
 
 

 

An examination of interacting residues in the GABA-gated ion channel UNC-49 

within the parasitic nematode Haemonchus contortus 

 

By 

Everett Cochrane 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of  

Masters of Science 

In 

The Faculty of Science 

Applied Bioscience 

 

 

 

University of Ontario Institute of Technology 

October 2017 

© Everett Cochrane, 2017 



ii 
 

Certificate of Approval 

  



iii 
 

Abstract 
 

Haemonchus contortus is a blood-feeding parasitic nematode that infects ruminant 

animals around the world, including those with significant economic importance such as 

cattle, sheep, and goats. UNC-49 is a GABA-gated chloride channel found to be exclusive 

to nematodes which could be a viable future target for anthelminthic drugs. An analysis of 

the model of the Hco-UNC-49 receptor has identified potentially interacting residues that 

may be important to its structure and function. One such potential interaction between 

K181 and E183, which appears to be unique to nematode GABA receptors, was selected 

for study based on charge and proximity to each other and the ligand binding site. A 

variety of mutations at these positions were introduced and analyzed by two-electrode 

voltage clamp electrophysiology.  It was found that both residues are important for 

receptor function, but modifications to the E183 residue yielded a greater negative impact. 

It was also found that K181 and E183 are energetically coupled suggesting that they 

interact possibly through a salt-bridge. Disulfide trapping indicated that the two residues 

are in close enough proximity to directly interact. This analysis of key residues in a unique 

receptor could potentially be utilized for the future development of new anthelmintics to 

combat the increasing prevalence of infection by H. contortus. 

 

Keywords: Haemonchus contortus, UNC-49, cys-loop receptor, GABA, 

electrophysiology, salt bridge, mutant cycling, disulfide trapping 
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Section 1: Introduction 

1.1 Introduction to Haemonchus contortus, a Parasitic Nematode 

Haemonchus contortus is a free-living parasitic nematode of the order 

Strongylida, which infects ruminants such as sheep and goats. H. contortus comes from 

the same phylum, Nematoda, as the well-studied free-living nematode, Caenorhabditis 

elegans (Blaxter et al., 1998).  H. contortus parasites feed on the blood of the host by 

attaching to the inside lining (mucosa) of the abomasum, the fourth stomach 

compartment found in ruminants. Once infected via ingestion, affected animals begin to 

experience symptoms such as anemia and other digestive complications potentially 

leading to death (Nikolaou & Gasser, 2006). These complications can lead to a variety of 

economically damaging side effects including but not limited to a reduction in milk and 

wool production (Qamar et al., 2011). 

Since first being studied in 1915 by Dr. Frank Veglia, H. contortus has been 

found in many countries around the world raising a global concern. Infection with H. 

contortus was initially thought to be primarily located in tropical or sub-tropical areas, 

but recent years have shown an increased occurrence of infections in temperate zones 

(Akkari et al., 2013). This may be in part due to the parasite’s resilience to temperature 

changes and its ability to halt development within the host during the fourth larval stage 

until external conditions become favourable (Manninen et al., 2008). 

1.2 Life Cycle of Haemonchus contortus 

The life cycle of H. contortus progresses through five primary stages, denoted as 

L1 through L5. Adult females in the L5 stage begin a new life cycle when they lay eggs 



3 
 

within the abomasum of infected ruminant animals (Veglia, 1915). The eggs move 

through the animal’s digestive system naturally and exit the host in the feces. The 

embryos are unable to develop inside the host because they require oxygen that is 

unavailable within the abomasum (Nikolau & Gasser, 2006). Once outside the host, the 

eggs hatch within the feces and the nematode enters the free-living larval stage L1. The 

larvae begin moving around in search of food, such as bacteria from within the feces. 

Once fed, the L1 larvae dig deeper into the feces to find moisture and protection from 

direct sunlight, after which they enter a lethargic phase where growth and cellular 

division eventually lead to the second stage, L2 (Veglia, 1915). The L2 larvae proceed 

with a second round of feeding before entering another lethargic phase allowing for the 

development of the mouth, oesophagus, and intestines (Veglia, 1915). Now in the third 

larval stage, L3, the larvae detach themselves from their old skin and are able to move 

around freely. The larvae move to nearby vegetation, resting on grass or plants that are 

eventually consumed by ruminants. The ingested L3 larvae develop into the L4 stage 

once inside the host (within 48 hours of ingestion) (Veglia, 1915). Here they develop the 

mouth parts, such as a tooth-like lancet, that are necessary to pierce the stomach lining 

and feed on the host’s blood. Feeding on blood allows H. contortus to grow into the final 

mature adult form, L5 (Veglia, 1915). From here the cycle begins again as mature 

females are able to lay 4500 eggs every day (Nikolau & Gasser, 2006). 

1.3 Control of Haemonchus contortus 

H. contortus infections are generally treated through the use of anthelmintics, 

which are a group of antiparasitic drugs that target helminths (parasitic worms). One 

major concern with the continued use of such drugs is the development of anthelmintic 
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resistance. Though the appearance of resistance can be reduced by following the 

appropriate guidelines for each drug and proper cycling of different anthelmintic classes, 

many areas in the world do not follow these practices, leading to unacceptably high 

resistance problems (Newton, 1995). Many compounds have been used in an effort to 

combat the effects of H. contortus. Some of these are described below. 

1.3.1 Benzimidazoles 

Benzimidazoles were one the most widely used classes of antiparasitic drugs for 

an extensive period of time before better alternatives, such as macrocyclic lactones were 

found (Blackhall et al., 2008). They act by binding β-tubulin with high affinity and 

specificity, which causes a depolymerization of microtubules that are important for 

muscle function allowing for motility (Blackhall et al., 2008). Resistance to 

benzimidazoles in H. contortus has been found to be linked with genes that encode β-

tubulin. This correlation can also be seen in other organisms such as fungi or the closely 

related free-living nematode, Caenorhabditis elegans (Blackhall et al., 2008). The 

structure of the benzimidazole, albendazole, can be seen in Figure 1. 

1.3.2 Cholinergic Agonists (Imidizothiazoles) 

Cholinergic agonists act on acetylcholine-gated ion channels found within the 

body muscles of nematodes (Boulin et al., 2011). These drugs function by activating 

acetylcholine receptors, keeping the ion channel open for an extended period of time and 

inducing a state of paralysis in the parasite via continuous muscle contraction (Martin et 

al., 1997). Paralyzed nematodes become unable to stay attached to the host and will 

eventually pass through the animal’s digestive system naturally (Charvet et al., 2012). 
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Levamisole is one such example of an imidizothiazole used to treat ascariasis and 

hookworm (Figure 1).  
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1.3.3 Macrocyclic Lactones (Avermectins) 

Macrocyclic lactones from the avermectin family are compounds that act on the 

glutamate-gated chloride (GluCl) channels that are exclusive to invertebrates such as 

nematodes (Martin et al., 1997). These compounds bind the GluCl channels essentially 

irreversibly to cause an increase in chloride ions across the membrane. This causes a 

hyperpolarization of neuromuscular cells in the target organism that results in paralysis 

Figure 1: Some compounds utilized as anthelmintics to combat infection by H. 
contortus. 
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(Blackhall et al., 2008). One example of a drug in this category is ivermectin (Figure 1) 

which was discovered in the 1970s and is a common ingredient in antiparasitic 

medications for farm animals as well as pets such as cats and dogs (Elgart & Meinking, 

2003). 

1.4 Ligand-gated Ion Channels 

Ligand-gated ion channels (LGICs) function by recognizing specific 

neurotransmitters and mediating a rapid response at the synapse (Unwin, 1993). These 

channels are comprised of several transmembrane proteins, which allow 

neurotransmitters to bind in order to initiate a conformational change to the open state. 

Once in the open state, the LGIC forms an aqueous channel between one side of the 

membrane and the other allowing ions to flow across the electrochemical gradient. The 

changing electric potential between the two sides of the membrane causes a response 

within the target cell (Unwin, 1993).  

LGICs can function at excitatory synapses by allowing the passage of cations 

(such as with acetylcholine or serotonin receptors), or at inhibitory synapses allowing the 

passage of anions (as seen with GABA receptors) (Unwin, 1993). These channels can be 

found in the nervous systems of vertebrates as well as invertebrates such as H. contortus 

and they play an important role in the control of muscles required for locomotion and 

feeding (Komuniecki et al., 2012). 

1.5 Cysteine-loop LGICs 

Within the LGICs there is a superfamily of receptors known as cys-loop LGICs. 

