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Abstract

Differences exist between the two upper limbs in the chosen motor control strategy when

moving in dynamic environments. To date, a large body of literature has explored these differences but

few studies have incorporated neurophysiological data to support their findings. By utilizing

somatosensory evoked potentials (SEPs) we can gain insight into the underlying neurological processes

at the levels of the spinal cord and the cortex in response to movement and motor learning. The

research conducted showed greater accuracy in the non-dominant limb following a novel tracing task.

This was complimented by differential SEP peak amplitudes in the pathways that reflect cerebellar

activation and sensorimotor integration. Additionally, the research also showed that when motor task

acquisition occurs in the presence of sensory perturbations, the non-dominant limb is more accurate

than a control group and there are differential changes in peaks reflecting the primary somatosensory

cortex and the cerebellum
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Key Terms

Adaptation: A change or the process by which an organism becomes better suited to its
environment

Feedback: The modifications or control of a process by its results or effects.

Feedforward: A command issued by the system preceding action.

Handedness: The tendency to use either the right or the left hand more naturally than the
other.

Impedance Control: A method of control that specify the amount of force around a mechanism
imposed by the environment.

Laterality: The dominance of one side of the brain in controlling particular activities or
functions, or one of a pair of organs such as the hands.

Motor learning: The result of complex processes in the brain in response to practice or
experience in a skill that cause synaptogenesis in the cortex.

Predictive Control: A method of control that plans all aspects of the control program prior to
the activation of the program.

Sensorimotor Integration: The ability of the nervous system to integrate different types of
sensory stimuli and transform them into motor actions.

Somatosensory Evoked Potentials: A non-invasive test to measure incoming sensory
information at various levels of the CNS using peripherally evoked electrical stimulations.

Transcranial Magnetic Stimulation: A non-invasive test used to determine the excitability and
functionality of the motor pathways in the CNS using magnetically generated electrical
stimulations above the motor cortex.
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Introduction to Thesis

Motor control underlines how we interact with the world. Performance is often

determined by how well we can adapt our motor system to the task or goal directed behavior.

From studying how we interact and adapt to the world, asymmetries begin to arise with respect

to our upper limbs, specifically in the control strategies they utilize. These strategies differ

between the dominant and non-dominant arm. These finding have begun to explain the

lateralized patterns of movement that characterize handedness (Mutha, Haaland, & Sainburg,

2013). Current research has explored the external observations associated with the

asymmetries in motor control (de Oliveira, 2002; Mutha et al., 2013; R. Sainburg & Kalakanis,

2000; Schabowsky, Hidler, & Lum, 2007; V Yadav & Sainburg, 2011; Vivek Yadav & Sainburg,

2014). These various studies have shown that our dominant arm relies on pre-planned and

predictive mechanisms, while the non-dominant arm optimizes movement based on impedance

control and reactive mechanisms.

The need to further understand not just external motor control patterns, but to explore

the internal connectivity of the central nervous system (CNS) is the subject of this research. In

the literature SEPs has been shown to provide a direct measure of brain activity following

motor learning (D Andrew, Haavik, Dancey, Yielder, & Murphy, 2015; Danielle Andrew, Yielder,

& Murphy, 2015; E. Dancey, B. Murphy, D. Andrew, & P. Yielder, 2016a; Dancey, Murphy,

Srbely, & Yielder, 2014; E. Dancey, B. A. Murphy, D. Andrew, & P. Yielder, 2016b; Hoshiyama &

Kakigi, 1999). By using this technique, it provides the potential to add to the growing body of

knowledge about the sensorimotor integration pathways the brain utilizes to complete

everyday tasks. This technique has rarely been used in the literature on laterality. The following

research is a pre-post experimental design that attempts to build on previously published work

in the area of laterality and motor control by measuring neurophysiological and performance

differences between the dominant and non-dominant limbs in response to novel motor skill

acquisition. It further compares differences between the two limbs when the motor skill



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

11

acquisition takes place during a sensory perturbation in the form of pain induced by capsaicin

cream. Motor skills are often learned or relearned during conditions of altered sensory input

such as pain or vibration. If there are differences in the way the two limbs acquire these new

skills due to differences in their underlying motor control strategies, it is important to know

this. This research aims to further explore the neurophysiological differences in the

sensorimotor systems that underlie differences in performance between the dominant and

non-dominant upper limbs.
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Objectives

1. Explore the differences (peak amplitude) in early (<50ms.) sensorimotor processing

between the limbs following a novel motor tracing task.

2. Investigate the effects of sensory perturbations on the non-dominant limb with respect

to learning and motor control.

Hypotheses of this Thesis

1. The non-dominant limb will be better at baseline motor performance and the novel

motor tracing task will show differences in early somatosensory processing and

sensorimotor integration differences between the hemispheres.

2. Based on past literature for the dominant limb, that the group performing the novel

motor task in the presence of altered sensory input will be more accurate at motor

training; and the N24 and N30 components of SEPs, which relate to cerebellar pathways

and SMI, will show differential changes in excitability for the non-dominant limb, as

compared to past work using the dominant limb.
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Section 1: Literature Review

Introduction

We achieve most of our movement on a daily basis through dynamic interaction of our

limbs. Whether that be reaching for an object, walking up a flight of stairs or driving a car. The

interaction of our limbs and the environment they are surrounded with has an effect on how

we perform. From studying these interactions, we can see some asymmetries begin to arise in

respect to our upper limbs, specifically in the aspect of motor control. These control

mechanisms differ between the dominant and non-dominant arm, which have also begun to

explain the lateralized motor control that characterize what we call handedness (Mutha et al.,

2013). Current research has explored the external observations associated with the

asymmetries in motor control between limbs (de Oliveira, 2002; Mutha et al., 2013; R. Sainburg

& Kalakanis, 2000; R. L. Sainburg, 2002; Schabowsky et al., 2007; V Yadav & Sainburg, 2011).

These various studies have shown that our dominant arm relies on a predictive mechanism,

movement that is based on previously generated internal models, while the non-dominant arm

optimizes movement based on reflexive and voluntary corrections. Previous studies have found

varying results with respect to neurophysiological differences between limbs (Aziz-Zadeh,

Maeda, Zaidel, Mazziotta, & Iacoboni, 2002; Daligadu, Murphy, Brown, Rae, & Yielder, 2013;

Hoshiyama & Kakigi, 1999). The following review explores differences in these observable,

external mechanisms, and offers commentary on what is known about the neural pathways

that the central nervous system (CNS) uses to conduct these strategies. This review also

summarizes the growing body of knowledge about the sensorimotor integration pathways the

brain utilizes to complete everyday tasks. These tasks often require a combination of sensory

and motor information, and by using Somatosensory Evoked Potentials (SEPs) we can begin to

explore these different sensorimotor pathways in the brain. A combination of the above

techniques is a new territory of exploration for the literature base on laterality and handedness

and provides the chance to further establish a link between hand dominance, lateralization and

the sensorimotor systems in the CNS. In order to provide contextual background for

interpreting asymmetry between the limbs, this literature review initially offers an overview on

motor control theories and applications. It will then discuss known differences in control
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between the dominant and non-dominant limbs, followed by a review of current studies

investigating neurophysiological differences of movement and motor learning, and how these

findings have been applied to the evaluation motor control differences between the dominant

and non-dominant limbs.

Theory of Motor Control

The interaction between our limbs and their environment is a complex form of dynamic

interactions, meaning that our limbs attempt to control the environment that involves

movement (Hogan, 1985). Each limb is classified as its own system inclusive of unique

relationships and patterns of movement involving the joints. This classification was  initially

presented by Bernstein in the 1930’s in a contextual discussion on the degrees of freedom

problem (N. Bernstein, 1966). This classical problem stems from the number of articulations in

a multijoint system requiring constraint and control to produce any given movement and the

chosen motor strategy best suited for it. Much of motor control theory as it is formulated today

originated from the dynamic principles laid out by Bernstein (N. Bernstein, 1966). The aim of his

approach being to identify the various principles of movement coordination, and then apply

them to pattern formation in movement with different properties (Beek, Peper, & Stegeman,

1995).

Movement coordination involves multiple systems with many internal degrees of

freedom, from neural synapses to the joints themselves, and coordinating these requires

adaptable responses and subsequent control by the limbs. Coordination can therefore be

applied beyond the perceived end point of an objective to encompass the systems responsible

for creating the movement, whether that be movements of individual joints, muscle activation

or neural input (Shenoy, Sahani, & Churchland, 2013).

Dynamic systems (Williams, Davids, & Williams, 1999), adapted from engineering

principles, is one of the current post Bernstein theories used to explain movement. In dynamic

systems, movements are described as being created from processes that self-organize based on

the biological and physical system constraints of the task. Coordination has largely been

described as a dynamic system (Beek et al., 1995; Bressler & Kelso, 2001; Kelso, 1997) where the
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ability to coordinate both limbs to achieve one goal, or separate goals, is demonstrated to be a

dynamic system of varying complexities. This indicates that there must be underlying neuronal

structures and musculoskeletal interactions able to respond in a dynamical way to create

complex, coordinated movement patterns. Contextually, the function and connectivity of some

of these neural substrates are able to be measured through analysis of CNS activity.

Crucial to this review is the incorporation of a behavioural framework that includes a

cognitive aspect, whereby movements are generated and modulated in the central nervous

system. Schema theory is one of the predominant theories of control of movement (R. Schmidt

& Lee, 2013; R. A. Schmidt, 2003). In Schema theory an action plan is selected based on the

identification of a sensory input, allowing for a general motor program to be retrieved from

long term memory (R. Schmidt & Lee, 2013). Each general motor program contains a set of

invariant features, which are parts of an action that remain constant. These features make up

movements each time they are performed. One feature that defines an action is the rhythm or

relative timing of the movement (R. Schmidt & Lee, 2013). This feature is essential to the

general motor program, as it contains a set of components that determine the timing of

different movements that make up the action (R. Schmidt & Lee, 2013). The other components

that are thought to be invariable are the relative force, which is the proportional force between

muscles, and the order of events for each movement, which is the order of muscular

contraction. Taken together these three invariant features create an output motor command

that is stable, and forms the generalized motor program that defines an action (R. Schmidt &

Lee, 2013). Crucial to the output of a motor program is the decision of how to execute the

program, which is defined by the characteristics that are assigned to the motor program that do

not influence the invariant features (termed the parameters) of the motor program (R. Schmidt

& Lee, 2013). These parameters include the speed and amplitude of the movement (i.e.,

absolute timing and absolute force) as well as the selection of which limb to use. Once the GMP

is selected the specific parameters are added before the commands are sent to the peripheral

nervous system. The importance of this theory is it accounts for faster movements, where

many previous theories postulated that interaction alone (i.e., sensory feedback) generated

differences in movements. However, a purely sensory feedback approach to movement is very
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slow, and unable to account for these faster actions like GMP theory does. One drawback of

GMP theory is that it does not account for variability in movements, in that if movements are

organized prior to completion, there is no clear basis for completing the same task multiple

ways (R. A. Schmidt, 2003).

Other relevant theories to this thesis, are the forward and inverse models of motor

control (Harris & Wolpert, 1998; Miall & Wolpert, 1996; Wolpert, Ghahramani, & Jordan, 1995).

Forward models predict the next movement based on the previous or current movements,

similar to that of the GMP theory mentioned above (R. A. Schmidt, 2003). Inverse models invert

the system and match up current and desired position, and generate motor commands based

on this (Wolpert & Kawato, 1998). Forward models specifically have been used to explain

various aspects of movement such as the outcome of an action, anticipated actions and plan

future actions based on the current or previous action (Wolpert et al., 1995). Systems that rely

on real-time sensory feedback to complete movements often do not become more accurate, as

sensory feedback is delayed and could require additional attentional resources, interfering with

movement smoothness and accuracy rather than improving it (Shadmehr, Smith, & Krakauer,

2010). By building accurate forward models, the motor system can account for differences in

the planned motor program and the movements that follow, as with many movements the

body as well as the environment can change (Shadmehr et al., 2010). The benefit to forward

models is that they can be used to produce calibrated movements, as well as help the body

learn the dynamics of the body itself and the world surrounding it (Shadmehr et al., 2010).

Forward models are similar to the theory of feedforward control discussed in later sections of

this review, as well as Schema theory mentioned above. The similarities between all three

theories is that they all hypothesize the existence of a pre-formed movement template, that is

edited to fit the demands of the task at hand, prior to actually executing the movement. The

similarities between these three major theories, indicates that a forward models are likely to be

an important component of understanding how the CNS controls movement.

The motor control of bimanual movements, which are often more complex than

unimanual movements, has generated theories of motor control which incorporate many

systems of the body (de Oliveira, 2002). This interaction is taken one step further, in which the
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introduction of a kinematic chain model was used to explain coordination of the limbs (Guiard,

1987). This model states that the limbs are represented by motors in a system. This model

makes two assumptions; the first is that the two hands and their respective systems of motor

control and regulation represent complimentary yet discrete systems that interact in nature in

order to create motion. The second is that the two motors cooperate as if they were assembled

in series (Guiard, 1987). This was proven in right-handers that were allowed to follow their

preferences in movement. It was seen that the right hand articulated its movements with the

left hand, suggesting an organization that these motors were assembled in series, being able to

work together (Guiard, 1987). Complexity arises however when tasks that are deemed

bimanual and asymmetric, dictate that the limbs work together to complete a task but achieve

it differently. It is suggested that though the limbs appear to  behave differently, it is possible

that  the control scheme is similar but the expression of movement and its application is

different (Guiard, 1987). This claim is supported when looking at a bimanual asymmetric action,

the movement performed by the non-dominant hand always seems to preclude the action by

the dominant, in that we often initiate support or positioning of the object before we

manipulate it. This suggests both the limbs utilize similar movement patterns, but the goal or

application of them is different (Guiard, 1987). At present, the evidence for these speculations

is based on physical observation and a theoretical framework with a mathematical basis.

Understanding differences in the linkages between internal somatosensory structures through

neurophysiological recordings would provide empirical data to increase our understanding of

the neural mechanisms underlying the control differences.

Adaptations as a Form of Motor Control

The earliest understanding of human movement, specifically upper limb movement was

developed by Bernstein as explained by Latash & Turvey (1996). They explained the process of

learning and the early stages of adaptation from childhood. Around 3 months children begin to

perform reaching movements. These movements are often “wobbly” and unorganized with a

pattern that follows several acceleration and deceleration phases (N. A. Bernstein, Latash, &

Turvey, 1996). This is similar to early learnings of a new task regardless of age. When we start
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to see improvement in this pattern, we not only see an increase in accuracy but a change in the

motor pattern as a whole. This suggests that there is a change in movement organization in the

brain and that this reorganization results in the development of “dynamic postural control” (N.

A. Bernstein et al., 1996). This enables the person to move their arm smoothly because of an

increase in the ability to adapt and predict changes. Bernstein considered that movements

must always contain a central impulse (a feedforward command) as well as a feedback

component, this observation evolved into the a closed loop theory of movement control and

regulation (N. Bernstein, 1966).

More recent work integrating biomechanics and kinematics to explore the same

processes has contributed data to further understanding of movement control. Scheidt et al.,

(2000) conducted a study to investigate the interaction between the dominant arm and a

dynamic environment produced by a robotic arm. They measured adaptation processes using

dynamic and kinematic variables. When the participants were allowed to make kinematic errors

they learned and developed an adaptation strategy much quicker. When they were not allowed

to do this and the robot arm stopped them, the learning process was much slower. This infers

that the kinematic errors associated with learning are crucial to the body’s adaptation of motor

control (Scheidt et al., 2000). Furthermore, Todorov & Jordan (2002) stated that this

mechanisms discussed previously, is the result of an optimal feedback loop the arms use in the

presence of variance. It was shown that the optimal strategy for adaptation was to allow for

variability in the task (Todorov & Jordan, 2002). This is done by allowing the participants to

make errors that are relevant and irrelevant to the task itself. These errors force the body to

adapt using feedback mechanisms and forces it to correct only those deviations that interfere

with the task goals (Todorov & Jordan, 2002). This not only shows the process of motor learning

but it also shows early stages of specific adaptation strategies to motor control. In addition to

this it can be seen in cerebellum research that the learning process is dependent on this

feedback mechanism. Kitazawa et al., (2002) showed that during random walking, in which the

steps were randomly determined based on the previous step, that the adjustments seen were

not just in the mean error, but also served to reduce the variance in that error over the course

of the learning process. This same thing was observed in the previous studies with respect to
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the upper limb. The correction process that took place over the adaption period reduced not

only the number of errors, but also the variability of the errors due to the over shoot or

undershoot of the desired target (Kitazawa, 2002; Scheidt et al., 2000; Todorov & Jordan,

2002).

Optimization refers to the process of learning to do something, then learning to do it

better and more efficiently. This is a key component of motor control. This was shown in the

studies mentioned previously where the arms gradually get better at the reaching task with the

robotic arm (Scheidt et al., 2000; Todorov & Jordan, 2002). Optimization occurs when the limbs

begin to perform more efficiently than the previous attempts. Emken et al., (2007) showed that

motor adaptation can be modelled using a general view of minimizing the energy cost of the

activity. The authors postulate that the learning dynamics are a process achieved by an

optimization of error and effort. This infers that the resulting adaptation the limbs undergo is a

result of the CNS reducing the errors initially and then beginning to reduce the cost of the

activity to make it the most efficient (Emken et al., 2007). By adapting the previous trial to the

trial being performed currently, the limbs begin to gradually optimize the movement regardless

of the environments interaction with it.

