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Chapter 0

Abstract

In this thesis, we first discuss the fundamentals of ab initio electronic structure

theory and density functional theory (DFT). We also discuss statistics related

to computing thermodynamic averages of molecular dynamics (MD). We then

use this theory to analyze and compare the structural, dynamical, and electronic

properties of liquid water next to prototypical metals including platinum, graphite,

and graphene. Our results are built on Born-Oppenheimer molecular dynamics

(BOMD) generated using density functional theory (DFT) which explicitly include

van der Waals (vdW) interactions within a first principles approach. All calcu-

lations reported use large simulation cells, allowing for an accurate treatment of

the water-electrode interfaces. We have included vdW interactions through the

use of the optB86b-vdW exchange correlation functional. Comparisons with the

Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown.

We find an initial peak, due to chemisorption, in the density profile of the liquid

water-Pt interface not seen in the liquid water-graphite interface, liquid water-

graphene interface, nor interfaces studied previously. To further investigate this

chemisorption peak, we also report differences in the electronic structure of sin-

gle water molecules on both Pt and graphite surfaces. We find that a covalent

bond forms between the single water molecule and the platinum surface, but not

between the single water molecule and the graphite surface. We also discuss the

effects that defects and dopants in the graphite and graphene surfaces have on the

structure and dynamics of liquid water. Lastly, we introduce artificial neural net-

works (ANNs), and demonstrate how they can be used to machine learn electronic
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structure calculations. As a proof of principle, we show the success of an ANN

potential energy surfaces for a dimer molecule with a Lennard-Jones potential.
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Chapter 1

Introduction

Examining the molecular structure of water-solid interfaces is crucial for under-

standing dynamical processes that occur in both natural and controlled environ-

ments. Hydrogen production through the splitting of water at a metal surface is

of great interest for solar cell devices [3], and generating hydrogen and oxygen gas

has been proposed as a means to store energy [4]. Despite significant efforts both

computationally [5–18] and experimentally [16, 19–21] to study electrode-water

interfaces, to-date, there has yet to be an explicit treatment of liquid water next

to a realistic, catalytic surface computed at the level of accurate, first principles

molecular dynamics. Almost 10 years ago, Cicero et al. [5] studied several liq-

uid water-graphene interfaces as well as water confined in carbon nanotubes with

differing radii using DFT with the PBE exchange correlation functional [22]. De-

spite the differences of the simulation cell sizes, the interfacial water had a similar

structure when comparing the density profiles of the different supercells. Moving

away from the graphene at a perpendicular direction, a zero particle density was
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found for ≈ 2.5 Å. Further past this volume of zero particle density, away from

the surface, an initial spike was seen where the particle density was significantly

larger than the density of bulk water in ambient conditions. In Figure 1.1, we

show a prototypical plot of the density profile next to a metal. This plot has a

similar structure as the density profile of the liquid water-graphene interface. In

a subsequent study by Liu et al. [23], a liquid water-salt interface was examined

using the same theoretical framework. Here, the structure of the interfacial layer

was quite different. Despite having a similar zero particle density adjacent to the

surface, the first peak in the density was lower, and more broad. Even though

graphite has an inferior efficiency for water splitting when compared to platinum,

it is commonly used in laboratories to study electrochemical processes because it

is inexpensive and abundant. By studying the structural and electronic properties

of liquid water-solid interfaces through ab initio methods, we can begin to un-

derstand and characterize electrodes. This aids in the selection process of a new,

abundant, and efficient alternative electrode to superior rare metals.

More recently, another ab initio study was done by Velasco et al. [18] on a liquid

water-Au interface. Here, the computational efforts were exceptional; 80 ps of

MD trajectories were generated using DFT with the PBE exchange correlation

functional. The molecular density profile of this interface was similar to the liquid

water-graphene interface; the only structural difference was an additional second

peak ≈ 5 Å past the initial, most prominent peak. It should also be noted that the

density of the initial, largest peak reached a value of 4 g/cc; this is approximately

twice the value of the largest peak seen for the water-graphene interface. Thus,
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Figure 1.1: Prototypical density profile of liquid water next to a metal surface in
ambient conditions.

the water shows more attraction to the gold surface than the graphene, but it may

not be a key indicator of an efficient catalyst. Gold is known to be chemically

inert [24]. When a molecule (H2 for example) binds to the surface of gold, the

energies associated with the anti-bonding molecular orbitals lie below the Fermi

level. This results in occupancy of the anti-bonding molecular orbitals, causing

repulsion and reducing surface activity.

The liquid water-solid interfaces considered in our work are platinum, graphite,

and graphene. platinum is a rare metal, and is known to have a low over potential

for water splitting, whereas carbon-based materials are less efficient. The over po-

tential of a metal is a clear indicator of efficiency. To split water, there is a reaction

energy barrier to overcome in order for the process to occur. For different metals,
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there is an additional energy cost, and this is what is called the over potential

of a metal. Due to the efficiency, rarity, and cost of platinum, there is an active

area of research focused on finding an alternative, abundant metal/semi-metal

with similar properties [23, 25–28]. Many theoretical and experimental studies

have been done to further understand the water-platinum interface [29–36]. In

particular, Osawa et al. [31] performed infrared absorption spectroscopy experi-

ments to examine the structure of water next to an electrified, pristine platinum

electrode. They found significant differences in the spectrum when comparing the

interfacial water to that of the bulk. They concluded that the differences in the

spectrum were due to the orientation of the surface water molecules. At the posi-

tively charged electrode, the surface molecules formed a strong hydrogen-bonding

network parallel to the surface. At the negatively charged electrode, the interfacial

water formed a much weaker hydrogen bonding network and the water molecules

preferred an H-down orientation to the surface. The majority of computational

studies regarding the water-platinum interface have relied on the use of classical

force fields (i.e. empirical fits coupled with molecular dynamics or Monte Carlo

engines). They have reported statistical distributions to understand the structure

of water next to the surface [29, 33, 37], such as the molecular density profile, ori-

entation probability distributions, and two-dimensional probability distributions

outlining adsorption sites. More recent studies have used experimental and ab

initio techniques to study this interface [38–40], but for smaller systems which

only included a surface layer (excluding bulk water). In this report, we compare

our results to previous water-solid studies and build on previous classical reports

of the liquid water-platinum interface with a quantum description of the forces

4
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which define this interface. A larger system size allows for dynamics in the liquid

that would occur naturally in ambient conditions; the natural dynamics we en-

capsulate in our simulations are absent in previous simulations that only consider

the interfacial surface layer of water.

In recent years, better computer hardware/software and the accumulation of data

worldwide has allowed for significant progress in machine learning and artificial

intelligence. The majority of the success of machine learning cover topics related

to computer vision [41–43], or automated speech recognition [44, 45]. In recent

years, the electronic structure community has been experimenting with combining

traditional methods with machine learning [2, 46–48], and the results look promis-

ing. Although DFT is one of the cheapest ab initio methods to calculate the

electronic structure of some system for atomistic simulations, it gets to be rather

computationally taxing when the system size consists of a few hundred atoms.

The use of machine learning allows for much faster calculations, and rivals the ac-

curacy of the electronic method it is being trained on. The use of machine learned

potentials is relatively new, and requires thorough testing if to be heavily relied

on. In the work done by Behler et al. [48], they developed a framework to machine

learn total energies and forces of atomistic systems. Specifically, they proposed

training high dimensional neural network potentials with symmetry functions that

represent the local environments of atoms. This allows one to map the output of

traditional atomistic simulations to the symmetry functions, which could then be

fed in as input to the ANN. Shortly thereafter, Artrith et al. [2] implemented this

framework to study TiO2. Here, they discussed the software that was developed

5
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(aenet), their methodology for generating the ANN potential, and the accuracy

of the ANN potential. Aenet is software that can produce an ANN potential for

a general atomistic system and we leverage this software in Chapter 5. Aenet is

incredibly useful, but the accuracy of the ANN potential depends critically on the

training set, which requires intuition to generate. In [2], they applied a recursive

training technique to optimize their ANN potential. In their preliminary ANN po-

tential, their model was trained from atomic configurations of pristine crystalline

phases of TiO2, compressed and expanded crystalline TiO2, and removed O atoms

creating defects in the crystal. To refine the model, they then used MD to generate

new configurations, and self-consistently trained the model on the configurations

until the difference between the true energy and the predicted energies was small.

After training, they found that the lattice parameters, bulk moduli, and total

energies were in excellent agreement with reference values calculated from DFT.

This thesis contains 6 chapters. In Chapter 2, we discuss electronic structure

theory related to DFT which is the basis for all calculations. In Chapter 3, we

then describe how to compute thermodynamic averages of atomic systems from

MD. We also give Python code to explicitly show how to compute these averages.

In Chapter 4, we present our main results. This includes analyzing BOMD of liquid

water next to prototypical metals, including platinum, and graphitic surfaces with

and without defects and dopant materials for insight into water splitting from a

nanoscale perspective. This also includes examining the electronic structure of

a water monomer on the surface of platinum and graphite. Some of the text in

this chapter is in a manuscript that is currently under review. In Chapter 5, we

6
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describe the basic theory of ANNs, and then use ANNs for a simple atomic system

which consists of a dimer molecule. Lastly, in Chapter 6, we conclude, and discuss

future work with liquid water-metal interfaces and machine learning.
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DFT

2.1 Fundamentals

DFT is one of the most widely used tools to study atomistic systems. It is the

modern workhorse for electronic structure calculations. Together, with the ongoing

improvements in algorithms and computation, the atomistic system sizes of study

has grown significantly. Many of the systems presented in this thesis push the

limits of modern computer architecture and software. In the 1960’s Hohenberg

and Kohn [49], and Kohn and Sham [50] published revolutionary papers that

allowed for the exploration of materials using quantum mechanics. Consider a

system of n electrons and N ions. The non-relativistic Hamilitonian of the system

8
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is

H = −
n∑
i

~2

2me

∇2
i −

N∑
k

~2

2mk

∇2
k −

e2

4πε0

n∑
i

N∑
k

Zk
|ri −Rk|

(2.1)

+
e2

8πε0

n∑
i

n∑
j i 6=j

1

|ri − rj|
+

e2

8πε0

N∑
k

N∑
l k 6=l

ZkZl
|Rk −Rl|

.

The first two terms are the kinetic energies of the electrons and nuclei, respectively.

The last three terms are the Coulomb interactions between the electrons and

nuclei. We then adopt atomic units, where the units of energy are in Hartree

(EH = ~2
mea20

= e2

4πε0
) and distances in Bohr (a0 = 4πε0~2

mee2
). This gives the scaled

Hamiltonian

H = −
n∑
i

1

2
∇2
i −

N∑
k

1

2mk

∇2
k −

n∑
i

N∑
k

Zk
|ri −Rk|

(2.2)

+
1

2

n∑
i

n∑
j i 6=j

1

|ri − rj|
+

1

2

N∑
k

N∑
l k 6=l

ZkZl
|Rk −Rl|

.

The first approximation we make is the Born-Oppenheimer approximation (or the

adiabatic approximation). Due to lower mass, the electrons move adiabatically in

the presence of nuclei. This allows us to decouple the electronic and ionic degrees

of freedom. With this approximation, we get the electronic Hamiltonian

Helectronic = −
n∑
i

1

2
∇2
i −

n∑
i

N∑
k

Zk
|ri −Rk|

+
1

2

n∑
i

n∑
j i 6=j

1

|ri − rj|
. (2.3)
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The last term in equation 2.3 is problematic. For a 2 electron system, we can

not solve the time independant Schrödinger equation analytically1. Computation-

ally, we would need to solve a 6 (3 spatial dimensions per electron) dimensional

eigenvalue problem. If we discretized each dimension on a grid with 10 points, we

would need to store 106 floating point numbers for the wave function, and 1012

for our Hamiltonian. One can see that approaching this problem with brute force

quickly becomes unfeasible.

In the paper titled, “Inhomogeneous Electron Gas”, by Hohenberg and Kohn [49],

they approached solving equation 2.3 from another perspective. They suggested to

consider the electron density, ρ(r), rather than the wave function Ψ(r1, r2, . . . , rn).

Using the electron density, they went on to show that the total energy of the

system can be expressed in terms of the electron density alone. In addition, they

proved the following 2 theorems:

Theorem 2.1. The external potential, and the total energy are unique functionals

of the electron density.

Theorem 2.2. The ground state energy can be calculated by finding the global

minimizing electron density in the total energy functional.

To prove the first theorem, consider two external potentials V
(1)
ext (r) and V

(2)
ext (r)

which differ by more than just a constant value and give the same ground state

electron density ρ(r). These external potentials lead to Hamiltonians H(1), H(2),

1We can find solutions to the time dependent Schrödinger equation by solving the eigenvalue
problem Hψ = Eψ and then tacking on the usual time dependance φ(t) = e−iEt/~. This can be
done because our Hamiltonian is not time dependant.

10
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and ground state wave functions Ψ(1), Ψ(2). Due to the variational principle,

E(1) = 〈Ψ(1)|H(1)|Ψ(1)〉 < 〈Ψ(2)|H(1)|Ψ(2)〉. (2.4)

If we write the last term of Equation 2.4 as

〈Ψ(2)|H(1)|Ψ(2)〉 = 〈Ψ(2)|H(2)|Ψ(2)〉+ 〈Ψ(2)|H(1) −H(2)|Ψ(2)〉, (2.5)

then we find

〈Ψ(2)|H(1)|Ψ(2)〉 = 〈Ψ(2)|H(2)|Ψ(2)〉+ 〈Ψ(2)|H(1) −H(2)|Ψ(2)〉

= E(2) +

∫
[V

(1)
ext (r)− V (2)

ext (r)]ρ(r)dr

E(1) < E(2) +

∫
[V

(1)
ext (r)− V (2)

ext (r)]ρ(r)dr. (2.6)

Here, we have expressed the energy from the external potential as shown in Equa-

tion 2.10. If we then repeat this process, with Equation 2.4 as

E(2) = 〈Ψ(2)|H(2)|Ψ(2)〉 < 〈Ψ(1)|H(2)|Ψ(1)〉, (2.7)

then we arrive at the condition E(1) + E(2) < E(1) + E(2), which can’t be true.

