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ABSTRACT 

To model the neutronic physics behavior of the core in CANDU pressure tube 

type heavy water reactors with natural-uranium fuel, two levels of calculations are 

required.  Initially, lattice-level transport calculations are carried out to obtain, with high 

detail and accuracy, the flux distribution inside the lattice cell and composition of the 

nuclear fuel.  Lattice calculations use many (30- 180) energy groups and detailed 

geometric information to model the fuel channel and the fuel contained within.   

Once the lattice calculations are complete, the fuel compositions obtained can 

be used to generate cell-homogenized macroscopic cross-sections condensed to two 

energy groups, for use in full-core diffusion calculations.  Two-group cell-homogenized 

cross-sections work to acceptable levels of accuracy in most full-core configurations.  

However, challenges appear when modelling the neutron flux at the fuel-reflector 

interface (at the boundary of the reactor).   

This work aims to improve the neutron flux estimates obtained in three-

dimensional diffusion calculations by using diffusion coefficients fitted to transport 

results.  It will be shown that significant improvements (>10%) can be made for 

modeling the neutron physics at the core-reflector interface. 

 

Keywords: Reactor Physics, Diffusion Equation 

  



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

iii 

 

ACKNOWLEDGMENTS 

I am indebted to Dr. Eleodor Nichita for accepting me as a part time graduate 

student and for providing his insights and guidance along the way.  His patience, 

knowledge and sense of humor are deeply appreciated. This work has placed many 

demands on my family, as every hour writing and analyzing was an hour away from 

them.  To my husband, Alexi Shkarupin, I am grateful for his support and 

encouragement.  To both my children, Abbey and Axel, I am thankful for the inspiration 

they provide.  Thanks to my mother, Wendy Colton for instilling in me a desire to attend 

post-secondary education in the first place.  This work has been positively influenced by 

Blair Bromley and Sourena Golesorkhi through their kind review.  I greatly appreciate my 

managers for their patience and flexibility without which this degree would not have 

been possible.  To Dr. Adriaan Buijs, my first manager, I offer my gratitude for being 

accommodating of my study schedule and for encouraging me to work and study.  

Thanks to Jim Sullivan, who gave me the opportunity to come to Chalk River 

Laboratories.  Lastly, my utmost appreciation to Dr. Darren D. Radford, who has been a 

strong supporting and encouraging force in my life.   

Were it not for Dr. Ruth Lavergne and her outstanding academic 

accomplishments, I might not have believed it possible to juggle work, education and 

children.  Thanks to Bronwyn Hyland for being a friend who helped me focus on the path 

to achieving my goals and not on the obstacles in the way.  To Laura Blomeley, my office 

sister, I am grateful for our conversations.  Thanks for being there.   

  



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

iv 

 

TABLE OF CONTENTS 
 

ABSTRACT .............................................................................................................. II 

ACKNOWLEDGMENTS .......................................................................................... III 

TABLE OF CONTENTS ............................................................................................ IV 

LIST OF TABLES ...................................................................................................... VI 

LIST OF FIGURES ................................................................................................. VII 

LIST OF SYMBOLS .................................................................................................. IX 

1. INTRODUCTION .............................................................................................. 1 

1.1 CANDU Reactor Description ................................................................................................... 1 

1.2 Microscopic and Macroscopic Nuclear Cross-Sections .......................................................... 4 

1.3 CANDU Modelling Summary .................................................................................................. 6 

1.4 Review of Homogenization Techniques ................................................................................. 8 

1.5 Research Motivation ............................................................................................................... 9 

1.1 Objective ............................................................................................................................... 10 

2. METHODS ..................................................................................................... 12 

2.1 The Neutron Transport Equation ......................................................................................... 12 

2.2 The Diffusion Approximation ............................................................................................... 16 

2.3 The Two-Group Diffusion Equation ...................................................................................... 19 

2.4 Deriving the Diffusion Coefficients from the Transport Solution ........................................ 21 

2.5 Description of Nuclear Data and Codes Used ...................................................................... 24 
2.5.1 DRAGON ....................................................................................................................... 24 
2.5.2 DONJON ....................................................................................................................... 25 

2.6 Description of Physics Models Prepared .............................................................................. 26 
2.6.1 Lattice Physics Models ................................................................................................. 26 
2.6.1 Multicell Models .......................................................................................................... 31 
2.6.2 Evaluation Metrics for Multicell Cases ......................................................................... 38 



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

v 

 

3. RESULTS ......................................................................................................... 39 

3.1 Homogeneous, One-Dimensional, Diffusion-Coefficient-Derivation Case ......................... 39 

3.2 Homogeneous, One-Dimensional Coolant Voided Case ...................................................... 44 

3.3 Heterogeneous, One-Dimensional Case............................................................................... 46 

3.4 Heterogeneous, Two-Dimensional Case .............................................................................. 51 

3.5 Heterogeneous, Three-Dimensional Case ............................................................................ 55 

4. CONCLUSIONS ............................................................................................... 61 

5. REFERENCES .................................................................................................. 63 

APPENDIX A: MESH REFINEMENT STUDY ............................................................ 65 

X Mesh Convergence Study ............................................................................................................ 65 

Z-Mesh Convergence Study ............................................................................................................ 66 

 
  



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

vi 

 

LIST OF TABLES 

Table 1:  Lattice Cell Geometric Parameters for Nominal and Cartesian Geometries ...... 26 

Table 2:  Lattice Temperature and Density Parameters .................................................... 28 

Table 3:  Multicell Cases to be Modelled .......................................................................... 32 

Table 4:  Results of Homogeneous, One-Dimensional Case ............................................. 43 

Table 5:  Results of Homogeneous, 1-D Voided Case ....................................................... 45 

Table 6:  Results of Heterogeneous, One-Dimensional Case ............................................ 50 

Table 7:  BlackStallion Results for Heterogeneous, 1-D Case (Patel, 2010) ...................... 50 

Table 8:  Results Summary for Heterogeneous, 2-D Case ................................................. 55 

Table 9:  Fast Flux % Difference from DONJON for 3D Heterogeneous Case .................... 56 

Table 10:  Fast Flux % Difference from DONJON(tr) for 3D Heterogeneous Case ............ 57 

Table 11:  Thermal Flux % Difference from DONJON for 3D Heterogeneous Case ........... 57 

Table 12:  Thermal Flux % Difference from DONJON (tr) for 3D Heterogeneous Case .... 58 

Table 13:  Fission Rate Difference from DONJON for 3D Heterogeneous Case ................ 58 

Table 14:  Fission Rate Difference from DONJON(tr) for 3D Heterogeneous Case ........... 59 

Table 15:  Results of Three-Dimensional, Heterogeneous Case ....................................... 59 

 

  



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

vii 

 

LIST OF FIGURES 

Figure 1:  Pressure Tube Heavy Water Reactor (Rosana, 2014) .......................................... 1 

Figure 2:  37-Element Fuel Bundle (Page, 2012) ................................................................. 2 

Figure 3:  Atom Density in atoms/barn·cm of Important Isotopes as a function of Burn-up 

for Natural Uranium Fuel (Yasin, Iqbal, & Shahzad, 2011) .................................................. 4 

Figure 4:  U-235 Fission Cross-Section (Chadwick, 2011) ................................................... 5 

Figure 5:  37-Element CANDU Lattice Cell (Hangbok, Gyuhong, & Donghwan, 2005) ....... 7 

Figure 6:  Example Elements for Estimating Flux Laplacian .............................................. 22 

Figure 7:  Example Elements for Estimating Flux Laplacian at Reflective Boundary ........ 23 

Figure 8:  Example Elements for Estimating Flux Laplacian at Vacuum Boundary ........... 24 

Figure 9:  Data Flow of Physics Analysis Performed .......................................................... 26 

Figure 10:  Lattice Cell Cluster Geometry (left) and Cartesian Geometry (right) ............. 29 

Figure 11:  Reactor Face Layout ........................................................................................ 34 

Figure 12:  1-D Homogeneous Case Geometry ................................................................. 34 

Figure 13:  1-D Heterogeneous Case Geometry ............................................................... 35 

Figure 14:  2-D Heterogeneous Case Geometry ............................................................... 36 

Figure 15:  3-D Heterogeneous Case Geometry ............................................................... 37 

Figure 16:  Spatial Dependence of One-Dimensional-Derived Diffusion Coefficients ...... 40 

Figure 17:  Percent Difference in Flux for the Homogeneous, 1-D Case ........................... 41 

Figure 18:  Percent Difference in Fission Rate for the Homogeneous, 1-D Case .............. 42 

Figure 19:  Flux for the Homogeneous, One-Dimensional Case ....................................... 43 

Figure 20:  Fission Rate for Homogeneous, 1-D, Coolant Void Case ................................. 45 



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

viii 

 

Figure 21:  Flux for Heterogeneous, 1-D Case................................................................... 46 

Figure 22:  DRAGON Flux Laplacian for Heterogeneous, 1-D Case ................................... 48 

Figure 23:  Percent Difference in Flux for Heterogeneous, 1-D Case ................................ 48 

Figure 24:  Percent Difference in Fission Rate for Heterogeneous, 1-D Case ................... 49 

Figure 25:  DRAGON Fast Flux for Heterogeneous, 2-D Case ............................................ 51 

Figure 26:  DRAGON Thermal Flux for Heterogeneous, 2-D Case ..................................... 51 

Figure 27:  DONJON Fast Flux Percent Differences for Heterogeneous, 2-D Case ........... 52 

Figure 28:  DONJON(tr) Fast Flux Percent Differences for Heterogeneous, 2-D Case ...... 52 

Figure 29:  DONJON Thermal Flux Percent Difference for Heterogeneous, 2-D Case ...... 53 

Figure 30:  DONJON (tr) Thermal Flux Percent Difference for Heterogeneous, 2-D Case 53 

Figure 31:  DONJON Fission Rate Percent Differences for Heterogeneous, 2-D Case ...... 54 

Figure 32:  DONJON (tr) Fission Rate Percent Difference for Heterogeneous 2-D Case ... 54 

Figure 33:  X Mesh Convergence Study in DRAGON ......................................................... 65 

Figure 34:  Z-Mesh Convergence Study in DRAGON ......................................................... 66 

 



TRANSPORT-FITTED DIFFUSION COEFFICIENTS  

ix 

 

LIST OF SYMBOLS 

Symbol Units Meaning 

𝑫𝒙 cm Diffusion Coefficient 

𝑱⃗ n/cm2s-1 
Neutron Current.  It is used for determining leakage of neutrons 
out of a given volume in the neutron transport equation. 

𝒌𝒆𝒇𝒇 - 
k-effective.  A multiplication constant in neutron transport and 
diffusion equations.  When the number of neutrons produced 
are equal those lost, it is equal to one. 

N nuclei/cm3 Number density of nuclei of an isotope in a given medium. 

𝒓⃗⃗ - Position Vector (x, y, z) 

𝝆 mk 
Reactivity.  It is related to the multiplication constant and is 
equal to zero when number of neutrons produced are equal to 
those lost. 

𝚺𝒙 cm-1 Macroscopic cross-section of a material, specific to reaction ‘x’.  
Represents likelihood of neutron interaction. 

