynamics of turbulence is adequately described 

by the continuity and Navier-Stokes equations. The solutions of the Navier-Stokes equations are 

solved numerically. The solution is implemented by generating a mesh of the region of interest or 

domain. The governing equations are then discretized yielding a system of algebraic equations 

which can be solved at each point within the domain. In this section, the goal of this CFD study is 

to obtain trends that can be validated with the experimental measurements. In addition, because 

the experimental technique obtained only point-wise data, the CFD technique provides the whole 

field and comprehensive data to complement the experimental data. 

As previously mentioned, the water flow in the cold plates is turbulent and therefore the flow is 

modeled using the Reynolds-Averaged Navier-Stokes Equations (RANS⋅). Since the temperature 

field is also of interest, the Reynolds-Averaged Energy equation is also solved. The governing 

equations are: 

 ∇ ⋅ �⃗� = 0 
(4.52) 

 ρ [
∂�̅�

∂𝑡
+ (�⃗� ⋅ ∇ �̅�)]  = −∇ 𝑝  + (µ∇2�̅� − λ ) (4.53) 

 
∂ρ�̅�

∂𝑡
+ ρ𝑉 ⃗⃗  ⃗∇𝑇 = ∇ ⋅ [ (

μ

𝑃𝑟
+

μ𝑡

𝑃𝑟𝑡
) ∇�̅� ]  (4.54) 
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where 𝛻 is the gradient operator, �̅� is the average velocity (m/s), V is the speed (m/s), 𝜌 is the 

density (kg/m3), 𝑃 is the pressure (Pa), 𝜇 is the viscosity (Pas), 𝜆 is the gradient of Reynold’s stress, 

𝑃𝑟 is the Prandtl  number, and 𝑃𝑟𝑡 is the turbulent Prandtl  number. 

Since the flow in the problem is assumed to be turbulent, an appropriate turbulence model is 

required. In this study, the standard k-ɛ turbulence model was used, given the robustness of the 

model, reasonable accuracy for a wide range of flows and its proven capability in heat transfer and 

flow analysis. The equations in ANSYS Fluent for turbulent kinetic energy and rate of dissipation 

are as shown below [204]: 

 
𝜕𝜌𝑘

𝜕𝑡
+ 𝛻 ∗ [𝜌 𝑉 ⃗⃗  ⃗𝑘]  = 𝛻 ∗  [ (µ +

𝜇𝑡
𝜎𝑘
)𝛻𝑘 ] + 𝐺𝑘 + 𝐺𝑏 − 𝜌ɛ − 𝑌𝑀 + 𝑆𝑘 (4.55) 

 
𝜕𝜌ɛ

𝜕𝑡
+ 𝛻 ∗ [𝜌 𝑉 ⃗⃗  ⃗ɛ]  = 𝛻 ∗  [ (µ +

𝜇𝑡
ɛ𝑘
)𝛻ɛ ] + 𝐶1ɛ

ɛ

𝑘
(𝐺𝑘 + 𝐶3ɛ𝐺𝑏) − 𝐶2ɛ 𝜌 

ɛ2

𝑘
+ 𝑆ɛ  (4.56) 

where 𝐶1ɛ, 𝐶2ɛ, 𝐶3ɛ are the model constants, 𝜎𝑘 and ɛ𝑘 are the turbulent Prandtl numbers for 𝑘 and 

ε. 𝐺𝑘 represents the generation of turbulence kinetic energy due to the mean velocity gradients, 𝐺𝑏 

is the generation of turbulence kinetic energy due to buoyancy. 𝑌𝑀 represents the contribution of 

the fluctuating dilatation in compressible turbulence to the overall dissipation rate. 𝑆𝑘 and 𝑆ɛ are 

user-defined source terms. The turbulent (or eddy) viscosity is computed by combining  𝑘 and ε  

as follows: 

 
𝜇𝑡 = 𝐶µ 𝜌 

𝑘2

ɛ
 (4.57) 

where 𝐶μ is a constant. The ANSYS Fluent was used in this study because of its flexibility and 

availability. Starting from an initial condition, the solution strides towards a steady-state. 

Convergence was judged against the normalized continuity, momentum and energy residuals and 

is considered converged when these residuals have been reduced to 1×10-6. 

4.3.2 Geometry and Boundary Conditions 

The full geometry, with the top and bottom cold plates along with lithium-ion battery in NX 8.5, 

is depicted in Figure 4.8.  
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Figure 4.8: Top and bottom cold plate with lithium-ion battery in NX 8.5. 

In a CFD simulation, the term "wall" refers to any solid surface that the flow cannot penetrate and 

thus includes the walls, floor, ceiling, and surfaces of the test battery. 

The following parameters are selected for model development: 

1) Viscous model: 𝑅𝑒 = 8.7 x 103. The wall distance was 1.1 x 10-4. 𝐶1= 1.44, 𝐶2 = 1.92, TKE 

Prandtl number =1, TDR Prandtl number =1.3, Energy Prandtl number =0.85, Wall Prandtl 

number =0.85.  

2) In the turbulent specification method: Turbulent intensity of 5%, and turbulent viscosity 

ratio of 10. 

3) Solver: Type: pressure based; Time: steady state; Velocity formulation: absolute velocity 

4) Residuals convergence variables: X-velocity, Y-velocity, Z-velocity, energy, k-epsilon, 

continuity equation. 

5) wall treatment (y+=5) 

6) Number of elements: approximately 20 million 

7) Method for meshing: unstructured tetrahedral with prism wall layers 

8) Convergent criteria: 0.000001 residuals 

9) 1st or 2nd order: 2nd order 

10) Type of flow: turbulent 

Prism meshing parameters: 

1) Growth law: exponential; Initial height: 0.1; Height ratio: 1.1; Number of layers: 3; Total 

height: 0.331; Minimum prism quality: 0.0099999998; Ortho weight: 0.50; Fillet ratio: 0.1 

Global mesh size: 



 

104 

 

1) Global element scale factor: 1; Global element seed size: 1; Curvature/proximity based 

refinement minimum size limit: 1. 

Assumption: 

1) Symmetry about the center of the battery, and 2) adiabat on outside the surface of the 

cooling plate 

Different turbulence models in ANSYS Fluent were used to simulate the above flow conditions to 

obtain the reattachment lengths using the experimental results for validation. In order to have a 

good agreement between the numerical results and experimental data, it was ensured that the 

computational domain is sufficiently long. The flow was considered incompressible, steady state 

and turbulent. Water was chosen as the working fluid with a density of 998.2 kg/m3 and dynamic 

viscosity of 1.002 x 10-3 N s/m2. The computational grid consists of around 20 million elements. 

A uniform free stream velocity inlet boundary condition for incompressible flow was applied 

upstream of the step. Average velocity was applied at the inlet using a derived relation valid for 

channel flows. The inlet and outlet boundary conditions were set based on the turbulent intensity 

and turbulent length scale. A turbulent intensity of 5%, to be consistent with the value obtained by 

the experimental study, was used. The velocity was 0.5784 m/s. The pressure outlet boundary 

condition was applied at the outflow plane, which was positioned far downstream of the step 

to reduce the influence of the outflow conditions and on all other surfaces the no-slip boundary 

condition was applied. The RANS models available in ANSYS Fluent were used with enhanced 

wall treatment (y+=1) as the near wall function.  

4.3.3 Mesh Generation 

The meshing of the domain is a very important step since various meshing parameters, such as the 

number of nodes and the shape of the elements, have a significant impact on the accuracy of the 

results and the numerical behavior of the solution. A fine unstructured tetrahedral mesh was 

generated using ANSYS ICEM to resolve all flow features of interest. The mesh resolution at 

various locations within the geometry is shown in Figure 4.9. This meshing is at the inlet and the 

outlet channels of the cold plates placed on the top and bottom of the lithium-ion battery cell. The 

overall meshing generated in a small portion of channel is shown in Figure 4.10. It shows the 

meshing in the inlet channel to the cold plate along with battery surface. 
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Figure 4.9: Inlet and outlet channel with meshing  of cold plate in ICEM-CFD. 

The flow along the various surfaces in the space is resolved by using a finer mesh size around 

those obstacles while the boundary layers along all surfaces are resolved by clustering 3 layers of 

prismatic elements near the walls. The prismatic layers are also adjusted such that the first node is 

0.1 mm away from the wall. This wall node spacing yields a dimensionless wall distance of y+ ~1, 

where y+ was chosen to be 5. This value is consistent with the recommended value for near wall 

flows while being closer to acceptable values for the standard k-ɛ turbulence model. It trades off 

extreme resolution with lower y+ values while still maintaining some approximation of the 

boundary layer. Using the recommended values of y+ ≥ 30 resulted in the first layer thickness being 

larger than the channel height itself, thus necessitating compromises.  