Motor control patterns observed in the early developmental and early expressive stage

of the movement differ from those seen slightly later in the learning process and consequently

adaptive processes of movement expression. The optimization process initially begins with a

large number of errors. These errors gradually reduce and then the process migrates to a more

efficient method and observable expression that eventually integrates the use of anticipatory

mechanisms. This feedforward system has been shown in the dominant limb by Milner and

Franklin (2005). The study consisted of a novel reaching task, and was done in sets of three

trials in the presence of a velocity-dependent force field. When comparing the first, second and

third trials there was two different adaptation patterns that emerged. The first was a feedback

process by which the arm was corrected using a reflexive and voluntary mechanism (Milner &

Franklin, 2005). This mechanisms is indicative of the previously mentioned patterns by which

the initial way the CNS learns is by reducing the number of errors. The second pattern is more
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of a feedforward mechanism, by which the limb begins to anticipate the effects of the force

field by increasing muscle activation and changing the muscle activation patterns (Milner &

Franklin, 2005). This shows that the CNS creates an internal model of the environment in which

it uses to anticipate the effects of the force field and adapt the movement accordingly. The

combinations of these two control mechanisms explains how the limb learns to react and adapt

to a changing environment.

Lateralization

Seminal work in lateralization of neural function (Broca, 1861, 1863) initiated study of

the topographical and functional regions of the cerebral cortices. From these early beginnings

research began to explore the lateralized preferences that humans exhibit in motor control.

Handedness as a theory has prevailed and is a classical formulation that has been under

investigation since this time. One of the contemporary questionnaires developed as a

measuring tool to identify the degree of “handedness”, is the Edinburgh Handedness scale

(Oldfield, 1971) and this questionnaire is routinely adopted in many current studies. However,

present studies look to further expand the concept of hand dominance to understand the

asymmetrical organization of human motor control systems (R. Sainburg & Kalakanis, 2000; R.

L. Sainburg, 2002; R. L. Sainburg & Duff, 2006). Through handedness the development of

lateralized motor control strategies emerges, in which the dominant hand is commonly used for

more complicated tasks. In the early literature, these different motor control strategies were

discussed in the context of observable performance differences between hands as the result of

the task demands.

Most of the more skilled movements involving our upper limbs involve both the left and

right hand (Guiard, 1987). Guiard (1987), as stated earlier, suggested that the arms themselves

can be related to motors, or systems that work to control and produce movement. Additionally,

they cooperate with one another as if they were assembled in series which allows for the

formation of an internal kinematic chain (Guiard, 1987). This model was early in the theory of

lateralization and there are some inconsistencies associated with it. The first is that the internal

complexity of the upper limb systems (neural connections, muscle connections, ligaments etc.)
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is ignored in the proposed model. The second is that there is no relation to the hemispheres or

the cortex and the roles that they play, though this is early in the literature. Identifying and

investigating these gaps could lead to a more thorough understanding of the mechanisms

underlying lateralization of limb control.

The different hemispheres of the brain communicate via various pathways during

unimanual tasks, and relay different dynamics of a given task to each other (size, weight etc.)

(Gordon, Forssberg, & Iwasaki, 1994). However, in relation to motor control, we begin to see

the asymmetries more clearly. For example, differences are seen when a right-hand dominant

individual tries to write a sentence with their left hand. The motor pattern, though familiar, is

much more complicated to execute. Gordon et al., (1994) demonstrated that during precision

grip, the dominant hand stored relative information of the weight and force required to

execute the movement, and the non-dominant hand adapted this information to a similar task,

though not perfectly. This asymmetry is an example of lateralized motor control, where we see

similar patterns executed but with different levels of coordination and accuracy. A similar

principle is seen when comparing learning generalization between the limbs. Criscimagna-

Hemminger et al., (2003) showed that generalization of motor patterns occurs more easily from

dominant to non-dominant hand. This is indicative of the ability of the limbs to communicate.

However, if the non-dominant arm is trained initially, then generalization does not transfer to

the dominant arm. This means that the learned dynamics of the task are stored in the dominant

hemisphere and is applicable to both sides, where as any information the non-dominant side

retains is only relevant to that side (Criscimagna-Hemminger et al., 2003).

Lateralized Adaptation Strategies for Motor Control

Previous studies that involved adapting to a novel dynamic environment were only

applied to the one limb. Where the asymmetries begin to arise is when we look at the non-

dominant hand compared to the dominant hand. Multiple studies have shown that there is a

noticeable difference between the limbs and the adaptation strategies they imply to achieve

movement (Mutha et al., 2013; R. L. Sainburg, 2002; Schabowsky et al., 2007; V Yadav &

Sainburg, 2011; Vivek Yadav & Sainburg, 2014). The difference arise from the implication of
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different strategies that are similar to those proposed by Milner & Franklin (2005) (eg.

predictive mechanisms and impedance control mechanisms). However, the difference is that

the altered strategies are not just seen in the early and late stages of motor learning but

between limbs. Schabowsky et al., (2007) found that when comparing limb adaptation to a

novel dynamic environment produced by a robotic arm, the non-dominant arm relies on muscle

impedance control more so than the dominant arm. This infers that in order to correctly

compensate, the non-dominant arm reacts in a reflexive manor to keep the arm in a neutral

position. This coincides with work done by Milner & Franklin (2005) in which the initial

mechanism used by the limbs to adjust was a reactive and voluntary one. Additionally, the

aftereffects, the distance the movement continues after the removal of the dynamic

environment, suggested that the dominant arm relied more so on a reactive measure as these

aftereffects were much larger in the dominant than the non-dominant (Schabowsky et al.,

2007). The larger aftereffects are indicative of the use of anticipation because since the brain is

predicting the force field to continue, when it is suddenly removed, the planned pattern it

already has initiated is no longer valid, thus the large aftereffects. Contrary to this, it has been

suggested that the dominant arm-hemisphere system was better at assimilating and processing

in proprioceptive feedback and integrating it into an appropriate response (Roy, 1983).

However, more recently this has been disproven in a study demonstrating that in right-handed

dominant individuals the dominant arm relies on a predictive, feedforward system that

assimilates internal models generated from previous tasks, while the non-dominant arm

integrates muscle activation (impedance control) and aims for reflexive positional stability,

functioning as complimentary feedback system (Mutha et al., 2013)

Another theory proposed by Yadav & Sainburg (2011) suggests that asymmetries may

also be explained as a result of the relative time it takes to switch from a predictive system to a

system that relies on impedance control or muscle activation. This infers that movements are

initiated by predicting  the environments effect and then switches to a control scheme that

reacts to the feedback from the environment (V Yadav & Sainburg, 2011). This also coincides

with an earlier study that suggests that interlimb differences are a product of the dynamic

dominance hypothesis. It states that the factor that distinguishes the dominant and non-



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

24

dominant arm is the ability of the arm to integrate inertial dynamics (R. L. Sainburg, 2002).

Combining these two studies we see a similar pattern to previously mentioned studies. The two

hypotheses are similar in the sense that they contain different control schemes for the

respective limbs, and that there is some level of feedback and feedforward response associated

with movement. Further exploration into these concepts reveals possible therapeutic

application of such a theoretical model. It has been shown in patients who have suffered from

stroke, that the resulting lost motor pattern is different between limbs. Damage to the right-

hemisphere tends to show positional accuracy deficits, while left-hemispheric damage leads to

deficits in trajectory (R. L. Sainburg & Duff, 2006). Additionally, there is suggestion of

differential neural control mechanisms that are distinct to each limb, however there is no

specific method for determining which came first, the asymmetric use of the limbs, or the

differential neural control strategies (R. Sainburg & Kalakanis, 2000).

Neurophysiological Differences in Laterality

The laterality trend is also evident in studies investigating corticospinal pathways.

Transcranial magnetic stimulation (TMS) can be used to provide a measure of motor cortex

excitability. Daligadu et al., (2013) used TMS to measure the excitability of the dominant and

non-dominant motor hemispheres. The non-dominant hemisphere of both left and right

handed individuals was found to be more excitable at rest as measured using TMS stimulus

response curves of the first dorsal interosseous (FDI), an intrinsic hand muscle. This suggests

that the resting excitability levels of the two hemispheres are different, and that the previously

mentioned asymmetries seen in the reaching task may correspond to differences in internal

representation and excitability of the area of the motor cortex innervating the muscles being

studied (Daligadu, Murphy, et al., 2013). This also fills in the second gap of most models of

lateralization as it incorporates the cortices, and what was at first a theoretical framework,

becomes fleshed out with neurophysiological data.

Not only are the motor pathways lateralized, but the integration from the sensory

system also impacts this lateralized model. Aziz-Zadeh et al., (2002) demonstrated that during

action observation, the motor cortex is activated in contrast to the sensory information
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displayed. During demonstration of a right handed movement, the left motor cortex was more

excitable following TMS stimulation, and during left handed demonstration the right motor

cortex was more excitable (Aziz-Zadeh et al., 2002; Aziz‐Zadeh, Iacoboni, Zaidel, Wilson, &

Mazziotta, 2004). This confirms that there are anatomical differences in the internal cortical

representation between the two hemispheres which correspond to laterality of function.

The link between somatosensory and sensorimotor integration and adaptation

strategies were explored in a comprehensive review authored by Desmurget and Grafton

(2000). This review explored the likely basis of feedback and feedforward systems in the brain

and explored the possible structures associated with them. Evidence of sensorimotor loops

within the posterior parietal cortex (PPC), at the area of the intraparietal sulcus (IPS), and the

cerebellum in the literature suggest the use of both feedforward and feedback control

mechanisms associated with all of these structures (Desmurget & Grafton, 2000). These loops

rely on a feedforward model that integrates the sensory inflow and motor outflow to

understand and examine the consequence of the motor commands utilized by the limbs, and

allows the command to unfold with the guidance of internal and external feedback (Desmurget

& Grafton, 2000). This is known as a “hybrid model” as it incorporates both feedback and

feedforward control paradigms. Interestingly, the suggestions of more current literature

(discussed above) contradicts this by stating the independent use of feedback and feedforward

in adaption to the left and right limbs respectively. By developing techniques that compares the

limbs and integrates the cortex into the equation, we can develop a new framework that shows

where the basis of laterality comes from and why the asymmetries are seen.

Overview of Somatosensory Evoked Potentials

The somatosensory system is an important integrated system to consider with respect

to cortical asymmetry and motor control. Somatosensory Evoked Potentials (SEPs) have been

used in the evaluation and observation of both the central and peripheral nervous systems

(Cruccu et. Al, 2008). A somatosensory evoked potential is a measured response to a controlled

peripheral stimulation (Cruccu et al., 2008). Measurement of the peak to peak amplitude of the

SEP, at various latencies provides a way to measure changes in cortical excitability at the
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corresponding neural generator of that peak. It is commonly used in the literature in response

to an intervention such as a motor training task, as changes in early SEP peak amplitudes are

seen when comparing pre-task and post-task measurements. (Andrew, Yielder & Murphy, 2015;

Andrew et. Al, 2014; Dancey et. Al, 2014; Brown & Staines, 2015).

Two key characteristics of SEPs are latency and amplitude. From the various recording

sites, peaks emerge either deflected upwards (denoted by a N) or downwards (denoted by a P)

and are marked by a number following the letter to represent the latency (Cruccu et al., 2008).

The amplitude correlates to the level of activity at that specific neural pathway and the latency

indicates the time from the point of stimulation to activation of a given neural generator. The

“nominal” latency reflects the approximate timing of given SEP peaks at specific points along

the somatosensory pathway (Cruccu et al., 2008; Kimura & Yamada, 1980). Stimulations are

given between 0.1-0.2ms square wave pulses over the peripheral nerve (Cruccu et al., 2008).

Frequencies of the stimulations should be 2.47Hz, and 4.95Hz (Fujii et al., 1994; H Haavik &

Murphy, 2013). Recording electrodes are placed peripherally, centrally (over the spinal cord)

and cortically, keeping with IFCN recommendations (Cruccu et al., 2008). Peripheral

information is recorded at the level of the brachial plexus of the stimulated arm, with the

electrode placed posterior to the clavicle and as medial to the sternocleidomastoid as possible

without placing directly over top of the muscle (Cruccu et al., 2008). Spinal information is

recorded over C5 which was landmarked by starting from C7 and locating the ascending spinous

processes. Cortical electrodes are measured from the vertex of each participant. The frontal

electrode is measured 6cm forwards and 2cm contralateral to the stimulated hand, as this site

has been found to be the optimal location to record the N30 SEP peak (Rossi et al., 2003). The

parietal electrode is placed 20% of the subject’s tragus to tragus measurement contralateral,

and 2cm posterior. Each of the sites should be properly cleaned prior to electrode placement

with abrasive gel and alcohol. For the purposes of this review only short latency SEPs are

discussed as they are less susceptible to cognitive changes (Cruccu et al., 2008).

The peripheral site measures the N9 peak. This peak is used as a peripheral measure of

the incoming sensory information into the central nervous system as it is thought to be the

peripheral pathway close to the brachial plexus (Desmedt & Cheron, 1980). This peak is used as
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a quality assurance peak whereby any deviation in this peak amplitude greater than ±10% is not

included in the data (D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et al., 2016a;

Dancey et al., 2014). Following the peripheral peak we reach the central N11 peak and the N13

peak. These peaks represent the ascending sensory input arriving and entering the spinal cord

(Desmedt & Cheron, 1980; Mauguiere et al., 1999). The N18 peak (recorded from the frontal

cortical site (Rossi et al., 2003)) represents the activation in the brainstem, with generators in

the dorsal column medial lemniscus and inferior olives (Manzano, Negrao, & Nóbrega, 1998;

Sonoo, Sakuta, Shimpo, Genba, & Mannen, 1991). The N20 is the first cortical peak (measured

from the parietal site) and represents activation of the primary somatosensory cortex (S1)

(Mauguiere et al., 1999; Nuwer et al., 1994). This peak is often shown to have role in motor

learning acquisition (Danielle Andrew et al., 2015; Dancey et al., 2016a). The N24 peak has been

hypothesized to reflect the pathway between the cerebellum and the primary somatosensory

cortex (S1) (Restuccia, Marca, Valeriani, Leggio, & Molinari, 2007; Waberski et al., 1999). The

P25 peak represents an area of neurons in Brodmann’s area 1 and area 3b (Mauguiere et al.,

1999; Rossini, Gigli, Marciani, Zarola, & Caramia, 1987). The final peak of interest for short

latency SEPs is the N30. The N30 has been localized in recent literature to prefrontal and frontal

areas of the cortex (Lelic et al., 2016) but earlier studies have found sources in the basal ganglia

and motor cortex (A.-M. Cebolla, Palmero-Soler, Dan, & Chéron, 2011; Kaňovský, Bareš, &

Rektor, 2003). This peak is often labeled as the sensorimotor integration peak (Rossi et al.,

2003) and a growing body of literature has demonstrated changes in this peak in response to

altered SMI (Danielle Andrew et al., 2015; Dancey et al., 2016a; Dancey et al., 2014). In

combination these peaks provide insight to multiple levels and areas of early sensorimotor

process, and are an ideal tool for the evaluation of movement and motor learning.

Somatosensory Evoked Potentials as a Technique for Measuring

Neurophysiological Data about Movement

Sensorimotor integration is a topic commonly associated with SEPs as there is a link

between the two systems visible in SEP peak recordings (Dancey et al., 2014; Passmore,

Murphy, & Lee, 2014). It has been shown following a motor learning task that SEP peaks show

plasticity in the nervous system (D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

28

al., 2016a; Dancey et al., 2014; Passmore et al., 2014). This infers that after the learning process

has occurred, there is a change in the wiring of the somatosensory system. If the control

strategies utilized by the limbs are learned from environmental interaction, then there should

be visible changes in SEP peaks as well. Similar learning is seen in the cerebellum following a

pursuit task, which is a task known to be highly dependent on cerebellar function (Danielle

Andrew et al., 2015). This is important because the adaptation tactics used by the limbs when

adapting to a novel dynamic environment seem to stem from learned traits about the task. This

is implied by the previous studies which looked at the control strategies not only early in the

learning process but shown between limbs (Milner & Franklin, 2005; Mutha et al., 2013; R.

Sainburg & Kalakanis, 2000; R. L. Sainburg, 2002; Schabowsky et al., 2007; V Yadav & Sainburg,

2011). By utilizing a motor learning task we can induce bottom up neuroplastic changes

associated with learning of new skills (Dayan & Cohen, 2011; Doyon & Benali, 2005). Assuming

these control patterns are learned through adaptation to the environment, whether it’s the

differential application of a similar pattern or different motor patterns all together, we will be

able to see SEP peak differences within the cortex. By using SEPs, this is a non-invasive and

accurate way to observe the effect of motor learning within the cortex, and analyze the findings

(Passmore et al., 2014).

Movements performed by the dominant and non-dominant hand can be skilled or

unskilled. The differences in these movements were observed by Hoshiyama and Kakigi (1999)

using SEPs to examine the potential differences between unskilled and skilled movement of the

dominant and non-dominant hand, in left- and right-handed individuals. By having their

participants perform a writing task with both their left and right hand, they were able to

compare any differences in SEP peaks during the movements. It was shown that though there

was no differences in peak amplitude based on participant’s handedness, there was a decrease

in the dominant and non-dominant peak amplitude during writing (Hoshiyama & Kakigi, 1999).

This indicates that as a result of the difference in skill level of the limbs at performing the task

there is a difference in SEP peaks. This is important as it begins to show differences in

somatosensory integration in the hemispheres during specific skill-level based tasks. The

challenge with a writing task is that it favours the dominant limb. To understand inherent
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difference in sensorimotor integration between the limbs, it is necessary to utilize tasks that are

equally novel for both the dominant and non-dominant hand. In a TMS study, it was found that

significant learning was observed in the dominant hand using a pursuit tracing task, and that

the resulting change in the cortex was a decrease in cortical excitability (L. Holland, Murphy,

Passmore, & Yielder, 2015).

