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Abstract 

Lack of valid and reliable pain assessment in the neonatal population has become a significant 

challenge in the Neonatal Intensive Care Unit (NICU). Current practice in the NICU involves the 

meticulous, time-consuming and potentially bias process of manual interpretation of pain scores. 

In an attempt to forego the manual scoring system, this thesis presents an initial framework to 

automate a partial pain score for newborn infants using big data analytics that automates the 

analysis of high speed physiological data. The design of the novel Artemis Premature Infant Pain 

Profile (APIPP) is proposed in this thesis. An ethically approved retrospective clinical research 

study was performed to calculate APIPP scores from premature infant data collected from the 

Artemis platform. Using the Premature Infant Pain Profile (PIPP) as the base gold standard scale, 

scoring techniques were automated to create data abstractions from the physiological streams of 

Heart Rate (HR) and Oxygen Saturation (SpO2). These were then brought together to compute an 

automated partial pain score (APIPP) that was based on gestational age, HR and SpO2. Through 

the retrospective clinical research study, and to evaluate the effectiveness and feasibility of 

automating the scale in the future, APIPP was retrospectively compared with the PIPP which 

was manually scored by nursing staff at The Hospital for Sick Children, Toronto. Furthermore, 

the characteristics in HR were also assessed in a thorough manner by preforming statistical tests 

to assess the resourcefulness of HR as a measure to identify a pain response. Future research will 

focus on the clinical validation of this work by carrying out prospective research to implement an 

algorithm based on the design proposed in this thesis that can be integrated into a clinical 

decision support system named Artemis.  

Keywords: neonate, neonatal pain management, big data analytics, clinical decision support 

system, premature infant, pain scale, physiological data streams 
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Chapter 1 - Introduction 

This thesis presents an initial framework to automate a pain score for newborn infants using big 

data analytics. This research will also present an approach to integrate and use physiological 

variables to identify pain in an objective manner. Management of pain in the neonatal population 

is one of the most challenging problems in the Neonatal Intensive Care Unit (NICU).  This 

research is motivated by a lack of adequate, validated pain assessment tools to assess neonatal pain. 

There is also a significant need for validated Clinical Decision Support Systems (CDSS) that can 

provide automated generation of pain scores in the neonatal population. In this thesis, an attempt will 

be made to design a CDSS for the automated real-time creation of a partial Premature Infant Pain 

Profile (PIPP) score. The elements of the PIPP score used in this design will be those that can be 

calculated without the need for a visual assessment of the patient at the bedside. Many gaps exist 

in the knowledge relating to the optimal utilization and accessibility of techniques that assess 

pain in a valid and reliable manner. The field of informatics has great potential for designing 

physiological based scales for the neonatal population, where such scales can utilize CDSS for 

the continuous assessment of pain.   

1.1 Pain in Neonatal Population 
Pain management in the neonatal population is a significant challenge within the health care 

community. During their stay at the Neonatal Intensive Care Unit (NICU), preterm infants are 

exposed to a high number of painful procedures. Specifically, infants undergo a range of 2 to 14 

invasive procedures each day, for which less than one-third receive an analgesic therapy 

(Ranger, Johnston, & Anand, 2007). The most common procedures, heel lance or venipuncture, 

are used to obtain blood for screening and medical monitoring. These particular procedures are 

painful for infants, where such noxious stimulation can cause changes in brain activity that is 



	 2	

similar to that of adults (Harrison et al., 2015). The International Association for the Study of 

Pain defines pain as “an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage or described in terms of such damage” ("Prevention and management of 

pain and stress in the neonate. ," 2000) Another definition of pain that is widely used or 

understood within the health care community states that “pain is whatever the experiencing 

person says it is, existing whenever he/she says it does” (Worley, Fabrizi, Boyd, & Slater, 2012). 

Until the 1990s, newborns in some clinical centers were undergoing surgery with minimal 

anaesthesia due to the common assumption that neonates could not perceive pain early in life. 

Despite the pain associated with certain surgical procedures, such as lumbar punctures or 

circumcisions, newborns received little or no pain management postoperatively (Slater, 

Cantarella, Franck, Meek, & Fitzgerald, 2008). 

Since then, clinicians have become more aware of the fact that pain may be experienced 

from the earliest stages of postnatal life (Slater et al., 2008).  Additional clinical evidence has 

shown further support, indicating that exposure to prolonged and repetitive pain-related stress in 

infants born very preterm can have potential long-term effects that can lead to altered 

neurobehavioral development in vulnerable infants (Anand, Palmer, & Papanicolaou, 2013; 

Brummelte et al., 2012; Doesburg et al., 2013; Grunau, 2013). For example, specific brain 

connections form during early stages of development, where such connections play a role in 

experiencing pain during this early stage of life. In one study, Lowery provides details regarding 

early brain development. He states that connections to the thalamus begin at 14 gestational 

weeks and are completed by 20 gestational weeks. Additionally, thalamocortical connections are 

present from 13 gestational weeks and undergo further development until 26 to 30 gestational 

weeks (Lowery et al., 2007). Additional extensive research has shown that neurons of the 
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cerebral cortex begin a migration from the periventricular zone at 8 weeks of gestation. At 20 

gestational weeks, the cortex has acquired a full complement of neurons with glial perforation 

active throughout childhood (Lowery et al., 2007). Synaptic formation begins at 12 gestational 

weeks, accelerates rapidly during the last trimester of pregnancy, and peaks during the first year 

of life (Stiles & Jernigan, 2010). Electroencephalographic activity appears for the first time at 20 

weeks of gestation, becomes synchronized at 26 weeks of gestation, and shows sleep/wake 

cycling at 30 weeks of gestation (Lowery et al., 2007). Due to such rapid changes in brain 

structure, there is growing concern that repeated pain in vulnerable neonates may result in 

various long-term consequences, including emotional, behavioural and learning disabilities 

(Anand & Scalzo, 2000; Bhutta & Anand, 2002; "Prevention and Management of Pain in the 

Neonate: An Update," 2006). These findings confirm that premature infants are able to indeed 

experience pain. Additional evidence involving animal models and humans reveal that early pain 

experiences can alter subsequent central nervous system (CNS) function (Fitzgerald, 2005). 

Despite these revelations, a substantial challenge remains with precisely quantifying the amount 

of pain that premature infants experience. By having the ability to communicate the severity of 

pain in a clinical setting, individuals are able to seek strategies to ease the pain by using 

analgesics or alternative interventions. However, the inability to effectively communicate one’s 

distress of pain causes individuals, specifically premature infants, to be vulnerable to prolonged 

suffering.  

Pain that is ignored and not treated can have immediate and long-term effects due to 

structural and physiological changes within the nervous system (Slater et al., 2008). For 

example, the body tends to respond to untreated pain by increasing the release of stress 

hormones. If the pain is left untreated, such a change can result in increased morbidity and 
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mortality (Slater et al., 2008). Studies have also shown that improper pain management, or 

unnoticed and untreated pain from an early age could potentially lead to long-term effects due to 

the developmental plasticity of the immature brain (Grunau, 2013). These effects may include 

altered pain perception, chronic pain syndromes, and somatic complaints such as sleep 

disturbances, feeding problems, and inability to self-regulate in response to internal and external 

stressors (Slater et al., 2008). A study performed by Anand et al. with neonatal rats also found 

that exposure to repetitive neonatal pain can result in decreased pain thresholds (Anand, Coskun, 

Thrivikraman, Nemeroff, & Plotsky, 1999). Furthermore, attention deficit disorders, learning 

disorders, and behavioural problems in later childhood may be linked to repetitive pain in the 

preterm infant (Slater et al., 2008). Due to such serious outcomes, the application of optimal 

tools and specific techniques for quantifying pain becomes vital in a vulnerable population like 

that of premature infants.  

1.2 Pain Detection Tools 
Initially, pain detection tools were designed for use in research settings and were univariate in 

their approach. These tools highly focused on behavioural changes such as crying and body 

movements. Multiple factors limit or prevent the demonstration of such behavioural changes in 

premature infants. For this reason, certain bio-physiological assessment clues were added to 

current behavioural tools in an effort to improve sensitivity. However, the incorporation of these 

bio-physiological clues in current scales has remained minimal. Since the 1980s, a variety of 

physiologic parameters have served to estimate pain intensity of acute painful procedures (Van 

Dijk & Tibboel, 2012). Even though more than 40 pain assessment tools are available, no single 

instrument has demonstrated superiority over the others for use in this vulnerable population 

(Ranger et al., 2007). Heart rate and blood pressure are often included in multidimensional 



	 5	

scales. Some scales involve the comparison of heart rate and blood pressure against their 

baseline value. For instance, an increase of more than 20% from baseline (N-PASS scale) or a 

decrease of heart rate of 10 beats per minute (MAPS) is used as an indication of pain (Van Dijk 

& Tibboel, 2012). Automated analysis of the various physiological changes described in Chapter 

2 proves that validated automated systems can be created for measuring pain in the neonatal 

population. 

The automatic analysis of pain has received greater attention over the last few years due 

to the growth in health informatics. Many research studies have outlined the need for better pain 

assessment tools (Gibbins & Stevens, 2001; Korhonen, Haho, & Polkki, 2013; "Prevention and 

Management of Pain in the Neonate: An Update," 2006; Slater et al., 2008; Van Dijk & Tibboel, 

2012). Studies have shown that periodic monitoring of patient pain levels by physicians and 

nurses can lead to large improvements (Rudovic, Pavlovic, & Pantic, 2013).  However, 

healthcare providers experience an increased burden of work and stress; thus such pain 

monitoring becomes difficult to sustain. For this reason, an automated system would be an ideal 

solution. To date, there has been very limited health information technology research in the 

neonatal population, which then presents a good opportunity for innovation. A recent study 

verified the advantages of objective pain assessment methods over the currently used subjective 

pain rating tools (Tejman-Yarden et al., 2016). Although there is vast potential for the use of 

computer systems for pain assessment in the neonatal population, there are very few studies in 

the computer systems literature addressing this particular issue. As such, there is a need for 

computerized tools to support pain management in neonates. However, there is a lack of 

empirical studies that provide guidance on how to design such tools. Another major drawback is 

the fact that most of the studies have been implemented in the adult population. Thus, 
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implementing specific concepts from these adult studies in the neonatal population is highly 

valuable.   

1.3 Information Systems 
Introducing information systems into healthcare has proven to be a challenge due to the 

complexities of both technology and healthcare. The neonatal space is particularly susceptible to 

information systems failure given that neonates are a very sensitive population, where each 

patient is individually different. In order for information systems to succeed in such a vulnerable 

population, the interconnection of the medical, technical and social contexts of healthcare within 

the design of these systems is highly important. Effective design starts with a solid conceptual 

model. The concept for these computer-based systems should be interdisciplinary and should be 

conceived by physicians as well as other involved healthcare practitioners to enhance the 

assessment, diagnosis and management of severe pain in such a vulnerable population. 

Even though verbal methods (i.e., pain scales, questionnaires) and visual analogue scales 

are commonly used for measuring clinical pain, such tools tend to lack in reliability or validity 

when applied to non-verbal patients (Herr, Bjoro, & Decker, 2006). Numerous experimental 

studies have been conducted in such patients; however, the systems described in such studies 

have not been validated for use in all clinical settings. Some behavioural tools that measure facial 

expressions, vocalizations and body movements also exist; however, such tools may also not be 

entirely accurate as neonates are at times highly sedated or severely premature to provide any 

behavioural distress cues. Therefore, there is a need to develop a pain assessment tool that is 

based on physiology, and requires no communication on the part of patient. Researchers have 

long sought to develop a physiology-based pain assessment that does not depend on patient 

volitional behaviours. However, minimal advances have been performed in this area. While 
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several physiological variables have shown statistically significant correlations with the presence 

of pain or with pain intensity, no measure has provided a sufficiently high relationship with pain 

to be used as a valid surrogate for self-reports. Therefore, despite many years of research, there is 

currently no accepted technique for the physiologic assessment of pain in neonates. 

1.4 Research Motivations 
The challenge has been to bridge the gap between research and clinical practice by devising a 

pain assessment method for premature infants that is suitable in all circumstances and conditions. 

Despite the fact that the scientific community has disregarded misconceptions relating to pain in 

the neonatal population, there remains a lack of a ‘gold standard’ to measure pain precisely. 

Current pain measurement scales that are used in the NICU are highly based on behavioural 

indicators. The most commonly used scales are listed in Table 1. Behavioural indicators, such as 

facial expression, movement, and brow bulge, tend to be inadequate as the premature infants are 

heavily sedated or are not able to move due to the immaturity of their nervous system. 

Behavioural measurements are widely used for infants and nonverbal subjects of all ages (Berde 

& McGrath, 2009). Such measurements are sensitive to fear, anxiety as well as pain, resulting in 

an underestimation of pain intensity as compared to self-report measures in patients with 

persistent pain (Berde & McGrath, 2009). Also, some infants have limited ability to behaviorally 

express pain due to specific disorders, underdevelopment as a result of prematurity as well as 

physical exertion (Evans, McCartney, Lawhon, & Galloway, 2005). Assessing such behavioural 

indicators pose challenges for clinical practice and research due to subjectivity; as such, these 

indicators can be perceived differently by each health care professional. Additionally, as Table 1 

presents, most pain scales do not adjust for gestational age when scoring. Because neonates tend 

to react differently to pain at varying gestational ages, accounting for the gestational age is 
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important, otherwise inaccuracy and misinterpretation can occur. In a study done by Johnston 

and Stevens, the authors compared the responses of newly-born infants at 32-week gestation with 

those who were currently 32-week gestational age (infants born 4 weeks earlier at 28-week 

gestation). When compared to the newly born 32-week gestation infant responses to heel sticks, 

the earlier born (28-week gestation) infants had significantly greater heart rate, significantly 

lower oxygen saturation, and fewer upper facial expressions of pain (Johnston & Stevens, 1996). 

These changes can categorically alter pain scores. For this reason, designing a pain scoring 

system that adjusts for gestational age becomes critical.  

Table	1.	Commonly	used	pain	assessment	tools	

Assessment 
Tool 

Physiologic 
Indicators 

Behavioural 
Indicators 

Gestational Age 
(GA) Tested 

Scoring 
Adjusts for 
GA 

Premature 
Infant Pain 
Profile 
(PIPP) 

Heart rate & 
oxygen saturation 

Brow bulge, eye 
squeeze, nasolabial 
furrow 

28-40 week Yes 

CRIES Heart rate & 
Oxygen saturation 

Crying, Facial 
expression, 
Sleeplessness 

32-36 week No 

Neonatal 
Infant Pain 
Scale 
(NIPS) 

Respiratory 
patterns 

Facial expression, 
cry, movement of 
arms and legs, state 
arousal 

28-3 week No 

Bernese 
Pain Scale 
for 
Neonates 
(BPSN) 

Heart rate, 
Respiratory rate, 
Blood pressure, 
Oxygen saturation 

Facial expression, 
body posture, 
movements, 
vigilance 

Term and preterm 
neonates 

No 

Neonatal 
Facing 
Coding 
System 
(NFCS) 

None Facial muscle 
group movement 

Preterm and term 
neonates, infants at 4 
months of age 

No 
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The fundamental limitations in pain assessment for neonates stem from subjective assessment 

criteria, rather than quantifiable and measurable data, resulting in poor quality and inconsistent 

treatment of patient pain management. Pain is commonly known to be a subjective experience 

for which the gold standard of measurement is self-report (Brown, Chatterjee, Younger, & 

Mackey, 2011). Even though self-reported pain is clinically useful and proves to be an effective 

assessment approach in most situations, self-reported pain can fail for certain vulnerable 

populations such as neonates. Pain is an individual sensation that is difficult to interpret without 

any communication from the patient. Neonates, for example, are not able to provide self-reports 

of pain. Thus, the use of objective measures of pain assessment is imperative.  

Health care professionals can also be strongly biased towards assessing these behavioural 

changes, resulting in inaccuracy. By using objective signs of subjective change, accuracy of pain 

assessments can significantly improve; however, these signs are not currently used in a precise 

manner. Patients would benefit from pain assessments that are performed as frequent as heart 

rate, temperature, respiratory rate, and blood pressure measurements. Evidently, we can use these 

objective physiological indicators to carefully quantify abnormalities or pain in premature infants 

with addition of contextual impression of the neonate as assessed by nurses.  

It is difficult to implement guidelines for such a complex problem. Pain assessment 

guidelines today describe the preferred pain assessment tool and criteria with respect to the 

frequency of scoring (Van Dijk & Tibboel, 2012). However, the availability of such guidelines 

does not necessarily translate into proper usage by the hospital staff. A survey done among 272 

paediatric nurses elicited potential barriers to optimal pain management (Czarnecki et al., 2011). 

Some of these included insufficient physician orders, insufficient time to pre-medicate patients 

before procedures and low priority given to pain management by physicians (Van Dijk & 
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Tibboel, 2012). This thesis proposes that by greater use of physiological indicators and more 

frequent assessment through automated pain assessment tools, these gaps can be eliminated. 

Currently, there is insufficient research relating to using physiological indicators to measure pain 

and its validity. In the future, there is scope for using this thesis work to create rule based-

automated systems for physiological indicators, which can potentially remove many of the 

above-mentioned hurdles.    

1.5 Research Aims and Objectives 
The primary aim of this research is to design an initial framework to automate a partial pain 

score for newborn infants using big data analytics that automates the analysis of high speed 

physiological data. This study will also assess characteristics in heart rate to explore the 

resourcefulness of heart rate as a measure to assess pain in newborn infants. The objective is to 

use physiological data for creating an alternate way to generate a score, that is currently 

generated manually.  

1.6 Research Questions 
1) Can a scoring system be designed using real-time big data analytics to quantify pain in 

the neonatal population? 

2) Can a real-time algorithm be designed using the knowledge presented in this thesis? 

3) Is more frequent monitoring of pain possible by creating an automated system by using 

the Artemis platform? 

1.7 Research Hypothesis  
This research study will critically examine the following three hypotheses: 

1) A scoring system can be designed for the elements of the score that do not require visual 

observation at bedside using real-time big data analytic techniques to quantify pain in the 

neonatal population. 
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2) A real-time algorithm can be designed using the knowledge presented in this thesis.  

3) More frequent monitoring of pain is possible by creating an automated system by using 

the Artemis platform.  

1.8 Thesis Structure 
The thesis is structured as follows: Chapter 1 introduced the vital themes of this thesis including 

an overview on pain in the neonatal population, and the tools used to measure pain with the use 

of information systems. Chapter 1 also presented the research motivations as well as the research 

questions and hypothesis. Chapter 2 consists of the literature review, which outlines the 

background on the variety of machine learning/automated systems used in the past as well as a 

review on using physiological variables as indicators of pain. Chapter 3 presents a detailed 

description of the Artemis platform and how this research will use this platform to create a 

partial PIPP score. Chapter 4 presents two phases of the methodology: the data preparation phase 

and the data model phase. Chapter 5 displays in detail how the data model can be run to create an 

automated partial PIPP score using Artemis. Chapter 6 explores the physiological and clinical 

side of pain and outlines in detail the usefulness of heart rate as a physiological marker for the 

measurement of pain by presenting various experiments conducted with retrospective data. 

Chapter 7 will provide a discussion relating to the experiments completed. Finally, Chapter 8 

concludes the thesis with identifying limitations of this research work as well as outlining areas 

for future research and addressing the feasibility of implementing this design in an NICU in the 

future.  