 

Figure 4.10: Meshing in small portion of channel in ICEM-CFD. 

The total number of elements used for the mesh is approximately 20 million. It was ensured that 

the numerical results are mesh independent by conducting grid independence tests. A negligible 

effect in the reattachment points was observed for mesh elements greater than 10 million. It was 

assured that the numerical residuals were in the order of magnitude 10-6 and solution was 
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considered converged as numerical residuals reached the convergence criteria. The solution did 

not significantly change after this criteria was achieved. The analysis was also performed at 

different planes in the channel. Figure 4.11 shows the vertical planes within the cold plates for 

CFD analysis, where 1 is inlet to the cold plate and 4 is the outlet from the cold plate. 

 

Figure 4.11: Vertical planes 1, 2 3, 4 (1 is inlet and 4 is outlet) within mini-channel cold plates. 

4.3.4 Grid Independence Study 

A grid independence study was undertaken in order to verify that the solutions generated by the 

numerical analysis were not reliant on the resolution of the meshes generated. As a result, a coarser 

mesh of 20 million cells and a finer mesh of 40 million cells were made.  Solutions were computed 

from the 4C discharge 15°C boundary conditions. This was compared to the standard 33 million 

cell medium-detail mesh used for the rest of the simulations. Table 4.4 and Table 4.5 present the 

grid independence data for the temperature and velocity taken across the width of the outlet, as 

shown in Figure 4.12, Figure 4.13, and Figure 4.14.  

 

Figure 4.12: Temperature and velocity grid independence test data taken at the yellow line across 

with width of the outlet, as shown above. 
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Table 4.4: Grid independence data for temperature contours. 

[Data] 

Chart 

Count 

20 million cells 

50% Larger 

Temperature [K] 

33 million cells 

Nominal 

Temperature [K] 

40 million cells 

Next Inlet Channel  

Finer (0.2mm) 

Temperature [K] 

% coarse 

to nominal 

% fine to 

nominal 

0 288.35 291.11 291.27 0.94 -0.05 

0.1 288.42 291.39 291.36 1.01 0.01 

0.2 288.42 291.42 291.38 1.02 0.01 

0.3 288.43 291.43 291.37 1.02 0.01 

0.4 288.43 291.40 291.34 1.01 0.02 

0.5 288.44 291.38 291.34 1.00 0.01 

0.6 288.44 291.37 291.35 1.00 0.00 

0.7 288.43 291.40 291.37 1.01 0.01 

0.8 288.41 291.42 291.37 1.03 0.01 

0.9 288.35 291.18 291.29 0.97 -0.03 

Table 4.5: Grid independence data for velocity contours. 

[Data] 

Chart  

Count 

20 million cells 

50% Larger 

Velocity [m/s] 

33 million cells 

Nominal 

Velocity [m/s] 

40 million cells 

Next Inlet Channel  

Finer (0.2mm) 

Velocity [m/s] 

% coarse  

to nominal 

% fine to 

nominal 

0 0.09 0.01 0.00 30.76 46.15 

0.1 0.57 0.57 0.57 1.21 0.17 

0.2 0.66 0.66 0.66 0.15 0.60 

0.3 0.72 0.72 0.72 0.27 -0.13 

0.4 0.76 0.76 0.76 0.13 -0.13 

0.5 0.77 0.78 0.77 0.12 0.25 

0.6 0.78 0.78 0.78 -0.12 0 

0.7 0.78 0.78 0.78 0.63 0 

0.8 0.76 0.76 0.76 1.04 0 

0.9 0.04 0.01 0.01 -152.63 21.05 

The velocity data is a near match across the coarse, medium and fine detail meshes, showing that 

the solution calculated was not dependent on the mesh resolution. The temperature data again 
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shows very high correlation, with the maximum variance between the coarse and medium detail 

mesh being 1.03%. This is far less than the 10% accepted range of error for CFD solutions [209], 

again validating the mesh resolution. Given the difference in computational times for the meshes 

– approximately 10 hours for the coarse mesh, 12 hours for the medium mesh and 18 hours for the 

fine mesh – it was decided that the medium detail mesh was a good balance between computational 

time and accuracy. 

 

Figure 4.13: Temperature grid independence data at the specified outlet location at 4C discharge & 

15 °C BC. 

 

Figure 4.14: Velocity grid independence data at the specified outlet location at 4C discharge & 15°C 

BC. 
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4.4 Model 4: Battery Degradation Model 

In this section, a degradation model is presented with regards to the real world drive cycles 

obtained from an EV with different ambient temperatures of -6°C, 2°C, 10°C, and 23°C, in order 

to assess the performance of the battery.  Battery behavior varies highly non-linearly with respect 

to current and state-of-charge among other variables and a wide range of modeling strategies of 

varying complexities exist to capture this. The approach chosen in this study is the application of 

an equivalent circuit model (ECM), in which the behavior of the battery is modeled using a 

combination of ideal circuit elements. More specifically, the Thevenin model was chosen due to 

its simplicity and effectiveness in capturing the voltage behavior of batteries.  

As shown in Figure 4.15, the internal resistance of the battery is captured by the resistor 𝑅1 while 

the transient voltage response to the changing current is captured by the RC pair. The ideal voltage 

source 𝑉𝑜𝑐 represents the open-circuit voltage (OCV) of the cell, which was correlated to the cell 

SOC.  The voltage of the circuit (VL) is given as the solution to equations (4.58), (4.59), and (4.60).  

An additional incentive for the choice of the Thevenin model is its extensive use and application 

in battery modeling in the literature [210] . 
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Figure 4.15: Degradation model. 

 𝑉𝐿 = 𝑉𝑜𝑐 − 𝑉1 − 𝑉2 (4.58) 
 

 𝑉1 = 𝐼 𝑅1 (4.59) 
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𝑑𝑉2
𝑑𝑡

=  
𝐼

𝐶
 − 

𝑉2
𝑅2𝐶

 (4.60) 

The model parameters of the Thevenin model were experimentally determined using a charge-

discharge test at a current rate of C/25 (0.8A) as well as a hybrid pulse power characterization 

(HPPC) test at various known SOC values. The C/25 cycle was used to correlate SOC and OCV.  

The HPPC procedure was a 1C (20A) discharge for 10 seconds, followed by 40 seconds of rest 

and then a 0.75C (15A) charge for 10 seconds.  The circuit parameters R1, R2 and C were fit to the 

HPPC data using a genetic algorithm in MATLAB.  HPPC was conducted at intervals of 10% 

SOC, and the correlations between the parameters and SOC are shown in equations (4.61), (4.62), 

and (4.63). Figure 4.16 shows the current profile and fitting results of an HPPC test at 50% SOC.  

Furthermore, a number of cells were characterized to account for stochastic variation in cell 

manufacturing quality.  

 𝑅1 = −0.000513 (𝑆𝑂𝐶) + 0.002733 (4.61) 

 𝑅2 =  0.001426 (𝑆𝑂𝐶)−0.771947 (4.62) 

 𝐶 =  3297.55 log  (𝑆𝑂𝐶) + 13481.96 (4.63) 

 

Figure 4.16: Voltage and current profiles of an HPPC test at 50% SOC. 

The cell model was constructed in a MATLAB object-oriented environment, for ease of use and 

computational speed.  In the drive cycles recorded, the majority of the current was less than 1C in 
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magnitude [211]. Therefore, the model behavior was compared with charge and discharge curves 

at 1C and C/2 for model validation.  The results of these comparisons for 1C charge and 1C 

discharge are shown in Figure 4.17, and those for C/2 charge and C/2 discharge are shown in 

Figure 4.18. The model was deemed suitably accurate to be used with model real-world drive-

cycles. 

 

Figure 4.17: Model and experimental comparison at 1C charge and discharge. 

 

Figure 4.18: Model and experimental comparison at C/2 charge and discharge. 

With regards to battery degradation, the degradation model proposed by [212] was chosen to 

reflect the degradation behavior of the battery. It has been established that cycling aging is 
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governed most significantly by depth-of-discharge (DOD), charge throughput and the average 

SOC during cycling [213, 214, 215]. The degradation model used accounts for these variables, 

with average voltage (𝑉𝑎𝑣𝑔) taking the place of average SOC but essentially being equivalent. 

Equations (4.64) and (4.65) govern this degradation model. 

 𝐶𝑡 = 𝐶0 (1 −  𝛽√𝑄) (4.64) 

 𝛽 = 𝐴 (𝑉𝑎𝑣𝑔 − 𝐵)2 + 𝐶 + 𝐷 ⋅ 𝐷𝑂𝐷 (4.65) 

where 𝐶𝑡 is the current battery capacity, 𝐶0 is its initial capacity, 𝑄 is the amount of charge 

processed in ampere-hours and A, B, C and D are fitted parameters. 
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Results and Discussion  

In this, Section 5.1 presents the experimental results obtained from a particular battery cell and 

pack at different discharge rates and varying boundary conditions. The results are presented in 

terms of the battery surface temperature distributions, tab temperature distributions, heat flux 

profiles, and heat generation profiles obtained from the analysis method explained in Section 3.4.  

