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Abstract

This work focuses on analysis and model generation for user mobility patterns

given a sequence of observed WiFi signals. Built on the Android platform, the data

collection mobile application gathers WiFi sensor readings (BSSID and SSID). The

implemented pipeline performs location identification using an online hierarchi-

cal timeline clustering algorithm and segmentation algorithm. The segmentation

algorithm constructs a tree of location candidates which are then aggregated by a

similarity measure based on their BSSID and SSID features. The generated loca-

tions are processed to extract mobility patterns. A pattern is a sequence of location

transitions which have high information content, high activity over time, and high

degree of predictability. Each of these aspects are described by a numerical mea-

sure based on statistical properties of the location observations in a feature space.
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Chapter 1

Motivation and Problem Definition

1.1 Motivation

Obtaining a personal movement history and mobility pattern allows for the de-

velopment of mobility analysis on an individual level. Traditionally, data samples

are collected from a large population and can be used to generate insights [42].

However, this accumulation may not accurately reflect any one individual sampled

within the population. By collecting large amounts of data from a single individ-

ual, we are able to obtain a dataset that is reflective of that person, so any insights

gained would be tailored and specific to that person. Personalized insights that

are accurate come at the risk of loss of privacy due to the nature of the task when

utilizing cloud storage. Data needs to be collected and transfered to a server that is

capable of doing the analysis, and therefore privacy is at risk.

The goal of this project was to collect personalized mobility data, provide a

means to analyze it without putting privacy at risk, generate a database of loca-

tions defined by hotspots that are in close proximity to one another, and generate a

timeline of those locations for further analysis to discover mobility patterns.
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As a person’s movement patterns is the focus, and prior knowledge of the envi-

ronment the person frequents is not necessary. Only locations based upon detected

hotspots needed to be defined. This sets the stage for the development of an ad-hoc

system.

Two challenges, which were mentioned in [19], that this project aims to over-

come are: privacy, and complexity of analysis. To maintain privacy, creation of

physically unaware localization and movement analysis that can be achieved within

the confines of the data collection device is needed. Traditional methods [2, 10, 11,

14,22,24,27,28,30–32,36,36,38–41] were not conducive, as their complexities were

beyond the scope of this project.

The uses of both GPS and WiFi are inherently private, but this privacy is lost

with the transfer of the location data being sent to cloud storage, and is at the

mercy of nefarious individuals. Privacy is maintained with GPS so long as the

data is locally stored and not sent to cloud storage. Typically applications that uti-

lize GPS location positioning send the location data to cloud storage (e.g. Google

Maps Timeline [33]). In order to create a history of location, privacy is currently at

risk, and therefore mobility analysis can not be achieved without putting privacy

at risk as well.

When Android devices scan for WiFi hotspots, they do so passively; they listen

for beacons emitted by hotspots. By doing passive scans, an Android device does

not provide any of its own information. The risk of privacy being lost is again

caused by sending data to cloud storage.

The decision to use WiFi signals over GPS, was twofold: WiFi scanning is a more

power efficient means of data collection than the use of GPS on a regular basis [6],

and WiFi will provide a lower level of resolution (indoor and outdoor) than GPS

will allow.
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Another challenge was the nature of the data. WiFi signals are subject to many

forms of interference, including the ability of individuals to create their own ad-hoc

WiFi hotspots. The creation of their own temporary, moving hotspots would create

noise in the data collected.

1.2 Localization and mobility patterns

To generate a mobility pattern, localization is required. By definition, localization is

a means to find previously unknown locations of a device by means of using devices

with known locations and signal strengths to triangulate the unknown positions.

Since the goal of this work is to have an ad-hoc system that maintains privacy, the

scope of localization needs to be modified. In this work, clustering of a timeline

of WiFi signals is used to achieve localization. This version of localization doesn’t

take into account the position of the WiFi hotspots in the real world, only what

WiFi hotspots are observed within the same readings. Once a localization has been

established, the timeline can then be mapped to a timeline of the locations that

exist in the localization, and with this simplified timeline, mobility patterns can be

extrapolated.

1.3 Problem definition

WiFi hotspots, x, have a single BSSID, bssid, known as a MAC address and a single

user generated SSID, ssid; x = 〈bssid, ssid〉. A device scanning for WiFi signals

would obtain a set of hotspots with their respective signal strength, s, in decibels

(dB). A reading, r, was defined to be a timestamp, t, with a set of tuples containing

a hotspot and the signal strength; r =
〈
t, set(〈x0, s0〉 , 〈x1, s1〉 , 〈x2, s2〉 ... 〈xn, sn〉)

〉
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where n is the number of hotspots discovered at the scan recorded in the reading.

l1 l5

l4

¬
¬

¬x0

x1

x2

x3

x4

x5

Figure 1.1: Movement of mobile device

A timeline of readings, Tr, is a sequence of readings, where the t in ri would

always be less than the t in ri+1. A location, l, was defined as being a set of hotspots

frequently seen together. A timeline of locations would be a mobility pattern and

give us a view of a person’s movement at a higher level than the timeline of read-

ings.

Figure 1.1 illustrates the movement of a mobile device in a physical space, with

Figure 1.2 illustrating the timeline of readings that would represent the physical

movement. The mobile device has a limited distance in which it can detect WiFi

hotspots, and as the mobile device moves, the radius in which it can detect hotspots

moves along with it.

By grouping similar readings together, a set of hotspots then defines a location,

l. Some locations were more significant than others, so two types of locations were

defined; transient and persistent. A transient location is one that has few readings

or a small length of time spent there; an example being l2, and l3 in Figure 1.2.
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A persistent location is one that is significant either by the duration of time spent

there, or the frequency of visits. In Figures 1.1 and 1.2, the persistent locations

would be l1, l4 and l5.
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Figure 1.2: Timeline of readings

As a result of this localization, locations were defined as groups of readings that

have the same set of hotspots. If locations were allowed to be created from readings

that were within a similarity measure, then locations would have spanned larger

physical locations.

As the main goal of this research was to achieve a pattern of movement, there

were a few necessary capabilities. The ability to track the transitions from one lo-

cation to another was paramount, in addition to monitoring when an individual

returned to a location that had already visited. The combination of these two en-

abled the creation of a pattern of movement to describe a person’s timeline.
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Chapter 2

Related Work

Signal strengths collected from various sources (cellular, WiFi, GPS, Bluetooth)

have been used in positioning and localization, detecting movements, and gener-

ating mobility patterns.

Localization of the estimate position of mobile devices in a physical space, through

the use of radio frequency and ultrasonic signals, was achieved in [38]. By using

beacon devices installed throughout a building, that have known locations, trian-

gulating the position of mobile devices was achieved.

Clustering and regression of anonymized cellular data was implemented in [18],

to identify ”important places”, and discern locations that could be semantically

labeled as ”home” and ”work”.

Using mobile phone traces, [8] added semantics by inferring individuals daily

activities, using a model that was created using travel diary surveys.

While [44] and [18] were interested in mobility patterns to improve policies for

communities and calculating carbon footprint, [3] is interested in the use of human

mobility patterns to predict the direction and velocity of infectious diseases.

Cellular towers were also used in [44] to obtain mobility patterns of a population
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within a defined area. Triangulating their locations from cellular towers allowed for

the establishment of mobility patterns that were based from an assumed ”home”

position. The goal of this work was to discover if there were significant differences

on a population’s ”home-based” mobility pattern in different communities.

Applications, such as Google Maps, generate a mobility history of a device,

which is realized through the use of cloud web services and other cellular network

based approaches [33], but privacy is not maintained.

Mobility patterns of anonymized mobile phone users across a user base was

explored in [12,42]. The analysis in [12], discovered that individuals follow simple

mobility patterns. In [20], a new approach was suggested to investigate non-trivial

behavior on smaller timer scales than in [42].

Algorithms combining an extended Kalman filter, approximate pattern match-

ing and velocity vectors to predict future movements of users across cell boundaries

was used in [31].

Cellular signals are only suitable for outdoor environments, as a mobile device

would experience interference when indoors. Even when outdoors, this method

is subject to noise from the signals being reflected by buildings. The issue of un-

predictable effect of physical factors on signals was investigated by a propagation

model for the relationship between signal and location by [11] and [2]. Cellular and

WiFi interference was examined by [11], and [2] focused on WiFi signals.

RSSI from different sources was investigated for indoor localization in [30], and

[10,14, 24, 36, 45] focused on WiFi signals for indoor localization.

