
Component-based Modeling for Android
Application Testing

by

Yatian Gao

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science (MSc)

in

Computer Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada

April 2017

Copyright c© Yatian Gao, 2017

Abstract

The rising popularity of Android and the component-based structure of its apps have

motivated the need for automated model-based testing techniques on Android plat-

form. Prior researches have primarily focused on the GUI-based model of Android

apps. GUI-based model only includes Activity targeting graphical user interfaces. It

neglects other components such as Service and Broadcast Receiver in the Android De-

velopment Framework. Although the GUI-based model testing has achieved a good

testing result targeting the graphical user interface, its effectiveness has been decreas-

ing as Android applications become more complex in both functional behaviors and

component-based structure. This phenomenon challenges the feasibility of currently

existing model-based testing on Android platform.

To address the challenges mentioned above, we propose a component-based ap-

proach of automated model generation for model-based testing on Android platform

in this thesis. First, we extend the state definition in the model. Activity, Service

and Broadcast Receiver are abstracted into the component-based model as states.

Newly introduced states can depict the behaviors of a given app in a larger scope

for better descriptive modeling and input generation. Second, we extend transition

definition, and also propose a static mapping transition builder for transition con-

struction across different kinds of components. Then the event sequence generator &

cluster is proposed to generate proper test sequences for testing. The event cluster

i

assists the input generation of the component-based model testing.

Also, we present CamDroid, a tool implementing the proposed approach for An-

droid apps testing. Lastly, our experiments have corroborated CamDroid’s ability

to build a model connecting components including Service, Activity and Broadcast

Receiver. It can overcome the new challenges of Android apps in model-based testing.

As a result, component-based model can achieve better performance in real model-

based testing in terms of code coverage, comparing to the traditional GUI-based

model testing.

ii

Acknowledgments

I have been very fortunate to finish my Master’s degree at the University of Ontario

Institute of Technology (UOIT). Over last two years, people around me provide both

academic intelligence and adequate learning resources to help me improve in academic

skills.

I would like to express my deep and sincere gratitude to my supervisor Prof.

Xiaodong Lin for his kindness, encouragement, continuing guidance, and support

during my research. His enthusiastic attitude towards life and academic research

always encourages me to be a better student.

iii

Contents

Abstract i

Acknowledgments iii

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Background & Motivation . 1
1.2 Study Necessity & Practicability Survey 5
1.3 Objectives & Methodology . 8

1.3.1 Objectives . 8
1.3.2 Methodology . 9

1.4 Contributions . 11
1.5 Thesis Organization . 12

2 Components & Testing Techniques on Android Platform 14
2.1 Android Development Framework & Components 15

2.1.1 Broadcast Receiver . 15
2.1.2 Service . 18
2.1.3 Activity . 20

2.2 Testing Techniques on Android Platform 21
2.2.1 Fuzz Testing & Systematic Testing 22
2.2.2 Model-based Testing . 23

2.3 Related Work . 26
2.3.1 Dependent Projects . 26
2.3.2 Related Project . 28

3 Challenges of Model-based Testing in Android System 29
3.1 Challenges Classification . 30

3.1.1 Program Entry & Exit Definition 30

iv

3.1.2 Silent Code Block & Transition Neglect 32
3.1.3 Isolated State . 33
3.1.4 Pseudo Graphical User Interface Interaction 34

3.2 Illustrative Application . 35
3.2.1 Overview of Illustrative Application 36
3.2.2 GUI-based Model of Illustrative Application 37
3.2.3 Component-based Model of Illustrative Application 38

4 Component-based Model Generation Approach 41
4.1 Overview of Approach . 42
4.2 Model State Constructor . 45

4.2.1 State & Transition Abstraction 48
4.2.2 Functional Behavior Analysis of States 51
4.2.3 Modeling Strategy . 56

4.3 Static-mapping Transition Builder . 62
4.3.1 Interface Selection . 63
4.3.2 Transition Construction . 64

4.4 Sequence Generation & Event Cluster 65
4.4.1 Sequence Generation . 65
4.4.2 Event Cluster . 68

5 Evaluation 71
5.1 Effectiveness Evaluation . 71

5.1.1 CamDroid Design . 72
5.1.2 Implementation Details . 73
5.1.3 Case Study . 74

5.2 Performance Evaluation . 79
5.2.1 Requirement of Evaluation . 79
5.2.2 Experiment . 80
5.2.3 Result Summary & Discussion 82

6 Conclusions & Future Work 85
6.1 Conclusion . 85
6.2 Limitations . 86

6.2.1 Component Absence . 86
6.2.2 System Event Generation . 87

6.3 Future Work . 88
6.3.1 Model Structure Amelioration 88
6.3.2 Test Generation Optimization 88
6.3.3 Application’s Security Testing 89

Bibliography 90

v

List of Figures

1.1 Challenges in Android application’s structure 3
1.2 Coverage expectation of Service & Broadcast Receiver’s importance. . 7
1.3 Finite state machine demo . 10

2.1 Android system architecture . 16
2.2 Components in Android framework 17
2.3 Life cycle of Broadcast Receiver . 17
2.4 Life cycle of Service. 19
2.5 Life cycle of Activity. 20
2.6 Overview of SimpleTipper(a) and its state graph(b). 25
2.7 Overview of TrimDroid. 26

3.1 Demonstration of auto-trigger. 31
3.2 Demonstration of transition trigger. 32
3.3 Demonstration of isolated state. 33
3.4 Demonstration of pseudo graphical user interface. 34
3.5 User interfaces of Gasflow. (a)Lock screen graphical user interface (b)

Notification graphical user interface (c) UI-State setting activity. . . . 36
3.6 GUI-based model of Gasflow. 37
3.7 Component-based model of illustrative Android application example. 39

4.1 Work flow of the proposed approach. 45
4.2 Work flow of model constructor. 47
4.3 Work flow of Broadcast Receiver modeling. 58
4.4 Work flow of Service modeling. 61
4.5 Work flow of static-mapping transition builder. 62
4.6 Work flow of sequence generator. 66
4.7 Notification graphical user interface interaction. 67
4.8 Music player control panel in notification bar. 68
4.9 Music player control panel in notification bar. 69

5.1 A high-level overview of CamDroid. 72
5.2 Implementation details of CamDroid. 74
5.3 Demonstration of CamDroid execution (1). 75

vi

5.4 Demonstration of CamDroid execution (2). 76
5.5 Broadcast Receiver abstracted states in Gasflow. 76
5.6 Service abstracted states in Gasflow. 77
5.7 Service & Activity abstracted states in Gasflow. 77
5.8 Transitions in Gasflow. 78
5.9 Prime paths in Gasflow. 78
5.10 Component-based model of Gasflow. 79

6.1 App components in Android system. 87

vii

List of Tables

2.1 Overview of existing test input generation tools for Android 27

4.1 Comparison between GUI-based model & component-based model . . 50
4.2 Commonly used system events & Broadcast Receivers 52
4.3 Interface monitored by static-mapping strategy 64

5.1 Survey of problems in apps before testing 81
5.2 Survey of problems in apps after testing 82
5.3 Experiment result summary . 83

6.1 Survey of automatic test sample generation tools 88

viii

Chapter 1

Introduction

1.1 Background & Motivation

With a market share of 86.2% in smartphone OS and a device shipment over 1.4

billion [1] [2], Android has become one of the dominant operating systems in the

world. Market domination is reflected in both hardware and software aspects.

As for hardware, Android is designed to run on various kinds of devices such

as vehicle navigation devices, video players, smart TVs, Android Wear[3] or smart

surveillance cameras. Aside from the dominant market share in the smart phone and

tablet industries, Android also shows its superiority in the niche market [4][5].

As for software, Google Play has more than 2.2 million apps available for download

which ranks first among all application stores such as AppleStore, Microsoft App

Store. This number will increase if third party app stores are included.

But Google cannot guarantee the quality and benignity because of the large

amount of the applications in GooglePlay. So it is critical to ensure that an An-

droid application is in high quality and functional benignity.

Although the Android apps are diverse in functions. All of the Android appli-

1

cations are relying on four components [6] structurally in the Android Development

Framework. Meanwhile all functions are implemented in the components indirectly.

The component consisted structure of Android apps enable to perform the model-

based testing to Android applications. To retrospect prior researches, almost all works

are using the GUI-based model while concentrating on graphical user interfaces and

imitating user inputs for model-based testing.

The GUI-based model has proven to be feasible and efficient in Android apps test-

ing in the past few years. This is because the Android apps structure is relative simple

years before. However, the GUI-based model testing’s effectiveness keeps decreasing

as the graphical interface and functional structure become more complex as the de-

velopment of Android system advances. As a summary, Android’s developments in

recent years has challenged the model-based testing in two aspects. The first way,

Android apps’ designs are more responsive and user-oriented. For example, the noti-

fication bar and lock screen are widely used nowadays. The second way, many new

events are introduced into Android systems while more sensors and external devices

are embedded into Android devices. It enriches the interactive patterns in Android

applications.

As for newly embedded hardware, dual cameras, finger print scanners and baro-

ceptor are becoming standard configurations in smart phones. The Changhong H2

smart phone even has a molecular spectrum sensor for future smart home markets.

It will be a trend to embed precise sensors into smart phone in the near future.

As for the software design, the app’s functional structure also has expanded rapidly

in recent years. Three typical phenomena can reflect the problem of structure com-

plexity in graphical user interfaces.

As shown in Figure 1.1 (a), the first phenomenon is the control race of the noti-

fication bar. Most apps push notification to users for user loyalty, while some others

2

Figure 1.1: Challenges in Android application’s structure

use it as a visual controller bar for background tasks. A notification bar can be fully

occupied within 5 minutes after powering on the smart phone, as based on our re-

peated experiments. However, this phenomenon cannot be described in GUI-based

model testing.

Figure 1.1 (b) shows the phenomenon of permission abuse. As developers want the

users to pay more attention to their app, they are likely to require more permissions

and monitor more system statuses for invocation anytime. These system event related

interactions are escaped from GUI-based model investigation.

Figure 1.1 (c) shows a lock screen occupied by Loklok [7]. The lock screen is

the most important interactive user interface nowadays and all apps want to occupy

this precious interactive entry. The user experience will become a disaster when the

lock screen is occupied by multiple apps. All these challenges are occurred in recent

years. Traditional GUI-based model testing cannot operate effectively when facing

3

these challenges. GUI-based model becomes insufficient in model-based testing. It

motivates the need to increase effectiveness and efficiency of model-based testing.

Aside from the graphical user interface itself, some new challenges are introduced

into the apps. Many new interactive patterns are shown in today’s Android applica-

tions.

The GUI-based model looks insufficient to deal with the new born challenges in

the past few years. As a result, the GUI-based model need to be ameliorated for more

challenging model-based testing tasks.

Although many efforts have been made to improve the performance of the GUI-

based model. The effectiveness of GUI-based model still cannot increase dramatically.

Based on our research, four challenges cannot be overcome by the GUI-based model.

These challenges may be the main factors which affects the GUI-based model’s effec-

tiveness.

They are summarized as follows:

• Firstly, the GUI-based model only includes data from graphical user interface

layouts and Activities, neglecting behaviors defined in Services and Broadcast

Receivers. It may cause defects of the model in describing behaviors in system

under test [9].

• Secondly, GUI-based model abstracts apps as single entry and graphical inter-

face driven finite state machine. Actually Android application can have more

than one program entry or exit. Although launcher Activity is always defined

as the only program entry in the GUI-based model. Normally some system or

custom event can also behave as program entries & exits. This single entry

abstraction sacrifices code coverage to seek the model’s simplicity in the early

Android versions, although it works well for early versions of Android.

4

• Thirdly, Activity can be started in Service or Broadcast Receiver. As a result,

some transitions defined in the GUI-based model cannot be fully covered in the

traditional ways. It may cause transition deficiency in the GUI-based model.

Furthermore, almost all previous researches are defining graphical user interface

transformation as transition in the GUI-based model. As a consequence, some

vital transitions may be neglected by this definition. This problem causes a se-

rious consequence that the constructed model cannot reflect the app’s behaviors

authentically.

• Fourthly, not all graphical user interface layouts are controlled by Activity.

Some graphical user interface layouts are controlled by Service or triggered by

Broadcast Receiver. Neglecting Service and Broadcast Receiver can cause an

increasing rate of invalid test inputs. It also leads to the decrease of code

coverage consequently.

These four challenges motivate us to increase the model-based testing effective-

ness as well as model quality through enhancing existing GUI-based model testing

techniques.

1.2 Study Necessity & Practicability Survey

Before introducing the proposed component-based model, we need to answer one

important question to prove the necessity of our study :

• Is it necessary to introduce Service and Broadcast Receiver related states into

the model?

To prove the necessity of extending the GUI-based model as well as answer the

question above, we designed two surveys to investigate the necessity for introducing

5

new components into the testing model. First survey is concentrating on the software

aspect. We downloaded 100 most popular applications from GooglePlay. Our surveys

are concentrating on the usage percentage of Activity, Service and Broadcast Receiver

in Android applications. These are the focus because different applications register

different number of various components. So we define ratios between number of

Activity and Service or Broadcast Receiver.