These include several receptors such as those for acetylcholine and γ-Aminobutyric acid 
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(GABA). They can be found in large concentrations at the nerve-muscle synapse (Unwin 

et al., 2002). These LGICs are defined by a specific loop located in the N-terminal 

extracellular domain (ECD) formed by a disulfide bond between two cysteine residues 

(Thompson et al., 2010). These cysteine residues are spaced 13 amino acids apart, a trait 

found to be conserved among all cys-loop receptors (Cascio, 2004). 

 

Cys-loop LGICs have a shared structure made up of five subunits arranged 

pseudo-symmetrically around a central channel, which can conduct the flow of ions once 

in the open state (Cascio, 2004; Thompson et al., 2010) (Figure 2). Each of the five 

Figure 2: Top: General structure of LGICs - five subunits arranged 
pseudosymetrically around the central channel. Subunits highlighted 1-5 for clarity. 
Bottom: Position of M1-M4 domains for each subunit surrounding the channel, with 
M2 domains facing the central channel. The arrow indicates the direction of ion flow 

once in the open state. 
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subunits of the receptor has four transmembrane domains (TMD), a large N-terminal 

extracellular domain, and an extended cytoplasmic loop in the intracellular domain (ICD) 

(Unwin, 2002) (Figure 3). The ligand binding site can be found in the large N-terminal 

extracellular domain, between 3 loops of the primary subunit and 3 β-sheets of an 

adjacent complimentary subunit (Thompson et al., 2010). The loops are referred to as A, 

B, and C in the primary subunit, and D, E, and F in the complimentary subunit. These 

loops contain aromatic residues (phenylalanine, tryptophan, and tyrosine) which allow for 

cation-π interactions with the ligand (Thompson et al., 2010). This type of interaction 

occurs when the aromatic rings create an electrostatic potential that is negative in the 

middle and positive on the outer ring (Dougherty, 2007). The result is an attraction of 

cations towards the negatively charged center, effectively holding the ligand in place. 

Figure 3: A visualization of the 4 transmembrane domains found within a single 
subunit of a cys-loop ligand-gated ion channel. The red line indicates the disulfide 
bond between the two cysteine residues that are characteristic of this channel type.
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    The transmembrane domain of each subunit is comprised of four α-helices 

spanning the membrane, numbered M1 through M4. The M1, M3, and M4 segments 

surround and protect the inner M2 region from its surroundings (Figure 2). The M2 α-

helix of each subunit come together to form the central pore, which is important since this 

segment is responsible for selecting which ions are able to pass through the channel 

(Thompson et al., 2010). It is thought to be caused by a small kink formed by a few 

residues in the M2 domain which allow it to restrict the flow of chloride ions (Unwin, 

2005). The loop between the M2 and M3 domain is important for connecting the ECD 

with the TMD and assists with opening the channel once a ligand is bound (Thompson et 

al., 2010). This occurs via a destabilization of a hydrophobic region within the channel, 

which moves away from the center and allows the passage of ions to occur (Thompson et 

al., 2010). 

1.6 γ-Aminobutyric acid 

γ-Aminobutyric acid (GABA) (Figure 4) is a neurotransmitter which plays a 

critical role in the nervous systems of many organisms. It is the primary inhibitory 

neurotransmitter in mammals responsible for inhibiting nerve transmission in the brain to 

reduce neuronal activity (Bamber et al., 2003). GABA is synthesized in the brain via the 

conversion of the primary excitatory neurotransmitter glutamate, and is eventually 

converted back into glutamate via a metabolic pathway called the GABA shunt (Olsen & 

DeLorey, 1999). Inhibitory and excitatory functions are reliant on a balance between their 

respective neurotransmitters. An improper balance in excitatory and inhibitory 

neurotransmission in vertebrates can lead to severe consequences, such as seizures or loss 

of consciousness (Schuske et al., 2004). Though GABA is known to be inhibitory in 
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mammals and other vertebrates, it has been found to have some excitatory functions in 

invertebrates, such as nematodes (Accardi et al., 2012). Several GABA receptor agonists 

have been used to analyze the pharmacological profile of various GABA receptors, 

including R-(-)-4-amino-3-hydroxybutyric acid (R-GABOB), S-(+)-4-amino-3-

hydroxybutyric acid (S-GABOB), imidazole-4-acetic acid (IMA), and 5-aminovaleric 

acid (DAVA) (Kaji et al., 2015) (Figure 4). 

1.7 GABA in Invertebrates 

Nematodes, such as C. elegans and H. contortus, rely on GABA for locomotion. 

GABA has been found to act on neuromuscular junctions in C. elegans rather than the 

central nervous system in vertebrates (Schuske et al., 2004). Nematodes are able to bend 

and move around by contracting muscles on one side of the body via excitatory 

acetylcholine stimulation while simultaneously relaxing the muscles on the other side via 

inhibitory GABA stimulation. Excitatory GABA stimulation in C. elegans allows the 

release of waste through a series of muscle contractions along the body occurring every 

50 seconds, forcing intestinal waste towards the tail end of the worm to be excreted 

(Schuske et al., 2004). A failure of inhibitory GABA receptors could result in the 

nematode being paralyzed and unable to relax contracted muscles, whereas a failure of 

excitatory GABA receptors could result in the nematode being unable to release waste. 

Both of these possibilities provide a good incentive for further analysis of the invertebrate 

GABA receptor, particularly when considering harmful parasitic invertebrates. 
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1.8 GABA Receptors in Vertebrates 

This family of receptors responds to the major inhibitory neurotransmitter of the 

vertebrate central nervous system, GABA. GABA receptors can be split into two primary 

subclasses, LGICs (ionotropic) which include GABAA and GABAC, and G-protein 

coupled receptors (GPCRs, metabotropic) which include GABAB (Jones et al., 1998). 

Each of these receptor types have unique properties. GABAA have been shown to exhibit 

a sensitivity to the antagonist bicuculline. GABAB receptors can be activated by a GABA 

analog called baclofen (Zhang et al., 2001). GABAC receptors, which were found to exist 

in both vertebrates and invertebrates, are insensitive to both bicuculline and baclofen, and 

can activated by enantiomers of the GABA analog, 4-aminocrotonic acid (Zhang et al., 

γ-Aminobutyric acid 

Figure 4: Chemical structures of GABA and GABA receptor agonists. 
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2001). GABAA receptors are critical for inhibitory signaling in the central nervous 

system. 

1.9 GABAA Receptors 

GABAA receptors in vertebrates are pentameric in nature, with a large number of 

subunits that can form receptors of varying functions. Different combinations of subunits 

can result in varying pharmacological properties, among other changes (Sieghart, 1995). 

Human GABAA receptors have eight classes of subunits (α1-6, β1-3, γ1-3, δ, ε, θ, π, and 

ρ1-3), which are encoded by 19 different genes (Miller & Aricescu, 2014). Though there 

are a large number of potential subunit combinations, the actual amount is limited by 

strict assembly rules that seek energetically favoured subtypes. The most common 

assembly for heteromeric GABAA receptors are two α subunits, two β subunits, and one 

final subunit that is most commonly a γ subunit (Miller & Aricescu, 2014). Though these 

receptors can form functional homomeric channels with five β3 subunits, they are not 

commonly found throughout the brain (Miller & Aricescu, 2014). The homomeric 

channel is however useful for modelling purposes (Figure 5), which may be able to 

provide structural information applicable to other models. GABAA receptors have been 

used as drug targets in humans for treatment of various conditions such as epilepsy, 

insomnia, and anxiety (Miller & Aricescu, 2014). Like other cys-loop LGICs, each 

subunit is comprised of 4 TMDs (M1-M4), and the ligand binding site is formed between 

loops A, B, and C of the principle subunit, and loops D, E, and F of the secondary subunit 

(Accardi & Forrester, 2011). 
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1.10 UNC-49 Receptor in Nematodes 

In C. elegans, H. contortus, and other free-living nematodes, the primary 

inhibitory GABA receptor is UNC-49. This GABA receptor is encoded by the unc-49 

gene. The gene encodes three distinct UNC-49 subunits in C. elegans, which have 

differences primarily in their C-terminus, and are identified as Cel-UNC-49A, Cel-UNC-

49B, and Cel-UNC-49C (Bamber et al., 1999). The Cel-UNC-49A subunit is not 

expressed in significant levels, whereas the B and C subunits appear to play a more 

important role. Cel-UNC-49B has the ability to form homomeric channels with other B 

subunits, however in C. elegans, the heteromeric Cel-UNC-49B/C channel is the native 

A  B

Figure 5: Crystal structure of the human homomeric GABAA β3 receptor. A, Top view. 
B, Side view. PDB 4COF (Miller & Aricescu, 2014). 
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form (Bamber et al., 1999). The Cel-UNC-49C subunit can only form heteromeric 

channels with the B subunit, and does not form a homomeric channel.  