IR images, which were captured during the experiments, are also presented and discussed. In 

Section 5.2, for the first model developed using the neural network approach, validation is 

completed from the simulation with the results obtained from an experimental data in terms of the 

surface temperature and discharge voltage at all C-rates and BCs. In Section 5.3, for the second 

model developed (ECT model), validation of the simulated results obtained from an ANSYS CFD 

is performed with IR images obtained for this particular lithium-ion battery. In Section 5.4, for the 

third model developed (ANSYS turbulence model), validation is presented for mini-channel cold 

plates designed for water flow inside the cold plates in terms of temperature and velocity contours. 

In Section 5.5, for the fourth model developed (battery degradation model), validation is presented 

for individual drive cycles in terms of voltage and SOC distributions along with capacity fade over 

three months. 

5.1 Experimental Results on Cell and Pack Testing 

This section presents the experimental results obtained from a particular battery cell and pack at 

different discharge rates and various boundary conditions are presented. 

5.1.1 Battery Cell Surface and Tab (Electrode) Temperature Profile  

Figure 5.1 shows the surface temperature distribution on the principle surface of the battery at 1C, 

2C, 3C, and 4C discharge rates and an ambient condition of 22°C (boundary condition). Here, the 

battery surface temperature profile recorded by ten thermocouples is plotted as a function of time. 

It can be observed that the response of the thermocouple at location TC-1, 1, TC-1, 2, and TC-1, 
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3 has the faster rate of increase over the entire period. These thermocouples are nearest the negative 

(anode) and the positive (cathode) electrodes of the battery and indicate the location of highest 

heat accumulation, and the rates of heat generation are likely highest near the electrodes. It can be 

also seen that the thermocouples placed on +ve tab (cathode) and –ve tab (anode) are always higher 

than at any other locations on the surface of the battery. In Table 5.1, the maximum surface 

temperature measured by the ten thermocouples at all operating temperatures (5°C, 15°C, 25°C, 

and 35°C) for water cooling and air cooling (~22°C) are given against discharge rates of 1C, 2C, 

3C, and 4C.  

  
(a) 1C at 22ºC (a) 2C at 22ºC 

  
(a) 3C at 22ºC (a) 4C at 22ºC 

Figure 5.1: Battery cell surface temperature profile at 1C, 2C, 3C, and 4C at 22ºC BC. 

Table 5.1: Summary of battery cell peak surface temperature at four discharge rates and five 

boundary conditions. 

Cooling 

Type 

Boundary 

Condition [°C] 

Maximum surface temperature [°C] 

1C 2C 3C 4C 

Water  

5 7.1176 12.7432 15.1435 18.1927 

15 19.0899 20.817 25.0103 26.4309 

25 27.1619 29.2420 32.1083 34.6552 

35 35.4805 37.7887 35.6479 41.4498 

Air ~22 29.71 36.2802 41.4325 46.4781 
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Figure 5.2 shows the surface temperature distribution on the principle surface of the battery at 1C, 

2C, 3C, and 4C discharge rates with water cooling at 5°C BC. Figure 5.3 shows the surface 

temperature distribution on the principle surface of the battery at 1C, 2C, 3C, and 4C discharge 

rates with water cooling at 35°C BC. For 1C-5°C and 1C-35°C, the discharge time is 3600s and 

for 4C-5°C and 4C-35°C, the discharge time is 900s. Similar plots are also generated for 2C and 

3C discharge rates at 15°C and 25°C BCs. In Table 5.2, the average surface temperature measured 

by the ten thermocouples at all operating temperatures (5°C, 15°C, 25°C, and 35°C) for water 

cooling and air cooling (~22°C) are given against discharge rates of 1C, 2C, 3C, and 4C. 

  

(a) Temperature_1C at 5ºC (b) Temperature_2C at 5ºC 

  

(c) Temperature_3C at 5ºC (d) Temperature_4C at 5ºC 

Figure 5.2: Battery cell surface temperature profile at 1C, 2C, 3C, 4C at 5°C BC. 

Finally, in the above discussion, the effect of cooling plates is seen since the surface temperature 

does not proceed beyond 44°C for the water cooling method because of the circulating water inside 

the top and bottom cold plates. Basically, this circulating water takes heat which is generated by 

the battery. This is of particular concern for the development of EV, HEV, and PHEV because the 

vehicle range is directly affected by the battery temperature. Overall, by comparing all plots it is 

noted that the lowest temperature value is 7.11°C observed at the end of discharge for the 1C-5°C 

and the highest temperature value is observed to be 41.44°C at the end of discharge for 4C-35°C 
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for the water cooling method. The overall trend observed is that increased discharge rates (between 

1C, 2C, 3C, and 4C) and increased operating temperatures (between 5°C, 15°C, 25°C, and 35°C) 

result in increased temperatures at all the locations measured.  

Table 5.2: Summary of battery cell average surface temperature at four discharge rates and five 

boundary conditions. 

Cooling 

Type 

Boundary 

Condition [°C] 

Average surface temperature [°C] 

1C 2C 3C 4C 

Water  

5 9.7491 9.3341 11.3141 12.9050 

15 16.9011 18.1048 20.3254 21.5003 

25 25.4630 26.8112 27.5401 30.1444 

35 34.6655 35.9051 37.3724 38.3437 

Air ~22 24.7419 28.7582 31.8774 34.8339 

  

(e) Temperature_1C at 35ºC (f) Temperature _2C at 35ºC 

  

(g) Temperature _3C at 35°C (h) Temperature _4C at 35ºC 

Figure 5.3: Battery cell surface temperature profile at 1C, 2C, 3C, 4C at 35°C BC. 
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5.1.2 Battery Cell Discharge Voltage Profile  

Figure 5.4 shows the battery cell discharge voltage profile as a function of discharge capacity at 

C/10, C/5, C/2, 1C, 2C, 3C, and 4C at an ambient temperature of 22°C. To evaluate the impact of 

the discharge rate, seven experiments were performed on a newly purchased lithium-ion battery 

cell (20Ah capacity) with 1C charge rate and different discharge rates of C/10, C/5, C/2, 1C, 2C, 

3C, and 4C at an ambient temperature of 22°C. It was found that with an ambient condition of 

22°C, the battery capacity was observed to be closer (19.3 Ah) as reported by the manufacturer’s 

data sheet (20 Ah) at all discharge rates. For the low discharge rate, the discharge voltage is higher 

and it decreases with an increase in C-rate; i.e. the voltage plateau of the battery cycles at higher 

discharge rates (3C and 4C) is shorter than the one cycled at the lower discharge rates (C/5 and 

C/10). 

 

Figure 5.4: Discharge voltage profile as a function of discharge capacity at C/5, C/2, 1C, 2C, 3C, 

and 4C at an ambient temperature of 22°C. 

Figure 5.5 (a, b, c, and d) shows a comparison of the measured discharged  terminal voltage 

obtained at 1C, 2C, 3C, and 4C discharge rates and varying BCs of 5°C, 15°C, 25°C, and 35°C for 

water cooling. The plots are made against the discharge capacity in order to see the effect of 

boundary conditions on the discharge capacity. Here, the battery is charged with constant current-

constant voltage (CC-CV) protocol until the voltage reaches 3.6V and discharged with the constant 

current (CC) until the voltage drops to 2.0V. At lower discharge rates, the cell potential stays close 
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to the cell’s open circuit potential (OCP). As discharge rates increase, the cell voltage deviates 

significantly from the OCP due to ohmic, activation, and mass transport losses. In Figure 5.5 (a),  

there is drastic drop in voltage at 3C and 4C discharge because of the cold conditions. 

  

(a) 1C, 2C, 3C, and 4C at 5°C BC (b) 1C, 2C, 3C, and 4C at 15°C BC 

  

(c) 1C, 2C, 3C, and 4C at 25°C BC (d) 1C, 2C, 3C, and 4C at 35°C BC 

Figure 5.5: Battery cell discharge voltage profile at 1C, 2C, 3C, and 4C at 5°C, 15°C, 25°C, and 

35°C BCs. 

