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Abstract

Poor data quality has become a pervasive issue due to the increasing complexity and

size of modern datasets. Constraint based data cleaning techniques rely on integrity

constraints as a benchmark to identify and correct errors. While functional depen-

dencies have traditionally been used in existing data cleaning solutions to model

syntactic equivalence, they are not able to model broader relationships (e.g., is-a)

defined by an ontology. In this work, we take a first step towards extending the set

of data quality constraints by defining, discovering, and cleaning Ontology Functional

Dependencies. We lay out their theoretical foundations, including a set of sound and

complete axioms, and a linear inference procedure. We develop efficient algorithms

for data verification over ontology FDs. We then develop effective algorithms that

discover a complete, minimal set of ontology FDs, and a set of optimizations that ef-

ficiently prune the search space. We finally develop cost minimal cleaning algorythms

to repair a dataset in violation of a set of constraints, and an extension to discern on-

tology problems affecting data repair prediction. Our experimental evaluation using

real data shows the scalability and accuracy of our algorithms. We show that ontol-

ogy FDs are a useful data quality rule to capture domain attribute relationships, and

can significantly reduce the number of false positive errors in data cleaning techniques

that rely on traditional FDs.
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Chapter 1

Introduction

Organizations are finding it hard to extract value from their data because of poor

quality [14]. Big data means exponentially more inconsistent, duplicate, and missing

data. A Gartner Research study reports that by 2017, 33% of the largest global

companies will experience a data quality crisis due to their inability to trust and

govern their enterprise information [24]. With the interest in data analytics at an all-

time high, data quality has become a critical issue in research and practice. Integrity

constraints are commonly used to characterize and ensure data quality [10,12,18,27,

39, 40]. Databases with data quality problems are often referred to as unclean/dirty

databases. The process of improving this quality is called data cleaning. We define a

relation to be clean if all data within adheres to all defined integrity constraints.

As introduction, we cover the Functional Dependency (FD). FDs allow an equality

relationship to be enforced among two sets of information [8,35]. The main use of FDs

is to define group identity among a set of attributes. An FD states that if two tuples

agree on the subsequent attributes, then they also must agree on the consequent

attributes. An example of this would be F : [Postal Code] → [City, State, Country].

Here, when any two or more tuples agree on Postal Code, they must then also agree on

their City, State, and Country values. If they do not, they are said to be in violation.
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Another integrity constraint is the Metric Functional Dependency (MFD) [27].

MFDs are like regular FDs in that they relate one set of attributes to another. How-

ever, MFDs do so within a metric based deviation among all right-hand-side (RHS)

consequent values whom agree on the left-hand-side (LHS) subsequent attributes.

One example use case is when dealing with two integrated relations of geographic co-

ordinates such as in Geographic Information System (GIS) data. Precision from the

Global Positioning System (GPS) is not as ideal as we expect, measurement errors are

common when reporting the location of the same point on the earth, and arbitrary

precision means reported values are quite likely to be non-identical among as little

as two sources. Traditional functional dependencies are unable to handle such near

equalities. Metric functional dependencies are designed specifically to handle these.

In our work, we build upon the idea of handling similar, though non-identical data.

1.1 Motivation

To motivate this work, we examine current needs in the medical data domain. The

medical data community has, at present, rigorously produced taxonomies for many

of their core disciplines (medicine, symptoms, deceases, parasites, etc.). Additionally,

the medical community deals with massive amounts of research data in attempting to

understand the human body. Although we focus on medical trial data, likely many

other areas exist that would benefit from ontology FD.

Example 1.1.1 Table 1.1 shows a sample of clinical trial records containing patient

country codes, country, symptoms, diagnosis, and the prescribed medication. Con-

sider three FDs: F1: [Country Code] → [Country], F2: [Symptom, Diagnosis] →

[Medicine], and F3: [Diagnosis] → [Symptom].

The tuples (t1, t5, t6) do not satisfy F1 as “United States”, “America”, and “USA”

are not syntactically (string) equivalent (the same is true for (t2, t4, t7)). However,
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we know that the “United States” is synonymous with “America” and “USA”, and

(t1, t5, t6) all refer to the same country. Similarly, “Bharat” in t4 is also synonymous

with “India” as it is the country’s original Sanskrit name.

For F2, (t1, t2, t3) and (t4, t5) do not satisfy the dependency as the consequent

RHS values all refer to different medications. However, upon closer inspection, with

domain knowledge from a medication ontology (Figure 1.2), we see that the values

participate in an inheritance relationship. Both “ibuprofen” and “naproxen” both

have an is-a relation to Nonsteroidal Anti-inflammatory Drugs (NSAIDs), and so

does “tylenol” as a synonym of “acetaminophen”.

For F3, (t4, t5, t6) does not satisfy the defined dependency as the consequent values

contain multiple symptoms for a disease. Again, we can consult a disease symptom

ontology (Figure 1.3) to find the values participate in a component relationship. Here,

both tinnitus and nausea are symptoms of a migraine.

Country Code Country Symptom Diagnosis Medicine
t1 US United States joint pain osteoarthritis ibuprofen
t2 IN India joint pain osteoarthritis NSAID
t3 CA Canada joint pain osteoarthritis naproxen
t4 IN Bharat nausea migraine acetaminophen
t5 US America nausea migraine tylenol
t6 US USA tinnitus migraine tylenol
t7 IN India chest pain hypertension morphine

Table 1.1: Medical Trials Relation

The above example demonstrates that real data often contains domain specific

relationships that go beyond simple syntactic equivalence. It also highlights three

common relationships that occur frequently between two values b and c: (1) b and

c can be synonyms ; (2) b is-a c denoting inheritance; and (3) b part-of c denoting

composite membership. These relationships are often defined within domain specific

ontologies that can be leveraged during the data cleaning process to identify and en-

force domain specific data quality rules. Unfortunately, traditional FDs are unable
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to capture these relationships, and existing data cleaning approaches flag tuples con-

taining synonymous, inheritance, or component values as erroneous. This leads to an

increased number of “errors” and a larger search space of data repairs to consider.

Existing data cleaning approaches have traditionally considered data quality rules

with equality based attribute relationships, such as FDs, Conditional Functional De-

pendencys (CFDs), and denial constraints [12,13,40]. These data quality rules do not

capture the broader semantics modelled in ontologies containing relationships such

as synonym, is-a, part-of, and type-of. Existing work in the semantic web commu-

nity have defined domain constraints over ontologies for the purposes of validating

domain values and data completeness [31]. Similarly, recent work in graph databases
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Figure 1.3: Symptoms Ontology

have considered FDs and keys for graphs [15, 17]. Our work is in similar spirit, but

addresses gaps that were not previously considered. Namely, we consider attribute re-

lationships that go beyond equality (i.e., synonym, inheritance, and components). We

also consider the notion of senses that state how a dependency should be interpreted,

since multiple interpretations are possible for a given ontology; these interpretations

are not considered in existing techniques.

1.2 Contributions

In this paper, we take a first step to address this problem by defining a new class

of dependencies called Ontology Functional Dependencies that capture relationships

defined in an ontology. We focus on the synonym, is-a (inheritance), and part-of

(component) relationships between two attribute values. We make the following con-

tributions:

1. In Chapter 2, we define a new class of dependencies called ontology FDs based on

the synonym, inheritance, and component relationships of ontologies/taxonomies.

In contrast to existing work, our dependencies include attribute relationships

that go beyond equality, and consider the notion of senses that provide the

interpretations under which the dependencies are evaluated.

2. In Chapter 3, we introduce a set of axioms (inference rules) for ontology FDs,

and prove these are sound and complete. While the inference complexity of
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other FD extensions is co-NP-complete, we show that the inference problem for

ontology FDs remains linear. Our inference procedure can be used to reason

about the consistency and correctness of data design.

3. In Section 4.1, we develop a set of algorithms for efficient data verification under

ontology FDs that run in polynomial time in the number of tuples. We go on to

discuss optimizations in these algorithms that aid implementation performance.

Efficient data verification is critical for our discovery and cleaning algorithms.

4. In Section 4.2, we use our inference rules to propose optimizations that enable

ontology FD discovery algorithms to avoid redundant computations. We present

a set of optimizations to prune the search space and improve the algorithm

running time, without sacrificing correctness. We prove that our discovery

algorithm produces a complete and minimal set of ontology FDs. We also

introduce approximate ontology FDs and show they are a useful data quality

rule to capture domain relationships, and can significantly reduce the number

of false positives in data cleaning techniques that rely on traditional FDs.

5. In Chapter 5, we develop a set of algorithms that search for changes to a relation

in order to realign it with defined constraints. Since the cardinality minimal

repair problem for ontology FDs is NP-hard, we develop a greedy cost minimal

algorithm to clean the data. We focus on cleaning RHS attributes based on

LHS equivalence classes, allowing our approach to scale in co/parallel processing

implementations. We also develop an algorithm for detecting when an ontology

behind a set of ontology FDs has become stale and should be updated.

6. In Chapter 6, we evaluate the performance and effectiveness of our data veri-

fication and cleaning techniques using a real medical trials relation containing

1 million records. Our experiments demonstrate that our algorithms scale well

with comparable cleaning precision to those of other dependency constraints.
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Chapter 2

Background

2.1 Definitions

Ontological functional dependencies extend FDs by using ontologies to define the

function over which the dependency operates. We assume an ontology contains a set

of classes (concepts) C ∈ O. There are inheritance relations is-a between classes that

are partial order, where one class D is a subclass of another class C (C is a superclass

of D). A partial order is reflexive, transitive, and antisymmetric. For a generaliza-

tion (subsumption) relation a hyponym (subclass) has an is-a relationship with its

hyponym. There are also component relations part-of among classes. Component

sets C share one or more classes such that C= {C,D, . . . }. Classes may appear in

many sets and sets may contain many classes.

