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Abstract

How we administer healthcare continues to evolve alongside the advancement of

information technology. As we becomemore connected, the Internet of Things and

our want to share information in a timely manner encourage us to redefine and

enhance how we exchange health information. A fully integrated, universal health

record system in Canada remains a distant goal. It requires thoughtful legislation,

sufficient resources and the best of our technological and security implementation

before realization. Nevertheless, we need such a system and are steadily working

towards it.

While there are a number of obstacles in attempting a universal health record

system, this thesis presents a solution for secure health information exchanges. A

valuable component in establishing a complete framework for all health informa-

tion exchanges. We present two protocols. Consent based access control (CBAC)

and a fairness aware privacy preservation protocol (FAPP). These two protocols

grant patients control in how their sensitive health information is used and pro-

vides avenues for certain third parties to collect patient information without com-

promising security and privacy.
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Chapter 1

Introduction

Balancing the privacy and security of sensitive health records with our need to

share and process information rapidly is a challenging process. Patients demand

privacy. Theywant satisfaction in knowing that their health information is used for

specific purposes andonly by those given express permission. Healthcare providers

aspire to provide exceptional and timely care. This often calls for access to sensi-

tive patient details. This is also perplexing for non-critical data requesters like in-

surance institutions. In this report we introduce new protocols to structure how

information is shared among entities while maintaining patient confidentiality.

The advancement of information technology and the Internet of Things (IoT)

is redefining modern day interactions. Healthcare has experienced a fundamen-

tal overhaul of processes at all levels [16]. Improvements in healthcare have in-

troduced more effective means to collect and analyze data. Furthermore, infor-

mation can now be accessed and shared at an unprecedented rate. New IT tools

serve well to educate and empower patients, allowing them to have more input

into whom and how their information is shared. In these innovative times, we

adapt new policies and practices to ensure data moves as securely and efficiently
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as possible. Global trends in healthcare point towards change in how care is ad-

ministered. Patients hope to exercise more choice. They wish to see providers on

their own terms, at their own convenience and require personalized care with easy

and timely access to their own records. All communities and demographics face

their own challenges. Hospitals and medical organizations must implement com-

plex multi-organizational networks and processes to address those challenges effi-

ciently [19].

Healthcare is a complicated issue. Meaningful change requires thoughtful leg-

islation, subject to budgetary and privacy restrictions. A secure healthcare ex-

change framework is a major requirement towards successful centralized health-

care records. Therefore, we outline a framework for securely exchanging healthcare

information with patient consent and preserving privacy.

1.1 Background and Motivation

Healthcare records and information exchanges are steadily trending towards be-

coming entirely electronic. Many practices, however, still store records in paper

format and requisitions are handled through fax and phone. Nevertheless, as older

practitioners retire and we adapt newer technologies we should expect to see a

larger shift towards electronic health exchange. As more of our information moves

online, we can expect more concern for privacy preservation. Accordingly, several

standards and bills have been introduced to address privacy concerns and stan-

dardize electronic information. These range from PIPEDA, HIPAA to HL7. How-

ever, rules and standardization are insufficient in meeting growing cybersecurity

demands. In May, 2017, a wave of cyber attacks infected over 45,000 computers

across 74 countries. The attacks ultimately resulted in the closure of 16 hospitals
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who were unable to retrieve basic medical files [11]. Ransomware perpetrators re-

quested a total of 300 Bitcoin, equivalent to approximately $760,000 USD at that

time.

There have been several attempts to create security mechanisms for electronic

health records. Unfortunately, due to the nature of e-Health records a universally

accepted mechanism for exchanges has not come to fruition. Securing medical in-

formation is challenging. Specifically, balancing record ownership and control be-

tween medical providers and patients is difficult. This hampers the steady imple-

mentation of newer technologies. Current policies allow for a number of permitted

data custodians with owners being allowed to grant, block or revoke access. These

privileges should allow record owners to also retroactively annul access to any re-

questing parties. As we become more immersed in the Internet of Things, ensur-

ing that patients control access to their own information is paramount. Granting

them the freedom to control their own informationwould enhance patient centered

care and improve patientmobility in socialized healthcare systems. Currently, find-

ing, retaining andmoving between primary care physicians is difficult and at times

costly.

We define consent as access to records granted by a patient. This consent is exer-

cised to give data requesters permission to read and edit records. Consent should

be revocable after issuance. Informed consent is crucial in ensuring that patients are

aware of associated risks in the future and should also be a cornerstone in health-

care information sharing.

Canada is one of the foremost healthcare providers in the world. Being pub-

licly funded, Canadian healthcare is socialized and administration is handled by

provinces or territories based on the guidelines set by the federal government. All

Canadian citizens are entitled to basic health coverage regardless ofmedical history.
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Canada also boasts state of the art treatment with one of the highest life expectan-

cies and lowest infantmortality rates in theworld [12]. Unfortunately, a growing el-

derly population introduces challenges. Longer lifespans alsomean that healthcare

providers pay more per individual over his/ her lifetime. Furthermore, Canada’s

population continues to grow through immigration as others look to Canada for

social and economic security. According to [49], Canada in 2016 spent $228 billion

CAD on healthcare, representing nearly 11% of Canada’s gross domestic product.

This exceeds the previous healthcare bill of $219 billion [13]. Furthermore, as ev-

ident in Table 1.1, Canada’s expenditure on health has increased year after year.

With Canada’s rising immigration, and aging population it is likely that there will

be an increase in future expenditure. However, rising healthcare costs are not sus-

tainable and we should expect to see changes to mitigate costs in the coming years.

Ontario has attempted to implement a centralized healthcare system in prior

years. Work continues to progress on eHealth Ontario [17], an initiative to con-

nect all electronic Health record systems. Unfortunately, eHealth Ontario has been

plaguedwith scandal. TheOntarioAuditorGeneral, JimMcCarter, called the project

a "$1 Billion waste [30]." The scandal resulted in the Health Minister at the time,

David Caplan, resigning. These failings have reduced public confidence in a work-

able centralized health exchange system. However, much of the scandal concerned

misappropriation of funds [30]. There is still an interest in more efficient health

information exchanges and a connected Canadian healthcare system. The audi-

tor general went on to say that the implementation of electronic health records in

every province could save them $6 billion. While Canadians benefit from univer-

sal healthcare, a universal Electronic Health Record (EHR) System would improve

care and reduce costs [5]. A RAND study found that the USA could to save approx-

imately $81 billion USD annually by moving to a universal EHR system.
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Year Percentage
of GDP
Spent on
Health

Total Cost
Per Year

Difference
from Pre-
vious
Year

Percent
increase
from
previous
year

2000 8.3 91 229.7 N/A N/A
2001 8.7 98 714.1 7848.4 8.20
2002 8.9 105 721.3 7007.2 7.10
2003 9.0 113 063.6 7342.3 6.94
2004 9.1 121 100.5 8036.9 7.11
2005 9.1 128 444.9 7344.4 6.06
2006 9.2 137 388.3 8943.4 6.96
2007 9.3 146 313.8 8925.5 6.50
2008 9.5 156 450.9 10137.1 6.93
2009 10.6 167 734.9 11284 7.21
2010 10.6 175 558.2 7823.3 4.66
2011 10.2 180 880.0 5321.8 3.03
2012 10.2 186 344.4 5464.4 3.02
2013 10.1 191 940.4 5596 3.00
2014 10.0 198 054.2 6113.8 3.19
2015 10.3 * 203 666.9 * 5612.7 2.83
2016 10.3 * 209 481.0 * 5814.1 2.85

Table 1.1: EXPENDITURE ON HEALTHCARE PER YEAR [32]
Currency Measured in Millions of Canadian Dollars
* Provisional Value

The Canadian healthcare system, as it is, faces a number of dilemmas. The Con-

ference board of Canada, in their 2012 Summit on Sustainable Health and Health

Care, discussed at length a number of those issues in [29]. Canada was given an

overall grade of B on its report card and trailed behind 9 other OECD countries.

Japan, Switzerland and Italy held the top positions with each of them receiving an

A grade. While clinical procedures have evolved, the current healthcare system is

not efficiently configured to maximize efficiency. Constraints that inhibit progress

include:

• Aging physical structures

• Old service delivery models
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• A lack of provider incentives

• Labor contracts

• Stagnant information flow

Healthcare model of the 1960s. [29] Argues that the current Canadian healthcare

system is locked in a model from the 1960’s. Healthcare systems in Canada were

designed to protect patients financially should they face health calamities. More

specifically, if patients are met with disastrous health diagnoses or are faced with

intensive surgery, associated costs would not become burdensome. In much of

these cases, patients received acute care primarily through hospitals. However,

much has changed since our healthcare system was initiated. For one, much treat-

ment is delivered through a variety of non-hospital sites. These include homes,

walk-ins and community clinics. The Canadian healthcare model was not origi-

nally designed for such healthcare delivery methods. Furthermore, advances in

electronic records have not been readily adapted. Parties that use EMRs utilize dif-

ferent platforms. Oftentimes, there are difficulties in communicating among these

different systems. Thus, there is a lack of cohesion. According to [29], new health-

care strategies must:

1. Fix Healthcare System gateways

2. Invest and use new technology

3. Enhance the current compensation model and related contracts

4. Focus on the health and wellness of Canadians

5. Build a more transparent and accountable healthcare system

6. Empower patients through consent

6



Current Issues. Much can be done to improve our healthcare system. A few of

the current issues facing Canadian healthcare are summarized below:

1. Financial complications: These includewastage and inefficient usage of funds.

2. Communication Shortfalls: The inability of medical practitioners to send and

receive records efficiently.

3. Lack of patient control: Patients have limited control over access to their records.

They should be able to grant, block and retroactively revoke access to specific

parties with ease.

4. Lack of consideration and inclusion for third party non-medical entities that

may require access. Organizations, such as medical insurers, may need to

verifymedical informationwithout direct access. Currently, accessmay result

in these institutions receiving excessive information.

1.2 Objectives and Contributions

Our main contributions are as follows:

1. We propose a framework for secure and centralized healthcare information

exchange. Original records are encrypted and offered to a data center. Oth-

ers cannot access data without its owner’s consent. Additionally, we propose

methods to partially expose information to non-essential entities.

2. We propose a consent based access control mechanism for health information

exchanges [54]. Data requesters must first negotiate with owners to access

health information. Once an agreement is made, a consent token is given so

that the intended party can access information.
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3. We propose a conditional proxy re-encryption algorithm, which allows data

centers to re-encrypt information without exposing plaintext. Conditions are

integrated into the re-encryption key to enhance collusion resistance. Mutual

authentication and contextual privacy are also achieved by using the public

keys of receivers in the encryption algorithm.

4. Finally, we propose a method to preserve privacy in health insurance quotes

by adopting k-anonymity techniques andpropose a fairness-aware andprivacy-

preserving insurance application protocol [55].