5.1.3 Heat Flux Profile for Battery Cell 

Figure 5.6 shows the heat flux profiles at 4C discharge rate for the air cooling method (an ambient 

22°C BC). It should be noted that HFS 1 is located near the positive electrode or cathode, HFS 2 

is located near the negative electrode or anode, and HFS 3 is located in the middle of the cell (mid 

body) along the height of the cell as shown in Figure 3.8. For the particular case of 4C discharge 

and 22°C BC of air cooling, the peak heat flux values are 586.72 W/m2 near the cathode, 667.88 

W/m2 near the anode, and 303.09 W/m2 near the mid body. It is observed that the values are higher 

near the electrodes (cathode and anode) as compared to the mid body. Figure 5.7 shows the heat 

flux profiles at 1C, 2C, 3C, and 4C discharge rates against the discharge capacity for the air cooling 

method (an ambient 22°C BC) and water cooling method (BCs of 5°C, 15°C, and 25°C). For water 



 

119 

 

cooling, the highest heat flux is 3300.50 W/m2 obtained at 4C-25°C BC and the lowest heat flux 

value is 508.67 W/m2 obtained at 1C-5°C BC. 

 

Figure 5.6: Heat flux profiles at 4C discharge rate and 22°C BC (ambient air cooling). 

  

(a) 1C, 2C, 3C, and 4C at 22°C BC (b) 1C, 2C, 3C, and 4C at 5°C BC 

 
 

(c) 1C, 2C, 3C, and 4C at 15°C BC (d) 1C, 2C, 3C, and 4C at 25°C BC 

Figure 5.7: Heat flux profile at 1C, 2C, 3C, and 4C at 22°C BC (air cooling) and 5°C, 15°C, 25°C 

BCs (water cooling). 

In Table 5.3, the average heat flux as measured by all three heat flux sensor operating temperatures 

(5°C, 15°C, and 25°C) for water cooling and air cooling (22°C) are given against discharge rates 
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of 1C, 2C, 3C, and 4C. For air cooling cases, the average heat flux of HFS 2, near the negative 

electrode, is always highest. Water cooling cases do not show a definitive pattern between HFS 1 

and 2. This is likely due to the slightly uneven cooling gradient across the cold plate. The coolant 

temperature, and thus plate temperature, increases across the width of the battery surface as heat 

is absorbed. This is in contrast to the air cooling case, where the vertical orientation of the battery 

provided a condition where cooling potential is approximately equal across the width of the 

surface. It could be inferred that the air cooling cases are a better representation of the differences 

in heat generation between the three locations. The trend observed is that increased discharge rates 

(between 1C, 2C, 3C, and 4C) results in increased average heat fluxes at the three locations 

measured. 

Table 5.3: Summary of average heat flux at four discharge rates and four boundary conditions. 

Cooling 

Type 

Boundary 

Condition [°C] 

Average Heat Flux [W/m2] 

Position 1C 2C 3C 4C 

Water 

5 

Cathode 334.23 661.73 976.03 1267.61 

Anode 556.92 1522.257 1766.22 1921.61 

Mid Body 193.07 504.26 789.70 1061.93 

15 

Cathode 454.83 1237.42 1656.41 1882.98 

Anode 359.44 913.17 1667.82 2014.69 

Mid Body 113.68 283.27 512.41 710.18 

25 

Cathode 199.63 1226.89 2279.34 1988.01 

Anode 180.42 1170.87 2071.78 2391.31 

Mid Body 71.08 198.19 423.69 605.61 

Air ~22 

Cathode 41.80 131.30 237.91 301.84 

Anode 47.10 146.73 239.17 340.077 

Mid Body 25.12 72.10 107.37 147.60 

5.1.4 IR Images of Battery Cells 

Figure 5.8 shows the thermal images of two different lithium-ion battery cells during 4C (80A) 

discharge rate at the beginning, middle and end of the discharge cycle.  
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Beginning of the discharge cycle Beginning of the discharge cycle 

  

Middle of the discharge cycle Middle of the discharge cycle 

  

End of the discharge cycle End of the discharge cycle 

Figure 5.8: Thermal images at the beginning, middle and at the end of discharge of 20Ah and 16Ah 

battery cell. 

Positive Negative Negative Positive 
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Infrared (IR) equipment is generally used to obtain thermal images of the surface of any object. A 

camera equipped with an IR detector can capture different energies radiating from different surface 

temperatures of an object. The IR equipment converts the energy back to the temperature. This is 

a great tool for finding temperature distribution or hot spots on the surface of an object without 

using any intrusive temperature sensors. From IR imaging, the temperature gradient along the 

height of the pouch cell can be seen. It is observed that the gradient stratifies down the height with 

little effect from the geometry change at the edges. The brightest white parts of the image show 

where the highest temperatures are seen and correspondingly where the highest heat flux is 

expected. This is the expected result when joule heating is the dominant heat generation process. 

This is due to the concentration of current as it collects on the “current collector” tabs of the anode 

and cathode. This technique is very helpful for assessing thermal behaviour and could be used to 

point out trouble areas and provide insight to improve the design. 

5.1.5 Battery Pack Temperature Profiles 

Figure 5.9 shows the experimental average surface temperature profiles for a battery pack at 1C, 

2C, 3C, and 4C and 5°C, 15°C, 25°C, and 35°C BCs for the water cooling method. Here, the 

battery surface temperature profile recorded by 18 thermocouples is plotted as a function of time. 

It can be observed that the thermocouple locations near the negative (anode) and the positive 

(cathode) electrodes of the battery indicate the location of highest heat accumulation, and the rates 

of heat generation are likely highest near the electrodes. Here, in this experimental work, the cycle 

represents first 1C charge, then 1-hour rest, followed by 1C discharge, after which the same cycle 

is repeated but, for discharging, instead of 1C it is 2C, 3C, and 4C discharge and total time for all 

charge/discharge cycle is 18 hours. To refresh the reader, TC 1 is located near the positive electrode 

or cathode, TC 2 is located near the negative electrode or anode, and TC 3 is located in the middle 

of the cell along the height of the cell. The highest value of the average surface temperature is 

obtained for 4C and 35°C BC (36.36°C) and the lowest value is obtained for 1C and 5°C BC 

(7.22°C). The trend observed is that the increased C-rates and increased boundary conditions result 

in an increase in average surface temperature for all cells 1, 2, and 3 (or stack). For the air cooling 

method, the values are higher at all discharge rates as compared to the water cooling method. The 

highest value of the average surface temperature for the air cooling method obtained at 4C 

discharge rate is 41.38°C. Table 5.4 summarizes the average surface temperatures for all C-rates 
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and various BCs for both the water cooling as well as air cooling methods. Similarly, in Table 5.5, 

the peak surface temperatures for all C-rates and various BCs for both the water cooling as well as 

air cooling methods are presented. 

Table 5.4: Summary of battery pack average surface temperature at four discharge rates and five 

boundary conditions. 

Cooling 

Type 

Boundary 

Condition [°C] 

Average surface temperature [°C] 

1C 2C 3C 4C 

Water 

5 7.22 8.49 10.43 11.58 

15 16.58 17.30 18.81 19.83 

25 25.30 26.15 27.44 28.25 

35 35.17 35.34 36.35 36.36 

Air ~22 27.86 34.18 36.86 41.38 

  

(a) Temperature at 1C,2C,3C,4C and 5 °C BC (b) Temperature at 1C,2C,3C,4C and 15 °C BC 

  

(c) Temperature at 1C,2C,3C,4C and 25 °C BC (d) Temperature at 1C,2C,3C,4C and 35 °C BC 

Figure 5.9: Battery pack average discharge surface temperature profiles at 1C, 2C, 3C, and 4C and 

5°C, 15°C, 25°C, and 35°C BCs. 
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Table 5.5: Summary of battery pack peak surface temperature at four discharge rates and five 

boundary conditions. 

Cooling 

Type 

Boundary 

Condition [°C] 

Maximum surface temperature [°C] 

1C 2C 3C 4C 

Water 

5 8.17 9.78 12.44 13.89 

15 17.30 18.51 20.05 21.35 

25 25.58 26.82 28.90 30.66 

35 35.34 36.24 38.01 38.82 

Air ~22 32.99 42.72 48.61 56.49 

5.1.6 Battery Pack Voltage Profiles 

Figure 5.10 shows stack voltage profiles obtained during all discharge rates of 1C, 2C, 3C, and 4C 

and different BCs of 5°C, 15°C, 25°C, and 35°C for water cooling.  

  

(a) Stack voltage at 1C,2C,3C,4C and 5°C BC (b) Voltage at 1C,2C,3C,4C and 15°C BC 

  

(c) Voltage at 1C,2C,3C,4C and 25°C BC (d) Voltage at 1C,2C,3C,4C and 35°C BC 

Figure 5.10: Battery pack discharge voltage profiles at 1C, 2C, 3C, 4C at 5°C, 15°C, 25°C, and 35°C 

BCs. 
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The voltage window for cell 1, cell 2, and cell 3 is between 4.0 V to 2.0V and for the stack, as they 

are connected in series, the voltage is between 11.0 to 6V. Here, all three cells are charged with a 

constant current (CC) protocol until the voltage reaches 3.6V and discharged with the constant 

current (CC) until the voltage drops to 2.0V. There is a great impact of boundary conditions (5°C, 

15°C, 25°C, and 35°C) on the discharge capacity of the cells. It is observed that, as the C-rate 

increases, the discharge capacity of all cells increases. 