 



	 12	

Chapter 2 - Literature Review 

This literature review chapter discusses the various studies conducted in the area of pain 

management to measure pain. The literature review begins with a discussion on how health 

information systems can be used to assess pain. Following is a review on how physiological 

parameters have been used to measure pain. It was important to review previous studies that 

were conducted using physiological changes to assess pain in order to create a new scale that 

provides more frequent monitoring. Lastly, a review was conducted on various 

computerized/automated pain measurement systems that have been validated till date to better 

understand the need for these systems to evaluate pain in the neonatal population. 

2.1 Pain and Health Information Systems  
Information is the critical resource around which health care organizations are designed. The 

utility of these information resources is what is of importance to alter the way pain is assessed. It 

is unfortunate that despite having an array of information resources within health care 

organizations, patient pain information continues to be documented in an analog format using 

paper and pen. It is important that we invest in and develop computerized automated systems for 

patient care. If this is implemented, the system can work as a safeguard for not only health care 

professionals but also patients. Furthermore, today’s governments and health care organizations 

also have a strong need for automatic tools such as clinical decision support systems which can 

combine advances in information technology (IT) systems to help reduce the health service costs 

caused by patient safety incidents (Kong et al., 2012). 

Computer-based automated systems or information tools are specific information 

technology (IT) applications that supports the needs of different types of clinicians and health 

care professionals. Introducing such applications and decision support systems into a health care 
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setting can enhance clinical tasks by providing access to information and communication 

technologies. It is important to turn to informatics-based solutions as healthcare is looking for 

new and innovative ways to deliver more services with fewer resources. However, the means by 

which information systems are both designed and implemented will impact how successful the 

system will be at enhancing care delivery. A key component to successful information system 

design is the methodological accuracy by which design requirements are collected and applied. 

Developing computer based automated systems and informatics tools has been a 

challenge because despite a number of different systems design approaches, many health care IT 

projects end up being problematic after implementation (Kuziemsky, Weber-Jahnke, Lau, & 

Downing, 2008). To avoid this in the neonatal population, it is important to analyze the needs of 

these systems and to use an interdisciplinary approach to design the system to avoid failure. 

Currently, very few health information systems are used in the neonatal pain domain. Many 

health care organizations are still continuing to use paper based scales to measure pain in the 

premature infant. Additionally, The Hospital for Sick Children, which is the clinical institution 

used in this study, uses the Premature Infant Pain Profile (PIPP), a paper based scale to quantify 

pain. Hence, there is vast potential in automating pain scales in the neonatal population through 

big data analytics in real-time.  

Since neonatal care tends to be very fragile, it is particularly important that the needs of 

these vulnerable patients and in many cases their families are represented in the new information 

systems that are applied to this domain. Furthermore, it is important to also ensure that these 

systems provide utility for its users such as physicians and nurses. Therefore, information system 

designed to enhance neonatal care requires understanding of multiple practices and settings to 

avoid failure or inaccuracy. 
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Neonatal pain management should involve a team or holistic based approach involving 

physicians, nurses and counsellors to ensure the system design is applicable to all areas. It is also 

important to consider that in healthcare, the users may not only be the health care professionals 

using the system but also the patients and family members whose care is being managed. Since 

neonatal care tends to be very sensitive, it is particularly important that the needs of these 

vulnerable patients and in many cases their families are represented in the new information 

systems that are applied to this domain.  

Pain is an important indicator of medical conditions and disease processes.  Health 

professionals are responsible for diagnosing pain, determining when pain management is 

necessary, and developing treatment plans. To accomplish these tasks, health professionals 

employ a variety of assessment tools for evaluating patient self-reports. In the case of preverbal 

children, methods have been devised to help them communicate their pain experiences. These 

children can indicate their pain levels, for example, by pointing to drawings of faces that express 

increasing levels of discomfort. Neonatal pain assessment, in contrast, depends exclusively on 

the judgment of other health care professionals. A growing body of evidence suggests that failing 

to diagnose and alleviate pain in newborns can have devastating and long-term effects (Brahnam, 

Nanni, & Sexton, 2007). A 2003 study listed several effects including immediate effects like 

irritability, fear, and sleep disturbances, short term effects such as diminished immune system, 

and long term effects like ongoing memory of the pain and also developmental delays (Mathew 

& Mathew, 2003). Multiple studies have shown that neonates who are given adequate pain relief 

consistently tend to exhibit better health outcomes. 

The majority of pain assessment instruments developed for newborns incorporate 

observations of facial activity. Even though facial activity is easier to decipher then physiological 



	 15	

measures and other behavioural indicators such as crying, instruments that have relied on facial 

information have proven unsatisfactory primarily because of problems with observer bias. One 

way to reduce bias is to incorporate evaluations that have not been made by an observer. Several 

researchers have begun investigating machine assessment of common pain indicators. Lindh et 

al. for instance, have reported some success detecting pain as it relates to heart rate variability, 

and Petroni et al. have trained neural networks to discriminate differences in neonatal cries, 

including a cry in response to pain (Lindh, Wiklund, & Hakansson, 1999; Petroni, Malowany, 

Johnston, & Stevens, 1995). Various different health informatics tools such as these will be 

discussed in section 2.3 of this literature review chapter. 

2.2 Physiological Variables as Indicators to Measure Pain 
It is vital for researchers to bring about a change in the practices of detecting pain in neonates. 

Since the scales in place currently are not fully equipped to provide most accurate results, it is 

important to redesign the approach. One of the ways to do this will be by using the constantly 

changing physiological variables. To understand a neonate’s body condition and to discover 

medical problems, caregivers continuously monitor physiological parameters such as heart rate 

(HR), respiratory rate (RR), blood oxygen saturation (SpO2), and the blood pressure. The most 

used physiological parameter in the domain of neonatal pain is that of heart rate. Various studies 

have been conducted to prove the usefulness of this measure. Changes in heart rate are widely 

used as markers of reactivity to a painful event in preterm and term infants. Characteristic 

increases in heart rate following a painful event can be readily identified because heart rate data 

is easy and relatively inexpensive to acquire. For this reason, heart rate signal is often considered 

a useful measure of pain reactivity in clinical settings where distress signals are frequently 

nonspecific and ambiguous. Even the most premature infants have the capacity to increase their 
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heart rate in response to a painful or distressing event, which reflects generalized central nervous 

system (CNS) arousal and in particular sympathetic nervous system activation (Oberlander & 

Saul, 2002). Systems that tend to control cardiovascular functions are closely linked to 

mechanisms that modulate pain reactivity, thereby, making heart rate responses a potentially 

useful physiological index of reactivity to noxious events in infants (Oberlander & Saul, 2002). 

In one particular research study, the heart rate variability (HRV) was investigated for a group of 

infants (age >34 gestational weeks) with chronic pain (Faye et al., 2010). The results showed that 

chronic pain is associated with an increase in HR, decrease in RR, and significant decrease in 

HRV.  

It is important to also examine the role of the homeostatic physiological systems that play 

a role in the mechanism of pain. For the cardiovascular system, this represents a continuous 

feedback system between the CNS, the autonomic nervous system, and peripheral components. 

These then maintain mean values of blood pressure and central venous volume within a narrow 

range, reflected in vascular tone and heart rate (Oberlander & Saul, 2002). Like all homeostatic 

functions, the greater increases and decreases of heart rate are thought to represent healthier 

individuals. The greater the organized patterns of rhythmic physiologic signals such as heart rate, 

the greater the capacity of the individual may have to respond to changing environmental 

demands (Oberlander & Saul, 2002).  

Premature infants have significant difficulties with changing environments, which is why 

they are admitted to the Neonatal Intensive Care Unit (NICU), where the environment is suitable 

for their optimal growth and health. Heart rate is a common expression of multiple physiologic 

processes that reflect CNS function, autonomic control mechanisms, metabolic activity, thoracic 

hemodynamics, and cardiac chemoreceptors and baroreceptors, as well as levels of arousal and 
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levels of activity (Oberlander & Saul, 2002). In this sense, the heart rate signal can be used as a 

parameter that links physiologic capacities with psychological functions, providing a means to 

investigate stress reactivity, clinical risk, and developmental processes during childhood 

(Oberlander & Saul, 2002). In infants, resting mean heart rate is typically between 120 and 160 

beats per minute (bpm). Heart rate is rarely constant, and its variability reflects continuous 

activity and interactions between a variety of central and peripheral control systems (Oberlander 

& Saul, 2002). Heart rate is considered an objective and easily quantifiable measure; however, 

its specificity as a measure of pain reactivity in premature infants has not been investigated in 

great detail. Overall, mainly research has found increases in mean heart rate following a noxious 

event, smaller heart rate changes observed in the presence of analgesics, and differences in 

responses between painful and non-painful conditions. These claims can help to support the use 

of heart rate as a physiologic index of pain for future in-depth studies on pain responses in the 

premature infant population. 

The systems modulating the perception of pain are coupled closely with the 

cardiovascular system. Therefore, the most common physiological pain responses usually 

include those that are coupled with the stress response. These responses include increases in 

heart rate, respiratory rate, blood pressure, intracranial pressure, palmar sweating; and decreases 

in vagal tone, heart rate variability, oxygen saturation, carbon dioxide levels, and peripheral 

blood flow (Gibbins & Stevens, 2001).  

Neonates usually tend to show increase in heart rate and decrease in heart rate variability 

(HRV) when exposed to a pain stimulus. HRV refers to the beat-to beat alterations in heart rate. 

During a study done on heel lancing, it was shown that the heart rate increased and the total 

HRV and the spectral power of the low frequency band decreased in preterm infants during heel 
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lancing and squeezing of the heel (Lindh, Wiklund, Sandman, & Hakansson, 1997). The 

frequency domain analysis of the HRV also discriminated a non-painful provocation of the 

flexor response from the noxious heel lancing and squeezing. Thus, analysis of HRV may offer a 

possibility of grading the level of distress caused by pain (Lindh et al., 1999). This can prove to 

be a useful tool in determining the intensity of pain from mild to severe. The HRV study done by 

(Faye et al., 2010) also showed that High Frequency Variability Index (HFVI) was able to 

predict the pain with sensitivity of 90% and a specificity of 75%. The background research by 

Stevens and Johnston in 1994 (Stevens & Johnston, 1994) also showed that the heel prick was 

able to give rise to an increased heart rate and decreased oxygen saturation in preterm infants.  

Besides heel lances, another routine procedure for this population is that of 

immunizations. Johnston and Strada in 1986 stated that they noticed an initial drop in heart rate 

followed by a sharp increase during routine immunizations(Johnston & Strada, 1986). In adults 

usually when they experience intense stimuli, which they perceive as danger, it provokes a 

defense response with an accelerative heart rate reaction because of sympathetic activation. 

Infants on the other hand, react to sudden noise or painful stimuli with fear paralysis reflex, 

which can be characterized by temporary sympathetic inhibition and bradycardia (Padhye, 

Williams, Khattak, & Lasky, 2009). Thus, in infants, pain and stress can cause severe problems. 

The physiological changes associated with repeated painful procedures in new born infants 

should encourage clinicians to reduce the number of stressful events during the neonatal 

intensive care. 

Heart rate variability as mentioned earlier is an important method that can provide insight 

into the interplay between sympathetic and parasympathetic activity. The high frequency band 

reflects respiratory-related activity almost entirely mediated by vagal tone (Marek, 1996). The 
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low frequency component is in some studies considered to reflect both sympathetic and 

parasympathetic activity and in others exclusively sympathetic modulation (Marek, 1996). In the 

study performed by Lindh in 1999, they recruited 25 term newborn infants on the maternity ward 

(Lindh et al., 1999). When they compared baseline levels, it was found that heel lancing 

triggered an increased total heart rate variability and power in the low frequency band, in 

contrast to the decrease during squeezing sequences (Lindh et al., 1999). 

Blood pressure is one of the vital signals used to detect a wide range of abnormalities.  

Even though, in typical measurements of the blood pressure, many clinical processes are limited 

to measurement of only systolic and diastolic pressures—as opposed to the entire signal. 

However, when the entire blood pressure signal is collected, much more information can be 

extracted from the data (Najarian & Splinter, 2012).  The analysis of the signal is done in six 

frequencies; they are then calculated and analyzed. These frequencies are the pulse rate 

(harmonics). These frequencies are ideal because most of the energy of the blood pressure signal 

is contained in these harmonics. Thus, the relative strength or weakness of these harmonics is 

often associated with certain abnormalities, which in this case can be pain (Najarian & Splinter, 

2012).  Increase in heart rate in preterm and term infants undergoing circumcision appears with a 

marked increase in blood pressure as well; which reflects increased sympathetic arousal 

(Oberlander & Saul, 2002). Diseases that are not directly related to the heart are also detected or 

diagnosed at least partially using the blood pressure signal (Najarian & Splinter, 2012). 

Analgesics also play an important role as confounding factors in measuring the above-

mentioned physiological indicators.   The confounding effects of opioid analgesics may also 

influence the heart rate or heart rate variability response to a painful stimulus. In preterm and 

term infants, opioids clearly reduce heart rate responses to noxious events. In neonates 
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undergoing surgery, opioids result in decreased cardiovascular responses to surgical stress 

(Oberlander & Saul, 2002). Studies have shown that analgesics administered to term infants, 

decreased physiologic disturbances (increased heart rate, blood pressure, and intracranial 

pressure) and improved overall clinical outcomes including decreased incidences of sepsis 

(infection), metabolic acidosis, hyperglycaemia, and clotting (Gibbins & Stevens, 2001).  

Preterm infants who did not receive analgesia for noxious stimuli had significantly more 

physiologic responses and were more likely to develop intracranial haemorrhages or other 

complications in comparison to infants who did receive analgesia (Gibbins & Stevens, 2001). 

2.3 Computerized Tools to Measure Pain 
The development of new information based computerized systems and clinical parameter 

prediction tools in the recent past have opened up a new outlook to many areas in healthcare.  

Through time, the historical development of automated machine learning algorithms and its 

applications for medical diagnosis has led to advanced and sophisticated data analysis today. 

Machine learning is a subfield of artificial intelligence. Artificial intelligence is a part of 

computer science that tries to make computers more intelligent. One of the basic requirements 

for any intelligent behaviour is learning. Therefore, machine learning is one of the major 

branches of artificial intelligence and is rapidly growing.  Machine learning algorithms were 

from the very beginning designed and used to analyze medical datasets (Kononenko, 2001). 

Today, machine learning is able to provide various vital automated tools for intelligent data 

analysis in the medical community. In the future, intelligent data analysis will play an even more 

important role due to the large amount of information produced and stored by modern 

technology. Current machine learning algorithms provide tools that can significantly help 

medical practitioners to reveal interesting relationships in their data (Kononenko, 2001). 

Machine learning based diagnostic instruments will be used by physicians and health care 
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professionals as any other tool to aid in diagnosis. These tools will be a source of possibly useful 

information that helps to improve diagnostic accuracy. The final responsibility and judgement 

whether to accept or reject this information can still remain with the physician. There have been 

various automated techniques that have been experimented in the pain domain.  

Today, modern hospitals are well equipped with monitoring and other data collection 

devices, and data is gathered and shared in large information systems. Machine learning 

technology is currently well suited for analyzing medical data, and in particular there is a lot of 

work done in medical diagnosis in small specialised diagnostic problems. Even though the 

devices to collect data are present, it is important to utilize these resources in the right manner to 

make better clinical decision support systems for clinicians to solve problems such as inadequate 

pain management. For the functionality of these systems, the medical diagnostic knowledge can 

be automatically derived from the description of cases solved in the past. The derived classifier 

can then be used either to assist the physician when diagnosing new patients in order to improve 

the diagnostic speed, accuracy and/or reliability (Kononenko, 2001). 

For a machine learning system to be useful in solving medical diagnostic tasks, the 

following features should be present: good performance, the ability to appropriately deal with 

missing data and with noisy data (errors in data), the transparency of diagnostic knowledge, the 

ability to explain decisions, and the ability of the algorithm to reduce the number of tests 

necessary to obtain reliable diagnosis (Kononenko, 2001). 

To advance the development of a physiology-based pain measure, neuroimaging methods 

have been applied to pain management. It can be beneficial to incorporate machine-learning 

techniques, and to investigate the complex interplay of brain regions in mediating the experience 
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of pain (Brown et al., 2011). The use of functional MRI (fMRI) in detecting the presence of pain 

may be strengthened by incorporating machine learning algorithms. Machine learning algorithms 

such as for example a support vector machine (SVM), can allow predictive models to be trained 

with a known set of stimuli when detecting pain. Support vector machines and related machine 

learning algorithms are versatile tools that can learn complex relationships between multiple 

inputs. Therefore, these systems and tools are very well suited for integrating into them various 

factors to make classification. These are more accurate than what would result from the 

investigation of one data source in isolation (Brown et al., 2011). 

Marquand and colleagues were the first to apply these neuroimaging fMRI techniques 

and machine learning algorithms to the area of pain measurement (Marquand et al., 2010). In 

their study, healthy individuals were exposed to thermal stimuli presented at heat perception 

threshold, pain perception threshold, and pain tolerance. Machine learning algorithms were 

trained on fMRI data and used to predict self-reported pain for each participant individually 

(Marquand et al., 2010). This study provided an important advancement in pain measurement, 

demonstrating that machine learning algorithms could be used to assess an individual’s pain, if 

trained using fMRI data from that same individual. 

To extend this work of Marquand et al., it would be useful to demonstrate that 

physiology-based pain assessment, using fMRI data and machine learning algorithms, can 

classify pain accurately without relying on self-report data from the individual that is being 

tested. If, for example, a SVM model could be trained on one set of neonates, and used to 

accurately classify pain in different premature infants, then its performance would not depend on 

the test neonates self-report. Therefore, while there may be considerable individual differences in 

the experience of pain and in patterns of brain activity induced by pain, there are nonetheless a 
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core set of pain-induced responses in the brain that may prove to be universal (Brown et al., 

2011).  

Objective pain measures are observational instruments that can be categorized as 

unidimensional or multidimensional. Researchers believe that a multidimensional objective 

measure aids better results as it evaluates two or more pain dimensions (e.g. behaviours and 

physiologic responses) and it has several domains within each dimension. In a comprehensive 

review of neonatal/paediatric objective pain measures, the authors concluded that 

multidimensional measures were more useful clinically and that no single domain was reliable or 

valid when used alone (Li, Puntillo, & Miaskowski, 2008). The goal in utilizing 

multidimensional measures would be to yield accuracy levels as close to 100% as possible. 

2.3.1 Ontology  

Ontologies are a very popular field in the pain domain. Ontological engineering, dealing with 

developing and using ontology, has become an important research focus in information science. 

In recent years, use of ontology as a mechanism for representing knowledge in clinical decision 

support systems (CDSS) has gained momentum and has become more common in supporting 

and solving decision problems as complex as pain (Noy, Rubin, & Musen, 2004). 

An information system is intended to be a representation of a world as perceived by a 

human or a group of humans (Wand & Weber, 2004). However, since healthcare is a very 

diverse and complex system, it is essential that healthcare information systems represent that 

kind of complexity. Ontologies are representations of concepts and relationships in a domain 

area and are important to the information systems field in that they have been described as the 

best base for building theories about information systems representations. There are three 

different ways ontologies can be used in information systems design. Firstly, as a benchmark to 
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evaluate models used in systems development and secondly to provide a set of concepts to model 

systems and to reason about their characteristics and finally to define the meaning of information 

that will be available through an information system (Kuziemsky, Downing, Black, & Lau, 

2007).  

