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Abstract 

Komagataeibacter xylinus ATCC 53582 and K. hansenii ATCC 23769 are model bacterial 

cellulose producers. This thesis investigated both carbon source utilization and the role that a 

Crp/Fnr transcription factor, FixK, plays in bacterial cellulose biosynthesis. Extracellular proteins 

secreted by Komagataeibacter were assayed for degradative activity against plant cell wall 

compounds. Mutagenesis of fixK, previously associated with cellulose regulation, revealed its role 

in cellular metabolism. Growth, pH, gluconic acid, and cellulose yield were measured in static and 

agitated cultures grown in the presence of glucose, fructose or sucrose. BcsZ (formerly CmcAx) was 

found to be carbon-source regulated. K. hansenii was dependent on fixK for growth in fructose and 

sucrose, but not in glucose. Mutation of fixK abolished cellulose production in K. hansenii, but 

limited production in K. xylinus. Altogether, this study improves our understanding of carbon source 

utilization and bacterial cellulose synthesis in Komagataeibacter species. 
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Colonies grown on SHG2 produce far more spherical shaped colonies than on SHF2 or SHS2. K. 

hansenii ΔfixK colonies grew substantially larger than the wildtype. White scale bar = 1 mm, all 

pictures were taken at equal magnification. ............................................................................... 39 

Figure 14: K. xylinus colony morphology is influenced by pellicin. K. xylinus WT and K. xylinus 

ΔfixK were grown for 24 days on SHG2 containing DMSO (control) or pellicin. Colonies grown 

in the presence of pellicin produced horizontally dispersed colonies with less well-defined 

spherical shape. White scale bar = 1 mm, all pictures were taken at equal magnification. Two 

isolated colonies were pictured to show variation in morphologies. .......................................... 40 

Figure 15: fixK influences growth and pH of K. xylinus in a carbon source dependent manner. OD600 

and pH were measured in K. xylinus WT and K. xylinus ΔfixK in SHG2 (A), SHG1 (B), SHF2 

(C), and SHS2 (D) in agitated conditions (see Table 1 for composition). The loss of fixK resulted 

in less acid production and the loss of the diauxic growth observed in SHG2. The transient pH 

drop in SHF2 is only observed for the wildtype strain. Error bars are standard deviation of the 

mean (n = 3). ............................................................................................................................... 42 

Figure 16: fixK influences growth and pH of K. hansneii in a carbon source dependent manner. 

OD600 and pH were measured in K. hansenii WT and K. hansenii ΔfixK in SHG2 (A), SHG1 (B), 

SHF2 (C), and SHS2 (D) in agitated conditions (see Table 1 for composition). The loss of fixK 

resulted in modified acid metabolism in SHG2 and SHG1. Final culture density in SHG2, SHF2, 

and SHS2 was dramatically limited in the absence of fixK. Error bars are standard deviation of 

the mean (n = 3). ......................................................................................................................... 43 

Figure 17: fixK influences growth and pH of K. xylinus and K. hansenii in a carbon source dependent 

manner. Optical density at 10 days of growth was measured in K. hansenii WT and K. hansenii 

ΔfixK in SHG2, SHG1, SHF2, and SHS2 in agitated conditions (see Table 1 for composition). 

Density of K. hansenii in SHG2, SHF2, and SHS2 was dramatically limited in the absence of fixK. 

Error bars are standard deviation of the mean (n = 3). * = significant difference from wildtype 

(p < 0.05); ** = significant difference from wildtype (p < 0.0005) ........................................... 44 

Figure 18: fixK regulates cellulose synthesis in K. xylinus and K. hansenii. Dehydrated pellicle 

weights were measured in K. xylinus WT, K. xylinus ΔfixK and K. hansenii WT. K. xylinus WT 

pellicle weight was dramatically higher than the ΔfixK mutant when grown in SHG2, SHG1 (A), 

SHF2, or SHS2 (B) (see Table 1 for composition). K. xylinus WT produced dramatically more 

cellulose than K. hansenii WT in the presence of SHG2 or SHG1 (C), however only slightly less 
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in the presence of SHF2 or SHS1 (D). Error bars show standard deviation of the mean (n = 3).
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Figure 19: fixK is involved in acid metabolism in K. xylinus in agitated and statically grown SHG2 

cultures. pH and gluconic acid concentrations were measured in K. xylinus WT and K. xylinus 

ΔfixK grown in SHG2 with and without agitation. Statically grown WT and ΔfixK mutants 

produce much more acid and take much longer to reach stationary phase under static conditions 

(A, B). The loss of fixK is associated with less acidity and less gluconic acid production under 

agitated conditions (C). In statically grown cultures, the ΔfixK mutation is associated with less 

gluconic acid production but greater medium acidity (D). Error bars show SD (n = 3). ........... 48 

Figure 20: fixK is involved in acid metabolism in K. xylinus in agitated and statically grown SHG1 

cultures. pH and gluconic acid concentrations were measured in K. xylinus WT and K. xylinus 

ΔfixK grown in SHG1 with and without agitation. Statically grown WT and ΔfixK mutants 

produce similar acidification profiles, however the trend is stretched over a longer time frame in 

static conditions (A, B). The loss of fixK is associated with less gluconic acid production under 

agitated conditions (C). In statically grown cultures, the ΔfixK mutation is associated with a 

delayed pH profile (D). Error bars show SD (n = 3). ................................................................. 49 

Figure 21: fixK has little effect on acid metabolism for K. xylinus in agitated and statically grown 

SHF2 and SHS2 cultures. pH and gluconic acid concentrations were measured in K. xylinus WT 

and K. xylinus ΔfixK grown in SHF2 and SHS2 with and without agitation. Agitated K. xylinus 

ΔfixK in SHF2 was unable to acidify the growth medium to pH ~5.1 at 4 days of growth (A). 

None of the cultures produced measurable concentrations of gluconic acid. Note that the right y-

axis ends at pH 6.5.  Error bars show SD (n = 3). ...................................................................... 50 

Figure 22: fixK is involved in acid metabolism in K. hansenii in agitated and statically grown SHG2 

cultures. pH and gluconic acid concentrations were measured in K. hansenii WT and K. hansenii 

ΔfixK grown in SHG2 with and without agitation. Statically grown WT and ΔfixK mutants 

produce much more acid and take longer to reach stationary phase under static conditions (A, 

B). The loss of fixK is associated with less acidity, less gluconic acid production, and an altered 

pH profile under agitated conditions (C). In statically grown cultures, gluconic acid and pH 

profiles were similar (D).  Error bars show SD (n = 3). ............................................................. 51 

Figure 23: fixK is involved in acid metabolism in K. hansenii in agitated and statically grown SHG1 

cultures. pH and gluconic acid concentrations were measured in K. hansenii WT and K. hansenii 

ΔfixK grown in SHG1 with and without agitation. Statically grown WT and ΔfixK mutants 
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1. Introduction 

1.1. Cellulose 

1.1.1. Characteristics 

Cellulose is the most common organic polymer on Earth. It is produced by both plants and 

microorganisms for an annual biomass production of approximately one million kilograms (Klemm 

et al., 2005). This abundant polysaccharide is a homopolymer of glucopyranose monomers 

connected through β-1,4-glycosidic linkages. Extensive intermolecular H-bonding between 

microfibril strands imparts the high crystallinity and strength observed in cellulose. Several 

polymorphs of cellulose exist, 

characterized by their stability, 

crystallinity, orientation, and H-bonding 

patterns (Kroon-Batenburg and Kroon, 

1997). Native cellulose contains highly 

ordered H-bonding patterns (Figure 1) 

and is subdivided into two allomorphs 

cellulose Iα and Iβ (Horikawa and 

Sugiyama, 2009). Both allomorphs coexist together within individual microfibrils (Imai and 

Sugiyama, 1998) and the transitions between Iα and Iβ can be observed between adjacent H-bonded 

molecular sheets (Imai and Sugiyama, 1998). In contrast to cellulose I, cellulose II is less commonly 

found in nature (Brown Jr, 1996; Kuga et al., 1993), but can be artificially formed after re-

crystallization or mercerization with aqueous sodium hydroxide. Cellulose II is thermodynamically 

more stable and as such, the chemical conversion of cellulose II back to cellulose I has been 

unsuccessful (Brown Jr, 1996; O’Sullivan, 1997; Yu and Atalla, 1996).  

1.1.2. Plant cellulose 

The high crystallinity and strength of cellulose provides structural support as the primary 

skeletal component of plant cell walls (Keegstra et al., 1973; Shokri and Adibkia, 2013; Talmadge 

et al., 1973). The renewability of plant-sourced cellulose provides a nearly inexhaustible raw 

material for a wide variety of applications. Everyday uses of plant cellulose include papers, textiles, 

filters, and cholesterol-regulating dietary fiber (Brown et al., 1999). In the pharmaceutical industry, 

 
Figure 1: Native cellulose, dotted lines represent H-

bonding. Adapted from Lu et al. (2014)  
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pure cellulose and its derivatives are currently utilized for drug delivery, gelling, stabilizing, filling, 

and taste masking agents (Shokri and Adibkia, 2013). Plant cellulose is also used extensively for 

biofuel production, where agricultural waste is treated to extract cellulose as a feedstock for 

bioethanol production. To produce ethanol from cellulose, it must first be hydrolyzed into glucose 

which can then fermented into ethanol by yeast (Jørgensen et al., 2007).  

Plant cell walls use cellulose as a scaffolding material not only for its strength but also for 

its relatively high resistance to enzymatic attack (Corner, 1935; Cosgrove, 2005). To facilitate the 

extensibility of walls and improve resistance to disease, enzyme attack, and desiccation, plants form 

a lignocellulosic matrix that incorporates a range of hemicelluloses, pectins, and lignin (Cosgrove, 

2005; Hammerschmidt and Kuć, 1982; Link and Walker, 1933; Vorwerk et al., 2004; Wardrop, 

1971). These plant cell wall compounds (PCWC) are found complexed with cellulose and form a 

major roadblock for widespread biofuel production. As discussed, bioethanol is produced through 

the hydrolysis of cellulose; however, the recalcitrance of this lignocellulosic biomass prevents 

effective degradation of cellulose as PCWCs prevent enzymes from effectively degrading entrapped 

cellulose. The isolation of cellulose requires physical treatments and strong alkaline solutions that 

are both environmentally and economically costly. 

1.1.3. Bacterial cellulose 

Over a dozen genera of bacteria are known to produce bacterial cellulose (BC), the most 

prominent of which belong to the phylum Proteobacteria (Ausmees et al., 1999; Deinema and 

Zevenhuizen, 1971; Jahn et al., 2011; Matthysse et al., 1995; Napoli et al., 1975; Nobles et al., 2001; 

Ross et al., 1991; Zogaj et al., 2001). In contrast to plant cellulose, BC is synthesized with a higher 

degree of polymerization and is produced as a pure polysaccharide free from hemicelluloses, pectins, 

and lignin. The absence of PCWCs provides BC with unique characteristics such as a higher water 

holding capacity and more extensive H-bonding between cellulose strands, leading to the higher 

crystallinity and strength seen in BC. These advantages facilitate applications for BC in the 

biomedical field (wound dressing, bone grafting, etc.) and high-end manufacturing (speakers, 

electronic paper, organic light-emitting diodes, etc.). Like plant cellulose, BC can be enzymatically 

degraded into glucose; however unlike plant cellulose, there is no need for harsh pre-treatments to 

remove PCWC. Unfortunately, the significant financial barrier for mass production of BC largely 

overshadows these advantages. The model organisms for BC require a growth medium that is rich 

in nutrients and high in glucose, the monomer unit of cellulose. 
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1.2. Cellulose biosynthesis in Komagataeibacter  

1.2.1. Characterization and habitat 

The model organism for BC production is the α-proteobacterium, Komagataeibacter xylinus 

(formerly Gluconacetobacter xylinus, historically Acetobacter xylinus). K. xylinus and another BC 

model species, K. hansenii, are rod shaped Gram-negative bacteria that measure 0.5-0.8 x 1.0-3.0 

μm; as members of the Acetobacteraceae family, they grow well in the presence of 0.35% (v/v) 

acetic acid (Asai and Shoda, 1958; Cleenwerck et al., 2009; Mamlouk and Gullo, 2013; Steel and 

Walker, 1957; Yamada et al., 2012a). While only some Komagataeibacter species require acetic 

acid for growth, they all produce it from the fermentation of ethanol (Yamada et al., 2012a). In 2012, 

twelve Gluconacetobacter species were subdivided into a new genus originally proposed as 

Komagatabacter (for contributions by Dr. Komagata; Yamada et al., 2012a), but later designated as 

Komagataeibacter based on phylogenetic, phenotypic, and ecological traits (Yamada et al., 2012b). 

A notable difference between Komagataeibacter and Gluconacetobacter is the lack of motility in 

Komagataeibacter species due to the absence of flagella. In contrast, all Gluconacetobacter species 

studied for taxonomic redistribution by Yamada et al. (Yamada et al., 2012a) produce peritrichous 

flagella.  

Komagataeibacter xylinus are typically found living within the carposphere (fruit bearing 

region) of plants and thrive when the plants rot. They obtain energy and nutrients from plant exudate 

and the breakdown of polysaccharides during plant senescence. For the survival of the bacterial 

strains, this means they must relocate once their food source has been exhausted and since they do 

not produce flagella, Komagataeibacter species must rely solely on other means of transportation to 

colonize fruits. As acid tolerant bacteria, it has been proposed that they survive within the guts of 

insects such as Drosophila which are known to preferentially deposit bacteria on the wounds of fruit 

where nutrients are plentiful (Augimeri et al., 2015; Janisiewicz et al., 1999).  

Amazingly, these seemingly non-motile bacteria are still able to reach the surface of a liquid 

when grown in aqueous media. Three possibilities for this phenomenon exist. Cellulose may adsorb 

carbon dioxide that is released by metabolizing cells, providing buoyancy to the cells by raising the 

submerged cellulose net to the liquid’s surface (Schramm and Hestrin, 1954). Alternatively, I 

propose that they may physically propel themselves to the surface of a liquid by the synthesis of a 

BC network. Videos that depict cellular propulsion via cellulose synthesis (Brown Jr, 2013), and 

personal observations suggest that cellulose synthesis plays a role in their ability to reach the surface; 
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in small cultures, a cellulosic mold of the culture vessel is observed. Lastly, they may be able to 

adjust cellular buoyancy as studies with cyanobacteria have shown that low intracellular cyclic-

diguanylate monophosphate (c-di-GMP) levels enhanced buoyancy (Agostoni et al., 2016). 

Regardless of how they reach the surface, once present they produce a BC pellicle at the air liquid 

interface (ALI) in liquid cultures (Gromet-Elhanan and Hestrin, 1963). When the pellicle at the ALI 

is removed, a globular cellulose network can often be found in the growth medium which, when 

grown in small vessels, is bound to the pellicle (observations from our lab). 

Williams and Cannon (1989) proposed two roles for the cellulose-rich biofilm produced by 

Komagataeibacter xylinus. They identified a correlation between enhanced cellulose production and 

an improved ability to inhibit the number of colony forming units of competing organisms on apple 

slices. Secondly, K. xylinus strains that produced cellulose had a significantly improved ability to 

protect themselves from ultraviolet radiation. Given that cellulose is synthesized from glucose, it 

carries a heavy metabolic cost; biosynthesis must be controlled by environmental signals to ensure 

sugars are not wasted. Identifying the environmental triggers and the regulatory pathways for BC 

production are key steps to improving the efficiency and rate of BC biosynthesis in these organisms. 