In both [40] and [27], user locations were modeled as states of a dynamic sys-

tem with noisy observations of RSSI data from WiFi signals. An implementation of

Bayesian filters called particle filters, estimated the system state—the user location—

using probability. The initial training phase uses samples from predefined points

7



to build a wireless sensor map of an environment divided into cells. Location is

then estimated on a spatial connectivity graph. With each motion update step of

the Bayesian filter, the user moves along an edge of the graph. As powerful as

these probabilistic methods are, they have the potential of a high computational

complexity, which is the drawback of particle filter methods. The worst-case com-

plexity grows exponentially in the dimensions of the state space.

A physical area was divided into a grid in [39] and [41]. WiFi signal data was

recorded from a set of fixed known points which was then used as training data

to generate a probability distribution of signal strengths given the location values.

With new signal observations, posterior distribution was computed and the highest

probability is used to select a location. A grid-like manner was also used with WiFi

signals in [29], with the data collection and off-line analysis phase being described.

The off-line analysis phase required 22 minutes to process a 120 meter by 21 meter

physical space containing multiple WiFi hotspots, which expresses the challenges

in achieving localization of signals.

In [22,28,32], offline readings were collected first and then online readings were

compared to them using a fingerprinting mode to find the physical position of mo-

bile devices.

The WiFi and GPS data collected in [23] was analyzed for detecting location

changes based upon signal strengths, and using diaries from the users in the case

study, semantics were added.

The work in [6] focused on the power consumption of collecting GPS data vs

WiFi data, and discovered a significant improvement on energy efficiency when

using WiFi for data collection.

In [13], a ”origin-destination” mobility pattern of a population was studied

through a dataset containing taxi drivers GPS timeline. This work studies the gen-
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eral flow of a population of taxi passengers, but doesn’t provide an individual’s

pattern which is the focus of the work in this project. The work in [21] also uses

GPS data of taxi drivers, but also includes bus and subway data to analyze human

mobility of a population.

In addition to cellular, WiFi and GPS, Bluetooth has also been used to achieve

insights on a population’s movement. Bluetooth signals were collected at a large

event in [43] and [7] from various receivers, and from the data collected, offline anal-

ysis was executed to gain insights into visitors high level movement at the event.

While [43] and [7] focuses on creating different profiles of visitors at the event given

their movements, the work in this project focus on a significantly longer timeline

that spans many locations that are discovered by an individual.

All of the related works mentioned require offline analysis and prior knowledge,

while also putting privacy at risk or causing the need for anonymous data being

used. The work in this thesis requires no prior knowledge and is achieved in an ad-

hoc fashion. The algorithms presented in Chapter 3 have been published in [15],

and the methods of evaluation and visualization of mobility patterns in Chapter 3

have been published in [16].

9



Chapter 3

Algorithms and Analytical

Techniques

3.1 Hierarchical time segmentation

Clustering the timeline of readings, Tr, via a binary tree hierarchy, H, allowed for

the maintenance of clusters of readings, which were then used to achieve localiza-

tion. This further allowed for the generation of a mobility pattern. A hierarchy also

provided a multi-resolution view of the locations discovered by the device.

The hierarchy,H, was defined as a binary tree like structure made up of clusters,

c, where the leaf clusters are the readings, r, from the timeline of readings, Tr.

Hierarchical clustering requires a similarity measure for choosing optimal pairs

to form new clusters. The similarity measure, sim, used for comparing clusters of

readings was given in the definition of 1. sim made use of Jaccard similarity [26],

comparing the sets of BSSIDs, B. Those were sourced from the creation of a super

set of all BSSID observed in the readings. A similarity result of 0 indicates that the

two clusters share no BSSIDs, and are two disjointed sets; whereas a similarity of 1

10



indicates that the two clusters are exactly the same.

Definition 1 Similarity function using Jaccard [26]

c0, c1 - clusters of readings.

Returns a number between 0 and 1, where 0 indicates the two clusters are completely dis-

similar, and 1 being the two clusters are the same.

sim(c0, c1) = Jaccard ((B(c0),B(c1)) =
|B(c0) ∩ B(c1)|
|B(c0) ∪ B(c1)|

3.1.1 Traditional hierarchical clustering

The traditional hierarchical clustering approach provides the localization desired,

and it is succinctly described by [26] in Algorithm 1. This approach continuously

clusters the most similar pair of clusters until there is only one cluster left, which

would then be the root of the hierarchy. The clusters obtained provide groups of

hotspots that have been frequently observed together, and therefore are in close

proximity to one another in their physical environment. The traditional approach

falls victim to the complexity of O(n2) with n being the number of readings in the

timeline.

while it is not time to stop do
pick the best two clusters to merge
combine those two clusters into one cluster

end
Algorithm 1: Traditional hierarchical approach [26]

In this usage case, the number of readings increases with time. So, for example,

if one reading were taken each minute, there would be 1440 readings per day, and

10 080 readings per week. For this reason alone, the traditional approach is not

suitable for this project.
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Figure 3.1 illustrates that localization was achieved, but segmenting the timeline

in an efficient manner still remains to be done.

r0 r1 r2 r3 r4 r5 r6 r7

r0 r1 r4 r5 r2 r3 r6 r7

c0 c1 c3

c2 c5

c6

c4

Figure 3.1: Traditional Hierarchical Clustering

3.1.2 New hierarchical clustering approach: ht-append

A new hierarchical clustering algorithm, ht-append, is proposed here, shown as

Algorithm 2. This algorithm incrementally builds up the hierarchy as readings are

being taken, maintains the original order of readings, and has the potential of a very

low runtime on real data as it has an average case complexity of O(log(n)). This

hierarchy that sits on the timeline, is denoted asHT . Figure 3.2 illustrates what the

proposed algorithm would achieve on the same set of data as Figure 3.1. Figure 3.1

shows that readings r0, r1, r4, r5 belong to a single location, and readings r2, r3, r6, r7

belong to another location, but the movement from one location to another, and the

return to the previous location is lost in the traditional method of clustering. In this

approach, readings r0 and r1 get clustered into c0, r2 and r3 into cluster c1, r4 and

r5 into cluster c3, and r6 and r7 into cluster c5. Further analysis would demonstrate

that c0 ≈ c3 and c1 ≈ c5, which would allow obtaining a mobility pattern describing

the movement from one location to another and back again.
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r0 r1 r2 r3 r4 r5 r6 r7

r0 r1 r2 r3 r4 r5 r6 r7

c0 c1 c3

c2

c4

c5

c6

Figure 3.2: Proposed hierarchical time clustering using ht-append

The ht-append(Algorithm 2) has two restrictions in addition to the traditional

hierarchical clustering approach:

1. Clusters can only be made from consecutive clusters

2. New clusters can only be added along the right-most branch of the hierarchy

The first restriction is to maintain order of the readings in the timeline, and the

second restriction is to ensure the hierarchy is incrementally created in an online

fashion.

When a new reading is being appended to the hierarchy usinght-append(Algorithm

2), a new cluster is created, cn, containing the information from the reading. The ini-

tial insertion point, ci, is initialized to the rightmost cluster in the hierarchy which

is found by traversing the hierarchy from the root, always returning the right child

cluster, until it reaches a leaf cluster, which then gets returned. cp was set to the

cluster previous to ci, which happens to be ci’s sibling cluster.

If the sim(ci, cn) > sim(cp, ci), then a new cluster was created c′n, which had the

left child of ci, and the right child being cn. An updated hierarchy, H∗T , is created

with the original parent to cp and ci, replaced with cp, and then new cluster c′n is
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where:HT - existing hierarchy
ci - insertion point (a cluster inHT )
cn - a cluster to be inserted after ci

result :H′T - the updated hierarchy
ht-append(HT , ci, cn)

if ci <> root(HT ) then
cp = prev(ci|HT )
if sim(ci, cp) < sim(ci, cn) then

c′n =

cn

ci

H∗T = replace(HT ,parent(ci), cp)
H′T = ht-append(H∗T , cp, c′n)

else
H′T = ht-append(HT ,parent(ci), cn)

end
else

H′T =

HT
cn

ci

end
Algorithm 2: Hierarchy time append function: ht-append

then attempted to be inserted at cp, with a recursive call to the ht-append function;

ht-append(H∗T , cp, c′n).

If the similarity of the new tree to the insertion point cluster, sim(ci, cn) <=

sim(cp, ci), then cn is attempted to be inserted at the parent of ci, through a recursive

call to the ht-append function; ht-append(HT ,parent(ci), cn).

In this fashion, the hierarchy is traversed along the rightmost path towards the

root. When the insertion point ci becomes the root, a new root cluster must be

created, with the original root cluster ci to be the left child, and the new cluster cn,

to be inserted as the right child.
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The hierarchy,HT , sits on the timeline of readings, Tr, and if a person returned

to a location they had frequented before, there would be separated clusters in the

hierarchy. In a traditional hierarchical clustering algorithm, these clusters would

have been clustered together. As they were not created from consecutive readings,

they are separated by other branches of clusters.