One particular study used the grounded theory approach, which includes three systematic 

coding cycles: open, axial and selective coding. The ontology represents a means of formalizing 

the richness obtained through the grounded theory coding by applying a systematic way of 

organizing the concepts as well as establishing the relationships between them (Kuziemsky et al., 

2007). The study also makes a contribution to ontology information systems research by 

illustrating how the grounded theory approach can be used to design an ontology that contains an 

empirically derived vocabulary, models the concepts and relationships in a complex domain area 

and also details the processes and information within the ontology (Kuziemsky et al., 2007). 

2.3.2 Relevance Vector Machine (RVM) 

Infants are unable to directly report their level of pain, and hence, physicians and nurses are 

responsible for pain assessment for neonates. Pain and distress behaviours in neonates, include 

facial expression, cry, and body movement, and a series of methods have been suggested to 

objectively assess pain in neonates based on the aforementioned behaviours. Correct 

interpretation of the facial expressions of the patient and its correlation with pain is a 

fundamental step in designing an automated pain assessment management system. However, by 

adding other pain behaviours, including head movement and the movement of other body parts, 

along with physiological indicators of pain, such as heart rate, blood pressure, and respiratory 

rate responses should make the pain detection system more accurate.  

Recent advancements in pattern recognition techniques using Relevance Vector Machine 

(RVM) learning techniques can assist physicians and nurses in assessing pain by constantly 
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monitoring the patient and providing the clinician with quantifiable data for pain management 

(Gholami, Haddad, & Tannenbaum, 2010). In one particular study, the researchers used the 

RVM classification technique to distinguish pain from non-pain in neonates as well as assess 

their pain intensity levels. 

The RVM algorithm can potentially be useful in assessing sedation and agitation in the 

NICU (Gholami et al., 2010). The fundamental limitations in sedation and agitation assessment 

in the NICU stem from subjective assessment criteria, rather than quantifiable, measurable data 

for NICU sedation. An automatic sedation and pain assessment system can be used within a 

decision support system, which can also provide automated sedation and analgesia in the ICU 

(Gholami et al., 2010). However, a system such as this is yet to be implemented in the NICU. 

Algorithms such as RVM can aid in creating an automated system for neonatal pain 

measurement.  

2.3.3 Statistical Systems 

There are many different statistical techniques that have also been discussed in the pain 

literature. One such literature review looked at and tested machine-learning techniques for 

abdominal pain in order to improve standard statistical systems. This study highlighted various 

different statistical systems that can be used to measure pain. The researcher’s investigation was 

based on a prospective clinical database with 1254 cases, 46 diagnostic parameters and 15 

diagnoses (Ohmann, Moustakis, Yang, & Lang, 1996).  

 

Following are the different automated rule induction techniques that were presented (Ohmann et 

al., 1996). 

1. ID3: construction of a decision tree via the iterative deployment of four rules. 
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2. C4.5: represents a system that implements the ID3 approach but is better in that it uses 

decision tree simplification and or pruning.  

 

3. NewId: represents another implementation of ID3. Understands priority scheme. 

 

4. ITRULE: uses the information-theoretic J-measure to find the most informative set of 

rules from an input data set. The algorithm searches the space for possible rules and 

calculates the information contents of the rules (J-measure).  

 

5. CN2: represents a star generator machine learning system.  

 

In this study, for evaluation purposes, the database of 1254 patients was randomly split into a 

training set and a separate test set.  The standard model and all algorithms for automatic rule 

generation mentioned above were trained on the training set and separately evaluated on the test 

set (Ohmann et al., 1996).  

Detailed analyses showed that the clinical impact of computer-aided diagnosis is a 

combined effect of audit, structured data collection, feedback, education and the computer. 

Automatic knowledge acquisition techniques used to develop rule-based systems from clinical 

data have been applied with good success in several other clinical areas.  

Furthermore, another study done by same set of authors implemented this knowledge and 

used it to describe a knowledge-based system for the diagnosis of acute abdominal pain, in which 

scores and rule sets were integrated. This system in particular was linked to a documentation 

program via a medical data dictionary and allowed an online application of knowledge modules 

to clinical data (Eich, Ohmann, & Lang, 1997). 



	 27	

In this study, different rule sets were generated by automatic rule generation (C4.5) from 

a prospective database. The rule sets and two published diagnostic scores were evaluated on a 

test set, resulting in a diagnostic accuracy of 57 % for a general knowledge module and between 

44 and 88 % for specific knowledge modules (Eich et al., 1997). In the first approach, rule-based 

sets were generated by machine learning techniques from clinical databases (automatic rule 

generation). The algorithm used was C4.5, representing a system similar to the ID3 approach. 

For testing of the rule sets generated by C4.5, a prospective European database with 10233 cases 

was used (Eich et al., 1997). The database was split into training set and test set. The whole 

system consisted of 3 program modules. A data dictionary, documentation program and a 

Knowledge Based System (KBS) (Eich et al., 1997). The data dictionary is a controlled 

vocabulary by which the integration of the documentation module and the KBS can be achieved. 

The second module was designed to collect data in clinical studies. In this documentation 

program, the authors carried out several prospective evaluation studies where their aim was to 

build up a quality-controlled prospective database on which they can apply knowledge-based 

methods. The third component of this system was the KBS, which was used for diagnostic 

support. They integrated rule-based systems, which automatically generate rules from 

prospective databases and scores. Sets of rules were created through the C4.5 algorithm. The 

KBS has a human interface and can be used as a stand-alone system. 

2.3.4 Clinical decision support/ web based systems 

The first Clinical Decision Support systems (CDSS) were standalone systems that were running 

separately from other hospital systems. They evolved into integrated systems where decision 

support was embedded into hospital information systems (e.g., offering support in such clinical 

areas as laboratory, nurse charting, radiology or pharmacy). Then, the integrated systems evolved 

into separated systems with shareable information and decision support content (Farion et al., 
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2009). One study focused on the design of a clinical decision support system (CDSS) that 

supports heterogeneous clinical decision problems and runs on multiple computing platforms. 

This is important as in today’s health care settings; practices have become interpersonal and 

collaborative as opposed to homozygous decision-making. 

The proposed design of this study provided a common framework that facilitated 

development of diversified clinical applications running seamlessly on a variety of computing 

platforms. It was prototyped for two clinical decision problems and settings (triage of acute pain 

in the emergency department and postoperative management of radical prostatectomy on the 

hospital ward) and implemented on two computing platforms – desktop and handheld computers 

(Farion et al., 2009). In a previous study of the authors, a system named MET1 (Mobile 

Emergency Triage) was designed to help with management of paediatric patients using 

information about their history, physical examination and a limited number of laboratory tests 

(Farion et al., 2009). MET1 included two clinical applications (supporting triage of paediatric 

abdominal pain and paediatric scrotal pain). The system was able to run on handheld computers. 

However, MET1 was designed to support set of homogeneous decision problems only in a single 

setting such as the emergency department (ED) and to operate on a single computing platform (a 

handheld computer). 

In the process, the researchers then proposed a new clinical decision support system 

design (referred to as MET2) that represents the next generation of CDSS that can make 

heterogeneous decisions. The researchers used ontology driven design to represent essential 

components of a CDSS. The two major architectural components of this design were the 

application repository and the executor. The application repository managed and stored the 

available application models. The executor created applications according to their application 
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models and executed them (Farion et al., 2009). Typically, upon the ED physician’s request, the 

executor retrieved an appropriate application model from the application repository and created 

the user interface according to the data ontology using components from the interface repository. 

Overall in this study, they have updated the previous MET1 system to a MET2 system, 

which introduces two new components: interface ontology and the configuration ontology. In the 

MET 2 system it encompasses data, support, interface and configuration models. In this new 

system, they also introduced the Entity-Attribute Value (EAV) approach to structure clinical 

information as it allows for more flexible and effective handling of heterogeneous data (Farion et 

al., 2009). The authors proposed a multi-device architecture for electronic information 

processing and communication in the clinical setting. A similar approach is also proposed by 

another new paradigm: activity-based computing. This approach also highlights clinical 

computing that considers user activities (tasks) as first class objects in a computing environment. 

A new-generation CDSS should be able to support heterogeneous decision problems (in 

particular those that require heterogeneous decision models and solvers) at different settings and 

to execute seamlessly on multiple computing platforms. This is important in the neonatal pain 

domain, as pain can be a result of many different factors. For this reason, the system 

implemented should be able to make heterogeneous decisions.  

Following the concept of clinical decision support systems, one paper described a 

prototype clinical decision support system (CDSS) for risk stratification of patients with cardiac 

chest pain. The researchers employed a belief Rule-base Inference Methodology using the 

Evidential Reasoning approach (RIMER) for developing an intelligent CDSS (Kong et al., 

2012).  In this RIMER approach, belief rule base was employed to model clinical domain 
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knowledge under uncertainties. Such a rule base was capable of capturing vagueness, 

incompleteness, and nonlinear causal relationships. 

In this clinical decision support study, the researchers adopted a unique web-based three 

layer architecture in the prototype design of the clinical decision support system design (Kong et 

al., 2012). Three-layer architecture of a web-based intelligent clinical decision support system 

should include four different system components: friendly web-based user interfaces, inference 

engine, knowledge base, and database. The core components implemented in the belief rule-

based system prototype in this study include web-based user interface, database, inference engine 

and knowledge base. 

Benefit of a web-based decision support system is that it can deliver suggestions or 

recommendations generated from the system to a much broader audience. Web-based decision 

support system in clinical areas can have many advantages such as provision of easy access to 

computerized decision support for clinicians in geographically different places. It can also 

provide easy dissemination of clinical domain knowledge and patient data among different 

clinical application systems which are linked through internet (Kong et al., 2012). Increase in the 

use of information technology (IT) in health care, particularly the introduction of clinical 

decision support systems, can help simplify the health care process and substantially facilitate 

clinical practice and reduce medical errors. Even though clinical decision support systems are 

promising in helping facilitate evidence based medicine and reducing patient adverse outcomes, 

there are challenges in this research area that have made few clinical decision support systems 

widely applied in practice (Kong et al., 2012). 
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2.3.5 Biopotentials  

One study used the expression of pain and its biopotential parameters to show how pain can be 

measured. The researchers collected a database using visual and biopotential signals to advance 

an automated pain recognition system, to determine its theoretical testing quality, and to 

optimize its performance (Walter et al., 2013). For this purpose, participants were subjected to 

painful heat stimuli under controlled conditions. This study had many unique properties such as 

the use of highly controlled pain stimulation, multiple camera setup, recording of depth 

information via a camera and most importantly multimodal detection such as simultaneous data 

collection on skin conductance level, electrocardiogram (ECG), electromyogram (EMG), and 

electroencephalography (EEG) (Walter et al., 2013). 

This biopotential study’s aim was to select the features and feature patterns that 

contribute to the highest recognition rate for pain recognition, quantification and dissociation 

from emotion. A range of data fusion procedures was tested for this. Overall, the study used 

biopotential and video analyses to measure pain (Walter et al., 2013). The authors were moving 

towards the vision of creating an automatic system for an objective measurement of pain, which 

can facilitate pain monitoring, logging and support in a clinical environment. The authors named 

this “pain computing”.  

2.3.6 Facial recognition 

In the last few years in the neonatal pain area, there has been great focus on automated facial 

recognition scales.  Various pain assessment measures (tools, instruments, etc.) based on facial 

expressions of pain have been developed (Yuan, Bao, & Guanming, 2008). This has proved to be 

a popular area of research as an automated recognition of facial expressions of pain does not 

require reliance on health professionals that has great medical significance. The objective of the 

facial recognition study done by Yuan et al. is to bypass the observational problems by 
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developing a machine classification system to diagnose neonatal facial expressions of pain(Yuan 

et al., 2008). In this particular study, they employ an expressive feature, the Gabor feature, to the 

representation of neonatal faces. Each neonatal facial image is convoluted with the 2D Gabor 

Filters to extract 412,160 Gabor features (Yuan et al., 2008).  The Gabor features are obtained by 

convoluting the image with a series of Gabor filers. Gabor filters extract features from different 

orientation and different scales (Yuan et al., 2008). Image analysis with Gabour filters is thought 

to be similar to perception in the human visual system, which is why it is used in this case.  

An automated facial expression analysis system usually consists of three parts: face 

detection, facial feature extraction/representation and classification. In this experiment by Yuan 

and colleagues (2008), they attempted to distinguish cry expressions that were in response to 

pain from those cry expressions that were in response to a less noxious stimulus. Thus, two 

stimuli were included in this study: heel puncture and transporting the neonate from one crib to 

another. In the feature extraction stage, 2D Gabor filter were applied to extract the expression 

features from facial images. Finally, in the feature selection and classification stage, the proposed 

HybridBoost is applied to select the most informative features/weak classifiers, and by this a 

hierarchy of strong classifiers are constructed (Yuan et al., 2008). Experiments with 510 neonatal 

expression images showed that the proposed method in this study was effective and only 30 

Gabor features were enough to achieve good classification performance (Yuan et al., 2008).  The 

recognition rate of pain versus non-pain was up to 88%. Over the last decades, such automatic 

facial expression analysis has become an active research field that shows high potential in many 

areas, such as the automated assessment of neonatal pain. 

Another facial recognition study describes the Infant Classification Of Pain Expressions 

(COPE) Project (Brahnam et al., 2007). A short-term goal of this project was to investigate the 
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feasibility of using holistic face recognition techniques to detect pain signals in newborn facial 

displays. The long-term goal of the authors was to develop working systems that can be 

implemented in neonatal units (Brahnam et al., 2007). Selection of stimuli used to provoke facial 

displays in the neonates was of critical importance in this study.  For the initial infant study, four 

noxious stimuli were selected: the puncture of a heel lance, friction, produced by swabbing on 

the external lateral surface of the heel, an air stimulus on the nose and lastly transport from one 

crib to another (Brahnam et al., 2007).  The objective of performing these procedures was to 

obtain a representative and challenging set of images for evaluating face classification systems of 

pain.  

2.4 Neurological Indicators 
Pain causes detectable biochemical, physiological, and behavioural changes during the rapid 

development phase of the central nervous system.  Repeated and long-term experiences of pain 

have adverse effects on brain development and cognitive development as well as on later pain 

behaviour manifestation and pain sensations. Thus, it is important to alleviate pain during 

hospitalisation in order to promote the optimal neurological and functional development of 

preterm infants (Korhonen et al., 2013).  

Brain imaging is a very active area of pain research that can aid in leading to improved 

pain measurement in the future (Apkarian, Bushnell, Treede, & Zubieta, 2005; Borsook & 

Becerra, 2006; Slater et al., 2006). Some imaging methods that can be used for this purpose are 

positron-emission tomography, single-photon emission computed tomography, near infrared 

spectroscopy, and functional magnetic resonance imaging (Berde & McGrath, 2009). It can also 

be possible to detect signals reflecting regional brain glucose use, blood flow, or regional ratios 

of oxy- to deoxy-hemoglobin, respectively, as surrogate measures of regional neuronal metabolic 
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activity (Berde & McGrath, 2009). Furthermore, magnetic or electric source potential mapping 

or processed electroencephalographic measures can also be used as surrogate measures of 

regional brain electrical activity (Berde & McGrath, 2009). In the mid-to- late 1980s, infant 

behavioural researchers used cortisol levels to assess behavioural responses to various stressors. 

Stress response to handling, pain response to heel stick, and circumcision, as well as the effects 

of biomedical status on response were key issues. Cortisol responses were noted to be greater 

following painful procedures than routine handling, and behavioural responses did not correlate 

well with peak cortisol levels (Herrington, Olomu, & Geller, 2004). 

A research study done by Slater and colleagues in 2008 assessed the association between 

cortical pain responses in young infants and currently used tools for the assessment of pain in 

these infants (Slater et al., 2008). They were able to record infant cortical activity in response to 

noxious stimulation, which provided for a first of its kind opportunity to look at the relationship 

between clinical pain assessment scores, on the basis of behavioural and physiological responses, 

with measurements of pain processing in the brain.  The researchers presented an analysis of the 

association between the cortical haemodynamic activity and the components of a clinical pain 

assessment tool (PIPP) (Slater et al., 2008).  

Behaviours to communicate pain require motor responses to sensory and emotional 

stimuli (Slater et al., 2008). The maturity of the premature infant to this complex system is not 

clearly understood currently.  The results of the study by Slater (2008) raise further awareness of 

the ability of infants to experience pain and highlight the possibility that pain assessment based 

on behavioural tools alone may underestimate the pain response in infants. The researchers also 

concluded that positive brain response to painful stimulus could occur even in the absence of any 
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facial expression. These conclusions are important as they obtain evidence for the urgent need to 

provide physiological changes in a greater focus in the detection of pain in neonatal infants. 

2.5 Conclusion 
This chapter has presented various studies that have outlined that machine-based systems can be 

used to detect and analyze physiological changes associated with pain such as increase in heart 

rate. Numerous automated approaches have been presented to assess pain based on analysis of 

physiological indicators (Brown et al., 2011; Lindh et al., 1999). Studies have shown that there is 

high correlation between pain/discomfort and changes in vital signs (e.g., heart rate increasing) 

(Janig, 1995). Many of the automated systems already in place such as the traditional assessment 

of infant’s crying and facial recognition systems are biased and depend totally on the observer’s 

subjective judgement (Riddell & Craig, 2007). Therefore, using the knowledge from this chapter 

and developing a quantitative and minimally biased pain assessment system that can 

continuously provide feedback is important. It is important to use the knowledge and techniques 

presented in this chapter to design a pain assessment scale that can be standardized.  There is 

tremendous potential to use these techniques to automate a calculable pain score. 
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Chapter 3 - Artemis 

This chapter presents The Artemis platform used in this thesis. The Artemis framework is a 

framework for concurrent multi-patient, multi-diagnosis and multi-stream temporal analysis in 

real-time for clinical decision support as well as prospective and retrospective clinical research 

(Blount et al., 2010). The Artemis framework relies on the acquisition of physiological data from 

existing bedside medical devices contained within the NICU as the data are generated. These 

devices, which are already enabled to output their data for collection, can be connected via an 

Ethernet and/or serial port. Sources of data include bedside physiological monitoring devices, 

medical equipment such as ventilators and infusion pumps, and clinical information management 

systems (CIMS), which house the patient’s electronic medical record and laboratory results 

(Blount et al., 2010; McGregor, 2013; McGregor, Catley, James, & Padbury, 2011). The analytic 

results provide clinicians with integrated temporal summaries of events (McGregor, Catley, 

James, et al., 2011), which delivers advanced clinical decision support. Since 2009, the Artemis 

system has been deployed in several NICUs of various hospitals. In such clinical settings, the 

Artemis system has the ability to acquire, collect, analyze, and store data containing 

electrocardiogram (ECG), heart rate (HR), respiratory rate (RR), oxygen saturation (SpO2), and 

blood pressure (BP) streams as well as Clinical Information Management System (CIMS) 

observations for clinical research (Blount et al., 2010).  

The Artemis framework is outlined in Figure 1 (McGregor, Catley, James, et al., 2011). 