𝛔𝒙 cm2 Microscopic cross-section of a nuclide, specific to reaction ‘x’.  
Measured experimentally. 

𝚽 n/cm2s-1 Neutron Flux 

𝚽𝟏 n/cm2s-1 Fast Neutron Flux in 2 Energy Groups (E above 0.625 eV). 

𝚽𝟐 n/cm2s-1 Thermal Neutron Flux in 2 Energy Groups (E below 0.625 eV). 

𝝌 - 
Probability Distribution of Neutrons Born from Fissions as a 
function of Energy. 
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1. INTRODUCTION 

1.1 CANDU Reactor Description 

The CANDU1®reactor is a pressure-tube heavy-water moderated and cooled 

nuclear reactor (PT-HWR).  The CANDU reactor, front view shown in Figure 1, has a large, 

cylindrical, horizontally-oriented calandria vessel.  Within the calandria is low-pressure, 

low-temperature heavy-water moderator.  The calandria also houses cylindrical fuel 

channels oriented axially and arranged in a square lattice configuration with a pitch of 

28.575 cm.   

 

Figure 1:  Pressure Tube Heavy Water Reactor (Rosana, 2014) 

The fuel channel itself is made of a hollow zircalloy calandria tube, filled with 

carbon dioxide gas surrounding the pressure tube.  High-pressure, high-temperature 

heavy water coolant flows through the zircalloy pressure tube and removes the heat 

generated by the twelve fuel bundles contained inside each pressure tube.  Each fuel 

bundle has 37-elements.  Each fuel element consists of a 48-cm stack of fuel pellets 

                                                 
1 ® CANDU is a registered trademark of Atomic Energy of Canada Ltd. under license to Candu 

Energy Inc. 
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contained in a zircalloy-2 cladding.  Fuel pellets are made of UO2 with natural abundance 

of 235U.  A picture of the bundle can be seen in Figure 2. 

 

Figure 2:  37-Element Fuel Bundle (Page, 2012) 

The pressure tube heavy water reactor analyzed in this study uses natural-

uranium oxide (UO2) fuel.  Natural uranium consists of 99.289 wt% 238Uuranium-, a 

fertile isotope, and 0.711 wt% 235U, a fissile isotope.    Under neutron irradiation, the 

fertile nuclide 238U mutates into fissile nuclides such as 239Pu and 241Pu.  Fissile nuclides 

have a high fission cross section for thermal neutrons. Consequently, natural-uranium 

fueled thermal reactors produce heat through fission reactions occurring in all fissile 

isotopes (e.g. 235U, 239Pu, 241Pu).  The fission reaction is initiated by a thermal neutron 

interacting with the nucleus and results in several high energy (or ‘fast’) neutrons being 

released, in addition to gamma rays, heat, and the splitting of the uranium nucleus into 

several lighter fission fragments. The fast neutrons produced during fission can move 

throughout the reactor and typically undergo many scattering reactions, especially when 

they reach the moderator region before being either absorbed or leaking out of the 

reactor.  The energy of the fast neutrons is dispersed by scattering off of many nuclei, 

and causes them to become low energy or ‘thermal’ neutrons which are ready to initiate 
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a fission inside the fissile nuclides – thus propagating the chain reaction. The heat in the 

fuel is then carried away by the heavy water coolant to the steam generators, the steam 

produced in the steam generator is directed to a turbine which converts the heat into 

electrical energy.  A heavy-water reflector surrounds the reactor to reduce neutron 

leakage from the reactor.  This is done for two reasons: economically it is best to lose as 

few neutrons as possible to improve the amount of power extracted from the fuel and to 

prevent external reactor components from getting irradiated by the neutrons. 

The process of irradiating nuclear fuel inside a power reactor changes the 

composition of that fuel either by the fission reaction (changing fissile material into 

several lighter mass fission products) or by absorption causing nuclei to change by 

adding a neutron and subsequently releasing a gamma ray (such as uranium-238 

absorbing a neutron to become plutonium-239, a fissile isotope).  This change in 

composition in the fuel in the field of reactor physics is referred to as the depletion or 

burnup of the fuel.  Where burnup is defined as the amount of power produced by the 

fuel per unit mass of initial heavy elements, such as uranium, in the fuel.  An example of 

fuel depletion occurring in natural uranium based fuel and some of the isotopic changes 

that occur are given in Figure 3. 
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Figure 3:  Atom Density in atoms/barn·cm of Important Isotopes as a function of Burn-
up for Natural Uranium Fuel (Yasin, Iqbal, & Shahzad, 2011) 

When predicting the behavior of such a complex system, there are multiple levels 

of analysis required, each looking at a different aspect of the core.  Reactor physics 

analysis is primarily concerned with determining the distribution of the neutron flux, 

fission rate, and power density in the reactor core, as these pieces of information 

constitute the starting point for any thermal-hydraulic and safety-analysis calculation.  

The neutron flux can be described as the neutron density in a unit volume multiplied by 

the speed at which the neutrons are travelling.  The flux can be determined by solving 

the neutron transport equation for a detailed representation of the core, including 

details such as the materials within the reactor and the temperature distribution.   

1.2 Microscopic and Macroscopic Nuclear Cross-Sections 

As mentioned in the introduction, the important part of modelling the physics of 

a nuclear reactor is determining the neutron flux by solving the neutron transport 

equation.  
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Nuclear data is used in the neutron transport equation to define source and loss 

terms.  Nuclear data, in the form of microscopic cross sections, is a tabulated list of 

interaction probabilities for a neutron within any medium.  The microscopic cross 

section, symbolized by σ, can be thought of as the cross-sectional area of a nucleus and 

has units of cm2 or the more commonly used barn (1 barn = 10-24 cm2) .  Figure 4 shows 

the microscopic fission cross section for U-235 (the main fissile isotope used in natural 

uranium fueled PT-HWR’s).  This plot can be interpreted as the likelihood of a fission 

interaction for an incident neutron as a function of its energy.  Therefore, a uranium-235 

nucleus would have a much higher likelihood of causing a fission event for a lower 

energy neutron as opposed to a high-energy neutron.  This is the reason why it is 

important to ‘moderate’ or slow-down the neutrons in a thermal nuclear reactor. 

 

Figure 4:  U-235 Fission Cross-Section (Chadwick, 2011) 

Cross-sections are characterize single isotopes or elements.  However, within a 

nuclear reactor the system is more complex and involves many elements mixed 

together to produce alloys or fuel.  The way to capture these mixtures and to estimate 
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the overall effect is through the macroscopic cross-section (denoted as Σ).  This quantity 

is defined in Equation 1: 

𝛴𝑅 = ∑ 𝑁𝑖𝜎𝑅
𝑖

𝑛

𝑖=1

(1) 

where R symbolizes the type of reaction that the cross section is characterizing, i 

is the index for the particular isotope, n is the total number of different atom species 

present in the material, and Ni is the number density (nuclei/cm3) of a  given 

isotope/element, i. The summation is performed over all isotopes in the material.  The 

macroscopic cross section represents the probability of interaction per unit distance 

travelled by the neutron and its units are cm-1.   

The reactions a neutron can undergo while moving through a reactor are 

absorption and scattering. Fission is a particular type of absorption, whereby the 

compound nucleus formed through neutron absorption splits into (usually two) fission 

fragments and additional neutrons are emitted.   

1.3 CANDU Modelling Summary 

A lattice cell is defined in this work as a two-dimensional cross-section of a single 

CANDU fuel channel and surrounding moderator, with a lattice pitch of 28.575 cm in the 

x and y directions.  An example of the lattice cell is depicted in Figure 5.   
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Figure 5:  37-Element CANDU Lattice Cell (Hangbok, Gyuhong, & Donghwan, 2005) 

 

The first step of a full-core physics analysis involves solving the transport 

equation numerically for a single lattice cell to capture the fine spatial distribution of the 

flux inside the lattice cell and to generate flux-weighted averages of the macroscopic 

cross sections over the entire cell and over few (usually two) energy groups.  Lattice 

calculations also include depletion calculations whereby the fuel composition as a 

function of burnup is determined.  The burnup is defined as the energy liberated per 

initial mass of U.  Cell-averaged macroscopic cross sections are calculated at several 

burnup steps.  At each burnup step, cell-averaged cross sections are calculated for 

several values of “local” parameters such as fuel temperature, coolant temperature, 

coolant density, moderator temperature and mass density.  The results of lattice and 
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burnup calculations are therefore summarized as tables which contain values of the cell-

averaged macroscopic cross section as a function of burnup and local parameters.   

Three-dimensional full-core calculations are subsequently performed using the 

diffusion approximation to the transport equation for a simplified model, whereby each 

lattice cell is represented as homogeneous.  The corresponding macroscopic cross 

sections are found based on the bundle burnup and local parameters by interpolating in 

the tables previously generated by the lattice (and depletion) calculations. 

1.4 Review of Homogenization Techniques  

Numerous methods presently exist for condensing the multi-group transport 

equation (solved for an infinite lattice) into few energy group macroscopic cross sections 

and diffusion coefficients.   

For CANDU type reactors, the industry standard lattice cell transport code used is 

WIMS-AECL (Altiparmakov D. V., 2008).  A multicell correction method was prepared to 

capture the effect of leakage at the core-reflector interface (Altiparmakov & Shen, 2013).   

This method involves preparing a separate set of fuel macroscopic cross-section tables 

for the lattices bordering the reflector using multiple cells in lieu of single lattice cell 

calculations.  The correction is applied to compensate for the discrepancies found 

between diffusion calculated bundle power distributions in the industry standard full-

core neutron diffusion code RFSP (Rouben B. , 1995) in comparison to those found using 

the stochastic neutron transport code MCNP (Brown, 2002).  An analogous model of 

multiple lattice cells is simulated for a given fuel burnup state, either a 1D model with a 

number of fuel lattice cells adjacent to a reflector cell or a corner interface (2x2) with a 
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single fuel lattice bordered by reflector cells.  From multi-cell calculations, 

heterogeneous factors are calculated as a ratio between the single cell homogenized 

cross-sections and the multi-cell homogenized cross-sections and are then applied to the 

full core diffusion case where they are applicable (near the reflector).  They are used to 

directly adjust the flux weighted homogenized two-group cross-sections.  Similar 

improvements were achieved in bundle power predictions using the multi-cell method 

in comparison to those achieved using transport fitted diffusion coefficients with a 

reduction power errors in a 2D stylized full-core slice of an Advanced CANDU Reactor 

(ACR-10002®) from 6% to less than 1%. 

1.5 Research Motivation 

The reason for using the diffusion approximation and homogenized cells is to 

reduce the computational expense. A single lattice cell transport calculation can take 

about two hours on one CPU.  Solving the transport equation for a full-core, including 

380 channels each with 12 bundles, and 37 fuel elements in each bundle with different 

local parameters would take more than one year and would require inordinately large 

memory resources 

Generally, the diffusion approximation applied to a cell-homogenized core works 

well, except at the core-reflector interface.  The curvature of the flux changes 

approaching the reflector, and this is inadequately captured when using two-group 

macroscopic cross-sections calculated using a single-cell model.    