With the hierarchy in place, a multi-resolution representation of clusters, and

their place on the timeline, would be observable.

Each cluster of the hierarchy represents a segment of the timeline which is ob-

tained by extracting the leaves of a cluster. The start and end time of the segment

can be achieved by traversing towards the leaves returning the left-most and right-

most leaves respectively.

Visual example of ht-append

The movement example from Figure 1.2 can supply the readings to the ht-append

function (Algorithm 2). Figure 3.3 shows that a new root is being created for every

new reading, since sim(ri, ri−1) < sim(ri−1, prev(ri−1)).

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15
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〈t14 , set(x
4 , x

5 )〉

〈t15 , set(x
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5 )〉

c0

sim(r0, r1) = 1

c1

sim(c0, r2) = 1

c2

sim(c1, r3) = 1

Figure 3.3: Clustering the first 4 readings of the timeline

The first four readings in Figure 3.3, all have the same set of hotspots, and there-
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fore a new root is created in every case. When r4 is appended to the hierarchy in

Figure 3.4, a new root c3 is created, even though sim(r4, c2) = 0.25, because c2 is the

root of the hierarchy, a new root is created.
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sim(c2, r4) = 0.25

Figure 3.4: Clustering the 6th reading of the timeline

When r5 is appended to the hierarchy, the first case of having to break a cluster

from the main hierarchy appears (Figure 3.5). Since sim(r4, r5) = 1, and sim(r4, c2) =

0.25, r4 is detached from the hierarchy, and replace c3 with c2. A new cluster c4 is cre-

ated with the left child being r4 and the right being r5, and then c4 is then attempted

to be inserted at c2 (currently the root) which then causes a new root cluster c5 to

be created.
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Figure 3.5: Clustering the 6th reading of the timeline

When r6 is attempted to be inserted at r5, as seen in figure 3.6, sim(r5, r6) = 0.67

is smaller than sim(r4, r5) = 1. As a result, r6 is then attempted to be inserted at the

parent of r5 which is c4. The value of sim(c4, r6) is also 0.67, which is greater than

the sim(c2, c4) = 0.25, which causes c4 to be broken from the hierarchy and added

as the left child of a new cluster c6. Cluster c2 is elevated to the root once again, and

when c6 is attempted to be inserted at c2, a new root c7 is created.
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Figure 3.6: Clustering the 7th reading of the timeline
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Inserting r7 into the hierarchy is illustrated in figure 3.7, the previous reading

must be disconnected from the hierarchy and create a new cluster c8. The cluster r6

was previously clustered with, c4, replaces c6, and the new c8 cluster is attempted to

be inserted at c4. The similarity comparisons of sim(c2, c4) = 0.25 and sim(c4, c8) =

0.67, cause c4 to be detached from the hierarchy and added as the left child of a new

cluster, c9, and the right child being c8. The root, c7, is then replaced with c2 once

again. When c9 is attempted to be added at c2, new root c10 is compulsory.
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c1

c2

sim(c1, r3) = 1
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c10

sim(c2, c10) = 0.2

c8

sim(r6, r7) = 1

c9

sim(c4, c8) = 0.67

Figure 3.7: Clustering the 8th reading of the timeline

When appending the 9th reading, r8 to the hierarchy, as illustrated in Figure

3.8, the new reading at r7 was first attempted, and compared sim(r7, r8) = 0.75

with sim(r6, r7) = 1 which forced the attempt to insert at the parent of r7, which

is c8. The sim(c8, r8) = 0.75 and sim(c4, c8) = 0.67 causes the detachment c8 from

the hierarchy and place it in the left child of a new cluster c11 with the right child

being r8. The cluster, c4, replaces c9. The insertion of c11 at c4 was attempted, which

succeeds and causes us to detach c4 from the hierarchy, and elevate c2 to become

the root once again. A new cluster, c12 is created with the children c4 and c11, and is

attempted to be inserted at c2, which being the root once again, forced the creation
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of another new root, c13.
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c1

c2

sim(c1, r3) = 1

c4 c8

c11

sim(c8, r8) = 0.75

c12

sim(c4, c11) = 0.5

c13

sim(c2, c12) = 0.17

Figure 3.8: Clustering the 9th reading of the timeline

Inserting the 10th reading, r9, in figure 3.9, causes r8 to be detached from c11

due to the fact that sim(r8, r9) = 1, causing c8 to replace c11, and the new cluster, c14,

being formed with the children r8 and r9. The new cluster c14 is then attempted to be

inserted at c8. With the comparisons of sim(c4, c8) = 0.67 and sim(c8, c14) = 0.75,

c8 detaches from the hierarchy, and is added to a new cluster c15 along with c14.

The cluster c4 gets elevated to replace c12. The new cluster c15 is then attempted to

be inserted at c4, which is successful since sim(c4, c15) > sim(c2, c4). Cluster c4 is

detached from the hierarchy and with c15 create a new cluster c16, causing c2 to be

elevated to the root. When c16 is attempted to be inserted at c2, a new root cluster,

c17 is created.
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c4 c8 c14

sim(r8, r9) = 1

c15
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Figure 3.9: Clustering the 10th reading of the timeline

Inserting the 11th reading, r10, in figure 3.10, will result in r10 being combined

with c14 to create c18, since it can’t beat the similarity sim(r8, r9) = 1. Cluster c19 is

created by combining c8 and c18, c20 is created by combining c4 and c19, and then c21

is created by combining c2 and c20, and is the new root.
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Figure 3.10: Clustering the 11th reading of the timeline
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Figure 3.11, denotes the clustering of the 12th reading, r11. Similar to the be-

havior of adding r10, the top cluster that had a similarity of 1 among the children

was broken off and combined it with r11 to create a new cluster c22. The insertion of

c22 at cluster c8 was successful, which replaced c19, since sim(c8, c22) > sim(c4, c8).

The new cluster c23 is created from c8 and c22, and then attempted to be inserted at

c4, which is accepted since sim(c8, c23) > sim(c2, c4). Cluster c24 is created from c4

and c23, and c2 becomes the root. When the attempt to insert c24 at the root, c2 was

made, and a new root was generated, c25.
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Figure 3.11: Clustering the 12th reading of the timeline

Figure 3.12 shows the resulting hierarchy after readings r12 to r15 are appended

to the hierarchy.
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Figure 3.12: Clustering the 13th to 16th reading of the timeline

3.1.3 Segmenting the hierarchy timeline: ht-segment

Using ht-segment (algorithm 3), the hierarchy of clustered readings on the timeline,

HT (the result of ht-append) was taken. this was turned it into a list of clusters that

have the similarity of their children meet a minimum threshold, σ. The clusters

then represent segments, and the list of cluster segments, is a timeline of segments,
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Ts.
where: c - cluster in the hierarchy

σ - similarity threshold

result : A sequence of clusters which represent segments of the timeline

ht-segment(c, σ)

if sim(left(c), right(c)) < σ then
return [ ht-segment(left(c), σ) + ht-segment(right(c), σ) ]

else
return [ c ]

end
Algorithm 3: Segment function: ht-segment

If the resulting hierarchy from Figure 3.12 was able to be input in the ht-segment

function with a similarity threshold σ, of 1, 0.75 and 0.5, the result would be:

Ts = ht-segment(c37, 1) =

 c2
,
c4

,
c8

,
c22

,
c34



Ts = ht-segment(c37, 0.75) =

 c2
,
c4

,
c23

,
c34



Ts = ht-segment(c37, 0.5) =

 c2
,
c36


Continuing to utilize the hierarchy structure of the clusters and readings, all of

the information in the readings is able to be extracted, and new information was

derived (start time, end time and duration), for each cluster segment. The start

time is accessed through traversing from the root of a cluster to the left-most leaf

node which would be the first reading in the cluster, and conversely, the end time

is available by traversing to the right-most cluster. Obtaining the duration is then

a matter of subtracting the start time from the end time. It is also still possible to
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obtain the set of hotspots that the cluster encompasses and even retrieve the signal

strength for each hotspot in each reading.

3.2 Locations and semantic grouping

3.2.1 Physical locations

A physical location, lp, is a list of clusters, where each cluster is obtained from

the timeline of segments, Ts, resulting from ht-segment (Algorithm 3). Each clus-

ter within a physical location must meet the physical location similarity thresh-

old, ρ, with at least one other cluster within the physical location as per algorithm

loc-physical (Algorithm 4), which iterates through the segments and returns a list

of physical locations, Lp. The similarity measure only takes into account the set of

BSSID values within a cluster, B, which is why we refer to these as physical loca-

tions.