Therefore there does not exist two external potentials that differ by more than a

constant which give the same electron density.

To prove theorem 2, again consider 2 Hamiltonians H(1), H(2), with ground state

wave functions Ψ(1), Ψ(2), and electron densities ρ(1)(r), ρ(2)(r). From Equation

11
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2.11,

E[ρ(1)(r)] = 〈Ψ(1)|H(1)|Ψ(1)〉 < 〈Ψ(2)|H(1)|Ψ(2)〉 = E[ρ(2)(r)], (2.8)

again, due to the variational principle. From this, we find that only the true ground

state electron density will give the ground state energy. Any other electron density

will have greater energy.

To express the total energy as a functional of the electron density, assume we have

solved equation 2.3, giving us Ψ(r, r2, . . . , rn). The electron density is found via

ρ(r) =

∫
. . .

∫
|Ψ(r, r2, . . . , rn)|2dr2dr3 . . . drn

+

∫
. . .

∫
|Ψ(r1, r, . . . , rn)|2dr1dr3 . . . drn + . . .

+

∫
. . .

∫
|Ψ(r1, r2, . . . , r)|2dr1dr2 . . . drn−1

=

∫
. . .

∫
[δ(r− r1) + δ(r− r2) + . . .+ δ(r− rn)]

|Ψ(r1, r2, . . . , rn)|2dr1dr2 . . . drn

= N

∫
. . .

∫
Ψ∗(r1, r2, . . . , rn)δ(r− r1)Ψ(r1, r2, . . . , rn)

dr1dr2 . . . drn

= N

∫
. . .

∫
|Ψ(r, r2, . . . , rn)|2dr2dr3 . . . drn.

The factor of N comes from the antisymmetric properties of the wave function, i.e.

Ψ(r1, r2, . . . , rn) = −Ψ(r2, r1, . . . , rn). Hohenberg and Kohn state that since ρ(r)

is a functional of Ψ(r1, r2, . . . , rn), then so too is the kinetic and elecron-electron

interaction energy. Explicitly, there is some universal functional F

F [ρ(r)] ≡ 〈Ψ|T̂ + Û |Ψ〉 (2.9)

12



Chapter 2 2.2. Kohn-Sham DFT

where T̂ is the sum over the kinetic energy operators, and Û the sum over the

electron-electron interaction operators. The external potential, can explicitly be

written in terms of the electron density,

〈V̂ 〉 = −
n∑
i

N∑
k

∫
. . .

∫
Ψ∗(r1, r2, . . . , rn)

Zk
|ri −Rk|

Ψ(r1, r2, . . . , rn)

dr1dr2 . . . drn

=
n∑
i

∫
. . .

∫
v(ri)|Ψ(r1, r2, . . . , rn)|2dr1dr2 . . . drn

= N

∫
v(rn)

[∫
. . .

∫
|Ψ(r1, r2, . . . , rn)|2dr1dr2 . . . drn−1

]
drn

=

∫
v(r)ρ(r)dr, (2.10)

which leads to the total energy functional

E[ρ(r)] =

∫
v(r)ρ(r)dr + F [ρ(r)]. (2.11)

Minimization of this energy functional leads to the ground state charge density

and energy of a many body system.

2.2 Kohn-Sham DFT

In the work done by Hohenberg and Kohn [49], they showed that one can solve

for the electron density of a many body system by finding the minima of the total

energy functional, but did not state the exact form of the universal functional

F . The electron-electron interaction makes solving the Schrödinger equation with

13
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the Hamiltonian in Equation 2.3 impossible, and both the kinetic and electron-

electron interaction energy can not be explicitly written down in terms of the

electron density. Following [49], Kohn and Sham [50] provided a method which

overcame these problems in a paper titled: “Self-Consistent Equations Including

Exchange and Correlation Effects”. Here, they created an auxiliary system of

non-interacting electrons, and leveraged the exact density functional formalism.

Recall the universal functional F in equation 2.11. This included the problematic

terms when dealing with interacting electrons. To overcome these terms, Kohn

and Sham defined the total energy as

E[ρ(r)] =

∫
v(r)ρ(r)dr +

1

2

∫
ρ(r)ρ(r′)

|r− r′| drdr
′ +G[ρ(r)], (2.12)

where the second term is an averaged interaction energy of the electrons (deemed

the Hartee energy), and G is defined as

G[ρ(r)] ≡ Tni[ρ(r)] + Exc[ρ(r)]. (2.13)

Here, Tni is the kinetic energy for a system of non-interacting electrons, and Exc

is the exchange and correlation energy of an interacting system of electrons. The

one caveat is that the exact form for Exc is unknown. Even though the exact form

is unknown, it is expected to hold the effects from correlated electrons, exchange

from the antisymmetric properties of the many body wave function, and the energy

difference between the true and the non-interacting kinetic energy. Hence the term

“exchange correlation” functional.

14
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To minimize the total energy, we use the method of Lagrange multipliers, subject

to the constraint that the number of electrons does not change, i.e.

n =

∫
drρ(r). (2.14)

Doing this yields

H[ρ(r)] = E[ρ(r)]− µ
(∫

drρ(r)− n
)
, (2.15)

where µ is the Lagrange multiplier. To minimize this expression with respect to

the density, we take the functional derivative of H with respect to ρ, and set it

equal to 0. This gives,

δH

δρ(r)
= v(r) +

∫
ρ(r)

|r− r′| +
δTni
δρ(r)

+
δExc

δρ(r)
− µ = 0. (2.16)

Multiplying both sides (from the right) by ψ, we get

(
v(r) +

∫
ρ(r)

|r− r′| +
δTni
δρ(r)

+
δExc

δρ(r)

)
ψ = µψ. (2.17)

which is just a Schrödinger equation (with ε ≡ µ). As we will see below, the

electron density ρ will be built from ψ, and therefore solving for ψ gives ρ, and the

total energy. The electron density is constructed by summing over the occupied

orbitals

ρ(r) =
n∑
i=1

|ψi(r)|2 (2.18)
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where we would have 2 electrons per orbital (to account for spin). To solve for the

orbitals, we need to solve the eigenvalue problem,

(
−1

2
∇2 −

N∑
I

ZI
|r−RI |

+

∫
ρ(r)

|r− r′|dr + Vxc(ρ(r))

)
ψi(r) = εiψi(r). (2.19)

The first term is the one-electron kinetic energy, the second term is the coulomb

potential due to the ions, the third term is the Hartee potential, and the last

term is the exchange correlation potential. The Hartee potential is a ‘mean field’

approximation for the electron-electron interactions. Instead of the electron in-

teracting with every other electron independently, it interacts with the electron

density (which includes itself!). The exchange correlation potential is the func-

tional derivative of the exchange correlation energy with respect to the electron

density, i.e.

Vxc(ρ(r)) =
δ

δρ
Exc[ρ(r)]. (2.20)

The total energy of the system is then

E =
n∑
i

εi −
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′| drdr
′ + Exc[ρ(r)]−

∫
ρ(r)Vxc(ρ(r))dr. (2.21)

To write down the kinetic energy of the system, we take the sum over the occupied

orbitals and subtract off all other potential energies. After doing this, we end up

with Equation 2.21.

From equation 2.19, we can see that we need an electron density to solve for the

set of electron orbitals. The calculation for the total energy of the system given

from equation 2.21 is an iterative process. Once makes an initial “guess” for the
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Chapter 2 2.3. Exchange correlation functionals

orbitals, constructs the electron density, solves for new orbitals, calculates the

total energy based on the new electron density (which is the sum over the new

orbitals), and repeats until we reach a self-consistent solution.

2.3 Exchange correlation functionals

Thus far, we have have not defined any functional form for Exc. In [50], Kohn and

Sham not only provided a scheme to calculate the ground state electron density,

but they also suggested a form for Exc for the case of a slowly varying density.

In the case of slowly varying density, we call this the local density approximation

(LDA), since the functional of the electron density only needs the electron density

at a point r. Explicitly, the functional of the density is

ELDA
xc [ρ(r)] =

∫
drf(n(r)) =

∫
drρ(r)εLDA

xc (ρ(r)), (2.22)

where εLDA
xc is the exchange correlation energy per electron for a uniform electron

gas. For the exchange correlation energy, we split the functional up such that

ELDA
xc = ELDA

x +ELDA
c . The exchange part, ELDA

x , can be computed for plane-waves

using the exchange energy per electron from Hartee-Fock [51] theory, namely,

εHF
x, k = −

n∑
i

∫
dr′

ψ∗k(r)ψ∗i (r
′)ψi(r)ψk(r

′)

|r− r′| , (2.23)
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along with the functional form for the exchange

ELDA
x [ρ(r)] =

∫
drρ(r)εHF

x, k(ρ(r)). (2.24)

For a uniform electron gas, the energies associated with the occupied states form

a sphere in momentum space. The sphere has a radius of kF, which corresponds

with the energy of the highest occupied state (Fermi energy at 0 K) through the

dispersion relation εF = ~2
2m
k2F. This energy level has an associated wave vector,

kF, and the electron density can be written such that

kF = (3π2ρ(r))1/3. (2.25)

Using this relation, [50] showed that the exchange energy per electron (Equation

2.23) is

εHF
x, k = − 3

2π

(
3π2ρ(r)

)1/3
. (2.26)

The correlation energy is much harder to compute, and it is defined as the energy

difference between the exact total energy of a system and the Hartee-Fock energy

with a complete basis. If we consider the Wigner-Seitz radius of a uniform electron

gas

rs =

(
9π

4

)1/3
1

kF
, (2.27)

then we can consider limits of the electron density. In the LDA, we write the

correlation energy with the same form as the exchange energy, namely

ELDA
c [ρ(r)] =

∫
drρ(r)εc(ρ(r)), (2.28)
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where εc is the correlation energy per electron. The exact form is not known

for the correlation energy, but it has been fit to accurate quantum Monte Carlo

simulations [52]. Another way to calculate the correlation energy per electron is to

perform an exhaustive calculation for a true 2 electron system. This would require

a computer with a large amount of memory, but in principle, it can be done.

One would first calculate the ground state wave function, and the total energy

associated with that state. Afterwards, one can then subtract off all other energies

except for the electron-electron interaction energy from the total energy. This

would yield the true electron-electron correlation energy. Typically, in electronic

structure theory, the electron correlation energy is the true total energy minus the

Hatree-Fock total energy.

In [50], Kohn and Sham realized that their approximation to the exchange corre-

lation energy had limitations and suggested that one should perform a gradient

expansion of energy functionals with respect to the density to increase the accu-

racy. Until the release of generalized gradient approximation (GGA) in the early

90s, the LDA approximation was widely used to perform DFT calculations. One

of the most popular GGA functionals in DFT is the PBE functional which was

developed by Perdew, Burke, and Ernzerhof [22]. We have used this functional

in many cases in Chapter 4 as it is a standard functional to use in the literature.

This functional uses the same form of the LDA for correlation effects, but adds

additional terms in the exchange which includes a gradient of the electron density.

More recently, additional hybrid exchange correlation functionals and non-local

functionals have been formulated and used. In particular exchange correlation
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functionals which contain van der Waals interactions have been developed [53]

and thoroughly tested [54]. These functionals have an additional contribution to

the energy,

Exc = ErevPBE
x + ELDA

c + Enl (2.29)

where Enl is the additional term which is non-local. This term depends on the

density at different points in space, which may be long range, which is why it is

deemed non-local. The general form for the non-local energy is

Enl =
1

2

∫
drdr′ρ(r)φ(r, r′)ρ(r′) (2.30)

where φ is some general function (interaction) which depends on r − r′. In [53],

Dion et al. approximately derived a function φ from the exact non-local expres-

sion, where the asymptotic interaction strength of 1/R6 was found, thereby giving

van der Waals interactions. In Chapter 4, we leverage this exchange correlation

functional form for all of our calculations, as graphite, and the interactions of

water molecules need van der Waals interactions to be described properly.

2.4 Applying DFT

We now work through the computational aspects of a DFT code. To simply things,

we work in one dimension; the extension to higher dimensions is straight forward.

We also include Python code, which allows us to explain everything in theory and

in a computational sense. The first step is to define the real and momentum space
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grids.

import numpy as np

xnum = 256

x = np.linspace (-10, 10, 256)

dx = x[1] - x[0]

dk = 2 * np.pi / (dx * xnum)

k = (np.arange(xnum) - (xnum / 2)) * dk

This definition of k = 2π/x is also needed to work with fast Fourier transforms

(FFTs). In DFT, we refer to the plane wave energy cutoff to give the total number

of plane waves used in our calculations. As we will see below the kinetic energy

operator in Fourier space is T̃ = k2

2
. Instead of defining a parameter to define the

real space grid, we define an energy cut-off, which yields the maximum value of

kmax. The real space grid can then be defined after kmax is known. With the grid

defined, we can then define the nucleic potential, which is this case, will be a Li

atom in the centered at x = 0, i.e.

V (x) = − Z

|x| ≈
Z√
x2 + α

=
−3√
x2 + 1

or

def V(x):

return - 3 / np.sqrt(x**2 + 1)
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which is known as a soft-core atomic potential. The value of Z for Li is 3, since it

has 3 protons. The Coulomb operator has a singularity at x = 0, and the intro-

duction of the parameter α fixes this problem. We can also define the initial guess

of our orbitals and our electron density, which will come from a random function.