1.11 UNC-49 Receptor in H. contortus 

Although the UNC-49 receptor in H. contortus has not been studied as 

extensively as the closely related C. elegans, it has proven to be a good comparative 

model. H. contortus has been found to share two of the UNC-49 subunits found in C. 

elegans, which are Hco-UNC-49B and Hco-UNC-49C. These two subunits are very 

highly conserved between the two species, but some key differences have been shown in 

their functionality. The C. elegans heteromeric UNC-49B/C channel shows decreased 

GABA sensitivity compared to the homomeric unc-49B channel, whereas the H. 

contortus heteromeric channel shows increased GABA sensitivity (Siddiqui et al., 2010). 

The reverse holds true for the homomeric channel. However, the exact cause for this is 

not known. The UNC-49C subunit appears to carry resistance to the channel blocker 

picrotoxin, which is attributed to a key methionine residue in the M2 domain of UNC-

49C (Siddiqui et al., 2010). Like mammalian GABAA receptors, the GABA binding site 

is found between two adjacent subunits and is stabilized by loops in both the principle 

and complementary subunits (Accardi & Forrester, 2011). A model of this can be seen in 

Figure 6. 
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1.12 Key Tools for Ion Channel Research 

There are a variety of methods that can be utilized for ion channel research, from 

the characterization of individual amino acid residues to the analysis of more complex 

intermolecular interactions for their impact on channel function. Some methods are able 

to provide more detail to supplement static imaging (such as X-ray crystallography) and 

allow the channel to be analyzed before, during, and after activation. Some of the 

methods utilized for this thesis are described in the following sections.  

Figure 6: A model of the GABA binding site found between adjacent subunits of the 
H. contortus UNC-49 receptor. Labels indicate principle (A-C) and complimentary 

(D-F) loops. 



16 
 

1.13 Xenopus laevis Expression System 

The oocytes of the African Clawed frog, Xenopus laevis, have been used as a 

means of translating foreign mRNA into functional proteins since the early 70s (Gurdon 

et al., 1971). It was discovered that X. laevis oocytes are able to translate a wide variety 

of mRNA from bacteria, plants, and animals while maintaining a high level of translation 

efficiency over extended periods of time (Gurdon et al., 1971; Sobczak et al., 2010). 

Another benefit of this system is the large size of the oocytes, with a diameter of between 

1-1.3 mm making them easy to isolate and work with, such as for performing 

microinjections (Sobczak et al., 2010). The durability of the oocytes’ membrane and their 

large size also permits the use of two-electrode voltage clamp (TEVC) electrophysiology, 

which has been shown to be more accurate than other recording methods for cells that are 

too small for TEVC recording (Sherman-Gold, 1993). The oocytes have been shown to 

be viable for microinjection of mRNA and electrophysiology recording for at least 3 

weeks following surgical extraction, demonstrating their durability in an experimental 

setting. 

1.14 Mutant Cycle Analysis 

One method that can be utilized to identify and measure intermolecular 

interactions between residues in proteins of a known structure is mutant cycling 

(Horovitz, 1996). These experiments require three separate mutations in order to 

determine the strength of interactions between two residues. Specifically, it requires the 

wild-type protein, two single mutants, and a double mutant containing both mutations 

simultaneously (Horovitz, 1996). Although the method was initially used in the early 

1980’s for protein engineering of tyrosyl-tRNA synthetase (Carter, 1984), it has since 
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been found to have other useful applications. The information obtained from proteins 

with known structures can be useful in determining structural details for proteins where 

the structure is not known. It can provide structural information for ligand-bound proteins 

relating to transition states during binding, such as GABA molecules bound to LGICs 

(Horovitz, 1996). The mutations for mutant cycle analysis are conducted with alanine 

residues whenever possible to prevent new interactions from being formed when other 

mutations are implemented (Horovitz, 1996). The formula for calculating the change in 

free energy of a mutation compared to the wildtype (Venkatachalan & Czajkowski, 2008) 

is as follows: 

ΔG=RTln ൬
mut EC50

wt EC50
൰ 

Where ΔG is the change in free energy, R is the ideal gas constant, T is the temperature, 

mut EC50 is the half-maximal response of the ligand in the mutant protein, and wt EC50 is 

the half-maximal response of the ligand in the wildtype protein. To calculate the overall 

interaction energy between two residues (Venkatachalan & Szajkowski, 2008), the 

following equation is used: 

ΔΔG=RTln ൬
(mut1,2 EC50)(wt EC50)

(mut1 EC50)(mut2 EC50)
൰   

Where ΔΔG is the overall interaction energy, R is the ideal gas constant, T is the 

temperature, mut1 EC50 is the half-maximal response of first mutation, mut2 EC50 is the 

half-maximal response of second mutation, mut1,2 EC50 is the half-maximal response of 

the double mutation, and wt EC50 is the half-maximal response of the wildtype protein. 

When a double mutation displays the combined effect of the two corresponding single 
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mutants (such that ΔΔG = 0), the mutations are thought to have an additive effect on the 

protein (Horovitz, 1996). A value of  ΔΔG ≠ 0 implies that the combined effect of both 

mutations are non-additive and the two residues in question interact with each other in 

some way (Venkatachalan & Czajkowski, 2008). 

1.15 Disulfide Trapping 

Disulfide trapping is a method that can be utilized to determine spatial proximity 

between two potentially interacting residues in an LGIC and to determine what impact 

those residues have, if any, on ligand binding and channel activation (Venkatachalan & 

Czajkowski, 2008). It is conducted by mutating each residue in question to a cysteine and 

cross-linking the two cysteine residues together using the oxidizing agent, hydrogen 

peroxide (H2O2), to form a strong disulfide bond (Venkatachalan & Czajkowski, 2008). 

Electrophysiology is conducted before and after cross-linking, and agonist binding 

response using the appropriate EC50 concentrations are recorded to measure the effect of 

the disulfide bond on the channel. Finally, the disulfide reducing agent dithiothreitol 

(DTT) is used to restore the channel to the initial mutated state and agonist binding is 

measured again (Venkatachalan & Czajkowski, 2008). Double cysteine mutations within 

the agonist binding pocket may display reduced agonist response when exposed to H2O2 

due to proximal interference with the ligand. As an example, a disulfide trapping 

experiment was conducted on the β subunit of the GABAA receptor which analyzed 

highly conserved potentially interacting residues thought to be critical for GABA 

activation. It was found that E153 and K196 in the GABAA receptor form a salt bridge 

that is important for regulating loop C movement during GABA binding, allowing the 

channel to enter the open state (Venkatachalan & Czajkowski, 2008). The E153 residue 
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of the GABAA receptor is analogous to E183 in the Hco-UNC-49 receptor. K196 in the 

GABAA receptor does not have an analogous counterpart in invertebrates, but sequence 

homology has revealed that several invertebrate GABA receptors have a highly 

conserved threonine in that position (Figure 7 in methods section). This may attribute to 

some functional differences that make the invertebrate receptor unique compared to its 

vertebrate counterpart. 

1.16 Objectives of this Thesis 

 There is good evidence that the UNC-49 GABA receptor of H. contortus can be 

developed into a future antiparasitic drug target (Accardi et al., 2012). However, any 

development of new drugs targeting this receptor will require a detailed understanding of 

the structural components that are important for ligand-binding and channel function. 

Important intermolecular interactions play a crucial role in determining a protein’s 

structure and function. This thesis aims to analyze the intermolecular interactions of 

residues found in the H. contortus UNC-49 GABA receptor that are not conserved among 

vertebrates. This will lead to a better understanding of how these parasite receptors 

function and provide insight to future researchers for the development of novel 

anthelmintics.  
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Section 2: Methods 

2.1 Hco-UNC-49 Channel Modelling 

A C. elegans GluCl channel was used as a template to generate the H. contortus 

UNC-49 model (Kaji et al., 2015) (Figure 6) and was used to initially analyze amino acid 

proximity between residues of interest. USCF Chimera 1.11, developed by the Resource 

for Biocomputing, Visualization, and Informatics (RBVI) at the University of California 

(La Jolla, CA, United States) was used to analyze and manipulate the model and identify 

bond lengths. 

2.2 Hco-UNC-49B Primer design 

Point mutations were determined based on the position of charged amino acids 

conserved among nematodes within the full-length sequence of Hco-UNC-49B 

(GenBank, Accession #: ACL14329). This sequence was aligned with a variety of other 

GABA receptors from humans, C. elegans, Drosophila melanogaster, Brugia malayi, 

Trichinella pseudospiralis, and Toxocara canis (Figure 7). Mutant primers were 

generated using the QuikChange Primer Design program from Agilent Technologies 

(www.genomics.agilent.com/primerDesignProgram.jsp) to ensure full compatibility with 

the QuikChange II Mutagenesis Kit. Custom DNA oligos were ordered from Integrated 

DNA Technologies.  

