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Abstract

The brain’s natural reaction to viewing and processing faces in an aware manner

is an area of research that has been explored for previously, however the brain’s

unaware reactions to these stimuli prove to be fairly less explored. An experiment

was performed where recruited participants viewed images of individuals’ faces while

their brains’ electroencephalography signals were recorded using a consumer-grade

BCI device. The chosen images were assigned one of three classes of recognition,

corresponding with what we expect the images to be recognized as: No Recognition,

Possible Unaware Recognition, and Possible Aware Recognition. Using modern fil-

tering and analysis techniques, it was found that, in effect, using consumer-grade

brain-computer interface devices, the three previously-defined classes of recognition

are easily identified, both with the human eye and machine learning tools, and previ-

ous efforts to detect unaware/subconscious facial recognition have been improved on

using a variety of methods for data manipulation.
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Chapter 1

Introduction

1.1 Overview

This thesis describes the use of consumer-grade Brain-Computer Interface (BCI) de-

vices in detecting unaware facial recognition. In this chapter, some of the back-

ground of facial recognitions and the technologies used throughout this thesis, along

with some of the populations that this work is more specifically targeting to give the

reader a better understanding of the direction and positioning of this work is covered.

This section includes some context-building parts such as the motivations, objectives

and questions to answer, and some of the contributions that this work gives to the

field of human-computer interaction and computer science.

1.2 Background

Facial recognition is a fairly well-studied field and a number of experiments have

taken place to further our understanding of how the brain recognizes faces. While

the conscious or aware side of facial recognition has seen much research, understanding
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the brain’s reaction to faces at an unaware level is a topic that has room to grow and

be further explored.

One of the ways that has become a useful method for studying how the brain reacts

to seeing faces is through the use of Electroencephelography (EEG). EEG consists of

using electrodes placed on the scalp to measure the electrical output from neurons

firing within the brain [56]. Modern advancements in computer devices and tech-

nologies have linked the modern computer with brain analysis methods (e.g. EEG)

to create what is now called a BCI. BCIs are an interface, quite often in the form

of a headset or cap of sensors, that reads input signals from the brain (in the case

here, EEG signals) and interfaces with a computer for collection and recording [56].

In recent years, BCIs have become more popular due to the low costs of recording

equipment and computers (whether mobile or desktop-based), and have been made

accessible at a consumer-grade level, meaning the average consumer could purchase

one of these devices at an almost off-the-shelf interaction. These consumer-grade

devices generally feature applications more useful to consumers such as games or pro-

ductivity tools. An example of this is the Emotiv Epoc headset [16], which has a

number of applications available to it on Emotiv’s web store such as mind-controlled

Tetris or drone flying [15] [19]. Another cheaper and more consumer-friendly BCI

headset is the Interaxon MUSE, which is primarily targeted as a meditation assistant

and features a mobile companion application for its use [28]. Both headsets mentioned

here have comprehensive developer tools that allow for external developers to build

new applications and make use of the data being streamed from the headset [18] [27].

This additional functionality above the pure consumer-grade applications available

to them allow for researchers and application developers to access the raw data and

make use of these devices for a variety of applications that may not be originally in-

tended by the manufacturers. In this thesis, the application of these consumer-grade
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BCI devices in detecting unaware facial recognitions is focused on.

Previous works (see Chapter 2) have undertaken research based on facial recogni-

tion in subjects who have unhealthy or damaged brains which are unable to perform

the task of facial recognition, and generally focused on more of a medical side of the

uses for this technology. The work presented in this thesis focuses on the healthy

brain’s ability to recognize faces at an unaware level. Focusing on this large popula-

tion may provide results than can be viewed in a more general light, providing a far

greater possibility for applications in the future. For example, an envisioned applica-

tion of unaware facial recognition may lay in law enforcement fields where witnesses

of crimes can assist law enforcement agencies in identifying faces of criminals, even if

the face was seen only for a brief period of time. Other potential applications may

exist with the general public’s utilization in mind, thus giving a far broader future

impact.

1.3 Motivation

Previous research using Brain-Computer Interface devices quite often makes use of

more advanced devices that utilize upwards of 100 sensors and require sophisticated

wearable caps and advanced recording interfaces. While this works well for lab,

research, or medical-grade users who can afford more expensive and intricate devices,

those who do not have the budget or means to purchase and make use of these devices

are left at a disadvantage. This is one of the reasons why this research is focused on

consumer-grade devices. They are cheaper and generally more accessible for end-

users to interact with. In the past, the more expensive headsets have been used in

facial recognition research, but utilizing consumer-grade devices would be of great

value to organizations or individuals looking to use applications or conduct research
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of facial recognitions on a tighter budget, or in a more practical application-based

environment (e.g. out in “the field”, an office building requiring portability, etc.).

1.4 Objectives

This research was carried out to improve on existing efforts of unaware facial recog-

nition in healthy brains using consumer-grade BCI devices. The reason this research

was done using consumer-grade devices is that an increasing number of BCI devices

have been seen coming onto the market in the past few years and consumers are

starting to get their hands on these devices in larger numbers. With the increasing

ubiquity of the headsets comes a larger segment of the population that has the means

to make use of brain-based applications. This research area is two-fold: on the one

side, efforts studying consumer-grade devices can develop new techniques and meth-

ods that may directly benefit consumers in the future, but on the other side, finding

that we can utilize consumer-grade devices for more advanced applications such as

facial recognition can also be of benefit to users in a variety of fields such as medical

or law enforcement.

Machine learning is a rapidly growing field, and with advances in computing tech-

nologies, new methods for analyzing data have become available to use for extremely

cheap. The costs associated with machine learning are generally just the cost of the

computer hardware that machine learning software is run on, however more expen-

sive and powerful computers are able to vastly out-perform generic non-purpose-built

computers. Fantastic software libraries have become free or open-source [40] [1],

allowing for a reduced barrier of entry. The ability to classify unaware facial recog-

nitions using the human eye has been shown to be possible using specific techniques

and at a small scale (see Section 2.5.2), but doing this for applications of unaware
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facial recognition or on a larger scale will be very time consuming and potentially

tedious. Utilizing machine learning to classify these facial recognitions for us will

save us time, effort, and costs, and allow for a more rapid introduction of unaware

facial recognition processing techniques into applications that will make use of them.

This thesis looks to determine if the human brain can recognize a human face

at an unaware level, and if the recognition can be recorded using consumer-grade

brain-computer interface devices. To this end, following question is answered:

Can the combination of consumer-grade BCI headsets and modern out-

of-the-box machine learning tools be used to accurately detect and clas-

sify unaware facial recognitions automatically, and with greater accu-

racy than previous work?

(1)

1.5 Hypothesis

The goal of the experiment outlined in this thesis (Chapter 3) was to determine if

new methods for dataset manipulation can be used to accurately detect and classify

unaware facial recognition in the human brain’s EEG signals, and determine, using

modern out-of-the-box machine learning tools, if previous efforts can be improved

upon.

My hypotheses for the results of this experiment are:

1. Using this experimental design, the Emotiv Epoc BCI device will be able to

accurately capture EEG data from the brain in such a way that each recognition

class is recognizable and unique.

2. Machine learning tools, however out-of-the-box, will provide adequate accura-

cies to be able to classify each recognition class. The naivety of using out-of-
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the-box classifiers may produce adequate results, but further modification and

tuning may provide greater accuracies.

3. Of the three methods for dataset manipulation (Chapter 4), the combined

datasets (part of the contribution of this work) will outperform previous ef-

forts.

1.6 Contributions

With the work done in this thesis, contributions to the general field of Human-

Computer Interaction (HCI), the field of Computer Science, and the more niche field

of facial recognition, insights mostly on unaware facial recognition are provided, how-

ever this work could be easily extended to cover aware facial recognitions as well.

This is done through the following specific contributions:

• Determined three methods for analyzing and classifying unaware facial recog-

nitions using EEG data, and conducting comparisons between methods and

modifications to provide the greatest classification accuracies of unaware facial

recognitions.

• Improved on previous efforts in classifying unaware facial recognition.

• Applying consumer-grade equipment to the field of unaware facial recognition

for a more ubiquitous use in further cost-effective research projects and future

consumer-grade facial recognition applications.
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1.7 Structure

The goal of this thesis is to address the question (Question 1) asked in Section 1.4

and determine if:

The utilization and combination of consumer-grade BCI devices, modern

machine learning techniques, and new methods for dataset manipulation

provide accurate detection and classification of unaware facial recogni-

tions, and can improve on previous efforts to detect unaware facial recog-

nition.

This thesis outlines the work done in background literature of related fields and

topics, experiment design, experiment results, and discussion regarding the goals set

in this chapter. Through this, the documentation of the development and execution

of an experiment which allows for the accurate analysis of unaware facial recogni-

tions are done, and three methods for detecting and classifying these unaware facial

recognitions with the highest accuracies are compared under the guide of the research

objectives.

This thesis will be structured in the following way:

• Chapter 2 - Related Work: A brief look at some previous work that influenced

the work presented here in this thesis including topics such as Event-Related

Potentials, aware and Unaware facial recognitions, EEG data processing tech-

niques and methods, and other miscellaneous topics. Included in this section is

a brief overview of my previous works and how they contributed to the creation

of this thesis.

• Chapter 3 - Experiments: An in-depth discussion of the experiment that was

performed leading to the results presented in this thesis. This section contains
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numerous sub-sections where the experiment is described in detail, and the

methods for pre-processing and processing the gathered participant data are

explained. My hypotheses regarding the outcomes of the experiment are offered

here.

• Chapter 4 - Analysis & Results: This chapter covers an in-depth look into the

methods of analysis that were used to investigate the outcomes of the experiment

(as outlined in Chapter 3). It explores the three methods of data manipulation

used in classifying facial recognition, along with the benefits and drawbacks of

the proposed methods. Each method discussed shows the results of classification

from a variety of classifiers and manipulations to these classifiers to produce the

best results. Among these manipulations are a look into boosting and bagging

ensemble methods that combine classifiers to produce theoretically better results

than the classifiers on their own, and a comparison between the two is done to

highlight the benefits of each method when compared to the base-line classifiers

explained in the analysis. Along with these classifiers and methods being used,

a brief look into applying neural networks to unaware facial recognition is done,

with a comparison of the classification results.

• Chapter 5 - Discussion: This chapter covers a discussion regarding the results

of the experiment, consisting of a brief look into each classifier and their impli-

cations for the results of each dataset used in classification, a comparison of the

three datasets consisting of each set’s benefits and drawbacks in the context of

improving classification accuracy of unaware facial recognition, and a look into

some areas of note that may have influenced the results of the experiment. This

section concludes with a look at the implications this work has on the field of

HCI, BCI, and using machine learning to find unaware facial recognition that

8



takes place within the human brain.

• Chapter 6 - Conclusions and Future Work: This chapter summarizes the work

presented in this thesis. An overview of this work in the context of unaware

facial recognition is covered and a summarized explanation of the experiment

conducted and results found in this thesis is explained. This chapter concluded

with a discussion of some areas of potential future work.
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Chapter 2

Related Work

2.1 Outline

In the following sections, previous works in related fields that influenced the work

described in this thesis are provided and analyzed, as well as some insight into the

relationship to this work. This chapter begins with a look into unaware facial recog-

nition in both healthy and unhealthy brains, including the most related work which

informed this experiment design. This moves into a discussion about EEG and the

signals recorded during this experiment, and how previous works have handled EEG

data. Next, a look at some related works that have implications in this work, but

do not fit into the previously-mentioned categories, including topics such as implicit

learning and Event-Related Potential (ERP) analysis. Finally, an overview of my pre-

vious works, including how they have influenced this work and some lessons learned

which helped to improve the design of this experiment.
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2.2 Unaware Facial Recognitions

To my knowledge, while most work done regarding facial recognition is on aware

recognitions, there is little work done on analyzing unaware facial recognitions. Work

in this field use the term “subconscious”, however “unaware” was chosen to describe

facial recognitions that are taking place without conscious knowledge of the brain.

This was done to help differentiate the state of a person where “subconscious” could

be defined as either “to be unaware of”, or in the more physical sense, “to be fully

unconscious” as-in “passed out” or “asleep”.

Fairly recently, Martin et al. [63] ran a study to determine if unaware facial recog-

nitions were able to be detected after participants viewed images of famous individuals

and had their EEG data recorded. The experiment tasked participants with viewing

faces of these famous individuals under the assumption that approximately 80% of

faces would not be recognized, and the other 20% would be fully recognized. Given

the ubiquitous nature of famous people in the media, another assumption was made

assuming that a number of faces in the 80% set would have only been seen in pass-

ing, thus allowing for an unaware recognition to take place from this subset of faces.

Unlike the work presented here, Martin et al. divided the recorded EEG data into

separate epochs (nine total: 50-90ms, 130-200ms, 190-600ms, 200-300ms, 200-350ms,

250-500ms, 300-500ms, 500-750ms, and 0-999ms) and trained a Support Vector Ma-

chine (SVM) with each epoch’s data separately. An average classification accuracy

for unaware facial recognitions across all epochs of 64.89% was achieved with the

highest accuracy of 67.16% being found in the 0-999ms epoch, which represented the

entire time that an image was shown to the participant. This finding gave the sug-

gestion that a one-second viewing time for images would be useful for analysis, so

the experiment here was designed with one-second image viewing windows. This was
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an interesting finding as it showed that greater unaware facial recognition accuracies

can be achieved by training and testing the full set of data for an individual image

rather than dividing the image up into a number of previously-defined epochs. It is

this knowledge that helped inform the decision to consider the data collected in this

experiment as a whole rather than dividing it like Martin did. Another area of note

in Martin et al.’s work that helped inform this experiment’s design was the choice of

images presented to participants in the experiment. In their experiment, participants

were shown images of celebrities and the assumption is that they already recognized

roughly 20% of the faces. In this work’s experiment, it was chosen to use completely

new (assumed) faces so that participants would have no recognition to any images

shown to them. As described in later chapters (Chapter 3), this experiment was split

into two days so that the first day could be used to train participants rather than

relying on an assumption that certain faces will be recognized. This work is possibly

the most influential to the design of this experiment as it follows similar design and

goals, but differing in overall design along with a safer method with less assumptions

going into the experiment.

2.3 EEG and EEG Data Processing

In the past, many studies have been completed using human EEG data as the study

topic and to further understand the brain’s function and potentially reasons for said

functions. This section highlights prior works that use interesting EEG data process-

ing techniques that helped inform the research done in this thesis.

When considering EEG data for processing and classification, there are many di-

rections to go with regards to post-processing, data manipulation for classification,

and classification methods. Work done such as Shashibala and Gawali’s [56] pro-
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vide a great overview of existing technologies and techniques including EEG and BCI

background information, interface styles and devices, and various classification meth-

ods and algorithms that could be utilized in classifying EEG data. A couple of the

methods discussed in their work include SVM classifiers and neural networks, which

were chosen to be included in this thesis for the analysis of participant EEG data

(Section 4). Along with the overview of technologies and techniques are a discussion

about BCI applications and what sorts of ways you can implement these technologies.