With ψ(x) defined as our random function, we first normalize, and then sum over

|ψ(x)|2 n times, where n is the number of electrons. In the case of Li, we have 3

electrons.

psi = np.random.rand(xnum)

psi /= np.sqrt( dx * np.sum(np.absolute(psi )**2))

n_elec = 3

rho = np.zeros(xnum)

for i in range(n_elec ):

rho += np.absolute(psi )**2

At every self-consistent step, we must also compute the Hartree potential

VH(x) =

∫
ρ(x)

|x− x′|dx
′

which is equivalent to solving the Poisson equation

d2

dx2
VH(x) = −ρ(x)

2
.
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Solving the Poisson equation is much more stable from a computational perspec-

tive and can be done using various iterative solvers. The Poisson equation gives

steady state solutions of the diffusion equation, and therefore one can guess a solu-

tion, and continue updating the solution until some convergence has been reached.

In a very naive approach, we solve for the Hartee potential in the following func-

tion:

def V_h(rho):

v_h = np.zeros(xnum) + 1e-16

v_h_n = np.zeros(xnum)

etol = 1e-4

diff = np.ones(xnum)

dt = dx **2 * 0.001

while np.max(diff) > etol:

v_h_n [0] = v_h[0] + (dt / (dx**2)) *

(v_h[-1] + v_h[1] - 2 * v_h [0]) +

rho [0] * dt

v_h_n [-1] = v_h[-1] + (dt / (dx**2)) *

(v_h[-2] + v_h[0] - 2 * v_h[-1]) +

rho[-1] * dt

for i in range(1,xnum -1):

v_h_n[i] = v_h[i] + (dt / (dx**2)) *

(v_h[i-1] + v_h[i+1] - 2 * v_h[i]) +

rho[i] * dt

diff = abs(v_h_n - v_h)
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v_h = copy.copy(v_h_n)

return v_h

Here, we pass the electron density ρ(x) in, and obtain VH(x). It should be noted

that this function also includes periodic boundary conditions, which is why the

end points are excluded from the loop. In the 1D case, the momentum vector

associated with the Fermi energy is related to the electron density via

kF = πρ,

which means that the exchange energy per electron is

εx(x) = −3

2
ρ(x),

and the Wigner-Seitz radius is rs = 1/ρ. The exchange potential per electron is

vx(x) =
d

dρ
(ρεx(x)) = −3ρ(x),

and we use the fit for the correlation energy per electron found by Chachiyo [52]

ec(x) = a ln
(
1 + bρ+ bρ2

)
,

where a = ln 2−1
2π2 and b = 20.4562557. The correlation potential per electron is

then

vc(x) =
d

dρ
(ρεc) = εc(x) +

(aρ)(b+ 2bρ)

1 + bρ+ bρ2
.
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With these definitions, we can then define all of the potentials needed in our

Hamiltonian:

def e_x(rho):

return - (3./2.) * rho

def e_c(rho):

r_s = 1 / rho

return (np.log (2.) - 1.) / (2 * np.pi**2) *

np.log(1 + 20.4562557 / r_s + 20.4562557 / (r_s **2))

def v_c(rho):

a = (np.log (2.) - 1.) / (2 * np.pi**2)

r_s = 1 / rho

return e_c(rho) + a * rho *

(1. / (1 + 20.4562557* rho + 20.4562557 * rho **2)) *

(20.4562557 + 2 * 20.4562557 * rho)

def v_x(rho):

return - 3 * rho

The last piece we need is the kinetic energy operator, which in momentum space

is

T̃ (k) =
1

2
(k + kp)2,
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where kp corresponds to the k-point we are interested in. The solutions to our

Hamiltonian will be of the Bloch form [55], i.e.

ψ(x) = u(x)eikpx,

where u(x) is the part of the wave function that has the same periodicity of the

potential. The values of kp are directly related to the reciprocal space lattice space

vectors. For every unit cell, there is one unique value of kp. To calculate the total

energy per unit cell, we must perform calculations over different values of kp, and

average [56]. This is equivalent to integrating E(kp) over the first Brillouin zone,

which in our case is −π/L ≤ kp ≤ π/L. An example of E(kp) is shown in Figure

2.1 for the uniform electron gas. To compute this integral computationally, we

perform a sum over discrete points in kp space and average. We can continue

increasing the number of k-points until we see a convergence in the total energy.

With the kinetic energy operator defined in momentum space, the Hamiltonian

can not be diagonalized directly, as done in a real space finite difference method.

To solve for the eigenvalues and eigenvectors iteratively, we need to pass the solver

the matrix-vector product operation. Once we have solved for the eigenvalues and

eigenvectors, we can construct the new electron density, and the total energy for

the specific k-point. Putting all of this together we define a function to return the

total energy, eigenvalues, and eigenvectors:

def kPointCalc(kp , rho):
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−π/L 0 π/L

kp

ε(
k
p
)

Figure 2.1: The dispersion relation for the uniform electron gas. Integrating over k in
the Brillouin zone gives us the total energy of the system. In 1 dimension, the Brillouin
zone is from −π/L to π/L, where L is the real space length.

T = 0.5 * (k + kp) ** 2

T = np.fft.fftshift(T)

V_hartree = V_h(rho)

V_x = v_x(rho)

V_c = v_c(rho)

mv = lambda phi: np.fft.ifft(T * np.fft.fft(phi)) +

pot_x * phi + V_hartree * phi +

(V_c + V_x) * phi

H = LinearOperator ((xnum , xnum), matvec=mv )
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w,v = eigs(H, k=n_elec , which=’SR’)

toten = 0.

for i in range(n_elec ):

orb = (i / 2)

toten += w[orb]

toten += -0.5 * np.sum(rho * V_hartree) * dx +

np.sum(rho * ((e_x(rho) + e_c(rho)) - (V_x + V_c ))) * dx

return np.real(toten), w, v

To obtain the total energy, we then define a kp-space grid, and solve for a self-

consistent solution at different k-points. We continue until the absolute difference

in the total energy of subsequent iterations is smaller than some threshold. This

threshold is chosen to be small enough such that the change in the electron density

is small, but large enough such that we are reach convergence in a timely fash-

ion. In practice, one would examine the potential energy surface and compare the

depths of local minima. This would allow one to calculate an optimal convergence

value to allow for a realistic convergence. The pseudocode below provides the

self-consistent loop for calculating the total energy:

kpoints = np.linspace((-np.pi / a), (np.pi / a), 10)
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rhos = np.zeros((len(kpoints), xnum))

for i in range(len(kpoints )):

for j in range(n_elec ):

rhos[i] += np.absolute(psi )**2

converged = False

emin_start = 1e6

max_iters = 25

iters = 0

etot = 0.

while not converged:

dkp = kpoints [1] - kpoints [0]

etot_next = 0.

for i, kp in enumerate(kpoints ):

toten , eigvals , eigvecs = kPointCalc(kp , rhos[i])

rhos[i] = np.zeros(xnum)

for j in range(n_elec ):

orb = (j / 2)

rhos[i] += np.absolute(eigvecs[:,orb ])**2

etot_next += toten

diff = abs(etot_next - etot)

if diff < 0.001 or iters > max_iters:

converged = True
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iters += 1

etot = copy.copy(etot_next)

print etot / len(kpoints), iters

In this particular case, we have chosen to use a 10 k-point grid. In Figure 2.2

we perform a convergence test as well as plot some of the lowest orbitals for

the 1D Li atom. It should be noted that in some cases, the self-consistent cycle

will not always converge. There are a few approaches to achieve convergence.

Firstly, instead of choosing a random vector as our guess for the orbitals, one

can choose a better function as our initial guess. In practice, one would choose

atom centered functions that are have similar character to the eigenfunctions of

the isolated atoms. Also, once we have found a self-consistent solution, we can

use the orbitals and electron density for that solution as initial guesses for other

self-consistent calculations. This is done for MD calculations, and in practice, one

will use a linear combination of past electron densities. This technique is also used

in the self-consistent cycle. If we have 2 orbitals that are close in energy near the

fermi level, the occupancy of these orbitals might flip back and forth in the self-

consistant cycle. This may lead to vastly different charge densities at each step,

leading to lack of convergence. To avoid this, we again take a linear combination

of previous electron densities. The rate of convergence is system dependent for a

self-consistant cycle. For metals, the eigenvalue spectrum is more broad, which

leads to a slower convergence. For insulators and semi-conductors, the width of

the eigenvalue spectrum is constant and system size independent, which means

that the convergence rate is much faster [57]. If one examines the error versus
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iteration for a self-consistent cycle, one should see an exponential decrease in the

absolute difference between energies when the calculations are successful. In a

MD calculation, one may find the first MD step to be the most costly, and the

rate of convergence to be low. Once the first self-consistant solution is found, the

self-consistent solutions for the next MD steps are quite rapid. In a self-consistant

calculation with a bad initial guess, the absolute difference between energies from

step to step may not decrease exponentially initially as it searches for a solution.

Once it finds a better solution, the difference between the energies will decrease

exponentially.
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Figure 2.2: The ground state, HOMO, and LUMO orbitals for the Li atom. In set:
Convergence of the total energy as a function of number of k-points for a Li atom in 1D.
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2.5 Computing molecular dynamic trajectories

Molecular dynamics allows one to compute thermodynamic averages, which can

then be compared to experimental data. This comparison is extremely important,

because it verifies whether our approximations work, or if we need to include more

effects to obtain a more accurate answer. Classical molecular dynamics can be

paired with DFT, which is described in this section. Once we have minimized

the total energy functional, we then have obtained the Kohn-Sham orbitals and

their associated energies. Coming back to the nuclei, we now want to find the

forces acting on them, so we can integrate Newton’s equation of motion. Using

the Hellmann-Feynman theorem [58],

∂E

∂λ
=

〈
ψ(λ)

∣∣∣∣∂H∂λ
∣∣∣∣ψ(λ)

〉
(2.31)

we can compute the force acting on the Ith nuclei via

FI = −mI∇RI
E = −mI

∑
i

〈ψi |∇RI
H|ψi〉 , (2.32)

where mI is the atomic mass of the nuclei, and ψi are the occupied Kohn-Sham

orbitals. In our Hamiltonian H, there are only 2 operators that depend on the

nucleic coordinates RI . These two operators are the external potential of the

electronic Hamiltonian, and the coulomb potential for the nuclei. Therefore the
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force on nuclei I is

FI(RI) = −mI

∑
i

∫
drψ∗i (r)∇RI

[
− ZI
|r−RI |

+
∑
J 6=I

ZJZI
|RJ −RI |

]
ψi(r)

= −mI

[∫
drρ(r)

ZI(r−RI)

(r−RI)3
+ n

∑
J 6=I

ZIZJ(RJ −RI)

(RJ −RI)3

]
. (2.33)

After computing the forces, we then use the Verlet algorithm [59] to integrate the

equation of motion. The derivation of the Verlet algorithm is straight forward, we

consider the Taylor expansion of the position of an atom at an infinitesimal time

±δt centered about t. Doing this we get

r(t+ δt) = r(t) + ṙ(t)δt+ r̈(t)δt2 +
...
r (t)δt3 +O(δt4) (2.34)

r(t− δt) = r(t)− ṙ(t)δt+ r̈(t)δt2 − ...
r (t)δt3 +O(δt4), (2.35)

where ṙ ≡ dr/dt. Summing these together we arrive at

r(t+ δt) = 2r(t)− r(t− δt) + r̈(t)δt2 +O(δt4), (2.36)

where r̈ = F/m and we can see the errors of the expansion are of order δt4.

2.6 Simulating the canonical ensemble

In our MD simulations, we would like to describe the system as accurate as pos-

sible in comparison with experiments. In experiments, a typical ensemble is the
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canonical ensemble, or the NVT ensemble. This ensemble has a constant tem-

perature (T), volume (V), and number of particles (N). There are many different

approaches to simulate the NVT ensemble, and in our work we use what is called

a Nosé-Hoover thermostat. In the work done by Nosé [60] and Hoover [61], they

considered introducing a fictitious force proportional to the velocity in the equa-

tion of motion for a particle. Again, for the Ith nuclei, the equation of motion is

written as

mI r̈ = F(r)− ζmI ṙ (2.37)

ζ̇ =
1

Q

[
N∑
I=1

mI
ṙ2I
2
− 3N + 1

2
kBT

]
, (2.38)

whereQ and ζ are the friction parameters, kB is the Boltzmann constant, and T the

desired temperature. In steady state, ζ̇ → 0, and the kinetic energy of the nuclei

is equal to 3
2
(N+1)kBT , as it should due to the equipartition theorem. As t→∞,

the average temperature of the system approaches the desired temperature, which

gives the NVT ensemble.

2.7 Pseudopotentials

Pseudopotentials allow us to speed up calculations by only solving for the orbitals

of valence electrons. For an atom with many electrons, some are considered as

core electrons, and some are valence. The valence electrons are the most interest-

ing because they allow for chemical bonding, whereas the core electrons remain

tightly bound to the nuclei. Valence electrons do not see the true nucleic coulomb
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potential, but a screened coulomb potential. This potential is much weaker due

to the repulsion with the core electrons. If we write down the Hamiltonian for the

valence electrons, we can estimate that

H = T + V + VR (2.39)

where T is the normal kinetic energy operator, and VP ≡ V +VR is a weak screened

coulomb potential which can be referred to as the pseudopotential. If we solved

for a pseudo wave function of this Hamiltonian, the highly oscillatory part of the

original wave function disappears, allowing for use of a much lower resolution grid

(which reduces computational cost).

In the 1960’s, Ashcroft [62] came up with a simple form for a pseudopotential.

Namely,

VP(r) =


0 if r ≤ Rc,

−Z
r

if r > Rc.