1.3 Thesis Organization

The remainder of this thesish will organized as follows. Chapter 2 discusses rele-

vant works pertaining to securing and preserving privacy in patient records during

data exchanges. Chapter 3 introduces the security primitives used in this thesis.

These serve as the basis for our proposed schemes and are fundamental in crypto-

graphic exchanges. We then describe our framework for Consent BasesAccess Con-

trol in Chapter 4. Next, we introduce a Fairness Aware Privacy Protocol in Chapter

5. Protocols introduced in this thesis will include sections that describe protocol

architecture, functionality, security analyses and performance evaluations. Finally,

we conclude and discuss our future work in Chapter 6.
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Chapter 2

Related Work

2.1 Security and Privacy Preservation in e-health Sys-

tems

In the age of information, privacy preservation remains an integral part in the de-

velopment of electronic frameworks. We require privacy in themostmundane sites

and online tools. Measures must be made to ensure that our data remains in the

right hands. With more sensitive information, the need for privacy preservation

rises significantly. This is not lost on researchers who continue to develop frame-

works for healthcare [24], [27]. Electronic Patient Records or EPRs, contain sensitive

details on ones health. Therefore, data confidentiality is essential in the develop-

ment of acceptable systems. An individual’s medical records tend to accumulate

much information over their lifetime. These records can include digital and ren-

dered images, diets, medication, sexual preferences and psychological profiles [28].

Many diagnoses and treatments carry with them great social stigma and discrimi-

nation [6].

There currently exists several threats to health information systems. Rindfleisch
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in [37], comments on our apprehensions to adapt newer security tools and our in-

ability to effectively balance policies with evolving technologies. [39] has listed a

number of threats and categorized them as either power failure, acts of human er-

ror, technical obsolescence or hardware and software errors. Regarding health in-

formation, [37] categorizes threats to health information privacy as organizational

or systemic threats. Organizational threats include accidental disclosure, insider

curiosity, unauthorized network intrusions and physical data breaches by internal

or external parties [5]. On the other hand, Systemic threats refer to those threats

to patient privacy where those with legal access to information can abuse patient

information. This may be in the form of an insurance company denying coverage

or claims based on medical records or work places denying employment to those

with pre-existing conditions.

In this sectionwe present background information, relatedwork and a literature

review on access control and privacy preserving techniques for electronic health

record systems.

2.1.1 E-Consent

Informed consent is legally required when performing medical procedures. E-

Consent is a model approach which allows patients more control over who can

access their information [15]. Generally, patients provide blanket consent for ac-

cess to their information. This allows organizations to request information in the

future when such requests are unwarranted. E-Consent is a broad term, specific

forms can be categorized as follows [15]:

General consent grants blanket permission to access information. This may be-

come problematic if patients move, change physicians, or only perform a singular
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procedure at a site. Furthermore, there is no limit to what data can be requested.

General consentwith specific denials grants consent as above but can restrict ac-

cess to particular information and deny disclosure to specific parties or for specified

purposes.

General denial with specific consent in contrast to the above, blocks all access

with the exception to particular information, or for specific parties or purposes.

General denial patient provides blanket denial. For every instance of care, a new

consent would be required from the patient.

E-Consent systems provide the following [15]:

1. Verify an individual’s identity. Check whether patients and data requesting

parties are who they say they are.

2. Check that an individual’s affiliationwith requesting parties is valid, that they

are members of permitted health organizations and that they are permitted

to represent those health organization based on their clinical roles.

3. Verify health organization existence and identities.

4. Recognize and register defined purposes behind consent requests.

5. Record whether consent has been allowed or denied by the patient or autho-

rized agent presently or in the past.

6. Retrieve any consent instruction associated with clinical data.
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7. Match level consent to data access. This is generally done by levels. This

would define what data is released based on level of consent. For example:

data bound by an instance of care, or data bound to an entire patient record.

This defines access based on the level of consent.

8. Record access control details or sets of complex consent instructions.

9. Verify the existence of data requesters and their roles or association with an

organization.

10. Record the delegation of consent by one party to another.

2.1.2 Access Control Mechanisms

Access ControlMechanisms are procedures created to protect information and pre-

vent unauthorized access to sensitive data assets. These mechanisms are crucial in

curtailing unwarranted access to patient records.

Discretionary Access Control (DAC) grants creators or owners of objects to ad-

minister access rights. Owners can also grant and revoke access to other users or

groups. DACs often rely on access control lists for implementation. TheDACmodel

is based on resource ownership where identity plays a key role in access control.

Mandatory Access Control (MAC) is a traditional model where permissions are

assigned by an administrator. Access to resources can only be granted or revoked

by administrators or users with elevated privileges.

Role BasedAccess Control (RBAC) permissions are assigned based on roles [41],

[18]. Users are appointed roles with set privileges. Roles are assigned based on
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credentials, qualifications or responsibilities as established by organizations. Priv-

ileges can be revoked, updated or assigned easily. RBAC provides hierarchical fea-

tures. More privileged employees inherit lower privileged rights. RBAC was orig-

inally developed by NIST and distributed as INCITS 359-2004 by the International

Committee for Information Technology Standards in 2004 [21]. Since its inception,

RBAC has become a de facto standard for access control. It has experienced sev-

eral iterations and has formed the foundation for a number of new access control

frameworks. RBAC is an open ended concept and is open to interpretation. Im-

plementations may be simple or complex. RBAC does not have a sole definitive

model as it may have too little or too many constraints. NIST has organized their

model for RBAC into a four step sequence with each step increasing in complexity

and capabilities [40]. Figures 2.1-2.6 are simple representations of RBAC protocol

architectures. Variations of RBAC implementations are detailed below:

1. Flat RBAC: This is the simplest RBAC model and embodies only the essen-

tial RBAC aspects and is based on traditional group access control. Users

are assigned roles and roles are assigned permissions. Users then acquire

their permissions through the roles that they are assigned. User-to-role and

permission-to-role assignment have a many to many relationship. Therefore,

a single user can be given many roles and a role can be issued to a number of

users. User-review mandates that user and role assignment relations can be

traced. Lastly, Users must also be allowed to simultaneously exercise multi-

ple roles which prevents users from being restricted by roles being activated

one at a time.

2. Hierarchical RBAC: This category requires the addition of role hierarchies.

We can understand a hierarchy as the mathematical partial orderings which
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Figure 2.1: Flat RBAC [40]

define relations among roles. Partial orders are relations which are transitive,

reflexive and anti-symmetric. Senior roles acquire permissions from their ju-

niors. NIST defines two sub categories for Hierarchical RBAC as:

• General Hierarchical RBAC: An arbitrary partial order is imposed. This

serves as the role hierarchy.

• Restricted Hierarchical RBAC: In this implementation, restrictions are

used to control hierarchy structures. These may be in the form of trees,

inverted trees or customized structures.

Figure 2.2: Hierarchical RBAC [40]

Role hierarchies may be implemented as either inheritance or activation hi-

erarchies. In Inheritance hierarchies, senior roles often inherit from junior

roles, this is called permission inheritance. Cases where senior roles do not

automatically activate junior roles fall under the activation interpretation of

hierarchies. These are referred to as activation hierarchies.
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Figure 2.3: Constrained RBAC - Statatic SOD [40]

3. Constrained RBAC: At this level constraints are added to RBAC. Constrains

can either be associated with user-role assignment as in Figure 2.3 or the acti-

vation of roleswithin user sessions as in Figure 2.4. Constraints are also inher-

ited within role hierarchies. Separation requirements are used to implement

conflict-of-interest policies. Conflict of interest can arise in an RBAC system

when a user gains authority for permissions with conflicting roles. These are

used to ensure users do not overstep their authority. Constrained RBAC is

separated into two categories based on separation of duty (SOD). Separation

of duty refers to how tasks and privileges are assigned among roles to pre-

vent users from gaining excessive authority. SOD is used to mitigate fraud

and damage. IT administration aggregates responsibilities and authority for

duty amongst several users, thereby requiring the involvement of multiple

users prior to a fraudulent or damaging activity. RBAC follows the princi-

ple of least privilege. Least privilege refers to the administrative practice of

minimizing user permissions so that users have only sufficient permissions

to perform their functions.

The NIST model for Constrained RBAC allows for both static and dynamic

separation of duty. Static separation of duty (SSD) addresses conflict of inter-

est by constraining how roles are assigned to users. More specifically, if a user
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Figure 2.4: Constrained RBAC - Dynamic SOD [40]

is authorized as a member of one role, they may be prohibited from having

other specific roles. With SSD, inheritance is limited to prevent conflict of in-

terest. Dynamic Separation of Duty (DSD) allows RBAC administrators to use

organization specific policies. This allows users to gain otherwise conflicting

roles during enrollment. However, NIST does not permit a user to assume

multiple roles which would conflict simultaneously. DSD generally allows

for greater operational flexibility.

Figure 2.5: Symmetric RBAC - Static SOD [40]

4. Symmetric RBAC: Symmetric RBAC includes a permission-role review. Es-

pecially in growing organizations, permission schemes evolve. Older permission-

role assignments may no longer be relevant or become inappropriate as sit-
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Figure 2.6: Symmetric RBAC - Dynamic SOD [40]

uations change. This becomes more tedious as users and roles are spread

across different administrative boundaries. Effectively maintaining permis-

sion assignments necessitates identifying and reviewing the assignment of

permissions to roles. This is done to ensure the principle of least privilege.

An organizational review of permission assignments can be useful in a num-

ber of situations. When a user, leaves an organization or department, switches

jobs or a certain set of permissions become obsolete, permission-role reviews

will be useful. Deleting all of a user’s data and accounts after they have left

or having administration revoke all associated permissions would still leave a

systemwith data garbage. Older permissions or roles could still haunt an em-

ployeewhen they switch jobswithin an organization, however, deleting those

permissions would inhibit their ability to work. Moreover, the complexity of

permission-role reviewsmay not be necessary for some smaller organizations

or organizations with limited roles. Therefore, a separate level is necessary in

RBAC to ensure permission-role integrity throughout organizations.

A summary of RBAC at different levels can be found in Table 2.1.