Initial mutations were designed to replace single charged amino acid residues 

with an uncharged alanine or a residue of the opposite charge (such as lysine to glutamic 

acid) to measure the impact of that specific point mutation. Further mutations allowed 

key residues to have their charges swapped to check for potential salt bridge restoration 
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(if one is present), or to nullify the charge on both sides of an interacting pair 

simultaneously. The full list of primers utilized can be found in Table 1. 

Mutant Forward Primer Reverse Primer 
D83C 5’-GCCATGTTTGTCGCATATAGAAAC 

ATAGCGTAAAGTCCATATCCACTT-3’ 
5’-AAGTGGATATGGACTTTACGCTAT 
GTTTCTATATGCGACAAACATGGC-3’ 

D83N 5’-CATGTTTGTCGCATATAGAAATTT 
AGCGTAAAGTCCATATCCACT-3’ 

5’-AGTGGATATGGACTTTACGCTAAA 
TTTCTATATGCGACAAACATG-3’ 

E131A 5’-GTGGAAAAACGATTTCTTCGCGTT 
CGGGAAAAACGTATC-3’ 

5’-GATACGTTTTTCCCGAACGCGAAG 
AAATCGTTTTTCCAC-3’ 

E131C 5’-CCAAGTGGAAAAACGATTTCTTGC 
AGTTCGGGAAAAACGTATCCGGC-3’ 

5’-GCCGGATACGTTTTTCCCGAACTG 
CAAGAAATCGTTTTTCCACTTGG-3’ 

K181A 5’-CAATAGCTTTCAATTTCCAGCGCGC
ATCGTTGTGAATCCATCGG-3’ 

5’-CCGATGGATTCACAACGATGCGCG 
CTGGAAATTGAAAGCTATTG-3’ 

K181C 5’-GCAATAGCTTTCAATTTCCAGGCA 
GCATCGTTGTGAATCCATCGG-3’ 

5’-CCGATGGATTCACAACGATGCTGC 
CTGGAAATTGAAAGCTATTGC-3’ 

K181E 5’-TAGCTTTCAATTTCCAGCTCGCAT 
CGTTGTGAATCCATC-3’ 

5’-GATGGATTCACAACGATGCGAGC 
TGGAAATTGAAAGCTA-3’ 

K181R 5’-TTTCAATTTCCAGCCTGCATCGTTG 
TGAATCCATCGG -3’ 

5’-CCGATGGATTCACAACGATGCAG 
GCTGGAAATTGAAA -3’ 

K181T 5’-TAGCTTTCAATTTCCAGCGTGCATC 
GTTGTGAATCCATC-3’ 

5’-GATGGATTCACAACGATGCACGC 
TGGAAATTGAAAGCTA-3’ 

E183A 5’-GTATAGCAATAGCTTTCAATTGCCA
GCTTGCATCGTTGTGAAT-3’ 

5’-ATTCACAACGATGCAAGCTGGCAA 
TTGAAAGCTATTGCTATAC-3’ 

E183C 5’-CCATTGTATAGCAATAGCTTTCAAT
GCACAGCTTGCATCGTTGTGAATCCAT
C-3’ 

5’-GATGGATTCACAACGATGCAAGC 
TGTGCATTGAAAGCTATTGCTATACA
ATGG-3’ 

E183D 5’-GTATAGCAATAGCTTTCAATATCCA
GCTTGCATCGTTGTGA-3’ 

5’-TCACAACGATGCAAGCTGGATAT 
TGAAAGCTATTGCTATAC-3’ 

E183K 5’-TGTATAGCAATAGCTTTCAATTTTC 
AGCTTGCATCGTTGTGAATCC-3’ 

5’-GGATTCACAACGATGCAAGCTGA 
AAATTGAAAGCTATTGCTATACA-3’ 

T230K 5’-GATGTGGTTGCTTGTTTGTAATTTA 
CATGATAGCAAGTCTGCTTG-3’ 

5’-CAAGCAGACTTGCTATCATGTAAA 
TTACAAACAAGCAACCACATC-3’ 

K181A- 
E183A 

5’-GCCATAGCTTTCAATTGCCAGCGC 
GCATCGTTG-3’ 

5’-CAACGATGCGCGCTGGCAATTGA 
AAGCTATGGC-3’ 

K181C- 
E183C 

5’-CCATTGTATAGCAATAGCTTTCAAT
GCACAGGCAGCATCGTTGTGAATCCA
TC-3’ 

5’-GATGGATTCACAACGATGCTGCCT 
GTGCATTGAAAGCTATTGCTATACAA
TGG-3’ 

K181E- 
E183K 

5’-TGTATAGCAATAGCTTTCAATCTCC 
AGTTTGCATCGTTGTGAATCCATC-3’ 

5’-GATGGATTCACAACGATGCAAAC 
TGGAGATTGAAAGCTATTGCTATAC 
A-3’ 

 

 

 

Table 1: Primers utilized for mutagenesis of Hco-UNC-49B. 
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2.3 Site Directed Mutagenesis and cRNA Synthesis 

McGill University provided the mRNA initially required to produce the coding 

sequence for Hco-UNC-49B. The sequence was cloned into the pT7TS vector, nested 

within an untranslated Xenopus laevis beta-globin gene to allow expression within the 

oocyte model. Point mutations were performed via PCR utilizing the previously 

Figure 7: Sequence alignment of Hco-UNC-49B with other GABA channels. 
Highlighted areas represent residues being modified within Hco-UNC-49B for this 
thesis. GABA receptor subunit sequences include (from top to bottom) human, D. 
melanogaster, T. pseudospiralis, T. canis, B. malayi, H. contortus, and C. elegans. 
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mentioned primers and the QuikChange II Mutagenesis Kit (Agilent Technologies, Santa 

Clara, CA, United States). Mutant DNA was then transformed into supercompetent E. 

coli cells, which were then amplified on ampicillin agarose plates, and further grown in 

ampicillin LB broth. Plasmids were isolated using the EZ-10 Spin Column Plasmid DNA 

Minipreps Kit (Bio Basic, Ontario, Canada) and sequences were confirmed via offsite 

sequence analysis at McGill University (Genome Quebec). In vitro cRNA synthesis was 

conducted using the mMESSAGE mMACHINE T7 Transcription Kit (Ambion, Austin, 

TX, United States). Following transcription and addition of DNase, cRNA was 

precipitated with lithium chloride, washed with ethanol, and re-suspended in nuclease-

free water. 

2.4 Surgical Extraction of X. laevis Oocytes 

Female Xenopus laevis frogs obtained from Nasco (Nasco, Fort Atkinson, WI, 

United States) were anaesthetized via a short bath in 0.15% ethyl 3-aminobenzoate 

methanesulfonate solution (MS-222; Sigma-Aldrich, Oakville, Ontario, Canada) using 

sodium bicarbonate to reach pH 7. Lobes of the ovary were surgically extracted through a 

small incision on the left or right side of the torso, further separated into smaller 

fragments, and defolliculated at room temperature on a rocker in a mixture of collagenase 

(1 mL, 10 mg/mL; Sigma-Aldrich) and OR-2 (4 mL; 82 mM NaCl, 2 mM KCl, 1 mM 

MgCl2, 5 mM HEPES). Oocytes were stored in an incubator at 18.5°C in a supplemented 

ND96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, 

0.5 mM gentamycin, 0.275 ug/mL sodium pyruvate) until ready for use. 

X. laevis frogs were stored in a climate-controlled room in large tanks containing 

conditioned water with a maximum of 3 frogs per tank. One extra tank was used solely 
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for surgical recovery, with a reduced water level allowing for easy surface access by 

post-surgery frogs. Each frog was fed 1g of Nasco frog brittle (Nasco, Fort Atkinson, WI, 

United States) twice weekly, and tanks were cleaned and water-cycled on each day 

following feeding. Day-night cycles were artificially controlled on a timer to mimic 

natural conditions and the room was checked daily. 

2.5 TEVC Electrophysiology on X. laevis Oocytes 

Selected X. laevis oocytes were injected with a 50 nL mixture containing equal 

parts  unc-49b (mutant or wildtype) and wildtype unc-49c cRNA using a Drummond 

Nanoject II microinjector (Drummond Scientific Company, Broomhall, PA, United 

States) attached to a micromanipulator (World Precision Instruments, Sarasota, FL, 

United States). Needles for injections were pulled from glass capillaries (Harvard 

Apparatus, Holliston, MA, United States) using the P-97 Flaming/Brown Micropipette 

Puller (Sutter Instruments Co., Novato, CA, United States). Oocytes were then placed 

back into an 18.5°C incubator for at least 2 days to allow membrane receptor expression 

to occur. Supplemented ND96 solution was changed at least once each day following 

injections until electrophysiology was conducted. 