We assume the relation contains, as attribute values, string representations of

classes b called string terms. Terms are defined as synonyms(C) = {b1, . . . , bn}. A

class with multiple synonyms, i.e., |synonyms(C)| > 1, contains alternative string

representations for the class (synonyms). Similarly, each term can appear in multiple

classes (multiple meanings/senses).

We assume the synonyms(C) reverse predicate classes(b) returns a set of all
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classes represented by string term b. Any class with a single name, i.e. |synonyms(C)| =

1 possesses the property classes(synonyms(C)) = C.

Symbol(s) Used Denotational Meaning
R Relation schema
r Specific relation (table)

M,N Set of dependencies
F Single dependency

V, W,X,Y,Z Set of attributes
A,B Single attribute
s, t Set of tuples

s, t, u, v Single tuple
b, c, d, e Single string term

O Ontology
C,D,X Set of ontology classes

C,D,E,F Single ontology class
Cn, Fn, tn, bn The nth element of a set of such elements
subroutine Function/subroutine name

Table 2.1: Notation and Examples

Definition 2.1.1 Let t[A] = b denote the value of attribute A in tuple t as being

equal to the string term b.

Definition 2.1.2 Let gs[X] = {t|t ∈ r, and t[X] = s}.

That is, let gs[X] project the set of tuples from r into subsets such that each tuple

set over the attributes of X are equal to the values defined in s. When s is variably

defined, this returns all sets, groups by the values within X. These groupings are

equivalence classes.

Definition 2.1.3 A relation r satisfies a synonym FD X
s7→ Y, if for each at-

tribute A ∈ Y, for each s ∈ ΠX(r), there exists a class C, such that ΠA(gs[X]) ⊆

synonyms(C).

Note that if all classes have a single string representation, i.e., (∀(C) ∈ O |synonyms(C)| =

1), then a synonym FD is an FD.
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Example 2.1.1 We define a synonym FD on Table 1.1 [Country Code]
s7→ [Country]

using the ontology from Figure 1.1. For tuples (t1, t5, t6), grouping on the equivalence

class “US” requires “United States”, “America”, and “USA” to all appear as syn-

onyms of some class. Examining Figure 1.1 we see this is in fact the case. Therefore,

this equivalence class is valid. The same holds for equivalence classes (t2, t4, t7) and

(t3).

We assume ancestors(C) returns the path set of recursive ancestor classes from

the class C. That is:

Definition 2.1.4 ancestors(C) = {C|C is-a Cn|Cn is-a Cn−1, . . . ,C1 is-a C}.

We use the Lowest Common Ancestor function LCA({C, . . . ,Cn}, {D, . . . ,Dn}, . . . )

to return the distance to the lowest common ancestor among sets (paths) of ancestor

classes. For example:

Example 2.1.2 LCA({D,C,F}, {E,C,F}) = 1 because D is-a C is one traversal and

E is-a C is one traversal. All paths have found a common ancestor and the longest

path is 1, therefore the returned distance is 1. If no common ancestor is found, this

distance is infinite.

Definition 2.1.5 A relation r satisfies a generalization FD X
g7→ Y, if for each

attribute A ∈ Y, for each s ∈ ΠX(r) there exists a class C, such that

LCA(ancestors(classes(t1)), . . . , ancestors(classes(tn))) ≤ θ.

We consider a restricted version of generalization FDs that limits the inheritance

to whole number paths of maximum length θ, denoted as X
g7→θ Y. A length of θ = 0

generalization FD is equivalent to a synonym FD. That is X
g7→0 Y≡ X

s7→ X.

Example 2.1.3 In this paper we define a generalization FD on Table 1.1 [Symptom,

Diagnosis]
g7→1 [Medicine] using the ontology from Figure 1.2. Here we allow one level

9



of generalization between the values of Medicine. For tuples (t1, t2, t3), grouping on

the equivalence class “joint pain, osteoarthritis” requires “ibuprofen”, “NSAID”, and

“naproxen” to share a common ancestor within 1 level of generalization. Examining

Figure 1.2 we see this is in fact the case. More formally we see that

LCA(ancestors(classes(t1)), ancestors(classes(t2)), ancestors(classes(t3)))

LCA({ibu.,NSAID, ana.}, {NSAID, ana.}, {nap.,NSAID, ana.})

This returns 1 as the longest distance to “NSAID” (the lowest common ancestor) is

1 (ibuprofen is-a NSAID). 1 is ≤ θ and therefore the equivalence class is valid. The

same holds for equivalence classes (t4, t5), (t6), and (t7).

We assume components(C) returns the set of all classes having a part-of relation

into the composite C. We assume the inverse composes(C) returns the set of all

component sets a class is a part of.

Definition 2.1.6 A relation r satisfies a component FD X
c7→ Y, if for each attribute

A ∈ Y, for each s ∈ ΠX(r) there exists a composite C, such that ∀b ∈ ΠA(gs[X]),

{classes(b) ∩ components(C)} 6= ∅.

Example 2.1.4 In this paper we define a component FD on Table 1.1 [Diagnosis]
c7→

[Symptom] using the ontology from Figure 1.3. For tuples (t4, t5, t6), grouping on the

equivalence class “migrane” requires “nausea” and “tinnitus” to both be components in

a set. Examining Figure 1.3 we see this is in fact the case. Therefore, this equivalence

class is valid. The same holds for equivalence classes (t1, t2, t3) and (t7).

This definition means that not all classes C contained as part-of the component

set Cneed appear in the equivalence class ΠA(gb[X]) for the component FD integrity

constraint to hold over a relation. This allows tuples to be added atomically without

falsifying the constraint.
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Chapter 3

Theoretical Framework

3.1 Axiomatization

We present an axiomatization for ontology FDs, analogous to Armstrong’s axioma-

tization for FDs [3]. This provides a formal framework for reasoning about ontology

FDs. The axioms provide insight into how ontology FDs behave—and patterns for

how dependencies logically follow from others—that are not easily evident reasoning

from first principles. A sound and complete axiomatization is the first necessary step

to designing an efficient inference procedure.

1. Identity
X 7→ X.

2. Decomposition
If X 7→ Y,

and Z⊆ Y,
then X 7→ Z.

3. Composition
If X 7→ Y,

and Z 7→ W,
then XZ 7→ YW.

Figure 3.1: Axiomatization for Ontology FDs
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The axioms (inference rules) for ontology FDs are presented in Figure 3.1. One of

the axioms, i.e., Identity, generates trivial dependencies, which are always true. We

introduce additional inference rules, which follow from axiom in Figure 3.1, as they

will be used throughout in the reminder of the section, in particular to prove that

ontology FD axioms are complete.

Lemma 3.1.1 (Reflexivity) If Y⊆ X, then X 7→ Y.

Proof 3.1.1 X 7→ X holds by Identity axiom. Therefore, it can be inferred by the

Decomposition inference rule that X 7→ Y holds.

Union inference rule shows what can be inferred from two or more dependencies

which have the same sets on the left side.

Lemma 3.1.2 (Union) If X 7→ Y and X 7→ Z, then X 7→ YZ.

Proof 3.1.2 We are given X 7→ Y and X 7→ Z. Hence, the Composition axiom can

be used to infer X 7→ YZ.

Next, we define the closure of a set of attributes X over a set of ontology FDs M.

We use the notation M ` to state that X 7→ Y is provable with axioms from M.

Definition 3.1.1 (Closure) The closure of X, denoted as X+, with respect to the set

of ontology FDs M is defined as X+ = {A|M ` X 7→ A}.

The important information about closure X+ is that it can be used to determine

whether an ontology FD follows from M by axioms. The following lemma shows how.

Lemma 3.1.3 M ` X 7→ Y iff Y⊆ X+.

Proof 3.1.3 Let Y = {A1, . . . ,An}. Assume Y ⊆ X+. By definition of X+, X 7→

Ai, for all i ∈ {1, . . . , n}. Therefore, by Union inference rule, X 7→ Y follows. The

other direction, suppose X 7→ Y follows from the axioms. For each i ∈ {1, . . . , n},

X 7→ Ai follows by the Decomposition axiom. Therefore, Y⊆ X+.
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We denote logical operator � of the form M � F to imply the assertion that a

set of axioms (M) logically implies the dependency F . i.e., in every circumstance in

which M is true, F is true. We also denote the logical operator ` of the form M ` F

to imply the assertion that the dependency F follows from M as a consequence of a

set of inferences, dependant on the set of axioms M. Soundness states M ` F implies

M � F while completeness states M � F implies M ` F .

Theorem 3.1.1 Ontology FD axioms in Figure 3.1 are sound and complete.

Proof 3.1.4 First we prove that the axioms are sound. That is, if M ` X 7→ Y,

then M � X 7→ Y. The Identity axiom is clearly sound. We cannot have a relation

with tuples that agree on X yet are not in synonym, generalization or component

relationship, respectively. To prove Decomposition, suppose we have a relation that

satisfies X 7→ Y and Z⊆ Y. Therefore, for all tuples that agree on X, they are in

synonym, generalization or component relationship on all attributes in Y and hence,

also on Z. Therefore, X 7→ Z. The soundness of Composition is an extension of the

argument given previously.