Figure 3.13 illustrates loc-physicaltaking a timeline of segments and grouping

them based upon their BSSID sets.

Ts =

 c2
,
c4

,
c5

,
c8

,
c22

,
c34

,
c39

,
c40

,
c42

,
c45

,
c51


loc-physical(Ts, ρ) =

[ c2
,
c34

,
c51

 ,[ c5
]
,

 c4
,
c22

,
c39

,
c45

 ,
 c8

,
c42

 ,
 c40

]

Figure 3.13: Physical location identification example
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where: Ts - list of clusters that represent segments of the timeline
ρ - physical location similarity threshold

result : Lp - A collection or list of physical locations, lp
loc-physical(Ts, ρ)
Lp= empty list
for cs in Ts do

found = False
for lp in Lp do

for cl in lp do
if sim(cs, cl) >= ρ then

found = True
append cs to lp in Lp

end
end

end
if found = False then

lp= [ cs ]
append lp to Lp

end
end

Algorithm 4: Physical location identification: loc-physical

3.2.2 Semantic locations

Semantic locations, ls, are a set of SSID values that are generated from physical

locations. A collection or list of semantic locations is denoted by Ls. The set of the

top k, SSID values with the highest signal strength sum over all the readings con-

tained at the leaf clusters over all clusters that make up a physical location, becomes

the semantic location. For example, if a semantic location for a physical location (a

person’s home) was generated, the top SSID value, based upon the sum of signal

strengths, would be the SSID from their home WiFi hotspot. The next top SSID val-

ues may be that of the closest neighbors. This semantic location, made from the top

3 SSID values, would look something like 〈”MyHome”, ”Neighbor1”, ”Neighbor2”〉.

The generation of the semantic SSID set is described in loc-get-semantic (Algorithm

5).
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where: lp - physical location comprised of a list of clusters
k - number of SSID values to make up each physical location

result : ls - semantic location which is a set of SSID values
loc-get-semantic(lp, k)

K = empty list of SSID-strength pairs
for c in lp do

for r in readings(c) do
for 〈x, s〉 in r do

K[ssid(x)] += s
end

end
end
sort SSID-strength pairs in K by their strength sum in descending order
ls= set(ssid of first k elements in K)

Algorithm 5: Generate semantic location from physical location: loc-get-semantic

Algorithm loc-semantic (Algorithm 6) utilizes loc-get-semantic (Algorithm 5)

to convert the physical locations to semantic locations, by iterating over the list of

physical locations, Lp, generating a set of the top SSID values, and then appending

it to the list of semantic locations, Ls.

where: Lp - list of physical locations
k - number of SSID values to make up each key

result : Ls - list of semantic locations
loc-semantic(Lp, k)
Ls= empty list of semantic locations
for lp in Lp do

ls = loc-get-semantic(lp, k)
append ls to Ls

end
Algorithm 6: Generate list of semantic locations: loc-semantic

If the same example from Figure 3.13 were expanded upon, and use the output

of loc-physical as the input variable Lp, with the value of 3 for the size of the key

set, then when using loc-semantic, Figure 3.14 is the result. In this example, some

of the physical locations have similar SSID values, or there are hotspots that be-

long to more than one physical location discovered by the hierarchical segmenting
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algorithms.

Lp =

[ c2
,
c34

,
c51

 ,[ c5
]
,

 c4
,
c22

,
c39

,
c45

 ,
 c8

,
c42

 ,
 c40

]

loc-get-semantic

 c2
,
c34

,
c51

 , 3
 = (Home, Neighbor1, Neighbor2)

loc-get-semantic

([
c5

]
, 3

)
= (Coffee-Shop, Gas-Station, Pizza)

loc-get-semantic

 c4
,
c22

,
c39

,
c45
 , 3

 = (Office, Campus, Lab)

loc-get-semantic

 c8
,
c42

 , 3
 = (Cafeteria, Lab, Campus)

loc-get-semantic

 c40
 , 3

 = (Coffee-Shop, Grocery-Store, Dry-Cleaning)

loc-semantic(Lp, 3) =
[
(Home, Neighbor1, Neighbor2), (Coffee-Shop, Gas-Station, Pizza),
(Office, Campus, Lab), (Cafeteria, Lab, Campus),
(Coffee-Shop, Grocery-Store, Dry-Cleaning)

]
Figure 3.14: Physical to semantic location conversion

This research aims to further group the semantic locations based upon SSID

to ensure that a general area that may produce multiple physical locations due to

multiple hotspots providing WiFi coverage to the large area, get grouped together

to provide a more succinct collection of semantic locations.

Currently, the semantic locations are made up of k number of the top SSID val-
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ues, and merging semantic locations should be done. Semantic locations that have

values that share j number of SSID values, where j is 0 < j <= k, get merged.

Either a list of all possible pair combinations of SSIDs, that have been seen together

in the semantic location collection, is created, or simply a list of all unique SSIDs

that appear in the semantic locations. These combinations are called keys. The

singleton-keys for the example illustrated in 3.14 would be the list in Figure 3.15,

and the paired-keys would be in Figure 3.16.

singleton-keys =
[
(Home), (Neighbor1), (Neighbor2), (Coffee-Shop), (Gas-Station),
(Pizza), (Office), (Campus), (Lab), (Cafeteria), (Grocery-Store),
(Dry-Cleaning)

]
Figure 3.15: A list of singleton keys

paired-keys =
[
(Home, Neighbor1), (Home, Neighbor2), (Neighbor1, Neighbor2),
(Coffee-Shop, Gas-Station), (Coffee-Shop, Pizza), (Gas-Station, Pizza),
(Office, Campus), (Office, Lab), (Campus, Lab), (Cafeteria, Lab),
(Cafeteria, Campus), (Coffee-Shop, Grocery-Store),
(Coffee-Shop, Dry-Cleaning), (Grocery-Store, Dry-Cleaning)

]
Figure 3.16: A list of paired keys

Once the list of keys is generated, the collection of semantic locations are re-

duced with the loc-reduce function (Algorithm 7), to check for optimal keys to

merge on using optimal-key (Algorithm 8), which also returns a weight. So long

as the weight of the key returned is greater than 1, it means that the optimal key

is a subset of two or more semantic locations. The loc-merge function that is used

in loc-reduce, creates a new list of semantic locations, removing all locations that

match the optimal key, and then adding the optimal key to the locations as the

replacement.
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where: Ls - list of semantic locations
K - list of key permutations

result : Ls - reduced list of semantic locations
loc-reduce(Ls, K)
〈key, weight〉 = optimal-key(Ls, K)
while weight > 1 do
Ls = loc-merge(Ls, key)
〈key, weight〉 = optimal-key(Ls, K)

end
Algorithm 7: Aggregate semantic locations: loc-reduce

Carrying on with the resulting Ls from the example in Figure 3.14, the loc-

reduce (algorithm 7) is demonstrated by using the paired-keys list as K in Figure

3.17. In this example, only one merge occurred. The locations; (Office, Campus,

Lab) and (Cafeteria, Lab, Campus), were merged into the location (Campus, Lab),

because both locations shared the key pair (Campus, Lab) in the list of key pair per-

mutations. This merge has made the semantic locations a little more generalized to

reflect a group of semantically related locations.

Executing loc-reduce on the same, original set of semantic locations, but using

the singleton-keys, we achieve the example in Figure 3.18. This example still has

the two locations that have (Campus, Lab) as a subset, merged; however, the new

key that represents it is (Campus), due to the fact that (Campus) appears before

(Lab) in the list of keys in singleton-keys. In addition to the (Campus) merge, two

distinct Coffee-Shops have been merged. These may very well have been two differ-

ent physical locations on opposite ends of town, but because the Coffee-Shop SSIDs

are very strong in both physical locations. The person can be considered as having

been at those Coffee-Shops rather than at the Grocery-Store or Gas-Station. This

is optimal behavior for our system, as the interest lies within a person’s mobility

pattern. If a person is frequently visiting a Coffee-Shop, it would be beneficial to

express all Coffee-Shop locations as one location to gain a more succinct pattern of
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where: Ls - list of semantic locations
K - list of key permutations

result : key0 - key with the largest weight
weight0 − weight

optimal-key(Ls, K)
key0 = empty
weight0 = 0
for key in K do

weight = 0
for ls in Ls do

if key ⊂ ls then
weight = weight+ 1

end
end
if weight > weight0 then

key0 = key
weight0 = weight

end
end

Algorithm 8: Find the optimal key to merge semantic locations on: optimal-key

the person’s habits.