The two-electrode voltage clamp (TEVC) method was utilized to monitor channel 

activity of the UNC-49 GABA receptor. Electrophysiology was performed 2 days post-

injection using the Axoclamp 900A voltage clamp (Molecular Devices, Sunnyvale, CA, 

United States). Electrodes pulled from glass capillaries using the P-97 Micropipette 

Puller were filled with 3M KCl and connected to an appropriate Axon Instrument 

Headstage (Molecular Devices) with a small silver wire. Injected oocytes were pierced 

with two electrodes, one to clamp the voltage of the oocyte at a constant -60 mV and the 
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second to record any changes in current that can occur during channel activation (Figure 

8). Oocytes were constantly washed with non-supplemented ND96 solution (96 mM 

NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES) between application of 

other compounds. Perfusion of solution across the oocytes was performed using the RC-

1Z perfusion chamber (Warner Instruments, Holliston, MA, United States) and a 

Fisherbrand Variable-Flow Peristaltic Pump (Fisher Scientific, Hampton, NH, United 

States) to remove waste liquid. 

Electrophysiological traces from individual oocytes were analyzed for the change 

in current following a channel response at each test concentration. Dose-response curves 

were then generated using GraphPad Prism (GraphPad Software, San Diego, CA, United 

States) with data being fitted to the following formula: 

௠௔௫ܫ ൌ 	
1

1 ൅ ൬
ECହ଴
ሾܦሿ ൰

௛ 

For this formula, Imax corresponds to the maximal response, EC50 is the concentration of 

the agonist that produces 50% of the maximal response, [D] is the concentration of that 

agonist, and h is the Hill coefficient. 
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2.6 Disulfide Trapping 

Disulfide trapping experiments were conducted on cysteine mutations of UNC-

49B (K181C, E183C, and a double cysteine mutant) to determine their ability to interact 

with each other and their effect on ligand binding and activation of the channel. A strong 

disulfide bond between mutated cysteine residues introduced by exposure to H2O2 can 

result in reduced channel agonist sensitivity, which can be restored via exposure to DTT. 

TEVC electrophysiology was utilized to record the response of each mutant to the 

calculated EC50 GABA concentration before and after cysteine cross-linking (disulfide 

bond formation) had occurred. After retrieving a baseline response via GABA perfusion, 

oocytes were washed with ND96 until a stable current was achieved, at which point a 

0.3% H2O2 solution was perfused over the oocytes for 1 minute to induce disulfide bond 

formation in the receptor. H2O2 was diluted with ND96 buffer from a 30% H2O2 stock 

solution (Sigma-Aldrich, Oakville, Ontario, Canada) to reach the desired 0.3%. Another 

ND96 wash was conducted until a stable current was achieved, and response to the 

corresponding EC50 GABA concentration was recorded. An ND96 wash was once again 

Solution in 

Electrode #1  Electrode #2 

Waste out 

Figure 8: A Xenopus laevis oocyte set up for two-electrode voltage clamp 
electrophysiology in a perfusion chamber. 
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repeated for current stabilization followed by a 1-minute perfusion of 10mM DTT 

(Sigma-Aldrich, Oakville, Ontario, Canada) diluted in ND96 buffer to remove the 

disulfide bond formed by H2O2 exposure. A final EC50 GABA response was recorded 

upon current stabilization following DTT exposure. 

2.7 Agonists and Other Compounds Utilized for Electrophysiology 

GABA agonists used for this research were (R)-(-)-4-Amino-3-hydroxybutyric 

acid (R-GABOB), (S)-(+)-4-Amino-3-hydroxybutyric acid (S-GABOB), Imidazole-4-

acetic acid (IMA), and 5-aminovaleric acid (DAVA). R-GABOB was obtained from 

Astatech (Astatech Inc., Bristol, PA, United States). All other agonists were obtained 

from Sigma (Sigma-Aldrich, St. Louis, MO, United States). Electrophysiology on X. 

laevis oocytes expressing mutant or wildtype Hco-UNC-49BC receptors was conducted 

by first exposing the oocyte to the corresponding EC50 GABA concentration to ensure 

channel functionality. Following this, a range of increasing concentrations for the agonist 

being tested were washed over the egg and changes in current across the membrane were 

recorded. Dose response curves were generated using this range of recordings. 

Concentration range for DAVA was between 250µM and 50000µM since it has been 

shown to be only a partial agonist for GABA (Kaji et al., 2015). All other agonist 

concentrations ranged from 50µM to 10000µM.  

 The negative allosteric modulator (NAM) of GABA receptors used in this 

research, pregnenolone sulfate (PS), was obtained from Sigma (Sigma-Aldrich, St. Louis, 

MO, United States). X. laevis oocytes expressing mutant or wildtype Hco-UNC-49BC 

receptors were first exposed to EC50 concentrations of GABA to ensure channel 

functionality. Oocytes were then exposed to a co-application of an increasing range of PS 
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concentrations mixed with the corresponding EC50 GABA concentration. Changes in 

current were recorded and inhibitory dose response curves were generated to determine 

the IC50 value for the mutant being tested. PS concentrations ranged from 5µM to 

500µM. 

  



30 
 

 

 

 

 

Results  



31 
 

Section 3: Results 

3.1 Electrophysiology of Hco-UNC-49  

Point mutations were conducted within the UNC-49B subunit of the UNC-49 

GABA receptor to determine the importance of individual amino acid residues. The 

residues located at D83, E131, K181, E183, and T230 positions within UNC-49B were 

changed to several other residues to monitor the resulting changes in channel activation. 

Each EC50 value is the result of a minimum of 4 recorded traces from X. laevis oocytes of 

at least 2 different frogs. Some mutations in the K181 position resulted in minimal 

change to EC50 values, while all mutations in the E183 position caused a drastic decrease 

in GABA sensitivity. EC50 values for key mutations have been rank ordered and are 

shown in Figure 9. A summary of all EC50 results is displayed in Table 2. 

 

 

 

Figure 9: A visualization of increasing EC50 values for mutations in K181, E183, and 
T230 of Hco-UNC-49B. 
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Table 2: EC50 values and number of oocytes tested for a variety of mutations in Hco-
UNC-49B. 
Mutant EC50 ± Standard Error 

(µM) 
Hill Slope Number of Oocytes 

Wildtype UNC-49B/C 113 ± 10.83 1.54 15 
D83A* No Response <20 mM - 10 
D83C 578.5 ± 116.59 1.05 10 
D83E* 276.1 ± 36.99 2.06 5 
D83N 335.1 ± 48.90 1.71 9 
E131A 219.1 ± 20.61 0.88 5 
E131C 1054 ± 210.41 1.07 11 
K181A 252.9 ± 40.72 1.22 9 
K181C 128.8 ± 10.32 1.22 12 
K181E 776.7 ± 38.03 2.35 11 
K181R 265.6 ± 59.01 1.12 5 
K181T 251.3 ± 26.64 1.63 10 
E183A* 735.2 ± 131.48  1.42 6 
E183C 2334 ± 318.49 0.97 12 
E183D 1826 ± 282.69 1.26 6 
E183K 1155 ± 77.66 2.70 13 
T230K 1280 ± 118.46 1.31 12 
K181A-E183A 114.7 ± 7.48 2.73 8 
K181C-E183C 8072 ± 582.26 2.30 16 
K181E-E183K 1680 ± 276.98 0.99 13 
K181T-T230K No Response <20 mM - 9 

*Data obtained from Josh Foster included to provide context 
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3.2 K181 Mutations

  

 

The K181 position was selected as a residue of interest based on its charge and 

proximity to an oppositely charge residue (E183) with which a potential salt bridge could 

be formed. The first mutation to remove any charge present from the K181 position was a 

mutation from lysine to alanine. This mutation showed an EC50 of 252.9µM ± 40.72 

(n=9). The next step was to reverse the charge via a K181E mutation, which showed a 

greater reduction (approximately 7-fold) in GABA sensitivity with an EC50 of 776.7µM ± 

38.03 (n=11). Mutating K181 to a similarly charged arginine (K181R) resulted in an over 

2-fold reduction in GABA sensitivity with an EC50 of 265.6µM ± 59.01 (n=5). The lysine 

to cysteine mutation (K181C) displayed no significant change in GABA response 

compared to wildtype with an EC50 of 128.8µM ± 10.32 (n=12). Modification of K181 to 

a threonine was conducted for two reasons. First to test if polarity (as opposed to electric 

Figure 10: Dose response curves for mutations of Hco-UNC-49B at the K181 position.
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charge) had an impact on the channel at this position, and secondly because a threonine is 

present in the analogous position in the human GABA receptor. The K181T mutation 

showed an over 2-fold decrease in GABA sensitivity with an EC50 of 251.3µM ± 26.64 

(n=10). Dose response curves for all K181 single mutations can be seen in Figure 10. 