Though SEPs have rarely been applied to analysis of upper limb SMI, using SEPs for work

involving the upper limb is relatively straightforward. The brain is divided into hemispheres and

there is constant communication between them. Cardoso de Oliveira (2002) suggested a

crosstalk model associated with inter-hemisphere communication. It states that in order to

initiate bimanual movements the limb-hemisphere systems must interact with each other to

achieve the best outcome. This model is suggestive of a sensorimotor feedback loop, and is

shown in practical use in an aforementioned study testing precision grip (Gordon et al., 1994).

Since SEPs are known to be a measure of the somatosensory system, and the theories related

to limb adaptation differences similarly converge on a sensory motor feedback/feedforward

system, the potential for SEPs to reflect these asymmetries is high. Additionally, it has been

shown that brain activity can directly show the influence of motor based errors, mostly in the

cerebellum and frontal cortex (Nadig, Jäncke, Lüchinger, & Lutz, 2010). This is important as SEPs

will be able to show differences in peaks as a result of the learning done by the limbs in

adaptation to their environments.

Another application for SEPs is to observe the level of sensory processing. A study by

Brown & Staines (2015b) used SEPs to observe changes in frontal lobe sensory processing. The

results indicated that there was no reduction in SEP frontal peaks following an exercise that had

participants use spatial attention, regardless of the sensory input. However, there was a

significant reduction in peak amplitude in the task that had the participants typing following

vibration and median nerve input. This indicates that there is a level of sensory processing or

filtering that occurs in the CNS ahead of movement, and was reflected in the SEPs peak data

(Brown & Staines, 2015a). The same type of process can be seen using an externally applied

pain stimulus. It was shown by Rossi et al. (2003) that the sensory processing changes during

muscle pain. This was determined using SEPs following an injection into the muscle belly of a
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distal extremity muscle. Accompanying the significant differences in SEP peaks, the position

sense of the finger was also distorted. This indicates that the sensory processing was affected

by the sensation of pain (Rossi et al., 2003). This was also shown in a combination study that

looked at painful stimuli, SEPs and motor learning (Dancey et al., 2016a; Dancey et al., 2014).

The participants were asked to perform a motor learning task which was a tracing task, after

having capsaicin cream placed on the elbow over their median nerve. The results showed that

there was not only a difference in the learning of the participants, but there also was a

significant difference found in the SEP peaks. This indicates that these peaks are a good

indicator of the sensorimotor integration changes that accompany pain and motor learning

(Dancey et al., 2016a; Dancey et al., 2014). This compliments with previously listed studies

showing the effectiveness of SEPs to display electrical activity and allow the researchers to

analyze it.

Most recent work uses whole head electroencephalogram (EEG) to analyze brain activity

in motor control and learning studies. The benefit of combining SEPs and whole head EEG is the

ability to get an idea of brain activity across the whole head at the specific time points

necessary to evaluate the evoked potentials. It has been shown in a recent study by Lelic et al.,

(2016) which used whole head EEG to localize the effect of spinal manipulation on the

sensorimotor integration of the CNS, that following spinal manipulation there was not only an

increase in sensorimotor integration but a change in the sources contributing to the N30 peak

(Lelic et al., 2016). A similar methodology has been used across a wide range of studies

exploring separate techniques but ultimately they use SEP peaks to evaluate the plasticity of

the brain as a result of a given intervention. The ability of SEP peaks to reflect these changes

provides an excellent technique with which to explore the possible differences in sensorimotor

integration as well as sensory processing present within the limbs and how they may differ as a

result of handedness.

Conclusion

Though the behavioral framework involving dominant and non-dominant differences in

motor control is well studied, there is a need for a much deeper understanding of the
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neurophysiological differences and mechanisms underpinning these motor control strategies. It

has been shown that the dominant arm uses a predictive and anticipatory control scheme while

the non-dominant arm uses a reflexive and voluntary pattern that uses impedance control to

maintain equilibrium (Mutha et al., 2013). This has added to the body of literature by providing

a new way to look at handedness building upon earlier observations done by Oldfield (1971).

However, there are few studies investigating neurophysiological differences. Using tools such as

SEPs provides the opportunity to explore the neural differences associated with limb

adaptation strategies. Since most theories tend to show use of both feedback and feedforward

approaches, sensorimotor integration as well as neuronal connections are likely to be seen. The

potential for SEPs to reflect these changes is considerable based on with contribution to our

understanding of the plasticity of the brain and the inherent sensitivity of SEPs to facilitate

changes in it (D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et al., 2016a; Dancey

et al., 2014). The use of neurophysiological techniques not only contributes to the body

literature but also opens up further opportunities to understand and apply knowledge of the

CNS to various other situations.
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Section 2: Manuscript 1 – Increased accuracy and differential changes in early
somatosensory evoked potentials in response to novel motor training for the
non-dominant hand relative to the dominant hand.
Abstract

Background: The dominant and non-dominant hands have been shown to behave differently

when training in a novel dynamic environment (Mutha et al., 2013), but little is known about

the underlying complimentary neural mechanisms associated with the control mechanisms. It is

postulated that the dominant limb adopts a feedforward mechanism that specializes in creating

an internal model to compensate for external forces while the non-dominant limb adopts a

feedback mechanism that is better at maintaining a consistent and more stable movement

(Mutha et al., 2013). Previous research has shown a greater increase in the slope of a stimulus

response curve for the non-dominant hand of both left and right handed individuals (Daligadu,

Murphy, et al., 2013). This suggests that there may be inherent excitability differences between

the dominant and non-dominant limbs. Early somatosensory evoked potentials (SEPs) (i.e. less

than 50 msec post stimulation) provide a valid, non-invasive mechanism to explore possible

differences in somatosensory processing and sensorimotor integration between the limbs. The

aim of this study was to begin to explore possible differences in early sensorimotor processing

between the right and left hand in healthy right handed participants.

Methods: Two groups of 12 participants (N=24 total) completed a novel motor training task

which involved tracing a sinusoidal wave form varying in amplitude and frequency with

different levels of complexity. SEPs were recorded in response to median nerve stimulation at

baseline and post motor training. One group trained with the dominant hand and the other half

trained with their non-dominant hand. Separate groups were used to avoid any transfer of skill

acquisition between the limbs.

Results: The non-dominant limb showed greater accuracy at baseline, post training and at

retention (24 to 48 hours later) also showing significant different SEP peak amplitudes in the

P22-N24 complex and the P22-N30 complex. The Repeated Measures ANOVA showed a

significant effect of group (Dominant vs Non-dominant) in the P22-N24 complex [F1,22=16.3, p

<0.001] and in the P22-N30 complex [F1,22=18.7, p<0.0001]. Interestingly, these two peaks
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showed opposite directional change in peak amplitude for the two hands, with dominant limb

decreasing in the P22-N24 complex by 30% and, the non-dominant limb increasing 22% post

training. The same was true for the P22-N30 complex, except the dominant limb amplitude

increased by 23% while the non-dominant limb decreased by 25%.

Discussion: These results indicate that there are differences in the early sensorimotor

integration between dominant and non-dominant limbs in response to novel motor training.

These differences may reflect neural differences due to the preferred mechanisms utilized by

each limb when performing movements.

Introduction

The limbs provide us with a dynamic way of interacting with our environment. This

interaction is dependent upon the environment they are operating in and the efficiency with

which the limbs adapt to change. Recent studies have begun to explore possible differences

between the limbs as a result of different adaptation strategies, leading to what is termed

“handedness” (Mutha et al., 2013). Current research has also explored differences displayed by

the limbs adapting to a novel dynamic environment (Goble, Lewis, & Brown, 2006; Mutha,

Haaland, & Sainburg, 2012; Mutha et al., 2013; Schabowsky et al., 2007; V Yadav & Sainburg,

2011; Vivek Yadav & Sainburg, 2014). These studies revealed that the limbs utilized different

control schemes when adapting to the novel dynamic environment. It is well accepted that the

dominant limbs utilizes more of a feedforward mechanism that specializes in creating an

internal model to compensate for external forces while the non-dominant limb utilized more of

a feedback mechanism that is better at maintaining consistent and more stable movements

(Goble et al., 2006; Milner & Franklin, 2005; Mutha et al., 2012, 2013; Schabowsky et al., 2007).

Literature also shows that when completing certain tasks the non-dominant limb is more

accurate at performing the task (Mutha et al., 2013; R. Sainburg & Kalakanis, 2000; Schabowsky

et al., 2007). This is thought to be because of the mechanism it tends to utilize. Impedance

control is normally seen as an inefficient way to complete a task because of the higher cost of

energy to the system, however it generally seen to be more accurate than predictive

mechanisms applied by the dominant hemisphere, as these require accurate representations of



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

41

body and task dynamics (V Yadav & Sainburg, 2011).  These mechanisms support potential

differences between the dominant and non-dominant hemispheres (Broca, 1861, 1863).

It has been shown within the cortex that there are differences in baseline excitability

between the two hemispheres (Daligadu, Murphy, et al., 2013). It was shown in right handers

that their non-dominant limb had was more excitable and the effect was shown in left handers

as well. This baseline excitability difference indicates potential motor pathway asymmetries

that could manifest in the aforementioned strategies of adaptation. The same can be said of

sensory information coming in as it has been shown that participants who observed a right

handed task had activation of the left hemisphere, and activation of their right hemisphere

when observing a left handed task (Aziz-Zadeh et al., 2002). Additionally, there is suggestion of

differential neural control mechanisms that are distinct to each limb, however there is no way

of determining which came first, the asymmetric use of the limbs, or the differential neural

control strategies (R. Sainburg & Kalakanis, 2000). Though this is evidence of underlying

mechanisms that lead to different motor control between the limbs, it has been shown that

learning rates between the limbs are the same (L. Holland, Murphy, B., Passmore, S., Yielder, P.

, In Press). This is important because if the learning process is the same for both the limbs, the

differences in performance reported in the literature may relate to execution of the movement

rather than the learning of it. Overall, this suggests potential wiring differences between the

arm hemispheres systems that may result in observable adaptation strategies.

Somatosensory Evoked Potentials (SEPs) are a technique which has been used to

investigate the integration of sensory and motor stimuli as well as the effects of motor learning

within the cortex (D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et al., 2016a;

Dancey et al., 2014; Haavik-Taylor & Murphy, 2007; Hoshiyama & Kakigi, 1999; Passmore et al.,

2014). Studies have found that changes in SEP peak amplitudes may reflect changes in

processing in specific areas of the brain, which are the “neural generators” of specific short

latency SEP peaks. Changes in various SEP peaks following a pre post measurement protocol

reflect changes in the neural generators as a result of the intervention (D Andrew et al., 2015;

Haavik-Taylor & Murphy, 2007). By utilizing this technique there may be a way to explore the

change in the number or strength of differential synaptic pathways within the cortex following
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motor learning. Changes in SEP peak amplitude have been observed following motor learning

(D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et al., 2016a; Dancey et al., 2014;

Passmore et al., 2014), SEPs and EEG may provide a measure of the changes in synapse number

or strength in these pathways as a result of the learning process (Mehrkanoon, Boonstra,

Breakspear, Hinder, & Summers, 2016). Two of the peaks under close observation are the N30

and the N24. These peaks have been extensively studied in previous literature and have been

hypothesized to reflect changes in sensorimotor integration pathways and the pathways from

the cerebellum to S1 respectively (D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey

et al., 2016a; Dancey et al., 2014; Hoshiyama & Kakigi, 1999; Restuccia et al., 2007; Rossi et al.,

2003; Waberski et al., 1999). Any changes in these two peaks would provide insight into some

of the major processes that may differ between the limbs that lead to different control

strategies.

It is hypothesized in this study that the non-dominant limb will be better at baseline

motor performance, consistent with literature mentioned above and that though the control

strategies differ, the learning will be similar between the dominant and non-dominant limbs. It

is also hypothesized that the novel motor tracing task will show differences in early

somatosensory processing and sensorimotor integration between the hemispheres.

Methods

24 right hand dominant (mean age 20.3yrs ± 1.823yrs) individuals with no known neurological

conditions were recruited to complete the learning paradigm. Each participant was required to

fill out an informed consent form, outlining the details of the study. Following this, a safety

checklist and a handedness questionnaire was used to ensure safe participation in the study.

Ethical approval has been sought and approved from the UOIT ethics committee (REB# 07-072

& 07-073). Subjects were randomly assigned to a group that either had them use their

dominant right hand (Dom) or their non-dominant left hand (NonDom). Groups only completed

the task with one limb to avoid possible interlimb transfer of information.
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Stimulation Parameters
The SEP stimulation protocol consisted of a 1ms duration pulse, delivered at the wrist

over the median nerve. The stimuli were presented in two frequencies of 2.47 Hz and 4.98 Hz

through adhesive skin electrodes. These different frequencies will be used to accurately

differentiate between the N30 and the N24 peaks, as they often overlap each other and at

faster rates the N30 diminishes and the N24 becomes more prominent and easy to measure

(Haavik & Murphy, 2013). Stimulation was delivered at motor threshold, which causes a

noticeable twitch in the abductor policis brevis (APB) muscle of the thumb. Recording of

incoming information was done at the peripheral and cortical levels, as well as the spinal cord

following the guidelines laid out by the International Federation of Clinical Neurophysiologists

(IFCN) (Nuewer et al., 1994). Similar methodology to a previous study (Andrew et al. (2015),

was used.

Stimulation electrodes were placed over the median nerve at the wrist on either the

dominant or non-dominant hand. Peripheral information was recorded at the level of the

brachial plexus of the given arm, with the electrode placed posterior to the clavicle and as

medial to the sternocleidomastoid as possible without placing directly over top of the muscle.

Spinal information was recorded over C5 which was landmarked by starting from C7 and

locating the ascending spinous processes. Cortical electrodes were measured from the vertex of

each participant. The frontal electrode was measured 6cm forwards and 2cm contralateral to

the stimulated hand (Rossi et al., 2003). The parietal electrode was 20% of the subject’s tragus

to tragus measurement contralateral, and 2cm posterior. Each of the sites was properly cleaned

prior to electrode placement with abrasive pads and alcohol swabs.
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FIGURE 1: PERIPHERAL AND SPINAL ELECTRODE PLACEMENT

FIGURE 2: CORTICAL ELECTRODE DIAGRAM
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Task Parameters

The tracing task (motor learning) protocol was run through a custom Leap Motion

software tool (Leap Motion, San Francisco, CA). The task consisted of 4 different sinusoidal

waveforms that are randomly varied in amplitude and frequency, with varying degrees of

difficulty to allow for continuing improvement over time. The easiest trace can be performed

easily by all participants and the most difficult is challenging to all participants with the other

two traces of medium difficulty as described in previous work (D Andrew et al., 2015; Danielle

Andrew et al., 2015; L. Holland et al., 2015; L. Holland, Murphy, B., Passmore, S., Yielder, P. , In

Press). The first block contains four traces and acts as the “pre-test”. The last block also

contains 4 traces and acts as the “post-test” portion. The middle block, the “acquisition” phase,

is the learning portion of the protocol which contains 12 traces. Each trace is made up of dots,

with 500 dots equaling one trace. Participants were asked to replicate each trace as accurately

as possible using the thumb on an external track pad. The traces can only be followed in the

left-right direction, eliminating up and down error. The participants were instructed to use little

to no wrist or elbow action to replicate the trace, utilizing only the abductor pollicis brevis (APB)

muscle.

FIGURE 3: TRACING TASK
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Data Analysis

SEP peak amplitude and the motor learning performance were analyzed separately. The

tracing task software produced data that could be downloaded to Excel™ spread sheets, and

listed percent error and delta values for each trials for each participant. The percent error

represents distance from the dot on the trace, where 100% equals one dot width in distance

away from the template. The delta value represents the direction of error where a negative

number represents favouring the left side, and a positive number represents favouring the right

side. These were averaged per trial for each participant in the pre, post and retention tests and

compared to determine the degree of learning. SEP peak to peak amplitudes were measured

pre and post learning and latency was also checked to determine if there were any changes in

processing time or speed following the motor learning protocol. The peak to peak amplitudes

were normalized relative to the baseline trial to facilitate comparison between groups. Once

normalized, group averages were calculated to measure the proportional changes in pre and

post motor learning SEP peak amplitudes.

Statistical Analysis

All data was tested for homogeneity of variance and skewness to ensure parametric

statistics could be run. In order to investigate the statistical significance of the SEP peak results

a repeated measures ANOVA was used with statistical significance set to 0.05 for repeated

measures and p<.05 for interaction effects. Factors of peak amplitude (pre and post) and of

hand (Dom vs NonDom) were used. It was important that trials included in this study had a

peripheral N9 amplitude change of no greater than ±10%. A change greater than this would

indicate changes in the incoming volley, perhaps due to changes in posture, and a stable

afferent volley is essential when attributing changes in centrally generated SEP peak amplitude

to learning induced plasticity. For the tracing data a repeated measures ANOVA was also used

with statistical significance set to 0.05. For this analysis we compared factors of time (pre, post

and retention) and factors of group (Dom vs. NonDom).
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Results

All of the recruited subjects (N=24) completed the study and were included in the SEP

peak analysis. Upon analysis of latency for each peak, no significant differences in latency were

seen. Statistical analysis of each peak was run using a repeated measures analysis of variance.