Almost all of the applications discussed in their work are about assistive technologies,

which would act generally as an assistant for any activity such as prosthetic control,

computer text input via thoughts rather than physical button presses, and assisting

drivers in detecting their alertness levels, providing a safer driving environment for

both the driver of the car and others on the road [56]. Many applications for BCIs

are assistive in nature and tends to be a draw for many new technologies. Detecting

unaware facial recognitions, or as an extension to this work, detecting fully aware

facial recognitions could, as Shashibala and Gawali discuss, act as an assistive device

for a variety of applications and fields such as law enforcement or health-care. Not

only would this be a useful application, but the increased usage of BCI technologies

helps to promote the ubiquity of these devices for assisting people, thus promoting

further research into the field.

A more modern approach to machine learning is in the utilization of neural net-

works. Neural networks were first conceptualized in very primitive forms back in the

1800s, but did not begin to take shape in the form of unsupervised and supervised

learning until around the 1940s [46]. Modern advances in computer hardware have

allowed for far more complex neural networks to be constructed and used, making

neural networks a common choice for machine learning. They make use of a simu-

lated design of the way a brain would work by constructing “neurons” which perform
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calculations based on data they receive. Depending on the design and model, a neural

network could have many layers of these neurons, consisting of potentially hundreds

of neurons at each layer, with any given layer passing information through weighted

connections to the next layer [46]. After a set of data is passed through the network

and all nodes at each layer have made passed their information to the subsequent

layers, some sort of decision is made at an output layer. In the case of classification

tasks, the class label may be output from an input data sample with an unknown

label. Anderson and Sijercic [2] used neural networks instead of more traditional

classification algorithms to try to classify five different cognitive tasks performed by

participants. They conducted an experiment where, over their total participant count

of four, two participants averaged around 70% accuracy for mental task classification

while the other two participants averaged around 33% and 45%. This suggests that,

while some participants may provide strong classification, there does not seem to be a

one-size-fits-all design in this work. Keeping this in mind, this thesis makes brief use

of a neural network (Section 4.9) with a structure used by Subasi and Ercelebi [57],

but results of the neural network are not heavily relied upon as it is not the main

focus of the work, and, given the unstable results of Anderson and Sijercic, results

are not expected to be exceptionally high.

In the late 80s, Keirn and Aunon [30] ran a study to determine if they can, as

they say, “establish an alternative mode of communication between man and his

surroundings” using EEG. As a precursor to many more modern studies such as Lee

and Tan’s work [31] (below), this study helped to show that classification of EEG data

based on identification of mental tasks is possible. Participants in the experiment were

given four tasks to complete, including tasks like geometric figure rotation, letter

composition (postal letter–not an alphabetic character), complex problem solving,

and visual imagination, and had their EEG signals recorded from six sensors: O1,
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O2, P3, P4, C3, and C4 (according to the 10-20 system). For feature selection,

recorded data was split into four unique frequency bands consisting of delta (0-3Hz),

theta (4-7Hz), alpha (8-13Hz), and Beta (14-20Hz) and each power value of each

sensor across these four frequency bands were used as features, similar to how in this

thesis the voltage values are used as features. Along with these values, an asymmetry

ratio (defined by Ehrlichman and Wiener [13] as (R−L)/(R+L), with “R” and “L”

being the area under the spectral density curve for right and left sides of the brain,

respectively) was computed to compare the difference between the sensors on either

side of participants’ heads (left vs. right sides) and these values were included as

features along with the power values. These features combined to form a total of 60

features for each sample in classification. This data was validated using the leave-

one-out method where a classifier is trained on N − 1 samples, and tested on the

single remaining sample, and rotated through N number of times until each sample

has been individually tested (Chapter 5.3 [23]). As a result of these pre-processing

and validation strategies, they achieves classification accuracies ranging from 84.7%

to 92% for the various tasks that were assigned. In the data processing and analysis

done for this thesis’ experiment, data was filtered using a bandpass filter from 0.5-

12Hz, which encompasses many of the well-known frequency bands that Keirn and

Aunon used, but does not make use of each frequency band as a separate entity for

classification purposes. While the power values were used as features along with other

identifiers (mostly in the frequency-based analysis area), this work focuses specifically

on EEG voltage as features.

A study done by Lee and Tan [31] showed the use of machine learning tools in

classifying tasks performed by participants, much like Keirn and Aunon’s work [30].

These participants were assigned tasks in two experiments. In the first experiment:

“rest” tasks where participants were not actively doing anything, “math” tasks where
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participants were asked to solve basic math problems in their head, and “rotation”

tasks where they were asked to rotate images in their mind. In the second experiment,

the “rest” activity remained, a “solo” task where participants moved a character

around the world in a game’s world without engaging in any activities such as fighting

or solving problems, and a “play” task where participants were instructed to play the

game against an expert player. Recorded data was split into a number of slightly

overlapping windows (two-second windows of data, one-second overlap between each).

These windows of data were later used for training in a Bayesian Network classifier.

Compared to the experiment presented in this work, Lee and Tan’s feature selection

and engineering was for more related to the features of the recorded signal rather

than analysis of the produced voltage. Among the features that were used in their

work, a few stood out as more useful for analysis of the voltage readings that were

explored in this experiment and are highlighted in the Experiments section. Using the

Bayesian Network classifier, when classifying all three tasks (within each experiment–

rest, math, rotate in the first, rest, solo, and play in the second), an average of 68.3%

was attained for classification accuracy in the first experiment, which performed far

greater than the random-guess accuracy of 33%. When input data was reduced

to a binary classification sets of “math vs. rotate”, “rest vs. math”, and “rest

vs. rotate”, far greater accuracies were achieved of 83.8%, 86.5%, and 82.9% across

all eight subjects for each set, respectively. For the second experiment, an average

classification accuracy of 92.4% was achieved for the three-task set, while binary

classifications achieved higher average accuracies of 97.6%. The EEG equipment used

in both of these experiments were not consumer-grade headsets like the one used in

this work, but instead used a reduced number of electrodes placed at the P3 and P4

locations (according to the 10-20 system, much like [13] and [30]). Lee and Tan’s

work is valuable in this field as it shows how the brain’s EEG output can very clearly
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be used to differentiate between tasks that a participant is undergoing. In this work,

participants view images of faces, which is obviously different than playing games or

imagination tasks, but the techniques they used to detect this can be leveraged for

facial recognition. The core mechanic used to determine the difference between the

tasks is a Bayesian Network classifier that attempts to classify the individual tasks,

whatever they may be. Using machine learning and modern classification techniques,

a similar method can be used in detecting facial recognitions when paired up with the

knowledge that the brain will produce varying EEG signals based on what it is doing

at the time of recording. Another interesting technique used in Lee and Tan’s work

that was not used in this work is the idea of using overlapping windows for classifier

training and testing. In this work, the entire one-second of data that an image was

displayed on the screen for is used in training and classification whereas in Lee and

Tan’s work, an image is divided nine times with an overlap of 50% of each window

(each window being two seconds with one second of that overlapping into the previous

and next window). This was done to keep all data together as a single signal and

guarantee that each section of the signal (un-windowed) would provide classification

accuracy–for better or worse–to the type of recognition.

2.4 Miscellaneous

This section serves as a home for related works that do not fall into any of the above

categories, but still influenced the work presented here in this thesis.

Schacter defines implicit memory as “... information that was encoded during a

particular episode is subsequently expressed without conscious or deliberate recollec-

tion” [45]. One of the main pillars of the experimental design for this thesis is the

assumption that participants are implicitly learning the faces shown to them in the
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first phase. Based on the results of the experiment, it can be seen that participant

are in-fact learning the faces and are remembering them in an unaware manner (as

is shown by visual data graphs and classification accuracy). Tseng and Li [62] per-

formed an experiment where participants searched a screen for a target image and

found that pre-search queuing elements that participants were unaware of assisted

participants in the search, thus providing evidence that implicit learning was taking

place. Chun and Jiang [10] found, after conducting a searching experiment similar

to Tseng and Li’s [62], that participants’ attention to specific areas of a scene or

image can be guided by previously-learned contexts in implicit memory. Goujon et

al. [24] ran three experiments on the subject of contextual queuing and found that

knowledge and learning of patterns happens first at an unconscious level. These three

prior works help identify how early repetition and training can produce an implicit

knowledge of a subject before it becomes explicit knowledge (“conscious recollection

of recently presented information” [45]). As defined in Chapter 3, participants are

shown a number of faces multiple times to allow for implicit learning to take place

and, hopefully, allow the brain to subconsciously remember the faces for the second

and third phases of the experiment.

An area that was considered for additional study was the brain’s reactions to

more specific stimuli rather than just an overall analysis of voltage over time. Event-

Related Potentials (ERPs) are a period of time after a stimuli that one expects to see

some sort of elicited potential whether it be an activity in the brain’s EEG signal,

or lack thereof [25]. A number of studies have made use of ERP analyses for various

purposes. While the results of this thesis do not make use of ERP-based analysis

directly, prior works using a more ERP-based analysis featuring epoch windowing

have influenced design and analysis of this thesis’ experiment, and are discussed in

this chapter where they apply.

18



An experiment by Shalgi and Deouell [55] studied human reaction to both con-

scious and unconscious errors forced by having participants bet money on the outcome

of questions that they had to attempt to answer. They define an Error-Related Neg-

ativity index (ERN) which acts as a value for error processing within the brain and

was based on how much money a participant wagered on a question. After analyzing

participant EEGs, they found that ERNs were related to how aware a participant was

of an error being made and that the ERN’s elicited signal had a higher amplitude

if their answer was more confident. While not quite focused on recognition, Shalgi

and Deouell defined an ERP which was found to be related to both conscious and

subconscious brain activity, and shows that the ERP will be elicited more obviously

for errors that the brain is aware of, whereas the ERP will appear to be the same

as a correct response for an unaware error. This shows that the brain is capable of

processing information at an unaware level. While this finding has to do with error

processing within the brain, it helped inspire the idea that other stimuli could also

be processed subconsciously (e.g. faces, as in this work, or other stimuli, possibly

leading to other avenues of future work).

An interesting application for facial recognition is in individuals who suffer from

a condition known as Prosopagnosia, which impacts the brain’s ability to identify

faces [6]. Since the inability is due to a medical condition, I would not describe

any reaction to a face as an “unaware” facial recognition, however authors such as

Bobes et al. [6] refer to them as “covert” recognition. Bobes et al. [6] performed a

series of experiments with a patient suffering from prosopagnosia indicating that a

variety of facial recognition processes (e.g. P300 and N710 ERPs) still functioned at

near-normal levels despite the fact that a facial recognition test resulted in random-

guess levels of accuracy (guessing familiar face vs. non-familiar face). They find that

the patient they worked with had their early facial recognition processing functions
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still performing well and covert recognitions were quick. In contrast, Németh et

al. [36] performed a similar experiment and suggested that prosopagnosia and the

inability to perform facial recognition is caused by a missing early encoding of facial

structure. Eimer et al. [14] suggest that covert facial recognition may exist within

prosopagnosia patients, but they may be missing the link between visual memory

and later stages of facial processing. Some of the works here suggest that some, but

not all, prosopagnosia patients may still elicit core facial recognition processes, but

without the ability to finish the entire process. Since facial recognition processes still

work at a covert level for many prosopagnosia patients, utilizing facial recognition

techniques using BCI devices may be possible, however the study of unhealthy brains

and reactions are not within the scope of this work. The experiments and analysis

conducted here are only considering assumed healthy brains.

2.5 My Previous Work

Over the course of my master’s degree I was fortunate enough to be able to publish a

number of works on the topic of BCI devices and unaware facial recognition. These

works helped inform the direction of my thesis, but also played a significant role in

shaping the experiment and analysis performed here.

2.5.1 Image Tagging

My first published work, entitled “Challenges in the Effectiveness of Image Tagging

Using Consumer-Grade Brain-Computer Interfaces” [4] began during the Summer

before the start of my master’s degree after being awarded the Undergraduate Student

Research Award (USRA) at UOIT. Working with Dr. Martin, we decided to tackle

the application of BCIs for image tagging. This was my first exposure to using BCIs
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and, more specifically, the Emotiv Epoc, which gave me great experience using the

technology and the knowledge of how to retrieve and analyze data from it. We focused

on the issues that we faced using the technology for image tagging, which appealed

more to the Augmented and Virtual Reality field, allowing me to present the work at

the Salento AVR conference in Otranto, Italy.

In terms of experimental design and instrument use, this work provided an in-

sight into how the technology works, what issues would/could be faced, and how any

problems can be alleviated along the way using techniques learned while conducting

the image tagging experiment. Many of these lessons would carry over into my work

in unaware facial recognition, and many of the challenges faced in that work are still

faced in current work, which are addressed further in the thesis.

2.5.2 Unaware Facial Recognition

Following the acceptance of our image tagging paper, our research team and myself

had designed and built a new experiment that would become the first version of my

thesis experiment (outlined in Chapter 3). While being only preliminary work, my

first work on unaware facial recognition titled “Excuse Me, Do I Know You From

Somewhere? Unaware Facial Recognition Using Brain-Computer Interfaces” [5] had

been submitted and was accepted to the Hawaii International Conference on System

Sciences (HICSS) 2017. In this work, the experiment conducted is outlined (very

similar to the one in this thesis) and the preliminary results of said experiment. Using

the absolute value of pre-processed data, we found that each of the three recognition

classes (NR, PUR, and PAR) can be easily differentiated by the human eye, suggesting

that a wider participant base and machine learning techniques would be able to

classify each of the three recognition classes with little trouble. It is in this experiment

where we determined that the brain’s EEG output, when confronted with a face that
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is unrecognized, is significantly different than the EEG signals produced when viewing

a face that is recognized at an aware or unaware level, thus prompting the majority

of the investigation to be on determining the differences between aware and unaware

recognitions. Unfortunately, after scaling this method to a larger participant base

and using machine learning, the method of using absolute-value data does not, on

average, improve classification accuracy over non-absolute data (see Chapter 4).

In addition to the HICSS work, this thesis’ experiment, analysis, and results were

prepared for publication and features a reduced analysis and discussion. Topics in this

thesis that are not explored in the previously mentioned paper include an additional

method of dataset creation, ensemble classification methods, neural networks, and a

more in-depth discussion of the experiment and results.

2.6 Summary

In this section, a number of works that have influenced this thesis in either experiment

design, analysis methods, or general considerations in the work have been covered.