3.3 E183 Mutations

E183 Mutations

[GABA] (µM)
10 100 1000 10000

0

50

100 WT
E183A*
E183C
E183D
E183K

 

 

Mutations in the E183 position were conducted to investigate the second half of a 

potential salt bridge between K181 and E183. The initial mutation of E183A to determine 

the effect of removing the negatively charged glutamic acid showed an EC50 of 735.2µM 

± 131.48 (n=6), which is a 6.5-fold decrease in GABA sensitivity. Reversing the charge 

at E183 via a mutation to lysine (E183K) displayed a greater than 10-fold reduced GABA 

response with an EC50 of 1155µM ± 77.66 (n=13). The E183D mutation was conducted 

Figure 11: Dose response curves for mutations of Hco-UNC-49B at the E183 
position. *Data obtained from Josh Foster 
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to measure the effect of replacing glutamic acid with an equally negatively charged, but 

smaller amino acid, and resulted in a drastic decrease in GABA sensitivity (a 16-fold 

reduction) with an EC50 of 1826µM ± 282.69 (n=6). Mutation to a cysteine at the E183 

position also resulted in a large (over 20-fold) decrease in GABA sensitivity with an EC50 

of 2334µM ± 318.49 (n=12). Dose responses for E183 single mutations can be found in 

Figure 11. 

3.4 K181-E183 Charge Reversal Mutation 

 

 

 

In order to determine the potential presence of a salt bridge between the K181 and 

E183 residues, a double mutation in which the residues (and therefore the electrical 

charge) on either side of the bridge has been swapped is required. For this mutation, 

lysine at 181 is mutated to a glutamic acid while the glutamic acid at 183 is 

simultaneously mutated to a lysine. This mutation resulted in a large decrease, 

Figure 12: Dose response curve for the charge reversal mutation of Hco-UNC-49B at 
the K181 and E183 positions. 
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approximately 15-fold, in GABA sensitivity with an EC50 of 1680µM ± 276.98 (n=13). 

The dose response for this can be seen in Figure 12. 

3.5 K181-E183 Charge Removal Mutation

 

 

To determine the impact of removing all charges from the two potentially 

interacting residues at the K181 and E183 positions, a double alanine mutation was 

created. Based on the previous results from the K181A and E183A mutations, it was 

expected that a double alanine mutation would have a greater reduction in GABA 

sensitivity due to the combined effect of removing both charges simultaneously. 

Surprisingly, the double alanine mutation resulted in an EC50 of 114.7µM ± 7.48 (n=8), 

which closely resembled the wildtype EC50 of 113µM. The hill slope of the double 

alanine mutant (2.73) was found to be significantly different from the wildtype (1.54) hill 

slope (p<0.05). The dose response for this mutation can be seen in Figure 13. 

Figure 13: Dose response curve for the double charge removal mutation of Hco-
UNC-49B at the K181 and E183 positions. 
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3.6 K181-T230 Mutations

 

 

The threonine in the 230 position and the lysine in the 181 position were both 

found to be conserved among a variety of parasitic nematodes after a sequence alignment 

was conducted (Figure 7). Interestingly, in the human β-2 GABAA receptor, there is a 

lysine in the 230 position and a threonine in the 181 position. To determine if the 

placement of these two residues is critical for receptor function in H. contortus, a series 

of mutations were conducted. The results for K181T have been presented in a previous 

subsection. The mutation of T230 to a lysine resulted in a large, over 11-fold decrease in 

GABA sensitivity with an EC50 of 1280µM ± 118.46 (n=12). The swap mutation 

replacing K181 with a threonine and T230 with a lysine simultaneously did not respond 

Figure 14: Dose response curves for mutations of Hco-UNC-49B at the K181 (n=10) 
and T230 (n=12) positions. 
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to any GABA concentrations below 20 mM and is therefore considered to be effectively 

non-functional. The dose response curves for these mutations can found in Figure 14. 

3.7 GABA Agonists and Other Compounds 

Since the results from the K181A and K181A-E183A were unexpected, further 

testing was conducted utilizing multiple GABA agonists to better characterize the Hco-

UNC-49 receptor. Testing on the K181A mutation included electrophysiological 

responses to the GABA receptor agonists (S)-(+)-4-Amino-3-hydroxybutyric acid (S-

GABOB), (R)-(-)-4-Amino-3-hydroxybutyric acid (R-GABOB), and Imidazole-4-acetic 

acid (IMA). Testing on the K181A-E183A mutation included the GABA receptor 

agonists IMA and 5-aminovaleric acid (DAVA), and the GABA receptor NAM 

pregnenolone sulfate (PS). Previous work in this lab characterized the wildtype Hco-

UNC-49 receptor using the aforementioned compounds and are presented for comparison 

(Kaji et al., 2015). Results for these compounds are summarized in Table 3. 

 For the K181A mutation, S-GABOB yielded an EC50 of 2111µM ± 194.69 (n=7), 

a 5.5-fold decrease in channel sensitivity compared to the wildtype receptor with S-

GABOB, and an 8-fold decrease in sensitivity compared to GABA. R-GABOB had an 

EC50 of 1101µM ± 138.74 (n=5), a nearly 5-fold decrease compared to the wildtype 

receptor, and an over 4-fold decrease compared to GABA. IMA had an EC50 of 208.1µM 

± 18.74 (n=4), a similar channel sensitivity compared to wildtype and a slight increase 

compared to GABA. Dose response curves can be seen in Figure 15. 
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With the double alanine mutation, K181A-E183A, IMA had an EC50 of 207.2µM 

± 30.38 (n=4), nearly the same as the wildtype receptor, and about a 2-fold decrease 

compared to GABA. DAVA yielded an EC50 of 3429µM ± 400.3 (n=4), which is very 

close to the wildtype receptor and is a 30-fold decrease when compared to GABA. 

Agonist response curves can be seen in Figure 16. The GABA receptor NAM, PS, had an 

IC50 of 65.25µM ± 24.58 (n=6) which is a nearly 2.5-fold decrease in inhibitory effect 

when compared to the wildtype IC50 of 26.83 ± 0.39 (n=5). PS response curves can be 

seen in Figure 17. 

Figure 15: Dose response curves for agonists tested on the K181A mutation of Hco-
UNC-49B. 
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Figure 16: Dose response curves for agonists tested on the K181A-E183A mutation. 

Figure 17: Dose response curve for the NAM pregnenolone sulfate tested on the 
K181A-E183A mutation of Hco-UNC-49B. 
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Table 3: A summary of EC50 and IC50 values for agonists and the NAM tested on the 
K181A and K181A-E183A mutations of Hco-UNC-49B 

Mutant Agonist EC50 ± Standard 
Error (µM) 

Hill Slope Number of 
Oocytes  

Wildtype UNC-49B/C GABA 113 ± 10.83 1.54 15 
S-GABOB 382 ± 22* 1.11 6 
R-GABOB 234 ± 43* 1.67 6 
IMA 175 ± 21* 1.93 11 
DAVA 3914 ± 520* 1.47 7 

K181A GABA 252.9 ± 40.72 1.22 9 
 S-GABOB 2111 ± 194.69 2.98 7 
 R-GABOB 882.5 ± 186.01 1.49 6 
 IMA 208.1 ± 18.74 1.20 4 
K181A-E183A GABA 114.7 ± 7.48 2.73 8 
 IMA 207.2 ± 30.38 0.92 4 
 DAVA 3429 ± 400.3 1.20 4 

*Kaji et al. (2015) 

Mutant NAM IC50 ± Standard 
Error (µM) 

Hill Slope Number of 
Oocytes  

Wildtype UNC-49B/C PS (IC50) 
 

26.83 ± 0.39 -1.50 5 
K181A-E183A 65.25 ± 24.58 -0.96 6 

 
 

3.8 Disulfide Trapping 

The disulfide trapping experiment was conducted to further understand the 

interaction between K181 and E183 as well as their potential effects on GABA binding in 

the Hco-UNC-49BC receptor. The goal was to determine the % inhibition of the receptor 

following the introduction of a disulfide bridge between two cysteine residues by 

washing with the oxidizing agent hydrogen peroxide (H2O2). Recordings were obtained 

from a minimum of 3 X. laevis oocytes from at least 2 different frogs. The results 

demonstrated a 23.22% ± 3.71 (n=5) inhibition in the double-cysteine mutant and a 5.9% 

± 5.61 (n=5) inhibition in the K181C mutant following H2O2 exposure. The wildtype and 

E183C mutation did not display any inhibition in channel function, but rather showed an 

increase in channel response following H2O2 exposure. Wildtype showed a 6.27% ± 2.27 
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(n=3) increase in GABA response and E183C showed an 18.28% ± 9.94 (n=4) increase 

in GABA response. Treatment with DTT following the second GABA wash removed the 

introduced disulfide bond and GABA responses returned to similar levels seen before 

H2O2 exposure.  