Below we present the completeness proof, that is, if M � X 7→ Y, then M `

X 7→ Y. Without a loss of generality, we consider a table t with three tuples shown

in Table 3.1. We divide the attributes of a relation t into three subsets: X, the set

consisting of attributes in the closure X+ minus attributes in X and all remaining

attributes. Assume that the values b, b′ and b′′ are not equal (b 6= b′, b 6= b′′ and

b′ 6= b′′), however, they are in synonym, generalization or component relationship,

respectively. Also, b, c and d are not in synonym, generalization and component

relationship, and hence, they are also not equal.

We first show that all dependencies in the set of ontology FDs M are satisfied

by a table t (t � F ). Since ontology FD axioms are sound, ontology FDs inferred

from M are true. Assume V 7→ Z is in M, however, it is not satisfied by a relation

t. Therefore, V⊆ X because otherwise tuples of t disagree on some attribute of V
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X+

X X+ \X Other attributes
b...b b...b b...b
b...b b′...b′ c...c
b...b b′′...b′′ d...d

Table 3.1: Table Template for Ontology FDs.

since b, b′ and b′′ as well as b, c, d are not equal, and consequently an ontology FD

V 7→ Z would not be violated. Moreover, Z cannot be a subset of X+ (Z* X+), or

else V 7→ Z, would be satisfied by a table t. Let A be an attribute of Z not in X+.

Since, V⊆ X, X 7→ V by Reflexivity. Also a dependency V 7→ Z is in M, hence,

by Decomposition, V 7→ A. By Composition XV 7→ VA can be inferred, therefore,

X 7→ VA as V⊆ X. However, then Decomposition rule tells us that X 7→ A, which

would mean by the definition of the closure that A is in X+, which we assumed not to

be the case. Contradiction. An ontology FD V 7→ Z which is in M is satisfied by t.

Our remaining proof obligation is to show that any ontology FD not inferable

from set of ontology FDs M with ontology FD axioms (M 0 X 7→ Y) is not true

(M 2 X 7→ Y). Suppose it is satisfied (M � X 7→ Y). By Reflexivity X 7→ X,

therefore, by Lemma 3.1.3 X ⊆ X+. Since X ⊆ X+ it follows by the construction

of table t that Y⊆ X+. Else tuples of table t agree on X but are not in synonym,

generalization or component relationship, respectively, on some attribute A ∈ Y.

Then, from Lemma 3.1.3 it can be inferred that X 7→ Y. Contradiction. Thus,

whenever X 7→ Y does not follow from M by ontology FDs axioms, M does not

logically imply X 7→ Y. That is the axiom system is complete over ontology FDs,

which ends the proof of Theorem 3.1.1.

It is interesting to note some axioms that hold for FDs do not hold for ontology

FDs, including Transitivity: if X 7→ Y and Y 7→ Z, then X 7→ Z.

Example 3.1.1 Consider the relation with three tuples in Table 3.2. The synonym
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FD [Country]
s7→ [Country Code] holds since CAD and CA are synonyms. In addition,

[Country Code]
s7→ [Symptom] holds as CAD and CA are not equal, That is, CAD 6=

CA. However, the transitive synonym FD: [Country]
s7→ [Symptom] does not hold as

congestion is not a synonym to both fever and pyrexia.

Patient ID Country Country Code Symptom
10 Canada CAD Fever
11 Canada CA Congestion
12 Canada CAD Pyrexia

Table 3.2: Lack of Transitivity

3.2 Inference System

A goal in any dependency theory is to develop algorithms for inference problem. The

inference procedure can be used to reason about the consistency and correctness of

data design. We present an inference procedure for the inference problem for ontology

FDs. Computing the closure for ontology FDs can be done efficiently. It takes time

proportional to the length of all the dependencies in M, written out.

Algorithm 3.1 Inference Procedure for Ontology FDs

Input:A set of ontology FDs M, and a set of attributes X

Output:The closure of X with respect to M

1: Funused ←M

2: n← 0
3: Xn ← X

4: loop
5: if ∃V 7→ Z∈ Funused and V⊆ X then
6: Xn+1 ← Xn ∪Z

7: Funused ← Funused \ {V 7→ Z}
8: n← n+ 1
9: else
10: return Xn

11: end if
12: end loop
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Theorem 3.2.1 Algorithm 3.1 correctly computes closure X+.

Proof 3.2.1 First we show by induction on n that if Z is placed in Xn in Algo-

rithm 3.1, then Z is in X+.

Basis: n = 0. By Identity axiom X 7→ X.

Induction: n > 0. Assume that Xn−1 consists only of attributes in X+. Suppose

Z is placed in Xn because V 7→ Z, and V⊆ X. By Reflexivity X 7→ V, therefore,

by Composition and Decomposition, X 7→ Z. Thus, Z is in X+.

Now we prove the opposite, if Z is in X+, then Z is in the set returned by Algo-

rithm 3.1. Suppose Z is in X+ but Z is not in the set returned by Algorithm 3.1.

Consider table t similar to that in Table 3.1. Table t has three tuples that agree

on attributes in X, are in synonym, generalization or component relationship, re-

spectively, but not equal on {Xn \ X}, and are not in synonym, generalization or

component relationship, respectively, on all other attributes (hence, also no equal).

We claim that t satisfies M. If not, let V 7→ W be a dependency in M that is

violated by t. Then V⊆ X and W cannot be a subset of Xn, if the violation happens.

Similar argument was used in the proof of Theorem 3.1.1. Thus, by Algorithm 3.1,

Lines 5–8 there exists Xn+1, which is a contradiction.

Example 3.2.1 Let M be the set of generalization FDs from our running example

in Table 1.1: [Country]
g7→ [Country Code] and [Country, Disease]

s7→ [Medicine].

Note that [Country]
g7→ [Country Code] holds since [Country]

s7→ [Country Code]

and generalization FDs subsume synonym FDs. Therefore, the closure [Country,

Disease]+ computed with our inference procedure (Algorithm 3.2.1) is [Country, Dis-

ease, Medicine].

For a given set of ontology FDs M, we can find an equivalent set with a number

of useful properties. A minimal set of ontology FDs is a set with single attributes

in the consequence that contain no redundant attributes in the antecedent and that

16



contain no redundant dependencies. We assumed that the input ontology FDs for our

repair algorithm are minimal. To achieve this, we can apply the inference procedure

described above to compute a minimal cover of a set of ontology FDs.

Definition 3.2.1 (Minimal Cover) A set M of ontology FDs is minimal if

1. ∀X 7→ Y∈M, Y contains a single attribute

2. for no X 7→ Y∈M is M\ {X 7→ A} equivalent to M

3. for no X 7→ A and proper subset Z of X is M\{X 7→ A}∪{Z 7→ A} equivalent

to M

If M is minimal and M is equivalent to a set of ontology FDs N, then we say M

is a minimal cover of N.

Theorem 3.2.2 Every set of ontology FDs M has a minimal cover.

Proof 3.2.2 By the Union and Decomposition inference rules, it is possible to have

M with only a single attribute in the RHS. We can achieve two other conditions by

repeatedly deleting an attribute and then repeatedly removing a dependency. We can

test whether an attribute B from X is redundant for the ontology FD X 7→ A by

checking if A is in {X\B}+. We can test whether X 7→ A is redundant by computing

closure X+ with respect to M \ {X 7→ A}. Therefore, we eventually reach a set of

ontology FDs which is equivalent to M and satisfies conditions 1, 2 and 3.

Example 3.2.2 Let the set of ontology FDs M= F1 : {[Country]
g7→ [Country Code]},

F2 : {[Country, Disease]
g7→ [Medicine]}, F3 : {[Country, Disease]

g7→ [Medicine,

Country Code]}. Therefore, the set of ontology FDs M is not a minimal cover as F3

follows from F1 and F2 by the Composition inference rule.
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Chapter 4

Data Verification

4.1 Data Verification

Data verification checks whether one or more defined dependencies hold over a rela-

tion. To aid parallel and distributed computing, all of these algorithms can be run in

parallel when dealing with multiple constraints simultaneously.

In data verification, we present three algorithms, one for each of the defined ontol-

ogy FDs. Traditional FDs X→ Y hold over a relation instance, if for each grouping

s ∈ ΠX(r), we can verify that |t| = 1, where t = ΠA(gs[X]). More complex algo-

rithms are required for ontology FDs. The choice of ontological relation (synonym,

generalization, or component) directly impacts the complexity and efficiency of the

verification algorithms as is discussed in each description below. By using the de-

composition axiom (Figure 3.1) we can verify any RHS attributes Y by testing each

A ∈ Y against X independently. This simplifies our algorithms and means an algo-

rithm to test X→ A can be used to test X→ Y through decomposition.

The synonym FD verification Algorithm 4.1 iterates over all unique tuples com-

posed under the attributes in Xdenoted as s. This allows us to group on each distinct

tuple from X in the second loop. The second loop uses the ΠA(gs[X]) operation to
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Algorithm 4.1 Verify Synonym FD

Input:Relation r, set of attributes X and an attribute A
Output:true if dependency X

s7→ A holds, otherwise false

1: for all s ∈ ΠX(r) do
2: for all t∈ ΠA(gs[X]) do
3: t= {t1, . . . , tn}
4: if classes(t1) ∩ · · · ∩ classes(tn) = ∅ then
5: return false
6: end if
7: end for
8: end for
9: return true

get the string terms of A grouped into subsets where all X attributes are equal. This

leaves the RHS (A) grouped by the LHS in our relation. We next project A from

the relation, grouped for evaluation. Defining t just affirms this set is composed of

a group of tuples denoted {t1, . . . , tn}. That is, t comprises all unique tuples of A

under one equivalence class of X. This process is shared by all following verification

algorithms.