First, being that facial recognition is the focus of this work, a look into previous

unaware facial recognition work is done. In this section, while not being the most

explored topic, a few works are explored and how their methods or results influenced

the design here. The largest topic discussed was about EEG data and EEG data

processing. The data used in the experiment discussed later in the work makes use

of participant EEG data as a base, so a number of works that cover this topic were

explored. A number of more miscellaneous works were explored including a look into

some implicit learning implications for the work here. This includes a look at Event-

Related Potentials which, while not directly involved with the analysis conducted here,

have been shown in previous work to help improve analysis by breaking recorded data
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down into smaller chunks for a more granular look at the data. Finally, a brief look

at my previous works that helped inform the design of this experiment and analysis,

and some of the lessons learned to help improve the work produced here.
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Chapter 3

Experiments

3.1 Overview

Previously, Martin et al. [63] had explored the same topic with a different approach

to experiment design (see Section 2.2), which heavily influenced the design of this

experiment. Like this work and others before, the use of consumer-grade BCI de-

vices in non-medical topics highlighted the potential for taking a technology that is

considered more medical in nature, and using it for more application-based purposes

such as detecting unaware facial recognitions like in Martin et al.’s work and this

thesis. The results of utilizing these consumer-grade BCI devices for detecting and

classifying unaware facial recognition are outlined and explained in this chapter with

an in-depth description of the tools and devices used, the participants, and a detailed

explanation of the experiment and data pre-processing. The results and discussion of

this experiment are covered in Chapter 4 and Chapter 5, respectively.
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3.2 Experiment Description

The experiment was designed as a two-day experiment with a total of three phases

(one on the first day, two on the second day). Each phase displayed a different selec-

tion of images of human faces to participants, and each phase’s images had specific

classes of recognition that were applied to them: No Recognition (NR), Possible Un-

aware Recognition (PUR), and Possible Aware Recognitions (PAR). It was designed

to minimize any pre-existing facial recognitions which may have led to inaccurate

data. The images shown to participants in this experiment were gathered from the

FERET database [42] [41], and only featured images of human faces that were directly

facing the camera and turned to gray-scale.

3.3 Participants

The EEG data recorded in this experiment is quite unique to each participant and

varies widely in shape. Combined with the three-dataset method of analysis (Section

4.4) and the many machine learning classifiers used, this makes it hard to determine

one or two variables to compare for the determination of a fixed number of participants

required for the experiment. Along with this, in machine learning the goal is often

to reduce bias and variance in the data through a large amount of sample data, so

gathering as many participants as possible was beneficial. For the study presented in

this thesis, a total of 41 participants were recruited via e-mail advertisement from the

general population of the University of Ontario Institute of Technology (i.e. students,

staff, etc.). All participants were aged in the range of 18 to 30 years old. Participation

was available for anyone that could answer the following questionnaire with the correct

answers as shown below:
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• “How old were you as of September 1st, 2016?” [Age ranges, anything greater

than 18 years]

• “Do you have normal or corrected to normal vision?” [Yes/No]

• “Do you have any condition or are taking any substance that may hinder your

ability to view images shown to you on a computer screen?” [Yes/No]

• “Does your hair stick out longer than 4cm or is styled in such a way that would

prevent a headset from coming into close contact with your scalp?” [Yes/No]

• “Are you willing to remove any head-wear to allow placement of sensors?”

[Yes/No]

• “Are you allergic to common multipurpose contact lens solution that contains

the following list of chemicals: Hydranate (Hydroxyalkylphosphonate), Boric

acid, Edetate disodium, Poloxamine, Sodium borate, Sodium chloride, DYMED

(polyaminopropyl biguanide)” [Yes/No]

• “What is your dominant hand?” [Right/Left-Handed]

These questions were asked and required specific answers generally so that the ex-

periment could be successfully run with as few issues as possible. Questions regarding

vision and substance consumption are to ensure participants could adequately view

images on the screen, else the experiment may have been unsuccessful for the partic-

ipant if they were to participate in it. The questions regarding hair and head-wear

are specifically to ensure the BCI device could be placed on the head with as little

sensor-scalp connectivity issues as possible. If a participant’s hair was too long or

styled in such a way that it is too thick to be parted to make room for the sensors

to touch the scalp, data would not be able to be recorded cleanly or accurately. Re-

gardless of this precaution, a small handful of participants were able to successfully
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complete the questionnaire, but still had hair styled in such a way that only a mini-

mal number of sensors made adequate contact with the scalp, leading to their data’s

disqualification after the experiment had concluded. For safety reasons, participants

were asked about the sensor contact fluid used (question six) to ensure they were not

allergic to any of the chemicals as it may put them at risk. In the case of an allergic

reaction, steps were put in place to access medical services. The final question asked

was about hand dominance, which was intended to be used to compare the result of

left- and right-handed participants, however only three of the analyzed participants

were left-handed, so results were found to be inconclusive (Section 4.4.2).

To assist with recruitment and to incentivize participants to join the experiment,

each participant was given a total of $10 (CAD, $5 for each of the two sessions) for

participation.

For the purposes of this thesis, participants are identified by a “P” followed by a

number (e.g. “P10”, “P80”).

3.4 Data Recording Apparatus

The Emotiv Epoc BCI headset [16] was used to record participant EEG data. This

headset was chosen for a variety of reasons. First, the goal of the experiment and this

thesis is to determine whether or not unaware facial recognition can be detected and

improved upon using consumer-grade BCI devices, and the Emotiv Epoc is what one

would consider a consumer-grade device. While it is a bit on the pricey side for the

average consumer to purchase ($800 USD for the latest model, which is the only one

currently available for sale on Emotiv’s online store [17]), it still falls at an acceptable

price-point for consumers to purchase. The number of sensors on the device is also

a factor in choosing the device. The Emotiv Epoc has a total of 14 sensors, while
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other consumer-grade BCI headsets such as the Interaxon Muse [28] or the NeuroSky

Mindwave [38] use five sensors and one sensor, respectively. This allows us to record

a larger set of data from participants, or potentially consider the different areas of

the brain when analyzing unaware facial recognitions.

The Emotiv Epoc makes use of 14 sensors, which include scalp placement locations

based on the 10-20 system for scalp sensor placement [44]. In alphabetical order, the

sensors are: AF3, AF4, F3, F4, F7, F8, FC5, FC6, O1, O2, P7, P8, T7, and T8.

The experimental software that the participants interacted with was written in

Python. Due to the continuous flow of data from the headset, markers were sent from

the software to the headset via emulated serial port to ensure start and stop points of

each image was accurately collected so that analysis could be done on each individual

image after the experiment.

3.5 Experiment Design & Stimuli

The experiment was broken up into three different phases, each with their own goals.

Phase One took place on the first day of the experiment, and phases two and three

took place on the second day. As will be explained further, it was designed this way

to ensure adequate knowledge is preserved from the first day, but to not have the

information still in short-term memory. In each phase, participants viewed images of

faces presented to them in the experiment software (Figure 3.1 and Figure 3.2).

The human brain has a number of components and functions that are exhibited

in EEG signals upon viewing faces (see Section 2.4), providing data that is unique for

facial recognition tasks. This is why faces were chosen over other types of images such

as places, vehicles, or some other sort of recognizable image which would not exhibit

such facial-recognition-dependent features in the data. More so, facial recognition is
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Figure 3.1: The basic interface that participants interact with before each phase
featuring four buttons–one for each phase and one to finish the experiment.

Figure 3.2: The view of what a participant sees during any of the three phases. A
single image of a face appearing in the center of the screen alone. Images are from
the FERET database [42] [41]
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a task that we as humans do every day for every face we see. It is a very natural

task that we do unconsciously, making it an interesting area of study, and hopefully

one that could potentially be used to assist or improve the lives of individuals in the

future. The techniques for data analysis may have use with other types of images,

however this is speculation.

3.5.1 Phase One

In phase one, participants were brought into the lab and were guided through the pre-

experiment activities (consent form, any participant questions, mounting of the head-

set). While the welcoming and discussion of the consent form lasted a few minutes,

no other pre-experiment activities were done to attempt to normalize participants’

mind state. After this, a computer screen placed in front of them on a desk showed

the experiment software. This first phase consisted of a five-second countdown timer

to ensure participants were prepared for the rest of the experiment, and then a series

of images (faces) were shown to participants. Each image was shown for a total of one

second, then it disappeared leaving a blank screen for one second. This was repeated

162 times for each image in the phase. Participants were asked to watch the images

and were instructed specifically that they do not have to press any buttons, say any-

thing, or make any action at all except for viewing the images. All data gathered here

is what is considered as NR data, however a total of 20 images were repeated three

times each (60 images) to help reinforce the implicit learning process of these faces

for later phases [10] [24] [62]. Since the NR data is not the focus for classification

in this experiment, the impact of the additional NR data being repeated three times

in the first phase is not a concern for classification accuracy of PUR and PAR data.

This phase lasted for roughly 15 minutes (from arrival to ending of the session) and

consisted of a total of 162 images.
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3.5.2 Phase Two

Phase two took place on the second day of the experiment where participants were

asked to return to the lab. Again, the headset was mounted and participants were

given a five-second countdown on the screen. After this countdown, again, a series

of images of faces were shown with the same timing pattern–one second of face, one

second of blank screen. A total of 102 images were shown to participants, but this

time only 92 of the images were tagged as NR images. The other 10 images were taken

from the set of repeated images in the first phase, which were assumed to be implicitly

learned. Tagged as PUR, these images were evenly distributed through the phase.

Each time a participant viewed one of these images, they were generating PUR data.

As in phase one, participants were again asked to view the images without taking

any action. Phase two was designed primarily to generate the first set of PUR data,

but to also add additional NR image data to ensure participants were not focused on

just a handful of images that may be remembered from the previous day. This phase

lasted for around 5-6 minutes.

3.5.3 Phase Three

Phase three also took place on the second day of the experiment, immediately after

the second phase. This time, participants were first shown a single face that they were

asked to memorize. They were given as much time as they needed, and were asked

to click a continue button once they felt they had the face memorized. During this

memorization phase, no data was recorded. Upon clicking the button to continue,

participants were again shown a five-second countdown and then another set of images

(one second of image, one second of blank screen). Instead of only viewing the

images, participants were asked to look specifically for the previously memorized face
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Table 3.1: Image count for each recognition class.

Phase NR PUR PAR Total

Phase One 162 0 0 162
Phase Two 92 10 0 102
Phase Three 72 10 20 102

Total 326 20 20 366

within the set of images, but were asked not to do anything (click, say anything,

press any buttons, etc.) again. The face that was previously memorized was evenly

distributed throughout the phase much like the PUR images of phase two. Each

time the participants saw the memorized face, they had an aware recognition to the

face, thus PAR data was generated. Another 10 PUR images from the first phase

were randomly placed within this phase to provide additional PUR data. In total,

102 images were shown to the participant in this phase with 72 being tagged as NR,

20 tagged as PAR, and 10 tagged as PUR. Adding the additional 10 PUR images

allowed us to increase the number of PUR images by 100% (10 in phase two, 10 in

phase three) and to also match the number of PUR images with the number of PAR

images for more balanced classification later in the analysis phase. This phase also

lasted for around 5-6 minutes.

A summary of the image recognition classes shown in each phase is summarized

in Table 3.1.

As mentioned previously, the FERET database was used for the images shown

to participants [42] [41]. This database contains images of a variety of angles of

individuals’ faces, but only the directly front-facing were used. A number of other

databases and sources for faces were considered to be used for the experiment, how-

ever the quality or number of images of these other sources were found to be worse

than the FERET database. The FERET database provides high-quality images with

high consistency of lighting and backgrounds, making the images suitable for this
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experiment. Combining multiple different sets of images may result in participants

remembering certain backgrounds or lighting conditions, drawing focus away from the

goals of the experiment. After removing a number of images that were deemed to be

rather unique or obvious, 347 images were left to be used for this experiment. First,

the total number of images were divided evenly for each phase. Then, images were

added based on their functions. 20 images were picked to be implicitly learned (Phase

Two and Phase Three each received 10 of these) and then a single image was picked

to be a PAR image, repeated 20 times to match the number of PUR images. The rest

of the images were then used as NR images. Initially each of the three phases was

intended to have an equal number of images, but over the course of the experiment

design, the numbers of each class of image were tweaked, leading to the seemingly

odd numbers of NR images in each phase (e.g. 72, 92).

It is difficult to increase the number of PUR images as increasing this number

results in more images being shown in repetition in Phase One (PUR images repeated

three times each in Phase One), thus possibly reducing the chance that participants

will learn these images implicitly. This could be countered by increasing the number

of repetitions in Phase One, however this leads to the possibility that these PUR

images, due to being seen many times, become learned explicitly and recognized at

an aware level, thus breaking the fundamental assumption with the experiment that

PUR images are learned implicitly. Testing during the design of this experiment found

that using four or five repetitions of each PUR image in Phase One resulted in faces

being more recognizable at an aware level, however this is from the researcher’s point

of view and may or may not have been seen by participants during the experiment.

Previous work suggests to use between 30 and 60 samples per condition in experiments

where you are measuring larger ERPs such as the P3 [32], however, due to the design

of this experiment, it was difficult to achieve these numbers of PUR and PAR images.
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Since the signal recorded in this experiment is the full one-second of data, this time is

significantly larger than the P3 ERP, following the guidelines of Luck [32], although

their suggested 30-60 range, as previously mentioned, was difficult to achieve in this

experiment.

The experiment was designed as a three-phase experiment for a number of reasons.

The first and primary reason for the experiment taking place over two days is to allow

for the images implicitly learned on the first day to be, essentially, forgotten in short-

term memory. Showing these PUR images (learned in Phase One) immediately after

Phase One in Phase Two (assuming the experiment takes place all on one day) may

lead to participants remembering some of the faces shown to them, thus having PUR

images accidentally recognized at the fully aware level of a PAR image, providing

incorrect data for analysis. The second reason the experiment is divided into three

phases is based around the different goals for each type of picture. The first phase

is designed specifically for participants to learn the images that are tagged as PUR.

The second phase is designed as the first recall event for these PUR images. The

third phase is where PAR images are introduced for the first time to participants and

the instructions for the phase changes. Each of these phases has their own role in the

experiment. With that said, phases two and three could be combined in the interest

of experiment length. A final reason this three-phase design was chosen relates to

the previous work done by Martin et al. [63]. As mentioned in Section 2.2, Martin

et al.’s work makes use of the assumption that participants will recognize a certain

percentage of the images shown to them without any training. Due to lifestyle and

general attention to popular culture, the media, or history (generally from where

their images’ individuals were taken), participants may recognize more or less than

expected, potentially biasing the experiment. The experiment conducted in this work

eliminates any bias coming from their image choices by training participants on an
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entirely new set of images that are not taken from popular culture, the media, or

history, providing data without such an assumption. The training takes place in the

first phase and the recall for this training takes place in phases Two and Three.

3.5.4 Post-Experiment

After phase three was completed for a participant, the headset was left on their head

while a brief demo of participant brain signals was explained as well as a brief expla-

nation of the goals of the experiment. Since the data collection was now complete,

there was no worry about bias from the participants knowing the existence of unaware

images.

3.6 Data Pre-Processing

Before pre-processing began, a number of participants who had generally poor record-

ings had their data removed from consideration. These issues with recording tended

to be related to the quality of contact between the headset and the participants’ scalp,

generally due to hair styles or design. If, for the majority of the experiment, the sen-

sor quality indicators in the Emotiv Testbench [20] software (for recording EEG data

from the Epoc headset) indicated that the connection was poor or nonexistent for

many sensors, the participants’ data was not considered for analysis.