RatioService =
SumofServicesinApp

NumberofActivityinApp
(1.1)

RatioBroadcastReceiver =
SumofBroadcastreceiversinApp

NumberofActivityinApp
(1.2)

f(A, S,B, n) =
1

n

n∑
i=1

RatioService + RatioBroadcastReceiver (1.3)

From equation 1.1, we can see the ratio definition of Service while the equation

1.2 shows the ratio definition of Broadcast Receiver. If the ratio equals to zero, there

is no Service or Broadcast Receiver in the application. If the ratio equals 1, there are

the same numbers of Activity and Service or Broadcast Receiver inside an application.

Otherwise Service or Broadcast Receiver has a larger number than Activity in apps.

In simple terms, the larger the ratio, the more importance of other components in an

application. The equation 1.3 shows the average expectation of Service and Broadcast

Receiver’s importance, where A stands for the Activity number, S stands for the

Service number, B stands for the Broadcast Receiver number and n stands for the

total number of the components registered in the Application. Figure 1.2 shows

the coverage expectation of Service & Broadcast Receiver’s importance based on our

survey.

As we can see in figure 1.2, all applications register the Service component while

6

Figure 1.2: Coverage expectation of Service & Broadcast Receiver’s importance.

most of the applications register Broadcast Receiver. Meanwhile, around 10% of ap-

plications have more Service and Broadcast Receiver than Activity in number. Most

of them are popular and widely installed on Android devices worldwide. They are

the Opera browser[10], Google Message[11], Google Maps[12], Chrome browser[13],

UC browser[14], and clash of clans[15]. It can be evident by the survey that Service

and Broadcast Receiver are widely used in Android applications.

We can conclude the necessity of introducing Service and Broadcast Receiver into

the testing model based on the first survey. The survey provides an overall component

usage investigation of Android software. Then we need to investigate the interactive

patterns in Android hardware.

The second survey is concentrating on the hardware aspect. More interactive

modes aside from the graphical user interface interactions are flourishing nowadays.

7

As comparison of the concentration on the GUI-based model, Android devices had

reached 1.4 billion shipments in last year while Android has been installed in more

than 4000 different kinds of devices including smart phones, vehicle navigation de-

vices, video players and smart surveillance cameras. Inputs other than graphical in-

teraction are playing an important role in Android system. Meanwhile, these inputs

are out of description of the traditional GUI-based model. For instance, Pokemon

Go [55] needs geographic data as continuous user input. Rinna [56], developed by

Microsoft can provide natural language interactive interface, both in oral and written

format. All these functions are deeply Service and Broadcast Receiver related.

Based on discussion of different aspects in the Android environment, more and

more challenges are affecting the effectiveness of the GUI-based model. So we can

say that now is a proper time to extend the conventional GUI-based model by intro-

ducing Service and Broadcast Receiver into a new proposed component-based model

to describe the model’s behaviors more preciously and authentically. In doing so,

model-based testing of Android systems can be more effective and efficient.

1.3 Objectives & Methodology

1.3.1 Objectives

Our study has several objectives for the model-based testing optimization on Android

platforms.

The first objective of this thesis is to do a complete survey of new challenges in

GUI-based model testing techniques. So we can have a clearer view of challenges

occurring in Android systems in recent years.

The second objective of this thesis is to propose a component-based model testing

approach. It can replace the GUI-based model testing and become a new standard

8

of model-based testing on Android platform. This approach can overcome the chal-

lenging problems from the surveys above and achieve a better coverage in model

construction and testing.

The third objective of this thesis is to evaluate the proposed approach through

an implemented tool, CamDroid. Evaluation will show whether it can achieve a

better code coverage and succeed to trigger actions in components of Service and

Broadcast Receiver precisely with less input tests relatively. CamDroid also reduces

the test sequence number and avoids invalid test samples in the sequences. The

coverage expansion is important, as it not only helps to trigger more behaviors, but

also improves the test quality. The reduction strategy of input test generation enables

both to execute and traverse efficiently. Especially, we evaluate the component-based

model’s ability to overcome the new challenges in the currently existing model-based

testing.

1.3.2 Methodology

Thus all the model-based testing researches targeting the Android platform are ab-

stracting apps as finite state machine [8] for modeling, therefore the method of im-

proving the model-based testing effectiveness is laying under the finite state machine.

In our study, our methodology inherits the finite state machine organized model.

Figure 1.3 shows a finite state demo of a door. We can see the key factors of a

finite state machine are state, initial state, transition and conditions for each state.

The first two factors can be classified as state definition while the last two factors can

be classified as transition definition. State definition refers to the state abstraction

strategy. Transition definition refers to the state definition in the model of SUT [9].

As a summary, we change the state and transition definition to upgrade the model’s

state abstraction and structure.

9

Figure 1.3: Finite state machine demo

The component-based model is an abstraction of Android applications used to as-

sist input generation which includes Activity, Service, Broadcast Receiver and graph-

ical user interface.Unlike GUI-based model, mainly focused on Activity that is asso-

ciated with the user interface(UI). Component-based model is an implementation of

finite state machine which includes UI-state, BR-state, SER-state and UI-SER-state

as states. Transition is the conditional trigger to transit between different states

defined in component-based model.

In this thesis, we present CamDroid (Component-based Automated Model Test-

ing for AnDROID) , a fully automated tool for component-based model generation.

It is also an implementation of our proposed approach. Given an Android APK file,

CamDroid can first generate a GUI-related states automatically using methods from

[16][17]. While it can generate Service and Broadcast Receiver related states, it then

relates the component-based model using static-mapping transition builder. Finally,

generated Service or Broadcast Receiver related inputs can be combined with GUI

related inputs by event sequences generator & cluster. By using component-based

10

modeling strategy, CamDroid can achieve better code coverage with reasonable com-

putational resources. Comparing to a GUI-based model, the component-based model

can describe more behaviors in applications at a more authentic level.

1.4 Contributions

The contributions of this thesis can be summarized as following:

• Firstly, we proposed a new component-based model which integrates GUI lay-

out, Service, Broadcast Receiver as well as Activity into the model. It extends

model’s state definition in model-based testing. Newly introduced BR-state,

SER-state, UI-SER-state can describe behaviors in Service and Broadcast Re-

ceivers. This is achieved by static code analysis using both soot analysis and

smali code audit. The proposed state definition increase model’s description

ability comparing to traditional GUI-based model.

• Secondly, we proposed a static-mapping transition generation method which en-

ables to construct transitions across different states in component-based model.

The method extends transition definition based on GUI-based model and can

guarantee the integrity of model’s structure. It improves the authentication of

model’s structure in model-based testing.

• Thirdly, we proposed an event sequence generator & cluster method to generate

test sample sequences suitable for automatic testing. Event cluster is an opti-

mized test sequence generation method. Unlike traditional sequence generation

method, we generate GUI-related sequences and Service or Broadcast Receiver

related sequences respectively. Then combine them together through model’s

11

exploration. It can decrease the sequence number and increase execution effi-

ciency comparing to traditional sequence generation.

• Fourthly, the proposed approach can overcome the new challenges in the An-

droid system. Many intractable problems in GUI-based model such as Isolated

State, Pseudo Graphical User Interface Interaction are solved by proposed ap-

proach. Its model has a better performance in authentic description of app’s

behaviors.

• Finally, the proposed approach achieves a better code coverage than traditional

GUI-based testing techniques in the real model-based testing. It has been

proven by our experiments. Based on our evaluation, it achieves a code coverage

of 68.9% comparing to 31.4% of random testing and 44.8% of GUI-based model

testing.

1.5 Thesis Organization

This thesis consists of six chapters. Chapter 1 presents an introduction to this work

and the other chapters are organized as follows:

• Chapter 2: In this chapter, a number of testing techniques on Android systems

are surveyed. We also outline the features, advantages and disadvantages of dif-

ferent techniques. The components defined in Android development framework

are also surveyed in this chapter.

• Chapter 3: This chapter describes an detailed investigation of challenges in

GUI-based model testing techniques which can decrease the GUI-based model’s

effectiveness. Then we introduce an illustrative application released in Google-

12

Play as a motivating example to reiterate the limitation of GUI-based model

and demonstrate the superiority of the proposed component-based model.

• Chapter 4: This chapter depicts the component-based model generation ap-

proach in details.

• Chapter 5: This chapter evaluates the proposed approach in effectiveness and

performance.

• Chapter 6: This chapter briefly summarizes the key outcomes of our approach,

and offers some suggestions for future directions of this work.

13

Chapter 2

Components & Testing Techniques

on Android Platform

In this chapter, we discuss two pieces of background knowledge needed in our study.

For the first part, we introduce the commonly used Android application’s components

and their life cycles. They are Activity, Service & Broadcast Receiver. For the

second part, we introduce the concept of testing techniques & the existing model-

based testing tools.

Then we provide a brief overview of existing works on test input generation tech-

niques using random, model-based and systematic strategies. The tools can be classi-

fied into two categories. Our proposed approach and implementation have been built

on these dependent projects and tools. The related projects provide the fundamental

functions to our implementing tool. The related projects provide beneficial hints to

our approach.

14

2.1 Android Development Framework & Compo-

nents

In this section, we will focus on the life cycle and interaction pattern of components

in Android development framework. We concentrate on Activity, Service, Broadcast

Receiver in this section.

First of all, we need to have an overall view of the Android system architecture

firstly. Components are defined in the Java API framework as shown in figure 2.1.

Four components are key factors in the Android application development.

Application components are the essential building blocks of an Android app. Each

component is an entry point through which the system or a user can interact with

an application. As shown in figure 2.2, four components are defined into the Android

framework; They are Activity, Service, Broadcast Receiver and Content Provider.

Each type serves a distinct purpose and has a distinct life cycle that defines how the

component is created and destroyed.

2.1.1 Broadcast Receiver

Broadcast Receiver is a component in the Android system which can respond to broad-

casts from various sources. Broadcast Receiver is not well studied in the traditional

model-based testing techniques, because traditional model-based testing concentrates

on the GUI-based model. Although Broadcast Receiver is not a direct controller of

the graphic user interface, it still can control the application’s behaviors and state

transitions indirectly.

From figure 2.3, we can see the life cycle of the Broadcast Receiver. Broadcast

Receiver should be registered in the Android system before use. After registration,

the Broadcast Receiver is managed by the Android system. If the trigger condition

15

Figure 2.1: Android system architecture

of Broadcast Receiver is met at a certain time point, the function onReceive() will

be invoked and executed. After finishing execution the Broadcast Receiver will stay

16

Figure 2.2: Components in Android framework

Figure 2.3: Life cycle of Broadcast Receiver

in the state of standby. The method will be invoked again if the trigger condition is

being met.

Although the life cycle of Broadcast Receiver is relatively simple. There are still

various of methods in registration and execution. There are two type of registration

methods in Broadcast Receiver: Static & dynamic registration. Static registration

registers Broadcast Receiver in the AndroidManifest file and invokes itself when the

17

execution condition has been met. Because of the mechanism of static registration,

static registered Broadcast Receiver can not be included into the call-graph of a single

entry GUI-based model. Dynamic registration can register certain Broadcast Receiver

everywhere in the application.

Aside from the registration methods, Broadcast Receiver can be divided into sys-

tem Broadcast Receiver, custom Broadcast Receiver and local Broadcast Receiver.

That means Broadcast Receiver not only behaves as program entry, it can also ex-

ecute certain behaviors. More importantly, the Broadcast Receiver can be used as

transition trigger in model-based testing. Due to the flexibility of the Broadcast

Receiver’s usages, Broadcast Receiver is versatile and plays roles in many apps’ de-

sign demands. In this sense, Broadcast Receiver plays a critical role in the Android

application model.

2.1.2 Service

Service is a general-purpose entry point for keeping an app running in the background

for all kinds of reasons. It is a component that runs in the background to perform

long-running operations or to perform work for remote processes, however , Service

can interact with users graphically. First, Service can partake some time consuming

tasks such as Internet connection through binding with a Activity. Second, Service

can control graphic user interface directly as well.

Figure 2.4 shows the life cycle of Service. From the figure we can see that Service

can be categorized as unbounded service and bounded service. There are three critical

methods in the life cycle. They are onCreate(), onStartCommand() and onDestory().

When a service is executed the first time, the onCreate() will be invoked. Then every

time the Service is invoked, the onStartCommand() will be loaded and executed.

When all the tasks have been executed, the onDestroy() function will be executed to

18

Figure 2.4: Life cycle of Service.

destroy the Service to end the life cycle.

Service’s life cycle is more complex than Broadcast Receiver’s. Meanwhile Ser-

vice’s life cycle is similar with the life cycle of Activity. Compared to the functions

defined in Broadcast Receiver, more functions can be accomplished by Service.

First, Service can control graphical user interfaces through the notification bar.

Alternatively, Service can control graphical user interface through message interac-

tion.