 

 

 

 

 

 

 

Figure 18: Disulfide trapping experiments conducted on various cysteine mutations in 
Hco-UNC-49B. 
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Representative electrophysiological traces and recorded responses to GABA following 

H2O2 exposure can be seen in Figure 18. The results from wildtype and both individual 

mutations were significantly different from the double mutation (p<0.05). 

3.9 Mutant Cycle Analysis 

With the electrophysiology results collected for the K181 and E183 mutations, 

further analysis was required to determine if these two residues interact with each other. 

Each mutation introduced to a protein structure is thought to result in a change in free 

energy (ΔG) of the overall structure which can influence protein folding. These changes 

can be visualized in Figure 19. Mutations in various positions are likely to affect the 

protein differently. A mutation involving two residues that do not interact is expected to 

have a change in free energy equal to the sum of both individual mutations, as each 

mutation has an additive impact on the overall structure.  

 

 

 

 

 

 

 

Figure 19: Visualization of the changes in free energy associated with K181/E183 
mutations. EC50 values for each variant are presented in brackets. 
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However, two residues that interact may not show the same result. K181 and E183 

mutations in Hco-UNC-49B had a negative effect on channel function and reduced the 

EC50 for GABA. Due to these two residues having opposite charge and a close proximity 

to each other, it is hypothesized that they interact and are important for channel 

functionality. Mutant cycle analysis revealed a non-additive change in free energy 

between the individual K181A and E183A mutations, and the combined K181A-E183A 

double mutation. Calculated changes in free energy and interaction energy can be seen in 

Table 4. 

Table 4: Mutant cycle analysis of K181 and E183 residues in Hco-UNC-49B. 
Mutant ΔG (kcal/mol) ΔΔG (kcal/mol) 
K181A 0.48 n/a 
E183A 1.11 n/a 
K181A-E183A 0.01 (-) 1.58 
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Section 4: Discussion 

The goal of this thesis is to further characterize the GABA receptor, Hco-UNC-

49, that is unique to the parasitic nematode Haemonchus contortus. The results may 

provide a better understanding of how the receptor functions and to help identify 

similarities and differences with other LGICs (vertebrate and invertebrate). Through the 

use of a model created using a C. elegans GluCl channel crystal structure as the template, 

a variety of individual amino acid residues within close proximity of the GABA binding 

site were selected. Selections were determined based on sequence homology with other 

GABA receptors such as the Human GABAA receptor, the D. melanogaster RDL 

receptor, and UNC-49 receptors found in other parasitic nematodes such as B. malayi, T. 

pseudospiralis, and T. canis. Single or double point mutations allowed specific 

modifications to be analyzed with TEVC electrophysiology to determine the impact and 

importance of each residue for the channel’s overall function.  

It is suspected that charged residues in loops B and C of the GABAA receptor are 

able to form salt bridges that are critical for GABA activation of the channel 

(Venkatachalan & Czajkowski, 2008). These interacting residues are thought to have a 

critical role in the transition of the channel from the closed to open state, specifically in 

positioning and stabilizing loop C upon ligand binding (Venkatachalan & Czajkowski, 

2008).  

Previous studies have identified the importance of several key residues in the 

GABAA receptor. Newell et al. (2004) demonstrated that the glutamic acid in position 

155 of the β2 subunit in the GABAA receptor is crucial for modulation of channel 

opening following GABA binding. This residue is analogous to the E185 residue in the 
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Hco-UNC-49 receptor. Ashby et al. (2012) further demonstrated that a similar residue in 

the D. melanogaster RDL receptor, E204 (analogous to E185 in Hco-UNC-49), 

maintained an ionic interaction directly with the amino group of a bound GABA 

molecule. Past research in this lab by Josh Foster demonstrated that any mutations to the 

E185 residue in Hco-UNC-49 would render the channel non-functional as indicated by a 

lack of GABA response at less than 20 mM. Miller et al. (2014) further analyzed residues 

in the GABAA receptor that were thought to interact with the critical E155 residue and 

found that closure of the GABA binding site is maintained by salt bridge interactions 

between E153, R207, and E155. The D. melanogaster RDL receptor contains the same 3 

interacting analogous residues at positions E202, E204, and R256, which are also 

important for function of that receptor (Ashby et al., 2012). The E153, E155, and R207 

residues in the GABAA receptor and the E202, E204, and R256 residues in the RDL 

receptor are analogous to the E183, E185, and R241 residues found in the H. contortus 

UNC-49 receptor. 

Venkatachalan & Czajkowski (2008) provided evidence for the existence of a salt 

bridge interaction between E153 and K196 in the human GABAA receptor. As previously 

mentioned, E153 in the GABAA β subunit is analogous to E183 in the H. contortus UNC-

49B subunit. However, the UNC-49B subunit does not have a lysine, but rather a 

threonine, in the analogous position to K196. There is instead a lysine residue located at 

position 181 in the UNC-49B subunit, extremely close to the glutamic acid at 183. Model 

analysis revealed that these two residues are within close enough proximity (2.7Å) to 

form a salt bridge (Figure 20). An interaction like this within the GABA binding pocket 

could be important for receptor function, either by interacting with the ligand itself or 
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with nearby residues. The model also showed that a threonine in the T230 position is 

within close proximity of both K181 and E183 (4.2Å and 2.8Å respectively). Sequence 

alignment revealed that this T230 residue is highly conserved among other parasitic 

nematodes, however it is not found in the human GABAA receptor. Interestingly, in the 

human receptor these residues are swapped, with a threonine in the 181 position and a 

lysine in the 230 position. In an effort to create a salt-bridge analogous to the human 

E153 and K196, a double mutation (K181T, T230K) was introduced. This essentially 

removed the lysine residue from position 181 to allow E183 to potentially interact with 

the newly introduced lysine at position 230. Interestingly, this receptor was essentially 

non-functional. If this new salt bridge was in fact formed, it seems that in the nematode 

UNC-49 receptor it is not tolerated.  

 

 

Figure 20: Key residues of the Hco-UNC-49 receptor with a GABA molecule docked in 
the binding site. Distances between potentially interacting residues are visualized with 

dotted lines. 
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The research presented in this thesis supports the idea of an important molecular 

interaction between the residues K181 and E183, and possibly with T230. Mutant cycle 

analysis between K181 and E183 reveals that these two residues are energetically linked 

in some way with an interaction energy (ΔΔG) of (-) 1.58 kcal/mol. Compared to 

wildtype, the K181A mutation had a change in free energy (ΔG) of 0.48 kcal/mol, the 

E183A mutation had a ΔG of 1.11 kcal/mol, and the K181A-E183A mutation had a ΔG 

of 0.01 kcal/mol. Since the change in free energy associated with the double alanine 

mutation is not equal to the sum of the free energy changes occurring in the individual 

K181A and E183A mutations, it is highly likely that these two residues are interacting 

with each other (Venkatachalan & Czajkowski, 2008). 

Though it is not clear exactly what role the K181 residue plays in channel 

activation, it is abundantly clear that the E183 residue is important for receptor 

functionality as every mutation in this position had a negative impact on the channel. 

Responses varied from a 6.5-fold decrease in GABA sensitivity with the E183A mutation 

up to an over 20-fold decrease in GABA sensitivity with the E183C mutation. Mutations 

to the K181 residue yielded less conclusive results, with almost all mutations at this 

position having a smaller negative impact on channel functionality. The least impactful 

change at this position was the K181C mutant, which had an EC50 that was not 

significantly different from the wildtype receptor (p>0.05). Additionally, the K181R 

mutation yielded an EC50 over 2-fold greater than that of the wildtype receptor, but the 

difference was not statistically significant (p>0.05). This is not entirely surprising since 

although arginine contains a larger guanidium group, it maintains a positive charge 
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similar to the amino group found in lysine, which could maintain an electrostatic 

interaction with E183. The most impactful change at this position was the K181E 

mutation, a single point charge reversal that resulted in a nearly 7-fold decrease in GABA 

sensitivity, suggesting that an electrostatic interaction with E183 may be assisting with 

channel activation and stability. The K181T mutation resulted in a statistically different 

(p<0.05) 2-fold reduction in GABA sensitivity from the wildtype receptor with an EC50 

of 343.5 µM, but was able to show that an uncharged polar residue in the 181 position is 

still able to retain channel functionality at a reduced sensitivity. 