1.2.2. Carbon sources for cellulose biosynthesis 

Bacterial cellulose is synthesized by the polymerization of glucose from uridine diphosphate 

glucose (UDP-glucose) into β-1,4-glucan chains. Although glucose is the most efficient sugar for 

BC biosynthesis, other sugars such as fructose can be enzymatically converted into glucose 

 
Figure 2: Cellulose biosynthesis pathways from either glucose or fructose. Abbreviated 

enzymes/systems are as follows: GHK, Glucose Hexokinase; PGM, Phosphogluocomutase; 

UGP, UDP-Glucose Pyrophosphorylase; PTS, Fructose-specific Phosphotransferase System; 

FBP, Fructose Bis-Phosphate; 1PFK, 1-Phosphofructokinase; FHK, Fructose Hexokinase; 

PGI, Phosphoglucose Isomerase; MDH, Mannitol 2-Dehydrogenase. 
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(Tonouchi et al., 1996; Figure 2). Since carbon sources used for BC production represent a large 

financial investment, potential feedstocks are of key interest. A study by Keshk and Sameshima 

(2005) investigated the cellulose yield, production efficiency, and crystallinity index of cellulose 

produced by K. xylinus as well as the carbon source consumption rate when grown in Schramm-

Hestrin (SH; standard glucose rich growth medium for K. xylinus) medium with alternative carbon 

sources. They found that glycerol, glucose, fructose, and inositol produced the highest yield out of 

16 carbon sources tested. When glycerol or fructose replaced glucose, 155% or 95% cellulose yield 

was obtained, respectively. The final pH of growth media was also quite different depending on 

carbon source. Cultures containing glucose resulted in the lowest pH of 3.9, while fructose, inositol, 

and glycerol grown cultures were near pH 5.5. Since K. xylinus is known to produce large amounts 

of gluconic acid from glucose, the similar cellulose yield in fructose and glucose media suggest that 

the total energy-loss of converting fructose into glucose-6-phosphate in a fructose-containing 

medium is nearly equal to that of oxidizing glucose into gluconic acid in a glucose-containing 

medium. To this end, multiple studies have shown that the rate of consumption of carbon-source 

plays a role in cellulose production as lower consumption rates correspond to higher efficiency 

(Keshk and Sameshima, 2005; Pourramezan et al., 2009). Additionally, studies have identified that 

the monomer sugars found in hemicelluloses and pectins (galactose, xylose, mannose, etc.) are 

suitable for cellulose biosynthesis (Ishihara et al., 2002; Keshk and Sameshima, 2005; Mikkelsen et 

al., 2009) meaning that the degradation of these polysaccharides would provide an additional 

nutrient source for Komagataeibacter species. 

1.2.3. Cellulose biosynthesis 

Komagataeibacter species synthesize crystalline cellulose using BcsAB, BcsC, BcsD, BcsH 

(cellulose-complimenting protein; previously CcpAx), BcsZ (an endoglucanase; previously 

CMCax), and BglX (a β-glucosidase) (Augimeri et al., 2015; Saxena et al., 1990, 1994; Wong et al., 

1990). BcsAB, BcsC, and BcsD form the bacterial cellulose synthase (BCS) holoenzyme than spans 

 
Figure 3: Bacterial cellulose synthase (bcs) type I operon, genes approximately to scale. In some 

species, bcsA and bcsB are fused to form bcsAB. Genes are colour coded to match Figure 5.  

Adapted from Augimeri & Strap (2015) 
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the inner and outer membrane (Figure 4). In K. xylinus, the aforementioned genes are found within 

the Type I bacterial cellulose synthase (bcs) operon and sometimes multiple operons are present in 

the same organism (Figure 4; Augimeri and Strap, 2015; Römling and Galperin, 2015). There are 

several varieties of bcs operons, collectively characterized as either type I, II, III, or IV based on the 

presence and arrangement of the genes they encode (Römling and Galperin, 2015). The 

distinguishing features of Type I bcs operons is the fusion of bcsAB (found in Type Ib operons) and 

the presence of bcsD, which may be responsible for the higher crystallinity of BC produced in K. 

xylinus. Type II operons are typical of Escherichia coli and Salmonella enterica, which lack bcsD 

but contain bcsG, bcsE and sometimes bcsF and yhjR. Type III operons contain bcsA, bcsB, bcsZ 

and an additional gene, bcsK. Lastly, Type IV are a class of bcs-like operons that contain bcsA but 

lack most other bcs genes. Additional information on these genes and their organization are outside 

the scope of this thesis and have been reviewed by Römling and Galperin (2015). Some strains of 

K. xylinus contain a second bcs operon with two additional genes of unknown function, bcsX and 

bcsY. BcsY could function as a transacetylase, involved in producing acetylated cellulose or another 

polysaccharide (Umeda et al., 1999). Notably, while only BcsAB is essential for in vitro cellulose 

 
Figure 4: K. xylinus cellulose synthase holoenzyme complex depicting locations of individual 

proteins. The conversion of UDP-glucose into UDP + cellulose (+1) is regulated by the second 

messenger cyclic-diguanylate monophosphate (c-di-GMP). Four nascent glucan chains can pass 

through a single periplasmic BcsD homo octamer to form a mini-crystal. At least three mini-

crystals form along linearly arranged bcsC to form a microfibril. Adapted from Augimeri & Strap 

(2015). 
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synthesis (Omadjela et al., 2013), the absence of any of these genes results in decreased BC 

production in vivo (Deng et al., 2013; Nakai et al., 2002, 2013; Wong et al., 1990). Currently, a 

major knowledge gap is the identity of the transcription factors (TF) responsible for promoting the 

bcs operons and regulatory proteins.  

The polymerization and assembly of cellulose are tightly coupled as the bcs genes work in 

concert to simultaneously facilitate synthesis, export and crystallization (Figure 4; Augimeri and 

Strap, 2015; Ross et al., 1991). During synthesis, all of the extruding strands are produced ‘parallel-

up’ with reducing ends of the cellulose chains pointing away from the bacterium (Koyama et al., 

1997).  

The bcsA gene codes for the first protein subunit of the BcsA-BcsB complex (recall that in 

some species, the chimeric bcsAB form is present). The protein product is a hydrophobic polypeptide 

located on the cytoplasmic face of the inner membrane with a conserved D,D,D,QXXRW motif in 

the catalytic glycosyltransferase subunit of cellulose synthase (Bureau and Brown, 1987; Saxena et 

al., 1990, 1995a; Wong et al., 1990). BcsA contains eight transmembrane domains and contains a 

family 2 glycosyl transferase domain (Saxena et al., 1995b). The conversion of UDP-glucose into 

the β-1,4-glucan chains of cellulose is allosterically activated by the ubiquitous secondary 

messenger c-di-GMP. Historically there has been confusion regarding the binding site of c-di-GMP. 

Research by Amikam & Benziman (1989) and Mayer et al. (1991) with Agrobacterium tumefaciens 

and Komagataeibacter xylinus, respectively, suggested that c-di-GMP binds to BcsB. Further 

studies identified that c-di-GMP was bound to a 200 kD membrane-bound protein complex 

(Weinhouse et al., 1997), and the true binding site was revealed to be a C-terminal PilZ domain on 

the BcsA subunit of this complex (Amikam and Galperin, 2006; Ryjenkov et al., 2006). The previous 

findings were explained when it was discovered that the bcsA and bcsB genes in K. xylinus were a 

fusion gene bcsAB that codes for the single 1500 amino acid PilZ-containing BcsAB protein (Chou 

and Galperin, 2016). 

The bcsB gene codes for the second subunit of the BcsAB enzyme complex. Its product is a 

periplasmic protein that is anchored to the membrane by a single transmembrane (TM) helix 

(Morgan et al., 2013). BcsB contains two carbohydrate binding domains each linked to a flavodoxin-

like fold domain (Morgan et al., 2013). The crystal structure of the BcsA-BcsB complex reveals 

nine TM helices, eight from BcsA and one from BcsB (Morgan et al., 2013). TM3-8 of BcsA form 
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a narrow channel and conserved residues on BcsA interact with an elongating glucan chain. 

Although some residues of BcsB have been shown to contact the polymer, they are not conserved 

(Morgan et al., 2013). Recently, a conserved N-terminal post-translational cleavage site for the 

BcsA-BcsB complex was identified between residues 757 and 758 (McManus et al., 2016).  

BcsC is a 138.7 kDa protein that is homologous to bacterial proteins that code for membrane 

channels or pores, solidifying microscopic evidence of export sites for cellulose microfibrils (Saxena 

et al., 1994; Zaar, 1979). In some strains, the genes are so tightly arranged that the start codon for 

bcsC overlaps with the termination codon of the bcsAB gene (Saxena et al., 1994). BcsC is predicted 

to form a C-terminal β-barrel for nascent glucan export with a large N-terminal periplasmic 

tetratricopeptide repeat (TPR) domain believed to be responsible for interactions with peptidoglycan 

and other bacterial synthesis complex components (Daskalaki, 2008; Morgan et al., 2013; Römling 

and Galperin, 2015).   

BcsD is a 138 kDa periplasmic protein homo-octamer (17.3 kDa monomer) with a 

cylindrical shape (Iyer et al., 2011). All N-termini of the octamer are within the cylinder which form 

four passageways for separately-extruded glucan-chains (Iyer et al., 2011). The protein has an 

interior right-handed twisted interface, spinning new glucan chains into higher-order cellulose fibrils 

(Hu et al., 2010; Saxena et al., 1994), perhaps explaining why the BcsD-containing K. xylinus 

produces fibrillary cellulose instead of the amorphous cellulose produced by other biofilm producers 

such as E. coli (Whitney and Howell, 2013). When bcsD is disrupted by targeted mutagenesis in K. 

xylinus, cellulose production is reduced by 40% (Wong et al., 1990), likely due to the inability to 

efficiently extrude cellulose past the outer membrane.  

Three other genes have been identified in the bcs operon: bcsZ, bglX, and bcsH. BcsZ (also 

named CMCax in Komagataeibacter species) and BglX are an endoglucanase and β-glucosidase, 

respectively, and although their roles are unclear, they are known to participate in cellulose 

biosynthesis (Römling and Galperin, 2015). BcsZ is homologous to the secreted endoglucanase from 

Rhizobium leguminosarum which is responsible for penetration of the non-crystalline root tip hairs 

of plants (Koo et al., 1998; Robledo et al., 2008). It may help degrade improperly crystallized 

cellulose in K. xylinus or degrade amorphous cellulose in the environment. Alternatively, the 

endoglucanase may be involved in cell division or cellulose editing. Analogous to 

Komagataeibacter, Arabidopsis contains a membrane bound endoglucanase (KOR) that is required 
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for the correct assembly of the 

walls of elongating cells (Nicol et 

al., 1998). The absence of this 

endoglucanase resulted in 

multinucleated cells and other 

abnormal morphologies (Zuo et al., 

2000). BcsH (previously CcpAx) 

affects the expression of BcsB and 

BcsC, interacts with BcsD, and influences crystallinity by influencing glucan chain arrangement 

(Deng et al., 2013; Nakai et al., 2013; Sunagawa et al., 2013).  

1.2.4. Regulation of BC 

Like most biofilm producers, Komagataeibacter species activate polysaccharide (cellulose) 

synthesis through the binding of the ubiquitous secondary messenger c-di-GMP. The bacterial 

cellulose synthase (BCS) complex is directly activated by c-di-GMP binding to the PilZ domain of 

BcsAB (Morgan et al., 2014). Globally, the dinucleotide is known for simultaneously triggering 

biofilm development (such as triggering BC synthesis) and inhibiting motility and bacterial 

virulence (Augimeri et al., 2015; Römling et al., 2013; Simm et al., 2004; Weinhouse et al., 1997). 

It is formed by the cyclization of two guanosine triphosphates (GTPs) by diguanylate cyclases 

(DGCs) which contain conserved GGDEF domains (Simm et al., 2004). Phosphodiesterases (PDEs) 

contain EAL or HD-GYP domains that facilitate the degradation of c-di-GMP into linear pGpG 

(Simm et al., 2004). EAL domains are also capable of hydrolyzing pGpG into monomeric pG but 

they do so at a much lower rate than c-di-GMP hydrolysis, indicating that alternative enzymes are 

primarily responsible for the degradation of pGpG (Römling et al., 2013). The complex regulation 

of c-di-GMP is exemplified by the discovery of bi-functional GGDEF/EAL and GGDEF/HD-GYP 

enzymes (Ferreira et al., 2008).  Negative feedback loops from GTP and c-di-GMP control 

intracellular c-di-GMP levels through the inhibition of PDE and DGC, respectively. See Figure 5 

for a visual summary.  

Biofilm producers can respond to environmental and internal cues by activating or inhibiting 

DGCs or PDEs, therefore increasing or decreasing intracellular c-di-GMP levels. Sensory domains 

have yet to be studied in Komagataeibacter species, but c-di-GMP regulating enzymes have been 

found to respond to O2 levels, redox status, and light in other organisms (Chang et al., 2001; Gilles-

 
Figure 5: Turnover of c-di-GMP is antagonistically 

regulated by GGDEF containing DGC and EAL/HD-GYP 

containing PDE. Adapted from Augimeri et al. (2015) 
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Gonzalez and Gonzalez, 2004; Qi et al., 2009; Tarutina et al., 2006). Considering the natural habitat 

for Komagataeibacter spp., it is likely that they are able to sense PCWC as indicators for 

colonization. For example, an experiment in which 3 g/l of green tea was added to the K. xylinus 

growth medium was shown to inhibit endogenous PDEs, leading to an accumulation of c-di-GMP 

and therefore increasing cellulose production (Nguyen et al., 2008).  

Recently in our lab, the influence of PCWC on cellulose synthesis formed by 

Komagataeibacter species has been investigated. The PCWC lignin and xylan approximately 

doubled the weight of the pellicle product in K. xylinus ATCC 53582 (unpublished data). In contrast, 

an opposite but less profound trend was observed in K. hansenii ATCC 23769 (unpublished data). 

The addition of a small molecule, pellicin, was also shown to abolish cellulose production while 

increasing growth rate in K. xylinus (Strap et al., 2011). Surprisingly, cellulose synthase activity was 

not inhibited by pellicin but rather pellicin interfered with the crystallization process and its presence 

enhanced production of cellulose II in vivo. Our lab has also shown that select phytohormones affect 

the synthesis and crystallinity of BC (Qureshi et al., 2013). A particular phytohormone, ethylene, 

upregulated bcsA, bcsB, bcsZ (cmcAx), bcsH (ccpAx) and bglAx (Augimeri and Strap, 2015). 

Furthermore, enhanced transcript levels of fixK under ethylene conditions (previously Crp/FnrKx) 

suggests its role as a TF involved in the regulation of these genes (Augimeri and Strap, 2015), 

originally implicated in cellulose synthesis by Deng et al. (2013). It is possible that PCWCs affect 

BC synthesis and crystallinity through this cAMP receptor protein/fumarate and nitrate reduction 

regulator (Crp/Fnr) family TF as well, but this remains to be investigated. 

1.3. Crp/Fnr Transcription Factors 

1.3.1. Crp/Fnr Family  

The cAMP receptor protein/fumarate and nitrate reduction regulator (Crp/Fnr) family of 

transcription factors represent the paradigm of genetic regulators consisting of about 21 major 

groups, 14 with known functions (Körner et al., 2003). Crp and Fnr were the first two identified 

groups of this family and FixK represents one of the other 19 major groups.  

Crp/Fnr proteins primarily function as positive transcription factors with a C-terminal helix-

turn-helix nucleotide DNA binding domain (DBD), N-terminally activated by either allosteric 

effector binding or prosthetic group interaction (Körner et al., 2003). The DBD consensus sequences 

of these proteins typically contain nearly perfect four to five base pair palindromic motifs separated 
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by four to six base pairs (Körner et al., 2003). In E. coli, binding of Crp bends the DNA strand by 

90 degrees due to two 40 degree kinks on each side of the dyad axis of the complex (Schultz et al., 

1991). As such, gene activation is often simple without the need for additional protein factors. In E. 

coli, Crp regulated gene expression is facilitated by Crp and RNA polymerase alone (Kolb et al., 

1993) yet, it has the capability of activating over 100 different promoters (Salgado et al., 2001). 

Furthermore, it is fairly common to discover multiple Crp/Fnr family proteins in a single species 

(Körner et al., 2003). 

1.3.2. FixK 

Originally discovered in Rhizobium meliloti, FixK was the third Crp/Fnr family of TFs to be 

identified (Batut et al., 1989). While the Crp and Fnr TFs respond to glucose levels (via cAMP) and 

oxygen availability (via a Fe-S cluster), respectively, FixK-like proteins lack a sensory module and 

respond to environmental signals via two-component regulatory systems (David et al., 1988; Gong 

et al., 1998; Reyrat et al., 1993). In R. meliloti, fixK is positively regulated by the two component 

system FixL/FixJ and negatively autoregulated by FixK via FixT (Batut et al., 1989; Foussard et al., 

1997). The heme sensory protein FixL is therefore responsible for sensing oxygen and the 

phosphorylation of FixJ, which will ultimately activate the fixK-regulated symbiotic nitrogen 

fixation genes (Batut and Boistard, 1994; de Philip et al., 1990; Fischer, 1994). DNA binding of 

FixK occurs at a recognition motif of TTGA-N6-TCAA found -40.5 from the +1 transcriptional start 

site (Fischer, 1994).  

1.3.3. FixK in Komagataeibacter 

The direct submission of the K. xylinus ATCC53582 genome by James C. Abbott (Accession 

number FBVP01000001) characterized the Crp/Fnr TF identified by Deng et al. (2013) as FixK by 

ab initio prediction. Protein basic local alignment search tool (BLASTp) analysis indicates that this 

is likely a match to FixK from Komagataeibacter rhaeticus where it is described to be involved in 

the regulation of nitrogen fixation. Notably, several other proteins annotated simply as 

‘transcriptional regulators’ align to K. xylinus ATCC53582 FixK with higher identity over a longer 

query cover.  