Second, Service can partake tasks of the graphical user interface through the

Service connection mechanism. Normally, Service is registered statically in the appli-

19

cation.

2.1.3 Activity

Activity is a component which deals with the behaviors in the graphical user interface.

It is usually abstracted as a UI-state in the GUI-based model.

Figure 2.5: Life cycle of Activity.

20

From the figure 2.5 we can see the different states in the life cycle of Activity.

They are onCreate(), onStart(), onResume(), onPause(), onStop(), onDestroy and

onRestart(). OnCreate() is the entry of the activity’s life cycle. This method will be

invoked when the Activity is initialized. Some initialization tasks will be executed

such as layout load and Service binding. The function onStart() will be invoked

when the Activity becomes visible in the application. The Activity will pause if

the onPause() function has been triggered, while onResume() is triggered when the

activity goes back to work. The onStop() function can be triggered when the Activity

becomes invisible. The Activity can restart again from the stop state. Finally, the

Activity can be eliminated after onDestroy() is triggered.

Most GUI-based model’s status are abstracting from the Activity, but still there

are more works to be done to ameliorate the traditional GUI-based model. All the

components introduced above should also be included into the component-based

model using the model-based testing techniques, but it is currently missing from

existing model-based testing for Android applications.

After introducing the commonly used components in Android development frame-

work, we introduce the testing techniques on the Android platform in next section.

2.2 Testing Techniques on Android Platform

Testing is an indispensable process for all application development. However, testing

is labor-intensive and costs a lot of resources. It is meaningful if some software testing

tools can reduce resource cost and improve testing effectiveness. This effort in the An-

droid platform has started since the release of the Android system. Testing practices

on the Android platform focus on three categories. They are fuzz testing, systematic

testing and model-based testing. First we introduce the fuzz testing and systematic

21

testing briefly, then we will concentrate on the model-based testing’s development on

Android platform.

2.2.1 Fuzz Testing & Systematic Testing

Fuzz testing is a software testing technique which obeys random input generation

strategy. Fuzz testing is often automated or semi-automated. Implemented tools of

fuzz testing usually provide invalid, unexpected and random input to the computer

program. The program is then monitored by the system to find bugs such as crashes,

potential memory leaks and logic bombs[22][24]. Many projects are also applying the

fuzz test to the Android platform. The fuzz testing has an obvious advantage, the

technique does not need to consider the interface structure of the program. The fuzz

testing is highly efficient in input generation. At the same time fuzz testing is not

efficient enough to generate precise test inputs to achieve a satisfactory code coverage.

Fuzz testing is now widely used in application testing. More and more tasks should

be handled by automated tools in a systematic way.

Systematic testing is a testing technique which applies the systematic method such

as call path resolver to test all possible methods in the application. The goal is to

test the software against a variety inputs in order to find as many defects as possible.

The advantage of the systematic testing is reducing redundancy in input generation.

It can also reduce the numbers of the test samples compared to the random strategy

of testing. The problem of systematic testing is the path explosion when the control

flow in the application becomes too complex to explore.

22

2.2.2 Model-based Testing

Model-based testing (MBT) is a light-weight formal method which uses models of

software systems for derivation of test suites [18]. Models can be used to represent

the desired behavior of a System Under Test (SUT), or to represent testing strategies

and a test environment. Model-based input generation is an approach in which a

model of the app under test is used as a reference to generate test cases. The model is

abstracted from the behaviors of the app and possible sequences of transitions between

states inside the SUT [9]. As for the structure and representation of the model, the

model-based input generation can be classified into three categories. They are the

axiomatic approach, the Finite State Machine approach and the labeled transition

system approach.

The axiomatic approach of model-based testing are based on logic calculus. La-

beled transition systems (LTS) are common for describing the operational semantics

of process algebra [18]. These two approaches do not apply to the testing of the An-

droid system. The finite state machine approach is commonly used in model-based

testing of the Android platform. As a result, the finite state machine represented

model-based approach is pivotal in the Android system.

The finite state machine represented model in model-based testing is used in

different kinds of software before the release of Android system. [38] applies model-

based testing to construct a graphical user interface model towards desktop software.

[37] [39] studies the model-based testing on web applications. Arilo C [41] and Mark

[44] presents a detailed survey on model-based testing before the release of Android

system in 2007.

After the release of iOS and Android system in November 2007, researchers paid

more and more attention to model-based testing on mobile platforms. The iCrawler

[40] is a reverse-engineering tool for iOS mobile applications which uses a state-

23

machine model. A.Jaaskelainen [43] also studies graphical user interface modeling

in the Symbian system.

The model-based approach is also widely studied on the Android system. There

are four development stages of model-based testing on Android platforms.

At the beginning, model-based testing techniques are transplanted into the An-

droid system. Takala [42] studies the model-based testing application on the Android

system and summarizes their experiences in model-based graphical user interface

testing of Android applications. At this stage, model-based testing is manually per-

formed.

At the second stage, researchers focus on the automatic GUI-based model testing.

The most convenient method is to transplant the existing tools into Android systems.

Amalfitano [45] ameliorates the GUI Ripping tool and presents Android Ripper as

an automatic model-based testing tool. MobiGUITAR [23] is another model-based

testing tool on the Android system.

At the third stage, Wei Yang [16] proposes a grey-box approach for automated

GUI-model generation of mobile applications. It is a fully automated approach of

model-based testing on the Android platform. The proposed tool achieves a better

performance than traditional model-based GUI testing.

Figure 2.6 shows an illustrative example and its GUI-based model in [16]. From

figure 2.6, we can see different graphical user interfaces are abstracted as states in

the GUI-based model. The elements of user interface and registered event listeners

are included into states.

The GUI-based model testing has achieved a satisfactory performance in the An-

droid system in the early years, but it still has some problems in dealing with complex

graphical user interfaces. In the fourth stage, researchers combine the model-based

testing and combinatorial testing to improve the test effectiveness. M[agi]C [46] is

24

Figure 2.6: Overview of SimpleTipper(a) and its state graph(b).

a tool combines the model-based testing and combinatorial testing to get a better

result. TrimDroid is another tool which combines the model-based testing and com-

binatorial testing[57]. Moreover, TrimDroid is effective in complex graphical user

interface processing.

The GUI-based model also plays an important role in dynamic model exploration.

A3E-Depth-first[47] is an implementing tool which searches the dynamic model in

depth. SwiftHand [26] is an automated Android GUI testing tool. The tool uses

machine learning to learn a model of the target app during testing, then uses the

learned model to generate user inputs that visit unexplored states of the app, and

uses the execution of the app on the generated inputs to refine the model. PUMA

[27] is a programmable UI-Automation Framework for dynamic app model analysis.

From the survey of model-based testing, the model-based testing is developing to

meet the newly introduced testing requirements. It is still insufficient to perform satis-

factory model-based testing. New method of model-based testing should be proposed

for better testing effectiveness.

25

2.3 Related Work

After knowing the basic concepts of components and testing techniques on Android

platform. We need to know some related projects in input generation techniques

for Android application testing. Related work can be separated into two categories:

dependent projects and related input generation projects following different strategies.

2.3.1 Dependent Projects

CamDroid is developed on a basis of other projects. They are ClassyShark[19],

Soot[20] and TrimDroid[17].

ClassyShark is an Android executable browser. It can extract meta data and

perform navigation and search functions. In CamDroid, we use ClassyShark to extract

meta data for model’s blue print construction.

Soot is a tool used to analyze, instrument and visualize Java code. In CamDroid,

Soot is used to perform the static analysis and instrument functions.

TrimDroid is a tool for automated input generation using GUI-based model testing

technique.

Figure 2.7: Overview of TrimDroid.

26

Table 2.1: Overview of existing test input generation tools for Android

App Name Ava Instrument Events Exploration Source Testing
- - Plat App GUI Sys Strategy Code Strategy

Monkey[35] ! # # ! # Random # Black-box

Dynodroid[33] ! ! # ! ! Random # Black-box

DroidFuzzer[48] ! # # # # Random # Black-box

IntentFuzzer[49] ! # # # # Random # White-box

Null-IF[50] ! # # # # Random # Black-box

GUIRipper[38] ! # ! ! # Model-based # Black-box

Android Ripper[45] ! # ! ! # Model-based # Black-box

ORBIT[16] # # # ! # Model-based ! Grey-box

MobiGUITAR[23] ! # ! ! # Model-based # Black-box

M[agi]C[46] ! # ! ! # Model-based # Black-box

TrimDroid[17] ! # ! ! # Model-based # Black-box

A3E-Depth[51] ! # ! ! # Model-based # Black-box

SwiftHand[26] ! # ! ! # Model-based # Black-box

PUMA[27] ! # ! ! # Model-based # Black-box

A3E-Targeted[51] # # ! ! # Systematic # Grey-box

EvoDroid[52] # # ! ! # Systematic # White-box

ACTEve[53] ! ! ! ! ! Systematic ! White-box

JPF-Android[54] ! # # ! # Systematic ! White-box

From figure 2.7, we can see that TrimDroid is using model-based strategy for

input generation. TrimDroid extracts both interface model and action model at the

same time, then TrimDroid combines them together to find the prime paths in the

application. Next, it traverses the prime paths to generate test case combinations.

TrimDroid was released in June 2016.

From figure 2.7, we can see that TrimDroid is using a model-based strategy for

input generation. TrimDroid extracts both the interface model and the action model

at the same time. TrimDroid then combines them together to find the prime path

in application. Next, it traverses the possible combination to generate test case

combinations. TrimDroid was released in June 2016, and it is one of most updated

27

tools in test input generation research. TrimDroid is used to generate GUI related test

samples so that CamDroid can concentrate on the model extension and amelioration.

In this thesis, we assume that events generated by TrimDroid are complete and non

redundant.

In summary, the dependent projects are used to preform some basic functions,

to enable CamDroid to concentrate on the model extension, amelioration, as well as

input sequence generation.

2.3.2 Related Project

Followed by the dependent projects, we discuss related research of testing on the

mobile platform to get a beneficial hint to CamDroid.

Table 2.1 shows the existing test generation tools on Android platform. We can

see the model-based testing is widely applied in the Android test sample generation

tools. However, most tools in the table are concentrating on the GUI-based model

and neglecting to the system events.

28

Chapter 3

Challenges of Model-based Testing

in Android System

Chapter 1 summarizes four challenging problems to be solved when introducing the

component-based testing approach. The four challenges are summarized below:

• Prior model-based testing techniques do not include Service and Broadcast Re-

ceiver.

• All related works abstract application’s model as solo entry finite state machine.

Therefore it cannot describe the apps’ behaviors properly.

• GUI-based model neglects transitions defined in Service and Broadcast Receiver.

This phenomenon decreases the authentication level of generated model.

• Broadcast Receiver and Service controlled graphical user interface are neglected

in the GUI-based model, this decreases the code coverage theoretically.

In chapter 3, we mainly investigate the challenges of model-based testing in the

Android platform and summarize how many situations we need to deal with for better

29

testing in the component-based model. After challenges are investigated in the An-

droid system, we also present an illustrative application for the proposed methodology

demonstration.

3.1 Challenges Classification

In this section, the challenges of the GUI-based model in the Android system should

be clarified. These challenges decrease the effectiveness of the GUI-based model

testing. It is also a source of design objectives for CamDroid.

To upgrade the GUI-based model as a component-based model, we classify the

challenges into four categories. They are summarized as four specific dilemmas in

model-based testing on updated Android system nowadays.

3.1.1 Program Entry & Exit Definition

Program entry & exit definition is caused by the second problem proposed in the in-

troduction. Normally, the GUI-based model takes apps as graphical interface driven

finite state machine in which the launcher activity is the only program entry. Mean-

while, the applications are assumed to exit by user’s command of double back button

click in GUI-based model.

In reality, the Android apps have multiple entries and exits. For a better user

experience, most apps register Broadcast Receivers to monitor different kinds of events

received in the system. When certain events are occurring, the app will invoke itself

and show proper graphical user interface to users. That means apps may have multiple

program entries other than a solo entry. As shown in figure 3.1 (b) , the conversation

activity will be triggered automatically when an incoming message is received even if

the user does not open Whatsup[28]. At the same time, most modern apps have the

30

Figure 3.1: Demonstration of auto-trigger.

mechanism of auto-exit when the battery is low or Internet is not available. Owing

to these designs, users are able to have multiple ways to interact with applications.

Alternatively, some malicious behaviors may also hide in these components’ code.

So we need to cover this situation in our model. Ransomwares often uses this mech-

anism to avoid detection and to occupy resources. As shown in figure 3.1 (a), Simple

Locker monitors boot event to occupy the screen to perform blackmail to the users.

At the same time, most program exit in the GUI-based model is triggered by

clicking the back button, but the apps can exit by monitoring and receiving events

from outside. For example, many applications exit automatically when the battery

is low or the internet connectivity is unavailable.

As shown in the demonstrations above, the app’s program entry and exit is out of

the description of a conventional GUI-based model. This challenge needs to be solved

for a better testing effectiveness.