Neurophysiological Data

The N11 peak showed a mean increase of 16% (±6%) for the non-dominant hand and a

mean increase of 15% (±5%) for the dominant hand with no significant difference between the

hands. The N13 peak increased by 4% (±13%) for the non-dominant and 18% (±5%) for the

dominant with no difference between hands. The N18 peak increased 1% (±8%) for the non-

dominant, while the dominant hand showed a mean increase of 6% (±9%). The N20 peak

showed a significant increase for both groups (NonDom increase of 13% (±9%), and Dom

increase of 42% (±14%)) [F(1,22)=12.75,p<0.01) with a significant interactive effect [F(1,22)

3.93,p=0.06). The P25 peak increased significantly for both groups (NonDom increase of 3%

(±11%), Dom increase of 26% (±13%)) [F(1,22)=5.19,p<0.05), with a significant interaction

[F(1,22)=3.40,p=0.07).

For the P22-N24 complex, the repeated measures ANOVA showed a significant

interactive effect of group [F(1,22)=16.35, p<0.001]. The non-dominant hand peak increased

by22% (±6%), while the dominant hand showed a mean decreased by 30% (±4%)For the P22-

N30 complex, the repeated measures ANOVA showed a significant effect of group [F(1,22) =

16.89, p<0.0001] with a mean decrease of 26% (±9%) for the non-dominant hand, and a 25%

(±5%) increase for the dominant.
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TABLE 1: SUMMARY OF SEP PEAK AMPLITUDE CHANGES FOR DOMINANT AND NON-DOMINANT GROUPS ± SEM

Group N9 N11 N13 N18 N20 P25 N24 N30

Dom ↑0.003%

(±1%)

↑15%

(±5%)

↑18%

(±5%)

↑1%

(±8%)

↑42%

(±14%)

↑26%

(±13%

↓30%

(±4%)

↑25%

(±5%)

NonDom ↑0.006%

(±1%)

↑16%

(±6%)

↑4%

(±13%)

↑6%

(±9%)

↑13%

(±9%)

↑3%

(±11%)

↑22%

(±6%)

↓26%

(±9%)

FIGURE 4: DOMINANT VS. NON-DOMINANT SEP PEAK AMPLITUDE CHANGE RELATIVE TO BASELINE (DOTTED
LINE) FOLLOWING A NOVEL TRACING TASK. (ERROR BARS REPRESENT SEM. ASTERISKS DENOTE SIGNIFICANT
INTERACTIONS (***=P<.001))
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FIGURE 5: PRE MOTOR LEARNING AND POST MOTOR LEARNING SEP TRACE FOR NON-DOMINANT HAND OF
ONE PARTICIPANT.

Tracing Data

The non-dominant limb was more accurate at pre, post and retention testing points. At

initial testing the non-dominant limb showed an average error of 163.4% (±7.9%) while the

dominant hand group showed an average error of 216.8% (±6.2%). After learning, a post test

measurement showed the non-dominant group to average 135.8% (±7.8%) error, and the

dominant hand group averaged 160.9% (±4.7%). At retention (24-48 hours after) the non-

dominant hand group showed an average error of 117.5% (±4.9%) and the dominant hand

group showed an average error of 142.2% (±3.8%).

The non-dominant group was significantly more accurate at baseline (p<.005) but both

groups significantly increased in accuracy [F(2,44)=25.5, p<0.0001] with no significant

interaction. Pre-planned contrasts showed improvements both baseline to post training

(p<0.0001) and baseline to retention (p<0.0001) overall.
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FIGURE 6: DOMINANT VS. NON-DOMINANT TRACE ACCURACY AT PRE, POST AND RETENTION. ERROR BARS
REPRESENT SEM. ASTERISKS DENOTE SIGNIFICANT INTERACTIONS (***=P<.001)

Discussion

The results of this study show differences in the early sensorimotor processing between

the limbs. The non-dominant limb showed directionally different SEP peak amplitude when

compared to the dominant hand. Additionally, the non-dominant limb was more accurate at

each of the three testing time points (pre, post and retention).

The directional differences in peal amplitude changes between the limbs may be the

result of different neural pathways that reflect a selective way to produce movement. Previous

research has shown that following a reaching task the non-dominant limb seemed to follow a

movement pattern specialized for stability and utilized feedback information more efficiently,

while the dominant limb followed a movement pattern generated from an internal model and

utilized feedforward information more efficiently (Mutha et al., 2013; R. Sainburg & Kalakanis,

2000; R. L. Sainburg, 2002; Schabowsky et al., 2007). The neurological data collected in this

study may support a similar idea.

The N30 peak has been demonstrated to represent activation in the premotor, motor

and prefrontal areas of the cortex (A.-M. Cebolla et al., 2011) and previous literature has source
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localized some of these areas (Lelic et al., 2016). The combination of these areas may suggest a

role in movement planning and sensorimotor integration (Danielle Andrew et al., 2015; Brown

& Staines, 2015b; A.-M. Cebolla et al., 2011). The decrease in the N30 peak for the non-

dominant limb may suggest that the areas associated with sensorimotor integration and motor

planning were less active in the early processing phase when compared to the dominant hand.

It may also represent an increase in inhibition within the pathway as learning occurred. This

would mean that in order to produce corresponding movements, information was inhibited

online, indicative of the use of a mechanism based around impedance control and feedback.

However, the dominant limb showed an increase in peak amplitude following the task. This may

be the result of a decrease in inhibition or an increase in sensorimotor integration and motor

planning areas. Both of these findings are consistent with literature which suggests differences

in control strategies utilized in the limbs (Milner & Franklin, 2005; Mutha et al., 2013;

Schabowsky et al., 2007).

The N24 peak has been hypothesized to reflect activation changes in the neural

pathways between the cerebellum and S1 (Restuccia et al., 2007; Waberski et al., 1999). Based

on this finding, many studies have shown the cerebellum to play an active role in motor

learning (D Andrew et al., 2015; Danielle Andrew et al., 2015; Baarbé et al., 2014; Daligadu,

Haavik, Yielder, Baarbe, & Murphy, 2013; Dancey et al., 2016a; Dancey et al., 2014; Doyon &

Benali, 2005). The results of this study support these findings in that following the motor

learning task, both groups showed changes in the activity of this suggested pathway. The

directional differences were seen in the N24 peak as well. Following the task, the non-dominant

group showed an increase in peak amplitude. This might suggest an increase in cerebellar

inhibition as the cerebellum uses inhibition to learn the motor program demonstrated in the

task. The decrease seen in the dominant hand may reflect a decrease in cerebellar inhibition as

a result of the learning. This finding is supported by previous work showing a decrease in

cerebellar inhibition following motor learning (Baarbé et al., 2014).

It has also been suggested that even though these specializations are present in the

control of each limb, each hemisphere can draw on the others preferred strategy to efficiently

complete movements (Mutha et al., 2013). This is also reflected in the neurological data
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collected in this study. Some of the peaks show similar directional and amplitude changes,

suggesting that the underlying structures that create these peaks are either similar or are

working at similar levels in both hemispheres. Most interestingly, the spinal N11 and N13 peaks

are nearly identical in their amplitude and directional change, meaning that any differences in

structures would be limited to the cortex itself and any information entering would be utilized

the same as these peak represent the peripheral information arriving and entering the spinal

cord.

In regard to the behavioural data, the non-dominant limb was significantly more

accurate at baseline, and showed significant improvement along with the dominant limb

following learning and at retention. These results support findings where the non-dominant

limb was more accurate at performing a task (Mutha et al., 2013; R. Sainburg & Kalakanis, 2000;

Schabowsky et al., 2007; Vivek Yadav & Sainburg, 2014). Though similar results are seen, there

is one contrast between the findings of this study and others that have found similar changes.

The task itself differs from the more gross motor control scheme required by reaching tasks

used in previous work (Mutha et al., 2013; R. Sainburg & Kalakanis, 2000; Schabowsky et al.,

2007; Vivek Yadav & Sainburg, 2014) to the fine motor control required for the tracing task.

Nevertheless the tasks are different and the results being similar suggests a globally adaptable

control scheme (feedforward for the dominant limb, and feedback for the non-dominant limb)

that can be applied to both gross motor movements and fine motor movements. In contrast, it

has been shown that the non-dominant limb was less accurate when completed a similar fine

motor learning task, however this previous study used the first dorsal interosseous muscle (FDI)

as opposed to APB (L. Holland, Murphy, B., Passmore, S., Yielder, P. , In Press). With technology

the way it is in the present day, utilizing a muscle such as APB that is more widely used for

handheld electronics may provide a more “level playing field” for comparing differences in

performance between the limbs.

The greater accuracy seen in the non-dominant hand has a couple of possible

explanations. As previously stated, the non-dominant limb is thought to use a control strategy

that centers around impedance control which generally is an inefficient way to achieve a goal,

however the accuracy of this type of a system is much higher than one that uses more of a
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predictive approach like the dominant limb has been shown to use (V Yadav & Sainburg, 2011).

There is also evidence to suggest the use of both types of control strategies in both of the limbs.

V Yadav & Sainburg (2011) showed that it may not just be the differences in strategies but the

time it takes to switch from one to the other that causes differences in accuracy. Results

showed that both the dominant and non-dominant limb utilized predictive mechanisms at the

onset of movement, however the non-dominant limb switched to the feedback mechanism

earlier than the dominant limb (V Yadav & Sainburg, 2011). Based on these findings, it is

intuitive that the non-dominant limb was more accurate at the task. Whether a mechanism

based on impedance control or feedback is solely utilized, or the delay to switch to it is shorter,

the result is an increase in accuracy for the non-dominant limb.

The other possible explanation for the increase in accuracy seen in the non-dominant

hand has to do with attention and complexity. Challenge point framework states that the level

of functional difficulty of the task leads to difficulty learning (Guadagnoli & Lee, 2004), which

would lead to participants being closer to their optimal challenge point, thus leading to

enhanced learning. Participants may have thought that the non-dominant hand would be

harder or actually found it harder, thus leading to an increase in concentration and attention. In

most cases this increase in attention leads to a greater ability to learn and retain information

required by the task (Wulf, 2007). This would explain the increase in accuracy during the initial

stages of learning. During the later stages in learning the increase in accuracy is still seen,

meaning either the increase attention to or complexity of the task continued throughout each

stage, or once the initial learning was done in this sensitive state, the brain continued to learn

from that initial point as it normally would.

Strengths

Strengths of this study are found in the results showing differential peak amplitudes and

motor performance between the non-dominant and dominant limb. This is one of the few

studies to compare novel learning between the limbs using neurological measures. The results

themselves suggest underlying mechanisms of motor control brought on by differences in early

processing within the brain.
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Limitations

An issue that arose in the planning of this study is how to best compare the differences.

Most studies use the participants as their own control to best account for inter-subject

differences. However, in the literature there is much evidence to support the idea of inter-limb

transfer of information following learning. There is also no concrete evidence as to when this

effect expires, meaning using subjects that have used a different limb, regardless of which limb

performed the task first, might lead to an increase in performance before the task has even

been done. This means that true pretest measurements are harder to show, and in order to

avoid this separate groups were used. However, by using separate groups we cannot use

subjects as their own controls. Future considerations could include prolonged absence from

learning using the other limb at various time points to see how the effects of inter-limb transfer

expire, and then repeating this study when this is known.

Conclusions

The results of this study suggest there may be underlying neurological differences

responsible for performance differences within the limbs. A future direction would be to

observe the non-dominant limb is an environment that has been shown to challenge motor

control and see whether these differences hold true or if it distorts the learning process

completely.
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Manuscript 1 Summary and Reasoning for Manuscript 2

Study one found that that the dominant and non-dominant hand show differential SEP

peak changes following a motor learning task. This was accompanied by an increase in

performance accuracy for the non-dominant hand. This suggests that there are differences in

the neural mechanisms that underlie motor control of the different hemispheres that goes

beyond the utilization of similar motor control mechanisms. One explanation for these findings

is that the neural generators associated with the N30 and the N24 peaks are active at different

levels during motor control. Evidence discussed in study one indicates that the N30 reflects

activity in the pathways within the prefrontal and frontal areas of the cortex that represent

sensorimotor integration. The increased peak amplitude for the dominant hand suggests an

increase in sensorimotor integration during motor control. This would support literature that

suggests the use of a predicative (feedforward) mechanism in the dominant upper limb as there

would need to be constant correcting and integration of different stimuli to complete a motor

command accurately. The decrease in the non-dominant hemisphere might suggest a decrease

in the activation of this pathway, or alternately an increase in inhibition throughout the motor

control process. This would also support literature that speculates the use of a reactive

(feedback) mechanism during motor control in the non-dominant hand as there would be a

greater amount of inhibition needed online to correct as well as learn the motor program.

Evidence suggests that N24 represents activity in the pathway from the cerebellum to

the primary somatosensory cortex. The increased N24 amplitude in the non-dominant

hemisphere might suggest an increase in cerebellar inhibition during motor control, as it

attempts to learn the new motor program needed to complete the task in this study, and the

cerebellum to S1 pathway is inhibitory. The decreased amplitude in the dominant hemisphere

might suggest that there was a decrease in cerebellar inhibition during learning which supports

other studies that have used the dominant hand during motor control. Taken together the

neurological data suggests that there is underlying somatosensory processing differences

during motor control of the dominant and non-dominant arm. This finding provides new
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neurophysiological evidence to understand the mechanisms underlying laterality differences in

motor control.

The rationale for manuscript 2 stems from the findings of manuscript 1 in that the

differential SEP peak amplitudes have suggested neurological differences in motor control

between the limbs. However, does this process change when the limbs are forced to adapt to

altered sensory inputs? This has been done in much of the literature as many of the tasks have

been reaching tasks using a robotic manipulandum to explore differences in the limbs. These

tasks often introduce mechanical perturbations to disrupt the movements of the limbs and

examine adaptation. Since manuscript 1 sought to explore somatosensory processing

differences between the limbs during motor control, the use of a sensory perturbation, during a

similar task might disrupt the findings from above. The chosen method for introducing altered

sensory input is noxious painful stimuli, as this has been shown in the literature to affect motor

learning with the dominant hand. Given that the effects on the dominant hand are known,

manuscript 2 will focus only on motor learning in the presence of pain for the non-dominant

hand, as compared a non-dominant control group which performs the learning task without the

sensory perturbation. Study Two will reveal if there are differences in neural mechanisms

associated with adaptation that are observable in SEP peak amplitudes for the non-dominant

hand as compared to previous reports for the dominant hand. The results of this study will

provide additional insight into differences in motor control underlying hand preference and

lateralized somatosensory processing.
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Section 2: Manuscript 2 – Impact of a sensory perturbation on

somatosensory evoked potentials and motor learning for the non-dominant

hand.

Abstract

Background: When limb movements are perturbed, the system adapts and corrects for these

changes in the task dynamics. The dominant limb tends to favour feedforward control

mechanisms whereas the non-dominant limb favours feedback control in response to motor

perturbations. However, possible asymmetry in response to sensory perturbations have are not

well studied. Early somatosensory evoked potentials (SEPs) (less than 50msec post stimulation)

can be used to investigate the neurophysiological impact of sensory perturbations.

Methods: 19 participants of dominant right handed volunteers were split into two groups. The

intervention group (N=9) which received altered sensation during motor learning in the

presence of cutaneous pain induced by application of capsaicin cream on the lateral aspect of

the left elbow and a control group (N=10) received innocuous control cream. Both groups

completed a novel training task which consisted of a sinusoidal wave, varying in amplitude and

frequency with different complexity levels. Prior to cream application, in the presence of pain,

and after motor training, SEPs were elicited by stimulation of the left median nerve at the wrist.

Each group completed the protocol with their non-dominant (left) hand.

Results: The repeated measures ANOVA showed no significant interactive effects for any of the

SEP peak components. There was a significant increase in N24 amplitude following motor

training for both groups [F(2,34)=5.25, p<0.01]. The behavioural data showed the intervention

group was significantly better at baseline motor training (p<0.01) compared to the control

group. Both groups also significantly increased in accuracy over the course of learning

[F(2,34)=41.04 ,p<0.0001] with pre planned contrasts showing significant improvements from

pretest to post test (p<0.0001)

Discussion: These results indicate that though learning was increased as a result of the sensory

perturbation, these findings did not reflect in the neurological data entirely. There may be
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some evidence to suggest the change in preferred motor control strategy, evident by the

change in N24 following motor training in the intervention group.

Introduction

Movement is our primary tool we use to achieve goal directed behaviours. Often these

movements go uninterrupted and we complete the goal oriented movement. However when

our movements are perturbed, we have to adapt and correct for these changes in the task

dynamics. The ability to maintain control of the upper limb in response to various perturbations

is critical to maintain the speed and accuracy of tasks such as reaching, grasping and fine finger

movements. Several theories have been developed as to how the upper limbs adapt to achieve

correct movements in the face of various perturbations (Criscimagna-Hemminger et al., 2003;

Desmurget & Grafton, 2000; Milner & Franklin, 2005; Mutha et al., 2013; R. Sainburg &

Kalakanis, 2000; R. L. Sainburg, 2002; R. L. Sainburg & Duff, 2006; Schabowsky et al., 2007).

These studies often use mechanical perturbations and measure adaptation in force and

trajectory of upper limb movement. There is evidence to suggest altered patterns of motor

control between the dominant and non-dominant upper limb in relation to these adaptation

processes (Milner & Franklin, 2005; Mutha et al., 2013; R. Sainburg & Kalakanis, 2000;

Schabowsky et al., 2007).

Earlier work largely studied the response to motor system perturbation during reaching

movements with the use of velocity dependent force fields (Milner & Franklin, 2005; R.