The data acquisition component enables the provision of real-time synchronous medical device 

data and asynchronous CIMS data to be refined, formatted and standardized. Subsequently, this 

data is forwarded for analysis within the Online Analysis component that operates in real-time 

(McGregor, Catley, James, et al., 2011).  
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For this real-time component, Artemis employs IBM's InfoSphere Streams, a novel streaming 

middleware system that processes data in real-time and then enables data storage within the Data 

Persistency component (McGregor, Catley, & James, 2011). Consequently, the system is capable 

of processing and storing both the raw data and derived data from multiple infant sources at the 

rate at which the data are generated (Blount et al., 2010). Stream processing is supported by 

IBM's Stream Processing Language (SPL), which is the system specific programming language 

for IBM's InfoSphere Streams middleware (Blount et al., 2010). For the Knowledge Extraction 

component, Artemis utilizes a newly proposed temporal data mining approach (McGregor, 

Catley, & James, 2012). This component supports the discovery of condition onset behaviours in 

physiological data streams and associated clinical data. New knowledge, once tested and derived 

from rigorous clinical research techniques, is transferred for use within the Online Analysis 

component through the Re-deployment component, which translates the knowledge to an SPL 

representation. 

Figure	1.	Artemis	Framework	
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Overall, Artemis can be defined as an extensive and cultivated Big Data informatics 

platform within which compatible algorithms, such as the one proposed in this thesis for pain 

assessment, can be functionally deployed. “Big Data” refers to datasets whose size is beyond the 

ability of typical database software tools to capture, store, manage, and analyze (Manyika et al., 

2011). Online health analytics have significant relevance in the critical care domain. The 

enormous quantities of complex physiological data continuously produced by critical care 

monitors and equipment exceeds the clinician’s capacity for processing (McGregor, 2013; 

McGregor, Catley, James, et al., 2011). The use and adoption of online health analytics has great 

potential to enable quality improvement. Such analytics enable the real-time processing of early 

prognosticators of impending clinical deterioration (McGregor, 2013; McGregor, Catley, James, 

et al., 2011) and perform as an early warning system. The application of online health analytics 

promotes timely intervention and improved outcomes for patients (McGregor, 2013; McGregor, 

Catley, James, et al., 2011). The utilization of a similar system can be useful in additional research 

areas and future retrospective research opportunities such as that presented in this thesis. The work 

presented in this thesis, is part of a larger Artemis project, which is ongoing at the Health Informatics 

Research Lab at University of Ontario Institute of Technology (UOIT). Within the Artemis project, 

many projects have been completed within varied areas of research, which focus on a real-time 

algorithm design. For example, a similar algorithm design has been used for monitoring conditions 

related to retinopathy of prematurity (Cirelli, McGregor, Graydon, & James, 2013). Additionally, 

such algorithms have been incorporated into the automated monitoring techniques for apnoea of 

prematurity (Catley, Smith, McGregor, James, & Eklund, 2011) and detection of sleep-wake 

cycling patterns in neonates (Eklund et al., 2014). Such projects depict the optimistic possibility 

of Artemis in providing a significant contribution to clinical diagnostics with physiological data. 

Similarly, this thesis work will demonstrate the utility of the Artemis platform for the effective 
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detection and monitoring of pain within the neonatal population in the future. The Artemis platform 

has been used previously for preliminary work on this subject. Such work focused on designing rules 

to create a novel pain profile, and also includes a pilot retrospective study compared between 

Artemis generated pain score and a pain score that was in use at The Hospital for Sick Children, 

Toronto, Canada (Naik, Bressan, James, & McGregor, 2013; Naik & McGregor, 2014; Naik et al., 

2014). Using this background work with Artemis capabilities, it is possible to design an algorithm 

unique to this research that can be deployed within Artemis to create a pain detection system that 

can provide diagnostic support to health care professionals.  
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Chapter 4 - Methodology 

Literature has demonstrated that untreated pain in premature infants may cause long-term 

effects associated with changes in the nervous system, pain perception, sleep disturbances, 

feeding problems, and chronic pain syndromes (Slater et al., 2008). The inexistence of a gold 

standard within pain management, the complexity of the premature infant and the rapid 

deterioration of the fragile neonatal population poses challenges that must be overcome in order 

to achieve optimal pain management tools. For this reason, this chapter will introduce several 

methods to achieve such goals.  

The methodology in this chapter is presented in two phases. In Phase I, a data preparation 

phase is introduced to demonstrate the work in which retrospective analysis is completed using 

the data collected from the Artemis platform in the DB2 system. In this data preparation phase, 

the abstractions were put into individual streams to look for features in the physiological streams. 

The data preparation results were used during the second phase, where a data model was created 

using Microsoft Excel. Phase II involved combining the, abstractions and features from the data 

preparation phase in order to compute an automated partial pain score based on big data analytics 

and quantifiable scoring from the streams prepared in data preparation phase (Heart Rate (HR), 

Oxygen Saturation (SpO2) and Gestational Age (GA)). The steps outlined in this chapter are 

completed in order to carry out experiments in chapter 5. 

 The population for this study was twenty-three premature infants; thirteen males and ten 

females; gestational age 33.2 ± 5.41 weeks and birth weight 2060 ± 910 grams. Data are 

presented as mean ± SD.  
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4.1 Phase I: Data preparation  
Demographic data were extracted from the medical records such as GA, birth weight, gender, 

admission diagnosis, PIPP and surgical information. This data was collected for twenty-three 

subjects, and physiological data for heart rate (HR) and oxygen saturation (SpO2) were streamed 

from The Artemis Platform. Physiological data from the NICU bedside devices were captured in 

real-time. The approach to automation involved blocking the second-by-second data into a one-

hour window to construct an hourly partial PIPP score.  

Excel was used for the construction of a series of queries that would each create a 

temporal abstraction for a given hour. As noted in the discussion in chapter 7, this process would 

be replaced by Infosphere streams code that can run in real-time and has windowing capabilities. 

For each subject, the following steps were performed to extract and organize the data for analysis 

to enable hour-by-hour analysis for the physiological data components of HR and SpO2:   

1. The start and end date and time to be used for each subject was identified and was then 

converted to GMT epoch timestamp to run the query. The identification of start and end 

epochs for every hour was essential. Data preparation file was created in Microsoft Excel® 

for each subject separately.  

2. The epochs were put in a row for each hour to match the original date and time. The date and 

time was converted to epoch with the following equation in Microsoft Excel®: 

	(($%&'	&	&)*' − 25569)×86400)            Equation 1 
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Table	2.	Date	&	time	conversion	to	EPOCH	

Date & Time (DD/MM/YY 
HH:MM) EPOCH  

09/03/2010 20:00 1268164800 
09/03/2010 21:00 1268168400 
09/03/2010 22:00 1268172000 
09/03/2010 23:00 1268175600 
10/03/2010 0:00 1268179200 

 

3. Since there are 3600 seconds in one hour, generation of the start of the hour epoch as well as 

the end of the hour epoch is important. One column was created for the start of the hour 

epoch, using the following formula in Microsoft Excel®: 

('567ℎ	(69):);%<	&)*') − 3601)		        Equation 2 

Another column was created for end of the hour epoch for which the following formula was 

used in Microsoft Excel®: 

('567ℎ	(69):);%<	&)*') + 1)               Equation 3 

This ensured that full data for within the hour was collected. Table 3 shows an overview of 

the preparation sheet for data extraction. 

Table	3.	Data	preparation	sheet	for	EPOCH	

Patient ID Date & Time  
EPOCH (original 

time) 
Start Epoch   

(-3601) 
End Epoch 

(+1) 
Subject 1 09/03/2010 20:00 1268164800 1268161199 1268164801 
Subject 1 09/03/2010 21:00 1268168400 1268164799 1268168401 
Subject 1 09/03/2010 22:00 1268172000 1268168399 1268172001 
Subject 1 09/03/2010 23:00 1268175600 1268171999 1268175601 
Subject 1 10/03/2010 0:00 1268179200 1268175599 1268179201 

 

4. The query was run in STDM framework instantiated within The Artemis Platform in the 

knowledge discovery component to extract results for HR and SpO2 for each hour. The 

following formula was used in Microsoft Excel®: 
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=CONCATENATE ("select patientid, instancestart, avg(hrvalue) as AVG, min(hrvalue) 
as MIN, max(hrvalue) as MAX, stddev(hrvalue) as STDDEV, count(hrvalue) as COUNT 
from (select patientid, '", D2, "' as instancestart, timestamp, hrvalue from db2inst1.rawhr 
where patientid = 'N",A2, "' and timestamp > ", E2, " and timestamp < ", F2, ") group by 
patientid, instancestart ") 
 

5. The query was run for each hour for each subject. This extracted per second data for every 

hour leading up to the PIPP score recorded.  

Table	4.	Output	sheet	including	artifacts	for	Heart	Rate	data	

Subject ID 
DATE & 

TIME EPOCH AVG MIN MAX 
STD 
DEV COUNT 

Subject 1 
09/03/2010 

16:00 1268150400 162.49 102 199 15.50 3516 

Subject 1 
09/03/2010 

17:00 1268154000 24004.3 74 8388607 446660 3517 

Subject 1 
09/03/2010 

18:00 1268157600 8388607 8388607 8388607 0 161 

Subject 1 
09/03/2010 

20:00 1268164800 131.1 119 138 2.97 902 

Subject 1 
09/03/2010 

21:00 1268168400 139.29 128 166 5.34 3517 

Subject 1 
09/03/2010 

22:00 1268172000 142.50 83 173 8.45 3516 

Subject 1 
09/03/2010 

23:00 1268175600 140.93 115 155 3.68 3511 

 

6. To clean the data, the query was updated and changed to exclude the artifacts. If any artifacts 

were found, they were removed for each hour for both HR and SpO2 and the total counts of 

the rows was recorded. Following query was used to remove artifacts in Microsoft Excel®: 

 
 =CONCATENATE("select patientid, instancestart, avg(hrvalue) as AVG, min(hrvalue) 
as MIN, max(hrvalue) as MAX, stddev(hrvalue) as STDDEV, count(hrvalue) as COUNT 
from (select patientid, '", D2, "' as instancestart, timestamp, hrvalue from db2inst1.rawhr 
where patientid = 'N",A2, "' and timestamp > ", F2, " and timestamp < ", G2, " and 
hrvalue <> 8388607) group by patientid, instancestart") 
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7. After removal of artifacts (if any), the final output provided per second data for HR, which 

was then summarized into average, minimum, maximum, standard deviation and number of 

rows (counts) for each hour. Table 5 shows the output sheet for HR.  

Table	5.	Output	sheet	for	Heart	Rate	data	without	artifacts	

Subject 
ID 

DATE & 
TIME EPOCH AVG MIN MAX STD DEV COUNT 

Subject 1 09/03/2010 
16:00 1268150400 162.49 102 199 15.499 3516 

Subject 1 09/03/2010 
17:00 1268154000 153.10 74 177 8.066 3507 

Subject 1 09/03/2010 
20:00 1268164800 131.10 119 138 2.968 902 

Subject 1 09/03/2010 
21:00 1268168400 139.29 128 166 5.336 3517 

Subject 1 09/03/2010 
22:00 1268172000 142.50 83 173 8.449 3516 

Subject 1 09/03/2010 
23:00 1268175600 140.93 115 155 3.682 3511 

Subject 1 10/03/2010 
0:00 1268179200 139.57 122 156 3.893 3451 

 

8. Similarly, an output was provided for per second data for SpO2, which was then summarized 

into average, minimum, maximum, standard deviation and number of rows (counts) for each 

hour. Table 6 shows the output sheet for SpO2. 

Table	6.	Output	sheet	for	SpO2	without	artifacts	

PATIENT 
ID DATE & TIME EPOCH AVG MIN MAX 

STD 
DEV COUNT 

Subject 1 09/03/2010 16:00 1268150400 94.92 78 100 4.008 3516 
Subject 1 09/03/2010 17:00 1268154000 95.12 83 98 2.162 3504 
Subject 1 09/03/2010 20:00 1268164800 95.24 77 99 5.042 902 
Subject 1 09/03/2010 21:00 1268168400 94.16 78 99 2.712 3516 
Subject 1 09/03/2010 22:00 1268172000 94.56 71 97 3.859 3506 
Subject 1 09/03/2010 23:00 1268175600 94.13 86 96 1.228 3511 
Subject 1 10/03/2010 0:00 1268179200 92.23 85 95 1.639 3453 
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9. After this, the PIPP scores, when available, were manually inputted into the rows (hours) 

(PIPP scores were collected by nurses and extracted for research by a research assistant from 

the CIMS system at SickKids Hospital). 

10. GA was also calculated based on the age of the infant at the time of first collected PIPP 

score. Based on this calculation, the GA was changed over time. Table 7 shows the final 

data set view.  

Table	7.	Final	dataset	view	

Subject 
ID 

DATE & 
TIME EPOCH AVG MIN MAX 

STD 
DEV N PIPP GA 

Subject 1 09/03/2010 
16:00 1268150400 162.49 102 199 15.499 3516 8 28 

Subject 1 09/03/2010 
17:00 1268154000 153.10 74 177 8.066 3507   28 

Subject 1 09/03/2010 
20:00 1268164800 131.10 119 138 2.968 902 

5 
28 

Subject 1 09/03/2010 
21:00 1268168400 139.29 128 166 5.336 3517   28 

Subject 1 09/03/2010 
22:00 1268172000 142.50 83 173 8.449 3516   28 

Subject 1 09/03/2010 
23:00 1268175600 140.93 115 155 3.682 3511   28 

Subject 1 10/03/2010 
0:00 1268179200 139.57 122 156 3.893 3451 10 28 

 
4.2 Phase II: Data Model 
Following the data preparation phase, a data model was created based on the Premature Infant 

Pain Profile (PIPP) using Artemis data. The PIPP scale was chosen as the base comparison scale 

for this thesis because the clinical institution (The Hospital for Sick Children, Toronto, Canada) 

that was associated with this study used this particular scale in their clinical setting. The PIPP 

scores were collected from The Hospital for Sick Children’s NICU records. Nurses collected 

PIPP scores in a handwritten format. These records were retrospectively examined and the scores 

were recorded for research purposes. 
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The PIPP scale was used in correlation with Artemis data to compute a total score for 

each hour using maximum HR, minimum SpO2 and GA. Since PIPP is the base scale used in this 

study, the scale was used to explore and demonstrate a new scoring system. Following this, 

Artemis Premature Infant Pain Profile (APIPP) was created. By depicting the parameters of 

scoring from the already in place PIPP scale, an attempt was made to create a model scoring 

system using The Artemis Platform. 

4.2.1 Premature Infant Pain Profile (PIPP)  

The Premature Infant Pain Profile (PIPP) is a behavioural and physiological multidimensional 

assessment tool, which provides a measure of the premature infant’s response to pain (Stevens, 

Johnston, Petryshen, & Taddio, 1996). Scoring indicators include gestational age, behavioural 

states and physiological factors. The presence or degree of change/pain is rated on a four-point 

scale, which includes seven indicators. The indicators include upper facial activity, physiological 

activity and behavioural state. The scale ranges from zero (minimum score) to 21 (maximum 

score). The PIPP scale was the first of its kind multidimensional premature infant pain assessing 

scale. 

The PIPP is one of the very few scales that accounts for the infant’s gestational age, thus 

allowing the distinction among mature, full-term and, preterm infants (Gallo, 2003). PIPP was 

developed using data from four studies involving 238 neonates undergoing heel stick, where 

such studies identified the indicators of PIPP while establishing the validity of the instrument 

(Franck & Miaskowski, 1997).  

When Stevens et al. created the PIPP scale, they reviewed previous literature and 

concluded that previous scales were mostly one-dimensional and only included behavioural 

responses to pain (Stevens et al., 1996). These scales did not include the physiological indicators 
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or factors to modify the pain response. The investigators highlighted a need for multidimensional 

pain measure for premature infants. Hence, the PIPP scale was developed using multiple 

indicators. The PIPP scale was developed and validated using a prospective and retrospective 

design. Indicators of pain were identified by clinical experts and using literature. Indicators were 

retrospectively tested using four existing data sets.  

PIPP provided a sufficient background for this thesis to carry out a case study that 

explores the hypothesis of designing a scoring system using real-time big data analytic 

techniques to quantify pain in the neonatal population. To investigate the research questions for 

this thesis, the election of parameters that will be used for the case study was important. Since 

The Artemis Platform contains the data for both physiological parameters contained within the 

PIPP (HR, SpO2), these particular parameters were included in the design of the novel APIPP 

scale.  

Table	8.	Premature	Infant	Pain	Profile	(PIPP)	

Process Indicator 0 1 2 3 Total 
Score 

Chart Gestational 
Age 

36 weeks 
or more 

32-35 
weeks, 

6 days 

28-31 
weeks, 

6 days 

Less than 
28 weeks 

 

Observe 
infant for 
15 seconds 

Behavioural 
State 

Active, 
awake, 
eyes open, 
facial 
movement 

Quiet 
awake, 
eyes open, 
no facial 
movements 

Active 
sleep, eyes 
closed, 
facial 
movements 

Quiet sleep, 
eyes 
closed, no 
facial 
movements 

 

Observe 
baseline 
heart rate 

Heart Rate 
Maximum 

0-4 beats 
per min 
increase 

5-14 beats 
per minute 
increase 

15-24 beats 
per min 
increase 

25 beats 
per min or 
more 
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and oxygen 
saturations 
for 30 
seconds 

increase 

Oxygen 
saturation 
minimum 

Decrease 
of 0-2.4% 

Decrease of 
2.5-4.9% 

Decrease of 
5-7.4% 

Decrease of 
7.5 or more  

 

Observe 
infant’s 
facial 
actions for 
30 seconds 

Brow Bulge None Minimum Moderate Maximum  

Eye 
Squeeze 

None Minimum Moderate Maximum  

Nasolabial 
furrow 

None Minimum Moderate Maximum  

TOTAL SCORE 
 

 

Since this thesis presents an approach to automate a physiological scale, the two physiological 

parameters (HR, SpO2) contained within the PIPP scale were used for analysis in the design of 

scoring the new scale APIPP. Gestational age was also included in the APIPP analysis as 

Gestational age has proven to have varying effects on a neonates’ pain perception. Additionally, 

gestational age is a calculable field that is independent of the infant’s state at the bedside.  

4.2.2 Artemis Premature Infant Pain Profile (APIPP) scoring analysis 

APIPP scoring is an attempt to assess the possibility of automation in pain assessment of 

premature infants. For this reason, the two physiological indicators contained within the PIPP 

scale were included in the APIPP scale. The physiological data for HR and SpO2 were also 

readily available in The Artemis platform. Gestational age was also used as a factor for this scale 

as gestational age can have varied effects on how a neonate responds to pain. The APIPP scale 

displayed in Table 9 ranges from zero (minimum score) to 9 (maximum score). 



	 49	

																																			Table	9.	Artemis	Premature	Infant	Pain	Profile	(APIPP)	

Indicator 0 1 2 3 Total Score 

Gestational 
Age 

36 weeks or 
more 

32-35 
weeks, 

6 days 

28-31 
weeks, 

6 days 

Less than 
28 weeks 

 

Heart Rate 
Maximum 

0-4 beats 
per min 
increase 

5-14 beats 
per minute 
increase 

15-24 
beats per 
min 
increase 

25 beats per 
min or 
more 
increase 

 

Oxygen 
saturation 
minimum 

Decrease of 
0-2.4% 

Decrease of 
2.5-4.9% 

Decrease 
of 5-7.4% 

Decrease of 
7.5 or more  

 

TOTAL SCORE 
 

 

Scoring analysis: 

For this generation of the APIPP Temporal Abstraction, the hourly summary data was used from 

section 4.1. All individual physiological streams data and gestational age data was scored 

individually and then combined in one Microsoft Excel sheet to compute a total APIPP score 

(based on the PIPP scoring criteria) that can be compared to the PIPP score. 