31

3.1.2 Silent Code Block & Transition Neglect

Figure 3.2: Demonstration of transition trigger.

The Android development framework provides two mechanisms of component reg-

istration. They are static registration and dynamic registration. Some behaviors de-

fined in the dynamic registered components keep silent in most situations, but it will

be registered and executed when needed.

This phenomenon is usually important functionally and enables triggering tran-

sitions in GUI-based model. Figure 3.2(a) shows that the music player pauses the

music automatically when the headphone is unplugged. As for figure 3.2 (b), Google

Drive [29] will stop downloading if the network connectivity is unavailable. These

two examples demonstrate that Broadcast Receiver can intervene in the Activity’s

behaviors as well as the graphical user interface display.

32

This mechanism increases the flexibility of Android apps functionally. Meanwhile

the transitions and code blocks in Service and Broadcast Receiver are neglected in

the conventional GUI-based model. This defect may cause the invalidity of test input

samples and isolated state. More importantly, some hidden behaviors in silent code

blocks will not be included GUI-based model and stay unnoticed in the testing stage.

In this section, we can see the traditional transition definition cannot be fully

covered in the model. To overcome this problem, more programming interfaces need

to be included into the model as transitions.

3.1.3 Isolated State

Figure 3.3: Demonstration of isolated state.

”Isolated states” is a state defined in the GUI-based model , but can not be

tested by the generated test samples from the GUI-based model because transitions

connected to the state are neglected.

As shown in figure 3.3 (a), lock screen is usually a typical example of an isolated

33

state. The lock screen is an Activity which can be abstracted as state in the GUI-

based model. But the state is invoked by Broadcast Receiver and can define its

transition into the broadcast. Thus the state can not be tested even if test samples

are generated for them.

As shown in figure 3.3 (b) the graphical user interface may be controlled by Ac-

tivity. Because of its location, it also cannot be triggered even it is in GUI-based

model.

Figure 3.3 (c) shows another example of isolated state. Sometimes apps register

a Broadcast Receiver for a widget update. The widget is normally a graphical user

interface, but it cannot be reached by the GUI-based model.

From this phenomenon, the traditional model strategy cannot even construct a

fully reachable GUI-based model definitely when facing the new challenges in appli-

cation’s structure. This challenge will be overcome and addressed in our study.

3.1.4 Pseudo Graphical User Interface Interaction

Figure 3.4: Demonstration of pseudo graphical user interface.

34

In most apps, developers use Service to deal with time-consuming tasks, but

users always think that they are interacting with Activity. However, users cannot

distinguish which component is interacted with when they interact with the graphical

user interface. From GUI-based perspective, the Service handled tasks and Activity

handled tasks can be seen as equivalent, but the Service controlled graphical user

interface can change the graphical state, but the transition is not in GUI-based model.

The Service or Broadcast Receiver controlled graphical user interfaces are defined as

a pseudo graphical user interface in our study.

Figure 3.4 demonstrates the situation of pseudo graphical user interface interac-

tion. This situation is designed to avoid ANR [36]. Some tasks need some time to

be done, such as visiting a remote server or graphics processing. The apps will be

terminated if the apps are slow in response. To avoid this kind of phenomenon, some

time consuming tasks will be handled by a service. This design releases the burden

of Activity in execution while increasing the difficulty in testing. Manual testing and

the GUI-based model cannot distinguish whether the response is from Service or the

graphical user interface itself.

This situation is common in Android application testing and also out of the GUI-

based model’s scope.

The four challenges in Android apps decrease effectiveness of the GUI-based model

testing largely. Overcoming these challenges is the first step of successful model-based

testing on the Android platform.

3.2 Illustrative Application

As a demonstration of the proposed method, we use an illustrative application for

showing the methodology.

35

3.2.1 Overview of Illustrative Application

Gasflow [30] is a practical tool released in GooglePlay, used to monitor current net-

work connectivity and speed. The network speed is shown in status bar as well as in

the notification bar and lock screen. Gasflow will cancel network speed display if net-

work connectivity is disabled. We first analyze the functionality in the app towards

different components. Then, we analyze the GUI-based model of Gasflow. Finally we

compare the component-based model with the GUI-based model for evaluation.

Figure 3.5: User interfaces of Gasflow. (a)Lock screen graphical user interface (b)
Notification graphical user interface (c) UI-State setting activity.

Gasflow has six components in total. There are four Broadcast Receivers , one

Activity and one Service. Broadcast Receivers can be divided into two groups. Rec-

Screen is a dynamic registered broadcast receiver which monitors the actions of screen

on, screen off, network connectivity status change and airplane mode change. This

Broadcast Receiver will control the notification display through monitoring target

actions. Battery receiver is a static registered Broadcast Receiver which monitors the

36

battery status. When the battery is low , it terminates background Service automat-

ically. It will start the background service when the battery status is normal. Boot

receiver is responsible for monitoring device boot action. When the boot completes,

Gasflow will invoke the background service automatically. Power Receiver monitors

the energy plan of the device. When the device is in battery saver mode, it ter-

minates the background Service and invokes the Service when the device quits the

battery saver mode.

Traffic Service is a Service used to construct the notification and it also takes

the functions as an Activity extension. Setting Activity is a user interface used to

configure the functions in the app.

Figure 3.5 shows the graphical user interface of Gasflow. There are three graphical

user interfaces in Gasflow while only one Activity is registered in the app.

3.2.2 GUI-based Model of Illustrative Application

Based on the description of the application, there is only one state in the GUI-based

model.

Figure 3.6: GUI-based model of Gasflow.

In the GUI-based model, Setting Activity will be abstracted as a UI-state which

can receive various kinds of inputs for testing. The GUI based model will abstract

Gasflow as a solo graphical user interface app under test. Actually, Gasflow has more

functions beyond the description of GUI-based model.

37

First, the factors which can affect the application’s behaviors such as lock screen,

network connectivity and battery status will not be described in the GUI-based

model. Moreover, actions triggered by dynamic registered Broadcast Receiver and

corresponding state change will not be included in the GUI-based model.

Second, traffic Service is both invoked in notification controller and Setting Activ-

ity’s extender which helps to deal with tasks defined in Activity. This collaborative

relationship also can not be described in the GUI-based model.

As summarized above, the GUI-based model has disadvantages in application’s

behaviors description. This if the application is highly relying on Services and Broad-

cast Receivers functionally. Specifically speaking, disadvantages in Gasflow can be

stated as four problems in GUI-based model. These problems are isolated state,

entry neglect, transition deficiency and state abstraction inaccuracy. Isolated state

and transition & states deficiency are similar to sides of a coin. The deficiency of

transition causes the isolated state. Unlike most GUI-based model, we define apps as

programs with multiple entries to optimize the problem of program entry neglect.

3.2.3 Component-based Model of Illustrative Application

To overcome the problems in the GUI-based model, we introduce a novel component-

based model for Android system. Next, we will use the proposed method to depict the

component-based model of Gasflow. In figure 3.7, there are 5 sequences & 8 states

in the component-based model which covers six different components. Comparing

the GUI-based model, six components have been included into the component-based

model.

From figure 3.7, we can see six components are abstracted as eight states. Battery

receiver, Power receiver, Boot receiver and Screen receiver are abstracted as four BR-

states. Traffic service and Setting activity are abstracted as SER-state and UI-state

38

Figure 3.7: Component-based model of illustrative Android application example.

respectively. Furthermore, traffic service and setting activity are combined as SER-

UI-state.

In regards to completeness, the component-based model can cover six components

of the illustrative example while GUI-based model can cover only one of them. The

proposed method achieves a 500% increase in component code coverage. At the same

time, three more program entries have been detected by our proposed method which

is an 300% increasing in number of program entry detection. Then we can conclude

that the proposed model has a better coverage in testing theoretically.

As for the efficiency of the proposed solution, the component-based model in-

creases the complexity at a reasonable cost of computational resources. Although

the structure of the model expands based on the GUI-based model, It still remains

feasible in model-based analysis.

39

Based on the description of the illustrative example, some advantage of the pro-

posed approach has been revealed. For instance, the component-based model can

describe Service and Broadcast Receiver related behaviors in apps. Furthermore,

the proposed approach enables to build transitions across different components. The

component-based approach can also combine UI-state,BR-state, SER-state and UI-

SER-state together as component-based model for assistance of input generation to

solve the problem of isolated state, transition deficiency and program entry neglect.

The illustrative example is also used to test and demonstrate the functionality of

the proposed approach.

40

Chapter 4

Component-based Model

Generation Approach

In this chapter, we will explicate the component-based model generation approach

in details. First we give an overview of the proposed component-based approach &

provide a clear view of our approach blueprint. Then we introduce functional modules

in this approach individually.

They are model constructor, static-mapping transition builder and event sequence

generator & cluster. Model constructor explains how we select the states & abstract

the states. State-mapping transition builder enables to build transitions across dif-

ferent kinds of life cycle & components. Event sequence generator translates the

gathered model data to event sequences for input sequences generation. Event clus-

ter is designed to eliminate the redundancy in the generated sequences.

Finally the input sequences will be translated into script code to control the au-

tomated model-based testing. We will explicate our approach step by step.

41

4.1 Overview of Approach

Algorithm 1 depicts a high level overview of the proposed approach, which is composed

of three processing modules: model constructor, static-mapping transition builder,

event sequences generator & Cluster.

Algorithm 4.1 Approach Overview Algorithm

Require:
The set of System Under Test, Si;

Ensure:
The set of Generated Test Input , Tm;

1: for i = 0 to n do
2: BR-state b = BR-state Model Constructor(Si);
3: SER-state s = SER-state model Constructor(Si);
4: UI-state u,UI-SER-state us = GUI-based model Constructor(Si);
5: Transition t = Transition Constructor(Si);
6: CBM cbm = StaticMappingTransitionBuilder(b,s,u,us,t);
7: Tm = EventSeqenceGeneratorCluster(cbm);
8: return Tm;
9: end for

There are two questions the approach needs to answer before extending the GUI-

based model to component-based model. Normally the extension of the model will

increase the complexity of states in the finite state machine presented component-

based model. Can we include Service & Broadcast Receivers into the model with

less increase in state’s category number with better code and function coverage?

Furthermore, the increased states could cause the explosive expansion of the model

structurally. Can we amalgamate the Service and Broadcast Receiver related states

with GUI related states with minor change in model structure? How to answer

these two questions determines whether this approach can be executed functionally

correctly.

As components are close related and may be executed simultaneously. If 4 com-

ponents are introduced in the proposed model, C4
4+C3

4+C2
4+C1

4=15 states will

42

be defined as presentation of these 4 components theoretically. From the survey to-

wards the components, Content Provider is feeble in usage frequency and functional

importance compared to Activity, Service and Broadcast Receiver. Hence the pro-

posed component-based model are concentrating on the components except Content

Provider. There still has C3
3+C2

3+C1
3=7 states need to be included into the model.

Owing to the execution brevity, all actions in Broadcast Receiver are accomplished

instantaneously. We assume that Broadcast Receiver is abstracted as independent

state and cannot overlap with other component’s execution.

As a result, most behaviors can be described in apps with 4 states in the component-

based model which can cover Activity, Service, Broadcast Receiver in Android De-

velopment Framework. The definition of the 4 states are listed as below

• UI-State is abstracted from graphical user interface layout and Activity in

Android applications. This is also the main receiver for user’s gesture input.

• SER-State is abstracted from Service. This state can be GUI controller, tran-

sition trigger and activity extension partaking to time consuming tasks. In

most cases, Service related tasks are controlled by graphical user interface then

abstracted as UI-SER-state below.

• UI-SER-State is a combination of UI-State and SER-State. This is used

to represent the situations when an application is both active in foreground

graphically and background computationally.

• BR-State is an abstraction of Broadcast Receiver. Unlike the three persistent

states above, BR-State is non persistent. BR-State is commonly used as a

program entry and a transition trigger. Its execution time can be neglected in

the component-based model.

43

Besides states in finite state machine presented model, transition plays a key role

in the model. GUI-based transitions are relying on the convert between graphical

user interfaces. But in the component-based model, transitions can not be defined

within the scope of the graphical user interface. Transitions must describe relations

across different components in applications. To deal with this issue we extend the

definition of transitions: Transitions are conditions which can be triggered to transit

between states declared above. As a solution to extract all transitions in the model,

Static-mapping Transition Builder is being proposed.

Static-mapping Transition Builder is responsible for transition data extraction to

connect all states in component-based model. This proposed transition builder is

implemented in three steps. First we detect all possible interfaces which can trigger

transitions in the model. Second, initiative state, destination state and conditions

will be identified for each transition by call graph iteration or smali code analysis.

Finally the transitions will be combined into the model.

After processing by model constructor and static-mapping transition builder,

component-based model is built. Event sequences will be generated based on model

if following the conventional GUI-based model. However, event sequences will be

redundant in volume following the traditional event sequence generation strategy in

component-based model.