                                                 
2 ® ACR-1000 is a registered trademark of Atomic Energy of Canada Ltd. under license to Candu 

Energy Inc. 
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Several methods have been developed for handling the issues associated with 

the core-reflector interface.  The multicell method relies on building fuel tables using 

multiple lattice cells representing the fuel and the reflector to obtain more realistic two-

group macroscopic cross-sections.  The industry standard neutron transport and 

diffusion codes WIMS-AECL (Altiparmakov D. V., 2008) and RFSP (Rouben B. , 1995) are 

modified to use the multicell method (Altiparmakov & Shen, 2013).  Multicell tables 

improve predictions of flux calculations at the fuel-reflector boundary, but can be 

computationally intensive and add another layer of complexity to the analysis.  Key 

concerns include managing multiple fuel tables and applying them in the correct 

locations.   

A second, less computationally-intensive, method involves using transport-fitted 

diffusion coefficients.  Patel (2010) has shown that for 1-D and 2-D cases it is possible to 

significantly improve the solution of the diffusion equation using this method. However, 

that method has not, to date, been applied to 3D cases or to cases involving coolant 

voiding, an important configuration for PT-HWRs.   

Given the promising preliminary results obtained using the transport-fitted 

diffusion coefficients, it is important to study whether they can be just as successfully 

applied to cases including coolant voiding and to three-dimensional configurations.  

1.1 Objective 

The goal of the present work is to expand the previous work by Patel and 

examine the applicability of transport-fitted diffusion coefficients to three-dimensional 

configurations and to configurations including large perturbations in the local 
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parameters, such as the loss of coolant in the pressure tube.  It aims to investigate if 

diffusion coefficients derived for a simple one dimensional case can be applied to more 

complex geometries as it is computationally challenging to create large, transport 

models to use for fitting the diffusion coefficients.   

A secondary goal is to verify if prior results are reproducible using known 

diffusion codes within academia, namely the diffusion code DONJON (Varin, Hebert, Roy, 

& Koclas, 2005) as opposed to BlackStallion (Patel, 2010).   
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2. METHODS  

2.1 The Neutron Transport Equation 

To define a neutron’s position and velocity six scalar parameters are used.  

Firstly, there is the position represented by the position vector 𝑟 = (𝑥, 𝑦, 𝑧).  Secondly, 

there is the energy, which also defines the speed of the particle (𝐸 =
1

2
𝑚𝑣2).  Thirdly, 

there is the direction of the speed defined by 𝛺⃗⃗ = (𝜃, 𝜙) .  The six scalar parameters 

define the phase space. 

When integrating over the surface of a unit sphere (as the azimuthal and polar 

angles can define) the limits on the polar and azimuthal angles for defining the 

trajectory of the neutron are as follows: 0 ≤ 𝜃 ≤ 2𝜋 for the azimuthal angle and 0 ≤

𝜑 ≤ 𝜋 for the polar angle. 

The neutron angular density is denoted by 𝑁(𝑟, 𝛺⃗⃗, 𝐸)  and is defined as the 

expected number of neutrons in a small volume dV about a given position, moving in a 

solid angle dΩ about a given direction, and having the energy in a small interval dE 

about a specified energy, divided by the volume (dV), solid angle (dΩ), and energy(dE).  

Its typical unit is cm-3keV-1.  While this density can be described as time dependent, 

𝑁(𝑟, 𝛺⃗⃗, 𝐸, 𝑡), the following derivation will focus on the steady state neutron transport 

equation (therefore removing the time dependency). 

The angular neutron flux, given in Equation 2, is the product of the angular 

neutron distribution with the speed of the neutrons.  Its typical unit is cm-2keV-1s-1. 

𝛷(𝑟, 𝛺⃗⃗, 𝐸) = 𝑣𝑁(𝑟, 𝛺⃗⃗, 𝐸) (2) 
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The transport equation represents the neutron balance equation for each 

infinitesimal phase-space volume, 𝑑𝑥𝑑𝑦𝑑𝑧𝑑Ω𝑑𝐸.  For the static case the rate of neutron 

production equals the rate of neutron loss.  The rate at which neutrons are produced 

has several source terms.  First, there is the ‘external source’ term, which represents 

neutron sources independent of the flux level and is denoted by 𝑆(𝑟, 𝐸).  In what 

follows, it will be assumed that the external source is isotropic.  External neutron 

sources would typically be used in sub-critical systems as a means of driving the chain 

reaction towards criticality. 

The second source term is neutron fission – they key process at work in a nuclear 

reactor for producing power.  It is expressed by: 

𝜒(𝐸)

4𝜋
∫ ∫ 𝛷(𝑟, 𝛺⃗⃗′, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ (3) 

𝜒(E) is the fission spectrum, that is the fraction of neutrons produced at a given 

energy due to a fission event.  The 4𝜋 term is used to obtain the angular density, as the 

fission source is assumed isotropic.  The most important term here is 𝜈𝛴𝑓(𝑟, 𝐸′) which 

represents the macroscopic production cross section, which is the product between the 

macroscopic fission cross section, 𝛴𝑓(𝑟, 𝐸′) and the average number of neutrons 

emitted per fission, ν.  The fission macroscopic cross section has units of cm-1 and it 

represents the probability that a fission event will occur per unit distance travelled by 

the neutron; The number of neutrons produced per fission event depends on the 

incident-neutron energy, E, so the notation 𝜈𝛴𝑓(𝑟, 𝐸′) is, in fact, an abbreviation for 

𝜈(𝐸′)𝛴𝑓(𝑟, 𝐸′).  Note that the integral is taken over all energies and angles to find all of 
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the fissions occurring per unit angle and energy in the region and then the fission 

distribution factor determines the total number of neutrons produced due to fissions at 

the desired energy. 

A third source term consists of neutrons with energies E’ (different from E), 

travelling in direction Ω’ which after colliding with a nucleus end up having an energy in 

the interval dE about E and travel along a direction comprised in dΩ about Ω.  This 

scattering source term is expressed by: 

∫ ∫ 𝛷(𝑟, 𝛺⃗⃗′, 𝐸′)𝛴𝑠(𝑟, 𝛺⃗⃗′ → 𝛺⃗⃗, 𝐸′ → 𝐸)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ (4) 

The scattering-source term is not assumed to be isotropic, as angle is taken into 

consideration in the scattering cross section, defined as 𝛴𝑠(𝑟, 𝛺⃗⃗′ → 𝛺⃗⃗, 𝐸′ → 𝐸).  The 

integral takes into account every possible direction and energy a neutron could be 

scattered from to “push” it into the direction and energy of interest. 

Next, the loss terms is considered.  Firstly, there are losses due to absorptions in 

target nuclei, where the macroscopic absorption cross-section is represented by 

𝛴𝑎(𝑟, 𝐸).  The absorption term is: 

𝛷(𝑟, 𝛺⃗⃗, 𝐸)𝛴𝑎(𝑟, 𝐸) (5) 

Secondly, neutrons can be lost through scattering interactions, where a neutron 

with the energy and direction of interest undergoes a scattering event and changes 

energy and direction.  The scattering loss term is expressed as: 

𝛷(𝑟, 𝛺⃗⃗, 𝐸)𝛴𝑠(𝑟, 𝐸) (6) 
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The total macroscopic scattering cross section, 𝛴𝑠(𝑟, 𝐸) can be expressed as a 

function of the differential scattering cross section 𝛴𝑠(𝑟, 𝛺⃗⃗ → 𝛺⃗⃗′, 𝐸 → 𝐸′), as:  

𝛴𝑠(𝑟, 𝐸) = ∫ ∫ 𝛴𝑠(𝑟, 𝛺⃗⃗ → 𝛺⃗⃗′, 𝐸 → 𝐸′)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ (7) 

The integral takes into account every possible energy and direction that a 

neutron could be scattered to. 

Lastly, neutrons can be lost through leakage.  The leakage term represents the 

net rate at which neutrons exit the spatial infinitesimal volume of interest divided by 

that volume.  A negative value implies that overall, there is a net influx of neutrons.  The 

leakage rate is defined using the ‘angular current’, defined in Equation 8:   

𝐽(r⃗,Ω⃗⃗⃗,E)=Φ(r⃗,Ω⃗⃗⃗,E)Ω⃗⃗⃗ (8) 

The magnitude of the angular current is simply the angular flux, Φ(r⃗,Ω⃗⃗⃗,E). 

The leakage term is defined as: 

𝑙𝑖𝑚
𝑉 → 0

1

𝑉
∫ 𝐽(𝑟𝑠⃗⃗⃗,Ω⃗⃗⃗,E) ∙ 𝑛⃗⃗𝑠𝑑𝑆

𝑆

(9) 

In this case, it is useful to review Gauss’ Theorem. 

∫ 𝐽(𝑟𝑠⃗⃗⃗,Ω⃗⃗⃗,E) ∙ 𝑛⃗⃗𝑠𝑑𝑆 = ∫ 𝛻 ∙ 𝐽(𝑟𝑠⃗⃗⃗,Ω⃗⃗⃗,E)𝑑𝑉

𝑉𝑆

(10) 

The net leakage loss term is then defined as: 

𝛻⃗⃗ ∙ 𝐽(r⃗,Ω⃗⃗⃗,E) = Ω⃗⃗⃗ ∙ 𝛻 Φ(r⃗,Ω⃗⃗⃗,E) (11) 
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The next step involves gathering together all of the source terms and loss terms 

into one equation (in this case, let us assume the system is at steady state and therefore 

losses equal sources). 

𝑆(𝑟, 𝐸)

4𝜋
+

𝜒(𝐸)

4𝜋
∫ ∫ 𝛷(𝑟, 𝛺⃗⃗′, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ +

∫ ∫ 𝛷(𝑟, 𝛺⃗⃗′, 𝐸′)𝛴𝑠(𝑟, 𝛺⃗⃗′ → 𝛺⃗⃗, 𝐸′ → 𝐸)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ =

Ω⃗⃗⃗ ∙ 𝛻 Φ(r⃗,Ω⃗⃗⃗,E) + 𝛷(𝑟, 𝛺⃗⃗, 𝐸)𝛴𝑠(𝑟, 𝐸) + 𝛷(𝑟, 𝛺⃗⃗, 𝐸)𝛴𝑎(𝑟, 𝐸) (12)

 

 

Another way of representing the out-scattering and absorption terms is by 

summing them into the total cross section.  This will shorten the representation of the 

equation. 

𝛴𝑡(𝑟, 𝐸) = 𝛴𝑠(𝑟, 𝐸) + 𝛴𝑎(𝑟, 𝐸) (13) 

Substituting this into the derived transport equation, the following form is 

obtained: 

𝑆(𝑟, 𝐸)

4𝜋
+

𝜒(𝐸)

4𝜋
∫ ∫ 𝛷(𝑟, 𝛺⃗⃗′, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ +

∫ ∫ 𝛷(𝑟, 𝛺⃗⃗′, 𝐸′)𝛴𝑠(𝑟, 𝛺⃗⃗′ → 𝛺⃗⃗, 𝐸′ → 𝐸)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′ =

Ω⃗⃗⃗ ∙ 𝛻 Φ(r⃗,Ω⃗⃗⃗,E) + 𝛷(𝑟, 𝛺⃗⃗, 𝐸)𝛴𝑡(𝑟, 𝐸) (14)

 

2.2 The Diffusion Approximation 

The neutron transport equation is a challenging one to solve numerically as it 

depends on six independent variables and contains both energy and angle integrals and 

spatial derivatives (in the gradient term).  For a full-core solution in a PT-HWR type 
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problem, the equation needs to be simplified to make it computationally feasible.  The 

focus of this section is on moving from the transport equation to the two-group neutron 

diffusion equation. 