5.2 Model 1 : Battery Thermal Model Validation  

In this section, the validation of the temperature distributions on the principle surface of the battery 

are presented and discussed in detail, with different discharge rates and various boundary 

conditions. The actual and simulated temperature and voltage profiles are also discussed in detail. 

The developed neural network model is later used to validate the real world drive cycle. They are 

discussed in detail in the following subsections. The proposed battery thermal model can be used 

for any kind of lithium-ion battery and an example of this use is demonstrated by validating the 

thermal performance of the drive cycle collected from an EV. 

5.2.1 Battery Surface Temperature Profile Validation 

Figure 5.11 (a, b, c, and d)  and  Figure 5.12 (a, b, c, and d) show a comparison of average battery 

surface temperature recorded by ten thermocouples with the profiles predicted by the neural 

network at 1C, 2C, 3C, and 4C discharge rates and 5°C and 15°C water cooling BCs.  Overall, it 

shows good agreement between data and model (curve fit). Here, the predicted values follow 

expected trends but slight discrepancies are observed. The model tends to slightly over predict 

temperature increase at the higher discharge rate of 4C for all BCs. The model temperature 

response depends on the heat generated by losses in the cell, the thermal mass of the cell, and the 

heat transfer to the environment. Within the limits of the ability to estimate the input values, the 

agreement between the measured and computed temperature seems to be quite reasonable. Access 

to more definitive information on the battery cell properties would lead to better agreement 

between the model and measurement. Similar plots are also created for 1C, 2C, 3C, and 4C 

discharge rates at 25°C and 35°C water cooling BCs, and are presented in Figure 5.13 (a, b, c, and 

d) and Figure 5.14 (a, b, c, and d). 



 

126 

 

 
 

(a) Temperature validation_1C at 5ºC (b) Temperature validation__2C at 5ºC 

  
(c) Temperature validation__3C at 5ºC (d) Temperature validation_ 4C at 5ºC 

Figure 5.11: Comparison of actual and simulated battery cell discharge temperature profiles at 1C, 

2C, 3C, 4C at 5°C BC. 

  
(a) Temperature validation_1C at 15ºC (b) Temperature validation_2C at 15ºC 

  

(c) Temperature validation_3C at 15ºC (d) Temperature validation_4C at 15ºC 

Figure 5.12: Comparison of actual and simulated discharge temperature profiles at 1C, 2C, 3C, 4C 

at 15°C BC. 
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(a) Temperature validation_1C at 25ºC (b) Temperature validation_2C at 25ºC 

  

(c) Temperature validation_3C at 25ºC (d) Temperature validation_4C at 25ºC 

Figure 5.13: Comparison of actual and simulated discharge temperature profiles at 1C, 2C, 3C, 4C 

at 25°C BC. 

  
(a) Temperature validation_1C at 35ºC (b) Temperature validation_2C at 35ºC 

  
(c) Temperature validation_3C at 35ºC (d) Temperature validation_ 4C at 35ºC 

Figure 5.14: Comparison of actual and simulated battery cell discharge temperature profiles at  1C, 

2C, 3C, 4C at 35°C BC. 
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5.2.2 Drive Cycle Validation 

The developed neural network battery thermal model from controlled BCs lab experiments, as 

discussed in the previous section, is later used to validate the thermal profiles obtained from an 

EV under a real world drive cycle. Figure 5.15 shows the validation between measured temperature 

profiles for all three battery packs from an EV with the profiles predicted by neural network. It is 

seen that the overall trend matches at the higher temperature side but, at the lower temperature 

side, some discrepancies are observed. One of the reasons for this is that the EV has a thermal 

controller which automatically activates fans and is designed to maintain pack temperature below 

38°C regardless of ambient temperature. It can also be observed that there is a drastic change in 

temperature in the range 1100-3000s, because the vehicle was continuously in operation and all 

three battery packs continuously generate heat. In addition to this, when the drive cycle was 

collected at that time the ambient temperature was quite low. Finally, this gives the performance 

of NN model against unseen data. 

    

Figure 5.15: EV drive cycle validation. 

5.2.3 Discharge Voltage Profile Validation 

Figure 5.16 (a, b, c, and d) and Figure 5.17 (a, b, c, and d) show a comparison of the measured 

discharged  terminal voltage obtained at 1C, 2C, 3C, and 4C discharge rates with 5°C and 15°C 

BCs with the values predicted by the neural network model. Here, the strong agreement between 
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the experimental and simulation data demonstrates the robustness and accuracy of the model. The 

cell is charged with constant current-constant voltage (CC-CV) protocol until the voltage reaches 

3.8V and discharged with the constant current (CC) until the voltage drops to 2.0V. In Figure 5.16 

(c and d), the initial immediate drop-off in voltage is due to cold conditions, but quick recovery of 

voltage after some time is due to rapid increase in the battery cell temperature, which leads to 

enhanced performance. 

  

(a) Voltage validation_1C at 5ºC (b) Voltage validation_2C at 5ºC 

  

(c) Voltage validation_3C at 5ºC (d) Voltage validation_ 4C at 5ºC 

Figure 5.16: Comparison of actual and simulated battery cell discharge voltage profiles at 1C, 2C, 

3C, 4C at 5°C BC. 

By comparing images, it is seen that the predictions quite well match the experimental data for a 

wide range of C-rates. At lower discharge rates, the cell potential stays close to the cell’s open 

circuit potential (OCP). As discharge rates increase, the cell voltage significantly deviates from 

the OCP due to ohmic, activation, and mass transport losses. The developed neural network model 

is useful with all kinds of lithium-ion batteries.  Similar plots were created for 1C, 2C, 3C, and 4C 

discharge rates at 25°C and 35°C water cooling BCs, and are presented in Figure 5.18 (a, b, c, and 

d) and Figure 5.19 (a, b, c, and d). 
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(a) Voltage validation_1C at 15ºC (b) Voltage validation_2C at 15ºC 

  
(c) Voltage validation_3C at 15ºC (d) Voltage validation_ 4C at 15ºC 

Figure 5.17: Comparison of actual and simulated discharge voltage profiles at 1C, 2C, 3C, 4C at 

15°C BC. 

  
(a) Voltage validation_1C at 25ºC (b) Voltage validation_2C at 25ºC 

  
(c) Voltage validation_3C at 25ºC (d) Voltage validation_ 4C at 25ºC 

Figure 5.18: Comparison of actual and simulated discharge voltage profiles at 1C, 2C, 3C, 4C at 

25°C BC. 
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(a) Voltage validation_1C at 35ºC (b) Temperature validation_2C at 35ºC 

 
 

(c) Temperature validation_3C at 35ºC (d) Voltage validation_ 4C at 35ºC 

Figure 5.19: Comparison of actual and simulated battery cell discharge voltage profiles at 1C, 2C, 

3C, 4C at 35°C BC. 

5.2.4 Heat Generation Validation 

Another NN model, created for the rate of heat generation measurement from a particular lithium-

ion battery, was validated with the experimental heat generation rate calculated by using Equation 

(3.4). Figure 5.20 and Figure 5.21 show comparisons of the actual and simulated rates of heat at 

1C, 2C, 3C and 4C discharge rates at 5°C and 15°C BCs. Here, the heat generation is plotted as a 

function of discharge capacity (Ah). Similarly, Figure 5.22 and Figure 5.23 show a comparison of 

the actual and simulated rates of heat generation at 1C, 2C, 3C and 4C discharge rates at 25°C and 

35°C BCs. At the lower discharge rate of 1C, the rate of heat generation remains approximately 

constant from the beginning to almost 80% of the discharge. Overall, the simulated data agrees 

well with the experimental data, demonstrating the robustness and accuracy of the model. 

However, a small degree of discrepancy is still observed between the simulated and experimental 

data in the fine structure occurring at the initial periods of the discharge process, appearing most 

evident for 3C and 4C. A steep rise in the rate of heat generation at the beginning of the discharge 
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(1 Ah) was also observed, at which point the heat generation rate tends to reach a steady state until 

approximately 60% of the discharge rate when a steady increase is observed. The increase in the 

heat generation rate becomes steeper as the discharge progresses and highest near the end of 

discharge. 

  
(a)  Heat Generation Rate_1C at 5ºC (b) Heat Generation Rate_2C at 5ºC 

  

(c) Heat Generation Rate_3C at 5ºC (d) Heat Generation Rate_4C at 5°C 

Figure 5.20: Comparison of actual and simulated heat generation rate at 1C, 2C, 3C and 4C at 5°C 

BC. 