The next step is testing the tuples’ string terms to determine if they all appear

within a single class. To do this, the intersection of all classes of all string terms of

the equivalence class is computed. If at least one class contains all string terms in the

equivalence class, then the dependency is met. To test this efficiently, we prove the

dependency holds by contradiction. In practice we do so by testing for an empty set

following an iterative intersection, thus the function returns false as soon as we have

proven just one term falsifies the dependency for it’s equivalence class.

In the worst case, this algorithm’s complexity requirement is O(n2). We assume

that access to the ontology is indexed (as a map) and can be achieved within a

constant factor, i.e., O(1).

To verify a generalization FD we implement Algorithm 4.2. This algorithm works

by computing the distance to the lowest common ancestor of all ancestral paths,

of all classes, of all string terms. That is, the path from each class returned from
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Algorithm 4.2 Verify Generalization FD

Input:Relation r, set of attributes X, an attribute A, and maximum distance θ
Output:true if dependency X

g7→θ A holds, otherwise false

1: for all s ∈ ΠX(r) do
2: for all t∈ ΠA(gs[X]) do
3: t= {t1, . . . , tn}
4: if LCA(ancestors(classes(t1)), . . . , ancestors(classes(tn))) < θ then
5: return false
6: end if
7: end for
8: end for
9: return true

classes() to it’s highest root node is returned as a series. Each of these sets of paths

are passed as order sets to the LCA() function that computes the longest distance to the

first common node. Algorithm 4.2 requires a complexity of O(n3) to accommodate

ancestral queries. This complexity is only worst case and in practice more linear

complexity is seen (see experimental results in Section 6.2).

Algorithm 4.3 Verify Component FD

Input:Relation r, set of attributes X and an attribute A
Output:true if dependency X

c7→ A holds, otherwise false

1: for all s ∈ ΠXr) do
2: for all t∈ ΠA(gs[X]) do
3: t= {t1, . . . , tn}
4: if composes(classes(t1)) ∩ · · · ∩ composes(classes(tn)) = ∅ then
5: return false
6: end if
7: end for
8: end for
9: return true

Verification of component FDs uses a similar method to the synonym FD verifi-

cation function (Algorithm 4.3). The primary difference is the function composes(t)

which takes as input a set of classes and returns a set of component sets. As with

synonym FD verification, the worst case complexity is O(n2). We again assume the

ontology is accessible via constant lookup from string terms to both classes and from

classes to component sets.
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4.2 Dependency Discovery

Dependency discovery examines a relation’s attributes to find dependencies that are

valid for given data. Discovery is useful when relations exist prior to constraint

application and a complete knowledge of applicable constraints is not known. Even in

such cases where most constraints are known, it is possible that some constraints hold

which are non-obvious, and may therefore be found and considered for enforcement.

Given inference rules for ontology FDs, we present our algorithm, named FASTOFD

(Algorithm 4.4), which efficiently discovers a complete and minimal set of ontology

FDs over a relational instance. An ontology FD, X → A is trivial if A ∈ X by

Reflexivity. An ontology FD X→ A is minimal if it is non-trivial and there is no set

of attributes Y⊂ X such that Y→ A holds in a table by Augmentation.

Algorithm 4.4 FASTOFD

Input:Relation r over schema R
Output:Minimal set of ontology FDs M, such that r |= M

1: Z1 = ∅
2: C+(∅) = R
3: n = 1
4: Z1 = {A|A ∈ R}
5: while Zn 6= ∅ do
6: computeOFDs(Zn)
7: Zn+1 = calculateNextLevel(Zn)
8: n = n+ 1
9: end while
10: return M

FASTOFD traverses a lattice of all possible sets of attributes in a level-wise man-

ner (Figure 4.1). In level Zn, our algorithm generates candidate ontology FDs with n

attributes using computeOFDs(Zn). FASTOFD starts the search from singleton sets

of attributes and works its way to larger attribute sets through the set-containment

lattice, level by level. When the algorithm processes an attribute set X, it veri-

fies candidate ontology FDs of the form (X \ A) → A, where A ∈ X. This guar-

antees that only non-trivial ontology FDs are considered. For each candidate, we
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Figure 4.1: Sample Discovery Lattice

invoke verifySynonymFD() (Algorithm 4.1), and verifyGeneralizationFD() (Algo-

rithm 4.2) to verify whether a synonym or inheritance FD is found.

The small-to-large search strategy of the discovery algorithm guarantees that only

ontology FDs that are minimal are added to the output set of ontology FDs M, and is

used to prune the search space effectively. The ontology FD candidates generated in a

given level are checked for minimality based on the previous levels and are added to a

valid set of ontology FDs M if applicable. The algorithm calculateNextLevel(Zn)

forms the next level from the current level.

Next, we explain, in turn, each of the algorithms that are called in the main loop

of FASTOFD.

4.2.1 Finding Minimal OFDs

FASTOFD traverses the lattice until all complete and minimal ontology FDs are

found. We deal with ontology FDs of the form X\A→ A, where A ∈ X. To check if

such an ontology FD is minimal, we need to know if X\ A→ A is valid for Y⊂ X.
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If Y\ A → A, then by Augmentation X\ A → A holds. An ontology FD X→ A

holds for any relational instance by Reflexivity, therefore, considering only X\A→ A

guarantees that only non-trivial ontology FDs are taken into account.

We maintain information about minimal ontology FDs, in the form of X\A→ A,

in the candidate set C+(X). If A ∈ C+(X) for a given set X, then A has not been

found to depend on any proper subset of X. Therefore, to find minimal ontology FDs,

it suffices to verify ontology FDs X\ A → A, where A ∈ X and A ∈ C+(X\ B) for

all B ∈ X.

Example 4.2.1 Assume that B→ A and that we consider the set X= {A,B,C}. As

B→ A holds, A 6∈ C+(X\ C). Hence, the ontology FD {B,C} → A is not minimal.

Hence, we define the candidate set C+(X), formally as follows.

Definition 4.2.1 C+(X) = {A ∈ R|∀A∈XX\ A→ A does not hold}.

4.2.2 Computing Levels

Algorithm 4.5 explains calculateNextLevel(Zn), which computes Zn+1 from Zn.

It uses the subroutine singleAttrDifferBlocks(Zn) that partitions Zn into blocks

(Line 2). Two sets belong to the same block if they have a common subset Yof length

n − 1 and differ in only one attribute, A and B, respectively. Therefore, the blocks

are not difficult to calculate as sets YA and YB can be preserved as sorted sets of

attributes. Other usual use cases of Apriori [1] such as TANE [22] and FASTOD [38]

use a similar approach.

Some of our techniques are similar to TANE [22] for FD discovery and FAS-

TOD [38] for Ordered Dependencys (ODs) discovery since ontology FDs subsume

FDs and ODs subsume FDs. However, FASTOFD differs in many details from TANE

and FASTOD, e.g., optimizations, removing the nodes from the lattice and the key

pruning rules. FASTOFD includes ontology FD-specific rules. For instance, for FDs
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if {B,C} → A and B→ C, then B→ A holds, hence, {B,C} → A is considered non-

minimal. However, this rule does not hold for ontology FDs, therefore, our definition

of candidate set C+(X) differs from TANE.

Algorithm 4.5 calculateNextLevel(Zn)

1: Zn+1 = ∅
2: for all {YB,YC} ∈ singleAttrDiffBlocks(Zn) do
3: X= Y∪ {B,C}
4: Add X to Zn+1

5: end for
6: return Zn+1

The level Zn+1 contains those sets of attributes of size n + 1 which have their

subsets of size n in Zn.

4.2.3 Computing Dependencies and Completeness

Algorithm 4.6, computeOFDs(Zl), adds minimal ontology FDs from level Zn to M,

in the form of X\ A → A, where A ∈ X. The following lemma shows that we can

use the candidate set C+(X) to test whether X\ A→ A is minimal.

Lemma 4.2.1 An ontology FD X\ A → A, where A ∈ X, is minimal iff ∀B∈XA ∈

C+(X\ B).

Proof 4.2.1 Assume first that the dependency X\A→ A is not minimal. Therefore,

there exists B ∈ X for which X\ {A,B} → A holds. Then, A 6∈ C+(X\ B).

To prove the other direction assume that there exists B ∈ X, such that A 6∈

C+(X\ B). Therefore, X\ {A,B} → A holds, where A 6= B. Hence, by Reflexivity

the dependency X\ A→ A is not minimal.

By Lemma 4.2.1, the steps in Lines 2, 5, 6 and 7 guarantee that the algorithm

adds to M only the minimal ontology FDs of the form X\ A → A, where X ∈ Zn

and A ∈ X. In Line 6, to verify whether X \ A → A is a synonym or inheritance
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Algorithm 4.6 computeOFDs(Ll)

1: for all X∈ Zl do
2: C+(X) =

⋂
A∈X C+

c (X\ A)
3: end for
4: for all X∈ Zl do
5: for all A ∈ X∩ C+(X) do
6: if X\ A→ A then
7: Add X\ A→ A to M

8: Remove A from C+(X)
9: end if
10: end for
11: end for

FD, we invoke verifySynonymFD() (Algorithm 4.1), and verifyGeneralizationFD()

(Algorithm 4.2), respectively.

Lemma 4.2.2 C+(Y) be correctly computed ∀Y ∈ Zn−1. computeOFDs(Zn) calcu-

lates correctly C+(X), ∀X∈ Zn.