Sainburg & Kalakanis, 2000; Schabowsky et al., 2007). These studies measure the change in task

performance in response to a mechanical perturbation in a motor learning paradigm, these

perturbations become learned and are continue to be anticipated for even after they are

removed (Schabowsky et al., 2007). Other literature has studied the use of sensory

perturbations that didn’t directly interact with the musculature of the upper limb, but rather

change the goal of the task by altering sensory input. This can be done by covertly shifting the

starting position of the hand cursor on a screen, when the subject has no view of their limb

(Mutha et al., 2013). When this is done, the limb has to adapt to the change in cursor position

without any feedback directly on the movement. This visuomotor transformation generates the
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use of internal feedback that stems from the altered sensory input. This altered sensory input

can cause a partial proprioceptive recalibration, accompanied by sensorimotor transformations

to accurately adapt (Cressman & Henriques, 2009). This adaptation is suspected to be driven by

the cerebellum, as the mismatch in information needs to be edited online (Tseng, Diedrichsen,

Krakauer, Shadmehr, & Bastian, 2007).

Fine motor control tasks such as typing tasks and pursuit tracing tasks have more

recently been used to explore motor control as well (D Andrew et al., 2015; Danielle Andrew et

al., 2015; Dancey et al., 2016a; Dancey et al., 2014; Dancey et al., 2016b). This work also

explored responses in the cortex by measuring changes in the amplitude of early

somatosensory evoked potentials (SEPs). SEPs in combination with EEG may show changes in

the number or strength of various synapses in the cortex directly related to motor control and

learning (Mehrkanoon et al., 2016). This technique provides a way to explore sensorimotor

integration, a crucial component of movement and adaptation. The N24 and the N30 peak

components of SEPs are hypothesized to reflect the pathway from the cerebellum to S1 and the

activation of sensorimotor integration (SMI) pathways respectively (Lelic et al., 2016; Restuccia

et al., 2007; Rossi et al., 2003; Waberski et al., 1999). Evaluation of these peaks following

movement learning paradigms has been able to provide insight into cortical motor control (D

Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et al., 2014; Passmore et al., 2014).

These studies specifically use a learning paradigm, however this is crucial as the adaptation

process could be considered a learning phase, as the limbs readjust to a new environment.

Having a technique which provides insight into pathways from the cerebellum to sensorimotor

cortex is important due to the role played by the cerebellum in the adaptation process (Tseng

et al., 2007).

Any incoming information that is altered can be considered a perturbation to the

sensory system. This input may be an abrupt, one time stimulus as seen in visuomotor

rotations, or a continuous stimulus. An example of a continuous type or stimulus is input from

acute pain. It has been shown that subjects who experience subclinical neck pain, that is neck

pain that the subject has not sought treatment for, have altered performance of joint position

sense of the elbow (Heidi Haavik & Murphy, 2011). The subjects who experienced recurrent
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pain were worse at accurately replicated joint angles compared to a healthy control. This same

effect was seen in participants whose neck was fatigued prior to testing of joint position sense

(Zabihhosseinian, Holmes, & Murphy, 2015). This shows the impact of mild to moderate levels

of painful or obstructive stimuli to the movement process. Additionally, these findings have

been expanded into movements such as throwing, where the individuals who had recurrent

neck pain showed different throwing kinematics in a dart throwing task as compared to a

healthy controls (Baarbé, 2016). This highlights the importance of the adaptation process

mentioned above in that the painful stimuli has caused a change in the throwing mechanics.

Literature has also combined the use of SEPs with acute experimental pain (Dancey et

al., 2016a; Dancey et al., 2014; Dancey et al., 2016b; Poortvliet, Tucker, & Hodges, 2015). These

studies utilized capsaicin cream to generate a noxious sensory stimuli. This incoming

information may obstruct sensory information traveling towards the CNS during the learning

process and may be treated as a sensory perturbation. Interestingly, these studies showed the

group perturbed by the noxious pain stimuli to be more accurate at the learning task. This

might suggest a heightened adaptation process in the presence of a sensory perturbation.

However, these studies have only explored this effect in the dominant hand, and as previously

mentioned the adaptation processes are different between the limbs with the non-dominant

limb relying more on feedback vs feedforward control. By Measurement of SEP peaks known to

reflect changes in SMI in response to motor learning allows investigation of potential cortical

differences for the non-dominant upper limb between when skills are acquired in the presence

of noxious cutaneous pain.

It is hypothesized based on past literature for the dominant limb that the group

receiving altered sensory input (a noxious pain stimuli) will be more accurate at motor training.

However it is hypothesized the N24 and N30 components of SEPs will show differential changes

in excitability in SEP peaks related to cerebellar pathways and SMI as compared to past work

using the dominant limb. These peak amplitudes are expected to increase to a lesser degree

than for previous work in involving the dominant limb due to the increased reliance of the non-

dominant limb on feedback control (Mutha et al., 2013; R. Sainburg & Kalakanis, 2000).



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

64

Methods

Similar methodology to a previous study done by Dancey et al., (2016a) in the dominant

limb was utilized. 19 right hand dominant (21.1 ± 1.3 years, average handedness score = 66

(Oldfield, 1971)) individuals with no known neurological conditions were recruited to complete

the learning paradigm. Each participant was required to fill out an informed consent form,

outlining the details of the study. Following this, a safety checklist and a handedness

questionnaire was used to ensure safe participation in the study. Ethical approval has been

sought and approved from the UOIT ethics committee (REB# 11-067). Subjects were randomly

assigned to a control group which received a skin cream, and an experimental group which

received a capsaicin based therapy cream. All Subjects completed the learning protocol with

their non-dominant hand.

Somatosensory Evoked Potentials (SEPs) were collected at three different time points to

observe the processing differences before application of whichever cream the subjects were

given, and following the motor training task. Recording electrodes were placed over the

brachial plexus (erb’s point), the C5 spinous process and on the frontal and parietal cortices.

Cortical sites were measured from the vertex of each participants head, with the frontal

electrode being 6cm anterior, and 2 cm contralateral (right) to the stimulated hand (Rossi et al.,

2003) and the parietal electrode being placed at 20% of tragus to tragus measurement

contralateral, and 2cm posterior. Each site received electrode preparation by applying an

abrasive paste to the site which was then wiped with alcohol.

The experimental group had capsaicin cream (0.075% Zostrix) applied to the lateral

aspect of the left elbow. The cream was massaged into the elbow for a 5 minute duration, or

until all of the cream had been absorbed. Participants in the control group had a similar

protocol expect they were given LifeBrand™ lotion instead. Application was followed by a 15

minute absorption time before post-application SEPs were measured.

Stimulation Parameters

Pulse parameters were set to 1ms in duration, delivered at 2 different frequencies

(2.47Hz and 4.98Hz). These different frequencies enable differentiation between the N30 and
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the N24 peaks, as past work has shown that the faster rate enables the N24 peak be visualized

at the N30 diminished in size at faster stimulation rates (H Haavik & Murphy, 2013). The

stimulations were delivered over the median nerve at the wrist with the anode proximal.

Intensity of the stimulation was determined by motor threshold, which elicited a slight twitch of

the thumb APB muscle. Information was recorded peripherally and centrally using electrodes

placed over the brachial plexus, C5 spinous process as well as a frontal (6cm anterior of Cz, 2 cm

contralateral) and parietal electrode (20% of tragus to tragus measurement contralateral from

Cz and 2 cm posterior) on the scalp. Locations used matched guidelines laid by the International

Federation of Clinical Neurophysiologists (IFCN) and that of studies which were following similar

protocols (D Andrew et al., 2015; Danielle Andrew et al., 2015; Dancey et al., 2014).

Task Parameters

Subjects completed a pursuit tracing task run through a custom Leap Motion software

tool (Leap Motion, San Francisco, CA).  Each testing day consisted of 3 separate blocks of

training. A pretest which consisted of 4 traces, an acquisition phase in which the participants

learned the parameters of the task consisting of 12 traces, and a post-test consisting of 4

traces. Any given trace was 1 of 4 pre-sets that were randomized so that no trace was expected.

The traces consisted of 500 dots and varied in frequency and amplitude. Participants were

required to pursue the trace on an external track pad using their thumb. To avoid any

confusion, participants were locked on the screen to a horizontal plane of movement so even if

their thumb drifted vertically it would not register on the screen. Participants were also

required to avoid the use of any wrist, elbow or shoulder movement. Following the combined

20 traces participants were then brought back 24-48 hours following to do a retention day that

consisted of 4 randomized traces. Both groups completed this day in the absence of their

learning conditions (capsaicin cream or skin cream).

Pain Rating Score

Subjects were asked to identify the intensity of painful sensation prior to cream

application, following cream application (following the 15 minutes to allow the cream to set in)

and following the motor training task. This was done using a Numeric Pain Rating scale (NPRS)
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participants were asked to identify their pain rating on a 0-10 scale. The NPRs was shown to be

reliable in the measurement of different types of pain, making it an appropriate tool for this

study (Chapman et al., 2011; Mintken, Glynn, & Cleland, 2009). Use of it will give evidence of

the impact of the sensory perturbation given to the intervention group.

Data Analysis

Analysis of the data included SEP peak amplitude and the motor learning data. The

tracing task was measured as averaged percent error per dot, whereby 100% was equal to one

dot length in either direction from the target location. These were averaged for each

participant in the pre and post motor acquisition and post retention and compared to

determine the degree of learning. For the SEP results, peak to peak amplitude were used to

measure change in activity following cream application and following motor acquisition. SEP

peak latencies were also measured to determine if any of the interventions changed the timing

of early sensory processing. The peak to peak amplitudes were normalized to pre-intervention

amplitude for each peak for each participant.

Statistical Analysis

All data was tested for homogeneity of variance and skewness to ensure parametric

statistics could be run. A repeated measures ANOVA with group (Intervention vs control cream)

and time (pre-application, post-application and post-training) as factors was used to measure

changes in in response to motor acquisition. Pre-planned contrasts to baseline were used to

determine which intervention(s) lead to significant changes in SEP peak amplitude. Trials were

only included where the peripheral N9 amplitude was within ±10% of baseline, as a change

greater than this could indicate changes in the incoming sensory volley, which would impair the

ability to attribute changes in later SEP peaks to central changes. For the tracing data a

repeated measures ANOVA with group (intervention vs control) and time (pre, post and

retention) as factors was used. Statistical significance set to 0.05 for all tests.
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FIGURE 7: STUDY 2 METHODOLOGY FLOW CHART

Results

Neurophysiological Data

Peak to peak amplitude was measured before motor training, following application as

well as following motor training. SEP measurement following application allowed for

measurement of the possible impact of pain itself. 19 of the 22 subjects completed the study

and were included in the analysis of neurological and accuracy data. One subject was excluded

due to N9 variance greater than 10%, the other two were excluded due to unaccountable noise.

Latencies of each of the peaks were measured and no significant differences were found.

Pre SEPs
Measurements Baseline NPRS

Aplication of Either
Control Cream or

Intervention Cream

15 Minute wait to
ensure cream sets in

Post Application
NPRSPost Application SEPs

Motor Training Task Post Training NPRS Post Training SEPs
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FIGURE 8: NON-DOMINANT SEP TRACE FOR INTERVENTION GROUP

The control group showed an increase of 15% (±21%) following application and an

increase of 8% (±19%) following training for the N11 peak. A decrease of 19% (±11%) following

application and a decrease of 7% (±11%) following training for the N13 peak. A decrease of 3%

(±6%) following application and an increase of 21% (±15%) following training for the N18 peak.

An increase of 2% (±7%) following application and an increase or 3% (±13%) following training

for the N20 peak. A decrease of 9% (±6%) following application and an increase of 2% (±7%)

following training for the P25 peak. An increase of 14% (±10%) following application and an

increase of 44% (17%) following training for the N24 peak. As well as an increase of 9% (±3%)

following application and an increase of 5% (±8%) following training for the N30 peak.

The intervention group showed an increase of 10% (±10%) following application and an

increase of 13% (±6%) following training for the N11 peak. An increase of 12% (±41%) following

application and a decrease of 10% (±14%) following training for the N13 peak. An increase of

4% (±6%) following application and an increase of 11% (±17%) following training for the N18

peak. An increase of 12% (±10%) following application and an increase or 40% (±19%) following

training for the N20 peak. An increase of 16% (±16%) following application and an increase of

16% (±18%) following training for the P25 peak. A decrease of 3% (±6%) following application
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and an increase of 10% (13%) following training for the N24 peak. As well as a decrease of 1%

(±8%) following application and an increase of 7% (±15%) following training for the N30 peak.

TABLE 2: SUMMARY OF SEP PEAK AMPLITUDES FOR INTERVENTION AND CONTROL GROUPS ± SEM
(**=P<0.01)

Intervention Control

N9 Post Application Post Training Post Application Post Training
↓5% ± 5% ↓2% ± 2% ↑4% ± 2% ↑5% ± 3%

N11 Post Application Post Training Post Application Post Training
↑10% ± 10% ↑13% ± 6% ↑15% ± 21% ↑8% ± 19%

N13 Post Application Post Training Post Application Post Training
↑12% ± 41% ↓10% ± 14% ↓19% ± 11% ↓7% ± 11%

N18 Post Application Post Training Post Application Post Training
↑4% ± 6% ↑11% ± 17% ↓3% ± 6% ↑21% ± 15%

N20 Post Application Post Training Post Application Post Training
↑12% ± 10% ↑40% ± 19% ↑2% ± 7% ↑3% ± 13%

P25 Post Application Post Training Post Application Post Training
↑16% ± 16% ↑16% ± 18% ↓9% ± 6% ↑2% ± 7%

N24
**

Post Application Post Training Post Application Post Training
↓3% ±6% ↑10%± 13% ↑14% ± 10% ↑44% ± 17%

N30 Post Application Post Training Post Application Post Training
↓1% ± 8% ↑7% ± 15% ↑9% ± 3% ↑5% ± 8%

There was significant increases in peak amplitude for the N24 peak [F(2,34)=5.25,

p<0.01]. Preplanned contrasts showed significant increases in amplitude from pre training to

post training for both groups (p<0.05). The N20 peak showed an increase in amplitude

approaching significance [F(1,32)=2.67,p=0.08) with pre planned contrasts approaching

significance from pre training to post training (p=0.07). No significant interactive effects were

seen between the groups for any of the SEP peak measures.
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FIGURE 9: INTERVENTION GROUP’S PEAK AMPLITUDE FOLLOWING A NOVEL TRAINING TASK RELATIVE TO
BASELINE (DOTTED LINE) (ERROR BARS REPRESENT SEM.)

FIGURE 10: CONTROL GROUP’S PEAK AMPLITUDE FOLLOWING A NOVEL TRAINING TASK RELATIVE TO BASELINE
(DOTTED LINE) (ERROR BARS REPRESENT SEM.)
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Accuracy Data

Both groups showed an increase in accuracy as a result of learning. The intervention

group showed 102% (±5.3%) error during the pre-testing phase, 81% (±4.5%) during the post-

test and after the retention test the average error was 79% (±3.9%). For the control group had

124% (±6.8%) error at baseline, 85% (±3.6%) error following the post-test and 89% (±5.4%)

error at retention. The intervention group was significantly more accurate at baseline learning

(p<0.01) compared to the control group. Both groups also significantly increased in accuracy

over the course of learning [F(2,34)=41.04 ,p<0.0001] with pre planned contrasts showing

significant improvements from pretest to post test (p<0.0001)

FIGURE 11: ACCURACY OF INTERVENTION AND CONTROL GROUP FOLLOWING A NOVEL TRACING TASK. ERROR
BARS REPRESENT ±SEM. (**=P<0.01, ***=P<0.0001)

NPRS scores

NPRS scores were obtained on a scale of 0 to 10, with 10 being the worst sensation they

could imagine. At baseline measurements the intervention groups reported no sensation.

Following the application and setting time the group averaged a score of 2.72 (±1.8) and

following motor training this then decreased to 1.66 (±1.1). None of the participants in the

control group reported any pain at any stage of the protocol.
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Discussion

The results of this study showed that a sensory perturbation delivered via noxious

painful stimuli increases accuracy of a training task. The intervention group also showed

differences in the N20 peak and the control group showed changes in the N24 SEP peak with no

difference in the N30 component for either group contrary to our hypothesis.

