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Abstract and Keywords  
  
 
In the neonatal intensive care unit (NICU) environment, critical care and treatment 

directly correlate to the multidimensional development of an infant and are influenced by 

attributes such as gender and gestational age (GA). Recent literature on guidelines 

developed for neonatal intensive care; do not take the gender or the GA of the infant 

into account. The exponential activity of a growing neonate in its early stages of life 

needs to be captured and embedded into algorithms designed to extract patterns of 

predictive temperament within the NICU domain. The STDMn+p
0 framework presents an 

extended multidimensional approach with the ability to create patient characteristic 

clinical rules. Further defining NICU algorithms, through the extended use of attributes 

to include gender and GA, and using these new algorithms in clinical decision support 

systems increases the accuracy and thereby minimizes the risk of adverse events.    

 

 
Keywords: Neonatal intensive care, critical care, multidimensional algorithms, patient 
characteristics, clinical decision support systems.       
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Chapter 1 – Introduction 
 

1.1 Introduction 
 

This thesis presents a multidimensional patient oriented data mining framework used to 

support critical care research to enable the discovery of physiological stream 

behaviours that may represent earlier condition onset behaviours than those currently 

used in evidence based practices. This research extends the STDMn
0 framework 

(McGregor C. P., July 2010) and the work of Bjering and McGregor, 2010 (Bjering, 

2008) through the incorporation of patient specific attributes, thus enabling tailoring and 

clustering of physiological stream behaviours based on these patient specific measures.  

The extended framework, STDMn+p
0, will include methods for applying temporal 

abstractions (TAs) representing physiological stream behaviours across multiple patient 

attribute parameters for multiple patients to enable mining of multidimensional temporal 

data. This research is demonstrated through a case study context of neonatal intensive 

care using the conditions of apnoea and nosocomial infection (NI). 

 

The STDMn+p
0 framework proposes a multidimensional approach that supports temporal 

abstractions of time series data and deployment of clinical algorithms. The term 

multidimensional data implies that multiple data elements, each representing a 

dimension that can vary in value, characterize an item of interest (Harrison, 2008). In 

the clinical Neonatal Intensive Care Unit (NICU) context, specific dimensions of interest 

include: gender, gestational age and birth weight. The exponential activity of a growing 

organism, in this case a preterm infant, in the early stages of life needs be captured and 
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embedded into algorithms designed to extract patterns of predictive temperament within 

the NICU domain. 

 

One in ten births around the world is premature (WHO, 2011) and requires admittance 

into NICUs under the watchful care of neonatologists. For several decades now, NICUs 

around the globe have utilized medical monitors and life supporting devices to assist in 

the care of critically ill infants.  These monitoring devices sense and output an array of 

different physiological data readings that, in waveform format, are sampled at over 500 

readings a second. Unfortunately, these readings are produced at a rate that is much 

faster than the human brain can analyze (Catley C. , Smith, McGregor, & Tracy, 2009) 

(Miller, 1956).  NICUs have been lagging in sustainable infrastructure, tools and 

techniques to utilize this information to its fullest potential to aid real-time clinical 

management and historical clinical research (McGregor & Smith, 2009).  These 

limitations lead to opportunities for developing a more structured approach to defining 

complex processing of physiological data streams. 

1.2 Research motivation 
 

The motivation for this research was to consider recent computing and information 

technology (IT) research as applied to physiological monitoring to support real-time data 

mining of the vast amounts of unused data. Use of data mining in healthcare is 

increasing as data mining offers a newer approach to analyzing retrospective 

physiological data streams for clinical research in healthcare. The potential benefit of 

applying data mining tools on electronically stored physiological data, for improved real-

time clinical management and clinical decision support, is significant.  Zhang 
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emphasized the importance of real-time data mining by stating ‘Our expanded system of 

real-time data collection and algorithm development demonstrated that patient-specific 

learning in real time is a feasible approach to developing alarm algorithms for 

monitoring purposes in the ICU (Zhang, 2007)’. Benefit from this research may also be 

applied for clinical research on stored physiological data streams to deduce new 

findings for condition onset prediction indicators based on patient characteristics.  