(2.40)

Here, Rc is some cutoff radius which separates the core from the valence region

of the atom. This original form led to other variations done with empirical fits,

which were still unphysical, and suffered from discontinuities at Rc. Although

the idea of orthogonalized plane waves (OPG) [63] was developed much earlier to

construct valence wave functions from core wave functions while maintaining the

orthogonality condition, they were not used to construct pseudopotentials until

the 1970’s [64]. Using the formulation of OPG’s, we assume that the valence wave

function can be written as a sum of a smooth function and a sum over occupied
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states,

ψ = φ+
∑
c

acφc, (2.41)

where ac = −〈φc|φ〉 because 〈φc|ψ〉 = 0. The Schrödinger equation then becomes

Hψ = Eψ

Hφ−
∑
c

〈φc|φ〉Ecφc = Eφ− E
∑
c

〈φc|φ〉φc

Hφ+
∑
c

(E − Ec)〈φc|φ〉φc = Eφ

(H + Vc)φ = Eφ, (2.42)

which looks very similar to the original Hamiltonian, but with a repulsive term,

as expected. This formalism allowed one to calculate valence orbitals, but did not

satisfy the normality constraint of wave functions. Hamann et al. [65] developed

“norm-conserving pseudopotentials” which satisfied the following properties:

1. The all electron and pseudo eigenvalues agree.

2. The all electron and pseudo wave functions agree beyond the cut off distance

Rc.

3. The electron density agrees between the all electron and pseudo wave func-

tions for 0 ≤ R < Rc, i.e.

∫ R

0

|ψAE|2dr =

∫ R

0

|ψPS|2dr.
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4. The logarithmic derivative, and the energy derivative of the logarithmic

derivative agree for the all electron and pseudo wave functions, i.e.

(rψAE)2
d

dE

d

dr
lnψAE = (rψPS)2

d

dE

d

dr
lnψPS.

The norm conservation comes from item 3, and item 4 allows for the transferability

of the pseudopotential in different environments. The logarithmic derivatives must

be continuous, as all of the eigenfunctions that are solutions to the Schrödinger

equation are continuous and have continuous first derivatives. When generating

a pseudopotential, we assume spherical symmetry and therefore only have to deal

with the radial coordinate. The first step is to run an all electron calculation, and

then decide which eigenfunctions will be core and which ones will be valence. For

the valence electrons, we choose some analytic function unl (n and l are the princi-

pal and azimuthal quantum numbers) which can be fit to our all electron orbital.

This analytic function must also satisfy the properties mentioned previously. We

then invert the radial equation,

− 1

2

d2unl
dr2

+

[
V +

1

2

l(l + 1)

r2

]
unl = εunl (2.43)

for V , which yields

V (r) = ε−
[

1

2

l(l + 1)

r2
− 1

2unl

d2unl
dr2

]
. (2.44)

To replace the ionic potential, we must also subtract off the Hartee and exchange
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correlation potential, which gives the pseudopotential for a particular valence elec-

tron.

2.7.1 Projector augmented wave method

The projector augmented wave (PAW) method is a generalization of the pseudopo-

tential method, and is used in all of the calculations presented in this thesis. This

method uses a linear transformation which maps the pseudo wave functions to the

true all electron wave functions found through Kohn-Sham DFT. The pseudo wave

functions are computationally much cheaper to calculate, be we must rewrite ev-

erything with respect to these pseudo functions. The total energy expression must

be transformed as well, leading to a new Hamiltonian to diagonalize. When Blöchl

[66] first introduced this method, he proposed that we define some transformation

operator T̂ such that

ψn(r) = T̂ ψ̃n(r)⇐⇒ ψ̃n(r) = Ûψn(r), (2.45)

where ψn is an eigenfunction of the all electron problem, and ψ̃n are the pseudo

functions that we want to be well behaved and computationally sound. Here,

T̂ = Û−1. With this definition, we can then express the total energy, a Schrödinger
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like equation, and expectation values with respect to the pseudo functions;

E = E[{ψn}] = [{T̂ ψ̃n}], (2.46)

HT̂ ψ̃n = εnT̂ ψ̃n, (2.47)

A = 〈ψ̃n|T̂ †ÂT̂ |ψ̃n〉, (2.48)

where T̂ † is the adjoint of T̂ . To define the transformation operator, we follow a

similar procedure as the norm-conserving pseudopotentials. We first solve the all

electron problem to obtain a set of valence orbitals {ψn}, choose a cut-off radius

Rc, and set the pseudo orbitals {ψ̃n} such that for r > Rc the pseudo and true

functions are equal, and the pseudo functions also satisfy orthogonality to the core

states. We then use the same process as before to invert the radial equation to

obtain the pseudopotential for each valence orbital. These all electron orbitals,

pseudo orbitals, and pseudopotentials will show up in the transformation operator,

and therefore our new Hamiltonian. Writing the transformation operator as

T̂ = 1 +
∑
i

Ŝi, (2.49)

where the sum goes over all occupied valence orbitals. The transformation then

becomes

|ψn〉 = |ψ̃n〉+ Ŝn|ψ̃n〉 ⇐⇒ Ŝn|ψ̃n〉 = |ψn〉 − |ψ̃n〉, (2.50)

which can also be written as

Ŝ|ψ̃n〉 =
∑
i

(|ψi〉 − |ψ̃i〉)〈p̃i|ψ̃n〉, (2.51)
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which means that the transformation operator is

T̂ = 1 +
∑
i

(|ψi〉 − |ψ̃i〉)〈p̃i|. (2.52)

Here, p̃i are localized projector functions which obey the bi-orthogonality condi-

tion 〈p̃i|ψ̃n〉 = δi,n. In practice, the projector functions will have either s, p, or

d like character to resemble true atomic environments. We then use this trans-

formation and apply it to the Hamiltonian of the Kohn-Sham scheme to obtain

a new pseudo Hamiltonian which is then used to self-consistently solve for the

density. In this Hamiltonian, we only solve for valence orbitals and the external

potential disappears. With that being said, the transformation causes many other

terms to appear in the new Hamiltonian which depend on the radial functions and

pseudopotentials found through inversion.
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Probing atomic systems

In this chapter, we discuss methods to create, and study interfaces. In this case, the

interfaces consist of a crystal lattice (metal) and a liquid (water). In the regime of

interest, we need to use quantum mechanics, hence the previous chapter on DFT.

DFT is the workhorse that will provide us the forces necessary for computing MD

trajectories, which we then analyze.

Within this Chapter, we include Python code to illustrate how the distributions

are constructed. Although the Python code is useful for understanding, it can be

slow when creating some distributions. It is therefore necessary to use a language

where you first compile, and then execute. For all of the distributions we cover,

we wrote the equivalent Python code in C++ for computational speed up.
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3.1 Simulation details

For most of the distributions we show in this Chapter, we performed the analysis of

MD for 100 water molecules in a periodic simulation cell with dimensions 14.41×

14.41 × 14.41 Å. Within the DFT calculations, we used a 1 × 1 × 1 k-point grid

centred about the Γ point, a thermostat of either 330 or 400 K, and the PBE

or vdW-optB86b exchange correlation functional. To generate the initial atomic

coordinates of the water molecules, we used Packmol [67]. To generate the atomic

coordinates of the metal atoms, we used self written scripts. When constructing

interfaces, one must be concerned with the exclusion volume of the interface. This

volume separates the water molecules from the metal surface and it originates

from the electronic structure of the crystal. To obtain an exclusion volume, one

must use trial and error until the density of the bulk water (water further away

from the surface) is 1 g/cc.

To generate all of the MD in this Chapter (and this thesis), we use the Vienna ab

initio Simulation Package (VASP) [68]. VASP is a complex simulation package,

and we therefore suggest that the reader refer to online documentation provided by

VASP or other research groups. To give a brief description, VASP is a command

line DFT program written in Fortran meant to be executed on Unix based systems.

It has been throughly optimized to run on supercomputers which have thousands

of computer cores and is regarded as one of the most accurate and efficient codes

in the electronic structure community.
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3.2 Structural properties of interfaces

To study the structural properties of interfaces, one must study the geometry

of the liquid next to the metal surface. One can first study the liquid on its

own through structural distributions, and then begin to understand the effects

of the metal by looking at the differences in the distributions. Some of these

geometrical distributions we discuss in detail in this chapter. We include both

applied (Python) and theoretical approaches when possible. In all cases, we assume

we have generated molecular dynamics, and are reading in a file which holds the

atomistic information.

3.2.1 Radial distribution function

The radial distribution function (RDF) or pair correlation function (PCF) is com-

monly used to understand the structure of atomistic system, and is extremely

useful in understanding the structure of a liquid. Physically, it is quite intuitive.

Imagine a box of water molecules, where the origin is centred about one of the

oxygen atoms. To calculate the O-O radial distribution function (g(r)), we start

moving away radially from the origin by dr, such that the volume slice is

V =
4

3
π[(r + dr)3 − r3]. (3.1)

We then count all of the other oxygen atoms that fall within this volume slice.

After moving through the full space, we then move our origin to another oxygen

atom, and repeat the process once we have covered all oxygen atoms. In Python
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code, a radial distribution function looks like the following.

2 3 4 5 6 7
r [Å]
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g(
r)

Pure
Experiment

Figure 3.1: RDF for a simulation of liquid water (labelled as “Pure”) using the PBE
exchange correlation functional with a thermostat of 330 K. An RDF from a neutron
scattering experiment [1] reported at 298 K is also shown (labelled as “Experiment”).

import numpy as np

# assuming we know the cell dimensions

V_cell = ax * ay * az

n_particles = 100

# uniform density for normalization

avg_dens = (n_particles - 1) / V_cell

# parameters for the distribution

max_r = 5.0

incr = 0.1

rdf = np.zeros(int(max_r / incr))

# generate the distribution

for frame in frames:

# get the type and coordinates of atom 1

for i, (x1 , y1 , z1) in enumerate(frame):

# get the type and coordinates of atom 2
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for j, (x2 , y2 , z2) in enumerate(frame):

if i != j:

dx = x1 - x2

dy = y1 - y2

dz = z1 - z2

r = (dx * dx + dy * dy + dz * dz) ** 0.5

if r < max_r:

rdf[int(r / incr)] += 1

# normalize the distribution

for i, val in enumerate(rdf):

r_0 = i * incr

r_1 = (i+1) * incr

V_slice = 4.0 * np.pi * (r_0 **3 - r_1 **3) / 3.0

rdf[i] *= avg_dens / V_slice

In Figure 3.1, we show the O-O radial distribution function for liquid water. To

generate the RDF, we ran 5 ps of MD using the PBE exchange correlation func-

tional at a temperature of 330 K.

3.2.2 Density profile

Similar to the RDF, the density profile of a liquid is a very common measure. It

is fundamental to understanding the structure of liquids next to surfaces, and is

almost always used to study the structure of water next to metals. The density

profile is normally averaged over a spacial coordinate, but a contour, or 3 dimen-

sional distribution can be calculated as well. In the case of interfaces, the crystal is

usually placed next to the liquid along the z-axis, and therefore the density profile

with respect to the z-axis is commonly reported. The following Python code gives

the density profile for liquid water as a function of the z-axis:

import numpy as np

# assuming we know the cell dimensions
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ax = ...

ay = ...

az = ...

n_bins = 100

incr = az / n_bins

# conversion rate to g/cc

conversion = 18.0e -6/(6.023 e23 *1.0e-30)

# initialize the distribution

dp = np.zeros(n_bins)

# build the distribution

# loop over each frame

for frame in frames:

# loop over every atom

for i, (x, y, z) in enumerate(frame):

dp[int(z / incr)] += 1

# normalize the distribution

for i, val in enumerate(dp):

dp[i] *= conversion / ( ax * ay * len(frames ))
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Figure 3.2: Density profile as a function of the z-axis for liquid water using the
vdW-optB86b exchange correlation functional at a temperature of 400 K. Note that the
distribution is not flat. If we simulate for a longer time, the distribution will be more
smooth.
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In Figure 3.2, we show the density profile for bulk liquid water. To generate the

density profile, we ran 10 ps of MD using the vdW-optB86b exchange correlation

functional at a temperature of 400 K.

3.2.3 Orientation distributions

When studying liquids that are formed by molecules, it is particularly useful to un-

derstand the orientation of the molecules next to a surface. Similar to the density

profile, orientation distributions are most useful in either one or two dimensions.

In one dimension, one would be concerned with the distribution of angle between

some measure of the molecule (i.e. geometric dipole moment) and some axis (i.e.

z-axis). To extend this to two dimensions, one would simply add in a dimension

like spatial dependence of the angle (like the z-axis for an interface stacked along

the z-axis). Below, we show how to obtain a probability distribution of finding a

water molecule with a certain angle from the z-axis, based on its geometric dipole.

To visualize this angle, see Figure 3.3. To form this distribution, we assume that

for each oxygen atom, a pair of intramolecular hydrogens has been grouped using

naive radial cut-off distances.

import numpy as np

# assuming we know the cell dimensions

ax = ...

ay = ...

az = ...

# initialize the distribution

orientations = np.zeros (180)

# build the distribution
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# loop over every frame

for frame in frames:

# loop over every molecule

for id , molecule in enumerate(frame):

# element wise vector subtraction

dr1 = molecule.H1_coords - molecule.O_coords

dr2 = molecule.H2_coords - molecule.O_coords

dipole = dr1 + dr2

z_proj = dipole [2] / np.sqrt(dipole [0]* dipole [0]

+ dipole [1]* dipole [1]

+ dipole [3]* dipole [3])

angle = int(np.arccos(z_proj ))

orientations[angle] += 1

# normalize the distribution

for i, val in enumerate(orientations ):

orientations[i] /= np.sum(orientations)
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Figure 3.3: Probability distribution giving the probability of finding a water molecule
with it’s geometric dipole at a certain angle from the z-axis.