First, it is important to integrate out the angular dependence from each term in 

the transport equation (thus removing two of the six variables).  The most challenging 

component is the in-scattering term:  

∫ ∫ ∫ 𝛷 (𝑟, 𝛺⃗⃗′, 𝐸′) 𝛴𝑠 (𝑟, 𝛺⃗⃗′ → 𝛺⃗⃗, 𝐸′ → 𝐸)

𝛺′

𝑑

𝐸′

𝛺⃗⃗′𝑑𝐸′

𝛺

𝑑𝛺⃗⃗ (15) 

The scattering cross-section depends only on the cosine of the angle between 

𝛺⃗⃗′ and𝛺⃗⃗, µ=𝛺⃗⃗′ ∙ 𝛺⃗⃗, which renders the scattering term more manageable, especially 

since the scattering angle is independent of the azimuthal component. 

= ∫ 𝛷(𝑟, 𝐸′) ∫ 2𝜋𝛴𝑠(𝑟, 𝐸′ → 𝐸, 𝜇)𝑑𝜇

𝜇
𝐸′

𝑑𝐸′ (16) 

Note that the 2𝜋 term is obtained from integrating over the independent 

azimuthal angle.  By using the cosine of the scattering angle  in  the expression of the 

scattering cross section:  

𝛴𝑠(𝑟, 𝐸′ → 𝐸) = 2𝜋 ∫ 𝛴𝑠(𝑟, 𝐸′ → 𝐸, 𝜇)𝑑𝜇

𝜇

(17) 

a scattering term is obtained that is independent of the solid angle, Ω. 

∫ 𝛷(𝑟, 𝐸′)𝛴𝑠(𝑟, 𝐸′ → 𝐸)
𝐸′

𝑑𝐸′ (18) 

The next term is the leakage term. 
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∫ 𝛻⃗⃗ ∙ 𝐽(r⃗,Ω⃗⃗⃗,E)𝑑𝛺⃗⃗
𝛺⃗⃗⃗

= 𝛻⃗⃗ ∙ 𝐽(r⃗,E) (19) 

Moving on to the other terms, the source term, total loss term (absorption + out-

scattering) and fission term are solved next and are a simple matter of integrating out 

the angular dependency. 

1

4𝜋
∫ 𝑆(𝑟

𝛺⃗⃗⃗

, 𝐸)𝑑𝛺⃗⃗ = 𝑆(𝑟, 𝐸) (20) 

∫ 𝛷(𝑟, 𝛺⃗⃗, 𝐸)𝛴𝑡(𝑟, 𝐸)
𝛺⃗⃗⃗

𝑑𝛺⃗⃗ = 𝛷(𝑟, 𝐸)𝛴𝑡(𝑟, 𝐸) (21) 

𝜒(𝐸)

4𝜋
∫ ∫ 𝛷(𝑟, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝐸′

𝑑𝐸′

𝛺⃗⃗⃗

𝑑𝛺⃗⃗ = 𝜒(𝐸) ∫ 𝛷(𝑟, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝐸′

𝑑𝐸′ (22) 

Now, when equating losses with gains for the steady state equation we obtain: 

𝑆(𝑟, 𝐸) + 𝜒(𝐸) ∫ 𝛷(𝑟, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝐸′

𝑑𝐸′ +

∫ 𝛷(𝑟, 𝐸′)𝛴𝑠(𝑟, 𝐸′ → 𝐸)
𝐸′

𝑑𝐸′ = 𝛷(𝑟, 𝐸)𝛴𝑡(𝑟, 𝐸) + 𝛻⃗⃗ ∙ 𝐽(r⃗,E) (23)

 

The leakage term is still dependent on the direction, 𝛺⃗⃗, though the initial desire 

of integrating out the solid angle was to obtain an equation purely dependent on the 

integral flux.  This is where the heart of the diffusion approximation is applied through 

Fick’s Law.  The main idea within Fick’s Law is that the neutrons will move from an area 

of high neutron flux to an area of low neutron flux.  The current describing such “flow” is 

proportional to the spatial derivative of the flux.  In three dimensions, the current can 

therefore be approximated as described in Equation 24. 

𝐽(r⃗,E) = −𝐷𝛻𝛷(r⃗,E) (24) 
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where D is the diffusion coefficient with units of centimeters and calculated as 

one third of the macroscopic transport cross section.  The traditional unit of the 

diffusion coefficient in molecular diffusion is in cm2s-1.  

𝐷 =
1

3𝛴𝑡𝑟
(25) 

The transport cross-section in an absorbing medium can be calculated as given in 

Equation 26, where 𝜇̅ is the average of the cosine of the scattering angle and acts as a 

measure of how anisotropic the neutron scattering is. 

𝛴𝑡𝑟 = 𝛴𝑎 − 𝛴𝑠(1 − 𝜇̅) (26) 

The limitation of Fick’s law is that it is only valid for linearly isotropic scattering in 

mediums without strong absorption and for cases that have flux values that do not vary 

strongly over short distances within the core.  Now that all the terms have been 

simplified to a dependence on the integrated flux, they can be collected to form the 

diffusion equation. 

𝑆(𝑟, 𝐸) + 𝜒(𝐸) ∫ 𝛷(𝑟, 𝐸′)𝜈𝛴𝑓(𝑟, 𝐸′)

𝐸′

𝑑𝐸′ +

∫ 𝛷(𝑟, 𝐸′)𝛴𝑠(𝑟, 𝐸′ → 𝐸)
𝐸′

𝑑𝐸′ =

𝛷(𝑟, 𝐸)𝛴𝑡(𝑟, 𝐸) − 𝛻⃗⃗ ∙ 𝐷𝛻𝛷(r⃗,E) (27)

 

2.3 The Two-Group Diffusion Equation 

The diffusion equation derived above is continuously dependent on neutron 

energy.  Alternatively, the energy domain can be divided into intervals called energy 

groups.  Correspondingly, the group diffusion equation is obtained by integrating the 

continuous-energy equation over each energy group.  In this work, the two-energy 
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group neutron diffusion equation is employed to solve for the flux. The first energy 

group extends form 0.625 eV to 10 MeV and is used to represent epithermal and fast 

neutrons.  The second energy group extends from 0 eV to 0.625 eV and is used to 

represent thermal neutrons.  Some terms of the two-group diffusion equations are 

derived below.  

𝐸0 = 10 𝑀𝑒𝑉, 𝐸1 = 0.625 𝑒𝑉, 𝐸2 = 0 𝑒𝑉 (28) 

𝜙𝑔 = ∫ 𝜙(𝐸)𝑑𝐸, 𝑔 = 1, 2

𝐸𝑔−1

𝐸𝑔

(29) 

𝛴𝑎𝑔 = ∫ 𝜙(𝐸)𝛴𝑎(𝐸)𝑑𝐸, 𝑔 = 1, 2

𝐸𝑔−1

𝐸𝑔

(30) 

𝜒𝑔 = ∫ 𝜒(𝐸)𝑑𝐸, 𝑔 = 1, 2

𝐸𝑔−1

𝐸𝑔

(31) 

𝛴𝑠1→2
=

∫ ∫ 𝜙(𝑟, 𝐸′)𝛴𝑠(𝑟, 𝐸′ → 𝐸)
𝐸0

′

𝐸1
′ 𝑑𝐸′𝑑𝐸

𝐸1

𝐸2

𝜙1

(32) 

𝛴𝑠2→1
=

∫ ∫ 𝜙(𝑟, 𝐸′)𝛴𝑠(𝑟, 𝐸′ → 𝐸)
𝐸1

′

𝐸2
′ 𝑑𝐸′𝑑𝐸

𝐸0

𝐸1

𝜙2

(33) 

𝛴𝑟1 = 𝛴𝑎1 + 𝛴𝑠 1⟶2 (34) 

𝛴𝑟2 = 𝛴𝑎2 + 𝛴𝑠 2⟶1 (35) 

The resulting two-group diffusion equation is:  

𝜒1 (𝛷1(𝑟)𝜈𝛴𝑓1
(𝑟) + 𝛷2(𝑟)𝜈𝛴𝑓2

(𝑟)) + 𝛷2(𝑟)𝛴𝑠2→1
(𝑟)

= 𝛷1(𝑟)𝛴𝑟1
(𝑟) − 𝛻⃗⃗ ∙ 𝐷1𝛻𝛷1(r⃗) (36)
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𝜒2 (𝛷1(𝑟)𝜈𝛴𝑓1
(𝑟) + 𝛷2(𝑟)𝜈𝛴𝑓2

(𝑟)) + 𝛷1(𝑟)𝛴𝑠1→2
(𝑟)

= 𝛷2(𝑟)𝛴𝑟2
(𝑟) − 𝛻⃗⃗ ∙ 𝐷2𝛻𝛷1(r⃗) (37)

 

 

In the above equations, a solution is only possible if the reactor is exactly critical 

(production = loss).  However, it is of interest to know how far away from a critical state 

a system is, and therefore a factor is introduced to allow this equation to hold in non-

critical configurations.  The factor is termed the effective multiplication constant and is 

denoted by keff. It is used to adjust the fission source term. 

𝜒1

𝑘𝑒𝑓𝑓
(𝛷1(𝑟)𝜈𝛴𝑓1

(𝑟) + 𝛷2(𝑟)𝜈𝛴𝑓2
(𝑟)) +

𝛷2(𝑟)𝛴𝑠2→1
(𝑟) = 𝛷1(𝑟)𝛴𝑟1

(𝑟) − 𝛻⃗⃗ ∙ 𝐷1𝛻𝛷1(r⃗) (38)

 

 

𝜒2

𝑘𝑒𝑓𝑓
(𝛷1(𝑟)𝜈𝛴𝑓1

(𝑟) + 𝛷2(𝑟)𝜈𝛴𝑓2
(𝑟)) +

𝛷1(𝑟)𝛴𝑠1→2
(𝑟) = 𝛷2(𝑟)𝛴𝑟2

(𝑟) − 𝛻⃗⃗ ∙ 𝐷2𝛻𝛷1(r⃗) (39)

 

2.4 Deriving the Diffusion Coefficients from the Transport Solution 

The premise of the present work is to take the two group diffusion equation as 

derived above and isolate for the diffusion coefficients and then calculate their value 

based on the transport solution of the flux in a simplified, but analogous system to the 

one of interest.  The first step is to isolate for the diffusion coefficients in each energy 

group from the two-group diffusion equation.  Note that in the formulas below the flux 

values are based on the transport flux, and the keff value is the transport evaluated keff. 