1. First, maximum heart rate, minimum SpO2 and gestational age scores were computed based 

on the PIPP scoring criteria for each hour of data extracted from the Artemis platform.  

Table	10.	Individual	scoring	of	max	HR,	min	SpO2	and	GA	

Subject 
ID 

Date & 
Time 

Max 
HR 

MAX 
HR 

Score 
Min 

SpO2 

MIN 
SpO2 
Score GA 

GA 
Score 

Subject 
1 

09/03/2010 
16:00 199   78   28  
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Subject 
1 

09/03/2010 
17:00 177 0 83 0 28 2 

Subject 
1 

09/03/2010 
20:00 138 0 77 2 28 2 

Subject 
1 

09/03/2010 
21:00 166 3 78 0 28 2 

Subject 
1 

09/03/2010 
22:00 173 1 71 2 28 2 

Subject 
1 

09/03/2010 
23:00 155 0 86 0 28 2 

Subject 
1 

10/03/2010 
0:00 156 0 85 0 28 2 

Subject 
1 

10/03/2010 
1:00 180 2 70 3 28 2 

 

2. Subsequently, maximum HR, minimum SpO2 and gestational age were summed together to 

calculate a total APIPP score. This score was then compared to the PIPP score recorded by 

nurses at The Hospital for Sick Children, Toronto, Canada.  This APIPP score was computed 

for all 23 subjects and compared to PIPP score. 

Table	11.	Final	output	for	APIPP	scoring	

MAX 
HR 

MIN 
SpO2 

GA 
Total 

APIPP 
Score 

PIPP 
Score 

0 0 2 2 8 
0 2 2 4   
3 0 2 5 5 
1 2 2 5   
0 0 2 2   
0 0 2 2   
2 3 2 7 10 

 

Overall, this chapter presented the preparation of the dataset that was used to carry out 

experiments in chapter 5. A data model was also created based on the PIPP scale using Artemis 

data. Depicting the scoring rules from the PIPP scale and using the data from The Artemis 
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Platform, a model scoring system was presented (APIPP). The following chapter will 

demonstrate the data model presented in this chapter by presenting a case study analysis. 
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Chapter 5 - Case study & Evaluation of Data model 

This chapter presents the implementation of methodology described in chapter 4. This study is a 

retrospective quantitative study conducted with the data collected at The Hospital for Sick 

Children, Toronto, Canada in the Neonatal Intensive Care Unit (NICU). This study was reviewed 

and approved by the Research Ethical Board under REB# 1000036025.  For this analysis, 

physiological data was captured continuously from NICU bedside monitoring devices and was 

streamed for temporal analysis using The Artemis Platform that was discussed earlier. Data was 

extracted between 2010 and 2013 from surgical and non-surgical patients during their stay in the 

NICU. After closely inspecting the data for case study analysis, 13 out of the 23 subjects were 

excluded due to insufficient data. Reasons for exclusion are discussed in more detail in section 

5.2. Overall, total of 10 subjects data was used for experiments.  

Following the creation of the data model and scoring of APIPP, the APIPP score was 

compared to the currently in place PIPP data collection for each subject. An in-depth analysis 

was conducted with the PIPP scores to examine if the APIPP score produces greater, lesser or 

equal results.  

The data for the three main variables analyzed in chapter 5 and 6 are significantly spread out 

with great variability in their data. Following is the breakdown for the ten subjects’ data for GA, 

surgery data and PIPP scores. 

a. Gestational Age:  

Out of ten subjects, three subjects were ‘term infants’ from 37 to 41 weeks; three subjects 

were ‘moderate preterm to late preterm infants’ from 32 to 36 weeks; two were ‘very 

preterm infants’ from 28 to 31 weeks and one was ‘extremely preterm’ with less than 28 
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weeks of gestational age.  Considering the wide distribution of the subjects through the 

spectrum, there is a small number of subjects per gestational age. 

b. Surgery: 

Seven subjects underwent a surgical procedure during their stay in the NICU with a total 

of 2105 lines of data, an average of 301 lines. Three subjects did not undergo surgery 

with a total of 295 lines, an average of 98 lines. In addition, only two patients presented 

the same surgical procedure: colostomy.  

c. PIPP:  

Ten subjects had a total of 478 PIPP scores collected. Out of this, following are the 

distributions for each PIPP scores: PIPP 0 = 15, PIPP 1 = 22, PIPP 2 = 38, PIPP 3 = 89, 

PIPP 4 = 84, PIPP 5 = 80, PIPP 6 = 52, PIPP 7 = 35, PIPP 8 = 25, PIPP 9 = 18, PIPP 10 = 

6, PIPP 11 =5, PIPP 12=5, PIPP 14=4. These scores were not regularly collected but are 

rather collected at different intervals, posing a challenge, as the PIPP scores were not 

continuous for every hour. PIPP scores were missing for 1651 out of a total of 2400 hours 

that were analyzed for the ten subjects. For this reason, only 749 hours of data could be 

used for analysis. 

5.1 Case Study 
For the preliminary analysis, the data was analysed as a case study for subject 1. A total of 1910 

hours of data were analysed for subject 1. For comparison purposes, the data for both scores for 

the subject were inputted into a pivot table, which was later plotted on a line graph. The data was 

filtered to exclude null values (blank) that were present within the PIPP data for an accurate 

depiction and comparison. Figure 2 displays the data for subject 1.  
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Figure	2.	PIPP	VS.	APIPP	Comparison	for	Subject	1	
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After the analysis, subject 1 was found to have greater PIPP scores then the APIPP scores. The 

PIPP maximum score is 21 and APIPP maximum score is 9; as such, investigating the difference 

between the two scores is imperative in order to understand the potential clinical efficacy. The 

following steps were carried out to create a data model: 

1. The difference between APIPP and PIPP score was computed in Excel for all values 

except null. Following this, four categories were created to analyse the difference between 

these two scores: 

Greater = PIPP score is greater than APIPP score 

Lesser = PIPP score is less than APIPP score 

Equal = PIPP score and APIPP score have a similar score 

Null= PIPP score was not collected when APIPP score was present 

2. Another column was created to display whether the PIPP score was greater, lesser, equal 

or null. Table 12 displays the output. 

Table	12.	Difference	comparison	between	PIPP	and	APIPP	scores	

 

 

 

 

 

                      
              
3. Following this, a pivot table was created to compare the percentage difference for each of 

the four categories. Results were summarized in a table and displayed in graphical form. 

Following result was outputted: 

APIPP score PIPP 
Score 

Difference 
between scores 

PIPP vs. Artemis 

2 8 6 Greater 
4   Null 
5 5 0 Equal 
5   Null 
2   Null 
2   Null 
7 10 3 Greater 



	 56	

3.46% 1.83% 

14.76% 

79.95% 
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Category % of Time outputted 
Lesser 3.46% 
Equal 1.83% 

Greater 14.76% 
Null 79.95% 
Total 100.00% 

 

 

 

 

 

 

 

 

 

 

 

The results showed a higher percentage of null values (79.95%). Such a result demonstrates that 

among 79.95% of the hours that the infant was in the NICU, pain scores were not recorded on an 

hourly basis. This result shows that 79.95% of the time, the PIPP values were not collected or 

available when the APIPP values were. Since the APIPP score was consistently scored for every 

hour, these scores produced a more frequent result in comparison to the PIPP score, while the 

PIPP scores that were collected by the nurses at The Hospital for Sick Children, Toronto, Canada 

were collected in an intermittent manner. The data analysed showed that these values were not 

collected consistently every hour, but rather, were collected infrequently at random time points. 

Figure	3.	Percentage	of	times	PIPP	score	was	lesser/equal/greater/null	compared	to	APIPP	
score	for	Subject	1	
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The second highest percentage was of the greater category. For 14.76% of the time, the PIPP 

score was greater than the APIPP score. This result was predictable as the PIPP scoring is a 21-

point scale whereas the APIPP is a 9-point scale. However, understanding the degree of 

difference between the PIPP score and APIPP score is important. Table 13 shows the differences 

that were recorded for each of the four categories.                           

Table	13.	List	of	#	of	times	a	difference	was	recorded	in	each	of	the	four	categories	(Subject	1)	

 

           

In total, 1910 hours of data were analysed for subject 1. In 66 instances, the PIPP score was less 

than APIPP score. In 35 instances, the PIPP score was equal to APIPP score.  In 282 instances, 

the PIPP score was greater than APIPP score.  For 1527 hourly instances of the APIPP score, the 

PIPP score was not recorded.  

Difference # of Times Difference was 
Recorded 

-4 2 
-3 7 
-2 15 
-1 42 
0 35 
1 36 
2 63 
3 56 
4 52 
5 24 
6 24 
7 11 
8 6 
9 3 
10 2 
11 5 

(Null) 1527 
Grand Total 1910 
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To better understand and analyse the difference between APIPP and PIPP, the hours where a 

PIPP score was not recorded were removed. Within this context, for 73.63% of the hours studied, 

the PIPP was greater than APIPP. This states that if lesser, equal and greater categories were 

compared, for subject 1, for 73.63% of the time the PIPP score was greater than the APIPP score. 

It is also noteworthy to discover that for 17.23% of time the PIPP score was found to be lower 

than the APIPP score.  

 

 

 

 

 

Despite a 12-point difference between the two scales, it is important to investigate the lesser 

category findings as the generation of higher scores by the APIPP scale is a significant finding 

that requires further investigation. Various reasons can be associated with such a result. For 

example, because the automated scoring of APIPP provides an output based on physiological 

changes, the APIPP score may be more sensitive than the PIPP score. Because the APIPP score 

incorporates scoring of physiological changes with per second data into hourly chunks, the 

automated scoring of APIPP may have detected signs that were missed by the nurses’ PIPP 

scoring. Such a finding will be important to investigate in the future. Figure 4 shows the 

difference for the lesser, equal and greater categories. 

Category % of times outputted 
Lesser 17.23% 
Equal 9.14% 

Greater 73.63% 
Total 100.00% 
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					Figure	4.	Percentage	of	times	PIPP	score	was	lesser/equal/greater	compared	to	APIPP	
score	for	Subject	1	(excluding	null) 
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While analysing the greater category of differences, the difference between the PIPP and APIPP 

score was minimal. As Figure 5 shows, the PIPP score is not greater by a colossal number; the 

highest occurring difference is a difference of 2. Furthermore, the most occurring differences are 

between the range of 1-4. The difference of 1-4 is made up of 73% of the data, whereas, the 

remaining 5-11 difference only makes up 26%. It is important to conclude that most of the hours 

analysed, only reported a difference in the lower range of 1-4 when compared between PIPP and 

APIPP. In a 12-point difference between two scales, a difference of 1-4 does not account for a 

significant difference.  

5.2 Evaluation of Artemis Premature Infant Pain Profile (APIPP) 
Data Model 
Testing the APIPP model on a larger cohort of subjects is important in order to evaluate the 

model. After closely inspecting the data for case study analysis, 13 out of the 23 subjects were 

excluded due to insufficient data.  

The exclusion was mainly due to discontinuous data. Since the data was collected for 

every hour, it was important to have continuous data for accurate analysis purposes. Thirteen 

subjects had multiple hours missing throughout the data set, which could have led to inaccurate 

results. Overall, following exclusion, a total of 2400 hours were analysed, 240 ± 558.5 hours for 

ten patients. Data are presented as mean ± SD. Table 14 shows the percentage of missing data in 

this population.  
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Table	14.	Summary	of	missing	data	for	each	subject	

 

Subjects with continuous hourly data were considered for analysis. After exclusion, ten subjects: 

six males and four females, where gestational age was 34 ± 4.8 weeks and birth weight was 2364 

± 870.5 grams, were considered for analysis.	Data are presented as mean ± SD. Table 15 shows 

the background information for ten subjects used in this experiment including gestational age 

(GA), birth weight (BW) in grams, sex of the subject, year of admission; admission diagnosis 

and the type of surgery performed if any. 

Subject 1 09/03/2010 20:00 11/03/2010 22:00 0%
Subject 2 08/05/2010 1:00 08/05/2010 12:00 0%

Subject X1 06/06/2010 20:00 07/06/2010 18:00 08/06/2010 3:00 09/06/2010 19:00 11%
Subject 3 31/10/2010 22:00 08/11/2010 7:00 0%
Subject 4 17/12/2010 8:00 18/12/2010 16:00 0%

Subject X2 Missing data at multiple points 9%
Subject X3 Missing data at multiple points 24%
Subject X4 Missing data at multiple points 26%
Subject 5 03/08/2011 23:00 05/08/2011 5:00 0%
Subject 6 10/10/2011 0:00 10/10/2011 23:00 0%
Subject 7 13/10/2011 22:00 17/10/2011 7:00 0%

Subject X5 Missing data at multiple points 73%
Subject X6 02/05/2013 16:00 02/05/2013 22:00 03/05/2013 10:00 05/05/2013 0:00 14%
Subject 8 14/05/2013 21:00 16/05/2013 10:00 0%

Subject X7 Missing data at multiple points 16%

Subject X8 17/05/2013 22:00 17/05/2013 22:00 18/05/2013 2:00 18/05/2013 8:00 27%
Subject X9 Missing data at multiple points 5%
Subject 9 19/05/2013 10:00 22/05/2013 9:00 0%

Subject X10 13/06/2013 21:00 19/06/2013 14:00 1%

Subject X11 Missing data at multiple points 3%
Subject 10 31/05/2013 22:00 02/06/2013 2:00 0%
Subject X12 08/06/2013 12:00 09/06/2013 0:00 09/06/2013 7:00 09/06/2013 7:00 30%
Subject X13 Missing data at multiple points 53%

Subj_No DataMissing[%]
DataStart DataBreak DataContinues DataEnds
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Table	15.	Background	information	for	subjects	1-10	

 

Following the analysis for Subject 1, a similar analysis was conducted with ten subjects to 

evaluate the APIPP data model. Similar to subject 1 analysis, the difference between the two 

scores were investigated. Table 16 shows the data for all 10 subjects for all four categories.  

Table	16.	Ten	subject's	data	for	four	difference	categories	

 Lesser (%) Equal (%) Greater (%) Null (%) 
Subject 1 3.46 1.83 14.76 79.95 
Subject 2 9.09 9.09 9.09 72.73 
Subject 3 1.69 1.13 11.30 85.88 
Subject 4 6.25 3.13 15.63 75.00 
Subject 5 6.67 3.33 23.33 66.67 
Subject 6 0 4.17 4.17 91.67 
Subject 7 2.47 0 12.35 85.19 
Subject 8 5.41 5.41 2.70 86.49 
Subject 9 1.43 4.29 25.71 68.57 
Subject 10 3.57 3.57 21.43 71.43 

     
AVG 4.00 3.60 14.05 78.36 

STDEV 2.66 2.38 7.36 8.20 
    

Similar results as subject 1 analysis were found after evaluating the data. For 78.36% ± 8.2 of the 

time, the PIPP score was not available to be analysed while the APIPP score was available. For 

14.05% ± 7.4 of the time, the PIPP score was higher than the APIPP score. For 4% ± 2.7 of the 

time, the PIPP score was less than the APIPP score. Lastly, for 3.60% ± 2.4 of the time, the PIPP 

Subject ID GA BW (g) Sex Year Admission Diagnosis Comments Surg
Subject 1 28 680 M 2010 TEF/OA VAP [March 30, May 2] 1
Subject 2 35 2620 F 2010 Late preterm, gastrochisis, ileal atresia Repair, resection [May 5] 1
Subject 3 36 2690 M 2010 Hypoxic-ischaemic encephalopathy Therapeutic hypothermia, no surgery 0
Subject 4 31 2655 F 2010 Prematurity, posthaemorrhagic hydrocephalus VP sunt insertion [December 16] 1
Subject 5 24 700 F 2011 Haemodynamically significant ductus arteriosus PDA ligation [August 3] 1
Subject 6 40 3285 F 2011 Anorectal malformation Colostomy [October 9] 1
Subject 7 36 3100 M 2011 Trisomy 21, ASD, VSD, PPHN No surgery 0
Subject 8 39 2900 M 2013 TTN, PPHN No surgery 0
Subject 9 38 2500 M 2013 Anorectal malformation, hypospadias Colostomy [May 19] 1
Subject 10 33 2510 M 2013 Posterior urethral valves Valve ablation [May 31] 1
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score was equal to the APIPP score. Data are presented as mean ± SD. The results presented a 

similar pattern to the results of subject 1 as each category of differences resulted in a similar 

classification.  

Table	17.	Classification	of	percentages	for	four	difference	categories	for	Subject	1	vs.	10	
subjects	

Difference Category Subject 1 10 subjects (Avg) 

Null 79.95% 78.36% 

Greater 14.74% 14.05% 

Lesser  3.46% 4.00% 

Equal 1.83% 3.60% 

                                      

The following figure 6 displays the data for 10 subjects for all four categories. 
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													Figure	6.	Percentage	of	times	PIPP	score	was	equal/greater/lesser/null	in	comparison	to	APIPP	score	for	Subjects	1-10	
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Additionally, it was important to exclude the null (blank) data and analyse the subjects based on 

the greater, lesser and equal categories. Table 18 displays the results.  

Table	18.	Ten	subject	data	for	greater,	lesser	and	equal	categories	(excluding	null	category)	

 
 
 

 

 

 

 

 

 

 

Table	19.	Classification	of	percentages	for	three	difference	categories	for	Subject	1	vs.	10	
subjects	(excluding	null	category)	

          

 

 

 

             

These results propose a similar pattern to that of subject 1, where the PIPP score was greater than 

the APIPP score for majority of the hours. Of 62.96% ± 20.6 of the study population, the PIPP 

score is greater. For 18.13% ± 11.6 of the population, the PIPP score is less than APIPP. Lastly, 

for 18.91% ± 15.4 of the population, the PIPP score is equal to APIPP. Data are presented as 

mean ± SD. Figure 7 displays the data for each subject based on these three categories. 

  Greater (%) Lesser (%) Equal (%) 
Subject 1 73.63 17.23 9.14 
Subject 2 33.33 33.33 33.33 
Subject 3 80.00 12.00 8.00 
Subject 4 62.50 25.00 12.50 
Subject 5 70.00 20.00 10.00 
Subject 6 50.00 0.00 50.00 
Subject 7 83.33 16.67 0.00 
Subject 8 20.00 40.00 40.00 
Subject 9 81.82 4.55 13.64 
Subject 10 75.00 12.50 12.50 

        
AVG 62.96 18.13 18.91 

STDEV 20.64 11.60 15.43 

Difference Category Subject 1 10 Subjects (Avg) 

Greater 73.63% 62.96% 

Lesser 17.23% 18.13% 

Equal 9.14% 18.91% 
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Figure	7. Percentage	of	Times	PIPP	score	was	Greater,	Lesser	or	Equal	in	Comparison	to	APIPP	for	Subjects	1-10	
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Once again, analysing the greater differences between PIPP and APIPP scores for all 10 subjects 

was imperative. Table 20 displays the sum of times each difference occurred across all 10 

subjects in the greater category. 