It was also found that the highest rate of heat generation was 91 W, measured at 4C discharge rate 

and 5°C BC and the minimum value was 11W, measured at 1C discharge rate and 35°C BC. The 

trend observed is that increased discharge rates (between 1C, 2C, 3C, and 4C) and decreased 

operating temperatures (between 35°C, 25°C, 15°C, and 5°C), result in increased rates of heat 

generation. The increased heat generation can be accounted for by looking at Equations (2.10) and 

(2.12). As the current is increased with the discharge rate, the irreversible ohmic heating term 

becomes larger. From Equation (2.12), the current collector heat generation increases with the 

square of current.  From this, it follows that more heat is generated at higher discharge rates. The 

variations in the BCs from 5°C to 35°C and increase in C-rates also have a great effect on discharge 

capacity. It was found that as the C-rate increased, the discharge capacity (Ah) of the battery 

decreases and the discharge capacity increases when the BCs increase from 5°C to 35°C. In 
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general, increased C-rates and decreased BCs result in decreased discharge capacity.  The proposed 

battery heat generation model can be used for any kind of lithium-ion battery. 

  

(a) Heat Generation Rate_1C at 15ºC (b) Heat Generation Rate_2C at 15ºC 

  

(c) Heat Generation Rate_3C at 15ºC (d) Heat Generation Rate_4C at 15ºC 

Figure 5.21: Comparison of actual and simulated heat generation rate at 1C, 2C, 3C and 4C at 

15°C BC. 

  

(a)  Heat Generation Rate_1C at 25ºC (b) Heat Generation Rate_2C at 25ºC 

  

(c) Heat Generation Rate_3C at 25ºC (d) Heat Generation Rate_4C at 25°C 

Figure 5.22: Comparison of actual and simulated heat generation rate at 1C, 2C, 3C and 4C at 

25°C BC. 
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(a) Heat Generation Rate_1C at 35 ºC (b) Heat Generation Rate_2C at 35 ºC 

  

(c) Heat Generation Rate_3C at 35 ºC (d) Heat Generation Rate_4C at 35 ºC 

Figure 5.23: Comparison of actual and simulated heat generation rate at 1C, 2C, 3C and 4C at 

35°C BC. 

5.3 Model 2 : Electrochemical Thermal Model Validation 

Figure 5.24 shows a comparison of the temperature contour of a battery at 4C discharge rate with 

IR image and simulation by the numerical model, as created with ANSYS Fluent software. It can 

be seen that, with simulation, the temperature at the end of the discharge rate is 67°C while with 

the IR image the temperature is 70°C, which is quite close.  It was also noted that the highest 

temperature distribution was observed near the tabs (positive and negative electrode) as compared 

to the middle and the end on the principle surface of the battery along the height of the battery. 

The lowest spread in temperature is observed at the end on the surface of the battery along the 

height of the battery. Figure 5.25 shows the validation of experimental and simulated temperature 

field results at 2C, 3C, and 4C discharge rates. The operating condition for the battery under 

different C-rates (2C, 3C, and 4C) is at an initial temperature of 22°C. As shown in Figure 5.25, 

the average surface temperature increases by 14°C, 24°C, and 36°C above the ambient temperature 

for the discharge rates of 2C, 3C, and 4C. It can also be seen that the surface temperature increases 

faster at a higher discharge rate. The variation of temperature profile with discharge time may be 
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due to the internal heat generation. The advantage of the MSMD numerical model is its relatively 

high calculation speed, which ranges in order of minutes, with relatively high accuracy results. 

The quality of the computational mesh has the higher influence on the actual computational time. 

The simulation can give more accurate results if the computational mesh is finer and better quality. 

 

(a) Simulated result at 4C discharge rate 

 

(b) IR imaging result at 4C discharge rate 

Figure 5.24: Comparison of temperature contour of battery at 4C discharge rate (simulated and 

real image). 
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Figure 5.25: Validation of experimental and simulated results at 2C, 3C, and 4C discharge rate. 

5.4 Model 3 : Numerical Model Validation  

In this section, the results obtained from ANSYS CFD for mini channel cold plates with different 

discharge rates of 1C, 2C, 3C and 4C and water cooling BCs of 5°C, 15°C, and 25°C are presented. 

They are discussed in detail in following subsections. This study provides the results showing the 

temperature and velocity distributions using experimental and computational approaches at 

different C-rates and boundary conditions (BCs). The physical insight of this kind of study will 

provide more information to automotive manufacturing companies in order to improve the design 

of an effective battery cooling system. 

5.4.1 Temperature & Velocity Contours at 2C and 5°C, 15°C, and 25°C BCs 

Figure 5.26 (a, b, and c) shows the temperature contours obtained from ANSYS CFD at 1C 

discharge rate and 5°C, 15°C, and 25°C BCs (water cooling). Similarly, Figure 5.27 (a, b, and c) 

shows the temperature contours obtained from ANSYS CFD at 2C discharge rate and 5°C, 15°C, 

and 25°C BCs (water cooling). These contours were obtained at the midplane of the cooling plate. 

It is observed that there is a great impact of BC on battery performance as well as cold plates and 

that, as the BC increases between 5°C to 25°C for a particular discharge rate of 2C, the temperature 
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contour values also increase. The general cooling patterns are the same, showing greater 

temperature differences at the inlet of the cooling plate when the water is coldest. There, 

temperatures vary with the inlet temperature boundary condition, but the overall pattern remains 

roughly the same.  

  

(a) Temperature contour at 1C discharge & 5°C BC (d) Velocity contour at 1C discharge & 5°C BC 

  

(b) Temperature contour at 1C discharge & 15°C BC (e) Velocity contour at 1C discharge & 15°C BC 

  

(c) Temperature contour at 1C discharge & 25°C BC (f) Velocity contour at 1C discharge & 25°C BC 

Figure 5.26: Temperature and velocity contours at 1C and 5°C, 15°C, and 25°C BCs. 
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(a) Temperature contour at 2C discharge & 5°C BC (d) Velocity contour at 2C discharge & 5°C BC 

  

(b) Temperature contour at 2C discharge & 15°C BC (e) Velocity contour at 2C discharge & 15°C BC 

  

(c) Temperature contour at 2C discharge & 25°C BC (f) Velocity contour at 2C discharge & 25°C BC 

Figure 5.27: Temperature and velocity contours at 2C and 5°C, 15°C, and 25°C BCs. 

There was an exception for the 1C discharge rate and 5°C BC, likely due to the low temperature 

differences and low discharge rate involved. The cooling patterns follow what is seen on the 

batteries experimentally, with the outlet being of a higher temperature than the inlet. The velocity 

contours are identical in all cases. This is expected, given the low temperatures involved in the 

simulations that would have little to no effect on the density of the water. These results may be 
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affected by the low y+ value, wall functions and turbulence model used. The corresponding 

velocity contours at 1C and 2C discharge rates and 5°C, 15°C, and 25°C BCs appear in Figure 

5.26  (d, e, and f) and Figure 5.27 (d, e, and f). 

5.4.2 Temperature & Velocity Contours at 3C and 5°C, 15°C, and 25°C BCs 

  

(a) Temperature contour at 3C discharge & 5°C BC (d) Velocity contour at 3C discharge & 5°C BC 

  

(b) Temperature contour at 3C discharge & 15°C BC (e) Velocity contour at 3C discharge & 15°C BC 

  

(c) Temperature contour at 3C discharge & 25°C BC (f) Velocity contour at 3C discharge & 25°C BC 

Figure 5.28: Temperature and velocity contours at 3C and 5°C, 15°C, and 25°C BCs. 

Figure 5.28 (a, b, and c) shows the temperature contours at 3C discharge rate and 5°C, 15°C, and 

25°C BCs. These contours were obtained at the midplane of the cooling plate. Here, the 
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temperature and velocity contours are presented in 3D form. It is observed that, as the battery 

discharges, the circulating water is heated, therefore the temperature contours values are increased 

at the outlet of the cold plate. It is clearly seen that the inlet to the cold plate is colder and the outlet 

is hotter. The velocity contours for 3C are presented in Figure 5.28 (d, e, and f). 

5.4.3 Temperature & Velocity Contours at 4C and 5°C, 15°C, and 25°C BCs 

Figure 5.29 (a and b) shows the temperature contours at 4C discharge rate and 5°C BC. It should 

be noted that Figure 5.29 (a) presents the temperature contour at the inlet plane 1 and Figure 5.29 

(b) shows the temperature contour at outlet plane 4.  In order to refresh readers, the planes are 

shown in Figure 4.11. The corresponding velocity contours for inlet plane 1 and outlet plane 4 are 

shown in Figure 5.29 (c and d). These velocity contours are specifically presented in order to see 

the effect of flow inside the mini channel cold plates. 