Event sequence generator & cluster is proposed to combine the BR-state, SER-

state related inputs test with GUI-related event sequences for new testing sequence

generation. In the proposed approach, input for GUI-related event, Service related

event and Broadcast Receiver related events are generated separately. Then all the

generated inputs are arranged into sequences in component-based model testing.

Algorithm 4.1 shows the execution process of the component-based model testing

approach. First, the state constructor abstract the states from the application under

44

Figure 4.1: Work flow of the proposed approach.

test using static code analysis. Second, the transitions are constructed by static code

analysis. Third, the sequence generator & cluster combines the states and transitions

together and generates the test sample sequences which can be fed to automatic

testing framework. Figure 4.1 show the work flow of the proposed approach.

This is the overview of the component-based approach for automated model gen-

eration of Android application. Then we will describe the mechanism inside the

proposed approach in a more detailed way.

4.2 Model State Constructor

State abstraction and construction is pivotal in model generation. Well organized

state abstraction is the first step towards a successful model generation in model-

based testing. This approach uses finite state machine (FSM) as presentation of

component-based model which is same as previous researches. Characteristically,

there are four states included into the model covering behaviors in graphical layout,

Activity, Service and Broadcast Receiver.

As mentioned above, the model needs to overcome problems of description redun-

dancy and structure complexity. To solve these problems, the proposed approach is

concentrating on the most influential functions of components into the model, then

abstracting them separately.

45

This section will describe the component-based approach model abstraction method

as following steps. First, we introduce the abstraction of proposed states. Then we

investigate and concentrate on the most influential behaviors in applications of com-

ponents. Finally we use our illustrative application to show the proposed model as

a demonstration. This thesis focuses on the extension of model and concentrates on

the BR-state, SER-state and UI-SER-state.

Figure 4.2 shows the work flow of model’s state constructor. The work flow can be

divided into three concurrent processes. For the first process, ClassyShark extracts

data in Android Manifest file and arrange the state’s meta data as a reference. The

meta data contains the static registered components in Android application. For the

second process, apktool reverse engineers the SUT and outputs the smali code for

static code analysis. Meanwhile we use soot to locate the critical program interface

and extract the transitions in the SUT. For the third process, we also uses ClassyShark

to get the graphical user interface. The graphical user interfaces can be classified as

Activity related graphical user interfaces and Service related graphical user interfaces.

Then Activity related graphical user interface data and Service related graphical user

interface data are generated as output.

After having all extracted data, we can use meta data as a blueprint to generate

all static registered states’ code data. Then we can generate the dynamic registered

states’ code data by static code analysis. Then we related the code data with the

graphical user interface data together. They will be constructed as final generated

states in the component-based model. This is the work flow of the model constructor.

Then we will explicate the state & transition abstraction structure.

46

Figure 4.2: Work flow of model constructor.

47

4.2.1 State & Transition Abstraction

This section introduces abstraction of states and transitions in the component-based

model.

BR-state is an abstracted state of Broadcast Receiver. Thus, property of BR-state

is relying on the life cycle of the Broadcast Receiver. In our model, BR-state is defined

as a entry state or transition trigger. Its life cycle begins when a broadcast invokes

the component and ends when all commands in the onReceive function have been

executed. There is a 10 seconds timeout limitation, so we define it as an instantaneous

state and agree on that BR-state does not overlap with UI-state, SER-state and UI-

SER-State. To construct this kind of state we extract the declarations and targeted

trigger event from the AndroidManifest.xml file then detect out directed transitions by

static code analysis. As for dynamic registered Broadcast Receiver, the registration

programming interfaces will be scanned across all the source code of decompiled

Android applications instead of extracting from AndroidManifest.xml file.

BR-State model provides information about both system or custom broadcast

triggered behaviors. Normally there is no visible user interfaces in BR-State model.

At same time BR-State is mainly used as a entry to receive the system events and

transition triggers in application. Its property enables BR-state to be a controller

over different states. In proposed approach, the model represents the BR-State as a

tuple (B,E,F,T)

• B is a finite, non-empty set of Broadcast Receiver registered in a applica-

tion(State Name).

• E is a finite, non-empty set of system or custom events which can trigger the

Broadcast Receiver(Transition Trigger,e.g sendbroadcast).

• F is a finite set of state names whose registered actions can invoke this state

48

(Source state, actions).

• T is a finite set of state names can be invoked by the BR-state (Destination

State).

UI-state is an abstraction of graphical user interface in an Android application.

UI-state always shows up automatically and receives user′s gestures or value inputs

after invocation of the launcher Activity. In the proposed approach, methodology

of [16] has been applied to assist the UI-state modeling. Finally the approach uses

static-mapping transition builder to collate the UI-state with BR-state,SER-state and

UI-SER-state together.

SER-State is an abstraction of Service. SER-state is usually used as a graphi-

cal user interface controller, activity task extension, transition trigger. SER-state is

widely used especially in applications such as music player, file storage applications

such as GooglePlayMusic and DropBox. Although the life cycle of Service is rela-

tively simpler than Activity, it is also diverse enough to accomplish different tasks

functionally. We define the entry of a SER-state when the onCommandStart function

is invoked and the state is ended when onDestory function is invoked. SER-state is

similar to UI-state logically at some level and also execute in a more persistent way.

UI-SER-State is motivated from the situation where Activity and Service can

coexist when an app is being executed. First, Service can be a graphical interface

controller through notification implementation. Second, Service can partake some

time-consuming tasks of Activity controlled graphical user interface through service

bind method. Sometimes Service also interacts with activity through messages.

UI-State, SER-State and UI-SER-State are all persistent states and may have a

visible user interface which enable users to interact with gesture input. For these

three kinds of states we describe them as tuple (S,L,G,I).

49

• S is a finite, non-empty set of states including UI-state, SER-state, UI-SER-

state(State name).

• L is a set of registered event listeners and handlers in components (With desti-

nation state for static mapping).

• G is a set of GUI elements.

• I is a set of possible inputs for each state.

The proposed definition of state abstraction enlarges the description coverage

comparing to the GUI-based model. Differences between the GUI-based model and

the component-based model can be found in table 4.1.

Table 4.1: Comparison between GUI-based model & component-based model

- GUI-based Model Component-based Model

Component Cover Activity Activity,Service,Broadcast Receiver
Initial State Launcher Activity Launcher Activity & System Events

State in Model UI-state UI,SER,BR,UI-SER-state
Transition between GUI between proposed states

Transition’s Condition startActivity startService,stopService...

After describing states in the component-based model, we discuss the transition

definitions in the model. The transitions are represented as tuples (E,A,D,F),where

• E is a finite, non-empty set of state including UI-State, BR-State or UI-SER-

State which can be triggered to another state (Source State).

• A is the Actions can trigger the transitions in E (Transition Condition).

• D is the set of destination states (Destination State).

• F is the set of final states.

50

Figure 3.7 shows the component-based model of the illustrative example. Tran-

sitions are usually triggered by certain methods such as StartActivity, StartService

and StartActivityForResult. Proposed approach iterates the call graphs of states and

detects all possible triggers in app′s code to build the transitions including inter-

component and inter-component transitions.

Then, the proposed approach collates the extracted data into the set defined above

and prepared for processes in static-mapping transition builder.

4.2.2 Functional Behavior Analysis of States

The description abstraction level can affect the complexity of states in the model. In

the proposed approach, only the most important functions of each components will

be introduced into state for better testing efficiency. In this section, we will discuss

the functions introduced into the component-based model by targeting dilemmas

proposed in the introduction.

(1)Functional Behavior Patterns of Broadcast Receiver

Two functions of Broadcast Receiver are introduced into the BR-state in the component-

based model.

Program Entry & Exit

Conventionally defined, a program entry is a user interface or signal which can invoke

apps and lead them to other states. Normally, researchers define the launcher Activity

as solo program entry of an Android application. It is true when most applications

are triggered and interacting with users’ input through a launcher activity in last few

years. There is a trend that more and more applications are responsive for different

51

system events. Therefore Broadcast Receiver can also play a role as program entry

and invoke the app by system events.

Broadcast Receiver can be divided into two classifications by functions. They are

the system predefined Broadcast Receiver and developer custom Broadcast Receiver.

Most program entry tasks are handled by the system event Broadcast Receiver.

Some system events can change the states inside the Android system as well as

trigger the Broadcast Receiver registered in the application. Although the Broadcast

Receiver’s life cycle is not persistent, it can play a role of the program entry. Broadcast

Receiver can redirect to any states in the application. The predefined trigger in the

Android application may contain some hidden malicious behaviors such as logic bomb

[24]. It is meaningful to include these functions into the component-based model’s

state.

Table 4.2: Commonly used system events & Broadcast Receivers

System Event Triggered Event Condition

Boot Completed When device restarts
Package Removed When app’s package is removed
Package Replaced When app’s package is replaced

Connectivity Change When network status changes
Battery Changed When battery status changes

New Outgoing Call When a call comes
SMS Received When receives a message
Widget Update When widget’s status updates
Media Mounted When media is mounted

Media Unmounted When media is unmounted
Media Removed When media is removed
Time Changed When time is changed

Time Zone Changed When time zone is changed

As shown in table 4.2, Broadcast Receiver related system events are commonly

used in Android applications. They are including the events of boot, phone call, data

connection, storage card as well as time zone changes. To fit them into the model,

52

CamDroid abstracts them into a state which is monitored by the control flow. This

function mainly covers the system pre-defined Broadcast Receiver. Then we discuss

the role of custom defined broadcast in Android applications.

Transition Trigger

The developer can also customize their own broadcast and Broadcast Receivers to

create transitions between different components. These transitions are easy to omit

if the model only includes the graphical user interfaces.

In other words, transitions may hide into the Broadcast Receiver to avoid the

scan of model construction to hide its behaviors. These kind of Broadcast Receivers

are normally defined by developers and triggered by a custom counterpart broadcast.

This kind of transition is contained in the Broadcast Receiver and invisible if the

model only includes the graphical user interfaces.

More importantly, this function can be implemented to cause the silent code prob-

lem by dynamic registration. Some hidden behaviors are usually implemented under

this function. Isolated state in chapter 3 is a typical example caused by neglect of

Broadcast Receiver in the GUI-based model.

In this section, we analyze important behavioral patterns of Broadcast Receiver.

These behaviors are important and they are out the description of the GUI-based

model.

(2).Functional Behavioral Patterns of Service

Basically Service’s functional behavior patterns can be classified into three categories.

They are the graphical user interface controller, transition trigger and activity tasks

extension. These three functions can cover most application situations. As explained

53

above, Service relates to two different states: SER-state and SER-UI-state. Actually,

Service is usually controlled by Activity functionally. So this thesis will introduce

Service as trigger firstly. Then we will discuss the Service as graphical user interface

and activity task extension.

Transition Trigger

As discussed last section, SER-state may be a transition trigger in Android applica-

tions. Unlike Broadcast Receiver as transition trigger which can only process some

short term tasks in time scale, Service as transition trigger can run long persistent

process. Then direct to destination state after task’s completeness. Comparing to

Service in life cycle complexity, Broadcast Receiver can only register the transition

into the broadcast handler method. On the contrary, the Service can register the

transition on any part its life cycle. For example, if a net disk such as Google Drive is

downloading and opening a pdf file, the downloading task need to be handled back-

ground and the application directs to pdf reading user interface when the downloading

task has been completed.

That is also the differences of transition trigger between Service and Broadcast

Receiver. CamDroid needs to monitor all the behaviors in Service so as to get all

the possible transition triggers. At the same time, a Service can handle one or more

transitions at once. In this way, Service can be a solo transition trigger or a transition

scheduler at the same time.

More importantly, Service can be triggered at any component in an Android ap-

plication. After running the tasks in Service, the state will be conducted to another

state.

Switching and scheduling tasks and states in application is a commonly used

function in Android. In some other situations, Service is used to control the graphical

54

user interface.

Graphical User Interface Controller

In the real life, there is an increasing demand for users to get control of the back-

ground tasks. For example, music player give users a control panel to control the

background music playing. Timer application also gives control panel when timer is

running background. To meet this demand, the graphical user interface is controlled

by Service. It is defined as Service controlled graphical user interface.

A standard process of Service visualization can be stated as following. First, the

application starts a background task then transfers the control priority to the Service

component. Normally, the Service instances the user interfaces in notification bar of

Android system while the traditional graphical user interface is no longer displaying

in the foreground. In simple words, the user interface is controlled by Service and

the application is in the SER-state in this stage. Service also handles the interactions

from the Service controlled graphical user interfaces. The interactions also can be

divided into two classifications. They are divided by whether triggering the transition

conditions or not.

More importantly, Service controlled graphical interface is short in control flow.

So we apply the coverage-first strategy for Service controlled graphical user interface.

Actions as transitions will be triggered at last. This will be implemented in Event

Sequence Generator & Cluster.

In summary, we can conclude that Activity is the controller for foreground process

graphical user interface while Service is the controller for background interface process

interface. This graphical user interface data is not scanned in the traditional GUI-

based model. As a result, some GUI data in SER-state may be his kind of situation.