Table	20.	Sum	of	times	each	greater	difference	occurred	for	subjects	1-10	

Difference S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 TOTAL 
1 36 1 7 1     1   1 1 48 
2 63   3 2 2   3   1 4 78 
3 56   4 2 3 1 1   5   72 
4 52   4         1 5   62 
5 24   2   1   3   3 1 34 
6 24           2   2   28 
7 11       1       1   13 
8 6                   6 
9 3                   3 

10 2                   2 
11 5                   5 

 

As can be seen by Table 20 and Figure 8, the data for subject 1-10 presents a similar result to 

that of subject 1 alone. Similar to subject 1, subjects 1- 10 have a high frequency of times 

occurring differences in the lower range of 1-4. Similar to subject 1, the most occurring 

differences are two and three. The greater occurring differences are mostly below the difference 

of six. 

 

   

   

 

 

  

 

Figure	8.	Frequency	of	Greater	Difference	for	Subjects	1-10	
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In this case, it was important to note the number of hours analyzed for each subject as this can 

have a great impact on the results. A total of 2400 hours were analysed for 10 subjects. The 

average for this population was 240 hours and the standard deviation was 558. hours. The 

standard deviation is very large, indicating that the number of hours between these subjects is 

very spread out. Since Subject 1 had a large number of hours (1910) for which data was 

available, analyzing the data without subject 1 is important. After excluding subject 1 from the 

dataset, the total number of hours analyzed was 490. The average number of hours for this 

population of 9 subjects was 54.4 hours and the standard deviation was 48.17 hours. In this case, 

since the standard deviation is closer to the mean, the number of hours analysed for all 9 subjects 

were closer to the mean.  

The data for 9 subjects was analyzed and graphed. Figure 9 displays the results for the frequency 

of differences without subject 1. Once again, the most occurring differences were those on the 

lower side, with the difference of three being the highest occurring difference with a total of 

sixteen times. Excluding subject one also eliminated the differences ranging between 8 and 11.   

 

 

 

 

 

 

 

  

	
Figure	9.	Frequency	of	Greater	Differences	Excluding	Subject	#1	
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Overall, in this chapter, APIPP was calculated and compared to PIPP in order to reflect on the 

potential efficacy of the APIPP model. Following this, the model was evaluated to examine how 

the APIPP compared to the already established scoring system of PIPP. The model was 

evaluated by conducting an analysis on both the scores to compare if the PIPP score was greater, 

lesser or equal to that of APIPP.  

 This analysis was first computed on subject 1 as a case study. Following this, for the 

purposes of evaluating the model, 10 subjects’ data was also analyzed by implicating similar 

analysis on this subset of subjects to assess the model. Both analysis presented similar results, 

where majority of hours were presented as null (blank) for PIPP scores when APIPP score was 

present. Such results showed that the PIPP score was not collected for the majority of the time 

during which the APIPP score was available and scored. These null values were excluded and 

only the available values for PIPP were compared to APIPP score for a more reliable 

comparison. Additionally, for the majority of the time, the PIPP score was found to be greater 

than the APIPP score. Such a finding was expected as the PIPP score was scored out of 21 

whereas the APIPP score was scored out of 9. For this reason, computing the difference between 

the two scores was important. On average, for both analyses, the difference between scores was 

less than six with a difference of two and three being more prominent in both analyses. Such 

differences between the two scores were negligible. Such a finding is noteworthy as PIPP 

scoring has a much higher score compared to the APIPP score. Such an analysis shows that the 

PIPP score must be highly scored based on physiological parameters as the difference between 

the two scores is minimal despite the difference between them. Conducting future research to 

investigate these findings is important. Chapter 6 presents a discussion from the clinical 

perspective in the context of the literature review preformed and presented in chapter 2. Chapter 
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6 will discuss the clinical side of using physiological parameters as indicators for pain. Since 

heart rate is the most commonly used physiological indicator, heart rate will be used for clinical 

analysis with the PIPP scale. 
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Chapter 6 - Physiological Data Analysis 

Following the case study and evaluation of data model in chapter 5, the relationship between 

physiological parameter (heart rate) and clinical data such as gestational age, admission 

diagnosis and surgery, will be explored in this chapter. This chapter attempts to investigate the 

clinical aspect of pain management. Heart rate will be used as a base physiological parameter as 

heart rate is widely used in the clinical field.  Heart rate will be analyzed in accordance with 

various other clinical indicators and PIPP scale to explore it as a reliable measure for designing a 

computational automatic score in the future to quantify pain in the premature infant. By 

exploring this clinical aspect through various experiments, such an analysis will provide an 

overview to create objective tools to measure pain in the neonatal population in the future. 

Additionally, this analysis will help in the assessment as well as management of pain relief, 

avoiding the consequences that occur due to untreated pain.  

Similar to chapter 5, the data of ten subjects was used to conduct the experiments in this 

chapter. The subjects’ consisted of six males and four females, whose mean gestational age was 

34 ± 4.8 weeks and mean birth weight was 2364 ± 870.5 grams.	Data are presented as mean ± 

SD. Table 21 outlines the background information for each patient, including gestational age 

(GA), sex of the subject, year of admission; admission diagnosis and the type of surgery 

performed if any. 
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Table	21.	Background	information	for	Subject	1-10	

 

 

6.1 Statistics  
For statistical analysis within the heart rate domain, heart rate of ten subjects was plotted based 

on three different categories on three different graphs for heart rate average, maximum and 

minimum using Graphpad Prism®. For each subject, an average was computed within the hourly 

data set of each subject. After this, each average for the three categories was plotted on a graph 

for all ten subjects. The graph displays the heart rate average for each subject and their standard 

deviation. Figure 10, 11 and 12 displays the results for heart rate average, maximum and 

minimum, respectively.   

 

 

 

 

 

 

Subject ID GA BW (g) Sex Year Admission Diagnosis Comments Surg
Subject 1 28 680 M 2010 TEF/OA VAP [March 30, May 2] 1
Subject 2 35 2620 F 2010 Late preterm, gastrochisis, ileal atresia Repair, resection [May 5] 1
Subject 3 36 2690 M 2010 Hypoxic-ischaemic encephalopathy Therapeutic hypothermia, no surgery 0
Subject 4 31 2655 F 2010 Prematurity, posthaemorrhagic hydrocephalus VP sunt insertion [December 16] 1
Subject 5 24 700 F 2011 Haemodynamically significant ductus arteriosus PDA ligation [August 3] 1
Subject 6 40 3285 F 2011 Anorectal malformation Colostomy [October 9] 1
Subject 7 36 3100 M 2011 Trisomy 21, ASD, VSD, PPHN No surgery 0
Subject 8 39 2900 M 2013 TTN, PPHN No surgery 0
Subject 9 38 2500 M 2013 Anorectal malformation, hypospadias Colostomy [May 19] 1
Subject 10 33 2510 M 2013 Posterior urethral valves Valve ablation [May 31] 1
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After analysing the heart rate average for ten patients, the non-surgical patients were found to 

have lower mean heart rate compared to the subjects who had surgery and presented with a 

severe admission diagnosis. As seen in Figure 10, Subject 3, 6, 7 and 8 are in the lower heart rate 

range. Three out of four of these subjects did not undergo surgery and hence have a lower heart 

rate average. Subject 6 was the only subject to have a surgery (colostomy) in this group. This 

subject is also the oldest subject in this data set, who is 40 weeks of gestational age. The 

subject’s gestational age may be associated with the heart rate being lower despite the subject 

having a previous surgery. Subjects 1, 2, 4, 5, 9 and 10 underwent surgeries, and therefore their 

heart rate is within the higher range, as the heart rate is over 130. Subject 5, who had an 

admission diagnosis of significant ductus arteriosus and had a corresponding PDA ligation 

surgery, shows the highest heart rate. Subject 5 was one of the subjects with serious 

Figure	10.	Heart	Rate	Average	data	for	subjects	1-10	
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comorbidities that required an intensive surgery. In addition, Subject 5 was also extremely 

preterm with a gestational age of 24, which is the lowest in this group. Such findings show a 

pattern between heart rate, gestational age, surgical procedures and illness.  This pattern of heart 

rate averages demonstrates the potential utilization for heart rate as a measure within the pain 

domain. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 displays the results for maximum heart rate of the 10 subjects. This figure depicts a 

similar result to the figure for heart rate average. However, compared to the average heart rate 

data, the heart rate maximum data is more consistent. Once again, subjects 3, 6, 7 and 8 have a 

lower maximum heart rate, where most subjects have a heart rate of under 140. Among the four 

subjects, three subjects did not have a surgery, while subject 6, who is the oldest subject, had a 

Figure	11.	Maximum	Heart	Rate	Data	for	Subjects	1-10 
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surgery. Hence the heart rates of these four subjects were not very elevated in comparison to the 

other subjects. Subjects 1, 2, 4, 5, 9, and 10 are displaying a much higher maximum heart rate, 

with most subjects having a heart rate of more than 170. A consistent trend is observed with the 

maximum heart rate data, which displays maximum heart rate of 170 for most of the subjects. As 

such, a pattern is found between heart rate and illness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 displays the results for minimum heart rate. Most of the subjects have a fairly similar 

minimum heart rate. However, subject 5 shows a much higher minimum heart rate compared to 

other subjects. Subject 5 is also the youngest and most premature neonate with a gestational age 

of 24 who underwent a serious surgery (PDA ligation) for a serious comorbidity of significant 

Figure	12.	Minimum	Heart	Rate	Data	for	Subjects	1-10 
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ductus arteriosus. In common clinical practice, the nurses monitor the heart rate in a manner 

where heart rate does not decline to an anomalistic rate as such a heart rate can hinder the 

stability of the neonate, which is reflected in the minimum heart rate data presented in Figure 12. 

Figure 12 shows that the minimum heart rate is similar for most subjects.  Thus, the minimum 

heart rate is shown to be a less useful marker for assessing pain.  

6.2 ANOVA  
In this experiment, a one-way analysis of variance ANOVA was used to determine if any 

significant differences existed between the heart rate average, minimum and maximum among 

the ten subjects. One may assume that heart rate does differ from individual to individual; 

however patterns can be observed for resting, normal and exercising, which in turn can help to 

establish heart rate patterns for healthy individuals. Similarly, this test aims to explore the 

hypothesis that a pattern exists among premature infants based on gestational age, illness or pain. 

This test was also used to determine whether any significant differences exist between the means 

of three or more patients.   

Population: Ten subjects. One-way ANOVA was performed using Microsoft Excel®. 

Specifically, this test tests the null hypothesis, which states that there are no differences between 

the means of this group of subjects. If the null hypothesis is rejected, the alternative hypothesis is 

accepted, which would show that at least two subjects are significantly different from each other.  

After conducting the one-way ANOVA test with heart rate averages, a statistically significant 

difference was found between groups as determined (F (9, 531) = 220.33, p = 6.13E-173). Table 

22 displays the results. 
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Table	22.	ANOVA	heart	rate	average	

SUMMARY   
Groups Count Sum Average Variance   

Subject 1 51 7183 140.85 28.722   
Subject 2 11 1412 128.36 46.486   
Subject 3 177 18979 107.23 108.571   
Subject 4 32 4776 149.25 68.252   
Subject 5 30 4838 161.28 38.021   
Subject 6 24 2772 115.51 32.072   
Subject 7 81 9806 121.06 75.933   
Subject 8 37 4301 116.24 132.911   
Subject 9 70 10365 148.07 188.908   
Subject 10 28 4190 149.64 33.423   
ANOVA 	  

Source of 
Variation SS df MS F P-value F crit 

Between 
Groups 185835.8 9 20648.43 220.3351 6.13E-173 1.897504 

Within Groups 49762 531 93.71375       
Total 235597.8 540         

 

After conducting the one-way ANOVA test with heart rate maximum, a statistically significant 

difference was found between groups (F (9, 531) = 131.1, p = 8.80E-129). The results are 

presented in Table 23. 

Table	23.	ANOVA	heart	rate	maximum	

SUMMARY       
Groups Count Sum Average Variance   

Subject 1 51 8696 170.51 188.495   
Subject 2 11 1877 170.64 191.255   
Subject 3 177 22506 127.15 335.891   
Subject 4 32 5489 171.53 181.289   
Subject 5 30 5188 172.93 84.478   
Subject 6 24 3306 137.75 31.065   
Subject 7 81 11135 137.47 97.302   
Subject 8 37 5064 136.86 130.342   
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Subject 9 70 12030 171.86 92.559   
Subject 10 28 4979 177.82 125.041   

ANOVA       
Source of 
Variation SS df MS F P-value F crit 

Between Groups 225532.89 9 25059.21 131.1268 8.80E-129 1.897504 
Within Groups 101477.68 531 191.11 		 		 		

Total 327010.58 540 		 		 		 		
 

After conducting the one-way ANOVA test with heart rate minimum, a statistically significant 

difference was found between groups as determined by one-way ANOVA (F (9, 531) = 120.7, p 

= 4.61E-30). The results are presented in Table 24.  

Table	24.	ANOVA	heart	rate	minimum	

SUMMARY       
Groups Count Sum Average Variance   

Subject 1 51 5486 107.57 338.53   
Subject 2 11 1106 100.55 202.473   
Subject 3 177 16307 92.13 335.455   
Subject 4 32 3120 97.5 643.677   
Subject 5 30 4056 135.2 210.786   
Subject 6 24 2243 93.46 137.824   
Subject 7 81 8795 108.58 208.697   
Subject 8 37 3186 86.11 1183.21   
Subject 9 70 8037 114.81 1064.588   
Subject 10 28 3320 118.57 164.995   

ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 85933.96 9 9548.22 20.74249 4.61E-30 1.897504 
Within Groups 244430.75 531 460.32       
Total 330364.7 540         

 

The results for each of the three categories (average HR, maximum HR, and minimum HR) show 

that a significant difference exists. Although a one-way ANOVA can indicate that a significant 
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difference exists between two groups, this test is unable to specify which specific groups were 

significantly different from each other. To determine which specific groups differed from each 

other, the Tukey Kramer test was conducted. This test is performed following an analysis of 

variance (ANOVA) test.  

6.3 Tukey Kramer Test 
Following the one-way ANOVA, the Tukey Kramer test was performed as the one-way ANOVA 

test for all three experiments showed that there are significant differences between subjects.  The 

purpose of Tukey Kramer test is to determine which groups in the sample differ. This test 

compares all possible pairs of means and is based on a studentised range distribution (q). If the 

results of ANOVA are positive (i.e. a significant difference is shown among groups), a Tukey 

Kramer test can be performed. It is not likely that all groups differ when compared to each other, 

but that only some have significant differences. The Tukey Kramer test helps to clarify which 

specific groups among the sample have significant differences.  This test revealed where the 

significant differences were between these subjects. Three different Tukey Kramer test were 

manually preformed in Microsoft Excel® with the data for ten subjects based on heart rate 

average, minimum and maximum.  

To compute the Tukey test, the critical value is very important. The critical value is used 

to evaluate whether differences between any two pairs of means are significant.  The critical 

value also involves the absolute difference that has to be exceeded to achieve significance. For 

this, all possible pairs of comparisons were listed. The # of comparisons are calculated through 

equation 5 (n= # of groups): 

                    !(!#$)& 	           Equation 4 
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10(10 − 1)
2 = 45	

In this experiment, forty-five comparisons were required to compute the test. After this, the 

absolute difference is calculated through equation 6 (x = mean):  

           /0123456	$ 	− 	/7123456	&        Equation 5 

Following this, the critical value was calculated using Equation 7.  For this, the q value was 

found through the critical values of the studentised range table with	� 	0.05. MS value was taken 

from the ANOVA table. n represented the total # of observations for each subject. Since the data 

for all subjects were unequal, the lesser observations out of the two subjects were used. 

                                                         9 :7
!                      Equation 6 

Lastly, if the absolute difference was larger than the critical value, the comparison was found to 

be significantly different. When the Tukey Kramer test was conducted for heart rate average, a 

total of 45 comparisons were outputted, of which 11 comparisons showed a non-significant result 

and 34 showed significantly different results. Table 25 presents the results. 

Table	25.	Tukey	Kramer	Test-	heart	rate	average	

Tukey Kramer Test for Average Heart Rate 

Comparison Absolute Difference Critical 
Range Results 

Subject 1 vs. Subject 2 12.49 13.0587 not significantly different 
Subject 1 vs. Subject 3 33.63 6.0647 significantly different 
Subject 1 vs. Subject 4 8.4 7.6564 significantly different 
Subject 1 vs. Subject 5 20.43 7.9075 significantly different 
Subject 1 vs. Subject 6 25.34 8.8408 significantly different 
Subject 1 vs. Subject 7 19.79 6.0647 significantly different 
Subject 1 vs. Subject 8 24.61 7.1203 significantly different 
Subject 1 vs. Subject 9 7.22 6.0647 significantly different 
Subject 1 vs. Subject 10 8.79 8.185 significantly different 
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Subject 2 vs. Subject 3 21.13 13.0587 significantly different 
Subject 2 vs. Subject 4 20.89 13.0587 significantly different 
Subject 2 vs. Subject 5 32.92 13.0587 significantly different 
Subject 2 vs. Subject 6 12.85 13.0587 not significantly different 
Subject 2 vs. Subject 7 7.3 13.0587 not significantly different 
Subject 2 vs. Subject 8 12.12 13.0587 not significantly different 
Subject 2 vs. Subject 9 19.71 13.0587 significantly different 
Subject 2 vs. Subject 10 21.28 13.0587 significantly different 
Subject 3 vs. Subject 4 42.02 7.6564 significantly different 
Subject 3 vs. Subject 5 54.05 7.9075 significantly different 
Subject 3 vs. Subject 6 8.29 8.8408 not significantly different 
Subject 3 vs. Subject 7 13.83 4.8123 significantly different 
Subject 3 vs. Subject 8 9.02 7.1203 significantly different 
Subject 3 vs. Subject 9 40.84 5.1766 significantly different 
Subject 3 vs. Subject 10 42.42 8.185 significantly different 
Subject 4 vs. Subject 5 12.03 7.9075 significantly different 
Subject 4 vs. Subject 6 33.74 8.8408 significantly different 
Subject 4 vs. Subject 7 28.19 7.6564 significantly different 
Subject 4 vs. Subject 8 33.01 7.6564 significantly different 
Subject 4 vs. Subject 9 1.18 7.6564 not significantly different 
Subject 4 vs. Subject 10 0.39 8.185 not significantly different 
Subject 5 vs. Subject 6 45.77 8.8408 significantly different 
Subject 5 vs. Subject 7 40.22 7.9075 significantly different 
Subject 5 vs. Subject 8 45.04 7.9075 significantly different 
Subject 5 vs. Subject 9 13.21 7.9075 significantly different 
Subject 5 vs. Subject 10 11.64 8.185 significantly different 
Subject 6 vs. Subject 7 5.55 8.8408 not significantly different 
Subject 6 vs. Subject 8 0.73 8.8408 not significantly different 
Subject 6 vs. Subject 9 32.56 8.8408 significantly different 
Subject 6 vs. Subject 10 34.13 8.8408 significantly different 
Subject 7 vs. Subject 8 4.82 7.1203 not significantly different 
Subject 7 vs. Subject 9 27.01 5.1766 significantly different 
Subject 7 vs. Subject 10 28.58 8.185 significantly different 
Subject 8 vs. Subject 9 31.83 7.1203 significantly different 
Subject 8 vs. Subject 10 33.4 8.185 significantly different 
Subject 9 vs. Subject 10 1.57 8.185 not significantly different 
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The results of Tukey Kramer Test for heart rate average showed eleven comparisons as ‘not 

significantly different’. Table 26 presents the results for the ‘not significantly different’ results. 