17



Level Name RBAC Functional Capabilities

1 Flat RBAC (see
Figure 2.1) • Users must acquire permissions through roles

• There must be support for many to many user
role assignment
• There mus be support for many to many
permission-role assignment
• There must be suport for a user-role assignment
review
• Users must be able to use permissions frommul-
tiple roles simultaneously

2 Hierarchical
RBAC (see Figure
2.2)

Flat RBAC +

• Must include support for role hierarchy
• level 2a Support for arbitrary hierarchies
• level 2b Support for limited hierarchies

3 Constrained
RBAC (see Figure
2.3 & 2.4)

Hierarchical RBAC +

• There must be enforcement of separation of du-
ties
• level 3a Support for arbitrary hierarchies
• level 3b Support for limited hierarchies

4 Symmetric RBAC
(see Figure 2.5 &
2.6)

Constrained RBAC +

• There must be support for permission-role re-
view, the performance comparable to user-role
review
• level 3a Support for arbitrary hierarchies
• level 3b Support for limited hierarchies

Table 2.1: SUMMARY OF RBAC VARIATIONS ORGANIZED BY LEVEL [40]

Team Based Access Control (TMAC) is an approach to applying role-based ac-

cess control in collaborative environments. Teams are abstractions which encapsu-

late collections of users according to roles.
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2.1.2.1 Experimental Access Control Methods

Ni and Trombetta introduce a Privacy Aware version of RBAC [31]. Privacy Aware

Role Based Access Control or P-RBAC is an extension of the RBAC model. It adds

support for the expression of privacy related policies. P-RBAC represents a family

of conceptual RBAC models; these are illustrated in figure 2.7. Each component

of the P-RBAC family adds rich feature sets if needed. Core P-RBAC is the foun-

dation of all P-RBAC implementations. Hierarchical P-RBAC adds Role, Data and

Purpose hierarchies to the Core. Conditional P-RBAC allows for Permission As-

signment Sets and Boolean Expressions. Universal P-RBAC combines the features

from Conditional and Hierarchical P-RBAC.

Figure 2.7: The family of conceptual P-RBAC models [31]

Russello et al. in [38] present a framework for consent based workflows. Their

framework was designed for healthcare systems and can enforce consent based

access control as well as the need to know principle. Furthermore, they attempt

to release end users, in this case healthcare professionals, from the responsibility

of security related configurations. This allows medical professionals to prioritize

healthcare related duties.
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2.2 Privacy and e-Health Communication Standards

There are a number of standards that outline the minimum security requirements

for Electronic Health Records. ISO TC 215 [23] and ISO 18308 [8] provide technical

specifications for EHRs and EHR architectures. Other standards include DICOM

which standardizes imaged based information, The Continuity of Care Record,

HISA (EN 12967), CONTSYS (EN 13940) and ANSI X12 (EDI) [43]. OpenEHR and

Health Layer 7 or HL7 standardizes communications between physical and elec-

tronic record systems [42]. These standards provide flexible guidelines in how in-

formation is exchanged.

2.2.1 Mobile Healthcare

Works are ongoing to create more mobile and ubiquitous healthcare. There are

massive adoptions worldwide to employ more wireless infrastructure to include

emergingwireless applications [51]. Themotivation for suchmoves are to enhance-

ment of healthcare convenience and access. Much of the work revolves around

remote monitoring and making conventional technologies more mobile and acces-

sible.

2.2.2 Employing Consent and Access Control in Health Frame-

works

The concept of adding consent to medical frameworks is not a new one. While

consent is not usually built into to access control models, it remains a vital part of

the medical processes. Attempts have been made implement and integrate consent

and access control, however, these have not seen widespread adoption. In early

1996, Anderson proposed the British Medical Association Security Policy in [4]. It
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later became a basis for access control policy for the British NHS. In this section

we look at the implementation of consent and access control mechanisms in the

healthcare field.

Cassandra [9] is a language for expressing access control policies on large scale

distributed systems. Cassandra is role based andwas designed specifically for Elec-

tronic Health Record systems (EHRs) in the UK. Cassandra supports credential

based access control and remote policies can be queried. Cassandra provides dy-

namic RBAC, role revocation, distributed trust management and negotiation. In

simpler terms, Cassandra is a framework for policy language for access control

management in large systems. With Cassandra, consent is applied through a two

step appointment mechanism. Patients issue consent roles while clinicians issue

consent request roles. Mutual acceptance result in the creation of consented rela-

tionships.

The model in [33] describes a decentralized approach to electronic consent and

health information access control. Part of the design includes the development of

several transfer protocols for the transference of health and consent information.

By default, data is protected through transfer protocols according to a patient’s

specified consent conditions. This model introduces the concept of placeholders

which allow for preset consent configurations for records. The model for a health-

care system includes independent but cooperating health facilities where there are

no centralized storage for health data and no centralized patient registrar. Consent

is managed by local eConsent systems which allow the electronic recording of pa-

tient consent for access to health information and uses these consent conditions to

manage access. All transfers between facilities are initiated by destination facilities,

transfer commencement depends on the acceptance of consent conditions.
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2.3 Public Health Information Management

Health information is distributed across business-to-business (B2B) healthcare net-

works. Electronic record keeping is not legally mandated. Many smaller organiza-

tions still house paper based record systems. Therefore, much informationmust be

transmitted via fax or one time deliveries where physical copies are replicated and

shared.

Typically national healthcare systems are structured hierarchically, Canada has

a national authority on health which governs provincial authorities. Local authori-

ties, clinics, hospitals and family doctors report to and are funded through provin-

cial authorities. However, each of these entitiesmay subscribe to different electronic

medical record systems. These differ from national disease and drug registries.

Consequently, it is difficult to standardize communication and data storage across

a healthcare network due to differences between record systems.

2.4 Electronic Record Services

Tomanage health records organization or individuals use electronic health records

(EHR) or electronic medical record (EMR) services. EHRs are longitudinal health

record systems for patient information. These are available to specialty health clin-

ics, health registries, hospitals and cooperating hospitals. EMRs are smaller scale

patient record systems. These are typically used by smaller clinics, private physi-

cians and physician groups. Popular solutions include Telus Health provided by

Telus, Abelmed and OSCAR an open-sourced solution. Personal health records

(PHR) are health recording systems used by patients to manage their own health

information. These have seen a rise in popularity. Google and Microsoft have

launched their ownPHRplatformswithGoogleHealth andMicrosoftHealthVault.

22



2.5 Data Integration

Consolidating data from multiple sources often poses challenges. Datasets are or-

ganized differently and carry diverse requirements. Consolidated data may con-

flict and even summary information may require added identification. After sev-

eral years of research on public health, [20] addresses a few of these issues and

provides three new protocols for privacy preserving data integration primarily for

public surveillance on health information. These include an anonymized aggrega-

tion protocol and multi-party secure computational protocol. Hu also employs a

semi-trusted party in his scheme. This reduces the need for a fully trusted third

party.
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Chapter 3

Security Primitives

Developing a new protocol presents unique challenges. Reliable protocols need

to be founded on sound cryptographic principles based on proven concepts. To

that end, this section explains the underlying cryptographic techniques used as the

foundation of our framework.

3.1 Bilinear Pairing and Intractable Problems

Definition 1: Bilinear Pairing [34] Let g and h be two generators of two multi-

plicative cyclic groups G1 and G2 with the same prime order q. A mapping ê :

G1 × G1 → G2 is called an admissible bilinear pairing if it satisfies the following

properties:

1. Bilinear: For all V,Q ∈ G1 and a, b ∈ Z∗q , where ê(V a, Qb) = ê(V,Q)ab.

2. Symmetric: ê(V,Q) = ê(Q, V ).

3. Non-degenerate: ê(V,Q) 6= 1G, whereV,Q 6= 1G.

4. Computable: ê is efficiently computable.
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Definition 2 Discrete Logarithm (DL) Assumption [34] Let g be a generator of

a multiplicative cyclic group G with the prime order q. On input X ∈ G, there is

no probabilistic polynomial time algorithm that outputs a value x ∈ Z∗q such that

gx = X with non-negligible probability.

Definition 3: Computational Diffie-Hellman (CDH) Assumption [34] Let g be

a generator of a multiplicative cyclic group Gwith the prime order q. On input gx,

gy ∈ G, there is no probabilistic polynomial time algorithm that outputs a gxy ∈ G

with non-negligible probability.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption [10] Let ê : G1×G1 →

G2 be a bilinear map, where G1 and G2 are two multiplicative cyclic groups with

the same prime order q. Let g and h be the generators of G1 and G2, respectively.

On input (g, ga, gb, Q) for a, b ∈ Z∗q andQ ∈ G2, there is no probabilistic polynomial

time algorithm to decide whether Q = ê(g, g)a/b with non-negligible probability.

3.2 Signcryption

Signcryption schemes have seen extensive acceptance and have been adopted into

many applications. The combination of signing and encryption into a singular

scheme has created greater efficiency in how to conceal and verify information and

identities. Al-Rayami and Paterson [3] introduced the notion of certificateless pri-

vate key cryptography (CLPKC) in 2003. This formed the basis ofmodern signcryp-

tion schemes, which simultaneously achieve signing and encryption. Signcryption

private keys consist of a partial key and secret value generated by a key genera-

tion center and a user respectively. Certificateless signcryption schemes have seen
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much growth. Ongoing research focuses on enhancing efficiency while maintain-

ing security goals.

Barreto et al. in [7] was the first to propose a CLSC scheme without bilinear

pairing. Shi et al. in [46] have demonstrated an efficient and secure certificateless

signcryption scheme without bilinear pairing. Several others have since proposed

other versions of CLSC schemes without bilinear pairing [22], [26]. These schemes

however, have been either less secure or inefficient.

Below we relate a generic signcryption algorithm [3], [22] & [26]:

Setup (k) Setup is performed by the KGC to generate the master secret key msk

and public parameters params.

1. Generate large primes p and q. The length of q is k and p = 2q + 1

2. Select a generator g with the order q.

3. Select a random point. x ∈ Z∗q and y = gx mod p.

4. Choose hash functions (n is the size of the message to be signcrypted):

H1 : {0, 1}∗ × Z∗p → Z∗q

H2 : {0, 1}∗ × Z∗p × Z∗p × Z∗p → Z∗q

H3 : Z∗p × Z∗p → {0, 1}n

H4 : {0, 1}∗ × Z∗p × Z∗p × {0, 1}n × Z∗p → Z∗q
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5. Return:

Parameters params = (p, q, g, y,H1, H2, H3)

Master Secret Keymsk = (p, q, g, x,H1, H2, H3)

For simplicity we assume that params is publicly available and accessible to all

functions.

Set Secret Value Given the publicly available parameters, a user u uses this algo-

rithm to generate his/ her public and private keys.

1. Generate secret key sku. sku is randomly selected where sku ∈ Z∗q

2. Calculate the public key pku where pku = gsku .

3. Return the secret and public key pair (sku, pku).

Partial Private Key Extract (IDu,msk) This operation is performed by the KGC.

A user with identity IDu and the KGC generate the partial public and private keys

PuandDu.

1. Select a random number su where su ∈ Z∗q .

2. Calculate Pu: Pu = gsu .

3. Calculate Du: Du = (su + xH1(IDu, Pu)) mod q.

4. Return partial private key Du and partial public key Pu - (Du, Pu).

Set Private Key (Du, sku) This algorithm is run by the user to generate the full

private/ secret key.

1. Set the full secret key SKu = (sku, Du)

2. Return SKu.
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Set Public Key (Pu, pku) This algorithm is used by the user to set the full public

key PKu.