In Figure 3.3, we show the orientation distribution for a single water molecule

that has been randomly oriented a million times. This was done by generating an

angle, and then applying three dimensional rotation matrices on the coordinates

of the atoms within the water molecule. The shape of the probability distribution
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arises due the number of symmetric permutations that can be applied to the water

molecule while maintaining the same angle from the z-axis. When θ = π/2, we

have the maximum number of permutations, and when θ = 0 or θ = π, we have

a minimum in the number of permutations. For a certain angle θ, the number of

permutations is equal to the circumference of the circle where the radius is the

projection of the geometric dipole onto the xy-plane. Namely, the circumference

is

C(θ) = 2π|g| sin θ, (3.2)

where g is the geometric dipole of the water molecule. To calculate the probability

of finding a certain orientation, we have to first calculate every permutation we

can find (analogous to the partition function). This can be found via

Z = 2π|g|
∫ π

0

sin2 θdθ = π2|g|. (3.3)

The probability is then

P (θ) = C(θ)/Z =
2

π
sin θ. (3.4)

We show this along with the calculated result in Figure 3.3.

3.2.4 Mean squared displacement

Apart from looking at geometrical features of liquids, it is also crucial to investigate

the dynamics of the molecules. A key observable that describes the dynamics of a

liquid is the mean squared displacement (MSD). Experimentally, the self-diffusion
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coefficient can be measured, and from Einstein’s work on Brownian motion [69],

he found that the MSD is related to the self-diffusion coefficient D via

〈r2〉 = 6Dt. (3.5)

Here, 〈r2〉 is the ensemble average of the mean squared displacement. It tells us to

calculate the average across all particles. To compute the MSD, two things should

be noted. Firstly, if you have coordinates that are wrapped in their cell (due to

the use of periodic boundary conditions), you must unwrap them. Secondly, you

must calculate the centre of mass for the system to avoid errors if there is a group

velocity. The following Python code gives the MSD for a liquid of one atom type:

import numpy as np

# assuming we have a few parameters

time_step = ...

msd_length = ...

n_restarts = ...

n_atoms = ...

block_size = int(msd_length / time_step)

# initialize the distribution

msd = np.zeros(block_size)

# loop over different starting configurations

for i in range(n_restarts ):

start_index = i * block_size

end_index = (i+1) * block_size

# loop over the frames in this block

for step , frame in enumerate(frames[start_index:end_index ]):

# loop over every molecule

com_diff = center_of_mass(frames[start_index ])

- center_of_mass(frame)

for id , molecule in enumerate(frame):

dx = molecule [0] - frames[step][id][0] - com_diff [0]

dy = molecule [1] - frames[step][id][1] - com_diff [1]

dz = molecule [2] - frames[step][id][2] - com_diff [2]

msd[step - start_index] += dx * dx + dy * dy + dz * dz
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# normalize the distribution

for i, val in enumerate(total_msd ):

msd[i] /= (n_restarts * block_size * n_atoms)
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Figure 3.4: Mean squared displacement for water using the vdW-optB86b exchange
correlation functional at a temperature of 400 K. The dotted line is a fit (y = mx + b)
to the asymptotic behaviour of the liquid water, where m = 1.19721 and b = 0.6452.
The fit was calculated using gnuplot’s fit function. The experimental fit (based on the
diffusion coefficient) is also shown.

In Figure 3.4, we show the MSD for bulk liquid water, and overlay the slope of

the line, giving the diffusion coefficient. Based on the fit, we calculate a diffusion

coefficient of 2.0× 10−9m2s−1. This is less than experimental diffusion coefficient

of water found via neutron scattering [70], which gave a value of 2.30×10−9m2s−1.
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3.2.5 Hydrogen bonding network

Liquid water is a complex liquid, where not only do intramolecular hydrogen bonds

form, but intermolecular ones as well. In some of the literature [5, 10], it is com-

mon to report the average coordination number of a water molecule as a function

of some parameter (i.e. some spatial coordinate). At the interface, the hydrogen

bonding network is disrupted from its bulk state, and causes a decrease in the

number of hydrogen bonds in the interfacial layer of water. It is therefore useful

to report the average number of hydrogen bonds as a function of distance from

the surface. Below, we show Python code to calculate such a distribution.

import numpy as np

# assuming we know the cell dimensions

ax = ...

ay = ...

az = ...

n_bins = 100

incr = az / n_bins

# initialize the distribution

hb_distro = np.zeros(n_bins)

hb_counts = np.zeros(n_bins)

# build the distribution

# loop over each frame

for frame in frames:

# loop over every atom

for atom in frame:

if atom.type == ‘O’:

hb_distro[int(z / incr)] += atom.nearest_neighbour_count

hb_counts[int(z / incr)] += 1

# average the distribution

for i, val in enumerate(hb_distro ):

hb_distro[i] = float(hb_distro[i] / hb_counts[i])
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Figure 3.5: Average number of hydrogen bonds as a function of the z-axis for bulk
water (left), and a liquid water-platinum interface. Both simulations were done with a
thermostat of 400 K and used the vdW-optB86b exchange correlation functional.

In Figure 3.5, we show the average number of hydrogen bonds for an interface,

and for bulk water. As we can see, the average number of hydrogen bonds has

decreased once we introduce the metal slab. As we move away from the metal,

the number of hydrogen bonds increases rapidly. Even close to the metal, the

hydrogen bonding network has a similar topology to bulk water.

0.2 0.4 0.6 0.8
time [ps]

0.6

0.7

0.8

0.9

Pr
ob

ab
ili

ty

Figure 3.6: Probability of finding a new nearest neighbour water molecule for bulk
water at a temperature of 400 K using the vdW-optB86b exchange correlation functional.
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In addition to the average topology of the hydrogen bonding network, we can also

study the dynamics of the intermolecular hydrogen bonds. To do so, we follow the

work of [71], and define a probability distribution Γ(t), which gives the probability

of finding the same nearest neighbours after a certain time interval. When water

molecules diffuse, they break intermolecular bonds and form new ones. It is of

interest to examine the role a metal has on Γ(t). Below, we give Python code for

calculating Γ(t), again, assuming nearest neighbours have been previously calcu-

lated.

import numpy as np

# assuming we have a few parameters

time_step = ...

msd_length = ...

n_restarts = ...

n_atoms = ...

block_size = int(nrt_length / time_step)

# initialize the distribution

nrt = np.zeros(block_size)

normalizer = 0

# loop over different starting configurations

for i in range(n_restarts ):

start_index = i * block_size

end_index = (i+1) * block_size

# get the total number of old neighbours

for molecule in frames[start_index ]:

normalizer += molecule.neighbours

# loop over the frames in this block

for step , frame in enumerate(frames[start_index:end_index ]):

# loop over every molecule

for id , molecule in enumerate(frame):

old_neighbours = frames[step - 1][id]. neighbours

new_neighbours = molecule.neighbours

# get the count of same neighbours

nrt[step - start_index] +=

len(new_neighbors.intersection(old_neighbours ))

# normalize the distribution
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for i, val in enumerate(total_msd ):

nrt[i] /= normalizer

In figure 3.6, we show Γ(t) for pure water. We can see that almost half of the

water molecules will have a new nearest neighbour after only 1 ps. In chapter 4,

we examine Γ(t) in closer detail for liquid water-metal interfaces.

3.3 Electronic properties of interfaces

3.3.1 Partial density of states

In addition to computing structural properties from MD, we also have access to

Kohn-Sham orbitals, which contain all of the electronic information. This allows us

to compute the density of states (DOS) or the projected density of states (PDOS).

The projected density of states is useful, because then we can see contribution of

s, p, and d orbitals. One has the ability to construct s, p, and d like orbitals,

which we label as |s〉, |p〉, and |d〉. To compute the PDOS for the s orbital, we

take the set of Kohn-Sham orbitals we have calculated for our system, and build

the distribution using

Ds(ε) =
n∑
i=1

|〈s|φi〉|2δ(ε− εi). (3.6)

Now, |s〉 is not necessarily orthogonal to our computed orbitals, and in practice,

one must compute all of the inner products 〈s|φi〉. If the orbital |s〉 =
∑m

j=1 |sj〉,
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then we must compute the overlap matrix elements, often referred to as Sji =

〈sj|φi〉.

3.3.2 Adsorption energies

In atomistic surface science, one is often interested in calculating the adsorption en-

ergy of molecules on surfaces. If the energy is negative, it means that the molecule

is energetically stable on the surface, which would lead to either physisorption or

chemisorption. To calculate the adsorption energy, consider a metal slab with a

single water molecule structurally relaxed on the surface. The energy associated

with this configuration is Etot. We then compare this energy with the energy of

a system where the slab is infinitely far away from the water molecule, where the

total energy of system is now just the slab Eslab, and the energy of just the water

molecule EH2O. The adsorption energy is the difference between these two regimes,

Eads = Etot − (Eslab + EH2O). (3.7)
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Characterizations of liquid

water-metal interfaces

This chapter is split into four sections. In Section 4.1, we discuss our method

for generating molecular dynamics trajectories. In Section 4.2, we assess the im-

portance of exchange-correlation functional choice, comparing functionals with

(optB86b-vdW [54]) and without (PBE) vdW interactions. In Section 4.3 we

compare catalytically active (platinum) and inert (graphite) surfaces (including

graphene). Lastly, in Section 4.4, we discuss the effects of adding defects and

dopants into graphitic surfaces.
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4.1 Methods

Here, we provide the preparation steps followed to generate all of the water-solid

interfaces used in our analysis. For the liquid water-graphite and liquid water-

graphene interfaces, we used supercell dimensions 12.41 × 12.81 × 37.36 Å and

12.41 × 12.81 × 23.96 Å respectively. For the liquid water-graphite interface, we

used 300 C atoms to form 5 layers. In the liquid water-graphene interface, we used

60 C atoms. In addition to the pristine surfaces, we have also constructed interfaces

with defects or dopant materials. To model defects, we considered two classes.

In the first class, we removed 2 carbon atoms from the surface layer(s) of both

graphene and graphite. In the second class, we modified the crystalline structure

at the surface(s) of graphene and graphite to create Stone-Wales (5-7) defects. To

model doping, we replaced a surface carbon atom with either a nitrogen or boron

atom in the surface layer(s). For all liquid water-graphitic interfaces, we used 100

D2O molecules, a 1× 1× 1 k-point grid centered about the Γ point, and a plane

wave energy cutoff of 500 eV. The use of heavy water allowed for the increase of the

time step by 40% (8 a.u. to 11.3 a.u.). We used the exchange-correlation functional

optB86b-vdW and a Nosé-Hoover thermostat (T = 300, 330, and 400 K). For the

liquid water-platinum interface, we constructed two distinct platinum(111)-D2O

interfaces, both with supercell dimensions of 11.24× 9.74× 45.69 Å, 112 platinum

atoms, and 100 D2O molecules. All of these interfaces are visualized in Figure 4.1

For one of the interfaces, we used the PBE exchange correlation functional, and

for the other interface, we used the optB86b-vdW exchange correlation functional.

We found that both the PBE and optB86b-vdW exchange correlation functionals
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give the same lattice constant for bulk platinum. When using the optB86b-vdW

functional, we ran molecular dynamics at T = 300, 330, 400, 500, 600, 650, 700,

750, 800, and 1000 K. When using the PBE exchange correlation functional, we

ran molecular dynamics at T = 330, 400, and 1000 K. For both interfaces, we used

a plane wave energy cutoff of 500 eV as well as a 2× 2× 1 k-point grid centered

about the Γ point. When constructing the liquid water-platinum interfaces, we

chose to use 7 layers of platinum with the 3 middle layers constrained along the z

axis. Since we used periodic boundary conditions, the liquid water interacts with

two metal faces (assuming no vacuum layer). The two faces should be identical

such that the supercell is symmetric. It should also be noted that when placing the

water next to the metal surface, an exclusion volume must be included. This is a

volume of empty space that occurs naturally and is dependent on the metal. When

Cicero et al. [5] constructed their liquid water-graphene interface, the thickness

(in the z direction) of the exclusion volume was ∼ 2 Å. For the liquid water-

platinum interfaces, we chose the thickness of the exclusion volume to be ∼ 2.35

Å. For the liquid water-graphite and liquid water-graphene interfaces, we chose

the thickness of the exclusion volume to be ∼2.5 Å. After the supercells were

constructed, we then structurally relaxed the systems to eliminate the random

configurations of the water molecules. Afterwards, we ran molecular dynamics

and monitored the pressure, temperature, and total energy of the systems. Even

after the structural relaxations, a few ps of data showed significant fluctuation as

the systems approached their equilibrium states. This data was not considered in

our analysis. Once the systems reached their equilibrium states, we collected 10 ps

of data for analysis. We found that the structure of the density profile converges
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at ≈ 10 ps, which can be seen in Figure 4.3. To about 5 Å away from the surface,

the water has a similar structure. Beyond 5 Å, the water fluctuates about 1.1

g/cc. The same amount of fluctuations can be seen when comparing different MD

trajectories of pure water. The convergence of the density profile is much slower

than other distributions (i.e. a radial distribution function). In Figure 4.3, we also

show the O-H radial distribution function which is well converged through 5 ps.

For some of our structural analysis, we have also included error bars which give

the standard error of the mean. Subsequent snapshots of molecular dynamics are

highly correlated. To remove the correlation, we performed our analysis such that

statistical distributions were recursively split and averaged over (block averaging).

All of the molecular dynamics reported were done using the canonical (NVT)

ensemble, heavy water (D2O), and Nosé-Hoover thermostats. Some of the NVT

calculations were also replicated in the microcanonical (NVE) ensemble to verify

that the thermostat did not bias the results. We used VASP [68] for all simulations.

In total, over 250 ps of BOMD was generated for this report.