The results illustrate a similarity between the average heart rate of these subjects. Based on this 

evidence, the clinical record and notes of the subjects were further analysed to investigate the 

similarities and/or pattern.  

The clinical record of the subjects showed a similarity regarding the surgical procedures 

that were performed during their stay in the NICU. Seven pairs of subjects who underwent 

surgical procedures presented ‘not significantly different result’ out of which one group of 

subjects did not undergo any surgical procedure. The analysis found that the subjects who 

showed a ‘not significantly different’ result were the subjects who presented with a severe illness 

in their admission diagnosis.  

Table	26.	'Not	significantly	different'	subject	group	

Comparison Absolute 
Difference 

Critical 
Range Results Surgery 

(1=Y 0=N) 
Subject 1 vs. 

Subject 2 12.49 13.0587 Not significantly 
different 1,1 

Subject 2 vs. 
Subject 6 12.85 13.0587 Not significantly 

different 1,1 

Subject 2 vs. 
Subject 7 7.3 13.0587 Not significantly 

different 1,0 

Subject 2 vs. 
Subject 8 12.12 13.0587 Not significantly 

different 1,0 

Subject 3 vs. 
Subject 6 8.29 8.8408 Not significantly 

different 0,1 

Subject 4 vs. 
Subject 9 1.18 7.6564 Not significantly 

different 1,1 

Subject 4 vs. 
Subject 10 0.39 8.185 Not significantly 

different 1,1 

Subject 6 vs. 
Subject 7 5.55 8.8408 Not significantly 

different 1,0 

Subject 6 vs. 
Subject 8 0.73 8.8408 Not significantly 

different 1,0 

Subject 7 vs. 
Subject 8 4.82 7.1203 Not significantly 

different 0,0 
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Subject 9 vs. 
Subject 10 1.57 8.185 Not significantly 

different 1,1 

 

a) 1,0: One patient with surgery and one without having underwent surgery 

The subject groups in this category involved a subject who had a surgery and the other 

who did not undergo surgery. However, after analysis, subjects who did not have surgery 

were found to have severe illnesses. As such, the subjects who did not have surgery 

presented similar results to those that did have surgery. There were five subject groups 

who were in this category. 

 Subject 2 vs. Subject 8: Subject 2 is a late preterm infant at 35 GA with admission 

diagnosis of gastrochisis and ileal atresia who had a repair and resection surgery. Subject 

8 was 39 GA who did not undergo surgery. However, his admission diagnosis was 

Transient Tachypnea of the Newborn (TTN) and Persistent Pulmonary Hypertension of 

the Newborn (PPHN).  Such a diagnosis suggests that the subject was very sick.  

 

Subject 2 vs. Subject 7: Subject 2 is a late preterm infant at 35 GA with admission 

diagnosis of gastrochisis and ileal atresia who had a repair and resection surgery. Subject 

7 was 36 GA who did not undergo surgery; however, his admission diagnosis illustrated 

severe sickness such as Trisomy 21, Atrial Septal Defect (ASD), Ventricular Septal 

Defect (VSD) and Persistent Pulmonary Hypertension of the Newborn (PPHN). 

 

Subject 3 vs. subject 6: Subject 3 is a late preterm infant at 36 GA who did not undergo 

surgery; however, the subject presented with hypoxic-ischaemic encephalopathy (HIE), 

which is a severe illness where the infant’s brain does not receive enough oxygen and 
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blood. Studies have found that patients with HIE present lower heart rate variability 

compared to healthy infants. Subject 6, on the other hand, did have a colostomy surgery. 

 

Subject 6 vs. subject 7: Subject 6 was a term infant at 40 GA who had a colostomy 

surgery. Subject 7 was a moderate to late preterm infant at 36 GA who did not undergo 

surgery; however, his admission diagnosis indicated severe comorbidities including 

Trisomy 21, Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD) and Persistent 

Pulmonary Hypertension of the Newborn (PPHN). 

 

Subject 6 vs. subject 8: Subject 6 was a term infant at 40 GA who had a colostomy 

surgery. Subject 8 was also a term infant at 39 GA who did not undergo surgery. 

However, his admission diagnosis was Transient Tachypnea of the Newborn (TTN) and 

Persistent Pulmonary Hypertension of the Newborn (PPHN).  This is suggestive of severe 

illness.   

b) 1,1: Both subjects with surgery 

The subject groups involved in this category all had surgeries; due to this they outputted a 

‘not significantly different result’ amongst them. There were five subject groups involved 

in this category that include: Subject 1 vs. subject 2; Subject 2 vs. Subject 6; Subject 4 vs. 

subject 9; Subject 4 vs. subject 10; Subject 9 vs. subject 10.  

c) 0,0: No subjects with surgery 

Subject 7 vs. subject 8: Even though both these subjects did not have surgery, they were 

both significantly sick compared to other subjects. Subject 7 was 36 GA who did not 

undergo surgery; however, his admission diagnosis showed severe comorbidities such as 



	 85	

Trisomy 21, Atrial Septal Defect (ASD), Ventricular Septal Defect (VSD) and Persistent 

Pulmonary Hypertension of the Newborn (PPHN). Subject 8 was 39 GA with an 

admission diagnosis of Transient Tachypnea of Newborn (TTN) and Persistent 

Pulmonary Hypertension of the Newborn (PPHN). Both subjects had PPHN, which could 

be a potential reason as to why differences between the subjects were not significant.  

 

In conclusion, the heart rate average Tukey test shows that surgery, severity of illness, and 

gestational age are factors that can contribute to a similar pattern of heart rate. This analysis 

shows that the subjects with serious comorbidities are similar in their heart rate averages and 

therefore show a ‘not significantly different’ result between them. Severity of illness has been 

explored as an influence on pain scores among preterm infants in many studies (Johnston et al., 

1999; Stevens et al., 1999; Stevens, Johnston, & Horton, 1994).  

Table	27.	Tukey	Kramer	Test-	maximum	heart	rate	

Tukey Kramer Procedure for Maximum Heart Rate 

Comparison Absolute Difference Critical 
Range Results 

Subject 1 vs. Subject 2 0.13 18.6482 not significantly different 
Subject 1 vs. Subject 3 43.36 8.6606 significantly different 
Subject 1 vs. Subject 4 1.02 10.9335 not significantly different 
Subject 1 vs. Subject 5 2.42 11.2921 not significantly different 
Subject 1 vs. Subject 6 32.76 12.6249 significantly different 
Subject 1 vs. Subject 7 33.04 8.6606 significantly different 
Subject 1 vs. Subject 8 33.64 10.1679 significantly different 
Subject 1 vs. Subject 9 1.35 8.6606 not significantly different 
Subject 1 vs. Subject 10 7.31 11.6884 not significantly different 
Subject 2 vs. Subject 3 43.48 18.6482 significantly different 
Subject 2 vs. Subject 4 0.89 18.6482 not significantly different 
Subject 2 vs. Subject 5 2.3 18.6482 not significantly different 
Subject 2 vs. Subject 6 32.89 18.6482 significantly different 
Subject 2 vs. Subject 7 33.17 18.6482 significantly different 
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Subject 2 vs. Subject 8 33.77 18.6482 significantly different 
Subject 2 vs. Subject 9 1.22 18.6482 not significantly different 
Subject 2 vs. Subject 10 7.19 18.6482 not significantly different 
Subject 3 vs. Subject 4 44.38 10.9335 significantly different 
Subject 3 vs. Subject 5 45.78 11.2921 significantly different 
Subject 3 vs. Subject 6 10.6 12.6249 not significantly different 
Subject 3 vs. Subject 7 10.32 6.8721 significantly different 
Subject 3 vs. Subject 8 9.71 10.1679 not significantly different 
Subject 3 vs. Subject 9 44.7 7.3924 significantly different 
Subject 3 vs. Subject 10 50.67 11.6884 significantly different 
Subject 4 vs. Subject 5 1.4 11.2921 not significantly different 
Subject 4 vs. Subject 6 33.78 12.6249 significantly different 
Subject 4 vs. Subject 7 34.06 10.9335 significantly different 
Subject 4 vs. Subject 8 34.67 10.9335 significantly different 
Subject 4 vs. Subject 9 0.33 10.9335 not significantly different 
Subject 4 vs. Subject 10 6.29 11.6884 not significantly different 
Subject 5 vs. Subject 6 35.18 12.6249 significantly different 
Subject 5 vs. Subject 7 35.46 11.2921 significantly different 
Subject 5 vs. Subject 8 36.07 11.2921 significantly different 
Subject 5 vs. Subject 9 1.08 11.2921 not significantly different 
Subject 5 vs. Subject 10 4.89 11.6884 not significantly different 
Subject 6 vs. Subject 7 0.28 12.6249 not significantly different 
Subject 6 vs. Subject 8 0.89 12.6249 not significantly different 
Subject 6 vs. Subject 9 34.11 12.6249 significantly different 
Subject 6 vs. Subject 10 40.07 12.6249 significantly different 
Subject 7 vs. Subject 8 0.6 10.1679 not significantly different 
Subject 7 vs. Subject 9 34.39 7.3924 significantly different 
Subject 7 vs. Subject 10 40.35 11.6884 significantly different 
Subject 8 vs. Subject 9 34.99 10.1679 significantly different 
Subject 8 vs. Subject 10 40.96 11.6884 significantly different 
Subject 9 vs. Subject 10 5.96 11.6884 not significantly different 
 

Table 27 presents the results for the Tukey Kramer test performed for maximum heart rate. The 

maximum heart rate Tukey test showed 20 ‘not significantly different’ results and 25 

‘significantly different’ results out of the 45 different comparisons performed. The subject 

groups are both divided into almost equal sides with a difference of five.  
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Table	28.	Tukey	Kramer	test-	minimum	heart	rate	

Tukey Kramer Procedure for Minimum Heart Rate  

Comparison Absolute Difference Critical 
Range Results 

Subject 1 vs. Subject 2 7.02 28.9421 not significantly different 
Subject 1 vs. Subject 3 15.44 13.4413 significantly different 
Subject 1 vs. Subject 4 10.07 16.9688 not significantly different 
Subject 1 vs. Subject 5 27.63 17.5253 significantly different 
Subject 1 vs. Subject 6 14.11 19.5939 not significantly different 
Subject 1 vs. Subject 7 1.01 13.4413 not significantly different 
Subject 1 vs. Subject 8 21.46 15.7807 significantly different 
Subject 1 vs. Subject 9 7.25 13.4413 not significantly different 
Subject 1 vs. Subject 10 11 18.1404 not significantly different 
Subject 2 vs. Subject 3 8.42 28.9421 not significantly different 
Subject 2 vs. Subject 4 3.05 28.9421 not significantly different 
Subject 2 vs. Subject 5 34.65 28.9421 significantly different 
Subject 2 vs. Subject 6 7.09 28.9421 not significantly different 
Subject 2 vs. Subject 7 8.03 28.9421 not significantly different 
Subject 2 vs. Subject 8 14.44 28.9421 not significantly different 
Subject 2 vs. Subject 9 14.27 28.9421 not significantly different 
Subject 2 vs. Subject 10 18.03 28.9421 not significantly different 
Subject 3 vs. Subject 4 5.37 16.9688 not significantly different 
Subject 3 vs. Subject 5 43.07 17.5253 significantly different 
Subject 3 vs. Subject 6 1.33 19.5939 not significantly different 
Subject 3 vs. Subject 7 16.45 10.6656 significantly different 
Subject 3 vs. Subject 8 6.02 15.7807 not significantly different 
Subject 3 vs. Subject 9 22.68 11.473 significantly different 
Subject 3 vs. Subject 10 26.44 18.1404 significantly different 
Subject 4 vs. Subject 5 37.7 17.5253 significantly different 
Subject 4 vs. Subject 6 4.04 19.5939 not significantly different 
Subject 4 vs. Subject 7 11.08 16.9688 not significantly different 
Subject 4 vs. Subject 8 11.39 16.9688 not significantly different 
Subject 4 vs. Subject 9 17.31 16.9688 significantly different 
Subject 4 vs. Subject 10 21.07 18.1404 significantly different 
Subject 5 vs. Subject 6 41.74 19.5939 significantly different 
Subject 5 vs. Subject 7 26.62 17.5253 significantly different 
Subject 5 vs. Subject 8 49.09 17.5253 significantly different 
Subject 5 vs. Subject 9 20.39 17.5253 significantly different 
Subject 5 vs. Subject 10 16.63 18.1404 not significantly different 
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Subject 6 vs. Subject 7 15.12 19.5939 not significantly different 
Subject 6 vs. Subject 8 7.35 19.5939 not significantly different 
Subject 6 vs. Subject 9 21.36 19.5939 significantly different 
Subject 6 vs. Subject 10 25.11 19.5939 significantly different 
Subject 7 vs. Subject 8 22.47 15.7807 significantly different 
Subject 7 vs. Subject 9 6.23 11.473 not significantly different 
Subject 7 vs. Subject 10 9.99 18.1404 not significantly different 
Subject 8 vs. Subject 9 28.71 15.7807 significantly different 
Subject 8 vs. Subject 10 32.46 18.1404 significantly different 
Subject 9 vs. Subject 10 3.76 18.1404 not significantly different 

 

This Tukey test revealed 25 ‘not significantly different’ results and 20 ‘significantly different’ 

results out of the 45 different comparisons performed. In this case, there are more subject groups 

who outputted ‘not significantly different’ results compared to the subject groups who outputted 

‘significantly different’ results. This result may be indicative of the fact that most subjects 

presented a similar average minimum heart rate. Figure 12 previously showed that this result 

presented an average minimum heart rate of 105 beats/minute and a standard deviation of 14.3 

beats/minute. Additionally, this result showed that the minimum heart rates are similar to the 

mean of the 10 subjects. For this reason, the test outputted more ‘not significantly different’ 

result in comparison to those that were ‘significantly different’. This result further reiterates the 

fact that heart rate minimum is not a sensitive marker to be used for pain assessment.  

6.4 Curve Fitting 
The population of ten subjects were introduced to the Curve Fitting Toolbox, using 

Matlabworks®, fitting gestational age versus maximum, average and minimum heart rate data in 

this population. The goodness of fit of a statistical model describes how well the data fits a set of 

observations. The data was fitted to a regression polynomial linear model, Equation 8, to test if 
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the heart rate in this subset of patients was following a pattern that was dependent on gestational 

age. 

; / = <1 ∗ / + <2	  Equation 8 

Table	29.	Goodness	of	fits	

 

SSE, R-square and RMSE demonstrated that the regression line does not fit the data, thus the 

heart rate in this population is not following a particular pattern that was dependent on 

gestational age. Figure 13, 14 and 15 illustrate the polynomial fit against the data of ten subjects.  

 

 

 

 

 

 

 

 

 

 

 

 

       

Figure	13.	Gestational	Age	vs.	Average	Heart	Rate	for	Subject	1-10 
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The figures highlight the complex distribution of the heart rate data through the gestational age 

spectrum without presenting a consistent pattern. Since no apparent pattern was observed within 

the gestational age spectrum, clinical notes were analysed to look into the subjects’ surgery data. 

In this case, as the gestational age of 36 is showing a very low heart rate average as well as very 

low maximum heart rate, it was reported that both the subjects who reported being 36 gestational 

Figure	14.	Gestational	Age	vs.	Maximum	Heart	Rate	for	Subject	1-10 

Figure	15.	Gestational	Age	vs.	Minimum	Heart	Rate	for	Subjects	1-10 
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age, did not have a surgery. Hence, it could be concluded that due to perhaps less pain or 

discomfort in this gestational age group, the heart rate was reported to be lower compared to 

other subjects. The regression line did not fit the data as every subject is unique and has different 

clinical implications. A particular premature infants heart rate is driven by what clinical context 

he/she are in.  

6.5 Surface model comparing PIPP vs. AVG HR vs. GA 
Utilizing Curve Fitting Toolbox in Matlabworks®, the population of ten subjects was plotted 

using biharmonic interpolation to scatter the data in the surface model, as shown in Figure 16. 

This analysis was performed to analyse and find the correlations between PIPP scores taken from 

Hospital for Sick Children, Toronto, Canada, the average heart rate data from The Artemis 

Platform and the GA. 

 

 

 

 

 

 

 

Figure 16 illustrates the PIPP scores in a very scattered pattern where a particular PIPP score is 

recorded for multiple heart rate values and GA. Thus, showing that specific criteria are not 

followed for heart rate and pain scoring. Based on this result, inconsistency is observed, as PIPP 

Figure	16.	Biharmonic	Interpolation	
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scores do not match consistently with heart rate thresholds. There can be many reasons for the 

inconsistent result. Nonetheless, designing a more reliable, accurate and consistent automated 

system of scoring is important in order to eliminate these problems and discrepancy in scoring.  

6.6 Conclusion 
In conclusion, the results presented in this chapter may help to better understand the heart rate 

indicator and its constantly changing complexity due to painful stimuli. It is evident from the 

results presented in this chapter that heart rate average can prove to be a useful measure in 

providing insight into detecting painful events. In contrast, through the statistical analysis 

completed (ANOVA, Tukey Kramer Test, and Curve Fitting), heart rate minimum is not found 

to be a useful marker since heart rate minimum presented a standard consistent pattern between 

all subjects as in clinical practice, heart rate is monitored carefully by health care professionals to 

ensure it does not go below the baseline standards set. Based on the overall analysis presented in 

this chapter, heart rate can be a useful marker when used in accordance with gestational age to 

classify pain in the premature infant. These results also reiterate the need for a pain assessment 

tool that adjusts for gestational age when scoring. The completed analysis showed a clear 

correlation between gestational age and heart rate. Premature infants baseline heart rate differs at 

varying gestational ages, which in turn, can affect their pain scores in a substantial way. 

Analysing continuous physiological data helped to identify and examine areas, which may have 

been missed with the manual collection of PIPP scores at inconsistent time points. Manual 

collection of physiological indicators at inconsistent time points loses information relevant to the 

neonates’ physiology. As such, the creation of an automated system using big data analytics is 

important for the collection of physiological changes and the accurate detection of pain by 

avoiding misreporting of pain.  



Chapter 7 - Discussion 

In this chapter, the findings of the evaluation of data model are discussed and how they are 

linked to the existing literature on pain management. Limited understanding on infant pain has 

led to its lack of recognition in clinical practice. As a result, there is still a lack of a gold standard 

per say for assessing pain in the neonatal population.  Many infants still don’t receive any pain 

treatment during commonly performed painful procedures (Cignacco et al., 2009; Harrison et al., 

2014; Johnston, Barrington, Taddio, Carbajal, & Filion, 2011). These studies highlight an 

important knowledge to practice gap, which can negatively impact the health of newborn infants. 