Proof 4.2.2 An attribute A is in C+(X) after the execution of computeOFDs(Zn)

unless it is excluded from C+(X) on Line 2 or 8. First we show that if A is excluded

from C+(X) by computeOFDs(Zl), then A 6∈ C+(X) by the definition of C+(X).

• If A is excluded from C+(X) on Line 2, there exists B ∈ Xwith A 6∈ C+(X\B).

Therefore, X \ {A,B} → A holds, where A 6= B. Hence, A 6∈ C+(X) by the

definition of C+(X).

• If A is excluded on Line 8, then A ∈ Xand X\A→ A holds. Hence, A 6∈ C+(X)

by the definition of C+(X).

Next, we show the other direction, that if A 6∈ C+(X) by the definition of C+(X),

then A is excluded from C+(X) by the algorithm computeOFDs(Zl). Assume A 6∈

C+(X) by the definition of C+(X). Therefore, there exists B ∈ X, such that X \

{A,B} → A holds. We have the following two cases.
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• A = B. Thus, X\ A→ A holds and A is removed on Line 8, if X\ A→ A is

minimal; and on Line 2 otherwise.

• A 6= B. Hence, A 6∈ C+(X\ B) and A is removed on Line 2.

This ends the proof of correctness of computing the candidate set C+(X), ∀X ∈

Zn.

Next, we show that the ontology FD discovery algorithm produces a complete,

minimal set of ontology FD.

Theorem 4.2.1 The FASTOFD algorithm computes a complete, minimal set of

ontology FDs M.

Proof 4.2.3 The algorithm computeOFDs(Zn) adds to set of ontology FDs M only the

minimal ontology FDs. The steps in Lines 2, 5, 6 and 7 guarantee that the algorithm

adds to M only the minimal ontology FDs of the form X \ A → A, where X ∈ Zn

and A ∈ X by Lemma 4.2.1. It follows by induction that computeOFDs(Zn) calculates

correctly C+(X) for all levels n of the lattice since Lemma 4.2.2 holds. Therefore, the

FASTOFD algorithm computes a complete set of minimal ontology FDs M.

4.2.4 Complexity Analysis

The algorithm complexity depends on the number of candidates in the lattice. The

worst case complexity is exponential in the number of attributes as there are 2n nodes.

However, the complexity is polynomial in the number of tuples. These results are in

line with previous FD [22], inclusion dependency [34], and order dependency [38]

discovery algorithms.

Since the solution space for minimal ontology FDs is exponential, a polynomial

time algorithm in the number of attributes cannot exist. The same conclusions have

been reached for the discovery of traditional FDs and inclusion dependencies [22].
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However, the algorithm for the discovery of ODs in Langer and Naumann [28] has a

factorial worst-case time complexity. (ODs subsume FDs.) This is because ODs are

defined over lists of attributes, hence, the search space is represented as a lattice of

attribute permutations, which results in a factorial number of OD candidates, as there

are b|R|!×ec nodes. However, recently in Szlichta et al. [38] the authors translate ODs

into an equivalent set-based canonical form that allows to efficiently discover ODs by

traversing a set-containment lattice with exponential worst-case time complexity in

the number of attributes and linear in the number of tuples.

For ontology FDs, the ontological relationship (synonym, inheritance, or com-

ponent) influences the complexity of the verification task. We assume values in the

ontology are indexed, and can be accessed within a constant factor. To verify whether

a synonym FD holds over r, for each x ∈ ΠX(r), we check whether the intersection of

the canonical classes over the consequent values is non-empty. This leads to a worst

case time complexity that is quadratic in the number of tuples. A similar argument

(checking the least common ancestor applies for an inheritance FD, leading to a worst

case complexity that is cubic in the number of tuples.

4.2.5 Approximate ontology FDs

Up to now, we focus on the discovery of ontology FDs that hold over the entire

relational instance r.

In practice, some applications do not require such a strict notion of satisfaction,

and ontology FDs may not hold exactly over the entire relation due to errors in the

data. In such cases, approximate ontology FDs, which hold over a subset of r are

useful. Similar to previous work on approximate FD discovery, we define a minimum

support level, τ , that defines the minimum number of tuples that must satisfy an

ontology FD M. We define the problem of approximate ontology FD discovery as

follows: given a relational instance r, and a minimum support threshold τ, 0 ≤ τ ≤ 1,
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find all minimal ontology FDs M such that s(M) ≥ τ where s(M) = max{|r′| | r′ ⊆

r, r′ |= M}.

The main modification to discover approximate ontology FDs is in the verification

step of checking whether a candidate is a synonym or inheritance FD. The candidate

generation and optimization steps remain the same. This requires first identifying

the tuples participating in a synonymous or inheritance relationship, and checking

whether the number of satisfying tuples is greater than or equal to τ . For synonyms,

we check for the maximum overlap among a set of values under a common sense

(Line 4, Algorithm 4.1), and check whether the number of satisfying tuples satisfies

our minimum support level τ . Similarly, we look for the maximal number of satisfying

tuples under a least common ancestor for an inheritance FD.
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Chapter 5

Data Cleaning

Data cleaning is the process of taking a set of constraints and a relation in violation

of those constraints, then changing the relation by non-trivial means to realign the

relation with the constraints. Non-trivial because the simplest modification deletes

all records that produce violations (often undesirable behaviour) [8]. Given a set of

ontology FD constraints and a relation, we present our novel algorithms for computing

a cost optimal set of changes to minimize the number of changes while realigning the

relation with the constraints. We approach the problem in a method that facilitates

parallelization and also distribution of the solution among multiple nodes.

Formally, given a set of ontology FDs M over a relation r, such that each F ∈M

takes the form X 7→ Y we propose to solve where the verification of M over r does

not hold. The issue to overcome is that of overlapping dependencies. That is for some

F1 : X 7→ Y∈M and F2 : W 7→ Z∈M, W∩X∩ Y∩Z 6= ∅.

The cardinality minimality repair (minimizing the total number of changes) for

traditional FDs is NP-hard [7, 8] and ontology FDs subsume traditional FDs, hence,

cardinality minimal repair for ontology FDs is NP-hard, too. Since the problem is

NP-hard, we develop greedy cost optimal algorithms that are effective in practice to

overcome the NP-hard nature of the problem.
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5.1 Gating

Gating allows us to independently clean sets of ontology FDs that are disjoint in

their attributes. Doing this allows simultaneous data cleaning of these subsets. In

Algorithm 5.1 we start by defining a set of sets of attributes X and an iterator i.

For each ontology FD we first initialize an empty set in X. We then proceed through

each attribute in all ontology FD. On Line 6 we return the sets from X containing

the current attribute A from the current ontology FD. If an attribute A is not yet

in any set of attributes X within X we add attribute A to the set of attributes for

this FD i.e. Xi. If however attribute A has already been assigned to a previous set

in X, we merge that set into the current set and remove the old set from the set of

attribute sets X.

Algorithm 5.1 Gate Ontology FDs

Input:Set of ontology FDs M

Output:Sets of attributes {X1, . . . ,Xn}
1: i = 1
2: X= ∅
3: for all F ∈M do
4: Xi = ∅
5: for all A ∈ F do
6: Y= Xn|A ∈ Xn and Xn ∈X, else ∅
7: if Y= ∅ then
8: Xi = Xi ∪ {A}
9: else if Xi 6= Y then
10: Xi = Xi ∪ Y

11: X= X\ Y
12: end if
13: end for
14: i = i+ 1
15: end for
16: return X

Example 5.1.1 For example, our ontology FDs from Table 1.1 were F1 : [Country

Code]
s7→ [Country], F2 : [Symptom, Diagnosis]

g7→1 [Medicine], and F3 : [Diagnosis]

c7→ [Symptom]. We begin with F1. X = {X1 = {}}. To start, we see if Country
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Code is in X. It is not in any set within X, so we add it to X1. X = {X1 =

{Country Code}}. We next check for Country in X, which is not in any set within

X, so we also add it to X1. Therefor, X = {X1 = {Country Code, Country}}.

We have processed all attributes in F1 so we begin the next ontology FD. To start,

we create a new subset in X. X = {X1 = {Country Code, Country},X2 = {}}.

We check if Symptom is in X, it is not in any set, so we add it to X2. X =

{X1 = {Country Code, Country},X2 = {Symptom}}. We next lookup Diagnosis in

X, not in any set, so we add it to X2. X = {X1 = {Country Code, Country},X2 =

{Symptom, Diagnosis}}. We check if Medicine is in X, it is also not in any set, so

we add it to X2. X= {X1 = {Country Code, Country},X2 = {Symptom, Diagnosis,

Medicine}}. We start the last dependency, thus we create a new subset in X. X =

{X1 = {Country Code, Country},X2 = {Symptom, Diagnosis, Medicine,X3 = {}}.

Now we check if Medicine is in X, it is! It is in X2, in this case we add all of

X2 it to X3 and delete X2. Now, X = {X1 = {Country Code, Country},X3 =

{Symptom, Diagnosis, Medicine}}. Finally, we lookup Diagnosis in X, it is in X3

but we are currently assigning new attributes to X3 so we do nothing. This is the end

of all attributes of all dependencies, therefore we return {{Country Code, Country},

{Symptom, Diagnosis, Medicine}}. With this, each set of attributes can be cleaned

independently.