3.3 Mobility patterns

With the segmented timeline, Ts, obtained from ht-segment (Algorithm 3), and the

resulting collection of semantic locations, Ls, from Algorithm 7, iterations over the

segmented timeline, Ts, can be made to create a timeline of semantic locations Tl.

We use loc-timeline(Algorithm 10) to iterate over the segments in Ts, and resolve the

semantic location using loc-resolve (Algorithm 9) on each segment, cs. The result of

loc-resolve is a tuple of 〈ls, tstart, tend〉. The timestamps, tstart and tend, are from the

first and last readings within the segment. The Algorithm loc-resolve uses maxi-

mal likelihood estimation to select the best suited semantic location, comparing the

SSIDs that are encompassed in the segment.
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K =
[
(Home, Neighbor1), (Home, Neighbor2), (Neighbor1, Neighbor2),
(Coffee-Shop, Gas-Station), (Coffee-Shop, Pizza), (Gas-Station, Pizza),
(Office, Campus), (Office, Lab), (Campus, Lab), (Cafeteria, Lab),
(Cafeteria, Campus), (Coffee-Shop, Grocery-Store),
(Coffee-Shop, Dry-Cleaning), (Grocery-Store, Dry-Cleaning)

]
Ls =

[
(Home, Neighbor1, Neighbor2),
(Coffee-Shop, Gas-Station, Pizza),
(Office, Campus, Lab),
(Cafeteria, Lab, Campus),
(Coffee-Shop, Grocery-Store, Dry-Cleaning)

]
loc-reduce(Ls, K) =

[
(Home, Neighbor1, Neighbor2),
(Coffee-Shop, Gas-Station, Pizza),
(Campus, Lab),
(Coffee-Shop, Grocery-Store, Dry-Cleaning)

]
Figure 3.17: Reducing semantic locations by paired-keys

Using the example segmented timeline Ts from 3.13, and using the semantic

locations, Ls, generated in Figure 3.18 from singleton keys, as input to loc-timeline

(Algorithm 10) the result would be as viewed in Figure 3.19. Some outcomes of the

algorithm to note, is that in some cases, consecutive segments have been merged

into a single sematnic location segment. For example c8 and c22 were combined

since both segments mapped to the semantic location of (Campus), and the start

time from segment c8 was paired with the end time of c22, to create the time span

in that location segment. The two segments that are both geographically distinct

locations but share the semantics of being a Coffee-Shop, were mapped to the same

semantic location.

Two visualizations can be used to observe the mobility pattern that exists in the

timeline resulting from loc-timeline; activity and transition.
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K =
[
(Home), (Neighbor1), (Neighbor2), (Coffee-Shop), (Gas-Station),
(Pizza), (Office), (Campus), (Lab), (Cafeteria), (Grocery-Store),
(Dry-Cleaning)

]
Ls =

[
(Home, Neighbor1, Neighbor2),
(Coffee-Shop, Gas-Station, Pizza),
(Office, Campus, Lab),
(Cafeteria, Lab, Campus),
(Coffee-Shop, Grocery-Store, Dry-Cleaning),

]
loc-reduce(Ls, K) =

[
(Home, Neighbor1, Neighbor2),
(Coffee-Shop),
(Campus),

]
Figure 3.18: Reducing semantic locations by singleton-keys

Activity graphs for each semantic location is shown in Figure 3.20. These graphs

display the intervals that a person was known to be at the specified location, and

when they were not, over time, and help visualize patterns (if any) over time.

Transition diagrams display each semantic location as a node, and directional

edges are made between the nodes that have had a transition take place from a

source location to a target location. Table 3.1 displays the count of all the transitions

that have occurred in the semantic timeline from Figure 3.19, with the resulting

transitions visualized in the transition digram in Figure 3.21.

3.3.1 Evaluation

To evaluate the localizations generated by the system, three different measures were

created: activity in feature space, regularity in feature space, and normalized infor-

mation.
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where: cs - a subset of the hierarchical timeline
Ls - list of semantic locations

result : key0 - semantic key with the largest weight
weight0 − weight

loc-resolve(cs, Ls)
key0 = empty
weight0 = 0
for ls in Ls do

weight = count(SSID(cs) ∩ ls)
if weight > weight0 then

key0 = ls
weight0 = weight

end
end

Algorithm 9: Maximal likelihood estimation to find the semantic location that
represents a segment

Feature space

The feature space for a location was defined as a stream of activity features. An ac-

tivity feature is a tuple of: an integer value representing day of the week, an integer

representing the hour interval, and a ping value which is either 0 or 1, represent-

ing whether or not the location was visited within that time interval;
〈
weekday,

hour-interval, ping
〉
. The hour-interval is determined by what interval the times-

tamp takes place in if we divide the time of day by the number of hours we define

each interval to represent. For the evaluation, 3 hours was used for the divisor,

which provides hour intervals of 0 to 7, with 0 being the interval [12am, 3am) and 7

being [9pm, 12am). This feature space, encompasses all the historical data pertain-

ing to a single location.

Activity measure

The activity measure in the feature space, is the sum of ping over the entire feature

space. Since the timeline of activity is aggregated into time segments, multiple
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where: Ts - hierarchical segmented timeline
Ls - collection of semantic locations list pairs

result : Tl - timeline of semantic locations
loc-timeline(Ts, Ls, weightmin)
Tl = empty list
t0 = empty
t1 = empty
key0 = empty
for cs in Ts do
〈key, weight〉 = loc-resolve(cs,Ls)
if weight > weightmin then

if key0 <> key and t0 is not empty then
append 〈key0, t0, t1〉 to Tl
key0 = key
t0 = start(cs)
t1 = end(cs)

else
if t0 is empty then

t0 = start(cs)
key0 = key

end
t1 = end(cs)

end
end

end
Algorithm 10: Generating the timeline of semantic locations: loc-timeline

consecutive readings that take place within the same interval of time that makes

up a single interval, would count as a single segment. When a location has only

been visited once over an entire timeline, it’s activity measure will reflect that fact

by having a total close to 1.

Regularity measure

Regularity is the predictability of the locations based upon some predictive model

that is trained and tested using a data set created from the feature space.

A sliding window was used over the feature space to generate the data set. The
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Ls = [(Home, Neighbor1, Neighbor2), (Coffee-Shop), (Campus), ]

Ts =

[ c2

t0 − t1
,

c4

t2 − t3
,

c5

t4 − t5
,

c8

t6 − t7
,

c22

t8 − t9

,

c34

t10 − t11

,

c39

t12 − t13

,

c40

t14 − t15

,

c42

t16 − t17

,

c45

t18 − t19

,

c51

t20 − t21

]

loc-timeline (Ts,Ls) =
[
〈(Home, Neighbor1, Neighbor2), t0, t1〉 ,
〈(Campus), t2, t3〉 ,
〈(Coffee-Shop), t4, t5〉 ,
〈(Campus), t6, t9〉 ,
〈(Home, Neighbor1, Neighbor2), t10, t11〉 ,
〈(Campus), t12, t13〉 ,
〈(Coffee-Shop), t14, t15〉 ,
〈(Campus), t16, t19〉 ,
〈(Home, Neighbor1, Neighbor2), t20, t21〉

]
Figure 3.19: Generating a semantic timeline

input features, x, were n consecutive activity features, and the output, y, was the

ping value within the next consecutive activity feature.

Figure 3.22 illustrates a timeline of activity features, the feature space, and the

resulting data set, using n = 5 consecutive activity features for the input. Multiple

values ofnwere experimented with, butn = 5 resulted in the best predictive model.

Too small of a n resulted in an underfitting problem, and too high of a n resulted

in too much bias.

The individual activity features, 〈weekday, hour-interval, ping〉, in x, and the

ping value in y, get converted to binary representation using dummy variables.
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(a) (Home, Neighbor1, Neigh-
bor2)

(b) (Campus) (c) (Coffee-Shop)

Figure 3.20: Activity of semantic location

Target
Home Campus Coffee

Source
Home 0 2 0

Campus 2 0 2
Coffee 0 2 0

Table 3.1: Transition count matrix

With the training set being made up of 80% of the data generated over the timeline,

the remaining 20% is used as the test data.

A neural network [5] was selected as the modeling tool. The advantage is that

neural networks have mature learning algorithms to generate the specific model

parameters based on the training data, which is the historic data, and is excellent

at capturing patterns.

A shallow multi-layer perceptron (MLP) architecture is used to fit a best model

using the feature space as illustrated in Figure 3.23. TensorFlow [1] with Keras [4]

was used to create a sequential model, as shown in Listing 3.1. When creating the

model, the softmax function was used to normalize the data at activation. Since

the output is in the form of a multi-class classification the loss function is set to

categorical cross entropy, with a stochastic gradient descent optimizer. Accuracy from

the the test case was used, and saved, as the regularity measure for the location.