Additional total energy calculations were also run for the water-graphite and

water-platinum interfaces where only one water molecule was considered on the

surface. The supercells had the same cell dimensions as mentioned above. For

these calculations, structural minimizations were done using a 4 × 4 × 2 k-point

grid centered about the Γ point and an atomic force convergence of 10−4 eV/Å.

The exchange-correlation functional used was optB86b-vdW.

In our analysis, we chose a minimum temperature of 400 K for the MD due to

earlier studies done on pure liquid water [72, 73]. Schwegler et al. [72] found when
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Figure 4.1: Visualizations of the liquid water-platinum interface (A), liquid water-
graphite interface (B), and liquid water-graphene interface (C) used in the DFT calcula-
tions. Here, the transparent surfaces around the atoms are the computed self-consistent
charge densities for the geometries seen.

using the PBE exchange correlation functional at 300 K, the water is overstruc-

tured after examining radial distribution functions, and the diffusion coefficient

is lower than the reported value using experimental techniques. They found that

increasing the temperature approximated the inclusion of proton quantum effects

in their calculations. In a study done by Morales et al. [74], they found that ex-

cluding the nuclear quantum effects of ions leads to artificially low displacements

at low temperatures. In Figure 4.3, we show the mean squared displacement for

liquid water in a cubic cell at 400 K. Here, the diffusion coefficient was calculated

to be 2.0 × 10−9 m2s−1, which is slightly lower than the experimental value of

2.3× 10−9 m2s−1 found from neutron scattering [70].
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Figure 4.2: Molecular (top 3 figures labelled A, B, and C) and atomic (bottom 3
figures labelled as D, E, and F) density profiles for the liquid water-platinum interfaces
at 330 K, 400 K, and 1000 K. The top two curves in the molecular density profiles are
from two independent MD trajectories, one with vdW interactions (labelled as vdW) and
one without (labelled as PBE). The bottom 4 curves are from the same MD trajectories,
but have been split up by either O or H atoms to give atomic density profiles.
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Figure 4.3: Left: Mean squared displacement of 100 water molecules in a cubic super-
cell (14.413 Å3) with a thermostat of 400 K using the vdW-optB86b exchange correlation
functional. The fit of the asymptotic behaviour gives a diffusion coefficient of 2.0×10−9

m2s−1, which is slightly lower than the experimental value of 2.3× 10−9 m2s−1. Middle:
Molecular density profiles of a 10 ps long simulation (with a thermostat of 400 K) of a
liquid water-platinum interface using the vdW-optB86b exchange correlation functional.
10 ps of MD was generated, and then divided in half to give two trajectories, each 5
ps long labelled as ‘First 5 ps’ or ‘Last 5 ps’. The error bars are the standard error
found from analyzing the molecular density profile at each time step. Right: O-H radial
distribution functions for liquid water-platinum interfaces at 330 K using the PBE func-
tional. 3 independent MD trajectories, each 5 ps long, were generated and are labelled
as simulation A, B, and C. Here, it is clear that the O-H radial distribution functions
have converged when comparing the different simulations.
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4.2 Assessing the importance of van der Waals

interactions

Recently, it has been shown that vdW forces have a significant contribution in the

interaction between water molecules and metals. Carrasco et al. [6] calculated

the adsorption energy of a water molecule on a platinum surface and found that

it is almost halved when excluding such interactions (-403 meV with vdW inter-

actions (optB88-vdW) and -217 meV without (PBE)). Reports with only one or

two layers of water molecules next to a metal surface (ice-metal interfaces) are

common in the literature [75–77] due to their smaller system sizes and lower com-

putational cost. A computational study of the magnitude we present is missing.

We begin our study by examining the structure of the water molecules next to

the platinum surface. In Figure 4.2, we plot the molecular and atomic density

profiles as a function of distance from the nearest platinum surface. Immediately

adjacent to the surface, we find high density water. This is a common feature of

water-electrode interfaces, and has been found using X-ray scattering [20] and ab

initio methods [5, 18, 23]. The first notable result is the difference between the

profiles when comparing the PBE functional with the optB86b-vdW functional.

For the optB86b-vdW functional, the largest peaks have heights 15-29% greater

than the largest peaks for the PBE functional (depending on temperature). This

suggests that there is an increased attraction between the platinum atoms and

water molecules when vdW interactions are introduced. This is consistent with

the work done by Carraso et al. [6]. The second notable result is the appearance
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of an initial wetting peak before the largest peak in the density. This peak has

not been seen in density profiles of other water-solid interfaces [5, 18, 23], and is

absent in the liquid water-graphite and liquid water-graphene interfaces covered

in this report. This initial peak is from water molecules chemisorbing to the sur-

face. Past experimental work done using electron energy loss spectroscopy [76],

and ultraviolet/X-ray photoemission [78] also found chemisorption at low temper-

atures. When increasing the temperature of the system, the peak remains at 400

K, but vanishes at 1000 K. This suggests that the energy of the platinum-H2O

bond is somewhere in the range of kBT where 400 K < T < 1000 K. We ran

subsequent molecular dynamic simulations with a thermostat of 500, 600, 650,

700, 750, and 800 K; we find that the initial wetting peak starts to decrease in size

around 600 K, and is almost completely gone at 800 K. This is consistent with pre-

vious thermal desorption spectroscopy experiments done for oxygen-platinum [79]

and hydrogen-platinum [80] interfaces. Here, it was found that hydrogen desorbs

around 420 K, but oxygen desorbs at 850 K. At higher temperature (i.e. beyond

the boiling point), the system is clearly in a non-equilibrium state, but still gives

insight into the nature of the chemisorption layer.

In Figure 4.4, we look at the normalized probability of finding a surface water

molecule with a certain orientation. To normalize, we first considered the orien-

tation probability distribution of a randomly oriented water molecule. We then

calculated the orientation probability distribution for a particular system and di-

vided by the randomly oriented probability distribution. This is analogous to the

normalization procedure in the calculation of a radial distribution function. In
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Figure 4.4: Normalized probability distributions of a water molecule having a certain
orientation. In Figure 4.1, we divided the supercell into regions (I, II, and III) separating
bulk from surface water molecules. Here, we only show region I; region II and III
show little structure and a more random orientation. Here, θ is the angle between
the geometric dipole to the z-normal. In the left figure (labelled as A), we compare 2
independent water-platinum interfaces; one with vdW interactions (labelled as vdW) and
one without (labelled as PBE). In the right figure (labelled as B), we compare a water-
platinum (labelled as platinum) and water-graphite interface (labelled as Graphite),
both with vdW interactions.

Figure 4.1, we outline regions within the supercell to differentiate surface water

molecules from bulk ones. For both the PBE and optB86b-vdW simulations, there

is a similar trend for surface water molecules. The water molecules orient them-

selves so that either an oxygen (O-platinum bond) or hydrogen (H-platinum bond)

faces the surface. In another study done by Carrasco et al. [81], they found that the

preferred orientation for a water molecule sitting on 4d metal surfaces (Ru(0001),

Rh(111), Pd(111), Ag(111)) is with the geometric dipole almost flat to the surface

and the oxygen over the atop site. When bulk water is introduced, surface water

molecules bond with other water molecules within the surface layer, or other water

molecules further away from the surface (in the bulk). Due to the interaction with

the metal surface as well as bulk water, the surface water molecules constantly re-

orientate themselves to bind with the surface as well as adjacent water molecules.
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The environment in the interfacial layer is highly competitive. Noting the differ-

ences between the PBE and the optB86b-vdW simulations, for PBE, there is a

much sharper peak where the oxygen atom is facing towards the surface. In Table

4.1, we highlight the probability of finding water molecules (within a distance of

2.5 Å and 5.0 Å from the surface) with an O-down (both hydrogens further away

from the surface), O-up (both hydrogens closer to the surface), or mixed orienta-

tion. Interestingly, there is very little difference when comparing the functional

choice. Closer to the surface (< 2.5 Å away), no water molecule has an O-up ori-

entation. The water molecules will either have an O-down, or mixed orientation

with equal probability. These results are similar to the results found by Velasco et

al. [18] for a liquid water-Au interface. They found that 49% of the time surface

water molecules orientate themselves to have an orientation where the geometric

dipole of the water molecule is parallel with the surface. In this orientation, the

lone-pairs of the oxygen interact with the surface orbitals, and the hydrogens form

intermolecular bonds with adjacent molecules. This could be thought of in our

framework as the O-down orientation. Velasco et al. also found that 49% of the

time, water molecules would orientate themselves to have one hydrogen facing the

surface, and the other participating in the hydrogen bonding network. This is

analogous to our mixed orientation. Along with the theoretical study done by

Velasco et al., X-ray absorption spectroscopy revealed that unsaturated hydrogen

bonds occur at the surface. The changes in the spectrum are simply due to the

reorganization of water molecules at the surface once the electrode is introduced.

Looking further away from the surface (< 5.0 Å away), the O-down and mixed

probabilities decrease equally, and O-up molecules are seen with a low frequency.
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Description O-down probability ± σ O-up probability ± σ Mixed probability ± σ

platinum (PBE - 2.5 Å) 0.50 ± 1.6 ×10−5 0.0 0.50 ± 1.6 ×10−5

platinum (PBE - 5.0 Å) 0.45 ± 2.2 ×10−3 0.10 ± 4.3 ×10−3 0.45 ± 2.2 ×10−3

platinum (vdW - 2.5 Å) 0.50 ± 7.2 ×10−5 0.0 0.50 ± 7.6 ×10−5

platinum (vdW - 5.0 Å) 0.45 ± 2.2 ×10−3 0.10 ± 4.5 ×10−3 0.45 ± 2.2 ×10−3

Graphite (2.5 Å) 0.50 ± 6.0 ×10−3 0.0 0.50 ± 6.1 ×10−3

Graphite (5.0 Å) 0.44 ± 1.9 ×10−3 0.12 ± 3.8 ×10−3 0.44 ± 1.9×10−3

Graphene (2.5 Å) 0.50 ± 4.9 ×10−3 0.0 0.50 ± 4.9 ×10−3

Graphene (5.0 Å) 0.43 ± 1.8 ×10−3 0.13 ± 3.6 ×10−3 0.44 ± 1.8 ×10−3

Table 4.1: The probabilities for finding water molecules with O-down (both hydrogens
further away from the surface), O-up (both hydrogens closest to the surface), or other
in the surface layers of water next to the metal surfaces. Here, σ is the standard error
of the mean.

Next, we examine the dynamics of the water molecules. In Figure 4.5, we plot

the mean squared displacement and a probability distribution we call the network

reorganization probability function which we label as Π(t). Π(t) gives the likeli-

hood of finding the same neighbouring water molecules as a function of time. This

type of function has been used in previous literature to study pure hydrogen [71],

and gives similar distributions to water dipole rotational autocorrelation functions

reported by Cicero et al. [5]. For the mean squared displacements, there is a

clear difference between the optB86b-vdW and PBE simulations. The use of the

PBE functional causes the water molecules to be much more mobile, and therefore

increases the likelihood of breaking bonds as water molecules diffuse away. For

Π(t), the temperature difference for both the optB86b-vdW and PBE simulations

is identical. In Figure 4.5, we can see that the likelihood of finding the same

nearest neighbour decreases as you increase temperature. As the temperature is
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increased, more energy is introduced into the system which causes the kinetic en-

ergy of the water molecules to be greater than the energy associated with forming

an intermolecular hydrogen bond. This explains why the curves are shifted.
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Figure 4.5: Network reorganization probability functions (Π(t)) giving the likelihood
of finding the same neighbouring water molecules as a function of time (labelled A and
B), and the mean squared displacements (subfigures) for selected simulations (labelled
C and D). In the left plot, we compare the liquid water-platinum interfaces with vdW
interactions (labelled as vdW) and without (labelled as PBE) as well as temperature
effects (330 and 400 K). In the right plot we compare the liquid water-platinum (labelled
as platinum), liquid water-graphite (labelled as Graphite), and liquid water-graphene
(labelled as Graphene) interfaces, all with a thermostat of 330 K using the optB86b-
vdW exchange correlation functional.

4.3 Comparing common electrodes

In this section, we compare the liquid water-platinum interface with the liquid

water-graphite and liquid water-graphene interfaces (using the optB86b-vdW ex-

change correlation functional). Graphene has shown extraordinary structural and

electronic properties due to its massless Dirac fermions [82]. As mentioned pre-

viously, an exceptional larger scale water-graphene theoretical study was done by

Cicero et al. [5] using a PBE functional (without vdW interactions) to examine

the overall structure and hydrogen-bonding network in closer detail. In another
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report, Li et al. [8] studied how the adsorption of a single water molecule effects

the electronic structure of metal-supported graphene. Here, they used DFT with

vdW interactions (using optB86b-vdW) and found that the π and π∗ bands of

graphene are not strongly perturbed by water adsorption in the case of a strong

graphene-metal contact. Due to the stacked layers of graphite interacting solely

through vdW forces, it can only be described correctly using non-local exchange

correlation functionals. It is only the recent development of vdW exchange corre-

lation functionals that allows for an accurate description of graphite in the DFT

framework.

The first notable difference between the platinum and the graphite/graphene

density profiles (Figure 4.6) is the initial peak next to the platinum surface (≈

2 Å from the surface). This peak is absent for both the graphite and graphene

interfaces. Given the adsorption geometries and band structures of single water

molecules adsorbed to the surfaces of Ru(0001), Rh(111), and Pd(111) [81], we sus-

pect a chemisorption peak to be present for these surfaces. For platinum, water is

well known to chemisorb to the surface, and the subsequent structural minimiza-

tion calculation we performed for a single water molecule next to the platinum

surface confirmed that a covalent bond forms on the atop site. For graphite, water

does not chemisorb. When we structurally minimized the system with a single

water molecule on the graphite surface, the water molecule is approximately 1

Å further away from the surface than the single water molecule sitting on a plat-

inum slab, and the preferred adsorption site is the hollow site. This is consistent

with the work done by Ambrosetti et al. [83]. They found that the optimal bond
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length for a single water molecule on a graphite surface is greater than 3.2 Å, with

the water molecule sitting on the hollow site. When calculating the adsorption

energy of water on graphite, Ambrosetti et al. found very weak adsorption values

(63.5 ≤ |Eads| ≤ 143.8 meV depending on the exchange-correlation functional).