1. Set PKu = (pku, Pu)

2. Return PKU

Signcrypt (M, IDA, IDB, SKA, PKA, PKB) This algorithm is run by a sender A

with an identity IDA using their full secret key SKA. Receiver B has an identity

IDB and a full public key PKu. Sender A signcrypts a plaintext message "M" to

send to receiver B. To create a ciphertext sender A:

1. Selects a random number rA, where rA ∈ Z∗q .

2. Calculate c1 = grA mod p.

3. Compute kA = H2(IDA, pkA, PA, y)

4. Compute kB = H2(IDB, pkB, PB, y)

5. Compute hB = H1(IDB, PB)

6. Compute ξ = (pkkBB PBy
hB)rA mod p

7. Compute c2 = H3(ξ)⊕M

8. Compute h = H4(IDA, pkA, PA, c1, c2, ξ,M)

9. Compute c3 = [(kApkA +DA)/(rA + h)] mod q

10. Return C = (c1, c2, c3)
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Unsigncrypt (C, IDA, IDB, PKA, SKB)This function is performedby the receiver

Bwith an identity IDB. B unsigncrypts the ciphertextC from senderwith IDAwith

public key PKA using its secret key SKB. Using the following steps, the receiver

will decrypt a ciphertextC and receive a resulting decryption δwhich can be either

corresponding plaintext or a rejection message.

1. Compute hA = H1(IDA, PA)

2. Compute hB = H1(IDB, PB)

3. Compute kA = H2(IDA, pkA, PA, y)

4. Compute kB = H2(IDB, pkB, PB, y)

5. Compute ξ = (c1)
kBskB+SKB mod p

6. ComputeM = c2 ⊕H3(ξ)

7. Compute h = H4(IDA, pkA, PA, c1, c2, ξ,M)

8. If (c1g
h)c3 == pkkAA PKAy

hA mod p

ReturnM

Otherwise/ else Return "Rejection Message."

3.3 Conditional proxy re-encryption

Proxy re-encryption (PRE) is a primitive used to transform ciphertext into a subse-

quent ciphertext. This is usually performed by a semi-trusted entity without ever

accessing the original plaintext [48]. This primitive is suitable for a number of ap-

plications, especially where file management and encryption are concerned. Con-

ditional proxy re-encryption (C-PRE) differs from the norm in that ciphertexts are
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encrypted with an additional condition. Functions for system setup and key gen-

eration follow the norm. Algorithms for re-encryption key generation, first level

encryption, re-encryption and decryption, however, require an additional condi-

tion c [44]. The added condition c must be equivalent in all functions. Otherwise,

decrypting ciphertext will prove unsuccessful.

Generally, C-PRE schemes are comprised of the following algorithms [50], [44]
1:

Global Setup (1λ): This is a preliminary algorithm that utilizes the security pa-

rameter λ and creates a set of global parameters params. params includes variables

to describe an elliptic curve and variables pertinent to key generation and creating

hash values. For simplicity we assume that all algorithms have access to the con-

tents of params.

Results: params

Key Generation (msk, IDi): This generates a private key for some user with a

public identity of IDi. msk represents the master secret key. A secret key skIDi
is

generated for the corresponding user, where IDi ∈ {0, 1}∗ .

Results: Secret/ Private key for ID rkIDi

Re-encryption Key Generation (skID1 , w, ID1, ID2): This algorithm generates

re-encryption keys. This is usually run by the user with ID1 for transmission to an

entity ID2 with its secret key SKID1 and a condition w.

Results: Partial re-encryption key: rk
ID1

w−→ID2
.

Encryption (ID,m, w): This algorithm is used to perform the initial encryption.

It accepts an identity ID. m represents a plaintext message where m ∈ M (M

denotes message space) and w is a condition. A ciphertext CT is outputted upon
1In this conditional proxy re-encryption scheme we use identities over the conventional public/

private key methods.
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completion.

Results: Ciphertext CT .

Re-encryption (CTID1 , rkID1
w−→ID2

) Re-encryption is performedby a trusted third

party or proxy. The algorithm uses a ciphertext CTID1 associated with the user

identity ID1 and a condition w. rk
ID1

w−→ID2
is the re-encryption between ID1 and

ID2 using the same condition w. This algorithm creates a new ciphertext CTID2

under ID2.

Results: Re-encrypted Ciphertext CTID2

Decryption (CT, skID ) This algorithm uses the secret key skID of an entity ID

and a ciphertext CT and returns a plaintext messagem or an error symbol ⊥.

Results: Corresponding plaintext -m or error message - ⊥.
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Chapter 4

Consent Based Access Control

This chapter proposes a consent-based access control (CBAC)mechanism for health

record systems. After obtaining consent from patients, a healthcare organization

can gain access to their data, which is encrypted by a healthcare provider. This is

achieved by a cryptographic primitive: conditional proxy re-encryption. By doing

so, a patient’s medical data is protected against access from unauthorized parties.

This includes the data centers where information is housed. Additionally, the pro-

posed scheme achieves collusion resistance. Furthermore, mutual authentication

and contextual privacy are attained. Performance evaluation demonstrates that the

proposed CBAC scheme can achieve security and privacy preservation with high

computational efficiency.

4.1 Introduction

Currently, healthcare providers globally are migrating towards electronic medical

records. This provides healthcare organizations a convenient and reliable way to

share and access health information. As we move healthcare to the digital world,
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privacy preservation in data has become imperative. In the past, a number of se-

curity and privacy preserving mechanisms have been proposed for health record

systems [25], [53], [24], [27] and [1]. However, due to the nature of the healthcare

industry, securing patients’ medical data is challenging.

These challenges plague technological implementation and adoption. One such

challenge is the problem of data ownership and control. Healthcare information

systems allow for a number of permitted data custodians. However, due to the sen-

sitivity of records, the owner retains a right to grant and revoke access to requesting

parties. These privileges extend beyond the release of information for retroactive

revocation. In other words, it is critical for patients to control access to their data.

Access of data must be associated with proper consent. Furthermore, a patient has

the right to retroactively withdraw or revoke consent at anytime. From this, we

conclude that consent is fundamental in healthcare information sharing. Unfor-

tunately, developing a new consent-based access control scheme to manage access

for sensitive health information poses unique challenges. Healthcare providers and

insurance companies must be able to request patient files. Prior to an entity receiv-

ing any records, patients must permit any requests. This may be in the form of

allowing partial access to a subset of requested records or the full record. Receivers

must be able to verify the received information. Finally, patients should be able to

retroactively deny access to records if they deem it necessary.

Based on the above observations, we propose a novel consent-based access con-

trol scheme for health record systems. A user’s health information is encrypted by

data providers before transmission to a data center for storage. A data requester ne-

gotiates with a user to obtain consent tokens for accessing health data. Meanwhile,

the user sends a consent notification with a re-encryption key to the data center.

The data center re-encrypts the requested encrypted data with the re-encryption
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Figure 4.1: System architecture of the electronic health information record system

key without accessing the plaintext and sends the ciphertext to the data requester.

The data requester is able to decrypt the ciphertext with his private key and the

consent token from the user. In this way, a user’s health information is exchanged

among the data provider, data center and data requester without leaking a user’s

data.

4.2 CBAC SystemModel

In this section, we present the design goals and framework for electronic health

record systems.

4.2.1 CBAC System Architecture

The proposed electronic health information record system is composed of a trusted

authority (TA), data provider (d), data center (c), data requester (s) and users (u),

as shown in Figure 4.1. Their functions are described as follows.
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4.2.1.1 Trusted Authority

These are trusted entities which manage the system. All other entities, including

the data provider, data center, data requester and users, must register to join the

system. The TA generates public/private key pairs for those that register.

4.2.1.2 Data Provider

Medical institutions, such as clinics, hospitals or family doctors, act as data providers

in the system. When a user arrives at the medical institution for health care or

treatment, the institution will record his/her health status and diagnosis; which

are components of the user’s health information. Next, the institution encrypts the

user’s health information and sends it to a data center. We assume that the data

provider is trustworthy.

4.2.1.3 Data Center

The data center is a semi-trusted authority, which records health information pro-

vided by data providers. Notably, all data providers send health information to the

data center as ciphertexts. Moreover, the data center is unable to decrypt cipher-

texts without consent. We assume that the data center is honest but curious about

stored information. Therefore, it is only semi-trusted.

4.2.1.4 Data Requesters

Insurance companies, governments, courts, or other entities may need to access a

user’s health information under certain circumstances, e.g., health insurance com-

panies require customer records for claims. Data requesters may take the form of

other data providers such as other clinics which require patient information. The
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requester should first obtain consent from users. It then sends a data request with

an associated consent token to the data center. The data provider may query the

data center to access the user’s health information.

4.2.1.5 Users

When a user arrives at amedical institution, i.e., the clinic or the hospital, for health

care or treatment, their health informationwill be generated and recorded. In some

situations, the user may form an agreement with a data requester allowing it to

access some of their health information by sending a consent token to the data re-

quester.

4.2.2 CBAC Design Goals

Based on the above system model, the design goals of the scheme are as follows:

4.2.2.1 Data confidentiality and integrity

Data cannot be accessed by other entities without user consent. Additionally, the

data should be protected from modification.

4.2.2.2 Contextual privacy

Data requesters are allowed to request a user’s health information from the data

center. Data Providers and Data Centers remain oblivious as to the contents of

the data transaction. In simpler terms, the data provider is unaware of the request

while the data center is unaware of whose information was requested. Further-

more, anyone eavesdropping on the data transmission cannot derive which infor-

mation was received or requested by the data requester.
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4.2.2.3 Consent revocation

Users have the privilege to terminate consent at any time prior to the expiration of

that consent. This is done through a consent revocation token.

4.2.2.4 Mutual authentication

The data provider and the data center should be able to authenticate each other.

Additionally, the user can only provide access to their own data. Consequently, the

data center should be able to authenticate the consent provider. This is achieved

through signcryption.

4.2.2.5 Collusion resistance

After receiving the re-encryption key intended for a data requester from a user, the

data center can re-encrypt the user’s data required by the requester. However, the

data requester cannot decrypt a user’s other data which exceed the consent given

by colluding with the data center.

4.3 CBAC Protocol Description

In this section, we provide an overview and describe the proposed CBAC protocol

and consent-based access control mechanism in detail.

4.3.1 An overview of the proposed CBAC protocol

When a user with identity IDu arrives at a healthcare provider (data provider), for

treatment, they will consent for records to be created. Interactions between them

will generate an original health record for the user. The data provider will store
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Figure 4.2: Proposed Protocol

the user’s heath information M in the format as shown in Figure 4.2. Then, the

data provider sends the data (ID′u||M ′) to the data center, where ID′u is the record

ID and M ′ is the an encryption of M . Upon receiving the record from the data

provider, the data center stores the message in the format as shown in Figure 4.2.