Prior to any analysis taking place, data had to be run through a number of

cleaning steps. The raw data recorded from the BCI headset was first run through a

bandpass filter of 0.5-12 Hz. This was chosen on the recommendation of Farquhar and

Hill [21] as they found in previous work that this frequency range is “near optimal”

for the filtering of EEG data for ERP classification. While the results presented here

do not specifically delve into a more granular ERP-based analysis, this application in
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classifying EEG data is similar to Farquhar and Hill’s work. After applying this filter,

an Independent Component Analysis (ICA) built into EEGLab toolbox [11]–a plug-in

for MATLAB designed for analyzing EEG data–was run on the data to further clean

it. Due to artifacts generated by blinking, frontal sensors were found to be nosier and

required more attention. After the ICA, a general voltage threshold of ±100 µV was

used to remove any image data that was still too noisy to be used in any meaningful

way.

Since we cannot control which data from the recording will record correctly or

incorrectly, some images will naturally be removed via this pre-processing phase.

The experiment design required there to be a rather low amount of PUR and PAR

data compared to the NR data so that participants did not become aware of the

repeated recognitions from the first phase of the experiment. Because of this, if an

image’s data was poorly recorded and had to be removed from the set, there became

an imbalance between the two significant classes (PUR and PAR) which could affect

classification results for that participant. By the end of data pre-processing, an

average of 26.15, 2.25, and 2.38 images were removed from each participant from NR,

PUR, and PAR, respectively. This is a challenge in designing an experiment that

requires information to be processed at an unaware level, and a general weakness in

this experiment (further explained in the Discussion, Chapter 5).

During prior work on unaware image tagging [4], it was found that the Emotiv

Epoc headset did not always send data from the headset to the computer for record-

ing in perfect intervals, thus leading to images having more or less than 128 samples

in their one-second window. Some images would have, for example, 120 samples,

and some may have up to 130 samples. Across all participants, the average num-

ber of samples for each image was 121 (6.57 standard deviation). In all sensors,

all images were trimmed to match the lowest number of samples. For example, if
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Table 3.2: A sample set of data after pre-processing. One of these will exist for each
sensor (14 total)

1 5.006 3.532 0.980 −2.361 −5.938 −9.088 . . . −11.226
2 13.569 15.860 18.260 20.605 22.897 25.247 . . . 27.743
3 −4.309 −5.912 −7.014 −7.599 −7.693 −7.374 . . . −6.770
2 −6.705 −8.407 −10.056 −11.175 −11.313 −10.194 . . . −7.831
3 29.988 27.482 25.684 24.491 23.618 22.655 . . . 21.157
...

...
...

...
...

...
... . . .

...
1 6.129 5.4963 7.699 11.646 15.876 18.932 . . . 17.725

an image in one participant’s sensor had 120 samples, all images recorded for that

participant were trimmed to match the 120 samples. This helped in maintaining

consistency for classification later on as all samples maintained the same number of

features/dimensionality and the extra data that some images had over others did not

affect the outcome for that participant.

After this pre-processing, data is now arranged in a series of rows (one row = one

image sample), with each row beginning with the recognition class value (1 = NR, 2 =

PUR, 3 = PAR), followed by the EEG readings at each sample. If after pre-processing

there are 128 samples for a participant’s sensor, the resulting dataset would consist

of 129 columns and N rows, where N is the number of images a participant looked

at that had valid data. Table 3.2 shows an example set of data that is the result of

all pre-processing and manipulation of data. This table is just an example and is not

actual data, and used to help the reader’s understanding of data structure. Ellipses

(“...”) represent a number of data samples, removed to allow the table to fit on a

page here.
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3.7 Summary

The experiment outlined above makes use of three phases and two days to fulfill

its goals of detecting and classifying unaware facial recognitions. In the first day,

participants were given a number of images to view–some of which they were expected

to learn at an unaware level by repetition. On the second day, two more phases were

conducted. In the first phase (phase two), participants are shown a series of images

containing many images they have never seen before, but also a number of images

they had learned the previous day at an unaware level. The third and final phase

again tasked participants with viewing images, but they were asked to explicitly look

for an image they were shown prior to the phase beginning. It is the goal of this

experiment that they would recognize some of the faces at an unaware level, and

some of the faces at an aware level, and that the differences between them would

later be able to be determined. After the experiment, a variety of data pre-processing

and manipulation was done on all participants’ data to prepare it for classification

and analysis (Chapter 4).

The design of this experiment assisted in addressing some of the research questions

or problems identified earlier in the thesis. This design, with its three phases and

unique goals of each, allows for the capture of data representing the three classes of

recognition (NR, PUR, and PAR). This confirmation of previous work provides the

basis for the rest of the analysis and eventual results, and provides data to be used for

classification purposes. Since the three recognition classes produced as a result of this

experiment have been found to be, in many cases, unique enough to be identified by

the human eye, the introduction of machine learning for automated classification may

prove useful for enhancing the identification of unaware facial recognitions elicited by

individuals. Using this data for classification may allow us to more rapidly and
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accurately identify unaware facial recognitions. Modifications to the recorded data

could provide and even greater level of accuracy and improve on existing classification

accuracies of unaware facial recognitions.
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Chapter 4

Analysis & Results

4.1 Outline

This chapter covers the results of the experiment as described in Chapter 3. It

breaks down the results from a number of sources to explore the questions asked and

objectives set in place at the beginning of this thesis (Section 1.4), and approaches

these questions using multiple methods to produce the answers to said questions

and objectives. To begin, a brief explanation of the methods for classification and

result measurement is done to provide an understanding of the techniques used in the

analysis. Next, a breakdown of the three datasets created and used in this experiment,

including the individual dataset and results, and the two combined datasets with

their classification results. A look into classifier bagging and boosting for one of

the combined datasets is done, which looks to improve classification accuracies over

the base accuracies that are achieved through the standard classifier usage. These

two boosting and bagging methods are briefly compared, along with a comparison

between the individual sensor and combined sensor datasets. Finally, a quick look

at the application of modern neural network classification using the TensorFlow and

40



TFLearn Python libraries [1] [58].

4.2 Classification Methods

For unaware facial recognition classification, the methods were the same for all three

types of datasets (datasets explained in more detail later). Before classification, each

dataset was split with 60%/40% weightings for training and testing (respectively)

datasets. This means that 60% of the total dataset was used to train a classifier, and

the remaining 40% was used as test data to estimate the performance of the classifier.

Each training underwent 5-fold cross validation. A total of five classifiers were used

from the Scikit-Learn Python library [40]: Random Forest (RF), Gaussian Naive

Bayes (GNB), SVC, Decision Tree (DT), and K-Nearest Neighbours (KNN) classifiers.

Each of these classifiers were used in an out-of-the-box configuration, meaning they

were used with their parameters left at the default values as set by the authors of

Scikit-Learn. This was done to determine the out-of-the-box performance of these

classifiers on EEG data for classifying unaware facial recognition. Future work may

explore optimizing classifier parameters for better classification performance. During

the 60-40 split of training/testing data, data for each sample is normalized which

scales it to the unit normal (mean of 0, standard deviation of 1).

4.3 Result Measurement

To determine performance of the classifiers, the F1-score (F ) (commonly referred to

as the “F-score”) is used. F-score is commonly used to determine the performance

of binary classification. The F-score is a value within the range of 0.0 to 1.0, with

0.0 being the worst possible score, and 1.0 being the best possible score. It uses two
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Table 4.1: The logic table for this experiment’s classification outputs.

Event Result

PUR classified as PUR True Positive
PUR classified as PAR False Negative
PAR classified as PAR True Negative
PAR classified as PUR False Positive

values based on the output of classification results to produce the F-score: Precision

(Equation 4.2) and Recall (Equation 4.3), which are both defined by calculations of

True Positives (TP ), False Positives (FP ), and False Negatives (FN). Table 4.1

explains which classifier output conditions create each value. Kaggle [29], a popular

website that hosts data science competitions, defines F-score as

F = 2 × P ×R

P +R
(4.1)

with Precision (P ) being

P =
TP

TP + FP
(4.2)

and Recall (R) being

R =
TP

TP + FN
(4.3)

4.4 Datasets

For the purpose of classifying unaware facial recognition, three different datasets were

created and used to test classifier performance on each. The first set tested is an indi-

vidual look at each participants’ sensor data, and considering each sensor as its own

dataset. The next two datasets use different methods of combining participant data
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into individual sets. These sets are “Combined and Averaged Dataset” (CAD), and

“Combined Dataset” (CD), which are generally referred to categorically as “combined

datasets” as they both make use of combined sensor data. This categorical descrip-

tion (versus the individual datasets) is not to be confused with the individual dataset

“Combined Dataset (CD)”. Each set of data is isolated within each participant so

no averaging or data combination of multiple participants’ data is ever done. Since

EEG signals seem to be, after reviewing many participants’ data, fairly unique among

individuals, combining participant data may result in poor classification accuracies.

Due to the relatively small size and uniqueness of collected data, determining if the

data is biased in any way is difficult. Averaging over all sensors for each participant,

NR and PUR data variance was 245 while PAR data was 216. These higher numbers

show that, in general, recorded EEG signals in this experiment are highly variable,

even when considering intra-class variation calculations. This also does not consider

a combination of participants and calculating variance inter-participant. With that

said, future work may explore a more general approach for unaware facial recognition

that combines participant data in a more general way.

4.4.1 Individual Sensor Dataset

The first, most straight forward method of analysis is considering each participant’s

sensor data as an individual data set and attempting to classify unaware facial recog-

nition within a sensor instead of an entire participant. Classification was done in the

same way as all other datasets as outlined Section 4.2. After reviewing the results

of the classification, it appeared that the SVC classifier struggled greatly with this

dataset, producing poor results (generally either 0 or 0.609, regardless of sensor), so

to provide balanced, un-corrupted results, data displayed and discussed here are not

considering the SVC classifier.
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Table 4.2: Participant P07’s individual sensor classification results.

Decision Gaussian K-Nearest Random
Sensor Tree Naive Bayes Neighbours Forest Average

AF3 0.571 0.615 0.667 0.429 0.571
AF4 0.286 0.615 0.714 0.400 0.504
F3 0.375 0.714 0.714 0.750 0.638
F4 0.267 0.462 0.500 0.353 0.396
F7 0.429 0.667 0.714 0.571 0.595
F8 0.526 0.588 0.533 0.476 0.531
FC5 0.400 0.615 0.462 0.615 0.523
FC6 0.400 0.429 0.556 0.625 0.503
O1 0.375 0.769 0.727 0.714 0.646
O2 0.545 0.909 0.400 0.500 0.589
P7 0.429 0.400 0.556 0.471 0.464
P8 0.588 0.667 0.625 0.706 0.647
T7 0.471 0.556 0.556 0.353 0.484
T8 0.500 0.533 0.667 0.667 0.592

Average 0.440 0.610 0.599 0.545

4.4.2 Individual Sensor Dataset Classification Results

Given that each sensor is classified separately from every other sensor, there are a

total of 56 results for each participant ((# Of Sensors) × (# Of Classifiers)), which

is difficult to boil down to smaller amounts of numbers for comparison. Table 4.2

provides a sample from participant P07’s results. While it is inappropriate at this

point to average across sensors or classifiers, this data has been provided in Table

4.2 for consideration. Taking the average data for both sensors and classifiers, we

find that certain censors perform better or worse than others, and certain classifiers

also show a variance in results. Comparing participant P07 (Table 4.2) and P12’s

data (Table 4.3), we can see that results vary by a large margin between the two,

thus lending further confirmation that inter-participant classification may not provide

strong results.

To get a more global sense of the best- and worst-performing sensors, individual
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Table 4.3: Participant P12’s individual sensor classification results.

Decision Gaussian K-Nearest Random
Sensor Tree Naive Bayes Neighbours Forest Average

AF3 0.625 0.500 0.444 0.600 0.542
AF4 0.308 0.471 0.353 0.421 0.388
F3 0.600 0.500 0.353 0.500 0.488
F4 0.182 0.333 0.333 0.706 0.389
F7 0.769 0.667 0.667 0.588 0.673
F8 0.333 0.533 0.625 0.526 0.504
FC5 0.429 0.250 0.250 0.429 0.340
FC6 0.533 0.429 0.556 0.429 0.487
O1 0.353 0.471 0.400 0.533 0.439
O2 0.533 0.400 0.500 0.526 0.490
P7 0.308 0.375 0.444 0.286 0.353
P8 0.429 0.471 0.353 0.632 0.471
T7 0.471 0.500 0.588 0.526 0.521
T8 0.526 0.588 0.625 0.571 0.578

Average 0.457 0.463 0.464 0.520

participant data was stripped down to gather only the best- and worst-performing

sensors for each classifier. Table 4.4 shows a sample of a few participants’ best and

worst sensors for each classifier (full participant data for this exists in Appendix 1.5).

Upon determining which sensors performed the best for each participant, each sensor

was counted to find which sensors tended to show up the most in best- and worst-case

performances for all participants. Table 4.5 and Figure 4.1 show each sensor and how

often they were the best sensor, the worst sensor, and how involved they were in both

the best and worst sensor categories (“involved” being the sum of best and worst

frequencies). After reviewing the sensor involvement in the best/worst frequency

categories, it was found that four sensors appear an equal amount of times (F7, FC6,

P7, and T8). To look into each category individually, the sensors that achieved

the highest best frequencies were F7 and P7 with 10.811%, and the highest worst

frequency was the FC6 sensor with 11.486%. The highest best frequency sensors are
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Table 4.4: Sample best-/worst-sensor results for a few participants.

Decision Gaussian K-Nearest Random
Tree Sensor Naive Bayes Sensor Neighbours Sensor Forest Sensor

P00 Best 0.769 AF3 0.615 AF3 0.615 AF3 0.714 AF3
Worst 0.154 F4 0.143 FC5 0.125 FC5 0.133 FC5

P02 Best 0.632 AF4 0.769 F7 0.667 T8 0.667 T8
Worst 0.143 F4 0.154 P7 0.364 AF3 0.286 P7

P03 Best 0.571 T7 0.500 F4 0.609 F4 0.700 O1
Worst 0.267 AF4 0.154 FC5 0.286 T8 0.333 P7

P04 Best 0.625 FC5 0.615 AF4 0.632 P7 0.588 F4
Worst 0.333 T7 0.333 F7 0.333 T7 0.308 O2

P07 Best 0.588 P8 0.909 O2 0.727 O1 0.750 F3
Worst 0.267 F4 0.400 P7 0.400 O2 0.353 T7

P10 Best 0.857 F8 0.800 O2 0.667 FC6 0.727 F8

only a couple of percentage points higher than the next and only about 3.7% above the

average (7.14%), so it does not appear that any specific sensor can be said to be the

“best” sensor for classifying unaware facial recognition. The fact that many sensors

are around the “random guess” or assumed average value (100÷14 = 7.14 (approx.))

shows that no sensor really stands out, allowing us to group sensors together and

consider their data as a whole in further analysis (Sections 4.4.3 and 4.4.3).