𝐷1(r⃗) =

𝛷1(𝑟)𝛴𝑟1
(𝑟) − 𝛷2(𝑟)𝛴𝑠2→1

(𝑟) −
𝜒1

𝑘𝑒𝑓𝑓
(𝛷1(𝑟)𝜈𝛴𝑓1

(𝑟) + 𝛷2(𝑟)𝜈𝛴𝑓2
(𝑟))

𝛻2𝛷1(r⃗)
(40)
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𝐷2(r⃗) =

𝛷2(𝑟)𝛴𝑟2
(𝑟) − 𝛷1(𝑟)𝛴𝑠1→2

(𝑟) −
𝜒2

𝑘𝑒𝑓𝑓
(𝛷1(𝑟)𝜈𝛴𝑓1

(𝑟) + 𝛷2(𝑟)𝜈𝛴𝑓2
(𝑟))

𝛻2𝛷1(r⃗)
(41)

 

The finite difference method is used to approximate the Laplacian in the flux in 

the denominator of Equations 40 and 41.  A two-dimensional example is discussed here. 

 

Figure 6:  Example Elements for Estimating Flux Laplacian 

An example geometry is given in Figure 6, with four elements all bordering the 

central point at (1,1). The transport flux values are known at the center of each of these 

points.  The method for estimating the flux gradient at point (1,1) will now be evaluated. 

𝛻2𝜙(1,1) =
𝜕2𝜙(1,1)

𝜕𝑥2
+

𝜕2𝜙(1,1)

𝜕𝑦2
(42) 

The second partial derivatives of the flux can be approximated using finite 

differences.  As it may happen that adjacent nodes are of different dimension (or the 

meshes are non-uniform in size) the flux calculations are adjusted to accommodate for 

this potential by having separate variables for mesh sizes. 
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𝛻2𝛷(1,1) =
𝜙(1,0) − 2𝜙(1,1) + 𝜙(1,2)

∆𝑥(0,1)∆𝑥(1,2)
+

𝜙(2,1) − 2𝜙(1,1) + 𝜙(0,1)

∆𝑦(0,1)∆𝑦(1,2)
(43) 

The next step is to account for the nodes on a boundary.  In this work the 

boundary conditions for the problem of interest are either reflective or vacuum.  Figure 

7 represents a system with reflective boundary conditions in the x direction at the 

boundary between node (0,1) and node (1,1).  Meaning the flux at these two nodes 

would be equal.  An approximation of the Laplacian for this case is now derived. 

𝛻2𝛷(1,1) =
−𝜙(1,1) + 𝜙(1,2)

∆𝑥(0,1)∆𝑥(1,2)
+

𝜙(2,1) − 2𝜙(1,1) + 𝜙(0,1)

∆𝑦(0,1)∆𝑦(1,2)
(44) 

 

Figure 7:  Example Elements for Estimating Flux Laplacian at Reflective Boundary 
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Figure 8:  Example Elements for Estimating Flux Laplacian at Vacuum Boundary 

Figure 8 shows an example for the vacuum boundary condition, it is assumed 

that the Flux at the midpoint between (1,0) and (1,1) has a zero value. 

𝛻2𝛷(1,1) =
0 − 2𝜙(1,1) + 𝜙(1,2)

∆𝑥(0,1)

2 ∆𝑥(1,2)

+
𝜙(2,1) − 2𝜙(1,1) + 𝜙(0,1)

∆𝑦(0,1)∆𝑦(1,2)
(45) 

𝛻2𝛷(1,1) =
−4𝜙(1,1) + 2𝜙(1,2)

∆𝑥(0,1)∆𝑥(1,2)
+

𝜙(2,1) − 2𝜙(1,1) + 𝜙(0,1)

∆𝑦(0,1)∆𝑦(1,2)
(46) 

 

2.5 Description of Nuclear Data and Codes Used 

2.5.1 DRAGON 

DRAGON is a scientific simulation code that can be used to solve the neutron 

transport equation by the collision probabilities method (Marleau, Herbert, & Roy, 

2013).  In this case the nuclear data library used is the 69 energy group ENDF/B-VII.0 
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WIMS-D format nuclear data library IAEALIB (WIMS Library Update, 2016).  In this work, 

DRAGON is used in two ways.  First it is used to solve a depletion calculation, whereby 

the composition of the fuel is calculated and then condensed into two energy group 

macroscopic cross-sections for later use in multiple cell problems.  Second, it is used to 

simulate larger multiple cell problems and taken as the more accurate solution against 

which to compare DONJON (diffusion based) results to see if fitting the diffusion 

coefficients to the transport solution indeed improves the results.  The first 

homogeneous, one dimensional multiple cell DRAGON model is used to transport fit the 

diffusion coefficients which are then used for the remaining diffusion analyses 

performed.   

2.5.2 DONJON 

DONJON is a scientific simulation code that can be used to solve the diffusion 

approximation of the neutron transport equation using the finite differences or the finite 

element method (Varin, Hebert, Roy, & Koclas, 2005).  In this work, DONJON is used to 

model the larger multicell cases and compare against DRAGON.  For every large 

geometry model studied, there are two DONJON models prepared.  One DONJON model 

will exclusively use the homogenized cross-sections as prepared by DRAGON in the 

depletion calculations and the second DONJON model will use mostly the same nuclear 

data as the first model except for the transport cross-sections which are replaced with 

the transport fitted diffusion coefficient results obtained for the simplest one 

dimensional case studied (recall the relationship between the transport cross-section 
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and diffusion coefficient in Equation 25).  An overview of the flow of data for the analysis 

that is performed here is provided in Figure 9.   

 

Figure 9:  Data Flow of Physics Analysis Performed 

2.6 Description of Physics Models Prepared 

2.6.1 Lattice Physics Models 

The geometry and material parameters used for performing the lattice physics 

depletion calculations are given in Table 1 and Table 2. 

Table 1:  Lattice Cell Geometric Parameters for Nominal and Cartesian Geometries 

Parameter Nominal Dimension 
Cartesian 

Dimension (Length) 
Units 

Lattice Pitch 28.575 28.575 cm 

Calandria Tube OR 6.587 11.657 cm 

Calandria Tube IR 6.448 11.461 cm 

Pressure Tube OR 5.603 9.972 cm 

Pressure Tube IR 5.169 9.208 cm 

Fuel Element OR 0.654 N/A cm 

Fuel Pellet OR 0.612 1.092 cm 
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A PT-HWR lattice cell contains a cylindrical calandria tube, pressure tube and fuel 

pins arranged in a cluster bundle formation (see Figure 2).  The geometry is converted 

into a Cartesian form to make it possible to explicitly model the same geometry in 

DONJON, both the cluster and Cartesian geometries are presented in Figure 10.  Though 

this was not done here, it is possible to evaluate pin powers in this Cartesian geometry 

in future work, if desired.  The conversion between geometries was done to preserve 

first and foremost the fuel volume, second to preserve the total volume of moderator, 

and third to maintain the volume of the coolant and pressure tube.  The main volume 

that provided flexibility in this conversion is the carbon dioxide gas gap, which was 

adjusted to preserve the remaining volume constraints.    
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Table 2:  Lattice Temperature and Density Parameters 

Parameter Value Units 

Coolant 
Temperature 

549 K 

Fuel Temperature 1155 K 

Clad Temperature 549 K 

Moderator 
Temperature 

346 K 

Coolant Density 0.8366 grams/cm3 

Fuel Density 10.6 grams/cm3 

Moderator Density 1.0827 grams/cm3 

Pressure Tube 
Density 

6.5 grams/cm3 

Calandria Tube 
Density 

6.5 grams/cm3 

Fuel Composition Natural Uranium 
Dioxide 

- 

Pressure Tube 
Composition 

100% Zr - 

Calandria Tube 
Composition 

100% Zr - 

Coolant Purity 99.75 at% D2O in H2O 

Moderator Purity 99.91 at% D2O in H2O 

Relative Power 31.97 Watts per gram 

Fresh Burnup 0 MWd/TIHE 

Mid Burnup 4400 MWd/TIHE 

Exit Burnup 7600 MWd/TIHE 

 

Due to the complexity of a fine mesh Cartesian model, the fuel sheath was 

omitted to reduce the number of regions and thus allow the performance of multiple-

cell calculations without reaching the limits on available memory. 
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Figure 10:  Lattice Cell Cluster Geometry (left) and Cartesian Geometry (right) 

The first step in the lattice cell depletion analysis is to generate the necessary 

macroscopic cross-section data using a lattice cell transport calculation. This lattice 

analysis is carried out in the neutron transport code DRAGON (version 3.04) (Marleau, 

Herbert, & Roy, 2013) using the 69-energy group ENDF/B-VII.0 WIMS-D format nuclear 

data library IAEALIB (WIMS Library Update, 2016).  

A depletion calculation is performed to determine fresh, mid-burnup and exit 

burnup fuel compositions for a natural uranium lattice cell.  The depletion calculation 

has several steps.  First, the library of mixtures is defined based on mixture densities and 

weight percentages of individual isotopes in each region within the lattice cell.   

The geometry of the lattice cell is defined with reflective boundary conditions on 

all sides, each region in the geometry is assigned a mixture from the previously-defined 

library of mixtures and based on the composition data given in Table 2.  Reflective 

boundary conditions mean that the model simulates an infinite array of the same lattice 

cell at the cell boundary, while a vacuum boundary condition means that if a neutron 
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passes through that boundary it is lost and cannot re-enter the simulation; in other 

words, the model has zero incoming neutron current on that boundary.  Then a tracking 

calculation is performed, it is used to evaluate volumes, surface areas and define the 

tracking line locations within the geometry based on user input parameters (a user can 

input the density of tracking lines and different methods of integrating them).  These 

tracking lines are used to discretize individual regions for the collision probability and 

flux calculation; it’s important to have enough tracking line density or the accuracy of 

the solution may be impacted. 

The collision probability matrices are then computed; they represent the 

probabilities of neutrons born in one region to interact in another region and depend on 

the energy group.  Lastly, the flux is evaluated based on the collision probabilities for the 

defined geometry.  Once the flux is evaluated for the problem, the fuel is ‘depleted’ or 

‘burned up’ based on exposing the fuel to the evaluated flux values at a set bundle-

power level (600 kW in this case) for a specified time interval.  The composition of fuel is 

updated based on fuel depletion chains and fission product probability distributions.  

After this calculation is complete and another iteration of the above steps can be 

performed (except for library and geometry definitions).  The lattice depletion 

calculation is complete when the desired number of time steps have been run. 

 The macroscopic cross-sections are homogenized by performing a two-energy 

group condensation and a full geometry homogenization.  Homogenization occurs after 

each flux calculation and its results are written to an output file.  The macroscopic cross 

sections are homogenized into two energy groups from 69 energy groups based on a 
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0.625 eV cut-off value.  The reason two energy group are used (fast, group = 1, above 

0.625 eV and thermal, group = 2, below 0.625 eV) is because in thermal reactors (such as 

PT-HWR) a large majority of fissions are induced by thermal neutrons (below 0.625 eV) 

and the fission rate is the most important to calculate correctly as it determines the 

power and heat generation rate.  Capturing the thermal fission rate is considered 

accurate enough when performing diffusion calculations for CANDU type reactors 

(Rouben & Nichita, 2016).   

The homogenization performed for an energy condensation of the cross-sections 

is flux weighted as shown in Equation 48 below. 