5.2 Data Cleaning

We begin by cleaning the relation under a single ontology FD and later generalize

to clean a set of dependencies. We focus our approach to cleaning the RHS. This

approach allows dramatically more concurrency, similar to the one used by W. Fan

et al., in [8]. As each LHS equivalence class is independent in write access, no lock is

needed over the whole attribute set.
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First, we identifying when an equivalence class is in violation of an ontology FD

constraint. We re-purpose verifySynonymFD() (Algorithm 4.1), verifyComponentFD()

(Algorithm 4.3), and verifyGeneralizationFD() (Algorithm 4.2) to compute this.

We replace the return false call with instead a dispatch to the corresponding function

below (synonyms to Algorithm 5.2, components to Algorithm 5.3, and generalizations

to Algorithm 5.4) providing the RHS as input.

Algorithm 5.2 Clean Synonym FD Equivalence Class

Input:Invalid equivalence class RHS s

Output:Cleaned equivalence class RHS s

1: v = 0
2: D = ∅
3: dMap[] = {0, . . . , 0}
4: for all t ∈ s do
5: for all C ∈ classes(t) do
6: dMap[C] = dMap[C] + 1
7: if dMap[C] > v then
8: D = C
9: v = dMap[C]
10: end if
11: end for
12: end for
13: s = u1 ∈ synonyms(D)
14: for all t ∈ s do
15: if D 6∈ classes(t) then
16: t = s
17: end if
18: end for
19: return s

The synonym FD cleaning algorithm initializes three variables for counting sup-

port: dMap[], v, and D. dMap[] is a map (associative array) which is used to count

the number of times each class is seen, v is used to track the count of the current

popular candidate, and D is used to store the current popular candidate. D and

v trade a small piece of memory to prevent a scan of the counting map after the

instances have been tallied.

Next, the algorithm iterates over every tuple, for each tuple looking up the set
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of classes to which it belongs. It increments the count of each class and if a count

surpasses the current popular class it is promoted. After counting, the canonical name

of the popular class is assigned to s. We assume the first synonym of the popular

class is in fact the preferred term of that class.

A possible second map may improve accuracy. If a simultaneous count is made

to track the most popular string term, then at Line 13 the algorithm may test to see

that the popular string term is a synonym of the popular class D. If this is the case,

the most popular string term may be used instead of the canonical name of the class.

This increases the runtime and memory consumption of the algorithm and may or

may not aid accuracy. In the worst case, the string term is not a synonym of the

popular class. In this case, the canonical name must be used instead, negating all

this extra work.

Moving forward, the equivalence class is again scanned for tuples whose string

term in classes() does not return the popular class. When such a tuple is found,

it is replaced with the chosen string term. This process is similar in all following

verification algorithms.

The component FD cleaning algorithm begins similar to Algorithm 5.2. Instead

of a popular class however, a popular component set D is found instead. When

selecting the string term, the canonical name of the primary component is selected

in Algorithm 5.3. Similar to Algorithm 5.2, counting the popular string term may or

may not improve accuracy depending on the dataset and ontology. However, when

testing the popular string term it must be a member of any class in the component

set to be valid.

In Algorithm 5.4 for cleaning generalization FDs we again identify the most pop-

ular class, however, we do so from the set of all ancestors of a path length not longer

than θ. Notice Line 6, here we pull each class from the ancestors set one at a time

starting at the class itself and stopping when the path traversed is at most θ + 1
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Algorithm 5.3 Clean Component FD Equivalence Class

Input:Invalid equivalence class RHS s

Output:Cleaned equivalence class RHS s

1: v = 0
2: D = ∅
3: dMap[] = {0, . . . , 0}
4: for all t ∈ s do
5: for all C ∈ classes(t) do
6: for all C∈ composes(C) do
7: dMap[C] = dMap[C] + 1
8: if dMap[C] > v then
9: D = C

10: v = dMap[C]
11: end if
12: end for
13: end for
14: end for
15: s = u1 ∈ synonyms(C1 ∈ D)
16: for all t ∈ s do
17: for all C ∈ classes(t) do
18: if composes(C) 6∈ D then
19: t = s
20: end if
21: end for
22: end for
23: return s
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Algorithm 5.4 Clean Generalization FD Equivalence Class

Input:Invalid equivalence class RHS s

Output:Cleaned equivalence class RHS s

1: v = 0
2: D = ∅
3: dMap[] = {0, . . . , 0}
4: for all t ∈ s do
5: for all C ∈ classes(t) do
6: for all {C1, . . . ,Cθ+1} ∈ ancestors(C) do
7: dMap[C] = dMap[C] + 1
8: if dMap[C] > v then
9: D = C
10: v = dMap[C]
11: end if
12: end for
13: end for
14: end for
15: s = u1 ∈ synonyms(D)
16: for all t ∈ s do
17: δ = LCA(ancestors(classes(t)), {C})
18: if θ < δ <∞ then
19: s = u1 ∈ synonyms(Eδ−θ+1 ∈ ancestors(classes(t)))
20: else if θ < δ then
21: t = s
22: end if
23: end for
24: return s
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elements. This search attempts to identify the most popular ancestor within the re-

quired threshold. Again, counting the string terms is a possible accuracy boosting

method.

The next big difference is in replacing the string terms. Here we use LCA() to

identify when the violating tuple is a distant descendant of the popular ancestor

(distant being over a greater distance than θ). This helps fix when violations are the

result of over specificity in a string term. When we find that a term is too specific, it

makes the most sense to generalize the term until it is within threshold of the popular

ancestor. In the case that the violating term is not a descendant, baring a count of

popular string terms, the only sensible alternative is to use the canonical name of the

generalized ancestor.

Country Code Country Symptom Diagnosis Medicine
t1 US United States joint pain osteoarthritis ibuprofen
t2 IN India joint pain osteoarthritis NSAID
t3 CA Canada joint pain osteoarthritis naproxen
t4 IN Bharat nausea migraine acetaminophen
t5 US Amirica nausea migraine morphine
t6 US USA tinnitus migraine tylenol
t7 IN India chest pain hypertension morphine

Table 5.1: Dirty Medical Trials Relation

Example 5.2.1 To demonstrate these, we will use a modified version of Table 1.1,

that is Table 5.1. We already know by Example 5.1.1, that we can evaluate F1 :

[Country Code]
s7→ [Country] independently. As such, we begin by verifying F1 given

the ontology in Figure 1.1. We first run verification over the relation. Grouping

equivalence classes gives us: (United States, Amirica, USA), (India, Bharat), and

(Canada).

First, we will evaluate “CA”, which has a RHS of (Canada). As there is only one

value on the RHS, we do not need to clean further since this verifies as a pure FD. Next
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we will evaluate (United States, Amirica, and USA). For synonyms, classes(United

States) ∩ classes(Amirica) ∩ classes(USA) must not be an empty set. As we find

however, classes(Amirica) returns an empty set. Any intersection with the empty set

is also the empty set. Therefore, the equivalence class is falsified. Here we dispatch

cleaning Algorithm 5.2. We begin counting class support. classes(United States)

returns one class from our ontology. We increment the count of it by one and move

on. classes(Amirica) returns nothing so we skip it and move on. classes(USA) also

returns one class, that class being the same as returned by classes(United States).

The count of this class is now two. As a result, that class is chosen as the popular

class and the canonical name “United States” is selected from that class. Next we

scan the equivalence class’ RHS for terms that do not have the popular class as a

class of theirs. In this case the only term is “Amirica”. This term is replaced with

“United States” and the tuple values becomes: (United States, United States, USA).

We will also cover another dirty equivalence class in the dependency F2 : [Symp-

tom, Diagnosis]
g7→1 [Medicine]. During verification we notice that the equivalence

class “nausea, migraine” has a RHS of (acetaminophen, morphine) which falsifies

the dependency given the ontology in Figure 1.2. We will now run through this as an

example of cleaning a generalization FD. We begin by collecting all ancestral paths for

the classes of the string terms. This gives us {paracetamol, analgesic} for the term

“acetaminophen” (note the terms in brackets are the canonical names of the classes

actually returned), and {morphine, opioid, analgesic} for the term “morphine”. We

next count each class from each path up to maximum length of 1 (that is the θ dis-

tance defined for this generalization FD). For “acetaminophen” this means the class

of paracetamol and analgesic get counted once. For “morphine” this means the classes

of morphine and opioid both get counted once. Notice we do not count analgesic for

“morphine” as it is not within the path length. Here the most popular class was

paracetamol as it was the first class to reach the count of 1. As such, the canonical
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name “paracetamol” is selected. Now we scan the tuples one at a time. First, “ac-

etaminophen” does not need to change as its LCA() distance to the class paracetamol

is 0 (being they are synonyms of the same drug). Next “morphine” is tested. Its

LCA() distance is infinite, therefore the term is replaced with “paracetamol” and the

algorithm finishes.

5.2.1 Dependency Ordering

We now extend our methodology to cases of overlapping dependencies. When a

relation is inconsistent over more than one constraint, and these constraints overlap,

our algorithms must choose an order for processing the constraints within the same

gating bucket. Similarly as in other work with data cleaning over traditional FDs [10],

we consider two criteria for ordering constraints. First, we consider the degree of

inconsistency of each dependency as a whole. An X value is inconsistent if it fails to

validate. The degree of inconsistency for X is the number of tuples in r that fail to

validate under the dependency F : X 7→ A.

Definition 5.2.1 The degree of inconsistency (icF ) of F over r is:

icF =
Σs∈ΠX(r)(verify(r,X,A))

|ΠXA(r)|

If the relation r is consistent icF = 0. As icF approaches 1, the relation becomes

more inconsistent w.r.t. F . The second criteria we consider are the potential conflicts

F shares with other inconsistent constraints F ′, defined based on the number of

attributes they have in common (|F ∩ F ′|).