In contrast to the traditional microaerophilic sensory/nitrogen fixation response of FixK, its 

gene has also been shown to be phytohormonally regulated in K. xylinus and that it controls bacterial 

cellulose synthesis in K. hansenii (Augimeri and Strap, 2015; Deng et al., 2013). fixK is also 
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associated with the expression of bcsH and to a greater extent bglX (Deng et al., 2013). K. xylinus 

ATCC 53582 and K. hansenii ATCC 23769 carry a fixK recognition motif of TTGATTTATATCAA 

143 bp upstream from fixK suggesting direct autoregulation of the gene (recall fixK is autoregulated 

via FixT in R. meliloti). A similar recognition motif TTGATATGGATCAA is present 192 bp 

upstream of a hypothetical protein found immediately upstream of fixK in K. xylinus ATCC 53582. 

The close location to fixK and matching DBD motif suggests that this small protein may be involved 

in the response to or autoregulation of fixK.   

1.4. Plant-microbe interactions  

1.4.1. Degradation of plant cell wall compounds 

As discussed in section 1.1.2 (Plant cellulose), plants form a recalcitrant wall made from 

cellulose, hemicellulose, pectin, and lignin. As a carpospheric organism, K. xylinus relies on plant 

exudate and rotting plant material for both a carbon and nitrogen source. The production of plant 

cell wall degrading enzymes (PCWDE) would aid in their ability to obtain nutrients; however to our 

knowledge, the only PCWDEs identified in K. xylinus or K. hansenii are the carboxymethyl cellulase 

(CMCase) and β-glucosidase BcsZ and BglX.  

The complete degradation of cellulose requires three major cellulose-hydrolyzing groups: 

endoglucanases, exoglucanases, and β-glucosidases (Kumar et al., 2008). These enzymes are 

responsible for the hydrolysis of the β-1,4-glycosidic linkages found in cellulose. Endoglucanases 

attack internal bonds of a cellulose chain and exoglucanases (cellobiohydrolases) cleave the last two 

glucose monomers on cellulose chains releasing cellobiose, a dimer of glucose. Lastly, β-

glucosidases act on cellobiose to produce glucose monomers. Fungal decomposers such as 

Trichoderma reesei are the most extensively studied cellulase producers, but endoglucanases have 

been identified in bacteria as well (Pilz et al., 1990). An endoglucanase (BcsZ) and a β-glucosidase 
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(BglX) have previously been identified in both K. xylinus E25 (Kubiak et al., 2014) and K. hansenii 

ATCC 23769 (Standal et al., 1994; Tajima et al., 2001). According to UniProtKB, the molecular 

weights of BcsZ and BglX are approximately 37.5 kDa and 83.5 kDa, respectively. Neither of these 

proteins have a clear purpose in these species but cellulases have been shown to display 

bifunctionality, composed of structurally and functionally independent catalytic and cellulose-

binding domains (CBD) (Pilz et al., 1990). Furthermore, there has been no published evidence that 

these enzymes are capable of degrading the crystalline BC produced by these organisms.  

Hemicelluloses are the second most abundant renewable biopolymer (Kumar et al., 2008). 

The composition of these heterogeneous polysaccharides vary depending on the types of plants 

(particularly hardwood and softwood), but are generally composed of D-xylose, D-arabinose, D-

mannose, D-glucose, D-galactose and sugar acids. As many hemicellulose structures exist, various 

enzymes are required for their degradation. One of the most common hemicelluloses is xylan 

(Figure 6, A), composed of a xylose backbone with a range of covalently bound side groups 

including acetic acid, arabinose, D-glucuronic acid, 4-O-methyl-D-glucuronic acid, ferulic acid, and 

p-coumaric acid (Adsul et al., 2009). Endo-1,4-β-xylanases are responsible for hydrolyzing the 

xylose backbone linkages in xylan; however, β-xylosidase, α-glucuronidase, α-L-

arabinofuranosidase and acetylxylan esterase enzymes are required to degrade all xylan 

heteropolymers into monosaccharides (Kumar et al., 2008). Some xylanases (23.3 kDa according to 

 
Figure 6: Structures of some typical plant cell wall compounds (PCWC). A, xylan: a common 

hemicellulose; B, galacturonic acid (homogalacturonan): a common pectin; C-E, lignin 

monomers.  
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UniProtKB) have been discovered in bacteria such as Bacillus subtilis (Paice et al., 1986), but have 

yet to be identified in Komagataeibacter species.  

Pectins are the third main structural polysaccharide found in plant cell walls and are 

classified as homogalacturonan (Figure 6, B), rhamnogalacturonan I, or rhamnogalaturonan II 

(Mohnen, 2008). Homogalacturonan is a polymer of α-1,4-D-galacturonic acid monomers with 

random partial methylation and acetylation. Rhamnogalacturonan I is formed through alternating α-

1,2-L-rhamnosyl-α-1,4-D-galacturonosyl units with branching arabinofuranose and galactose 

oligomers. Similar to homogalacturonan, rhamnogalacturonan II has a backbone of α-1,4-D-

galacturonic acid monomers with random partial methylation and acetylation, but also contains four 

types of branching composed of up to 11 different monosaccharide types.  

Pectins are abundant in fruits such as apples, apricots, bananas, carrots, grapes, lemons, and 

oranges (Schiewer and Patil, 2008). Apricots contain some of the highest pectin content at up to 

1.32% of total fruit content (Baker, 1997; Money and Christian, 1950) and grapes typically range 

between 0.12% to 0.8% pectin content (Kawabata et al., 1974; Silacci and Morrison, 1990). Notably, 

the skin of fruits are particularly rich in pectin (Schiewer and Patil, 2008). Depolymerization and 

solubilization of pectins begins early in ripening and serve as a potential carbon source for 

Komagataeibacter. Pectinase enzymes encompass three enzyme categories. Polygalacturonases 

facilitate the hydrolysis of α-1,4-D-galactosiduronic linkages. Pectolyase and pectinesterase are 

responsible for cleaving side chains and methyl esters, respectively (Gummadi and Panda, 2003). 

Bacterial pectinases are typically 50 kDa but have been identified as large as 110 kDa (UniProtKB). 

Lignin is the last but the most unique component of plant cell walls. While the other PCWC 

are polysaccharides with defined backbones, lignin is a complex aromatic heteropolymer composed 

of p-coumaryl, coniferyl, and sinapyl alcohol (Freudenberg & Neish 1968; Figure 6, C-E). During 

plant development, the majority of lignin is deposited after cellulose and hemicellulose have been 

deposited (Boerjan et al., 2003). Lignin therefore fills in the gaps between these polysaccharides and 

as such, lignin must be removed before enzymes can access hemicellulose or cellulose. The 

degradation of lignin requires the catalytic oxidation by the enzymes lignin peroxidase, laccase, 

and/or manganese peroxidase (Higuchi, 2004). Many soil dwelling bacteria have been shown to 

produce lignin modifying enzymes (Crawford, 1978; Sørensen, 1962) and it is likely that some 

carpospheric bacteria also produce such enzymes.  
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The production of PCWDE would benefit Komagataeibacter by simultaneously releasing 

simple sugars through the degradation of polysaccharides as well as breaking down the plant cell 

wall to increase nutrient availability. K. xylinus and K. hansenii have already been shown to secrete 

CMCase and a range of decomposing bacteria are capable of degrading the PCWC discussed. 

Additionally, studies have indicated that PCWC can be integrated into BC during synthesis, 

adjusting its properties (Augimeri et al., 2015; Chanliaud and Gidley, 1999; Park et al., 2014; Tokoh 

et al., 1998; Uhlin et al., 1995) and potentially improving its ability to isolate a plant wound from 

competitors.  

1.5. Hypothesis and research objectives 

Extensive research has been conducted on low cost media alternatives for the production of 

bacterial cellulose from Komagataeibacter species (Castro et al., 2011; Kuo et al., 2010; Li et al., 

2015; Lin et al., 2014; Moosavi-Nasab and Yousefi, 2011; non inclusive list), yet little is known 

about what compounds are suitable for its synthesis. Due to their abundance and cost, agricultural 

wastes are some of the most promising feedstocks. These compounds are rich in plant cell wall 

compounds such as cellulose, xylose, and pectin that may be degraded into simpler sugars by 

Komagataeibacter. Plants often produce these compounds complexed within lignin, making it 

resistant to enzymatic attack.  

Previous research by Deng et al. (2013) revealed a unique role of fixK in bacterial cellulose 

synthesis in K. hansenii ATCC 23769 through transposon mutagenesis. The absence of fixK leads 

to the complete abolishment of bacterial cellulose, yet the bacterial cellulose synthesis proteins were 

present in the cell extract. Expression of bcsH and bglX was downregulated in the absence of fixK 

but their role in cellulose synthesis is poorly understood. In K. xylinus ATCC 53582, fixK is 

regulated by the phytohormones ethylene, abscisic acid, and indole acetic acid indicating its role in 

detecting plant ripeness (Augimeri and Strap, 2015). 

The goals of this research were i) to investigate which, if any, of the primary plant cell wall 

compounds are degraded by K. xylinus and K. hansenii to gain insight into the plant-bacteria 

interaction; and ii) to investigate the role of the global transcriptional regulator FixK in K. xylinus 

and further develop our understanding of FixK in K. hansenii through a reverse genetics approach.  
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This thesis therefore tested three hypotheses: i) K. xylinus and K. hansenii produce plant cell 

wall degrading enzymes, ii) FixK regulates bacterial cellulose biosynthesis in K. xylinus, and iii) 

fixK is involved in the regulation of carbon source metabolism. 

2. Methodology 

2.1. Chemicals (and growth medium) 

All chemicals were purchased from BioShop (Burlington, Ontario) except where stated 

otherwise. D-glucose, D-fructose and yeast extract were purchased from BioBasic (Markham, 

Ontario). All antibiotics, cOmplete™ EDTA-free protease inhibitor cocktail, cellulase from 

Trichoderma reesei, manganese peroxidase from Nematoloma frowardii, lignin peroxidase, 

pectinase from Aspergillus niger, and xylanase from Trichoderma viride were purchased from 

Sigma-Aldrich (Oakville, Ontario). Plant cell wall compounds CMC, xylan from Birchwood, pectin 

from apple, and low sulfonate lignin were also obtained from Sigma-Aldrich (Oakville, Ontario). 

Pellicin (([2E]-3-phenyl-1-[2,3,4,5-tetrahydro-1,6-benzodioxocin-8-yl]prop-2-en-1-one) dissolved 

in DMSO was a gift from Dr. Bonetta.  

2.2. Bacteria and culture conditions 

Komagataeibacter xylinus American Type Culture Collection (ATCC) 53582 and K. 

hansenii ATCC 23769 were maintained as frozen glycerol stocks at -80°C. Stocks were streak plated 

for isolated colonies on Schramm-Hestrin (SH) medium (Hestrin & Schramm 1954) containing 

1.5% agar. Unless otherwise stated, starter cultures were prepared in 5 ml of SH medium 

supplemented with 0.2% (v/v) filter-sterilized cellulase in a 50 ml screw-capped tube. Cultures were 

grown at 30°C in a rotisserie incubator until the culture reached an optical density at 600 nm (OD600) 

of 0.5-0.7 or 0.7-0.9 for K. xylinus or K. hansenii, respectively. Cells were harvested by 

centrifugation at 3,000 x g for 10 minutes or 9,000 x g for 1 minute for volumes over or under 2 ml, 

respectively.  

The inoculum for agitated culture experiments were prepared by washing the cells twice in 

SH medium without a carbon source (SH0; Table 1) supplemented with 0.2% (v/v). Static culture 

experiments required cellulase-free media for pellicle production. Prior to washing cells, cultures 

were cooled to 4°C to prevent cellulose induced aggregation. Cells were then washed twice in cold 

SH0 to remove medium cellulase and remained on ice until inoculation. All experimental cultures 

were inoculated in triplicate to an OD600 of 0.005 unless otherwise stated.  
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K. xylinus ΔfixK and K. hansenii ΔfixK cultures were supplemented with 50 µg/ml and 150 

µg/ml of chloramphenicol to prevent the loss of the gene disruption, respectively.  

2.3. Detection of extracellular plant cell wall degradative enzymes 

2.3.1. Agar plate assays 

Screening for the presence of plant cell wall degrading enzymes (PCWDE) secreted by K. 

xylinus or K. hansenii was performed using substrate supplemented agar plate assays. Detection of 

cellulases, xylanases, pectinases, and lignin-modifying enzymes (LMEs) was performed on 1.0% 

(w/v) agar plates containing 0.2% (w/v) carboxymethyl cellulose (CMC), 0.2% (w/v) xylan, 0.2% 

(w/v) pectin, or 0.025% (w/v) lignin, respectively. Staining with Gram’s iodine solution (Bio-

Media) has previously been shown to be an effective dye for staining CMC and xylan (Meddeb-

Mouelhi et al., 2014) and was evaluated for its ability to also stain pectin and lignin. Washing the 

stained plates with MilliQ H2O revealed well-defined clearing zones around positive controls 

(cellulase, xylanase, pectinase, or manganese peroxidase) indicating degradation of substrate and 

was therefore used for initial screening. Manganese peroxidase, lignin peroxidase, and laccase were 

evaluated for lignin degrading ability. Manganese peroxidase produced the most well defined 

clearing zones and was used as the positive control for all lignin degradation assays.  

To evaluate whether enzyme activity could be found in the growth medium or trapped within 

Komagataeibacter pellicle, cultures for the PCWDE plate assays were prepared separately. The 

growth medium extracts were prepared from supernatants of 2 ml agitated, three day old cultures 

grown in SHG2 (canonical SH; Table 1) supplemented with 0.2% cellulase (v/v) at 30°C in 24 well 

plates. Pellicle extracts were prepared similarly except without the addition of cellulase and grown 

statically for seven days to facilitate the production of a robust pellicle. Pellicles were then quartered 

with a sterile scalpel. To encourage enzyme secretion, each culture was also separately prepared 

with the addition of 2% (w/v) fructose, 0.05% (w/v) xylan, 0.05% (w/v) CMC, or 0.05% (w/v) 

lignin. Enzyme assays were performed by the addition of 10 μl of cell-free supernatants of agitated 

culture or placing the quartered pellicle onto the plates and incubating the plates for up to two days 

at 30°C. Degradation was scored as clearing zones and were detected by staining with Gram’s iodine 

solution and destaining with MilliQ H2O. 
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2.3.2. Crude protein preparations 

To improve the detection of low abundance PCWDE, proteins from culture supernatants and 

pellicles were concentrated as follows. Crude extracellular protein was obtained from duplicate 100 

ml K. xylinus or K. hansenii cultures grown in SH medium for four or seven days. Culture broths 

were gravity-filtered through a #4 cone filter to remove thick amorphous cellulose then immediately 

vacuum-filtered through a Whatman #1 filter paper using a Büchner funnel. The broth was then 

centrifuged at 2,250 x g for 10 minutes at 4°C and the cell-free supernatant was collected for 

concentration via ammonium sulfate precipitation or lyophilization. Pellicles were squeezed using 

a flat-bottomed potato ricer to obtain the “squeezate” which was vacuum-filtered through a 

Whatman #1 filter paper using a Büchner funnel and centrifuged at 2,250 x g for 10 minutes at 4°C. 

The cell-free supernatant was collected for concentration via ammonium sulfate precipitation or 

lyophilization.  

Ammonium sulfate precipitation was performed by adding ammonium sulfate to 80% 

saturation at 4°C and centrifuged at 2,250 x g for 10 minutes. Samples were then resuspended in 50 

mM citric acid pH 5 buffer and dialyzed in a regenerated cellulose membrane with a 12,000 to 

14,000 molecular weight cut off overnight against the same buffer at 4°C (Fisherbrand). The buffer 

was chosen to mimic the acidic nature of the culture at mid-log growth. Cell-free culture broth and 

squeezate samples were concentrated approximately 20 times and 4 times, respectively.   

Samples for lyophilization were frozen in 500 ml centrifuge bottles at -80°C at an angle to 

optimize surface area. Frozen samples were lyophilized on a Modulyo D freeze dryer fitted with a 

VLP200 vacuum pump (Thermo Scientific) for approximately 30 hours until dry. The freeze-dried 

samples were then resuspended in 50 mM citric acid pH 5 buffer. Culture broth and squeezate 

samples were concentrated approximately 20 times and 4 times, respectively.  