If an entity wishes to gain access to a patient’s files they will query the user

for consent. Once an agreement is achieved between the user and the requester,

the user will send a consent token to the data requester for accessing parts of their

health record from the data center. Meanwhile, the user should send a consent µ to

the data center to inform the center about the authorization or permission. After-

wards, the requester will request for the patient’s medical data from the center. The

data center checks the validity of the data request γ by using the consent µ from the

user. If the verification outputs valid, the data center re-encrypts the dataM ′ with

the re-encryption key provided by the user and sends the ciphertextM ′′ to the data

requester. During this phase, the ciphertextM ′, under the public key of the user, is

transformed into the ciphertextM ′′ under the public key of the data requester. As

a result, the requester is able to access the original dataM by decryptingM ′′ with

their private key.
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If the re-encryption key was to be generated via traditional algorithms, it would

be vulnerable to collusion attacks. Traditional re-encryption keys are only related to

the user’s private key and the data requester’s public key. The user’s other health

information may be accessed if the data requester re-encrypts it and the data re-

quester decrypts it. As a result, we propose a shared secret k1 between the user and

the data provider for each record. Thus, the health informationM is encrypted by

the user’s public key as well as the the secret k, i.e., M ′ = Enc(Xu,M, k1). Mean-

while, the user also introduces a shared secret k2 with data requesters for each

individual consent token. The secret k2 is included in the re-encryption key such

that only the intended data requester is able to access the specific data.

4.3.2 Consent Based Access Control

Unlike traditional permission-based access controlmechanisms,where permissions

are based on user identity, security label or role, the consent-based access control

mechanism guarantees the permission by sending a consent token to the data re-

quester. The consent token is neither an identity nor a security label. It is the prod-

uct of an agreement between the user (data owner) and the data requester, so it is

also not a role as the data requester cannot access the user’s other non-consented

data.

For notification of consent, the user also sends a consent token to the data center.

The data requester is required to send a token to data center in order to access

data. The data center is able to check the validity of the token by comparing it

with the consent received from the user. Additionally, the user has the privilege to

terminate the consent whenever he/ she chooses. Therefore, data centers are able

to retroactively revoke access to user information.

The consent-based access control mechanism guarantees data security through
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three conditions:

• The data requester is compelled to negotiate with the user in order to receive

a consent token. Consequently, the capacity to access records is controlled by

the user, which protects their data. Additionally, consent tokens cannot be

forged as the data center can verify tokens.

• The consent token is only valid for access of specific data which is granted by

the user. Thus, data is still protected when requesters have access tokens.

• Whenever patient medical data is accessed, the patient will be notified to en-

sure there is no abuse or use without their consent.

4.3.3 Protocol Description

The proposed CBAC protocol is composed of the following steps.

4.3.3.1 System Initialization

Given the security parameter λ, the TA generates the system parameters params =

(q, g,G1,G2, ê, H0, H1, H2, H3, σ(•)). Where G1 and G2 are finite cyclic groups with

the same prime order q, and g and h are generators of G1 and G2, respectively. The

bilinear pairing ê is a mapping: G1 × G1 → G2. The secure hash functions are as

follows:

H0 : Z∗q → Z∗q

H1 : {0, 1}∗ × Z∗q → {0, 1}∗

H2 : {0, 1}∗ × Z∗q × Z∗q × {0, 1}∗ → {0, 1}∗

H3 : {0, 1}∗ → {0, 1}∗
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H4 : G1 → G2

The item σ(•) is a general signcryption algorithm implemented by the data senders,

which completes signing and encryption in one logical step. Signcryption can achieve

non-repudiation, data confidentiality, and data integrity [22], [46]. The TA gener-

ates a public/private key pair (Xi, xi) for the entity i ∈ {u, d, s, c}, i.e., the user u,

data provider d, data requester s, and data center c 1.

4.3.3.2 Data Generation

Data generation is completed through the interaction between the user and data

provider. The user with identity IDu randomly chooses u1 ∈ Z∗q and computes

T1 = gu1 . T1 is introduced for the generation of the secret key shared between

the data provider and the user for the health record m. Thus, each record m has

a corresponding random number, which is used to generate a condition c (or the

secret value) shared between the patient and data requester. It can be used by the

patient to achieve fine-grained access control. The user goes to the clinic (or other

data provider) for treatment with the value σ(T1), where σ(T1) is the signcryption

of the user on T1. In subsequent communications, messages are all signcrypted as

σ(•) of the sender, where • is the message in transmission. After the diagnoses

and lab tests, the data provider will record the user’s health informationM in the

format as shown in Figure 4.2, including user identity IDu, health recordm, record

time tr and recorder IDd.
1 In order to protect the user’s privacy, the TA also generates a pseudo identity PIDu for the user

with identity IDu and publishes it with the user’s public key. The pseudo identity is usually gener-
ated from the real identity, i.e., PIDu = H3(IDu). Then, the user will use his pseudo identity PIDu

for interaction with the data center. However, he should use his real identity IDu for the interaction
with data providers or data requesters to achieve identity authentication. As the data provider and
the data requester are public institutes, it is unnecessary to protect their identity privacy.
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4.3.3.3 Data Storage

This task is performed through the interactions between the data provider and data

center. The data provider computes the shared key k1 = T xd1 with his private key

xd. The data provider computes a record ID, where ID′u = H1(M,k1), for the health

informationM . Furthermore, it encrypts the dataM with the user’s public keyXu

and the shared secret key k1.

The Data Provider encrypts data as follows

• Randomly chooses r ∈ Z∗q and computes Ca = Xr
u

• Next it computes h0 = H0(k1) and Cb = ê(g, g)r ∗H4(X
h0
u ) ∗M

Thus, health information M is encrypted as M ′ = (Ca, Cb). The data provider

sends σ(ID′u||M ′) to the data center for storage. Upon receiving data from the data

provider, the data center stores the data in the format shown in Figure 4.2, including

data identity ID′u, encrypted messageM ′, receiving time tc, and data sender IDd.

4.3.3.4 Data Consent Sharing

This step is performed by the user. When a data sharing agreement is made be-

tween the user and the data requester, the user sends a consent token β to the data

requester for retrieving records from the data center. The user sets the expiry time

of the consent token as te. The consent token β is generated by the user as follows.

The user:

• Randomly chooses u2 ∈ Z∗q and computes T2 = gu2 , k2 = Xu2
s

• Computes h2 = H2(M
′, k1, k2, te), hk = H0(k1)⊕H0(k2)
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Table 4.1: CONSENT LIST IN DATA CENTERS

Record ID PID of the user Expected Receiver Consent Encrypted Message Expiry Time

ID′u PIDu IDs h2||h3||xr M ′ te

Table 4.2: CONSENT REVOCATION LIST IN DATA CENTERS

Record ID Revocation Token PID of the user Expected Receiver Expiry Time

ID′u h2 PIDu IDs te

A token is constructed in the format of β = σ(h2||hk||T2||te) and sent to the data

requester. Simultaneously, the user sends a notification consent token µ to the data

center. The consent token µ is generated by the user. The user:

• Computes h3 = H3(h2, P IDu, IDs, ID
′
u,M

′, te), PIDu is the pseudo identity

of the user in the data center for privacy preservation, IDs is the identity of

the data requester 2

• Computes the re-encryption key xr = (xr1 , xr2) = (X
1/xu
s , gH0(k2))

The consent µ = σ(h2||h3||ID′u||IDs||xr||te) is then sent to the data center. The

data center searches its database forM ′ with record identity ID′u and checks h3 =

H3(h2, P IDu, IDs, ID
′
u,M

′, te).

If the equation holds, the data center stores the consent as shown in Table 4.1.

If no encrypted messageM ′ with the record identity ID′u is found in the data cen-

ter, the message is ignored. Notably, a user can terminate a consent that he/she

authorizes. They send a consent revocation notification θ = σ(ID′u||h2||PIDu) to

the data center. Additionally, the data center stores the consent revocation into the
2The items (ID′

u,M
′) are calculated by the user since he/she knows the shared secret key k1 and

the health record M .
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consent revocation list (CRL), as shown in Table 4.2. Moreover, both the CRL and

the consent list will be updated periodically to remove the expired consents.

4.3.3.5 Data Transmission

After receiving the consent token β = σ(h2||hk||te) from the user, the data requester

formulates a data request γ = σ(IDs||h2||te) and sends it to the data center to fulfill

data requirements. When a data request gamma = σ(IDs||h2||te) arrives, the data

center first checks Table 4.2. If h2 is in the revocation list, the message is ignored.

The data center checks the consent list in Table 4.1 to decide whether requests have

expired. It checks the item consent in Table 4.1 to decide if a consent token with

the same value as h2 is in β. If no consent token is found, the request is discarded.

Otherwise, the data center checks whether the expected receiver IDs in the table is

the same as the identity of the data requester. If all the above verifications are valid,

the data center re-encrypts the messageM ′ = (Ca, Cb) with the re-encryption key

xr = (xr1 , xr2) and the consent as follows:

• Randomly chooses w ∈ Z∗q

• Computes C1 = Cw
a , C2 = x

1/w
r1

• Computes C3 = Cb ∗H4(x
xc
r2

)

Thedata center sends the re-encryptedmessageM ′′ = (C1, C2, C3) to the data re-

quester. Additionally, the data center sends an access notification ν = σ(ID′u||h2||h3||IDs)

to the user to inform them that data was transmitted.

4.3.3.6 Data Reception

The data requester decrypts the messageM ′′ = (C1, C2, C3) as follows:
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• Compute k2 = T xs2 and Cb = C3/H4(X
H0(k2)
c )

• Compute h0 = hk ⊕H0(k2)

• ComputeM = Cb/(ê(C1, C2)
1/xs ∗H4(X

h0
u ))

If any variable during the re-encryption or decryption is invalid then the decryption

will fail.

4.4 Security Analysis

In this section, we analyze how the proposed CBAC protocol achieves the design

goals as described in Section 4.2.2.

4.4.1 The proposed protocol can achieve data confidentiality and

integrity

Before sending the data to the data center, the data provider encrypts the health

information with the user’s public key and their shared key k1. Only the user with

the correct private key and secret key can decrypt it. Moreover, after obtaining

the consent token from the user, the data requester is able to access the data by

decrypting the re-encrypted ciphertext, which is generated by the data center with

a re-encryption key. The re-encryption key can only be generated by the user. Thus,

data can only be accessed with the user’s consent. In this way, data confidentiality

is ensured. Additionally, data integrity is achieved by the signcryption of the data

provider on the message ID′u||M ′.

45



4.4.2 The proposed protocol can achieve contextual privacy

For each health record M , there is an unique record ID′u = H1(M,k1) which is

sent to the data center to label the health record. The encrypted health information

M ′ is provided by the data provider. Therefore, the data center cannot link data

to its original user. The user sends its consent to the data center with a pseudo

identity. Consequently, the data provider cannot get any information concerning

transactions between the user and other data requesters. Furthermore, even though

the data provider knows the user identity of certain records, they cannot derive

what information is requested from the data center since all transmission are sign-

crypted.

4.4.3 The proposed protocol can achieve consent revocation

Consent can be revoked in two ways. There is an expiration time for each consent.

Thus, the consent automatically becomes invalid when expiration times are met.

Users are also able to terminate consent by sending a consent revocation notification

to the data center before expiry dates.