55

Activity Task Extension

In some situations, Activity keeps communicating with one or more Services. Mean-

while, Service partakes some time-consuming tasks for activity. Service acts like an

extension of the Activity.

Activity binds with Service through the interface binder in Android. Then the

Service can be controlled by Activity in some level through service connection inter-

face. To achieve this goal, the proposed approach needs to monitor the interfaces such

as onServiceDisconnected, onServiceConnected ,bindService, unbindService of which

process will be explicated in next section.

Although this mechanism helps in software robustness, it may cause many defects

in testing as the testers cannot distinguish where the response is coming from.

4.2.3 Modeling Strategy

This section introduces the modeling strategy of Service and Broadcast Receiver in

CamDroid.

BroadcastReceiver Modeling

Following the criteria above, the modeling implementation process has the format of

tuple (B,E,F,T). The Broadcast Receiver is classified into two categories. The Broad-

cast Receiver is responsible for changing states and variable values in Application if

both F and T equals to null. The Broadcast Receiver is designed as a program entry

if F equals null when T does not equal to null. The Broadcast Receiver is a transition

trigger if neither F or T is null. The modeling process is shown in algorithm below.

From algorithm 4.2, we can see the process of modeling the Broadcast Receiver.

In first step, the proposed approach collects all Broadcast Receivers to put them into

56

Algorithm 4.2 BR-state Modeling Algorithm

Require:
The set of BroadcastReceiver, Bri;

Ensure:
The set of Generated BR-state , BRm;

1: for i = 0 to n do
2: if Bri is program entry then
3: Event e = ExtractEvent(Bri);
4: Transition t = ExtractTransition(Bri);
5: else {Bri is transition trigger}
6: State s = SenderDetect(Bri);
7: Transition t = ExtractTransition(Bri);
8: end if
9: end for
10: return BRm;

the set B. Then CamDroid classifies the elements in set B. If the Broadcast Receiver is

a transition trigger or program entry, CamDroid will continues to process, otherwise

it will be terminated.

In the second step, if the Broadcast Receiver is a program entry, the proposed

approach will extract the call graph of the Broadcast Receiver then detect the next

state while assigning it to set T. CamDroid also get the trigger action in static code

to assign it to set E.

If the Broadcast Receiver is a transition trigger. It will first extract the call graph

of the Broadcast Receiver’s handler method. Then it detects the possible triggers

and assign them to T. Then CamDroid applies the static-mapping transition builder

to the targeted Broadcast Receiver to connect it with the source components to

restore the full transition, then assigns the set F and T. In this kind of situation, the

event in this Broadcast Receiver is the event which can trigger the invocation of the

Broadcast Receiver. Figure 4.3 shows the work flow of BR-state modeling based on

the illustrative example.

57

Figure 4.3: Work flow of Broadcast Receiver modeling.

58

Service Modeling

The Service Modeling is a model construction process of SER-state and UI-SER-

state. From the discussion above, Service as transition trigger and Service controlled

graphical user interface are SER-state. In the same time, the Service as extended

Activity is a UI-SER-state. Based on the differences in the structure of various

functions, we use different methods to formalize the component for fitting them into

the model.

As shown in Algorithm 3, we can see that the algorithm is divided by three

conditional statements. As the structure of SER-state is (S,L,G,I), the algorithm is

designed to fill data into each state. If the Service is a transition trigger, the related

graphical user interface element is put into G. The related input event is put to the

set I. Set L is used to store the transition destinations. If the Service is a Service

controlled graphical user interface, the registered listeners are assigned to the set L

while all the graphical user elements are assigned to set G. Finally, the possible input

events are assigned to the set I. If the Service is an Activity extended Activity task

handler, G is a set of graphical user element related to the extended Service while L

is the transition destinations.

Figure 4.4 shows the work flow of the Service modeling. After gathering the data

needed for Service modeling, we need to distinguish the functional behaviors proposed

before. If the Service is used as transition trigger, the modeling work flow is almost

same as BR-state. If the Service is GUI controller or Activity extender, the Service

will be modeled as shown in figure 4.4.

From the description above, the approach is able to construct the state including

UI-state,SER-state,BR-state,UI-SER-state. In the model construction we use the

static mapping strategy in the algorithm when data connects the components. In the

next section we will discuss static mapping transition builder in a more detailed way.

59

Algorithm 4.3 SER-state Modeling Algorithm

Require:
The set of Services, Seri,UIi;

Ensure:
The set of Generated SER-state , SERm;

1: for i = 0 to n do
2: if Seri is GUI Controller then
3: Widget w = ExtractGUI(Seri);
4: Event e = ExtractEvent(Seri);
5: Transition t = ExtractTransition(Seri);
6: State SERm = StateCombiner(e,w,t);
7: else {Seri is transition trigger}
8: State s = SenderDetect(Seri);
9: Transition t = ExtractTransition(Seri);
10: else {Seri is GUI Task Extender}
11: Widget w = IncludeGUI(UIi);
12: Event e = ExtractEvent(Seri);
13: State SERm = StateCombiner(e,w);
14: end if
15: end for
16: return SERm;

60

Figure 4.4: Work flow of Service modeling.

61

4.3 Static-mapping Transition Builder

Figure 4.5: Work flow of static-mapping transition builder.

62

In Android application analysis, control flow graph such as call graph is often

used to describe the connections between interfaces. As our model is containing

components crossing Activity, Service and Broadcast Receiver, there are two difficult

points in the process of building complete relations in the Android applications cross

multiple components. The first difficult point is the complexity of the transition

triggers. More methods can be used as transition triggers in the model-based testing.

The second difficult point is that some transitions are custom defined by developers

which is hard to be found by conventional GUI-based model. To solve this problem,

Static mapping strategy is raised.

There are two steps to implement the static mapping transition builder. The

first step is interface selection. This step is used to narrow down the range of mon-

itors in the application to decrease complexity. Then the second step is transition

construction used to construct the transitions in the component-based model.

Figure 4.5 shows the work flow of the static mapping transition builder. At first,

soot will locate all the selected transition triggers defined in the component-based

model. Then we extract the call-graph of the program interfaces and get the trigger’s

possible events and destination states. Finally we can have the data as tuple (B,A,D,F

). The tuples are constructed as transitions in the component-based model.

4.3.1 Interface Selection

The selected interface are all related to data or control flow across different com-

ponents. The table below shows some commonly used interfaces related to cross

component invocation.

Table 4.3 shows the commonly monitored interfaces in the Static Mapping tran-

sition builder. These interfaces are all related to transition switches and triggers.

63

Table 4.3: Interface monitored by static-mapping strategy

Interface Name Interface Usage

SendBoradcast Send Broadcast
onReceive Receive the broadcast

StartService Invocation of a Service
onBind Bind a service with an activity

onCreate Create a service
onStartCommand Begin execution of a certain

onDestory Destroy a Service
stopService Stop a service

onServiceConnected Connect a Service
onServiceDisconnected Disconnect a Service

4.3.2 Transition Construction

After getting all required data of intra-component transitions, the proposed approach

will construct the extracted data into transitions to fit into the model.The process of

the transition construction is shown in Algorithm 4.

Algorithm 4.4 Transition Extraction Algorithm

Require:
The set of component, Seri,UIi,BRi;

Ensure:
The set of Generated Transitions , TRANm;

1: for i = 0 to n do
2: TranInter t = TranInterDector(Seri,UIi,BRi);
3: Event e = TriggerEvent(t);
4: Transition TRAN = StartEndState(t,e);
5: end for
6: return TRANm;

From the algorithm 4, CamDroid extracts the monitored program interfaces and

event triggers from the static code, then figures out the relations of the interfaces

across components to build the full control flow of the components. From here we

can build the cross component call graph to describe the model in a more detailed

method.

64

4.4 Sequence Generation & Event Cluster

4.4.1 Sequence Generation

Normally input generation automation tools investigate possible paths in the finite

state machine represented model of applications, then the tools generate tests inputs

sequences based on the prime paths. Different members in a sequence is a possible

input for a certain state.

Figure 4.6 shows the work flow of proposed sequence generation method. After

processed by the state constructor and static mapping transition builder, we can have

four sets of generated states and one set of generated of transition data. Then we will

classify the states into three categories. BR-Entry states and the launcher activity

will be classified as entry state. The states which do not have any transitions to

other states will be classified as final state. The state has largest depth will become

the finial state if each state is connected by transitions. Others will be classified as

non-entry states.

Then we will use transitions to bridge the states in the component-based model.

Then we will use the illustrative example to demonstrate the sequence strategy in

component-based model.

As discussed in chapter 3 , there are eight states in Gasflow totally. At the first

step, we classify the states in Gasflow into three categories. Battery Broadcast Re-

ceiver, Power Broadcast Receiver, Boot Broadcast Receiver and Setting Activity are

classified as entry state. Traffic Service and Screen Broadcast Receiver are classified

as non-entry states. Lock Screen is classified as finial state. The classification result

is shown in figure 4.7 (a). At the second step, the transitions whose source state is the

entry state will be included into the model to connect the entry state and non-entry

state. At the third step, transitions whose source state is traffic service are included

65

Figure 4.6: Work flow of sequence generator.

into the model as shown in figure 4.7 (c). Finally, transitions derivate from the final

state are included for a complete component-based model.

Although the sequence generation method can generate the sequences successfully.

66

Figure 4.7: Notification graphical user interface interaction.

There is a problem in the test event sequence generation in component-based model.

It is the state complexity in the notification or lock screen graphical user interface.

In most notification and lock screen graphical user interface interaction, most GUI

elements are not controlled by event listeners registered in program. They are nor-

mally sending a broadcast to a Service or Activity to consign the tasks to others as

shown in figure 4.8.

However, this process is constituted by two states and transitions. This phe-

nomenon lengthens the sequence of testing samples. It will decrease the efficiency of

component-based model testing.

67

Figure 4.8: Music player control panel in notification bar.

4.4.2 Event Cluster

To avoid this phenomenon, we proposed the event cluster to solve the problem of the

testing targeting notification bar. First, we detect all the Broadcast Receivers imple-

mented in the Service. If the Broadcast Receiver can meet the transition condition

and switch the state in the SUT, we will include the Broadcast Receiver as transition

trigger in component-based model. If they trigger the transition, but it still return

to the original state, we regard them as a part of the state instead of a transition in

component-based model. As for the lock screen, we can regard it as a isolated state

and test it as a solo graphical user interface, as most lock screen is prevented from

68

transiting by the lock screen screen protector.

Figure 4.9: Music player control panel in notification bar.

Second, the notification’s functions are relatively homogeneous. Most notifications

69

triggered by same state always have similar functions. We regard this phenomenon as

repeated multiple invocation of notification as repeated states in testing. We need to

cluster them together for better performance in testing. The process of event cluster

is shown in figure 4.9.

Figure 4.9 shows the process of event cluster. The event cluster takes the generated

sequences as input. It then detects the repeated invocations in the sequences and

deletes the repeated sequences. Then it generates the clustered sequences for test

sample generation. Then the code generator translates the xml represented event

sequences into script code for test case generation framework.

Finally, the script files can be fed to the automatic test samples generation frame-

work to perform the automatic testing.

70

Chapter 5

Evaluation

In this chapter,we aims to prove the effectiveness & testing performance of the pro-

posed approach. This chapter introduces the evaluation in two aspects.

In the first part, we discuss the work flow of our proposed approach as well as the

implementation details. Then we use Gasflow as a study case to prove the effectiveness

of our approach.

In the second part, we design three experiments to evaluate the performance of

CamDroid. We also compare the proposed approach with traditional model-based

testing method & classic fuzz testing method.

5.1 Effectiveness Evaluation

After explanation of methodology of the component-based model testing approach, we

discuss the process of CamDroid implementation and design philosophy first. Then we

use the illustrative app to demonstrate the work flow of CamDroid. Implementation

aims to prove the effectiveness of the component-based model testing.

71

5.1.1 CamDroid Design

We have implemented the component-based modeling approach called CamDroid for

component-based model test input generation.

Figure 5.1: A high-level overview of CamDroid.

As shown in figure 5.1, three functional modules are defined in CamDroid. They

are model constructor, static-mapping transition builder and event sequences gener-

ator & cluster. Model constructor can be further classified as UI-state constructor,

SER-state constructor, BR-state constructor and UI-SER-state constructor. UI-state

constructor is implemented on the top of TrimDroid [17]. Meanwhile SER-state,BR-

state,UI-SER-state are implemented following the criteria of functional behavior anal-

ysis and state abstraction structure. Static-mapping transition builder and event

sequences generator & cluster are implemented as stated in chapter 4.

CamDroid’s work flow can be divided into four stages : Processing Initialization,

Date Gathering, Data processing and Script Code Generation.

72

Processing Initialization uses ClassyShark and apktool to reverse engineer the

APK file for further processing.

Data gathering mines the targeting program state and transition data both from

smali code and soot analysis. Then CamDroid writes the gathered data to xml

represented states template files for further processing.