Training error from attempting to fit a model also contributes to the regularity value

as a 0.
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Home Campus Coffee

Figure 3.21: Transition diagram

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17

x =
[
(f0, f1, f2, f3, f4) , (f1, f2, f3, f4, f5) , (f2, f3, f4, f5, f6) ... (fi−5, fi−4, fi−3, fi−2, fi−1)

]
y = [ping(f5), ping(f6), ping(f7)...ping(fi)]

Figure 3.22: Training and test set creation

model = Sequent ia l ( )

model . add ( Dense ( input dim=x s ize , output dim=y s i z e ) )

model . add ( Act iva t ion ( ” softmax” ) )

model . compile ( l o s s= ’ c a t ego r i c a l c ro s s en t ropy ’ ,

opt imizer= ’ sgd ’ ,

metr i cs =[ ’ accuracy ’ ] )

model . f i t ( t r a in x , t r a in y , verbose =0)

Listing 3.1: Tensor Flow with Keras implementation

Locations that have been visited too few of times in the timeline will not have

enough data to successfully train a model, and thus, would not have a regularity

value. Inversely, a location that has been visited for a significant amount of time,

and therefore has a high enough activity value, but was never visited again, will

show a significantly high regularity score close to 1.
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Input Dimension

Output Dimension

Model

Softmax

Train

Cost

Cross-Entropy

Figure 3.23: Sequential Neural Network

When comparing the regularity measure against the other measures for deter-

mining the quality of a location within a localization, on real data, the regularity

measure was the most effective. The results of applying all the measures on the

collected data, is described in Chapter 5.

Normalized information

The normalized information measure, is a value of the information content in the

timeline assuming a weekly schedule. The sum of pings over every interval for ev-

ery day of the week was taken along the timeline feature space, and normalize it

against the sum of pings over the whole timeline. This creates a probability distri-

bution over a week long period, segmented by the intervals. Algorithm 11 provided

a normalized entropy value, given the probability distribution. The normalized en-

tropy value is saved as the normalized information measure.

Resulting normalized information values close to 1, represent a location that has

been seen very few times in the activity timeline, and so these locations don’t hold
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where: x - probability distribution
n - is the number of segments in the probability distribution

result : A normalized entropy

∑n−1
i=0 log2 xi
log2 n

Algorithm 11: Normalized entropy of probability distribution

any significance to the mobility pattern. Inversely, a normalized information value

close to 0, represents a location that is almost always being seen. An example of a

location with 0 normalized information, would be the root cluster of the hierarchy,

since it represents all places seen, since an individual always exists at a location,

this would have no valuable information.
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Chapter 4

System Implementation

The implementation includes a mobile application to collect data, and a collection

of Python scripts that implements the algorithms described in Chapter 3, with some

improvements made to increase performance.

4.1 An app for mobile data collection

A portable means of data collection was required, that would seamlessly integrate

into a person’s life without disruption, so that the person would be encourage to

keep the data collecting device with them at all times, to ensure the data collected

is as representative of the person’s mobility as possible. The device chosen for data

collection was the smart phone, as people carry these devices for the most part

throughout their day. An Android application was built for easy access to the WiFi

scanning capabilities.

Development of Android applications can be achieved by many tools, but to

access the Wifi scanning capabilities of Android devices, the easiest method to

achieve this project’s goals was through creating the application natively with Java.
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The prototype of the Android application written in Java achieved the data col-

lecting objective, but with room for improvement. The second and final implemen-

tation of the Android application was with Kotlin [9] and the ANKO library [25],

which resulted in a stable application that better suited our data collecting objec-

tive.

Both versions of the application utilized an internal SQLite database for storage

of the WiFi scans.

Andoid applications are made up of ”activities”. In a model-view-controller ar-

chitecture the activity would be the controller and would call upon a user interface

view to display the model. The main activity in the data collection has a single view

as seen in figure 4.1, and contains a toggle switch for turning on/off the timed scan-

ning service, as well as displaying basic statistics of the current collection of scans.

Services in Android development are used for long running or on-going pro-

cesses. The timed scanning service that gets invoked by the main activity is an

on-going process that triggers the WiFi scan service at an interval set in the main

activity UI. Since the WiFi scanning process is lengthy, it was implemented as a

long running service.

The WifiManager library used to scan Wifi signals, in the WiFi scanning service,

returns an array of BSSID, SSID, signal strength, timestamp . The BSSID is the MAC

address of the device. The SSID is the user generated name that has been assigned

to the device. The signal strength is in a decibel format.

It is important to mention that the scans that the Android WifiManager are exe-

cuting are passive, and that they do not risk a person’s privacy. Passive scans simply

means that the device is listening for beacons emitted from WiFi hotspots, and does

not actually emit its own signal or information.

These scans are stored in an SQLite version of their original representation, in
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a table, OBSERVATION, within the local SQLite database on the device. The OB-

SERVATION table has 5 columns: id, timestamp, ssid, bssid, strength. The id is used

as a primary key to ensure uniqueness of all records. Once the current scan of WiFi

signals are stored in the database, that invocation of the WiFi scanning service is

concluded.

This raw data is extracted from the local database as JSON, which is transferred

to a computer to be converted into an SQLite database that replicates the structure

that was implemented in the mobile application, and then fed into the pipeline for

off-line analysis.

Figure 4.1: WiFi Scanner Mobile Application

4.2 A pipeline for mobility pattern analysis

The Python scripts form a pipeline [15] consisting of: reading generator, cluster

generator, hierarchical timeline building, movement segmentation, physical loca-
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tion identification, and then semantic location grouping.

4.2.1 Hierarchical clustering

The reading generator retrieves the records from the database, and streams reading

objects to the cluster generator. The cluster generator converts the readings into

cluster objects that then streams the clusters to the hierarchical timeline, using the

Python equivalent of ht-append (Algorithm 2).

The time it took to append each reading to the hierarchical timeline was recorded,

to analyze the performance of ht-append. Figure 4.2 displays the time it took to ap-

pend each reading (in milliseconds), over the number of readings that existed in

the hierarchy at the time of appending, on real data collected from the mobile ap-

plication. Even though the average case complexity of ht-append isO(log(r)), when

used on real data, we see that the amount of readings already in the hierarchy does

not increase the time it takes to append a new reading. It is the nature of ht-append

on real data that makes it appealing for on-line clustering.
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Figure 4.2: Performance of hierarchical append function
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4.2.2 Segmentation

The hierarchical timeline is segmented in the Python equivalent of ht-segment (Al-

gorithm 3). The complexity of ht-segment is hindered by the execution and com-

plexity of the sim measure (Definition 1). The performance of ht-segment was im-

proved in two ways: sampling and caching. The usage of sim in ht-segment, was

replaced with min-sim (Algorithm 12), which implements both the sampling and

caching of a minimum similarity.

where: c - cluster
n - number of readings in a sample

result : minimum similarity
min-sim(c, n)

if c has cached minimum similarity then
return cached value

else
if c is a leaf cluster then

m = 1
else

νleft = min-sim(left(c))
νright = min-sim(right(c))
if νleft = 0 or νright = 0 then

m = 0
else

ωleft = sample-readings(left(c), n)
ωright = sample-readings(right(c), n)
M = list(νleft, νright)
for j in ωleft do

for k in ωright do
append sim(j, k) to M

end
end
m = min(M)

end
end

end
cache(c,m)
return m

Algorithm 12: Cached minimum similarity
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A list of similarity values (using the original sim function) was created, compar-

ing the readings from the left child to the readings in the right child, and then select

the minimum value of these to be the minimum similarity value for the cluster. The

minimum similarity is selected to ensure that clusters at a high level, which include

the same location multiple times in between other locations, are split into smaller

segments.

Caching the minimum similarity value in the cluster, allows us to avoid dupli-

cate computations from being executed.

Before calculating the minimum similarity for a cluster, the cached values for

both children is checked, and if either has a minimum similarity of 0, then 0 is used

as the minimum similarity for the current cluster, which also improves performance

of the segmentation.

4.2.3 Localization

The Python implementation of loc-physical which generates the collection of phys-

ical locations, Lp, is just as described in Algorithm 4. The Python implementation

of loc-semantic (Algorithm 6) and loc-merge has been modified so that the seman-

tic locations contain the physical locations that they were generated from, rather

than just a set of SSID values. This allows for evaluation of the generated locations

to be completed in a more efficient manner.