4.4.4 The proposed protocol can achieve mutual authentication

Mutual authentication is achieved through the signcryption of messages. Specif-

ically, only intended receivers are able to decrypt messages, which also authenti-

cates receivers. Moreover, the signature algorithm in signcryption can authenti-

cate senders. Furthermore, the shared secret key k1 between the user and the data

provider, and the shared secret key k2 between the user and the data requester help

the user to authenticate data providers and requesters, respectively. This is because

only the data provider and the data requester can compute the shared secret k1 and
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k2 with the value T1 and T2 under the computational Diffie-Hellman assumption.

4.4.5 The proposed protocol can achieve collusion resistance

The re-encryption key is not only generated from the user’s private key but also

from the shared secret k2, which is unique and different for each consent. As a

result, even if the data requester and data center collude, they are unable to access

the non-consented data because they have no information on H0(k1).

4.5 Performance Evaluation

In this section, we analyze the computational and storage overhead of our scheme.

We then compare it with other data exchanging schemes in cloud environments,

which share similar security objectives with our system model.

4.5.1 Benchmarks

The essential task of the proposed protocol aims to share data in a cloud envi-

ronment. We compare it to other data sharing schemes in the cloud [48], which

have similar security objectives. Both the proposed CBAC and [48] use conditional

proxy re-encryption to achieve the security requirements, we also use the condi-

tional proxy re-encryption algorithms [44] for comparisons. For the unification of

our benchmark, we chose the following two settings:

1. We assume the conditions in the conditional proxy re-encryption of the three

schemes are the input of algorithms. Thus, we do not consider the computa-

tional overhead for condition generation.
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2. We mainly compare the computational overhead at the user (“client Ui” in

[48]), data center (“cloud storage” in [48]), and data requester (another client

Uj in [48]).

4.5.2 Computational Overhead

As the operations of bilinear pairing and exponentiation dominate the computa-

tional overhead of the algorithms, we consider the time consumption of these op-

erations. We denote tp, t1, t2 as the computational cost of bilinear pairing, expo-

nentiation in G1, and exponentiation in G2, respectively. In the proposed CBAC

protocol, the computational cost of the user is caused by the data encryption and

re-encryption key generation. It takes tp + 2t1 + t2 to encrypt the the data and

2t1 to generate the re-encryption key, thus the computational overhead at the data

provider is tp + 4t1 + t2. In order to re-encrypts the ciphertext M ′ , the data cen-

ter performs three exponentiations in G1 to output the ciphertextM ′′. At the data

requester, decryption of the ciphertextM ′′ costs tp + 2t1 + t2 overhead.

In [48], the client Ui performs the role of data provider in our system. It takes

them 2tp + 3te + tm to encrypt the data and 3te + 2tm to generate the re-encryption

keyRK(i→j). The cloud storage, whichworks as a data center in our scheme, carries

out 2tp + 2te + 2tm to complete the data encryption. Additionally, the cloud has to

execute one exponentiation to generate the partial re-encryption key. Consequently,

the computational overhead of the cloud is 2tp + 3te + 2tm. In order to decrypt the

data, the data receiver Uj consumes tp + 2te + 3tm overhead.

We applied the conditional proxy re-encryption technique [44] in our system

and compared it with our proposed scheme. In [44], it takes tp + 4te + tm to encrypt

the data and tp + 4te + 2tm to generate the re-encryption key. As a result, if the

conditional proxy re-encryption of [44] is used in our system, it will cost the data
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Table 4.3: COMPARISON OF COMPUTATIONAL OVERHEAD

Scheme Data Provider Data Center Data Requester

[44] 2tp + 6t1 + t2 2tp 2tp + 2t1 + t2

[48] 2tp + 4t1 + 2t2 2tp + t1 + t2 tp + 2t1 + t2

CBAC tp + 4t1 + t2 3t1 tp + 2t1 + t2

Table 4.4: TIME CONSUMPTION OF OPERATIONS

Operations Time

Preprocessing Pairing 5.9

Exponentiation in G1 6.4

Exponentiation in G2 0.6

provider 2tp+ 8te+ 3tm overhead. Similarly, the data center will take 2tp + 2tm to

re-encrypt the data and the data requester will take 2tp + 3te + 2tm to decrypt the

ciphertext, as shown in Table 4.3.

To quantify the running time of the operations, we use the results in [45] as the

benchmark for comparisons, as shown in Table 4.4. The processor is a 64-bit, 3.2Ghz

Pentium 4. The running times are tp = 5.9ms, t1 = 6.4ms, t2 = 0.6ms, respectively.

We evaluate the performance with the similar settings. Computational overheads

are compared in Figure 4.3.

From Figure 4.3, we discern that our proposed scheme has the lowest compu-

tational overhead for clients and users. Consequently, our proposed CBAC is also

suitable for users with resource constrained terminals, i.e., mobile phones. The

scheme [44] has the highest computational efficiency at the data center. Thus [44]

offers a better performance for the cloud than the other schemes but has a much

higher cost for clients. Notably, the scheme [48] and our proposed scheme have
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Figure 4.3: Comparison of Time Consumption

Table 4.5: COMPARISON OF CIPHERTEXT SIZES

Schemes Original Ciphertext Size Re-encrypted Ciphertext Size

[44] 3|G1|+ |G2|+ |m| 5|G1|+ |G2|

[48] 2|G1|+ 2|G2| 2|G1|+ 2|G2|

Proposed Scheme |G1| + |G2| 2|G1|+ |G2|

almost the same time consumption for data requesters, while the proposed scheme

outperforms the [48] for user (data providers / clients).

4.5.3 Ciphertext size

We denote |G1|, |G2|, |m| the size of the elements in G1,G2 and the message. In the

proposed CBAC, the original ciphertext M ′ is composed by Ca and Cb, the length

of which is |G1| and |G2|, respectively. Thus, the size of the original ciphertext is

|G1|+|G2|. The re-encrypted ciphertextM ′′ = (C1, C2, C3), with size 2|G1|+|G2|. The
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Table 4.6: STORAGE OVERHEAD OF THE PROPOSED SCHEME

Entity Components Storage

Data Center

Health Information 2|S|+ |H|+ |G1|+ |G2|

Consent 3|S|+ |H|+ 3|G1|+ |G2|+ 2|h|

Consent Revocation 4|S|+ |H|

Data Provider Health Information 2|S|+ |H|+ |m|

size of the original ciphertext and re-encrypted ciphertext of the three schemes are

compared in Table 4.5. As shown in the table, the proposed scheme has the smallest

size among the three schemes for both the original ciphertext and the re-encrypted

ciphertext 3.

4.5.4 Storage Overhead

We analyze the storage overhead at the data center and data provider as they store

all user data, which increases with the amount of users. Note that we only provide

the storage needed for one user’s health information. The total storage can be cal-

culated throughmultiplication. We denote |S| and |H| as the size of the identity for

all the entities and the size of the receiving time tc or record time tr, respectively.

For the data provider, it stores the user’s original health record M , which is com-

posed by user identity IDu, health record m, record time tr and recorder ID IDd.

The storage overhead at the data provider is 2|S|+ |H|+ |m|.

At the data center, the user’s health information, consent list and the consent

revocation list are stored. As displayed in the table of the Figure 4.2, the user’s
3As all the messages are signcrypted by the sender, the communication overhead of the pro-

posed scheme is determined by the signcryption algorithm. Thus, we do not analyze the communi-
cation overhead of the proposed scheme. Instead, we analyze the storage overhead of the proposed
scheme.

51



health information in the data center includes data ID ID′u, encrypted dataM ′, re-

ceiving time tc, and sender ID IDd. The storage overhead of the health information

is 2|S|+ |H|+ |G1|+ |G2|. From Table 4.1, we can calculate the storage overhead of

the consent as 3|S| + |H| + 3|G1| + |G2| + 2|h|, |h| denotes the length of output of

the hash functionH2 andH3. One consent revocation list takes up 4|S|+ |H| space

in the data center. The storage overhead is shown in Table 4.6.

4.6 Concluding Remarks

This chapter proposed a consent-based access control (CBAC) mechanism for se-

cure and privacy-preserving health information exchanges. The proposed scheme

achieves data security and privacy preservation by introducing consent-based ac-

cess control, where consent can only be generated by the authorized user. A proxy

re-encryption algorithm is proposed to achieve data sharing between the data cen-

ter and the intended data requester without disclosing the content to the data cen-

ter. Additionally, a condition is integrated into the re-encryption key to achieve

collusion resistance. Moreover, mutual authentication and contextual privacy are

realized by using the public key and a pseudo identity for users.
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Chapter 5

Fairness Aware Privacy Preservation

This chapter proposes the fairness-aware and privacy-preserving (FAPP) protocol

for online third party non-medical entities. More specifically this protocol is meant

to address online health insurance systems. In the FAPP protocol, a user’s health

condition is encapsulated into a ciphertext with random numbers and sent to the

health insurance company. The company will be unable to access the plaintext

without prior user permission. However, the company will still be able to ver-

ify user integrity based on the ciphertext. In contrast to current health insurance

schemes where insurance quotes are calculated by the company, the quote is calcu-

lated by the user based on the company’s public policy in the proposed FAPP pro-

tocol. Additionally, the company is able to determine whether users have cheated

when generating quotes. Furthermore, a concept of privacy-preserving quote is

proposed. A user’s health details cannot be derived from the quote alone. Secu-

rity analysis demonstrates that the proposed FAPP protocol can achieve privacy-

preservation and transparency.
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5.1 Introduction

The advance of information and communication technology has revolutionized in-

dustries. The insurance industry, for example, offers online quotes to their cus-

tomers. Such online insurance quoting systems provide convenience and savings

for both companies and their consumers. Unfortunately, the handling of sensitive

customer health data has introduced several privacy and security challenges [2],

[47]. Privacy schemes and mechanisms have been developed in the past to secure

e-Health systems and ensure that they conform to local health information legisla-

tion [27], [24]. However, health insurance companies require a myriad of sensitive

information prior to issuing a quote and providing insurance. Additionally, how a

quote is calculated remains a mystery to most insurance clients. Furthermore, an

insurance company may deny coverage to a client if they deem them to be a future

liability. This creates a challenge to secure online insurance application systems

and creating fairness.

Unfortunately, completely obscuring a client’s health details poses new chal-

lenges to insurance companies, such systems may be susceptible to abuse from

clients. For instance, a client may be deceptive. They may attempt to deceive insur-

ers concerning their insurance application and not disclose their previous smoking

habits or chronic illness. This is one problem plaguing the insurance industry, also

known as insurance fraud [35]. Consequently, designing a privacy scheme for this

particular scenario presents several unique challenges:

1. The company should not be allowed to access the user’s health information

while it is able to generate a quote from the messages provided by the appli-

cant.

2. Users are encouraged to provide true information to the company. Otherwise,
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the dishonest behaviors will be discovered by the company.

3. Observers of data transmission between the applicants and company are un-

able to derive a user’s health details through eavesdropping.