Definition 5.2.2 The conflict score of an ontology FD F composed of attributes XA

from all attributes in the bucket Z is:

cfF =
ΣF ′∈Z

|F∩F ′|
max(|F |,|F ′|)

|Z|
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The conflict score cfF scales from 0 (no overlap) to 1 indicating the overlap of all

attributes among all dependencies in the gated bucket. Of course zero is impossible

due to gating applied from Section 5.1. Constraints with high cfF values have the

greatest potential for repair conflicts with other rules. Since both our evaluation

scores are normalized, we average the two values to get a combined score OF :

OF =
icF + cfF

2

We evaluate multiple constraints in decreasingOF order, since large values indicate

rules with the highest degree of inconsistency and the greatest potential of repair

conflicts with other constraints.

Example 5.2.2 Here we will discuss ordering dependencies that contain {Symptom,

Diagnosis, Medicine}. This would be F2 : [Symptom, Diagnosis]
g7→1 [Medicine] and

F3 : [Diagnosis]
c7→ [Symptom].

We first calculate icF for each. In F2, we have 4 equivalence classes: “joint

pain, osteoarthritis”, “nausea, migraine”, “tinnitus, migraine”, and “chest pain, hy-

pertension”. Of these, 1 is broken. This broken equivalence class contains 2 tuples.

Therefore icF2 = 2
7
≈ 0.285714. In F3, we have 3 equivalence classes: “osteoarthritis”,

“migraine”, and “hypertension”. None of which are dirty. Therefore icF3 = 0
7

= 0.

Next we must calculate cfF . First, |{Symptom, Diagnosis, Medicine}∩{Diagnosis,

Symptom}| = |{Diagnosis, Symptom}| = 2. Using this for F2, we calculate 2
max(|F2|,|F ′

2|)
.

There are 3 attributes in F2 which leaves 0 unused, the maximum of 3 and 0 is 3.

So the value becomes cfF2 = 2
3
≈ 0.666667. For F3 we do similarly, except there are

2 attributes in F2 which leaves 1 unused, the maximum of 2 and 1 is 2. Therefore

cfF2 = 2
2

= 1. This leads to us computing:

OF2 =
icF2 + cfF2

2
=

2
7

+ 2
3

2
≈ 0.4761905
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OF3 =
icF3 + cfF3

2
=

0
7

+ 2
2

2
= 0.5

Therefore we first clean F2 then we clean F3.

5.3 Ontology vs Data Cleaning

In dynamic environments, the needs of an organisation will change. This change over

time leads to ontologies also becoming dirty or outdated. As an example, imagine

a new drug is approved for use in patients with a certain disease. If the ontology

is not properly updated to reflect this, use of this new drug will be flagged as a

violation in a relation. If cleaning is to be trusted, identifying when the real world

has changed is crucial to making good data correction suggestions. We also noticed

in our research that ontologies themselves suffer from data quality issues. To address

both of these problems, we present Algorithm 5.5 in order to scan a dependency to

test if the ontology is missing likely valid data from the relation.

Algorithm 5.5 Compute Ontology Validity

Input:Relation r, set of attributes X, an attribute A, and damage deviation σ
Output:true if ontology is at fault, otherwise false

1: sMap[] = {0, . . . , 0}
2: for all s ∈ ΠX(r) do
3: for all t∈ ΠA(gs[X]) do
4: for all s ∈ t do
5: if |classes(s)| = 0 then
6: sMap[s] = sMap[s] + 1
7: end if
8: end for
9: end for
10: end for
11: if Σ{sMap[s]|sMap[s]>1}

|t| ≥ σ then
12: return true
13: else
14: return true
15: end if

Our algorithm searches values of the RHS attribute to test what string terms fail
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to validate as a result of not being in the ontology. In our algorithm, a string must

be seen at least twice in the relation to be counted. This search gathers support for

terms that, as a result of appearing often, should likely be included in the ontology.

This likelihood is controlled by the user supplied threshold value σ.

Example 5.3.1 Let us examine Table 5.1 again, but this time we will assume the

class containing “nausea” from the ontology in Figure 1.3 is missing. We scan F3 :

[Diagnosis]
c7→ [Symptom] to see if we have evidence of a dirty ontology. We begin

by grouping by equivalence classes of which this dependency has 3: “osteoarthritis”,

“migraine”, and “hypertension”. Next we count the number of classes for each string

term under the equivalency class. The RHS of “osteoarthritis” is (joint pain, joint

pain, joint pain). They each have more than 0 classes so nothing needs to be done.

Now we examine “migraine”. “migraine” has a RHS consisting of (nausea, nausea,

tinnitus). In this case, we count each term’s classes. |classes(nausea)| = 0 therefore

we increment the count on the term. Again, we find “nausea” and increment the

count. Finally, |classes(tinnitus)| = 1 and we are done. Now we test to see if this

equivalence class has ontology problems. We begin by discarding all counts of 1 from

the map. We have none so we move on. Next we calculate Σ{2}
|3| . 2

3
≥ 0.66 therefore

this equivalence class is likely broken because of the ontology (which it is). Finally

“hypertension” can be tested, but (chest pain) is in the ontology so we’re done.
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Chapter 6

Experiments

We present an experimental evaluation of our techniques. Our evaluation focuses

on three areas. In Section 6.2, we evaluate the performance of our data verification

algorithms. In Section 6.3, we evaluate the performance and precision of our cleaning

algorithms. We note the difference in the performance between concurrent and serial

cleaning obtained from our algorithms. Finally, in Section 6.4 we evaluate the per-

formance, scalability, and other influencing factors in our ontology versus data repair

algorithm.

6.1 Setup

Our experiments were run on an Intel Xeon CPU E5-2630 v3, 2.40GHz with 8GB

of memory. Each experiment was run three times (unless otherwise noted) and the

average time is reported. The algorithms were implemented in the Go program-

ming language. Our ontology is made partly from extracting the ontology directly

from the relation, and partly from a real world ontology [26]. Our dataset contains

1,000,000 tuples from the Linked Clinical Trials (LinkedCT.org) database [20]. The

LinkedCT.org project provides an open interface for international clinical trials data.

The XML version of this data was transformed into open linked data [30].
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6.2 Constraint Verification

For data verification, a manually cleaned version of the database was tested. When

testing, the algorithms were run 10 times and the average time is reported. Graph 6.1

shows the results of our experiments. Our technique shows a linear scale-up in the

number of tuples. For our chosen datasets, we found there was a large number of

smaller equivalence classes, which lead to the decreased verification time that in turn

dominated the overall running time.

1 2 3 4 5

·105

500

1,000

1,500

2,000

NumberofTuples

T
im
e(
m
s)

SynOFD1
SynOFD2
SynOFD3
GenOFD
ComOFD

Figure 6.1: Ontology FD Verification Complexity

6.3 Data Cleaning

When testing data cleaning, we started with a clean copy of the relation then wrote

a script to randomly introduce errors into the relation as a percentage of the total

number of tuples in the relation. These mutations were performed by either changing

a letter to simulate a mistyped string or by replacing the value with a term selected at

random from the ontology. The latter methodology attempts to simulate a user mak-

ing a wrong selection during input such as from a drop down menu. Both operations
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were given equal probability.
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Figure 6.2: Serial Ontology FD Cleaning
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Figure 6.3: Concurrent Ontology FD Cleaning Complexity

When evaluating the accuracy in Graph 6.4, 100 damaged tuples were randomly

selected and their values before and after cleaning are presented to a user. The user

provided their best judgment to determine if the values were analogous enough to be

considered a successful cleaning result. This was done because the canonical name

of a class and the most generalized form of a taxonomy are not always the best fit
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for a data repair. Direct equality comparison does not work because of the semantic

equivalence introduced by ontology FDs.

Graphs 6.2 and 6.3 compare the running scalability and time between serial and

concurrent execution modes. Both show exponential complexity in the number of

tuples. We note that concurrent execution reduces the overall runtime by more than

one order of magnitude for the worst case complexity (10% error rate over 1 million

tuples). We see runtime improvements in all cases. The disparity between 1% and

10% error rates appears to scale in the number of equivalence classes broken.
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Figure 6.4: Concurrent Ontology FD Cleaning Precession

We move to test the precision of our cleaning algorithms in Graph 6.4. We note

that precision decays as the percentage of errors in the dataset increases. It can be

seen that generalizations performed worse that synonyms or components. This was

caused by most terms being replaced with their most generalized form. Additionally,

100% accuracy is achieved with component FDs at 1% error rates. Although com-

ponent repairs did suggest components that were not the same as the original, the

components themselves given the equivalence class they were under still made the

repairs accurate enough to be correct.
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6.4 Ontology Versus Data Cleaning

Testing ontology versus data cleaning ran similar to data cleaning. The same random

mutation script was used to introduce errors into tuples. We then added a subrou-

tine that would randomly drop 10% percent of the classes from our ontology. This

introduced a number of errors that would break many equivalence classes. During

mutation, we noted which equivalence classes’ RHS contained a string term from a

deleted class. During testing, if the algorithm identified an equivalence class was as

broken because of the ontology and in fact one of the string term’s classes was missing,

we awarded it a victory.
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Figure 6.5: Ontology Versus Relation Precision by Damage

In Graph 6.5, we chart the damage to the relation against the accuracy achieved.

As expected, the accuracy drops as the dataset becomes less reliable. This makes

sense as ontology damage usually results in few to no terms on the RHS being found

in any class within the ontology. With more damage, it is less likely that many terms

will agree amongst themselves, yet not appear in the ontology.