The intervention group showed a significantly more accurate baseline test (completed in

the presence of pain) as compared to the control, keeping with previous literature (Dancey et

al., 2016a). A possible reason for the increase in accuracy might be that the sensory

perturbation caused the participants to be closer to their optimal challenge point. This would

enhance the learning process as a result of more resources being devoted to the task

(Guadagnoli & Lee, 2004). Increased attention may play a role in this as well as the intervention

group seemed to retain information better, which is often seen as attention increases (Wulf,

2007). Another possible explanation for this increase in accuracy has to do with the chosen

motor control pattern of the non-dominant hand. The non-dominant limb usually chooses a

motor control strategy that is based around impedance control and reactive mechanisms

(Mutha et al., 2013; R. Sainburg & Kalakanis, 2000; Schabowsky et al., 2007). By providing

sensory perturbations, we may have increased the amount of sensory feedback into a feedback

system, allowing for more detailed control of fine movements. This coincides with one of the

larger peak changes from the intervention group, the N20. The N20 has been shown to reflect

the initial activation of the primary sensory cortex (Buchner et al., 1995; Emerson, Sgro, Pedley,

& Hauser, 1988; Valeriani et al., 1998). The increase in sensory information from the sensory

perturbations may have elicited this response, and with the increase in accuracy it would

suggest an increase in sensory feedback into a feedback oriented system. Although there was

no significant increase, this increase is contrary to previous work which used a similar

perturbation technique for the dominant limb (Dancey et al., 2016a). The authors found no

increase in the N20 in the intervention group following application or following motor training,

and an increase following motor training for the control group, where we saw the opposite

effect. This finding may suggest that early somatosensory processing in S1 may be lateralized,

with differences in control strategies reflected in early somatosensory processing.
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One of the peaks under close observation in this study was the N24 peak as it has been

shown to change in past work using the dominant limb (D Andrew et al., 2015; Dancey et al.,

2016a; Dancey et al., 2014). This peak is hypothesized to reflect the pathway from the

cerebellum to S1 (Restuccia et al., 2007; Rossi et al., 2003). In the control group a 44% increase

was seen following the training task. This increase might reflect an increase in inhibitory output

from the cerebellum to S1 following learning. Interestingly the intervention group did not show

similar changes. The group that received the sensory perturbations did show an increase in

peak amplitude but to a much smaller extent that the controls. This finding is similar to the

previous study which utilized similar disruptive stimuli in that no change in the intervention

group was seen for the N24 (Dancey et al., 2016a). The author’s hypothesis was that this type

of stimulus might actually negate the changes that occur. Another possible explanation for this

might be that since the cerebellum detects and corrects for errors in movement (Doyon,

Penhune, & Ungerleider, 2003), the greater baseline accuracy of the intervention group may

have decreased cerebellar activity. Whether this is due to increased attention or other factors is

unclear, since the initial error was so low for the intervention group, the cerebellum would not

have had as many corrections to produce, leading to a decrease in cerebellar activity. This is

consistent with literature that suggests as task performance increases, cerebellum activity

decreases (Doyon et al., 2003). This decrease in activity is seen in other studies which used a

similar task, but tested the dominant hand (Danielle Andrew et al., 2015; Baarbé et al., 2014).

Therefore it is speculated that the sensory perturbation delivered in this study actually caused a

shift in the program utilized by the non-dominant hand to one that is similar to the dominant

hand in that internal models are generated and as learning continued since there was such a

high sensory input to start, the need for cerebellar input decreased (Mutha et al., 2013; R.

Sainburg & Kalakanis, 2000; Schabowsky et al., 2007).

The N30 peak, is suggested to represent activity in sensorimotor integration pathways

(Rossi et al., 2003; Valeriani et al., 1998; Waberski et al., 1999). More recent work has localized

the N30 to the frontal and prefrontal areas of the cortex (Lelic et al., 2016). Studies which used

similar tasks saw changes in the N30 peak which would reflect increasing level of sensory motor

integration (SMI) (Danielle Andrew et al., 2015; Dancey et al., 2016a), however we did not see
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this to the same extent. In both of our groups there were slight increases in the peak amplitude

following the training task but these were not significant. This does suggest an increase in SMI

following the task and follows a trend from previous work using similar sensory perturbations

(Dancey et al., 2016a). One possible explanation for this is that due to the nature of the task,

there may have been a gating effect on the N30 peak. Literature has shown that opposing

movements of the thumb or hand ”gate” or attenuate the N30 peak (A. M. Cebolla et al., 2009;

Kaňovský et al., 2003). This gating effect during these finger movement has been hypothesized

to originate from the motor cortex (Waberski et al., 1999).  Another reason might be that the

task itself is too simple. With technology the way it is today, the use of both thumbs is much

more common, meaning the level of complexity needed to change SMI may not have been

reached in this task.

The rate of learning was slightly different between the groups. The intervention group

began with 102% error and decreased to 81% at post-test measurements. The control group

decreased from 124% to 85% in the same time. The control group made more errors initially

but learned better from the task. In a previous study using a similar task except using a different

intrinsic hand muscle (first dorsal interosseous) of the dominant hand there was a similar drop

from around 170% to 140% (L. Holland et al., 2015). This would suggest that the control group

learning was similar to that of other controls who experienced no altered sensory input.

An important question to ask is whether sensory perturbations delivered via painful

stimuli strong enough to perturb the sensory system. Based on the outcome of this study the

results are mixed. No significant interactive effects were observed for any of the SEP peaks. This

might suggests that unlike visuomotor rotations, the change in sensory stimulus was not strong

enough to elicit a true perturbation to the system (Mutha et al., 2013). This reflects in the

scores of the NPRS where the intervention group only achieved a rating of 2.72 out of 10 prior

to motor training. The effect may not of lasted long enough either, since following motor

training the group average was down to 1.66 out of 10. However it has been reported that a

change in 2 points on the NPRS represents clinically meaningful changes (Childs, Piva, & Fritz,

2005). This differs from a previous study by Dancey et al (2016) which showed average NPRS

ratings of 4 following application and 3 following training. The level of pain in the present study
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appeared to be strong enough to increase learning, as seen by the increased accuracy, but not

strong enough to promote neurological changes that have been seen to accompany this

increase in performance (Dancey et al., 2016a; Dancey et al., 2014). The cream itself was

applied over the lateral aspect of the left elbow as opposed to the working APB muscle of the

left hand. This was done to avoid interrupting the working muscle and to ensure the task itself

did not cause the participants pain. This may explain why some of the effects were not as large

as previous studies involving the dominant hand.

Strengths

The major strength in this study is its one of the first of its kind to utilize a pain induced

perturbation to the non-dominant hand. This study keeps with other literature in that

perturbations cause an increase in accuracy, and also sheds new light on to the understanding

of the nervous system in response to a new type of perturbation.

Limitations

A major limitation to this study is sample size and it is quite likely that type II errors

occurred as a result of this. Some datasets had unstable peripheral conditions (N9 variance

greater than ±10%) and had to be excluded. The application of the cream causes the movement

of the upper arm away from the baseline recording position more often than with other

protocols. This increases the likelihood of the N9 peripheral volley being disturbed, despite

careful repositioning. Future work should consider restraining the arm during the application

process to avoid any unnecessary movements of the arm.

Conclusions

The results of this study may suggest that perturbations evoked by painful stimuli are

enough to stimulate learning and increase accuracy. However, they appear to be too weak to

elicit significant changes in processing within the cortex. Future research should look to

increase the level of sensory perturbations and observe the effects following movement and

motor training.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

76

References

Andrew, D., Haavik, H., Dancey, E., Yielder, P., & Murphy, B. (2015). Somatosensory evoked

potentials show plastic changes following a novel motor training task with the thumb.

Clinical neurophysiology, 126(3), 575-580.

Andrew, D., Yielder, P., & Murphy, B. (2015). Do pursuit movement tasks lead to differential

changes in early somatosensory evoked potentials related to motor learning compared

with typing tasks? Journal of neurophysiology, 113(4), 1156-1164.

Aziz-Zadeh, L., Maeda, F., Zaidel, E., Mazziotta, J., & Iacoboni, M. (2002). Lateralization in motor

facilitation during action observation: a TMS study. Experimental brain research, 144(1),

127-131.

Aziz‐Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor

facilitation in response to manual action sounds. European Journal of Neuroscience,

19(9), 2609-2612.

Baarbé, J. (2016). Subclinical Neck Pain alters Upper Limb Kinematics during Dart Throwing.

Paper presented at the Satellite Symposium of the Canadian Association of

Neuroscience Toronto, Canada.

Baarbé, J., Yielder, P., Daligadu, J., Behbahani, H., Haavik, H., & Murphy, B. (2014). A novel

protocol to investigate motor training-induced plasticity and sensorimotor integration in

the cerebellum and motor cortex. Journal of neurophysiology, 111(4), 715-721.

Beek, P., Peper, C., & Stegeman, D. (1995). Dynamical models of movement coordination.

Human Movement Science, 14(4), 573-608.

Bernstein, N. (1966). The co-ordination and regulation of movements. The co-ordination and

regulation of movements.

Bernstein, N. A., Latash, M. L., & Turvey, M. (1996). Dexterity and its development: Taylor &

Francis.

Bressler, S. L., & Kelso, J. S. (2001). Cortical coordination dynamics and cognition. Trends in

cognitive sciences, 5(1), 26-36.

Broca, P. (1861). Sur le principe des localisations cérébrales. Bulletin de la Société d"

Anthropologie, 2, 190-204.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

77

Broca, P. (1863). Localisation des fonctions cérébrales: Siége de langage articulé. Bulletin de la

Société d’Anthropologie, 4, 398-407.

Brown, M. J., & Staines, W. R. (2015a). Modulatory effects of movement sequence preparation

and covert spatial attention on early somatosensory input to non-primary motor areas.

Experimental brain research, 233(2), 503-517.

Brown, M. J., & Staines, W. R. (2015b). Somatosensory input to non-primary motor areas is

enhanced during preparation of cued contraterlateral finger sequence movements.

Behavioural brain research, 286, 166-174.

Buchner, H., Adams, L., Müller, A., Ludwig, I., Knepper, A., Thron, A., . . . Scherg, M. (1995).

Somatotopy of human hand somatosensory cortex revealed by dipole source analysis of

early somatosensory evoked potentials and 3D-NMR tomography.

Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(2),

121-134.

Cebolla, A.-M., Palmero-Soler, E., Dan, B., & Chéron, G. (2011). Frontal phasic and oscillatory

generators of the N30 somatosensory evoked potential. Neuroimage, 54(2), 1297-1306.

Cebolla, A. M., De Saedeleer, C., Bengoetxea, A., Leurs, F., Balestra, C., d'Alcantara, P., . . .

Cheron, G. (2009). Movement gating of beta/gamma oscillations involved in the N30

somatosensory evoked potential. Human brain mapping, 30(5), 1568-1579.

Chapman, J. R., Norvell, D. C., Hermsmeyer, J. T., Bransford, R. J., DeVine, J., McGirt, M. J., &

Lee, M. J. (2011). Evaluating common outcomes for measuring treatment success for

chronic low back pain. Spine, 36, S54-S68.

Childs, J. D., Piva, S. R., & Fritz, J. M. (2005). Responsiveness of the numeric pain rating scale in

patients with low back pain. Spine, 30(11), 1331-1334.

Cressman, E. K., & Henriques, D. Y. (2009). Sensory recalibration of hand position following

visuomotor adaptation. Journal of neurophysiology, 102(6), 3505-3518.

Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., & Shadmehr, R. (2003). Learned

dynamics of reaching movements generalize from dominant to nondominant arm.

Journal of neurophysiology, 89(1), 168-176.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

78

Cruccu, G., Aminoff, M., Curio, G., Guerit, J., Kakigi, R., Mauguiere, F., . . . Garcia-Larrea, L.

(2008). Recommendations for the clinical use of somatosensory-evoked potentials.

Clinical neurophysiology, 119(8), 1705-1719.

Daligadu, J., Haavik, H., Yielder, P. C., Baarbe, J., & Murphy, B. (2013). Alterations in cortical and

cerebellar motor processing in subclinical neck pain patients following spinal

manipulation. Journal of manipulative and physiological therapeutics, 36(8), 527-537.

Daligadu, J., Murphy, B., Brown, J., Rae, B., & Yielder, P. (2013). TMS stimulus–response

asymmetry in left-and right-handed individuals. Experimental brain research, 224(3),

411-416.

Dancey, E., Murphy, B., Andrew, D., & Yielder, P. (2016a). Interactive effect of acute pain and

motor learning acquisition on sensorimotor integration and motor learning outcomes.

Journal of neurophysiology, 116(5), 2210-2220.

Dancey, E., Murphy, B., Srbely, J., & Yielder, P. (2014). The effect of experimental pain on motor

training performance and sensorimotor integration. Experimental brain research,

232(9), 2879-2889.

Dancey, E., Murphy, B. A., Andrew, D., & Yielder, P. (2016b). The effect of local vs remote

experimental pain on motor learning and sensorimotor integration using a complex

typing task. Pain, 157(8), 1682-1695.

Dayan, E., & Cohen, L. G. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3),

443-454.

de Oliveira, S. C. (2002). The neuronal basis of bimanual coordination: recent

neurophysiological evidence and functional models. Acta psychologica, 110(2), 139-159.

Desmedt, J. E., & Cheron, G. (1980). Central somatosensory conduction in man: neural

generators and interpeak latencies of the far-field components recorded from neck and

right or left scalp and earlobes. Electroencephalography and clinical neurophysiology,

50(5), 382-403.

Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast

reaching movements. Trends in cognitive sciences, 4(11), 423-431.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

79

Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of

motor skills. Current opinion in neurobiology, 15(2), 161-167.

Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal

and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252-

262.

Emerson, R. G., Sgro, J. A., Pedley, T. A., & Hauser, W. A. (1988). State‐dependent changes in

the N20 component of the median nerve somatosensory evoked potential. Neurology,

38(1), 64-64.

Emken, J. L., Benitez, R., Sideris, A., Bobrow, J. E., & Reinkensmeyer, D. J. (2007). Motor

adaptation as a greedy optimization of error and effort. Journal of neurophysiology,

97(6), 3997-4006.

Fujii, M., Yamada, T., Aihara, M., Kokubun, Y., Noguchi, Y., & Matsubara, M. (1994). The effects

of stimulus rates upon median, ulnar and radial nerve somatosensory evoked potentials.

Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 92(6),

518-526.

Goble, D. J., Lewis, C. A., & Brown, S. H. (2006). Upper limb asymmetries in the utilization of

proprioceptive feedback. Experimental brain research, 168(1-2), 307-311.

Gordon, A. M., Forssberg, H., & Iwasaki, N. (1994). Formation and lateralization of internal

representations underlying motor commands during precision grip. Neuropsychologia,

32(5), 555-568.

Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: a framework for conceptualizing the

effects of various practice conditions in motor learning. Journal of motor behavior,

36(2), 212-224.

Guiard, Y. (1987). Asymmetric division of labor in human skilled bimanual action: The kinematic

chain as a model. Journal of motor behavior, 19(4), 486-517.

Haavik-Taylor, H., & Murphy, B. (2007). Cervical spine manipulation alters sensorimotor

integration: a somatosensory evoked potential study. Clinical neurophysiology, 118(2),

391-402.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

80

Haavik, H., & Murphy, B. (2011). Subclinical neck pain and the effects of cervical manipulation

on elbow joint position sense. Journal of manipulative and physiological therapeutics,

34(2), 88-97.

Haavik, H., & Murphy, B. (2013). Selective changes in cerebellar-cortical processing following

motor training. Experimental brain research, 231(4), 397-403.

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning.

Nature, 394(6695), 780.

Hogan, N. (1985). Impedance control: An approach to manipulation: Part II—Implementation.

Journal of dynamic systems, measurement, and control, 107(1), 8-16.

Holland, L., Murphy, B., Passmore, S., & Yielder, P. (2015). Time course of corticospinal

excitability changes following a novel motor training task. Neuroscience letters, 591, 81-

85.

Holland, L., Murphy, B., Passmore, S., Yielder, P. . (In Press). Differences in corticomotor

excitability between hemispheres following performance of a novel motor training task.

. Neuroscience and Biomedical Engineering.

Hoshiyama, M., & Kakigi, R. (1999). Changes of somatosensory evoked potentials during writing

with the dominant and non-dominant hands. Brain research, 833(1), 10-19.

Kaňovský, P., Bareš, M., & Rektor, I. (2003). The selective gating of the N30 cortical component

of the somatosensory evoked potentials of median nerve is different in the mesial and

dorsolateral frontal cortex: evidence from intracerebral recordings. Clinical

neurophysiology, 114(6), 981-991.

Kelso, J. S. (1997). Dynamic patterns: The self-organization of brain and behavior: MIT press.

Kimura, J., & Yamada, T. (1980). SHORT‐LATENCY SOMATOSENSORY EVOKED POTENTIALS

FOLLOWING MEDIAN NERVE STIMULATION. Annals of the New York Academy of

Sciences, 338(1), 689-694.

Kitazawa, S. (2002). Optimization of goal-directed movements in the cerebellum: a random

walk hypothesis. Neuroscience research, 43(4), 289-294.

Latash, M. L., Turvey, M. T., & Bernshteĭn, N. A. (1996). Dexterity and its development:

Lawrence Erlbaum.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

81

Lelic, D., Niazi, I. K., Holt, K., Jochumsen, M., Dremstrup, K., Yielder, P., . . . Haavik, H. (2016).

Manipulation of dysfunctional spinal joints affects sensorimotor integration in the

prefrontal cortex: A brain source localization study. Neural plasticity, 2016.

Manzano, G., Negrao, N., & Nóbrega, J. (1998). The N18 component of the median nerve SEP is

not reduced by vibration. Electroencephalography and Clinical Neurophysiology/Evoked

Potentials Section, 108(5), 440-445.

Mauguiere, F., Allison, T., Babiloni, C., Buchner, H., Eisen, A., Goodin, D., . . . Nuwer, M. (1999).

Somatosensory evoked potentials. The International Federation of Clinical

Neurophysiology. Electroencephalography and clinical neurophysiology. Supplement, 52,

79-90.

Mehrkanoon, S., Boonstra, T. W., Breakspear, M., Hinder, M., & Summers, J. J. (2016).

Upregulation of cortico-cerebellar functional connectivity after motor learning.

Neuroimage, 128, 252-263.

Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural

networks, 9(8), 1265-1279.

Milner, T. E., & Franklin, D. W. (2005). Impedance control and internal model use during the

initial stage of adaptation to novel dynamics in humans. The Journal of physiology,

567(2), 651-664.

Mintken, P. E., Glynn, P., & Cleland, J. A. (2009). Psychometric properties of the shortened

disabilities of the Arm, Shoulder, and Hand Questionnaire (QuickDASH) and Numeric

Pain Rating Scale in patients with shoulder pain. Journal of Shoulder and Elbow Surgery,

18(6), 920-926.

Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2012). The effects of brain lateralization on motor

control and adaptation. Journal of motor behavior, 44(6), 455-469.

Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2013). Rethinking motor lateralization:

specialized but complementary mechanisms for motor control of each arm. PloS one,

8(3), e58582.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

82

Nadig, K. G., Jäncke, L., Lüchinger, R., & Lutz, K. (2010). Motor and non-motor error and the

influence of error magnitude on brain activity. Experimental brain research, 202(1), 45-

54.

Nuwer, M. R., Aminoff, M., Desmedt, J., Eisen, A. A., Goodin, D., Matsuoka, S., . . . Vibert, J.-F.

(1994). IFCN recommended standards for short latency somatosensory evoked

potentials. Report of an IFCN committee. Electroencephalography and clinical

neurophysiology, 91(1), 6-11.

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory.

Neuropsychologia, 9(1), 97-113.

Passmore, S. R., Murphy, B., & Lee, T. D. (2014). The origin, and application of somatosensory

evoked potentials as a neurophysiological technique to investigate neuroplasticity. The

Journal of the Canadian Chiropractic Association, 58(2), 170.

Poortvliet, P. C., Tucker, K. J., & Hodges, P. W. (2015). Experimental pain has a greater effect on

single motor unit discharge during force-control than position-control tasks. Clinical

neurophysiology, 126(7), 1378-1386.

Restuccia, D., Marca, G. D., Valeriani, M., Leggio, M. G., & Molinari, M. (2007). Cerebellar

damage impairs detection of somatosensory input changes. A somatosensory mismatch-

negativity study. Brain, 130(1), 276-287.

Rossi, S., della Volpe, R., Ginanneschi, F., Ulivelli, M., Bartalini, S., Spidalieri, R., & Rossi, A.

(2003). Early somatosensory processing during tonic muscle pain in humans: relation to

loss of proprioception and motor ‘defensive’strategies. Clinical neurophysiology, 114(7),

1351-1358.

Rossini, P., Gigli, G., Marciani, M., Zarola, F., & Caramia, M. (1987). Non-invasive evaluation of

input-output characteristics of sensorimotor cerebral areas in healthy humans.

Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 68(2),

88-100.

Sainburg, R., & Kalakanis, D. (2000). Differences in control of limb dynamics during dominant

and nondominant arm reaching. Journal of neurophysiology, 83(5), 2661-2675.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

83

Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness.

Experimental brain research, 142(2), 241-258.

Sainburg, R. L., & Duff, S. V. (2006). Does motor lateralization have implications for stroke

rehabilitation? Journal of rehabilitation research and development, 43(3), 311.

Schabowsky, C. N., Hidler, J. M., & Lum, P. S. (2007). Greater reliance on impedance control in

the nondominant arm compared with the dominant arm when adapting to a novel

dynamic environment. Experimental brain research, 182(4), 567-577.

Schaefer, S. Y., Haaland, K. Y., & Sainburg, R. L. (2007). Ipsilesional motor deficits following

stroke reflect hemispheric specializations for movement control. Brain, 130(8), 2146-

2158.

Scheidt, R. A., Reinkensmeyer, D. J., Conditt, M. A., Rymer, W. Z., & Mussa-Ivaldi, F. A. (2000).

Persistence of motor adaptation during constrained, multi-joint, arm movements.

Journal of neurophysiology, 84(2), 853-862.

Schmidt, R., & Lee, T. (2013). Motor Learning and performance, 5E with web study guide: from

principles to application: Human Kinetics.

Schmidt, R. A. (2003). Motor schema theory after 27 years: Reflections and implications for a

new theory. Research quarterly for exercise and sport, 74(4), 366-375.

Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and

adaptation in motor control. Annual review of neuroscience, 33, 89-108.

Shenoy, K. V., Sahani, M., & Churchland, M. M. (2013). Cortical control of arm movements: a

dynamical systems perspective. Annual review of neuroscience, 36, 337-359.

Sonoo, M., Sakuta, M., Shimpo, T., Genba, K., & Mannen, T. (1991). Widespread N18 in median

nerve SEP is preserved in a pontine lesion. Electroencephalography and Clinical

Neurophysiology/Evoked Potentials Section, 80(3), 238-240.

Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination.

Nature neuroscience, 5(11), 1226-1235.

Tseng, Y.-w., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007). Sensory

prediction errors drive cerebellum-dependent adaptation of reaching. Journal of

neurophysiology, 98(1), 54-62.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

84

Valeriani, M., Restuccia, D., Di Lazzaro, V., Le Pera, D., Barba, C., Tonali, P., & Mauguiere, F.

(1998). Dipolar sources of the early scalp somatosensory evoked potentials to upper

limb stimulation Effect of increasing stimulus rates. Experimental brain research, 120(3),

306-315.

Waberski, T. D., Buchner, H., Perkuhn, M., Gobbelé, R., Wagner, M., Kücker, W., & Silny, J.

(1999). N30 and the effect of explorative finger movements: a model of the contribution

of the motor cortex to early somatosensory potentials. Clinical neurophysiology, 110(9),

1589-1600.

Williams, A. M., Davids, K., & Williams, J. G. P. (1999). Visual perception and action in sport:

Taylor & Francis.

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor

integration. Science, 1880-1882.

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor

control. Neural networks, 11(7), 1317-1329.

Wulf, G. (2007). Attentional focus and motor learning: A review of 10 years of research. E-

journal Bewegung und Training, 1(2-3), 1-11.

Yadav, V., & Sainburg, R. (2011). Motor lateralization is characterized by a serial hybrid control

scheme. Neuroscience, 196, 153-167.

Yadav, V., & Sainburg, R. L. (2014). Limb dominance results from asymmetries in predictive and

impedance control mechanisms. PloS one, 9(4), e93892.

Zabihhosseinian, M., Holmes, M. W., & Murphy, B. (2015). Neck muscle fatigue alters upper

limb proprioception. Experimental brain research, 233(5), 1663-1675.



MHSc. Thesis - Ryan Gilley                                                                                                             UOIT Kinesiology

85

Thesis Summary

The first study of this thesis showed significant differential SEP peak changes in the

dominant and non-dominant limbs, accompanied by significantly greater accuracy at

performing the motor task by the non-dominant limb. Taken together these results present

evidence for underlying neurological differences in the dominant and non-dominant

hemisphere with respect to somatosensory processing during motor control. This expands on

research in the area of laterality by linking our understanding of cortical and hemispheric

differences first brought about by early brain studies (Broca, 1861, 1863) with our

understanding that when completing a motor task, there are visually observable differences in

the way our limbs complete these tasks (Mutha et al., 2013; R. Sainburg & Kalakanis, 2000;

Schabowsky et al., 2007; Vivek Yadav & Sainburg, 2014).

A potential explanation for the results above is that the neural generators associated

with the SEP peaks that represent areas of sensorimotor integration and pathways from the

cerebellum are active at different levels for the dominant and non-dominant upper limbs. This

is evident from the results of manuscript 1. The greater accuracy of the non-dominant hand

may have a couple of explanations as well. The first being that the predominant control

strategy utilized by the non-dominant limb is based around reactive mechanisms (feedback).

This is known in literature to be a more accurate control strategy at the effect of an energy

cost, as it uses much more energy (R. Sainburg & Kalakanis, 2000). The second is the level of

attentional resources that are dedicated to the non-dominant limb. Much of the world is

designed for right handed people, so when asked to use the left hand (non-dominant hand)

greater attention may need to be given to the task, making it more accurate. More research is

needed to determine if these pathways are what cause the rise of different motor control

patterns between the limbs, or if it has to do with development of preferred handedness which

leads to adaptation of the nervous system.

When a sensory perturbation was introduced to the non-dominant hand in manuscript

two, differential SEP peak changes were observed, as well as a significantly greater accuracy for

the intervention group. Though the neurophysiological data did not reflect changes to the same
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degree, there is suggestion that there are some lateralized differences in early somatosensory

processing when compared to previous research that used a similar task and protocol with the

dominant hand (Dancey et al., 2016a). The intervention group was more significantly accurate

at baseline, keeping with this literature as well. This might be explained by the use of a reactive

mechanism, in that there is increased sensory input to a feedback system, making it more

active, or creating an environment that stimulates greater attention. The results of manuscript

2 specifically show that sensory perturbations may not be as effective at disrupting motor

control or stimulating adaptation as mechanical perturbations are, but there are differences in

somatosensory processing during motor learning in the presence of altered sensory input for

the non-dominant hand as compared to previously published work in the dominant hand.

Together, both manuscripts add new insight into the literature on laterality and motor

control. There are underlying neurophysiological differences between the hemispheres that

may partially reflect the neural substrate responsible for the observable differences in motor

performance and adaptation between the hemispheres. This becomes important in a

rehabilitation setting where lateralized disruptions to motor control can be seen (ie. Stroke).

Stroke patients often show deficits in each hemisphere that follow the lateralized control

mechanisms seen in a healthy population (Schaefer, Haaland, & Sainburg, 2007). The use of

rehabilitation plans that can train the limbs in their preferred motor control state might have

the potential to increase the gains made in recovery. The other implication could be dependent

on which limb was injured. Loss of dominant limb function would be detrimental to the

individual, so rehabilitation which assists the non-dominant limb to convert to more of a

dominant control mechanism (predictive based movements), this might prove more beneficial

for the patient in the long run. Ultimately, there is more research needed to determine if these

suggestion are viable.  In our age of increased bilateral technology use, a better understanding

of the differences in control mechanisms between the hemispheres could aid the design of

technology to make it more user friendly and less likely to lead to injury.

In conclusion, the results of this thesis show that the differences in motor control

between the limbs is reflected in neurophysiological measures, specifically early SEPs; , and the

introduction of altered sensory input in the form of cutaneous pain causes changes to early
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somatosensory processing, but actually improves motor performance, similar to previous

studies involving the dominant limb.

Future work should use explore different perturbations and directly compare perturbations

that will affect feedback and feedforward control mechanisms to better understand laterality

differences in mechanisms of motor control and learning. Coupling this with whole head EEG

analysis would allow for the evaluation of cortical neural generators that may be difference

between the hemispheres, as well as evaluations of the pathways associated with them and

ultimately lead to better understanding of lateralized control mechanisms in the upper limbs.
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Section 3: Appendix

Appendix 1: Manuscript 1 Consent Form
Professor Bernadette Murphy

University of Ontario Institute of Technology

Faculty of Health Sciences

2000 Simcoe St. North

Oshawa, Ontario

CANADA  L0B 1J0

Email: Bernadette.Murphy@uoit.ca

Phone: (905) 721-8668  Fax: (905) 721-3179

Title: Exploring lateralized somatosensory processing using Somatosensory Evoked Potentials (SEPs) –
January 2016. This study has received ethical approval from the UOIT ethics committee (REB# 07-072 & 07-073)

This study is being conducted by Dr. Paul Yielder and Dr. Bernadette Murphy, in conjunction with MHSc
candidate Ryan Gilley and fourth year practicum research students from the Faculty of Health Sciences at the
University of Ontario Institute of Technology (UOIT), in Oshawa, Ontario, Canada.

Rationale for Research: Research has found that neck pain is a significant burden and affects 30 to 50% of people
every year. Research is also showing that neck pain affects the way that people move and their awareness of head and
upper arm positioning.

The research we are doing is showing how the brain responds to neck pain. We want to show how neck pain
affects movement, as well as the ability to properly respond to outside sources of stimuli.

The other reason we are completing this research is because chronic conditions have become increasingly a
problem. Our hope is that this research will show responses of healthy participants. This will provide important clues to
how the brain functions normally which is important to know how the brain may be re-wired because of neck pain. This
will help us to know why neck pain is a chronic problem and how interventions may work to prevent or reverse the
cycle of chronic pain for normal function and improved health outcomes.

Information for participants: To complete this research, we will perform a Pre-Test SEPs measurement,
and then each participant will be randomly sorted into one of two groups: one group using the LeapTrace
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tracing task, and the other group using the Unity trajectory task. Each group will then have a Post-Test
SEPs measurement taken.

We are seeking people with no known neurological conditions who are between 18 and 50 years of age. To
participate in this study you must complete an eligibility checklist in conjunction with one of the researchers to ensure
you are eligible to participate. You will also be given a chance to review the details of the study and ask any questions
you may have.

Each evaluation session will take approximately 2-3 hours and you will be given a chance to ask
questions.  We will provide you with a bonus 1% in one of your classes, selected from a pre-determined
list of classes.

Your participation in this study is entirely voluntary (your choice), and you are free to decline
taking part in this study. You may also withdraw from the study at any time without giving a reason. This
will in no way affect your academic progress. Questions about your rights as a volunteer can be made to
the Compliance Officer at 905 721 8668 ext. 3693 or compliance@uoit.ca .
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Measurement sessions: Should you agree to participate, we will need you to attend one measurement
session, which will last 2-3 hours.

Measurement procedures:

During each evaluation session we will collect some information about how your brain processes
electrical signals from your hand and arm muscles. To do this it will be necessary to place some electrodes
on your skin over your nerves at the wrist or elbow, and over your neck, shoulder and scalp.  You may
experience some mild discomfort as your skin is prepared for the electrodes by gently shaving and then
wiping the area with alcohol.  The electrodes over your neck, shoulder and scalp are only recording
electrodes and do not pierce the skin and do not run current through your body. Only the electrodes on
your arm will be stimulating electrodes. These stimulating electrodes will be used to stimulate some of
your hand and/or forearm muscles by passing mild electrical current through them.  This creates a mild
tingling sensation on the skin over the nerve. This is not painful but may feel quite strange to you. It will
also make some of your hand and/or forearm muscles twitch which is not painful either, but can also feel
strange.

We will also ask you to complete a task that involves tracing an image or displayed on a computer
screen. We will ask that you complete this activity as accurately and quickly as possible, and once you are
finished, if you would like we can give you a progress report on your performance.

Risks and benefits

The benefits of participating in this study is that you will learn more about research techniques at
UOIT and the somatosensory systems in the CNS. You will also be aiding our understanding of hand
dominance and laterality.

The surface EMG techniques have low risks such as the person getting a skin irritation from the
alcohol swab or electrode gel. These are uncommon and not serious. You may also experience mild
discomfort as your skin is prepared for the electrodes by shaving the skin with a razor, or lightly abrading
with special tape, and then wiping the area with alcohol. If irritation persists, we recommend that
students go to campus health services (and contact the researcher). The electrical stimulation is not
painful but you will experience a light twitch of the muscles in your hand as the nerves at the wrist send
electrical signals to make these muscles contract.

If the information you provide is reported or published it is done in a way that does not identify
you as its source.  The data will be stored in a locked area at UOIT for seven years from the completion of
the study after which it will be destroyed. You are free to withdraw from the data collection at any time
up until the completion of your last data gathering session. Once you have completed the chiropractic
care, your data cannot be withdrawn.  Taking part in this study is voluntary and your decision to take part
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in this study (or not) will in no way influence your academic progress or relationship with your
chiropractor and/or teacher.

Thank you very much for your time and help in making this study possible. If you have any queries
or wish to know more please contact Dr Bernadette Murphy, a Professor at the University of Ontario
Institute of Technology, Faculty of Health Sciences, 2000 Simcoe St North, Oshawa, Ontario, L1H 7K4

Phone (905) 721-8668 ext 2778 Fax (905) 721-3179

For any queries regarding this study, please contact the UOIT Research and Ethics Committee
Compliance Officer (compliance@uoit.ca and 905-721-8668 ext 3693).

The data from this research will be submitted to scientific conferences and peer reviewed
journals. At the completion of the study, you will be sent a summary of the research findings and any
place where the data has been published.  All published data will be coded so that your data is not
identifiable.
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Please read the following before signing the consent form and remember to keep a copy for your own
records.

 I understand that taking part in this study is voluntary (my choice) and that I am free to
withdraw from the study at any time without giving a reason and that this will in no way affect
my academic progress, irrespective of whether or not payment is involved.

 This consent form will be kept in a locked area at UOIT, Oshawa, Ontario for a period of seven
years before being destroyed.

 The data collected in this study will be coded so that it is confidential from the consent form and
stored in a locked area at UOIT, Oshawa, Ontario for a period of seven years before being
destroyed.

I, …………………………………………..................... agree to take part in this research.

 I understand that taking part in this study is voluntary (my choice) and that I am free to
withdraw from the study at any time without giving a reason and that this will in no way affect
my future chiropractic care and/or academic progress, irrespective of whether or not payment is
involved.

 I have read and I understand the information sheet dated January 2016 for volunteers taking
part in the study designed to investigate the comparison between motor learning tasks. I have
had the opportunity to discuss this study. I am satisfied with the answers I have been given.

 I will be attending one session where measurements will be taken of the electrical activity in my
brain following electrical stimulation of the muscles in my hand/forearm

 I have completed an eligibility checklist to ensure I am eligible to participant in this research.

 I have completed a TMS safety checklist.

 I understand that I can withdraw any data I supply up to the completion of my last
measurement session.

 I understand that my participation in this study is confidential and that no material which could
identify me will be used in any reports on this study.
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 I have had time to consider whether to take part.

 I know who to contact if I have any side effects to the study.

 I know who to contact if I have any questions about the chiropractic care portion of the study.

I give consent for the data from this study to be used in future research

as long as there is no way that I can be identified in this research.                       YES                    NO

(tick one)

I would like to receive a short report about the outcomes of this

study (tick one) YES                    NO

Signed ……………………………………     Date ……….....