In order to address the above challenges, this chapter proposes a fairness-aware

and privacy preserving (FAPP) insurance application system. Firstly, we propose

the concept of privacy-preserving quotes. Users are encouraged to apply for the

health insurance, it is difficult for the company or other entities to derive a user’s

health status from the quote alone. Based on the quote mechanism, an insurance

application protocol is designed with fairness-aware and privacy preserving capa-

bilities. This is done by encapsulating user health details into a ciphertext with

random numbers. The company is unable to access the plaintext, but can discern

if users are truthful when a claim is made.

5.2 FAPP SystemModel

This section introduces the system model and the concept of privacy-preserving

quotes. Design goals are presented later in the section.

5.2.1 FAPP System Architecture

An online insurance system is composed of three entities, including the trusted

authority (TA) such as CISRO (Canadian Insurance Service Regulatory Organiza-

tion) [14], insurance company, and users, as shown in Figure 5.1. We assume that

a user uwith identity IDu wants to apply for an insurance from a health insurance

company cwith identity IDc. He/she should provide the companywith some nec-

essary information, including his/her name, birth date, and so on, which cannot be
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Figure 5.1: Processes of Health Insurance Applications

kept secret to the company. After checking the eligibility of the user, the company

sends him/her a policy for fairness, which includes a detailed quote, as shown in

Figure 5.1. The quote is determined by the user’s attributes, each of which stands

for a related health condition (a disease or a habit). In order to avoid deriving a

user’s health details or habits from the quote, it should be carefully designed so

that one quote corresponds to multiple attribute combinations. In doing so, the k-

anonymity technique [52], [36] is adopted. Consequently, all related attributes are

categorized into three attributes1, i.e., Type A, Type B, and Type C. Different types

of attributes have different weights in affecting the quote, while for all the attributes

in one type, they have the same weight, as shown in the policy Table of Figure 5.1.

In the Policy Table of Figure 5.1, the notation "0" denotes that an applicant does

not have an attribute or is healthywithout the disease or bad habit that the attribute
1The attributes can be classified into more than or less than three types. In the scheme, three

types are chosen as an example.
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Table 5.1: INSURANCE RATES AND QUOTES

Insurance Rate [W−,W1) [W1,W2) [W2,W+]

Quotes Q1 Q2 Q3

indicates, and "1" denotes that an applicant has an attribute 2. The value a0 and

a1 denote the weights of attributes in Type A with status "0" and "1", respectively.

Notably, the attributes of the same type with the same status should be given the

sameweight in the quote. For example, the value b0, b1, c0, c1 for attributes of Type B

and Type C, respectively. It is assumed that there are in total t attributes for which

the health insurance company are concerned about and that there are d, e, and f

attributes in Type A, Type B, and Type C, respectively, where t = d+ e+ f . In order

to describe privacy-preserving quote clearly, we will first define an insurance rate.

Definition 1: Insurance Rate - Let i1, i2, ..., id ∈ 0, 1 denote the user’s attributes

A1, A2, ..., Ad. Correspondingly, j1, j2, ..., je ∈ 0, 1 and k1, k2, ..., kf ∈ 0, 1 denote the

user’s attributes Bl, B2, ..., Be and Cl, C2, ..., Cf , respectively. The user’s insurance

rate is the summation of the weights of all the attributes, expressed by:

M + u = ai1 + ai2 + ...+ aid + bj1 + bj2 + ...+ bje + ck1 + ck2 + ...+ ckf

We assume that there are three quotes for the insurance rate. The quotes are

fixed by setting lines for the insurance rate, as shown in Table 5.1. W− and W+

denote the low bound and upper bound of the insurance rate. In the proposed

scheme, they are computed by:
2For simplicity, we assume that an attribute only has two statuses, i.e., "0" and "1". In reality, some

attributes could have more than two statuses, and the proposed scheme can easily be extended, for
example, by introducing more symbols.
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W− = d× a0 + e× b0 + f × c0

W+ = d× a1 + e× b1 + f × c1

The upper bound of Q1 and Q2 are W1 and W2 respectively, which are set by the

company.

5.2.1.1 Anonymity analysis

Given the quote, the possibility of divulging the health status of the a depends on

the corresponding insurance rate and the number of combinations having the same

rate. Without loss of generality, we assume that there are α values in the insurance

rate range of [W−,W1), denoted byW−,W−+1,W−+2, ...,W−+(α−1), whereW−

+α = W1. Each insurance rate may be generated by several combinations of health

statuses. We assume that W−,W − +1,W − +2, ...,W − +(α − 1) are generated

by L1, L2, ..., Lα combinations of health statuses, respectively, as shown in Figure

5.2. Then, given Q1, the possibility of discerning the health status of the user is

expressed as:

p1 =
1

L1 + L2...+ Lα

In order to protect the user’s privacy as much as possible, the weights of the at-

tributes should be skillfully setup so that there are multiple health status combi-

nations for one insurance rate. This will reduce the possibility of the company to

deriving a user’s health status from the quote. For example, wemay set a0 = b1 and

b0 = c1. Obviously, the smaller p1 is, the higher level of anonymity we have.
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Figure 5.2: Privacy Preserving Quote with k-anonymity

5.2.2 FAPP Design Goals

Security: The user’s data should be protected during transmission and storage.

Privacy-preservation: 1) The company is unable to access the user’s health status

or other sensitive data except information which is necessary for health insurance

applications, these include names, addresses and birth date, etc. 2) Any other enti-

ties, besides the company and the user, are unable to derive health information or

quote by observing transmissions between the user and company.

Fairness: 1) The company should be unable to deny that they have received the

user’s data provided for a quote. Furthermore, they are not allowed to access sen-

sitive health information. 2) The users should provide truthful information to the

company. Otherwise, the dishonest behaviors should be detected by the company.
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For example, when a user later makes an insurance claim, the company can ask the

user to submit his/her medical history to determine whether the user had lied on

his/ her insurance application.

5.3 FAPP Protocol Description

In this section, we propose the FAPP insurance application protocol, which can be

used by both the user and the company to calculate quotes according to the policy

for transparency and fairness. However, the user’s specific health details should re-

main hidden from the company to achieve privacy-preservation. Consequently, in

the health declaration process of Figure 5.1, the health information should be in the

form of a ciphertext which cannot be decrypted by the company. The company is

able to determine the applicant’s quote from it. More specifically, the user’s health

status information is denoted by

{m1,m2, ...,mt} , {ai1ai2 , ..., aid , bj1 , bj2 , ..., bje , ck1 , ck2 , ..., ckf}.

The composition of the proposed scheme is explained in detail below.

5.3.1 System Initialization

Given the security parameter γ, the TA generates a large prime q. P is a generator

of cycle groupG, which is on ECCwith order q. The TA randomly selects s ∈ Z∗q as

the master private key and computes the public keyXP whereXP = sP . Moreover,

the TA chooses a secure hash function: H1 : Z∗q × Z∗q → Z∗q and a certificateless

signcryption algorithm Sgn(•). The system parameter is published as params =

(q, P,XP , H1, Sgn(•)).
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5.3.2 Registration

Both the user and the insurance company register with the TA for key generation.

We denote i ∈ u, c the user u or the company c. These steps are performed by the

entity i and the TA interactively.

• The entity i randomly chooses xi ∈ Z∗q as its secret value and computes Xi =

xiP as its public key, and sends it to the TA.

• TheTA randomly selects yi ∈ Z∗q and computesY i = yiP, zi = yi+sH1(IDi, Yi, Xi, XP )

for the user with partial public key Xi.

• The partial private key zi is sent to the user through a secure channel and the

public key (Xi, Yi) is stored in the public tree by the TA.

The full private key of entity i is (xi, zi). The full public key is (Xi, Yi). The

entity imay judge the validity of the partial private key by checking whether Yi +

H1(IDi, Yi, Xi, XP )XP = ziP .

5.3.3 Health Declaration with Privacy Preservation

Upon receiving the user’s application for the insurance, the company checks the

eligibility of the user and randomly chooses f1, f2, ..., ft ∈ Z∗q . It then computesF1 =

f1P, F2 = f2P, ..., Ft = ftP, F = f1 + f2 + ...+ ft. The company sends (F1, F2, ..., Ft)

to the user. The user then randomly selects r1, r2, ..., rt ∈ Z∗q and hides their health

information by computing

U1 = m1Yc + r1Xc + xuF1, h1 = H1(m1||r1)

U2 = m2Yc + r2Xc + xuF2, h2 = H1(m2||r2)
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Figure 5.3: Proposed FAPP Protocol

...

Ut = mtYc + rtXc + xuFt, ht = H1(mt||rt)

and

h = h1||h2||...||ht

The user later computes his insurance rate asMu = m1 +m2 + ...+mt.

It is worth noting that we assume insurance companies make their insurance

policies public. As a result, the user knows his/her eligibility and how much they

have to pay for their policy. This can assist in achieving fairness by preventing

the abuse of insurance companies. Instead of sendingMu to the company directly,

the user checks Table 5.1 for a corresponding quote Qu. Thus, the user formulates

their data as Λ = (U1, U2, ..., Ut, h,Qu) and creates a signcryption on it, obtaining

σu = Sgn(IDu, IDc,Λ). The user sends σu to the company, as shown in Figure 5.3.

After receiving σu, the company unsigncrypts it with their private key and the

user’s public key, getting Λ = Unsgn(IDu, IDc, σu). The company stores Λ as the
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evidences in the format of Table 5.2. Simultaneously, the company also signcrypts

on Λ, formulating σc = Sgn(IDc, IDu,Λ), and sends it to the user as an evidence

for their policy approval.

Remark 1 1) The user should sign on Λ because (U1, U2, ..., Ut, h) acts as evidence to

provide non-repudiation of the user. On the other hand, the information of quote Qu can

only be accessed by the health insurance company and should be kept confidential during

the transmission. Therefore, both signature and encryption are required for the health dec-

laration. In order to reduce the computational complexity, we adopt signcryption to achieve

the security objectives. 2) The user is also required to collect evidence from the company

to show that they provided a true declaration of health to the company should an argument

appear. Consequently, the company should also make a signcryption on Λ as an evidence

for the user.

Table 5.2: EVIDENCE AVAILABLE TO COMPANY

USER ID Public Key Evidence Data

IDu Xu σu, f1, f2, ..., ft Uz, U2, ..., Ut, h,Qu

5.3.4 Argument Disposal

A user may make a health insurance claim. If the company suspects fraud, the

user will be asked to provide their medical history, (m′1, ,m
′
2, ...,m

′
t). Each m′i cor-

responds tomi for all i ∈ 1, 2, ..., t. In this case, the user sends the company

(m′1,m
′
2, ...,m

′
t, r1, r2, ..., rt).
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The company then checks whether the following equations holds

Ui , m′iYc + riXc + xuF1, hi , H1(m
′
i||ri)

for all i ∈ 1, 2, ..., t. If all the equations hold, it has been proven that the user pro-

vided true health details3. The company then continues checking whether M ′
u =

m′1+m
′
2+...+m

′
t corresponds to a distinct health rateQu. Upon completing all verifi-

cations, the company will compensate the user for their insurance claim. However,

if the user is proven to have falsified details they will be rejected.