Analyzing the left-/right-handedness of participants within the combined datasets

becomes meaningless as all the sensor data is combined, however the individual sensor

datasets can be analyzed more thoroughly for spatial results. Each participant’s best

and worst performing sensor data was analyzed for both left- and right-handed partic-

ipants to determine if there were any trends that could be extracted from each set of

participants. Table 4.6 shows the percentage of the time each sensor appeared as best

and worst-performing sensors for both left- and right-handed participants for all four

classifiers used. In the context of Table 4.4, “best” and “worst” mean the sensors and

F-scores that were the best or worst performing overall (highest/lowest F-score) for

an individual participant. In the context of Table 4.5 and Figure 4.1, the terms “best
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Table 4.5: The frequency of best-/worst-performing sensors over-all and sensor in-
volvement in best/worst frequencies. Values are in percentage of the time that a
sensor showed up in each category (best/worst).

Sensor Best Frequency Worst Frequency Involvement

AF3 8.108 5.405 13.514
AF4 4.054 5.405 9.459
F3 4.054 2.027 6.081
F4 4.730 4.730 9.459
F7 10.811 9.459 20.270
F8 6.757 6.757 13.514
FC5 3.378 9.459 12.838
FC6 8.784 11.486 20.270
O1 8.108 4.054 12.162
O2 8.784 6.757 15.541
P7 10.811 9.459 20.270
P8 4.730 6.757 11.486
T7 6.757 8.108 14.865
T8 10.135 10.135 20.270

Figure 4.1: Data from Table 4.5 in visual format.
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Table 4.6: Percentage of time each sensor appeared as best or worst-performing sensor
for left and right-handed participants.

Sensor Best - Left Best - Right Worst - Left Worst - Right

AF3 0.00 8.82 8.33 5.15
AF4 8.33 3.68 8.33 5.15
F3 0.00 4.41 0.00 2.21
F4 0.00 5.15 8.33 4.41
F7 8.33 11.03 33.33 7.35
F8 0.00 7.35 0.00 7.35
FC5 0.00 3.68 0.00 10.29
FC6 0.00 9.56 8.33 11.76
O1 8.33 8.09 0.00 4.41
O2 0.00 9.56 16.67 5.88
P7 8.33 11.03 16.67 8.82
P8 0.00 5.15 0.00 7.35
T7 8.33 6.62 0.00 8.82
T8 58.33 5.88 0.00 11.03

frequency” and “worst frequency” simply mean the frequency at which each sensor

appears in the results as the highest or lowest performing (highest/lowest F-score)

sensors across participants. Only three of the participants included in this analysis

were left-handed, so the sample size for this analysis is quite small, which results in

extremes on both ends of the representation spectrum (some sensors never appear as

best/worst, some sensors appear more frequently as best/worst) whereas the right-

handed participants are more plentiful, thus giving a more accurate representation of

sensor best/worst frequencies.

Since the number of left-handed participants is so small, meaningful comparison

between left- and right-handed participants is not possible, but we see more obvious

numbers such as the left-handed T8 sensor which is represented as the best sensor

58.33% of the time compared to the next highest of AF4, F7, O1, and P7, which

appear 8.33% of the time (once each, far above the expected average representation

of 7.14%). Could this suggest that the T8 sensor is more active for left-handed par-
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ticipants? Possibly, but the sample size is far too low to make any suggestions of

statistical significance. To compare, there is no sensor from the right-handed par-

ticipants that tends to appear vastly more than the average expected value (7.14%),

although a number of the sensors tend to be under-represented (e.g. AF4, F3, F4)

and some over-represented (FC6)

The findings from this dataset indicate that using individual sensors performs

poorly and tends to produce resulting F-scores that float around the random guess

score of 0.5. When compared to the results of the combined datasets (upcoming,

Sections 4.4.3 and 4.4.3), it is very weak and may not want to be considered for

the purposes of classifying unaware facial recognitions. Along with the classification

results, no one or two sensors stand out as being vastly more capable of classifying

unaware facial recognitions than others (Table 4.5), so this method does not provide

any benefits for determining specific sensors that may prove to be more accurate or

useful in this application.

With this said, it is important to note that because each sensor was being consid-

ered and classified individually, the number of samples in each class is very low, thus

providing results that may not be safe to make conclusions on. The reasons for this

are not only because of the low image count for both the PUR and PAR data, but

also because of the pre-processing phase where images are removed if they have too

many artifacts or are generally poor in quality. Across all participants’ sensors, the

average usable image count is 17 (STD 4.68) and 17 (STD 5.73) for PUR and PAR,

respectively. For many sensors across all participants, this results in entire classes

being removed, or the majority of images from a class being removed.

The next two datasets consider an individual participant’s data as a whole and

make use of sensor combination. Since they both make use of combination instead of

single-sensor analysis, these two are heavily compared.
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4.4.3 Combined Datasets

Combined and Averaged (CAD)

From previous work [5], it was found that when an individual sensor’s data is aver-

aged within each class (NRs averaged, PURs averaged, and PARs averaged to form

three single class representations–one of each class), each class forms an individual

waveform that is easily distinguishable to the human eye (Figure 4.2). Finding this,

the combination of pre-averaged data was hoped to produce high classification accu-

racy for an entire participant instead of just an individual sensor. In the CAD set,

data from each sensor is first averaged within each recognition class. To expand on

this, a single sensor’s data, after pre-processing, is arranged in a number of rows (one

row for each set of valid image data, meaning that a “row” is simply the data repre-

sentation in a table format of a single image shown to participants), and each of the

three classes (NR, PUR, and PAR) have their samples averaged row-wise (vertically

across every row) to produce a single averaged waveform for each of that sensor’s

recognition classes (three rows in total). Each set of three rows from each sensor

is then combined to form a new dataset of 42 rows (14 sensors × 3 rows from each

sensor). The problem with this method is that it produces a number of rows following

the formula

(Number Of Sensors) × (Number Of Classes) (4.4)

This means that the amount of data you have as a result of this method is de-

termined by the headset you are using. With the Emotiv Epoc headset (used in this

experiment), you have 14 sensors. If you were to use the Interaxon MUSE head-

set [28], you only have five sensors. These are small numbers of sensors, resulting in

small sets of data. Increasing the number of classes for classification will help improve
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Figure 4.2: Participant P51’s averaged AF3 sensor data. NR data not considered for
classification purposes, but left in this figure to show the distinct separation of all
three classes.
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the number of samples of data, but not to the same extent as number of sensors.

Combined (CD)

The CD set is simpler to produce than the CAD set as it is a combination of each

sensors’ data. Each sensors’ entire set of data is taken, one at a time, and added to

a global table, resulting in a final set consisting of N number of samples (14 sensors

× number of images in each sensor, averaging 4693 samples per participant). Unlike

the CAD method, the CD method does not rely so heavily on number of sensors and

classes for number of samples. It follows the formula:

(Number Of Sensors) × (Number Of Images) (4.5)

Since there are many more images shown across all sensors than sensor count, this

produces a far greater sample count for classification, potentially improving statistical

significance in the results.

In all datasets, all data from the NR class is removed as this work is primarily

interested in detecting unaware facial recognitions. Previous work has shown that

NR data is fairly obvious to find whereas unaware and aware data are far closer in

terms of shape, so focus was put on classifying these two. This reduced the sample

count to 28 and 495 for CAD and CD datasets, respectively.

4.4.4 Combined Dataset Classification Results

Table 4.7 shows the mean F-score across all participants for each classifier and each

of the combined datasets, including the differences between the two datasets. These

results are shown graphically in Figure 4.3. Shown in bold are the F-scores that were

the highest between the CAD and CD dataset. The results shown here are the mean F-
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Table 4.7: Average F-scores across all participants for each classifier.

Random Gaussian Naive Decision K-Nearest
Dataset Forest Bayes SVC Tree Neighbours

CAD 0.736 0.593 0.562 0.662 0.686
CD 0.748 0.611 0.635 0.672 0.752

Difference 0.012 (+1.63%) 0.018 (+3.04%) 0.073 (+12.99%) 0.010 (+1.51%) 0.66 (+9.62%)

scores across all participants and does not include individual participant results. The

mean F-scores across participants is an acceptable value to judge and compare results

so reported accuracies here are means, however full participant results are reported

in Appendix 1.6. As can be seen, the CD dataset, while generally only being a little

bit higher than the CAD dataset, outperformed the CAD dataset in every classifier.

With that said, the KNN and SVC classifiers saw an increase of almost 10% and

13%, respectively, which is significantly larger than the 1.63%, 3.04%, and 1.51%

increases from the other three. Using a statistical t-test (95% confidence interval), it

was found that the difference between the CAD and CD methods for each classifier

was statistically significant except for the Gaussian Naive Bayes classifier. All other

classifiers (4/5) were found to be statistically significant.

4.5 Classifier Boosting

Boosting in machine learning is the act of combining weak hypotheses about a set of

training data from multiple classification trials (T ), and combining them to produce

a single rule that defines a classification for a set of data [22]. Freund and Schapire

show that if a number of predictions that exhibit accuracies of just slightly greater

than the random guess (accuracy of 50%), over a number of trials, the errors in the

final classification accuracy drops significantly [22].

The Decision Tree and Random Forest classifiers were used in this boosted clas-
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Figure 4.3: Average F-scores for all classifiers from both combined datasets, including
standard error bars.
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sification method. Only these classifiers of the full set used were boosted as they are

considered to be “weak learners” (generally capable of producing guesses at accura-

cies only marginally higher than random guess levels) [49] and are generally combined

(multiple trials of the same classifier having their results used together) in ensemble

methods such as this to produce stronger predictions [49]. Each classifier was used in

the ADABoostClassifier function (included in Scikit-Learn [47] [40]) as base classifiers,

run a total of 11 times each to determine how the performance changes depending on

the number of estimators used (number of estimators starting from 1 and increasing

by 10, up to 100). For each of these classifications, the same method for data manip-

ulation and pre-processing was used as the previously reported accuracies. This was

done to determine if an improvement in classification results could be found using

this boosting method over the single use of each of the base classifiers. Only the

large CD dataset was used for this method as the set is significantly larger than the

CAD set, thus producing a far larger set for the classifiers to be trained on for this

boosting method. Freund and Schapire mention that the final accuracy is generally

close to that of the greatest accuracy achieved throughout the boosting algorithm

(e.g. if three trials produces accuracies of 0.51, 0.52, and 0.58, the final accuracy

will generally be close to 0.58) [22]. If, after increasing the number of trials on this

experiment’s dataset, the variance of results is not large, the end results will not have

benefited from the boosting algorithm.

4.5.1 Decision Tree Classifier

The decision tree classifier provided the most interesting and drastic results. Starting

at an average F-score of 0.517 (T = 1), increasing the number of estimators by

nine (up to 10) improved the F-score of the Decision Tree Classifier to 0.646–an

improvement of 0.129. This was the largest change as the curve tends to flatten out,
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Table 4.8: Average F-scores of boosted Decision Tree classifier.

Trials
1 10 20 30 40 50 60 70 80 90 100

F-Score 0.517 0.646 0.677 0.682 0.694 0.699 0.703 0.702 0.708 0.704 0.706

Table 4.9: Average F-scores of boosted Random Forest classifier.

Trials
1 10 20 30 40 50 60 70 80 90 100

F-Score 0.741 0.772 0.773 0.768 0.762 0.761 0.764 0.762 0.763 0.759 0.758

much like the shape of a logarithmic curve approaching an asymptote. Table 4.8

contains the average F-scores for this classifier, depicted as a line graph in Figure 4.4.

Increasing the number of trials incrementally up to 100, we see the F-score max out

at 0.708–an increase in 0.191 over the T = 1 value. While not as huge of a jump as

the first (1-10), this shows that using the Decision Tree classifier with this combined

dataset in a boosted configuration provides an increase in F-score of almost 0.2 (a

37% increase).

4.5.2 Random Forest Classifier

The Random Forest classifier did not seem to fare as well under the same conditions as

the Decision Tree classifier. Using the same number of trials at each step, the Random

Forest tended to produce a much more linear graph (Figure 4.5) where increases were

not as profound. Average F-scores over all trials can be found in Table 4.9.

It was noted that the ADABoost function would not always run through all T trials

of the Random Forest classifier. According to the Scikit-Learn documentation for the

ADABoost classifier function, if the base classifier fits the data perfectly in a trial, the

rest of the trials are not run and the function is stopped early [47]. Continuing with

training could lead to the over-fitting of the classifier. This changed on a participant-
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Figure 4.4: Average F-scores from the Decision Tree classifier with an increasing
number of estimators used in boosting.
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Figure 4.5: Average F-scores from the Random Forest classifier with an increasing
number of estimators used in boosting.
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Table 4.10: Boosted vs. Un-Boosted results of the Random Forest and Decision Tree
classifiers.

Random Forest Decision Tree

Boosted (highest F-score) 0.773 0.708
Un-Boosted 0.748 0.672

Difference +0.025 +0.036

to-participant basis depending on how well an individual participant’s data could be

fit by the classifier.

4.5.3 Boosted vs. Un-Boosted

For a brief comparison, the Decision Tree and Random Forest classifiers have their

results compared in Table 4.10. In this table, the highest F-score achieved is shown for

each classifier. As can be seen, the boosted classifiers achieve greater accuracies than

the individual single-run classifiers (Table 4.7). With that said, the differences are

fairly small (+0.025 and +0.036 for Random Forest and Decision Tree, respectively).

4.6 Classifier Bagging

Much like boosting, bagging uses a number of estimators in combination to attempt

to provide a more accurate classification output. Each estimator uses a sub-set of

the global training data to learn the data, and then, in the case of predicting a class,

the estimators vote on the output [7]. Breiman et al. [7] find that if the changes in

the learning dataset result in small changes in the predictions, then the results of

sub-set prediction will be close to the results of the global prediction. On the other

hand, great improvement in classification is found when a small change in the learning

dataset results in large changes in the prediction.

The Decision Tree and Random Forest classifiers were used in this bagged clas-
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Table 4.11: Average F-scores of bagged Decision Tree classifier.

Trials
1 10 20 30 40 50 60 70 80 90 100

F-Score 0.648 0.734 0.760 0.757 0.757 0.756 0.760 0.760 0.762 0.762 0.761

sification method to allow for comparison to the boosting method. Each classifier

was used in the BaggingClassifier function (included in Scikit-Learn [48] [40]) as base

classifiers, run a total of 11 times to determine how the performance changes de-

pending on the number of estimators used (number of estimators starting from 1 and

increasing by 10, up to 100). For each of these classifications, the same method for

data manipulation and pre-processing was used as the previously reported accuracies.

Again, only the large combined dataset was used for this method as the set is signifi-

cantly larger than the combined and averaged set, thus producing a far larger set for

the classifiers to be trained on for this bagging method.

4.6.1 Decision Tree Classifier

Like with Boosting, the Decision Tree classifier again followed the shape of a rough

logarithmic curve (Figure 4.6). If we consider the highest average F-score found

(0.762 at 80 and 90 trials), this method resulted in an increase of almost 18% over

the singe-estimator classification F-score.

4.6.2 Random Forest Classifier

The Random Forest classifier followed a more horizontally-stretched logarithmic curve

shape than the Decision Tree classifier, but did not appear as flat in general when

compared with the curve produced by the Boosting method. The highest F-score

achieved was 0.768 at 100 trials–an increase of about 10%. While not as significant
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Figure 4.6: Average F-scores from the Decision Tree classifier with an increasing
number of estimators used in bagging.
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Table 4.12: Average F-scores of bagged Random Forest classifier.