Acetone precipitation was the third protein concentration method investigated. Samples were 

prepared as stated above and proteins from 50 ml cultures were precipitated overnight at  

-20°C using four volumes of acetone. The supernatant was decanted after centrifugation at  

2,250 x g for 10 minutes at 4°C. The resulting pellet was resuspended in 50 mM citric acid pH 5 

buffer at 1/20 the initial volume.  
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2.3.3. Zymography detection of plant cell wall degrading enzymes 

PCWDE activity was determined by zymogram analysis and individual proteins within 

active protein bands were identified by mass spectrometry. Sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) was performed as described by Laemmli (1970) using the Mini-

PROTEAN® tetra electrophoresis system (Bio-Rad). Depending on the enzyme assay, 0.1% (w/v) 

CMC, xylan, or pectin was incorporated into the 12% resolving gel prior to polymerization with 4% 

stacking gels cast on top of the resolving gel. Concentrated protein samples were loaded to a 

concentration of 200 ng and 80 ng for culture broth and squeezate samples, respectively. Lignin 

interfered with the polymerization of the polyacrylamide so agarose overlays (described below) 

were performed. 

Gel electrophoresis was performed in duplicate, one for protein profiling via Coomassie 

staining and one for the detection of PCWDE via substrate staining. Gels were run at 100 V for 

approximately 2 hours and then rinsed in MilliQ H2O. Gels were submerged and washed by shaking 

in 2.5% (v/v) Triton X-100 for at least 30 minutes to replace SDS with the non-ionic detergent to 

renature the proteins. Gels were then rinsed with MilliQ H2O and incubated at 30°C for 20 minutes 

in 50 mM acetate buffer at pH 5 to resemble the pH of mid-log culture medium. They were rinsed 

once again for 5 minutes in MilliQ H2O to remove excess buffer. Staining processes were dependent 

on the incorporated polymer as described below. 

CMC and xylan gels were stained with 0.1% (w/v) Congo red for 30 minutes and then 

destained in 1 M NaCl until clearing zones appeared. Contrast was increased by the addition of 1% 

(v/v) acetic acid as Congo red turns dark purple to blue below pH 4.  

Pectin gels were rinsed three times with MilliQ H2O for at least 5 seconds then stained with 

0.05% (w/v) ruthenium red for 20 minutes. Destaining was performed using MilliQ H2O until pale 

red zones appeared.  

Lignin was found to prevent polymerization of polyacrylamide gels. Therefore, an 

alternative method wherein lignin supplemented agarose gels were overlaid on top of SDS-PAGE 

gels was used. Protein samples were electrophoresed and renatured in situ as stated above except 

that 2 mM H2O2 was added to the 50 mM acetate buffer (pH 5) as lignin peroxidase requires H2O2 

for activity. Notably, divalent cations such as Mn2+
 serve as an electron donor for the positive control 

manganese peroxidase (Himmel, 2016). Substrate overlays of 1 mm thickness were cast using PAGE 
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casting chambers with 1% (w/v) agarose and 0.025% (w/v) lignin. Agarose overlays were cut to 

match the polyacrylamide gel and notched to indicate directionality. Polyacrylamide gels were 

sandwiched against the agarose overlays using vice-tightened glass plates with enough pressure to 

ensure good contact and incubated in a humidified chamber overnight at 30°C. After incubation, 

agarose overlays were washed three times in MilliQ H2O for 30 minutes to remove residual H2O2 

as it interferes with the staining procedure. Overlays were then placed in a freshly mixed 1:1 solution 

of 1% (w/v) FeCl3 and 1% (w/v) K3[Fe(CN)3] in the dark for 10 minutes without disturbance. Lignin 

stained blue-green and clear zones indicated oxidation of the polyphenol.  

Protein bands exhibiting degradation of polymers were excised from gels and preserved in 

1% (v/v) acetic acid until they were sent for protein identification at the SickKids Proteomic, 

Analytics, Robotics & Chemical Biology Centre (Toronto, Ontario) using in-gel trypsin digestion 

prior to electrospray ionization and mass identification via Orbitrap Liquid Chromatography tandem 

Mass Spectrometry. PEAKS Studio software v7.5 was used to identify proteins with corresponding 

peptide identities. Proteins from K. hansenii ATCC 23769 were searched against K. hansenii ATCC 

23769 predicted protein database (National Center for Biotechnology Information). Proteins from 

K. xylinus ATCC 53582 were searched at a species level since the same database for K. xylinus 

ATCC 53582 strain is not available.  

2.4. Disruption of fixK  

2.4.1. Transformation and selection optimization 

There are few genetic tools available for Komagataeibacter and transformation efficiencies 

are low, probably due to the production of crystalline cellulose which acts as a barrier. Optimizing 

the transformation protocol was therefore a necessary step for the mutagenesis of this strain. Initially 

it was unclear whether cell competency or plasmid compatibility was the primary obstacle for 

effective transformation. Electroporation, chemical transformation, and conjugation were all 

attempted with several plasmid backbones in K. xylinus without success. Simultaneous to this 

research, another group successfully transformed their construct, pSEVA331Bb, into K. xylinus 

ATCC53582 (Florea et al., 2016b). Since we discovered that SEVA331Bb (Addgene plasmid # 

78269 deposited by Tom Ellis; Appendix Figure 2) was effectively maintained in K. hansenii as 

well, this plasmid was used to optimize transformation conditions. 
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Prior to obtaining this pSEVA331Bb, the best antibiotic for selection of K. xylinus and K. 

hansenii was evaluated with the goal of finding an effective antibiotic against both strains to use as 

a selection agent. This knowledge would assist in the development of a plasmid that would be 

effective in both species. The antibiotic sensitivity assay was performed by spread plating 

approximately 106 K. xylinus and K. hansenii cells on SHG2 agar containing 6 to 50 μg/ml 

kanamycin, 100 to 400 μg/ml chloramphenicol, or 50 to 300 μg/ml tetracycline. Resistance was 

evaluated by the number of CFU on antibiotic plates after five days incubation at 30°C. Minimum 

inhibitory concentration (MIC) assays were also performed by inoculating K. xylinus and K. hansenii 

in 200 μl of SHG2 to a McFarland standard of 0.5 in a 96 well plate containing 0 – 175 μg/ml of 

chloramphenicol or 0 – 14 μg/ml of tetracycline and was incubated for three days at 30°C. Results 

from the spread plate assay indicated that kanamycin was a poor antibiotic for plate selection of K. 

hansenii and was therefore omitted from the MIC assay.  

K. xylinus grow 

slowly in canonical SHG2 

medium, possibly 

resulting in the 

upregulation of stress 

response genes that 

would limit competency. 

Alternative growth media 

that improve cell fitness 

may be a simple solution 

to this problem. To this 

end, cells were grown in 

growth medium with 

fructose, glycerol, or 

acetic acid as described 

in Table 1. Fructose has 

been shown to improve cell growth in K. xylinus ATCC 53524 (Mikkelsen et al., 2009) and 

incubation with glycerol has been implicated in improved transformation efficiency, possibly by 

affecting the membrane permeability (Ravid and Freshney, 1998). Cultures were inoculated in 200 

Table 1: Modified SH medium used in this study. Canonical SH 

medium glucose was replaced with other carbon sources. Glucose 

or fructose based media was supplemented with 50 mM acetic acid.  

Medium [Glucose] [Fructose] [Sucrose] [Glycerol] [Acetic Acid] 

SHG2 † 2% - - - - 

SHG2 AA 2% - - - 50 mM (0.43%) 

SHG1 1% - - - - 

SHG1 AA 1% - - - 50 mM (0.43%) 

SHF2 - 2% - - - 

SHF2 AA - 2% - - 50 mM (0.43%) 

SHF1 - 1% - - - 

SHF1 AA - 1% - - 50 mM (0.43%) 

SHG1 Gly1 1% - - 1% - 

SHF1 Gly1 - 1% - 1% - 

SH0 Gly2 - - - 2% - 

SHS2
* - - 2% - - 

SHM* 0.5% 0.5% 1% - - 
  †Canonical SH is named SHG2 for the purpose of this study. 

*Not used for electrocompetent cell preparations 
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μl of media (described in Table 1) in triplicate in 96 well plates with 2% (v/v) cellulase to assist in 

cellulose degradation. This was necessary due to the reduced turbidity in small cultures facilitating 

the synthesis of cellulose. Growth was measured as optical density at 600 nm (OD600) three times a 

day until the culture reached stationary phase. Despite high cellulase concentrations, K. xylinus 

showed signs of aggregation in some cultures. The cellulase concentration was doubled in cultures 

where aggregation/cellulose production was noticeable. These growth curves were repeated with K. 

hansenii to complement the K. xylinus findings and the results were used to identify the OD600 of 

cultures at mid-logarithmic growth, important for the preparation of electrocompetent cells for 

cultures grown in each of these media.  

Transformation of K. xylinus is complicated due to cellulose production. Cellulose 

biosynthesis rapidly creates antibiotic resistance in these species by forming a biofilm between cells 

and the antibiotic on selection plates. Strategies for preventing the development of this biofilm were 

investigated by modifying the application of cellulase to selection plates. K. xylinus rapidly produce 

highly crystalline cellulose when grown in glucose (Keshk & Sameshima 2005) and therefore 

plating on SHG2 would provide a recalcitrant cellulose for this assay. Although SHG2 would be the 

ideal growth medium for the preparation of high cellulose-yielding electrocompetent cells, 

electroporation proved very difficult. Electrocompetent cells were therefore prepared in SHF2 and 

transformed with pSEVA331Bb at 2.5 kV in 1 mm cuvettes and then recovered in 1 ml SHG2.  Fifty 

microlitre aliquots of the electroporated cells were plated on SHG2 Chl150 either i) with the direct 

addition of 25 μl (0.1% v/v) of cellulase to the electroporation mixture, or ii) with 50 μl (0.2% v/v) 

cellulase incorporated into plates prior to pouring. The efficacy of both methods was evaluated by 

the number of satellite colonies formed after 7 days.  

An additional means to combat cellulose production was to modify the growth, recovery, 

and plating medium to be less favorable for cellulose synthesis. Previous work in our lab has shown 

that K. xylinus produces less cellulose when provided fructose instead of glucose (unpublished data). 

These findings, combined with the data obtained from the growth curves described previously, drove 

the selection of SHG2, SHF2, SHF1, SHF1 AA, SHF1 Gly1, and SH0 Gly2 for the preparation of 

electrocompetent cells. All of these media are fructose or glycerol based except for SHG2 which was 

included as the current standard. Cells in each media were prepared as follows: K. xylinus was grown 

in 100 ml of each of the media listed above to an OD600 of approximately 0.5. Cultures were chilled 

to 4°C then centrifuged (2,350 x g; 20 min; 4°C) and the supernatant was decanted. Cell pellets were 
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washed once in 25 ml and twice in 10 ml 1 mM HEPES (pH 7.0) by repeated centrifugation and 

decanting. Cells were finally resuspended in 15% (v/v) glycerol to a calculated OD600 of 

approximately 50 to ensure equal cell numbers between preparations. Aliquots of 100 μl were stored 

frozen at -80°C. To evaluate electroporation efficiency, pSEVA331Bb was electroporated into 50 

μl of thawed cells at 2500 V in 1 mm cuvettes using 120 ng (2.4 ng/μl) DNA. After electroporation, 

cells were immediately transferred into 1 ml of SHF1 supplemented with 0.5% (v/v) cellulase and 

agitated at 30°C. Transformants were selected by spread plating 50 μl of electroporated cultures 

supplemented with 25 μl of cellulase at 75 minutes and 6.5 hours post transformation.  
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2.4.2. fixK knockout construct design and mutation in Komagataeibacter 

fixK has previously been implicated in cellulose production in K. hansenii (Deng et al., 

2013). Mutational analysis was focused on this gene to further understand its role at both a 

physiological and morphological level between species. A linear construct was designed to mutate 

fixK by inserting an in-frame stop codon and chloramphenicol cassette into the gene (Figure 7). 

Genomic DNA (gDNA) was extracted from mid-log grown cultures of K. xylinus and K. hansenii 

using an EZ-10 Spin Column Bacterial DNA Mini-Prep Kit (BioBasic) according to manufacturer’s 

instructions. PrimerBlast (Ye et al., 2012), SnapGene® software (from GSL Biotech; available at 

snapgene.com), and Netprimer (http://www.premierbiosoft.com/netprimer/) were used to design 

 
Figure 7: Construct design for fixK mutation. fixK was amplified from genomic DNA to isolate 

fixK as fixK interior primers may result in off-target effects with genomic DNA. Left and right 

sides of fixK were amplified using primers with complementary 5’ overhangs to the 

chloramphenicol cassette from pSEVA331Bb. The chloramphenicol cassette was amplified with 

complementary 5’ overhangs to the left and right sides of fixK. The 5’ overhangs are coloured 

blue (left) and green (right). The three fragments were mixed and assembled using Gibson 

Assembly. The product was amplified to provide sufficient quantities for electroporation into K. 

xylinus and K. hansenii. DNA purification was performed after each PCR. Primers were 

designed to incorporate a stop codon for the left side of fixK. 



25 

 

and validate primers in silico. A 618 bp fragment of fixK was amplified from both K. xylinus and K. 

hansenii. Unless otherwise noted, all polymerase chain reactions (PCR) used Q5® High-Fidelity 

DNA Polymerase (New England Biolabs; NEB) with the following cycling conditions: 98°C for 30 

sec; 30 cycles of 98°C for 10 sec, 66 °C for 10 sec, 72°C for 30 sec; and 72°C for 2 min. All 

amplicons were purified using EZ-10 Spin Column DNA Cleanup Kit (BioBasic) prior to 

downstream applications. SnapGene® was used to design Gibson Assembly® primers for the 

assembly of the 5’ side of fixK, a chloramphenicol cassette from pSEVA331Bb, and the 3’ side of 

fixK (Figure 7). Primers selected to ensure the incorporation of an in-frame stop codon for fixK and 

fragments were amplified by PCR. The fragments were assembled using Gibson Assembly® Master 

Mix (NEB) according to the manufacturer’s instructions and the target construct was amplified by 

PCR. Agarose gel electrophoresis of the amplified assembled product revealed multiple bands. 

Therefore, the 1403 base pair (bp) target was gel-purified using EZ-10 Spin Column DNA Gel 

Extraction Miniprep Kit (BioBasic) and was used as a template to amplify a clean fixK-flanked 

chloramphenicol cassette assembly (fixK-Chl-fixK). Primers used for fixK mutagenesis are listed in 

(Appendix Table 1). 

fixK was mutated in both K. xylinus and K. hansenii by homologous recombination with the 

linear construct fixK-Chl-fixK. This construct was electroporated into both species using 1800 V or 

2500 V and either 0.25 ng/μl or 2.5 ng/μl DNA with no clear improvement for either condition. The 

mutated fixK was amplified from both species using Q5 DNA polymerase as described above and 

sent to Bio-Basic for sequence analysis. Mutants were maintained as glycerol stocks and stored at -

80°C.  

2.5. Mutant characterization 

2.5.1. Colony morphology 

As a putative global transcription factor, fixK likely controls several cell responses and 

signals. Wildtype and ΔfixK mutants of K. xylinus and K. hansenii were grown on glucose, fructose, 

and sucrose based SH medium to examine colony morphology. Cells were streak plated on SHG1, 

SHG2, SHF1, SHF2, or SHS2 and incubated at 30°C. Additionally, K. xylinus wildtype and ΔfixK 

were streak plated on SHG2 supplemented with 10 μM pellicin dissolved in dimethyl sulfoxide 

(DMSO) or an equal volume of DMSO as a negative control. Pictures were taken of colonies 

positioned above a 1 mm increment ruler with a USB 2.0 Digital Microscope (Plugable brand). 



26 

 

2.5.2. Agitated growth, pH, and gluconic acid assays 

The role of fixK was further investigated through growth and acid metabolism assays in 

agitated cultures. Culture OD600, pH, and gluconic acid was measured to evaluate growth and acid 

metabolism in agitated 0.2% (v/v) cellulase supplemented liquid cultures. To limit bias due to 

priming cultures with a single carbon source, starter cultures for these assays were prepared in SHM 

(Table 1). WT and ΔfixK mutants of K. xylinus and K. hansenii were inoculated in 50 ml SHG1, 

SHG2, SHF2, and SHS2 (Table 1) in 125 ml flasks to an OD600 of 0.005 and incubated at 30°C at 

170 rpm for up to 14 days. Daily analysis was performed by aliquoting 200 μl into a 96 well plate 

for pH and growth analysis; 300 μl was frozen at -20°C for subsequent gluconic acid analysis. 