Graphs 6.6 and 6.7 chart the scalability of our algorithm over the number of

input tuples and ontology damage respectively. Both see linear growth despite our
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algorithm’s worst case complexity being quadratic. This is because the scalability

is actually determined by the number of classes from terms on the RHS of each

equivalence class, summed over all equivalence classes. Therefore we see linear growth

when we add more equivalence classes, and when the number of unique terms grows

as is the case when they contain erroneous data.

Initially we ran the algorithm with a threshold of 66%. We experimented with

this value and the results are charted in Graph 6.8. We see that our choice was fairly

good, however, we notice our algorithm could have performed better given a higher

accuracy such as 70%. We also notice that the accuracy is most harmful when set

too low as our accuracy is only 5.38% better than a threshold of 0.9.
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Chapter 7

Related Work

Our work finds similarities to dependency discovery in databases and to defining

integrity constraints over ontologies and graphs. We first discuss the relationship

between ontology FDs and two types of dependencies used in data cleaning (FDs,

and metric FDs), and then discuss related work.

Synonym FDs subsume FDs, since we can create a database where all values

have a single string representation, i.e., for all classes C, |synonyms(C)| = 1. If we

set θ = 0, then an inheritance FD becomes a synonym FD, thus, inheritance FDs

subsume traditional FDs. Metric FDs are defined when two tuples agree on X, then

the Y values must have similar values w.r.t. some metric distance [27,35]. Ontology

FDs, however, are defined over the values in equivalence classes in ΠXY, and there

must exist a common class across these values.

id X Y Classes for Y

t1 b c {C,D}
t2 b d {D,E,F}
t3 b e {C,E}

Table 7.1: Defining Ontology FDs.

Consider Table 7.1, where synonym FD X
s7→ Y is falsified. For each Y value, the
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defined classes are given in the last column. Although all pairs of t[Y] values share

a common class (i.e., {c, d} : D, {c, e} : C, {d, e} : E), the intersection of the classes

(for each ΠX value) is empty. Furthermore, ontological similarity is not a metric

distance since it does not satisfy the identity of indiscernibles (e.g., for synonyms).

Thus, ontology FDs are not a subclass of metric FDs (and vice versa).

Dependency discovery involves mining for all dependencies that hold over a data

instance. This includes discovery of functional dependencies (FDs) [22,29,32,33,44],

conditional functional dependencies (CFDs) [9, 16, 19], inclusion dependencies [34],

order dependencies [38], matching dependencies [37], and denial constraints [11]. In

previous FD discovery algorithms, both TANE [22] and DepMiner [29] search the

attribute lattice in a level-wise manner for a minimal FD cover. In CFD discovery

algorithms, a similar lattice traversal is used to identify a subset of tuples that func-

tionally hold over a relational instance [9, 16]. In our work, we generalize the lattice

based level-wise search strategy for discovering synonym and inheritance FDs.

Previous work have extended classical FDs to consider attribute domains that con-

tain a partial order, and to support time-related dependencies in temporal databases

[23,41–43]. Wijsen et al., propose Roll-Up Dependencys (RUDs) that generalize FDs

for attribute domains containing concept hierarchies that are commonly found in data

mining and Online Analytical Processing (OLAP) applications [43]. For example, a

[Time] attribute contains values that can be organized into a partial order, mea-

sured in days, weeks, months, etc. RUDs capture roll-up semantics from one or more

attributes that have been aggregated at the finer levels. The set of possible general-

izations for an attribute set in a candidate RUD is modelled as a lattice. Similar to

our approach, the RUD discovery algorithm traverses the lattice in a levelwise top-

down manner. However, our inheritance FDs, in particular, capture a containment

semantics (similar to the is-a semantics) that is not modelled by RUDs.

Similar to traditional FDs, Jensen et al., propose Temporal Functional Dependen-
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cys (TFDs) that hold over a snapshot of a temporal database, called a timeslice [23].

Extensions of TFDs include constraining tuples across multiple timeslices [41], and

generalizing the time model to include objects and classes, whereby an attribute value

is no longer necessarily atomic, but may refer to an object of another class [42]. This

object referencing implicitly provides referential integrity, but does not consider the

synonym nor inheritance relationships we investigate in our work. We focus on identi-

fying synonym and inheritance dependencies containing atomic data types at a given

timeslice. In the future, it will be interesting to consider how our dependencies can

be extended to include object classes, and their variation over time.

Ontologies are used to model concepts, entities, and relationships for a given

domain. Existing techniques have proposed FDs over RUD triples based on the

co-occurrence of values. However, the defined FDs do not consider structural require-

ments to specify which entities should carry the values [2, 21]. Motif et al., define

integrity constraints using the Web Ontology Language (OWL). OWL ontologies are

often incomplete, whereas many databases in practice are complete [31]. They pro-

pose an extension of OWL with integrity constraints to validate completeness in the

ontology by defining inclusion dependencies and domain constraints to check for miss-

ing values and valid domain values within an ontology. The proposed constraints do

not model functional dependencies (as proposed in our work) since the focus is data

completeness. Furthermore, these existing techniques do not consider the notion of

senses to distinguish similar terms under an interpretation. For example, the term

“jaguar” is synonymous with “Mercedes” and “tiger”. However, an application would

have an interpretation (sense) for “jaguar” either as vehicle or animal.

Fan et al., define keys for graphs based on patterns that specify topological con-

straints and value bindings to perform entity matching [15]. Keys contain variables

that are bound to constant values satisfying node and value equality. The authors

focus on the definition of keys (not their discovery), and present three sub-graph
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entity matching algorithms that utilize keys. In subsequent work, Fan et al., pro-

pose functional dependencies for Graph Functional Dependencys (GFDs) since FDs

cannot be expressed via keys [17]. GFDs contain topological constraints to identify

the entities participating in the dependency and value bindings (similar to condi-

tional FDs) that specify dependencies among the attribute values. GFDs model is-a

relationships (e.g., y is-a x) by assuming this inheritance relationship is known in

advance, and then enforce the requirement that for any property A of x must also be

true for y, i.e., x.A = y.A. In our work, we focus on the discovery of is-a relationships

where the antecedent attribute values determine inheritance relationships between

consequent attribute values. For example, in Table 1.1, tuples t5 and t6 indicate that

“nausea” and “migraine” symptoms can be treated with medication “tylenol”, which

is synonymous with “acetaminophen”. While our work is similar in spirit, we iden-

tify attribute relationships that go beyond equality (i.e., synonyms and inheritance).

In contrast to keys, our discovered dependencies are value based (no variables are

present). In our work, we consider the notion of senses that states how a dependency

should be interpreted, since multiple interpretations are possible for a given ontology;

these interpretations are not considered in existing techniques. Lastly, we study the

axiomatization and inference of synonym and inheritance relationships in ontology

FDs, which were not studied in previous work.

Work by Fan et al. [10] investigates cost minimal data repairs to traditional FDs

and a set of constraints simultaneously. Beskales et al. [7] investigates cardinality-

set-minimal data repairs, that balance the requirements of minimal data changes

(cardinality) and necessary changes (set minimality). While our work is similar in

spirit, our model was developed to permit notable performance improvements as a

result of gating and equivalence class co-processing. We also apply our work to the

domain of ontology FDs, a class of dependencies not considered by these works.

Bertossi et al. lay a complexity analysis from which we derived our analysis [6].
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Chapter 8

Conclusions

In this work we proposed a new class of dependencies, Ontology Functional Depen-

dencies that captures domain relationships found in ontologies. We focused on the

synonym, inheritance, and component relationships between attribute values. We

proposed a set of data verification, discovery, and clearning algorithms that work

together to offer utility for these dependencies. We produced a set of axioms and an

inference system, useful in reasoning about and proving often non-intuitive properties

of our dependencies.

Data verification allows us to test a relation given a set of ontology FD for confor-

mity. We showed that our data verification algorithms accurately discerns validity, for

synonyms and components in worst case quadratic time, and generalization in worst

case cubic time. Our experiments show real world scale is often linear to super-linear

depending on variables like average equivalence class size and taxonomy generalization

depth.

Dependency discovery allows us to search a relation for ontology FD that hold

over it. We introduce the notion of approximate ontology FDs to allow us to identify

when ontology FDs might hold despite minor inconsistencies in the relation. We show

that our discovery approach achieves linear-time inference in the number of tuples
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and exponential time in the number of attributes. It also ensures that the discovered

set of ontology FDs remains minimal.

Data cleaning allows us to take a relation and set of constraints and modify the

relation to conform to the constraints. We focus on RHS repairs to overcome the loss

of transitivity ontology FDs have compared to traditional FDs. Our approach seeks

cost minimal changes to the relation to produce useful results. We show our cleaning

algorithm scale quadratically and verify this experimentally.

Finally, we showed that ontology FDs are a useful data quality rule to capture

domain relationships and can significantly reduce the number of false positive errors

in data cleaning solutions that rely on traditional FDs.

8.1 Future Work

Naturally, there is more work to be done. We intend to consider extensions to other

relationships such as type-of and the use of ontologies to discover other types of data

quality rules such as conditional FDs and denial constraints. Our work will attempt

to adapt the framework proposed by Szlichta, et al. [40] utilizing machine learning to

consider data versus constraint versus ontology repairs for ontology FDs. We intend

to study extensions to mutation algorithms used in our experiments to better simulate

real world data integrity problems.

We intend to study the application of Ontology FDs to aid query optimization in

a similar fashion as traditional FDs, for instance, to compute group-by statement on

the fly similar to other work [36].
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