𝛴𝑥,𝐸𝑔
(𝑟) =

∑ 𝛴𝑥(𝑟, 𝐸)𝛷(𝑟, 𝐸)𝐸𝜖𝐸𝑔

∑ 𝛷(𝑟, 𝐸)𝐸𝜖𝐸𝑔

(48) 

The cross-sections require an energy condensation to two groups and a full 

volume homogenization into a single region.  This volume and flux average 

homogenization method is given in Equation 49, using the energy collapsed cross-

sections. 

𝛴𝑥,𝐸𝑔
=

∑ 𝑉(𝑟)Φ𝐸𝑔
(𝑟)𝛴𝑥,𝐸𝑔

(𝑟)𝑟𝜖𝑉

∑ 𝑉(𝑟)𝑟𝜖𝑉 Φ𝐸𝑔
(𝑟)

(49) 

2.6.1 Multicell Models 

Three 1-D multicell cases, one 2-D and one 3-D case are used in this study, all 

listed in Table 3.  For every geometry case, there are three different code results that are 

obtained.  Namely, there is one DRAGON model prepared, and two DONJON models 

(data flow is depicted in Figure 9).  The first DONJON model and the multicell DRAGON 
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model use the homogenized and condensed two energy group cross-sections obtained 

in the above described lattice depletion calculation.  The second DONJON model uses 

this same two group library except for the diffusion coefficients which are replaced with 

the corrected diffusion coefficients obtained from the first (and only the first) 

homogeneous, 1-D case. 

Table 3:  Multicell Cases to be Modelled 

Case Void Surface Fuel Area 
Fuel/Void 

Ratio 
Fuel 
Cells 

Reflector 
Cells 

1-D Homogeneous 28.575 cm 8981 cm2 314 11 0 
1-D Homogeneous, 

Void 
28.575 cm 8981 cm2 314 11 0 

1-D Heterogeneous 28.575 cm 8981 cm2 314 11 2 
2-D Heterogeneous 742.95 cm 98,454 cm2 132 121 48 
3-D Heterogeneous 32,754 cm2 161,205 cm3 4.9 8 19 

 

The three one-dimensional cases consist of the diffusion coefficient derivation 

case (1-D homogeneous) which is made up of 11 mid-burnup cells, the voided 1-D 

homogeneous case which is also made up of 11 mid-burnup cells but they are modelled 

with voided coolant (coolant density = 0.001 g/cm3) and the heterogeneous 1-D case 

which is made up of 10 exit burnup fuel cells, 1 fresh fuel cell and two reflector cells.  

The reasoning behind choosing these three cases will now be described.  The 

homogeneous 1-D case is used to derive the diffusion coefficients as it is assumed to be 

the approximate average fuel composition state of a real full-core model and may then 

best represent the system to be modelled.  Then a state change is made with this same 

model geometry/composition to evaluate how well the derived diffusion coefficients for 

this ‘average’ model apply when parameters such as the coolant density are perturbed.  
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The heterogeneous model is used as a test of the limitations of the transport fitted 

diffusion coefficient since the fresh fuel is placed close to the vacuum boundary where 

the most leakage occurs.  The 2-D case is an extension of this heterogeneous 1-D model 

but more leakage surface is introduced relative to the volume of fuel modelled (see the 

fuel/void ratio in Table 3). 

The geometrical configuration of the one-dimensional homogeneous problem 

used to fit the diffusion coefficient to an analogous PT-HWR type configuration is a set of 

eleven mid-burnup lattice cells meant to represent half of a middle row of a typical 380 

channel pressure tube heavy water reactor, as seen bordered in red in Figure 11.  These 

eleven cells are adjacent to a reflector region, but as a simplifying measure, the reflector 

was not used for the diffusion coefficient derivation models.  The 1-D model geometry is 

pictured in Figure 12.  The boundary conditions in the 1-D case are reflective on all sides 

with exception of the core edge which has a vacuum boundary condition applied to 

mirror the impact of neutron leakage from the core (no re-entrant neutrons, inward 

current set equal to zero).  Each lattice cell is divided into a five by five mesh when 

performing the DRAGON transport calculation to obtain more refined flux results.  
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Figure 11:  Reactor Face Layout 

 

 

Figure 12:  1-D Homogeneous Case Geometry 

 

Two energy groups are chosen here as the preferred energy group structure for 

the transport/diffusion multicell cases for three reasons.  The first is ease of 

implementation. The second is to provide a true comparison with analogous cross 

sections in diffusion. The third reason was that it was previously proven (Patel, 2010) 

that two group homogenized transport demonstrates very similar cell averaged 

fluxes/fission rates to 69 group heterogeneous transport for CANDU type lattices.    
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The homogeneous 1-D case as described above is then modelled with a state 

change by setting the coolant density to 0.001 g/cm3 in all the fuel-containing cells.  In 

this case, the same lattice depletion model was run as described earlier with 

adjustments made at each depletion step to void the coolant and homogenize the cross-

sections.  Coolant voiding is an important phenomenon in the physics of CANDU type 

reactors, as it causes a positive reactivity change, which can lead to power increases.   

This heterogeneous 1-D case is meant to test the burnup sensitivity of the 

derived diffusion coefficients.  As they are found for a configuration with uniform, mid-

burnup, fuel composition, it is worthwhile to test if they also work for different burnup 

values where the flux shape will significantly differ.  The chosen case consists of ten exit-

burnup fuel bundles, adjacent to one fresh fuel bundle which is bordered by two 

reflector cells (as depicted in Figure 13).   

 

Figure 13:  1-D Heterogeneous Case Geometry 

 

This model has reflective boundary conditions on all sides except for the positive 

x-axis boundary, where a vacuum boundary condition is used.  The reasoning behind 

putting fresh fuel at the boundary is to impose an extreme variation in flux near the 

vacuum boundary which is a strong test of the diffusion approximations’ limits.   



TRANSPORT-FITTED DIFFUSION COEFFICIENTS 36 

 

 

The geometry studied in two-dimensions is an extension of the previously 

studied heterogeneous one-dimensional model.  It is comprised of 10 x 10 exit burnup 

lattice cells bounded by one fresh fuel cell and two reflector cells on the right-most and 

bottom boundaries (see Figure 14).  Vacuum boundary conditions are applied to the two 

edges of the model which are lined with reflector cells while the remaining fuel 

containing edges has reflective boundary conditions applied. 

 

Figure 14:  2-D Heterogeneous Case Geometry 

When moving from 1-D to 2-D calculations, applying the same diffusion 

coefficient works well as the lattice geometry is the same in the x and y directions, 

namely the lattice cells are square.  The challenge is moving into a 3-D case while still 

maintaining the improvements achieved in the 2-D cases.  A mesh convergence study is 

performed to ensure that further mesh refinement does not significantly impact the 

results.  A study of the mesh-size impact is described in more detail in Appendix A.  It is 
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found that the mesh size needs to be ~5cm, a size similar to that used in earlier studies.  

If the meshes are larger, they are not accurately capturing the physics of the problem 

and this error will impact results when moving to 3-D calculations.  Unfortunately, using 

finer meshes limits the size of the problem that can be studied in 3-D because on upper 

limits in DRAGON memory allocation.  The largest possible case that could accommodate 

the system with this mesh size and the same tracking line density is chosen: a 3x3x3 

bundle model.  Such a small model does have a benefit, in that it tests in an extreme 

manner the efficacy of transport-fitted diffusion coefficients at capturing strong leakage 

effects.  The model size allowed for a similar configuration to the heterogeneous 2D 

model, seen stylized and not to scale in Figure 15 with a single exit burnup fuel bundle, 

surrounded on three sides by fresh fuel. The fresh fuel bundles are bounded by reflector 

(consisting of heavy water).  On the faces with reflector bounding the model, vacuum 

boundary conditions are used and reflective boundary conditions are applied on all 

other faces.   

 

Figure 15:  3-D Heterogeneous Case Geometry 
(Exit Burnup Fuel = Red, Fresh Fuel = Green, Reflector = Blue) 
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2.6.2 Evaluation Metrics for Multicell Cases 

This work is concerned with reducing the error introduced by the use of the 

diffusion equation instead of the transport equation.  Consequently, the transport-

equation results provided by the DRAGON code are used as a reference against which  

the corresponding diffusion-equation results provided by the DONJON code are 

compared.  All percent differences and Root Mean Square (RMS) errors evaluated in this 

work are evaluated against the respective DRAGON results.  All fluxes, regardless of the 

code used to calculate them, are first normalized to a total fission rate of 1 fission/cm3s-

1.  The fission reaction rates per region are found using Equation 50 and the total fission 

rate for the entire geometry is determined using Equation 51. 

𝑅𝑅𝑓𝑖𝑠𝑠𝑖𝑜𝑛(𝑟) = (𝛷1(𝑟)𝛴𝑓1(𝑟) + 𝛷2(𝑟)𝛴𝑓2(𝑟)) (50) 

 

𝑅𝑅𝑇𝑜𝑡𝐹𝑖𝑠𝑠𝑖𝑜𝑛
=

∑ 𝑅𝑅𝑓𝑖𝑠𝑠𝑖𝑜𝑛(𝑟)𝑉(𝑟)𝑟𝜖𝐺𝑒𝑜

∑ 𝑉(𝑟)𝑟𝜖𝐺𝑒𝑜

(51) 

The cell-averaged fission rate, fast flux and thermal flux calculated using the two 

approximate methods (DONJON code) are compared to the reference (DRAGON) results.  

Corresponding percent differences are evaluated using Equation 52. 

% 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ( 
𝜙𝐷𝑂𝑁𝐽𝑂𝑁 − 𝜙𝐷𝑅𝐴𝐺𝑂𝑁

𝜙𝐷𝑅𝐴𝐺𝑂𝑁
) 100% (52) 

The RMS error is calculated according to Equation 53. 

𝑅𝑀𝑆 𝐸𝑟𝑟𝑜𝑟 = 100% 
√

∑ (
𝛷𝐷𝑂𝑁𝐽𝑂𝑁(𝑥)

𝛷𝐷𝑅𝐴𝐺𝑂𝑁(𝑥)
− 1)

2
𝑁𝑐𝑒𝑙𝑙𝑠
𝑥=1

𝑁𝑐𝑒𝑙𝑙𝑠

(53)
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3. RESULTS 

A homogeneous, one-dimensional, multicell DRAGON calculation is performed 

specifically to derive the transport fitted diffusion coefficients.  A heterogeneous and 

voided homogeneous case are then prepared to test the effectiveness of the derived 

coefficients prior to moving on to more complex geometries.   