During implementation of loc-merge, it was discovered that using more than

two SSID values as combinations in the collection of possible keys to merge loca-

tions on, resulted in an insignificant amount of improvement to the localization

than the physical localization of Lp.
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Chapter 5

Case Study

5.1 Description of the case study

The case study utilizes the data collected, on Adele Hedrick’s Android phone, using

the mobile data collection application. The data includes a couple weeks in the Fall

semester of 2016, an excursion out of the country to a conference in December, and

a couple weeks in the Winter semester of 2017, and there is a cap in the data over

the Winter holidays.

Adele would describe her frequent behavior as: going to the campus most week-

days, few weekdays working from home, picking up her children from their own

school before and after going to the campus, teaching assistant responsibilities

throughout the week, with weekends usually spent at home with a few excursions.

The data set includes 41,619 readings, with 14,758 unique BSSIDs, and 4,619

unique SSIDs discovered. This difference in unique BSSIDs observed versus unique

SSIDs observed displayed in figure 5.1, indicates that many hotspots share the same

SSID value.

The top 20 SSIDs with the highest count of BBSIDs are displayed in table 5.1.

46



Total # observed
BSSID 14758
SSID 4619

Table 5.1: Total number of BSSID vs SSID observed in case data set

The SSID with the highest count of BSSIDs is an empty string, or an unset SSID.

This is an example of noise in the dataset which we hope would be filtered out

through the thresholds in the algorithm. The rest of the SSIDs listed, represent

areas that would require more than one hotspot to provide Wi-Fi coverage to the

whole area. The SSIDs; ”YYZ Corp” and ”Toronto Pearson Wi-Fi”, are both SSIDs

that represent Toronto Pearson Airport. The SSID; ”McCarran WiFi”, belongs to

the McCarran Airport in Las Vegas, and the SSID, ”MonteCarloWiFi”, belongs to

the hotel that Adele stayed at in Las Vegas. Another significant SSID is ”CAMPUS-

AIR”, which belongs to the hotspots at University of Ontario Institute of Technology

(UOIT). All of these mentioned SSIDs, do in fact represent large physical areas that

require multiple hotspots to provide Wi-Fi coverage to.

The top 20 SSIDs that have the highest observation count are displayed in table

5.2. As can be expected, the SSIDs; ”CAMPUS-AIR” and ”MonteCarloWiFi” make

the top 20 in the list. The other significant set of SSIDs listed are the ones with the

prefix, ”SSK”, which belong to Adele’s hotspots at her home. The other SSIDs listed

belong to neighbours and hotspots near the lab she works from at UOIT’s campus,

as well as her home.

5.2 Discussion and visualization

Three levels of localization were observed and evaluated: L0, L1 and L2. L0 is the

physical localization through grouping of BSSIDs using loc-physical. The L1 local-

ization, localizes L0 semantically, with loc-semantic and loc-reduce, using pairs of
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Figure 5.1: BSSID count for top 20 SSIDs

SSIDs as keys. The L2 localization also localizes L0 semantically, with loc-semantic

and loc-reduce, but with single SSIDs as keys (L2).

The number of generated locations in each level of localization is compared in

figure 5.3. Recalling from figure 5.1, the total unique BSSID count of 14,758, was

reduced to 138 generated locations in L0 using loc-physical. The 138 physical loca-

tions were then reduced to 70 locations in L1, and 32 locations in L2.

Table 5.2 lists the semantic locations that were generated by the system at the

L2 localization using single SSID values as keys. The SSIDs in this table have been

concatenated together, separated by ”\”. The first 18 locations in the list are the
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Figure 5.2: Reading count for top 20 SSIDs

result of a merge as they only show a single SSID being used as the name. Of the 18

locations, we see the large geographical areas have been merged; ”YYZ TENANT”,

”YYZ EXPRESS”, ”MONTECARLOWIFI” and ”CAMPUS-AIR”. The home loca-

tion ”SSK2” has been grouped into a single location, and the neighbors SSIDs have

been grouped in with the more significant SSIDs that they were observed with.

Activity graphs were defined as being the timeline of a single location. The high

points indicate that the person was at that location at that time, and the low points

indicate that the person was not at that location at that time. Figure 5.4:a, shows

the activity of location ”SSK2” which represents Adele’s home, figure 5.4:b, shows
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ID Name

0 SUNDANCE
1 ASUS
2 YYZ TENANT
3 SCA2
4 BEYONDGUESTWIFI
5 ATTWIFI
6 BELL709
7 WMDEMO
8 GUEST WIRELESS
9 YYZ EXPRESS
10 TCONNECT
11 MLXE
12 ROGERS16355
13 VARSITY
14 MCCARRAN WIFI
15 SSK2
16 MONTECARLOWIFI
17 CAMPUS-AIR
18 BELL117/BMOBILE/DIRECT-FB-HP OFFICEJET PRO 8710
19 OC-GUEST/OSC/TCN
20 J47CIX6F/M4M786IA/P39TXD7W
21 BELL192/BELL224/ROGERS55298
22 ASHLEY FURNITURE HOMESTORE/ASHLEY GUEST WIFI/JYSKHOF
23 EMERALDSHARK/OSHAWAOFFICE/WIFI123
24 RMTAP/TAP GUEST/THE TAP
25 ATT-WIFI/ATTWIFI - PASSPOINT/STEEL
26 BELL402/POP LED SIGN/STARBUCKS WIFI
27 TRG 3PD/TRG BO/TRG INV
28 BLACKSTARGROUP/GEICO GAMING/PRODUCTION
29 CVWIFI/CWIFI/MINT
30 LH-IBPMU/LH-WIFI/LH4VAC0
31 OUTBOXSCANNERS/T-MOBILE ARENA/TASSTMOBILE

Table 5.2: L2 Semantics
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the activity of location ”CAMPUS-AIR”. We can see that for the most part, these

two graphs are inverses of one another, other than the time Adele left her home on

Saturday, and didn’t travel to the campus when she left. This inverse behavior is

more evident when we put both plots on the same graph as depicted in figure 5.4:c.

The activity graphs display the mobility pattern of a person for a single location,

and combined together we can achieve more insights.

The timeline of all locations, allows for the tabulation of how many transitions

from one location to another have taken place, and transition diagrams can be made

with this information. Transition diagrams consist of nodes that represent loca-

tions, and directed edges that represent that at least one transition has taken place

from one location to another. The size of the nodes indicate the amount of readings

that have taken place at that location. Figure 5.5 compares the transition diagrams

from the three levels of localization: L0, L1 and L2. There is a lot of information

in L0 and L1, but it is L2 that provides the most appropriate level of abstraction to

gain insight into a person’s mobility pattern.

A closer look at the L2 transition diagram in figure 5.6, with IDs that correspond

to table 5.2, we can get a high level view of Adele’s movement over her timeline.

Her home, ”SSK2”, which is ID 15 in the diagram, is the location she has spent the

most time at. The campus, ”CAMPUS-AIR” is 17, and we can see there have been
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transitions from her home to the campus, as well as indirect routes from home to

campus and vice versa.

Adele’s trip to Las Vegas is also displayed in the diagram. ID 9 and 2, are both

at Pearson Airport in Mississauga, and it can be observed that she traveled home

from the airport directly, but took a different route on her way to the airport. ID 14

is the McCarran Airport in Las Vegas, and ID 16 is the hotel she stayed at, which

was hosting the conference. Adele explored some of the surrounding sights, but

the hotel is the most significant node in the branch of her trip.
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(a) L0 (b) L1 (c) L2

Figure 5.5: Transition diagrams with different levels of localization

5.3 Evaluation of localizations

Three evaluation measures; activity, normalized information and regularity, to each

location in each localization. Table 5.3 displays the result of the measures in each

location within the L2 localization, and the figures; 5.7 shows the locations with an

activity value > 1, 5.8 shows the locations with a normalized information content

< 1, and 5.9 shows the locations with a regularity value > 0.