Growth was measured by OD600 in 96 well plates on an xMark™ Microplate Absorbance 

Spectrophotometer (BioRad) using the respective growth medium as a blank. These same samples 

were then used to measure culture pH using an Orion™ 9110DJWP Double Junction Micro pH 

Probe fitted to an Accumet® AB15 (Thermo Fisher Scientific™) pH meter. Total gluconic acid and 

glucono-δ-lactone from the three biological replicates at select time points were measured (single 

technical replicates) after completion of the growth/pH curve according to the microplate assay 

procedure from a D-gluconic acid/D-glucono-δ-lactone kit (Megazyme). Samples were diluted 

according to culture pH before performing the assay to ensure measurements were within the linear 

range. Concentration of gluconic acid was calculated as ΔAsample/ΔAstandard * standard (0.25 g/L) * 

dilution factor. Student’s t-tests were performed between points of interest (p<0.05).  

2.5.3. Static pH, gluconic acid, and cellulose yield 

Komagataeibacter grow differently under agitated and static conditions. Therefore, the role 

of fixK was investigated through bacterial cellulose and acid metabolism assays under static 

conditions. Importantly, the pH between static and agitated cultures was used as a culture growth 

stage reference point to facilitate comparisons between the agitated and static culture conditions. 

Starter cultures were prepared in SHM (Table 1) to prevent carbon source priming. Wildtype and 

ΔfixK mutants of K. xylinus and K. hansenii were inoculated in 2 ml SHG1, SHG2, SHF2, and SHS2 

(Table 1) in 24 well plates to an OD600 of 0.005 and incubated at 30°C for up to 33 days. For days 

including pellicle measurements, six technical replicates were inoculated for each biological 

replicate. Prior to pH measurements, pellicles were pierced to release fluids retained within a 

cellulosic sac that forms beneath the pellicle and then thoroughly mixed with the culture medium. 

Culture plates were then frozen for subsequent gluconic acid assays, performed as described in 
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section 2.5.2. Dry weight was measured on day 7, 13, and 23 as previously described (Augimeri et 

al., 2016). In brief, pellicles were pierced (to release retaining fluids) and dabbed 3 times on paper 

towel to remove excess medium. Pellicles were then heated to 80°C in 0.1 N NaOH for 20 minutes 

and then extensively washed in MilliQ H2O until the wash solution remained at or below pH 7 after 

one hour of washing. Pellicles were dried until constant weight at 50°C and dry weights were 

measured.  

2.5.4. Transcriptional analysis 

To investigate whether fixK has regulatory control over the genes involved in bacterial 

cellulose biosynthesis, transcript abundance was investigated by endpoint PCR of cDNA generated 

from RNA isolated from K. xylinus and K. hansenii wildtype and compared to their respective ΔfixK 

mutants. Cultures were prepared in 50 ml SHG2 supplemented with 0.2% (v/v) cellulase in 125 ml 

flasks and grown at 30°C at 170 rpm. RNA was extracted during mid-log growth using an RNA 

Purification Plus Kit (Norgen). RNA was reverse transcribed into complementary DNA (cDNA) 

using random primers with the iScript™ Select cDNA Synthesis Kit (Bio-Rad). Endpoint PCR was 

performed using the EZ PCR Master Mix (miniPCR) with the following conditions: 95°C for 2 min; 

30 cycles of 95°C for 20 sec, 55-61°C for 25 sec, 72°C for 45 sec; and 72°C for 2 min. Gene targets 

and annealing temperatures for each primer pair are listed in Appendix Table 1. Significance and 

percent reduction in gene expression was determined by t-tests comparing the mean gray value 

(intensity) of wildtype versus ΔfixK mutants via ImageJ v1.49 (National Institutes of Health) 

analysis (p<0.05).  

2.5.5. Protein profile analysis of whole cell extracts 

Differential protein expression between wildtype (WT) and ΔfixK mutants was analyzed in 

whole cell protein extracts by SDS-PAGE. To prepare protein extracts, K. xylinus and K. hansenii 

and their respective ΔfixK mutants were inoculated in 50 ml SHG2 in 125 ml flasks to an OD600 of 

0.005. Cultures were agitated at 170 rpm at 30°C until reaching stationary phase at an OD600 of 

approximately 1.0-1.2. Cells were harvested, resuspended in 4 ml of 200 mM Tris-HCl pH 7.5 

supplemented with cOmplete™ EDTA-free Protease Inhibitor Cocktail and frozen at -80°C. Cells 

were slowly thawed overnight and sonicated on ice for 90 seconds (pulsed; 15 seconds on and 45 

seconds off; 70% amplitude) with a Model 120 Sonic Dismembrator fitted with a 0.12” diameter 

probe (Fisher Scientific™). Proteins were precipitated by the addition of 16 ml cold acetone (4 

volumes) and chilled overnight at -20°C. Proteins were harvested at 4°C by centrifugation at 3000 
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x g for 10 minutes, resuspended in 1000 μl of 200 mM Tris-HCl pH 7.5, and quantified using a 

Pierce™ bicinchoninic acid protein assay kit (Thermo Fisher Scientific).  

Protein samples (2 μg) were electrophoresed on 10% Mini-PROTEAN® TGX™ precast 

protein gels on a Mini-PROTEAN® Tetra System (Bio-Rad) according to Laemmli (1970) at 200 

V for approximately 35 minutes. Gels were silver stained as described by Gromova & Celis (2006) 

and imaged on a fluorescent light box using an EOS Rebel Camera (Canon).  
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3. Results 

3.1. K. xylinus and K. hansenii secrete bcsZ and a xylan modifying enzyme 

To investigate the possibility that Komagataeibacter xylinus and K. hansenii degrade plant 

cell wall compounds, initial screens for enzyme activity were performed on polymer-supplemented 

agar plates stained with iodine. Clearing zones after destaining would therefore indicate enzyme 

activity due to the degradation of the substrate. Substrate-containing agar plates incubated with 

aliquots of culture supernatant did not reveal degradative halos, however clearing zones were 

observed for all polysaccharides when 

incubated with quartered pellicles 

(representative results; Figure 8). This 

suggests that these species are capable of 

degrading cellulose, xylan, pectin, and 

lignin, but that the PCWDE are not 

present at detectable levels in the cell free 

supernatant. It is therefore likely that 

there is a greater concentration of 

enzymes within the pellicles, allowing 

detection of degradative activity. 

Alternatively, the degradative enzyme 

activity could be the result of membrane-

bound enzymes whereby bacteria 

trapped within the pellicles are brought 

into close association with the substrate 

on the surface of the agar. It is important 

to note that while the use of iodine is 

widely accepted as a detection method in 

these types of plate degradation assays, 

iodine is rapidly converted to its 

colourless ionic I- form by reducing 

organic products such as vitamin C, 

 
Figure 8: K. xylinus pellicles produce clearing zones 

on iodine stained (A) 0.2% CMC, (B) 0.2% xylan, (C) 

0.2% pectin, and (D) 0.025% lignin supplemented 

agar plates. Seven-day old pellicles were placed onto 

polymer-supplemented plates and incubated for 2 

days at 30°C. Iodine staining revealed clearing zones 

around all samples. Positive controls produced 

distinct clearing zones. K. xylinus cultures were grown 

in SHG2 with the addition of: 1, No additional 

compound; 2, 2% fructose; 3, 0.05% xylan; 4, 0.05% 

CMC; 5, 0.05% pectin; 6, 0.05% lignin; 7, 0.2% 

cellulase (aliquoted – no pellicle). C represents 

respective positive control (cellulase, xylanase, 

pectinase, or manganese peroxidase).  
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known to be produced by K. oxydans (Sugisawa et al., 1995), a related yet physiologically distinct 

species. Therefore, it is important to verify enzyme activity through additional analytical methods.  

To further study whether the bacteria secrete PCWDE, concentrated cell free supernatant 

and squeezates were assayed for cellulase, xylanase, pectinase, or LMEs activity by zymography. 

Staining revealed substrate degradative enzymes contained within the gels; selected degradative 

bands were analyzed by mass spectroscopy.  

In conjunction with zymography, substrate-free gels were also prepared to identify the 

concentration and molecular weight (MW) of secreted protein. The majority of proteins in the 

growth medium were below 11 kDa (Figure 9; representative gel). Considering most degradative 

enzymes are well above this MW, it is evident that K. xylinus and K. hansenii secrete these proteins 

at low abundance.  

 
Figure 9: K. xylinus do not secrete >11 kDa proteins at detectable levels. 

Freeze-dried cell-free culture media were electrophoresed and stained with 

Coomassie blue. Only proteins <11kDa were detectable. MW, molecular 

weight marker; C, cellulase control; 4, 4 day old culture; 7, 7 day old culture; 

Su, supernatant (culture broth) extract; Sq, squeezate extract.  
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Zymography on CMC-supplemented 

polyacrylamide gels did not identify substantial 

CMCase activity in freeze-dried or ammonium sulfate 

precipitated samples. However, CMCase activity was 

identified in acetone-precipitated samples at a MW of 

36.2 kDa (Figure 10). Mass spectrometric 

identification of proteins within excisions of the 36.2 

kDa protein band for K. hansenii matched the 40.1 kDa 

BcsZ with 73% coverage and identified up to 5 

oxidized methionine resides, a carbamidomethylated 

C329, and a possible deamidated N134 (Appendix 

Figure 1). The corresponding 36.2 kDa gel excision for 

K. xylinus matched BcsZ with 31% coverage and 

identified up to 2 oxidized methionine residues. 

Notably, the clearing zone at 36.2 kDa was only 

identified in samples from acetone-precipitated 

proteins and enzyme activity was dramatically more 

evident in fructose-grown cultures. Additionally, an 

OmpH-like outer membrane protein (ATCC53582_00683; 30.9 kDa) was identified in the 36.2 kDa 

protein band from the fructose-grown K. xylinus sample. OmpH, also known as Skp, has been 

characterized as a molecular chaperone for unfolded proteins as they emerge in the periplasm 

(Harms et al., 2001). There is no evidence that this protein interacts with BcsZ, however the 

knowledge that it was found secreted into the growth medium warrants further investigation.  

Despite the results from preliminary agar plate screening, pectin, xylan, and lignin degrading 

enzymes were not detected by zymographic analysis. Whether this is due to detection limits, 

repression of degradative enzymes under lab conditions, or the absence of the genes required for 

degradation is unclear. 

3.2. Chloramphenicol and tetracycline are effective selection antibiotics for K. xylinus and K. 

hansenii 

Molecular manipulation and mutagenesis of bacteria often requires the use of antibiotic 

selection.  Kanamycin has been an effective antibiotic for mutant selection in high yield cellulose 

 
Figure 10: Zymographic detection of 

CMCase activity reveals a CMCase at 

36.2 kDa. Acetone precipitated culture 

medium extracts were electrophoresed 

in CMC supplemented polyacrylamide 

gels. CMCase activity in protein 

extracts was identified (white arrows) 

by staining with Congo red. MW, 

molecular weight marker; C, cellulase 

control; Kh.G, K. hansenii from SHG2; 

Kx.F, K. xylinus from SHF2; Kh.F, K. 

hansenii from SHF2. 
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producing Komagataeibacter strains (Florea et 

al., 2016a), however K. hansenii has shown high 

resistance to this antibiotic (Deng et al., 2013). 

To improve selection methods, the sensitivity of 

K. xylinus and K. hansenii was determined on 

solid media for kanamycin, chloramphenicol, 

and tetracycline. K. xylinus was susceptible to 

kanamycin at 50 μg/ml but a limited number of 

K. hansenii CFUs were highly resistant (Table 

3). As kanamycin concentration increased from 

50 μg/ml to 300 μg/ml, fewer K. hansenii CFUs 

were capable of growth. Subculturing these 

colonies on 1000 μg/ml kanamycin revealed 

impressive resistance to the antibiotic (data not 

shown). K. hansenii also displayed higher 

resistance than K. xylinus against tetracycline and 

chloramphenicol, although complete inhibition 

of growth was found within reasonable 

concentrations as seen in Table 2. 

The MIC assay identified 2 μg/ml and 4 

μg/ml of tetracycline was inhibitory for K. 

xylinus and K. hansenii, respectively. 

Chloramphenicol was found to be inhibitory at 

50 μg/ml and 150 μg/ml for K. xylinus and K. 

hansenii, respectively. 

3.3. Transformant selection is improved by direct cellulase application during spread plating 

K. xylinus produces a recalcitrant cellulosic biofilm when grown in glucose leading to 

antibiotic resistance in these bacteria. Improving the cellulase-facilitated cellulose degradation was 

necessary for efficient transformant selection. To determine the most effective application of 

cellulase, K. xylinus electrocompetent cells were prepared from cultures grown in SHF2 and 

recovered in SHG2. Cells were plated on SHG2 Chl150 with either 0.2% (v/v; 50 μl) cellulase 

Table 2: K. hansenii is highly resistant to 

kanamycin. A sensitivity assay for K. xylinus 

and K. hansenii was performed on SHG2 

medium for kanamycin, tetracycline, and 

chloramphenicol. The number of resistant 

CFUs were counted after 5 days.  

Antibiotic Strain μg/ml 
Growth 

(CFUs) 

K
a
n

a
m

y
ci

n
 K. xylinus 

50 - 

100 - 

200 - 

300 - 

K. hansenii 

50 45 

100 25 

200 11 

300 2 

T
et

ra
cy

cl
in

e K. xylinus 

6 - 

12.5 - 

20 - 

50 - 

K. hansenii 

6 >>1000 

12.5 - 

20 - 

50 - 

C
h

lo
ra

m
p

h
en

ic
o
l 

K. xylinus 

100 - 

200 - 

300 - 

400 - 

K. hansenii 

100 >>1000 

200 >>200 

300 - 

400 - 
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incorporated into the agar medium or 0.1% (v/v; 25 μl) spread on the plates with the transformation 

mixture. Transformants appeared within 6 to 7 days of growth with no noticeable satellite colonies 

for cultures that were spread plated with the addition of 0.1% (v/v) cellulase. Transformants spread 

on 0.2% (v/v) cellulase-supplemented medium appeared within the same timeframe however a 

multitude of colonies appeared as potentially false positive satellite colonies. The addition of spread 

plated 0.1% (v/v) cellulase was deemed to be the more effective method as it used less of the enzyme 

and produced less potential false positives.   

3.4. Fructose facilitates faster cell growth and enhances electrocompetence of 

Komagataeibacter 

Methods for the transformation of K. xylinus and K. hansenii are poorly studied. To improve 

electroporation, different growth media compositions were evaluated for the production of 

electrocompetent cells. Growth kinetics were investigated for each culture condition to determine 

the OD600 that represents mid-logarithmic growth. Despite the addition of at least 2% (v/v) cellulase 

to the cultures, K. xylinus still showed signs of aggregation when grown in 96 well plates, therefore, 

the possibility of exaggerated density readings due to cell clumping cannot be ruled out. Considering 

the high concentration of cellulase in these cultures, it is possible that this cell aggregation may be 

cellulose independent.  

K. xylinus cultures in SHF1 or SHF2 (Table 1) grew faster and three-fold more dense than 

those grown in SHG2 (Figure 11 and Figure 12). Surprisingly, the canonical growth medium SHG2 

resulted in poor growth for K. xylinus compared to other growth media as depicted by growth rate 

and low final culture density (Figure 12, A and B). Reducing the glucose in this medium by half 

(SHG1) increased culture density by stationary phase (69.5 hours) for both species (Figure 12). The 

addition of 50 mM acetic acid had little effect on growth in all conditions however substituting half 

or all glucose for glycerol had a positive correlation for growth (Figure 12). In these conditions, K. 

xylinus had a faster growth rate than K. hansenii, however it is important to consider that cellular 

aggregation may have artificially exaggerated and varied OD600 measurements. For instance, the 

culture density of K xylinus grown in SH0 Gly2 dropped by approximately 30% between 52.5 and 

62 hours before recovering to a similar cell density (Figure 11, A). Whether this is due to cell lysis 

or simply reduced cell aggregation by this time point is not clear.  

Similar yet less dramatic trends were observed with K. hansenii cultures. In SHF1 and SHF2, 

K. hansenii grew up to 3-fold faster than in SHG2, however there was no clear trend for final culture 
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density (Figure 11, C and D). Glycerol had no significant effects on K. hansenii growth rate, but 

the addition of 1% glycerol to SHF1 to make SHF1 Gly1 seemed to improve long-term survival of 

fructose fed cultures as seen by sustained OD600 in these cultures (Figure 11, D).  
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Figure 11: Growth of K. xylinus (A and B) and K. hansenii (C and D) is influenced by carbon source, but not the presence of 50 mM acetic acid. 