Trials
1 10 20 30 40 50 60 70 80 90 100

F-Score 0.698 0.752 0.759 0.762 0.762 0.763 0.765 0.764 0.766 0.766 0.768

Table 4.13: Bagged vs. Un-Bagged results of the Random Forest and Decision Tree
classifiers.

Random Forest Decision Tree

Bagged (highest F-score) 0.768 0.762
Un-Bagged 0.748 0.672

Difference +0.020 +0.090

as the Decision Tree classifier (∼18% vs. ∼10%), the increase is still fairly substantial

and would assist in improving the general classification accuracies of unaware facial

recognition.

4.6.3 Bagged vs. Un-Bagged

Table 4.13 shows a brief comparison between the bagged and un-bagged results

(single-estimator vs. lone classifier output (Table 4.7). In both cases of the Ran-

dom Forest classifier and Decision Tree classifier, we see improvement in average

F-score. At its peak accuracy, the Random Forest classifier produces an increase in

F-score of 0.02 (∼2.7% - achieved at 100 trials), while the Decision Tree classifier has

an increase in F-score of 0.09 (∼13.4% - achieved at 80 trials). While these numbers

do not seem the most significant, they are improvements to the results produced by

the standard classification of the CD set.
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Figure 4.7: Average F-scores from the Random Forest classifier with an increasing
number of estimators used in bagging.
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Table 4.14: Boosting vs. Bagging results of the Random Forest and Decision Tree
classifiers. Base classifier improvement values are in brackets beside each classifiers’
average F-score.

Random Forest Decision Tree

Boosted 0.773 (+0.025) 0.708 (+0.036)
Bagged 0.768 (+0.020) 0.762 (+0.090)

Difference +0.005 +0.054

4.7 Boosting vs. Bagging

Table 4.14 shows a numerical comparison between the Random Forest and Decision

Tree classifiers. Judging based purely on F-score improvement over stock classifiers,

the Random Forest classifier performs best on the CD set for unaware facial recogni-

tion classification when using the boosting method while the Decision Tree classifier

performs better using the bagging method. Computational time to produce these

accuracies is not considered in this comparison, but depending on the application,

may become important.

4.8 Individual Sensor vs. Combined Sensors

It is hard to do a direct comparison between the individual sensor datasets and

combined sensor datasets due to number of scores produced for each participant

(Individual sensor = (# of sensors) × (# of classifiers) vs. Combined sensor = 1

× (# of classifiers)), which produces two-dimensional data for each participant in

the individual sensor dataset, and one-dimensional data for each participant in the

combined sensor datasets. Along with this, because the low number of samples in

each of the individual sensors’ dataset, there were quite often errors in classification

resulting in a nullified classification. While the direct comparison here may not be

appropriate for these reasons, the fact that there were so many errors (an average
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of five per participant) helps highlight some of the issues that the individual sensor

dataset faces when applied to classifying facial recognitions using this method.

4.9 Neural Networks

In addition to the previous methods of analysis, a neural network was built and

trained on the CD dataset. The CD dataset was chosen as it has the largest number

of samples for training, hopefully producing the best results and not having errors

due to such few samples in the set. Following the work of Subasi and Ercelebi [57], in

which they used a multi-layer neural network to classify EEG signals, the input layer

was immediately followed by a second layer of 21 neurons, followed by the output

layer for a fairly shallow neural network. From the TFLearn Python library [58], a

Deep Neural Network function was used to classify using the previously-built neuron

layers. After testing, highest output F-scores were achieved using a hyperbolic tangent

activation function [60] over the default linear model [59] [61]. This design on the CD

dataset resulted in an average classification accuracy of 0.668.

Table 4.15 contains a comparison between the results of the neural network with

the results from the standard CD dataset classification. The neural network out-

performed two of the five classifiers used on the CD dataset. Full individual partic-

ipant results are shown in Appendix 1.7. It can be seen that, over all participants,

accuracies climb as high as almost 90% and include six participants that had classi-

fication F-scores above 0.8.

Utilizing neural networks was not the primary focus of this thesis, but holds

great promise considering the results and simple implementation they resulted from.

Considering that the results found here with limited exploration are able to out-

perform two of the previously-used classifiers, even greater results may be found after
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Table 4.15: Neural network classification F-score vs. previous classifier F-scores.

Non-NN NN Difference

Random Forest vs. NN 0.748 0.668 −0.080
Gaussian Naive Bayes vs. NN 0.611 0.668 0.057
SVC vs. NN 0.635 0.668 0.030
Decision Tree vs. NN 0.672 0.668 −0.004
K-Nearest Neighbours vs. NN 0.752 0.668 −0.084

further manipulation of neural network structure and design. Future work may put

more emphasis on using neural networks for classifying unaware facial recognition

versus the more traditional classifiers used in this work.
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Chapter 5

Discussion

5.1 Outline

The results of the experiment have been outlined previously in Chapter 4, so a dis-

cussion of the results and the experiment as a whole is conducted in this chapter. A

look into the classifiers used and the implications of each on the EEG data is done to

assess the benefits or drawbacks of each as well as any possible areas that a classifier

may struggle or have success with. A summary of each dataset method is explored

and a comparison is done between them, exploring again, benefits and drawbacks of

each methods and how they may explain the results found. Further, a discussion is

had about the recording apparatus in which some issues with the experiment and

general recording that may have contributed to the results are highlighted. Finally,

a look into some of the applications and implications of this work on the field are

discussed.
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5.2 Classifiers

A total of five different classifiers were used (Neural network and ensemble methods

not included in this count), each on all three sets of data (minus SVC for individual

classification - see Section 4.2). Each classifier was picked from the available classifiers

that the Scikit-Learn Python library offered and used in an out-of-the-box configu-

ration without modification via parameters. Depending on the classifier, they may

perform better or worse on specific types or arrangements of data, which may lend

some insight to the results obtained in this experiment.

5.2.1 Decision Tree

The Decision Tree classifier builds a tree by recursively splitting an attribute, basing

each split on some function of that attribute, and continuing to split the attributes

until some sort of ending point is reached where the final nodes (“leaf” nodes) cor-

respond to one of the classification outcomes [26]. For testing, each sample traverses

the previously-built tree until it reaches one of the leaf nodes where it assigns that

sample to a class. In the case of the data here, these classification outcomes are

either a PUR or PAR value. Inese et al. [26] mention that, because a slight variance

in training data can produce vast differences in classifier models, the decision tree

classifier is considered to be unstable and would perform well in an ensemble method,

such as boosting or bagging. This may help identify why an improvement in classifier

performance was found over the base classifier when used in the boosting and bagging

configurations (see sections 4.5 and 4.6).
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5.2.2 Random Forest

The Random Forest classifier is a combination of tree models such as the Decision

Tree classifier previously mentioned, and uses samples and features chosen at random

to build the decision trees [43] [3]. Since the random forest classifier is an ensemble

classifier that utilizes multiple decision trees for classification, this may be why a

classification accuracy improvement over the standard decision tree classifier in these

datasets can be seen (0.737 vs. 0.662 for CAD and 0.748 vs. 0.672 for CD). Pu et

al. [43] mention that due to the two sources of randomness in the algorithm (randomly

chosen inputs and features) the Random Forest classifier tends to be able to handle

large numbers of features well, which may be why some of the highest classification

accuracies are seen from this classifier.

5.2.3 Gaussian Naive Bayes

The Naive Bayes algorithm is a fairly straight-forward method of classification that

makes use of a comparison between the probabilities of each class given the data [50].

The Gaussian Naive Bayes classifier assumes that the data being analyzed follows a

Gaussian/normal distribution for probability estimates and classification, thus being

potentially more reliant on the input data than other classifiers [50]. It is known

for its perspective of features within the feature set in that it assumes each feature

is independent from another [50]. While the data used in this experiment is of a

temporal nature (each sample can be reconstructed into a waveform) thus having

each feature reliant on its surrounding features to reproduce the recorded signal, each

feature within the signal can be taken out of context as the waveform itself is not

important for classification, but rather, the values at specific time intervals are the

important parts, so the application of the Naive Bayes algorithm on this dataset may
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not have as much of a negative impact as another set might.

For each participant, a test for normality was done on each feature in the clas-

sification data to determine if the data for any given participant followed a normal

distribution. In general, the majority of participant data returned p-values that were

very low, thus not following normal distribution. While some features showed more

normal distribution, these were generally only three or four features for an individual

sensor out of the hundreds of pieces of data tested. Given the non-normal input data,

it may explain why the Gaussian Naive Bayes classifier performs poorly on all three

datasets (individual: ∼0.50, CAD: ∼0.59, CD: ∼0.61).

5.2.4 SVC

The SVC classifier (Support Vector Classification) from the Scikit-Learn library [54]

is a Support Vector Machine (SVM) based on LIBSVM, a popular library for the

implementation of SVMs, which support a variety of tasks including classification,

regression, and others [9]. The goal of an SVM is to determine a “hyperplane” (the

general term for a plane or division in high-dimensional space) which separates two

classes of data, and to decide on it in such a way that it maximizes the distance

between each of the classes, providing the best possible classification prediction [53].

According to Mountakis et al. [35] and Noble [39], SVMs tend to perform better

on datasets with few training samples. Also, they do not assume datasets follow a

normal distribution, so this may help to explain why the SVC classifier out-performs

the Gaussian Naive Bayes classifier. With that said, it is still found to under-perform

compared to the Random Forest, Decision Tree, and K-Nearest Neighbours classifiers

by a large margin (see Table 4.7).
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5.2.5 K-Nearest Neighbours

The K-Nearest Neighbours (KNN) classifier is another fairly straight-forward classifi-

cation algorithm. The KNN classifier stores training data for comparison when testing

new data. The new data is then compared to the old data within its n-dimensional

space, and the surrounding training points are used to determine which class the new

data belongs to based on distance to the points in the training set [51]. The value

K is used to determine how many of a new sample’s nearest training points are for

voting. While easy to visualize in two-dimensional or three-dimensional space, it is

basically impossible for a human to visualize the 121 dimensions of the average sam-

ple in a participant’s dataset. This algorithm looks for spatial groupings of points

to make its decision on which class a sample belongs to, so the more closely a new

point appears to a majority of training points, the more likely it will be classified the

same way as the closest training points are. This means that if a number of train-

ing points are grouped incorrectly with the wrong class, then the new point, while

being of the opposite class, has a good chance of being misclassified. The authors of

Scikit-Learn mention that a larger K value tends to reduce the impact of noisy data

on classification as it has more neighbours to compare with [51]. Given this, since the

default value for K is 5 [52], increasing the K value may allow for better classification

accuracies in the datasets, particularly the CD dataset where there are many more

sample points to compare to.

5.3 Dataset Methods

Since the purpose of considering three datasets in the first place was to be able to

compare and determine if using a modified dataset could be used to classify unaware

facial recognitions well, a brief discussion of the findings is presented here.
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One of the main issues with the individual sensor datasets are that not all sen-

sors contain all data due to pre-processing and issues with recording. For example, a

participant’s AF3 sensor may have the full 20 + 20 samples of PUR and PAR data

from the experiment, but the P7 sensor may have lost touch with the participant’s

scalp during recording and only managed to record 5 + 5 samples of PUR and PAR

data. Even if the full 40 samples of data were recorded for all sensors for all partici-

pants, 40 samples is still a very small number of samples to be trained on, and that is

not considering the 60-40 split for training and testing, further reducing the sample

count for either portions. This consideration is one of the reasons why the combined

datasets were considered as they not only modify the recorded data and attempt to

improve classification accuracy that way, but they also, especially in the case of the

CD dataset, increase the number of samples for training and testing in classification.

Because of this low sample count, the results from individual sensor classification

vary widely, leading to the suggestion that these results should not be relied on for

statistical significance. With that said, it is an interesting insight into some of the

potential issues both with the practice of recording using consumer-grade devices, and

experimental design in the first place. While increasing the number of PUR and PAR

images in the experiment may lead to more data for classification, it also increases the

likelihood that a PUR image is noticed by the participant, inadvertently becoming a

PAR image which would be incorrectly classified.

The CAD dataset falls into some of the same issues as the individual sensor

datasets do. When each sensor’s data is first averaged into two PUR and PAR

samples and appended with the averaged samples from all other sensors, the number

of samples for classification remains constant (see Section 4.4.3) because it does not

rely directly on the full number of samples in each individual sensor. Regardless, the

number of samples in this dataset ends up being only 28. This number is still larger
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(relatively speaking) than each individual sensor’s theoretical maximum of 20 samples

(10 from both PUR and PAR), however it still is not very many when considering

its use in classification. Another point to note is that if this method were to be used

in some sort of future application, recording a single sample (e.g. viewing a single

image) and attempting to classify based on it may not result in a high accuracy. Since

the CAD set relies on the full experiment of recorded image samples and intra-class

averaging, any future application would require a similar setup in order to be able to

average the recognition classes. This may be considered a limitation of this method.

The CD dataset addresses part of the issues with the CAD and individual datasets

by having a significantly larger number of samples for classification (see Section 4.4.3).

While this increased count may prove to be more statistically safe for classification

train/test splitting and results, it does not make use of the intra-class averaging

that the CAD dataset uses. This averaging produces a single wave for each class

in each sensor and is the average representation of each class, which, as seen from

previous work in unaware facial recognition [5], provides easily identifiable signals

from each recognition class. In the CD dataset, no averaging is done, thus feeding

a large number of un-averaged recognition class data into the classifier for training

and testing. Since some of the un-averaged waves may appear to be more similar to

the other recognition class or other sensors’ data, it may be a source of confusion for

the classifiers, potentially providing weaker classification than a large set of averaged

data.

Building a single set that combines the advantages of both the CAD and CD

dataset would be optimal, but the very nature of the construction of each set pro-

hibits this combination. Another source of future work may be exploring methods for

combining the two datasets and providing more averaged data with greater numbers

for classification in hopes of improving both the amount of data for training and the
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classification results.

Despite the issues in both the CAD and CD dataset, using ensemble methods to

try to improve the classification accuracy of each proved to be very useful. The boost-

ing and bagging methods (Sections 4.5 and 4.6) were able to generally increase the

classification accuracies of the CD dataset without further modifying the data within

the set. The only apparent cost to this increase was the added processing time, which

may be considered as not applicable in the context of trying to find methods to im-

prove unaware facial recognition. In a real-world application, processing time may be

an important factor, but in this situation it does not need to be considered. Both the

boosting and bagging method improved classification accuracies for both the Deci-

sion Tree and Random Forest classifiers, showing that ensemble methods, especially

when combined with a potential future optimization of classification algorithms, may

provide far greater accuracies than base classifiers alone.

Using a statistical t-test (95% confidence interval), it was found that the difference

between the CAD and CD methods for each classifier was statistically significant

except for the Gaussian Naive Bayes classifier. All other classifiers (4/5) were found

to be statistically significant. Since the individual sensor dataset was, by definition,

comprised of individual sensors and covered each sensor for each participant, whereas

the CAD and CD datasets were a combination of sensors, direct comparison between

the individual and combined sets is not as applicable.