In the past, a common presumption was that neonatal infants were not capable of fully perceiving 

pain. However, such a claim was contradicted by evidence from subsequent studies. For 

example, a recent study by Goksan et al. incorporated an fMRI to study newborn infant pain. The 

fMRI identified a network of brain regions that are active following acute noxious stimulation in 

newborn infants, where such activity was compared to that observed in adults. After analyzing 

this, the study discovered significant infant brain activity in 18 of the 20 active adult brain 

regions (Goksan et al., 2015). Brain regions that encode sensory and affective components of 

pain are active in infants, suggesting that the infant pain experience closely resembles that seen 

in adults (Goksan et al., 2015). These findings and the ones outlined in this thesis highlight the 

importance of developing effective and reliable pain assessment tools in this vulnerable 

population. Hence, an attempt was made in this thesis to design a clinical DSS model for 

automated partial PIPP scoring based on the elements that can be determined without the need 

for clinical observation. The clinical DSS was designed depicting the current standard of pain 

assessment to outline the possibility of automating a pain scoring system using big data 

analytics.  
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The evaluation of the data model presented noteworthy results where one of the 

important finding was that the PIPP score was not scored each hour APIPP was scored, and on 

average, PIPP was only scored 20% of the hours within this study. Such an issue outlines the 

limitation of the manual scoring systems being used at hospitals. The analysis completed in this 

thesis between the two scales also explored the difference between the two scales since the PIPP 

was scored out of 21 and the APIPP was scored out of 9 points. There was a 12-point difference 

between these two scales. For the case study on subject 1, the PIPP score was not available when 

the APIPP was available for 79.95% of the time. A similar result was found for the analysis done 

with 10 subjects, where the PIPP score was not available when the APIPP was available for 

78.36% of the time. Such a finding is significant, as the PIPP data could not be compared with 

the hourly APIPP score for nearly 80% of the time. Such a result suggests that the nurses did not 

score the PIPP consistently as many hours of data were missing. This is worrisome as significant 

changes in the premature infant’s physiology can take place during the hours in which the PIPP 

is not scored. The second highest percentage was found for the greater category. Specifically, for 

case study for subject 1, PIPP score was greater than the APIPP score for 14.76% of the time. 

Similarly, for the data analysis with the 10 subjects, PIPP score was greater than the APIPP score 

for 14.05% of the time. Such a result was expected as PIPP score is scored out of a higher value 

in comparison to APIPP. Thus, the percent difference between the two scales was explored. For 

both analyses, high frequency of occurring differences were in the lower range with most 

differences ranging between one and four. More specifically, a difference of two and three had 

the highest occurrence for both analyses. This was concluded to be a non-significant difference 

acknowledging the fact that there was a 12-point difference between the two scales. This is a 

significant finding as PIPP is scored out of a much higher number (21) compared to APIPP (9). 
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The highest frequency of differences being two or three concludes that APIPP score was fairly 

similar to the PIPP score that was scored by the nurses. It can be inferred from this finding that 

perhaps the PIPP score tends to be highly based on the physiological changes and GA, which the 

APIPP was constructed of. In this case, it can also be inferred that perhaps the nurses were not 

able to score the various behavioural parameters due to sedation or inactivity in the infant due to 

prematurity. Additionally, it could also be speculated that perhaps APIPP score was more 

sensitive as it consisted of per second physiological data, which the PIPP perhaps missed. It is 

important to further investigate these findings. To further investigate these findings, a 

physiological analysis using HR data was conducted in chapter 6. Chapter 6 presented various 

experiments that presented a clinical perspective on pain management. The results presented in 

chapter 6 helped in understanding the complexity of the heart rate indicator and its 

resourcefulness as a marker for pain detection. These results indicate the importance of 

incorporating a clinical context within pain assessment tools. Factors such as GA, severity of 

illness and severity of surgery can present fluctuating changes within heart rate. The experiments 

discussed in this thesis are preliminary in nature and were run in DB2. Executing these 

experiments in InfoSphere streams is possible. In the future, this concept can be implemented in 

real-time in streams to run every hour and produce a pain score that could assist physicians and 

nurses. It is important to carry out prospective research to experiment with real-time stream 

processing to integrate a scale such as APIPP. An exploratory approach presented in this thesis 

helps to recognize the need and the resourcefulness of designing an automated pain scoring 

system using a platform such as Artemis, which provides real-time physiological data. A stand-

alone automated system can be designed based on this work, which will provide continuous 

monitoring of pain in the NICU with the contextual support of the physicians and nurses.  
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The various different pain management systems described in chapter 2 can be used as 

background knowledge to implement a well-rounded, reliable pain management system. The 

richness of information can be extrapolated from the neonatal information sources in the form of 

concepts and categories, and these concepts and categories can be used to understand the context 

of neonatal pain management, and finally interconnect the concepts and categories as an 

ontology to severe pain management. One of the main areas that has been extensively 

implemented in the neonatal population is facial recognition systems. Recent research has 

provided evidence of the usefulness of facial cues for automatic pain analysis; however, such 

research has mainly focused on detection of presence/absence of pain. Such facial cues can 

become inadequate during circumstances where a neonate is recovering from surgery, or is 

highly sedated and premature to provide facial cues. For this reason, such systems should be 

integrated into more objective-based systems that can provide reliable results despite these 

hurdles. Computer-aided decision support offers help, but the existing systems are not user-

friendly or do not support an on-line application from clinical documentation. Thus, these 

applications are not available in everyday clinical practice for health care providers to use (Eich 

et al., 1997). The pain detection system should be designed so that the system is at the central 

point-of care where the clinicians have easy accessibility.  

Currently, one central problem is the fact that a simple method is not available for the 

direct measurement of pain. In most cases of pain assessment, the examining physician must rely 

on the patient’s qualitative description about the location, quality and intensity of the pain 

sensation. The quantification of pain is possible with the help of the visual analog scale (VAS) or 

the numeric rating scale (NRS). However, these methods are only plausible during situations 

where the patient is sufficiently alert and cooperative, which is not always possible in the 
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medical field, including times where the patient is in post-surgery phases or in this case a 

neonate who is not able to communicate the severity of pain (Walter et al., 2013). Overall, the 

methods are either considered inadequate or still in development. If the conditions do not allow 

for a sufficiently valid measurement of pain, treating the pain may lead to an over- or 

underestimation of analgesic administration as well as long-term effects such as alteration in 

response to subsequent painful experience. Current hospital practices require the nursing staff to 

apply validated pain scoring methods before taking appropriate actions to ameliorate newborn 

pain or discomfort. However, current nursing workload in the NICU does not allow bedside 

nurses to assess neonatal pain accurately (Hall & Anand, 2014). Additionally, if the validated 

pain scales are not working properly, the pain is under rated or over rated frequently. Many pain 

scales such as PIPP combine behavioural, physiological, and other variables, but these variables 

may not respond to neonatal pain in similar or specific ways. The inter-rater reliability and 

subjectivity of human assessments are further limiting factors in their prevalent use (Hall & 

Anand, 2014). The use of qualitative or subjective methods, rather than quantifiable data for 

neonatal pain assessment, results in inconsistencies. Due to a large pharmacokinetic variability of 

analgesic drugs in neonates, their pain management is often of poor quality and inconsistent from 

shift to shift (Guedj et al., 2014). Adopting an objective pain assessment method will greatly 

enhance the quality of pain management in NICUs by avoiding untreated pain or excessive 

analgesia. The case study provided in this thesis verifies that the PIPP scores were not 

consistently collected compared to the automated score of APIPP.  Pain assessment methods 

should be designed to reduce nursing workload and the side effects of under- or overdosing 

analgesics. Studies that aim at a practical application of findings in the field of automatic pain 

recognition, specifically within the neonatal domain, are virtually non-existent today. The results 
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reported in this thesis as well as in earlier studies indicate a high potential for developing 

machine detection systems that could be implemented in the neonatal pain domain. 
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Chapter 8 - Conclusion 

In summary, identification of pain in neonates continues to challenge nurses and physicians who 

hold the responsibility to provide optimal care to this vulnerable population.  The inability to 

affectively quantify and relieve pain leaves health care providers with limited knowledge to 

guide practice. It remains a clinical art to combine patients’ reports, behavioural observation, and 

physiologic measurement with the history, physical exam, laboratory information, and overall 

clinical context in guiding clinical judgments and therapeutic interventions (Berde & McGrath, 

2009). The complexity of pain in newborns was not recognized until the 1980s. Infants were 

believed to have no capacity to experience or remember pain; as such infants were not treated for 

pain in circumstances where pain would be anticipated. Since then, assessment and management 

of pain have advanced and has become the focus of substantial research. Despite this, we are far 

from having a standardized practice for managing pain in premature infants. There are many 

variations in the methods and scales used across different healthcare organizations. Each health 

care organization uses the pain management practice that best suits their organization. It is 

important to initiate the inclusion of a wide variety of physiological indicators and contextual 

information, such as gestational age, severity of illness and severity of surgery to increase the 

sensitivity and validity of the pain scales.  This thesis outlines various studies that have displayed 

the importance and usefulness of these physiological and neurological techniques in Chapter 2. It 

is important that these findings are effectively understood and researched to create tools that can 

provide absolutely accurate detection of pain in neonates.  

The objective measurement of subjective, multidimensionality-experienced pain is still a 

key problem in the neonatal population that has yet to be adequately solved. Due to 

inconsistencies in pain measurement, opiates are being used at an increasing rate despite 
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concerns about patient safety and misuse (Midboe et al., 2011). Various automated systems have 

attempted to resolve shortcomings by using information systems to make the pain measurement 

system more reliable and time-efficient. The main goal or objective of information systems is to 

improve the performance of people in organizations through the use of information technology. 

Computer-based clinical decision support systems show promise for improving clinical decision-

making, evidence-based guideline adherence, care coordination across providers and disciplines, 

as well as patient education and communication (Midboe et al., 2011).  

Almost a decade ago, a question was asked relating to the ethical imperative to treat pain 

in infants and whether the pain management was fully effective at the time (Franck, 1997). 

Based on the findings in this thesis, as well as other similar findings of studies conducted in the 

recent past (Harrison et al., 2014; Johnston et al., 2011; Roofthooft, Simons, Anand, Tibboel, & 

van Dijk, 2014), the answer is unfortunately still “no”. As a community of clinicians, health care 

researchers, and funders of research, greater attempts should be made to ensure that a newborn 

infant does not need to undergo an unnecessary painful procedure without provision of effective 

pain reduction. This cannot be done until we have the tools to assess pain in an effective manner. 

Misreported pain is the cause of majority of the concerns reported in this thesis.  

8.1 Research and Findings 
To explore the research questions of this thesis, firstly, a literature review was completed in 

chapter 2 to present various studies conducted in the area of pain management to uncover the 

need for an automated real-time based pain scoring system in the NICU. Literature review was 

structured based on three significant themes of the thesis. Firstly, a discussion on how health 

information systems can be used to assess pain was explored. Secondly, a review was presented 

on how physiological parameters can be used for the assessment of pain. It was determined that 
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physiological cues can prove to be very effective in the assessment of pain in premature infants. 

However, their specificity as a measure of pain reactivity in premature infants has not been 

investigated in great detail. Lastly, a review was conducted on various computerized/ automated 

pain measurement systems to aid in designing one for the NICU. Upon completion of the review, 

it was determined that there is a lack of automated pain management systems that are designed 

specifically for the NICU. Hence, this provided a great scope for exploring this area of research 

and proposing the hypothesis to design a pain scoring system using big data analytic techniques 

that can provide frequent monitoring of pain. The Artemis platform is presented in detail in 

chapter 3 to outline its usability within this thesis. The study design presented in this thesis has 

demonstrated the utility of the Artemis platform for the effective detection and monitoring of 

pain within the neonatal population. It is possible to deploy an algorithm unique to this research 

within Artemis to create a pain detection system that can be automated.  

Chapter 4 presented the methodology in two phases outlining the preparation of data and 

the creation of the data model. The data model involved combining the abstractions and features 

from the data preparation phase to compute an automated partial pain score based on big data 

analytics and quantifiable scoring using HR, SpO2 and GA. Following this, the data model/ 

APIPP scale was evaluated in chapter 5 by comparing it with the PIPP scores collected manually 

by nurses. A thorough analysis was conducted for evaluation purposes to examine if the APIPP 

score produced greater, lesser or equal results as the PIPP score. One of the main findings from 

this evaluation was that PIPP score was not available almost 80% of the time when compared to 

APIPP score which was generated automatically using the Artemis platform. Hence, the 

hypothesis was proved that more frequent monitoring of pain is possible by creating an 

automated system using Artemis platform. Furthermore, when evaluating the difference between 
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two scores, a minimal difference of two and three was prominent. Such a finding is noteworthy 

as it is significant to note that PIPP scoring is scored on a 21-point scale whereas APIPP is 

scored on a 9-point scale. It can be inferred that the PIPP was perhaps highly scored on 

physiological parameters and GA due to its score being very close to the APIPP score.  This can 

be due to many reasons such as perhaps the infant’s inability to give behavioural cues for scoring 

purposes. Hence the score being highly scored on only the available physiological cues such as 

HR and SpO2. Such a negligible difference between two scales proposes further investigation.  

To create a physiologic based pain scale, it was imperative to investigate how 

physiological changes can be useful in detecting a pain response. Hence, Chapter 6 explored the 

physiological and clinical side of pain by outlining in detail the resourcefulness of HR as a 

physiological marker for detecting pain. Various statistical experiments were conducted to 

review HR in accordance with GA, surgical details and PIPP scoring. The results showed that 

HR average can prove to be a useful measure in detecting painful events as this correlated with 

the surgery each subject underwent. Subjects who underwent severe surgeries, presented with a 

high HR compared to those who did not undergo a surgery. Similarly, in pain detection, high HR 

will show abnormalities or pain that is present in an infant at a given time the score is being 

collected. In an automated pain detection system, this has the potential to give alerts to health 

care professionals when the HR goes above the set threshold for a particular subject. These 

findings also reiterate the need to design a pain assessment tool that adjusts for gestational age as 

the baseline heart rate of each subject is different at varying gestational ages. Chapter 7 presented 

a discussion which brings together the concepts presented in each chapter. 

Upon completion of the study and using the knowledge presented in this thesis, it has 

been confirmed that despite the use of the DB2 system in this study, the algorithm logic can be 



	

	103	

converted to the Streams Processing Language and can be applied to the Artemis platform to 

create an automated pain detection system that can run in real-time. Analyzing continuous 

physiological data in this thesis, helped to identify areas which may have been overlooked due to 

manual collection of PIPP scores at inconsistent time points. Due to having retrospective per 

second data for each subject, more information was available to predict the changes that occurred 

within the subject’s physiology that potentially would have been missed due to manual 

interpretation at inconsistent time points. This research explores an avenue that has not been 

attempted before in this domain. Using the findings presented in this thesis, this novel research 

has the potential to make significant contributions to the medical and informatics field. 

8.2 Limitations  
Various limitations have occurred while conducting the experiments in this thesis. One of the 

first limitations of the study was that the data used was retrospective. Due to retrospective data 

collection, contemplating contextual details about the subject, such as dosage of analgesia given 

or the time it was administered, was difficult. Because of this, analyzing PIPP scores that were 

collected by nurses was also difficult. Since the population for this data set was that of surgical 

patients, many were administered analgesic medications that could prevent accurate pain scoring. 

In the future, prospective data collection is imperative, where subjects will be recruited based on 

specific eligibility criteria. An example of such criteria include those who are not using 

medications that could alter their response to pain. In this data set, most PIPP scores were less 

than 10, while a PIPP score of 2 and 3 was the most frequent. This is not a significant change as 

the PIPP score is scored out of 21. Due to a larger proportion of the study population undergoing 

surgeries and under analgesia, the recorded PIPP scores were not very high. Also, each subject 
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used in this research was unique as subjects had different surgical procedures, making it almost 

impossible to standardize for testing purposes. 

Furthermore, the PIPP scores were not collected continuously but rather collected at 

random time points. On the other hand, APIPP score data was available for every hour for each 

patient. As a result, continuous data analysis was not possible, as the availability of APIPP and 

PIPP scores did not match. As such, comparing such data was difficult as more than half the data 

could not be used for scoring analysis. The quality of the Artemis data for the timeframe chosen 

for this thesis was also poor as many hours of data were missing due to artifacts. As a result, 

some subjects had to be excluded from the study analysis and only the subjects who had 

continuous data were used.  

8.3 Future Work 
In the future, this work will be used to design a physiological indicator based scale that can be 

integrated into a decision support system named Artemis. Using various physiological data 

streams, the novel scale can be integrated into the Artemis platform to predict nociceptive events. 

With such an informatics tool, the identification of nociceptive stimuli can be improved, and 

therefore, improve the use of drugs and non-pharmacological interventions for pain relief. Such a 

pain assessment system can provide continuous and minimally biased assessment of pain. Future 

work can attempt to implement this theoretical design in streams and test the implementation in 

SPL, which is the primary language used by the Artemis platform. This avenue of research 

presents future opportunities, a few of which could include the use of full 24-hour data sets for 

all patients as well as the continuous real-time analysis of the data. Through this design of a pain 

scale, alert systems can also be designed in the CDSS to assist the nurses or other health care 

professionals. These alert systems can be based on threshold changes in the physiological 
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parameters that are detected by the system. For this, it is important to set baseline parameters for 

each neonate within the system. By doing this, the CDSS can provide alerts when it observes an 

unusual physiological change.  This work can enable, not only detection, but also quantification 

of pain in neonates as mild, moderate or severe by examining and deriving patterns within the 

physiological data streams.  

Future work should also carry out similar research in a prospective manner in order to 

reduce limitations. Following this thesis work, a prospective observational study can be 

conducted with two cohort of neonatal infants, with one group being surgical and the other being 

the non-surgical group. To validate this approach, APIPP can be run and scored for each patient 

and simultaneously, nurses can collect PIPP scores as frequently as the APIPP score is generated.  

Incorporation of contextual information with other pain indicators is essential for the 

refinement of the assessment process. This thesis has presented a need for developing a 

continuous, context-sensitive, and multimodal system, which will provide best practice to assess 

neonatal pain. The knowledge from this thesis can be used to research and implement this design 

in an NICU in the future. Furthermore, this thesis will provide a valid insight into the importance 

of the assessment of physiological parameters in the area of neonatal pain management. In turn, 

better and more accurate pain management strategies can be created, improving the health of the 

youngest members of society.  

8.4 Concluding Remarks 
The research in automated continuous detection of pain using physiological parameters has not 

been previously attempted. Most work in this domain has involved great emphasis on 

behavioural parameters for scoring pain. This thesis provides extensions in the form of research 

contributions and presents a novel concept of using automated real-time scoring of pain 
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parameters. This thesis also has presented a framework that will facilitate the implementation of 

automated pain detection system that can be executed within the Artemis platform to assess pain 

in a continuous and reliable manner. This has the potential to provide regular pain assessment in 

the NICU which can lead to better pain assessment and management that can otherwise go 

unnoticed and result in eventual reduced mortality and morbidity of patients.  

The primary objective of this thesis was to investigate how big data analytic techniques 

can be used to generate a neonatal pain score in the future. In parallel with this objective, another 

aim of this research was to assess physiological parameters in order to explore the possibility of 

generating an automated pain score using physiological elements. Overall, using retrospective 

physiological data, these objectives were fulfilled to create an alternate way to design and 

generate a score that was being generated manually. Current practice in an NICU involves the 

meticulous, time-consuming and bias process of manual interpretation of pain scores by nurses, 

subsequently the automation of this process has the potential to increase the time frequency at 

which pain scores are recorded, eliminate bias and inconsistency of scoring as well as improve 

the timing of medical intervention to allow for healthy development in neonates. Through this 

retrospective analysis of pain scoring, it was determined that this approach can be applied to a 

real-time automated environment enabled by stream computing. Applicability and future work 

relating to what has been described in this thesis will lead to innovative automated systems 

integrated into clinical practice. This design of the APIPP scoring as a clinical decision support 

tool can fundamentally change the notion of pain monitoring in the future.  
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