Komagataeibacter species were grown in the presence of various carbon sources (see Table 1 for composition) to determine the OD600 of mid-

logarithmic growth. K. xylinus SHG1 Gly1 facilitated rapid growth after 60 hours. K. hansenii cultures lose density after 60 hours when grown in 

fructose. Error bars show standard deviation of the mean (n = 3). 
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Figure 12: Growth rate (generations/hour) and OD600 at 69.5 hours of growth of K. xylinus (A) and K. 

hansenii (B) is influenced by carbon source, but not the presence of 50 mM acetic acid. Komagataeibacter 

species were grown in the presence of various growth media (see Table 1 for composition) to determine the 

OD600 of mid-logarithmic growth. K. xylinus grows fastest and reaches the highest density in the presence of 

fructose. SHG2, the canonical growth medium, facilitates the slowest growth of K. xylinus. K. The addition 

of 50 mM acetic acid had no significant change on growth for either species. Error bars show standard 

deviation of the mean (n = 3). 
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To evaluate the impact that the growth medium 

has on transformation efficiency, K. xylinus and K. 

hansenii were grown to mid-logarithmic phase in 

SHG2, SHF2, SHF1, SHF1 AA, SHF1 Gly1, and SH0 

Gly2 and prepared for electroporation (Florea et al., 

2016a). Electroporation of pSEVA331Bb into K. 

xylinus prepared in SHG2 was unsuccessful, however 

pSEVA311Bb was successfully transformed into K. 

xylinus prepared in SHF1, SHF1 AA, SHF1 Gly1, and 

SH0 Gly2; transformation efficiencies are listed in 

Table 3. pSEVA331Bb was similarly electroporated 

into K. hansenii prepared in SHF1 with an efficiency of approximately 107 CFU/µg DNA .  

fixK was knocked out to understand the role that this global transcription factor plays in bacterial 

cellulose production and in carbon source utilization. This was accomplished by the electroporation of 

the fixK knockout construct fixK-Chl-fixK (Figure 7) into K. xylinus and K. hansenii. Incorporation of 

this construct required not only the transformation into cells but also double homologous recombination 

with the native fixK. No transformants grew on selection plates for K. xylinus glucose-grown cultures. 

For fructose-grown cultures, the transformation efficiency for the fixK-Chl-fixK construct was 2.1x103 

CFU/μg and 8.0x102 CFU/μg when transformed at high voltage/low [DNA] (2.5 kV; 0.5 ng/μl) or low 

voltage/high [DNA] (1.8 kV; 1 ng/μl) voltage, respectively. The addition of acetic acid or glycerol to 

fructose-fed cultures did not seem to have a dramatic effect on transformation efficiency.  

3.5. FixK is identical in K. xylinus and K. hansenii  

Due to its role as a global transcriptional regulator, the linear construct fixK-Chl-fixK was 

electroporated into K. xylinus and K. hansenii to examine the role that fixK plays in cellulose production 

and other metabolic processes. Homologous recombination of the linear construct in the genome results 

in a truncated fixK, confirmed by sequence analysis. Sequencing of the K. hansenii ATCC 23769 ΔfixK 

mutant lead to the clarification of a miscalled inserted base pair in the published genomic sequence of K. 

hansenii ATCC 23769 at location 181,881. Removing the miscalled insertion changes the predicted 

amino acid sequence to be identical to K. xylinus ATCC 53582 with 99% identity at the nucleotide level. 

Table 3: pSEVA331Bb transformation 

efficiency (CFU/μg DNA) of 

electrocompetent K. xylinus prepared in 

various growth media (see Table 1 for 

composition). 

 Time 

Medium 1.25 hours 6.5 hours 

SHG2 0 0 

SHF2  0†   0† 

SHF1 6.3x103 1.8 x104 

SHF1 AA 8.1 x103 9.8 x103 

SHF1 Gly1 1.3 x104 9.1 x103 

SH0 Gly2 2.7 x103 3.9 x103 

†SHG2 sample arced during electroporation 
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3.6. fixK mutagenesis increases colony size and modifies colony morphology on solid media 

To determine the morphological effect of the fixK knockout, colonial morphologies of both 

wildtype and ΔfixK mutants of K. xylinus and K. hansenii were examined in SH medium containing either 

glucose, fructose, or sucrose at either 10 or 20 g/L. Morphological differences appeared by 6 days of 

growth, with large variations by 11 days. On the carbon sources tested, ΔfixK mutants formed different 

colony morphologies than their respective wildtype (WT) strain.   

K. xylinus WT and ΔfixK mutant form small circular convex colonies, however the WT forms 

projections along grooves formed during streak plating (Figure 13, A). These projections are likely 

cellulose-dependent as K. xylinus ΔfixK is incapable of producing this feature (Figure 13, B). Fructose 

and sucrose fed WT colonies appear much less opaque with poorly defined margins (Figure 13, C and 

E), especially on sucrose plates. Both the WT and ΔfixK mutant colonies appear morphologically distinct 

between halves of the same colony (Figure 13, C-F). One half of the colony remained relatively circular 

while the other became lobate in nature. In general, the extensions were unidirectional on plates 

indicating possible quorum sensing. Furthermore, the directionality was more pronounced in SHF1 than 

SHF2 (data not shown), indicating this is not only dependent on carbon source but also on its 

concentration.  

On SHG2, K. hansenii WT forms circular, convex colonies similar in size to K. xylinus (Figure 

13, G), however the ΔfixK mutant colonies were much larger with an umbonate elevation (Figure 13, 

H). Interestingly, the fructose and sucrose fed WT colonies resemble the glucose fed ΔfixK mutant 

colonies (Figure 13, H, I, and K). The fructose and sucrose fed ΔfixK mutants were much larger and 

display a slightly undulate margin but none of the K. hansenii colonies display the divided culture 

morphology seen in K. xylinus (Figure 13, J and L). 
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Figure 13: K. xylinus and K. hansenii colony morphology is dependent on carbon source and fixK. K. xylinus (A, C, E), K. xylinus ΔfixK (B, D, 

F), K. hansenii (G, I, K) and K. hansenii ΔfixK (H, J, L) were grown for 11 days on SHG2 (A, B, G, H), SHF2 (C, D, I, J), or SHS2 (E, F, K, L). 

Colonies grown on SHG2 produce far more spherical shaped colonies than on SHF2 or SHS2. K. hansenii ΔfixK colonies grew substantially 

larger than the wildtype. White scale bar = 1 mm, all pictures were taken at equal magnification.  
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The impact of pellicin (([2E]-3-phenyl-1-

[2,3,4,5-tetrahydro-1,6-benzodioxocin-8-yl]prop-

2-en-1-one), a compound known to abolish 

pellicle production (Strap et al., 2011), was 

investigated for K. xylinus wildtype and the ΔfixK 

mutant. Differences between the DMSO control 

and pellicin treated colonies became clear by 24 

days of growth. The presence of pellicin in the 

medium resulted in increased colony size; more 

horizontally dispersed colonies were formed in 

both wildtype and mutant strains in the presence 

of pellicin (Figure 14).  

3.7. fixK is essential for fructose and sucrose 

metabolism in K. hansenii and abolishes 

diauxic growth in K. xylinus 

To evaluate the role of fixK in the growth 

of K. xylinus and K. hansenii, growth kinetics 

were investigated during growth in agitated 

cultures. fixK was found to have subtle impacts on 

the growth rate and culture density of K. xylinus 

when grown in glucose, fructose, or sucrose based 

media (Figure 15 and Figure 17). Diauxic 

growth was observed when K. xylinus was grown 

in SHG2; a characteristic second logarithmic 

growth stage that occurs when gluconic acid is 

metabolized. ΔfixK mutants did not exhibit diauxic growth (Figure 15, A). Limiting the glucose from 

2% to 1% (as in SHG1) improved growth by 53% for K. xylinus independently of fixK by 10 days of 

growth (Figure 15, B). A slight pH drop was observed in K. xylinus wildtype grown in SHF2, likely 

due to the exogenously added cellulase degrading bacterial cellulose which resulted in the conversion 

of glucose into gluconic acid (Figure 15, C). No significant differences were observed when K. xylinus 

was grown in SHS2 and the culture seemed to be minimally metabolically active (Figure 15, D).  

 

Figure 14: K. xylinus colony morphology is 

influenced by pellicin. K. xylinus WT and K. 

xylinus ΔfixK were grown for 24 days on 

SHG2 containing DMSO (control) or 

pellicin. Colonies grown in the presence of 

pellicin produced horizontally dispersed 

colonies with less well-defined spherical 

shape. White scale bar = 1 mm, all pictures 

were taken at equal magnification. Two 

isolated colonies were pictured to show 

variation in morphology. 
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K. hansenii was heavily dependent on fixK for optimal growth in glucose, fructose, and sucrose 

media (Figure 17). When cultured in SHG2, K. hansenii ΔfixK had an OD600 less than 70% of the 

wildtype strain (Figure 16, A). This effect was concentration dependent, growth in SHG1 limited this 

difference to approximately 86% (Figure 16, B). Dramatic dependence on fixK was observed during 

growth in SHF2 or SHS2 (Figure 16, C and D). K. hansenii ΔfixK was capable of reaching less than 

50% growth density compared to the wildtype in both media (Figure 16, C and D). Surprisingly, there 

was no significant difference in growth rate between K. hansenii WT and ΔfixK mutants.  
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Figure 15: fixK influences growth and pH of K. xylinus in a carbon source dependent manner. OD600 and pH were measured in K. xylinus WT 

and K. xylinus ΔfixK in SHG2 (A), SHG1 (B), SHF2 (C), and SHS2 (D) in agitated conditions (see Table 1 for composition). The loss of fixK 

resulted in less acid production and the loss of the diauxic growth observed in SHG2. The transient pH drop in SHF2 is only observed for the 

wildtype strain. Error bars are standard deviation of the mean (n = 3). 
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Figure 16: fixK influences growth and pH of K. hansneii in a carbon source dependent manner. OD600 and pH were measured in K. hansenii WT 

and K. hansenii ΔfixK in SHG2 (A), SHG1 (B), SHF2 (C), and SHS2 (D) in agitated conditions (see Table 1 for composition). The loss of fixK 

resulted in modified acid metabolism in SHG2 and SHG1. Final culture density in SHG2, SHF2, and SHS2 was dramatically limited in the absence 

of fixK. Error bars are standard deviation of the mean (n = 3). 



 

 

44 

 

 

O
p

ti
c

a
l 

D
e

n
s

it
y

 @
 1

0
 D

a
y

s

K
. 
x
y
li
u

s
 W

T

K
. 
x
y
li
n

u
s
 

f i
x
K

K
. 
h

a
n

s
e
n

ii
 W

T
 

K
. 
h

a
n

s
e
n

ii
f i

x
K

0 .0

0 .5

1 .0

1 .5

S H G 2

S H G 1

S H F 2

S H S 2

*
* *

* *

* *

 
Figure 17: fixK influences growth and pH of K. xylinus and K. hansenii in a carbon source dependent manner. Optical density at 10 

days of growth was measured in K. hansenii WT and K. hansenii ΔfixK in SHG2, SHG1, SHF2, and SHS2 in agitated conditions (see 

Table 1 for composition). Density of K. hansenii in SHG2, SHF2, and SHS2 was dramatically limited in the absence of fixK. Error 

bars are standard deviation of the mean (n = 3). * = significant difference from wildtype (p < 0.05); ** = significant difference from 

wildtype (p < 0.0005)  
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3.8. fixK is essential for optimal cellulose production in K. hansenii and K. xylinus  

fixK is essential for cellulose synthesis in K. hansenii, however K. xylinus is still capable of 

cellulose synthesis in the absence of this gene. The cellulose produced by K. xylinus was therefore 

compared between the wildtype and ΔfixK knockout. At 7 days of growth, K. xylinus ΔfixK produced 

19% to 40% cellulose of that of the wildtype, depending on carbon source (Figure 18, A and B). 

The greatest reduction in cellulose production due to ΔfixK mutagenesis was observed in glucose 

fed cultures, indicating an essential role for fixK in cellulose biosynthesis from glucose (Figure 18, 
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Figure 18: fixK regulates cellulose synthesis in K. xylinus and K. hansenii. Dehydrated pellicle weights were 

measured in K. xylinus WT, K. xylinus ΔfixK and K. hansenii WT. K. xylinus WT pellicle weight was 

dramatically higher than the ΔfixK mutant when grown in SHG2, SHG1 (A), SHF2, or SHS2 (B) (see Table 1 

for composition). K. xylinus WT produced dramatically more cellulose than K. hansenii WT in the presence 

of SHG2 or SHG1 (C), however only slightly less in the presence of SHF2 or SHS1 (D). Error bars show standard 

deviation of the mean (n = 3). 
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A). There was a surprising 6.6% decrease in cellulose yield (p < 0.05) between 13 and 17 days for 

K. xylinus WT grown in SHG1 (Figure 18, A).  

In K. xylinus and K. hansenii the cellulose yield decreased by 17 days in SHG1 and SHG2, 

respectively (Figure 18, C). In SHF2 and SHS2, cellulose production did not significantly change 

after 13 days and total yields were quite similar between species (Figure 18, D). In contrast, K. 

hansenii produced only about 30% of K. xylinus cellulose yield when glucose was the carbon source 

(Figure 18, C). K. hansenii ΔfixK mutants did not produce cellulose and therefore could not be 

included in this assay.   

3.9. fixK mutants follow wildtype pH and gluconic acid trends over longer timeframes  

pH and gluconic acid concentrations were measured in agitated and statically grown cultures 

to evaluate metabolism between WT and ΔfixK mutants. The pH of the growth medium was 

correlated with the presence of gluconic acid in both K. xylinus and K. hansenii (Figure 19-24). 

Notably, statically grown K. hansenii cultures grown in SHG2 continued to acidify the growth 

medium while the gluconic acid concentration decreased (Figure 22, D), indicating that gluconic 

acid is a secondary metabolite for these bacteria. 

The most dramatic acidification was observed in statically grown K. xylinus and K. hansenii 

cultures in SHG2 with a minimum pH of 3.09 and 3.28, respectively (Figure 19, 22). The low pH 

in these media represent astonishingly high gluconic acid concentrations with up to 12 of the 20 

grams of glucose being oxidized into the acid in K. hansenii (Figure 22).  After the pH drop, these 

cultures alkylated the medium back to the initial proton concentrations. The only exception to this 

trend was observed for statically grown K. xylinus WT and K. xylinus ΔfixK in SHG2 (Figure 19), 

however one would predict that this would have eventually occurred based on comparisons to SHG1. 