5.4 “The Question”

One of the big issues with studying anything on the unaware side of reactions is the

lingering question “was it actually unaware?” This experiment (Chapter 3) had to

perform a balancing act between the number of images that would essentially be used
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as filler and discarded (NR images), and the images that were intended to be learned

by participants, both at an aware level (PAR) and unaware level (PUR). In phase

one (see Section 3.5.1), the images to be used as unaware recognitions were learned.

The challenge here was using enough images so that adequate analysis could be done,

but not too many unaware images so that participants did not recognize them too

often, thus becoming aware recognitions. One of the assumptions in this experiment

is that each image is explicitly pre-classified (by the author, meaning that images

were shown at specific times and in specific ways to promote learning at the required

levels) and does not change classification. This means that an image that was tagged

as unaware had to stay as an unaware recognition for the participant throughout

the experiment. If they viewed and learned the image too much and it became an

aware recognition, the corresponding data would potentially look very similar to PAR

data, thus being classified as PAR data, and producing a False Negative resulting in

a corrupted F-score.

Based on previous work in unaware facial recognition [4], it was found that the

three recognition classes (NR, PUR, PAR) after intra-class averaging produced very

distinct signals that could be easily differentiated by the human eye without the

assistance of machine learning. Since this experiment made use of a very similar

methodology to the experiment in that work, it is reasonable to expect that the

design of this experiment was adequate to safely produce the three recognition classes

without too much accidental learning (PUR as PAR, PAR as PUR, etc.). With that

said, a handful (unrecorded numbers) of participants mentioned after the third phase

that that they noticed a few repeating images in the first phase. While this is not the

intent of the experimental design, the two-day experiment design allowed for these

sorts of small issues in the first day as the assumption is that participants would not

remember the majority of the faces shown to them in phase one at an aware level,
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but rather at an unaware level, which is the intent of the first phase.

5.5 Recording Apparatus

Something important to consider when reviewing the results of this data is the method

of recording, or, more specifically, the device used in the data recording. As men-

tioned in Section 3.4, the Emotiv Epoc BCI headset was used for recording participant

EEG data during the experiment. For the first dataset attempted (individual sensor

- Section 4.4.1), each sensor is considered by itself rather than in combination with

other sensors. The Epoc headset has a total of 14 sensors which are placed around

the scalp, meaning that many sensors are quite close to each other. Because the sen-

sors are sometimes very close to each other, it is unclear how similar the signal from

one sensor is compared to the signal from the next closest sensor. How similar these

signals are may not have too great of an impact on the individual sensor dataset,

but when considered in combination (CAD and CD - Sections 4.4.3 and 4.4.3, re-

spectively), data from two sensors might be very similar, potentially strengthening

or weakening results. Another issue the “consumer-gradeness” of the headset and its

comparison with more lab/medical-grade devices. Duvinage et al. [12] ran an experi-

ment to analyze the performance differences for P300-based applications between the

Emotiv Epoc BCI device and the ANT acquisition system using the Waveguard cap

consisting of 128 sensors [37]. They note that the Epoc under-performs compared

to the ANT system with Waveguard cap (which is to be expected), and find that

the Epoc should be used only for non-critical applications such as games or other

miscellaneous functions and to use more lab/medical-grade devices for serious med-

ical purposes. This suggests that more modern or professional devices may perform

better for detecting unaware facial recognitions due to its higher quality recording
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and additional sensor capabilities. It would be interesting to use a lab/medical-grade

EEG cap in future work to see what the results look like when applied to unaware fa-

cial recognition detection and classification compared to the current results obtained

using the consumer-grade Epoc.

Another area of problem that arose with the Emotiv Epoc headset has to do with

the participants themselves. Before the experiment, all participants were asked to

try to remain as still as possible during the experiment. While many participants

were able to stay fairly still, a number of participants still moved around, doing thing

such as repositioning their legs, scratching an itch, or changing their posture, and

almost all participants moved around at least a little bit. These sorts of movements

contributed to the artifacts and general poor signal quality recorded by the headset,

which is tough to avoid and seems to be a general issue with recording BCI data

(mentioned in previous work [4]). If the experiment were to be done again, adding

some sort of chin/head rest for participants to rest on during the experiment may

help to promote still sitting, however this solution may be uncomfortable for the

participants. This is speculation, however.

Similar to the previous point, but not entirely to do with participants, it was found

that, for a handful of participants and through previous experiments, the connection

from the headset to the computer would drop, recording no data for the duration of

the disconnection. It would generally reconnect itself back to the computer after a

few seconds, but during this time no data was recorded, thus missing important image

data. Since it was important that participants had not seen the images on the screen

before, the experiment could not be stopped and restarted once the headset had re-

connected. Unfortunately, the Epoc has only wireless connectivity, so a direct cable

to ensure 100% connectivity is not possible. This is an advantage that lab/medical

grade devices have over consumer-grade devices as they are not designed to be as ca-
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sual or movement friendly whereas the consumer-grade devices play more on modern

connectivity trends to reduce clutter or bulk from wires or larger attachments.

5.6 Implications

This thesis has shown that yes, unaware facial recognitions can be recorded and

extracted from subject EEG data with fairly high accuracies using consumer-grade

BCI devices, even using out-of-the-box machine learning classifiers, which makes for

rapid classification at near on-demand levels. The fact that this could be implemented

in a cost-effective way and with low amounts of time, the techniques explored in this

thesis could be implemented into more application-based scenarios.

One potential application for something like this is in law enforcement. Police

line-up procedures have been shown to be somewhat biased [33] [8] [34], which could

potentially lead to false or inadvertently incorrect selection of criminal perpetrators.

Using unaware facial recognitions, even if the participant only saw the perpetrator

for a brief amount of time during the incident, they may be able to determine if an

unaware facial recognition takes place while viewing the line-up. It is unclear as of

yet if bias is witnessed within subject EEG signals, so this application may or may

not work depending on that finding.

While not yet perfect, these techniques could pave the way for future researchers

to further explore unaware facial recognition and EEG processing to improve existing

results.

78



Chapter 6

Conclusions and Future Work

Through the experimentation completed in this thesis, the results of determining

whether or not unaware facial recognitions can be detected and classified with greater

accuracies than previously found using consumer-grade BCI devices and out-of-the-

box machine learning tools are described, and whether or not previous findings can

be improved upon. From the work done here and based on the research objectives

and hypotheses provided in Chapter 1, the following conclusions have been drawn

from this work:

• First, consumer-grade devices, and more specifically the Emotiv Epoc, can be

used to accurately record EEG data from participants with enough accuracy to

detect each of the three classes of recognition outlined previously (no recogni-

tion, unaware recognition, and aware recognition). This outcome was expected

from this experiment as previous work conducted [5] showed, using various

methods of analysis, that each class could be accurately found.

• Second, using out-of-the-box machine learning tools was able to enhance and

increase speed of large-scale automated classification of participant EEG data
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recorded from the experiment, however at lower levels of accuracy than ex-

pected. Previous work [5] suggested that using intra-class averaging could pro-

duce very distinct signals for each recognition class, potentially giving very high

classification accuracies, but it was found after analysis that the dataset which

had not been averaged tended to produce the highest accuracies.

• Third, the combination of multiple sensors tends to outperform single-sensor

classification, both in terms of classification accuracy and classification quality

(far less errors and issues with the combined datasets).

6.1 Findings

Each participant’s recorded data was modified in three different ways to determine

which method performs the best in the detection and classification of unaware facial

recognitions. The first method, dubbed the “individual dataset”, uses each sensor’s

recorded data individually and attempts to classify unaware facial recognitions using

only a single sensor’s data. This results in 14 F-scores for each sensor, for each

classifier used (four classifiers). The next two methods make use of a combination

of sensors. The first of the two–the Combined and Averaged dataset (CAD)–first

averaged each recognition class within a sensor, then combined each sensor’s averaged

data together to form a single dataset. The second combined dataset was simply

dubbed the “Combined Dataset” (CD) as it took all sensors and combined their data

without any averaging, resulting in a fairly large dataset with many samples. The

individual dataset consisting of single-sensor classifications was found, in general, to

perform worse than the combined datasets. The combined datasets (CAD and CD

sets) tended to perform better than the individual datasets in general, however the

CD dataset was found to perform better than the other two over-all with greater
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F-scores for each classifier tested. Some potential reasoning for these results may

have to do with the size of the datasets. In both the individual and CAD datasets,

very few samples were in each set, giving the classifiers very little data to train on.

The CD dataset had a much larger sample count, which gave the classifiers far more

samples to train on and may have improved the classification accuracies by being able

to more accurately determine the differences between each of the recognition classes.

Upon finding base-classifier levels of accuracies, a number of these classifiers were

used in ensemble methods, namely Boosting and Bagging, to improve single-trial clas-

sification performance. Using a Boosting method, improvements of approximately

3.34% and 5.35% for the Random Forest and Decision Tree classifiers, respectively.

For the Bagging method, improvements of approximately 2.67% and 13.39%, respec-

tively. This shows that using the base out-of-the-box classifiers in these ensemble

methods allows for a further increase in output F-scores for unaware facial recog-

nition classification, providing additional methods for this detection with minimal

additional modification to datasets or classification methods.

6.2 Contributions

The work discussed throughout this thesis has shown the possibility of using consumer-

grade BCI devices and modern machine learning techniques to classify unaware facial

recognitions. Through this, three different methods have been compared–each with

their own pros and cons–to determine the best method of classifying these unaware

facial recognitions with the highest accuracies. To summarize, the following have

been contributed through this thesis:

• Three methods of data manipulation: Three methods for data manipulation

have been developed that produces three different sets of data for classification.
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Each dataset takes a unique form and provides its own benefits and drawbacks

in terms of ease and accuracy in classification. Through these three methods,

an in-depth comparison between their structure, their performance, and the

implications of each to gain the best classification accuracies have been provided.

• Unaware facial recognition classification improvements: Using the previously-

mentioned datasets, previous efforts in classifying unaware facial recognitions

(see Section 2) have been improved, contributing these methods as a new step-

ping stone for future research in unaware facial recognition.

• Applications for consumer-grade equipment: Consumer-grade hardware has

been used in this research and applied to the field of facial recognition to provide

a more cost-effective and accessible approach to BCI research.

6.3 Future Work

Throughout this thesis there are a number of areas that are explicitly not explored

due to scope and scale challenges, but would make great extensions to this work.

The following sections describe areas that were generally not included in the work

presented here, but would make interesting subjects for future work to be conducted

upon.

6.3.1 Generality

One of the first areas that could be explored is the idea of generality across partic-

ipants. All analysis done in this thesis is done within each participant and never

combines participant data for classification purposes–only output results to get a

more broad idea of how classifiers are performing. This leaves the opportunity to
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potentially combine all participant data and attempt classification on this far larger

set of data. Being the most naive approach of simply combining the data and run-

ning classification, this may or may not provide useful results, but approaching the

problem with new methods of pre-processing or analysis may provide evidence that,

given a large enough pool of participant data, a general hypothesis could be made

covering inter-participant classification.

6.3.2 Classifier Optimization

Another area that is touched on, but not very deeply, is the classifiers used. This

work focuses on using out-of-the-box classifiers to determine performance on the three

datasets demonstrated in the above sections, but very little/no optimization was done

on classifier parameters to try to improve classification from a classifier optimization

point-of-view. Even fairly basic and naive methods for testing and improving clas-

sification accuracies such as a brute-force grid search of all parameters may reveal

improvements for these datasets. Additional literature review may help provide fur-

ther insight into the workings of each classifier, providing a greater understanding of

how to improve achieved accuracies.

6.3.3 Boosting/Bagging Optimal Estimators

The two sections discussing boosting and bagging methods for improving classification

rate had a look at determining the number of estimators involved that give the greatest

results. It is not in the scope of this work to try to determine a method for producing

the most optimal number of estimators, but future work could be done to identify

the factors that go into this and to see the best performance per estimator count for

each method and each classifier.
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6.3.4 Input Datasets

As mentioned in Section 5.3, each dataset used in this thesis has its own positives and

negatives with regards to producing more accurate classifications. The CAD dataset

provides averaged data for each sensor to improve combined accuracy, but has a very

low number of samples for classification whereas the CD dataset has the large sample

count that the CAD dataset lacks, but the data is messier than the CAD dataset and

may be a source of confusion in classification. It would be optimal to have a dataset

that has the benefit of large sample size as well as the cleaner data, but without any

of the drawbacks. This may not be possible, but future work could explore methods

of manipulating data to produce the clean, averaged data from the CAD set, but with

the large number of samples from the CD dataset.

6.3.5 Neural Networks

A brief analysis, comparison to previously used classification methods, and discussion

of the application of using neural networks for classifying unaware facial recognition

data was had in Section 4.9. This thesis does not explore using neural networks very

deeply and was used only as a brief comparison. Given the optimistic results, future

work could further the use of neural networks in classifying unaware facial recogni-

tion, potentially surpassing the classification accuracies shown from the classification

algorithms discussed in the analysis in Chapter 4.

6.4 Conclusion

Consumer-grade BCI devices are becoming more and more ubiquitous, and the ap-

plications of these devices need not be only for specific groups such as casual con-

sumers, low-budget researchers, hobbyists, or other users who may be looking for BCI
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equipment at consumer-grade levels. As time goes on, new BCI devices will become

available with less invasiveness, higher quality of recordings, and a more application-

focused design, leading to new applications and uses for a broad spectrum of users.

Consumer-grade devices may also exist to fill a gap in the BCI field where expensive

lab-/medical-grade equipment can’t be used or where they don’t make sense to be

used such as in a mobile lab environment, field research, or the more modern ap-

plication of utilizing wireless EEG devices for day-to-day tasks that expensive and

complicated recording systems would not lend themselves very well to.

To close, a statement which encapsulates and describes the work completed here

in this thesis:

The utilization and combination of consumer-grade BCI devices, mod-

ern machine learning techniques, and new methods for dataset manipula-

tion provide fairly accurate detection and classification of unaware facial

recognitions, and can improve on previous efforts to detect unaware facial

recognition.

Though experimentation and data analysis, it has been found that consumer-

grade BCI devices can be utilized to detect and record unaware facial recognitions

with acceptable accuracy, and that modern machine learning tools can be applied to

the task of classifying these states of recognition. While not as accurate as originally

hypothesized, this work has provided acceptable accuracies to at least act as a proof-

of-concept, and may provide a strong stepping stone for future researchers to build

on and improve techniques for classifying both aware and unaware facial recognition.
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Appendix

1.5 Individual Sensor Results

Tables 1.1 and 1.2 contain the full best-/worst-sensor dataset for all participants. Due

to certain participants having an entire class of data removed during pre-processing,

certain participants had issues with their classification and were removed from the

table. The results have been split into two tables due to their size.

1.6 Combined Sensor Dataset Results

1.6.1 CAD Dataset Participant Results

Table 1.3 contains individual participant results for all sensors used in the CAD

dataset classifications. Due to classes missing in sensors from pre-processing, the

CAD dataset participant count is slightly lower than the CD dataset (31 vs. 37).

1.6.2 CD Dataset Participant Results

Table 1.4 contains individual participant results for all sensors used in the CD dataset

classifications.
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Table 1.1: Each participants best and worst performing sensors for each classifier.