In the case of platinum, binding energies on the platinum surface (-403 meV [6])

are almost 3 times the binding energy on graphite when using a vdW exchange

correlation functional (-143.8 meV [83]). In the case of gold, the adsorption energy

of a single water monomer was also significantly less than platinum (-281 meV [6]).

When examining the PDOS of the p orbitals on the O atom, and the pz band of

the graphite surface atoms, it looks like a bond would be favourable given the

overlap of energies of the 1b1 (highest occupied p orbital) molecular orbital and

the pz band (Figure 4.6). The platinum d band and the 1b1 orbital of water also

overlap. The 1b1 orbital couples with the d band causing the peak to broaden

in the distribution. Although the energies of the pz orbitals and the 1b1 orbital

coincide for the graphite slab, there is no coupling between the states (no broad-

ening in the distribution for the 1b1 orbital). For the liquid water-graphite and

liquid water-graphene density profiles, the largest peaks occur at about 3 Å away

from the surface, consistent with the density profiles reported by Cicero et al. for

bulk water next to a graphene slab at 330 K [5]. The peaks are slightly shifted

in comparison to the density profile of the liquid water-platinum interface, con-

sistent with the adsorption geometries of the single water molecules next to the

surfaces. Comparing the density profile of the liquid water-graphite interface with

the liquid water-graphene interface, the second largest peak in the density profile
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of the water-graphite interface is slightly larger than the initial peak of the water-

graphene interface. This indicates that the extra layers in graphite increase the

attraction of water molecules to the surface. This is consistent with Ambrosetti

et al. [83], where they considered a single water molecule next to graphite and

graphene and found the water molecule sits closer to the graphite surface.
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Figure 4.6: Molecular density profiles for the liquid water-platinum (labelled at plat-
inum), liquid water-graphite (labelled at Graphite), and liquid water-graphene (labelled
as Graphene) interfaces. For all three interfaces, the simulations were run with a ther-
mostat of 400 K, and the optB86b-vdW exchange-correlation functional was used.

When comparing the orientation of the water molecules (Figure 4.4), the water

molecules next to the graphite surface show little preferred orientation (this was

identical for the graphene interface). The maximum of the distribution gives an

O-down orientation but the absence of peaks or valleys in the distribution suggests

no preferred orientation. When Cicero et al. [5] examined the orientation of bulk
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Figure 4.7: (Colour online) Visualizations of the HOMO orbital (top) for the graphite
(left) and platinum (right) surface as well as the PDOS (bottom) for the graphite pz
orbitals, platinum d orbitals, and O p orbitals. The opaque purple surface (1.1e-5) and
the transparent black surface (8.2e-5) are at different isovalues.

water next to graphene, they found that the preferred orientation was one hydro-

gen pointing down towards the surface, with the other hydrogen contributing to

the local hydrogen bonding network in the surface layer. This is consistent with

the geometry of the single water molecule sitting on the graphite surface, where we

found this orientation energetically preferable. Looking to Table 4.1, the proba-

bilities of finding O-down, O-up, and mixed orientations of water molecules in the

surface layer have the same trend when next to the platinum slab. The maximum

of the orientation distribution most likely arises due to the water molecules closest

to the surface, where 50% of the time the oxygen faces the surface with both H

atoms participating in the hydrogen bonding network.
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Next, we compare the dynamics of the water molecules. Looking to Figure 4.5,

the mean squared displacements are similar, but the diffusion of water molecules

is greatest for the graphite interface, and almost identical for the liquid water-

platinum and liquid water-graphene interfaces. As in the case with the mean

squared displacements, the probability functions, Π(t), produces similar curves

for all 3 interfaces. The hydrogen bonding network is most active for the liquid

water-graphite interface and again almost identical for the liquid water-platinum

and liquid water-graphene interfaces. In this case, a more active hydrogen bonding

network implies that intermolecular hydrogen bonds break and new bonds form

(with other molecules) at a faster rate. In the work done by Cicero et al. [5],

they computed a water dipole rotational autocorrelation function which dropped

off exponentially as a function of time. The faster the decay of the distribution

indicates more mobility and reorientation of the water molecules. Interestingly,

these dipole rotational autocorrelation functions are remarkably similar to Π(t).

This indicates a strong correlation between nearest neighbour dynamics and the

rotational autocorrelation function of the dipole vector of a water molecule. Phys-

ically, this is intuitive as the orientation of a water molecule is highly dependent

on the neighbouring water molecules. When the orientation of a water molecule

drastically changes due to thermal fluctuations, it is possible that a new hydrogen

bond will form with a different neighbouring water molecule. This would cause

local restructuring in the hydrogen bonding network, in turn causing the dipole

vectors of the local water molecules to reorient themselves.
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4.4 The effects of defects and dopants in graphitic

surfaces

Figure 4.8: Left: Graphene surface with a single point defect (labelled with the
dotted circle). Right: Graphene surface with a Stone-Wales defect (labelled with a
yellow transparent colour.)

Current experimental growth mechanisms of graphitic surfaces sometimes lead to

concentrations of defects [84]. These sites break symmetry in the lattice, leading

to extra electrons or holes, which may lead to an increase in surface activity. In

addition to increasing surface activity of inert materials via defects, many studies

involving graphitic surfaces and dopant materials have been done to try to im-

prove the catalytic performance of the electrode [85–88]. In particular, nitrogen

and boron doped graphene has been shown to exhibit p-type and n-type semicon-

ducting behaviour [85]. To explore both of these scenarios, we have completed

a preliminary study of liquid water-graphene and liquid water-graphite surfaces

where single point defects, Stone-Wales defects, and dopant materials (B and N)

have been introduced at the surface. Examples of single point defects and Stone-

Wales defects are shown in Figure 4.8.
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Figure 4.9: Comparing selected distributions for the liquid water-graphene interfaces
with and without Stone-Wales defects at a temperature of 400 K using the vdW-optB86b
exchange correlation functional. In the top left (labelled as A) we show the density
profiles. In the top right (labelled as B) we show the normalized orientation distributions.
In the bottom left (labelled as C) we show the mean squared displacements. In the
bottom right (labelled as D) we show the network reorientation probability functions
(Γ(t)).

At a temperature of 400 K, we found that for most of the simulations, the structure

and dynamics of the liquid water subtly change when the defects/dopants are

introduced. Interestingly, for the Stone-Wales defects simulations of the liquid

water-graphene interface, we found a substantial decrease in the mobility of the

water molecules as well as an almost random orientation of water molecules at

the surface in comparison to all other pristine graphitic surfaces analyzed (see

Figure 4.9). As presented previously, the orientation of water molecules next

to the pristine graphitic surfaces is mostly random, with a slight preference for

having one oxygen facing towards the surface. When the Stone-Wales defect is
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introduced into the graphene surface, this preferred orientation disappears, leading

to a mostly random orientation of water molecules at the surface. The absence of

a preferred orientation indicates the lack of surface activity, or even repulsion at

the surface. This repulsion pushes the surface water molecules towards the bulk,

and therefore confines the liquid water leading to the decrease of the mobility of

the water molecules. This is in agreement with [89], where they found that Stone-

Wales defects in single-wall carbon nanotubes are less reactive than the pristine

counterpart. The Stone-Wales defect in the graphite surface did not produce the

same effects as the graphene surface. The structure and dynamics of the water

molecules is almost identical with pristine graphite.
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Machine learning potential

energy surfaces

5.1 Motivation

Although DFT is one of the cheapest electronic structure methods, the computa-

tional cost of the eigenvalue problem still scales as O(N3), where N is the number

of grid points in real space (assuming a N ×N ×N grid). When we start inves-

tigating large-scale systems with thousands of electrons, finding a self-consistent

solution at every time step becomes computationally demanding. This is where

machine learning can provide a solution. In machine learning, the computational

cost scales as O(N), where N is the number of weights in the network. This

decrease in complexity makes large-scale calculations feasible and the trained net-

works will rival the accuracy of the method they are trained on. The caveat of

77



Chapter 5 5.2. Some basics of ANNs

machine learning is that you must provide a training set before a machine learned

model can be used. If the training set consists of DFT calculations, then you must

deal with the computational cost of DFT before training the machine learning

model. Once trained, the machine learned models will be very cheap to calculate

some property of an atomic system. As an example, a machine learned model can

be paired with a Monte Carlo method to provide accurate total energy calcula-

tions for a large-scale atomic system. We give an example of this in the following

Chapter.

5.2 Some basics of ANNs

ANNs or multilayer perceptrons, are one of, if not the most topologically simple

form of a neural network. They consist of an input layer, usually a few hidden lay-

ers, and an output layer. When training an ANN, one wishes to map a set of input

vectors {X1,X2, . . . ,Xn} to a set of output vectors (or scalars) {Y1,Y2, . . . ,Yn}

(or {y1, y2, . . . , yn}). The input and output layers of the ANN are just our input

and output vectors, where a bias value may be added in for the input layer. There-

fore the dimensions of these layers are simply the dimensions of the vectors. The

hidden layers is where all of the learning is done. The dimensionality of the hidden

layers is arbitrary, and it gives the number of neurons/weights that connect to the

previous layer. The dimensionality of the hidden layers requires trial and error to

minimize the error. Within each neuron is an activation function. The activation

function takes the inner product of the weights and outputs from the previous
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layer, and returns a scalar, which can then be used to compute other inner prod-

ucts in the next layer. To give a visual representation, consider Figure 5.1. Here,

we have an ANN with 2 hidden layers, each with 3 neurons. To calculate the

activation of the neuron, we perform the inner product of the associated weights

with the activations of the previous layer. The result of the inner product is then

passed into the logistic function. The logistic function is one of many choices for

an activation function.

Once we have propagated through the network for one input vector (forward
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Figure 5.1: Schematic representation of an ANN. The layers of the ANN are labelled
by 1,2,3, and 4. The weight matrices are labelled by i, ii, and iii. The dotted square
shows how the inner product is constructed, and then activated by the logistic function.

pass), we then obtain either some vector or value. To train the weights on the
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hidden layers, we first look at the error of the output

E =
1

2
|Y −Ytrue|2, (5.1)

which we want to minimize. To do so, we rely on optimization methods like

gradient descent where the gradient of the error with respect to the weights must

be calculated. Consider the weight highlighted in Figure 5.1, we want to compute

derivative of the error with respect to that weight, and follow the negative gradient

to find a minima in the weight space. The last set of weights (labelled as ‘iii’ in

Figure 5.1) have the most clean gradients, and in vectorized form, they are

∂E

∂w
(iii)
ij

=
∂E

∂a
(3)
j

∂a
(3)
j

∂z
(3)
j

∂z
(3)
i

∂w
(iii)
ij

= δ
(3)
j a

(2)
j (5.2)

where, in this case a(3) ≡ Y, and we have set

δ
(3)
j ≡

∂E

∂a
(3)
j

∂a
(3)
j

∂z
(3)
j

= |a(3) −Ytrue|f(z
(3)
j )(1− f(z

(3)
j ), (5.3)

where f(z) is the logistic function shown in Figure 5.1. For the middle set of

weights (labelled as ‘ii’ in Figure 5.1), the gradients are

∂E

∂w
(ii)
ij

=
∂E

∂a
(3)
j

∂a
(3)
j

∂a
(2)
j

∂a
(2)
j

∂z
(2)
j

∂z
(2)
j

∂w
(ii)
ij

=
∂E

∂a
(3)
j

∂a
(3)
j

∂z
(3)
j

∂z
(3)
j

∂a
(2)
j

∂a
(2)
i

∂z
(2)
j

∂z
(2)
j

∂w
(ii)
ij

= δ
(3)
j ζ

(2)
j a

(1)
j (5.4)
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where we define

ζ
(2)
j ≡

∑
i

w
(iii)
ij f(z

(2)
j )(1− f(z

(2)
j ). (5.5)

Computing the gradients for the last set of weights (labelled as ‘i’ in Figure 5.1),

we get

∂E
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ij
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where we similarly define

ζ
(1)
j ≡

∑
i

w
(ii)
ij f(z

(1)
j )(1− f(z

(1)
j ). (5.7)

We can see, that by adding more and more hidden layers, we simply need to keep

adding on additional ζ terms to update our weights. We forward pass the data

through the network, compute the error, and move backwards layer by layer to

update the weights. This method is called back propagation.

Throughout this derivation, I have assumed that the length of each layer is the

same for brevity. This is normally not true in practice, and you must keep track

of all the indices correctly in the partial derivatives.
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5.3 Constructing neural network potentials

In atomic systems, we either want to know the total energy, or the gradient of the

total energy with respect to a spacial coordinate to determine forces. Since we

anticipate to use Metropolis MC, we only need to predict energies. Therefore, if we

have a configuration of atoms, we would like to be able to predict the total energy

for that configuration. To train, we need to generate hundreds, if not thousands of

configurations for our particular atomic system as well as the energies associated

for those configurations. To use an ANN, we firstly need to map the atomic

configurations to a feature vector. We follow the formalism developed by Behler

et al. [90], where the total energy is a sum over single atom energies,

E =
∑
i

εi. (5.8)

This means that we will have a different ANN potential for every atomic species

in our configuration. Now, we need a feature vector for every atom in our atomic

configuration. This feature vector represents the local environment for an atom,

and it should inherit properties of atomic systems. In an atomic system, if a

particular configuration is translated or rotated, the energy does not change. Also,

if two atoms of the same species are swapped, we should also get the same energy.