Agitated K. xylinus grown in fructose, but not sucrose, was capable of acidifying the growth medium 

(Figure 21, A). However, agitated K. hansenii grown in sucrose, but not fructose, was capable of 

acidifying the growth medium (Figure 24, C). This could be due to the presence of glucose in the 

medium, a product of cellulose degradation. This possibility is further justified by the slow onset of 

similar acidification by the limited cellulose producer K. xylinus ΔfixK (Figure 21, B). In SHF2 or 

SHS2, K. xylinus produced nearly undetectable levels of gluconic acid (Figure 21, A-D), while K. 

hansenii could produce measureable quantities of the acid under agitated conditions (Figure 24, A 

and C).  
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Generally speaking, the ΔfixK mutants produced highly similar yet delayed pH and gluconic 

acid patterns compared to their respective WT strains, characterized by elongated pH curves (Figure 

19 to Figure 234). Most notably, the agitated SHG2 grown ΔfixK mutants acidified the medium to 

a lesser extent than their WT strains (p<<0.001) (Figure 19, C and Figure 22, C).  
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Figure 19: fixK is involved in acid metabolism in K. xylinus in agitated and statically grown SHG2 cultures. pH and gluconic acid concentrations 

were measured in K. xylinus WT and K. xylinus ΔfixK grown in SHG2 with and without agitation. Statically grown WT and ΔfixK mutants produce 

much more acid and take much longer to reach stationary phase under static conditions (A, B). The loss of fixK is associated with less acidity and 

less gluconic acid production under agitated conditions (C). In statically grown cultures, the ΔfixK mutation is associated with less gluconic acid 

production but greater medium acidity (D). Error bars show SD (n = 3).  
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Figure 20: fixK is involved in acid metabolism in K. xylinus in agitated and statically grown SHG1 cultures. pH and gluconic acid concentrations 

were measured in K. xylinus WT and K. xylinus ΔfixK grown in SHG1 with and without agitation. Statically grown WT and ΔfixK mutants produce 

similar acidification profiles, however the trend is stretched over a longer time frame in static conditions (A, B). The loss of fixK is associated 

with less gluconic acid production under agitated conditions (C). In statically grown cultures, the ΔfixK mutation is associated with a delayed pH 

profile (D). Error bars show SD (n = 3). 
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Figure 21: fixK has little effect on acid metabolism for K. xylinus in agitated and statically grown SHF2 and SHS2 cultures. pH and gluconic acid 

concentrations were measured in K. xylinus WT and K. xylinus ΔfixK grown in SHF2 and SHS2 with and without agitation. Agitated K. xylinus 

ΔfixK in SHF2 was unable to acidify the growth medium to pH ~5.1 at 4 days of growth (A). None of the cultures produced measurable 

concentrations of gluconic acid. Note that the right y-axis ends at pH 6.5.  Error bars show SD (n = 3). 
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Figure 22: fixK is involved in acid metabolism in K. hansenii in agitated and statically grown SHG2 cultures. pH and gluconic acid concentrations 

were measured in K. hansenii WT and K. hansenii ΔfixK grown in SHG2 with and without agitation. Statically grown WT and ΔfixK mutants 

produce much more acid and take longer to reach stationary phase under static conditions (A, B). The loss of fixK is associated with less acidity, 

less gluconic acid production, and an altered pH profile under agitated conditions (C). In statically grown cultures, gluconic acid and pH profiles 

were similar (D).  Error bars show SD (n = 3). 
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Figure 23: fixK is involved in acid metabolism in K. hansenii in agitated and statically grown SHG1 cultures. pH and gluconic acid concentrations 

were measured in K. hansenii WT and K. hansenii ΔfixK grown in SHG1 with and without agitation. Statically grown WT and ΔfixK mutants 

produce similar acidification profiles, however the trend is stretched over a longer time frame in static conditions (A, B). The loss of fixK is 

associated with less alkylation after 6 days of growth in SHG1 under agitated conditions (C). In statically grown cultures, the ΔfixK mutation is 

associated with a delayed pH profile (D). Note that the right y-axis ends at pH 6.5. Error bars show SD (n = 3). 
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Figure 24: fixK has little effect on acid metabolism for K. hansenii in agitated and statically grown SHF2 and SHS2 cultures. pH and gluconic acid 

concentrations were measured in K. xylinus WT and K. xylinus ΔfixK grown in SHF2 and SHS2 with and without agitation. None of the cultures 

produced measurable concentrations of gluconic acid. Error bars show SD (n = 3). 

 



 

 

54 

 

3.10. fixK is involved in bcs operon regulation 

Cellulose synthesis is dramatically influenced by the presence of fixK yet the gene targets 

for FixK remain elusive. To shed light on potential targets, the expression levels for cellulose 

biosynthesis genes in K. xylinus ΔfixK and K. hansenii ΔfixK were compared to K. xylinus WT and 

K. hansenii WT, respectively. All genes tested were expressed in both WT and both mutant strains, 

suggesting that fixK is not solely responsible for transcription of these genes (Figure 25). The 

absence of fixK leads to significantly reduced expression of bcsA, bcsC, bcsH, and bglX in K. xylinus. 

The same mutation in K. hansenii leads to reduced expression of only two genes, bcsA and bcsC 

(Figure 25).  
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Figure 25: Endpoint PCR analysis of transcript levels of bcsA, bcsB, bcsC, bcsD, bcsZ, bcsH, 

and bglX in K. xylinus ΔfixK and K. hansenii ΔfixK. Gene expression levels are normalized 

against the wildtype control denoted by the dashed line at 1.0. Two independent biological 

replicates were used for each gene and error bars show SD (n = 2). Note that standard deviation 

of the wildtype is not shown, however t-test analysis considers both the wildtype and ΔfixK 

mutant sample deviations. * = significant difference from wild type (p < 0.05).  
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3.11. The absence of fixK abolishes expression of ~68.7 kDa protein(s) in K. xylinus 

Protein profiles were examined to evaluate differential protein expression between WT and 

ΔfixK mutants. FixK, truncated ΔFixK, and the chloramphenicol resistance gene are predicted to be 

27.8 kDa, 17.3 kDa and 25.7 kDa, respectively in both Komagataeibacter species. In K. xylinus 

ΔfixK, the protein band at 25 kDa is lost (Figure 26, A), which closely correlated to FixK (27.8 

kDa). The loss of this band is complemented by the appearance of a protein band near 15 kDa which 

is likely the truncated ΔFixK protein (17.3 kDa). The absence of fixK abolished expression of a 

protein or proteins within a calculated 68.7 kDa protein band. This molecular weight does not 

correlate to any proteins known to be involved in cellulose biosynthesis and currently remains 

 
Figure 26: SDS-PAGE analysis of K. xylinus and K. hansenii and their ΔfixK mutants. Total protein 

from K. xylinus (A) and K. hansenii (B) WT and ΔfixK mutants grown in SHG2 were visualized by 

silver staining. White arrows represent protein expression that is decreased in the ΔfixK mutant. 

Black arrows represent increased protein expression in the ΔfixK mutant. MW, molecular weight 

marker; KxΔ1, K. xylinus ΔfixK biological replicate #1; KxWT, K. xylinus WT; KxΔ1, K. xylinus 

ΔfixK biological replicate #2; KhΔ, K. hansenii ΔfixK; KhWT, K. hansenii WT.  
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unidentified. Other protein bands of increased intensity in the K. xylinus ΔfixK mutant include 58.5 

kDa, 43.3 kDa, 37.1 kDa, and 26.1 kDa. The chloramphenicol resistance protein is 25.7 kDa and 

may be responsible for the increased intensity observed at 26.1 kDa. Protein profiles for K. hansenii 

did not reveal any dramatic differences in protein expression. A protein band at 50.1 kDa and one 

at 20.4 kDa were observed to have increased expression in the absence of fixK (Figure 26); the latter 

potentially representing the truncated 17.3 kDa ΔFixK.  
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4. Discussion 

This thesis aimed to improve our understanding of i) the ability of Komagataeibacter to 

degrade plant cell wall components and ii) the role of fixK on bacterial cellulose synthesis and carbon 

utilization in Komagataeibacter species. In the environment, Komagataeibacter live in close 

association with plants. The ability to degrade plant cell walls would therefore facilitate access to 

carbon for BC synthesis by producing simple sugars. Whether Komagataeibacter possess the 

enzymatic ability to breakdown PCWCs was evaluated. The mutagenesis of the gene for the 

transcription factor FixK, facilitated the investigation of its role in several cellular processes 

including carbon source metabolism, acid production, cell growth, and cellulose synthesis.  

As already mentioned, Komagataeibacter grow in close association with plants. Therefore, 

Komagataeibacter would have ready access to plant cell wall compounds including cellulose, 

hemicelluloses, pectins, and lignin. Zymography was used to determine if K. xylinus or K. hansenii 

secrete enzymes that could degrade plant polymers for use in their own cellulose production. CMC 

was used as a soluble proxy for native cellulose and xylan was used as a representative 

hemicellulose. Pectin was sourced from apples, a fruit upon which K. xylinus thrive (Williams and 

Cannon, 1989). Lignin structure is diverse and undefined, as such lignin with an average molecular 

weight of 10,000 g/mol was chosen to represent an intact polymer. All four of these compounds can 

be found in fruit cell walls at highly variable ratios. The ability of Komagataeibacter to metabolize 

these plant cell wall components would provide much needed nutrients in the natural habitat of these 

bacteria.  

Genome annotations for K. xylinus ATCC 53582 or K. hansenii ATCC 23769 lack any 

description of xylanase, pectinase, or lignin modifying enzymes (LME). This was not a surprise, 

however, as K. hansenii and more so K. xylinus are relatively poorly characterized with many 

annotation errors. An example of poor annotation is gene ATCC53582_00728 which is annotated 

as ‘Major royal jelly protein’, a protein involved in queen honeybee development. BLASTp analysis 

reveals that this protein is likely a gluconolactonase, an enzyme responsible for the second of two 

steps involved in the conversion of glucose into gluconic acid. This is a surprising find since these 

pathways have been a particular focus of research for over a decade (Kuo et al., 2015; Shigematsu 

et al., 2005; Zhong et al., 2013). Additionally, BLASTp analysis for the identification of gluconate 
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metabolism genes are rarely identified with the correct putative function (discussion of these 

proteins below). 

Preliminary screens for PCWDE activity were carried out using agar plate assays. The use 

of iodine to detect the degradation of CMC, xylan, and pectin on agar plates was tested using 

commercially available enzymes as positive controls. Iodine was found to be an effective stain to 

detect lignin degradation. Iodine had previously been used for the study of lignin aggregation 

patterns (Deng et al., 2011) but, to our knowledge, this study is the first example of the use of iodine 

for the detection of in situ lignin degradation. Agar plate assays for the detection of degradative 

enzyme activities was performed using either culture supernatant or pellicles. The inability to detect 

substrate degradation with culture supernatant was unexpected, especially for CMC since BcsZ 

(CMCase) is known to be a secreted protein for both species. The use of pellicles as a source of 

enzyme in these degradation studies revealed faint yet observable substrate degradation for all four 

plant compounds tested. While there is the possibility that at least some of the degradative enzymes 

are membrane bound and therefore require the presence of Komagataeibacter cells, this does not 

explain the absence of CMCase activity in the culture supernatants. The understanding that some 

compounds, such as vitamin C, could produce false positives warrants the need for heat-treated or 

otherwise protein-denatured pellicles as a negative control if these assays are repeated elsewhere. 

One explanation for the absence of the CMCase is carbon source regulation since the cultures were 

grown in SHG2 which contains 20 g/L of glucose. With an ample carbon source available, the 

production of metabolically expensive enzymes, such as CMCase, would likely be repressed since 

glucose was plentiful and there was no need to degrade cellulose to gain carbon. This hypothesis is 

further supported by zymographic analysis which revealed CMCase repression during glucose 

availability.  

To confirm the results of the preliminary degradation assays, K. xylinus and K. hansenii 

secretomes were assayed by zymography for all four degradative enzyme classes: CMCase, 

xylanase, pectinase, and LME. BcsZ was effectively detected in acetone-precipitated protein 

extracts from fructose fed cultures. To our knowledge this is the first evidence that BcsZ is under 

glucose catabolite repression. In an environmental context, this would be an efficient means for 

degrading the bacterial cellulose when carbon was needed. β-glucosidase activity was effectively 

detected from the insoluble fraction of cell extracts of K. hansenii ATCC 23769 grown in SHG2 and 
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the activity was predicted to be a result of BglX rather than BcsZ (Kumagai et al., 2011). 

Importantly, Kumagai et al. (2011) were unable to detect cellulase activity in the extracellular 

fraction or the cytosolic fraction of SHG2-grown K. hansenii. Tahara et al. (1997) discovered CMC 

but not cellobiose or BC hydrolyzing activity in the extracellular extracts from Acetobacter xylinum 

BPR2001 (currently Komagataeibacter xylinus ATCC 700178). The growth medium used in their 

study was CSL-Fru (Toyosaki et al., 1995) in which fructose is the carbon source.  

Xylanase, pectinase, and LME were only detected using agar plate assays with pellicle; 

zymographic analysis of proteins from culture supernatants failed to detect these activities under 

any of the conditions tested. This may be due to limited secretion of these proteins, as protein profile 

analysis of culture supernatants indicated that most of the secreted proteins were less than 11 kDa 

in size (Figure 9). If K. xylinus or K. hansenii contain hemicellulases, pectinases, or LME, they may 

require nutrient limitation to be produced. However, replacing the carbon source in SH medium with 

only xylan, pectin, or lignin is not conducive for static growth in either species (data not shown) and 

suggests SH medium is not an appropriate growth medium to emulate environmental growth 

conditions.  

Mutagenesis of K. xylinus ATCC 53582 has been historically very difficult (Florea et al., 

2016b). Work done on the closely related K. rhaeticus improved electroporation success using 

pSEVA331Bb. Florea et al. (2016a) were able to transform K. xylinus ATCC 53582 only when using 

a 3 kV pulse and a long post-transformation incubation time, yet efficiency remained low (~102 

CFU/μg; compared to ~109 CFU/μg for E. coli). The plasmid pSEVA331Bb was instrumental for 

optimizing the transformation conditions used in this thesis. The preparation of electrocompetent 

cells from fructose-based medium facilitated transformation efficiency at voltages of 1.8 kV and 2.5 

kV with improved efficiencies of up to 1.8x104 CFU/μg with recovery times as low as 1.25 hours. 

The addition of acetic acid or glycerol to the growth medium used for electrocompetent cell 

preparation did not have an appreciable effect on transformation efficiency.  

Selection of transformants was complicated by the production of cellulose as its presence 

led to false positive colonies forming on selection plates. Cellulose acts as a barrier to protect the 

cells from inhibitory concentrations of the antibiotic. Here we have overcome this problem by 

mixing 50 μl of transformed cells with 25 μl of cellulase (>800 units/ml) immediately prior to spread 

plating on selective medium. It is highly likely that the concentration of cellulase can be reduced 
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further by preparing electrocompetent cells from fructose-grown cultures and by selecting on 

fructose-based agar plates since fructose was found to reduce cellulose production. However, this 

has yet to be tested.  

K. hansenii was found to be resistant to kanamycin. Deng et al. (2013) described this strain 

as completely resistant to kanamycin, however it seems that a proportion of K. hansenii cells display 

robust resistance while, inexplicably, the majority are vulnerable (Table 2). This discrepancy is 

likely due to Deng et al. (2013) conducting liquid MIC rather than agar plate based assays. In liquid 

cultures, the majority of the culture may be inhibited while the few kanamycin resistant cells 

continue to propagate. Plate assays clarify that there is either a resistance gene with very low basal 

level expression, usually leading to cell death before it can be upregulated, or genetic instability of 

K. hansenii leading to target adaptation. The latter of which being a distinct possibility as 

observations have shown genetic instability of these stains; a substantial fraction of cells naturally 

lose the ability to produce cellulose when grown in the laboratory (data not shown). 

The growth of K. xylinus and, to a lesser extent, K. hansenii benefitted from limiting glucose 

concentrations in the growth medium as seen in both the fitness assays (Figure 11 and Figure 12) 

and mutant characterization (Figure 15 and Figure 16). Reducing glucose from 2% to 1% improves 

BC yield by approximately 10% (Keshk and Kazuhiko, 2005), however whether this is due to 

increased cell growth had not been previously investigated. Interestingly, substituting half or all of 

the glucose in SHG2 with glycerol substantially improved growth and may explain the 55% increase 

in BC yield seen by Keshk and Kazuhiko (2005) when substituting 1% glucose for 1% glycerol. 

Keshk and Kazuhiko (2005) suggest that the improved production may be partially due to the rate 

of carbon source consumption rather than acid production. It is clear, however, that osmolarity of 

the growth medium is not responsible for the altered cell growth because improved growth was seen 

only limiting glucose and not fructose concentrations. An explanation could be that the extra glucose 

in the growth medium extends the time in which the cells are in an acidic (pH < 5) environment, 

inhibiting growth.   

To elucidate the role of the global transcriptional regulator, FixK, in carbon source utilization 

and cellulose biosynthesis in K. xylinus and K. hansenii, fixK was knocked out by the homologous 

recombination of a linear vector targeting fixK for the insertion of a pSEVA331Bb-derived 

chloramphenicol resistance cassette. As previously discovered by Deng et al. (2013), the loss of fixK 
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resulted in the complete loss of cellulose production in K. hansenii. Since fixK was found to be 

identical between the two species, we expected the same phenotype in K. xylinus. However, K. 

xylinus was still capable of cellulose production, albeit at lower yield. Interestingly, the cellulose 

production in K. xylinus ΔfixK was comparable to wildtype K. hansenii (Figure 18).  

Colonial morphology of the K. hansenii ΔfixK mutant was dramatically different than wild 

type while same mutation resulted in minor differences for K. xylinus. The morphological 

differences seem to be correlated with reduced cellulose production. Cellulose producing colonies 

maintained a spherical shape while spontaneous cellulose non-producing colonies remained flat 

(data not shown). The observed flat morphology was similarly seen in the cellulose non-producing 

K. hansenii ΔfixK as seen in Figure 13. K. xylinus colonies grown on fructose and sucrose display 

a directional phenotype with semi-circular like projections emanating from the colonies. These 

projections resemble cellulose non-producer morphology and are likely a result of quorum sensing 

as they appear to share directionality between colonies. Quorum sensing autoinducers and 

homologous regulatory genes have been identified in K. intermedius and G. diazotrophicus (Bertini 

et al., 2014; Iida et al., 2008a, 2008b, 2009; Nieto-Peñalver et al., 2012). These studies have not 

identified quorum sensing in bacterial cellulose producers, although there are predicted quorum 

sensing related genes in K. xylinus such as homoserine lactone efflux proteins, acetyltransferases, 

kinases, and dehydrogenases. Colony morphology was also impacted by pellicin, a compound 

known to abolish cellulose synthesis in K. xylinus. The presence of pellicin resulted in a cross 

between a cellulose producing and a cellulose non producing phenotype as they produced a convex 

elevation skirted by a flat morphology. The K. xylinus ΔfixK low cellulose producing mutant 

colonies had a larger flattened skirt than the wildtype (Figure 14).  