The K181A-E183A mutation displayed a very interesting result in that its response to 

GABA was very similar to the wildtype receptor. It is unusual that each individual 

mutation (K181A and E183A) resulted in reduced GABA sensitivity with EC50 values of 

252.2 µM and 735.2 µM respectively, yet both mutations occurring simultaneously 

produced an EC50 similar to wildtype (114.7 µM). One possibility is that these two 

residues are interacting to stabilize each other and potentially maintaining molecular 

interactions with other nearby residues. A removal of the positive charge on K181 could 

result in the E183 residue slightly shifting in orientation resulting in new or altered 

secondary interactions that affect the channel negatively. The presence of a salt bridge 

between K181 and E183 could prevent E183 from interfering with E185, which has been 

shown to be crucial for receptor function and is also thought to have a direct interaction 

with bound GABA molecules (Newell et al., 2004). This idea is supported by the double 

alanine mutation which has no apparent impact on GABA binding, since both positive 

and negative charges have been removed simultaneously. With both charges nullified, 

neither K181 nor E183 are able to interfere with nearby residues. The E183K mutation, 
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with an EC50 of 1155 µM, also suggests that potential interference with E185 could result 

in reduced channel functionality. Though the distance between E183 and E185 (5.02Å) is 

slightly further than the 4Å distance thought to be required for salt bridge formation, it is 

possible that the E183K mutation could position a lysine residue close enough to E185 to 

interfere with its existing interactions, such as with nearby residues or a bound GABA 

molecule. 

Interestingly, the double alanine mutation displayed similar responses compared to 

wildtype when tested with the GABA agonists IMA and DAVA, but showed a different 

response when GABA inhibition was tested with PS. Further testing would be required to 

fully understand this interaction, but it is clear that there are some unique properties in the 

double alanine mutation that separate it from the wildtype receptor. Similarly with the 

single alanine mutation, K181A, the GABA agonist IMA displayed a response very close 

to that of the wildtype receptor. The other agonists tested on this mutant, R-GABOB and 

S-GABOB, displayed heavily decreased responses compared to wildtype. Both of these 

compounds contain a hydroxyl group on the third carbon. The model suggests that the 

hydroxyl group would be oriented towards the 181-185 residues during binding, and 

since that group is not found on either GABA or IMA, it could be the cause of the 

differences in agonist response. 

The disulfide trapping experiment conducted on cysteine mutations in the K181 and 

E183 positions of Hco-UNC-49B was meant to determine if an interaction between these 

two residues is possible and to measure their effect on channel activation. Venkatachalan 

& Czajkowski (2008) conducted a similar experiment and found that residues in the 

GABAA receptor (E153 and K196) were responsible for regulating movement of loop C 
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following GABA binding. Only one of these residues is analogous to the H. contortus 

receptor (E183), but the K181 residue is within a close enough distance to have a similar 

salt bridge interaction. This experiment confirmed that these two residues have the 

potential to interact with each other based on their ability to form a disulfide bond when 

both mutated to cysteine residues. Hydrogen peroxide exposure which induces disulfide 

bond formation resulted in a 23.22% decrease in GABA sensitivity in the K181C-E183C 

double mutation. Based on these results, it is possible that K181 and E183 are also partly 

responsible for initiating the conformational change required to open the channel and 

allow ion passage following GABA binding.  

The T230 residue appears to have some importance for the Hco-UNC-49 channel. 

Mutation to a lysine in this position resulted in a significant, over 11-fold decrease in 

GABA sensitivity, while a swap mutation with K181 rendered the channel non-functional 

with no responses at physiologically relevant levels. Since threonine is not an electrically 

charged amino acid, and the distance between K181 and T230 is above 4Å, there would 

not be a salt bridge interaction between these two residues. There may however be 

another form of molecular interaction occurring here that is vital for channel function. 

Further research would be required to better understand this relationship, but it does 

appear to be vital for the Hco-UNC-49 receptor.  
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Section 5: Conclusion  

Previous and current work in the Forrester lab have provided a strong baseline for 

characterization of the Hco-UNC-49 receptor. It has been previously demonstrated that 

the invertebrate GABA receptor has key differences from the vertebrate receptor, such as 

excitatory GABA receptors responsible for intestinal waste expulsion in nematodes 

(Schuske et al., 2004). Further characterization identified unique properties of the Hco-

UNC-49 receptor compared to other invertebrates such as C. elegans. Specifically, both 

species contain homomeric and heteromeric GABA receptors, yet they have displayed 

opposite trends in GABA sensitivity (Siddiqui et al., 2010). Several residues critical for 

receptor function have been identified within Hco-UNC-49 and mutations have been 

analyzed for their impact on GABA binding and overall channel efficiency.  

The primary focus of this thesis is the potential interaction found between K181 

and E183 in the B subunit of the Hco-UNC-49 receptor. These residues can be found in 

close proximity to the bound GABA molecule based on the model, are opposite in 

electrical charge, and are positioned within a short enough distance to form a salt bridge 

with each other. Mutations to K181 generally resulted in reduced GABA sensitivity, but 

did not have nearly as much of a negative impact on the channel as mutations in E183. 

The charge reversal mutation also reduced GABA sensitivity significantly, but none of 

the mutations in these two positions rendered the channel non-functional. Based on 

research conducted on analogous residues in other receptors such as human GABAA, and 

the research conducted in this thesis, it appears that E183 is important for channel 

functionality. Other research in this thesis, such as the mutant cycling and disulfide 

trapping experiments described previously, strongly suggest the presence of a molecular 
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interaction between K181 and E183. It is possible that K181 may serve as a form of 

stabilization for E183, which explains why direct mutations on E183 have a larger 

negative impact on the channel. 

Another goal of this thesis was to investigate the Hco-UNC-49 T230 residue after 

sequence homology revealed it is conserved among multiple invertebrate GABA 

receptors, yet not found in the human receptor. Conversely, the K181 residue is found in 

several invertebrates, but is replaced by a threonine in the human receptor. Similar to the 

K181-E183 interaction, mutations to the K181 residue slightly reduced GABA 

sensitivity, and mutating T230 had a much larger negative impact on the channel. 

Swapping K181 with the T230 residue rendered the channel non-functional. These results 

suggest that the T230 residue is very important for the Hco-UNC-49 receptor, though 

further analysis would be required to more precisely determine its role. 

This thesis has revealed some new potential interactions and important individual 

residues within the unique Hco-UNC-49 GABA receptor that may prove to be useful in 

future pharmaceutical research. The residues highlighted here may assist with 

determining useful targets for new anthelmintics to help combat the growing H. contortus 

resistance concerns among countries that rely on ruminant animals for survival and 

economic growth. There are still more studies that can be conducted to better understand 

how this GABA receptor functions, but it has proven to be a good target and unique 

opportunity for anthelmintic research. 
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Section 7: Appendices 

Appendix A: D83 Mutations 

 

   

Mutations in the D83 position were conducted to assist with Josh Foster’s 

research in the investigation of a salt bridge between D83 and R159. Mutation of D83 to 

a cysteine resulted in an EC50 of 578.5 ± 116.59 (n=10), a 5-fold decrease in GABA 

sensitivity compared to wildtype. The mutation to asparagine (D83N) resulted in a 3-fold 

decrease in GABA sensitivity with an EC50 of 335.1 ± 48.90 (n=9). These results are 

displayed alongside the wildtype responses in Figure 21. 

 

 

Figure 21: Dose response curves for mutations of Hco-UNC-49B in the D83 position. 
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Appendix B: E131 Mutations 

 

 

Mutations in the E131 position were conducted to assist with Josh Foster’s 

research in the investigation of another potential salt bridge between E131 and R159. 

Mutation to an uncharged alanine (E131A) resulted in a 2-fold decrease in GABA 

sensitivity with an EC50 of 219.1 ± 20.61 (n=5). The cysteine mutation (E131C) resulted 

in a large, 9-fold decrease in GABA sensitivity with an EC50 of 1054 ± 210.41 (n=11). 

Dose responses for these mutations can be seen in Figure 22. 

 

 

 

Figure 22: Dose response curves for mutations of Hco-UNC-49B in the E131 position. 