Again, following the work of [90], our feature vector comes from discretizing 2

functions that satisfy the aforementioned requirements. With a cut off function
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defined as

fc(rij) =


1
2

[
cos
(
πrij
rc

)
+ 1
]

if rij ≤ rc

0 if rij > rc

 (5.9)

our feature vector is built from the functions

G
(1)
i =

∑
j 6=i

exp[−η(rij − rs)2]fc(rij), (5.10)

and

G
(2)
i = 21−ζ

∑
j 6=i

∑
k 6=i,j

(1 + λ cos θijk)
ζ

× exp[−η(r2ij + r2ik + r2jk)]fc(rij)fc(rik)fc(rjk). (5.11)

Here, rc is a cutoff distance, η, rs, ζ, and λ are all tuneable parameters, rij =

|ri − rj|2, and θijk =
rij ·rik
rijrik

. To discretize these functions and use them as our

feature vectors, one chooses a discrete set of values for each of the tuneable pa-

rameters.

This exact formalism has been implemented in aenet (atomic energy network) [2],

which we leverage in the work completed for Subsection 5.5. Aenet generates high

dimensional neural network potentials based on a set of atomic configurations and

associated energies.
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5.4 Metropolis Monte Carlo

As mentioned previously, to calculate the thermodynamic average of some observ-

able of an atomic system, one can either use MD or MC. MC methods have been

used steadily since it’s introduction at the end of the second world war. The term

“Monte Carlo” was coined by Metropolis in his work at Los Alamos, due to the

extensive use of random numbers [91]. One of the more well known uses of MC is

MC integration, and the popular example of calculating the value of π (see Figure

5.2). To calculate π, we calculate the euclidian distance r =
√
x2 + y2, where x

and y are generated randomly on the interval [0, 1], and count the number of times

r falls within the unit circle. With Cin defined as the number of times r ≤ 1, and

Cout the number of times r > 1, we can see that π = 4 Cin

Cout
based on the area of a

circle.

1

1

Figure 5.2: A schematic view of how to calculate π from generating random numbers.
The green dots inside the circle count towards Cin, and the red dots that fall outside
the circle count towards Cout.

In Metropolis MC applied to atomic systems, we wish to sample configuration
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space subject to some Hamiltonian. To do so, we evaluate the Hamiltonian based

on an atomic configuration to obtain the energy for that system. We then consider

Boltzmann factors of the energy, and make a decision whether or not the atomic

configuration is favourable or not (see Figure 5.3).
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Figure 5.3: Left: 2 dimensional atomic system where a single particle move is accepted
(E1) and rejected (E2). Since the proposed particle move has such a large positive
value, it is highly likely to be rejected. Right: Exponential function that shows how the
acceptance probability changes as a function difference in energy (x). The LJ potential
is also shown where E1 is close to the bottom of the well, and E2 climbs up the well to
a positive energy, indicating repulsion.

Consider the 2-particle Lennard-Jones (LJ) potential seen in Figure 5.3

v(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(5.12)

where ε and σ are parameters that can change based on the atomic species. Here,

r is the interatomic distance between 2 atoms. For a LJ system, the interaction
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energy of the n-particle system can be written as

E =
n∑
i=1

n∑
j=1,j 6=i

v(rij) (5.13)

where rij is the interatomic distance between the ith and jth particle. Now con-

sider an atomic configuration with an interaction energy E0. We then randomly

move one of the particles in the original atomic configuration, which gives us a

new interaction energy E1. If the move is downhill in energy, i.e. E1 < E0, then

this configuration is accepted. If not, we consider accepting the configuration with

probability p1/p0, where

p1
p0

=
Z−1 exp(−βE1)

Z−1 exp(−βE0)
= exp(−β[E0 − E1]). (5.14)

Here, Z is the partition function, and β = (kBT )−1, with kB defined as the Boltz-

mann constant, and T , the temperature. We can see from equation 5.14, that at

a higher temperature, we will have an increased probability of moving uphill in

energy. To do this programmatically, consider the following Python code snippet.

import random

r_move = 0.1

beta = 1.0

n_trials = 1e6

n_particles = 100

particles = []

# calculate the total energy

total_E = E(particles)

for i in range(n_trials ):

# select a random particle

atom = random.uniform(n_particles)
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# displace particle randomly

particles[atom ][0] += (2.0 * random.random () - 1.0) * r_move

particles[atom ][1] += (2.0 * random.random () - 1.0) * r_move

particles[atom ][2] += (2.0 * random.random () - 1.0) * r_move

# get new energy and difference

trial_E = E(particles)

delta_E = trial_E - total_E

if delta_E < 0.0:

# accept

total_E = trial_E

elif exp(-beta * delta_e) > random.random ():

# accept

total_E = trial_E

else:

# revert coordinates and try again

revert(particles)

Surprisingly, this is all you need to do Metropolis MC for atomic systems. The

complexity is hidden in the total energy calculation. For the 2-body LJ potential, it

is efficient to compute due to the form, and we only need to consider the energies

for the pairs involving the particle that has been moved. If the total energy

comes from a DFT calculation, then using Metropolis MC is unfeasible to calculate

valid thermodynamic averages. We simply could not compute enough atomic

configurations.

5.5 A toy example

As a proof of principle, we present a toy problem where we can leverage a ma-

chine learned potential energy surface. Consider a dimer molecule which interacts

through the LJ potential

v(r) =
4

r12
− 4

r6
. (5.15)
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type η λ ζ rs rc

G(1) 0.003214 - - 0.0 5.0
G(1) 0.035711 - - 0.0 5.0
G(1) 0.071421 - - 0.0 5.0
G(1) 0.124987 - - 0.0 5.0
G(1) 0.214264 - - 0.0 5.0
G(1) 0.357106 - - 0.0 5.0
G(1) 0.714213 - - 0.0 5.0
G(1) 1.428426 - - 0.0 5.0
G(2) 0.028569 1 1.0 - 5.0
G(2) 0.089277 1 1.0 - 5.0
G(2) 0.000357 -1 1.0 - 5.0
G(2) 0.028569 -1 1.0 - 5.0
G(2) 0.089277 -1 1.0 - 5.0
G(2) 0.000357 1 2.0 - 5.0
G(2) 0.028569 1 2.0 - 5.0
G(2) 0.089277 1 2.0 - 5.0
G(2) 0.000357 -1 2.0 - 5.0
G(2) 0.028569 -1 2.0 - 5.0
G(2) 0.089277 -1 2.0 - 5.0
G(2) 0.000357 1 4.0 - 5.0
G(2) 0.028569 1 4.0 - 5.0
G(2) 0.089277 1 4.0 - 5.0
G(2) 0.000357 -1 4.0 - 5.0
G(2) 0.028569 -1 4.0 - 5.0
G(2) 0.089277 -1 4.0 - 5.0

Table 5.1: Table of parameters used to discretize the atomic fingerprint functions.
These parameters were also used in [2] to describe the local environments of TiO2.

This is equivalent to Equation 5.12, with ε = σ = 1. Using this potential, we

generate ten thousand random dimer configurations with r in the domain [0.5, 5.0]

Å. Using these dimer configurations, we then use the atomic fingerprint functions

from Equations 5.10 and 5.11 to generate our input vectors for the ANN. We have

shown all of the parameters used when constructing the fingerprint functions in

Table 5.1.
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Once the fingerprint functions were generated, we then proceeded to train the

ANN potential. The topology of our ANN consisted of an input vector of length

26, 2 hidden layers with 10 neurons, and an output layer with one neuron. The

activation functions used in the hidden layers were scaled hyperbolic functions

with linear twisting, i.e.

f(x) = 1.7158 tanh

(
2

3
x

)
+ x, (5.16)

and the activation function of the output layer was linear. In the optimization

process, we used the Levenberg-Marquardt optimization scheme [92] to update

the weights. While training, we split the data set up such that 70% of the data

was for training, and 30% for testing. In Figure 5.4, we show the mean squared

error (MSE), and the root mean squared error (RMSE), which clearly exhibits

convergence after 10000 epochs. We can also see that the MSE and RMSE of the

test set does not diverge, indicating no over fitting of the training set. We then use

this ANN potential to generate atomic trajectories using both Metropolis MC, and

MD generated using the canonical ensemble (Langevin method). After generating

these trajectories, we then plot the RDF for both MC and MD, seen in Figure

5.5. We can clearly see that the machine learned potential energy surface does

remarkably well compared to using the exact potential. The true and predicted

energy values as a function of time are almost identical, and the RDFs are very

similar. Future work includes investigating much more complex atomic systems,

and using convolutional neural networks (CNNs). This means we must replace

the input vector with a 2 dimensional image of our atomic system. We will rely
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Figure 5.4: The mean average error as a function of epoch when training the dimer
molecules for the training and testing sets. Since the testing loss curve does not diverge,
we do not see overfitting. All of the curves are well converged at 10 thousand epochs.
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Figure 5.5: Left: The radial distribution functions for MD produced from the
Langevin method, and for MC produced from the ANN potential. Right: True energy
versus predicted energy for 100 frames of MD produced from the Langevin method.

on the CNNs to learn the features in the training process. CNNs have operations

which are non-local, and therefore inherently include spatial dependencies. CNNs

are very promising for studying atomic systems.

90



Chapter 6

Conclusion

In this thesis, we first described the fundamentals of electronic structure theory

related to DFT, and then gave a 1D step-by-step guide for implementing a self-

consistent DFT code. Afterwards, we describe how one can obtain molecular

dynamics from DFT, and then show how structural and electronic observables can

be calculated from molecular dynamics trajectories.

We then carried out large-scale molecular dynamic simulations for bulk water next

to platinum, and doped/defect graphitic surfaces in ambient and high temperature

conditions. After analysis of the density profile, we find water next to a platinum

slab forms a chemisorption layer before the largest density peak. This feature

was absent for the liquid water-graphitic interfaces, and has not been discovered

in other studies of other water-solid interfaces (including a liquid water-Au in-

terface). Noticing the disappearance of this chemisorption peak at 1000 K for

the liquid-water platinum interface, subsequent non-equilibrium calculations were
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run at temperatures in the range of 500-800 K. It was concluded that at 650 K,

the peak begins to disappear. At 800 K, the peak has almost fully disappeared.

When comparing the exchange correlation functional choice (i.e. with and without

vdW interactions), there are differences. In the density profile, the highest peak

can be 15-29% larger when the vdW interactions are included (depending on the

temperature). The orientation of water molecules next to the surface have subtle

differences but show similar structure, and the dynamics of the water molecules

indicate a further attraction to the surface and less mobility when the vdW inter-

actions are included.

When comparing the orientation of a single water molecule next to the platinum

surface and the orientation of surface molecules in bulk water next to the platinum

slab, there is a significant difference. For a single water molecule, the oxygen faces

towards the atop site, with the geometric dipole of the molecule almost parallel

to the surface. When analyzing the orientation of surface molecules in the bulk

liquid, this is not always the case. The surface molecules interact with the metal

atoms, as well as with other water molecules in their local environment. This,

along with thermal fluctuations, cause the surface water molecules to constantly

reorientate themselves in the competitive force field. For a single water molecule

next to the graphite/graphene surface, there is little attraction to the surface. The

optimal structure has a single hydrogen pointing down toward the surface and the

distance between the water molecule and the surface is almost 1 Å greater than

the distance between a single water molecule next to a platinum slab. The surface

molecules in the bulk liquid next to graphite/graphene show little preference for

92



Chapter 6

orientation, confirming the weak interaction between water molecules and the

graphite/graphene surface. Although the PDOS of the pz band for the surface C

atoms overlaps with the p orbitals of O, there is no coupling between them. The

PDOS of the d band for the surface atoms of platinum also overlaps with the p

orbitals of O, and the states do couple. The p orbital of O, which coincides with

the 1b1 orbital of water, broadens when next to the platinum surface.

When introducing defects and dopants into the liquid water-graphitic surfaces, we

find that there are almost no changes in the structure and dynamics of the wa-

ter molecules. The only notable difference came from Stone-Wales defects in the

graphene surface, where we found a decrease in the mobility of water molecules.

We propose this mobility decrease coincides with the decrease of surface activity,

inevitably causing the surface water molecules to repel from the surface. Future

work includes investigating other materials and optimizing the search for observ-

ables indicative of an efficient catalyst. When considering a new metal for water

electrolysis, one should expect to observe chemisorption as well broadening in the

peaks of the p orbitals in the PDOS of liquid water as an indication of an efficient

catalyst.

Lastly, we described how to use ANNs to learn a potential energy surface and carry

out a preliminary study of machine learning a simple potential energy surface with

ANNs. We show that, for a dimer molecule with a Lennard-Jones potential, an

accurate potential energy surface can be learned using ANNs. We then show

that the RDF is similar between MD using the Langevin method, and MC with

the ANN potential, again confirming the validity of the ANN potential. Future
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work includes investigating more complex systems, and different neural network

architectures.
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[60] Shuichi Nosé. A unified formulation of the constant temperature molecular

dynamics methods. The Journal of chemical physics, 81(1):511–519, 1984.

[61] William G Hoover. Canonical dynamics: equilibrium phase-space distribu-

tions. Physical review A, 31(3):1695, 1985.

[62] NW Ashcroft. Electron-ion pseudopotentials in metals. Physics Letters, 23

(1):48–50, 1966.

[63] Conyers Herring. A new method for calculating wave functions in crystals.

Physical Review, 57(12):1169, 1940.

[64] Leonard Kleinman and DM Bylander. Efficacious form for model pseudopo-

tentials. Physical Review Letters, 48(20):1425, 1982.
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