Pellicle weights were measured to determine the best time frame for BC production, but 

revealed a surprising trend in late stage growth. The pellicle yield in some cultures decreased 

between 13 and 17 days of growth, indicating the presence of a BC degrading enzyme. An 

investigation of cellulase production in K. xylinus by Tahara et al. (1997) was unable to detect 

enzymes capable of degrading BC however the study examined extracts after only 24 hours of 

growth. This study showed that BcsZ is either not secreted within 24 hours of growth, or its presence 

is below the detection limits of the assays used (viscosity and dinitrosalicylic acid method). In this 

thesis, BC degradation was observed only in K. xylinus cultures growing in SHG1, where carbon 
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source availability was half that of any other culture. The bacteria are likely producing a BC 

degrading enzyme, possibly BcsZ, in later growth in order to reclaim the BC for energy when soluble 

carbon is limited. The pellicle assays in this thesis were investigated over 17 days, whereas most 

published pellicle studies examine pellicle production to a maximum of 14, but usually 7 days. 

Notably we did not observe cellulose degradation within 13 days of growth. This underscores the 

importance of studying older cultures, which are more representative of environmental conditions.  

Cultures were grown in both static (lacking cellulase) and agitated (cellulase added) 

conditions to improve our understanding of the metabolic consequences of BC. pH was measured 

as a reference between these two conditions to allow comparisons between culture density and 

cellulose production since OD600 measurements are not feasible when cellulose is present. Treating 

the pellicles with cellulase was considered as an option, however it can take hours to degrade a fully 

developed pellicle which complicates downstream gluconic acid measurements; cultures would be 

metabolically active during pellicle degradation. The pH of static cultures followed similar trends 

to the agitated cultures over an extended period of time. Trapped within a pellicle, cells depend on 

diffusion for nutrients and will therefore experience unique metabolism from the cellulase treated, 

agitated cultures. The delayed nutrient availability must decrease metabolism at a whole culture-

level but individual cell metabolism would depend on the depth of cells within a pellicle. The pellicle 

therefore creates an environment in which access to nutrients is limited, affecting metabolism and 

growth. While the acidification and subsequent alkylation of the growth medium was expected in 

glucose grown cultures (Sainz et al., 2016), the reduced acidification as a result of fixK mutagenesis 

in K. xylinus was unexpected. If fixK simply upregulates cellulose production, the absence of the 

gene would presumably result in less glucose uptake or redirection of carbon into other processes. 

Less glucose uptake would imply a greater medium glucose concentration and therefore increased 

gluconic acid production. Quantification of glucose in the growth medium would clarify the 

consequences of the fixK mutation. Nonetheless, these findings suggest a broader role for fixK. In 

K. hansenii, this is evident by the dramatic role fixK plays in carbon source metabolism. When fed 

2% (w/v) glucose, fructose, or sucrose, fixK facilitates a growth density to approximately twice that 

of the strain lacking fixK, underscoring the divergence between these two species. Furthermore, the 

pH of the growth medium does not change when fed sucrose despite an enzymatically active glucose 

dehydrogenase (Kornmann et al., 2003). This indicates that sucrose is imported prior to cleavage as 

extracellular cleavage would result in the production of gluconic acid from the available glucose.   
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Komagataeibacter are well known for the inverse relationship of gluconic acid production 

and BC biosynthesis (De Wulf et al., 1996; Krajewski et al., 2010; Shigematsu et al., 2005). The 

role of fixK was therefore investigated in gluconic acid production and pH. fixK showed limited 

effect on gluconic acid production; culture pH and gluconic acid concentration did not always 

directly coincide. The gluconic acid/gluconolactone (as the assay cannot differentiate between the 

two) is directly correlated with initial acidification of the growth medium yet the pH remains low 

even after the acid is metabolized.  Shinagawa et al. (2009) proposed a model for the conversion of 

gluconic acid bond energy to a proton motive force in the closely related K. oxydans through the 

oxidation of gluconate to 2-keto-D-gluconate or 5-keto-D-gluconate. 2-keto-D-gluconate can be 

further oxidized to 2,5-diketo-D-gluconate, converting one or two ubiquinone molecules into 

ubiquinol.  The reduced electron carriers ultimately facilitate the transport of protons across the inner 

membrane by cytochrome bo3 (H
+-transporting ubiquinol oxidase) towards the periplasmic space 

and possibly into the extracellular space (Figure 27). This would explain the acidic nature of the 

growth medium well after gluconate is depleted. Contradictory to these findings, Sainz et al. (2016) 

found that 2-keto-D-gluconate but not 5-keto-D-gluconate was produced by K. oxydans.  

Curation of the K. xylinus genome and BLASTp analysis, using previous work with K. 

oxydans as a guide (Shinagawa et al., 2009), reveals multiple enzymes that metabolize gluconate. 

The membrane bound glucose dehydrogenase (ATCC53582_01404) is possibly complemented by 

a soluble glucose dehydrogenase (ATCC53582_01271). A membrane bound (ATCC53582_01404) 

and a soluble (ATCC53582_00728) gluconolactonase would facilitate the extra/intracellular 

metabolism of glucose into gluconate. There are two gluconokinases capable of phosphorylating 

gluconate. Phobius (http://www.ebi.ac.uk/Tools/pfa/phobius/) analysis, which predicts 

transmembrane topology and signal peptides, identifies one as potentially membrane bound 

(ATCC53582_00279) and the other as very likely a transmembrane (ATCC53582_01594) protein. 
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Once phosphorylated, D-gluconate-6-phosphate can be used in the pentose phosphate pathway or 

further metabolized by 6-phosphogluconate dehydrogenase to 2-dehydro-3-deoxy-6-phospho-D-

gluconate similar to the Entner-Doudoroff pathway. Curiously, one of the two 6-

phosphogluconolactonase enzymes carries an N-terminal signal peptide characteristic of secreted 

proteins, although what purpose this enzyme could serve in the extracellular space is unclear. Other 

gluconate metabolizing proteins are gluconate 2-dehydrogenase (ATCC53582_01786) and 

gluconate 5-dehydrogenase (ATCC53582_01277), capable of the conversion of gluconate into 2-

keto-D-gluconate and 5-keto-D-gluconate, respectively. Finally, 2-keto-D-gluconate can be 

metabolized into 2,5-diketo-D-gluconate by a 2-keto-D-gluconate dehydrogenase 

(ATCC53582_01641). Notably, several proteins mentioned above are not annotated as described 

here, but BLASTp analysis reveals very high similarity to annotated homologs. K. xylinus likely 

reduces ubiquinol molecules in a similar fashion to K. oxydans to power the proton motive force, 

providing energy for the cell. Similar proteins are found in K. hansenii which were shown to produce 

more gluconic acid, yet the extracellular medium experienced less of a decrease in pH. This may be 

the result of K. hansenii directing gluconic acid into the pentose phosphate pathway, providing 

synthesis power for the cell, while K. xylinus may use gluconic acid to power a proton motive force, 

 
Figure 27: Proposed model of gluconate metabolism in K. xylinus for cellular energy or growth. 

Protein abbreviations: SGC, sodium/glucose cotransporter; (m/s)GDH, membrane bound/soluble 

glucose dehydrogenase; (m/s)GL, membrane bound/soluble gluconolactonase; GNT, gluconate 

transporter; G2DH, gluconate 2-dehydrogenase; G5DH, gluconate 5-dehydrogenase; 2K5DH, 2-

keto-D-gluconate dehydrogenase; Cyt bo3, cytochrome bo3 ubiquinol oxidase; GK, gluconate 

kinase; 6PGD, 6-phosphogluconate dehydrogenase. Chemical abbreviations: 2KG, 2-keto-D-

gluconate; 5KG, 5-keto-D-gluconate; 2,5KG, 2,5-diketo-D-gluconate; UQ, ubiquinone; UQH2, 
ubiquinol. Figure adapted from Shinagawa et al. (2009). 
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resulting in proton leakage through the outer membrane and decreasing the pH. This would represent 

a trade-off of high energy processes such as cellulose synthesis (as seen in K. xylinus) for greater 

growth potential (as seen in K. hansenii). 

Transcriptional analysis by endpoint PCR of cDNA revealed lower transcript levels of bcsA 

and bcsC compared to wildtype in both species and down regulation of bcsH and bglX in K. xylinus. 

fixK was previously knocked out by transposon mutagenesis by Deng et al. (2013) and qPCR was 

performed on bcsZ, bcsH, bglX and dgc1. Transcription levels were slightly lower for bcsH and 

much lower for bglX compared to the wildtype (Deng et al., 2013). Deng et al. (2013) also performed 

western blot analysis for BcsA, BcsB, BcsC, and BcsD and found no significant differential 

expression of these proteins in the absence of fixK. The reduced transcription of bglX due to the 

absence of fixK was also demonstrated in this thesis. The downregulation of bcsA and bcsC (Figure 

25) at the transcript, but not protein level, may be due to mRNA level regulation. The protein gels 

comparing wildtype and ΔfixK mutants in this thesis coincide with Deng et al. (2013), as there were 

no visible changes in protein expression of similar molecular weight to BcsA, BcsB, BcsC, or BcsD.  

fixK, being a member of the Crp/Fnr family of transcription factors, is likely involved in the 

response to extracellular signal and the control of metabolic pathways. FixK was first described as 

a regulator of nitrogen fixation genes in Rhizobium meliloti (Batut et al., 1989), however neither K. 

xylinus nor K. hansenii have been shown to possess nitrogen fixation capabilities. In 

Bradyrhizobium, fixK homologs regulate a variety of metabolic roles including microaerobic growth 

(Preisig et al., 1996), heme biosynthesis (Fischer et al., 2001), denitrification (Velasco et al., 2004), 

and hydrogen oxidation genes (Durmowicz and Maier, 1998). Furthermore, it has been shown to 

induce the expression of up to 17 genes while repressing 12 genes. In general, FixK is induced by 

microaerophilic growth via the heme containing protein FixL. Studies have not yet implicated fixK 

in fructose metabolism however the closely related Crp transcription factor is primarily involved in 

sensing cyclic adenosine monophosphate (cAMP) and therefore the global glucose level. Whether a 

new role for FixK has been revealed by this thesis or whether the Komagataeibacter homolog of 

this gene requires a new title has yet to be determined. 

  



 

 

66 

 

5. Conclusions and Future Directions 

The work presented in this thesis has advanced our understanding of the role that bcsZ and 

fixK play in bacterial cellulose production. We provide evidence that bcsZ is repressed by glucose 

but not fructose when grown in SH medium. Furthermore, our results suggest that a cellulase is 

secreted into the growth medium to reclaim cellulose as an energy source. This enzyme may be 

BcsZ or BglX; however the expression of the protein under low glucose conditions suggests that 

BcsZ is more likely responsible for the observed cellulase activity. Additionally, BglX has 

previously been identified in the insoluble fraction of cell extracts making it even less likely to be 

found in the extracellular medium.  

fixK was known to regulate cellulose biosynthesis in K. hansenii but its role in K. xylinus 

had yet to be investigated. Despite FixK having identical amino acid sequence between species, 

knocking out fixK did not abolish cellulose production in K. xylinus, albeit cellulose yield was 

dramatically reduced. While FixK does share some regulatory roles in both species (such as in 

affecting the expression of bglX), its role in the two species is strikingly different. Its role in fructose 

metabolism in K. hansenii was dramatic, with cultures lacking a functional fixK reaching densities 

of only half of the wildtype. In contrast, K. xylinus cultures had no significant differences in final 

culture densities compared to the ΔfixK mutants. Additionally, the expression of a highly abundant 

protein near 68.7 kDa was abolished in K. xylinus in the absence of fixK. Similar weight proteins in 

K. hansenii were unaffected.  

Future studies should attempt to confirm whether BcsZ is indeed the enzyme responsible for 

the degradation of cellulose in weeks-old pellicles and to characterize the repression of the bcsZ 

promoter. Zymograms for the detection of CMCases from pellicle squeezates of 17 day or older 

cultures would be an effective means for revealing the enzyme responsible. While glucose is 

presumably a repressor for bcsZ expression, it is possible that fructose is an inducer of bcsZ. Reverse 

transcriptase quantitative PCR of this gene analyzed from cultures grown in fructose and glucose 

would clarify this.  

The characterization of fixK has only just begun and additional studies on the regulation of 

fixK and its DNA targets are essential for understanding the regulation of bacterial cellulose 

synthesis. This gene plays a key role in not only bacterial cellulose production, but also in fructose 

metabolism and the production of 68.7 kDa proteins; yet the mechanisms have yet to be investigated. 
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Co-immunoprecipitation using His-tagged FixK would facilitate the identification of its DNA 

targets. Additionally RNA-sequencing to compare the wildtype and ΔfixK mutant transcriptome 

would reveal ancillary genes responsible for cellulose synthesis and its regulation.  
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7. Appendix 

 

 

 

Appendix Table 1: Details of primer sets used in this study. Bold bases indicate 5’ overhangs for Gibson Assembly. Underlined bases indicate 

the stop codon (in-frame in final assembly) inserted into fixK, replacing Q155. 

Use Target 

Amplicon 

Length (bp) 

 

Source DNA Locus Tag Forward Primer Sequence (5' → 3') Reverse Primer Sequence (5' → 3') 

fi
xK

 m
u

ta
g

en
es

is
 

fixK 617 
 K. xylinus ATCC53582_00024 

GCGGTGGAAACCATCATCAC TATCCCGTAACTGAGAGCCC 
 K. hansenii GXY_RS00790 

Left side of fixK 315  fixK Amplicon N/A GCGGTGGAAACCATCATCAC GCCAATTTATTCGTTGGATGCCTCTTCGAGAAG 

Right side of fixK 319  fixK Amplicon N/A GGCGTAACTGGTTGCGGCCCAG TATCCCGTAACTGAGAGCCC 

Chl Cassette 802  pSEVA331Bb N/A TCCAACGAATAAATTGGCGAAAATGAGACGTTGATCGG GCAACCAGTTACGCCCCGCCCTGCCAC 

E
n

d
p

o
in

t 
P

C
R

 

bcsA side of bcsAB 184 
 K. xylinus ATCC53582_00602 

ACAATGGGCTGGATGGTCGA ACCCGCAAAAGAAGGTCGCA 
 K. hansenii GXY_RS03935 

bcsB side of bcsAB 197 
 K. xylinus ATCC53582_00602 

AATGCGTTCCATCTTGGGCTTGAC ATCAGGTCAAGATAGGCGCCAACA 
 K. hansenii GXY_RS03935 

bcsC 103 
 K. xylinus ATCC53582_00603 

TACCAGTCGCATATCGGCAATCGT GCAGGTCGTTCAACTGGCTTTCAT 
 K. hansenii GXY_RS03940 

bcsD 153 
 K. xylinus ATCC53592_00604 

TCACCCTGTTTCTTCAGACCCTGT TCAGTTCGATCTGCAGCTTGTCCA 
 K. hansenii GXY_RS03945 

bcsZ 98 
 K. xylinus ATCC53582_00600 

CACCAACCTGCAGCATACCAATGA CGCCATCTGTGGCATTGTTCTTGT 
 K. hansenii GXY_RS03925 

bcsH 191 
 K. xylinus ATCC53582_00601 

TGTTGCCGATGAATGGAGTCCTGT TGTCTGTCTTGGTCATGCTGGTCA 
 K. hansenii GXY_RS15550 

bglX 116 
 K. xylinus ATCC53582_00606 

TACCGATCAGGAACTTGTCTAT CAAAAGTGGTGTAGGTCAGG 
 K. hansenii GXY_RS03950 
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Appendix Figure 1: Identification of possible post translational modifications of secreted BcsZ from K. xylinus (A) and K. hansenii (B) grown 

in SHF2. Blue bars represent unique peptides detected by mass spectroscopy after trypsin digestion. Orange ‘o’ represents predicted oxidized 

methionine resides, red ‘d’ represents a predicted deamidated asparagine residue and blue ‘c’ represents a predicted carbamidomethylated 

cytosine.  
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Appendix Figure 2: Map of pSEVA331Bb plasmid. This plasmid was used to optimize transformation in K. 

xylinus and K. hansenii. The chloramphenicol resistance cassette was also used in the fixK-Chl-fixK construct 

to mutate fixK. 

 

 

 