Data processing mainly connects and clusters the data and translates them into

format of test sample sequences.

Script code generation translate the sequence data into Robotium scripts and

ADB shell if the event cannot be generated by Robotium.

This section discusses the design and work flow of CamDroid. In next section, we

will discuss some implementation details of CamDroid.

5.1.2 Implementation Details

Process and methodology of CamDroid have been explicated above. We discusses

some details in CamDroid’s implementation in this part. This section explains Cam-

Droid in implementation’s perspectives.

For the convenience of implementation, we define five xml files containing states

and transitions structure constrains following the criteria of the proposed approach.

The smali code extraction related constrains will be put into code-constrain.xml file.

The five predefined xml files describe the model structure of the component-based

model and its abstraction level.

CamDroid detects all the states from the AndroidManifest.xml file. And the states

are classified as entry state & non-entry states by category. Based on the registered

data in the AndroidManifest.xml file. CamDroid can determines the number of dif-

ferent states preliminary. At the same time, Broadcast Receiver as transition trigger

and SER-UI-State cannot be detected directly from AndroidManifest file. Soot will

73

Figure 5.2: Implementation details of CamDroid.

detect them through program interface monitoring.

After knowing the states categories and numbers, corresponding states and tran-

sitions templates are created for further construction as shown in figure 5.2. Then

the smali code analysis & soot analysis extract target data to fit into the templates.

Based on the code investigation, the states & transitions templates are converted to

states & transitions data for sequences generator. Then the data will be fed to event

sequences generator & cluster.

This section discusses the implementation details of CamDroid. In next section,

Gasflow will be executed in CamDroid to prove the effectiveness of CamDroid.

5.1.3 Case Study

This section uses gasflow as SUT to demonstrate the functions step by step. Cam-

Droid is a command line tool tested on MAC OS. We can use the following command

74

to execute the tool.

• # ./CamDroid.sh gasflow (App’s name)

Figure 5.3: Demonstration of CamDroid execution (1).

After executing CamDroid, components in the application will be abstracting as

states in the component-based model. As shown in figure 5.4, states and transi-

tions are classified into seven different folders in the output directory. Model data is

organized as extensible markup language.

CamDroid abstracts the components into states in the component-based model

successfully. In the next section, we will have a detailed investigation on the component-

based model.

BR-state in Gasflow

After CamDroid scanning gasflow, four Broadcast Receivers are detected in this ap-

plication. PowerReceiver, BatteryReceiver and BootReceiver are registered statically.

RecScreen receiver is registered dynamically.

75

Figure 5.4: Demonstration of CamDroid execution (2).

Figure 5.5: Broadcast Receiver abstracted states in Gasflow.

The BR-states can be classified as BR-Entry and BR-Trigger functionally. BR-

Entry is defined as program entry and can invoke the applications by receiving outside

events. BR-Trigger is a transitional state and usually bridges different kinds of states

in the component-based model. This is a intermediate process of CamDroid.

SER-State & UI-SER-State in Gasflow

After scanning by CamDroid, one Service is detected as SER-State. As there is only

one standard notification controlled by Service. Affiliated data gathered from gasflow

is shown in figure 5.6.

76

Figure 5.6: Service abstracted states in Gasflow.

Figure 5.7: Service & Activity abstracted states in Gasflow.

UI-state & SER-UI-State in Gasflow

Figure 5.7 shows the UI-state and SER-UI-State in gasflow. SettingActivity is the

only activity which abstracted as UI-state. Then the traffic Service and setting Ac-

tivity are combined as SER-UI-State.

Transition in Gasflow

Figure 5.8 shows the transitions in Gasflow. As stated above, multiple program

interfaces are defined as transition triggers.

After getting the models and transitions, we can use this data to construct a

component-based model as shown in figure 3.7.

From the component-based model, five prime paths are detected as shown in

figure 5.9. Event sequences are generated following the prime paths. Then Service

and Broadcast Receiver related are generated towards the model. Then the events

are clustered and inserted into the sequence.

77

Figure 5.8: Transitions in Gasflow.

Figure 5.9: Prime paths in Gasflow.

Figure 5.10 shows the complete component-based model of Gasflow. The model

show the behaviors across different components. Finally, the sequences are fed to the

Android emulator to test the applications.

78

Figure 5.10: Component-based model of Gasflow.

This section demonstrates functions using the illustrative application. We will

discuss the effectiveness in evaluation.

5.2 Performance Evaluation

Performance evaluation aims to prove the efficiency and progressiveness of the component-

based model.

5.2.1 Requirement of Evaluation

In this section we evaluate the CamDroid′s ability of model construction and code

coverage of input generation. To evaluate in a clear way we conduct case studies

focusing on the following research questions:

79

• RQ1: Can the proposed component-based model cover the behaviors of Service

and Broadcast Receiver in SUT successfully?

• RQ2: Can the transitions in the model constructed successfully by static-

mapping transition builder?

• RQ3: Can the proposed approach generated inputs achieve a better coverage

than previous model-based techniques?

• RQ4: Can the proposed approach overcome the challenges in the GUI-based

model testing?

As CamDroid is practical in input generation, we select some released applications

from GooglePlay and F-Droid. Selecting open source samples is for the convenience

of testing and code coverage investigation.

5.2.2 Experiment

For analysis of proposed requirements, we choose 10 real Android applications as test

samples and design three experiments to investigate all processes in model generation.

Method in [33] are used to measure state coverage and code coverage in model-based

testing. Emma[58] is used in our experiments for code coverage analysis.

We select 10 real Android applications released in GooglePlay & Fdroid as listed

in table 5.1. We select these applications based on the following reasons. First, all

chosen applications are real released application versions. They can check the practi-

cability of our approach. Second, all the chosen applications are in different functional

categories. They can represent the overall testing requirement on Android platform.

Thirdly, the chosen applications cover all the component registration patterns in the

80

Table 5.1: Survey of problems in apps before testing

App Name Problems
- Entry&Exit Trans Neglect Isolated State Pseudo-GUI

Easylight(V1.1) ! ! ! !

FLock(V1.0) ! ! ! #

Gasflow(V1.0) ! ! ! !

Headphone Indicator(V1.2) ! ! ! #

Wifi warning(V1.0) ! ! # !

Calender(V1.1) # # ! #

Hearing Saver(V1.0) ! ! ! #

MisbotheringSMS(V1.0) ! ! # #

StopWatch(V1.4) ! # ! !

AnyCut(V1.0) # # # #

development stage. For example, AnyCut only registers one Activity, StopWatch reg-

ister both Activity & Service. Wifi Warning, Calender and MisbotheringSMS register

both Activity & Broadcast Receiver. The rest of the applications are registering all

kinds of components in our model. They can cover all the situations in the develop-

ment stage. As a summary, our testing samples selection can represent most testing

situations on Android platform and prove the practicability of our approach.

In experiment 1, we investigate the generated model and inputs to determine

whether the generated inputs can describe UI-state, BR-state, SER-state and UI-

SER-state. Besides state abstraction, we test whether the generated states can be

connected by generated transitions in experiment 2. Error transition generation may

lead isolated state which cannot be covered in testing.

Experiment 1 & 2 are designed to prove functions in CamDroid qualitatively. In

experiment 3, generated input samples will be fed to Robotium to execute lively

for code coverage investigation (Some events cannot be executed in Robotium are

executed manually).

Experiment 1 & 2 are designed to evaluate the modeling coverage and test ef-

81

Table 5.2: Survey of problems in apps after testing

App Name Problems
- Entry&Exit Trans Neglect Isolated State Pseudo-GUI

Easylight # # # #

FLock # # # #

Gasflow # # # #

Headphone Indicator # # # #

Wifi warning # # # #

Calender # # # #

Hearing Saver # # # #

MisbotheringSMS # # # #

StopWatch # # # #

AnyCut # # # #

fectiveness. Specifically we also need to evaluate whether the approach can solve

the problem we rise in introduction and solve the dilemmas defined in the problem

definition on the Android platform.

Experiment 3 is designed to investigate whether the proposed problems are solved

or not.

From table 5.1 we can see most samples in experiment 3 has the proposed problem

in the GUI-based model. Then we census whether the problems are solved after

testing by component-based approach.

From table 5.2 we can see all the defined problems are eliminated by the compo-

nent based model generated test. The identified problems are not problems in our

component-based model testing.

5.2.3 Result Summary & Discussion

Table 3 shows result summary of experiments 1,3. State coverage shows the functional

ability in the model constructor. Based on experiment 1, the average abstraction

coverage is 100% in component-based model comparing to 47.3% average coverage

82

Table 5.3: Experiment result summary

App Name Com-Number State Cov Code Coverage
- A S B C GUI-M Com-M Monkey Trim Cam

Easylight 2 1 1 0 50% 100% 43% 47% 74%
FLock 1 2 2 0 20% 100% 15% 35% 68%
Gasflow 1 1 4 0 20% 100% 35% 28% 77%

Headphone Indicator 1 1 1 0 33% 100% 39% 39% 83%
Wifi warning 2 0 2 0 50% 100% 31% 54% 69%
Calender 1 0 1 0 50% 100% 26% 40% 55%

Hearing Saver 1 1 2 0 25% 100% 28% 36% 46%
MisbotheringSMS 1 0 1 0 50% 100% 43% 56% 81%

StopWatch 3 1 0 0 75% 100% 46% 55% 78%
AnyCut 1 0 0 0 100% 100% 8% 58% 58%

in the GUI-based model. As for the the isolated state for showing the function

of transition construction, the component-based model enables to build transitions

across different components.

In experiment 3, two baseline methods are introduced for comparison. They

are Monkey and TrimDroid. Monkey is a testing method following random input

generation strategy. TrimDroid is one most updated tool with functional advantages

from model-based and combinatorics testing. Model-based techniques are used to

describe behaviors in apps while combinatorics testing for complex interface analysis.

As for a horizontal comparison, Monkey’s average code coverage is 31.4 % and

TrimDroid’s average code coverage is 44.8 %. The Camdroid’s average code cover-

age is 68.9 %. Our proposed approach has an overall advantage towards the tradi-

tional model-based testing. Specifically, the code coverage has a different increase

towards different applications. For example, there is no code coverage increase in

AnyCut because there is only one Activity registered in AnyCut. In this situation,

component-based model is equal to the GUI-based model. In other words, the pro-

posed component-based model doesn’t benefit the code coverage since the components

newly introduced into the model don’t exist in AnyCut. Some code coverage increase

83

is slight when only a few SER-states or BR-states are registered. Moreover, some

code coverage increase is huge when the application is highly relying on SER-state ,

BR-state and has a large number in Services & Broadcast Receivers. Based on these

facts, we can conclude that the more complex the model’s structure is, the more

effective our proposed approach is.

As a result, code coverage efficiency differences is clear. CamDroid helps to achieve

better code coverage in real world testing.

To aim at a better evaluation effectiveness, some factors need to be discussed. For

state abstraction in experiment one, functional inclusion determines the abstraction

coverage. Elaborate abstraction can increase the model accuracy but implementation

work load increases exponentially. For experiment 2, transitions build across compo-

nents relies on the monitored program interface. The more program interfaces and

code patterns are monitored, the more transitions across components will be built by

CamDroid. In the third experiment, we can see the model-based testing techniques

have a systematic advantage towards random-based testing techniques. Furthermore

CamDroid achieves a better code coverage with an average code coverage of 68.9%.

Based on evaluation, CamDroid can accomplish its tasks functionally and meet the

RQ 1,2,3. Although CamDroid is still a research prototype of the proposed approach,

it has revealed enormous potential in future testing techniques.

84

Chapter 6

Conclusions & Future Work

In this chapter, we discuss the conclusions, limitations & our future works.

6.1 Conclusion

We present an automated component-based model generation approach in this thesis.

Our approach enables to construct a novel model covering the behaviors of Activities,

Services and Broadcast Receivers. CamDroid can meet the evaluation requirements

as seen by results of experiments.

Based on the experiments and case study in this work, we are able to conclude

towards our study. They are summarized as following:

• The component-based model generation approach enables to describe appli-

cation as a component-based model in a larger scope compared to the GUI-

based model. The component-based model can abstract Activity, Service and

Broadcast Receiver as states. These newly introduced states can describe the

behaviors in Services and Broadcast Receivers.

• The component-based model solve the defined problems of testing in Android

85

system successfully. As shown in evaluation experiments, the component-based

model testing can cover most behaviors in the samples. It also can eliminate

the problems in the GUI-based model.

• The component-based model achieves a better code coverage comparing to the

GUI-based model in model-based testing. Based on our evaluation, CamDroid

achieves a average code coverage of 68.9% . Its efficiency is better than random

test generation techniques’ code coverage (31.4%) and traditional model-based

testing (44.8%).

6.2 Limitations

The proposed component-based approach ameliorates traditional GUI-based model,

but it is still not a final solution of model-based testing on Android platform. There

are several limitations in the prototype of CamDroid. These limitations directs the

future works of model-based testing on Android platform.