Contact numbers of main researchers:

Dr Bernadette Murphy, Phone: + 905 721-8668 ext 2778

RESEARCHER TO COMPLETE

Project explained by: _____________________________________

Project role: _______________________________________

Signature: ________________________________________ Date: ________________
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Appendix 2: Manuscript 2 Consent Form
Professor Bernadette Murphy

University of Ontario Institute of Technology

Faculty of Health Sciences

2000 Simcoe St. North

Oshawa, Ontario

CANADA  L0B 1J0

Email: Bernadette.Murphy@uoit.ca

Phone: (905) 721-8668  Fax: (905) 721-3179

Central sensitization evokes changes in the properties of nerve conduction

Purpose of the Study

The physiologic mechanisms of pain are poorly understood. Central sensitization in an important, if not
fundamental, mechanism in expression of pain yet there is currently no objective measure of central
sensitization.  Central sensitization is defined as an ‘increased excitability’ of nerves in the central
nervous system. The purpose of this study is to investigate the effect of central sensitization on the
characteristics of nerve conduction in humans.  Specifically, we are interested in finding out what, if any,
changes occur to the properties of nerve impulses after sensitization as it may provide insight into novel
methods of quantifying sensitization.  We are also interested in understanding if sensitization affects
motor performance, that is, the way your muscles perform when learning a novel task. You are invited
to participate in this study being conducted by Dr Bernadette Murphy (Faculty of Health Sciences,
University of Ontario Institute of Technology). It has received Ethical Approval from the University of
Ontario Institute of Technology (REB# 11-067).

Procedure

Prior to the commencement of the study, you will be required complete a general heath questionnaire
which gives us a profile of your current health status and how this may affect your results.  You may fill
this form out at home prior to arriving for the study.  You will also be required to undergo a brief
physical examination by one of the presiding clinicians to ensure that you are eligible to participate in
this study.  This exam will involve standard orthopaedic and neurologic testing to ensure that you do not
have any conditions which may affect the way you process sensations on the skin.  The study will require
approximately two hours of your time.
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We will require access to your arm, shoulder, upper back and neck regions; please wear appropriate
clothing that allows for exposure of these areas.  In the event you do not have such clothing, you will be
provided appropriate gowns for this study.  In addition, you will have complete and sole privacy in the
Human Neurophysiology lab for the duration of this study.

You will be seated in a comfortable reclining chair for
the recording of the nerve impulses.  There are three
different types of nerve impulses which we wish to test.
You may choose to participate in one, two or three of
the measurement types.

They are: 1) Somatosensory evoked potentials, (SSEP).
Surface electrodes will be placed on your skin at
selected points along your arm, spine and scalp; these
electrodes are sticky electrodes that affix directly to your skin.  We will then apply a small electrical
pulse to the electrode in the arm, and measure this pulse at the other electrodes along the arm, spine
and scalp.  The pulse will be very mild and may feel like a brief pin prick or irritation.  These will be your
‘baseline’ readings. A typical SSEP experimental setup is illustrated above.

2) Transcranial Magnetic Stimulation (TMS) During the evaluation session we will collect some information
about the way your brain is processing information from your upper limb, and how it is controlling hand
and forearm muscles. To do this it will be necessary to place some electrodes on your skin over these hand,
and forearm, muscles to record the signals from your brain to these muscles. You may experience some
mild discomfort as your skin is prepared for the electrodes by rubbing them with special abrasive tape and
then wiping the area with alcohol.  It is important to note that these are recording electrodes only and do
not pierce the skin and do not run current through your body.  The stimulation will only be over your scalp.
Occasionally, some people experience mild, transient nausea or scalp discomfort, due to the activation of
the scalp muscles by the stimulator.  If you feel uncomfortable at any time during the experiment, please
notify the experimenter.  Each evaluation session will take approximately 2-3 hours and you will be given
feedback about your results at each session.

3) H-reflexes: An H-reflex is similar to the tendon reflex except that it is elicited by electrically stimulating
your nerve rather than tapping your tendons.  The same electrical stimulator used for SSEP recordings will
be used to stimulate the median nerve on the front of your elbow area in order to elicit a reflex in the flexor
carpi radialis muscles which flexes your wrist.   We will place recording electrodes over your flexor carpi
radialis muscle which will record the muscle contraction evoked when we stimulate the nerve to this muscle
at the front of your elbow. You may experience some mild discomfort as your skin is prepared for the
stimulating and recording electrodes by rubbing them with special abrasive tape and then wiping the area
with alcohol.
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After recording the baseline readings for
each type of experiments, you will
randomly be assigned to have one of two
types of topical cream to a specific area of
your elbow.  This cream will either be a
moisturizing cream or Zostrix, an over-the-
counter cream commonly used for
reducing muscle and joint pain.  The active
component of this cream is a substance
called capsaicin, which is derived naturally
from chilli peppers and acts to mildly
irritate the pain receptors in the skin.  The
irritation of pain receptors results in central sensitization and this process will not harm you in any way.
SEP recordings will be taken again at 15 and 30 minutes after the application of the Zostrix cream.

The investigator applying the capsaicin cream will wear gloves at all times.  After the application of the
cream, please do not touch or scratch the treated area for 3 hours to avoid getting the capsaicin on your
hands and potentially transferring it to other parts of your body.  Capsaicin is mildly irritating to the skin,
especially sensitive areas such as mucous membranes, mouth, eyes and groin.  Please ensure you wash
your hands vigorously with warm soapy water after the study is complete.

Typing task intervention

Some experiments will include a typing task which will take place after the cream has been applied.  The
intervention will consist of a repetitive typing task where you will be required to press keys on an external
numeric keyboard with your thumb for a period of 20 minutes. There will be sequences of four letters
arranged in random order that come up on a computer monitor and you will be asked to reproduce them
with the numeric key pad.   We will be monitoring the typing rate and number of errors to determine the
effects of capsaicin on your ability to type these sequences.

Tracing task intervention

Some experiments will include a tracing task which will take place after the cream has been applied. You
will be required to trace sequences of sinusoidal-pattern waves with varying frequency and amplitude
using only you thumb on an external wireless touchpad for a period of 20 minutes. We will be
monitoring accuracy in order to determine the effects of capsaicin on your ability to trace these
sequences.

Cortisol
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Cortisol is a steroid hormone released during stressful episodes such as acute pain. Cortisol elevation is a
normal part of the physiological response to stress. Elevations in cortisol production is linked with
changes in the way the brain functions which can affect task performance. The researchers will use
swabs under your tongue to collect your saliva three times throughout the experiment. These samples
of your saliva (spit) will then be put in the freezer and will be later tested at a laboratory for the stress
hormone cortisol.

Potential Risks and Discomforts

It is important to disclose any/all potential risks associated with this research study prior to
participation.  You may experience some local effects in the areas treated with the lotion.  Specific
symptoms may include a mild to moderate tingling and/or warmth sensation.  The tingling will subside
within 2 hours of application but may be mildly rekindled if warmed (eg. warm baths) within the first 24
hours after treatment at the site of treatment.  You may also experience redness in the areas where the
topical lotion was applied which corresponds to increased local blood flow.  These symptoms can be
effectively minimized or eliminated by icing the treated area(s) with a 10 min of icing (ON) followed by
10 min OFF pattern, as required symptomatically.

You may also feel some mild discomfort as your skin is being prepared for SSEP, TMS or H-reflex
recordings.  This will involve mild debridement (scraping) of the skin to remove debris and dead cells.
The stimulating electrode on the arm will be used to stimulate some of the hand and arm muscles by
passing a mild current through them.  You will likely feel a mild tingling sensation on the skin over the
nerve.  While it is not painful or harmful, you may feel some of the hand and/or forearm muscles twitch
mildly. This will not be painful nor is there any risk of harm or damage to the nerve and/or muscle, due
to the very mild intensity of the stimulus.

Potential Benefits to Participants and/or to Society

While there are no direct benefit to subjects, this study will provide us with valuable information on the
effects of sensitization in the nervous system.  You will be provided with a summary of findings at the
end of the study, if you so desire.  Please advise us of your preferable format for communication (check
one and provide details in the space provided):

 email____________________________________________

 fax______________________________________________

 written ___________________________________________
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Compensation for Participation

You will be offered your choice of $10 gasoline voucher or a Tim card to thank you for your participation
in this experiment.

Confidentiality

Every effort will be made to ensure confidentiality of personal information that is obtained in
connection with this study. Confidentiality will be secured by the use of participant ID Codes on all
correspondence. Data will be kept indefinitely on a password-protected computer in the researcher’s
laboratory and all written material secured in a locked cabinet on site for a period of seven years, after
which it will be shredded.

Participation and Withdrawal

You may choose whether to be involved with this study or not.  If you volunteer, you may withdraw at
any time without consequence.  You may exercise the option of removing your data from the study up
to and including the point where it is anonymously coded and can no longer be identified.  You may also
refuse to answer any questions you don’t want to answer and still remain in the study.  The investigator
may withdraw you from this research if circumstances arise that warrant doing so.

Rights of Research Participants

You may withdraw your consent at any time and discontinue participation without penalty.  This study
has been reviewed and received ethics clearance through the University of Ontario Institute of
Technology Research Ethics Board REB 11-067.

Any questions regarding your rights as a participant, complaints or adverse events may be addressed to
Research Ethics Board through the Compliance Officer compliance@uoit.ca (905 721 8668 ext 3693).

Thank you very much for your time and help in making this study possible.   If you have any queries,
concerns about side effects or you wish to know more please contact Dr Bernadette Murphy, an Associate
Professor at the University of Ontario Institute of Technology, Faculty of Health Sciences, 2000 Simcoe St
North, Oshawa, Ontario, L1H 7K4   Phone (905) 721-8668 ext 2778  or email : Bernadette.Murphy@uoit.ca
or Dr John Srbely (at 416-760-7418).
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Please read the following before signing the consent form and remember to keep a copy for your own
records.

 I understand that taking part in this study is voluntary (my choice) and that I am free to
withdraw from the study at any time without giving a reason.   If I am a student, I understand
that this will in no way affect my academic progress, irrespective of whether or not payment is
involved.

 I have read and I understand the consent form for volunteers taking part in the study designed
to investigate central sensitization. I have had the opportunity to discuss this study. I am
satisfied with the answers I have been given.

 I will be attending at least one session where measurements will be taken of the electrical
activity in my nervous system before and after the application of cream, which may be either
capsaicin or control cream.

 I understand that by signing this consent form I am not waiving any legal rights.

 I have completed an eligibility checklist to ensure I am eligible to participant in this research.
 I understand that I can withdraw any data I supply up to and including the completion of my last

measurement session.

 I understand that my participation in this study is confidential to the researchers and that no
material which could identify me will be used in any reports on this study.

 I have had time to consider whether to take part.

 I know who to contact if I have any side effects to the study.

 I know who to contact if I have any questions about the study.

I give consent for the data from this study to be used in future research

as long as there is no way that I can be identified in this research. YES                    NO

(tick one)

I would like to receive a short report about the outcomes of this

study (tick one) YES                    NO

___________________________________ __ _____________________________
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(Name of Participant) (Date)

___________________________________ _______________________________

(Signature of Participant)/ (Signature of Researcher)
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Appendix 3: Edinburgh Handedness Inventory

Edinburgh Handedness Inventory
Please indicate your preferences in the use of hands in the following activities by putting a check in the
appropriate column. Where the preference is so strong that you would never try to use the other hand,
unless absolutely forced to, put 2 checks. If in any case you are really indifferent, put a check in both
columns.

Some of the activities listed below require the use of both hands. In these cases, the part of the task, or
object, for which hand preference is wanted is indicated in parentheses.

Please try and answer all of the questions, and only leave a blank if you have no experience at all with the
object or task.

Task Left Right

1. Writing

2. Drawing

3. Throwing

4. Scissors

5. Toothbrush

6. Knife (without fork)

7. Spoon

8. Broom (upper hand)

9. Striking Match (match)

10. Opening box (lid)

Total (count checks in both columns)

Difference Cumulative TOTAL Result
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Scoring:

Add up the number of checks in the “Left” and “Right” columns and enter in the
“TOTAL” row for each column. Add the left total and the right total and enter in
the “Cumulative TOTAL” cell. Subtract the left total from the right total and enter
in the “Difference” cell. Divide the “Difference” cell by the “Cumulative
TOTAL” cell (round to 2 digits if necessary) and multiply by 100; enter the result
in the “Result” cell.

Interpretation (based on Result):

below -40 = left-handed

between -40 and +40 = ambidextrous

above +40 = right-handed

Appendix 4: TMS Safety Checklist
TMS safety checklist:
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The following questions are to ensure it is safe for you to have TMS applied.  If you answer yes to any of
the questions below, we may need to exclude you from TMS experiments.

QUESTION ANSWER

1.  Do you suffer from epilepsy, or have you ever had an epileptic
seizure?

Yes No

2.  Does anyone in your family suffer from epilepsy? Yes No

3.  Do you have any metal implant(s) in any part of your body or head?
(Excluding tooth fillings)

Yes No

4.  Do you have an implanted medication pump? Yes No

5.  Do you wear a pacemaker? Yes No

6.  Do you suffer any form of heart disease? Yes No

7.  Do you suffer from reoccurring headaches**? Yes No

8.  Have you ever had a skull fracture or serious head injury? Yes No

9. Have you ever had any head surgery? Yes No

10. Are you pregnant? Yes No

11. Do you take any medication or use recreational drugs (including
marijuana)*?

Yes No

12. Do you suffer from any known neurological or medical conditions? Yes No

Comments ___________________________________________________________

___________________________________________________________

___________________________________________________________

Name ________________________________

Signature ________________________________

Date ________________________________

*Note if taking medication or using recreational drugs please read through the medication list on the
next page to see if you use contraindicated drugs or medications.  You do not need to tell the researcher
which medications or drugs you use, unless you wish to.  However, all researchers have signed
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confidentiality agreements and this information will not recorded in writing, if you do wish to discuss
this issue.

**Dr. Murphy will meet with participants who answer yes to this question to seek further information.
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Medications contraindicated with magnetic stimulation:

1) Tricyclic antidepressants

Name Brand

amitriptyline (& butriptyline) Elavil, Endep, Tryptanol, Trepiline

desipramine Norpramin, Pertofrane

dothiepin hydrochloride Prothiaden, Thaden

imipramine (& dibenzepin) Tofranil

iprindole -

nortriptyline Pamelor

opipramol Opipramol-neuraxpharm, Insidon

protriptyline Vivactil

trimipramine Surmontil

amoxapine Asendin, Asendis, Defanyl, Demolox, Moxadil

doxepin Adapin, Sinequan

clomipramine Anafranil

2) Neuroleptic or Antipsychotic drugs

A) Typical antipsychotics

Phenothiazines: Thioxanthenes:

o Chlorpromazine (Thorazine) o Chlorprothixene

o Fluphenazine (Prolixin) o Flupenthixol (Depixol and Fluanxol)

o Perphenazine (Trilafon) o Thiothixene (Navane)

o Prochlorperazine (Compazine) o Zuclopenthixol (Clopixol and Acuphase)

o Thioridazine (Mellaril) Butyrophenones:

o Trifluoperazine (Stelazine) o Haloperidol (Haldol)

o Mesoridazine o Droperidol

o Promazine o Pimozide (Orap)

o Triflupromazine (Vesprin) o Melperone

Levomepromazine (Nozinan)

B) Atypical antipsychotics
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Clozapine (Clozaril) Quetiapine (Seroquel)

Olanzapine (Zyprexa) Ziprasidone (Geodon)

Paliperidone (Invega) Amisulpride (Solian)

Risperidone (Risperdal)

C) Dopamine partial agonists: Aripiprazole (Abilify)

D) Others

Symbyax - A combination of olanzapine and fluoxetine used in the treatment of bipolar depression.

Tetrabenazine (Nitoman in Canada and Xenazine in New Zealand and some parts of Europe

Cannabidiol One of the main psychoactive components of cannabis.

Regular Cannabis use more often than once per week and/or cannabis use in the past 4 days.

Regular use of other recreational drugs, or single episode within the past three weeks.
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Appendix 5: Confidential Health History

RESEARCH STUDY CONFIDENTIAL HEALTH HISTORY

Subject CODE: ____________________________

How old are you?

You are:  Male □ Female □

Are you: Left Handed □ Right Handed □

Do you play a musical instrument Yes □ No □

If yes, how many times a week?

Do you play competitive sports? Yes □ No □

If yes, please indicate what sport and how often?

Do you suffer from any joint or muscle pain?  Yes □ no □

How long have you had the above pain?

Is your pain getting:     better □ worse □
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Was this pain a result of an accident, fall or injury?   Yes □ no □

Does the pain wake you at night?  Yes □ no □

Do you experience pain/discomfort in morning?  Yes □ no □

What does the pain feel like?   Burning □ numb/tingling □ deep/achy □ sharp/stabbing □

What seems to help your pain?  Physiotherapy □ chiropractic □ massage □ acupuncture □
medication □ rest □ exercise □ Other:_________________________

Do you have any allergies to topical ointments? Yes □ no □

Are you allergic to deep heat crèmes?  Yes □ no □

Are you allergic to capsaicin (active ingredient  in some deep heat crèmes and chili peppers)?

Yes □ no □

Do you have a history of:

-Use of anticoagulant medication or therapy yes □ no □

-Stroke or transient ischemic attacks yes □ no □

-Serious cervical spine trauma/fracture/dislocation yes □ no □

-Whiplash within the last year yes □ no □

-Cervical spine surgery yes □ no □

-Clinically important hypertension yes □ no □

-Connective tissue disorders yes □ no □
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-Focal neurological symptoms such as:

Dizziness/vertigo yes □ no □

Tinnitus (ringing in ears) yes □ no □

Blurred vision yes □ no □

Sensory/motor disturbance yes □ no □