3.1 Homogeneous, One-Dimensional, Diffusion-Coefficient-Derivation Case 

The gradient of the fluxes obtained is evaluated at each region as described in 

the Methods section.  The flux values, along with the two-group macroscopic cross 

sections are used to evaluate the two-group diffusion coefficients based on Equations 40 

and 41.  The coefficients are calculated on a fine mesh by mesh basis and then averaged 

to obtain one value for each energy group that are used in this study and applied over 

the entire geometry.  The differences in these coefficients as a function of the x direction 

are shown in Figure 16.  The vacuum boundary condition on the rightmost side 

introduces some instability into the gradient term, and therefore the values of D past the 

200 cm mark are not included in the average.  Figure 16 provides some insight into the 

behavior of diffusion coefficients in a system with defined leakage at the boundary, 

namely that the diffusion coefficients do not appear to significantly vary in space (aside 

from the instability near the vacuum boundary).  Additionally, we see here that the 

derived coefficients are significantly higher than those which are calculated for the 

lattice cell in the DRAGON depletion calculation used to generate the macroscopic cross-

sections.  Having higher diffusion coefficients means that the region-to-region leakage 

will be proportionally higher based on the earlier definition of leakage and subsequent 
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approximation via Fick’s Law (𝐽(r⃗,E) = −𝐷𝛻𝛷(r⃗,E)).  The transport corrected diffusion 

coefficients are only derived based on the 11 mid-burnup cell one-dimensional problem 

and applied to all other cases with the intent of demonstrating the applicability of the 

values obtained using a simple model to more complex cases, thus avoiding the 

computational challenges in the form of CPU time and memory limitations when 

modelling larger geometries in deterministic transport codes.   

 

Figure 16:  Spatial Dependence of One-Dimensional-Derived Diffusion Coefficients 

The percent differences between DRAGON and DONJON results for the 

homogeneous 1-D case are shown in Figure 17.  The flux percent differences confirm 

that the method is functioning as found in earlier work (Patel, 2010).  It can be observed 

that the diffusion flux results fit closely the transport solution for the inner cells which 

are unaffected by the vacuum boundary condition, but near the vacuum boundary 
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condition the diffusion approximation breaks down for the nominal DONJON case, 

showing percent differences in flux of 5 – 7% for the cell homogenized fluxes.  It is 

worthwhile to note that DONJON is under-predicting the flux for the cells near the 

vacuum boundary by up to 6% without the transport fitted coefficients.  This means that 

there will be more neutrons leaking through the vacuum boundary in the uncorrected 

models.  One would therefore predict that the keff values calculated by DONJON 

(especially without the transport correction) should be lower than those calculated by 

DRAGON since fewer neutrons are leaking out of the reactor. 

  
Figure 17:  Percent Difference in Flux for the Homogeneous, 1-D Case 

Upon applying the transport correction to the diffusion coefficient using the 

same corrected value across all cells, the percent differences between the flux values are 

reduced to less than 2% for the cell homogenized fluxes, calculated using Equation 52. 

Figure 18 depicts the percent difference in fission rate; the DONJON diffusion 

results near the vacuum boundary condition is over six percent, but upon applying the 

transport corrected diffusion coefficients, this difference is reduced to less than one 
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percent, meaning bundle powers on the boundary of the reactor (near the edge) would 

be better predicted in models using the transport fitted coefficients. 

 

Figure 18:  Percent Difference in Fission Rate for the Homogeneous, 1-D Case 

The normalized flux values are plotted in Figure 19 for the thermal and fast 

fluxes, calculated using Equations 50 and 51.  It can be observed from the flux plots that 

the curvature of the flux near the vacuum boundary condition is similar between the 

transport value and the diffusion results (for nominal and transport corrected cases).  

While the percent differences in fission rates and fluxes increase near the vacuum 

boundary condition, it is noted that overall the agreement between codes is quite good 

for this average mid-burnup model.  The characteristic cosine shape of the flux in both 

cases is the usual shape for an infinite slab homogeneous reactor that is finite in one 

dimension.    
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Figure 19:  Flux for the Homogeneous, One-Dimensional Case 

Table 4 provides a summary of the homogeneous 1-D case results.  The higher 

keff value found by DONJON is reasonable given the flux percent difference results 

discussed earlier where a greater neutron flux near vacuum boundary in DRAGON 

models results in a lower keff value.  It is good that the results obtained from DONJON 

have improved with the transport fitted diffusion coefficients, but it is somewhat 

expected because they have been fitted to this specific case.   

Table 4:  Results of Homogeneous, One-Dimensional Case 

Parameter DRAGON DONJON 
DONJON 

(tr) 
Units 

𝑘eff 1.04467 1.04984 1.04552 - 
ρ 42.76 47.47 43.54 mk 

∆ρ - 4.71 0.77 mk 
Max % Difference Φ1  -5.60 -1.40 % 
Max % Difference Φ2  -5.75 -0.72 % 

RMS Error Φ1  1.77 0.43 % 
RMS Error Φ2  1.86 0.24 % 

Max % Difference 
Fission Rate 

 -6.20 -0.85 % 
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3.2 Homogeneous, One-Dimensional Coolant Voided Case 

The next test is to examine the impact of a state change, namely coolant voiding, 

on the improvements made by using transport corrected diffusion coefficients found for 

the first case. 

The results obtained for the voided case are summarized in Table 5, with clear 

improvements made in predictions of fission rate and flux similar to the ones observed 

for the cooled case previously analyzed.  However, the keff value is better predicted by 

DONJON without the application of derived diffusion coefficients.  How the keff value 

could be farther from the transport solution while fission rate and flux predictions are 

closer can be explained best by examining percent differences in fission rates for this 

case, given in Figure 20.  The fission rate closely follows the behavior of the thermal flux 

and this profile is quite different from the results found for the cooled homogeneous, 1-

D case studied earlier.  The main issue with the transport corrected DONJON case seems 

to be the over prediction of neutron flux at the edge of the core relative to DRAGON, 

which would lead to more leakage and therefore reduced overall keff value in comparison 

to the transport solution.  It appears as if the diffusion constants derived for the cooled 

mid-burnup case may be slightly too high to match the physics of the voided case.  

During coolant voiding the coolant is lost and therefore so is a source of neutron 

thermalization.  Additionally, the neutrons that would have been thermalized near the 

fuel are more likely to be resonance absorbed in uranium-238.  This increase in 

absorption contributes to a slight reduction in the diffusion coefficients (it translates into 

increased likelihood of reaction for neutrons while moving through a voided PT-HWR).  
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The uncorrected DONJON case is closer to the transport keff value, however this likely 

happens due to cancellation of errors rather than better prediction.  The fission rate 

being significantly under-predicted at the edge of the core would lead to reduced 

leakage because there are fewer thermal neutrons at the vacuum boundary and more of 

them in the middle of the core causing fissions.   

 

Figure 20:  Fission Rate for Homogeneous, 1-D, Coolant Void Case  

Table 5:  Results of Homogeneous, 1-D Voided Case 

Parameter DRAGON DONJON 
DONJON 

(tr corrected) 
Units 

keff 1.06151 1.06258 1.05764 - 
ρ 57.94 58.89 54.50 mk 

∆ρ - 0.95 -3.44 mk 
Max % Difference Φ1  -6.33 -0.82 % 
Max % Difference Φ2  -6.10 -0.71 % 

RMS Error Φ1  2.10 0.71 % 
RMS Error Φ2  1.92 0.31 % 

Max % Difference 
Fission Rate 

 -6.21 0.13 % 
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3.3 Heterogeneous, One-Dimensional Case 

This heterogeneous case is the first one studied with reflector cells near the 

vacuum boundary condition.  The combination of reflector and fresh fuel changes the 

flux shape from the characteristic cosine shape observed in the two homogeneous 

cases.  This revised flux shape can be observed in Figure 21.   

  
Figure 21:  Flux for Heterogeneous, 1-D Case 

The reason the fast flux drops to almost zero in the reflector cells is because the 

fast neutrons become thermalized in the heavy water reflector (note the increased 

thermal flux in the first cell of the reflector).  Additionally, the curvature of the flux is 

shifted by having more reactive (fresh) fuel at the edge and highly depleted (exit-

burnup) fuel in the centre of the model.  The flux plots show a significant difference in 

the curvature of the flux between the nominal DONJON calculation and the DRAGON 

results.  DONJON underestimates the flux values towards the centre of the core and 
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overestimates them near the reflector for the nominal diffusion coefficient results.  The 

transport corrected diffusion coefficient flux values closely match the behavior of the 

DRAGON transport fluxes; despite being derived for a significantly simpler case with only 

one fuel type.  Some physical meaning behind the different flux curvatures can be found 

once again by linking to the higher diffusion coefficients.  In the regular DONJON case, 

the lower diffusion coefficient results in higher flux values in the fresh fuel (third node 

from the vacuum boundary), while in the DRAGON and transport fitted DONJON 

solutions, the flux values at the fresh fuel cell are lower.  The general idea is that if the 

diffusion coefficient is low, the flux produced in the fresh fuel has a more challenging 

time dispersing in the model while higher coefficients allow those neutrons to move 

from region to region with less impedance.  The value of the diffusion coefficient is 

particularly important in areas where the flux has a higher magnitude Laplacian as it is 

directly proportional to the calculated leakage.  A plot of the DRAGON calculated flux 

Laplacian is shown in Figure 22 to provide clear insight into where significant changes 

occur, not surprisingly the inflection point happens at the interface between the fuel and 

the reflector. 
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Figure 22:  DRAGON Flux Laplacian for Heterogeneous, 1-D Case 

Figure 23 shows the fast and thermal flux percent differences between DRAGON 

and DONJON.  The fast flux has the largest difference in the reflector cell immediately 

adjacent to the vacuum boundary condition at 33%, while the thermal flux has the 

largest difference in the reflector cell adjacent to the fresh fuel of almost 35%.   

  
Figure 23:  Percent Difference in Flux for Heterogeneous, 1-D Case 
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The fission rate percent difference between DRAGON and DONJON is given in 

Figure 24, with fissions being under-predicted in the center of the reactor and over 

predicted near the reflector (up to a maximum of 20% in the fresh fuel adjacent to the 

reflector).  The diffusion case with transport corrected coefficients has a maximum 

fission rate percent difference that is almost negligible with a less than 1% difference in 

the fresh fuel. 

 

Figure 24:  Percent Difference in Fission Rate for Heterogeneous, 1-D Case 

Table 6 contains a summary of the transport and diffusion results obtained from 

this one dimensional, heterogeneous model.  It is worthwhile to examine the 

improvements achieved for a similar case performed by (Patel, 2010) using BlackStallion, 

a diffusion solver written by Patel, given in Table 7.  Similar reduction in the error 

between transport and diffusion are found in both studies, with more significant gains 

achieved in previous work, but this work achieves reductions that leave the differences 
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between diffusion and transport as almost negligible (maximum 3% flux error and less 

than 1% fission rate maximum error).  The differences between this work and prior work 

show that it is worthwhile to re-evaluate published work with known code sets because 

the differences between transport and non-transport fitted diffusion calculations are 

significantly smaller in this re-evaluated study (~30% instead of ~150%). 