  

(a) Temperature contour at inlet plane 1 for 4C & 5°C  (c) Velocity contour at inlet plane 1 for 4C & 5°C 

  

(b) Temperature contour at outlet plane 4 for 4C & 5°C (d) Velocity contour at outlet plane 4 for 4C & 5°C 

Figure 5.29: Temperature and velocity contours at inlet and outlet planes at 4C and 5°C BC. 
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(a) Temperature contour at inlet plane 1 for 4C & 15°C  (c) Velocity contour at inlet plane 1 for 4C & 15°C 

  

(b) Temperature contour at outlet plane 4 for 4C & 15°C (d) Velocity contour at outlet plane 4 for 4C & 15°C 

Figure 5.30: Temperature and velocity contours at inlet and outlet planes at 4C and 15°C BC. 

  

(a) Temperature contour at inlet plane 1 for 4C & 25°C  (c) Velocity contour at inlet plane 1 for 4C & 25°C 

  

(b) Temperature contour at outlet plane 4 for 4C & 25°C (d) Velocity contour at outlet plane 4 for 4C & 25°C 

Figure 5.31: Temperature and velocity contours at inlet and outlet planes at 4C and 25°C BC. 
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Similarly, Figure 5.30 (a and b) and Figure 5.31 (a and b) show the temperature contours at 4C 

discharge rate and 15°C and 25°C BCs. It is observed that as the discharge rate increases from 1C 

to 4C, there is also an increase in temperature values. The trend observed is that increased 

discharge rates and increased BCs result in increased temperatures in the cold plate. Again, the 

general cooling patterns are the same, similar to the results in the previous Section 5.4.1. There are 

greater temperature differences between the outlet and the inlet of the cooling plate when the water 

is coldest. There, temperature values vary with the inlet temperature boundary condition, but the 

overall pattern remains roughly the same. Similarly, the velocity contours are the same in all cases. 

The corresponding velocity contours at 4C discharge rate and 15°C and 25°C BCs are shown in 

Figure 5.30 (c and d) and Figure 5.31 (c and d). Table 5.6 provides a summary of water inlet and 

outlet temperatures at 1C, 2C, 3C, and 4C discharge rates and different BCs of 5°C, 15°C, and 

25°C. It can be seen that the inlet water temperature to the cold plate is constant and the outlet 

temperature of the water from the cold plate is heated due to heat transfer from the battery to the 

cold plates. The joule heating is the dominant factor for this heating. As C-rate increases, the water 

outlet temperature also increases and for the lower C-rate (1C) there is not much change in water 

temperature. In addition, the effect of the boundary conditions can be seen. 

Table 5.6: Summary of water inlet and outlet temperature at 1C, 2C, 3C, and 4C discharge rates 

and different boundary conditions. 

Cooling 

Type 

Boundary 

Condition [°C] 
Position 

Water inlet and outlet temperature [K] 

1C 2C 3C 4C 

Water 

5 
Inlet 278.15 278.15 278.15 278.15 

Outlet 280.94 281.55 283.05 284.31 

15 
Inlet 288.42 288.42 288.15 288.15 

Outlet 289.33 289.93 291.60 292.81 

25 
Inlet 297.45 298.15 298.10 298.10 

Outlet 298.45 299.22 301.21 301.91 

5.5 Model 4 : Battery Degradation Model Validation  

Given the drive cycle data, bench testing data and model development described in former sections, 

this section clarifies the results acquired for individual cycles and on a degradation scale. 
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5.5.1 Drive Cycle # 1 Results 

Figure 5.32 (a) demonstrates the drive cycle # 1 acquired from the EV and the statistics of the same 

drive cycle are introduced in Table 5.7. The vehicle was driven for 1 hour 4 minutes with a 

cumulative distance of 126.72 km and a battery state-of-charge range of 94% to 35%. The peak 

speed was seen as 119.80 km/h and occurred while driving on the highway. The average speed 

was 71.53 km/h. During this trip, the outside temperature was +2°C. This drive cycle incorporates 

both city and highway driving. In Figure 5.32 (a), the drive cycle #1 portion between 500 -1700s 

is identified as aggressive driving on the highway and, in the same way, the segment between 

3400-3800s represents city driving. All electrical accessories were operating during this trip. 

Figure 5.32:  Details of drive cycles 1, 2, 3, and 4. 

5.5.2 Battery Voltage for Drive Cycle # 1  

Figure 5.33 (a) demonstrates the comparison of the battery voltage profile obtained from drive 

cycle # 1 (green colored line) of an EV with the data from the model (red colored line). Overall, 

  
a) Drive cycle # 1 b) Drive cycle # 2 

  

c) Drive cycle # 3 d) Drive cycle # 4 
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Figure 5.33 (a) shows fair agreement between the experimental and model data, which is indicative 

of the accuracy of the present model. However, slight discrepancies are observed as the simulated 

values are slightly higher than the experimental. These discrepancies may be due to regenerative 

braking and the effect of ambient temperature because the ambient temperature was +2°C when 

this drive cycle was collected. 

Figure 5.33: Experimental/Model comparison for battery voltage profile for drive cycles 1, 2, 3, and 

4. 

5.5.3 Battery SOC for Drive Cycle # 1  

Figure 5.34 (a) demonstrates the SOC profile obtained from the EV for drive cycle # 1. Here, we 

can see an SOC range from 94 to 35%. Figure 5.34 (a) additionally demonstrates a comparison of 

the measured (experimental) SOC (green colored line) with the values predicted by the model (red 

colored line). Overall, Figure 5.34 (a) shows good agreement between the experimental and model 

data, which is characteristic of the accuracy of the present model. There is a great reduction in the 

  

a)  Vexp and Vmodel for drive cycle # 1 b)  Vexp and Vmodel for drive cycle # 2 

  

c)   Vexp and Vmodel for drive cycle # 3 d)    Vexp and Vmodel for drive cycle # 4 
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SOC profile from 94% to around 55% because of highway driving.  Each of the three battery packs 

consistently withdrew power, after which an increase and a decrease in the SOC curve are observed 

due to the regenerative braking in city driving, which involves frequent starts and stops at 

intersections. 

Figure 5.34: Experimental/Model comparison for battery SOC profile for drive cycles 1, 2, 3, and 4. 

5.5.4 Drive Cycle # 2 Results 

Figure 5.32 (b) demonstrates drive cycle # 2 acquired from the EV and the statistics of the same 

drive cycle are exhibited in Table 5.7. The vehicle was driven for 1 hour 39 minutes with a trip 

distance of 76 km and a battery state-of-charge of 94- 42%. The peak speed was observed as 110.5 

km/h and the average speed was 46.43 km/h. During this trip, the outside temperature was 

23°C.This drive cycle # 2 includes aggressive driving on highway 401 in the province of Ontario. 

The corresponding voltage and SOC validations are shown in Figure 5.33 (b) and Figure 5.34 (b). 

 
 

a)   SOCexp and SOCmodel for drive cycle # 1 b) SOCexp and SOCmodel for drive cycle # 2 

 
 

c)    SOCexp and SOCmodel for drive cycle # 3 d)   SOCexp and SOCmodel for drive cycle # 4 
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5.5.5 Drive Cycle # 3 Results 

Figure 5.32 (c) demonstrates drive cycle # 3 acquired from the EV and the statistics of the same 

drive cycle are displayed in Table 5.7. The vehicle was driven for 44 minutes with a trip distance 

of 43 km and a range of battery state-of-charge of 99-36%. The peak speed recorded was 125.09 

km/h while driving on the highway. The average speed was 59.89 km/h. During this trip, the 

outside temperature was -6°C. This drive cycle # 3 incorporates both aggressive and gentle driving. 

The corresponding voltage validation is shown in Figure 5.33 (c), while the SOC profile validation 

for drive cycle # 3 is displayed in Figure 5.34 (c). 

Table 5.7: Details of drive cycles # 1, 2, 3 and 4. 