Decision Gaussian K-Nearest Random
Tree Sensor Naive Bayes Sensor Neighbours Sensor Forest Sensor

P00 Best 0.769 AF3 0.615 AF3 0.615 AF3 0.714 AF3
Worst 0.154 F4 0.143 FC5 0.125 FC5 0.133 FC5

P02 Best 0.632 AF4 0.769 F7 0.667 T8 0.667 T8
Worst 0.143 F4 0.154 P7 0.364 AF3 0.286 P7

P03 Best 0.571 T7 0.500 F4 0.609 F4 0.700 O1
Worst 0.267 AF4 0.154 FC5 0.286 T8 0.333 P7

P04 Best 0.625 FC5 0.615 AF4 0.632 P7 0.588 F4
Worst 0.333 T7 0.333 F7 0.333 T7 0.308 O2

P07 Best 0.588 P8 0.909 O2 0.727 O1 0.750 F3
Worst 0.267 F4 0.400 P7 0.400 O2 0.353 T7

P10 Best 0.857 F8 0.800 O2 0.667 FC6 0.727 F8
Worst 0.333 P7 0.286 T7 0.364 O2 0.143 FC6

P12 Best 0.769 F7 0.667 F7 0.667 F7 0.706 F4
Worst 0.182 F4 0.250 FC5 0.250 FC5 0.286 P7

P14 Best 0.769 P7 0.800 O2 0.769 FC6 0.706 F3
Worst 0.364 AF4 0.375 F8 0.500 AF4 0.526 P8

P15 Best 0.706 P8 0.667 T8 0.706 F3 0.833 F7
Worst 0.267 O1 0.200 FC6 0.286 AF4 0.267 T7

P17 Best 0.737 T7 0.750 T8 0.857 O1 0.778 P7
Worst 0.375 AF4 0.444 O2 0.364 F7 0.333 FC6

P18 Best 0.667 FC6 0.588 FC6 0.800 O2 0.636 FC6
Worst 0.143 F7 0.182 FC5 0.154 T7 0.267 AF3

P19 Best 0.625 F7 0.625 O1 0.800 P7 0.700 FC6
Worst 0.286 AF3 0.421 F8 0.471 FC6 0.444 F3

P20 Best 0.857 F7 0.706 F7 0.778 F7 0.636 AF3
Worst 0.286 F4 0.286 T7 0.235 AF4 0.286 T7

P25 Best 0.667 F8 0.824 T7 0.600 O2 0.750 T7
Worst 0.154 T8 0.250 T8 0.267 T8 0.353 AF3

P26 Best 0.750 AF4 0.714 P7 0.667 P8 0.588 AF4
Worst 0.286 O2 0.286 FC5 0.286 FC5 0.182 O2

P28 Best 0.750 O2 0.667 FC5 0.625 FC6 0.737 FC5
Worst 0.267 F8 0.286 T8 0.267 T8 0.308 P8

P31 Best 0.667 T7 0.625 T8 0.706 T7 0.750 P7
Worst 0.250 FC6 0.421 P8 0.400 FC6 0.429 F7

P32 Best 0.778 FC6 0.714 AF3 0.769 AF3 0.706 AF4
Worst 0.154 F8 0.286 F8 0.400 F8 0.182 P7

P33 Best 0.714 FC6 0.824 O1 0.706 O1 0.714 P8
Worst 0.375 AF4 0.154 F8 0.375 F8 0.364 T7

P36 Best 0.667 T8 0.706 T8 0.750 T8 0.632 P7
Worst 0.250 P7 0.250 P8 0.429 FC6 0.353 O2
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Table 1.2: A continuation of Table 1.1

Decision Gaussian K-Nearest Random
Tree Sensor Naive Bayes Sensor Neighbours Sensor Forest Sensor

P41 Best 0.667 F3 0.667 T7 0.667 O2 0.700 P7
Worst 0.286 P8 0.364 T8 0.154 T8 0.333 T8

P45 Best 0.632 O2 0.632 P7 0.706 O2 0.778 F4
Worst 0.167 T8 0.133 T8 0.267 F7 0.375 T8

P46 Best 0.706 F3 0.875 F8 0.933 AF4 0.737 AF3
Worst 0.333 AF3 0.500 FC6 0.286 FC6 0.400 FC6

P47 Best 0.800 F8 0.667 F8 0.667 AF3 0.778 O1
Worst 0.222 P8 0.222 FC6 0.333 F7 0.400 FC6

P48 Best 0.706 F8 0.625 FC6 0.625 O2 0.750 F8
Worst 0.167 F4 0.182 FC5 0.154 O1 0.375 F7

P49 Best 0.667 P7 0.533 P7 0.706 F8 0.750 F7
Worst 0.182 FC6 0.143 FC6 0.154 O2 0.167 FC6

P51 Best 0.714 P7 0.700 O1 0.667 O2 0.667 F4
Worst 0.182 AF3 0.182 FC5 0.267 FC6 0.267 AF3

P52 Best 0.571 P7 0.706 FC5 0.632 FC5 0.667 F8
Worst 0.133 T8 0.167 T8 0.333 P8 0.143 T8

P53 Best 0.737 P8 0.625 P8 0.700 T7 0.778 F4
Worst 0.167 F3 0.133 AF3 0.267 O1 0.250 F8

P54 Best 0.750 T8 0.769 AF3 0.706 O1 0.700 FC6
Worst 0.182 T7 0.200 FC6 0.400 P8 0.353 AF4

P55 Best 0.714 P7 0.750 P7 0.667 P8 0.667 T8
Worst 0.133 F3 0.286 O1 0.267 FC5 0.143 O1

P59 Best 0.615 T8 0.667 T8 0.714 T8 0.571 T8
Worst 0.200 O2 0.143 F7 0.154 F7 0.250 F7

P71 Best 0.667 O2 0.800 FC6 0.750 FC6 0.667 F3
Worst 0.333 F7 0.333 O2 0.308 FC5 0.400 F7

P72 Best 0.800 AF3 0.737 O1 0.706 T7 0.824 T7
Worst 0.167 P7 0.471 P7 0.526 P7 0.375 F7

P73 Best 0.750 P7 0.667 F7 0.625 F7 0.824 AF3
Worst 0.167 F7 0.308 O1 0.353 F8 0.154 P8

P77 Best 0.625 T8 0.875 O2 0.667 O1 0.875 O1
Worst 0.167 FC5 0.200 T7 0.353 T7 0.235 P7

P80 Best 0.857 F7 0.857 F7 0.857 F7 0.857 F7
Worst 0.286 F4 0.308 P7 0.556 P7 0.267 P8
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Table 1.3: Individual participant results for the CAD dataset.

Random ROC Gaussian ROC Decision ROC ROC K-Nearest ROC
User Forest AUC Naive Bayes AUC Tree AUC SVC AUC Neighbours AUC

P00 0.714 0.667 0.800 0.750 0.667 0.583 0.000 0.500 0.800 0.750
P02 0.500 0.500 0.571 0.500 0.545 0.583 0.625 0.500 0.500 0.667
P07 0.800 0.750 0.615 0.583 0.000 0.333 0.000 0.500 0.800 0.750
P10 0.571 0.500 0.545 0.583 0.769 0.750 0.462 0.417 0.625 0.500
P12 0.923 0.917 0.769 0.750 1.000 1.000 0.600 0.667 0.727 0.750
P15 0.714 0.667 0.615 0.583 0.769 0.750 0.545 0.583 0.714 0.667
P17 0.615 0.583 0.667 0.667 0.714 0.667 0.667 0.667 0.615 0.583
P18 0.714 0.667 0.625 0.500 0.615 0.583 0.500 0.500 0.625 0.500
P19 0.769 0.750 0.909 0.917 0.500 0.500 0.667 0.750 0.909 0.917
P20 0.667 0.667 0.000 0.250 0.667 0.667 0.714 0.667 0.667 0.667
P26 0.444 0.583 0.000 0.417 0.667 0.667 0.500 0.500 0.769 0.750
P28 0.769 0.750 0.923 0.917 0.769 0.750 0.857 0.833 1.000 1.000
P31 0.923 0.917 0.923 0.917 0.545 0.583 0.727 0.750 0.800 0.750
P32 0.857 0.833 0.800 0.750 0.857 0.833 0.545 0.583 0.857 0.833
P33 1.000 1.000 0.800 0.750 0.769 0.750 0.615 0.583 0.000 0.500
P36 0.800 0.750 0.400 0.500 0.800 0.750 0.429 0.333 0.667 0.500
P41 0.667 0.750 0.667 0.750 0.600 0.667 0.667 0.750 0.500 0.667
P45 0.727 0.750 0.400 0.500 0.600 0.667 0.625 0.500 0.500 0.667
P46 0.909 0.917 0.571 0.500 0.800 0.833 0.667 0.667 0.750 0.667
P47 0.909 0.917 0.833 0.833 0.667 0.750 0.500 0.667 0.714 0.667
P48 0.250 0.500 0.250 0.500 0.600 0.667 0.250 0.500 0.286 0.583
P49 0.667 0.667 0.545 0.583 0.500 0.500 0.286 0.583 0.923 0.917
P51 0.667 0.500 0.625 0.500 0.500 0.667 0.706 0.583 0.706 0.583
P52 0.800 0.833 0.429 0.333 0.923 0.917 0.667 0.750 0.800 0.750
P53 0.857 0.833 0.444 0.583 0.706 0.583 0.533 0.417 0.615 0.583
P54 0.706 0.583 0.571 0.500 0.667 0.667 0.500 0.500 0.750 0.667
P55 0.923 0.917 0.571 0.500 0.923 0.917 0.667 0.750 0.857 0.833
P59 0.857 0.833 0.714 0.667 0.909 0.917 0.600 0.667 1.000 1.000
P71 0.727 0.750 0.727 0.750 0.727 0.750 0.286 0.583 0.667 0.667
P73 0.667 0.750 0.500 0.500 0.400 0.500 0.500 0.667 0.500 0.500
P77 0.727 0.750 0.571 0.500 0.364 0.417 0.400 0.500 0.625 0.500
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Table 1.4: Individual participant results for the CD dataset.

Random ROC Gaussian ROC Decision ROC ROC K-Nearest ROC
User Forest AUC Naive Bayes AUC Tree AUC SVC AUC Neighbours AUC

P00 0.848 0.860 0.636 0.648 0.819 0.836 0.613 0.500 0.833 0.849
P02 0.657 0.675 0.492 0.523 0.607 0.650 0.000 0.500 0.713 0.741
P03 0.822 0.821 0.650 0.646 0.798 0.800 0.664 0.500 0.890 0.892
P04 0.862 0.868 0.554 0.603 0.753 0.765 0.000 0.500 0.853 0.866
P07 0.594 0.605 0.486 0.564 0.564 0.599 0.608 0.500 0.617 0.616
P10 0.696 0.648 0.573 0.548 0.540 0.557 0.000 0.500 0.658 0.633
P12 0.803 0.779 0.656 0.621 0.682 0.682 0.000 0.500 0.811 0.804
P14 0.733 0.704 0.598 0.560 0.687 0.675 0.000 0.500 0.709 0.714
P15 0.640 0.616 0.573 0.587 0.645 0.643 0.000 0.500 0.633 0.625
P17 0.721 0.690 0.647 0.632 0.626 0.614 0.000 0.500 0.667 0.682
P18 0.620 0.594 0.637 0.636 0.626 0.631 0.649 0.500 0.681 0.699
P19 0.711 0.692 0.565 0.567 0.628 0.656 0.667 0.500 0.634 0.629
P20 0.798 0.788 0.735 0.729 0.705 0.715 0.641 0.500 0.795 0.783
P25 0.543 0.562 0.526 0.591 0.457 0.517 0.561 0.500 0.494 0.565
P26 0.631 0.606 0.531 0.538 0.549 0.539 0.658 0.500 0.624 0.633
P28 0.881 0.872 0.715 0.715 0.867 0.864 0.000 0.500 0.936 0.931
P31 0.827 0.826 0.713 0.723 0.775 0.773 0.659 0.500 0.860 0.866
P32 0.711 0.710 0.687 0.679 0.603 0.590 0.652 0.569 0.701 0.714
P33 0.745 0.725 0.597 0.615 0.644 0.664 0.000 0.500 0.725 0.690
P36 0.775 0.740 0.621 0.602 0.711 0.673 0.605 0.580 0.834 0.816
P41 0.755 0.725 0.622 0.591 0.717 0.699 0.000 0.500 0.850 0.843
P45 0.703 0.683 0.524 0.504 0.655 0.656 0.536 0.504 0.691 0.665
P46 0.837 0.813 0.726 0.709 0.717 0.695 0.000 0.500 0.735 0.734
P47 0.701 0.675 0.446 0.449 0.611 0.605 0.627 0.500 0.725 0.733
P48 0.706 0.664 0.595 0.580 0.613 0.593 0.000 0.500 0.691 0.664
P49 0.834 0.826 0.690 0.679 0.727 0.732 0.663 0.500 0.870 0.866
P51 0.703 0.709 0.589 0.612 0.634 0.636 0.000 0.500 0.752 0.741
P52 0.763 0.758 0.658 0.664 0.714 0.727 0.000 0.500 0.854 0.862
P53 0.740 0.728 0.495 0.535 0.689 0.670 0.663 0.500 0.732 0.719
P54 0.755 0.738 0.640 0.639 0.578 0.602 0.659 0.500 0.707 0.718
P55 0.833 0.821 0.710 0.718 0.783 0.782 0.662 0.500 0.832 0.839
P59 0.850 0.855 0.566 0.597 0.776 0.776 0.000 0.500 0.872 0.870
P71 0.788 0.769 0.625 0.556 0.670 0.653 0.000 0.500 0.735 0.727
P72 0.796 0.799 0.562 0.579 0.591 0.611 0.617 0.500 0.713 0.704
P73 0.765 0.749 0.627 0.634 0.710 0.720 0.000 0.500 0.769 0.763
P77 0.686 0.667 0.604 0.624 0.594 0.603 0.642 0.500 0.715 0.720
P80 0.832 0.828 0.721 0.717 0.815 0.823 0.663 0.486 0.910 0.901
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1.7 Neural Network

Table 1.5 contains all participants’ classification accuracies using the neural network

as described in Section 4.9.
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Table 1.5: Full individual classification F-scores using the neural net as described in
Section 4.9

Participant F-Score

P00 0.750000
P02 0.516556
P03 0.792899
P04 0.645161
P07 0.491228
P10 0.559140
P12 0.747573
P14 0.617801
P15 0.619883
P17 0.649746
P18 0.626506
P19 0.550265
P20 0.726257
P25 0.517647
P26 0.544379
P28 0.893617
P31 0.820809
P32 0.627907
P33 0.579545
P36 0.767677
P41 0.662857
P45 0.620000
P46 0.751323
P47 0.596273
P48 0.610837
P49 0.729282
P51 0.523256
P52 0.839378
P53 0.500000
P54 0.684783
P55 0.836957
P59 0.836957
P71 0.618421
P72 0.623377
P73 0.747475
P77 0.601093
P80 0.879310
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