The traditional insurance application procedure violates the user’s privacy be-

cause the user needs to send all of their health detailsm1,m2, ...,mt to the company.

In order to address this problem, we propose to send only the insurance rate M ′
u

and the summation of the randomnumberR to the company for verification, where

M ′
u = m′1 +m′2 + ...+m′t and R = r1 + r2 + ...+ rt. The company checks

U1 + U2 + ...+ Ut = M ′
uYc +RXc + FXu, (1)

where F = f1+f2+ ...+ft. In the next section, we prove that the proposed protocol

is insurance-rate cheat resistant. Thus, if the equation holds, the user is proved to

provide the true insurance rate to the company. It is worth noting that the insurance

rate Mu may leak some information of the user. However, it has better privacy

protection than the traditional method where (m1,m2, ...,mt) has to be provided.
3In Section 5.4, we prove that the scheme is health-declaration-cheat resistant
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5.4 Security Analysis

In this section, we prove that the proposed protocol can resist a health-declaration-

cheat and insurance-rate-cheat. Furthermore, we show that the proposed protocol

can achieve privacy preservation and fairness.

5.4.1 Health Declaration Cheat Resistance

Theuser falsifies health declarations (statuses) to the company to reduce their quote.

The following lemma demonstrates that the proposed scheme can achieve health

declaration cheat resistance.

Lemma 1 The user is able to cheat on the health status only when he is able to

solve the ECDLP.

Proof Without loss of generality, we assume that the user cheats onm1 by setting

m1 = m′1− d, where d = a1− a0 andm′1 is the true health status. The user provides

U1 = m1Yc + r1Xc + xuF1 to the company. When a claim is made, the user should

disclose to the company their true health detailsm′1 with another random number

r′1. If the user is able to select the right r′1 to pass the verification, they will be

successful in falsifying the health information. In order to pass the verification,

(m′1, r
′
1) should satisfy the following equation:

U1 = m′1Yc + r′1Xc + xuF1,

Thus, we have

m1Yc + r1Xc + xuF1 = m′1Yc + r′1Xc + xuF1.(2)
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Replacem1 withm′1 − d, Eq. 2 becomes

(r1 − r′1)Xc = dYc.(3)

In Eq. 3, given d and r1, the user has to solve ECDLP for obtaining the value of

r′1
4. Consequently, under ECDLP assumption, the proposed scheme is health-

declaration-cheat resistant.

5.4.2 Insurance Rate Cheat Resistance

The user may send a false quote to the company even though they provided the

true health information. The following lemma shows that the proposed scheme

can achieve insurance-rate-cheat resistance.

Lemma 2 The user is able to cheat on the insurance rate only when he is able to

solve the ECDLP.

Proof We assume that the user provides the false insurance rate M∗
u = Mu − e,

whereMu = m1 +m2 + ...+mt is the true insurance rate and e is an integer selected

by the user. In order to pass the verification of Eq. 1, he has to send the company a

false R∗ = R + δ, where R = r1 + r2 + ...+ rt is the true summation of the random

numbers. Given e, if the user can find the correct δ to pass Eq. 1 with (M∗
u , R

∗), he

will succeed in falsifying the insurance rate. In order to pass the verification of the

company, the following equation should hold:

M∗
uYc +R∗Xc + FXu = U1 + U2 + ...+ Ut(4).

4Since d and Yc are known to the user, the scale multiplication product of (r1 − r′1)Xc can be
obtained. For simplification, we denote r1 − r′1 = a, xc = b, thus Xc = bP, (r1 − r′1)Xc = abP . To
solve Eq. 3 over r′1 is to actually solve the following problem: Given abP and bP , compute a.
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Eq. 4 can also be presented as

MuYc − eYc +RXc + δXc + FXu = MuYc +RXc + FXu.(5)

From Eq. 5, we find that δ should satisfy

eYc = δXc.(6)

Similar to the proof of Lemma 1, the user should be able to solve ECDLP for obtain-

ing the value of δ. Therefore, the proposed scheme is insurance-rate-cheat resistant

under the ECDLP assumption.

5.4.3 Privacy Preservation

In the proposed scheme, the user’s health details mi for all i ∈ 1, 2, ..., t are en-

capsulated as U1, U2, ..., Utwith random numbers r1, r2, ..., rt. Thus, the company

is unable to access the content mi, because they do not know ri. Moreover, even

though the user provides their quote Qu to the company, the company only has a

small possibility of guessing the user’s health statuses because one quote can be

generated through different combinations of health statuses. Additionally, the ob-

servers, who view all transmission between the user and company, know nothing

about the user’s health information because the data Λ is signcrypted by the user

and the company. Only the intended receiver, the company or the user, can un-

signcrypt it. Even if an adversary unsigncrypts the ciphertext σu or σc, they would

only receive encapsulated information U1, U2, ..., Ut, which provide no information

aboutm1,m2, ...,mt without the knowledge of r1, r2, ..., rt.
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5.4.4 Fairness

The proposed scheme provides fairness for both the users and the company. In the

existing health insurance system, the users passively accept the quotes from the

company without prior knowledge on how quotes are calculated. Whereas, in our

proposed scheme, quote specifics are included in the public policy such that users

can calculate quotes themselves. However, users are compelled to provide honest

health information to the company. Otherwise, false information will be detected

by the company according to Lemma 1 and Lemma 2. This provides fairness for the

company. Additionally, the user and the company’s signcryption σu and σc provide

non-repudiation of sending and receiving the data Λ for the user and company,

respectively.

5.5 Performance Evaluation

In this section, we analyze the computational and communication overhead of the

proposed FAPP protocol.

5.5.1 Computation overhead

We denote tm as the time consumed for one scalar multiplication in G, ts and tu

as the time consumption for the signcryption and unsigncryption, respecitively. In

the proposed FAPP protocol, it takes the user three scalar multiplications to com-

pute each ciphertext Ui for i ∈ 1, 2, ..., t. The total computational overhead for the t

ciphertexts is 3t× tm. Additionally, the user has to signcrypt on Λ and unsigncrypt

on σc. Thus, the computational overhead of the user is 3t× tm+ ts+ tu. For the com-

pany, it takes t× tm to compute F1, F2, ..., Ft and tu+ ts to complete the signcryption
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Table 5.3: CBAC COMPUTATIONAL AND COMMUNICATION OVERHEAD

Overhead User Company

Computation 3t× tm + ts + tu t× tm + tu + ts

Communication |σ| t|G|+ |σ|

and unsigncryption algorithms, as shown in Table 5.3.

5.5.2 Communication Overhead

Wedenote |G| and |σ| as the size of an element inG, and the size of the signcryption,

respectively. In FAPP, the user sends the signcryption σu to the company, generating

|σ| communication overhead. The company sends F1, F2, ..., Ft and σc to the user.

Thus, the communication overhead is t|G|+ |σ|, as shown in Table 5.3.

5.5.3 Concluding Remarks

In this chapter, we introduced the concept of privacy-preserving quotes for online

health insurance systems. Based on the quote mechanism, we proposed a fairness-

aware and privacy-preserving (FAPP) insurance application protocol, which can

achieve health-declaration-cheat resistance and insurance-rate-cheat resistance un-

der the ECDLP assumption. The proposed FAPP protocol protects user health in-

formation privacy by encapsulating data into a ciphertext with random numbers.

Moreover, FAPP is fairness-aware because quote details are publicly available and

users can compute their own quotes. However, users are still unable to falsify their

rates and quotes without being detected.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude the main contributions of this thesis. We also out-

line potential research directions in security and privacy-preservation for electronic

health record systems.

6.1 Conclusions

Electronic health record exchanges are crucial functions for modern healthcare sys-

tems. These components are fundamental in providing quality care and enabling a

larger spectrum of services. These may include online health insurance tools. Due

to health record sensitivity, privacy-preservation is a crucial issue for electronic

health record systems. A framework which protects patient information during

data exchanges is essential for a reliable healthcare network. Furthermore, modern

healthcare access control frameworks should also accommodate patient consent.

Therefore, this thesis proposes a new consent-based scheme to manage access con-

trol for sensitive health information while including patient consent in data ex-

changes.
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A potential application of our above contributions is the accommodation for

health insurers in electronic health networks. Currently, record retrieval may re-

sult in an excessive collection of sensitive data by insurers. This is a clear violation

of privacy and has major ramification if insurers stockpile previous collected pa-

tient profiles. In order to address this issue, this thesis proposes a fairness-aware

and privacy-preserving (FAPP) protocol for online health insurance systems. In

summary, the main contributions of the thesis are fourfold.

• We proposed a framework for electronic health record systems, in which data

providers offer the original health information (encrypted for privacy preser-

vation) to the data center. The user is able to ensure the integrity of the data.

Other entities are unable to access the data without prior consent from the

user.

• Weproposed a consent-based access controlmechanism for secure andprivacy-

preserving health information exchanges. The data requestersmust negotiate

with users to access their health information. After reaching an agreement,

the user sends a consent token to the data requester and a consent notification

is sent to the data center. The consent token is carefully designed so that only

the intended data requesters are able to access the data.

• Weproposed a concept of privacy-preserving health insurance quotes by adopt-

ing the k-anonymity technique. The attributes are divided into different types

and are endowed with different weights. In this case, attributes denote user

health conditions or habits. Attributes of the same type have the sameweights.

One quote can correspond to multiple attribute combinations. Therefore, it is

difficult for entities to guess the health details of a user.

• We designed a fairness-aware and privacy-preserving insurance application
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protocol. In FAPP, the health insurance policy is public. Thus, the user is able

to calculate their own quotes. The user’s health status information is encapsu-

lated into a ciphertext with randomnumbers to achieve privacy-preservation.

Nevertheless, the company is able to checkwhether the user provided an hon-

est declaration after a claim is made.

6.2 Future Work

There remain many challenges for security and privacy-preservation in electronic

health record systems. Based on the work done in this thesis, the following topics

are recommended for further work in this area. The first area of research being so-

cial network assisted electronic health record exchanges. In these EHR systems, the

owners of records are peoplewho form social networks. Consequently, the security

and privacy preservation solutions of social network can be explored in EHR sys-

tems. However, it is challenging to construct reliable social ties and social trusts to

improve the security and privacy in electronic health record systems. Another area

of interest is cloud-based security and privacy-preservation in EHRs. In electronic

health record systems, health records are stored in data centers, which we can con-

sidered as the cloud. Security and privacy preservation in the cloud have drawn

considerable interest from research community and industry. Securing and pre-

serving privacy in the cloud presents its own challenges. Considering the nature

and sensitivity of electronic health record, successfully and securely merging these

two areas is of considerable interest. Enhancing privacy and security in e-Health is

a challenging and meticulous task; however, it is a challenge well worth pursuing.
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