6.2.1 Component Absence

Normally there are four components in the Android system. They are Activity, Ser-

vice, Broadcast Receiver and Content Provider as shown in figure 6.1.

The component-based model does not include the Content Provider as its state.

Neglecting Content Provider in the component-based model may cause some problems

in testing effectiveness.

• The component-based model cannot describe the behaviors in the Content

Provider.

86

Figure 6.1: App components in Android system.

• The generated test’s invalidity will decrease when dealing with the Content

Provider related graphical user interfaces and behaviors.

6.2.2 System Event Generation

All the model-based testing techniques are dependent on the test generation frame-

works to generate test samples. As the GUI-based model develops for a long periods

of time, most of them are powerful in graphical user interface related events. Almost

no test generation tools are efficient in system event generation.

As more and more Android applications’ transition conditions are triggered by

system events. So the component-based model needs a generation tool which can

generate system events efficiently. However, almost all existing tools cannot generate

system event efficiently shown in table 6.1.

87

Table 6.1: Survey of automatic test sample generation tools

App Name Survey
- Robotium UIautomator Espresso Appium Calabash

Android ! ! ! ! !

IOS # # # ! !

Mobile Web ! x,y click # ! !
Scripting Java Java Java Multiple Ruby
Test Tools Recorder Viewer Viewer Appium.app CLI
API Level All 15 Above 15 Above All All
Community Contributors Google Google Active Not Active

6.3 Future Work

The limitations provide us some direction to the future work. Thus the limitations

are concentrating on the test sample generation and model structure. So our future

work will focus on the further amelioration of model structure and test generation

strategy optimization.

6.3.1 Model Structure Amelioration

The component-based model had ameliorated the model’s structure based on the

GUI-based model. But the Content Provider is still out the scope of the component-

based model.

As a result, the proposed component-based model is still imperfect in model-

based testing. We need to include more components into the model for better testing

effectiveness in the future work.

6.3.2 Test Generation Optimization

As the GUI-based model is popular in Android application’s testing, most test gen-

eration tools are concentrating on the GUI-related events. Although Monkey[35] can

88

generate system events, its random test generation cannot satisfy the model-based

testing requirements.

At last, we need to summarize the demand of model-based testing in test genera-

tion. And we need to make the test generation processes more efficient and automatic

in the near future.

6.3.3 Application’s Security Testing

Based on the evaluation above, we can see the ability to achieve a better code coverage

in the testing. In other words, the proposed approach has the ability to find hidden

behaviors defined in the Android application. This is also the basis of application’s

security analysis.

In the near future, we can include the suspicious behaviors patterns into our model

to perform the security centric Android application testing.

89

Bibliography

[1] Q2,2016,http://www.statista.com/statistics/266136/global-market-share-held-

by-smartphone-operating-systems/

[2] 2015,http://www.idc.com/getdoc.jsp?containerId=prUS41061616

[3] Android Wear, https://www.android.com/wear

[4] Raspberry Pi, https://www.raspberrypi.org/

[5] Ten million Raspberry Pi, https://www.raspberrypi.org/blog/ten-millionth-

raspberry-pi-new-kit/

[6] Activity, Service, Broadcast Receiver, Content Provider, https: //devel-

oper.android.com/guide/components/index.html

[7] Loklok, https://play.google.com/store/apps/details?id=co.loklok&hl=en

[8] Kwang Ting Cheng and A. S. Krishnakumar. Automatic functional test genera-

tion using the extended finite state machine model. In Proceedings of the 30th

international Design Automation Conference (DAC ’93). ACM, New York, NY,

USA, 86-91, 1993.

[9] System Under Test, https://en.wikipedia.org/wiki/System under test

[10] http://www.opera.com/

90

[11] https://play.google.com/store/apps/details?id=com.google.android.apps.messaging&hl=en

[12] https://google-maps.en.softonic.com/android

[13] https://play.google.com/store/apps/details?id=com.android.chrome&hl=en

[14] https://play.google.com/store/apps/details?id=com.UCMobile.intl&hl=en

[15] https://play.google.com/store/apps/details?id=com.supercell.clashofclans&hl=en

[16] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for auto-

mated GUI-model generation of mobile applications. In Proceedings of the 16th

international conference on Fundamental Approaches to Software Engineering

(FASE’13), Vittorio Cortellessa and Dániel Varró (Eds.). Springer-Verlag, Berlin,

Heidelberg, 250-265, 2013.

[17] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam

Malek. Reducing combinatorics in GUI testing of android applications. In Pro-

ceedings of the 38th International Conference on Software Engineering (ICSE

’16). ACM, New York, NY, USA, 559-570, 2016.

[18] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Co-

hen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil Mcminn.

2013. An orchestrated survey of methodologies for automated software test case

generation. J. Syst. Softw. 86, 8 (August 2013), 1978-2001.

[19] http://classyshark.com/

[20] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. Soot - a Java bytecode optimization framework. In Proceed-

ings of the 1999 conference of the Centre for Advanced Studies on Collaborative

91

research (CASCON ’99), Stephen A. MacKay and J. Howard Johnson (Eds.).

IBM Press 13-, 1999.

[21] http://alloy.mit.edu/alloy/

[22] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. Towards Automatic Generation

of Security-Centric Descriptions for Android Apps. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security (CCS

’15). ACM, New York, NY, USA, 518-529, 2015.

[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta and A. M. Memon,

”MobiGUITAR: Automated Model-Based Testing of Mobile Apps,” in IEEE

Software, vol. 32, no. 5, pp. 53-59, Sept.-Oct. 2015.

[24] W. E. C. K. Y.Fratantonio, A.Bianchi and G.Vigna. Triggerscope: Towards de-

tecting logic bombs in android applications. in Proc. 37th IEEE Symposium on

Security and Privacy (SP’16), May 2016.

[25] GUIRipper https : //www.cs.umd.edu/ atif/GUITAR−Web/gui−ripper.htm

[26] Wontae Choi, George Necula, and Koushik Sen. Guided GUI testing of android

apps with minimal restart and approximate learning. In Proceedings of the 2013

ACM SIGPLAN international conference on Object oriented programming sys-

tems languages & applications (OOPSLA ’13). ACM, New York, NY, USA,

623-640, 2013.

[27] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govin-

dan. PUMA: programmable UI-automation for large-scale dynamic analysis of

mobile apps. In Proceedings of the 12th annual international conference on Mo-

bile systems, applications, and services (MobiSys ’14). ACM, New York, NY,

USA, 204-217, 2014.

92

[28] https://www.whatsapp.com/

[29] https://www.google.com/drive/

[30] https://play.google.com/store/apps/details?id=com.mridang.speedo

[31] https://github.com/RobotiumTech/robotium

[32] https://developer.android.com/guide/components/activities.html

[33] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: an input gen-

eration system for Android apps. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York,

NY, USA, 224-234, 2013.

[34] Widget Guide https://developer.android.com/design/patterns/widgets.html

[35] Monkey https://developer.android.com/studio/test/monkey.html

[36] Android Not Response https://developer.android.com/training/articles/perf-

anr.html

[37] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-Based Web

Applications through Dynamic Analysis of User Interface State Changes. ACM

Trans. Web 6, 1, Article 3 (March 2012), 30 pages, 2012.

[38] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI Ripping: Reverse

Engineering of Graphical User Interfaces for Testing. In Proceedings of the 10th

Working Conference on Reverse Engineering (WCRE ’03). IEEE Computer So-

ciety, Washington, DC, USA, 260-, 2003.

93

[39] Valentin Dallmeier, Martin Burger, Tobias Orth, and Andreas Zeller. WebMate:

a tool for testing web 2.0 applications. In Proceedings of the Workshop on

JavaScript Tools (JSTools ’12). ACM, New York, NY, USA, 11-15, 2012.

[40] Joorabchi, M.E., Mesbah, A.: Reverse engineering iOS mobile applications. In:

Proc.19th Working Conference on Reverse Engineering.WCRE ’12 (2012) 177-

186, 2012.

[41] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H.

Travassos. A survey on model-based testing approaches: a systematic review. In

Proceedings of the 1st ACM international workshop on Empirical assessment of

software engineering languages and technologies: held in conjunction with the

22nd IEEE/ACM International Conference on Automated Software Engineering

(ASE) 2007 (WEASELTech ’07). ACM, New York, NY, USA, 31-36, 2007.

[42] Takala, T., Katara, M., Harty, J. Experiences of system-level model-based GUI

testing of an Android application. In: Proc. 2011 4th IEEE International Confer-

ence on Software Testing, Verication and Validation. ICST ’11 (2011) 377-386,

2011.

[43] A. Jaaskelainen, A. Kervinen, and M. Katara, “Creating a test model library

for GUI testing of smartphone applications,” in Proc. QSIC 2008 (short paper).

IEEE CS, 2008, pp. 276–282, 2008.

[44] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-

based testing approaches. Softw. Test. Verif. Reliab. 22, 5 (August 2012), 297-

312, 2012.

[45] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De

Carmine, and Atif M. Memon. Using GUI ripping for automated testing of An-

94

droid applications. In Proceedings of the 27th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE 2012). ACM, New York, NY,

USA, 258-261, 2012.

[46] Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining model-

based and combinatorial testing for effective test case generation. In Proceedings

of the 2012 International Symposium on Software Testing and Analysis (ISSTA

2012). ACM, New York, NY, USA, 100-110, 2012.

[47] T. Azim and I. Neamtiu. Targeted and Depth-first Exploration for Systematic

Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN Inter-

national Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA ’13, pages 641–660, New York, NY, USA, 2013.

[48] H. Ye, S. Cheng, L. Zhang, and F. Jiang. DroidFuzzer: Fuzzing the Android Apps

with Intent-Filter Tag. In Proceedings of International Conference on Advances

in Mobile Computing & 38; Multimedia, MoMM ’13, pages 68:68–68:74, New

York, NY, USA, 2013.

[49] R. Sasnauskas and J. Regehr. Intent Fuzzer: Crafting Intents of Death. In

Proceedings of the 2014 Joint International Workshop on Dynamic Analysis

(WODA) and Software and System Performance Testing, Debugging, and An-

alytics (PERTEA), WODA+PERTEA 2014, pages 1–5, New York, NY, USA,

2014.

[50] Intent fuzzer, 2009. http://www.isecpartners.com/tools/mobile-security/intent-

fuzzer.aspx.

[51] T. Azim and I. Neamtiu. Targeted and Depth-first Exploration for Systematic

Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN Inter-

95

national Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA ’13, pages 641–660, New York, NY, USA, 2013. ACM.

[52] R. Mahmood, N. Mirzaei, and S. Malek. EvoDroid: Segmented Evolutionary

Testing of Android Apps. In Proceedings of the 22nd ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, FSE 2014, New

York, NY, USA, 2014.

[53] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated Concolic Test-

ing of Smartphone Apps. In Proceedings of the ACM SIGSOFT 20th Interna-

tional Symposium on the Foundations of Software Engineering, FSE ’12, pages

59:1–59:11, New York, NY, USA, 2012.

[54] H. van der Merwe, B. van der Merwe, and W. Visser. Verifying Android Appli-

cations Using Java PathFinder. SIGSOFT Softw. Eng. Notes, 37(6):1–5, Nov.

2012.

[55] Pokemon Go : http://www.pokemongo.com/fr-ca/

[56] Rinna : http://www.msxiaoice.com/

[57] http://mse.isri.cmu.edu/software-engineering/documents/faculty-

publications/miranda/ kuhnintroductioncombinatorialtesting.pdf

[58] http://emma.sourceforge.net/

96

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	Study Necessity & Practicability Survey
	Objectives & Methodology
	Objectives
	Methodology

	Contributions
	Thesis Organization

	Components & Testing Techniques on Android Platform
	Android Development Framework & Components
	Broadcast Receiver
	Service
	Activity

	Testing Techniques on Android Platform
	Fuzz Testing & Systematic Testing
	Model-based Testing

	Related Work
	Dependent Projects
	Related Project

	Challenges of Model-based Testing in Android System
	Challenges Classification
	Program Entry & Exit Definition
	Silent Code Block & Transition Neglect
	Isolated State
	Pseudo Graphical User Interface Interaction

	Illustrative Application
	Overview of Illustrative Application
	GUI-based Model of Illustrative Application
	Component-based Model of Illustrative Application

	Component-based Model Generation Approach
	Overview of Approach
	Model State Constructor
	State & Transition Abstraction
	Functional Behavior Analysis of States
	Modeling Strategy

	Static-mapping Transition Builder
	Interface Selection
	Transition Construction

	Sequence Generation & Event Cluster
	Sequence Generation
	Event Cluster

	Evaluation
	Effectiveness Evaluation
	CamDroid Design
	Implementation Details
	Case Study

	Performance Evaluation
	Requirement of Evaluation
	Experiment
	Result Summary & Discussion

	Conclusions & Future Work
	Conclusion
	Limitations
	Component Absence
	System Event Generation

	Future Work
	Model Structure Amelioration
	Test Generation Optimization
	Application's Security Testing

	Bibliography