Specification 
Drive  

cycle # 1 

Drive  

cycle # 2 

Drive  

cycle # 3 

Drive  

cycle # 4 

Trip Duration  (min) 63.46 98.18 43.72 64.13 

Trip Distance (km) 126.72 75.68 43.63 75.96 

Starting SOC (%) 94 94 99 93 

Ending SOC (%) 35 42 36 39 

Cycle Average Speed (km/h) 71.53 46.43 59.89 71.07 

Cycle Peak Speed (km/h) 119.80 110.5 125.09 102.3 

Average Positive Acceleration (m/s2) 0.59 0.55 1.05 0.63 

Peak Positive Acceleration (m/s2) 3.22 3.35 4.18 3.99 

Outside Temperature (°C) +2 +23 -6 +10 

5.5.6 Drive Cycle # 4 Results 

Figure 5.32  (d) demonstrates drive cycle # 4 acquired from the EV and the statistics of the same 

drive cycle are displayed in Table 5.7. The vehicle was driven for 1 hour 4 minutes with a trip 

distance of 76 km and a range of battery state-of-charge of 93- 39%. The peak speed was observed 

as 102.3 km/h while driving on the highway. The average speed was 71.07 km/h. During this trip, 

the outside temperature was 10°C. This drive cycle # 4 incorporates both aggressive and gentle 

driving. The corresponding voltage validation is shown in Figure 5.33 (d), while the SOC profile 

validation for drive cycle # 4 is displayed in Figure 5.34 (h). 
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5.5.7 Degradation Measurement and Modeling  

Drive cycle #4 was repeated almost daily for 3 months from July 2nd to September 30th.  Day-to-

day variations in travel time and battery demand existed due to factors such as traffic and were 

quantified in Figure 5.35 and Figure 5.36. Figure 5.35 is a histogram showing the variation in daily 

charge throughput, and Figure 5.36 makes the same comparison for depth-of-discharge. Battery 

capacity was measured intermittently until September 13th, and the results of these tests are 

summarized in Table 5.8.  Over three months, a capacity fade of 4.60% was observed.   

 

Figure 5.35: Charge throughput histogram. 

 

Figure 5.36: Depth of discharge histogram. 

This degradation data was used to fit the degradation model in Equations (4.64) and (4.65).  DOD, 

average voltage and charge throughput were calculated for each day of driving and charging to 

obtain an accurate fit.  The parameters were again found using a genetic algorithm in MATLAB, 

and the result of the fit is shown in Figure 5.37.  The model parameters that fitted were as follows: 
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𝐴 = − 2.2439 × 10−8 

𝐵 = 5.2790  

𝐶 = 0.0010  

𝐷 = 0.0043 

Table 5.8: Degradation data over three months.  

Date 
Pack capacity  

(Ah) 

Charge throughput to date  

(Ah) 

Capacity fade 

% 

July 2 60.19 0 0 

July 12 59.69 562 0.83 

July 23 59.34 1115 1.44 

Aug 1 58.61 1600 2.69 

Aug 15 57.83 2351 4.04 

Aug 28 57.75 3140 4.23 

Sept 13 57.54 4025 4.60 

Extrapolation of the model using these parameters gives the result that 20% capacity fade would 

be reached after about 900 cycles, given the charge throughput, DOD and average voltage of the 

typical drive cycle. These kinds of information will be helpful for vehicle model developers. In 

addition, the collected data from the vehicles as well as experimental test apparatus will also be 

provided for the validation of electrochemistry based battery thermal models. 

 

Figure 5.37: Experimental capacity fade measurement and empirically fit model. 
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Conclusions and Recommendations  

6.1 Conclusions 

In this thesis, an experimental thermal characterization of a lithium-ion battery cell and pack (with 

three LiFePO4 batteries connected in series), thermal imaging, four different models (including the 

battery thermal model, battery electrochemical thermal model, numerical model for mini channel 

cold plates for water cooling for large sized LiFePO4 battery, and battery degradation model for 

an EV) have been performed according to the objectives of the study outlined above. The following 

conclusions are drawn from the results of this study: 

 Thermal characterization of the lithium-ion battery cell showed that the surface temperature 

distributions of a prismatic lithium-ion battery increased with the discharge rate (1C, 2C, 3C, 

to 4C) and operating temperature (5°C, 15°C, 25°C, to 35°C). The highest value of the 

maximum surface temperature for the air cooling method obtained at 4C discharge rate is 

46.47°C, while for the liquid cooling method it is 41.44°C at 4C discharge rate and 35°C BC. 

The effect of BCs on battery cell discharge capacity was also studied and it was found that the 

battery discharge capacity decreased as the operating temperature (BC) is decreased and also 

as battery discharge rate is increased. 

 From the surface temperature measurements at ten different locations on the principle surface 

of the battery and heat generation rate, it was clearly shown that the rate of heat generation was 

not uniform across the principal surface of the battery. Specifically, the thermocouples 

mounted nearest to the electrodes sensed temperature increases that were larger than at other 

locations. Measurements of heat flux near the electrodes confirm the high value of heat flux in 

that area (as high as 2391.31 W/m2). 

 Thermal characterization of the lithium-ion battery pack showed that the surface temperature 

distributions of the prismatic lithium-ion battery pack increased with the discharge rate (1C, 

2C, 3C, to 4C) and operating temperature (5°C, 15°C, 25°C, to 35°C). The highest value of the 
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maximum surface temperature for the air cooling method obtained at 4C discharge rate is 

56.49°C, while for the water cooling method it is 38.82°C at 4C discharge rate and 35°C BC. 

 The developed battery thermal model for the prismatic lithium-ion battery using a neural 

network approach showed good agreement between the actual and simulated values in terms 

of thermal (average surface temperature) and electrical (voltage distribution) performance. The 

proposed battery thermal model can be used for any kind of lithium-ion battery. An example 

of this use was demonstrated by validating the thermal performance of a realistic drive cycle 

collected from an EV at different environment temperatures.  

 The non-uniformity of temperature was visually observed by using an IR image experiment 

which is an indication of heat generation non-uniformity on a surface.  As such, it can be 

concluded that the area of highest temperature and non-uniformity is the location where heat 

generation is largest. For the large sized prismatic lithium-ion battery, the area of maximum 

heat generation appears to be at the external tab to the current collector interface along the top 

edge of the battery. 

 The simulated data from the ECT model showed good validation with the experimental data 

and IR image for this large sized prismatic lithium-ion battery. It was noted that the highest 

temperature distribution was observed near the tabs (positive and negative electrodes) 

compared to the middle and end on the principle surface of the battery along the height of the 

battery. 

 The temperature and velocity distributions were investigated using experimental and 

computational approaches at different C-rates and boundary conditions using ANSYS.  The 

observed trend is that increased discharge rates and increased BCs result in increased 

temperatures in the cold plates for a large sized water cooled LiFePO4 battery (the highest 

value of temperature at cold plate is 301.91K at at 4C-25°C BC). 

 From the degradation study, the developed Thevenin battery model utilizing MATLAB along 

with an empirical degradation model showed good validation in terms of the battery SOC and 

voltage profiles for different drive cycles collected from an EV at a wide range of ambient 

conditions of -6°C, 2°C, 10°C, and 23°C. The capacity fade over three months was found 

experimentally to be 4.60% and when fit to a degradation model and extrapolated, 20% 

capacity fade was predicted to occur after 900 daily driving cycles (about 2.5 years). 
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6.2 Recommendations 

Several recommendations can be made for future research as listed below:  

 The battery test bench should be thermally isolated. The temperature of the battery during 

cycling is largely influenced by the ambient temperature of the room. Since both the capacity 

of the battery and the degradation rate are functions of temperature, the results obtained from 

the test stand contains noise due to the fluctuations in ambient temperature.  These fluctuations 

are caused by the cycle of day and night and by day-to-day changes in temperature. In order to 

eliminate this noise and obtain more accurate results, the stand should be properly insulated to 

ensure that temperature fluctuations are only caused by the heat generated during 

charging/discharging of the battery. 

 More thermal testing of the batteries should be carried out at negative 

coolant/ambient/operating temperatures of -5°C, -15°C, -25°C, and -35°C, in order to evaluate 

cold climate performance and the resultant heat generation rates. In addition to this, the 

charge/discharge testing with different cooling fluids should be carried out in order to obtain 

more thermal data. 

 The number of heat flux sensors should be increased to cover the entire battery cell surface. 

This will enable accurate measurement of the heat flux distribution on the battery cell. This 

approach can also be used for pack level testing. 

 Different cold plate designs, with different cooling flow channel patterns, inlet/outlet 

conditions, and SOC ranges, could be investigated as potential thermal management systems. 

Further testing using such systems will enable the effectiveness of possible thermal 

management systems to be compared.  

 Changes in battery design could result in reduced non-uniformity in heat generation and 

decreased temperature, such as moving external current tabs to opposite ends of the battery. 

Even, an increase in external tab size has a larger area of contact between the external tabs and 

current collectors of the electrodes. 

 The developed electrochemical-thermal model can be extended to simulate a module or even 

a pack. However, since the computational time is in the order of an hour, extending this work 

to higher levels consisting of even 300 cells may result in a very long simulating time. 
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 The developed two dimensional electrochemical-thermal model can also be modified and 

extended to a three dimensional battery thermal model. It can be modified by changing the 

battery geometry from prismatic to cylindrical so that the battery thermal and electrical 

performance can be studied. 
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