Table 6:  Results of Heterogeneous, One-Dimensional Case 

Parameter DRAGON DONJON DONJONTr_Correct Units 

keff 1.00511 1.00903 1.00505 - 
ρ 5.08 8.95 5.02 mk 

∆ρ - 3.87 -0.06 mk 
Max % Difference Φ1  -33.43 3.18 % 
Max % Difference Φ2  33.95 -0.69 % 

RMS Error Φ1  8.71 0.20 % 
RMS Error Φ2  8.43 0.25 % 

Max % Difference 
Fission Rate 

 20.61 -0.68 % 

 

Table 7:  BlackStallion Results for Heterogeneous, 1-D Case (Patel, 2010) 

Parameter BlackStallion BlackStallionTr_Correct Units 

RMS Error Φ1 71.9 5.8 % 
RMS Error Φ2 80.5 4.5 % 

Max % Difference Φ1 129.2 15.3 % 
Max % Difference Φ2 173.1 0.14 % 

Max % Difference 
Fission Rate 

142.6 7.42 % 

 
When moving to the heterogeneous and somewhat ‘extreme’ model detailed 

above, the burnup independence of the transport-fitted diffusion coefficient is 

demonstrated.  At this point, it is worthwhile to move to more challenging cases and 

examine if the transport-derived diffusion coefficients for a stylized one-dimensional 

case can apply to two-dimensional models. 
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3.4 Heterogeneous, Two-Dimensional Case 

The fast and thermal flux distribution obtained from DRAGON calculations for 

this case are shown in Figure 25 and Figure 26.  The lowest flux values naturally occur at 

the mesh with the greatest leakage (the bottom right corner mesh with two vacuum 

boundaries).  Similar flux curvatures occur in this 2-D model as those which appear in 

the heterogeneous 1-D model presented earlier, as is expected given their similar 

material and geometric configurations. 

 

Figure 25:  DRAGON Fast Flux for Heterogeneous, 2-D Case  

 

Figure 26:  DRAGON Thermal Flux for Heterogeneous, 2-D Case 
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 The fast flux percent differences for the normal and transport corrected DONJON 

cases compared with DRAGON are given in Figure 27 and Figure 28, respectively.   For 

both transport corrected and nominal DONJON cases, the biggest fast flux discrepancies 

occur near the vacuum boundaries of the geometry, with the largest difference 

occurring in the bottom right corner.  The transport correction as applied to the fast flux 

causes the percent differences to be reduced from 10% under-prediction to 0.2% over-

prediction in the center and 37% under-prediction to 0.7% under-prediction in the 

bottom-right fresh fuel cell.   

 

Figure 27:  DONJON Fast Flux Percent Differences for Heterogeneous, 2-D Case 

 

Figure 28:  DONJON(tr) Fast Flux Percent Differences for Heterogeneous, 2-D Case 
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The maps of the thermal flux percent differences are given in Figure 29 and 

Figure 30.  The flux results behave like the heterogeneous 1-D case; namely the flux 

predictions are significantly improved overall with the transport fitted diffusion 

coefficients, where DONJON moves from over-predicting the flux at the vacuum 

boundary condition to slightly under-predicting. 

  

Figure 29:  DONJON Thermal Flux Percent Difference for Heterogeneous, 2-D Case 

 

Figure 30:  DONJON (tr) Thermal Flux Percent Difference for Heterogeneous, 2-D Case 
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43 -9% -9% -9% -8% -7% -5% -3% -1% 3% 8% 15% 28% 20%

71 -9% -9% -8% -7% -6% -5% -3% 0% 3% 8% 16% 28% 21%

100 -8% -8% -7% -7% -6% -4% -2% 0% 4% 9% 17% 29% 22%
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The maps of the fission rate percent differences are provided in Figure 31 and 

Figure 32. As fission rate is strongly related to the thermal flux, similar results are 

exhibited. 

 

Figure 31:  DONJON Fission Rate Percent Differences for Heterogeneous, 2-D Case 

 

Figure 32:  DONJON (tr) Fission Rate Percent Difference for Heterogeneous 2-D Case 

The RMS difference in fast flux between DRAGON and DONJON is given in Table 

8.  Applying the transport correction to the fast flux results in an RMS percent difference 

reduction from ~17% to less than 1% for both the fast and thermal fluxes.  The reactivity 

difference between DRAGON and DONJON has been reduced from almost 8 mk to less 

than 0.1 mk by applying the transport fitted diffusion coefficients while significantly 
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improving the spatial flux agreement.  Similarly, fission rate RMS error is reduced from 

10% to less than 0.5%.  The 2-D application of 1-D derived coefficients seems adequate 

given these results. 

Table 8:  Results Summary for Heterogeneous, 2-D Case 

 DRAGON DONJON 
DONJON 

(tr corrected) 
Units 

keff 0.997245 1.005192 0.997326 - 
ρ -2.76 5.16 -2.68 mk 

∆ρ  7.93 0.08 mk 
Max % Difference Φ1  17.2 0.00 % 
Max % Difference Φ2  18.7 0.69 % 

RMS Error Φ1  41.7 4.8 % 
RMS Error Φ2  42.7 1.6 % 

Max % Difference 
Fission Rate 

 31.7 1.3 % 

Fission Rate RMS  10.8 0.36 % 

 

3.5 Heterogeneous, Three-Dimensional Case 

The DONJON results for the fast flux are given in Table 9-Table 10.  Once again, 

the largest fast flux differences between DRAGON and DONJON occur in the reflector 

regions.  The overall errors made by DONJON without the transport fitted diffusion 

coefficients are not as large as in the 2-D case, but review Table 3 to recall that the fuel 

to surface area ratio of this model is a significant departure from previous modelling 

efforts (significantly larger vacuum boundary surface area in comparison to other 

models).  Additionally, this model is the only one built where the volume of reflector is 

larger than the volume of the fuel.  Both factors contribute to the significant sub-

criticality of the model (seen in Table 15).  Recall the reason for this change is due to the 

relative size of the model that is achievable given memory limitations in DRAGON.  In 
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Table 11 and Table 12 the percent differences in thermal flux are given.  Note that for all 

models, corrected and nominal DONJON, they are quite close to the DRAGON 

predictions (except in the reflector region). 

Table 9:  Fast Flux % Difference from DONJON for 3D Heterogeneous Case 

 

14.28 42.87 71.44

Exit Fresh Refl

14.28 Exit 10.04% 7.44% 23.02%

42.87 Fresh 7.44% 5.49% 22.58%

71.44 Refl 23.02% 22.58% 35.33%

Fresh Fresh Refl

14.28 Fresh 10.20% 7.76% 23.47%

42.87 Fresh 7.76% 5.67% 22.94%

71.44 Refl 23.47% 22.94% 35.84%

Refl Refl Refl

14.28 Refl 21.63% 20.93% 34.00%

42.87 Refl 20.93% 20.40% 34.42%

71.44 Refl 34.00% 34.42% 44.56%
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Table 10:  Fast Flux % Difference from DONJON(tr) for 3D Heterogeneous Case 

 

Table 11:  Thermal Flux % Difference from DONJON for 3D Heterogeneous Case 
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Table 12:  Thermal Flux % Difference from DONJON (tr) for 3D Heterogeneous Case 

 

Table 13:  Fission Rate Difference from DONJON for 3D Heterogeneous Case 
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Table 14:  Fission Rate Difference from DONJON(tr) for 3D Heterogeneous Case 

 

Table 15:  Results of Three-Dimensional, Heterogeneous Case 

 DRAGON DONJON DONJON (tr corrected) Units 

keff 0.722770 0.827437 0.715954 - 
ρ -383.6 -208.5 -396.7 mk 

∆ρ  175.0 -13.2 mk 
Max % Difference Φ1  44.6 4.1 % 
Max % Difference Φ2  7.4 3.6 % 

RMS Error Φ1  21.5 0.85 % 
RMS Error Φ2  4.8 1.0 % 

Max % Difference 
Fission Rate 

 4.8 3.3 
% 

Fission Rate RMS  1.26 0.85 % 
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175 mk difference in reactivity between models.  When applying the corrected diffusion 

coefficients, this large difference is reduced by over 90% to a 13 mk difference.  The RMS 

fast flux errors are reduced from 21% for the nominal case to less than 1%, while 

maximum fast flux percent difference is reduced from 44% to 4-5%.  The thermal flux 

and the fission rate error is only slightly improved. This is likely due to the small amount 

of fuel involved in the model as the fluxes of each model are normalized to match the 

total fission rate.  It is expected that in larger problems the fission rate error would be 

larger, and therefore the application of the transport correction to the diffusion 

coefficient will result in greater improvement.   
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4. CONCLUSIONS 

Calculations to confirm the improvement of flux and fission rate calculations by 

transport fitted diffusion coefficients in 1D and 2D by Patel (2010) were performed using 

the code pair DRAGON/DONJON.  Patel’s work was also extended to demonstrate the 

efficacy of transport corrected diffusion coefficient for three-dimensional models.  The 

advantage of this method of homogenization is its ease of application.  It was shown 

that diffusion coefficients derived using a simple 1D case with homogeneous mid-

burnup fuel can be applied to a number of different problems with differing geometries 

and significant flux gradients.  Though a simple 11 cell case is used to find diffusion 

coefficients, the results of 1-D, 2-D and 3-D heterogeneous models are improved 

significantly.  The cell averaged fluxes and keff for the 3-D case show excellent agreement, 

with a maximum difference in reactivity of 15 mk and a 4% maximum difference in local 

flux in comparison to 175 mk and 44% for the non-transport fitted diffusion coefficient 

DONJON case.   

This method of adjusting the diffusion coefficient based on transport results may 

be a means to achieve better agreement between transport codes and diffusion codes 

for heavy water type reactors.   

Future work of interest is to derive diffusion coefficients based on WIMS-AECL 

(Altiparmakov D. V., 2008) depletion data and apply them to RFSP (Rouben B. , 1995) 

calculations as per the industry standard methods to compare with known correction 

methods using multi-cell tables to simulate the reflector region (Altiparmakov & Shen, 
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2013).  The simplicity in the method lends itself to implementation in older codes where 

more complex improvement methods would be challenging to use. 
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APPENDIX A: MESH REFINEMENT STUDY 

X Mesh Convergence Study 

A convergence study is performed to the one-dimensional homogenized 

transport models that are used to both derive and test the diffusion coefficients.  The 

metric by which convergence is judged is keff.  The test case consists of a one-

dimensional model (like the 1-D homogeneous case used to derive the diffusion 

coefficients) with one fuel type (mid-burnup) and 11 lattice cells.  The model is prepared 

in the transport code DRAGON to evaluate at what point the mesh spacing is adequate.  

The meshes that are used in this study refer to the number of meshes in the x direction 

in a single lattice cell.  The results of the x-mesh convergence study are given in Figure 

33.   

 

Figure 33:  X Mesh Convergence Study in DRAGON 
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memory for larger 3D models. As the y dimension of the lattice cell is equal to the x-

dimension the number of meshes chosen for x are applied to y in all models.   

Z-Mesh Convergence Study 

A similar 1-D DRAGON model is set up based on the model used for the x-mesh 

study above with the exception that it is in the Y-Z plane.  The model contains 5 meshes 

for the y dimension of the lattice and the number of z-meshes in a single cell are varied.  

The difference in the z-mesh convergence study is that one lattice pitch in the y-

direction and six bundle lengths in the z-direction are used (49.53 cm each) with a 

vacuum boundary condition applied to the positive z axis and reflective boundary 

conditions elsewhere.  The resultant reactivity values are given in Figure 34 and show 

that the reactivity converges nicely with 20 meshes, similar to the x mesh study a 

compromise is made and 10 meshes are chosen.   

 

Figure 34:  Z-Mesh Convergence Study in DRAGON 
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