The results in able 5.3 and the results of the other localizations is summarized in

table 5.4. Figures 5.10, 5.11 and 5.12, provide a visual representation of the tabled

data. With the three measures, L0 (the localization using only BSSID values) results

with many locations, with the smallest ratio of significant locations, and therefore

a mobility pattern is not decipherable. The L1 localization using pairs of SSID val-

ues as keys, significantly reduces the amount of locations, and improves the ratio

of significant locations to insignificant ones. The last localization, L2, made from

singletons of SSID values as keys, has the best performance by providing the most

reduced collection of locations, which has the best ratio of significant to insignifi-

cant locations.
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ID Total Time Information Activity Regularity

0 1.13 h 0.8278045662 2 —
1 54.43 m 1 1 —
2 3.12 m 1 1 —
3 20.52 m 1 1 —
4 2.53 m 1 1 —
5 1.09 h 0.8278045662 2 0.75
6 1.34 h 0.8278045662 2 —
7 1.67 h 0.8278045662 2 —
8 54.85 m 1 1 —
9 3.63 h 0.7270766946 3 0.8571428571
10 3.90 m 1 1 —
11 28.58 m 1 1 —
12 23.57 m 1 1 —
13 6.83 m 0.669052758 5 0.8823529412
14 9.24 h 0.6556091324 4 0.6666666667
15 883.21 h 0.0110419581 312 0.9230769231
16 82.63 h 0.1550558453 30 1
17 78.30 h 0.3223341936 38 0.8536585366
18 1.02 m 1 1 —
19 12.18 m 1 1 —
20 9.05 m 1 1 —
21 2.07 m 1 1 —
22 6.72 m 1 1 —
23 3.83 m 1 1 —
24 1.72 h 1 1 —
25 13.22 m 0.8278045662 2 —
26 2.06 h 1 1 —
27 1.09 h 1 1 —
28 2.05 m 1 1 —
29 23.45 m 1 1 —
30 1.66 h 0.8278045662 2 —
31 1.03 m 1 1 —

Table 5.3: L2 Evaluation
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Figure 5.6: Transition diagram of L2

Total Activity Regularity Information
> 1 Ratio > 0 Ratio < 1 Ratio

L0 138 31 0.2246376812 26 0.1884057971 30 0.2173913043
L1 70 19 0.2714285714 15 0.2142857143 19 0.2714285714
L2 32 12 0.375 7 0.21875 12 0.375

Table 5.4: Localization comparisons

The locations that have been isolated as relevant, within each measure, for each

localization, have been visualized in the transition diagrams in figures 5.13, 5.14

and 5.15. The result is that the selected filters for each measure, results in subsets

of locations that have a significant intersection. The normalized information and

regularity filtered locations are generally a subset of the locations filtered based on

activity, and this is the case for every location with the L2 localization, as made

evident in table 5.3.
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Figure 5.7: Transition diagram of L2 marking activity > 1

To analyze the relationship between the measures of locations in a localization,

and to discover any correlation between the locations identified as good, versus

locations identified as bad, a series of 2D plots and a 3D plot for each localization

were created.

For the L0 localization, figures 5.16 and 5.17 display the relationship, if any,

between the measures; for the L1 localization, figures 5.18 and 5.19, display the

relationships, if any; and the L2 localization, figures 5.20 and 5.21, display the rela-

tionships, if any.

The Activity vs. Information plots 5.16 (a), 5.18 (a) and 5.20 (a), suggest that

there is a inversely linear correlation between the normalized information content

and the activity measures. The Activity vs. Regularity plots: 5.16 (b), 5.18 (b) and

5.20 (b), and the Regularity vs. Information plots: 5.16 (c), 5.18 (c) and 5.20 (c),

suggest that the locations labeled as meaningful, exist in a large cluster, while the

outliers resulted in being the locations that were labeled as not meaningful by the

filters. The measure that demonstrated the most effectiveness at identifying loca-
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Figure 5.8: Transition diagram of L2 marking information < 1

tions as good versus bad in the localizations, was the Regularity measure. The

Regularity measure, alone, could determine whether or not a location is good or

bad.
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(a) Activity > 1 marked (b) Information < 1 marked (c) Regularity > 0 marked

Figure 5.13: L0 transition diagram
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(a) Activity > 1 marked (b) Information < 1 marked (c) Regularity > 0 marked

Figure 5.14: L1 transition diagram

(a) Activity > 1 marked (b) Information < 1 marked (c) Regularity > 0 marked

Figure 5.15: L2 transition diagram
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Figure 5.16: L0 2D evaluation comparison
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Figure 5.17: L0 3D evaluation comparison
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Figure 5.18: L1 2D evaluation comparison
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Figure 5.19: L1 3D evaluation comparison

0 100 200 300

0

0.5

1

Activity

In
fo

rm
at

io
n

(a) L2 Activity vs. Information

0 50 100 150

0

0.5

1

Activity

Re
gu

la
ri

ty

(b) L2 Activity vs. Regularity

0 0.5 1

0

0.5

1

Information

Re
gu

la
ri

ty

(c) L2 Information vs. Regularity

Figure 5.20: L2 2D evaluation comparison

62



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

300

Information
Regularity

A
ct

iv
ity

L2 Evaluation

Figure 5.21: L2 3D evaluation comparison
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Chapter 6

Conclusion

6.1 Contribution and summary

In this work, a person’s timeline of observed WiFi signals were collected by a mobile

device, through an Android mobile application that was created for the purpose of

this project. The Android application was implemented in Kotlin and collected

readings on a minute interval, using the WiFiManager library.

The hiererchical timeline clustering algorithm presented, proved to be an effi-

cient means to clustering the timelime of readings in an online manner. The per-

formance of the algorithm on real data, showed that the time for appending a new

reading to the hierarchy held no dependency on the amount of readings in the hi-

erarchy, thus making it a suitable choice for online clustering of time series data.

Segmentation of the hierarchical timeline consisted of identifying clusters in the

hierarchy that consisted of a similarity measure between the children of a cluster

being compared to a threshold. The segmentation was improved upon in imple-

mentation by using a minimum similiarity function that sampled the readings con-

tained in a cluster, rather than computing the similarity between all readings, and
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cached values so similar computations were not re-evaluated.

The segmented timeline provided the input for creating the physical localiza-

tion, which was then used as the input for the semantically grouped localizations.

The semantics for the physical locations, were obtained from the SSID values of

hotspots which are user defined values, typically representative of the organiza-

tion, business or home it belongs to.

The localizations generated from the real data were evaluated by the three mea-

sures: activity, normalized information and regularity, which showed that semanti-

cally grouped locations were an improvement on the physically grouped locations.

The visualizations created from the localizations and the timeline, provided a

succinct summary of the mobility pattern that represents the person’s movement.

6.2 Lessons learned

This project provided lessons learned in mobile application development, data anal-

ysis and data visualization.

6.2.1 Mobile application development

The initial prototype of the data collection mobile application was created natively

for Android using Java. Even though this was a stable solution, another iteration of

the application was created using Kotlin [9, 25]. Kotlin allowed for the creation of

a native Android application, as it compiles into Java byte code, but the language

is far more concise and elegant than Java. The ANKO library available in Kotlin,

provided the structures necessary for Android development in a clean and effi-

cient manner. The Kotlin made application was made with a significantly smaller

amount of code than the Java implementation, but resulted in a far more maintain-
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able system.

6.2.2 Data analysis

This project provided valuable education in obtaining and analysis of data.

The process of scanning for WiFi signals and storing them in an SQLite database,

and then finding a means of transferring that information provided it’s own set of

challenges; size of data, format of data and method of transfer.

Data analysis within the project, provided the opportunity to become familiar

with Pythons extensive libraries for data analysis and the pandas library [34]. Pandas

offers a data structure that is common to data science programming languages and

libraries: data frames. Data frames are an essential data structure for data science,

and the implementation in the pandas library includes all the required data frame

functions to make manipulation and transformation of data sets concise and elegant

in Python.

Research into information theory provided a means to establish the normalized

information content evaluation measure, and research into machine learning lead

to the regularity evaluation measure. The topic of machine learning provided a

plethora of different algorithms to experiment with useing scikit learn [37], and

once the decision to use neural networks as the regularity measure was made, Ten-

sorFlow [1] with Keras [4] was utilized.

6.2.3 Data visualization

Initial experimental visualizations were created with matplotlib [17], which pro-

vided quick visual feedback and allowed for initial insights into the data collected.

Displaying the mobility patterns in the form of transition diagrams proved to
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be too complex for the traditional graphing libraries available in Python. This lead

to research into D3.js [35]. D3.js allowed for the creation of interative visualiza-

tions; specifically, the transition diagrams seen in Chapter 3 and 5. The transition

diagrams were created with force layouts in D3.js which allowed the interactive vi-

sualization to optimize the position of the nodes and edges in a force similation and

take user input to manipulate the position further.

6.3 Future work

Possible future work includes: applying the algorithms to other time series data,

implementing the algorithms on mobile devices, and integrating the project into

mobile applications to enhance a person’s experience.

Other time series data from different sensors that exist on mobile devices, or

devices that can benefit from locally stored and analyzed data would benefit from

these algorithms and should be explored.

Implementing the algorithms directly on the mobile device to test performance

at different frequency of gathering sensor data is a possible area to explore, and

finding ways to enhance applications with predictive knowledge of a person’s pat-

terns extracted from the sensor data.
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