 

Addressing healthcare issues have taken top funding priority for many countries. Both 

Canada and the United States have planned large funding commitments to healthcare 

issues over the next couple of years.  In Canada, ‘the Canada Health Transfer (CHT) 

provides long-term predictable funding for healthcare, and supports the principles of the 

Canada Health Act which are: universality; comprehensiveness; portability; accessibility; 

and, public administration. The CHT cash transfer will reach $25.4 billion in 2010-11 

and will reach over $30 billion in 2013-14 (Canada Department of Finance, 2010)’. 

1.2.1 Research Motivation within NICU 
Within the NICU context individual patients undergo rapid growth and development 

leading to changes in individual patient characteristics, such as weight, heart rate (HR), 

blood pressure, and postnatal age.  There is a growing body of research showing 

examples of the use of data mining and temporal abstractions to demonstrate that a 

given condition exhibits certain physiological stream behaviours (Catley, Smith, 

McGregor, & Tracy, 2009). However sensitivity and specificity are not yet near 100 %, 

which in healthcare can have devastating impact on the individual patient (Sharek, et 

al., 2006). There is potential to use patient characteristics to gain better understanding 

of individual patients in retrospective data and improve sensitivity and specificity by 
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creating subgroups of physiological behaviours.  The motivation for this research is to 

determine whether current examples of clinical research and the associated frameworks 

can support exploration and clustering based on patient characteristics. 

 

Preterm infants who are admitted to the NICU are monitored through the assessment of 

a range of physiological parameters as displayed by a variety of devices.  The preterm 

infant may have multiple streams of physiological data being collected throughout the 

duration of hospitalisation; however, NICU medical records are largely manually 

prepared paper notes of cumbersome manual data.  Often clinicians manually 

summarize continuously streamed physiological data by single readings at 30 or 60 

minute intervals. This hand notation of data is not conducive to recording abnormal 

behaviours among the multiple streams that frequently occur minute by minute or 

second by second.  Frequent transient falls in blood pressure and blood oxygen 

content, which may be of critical importance in survival and the indication of the onset of 

illness, can be left undetected until monitoring device alarms are triggered. Currently in 

clinical settings, a nurse will mark when an alarm spell or spells have occurred in the 

clinical information management system (CIMS) if it is perceived to be of significance; 

i.e. if there is an alarm and the nurse has addressed the neonate (Catley C. , Smith, 

McGregor, James, & Eklund, 2010). Recent medical research literature has reported 

that physiological data exhibits early indicators of potentially life threatening conditions 

such as nosocomial infection (NI) and that these points of interest in the data precede 

the existing clinical practice detection  (Griffin & Moorman, 2001). 
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When exploring patient specific physiological data streams, identifying trends and 

patterns to improve real-time clinical management and clinical decision support, a 

patient oriented approach may assist in minimizing adverse events that occur in the 

NICU.  Findings published on the Institute for Healthcare Improvement website (IHI.org) 

from a North American NICU study conducted by Paul J. Sharek, et al. in 2006 to 

investigate and detect incidences of adverse events (AE) resulted in ‘One or more AEs 

contributed to 27 of the 30 patient deaths in this study (Paul J. Sharek et al, 2006).’  

This report later was adopted as an improvement tool by the Institute of Healthcare 

Improvement called ‘Trigger Tool for Measuring Adverse Events (AE) in the Neonatal 

Intensive Care Unit (IHI Tool)’ (IHI.org, 2010).  Within this NICU toolkit, nosocomial 

infection was listed as the number one ‘trigger’ due to having the highest positive 

predictive value for potential AEs (Sharek, et al., 2006). 

 

Similar findings were published in Canadian literature: ‘However, 37%–51% of AEs 

have been judged in retrospect to have been potentially preventable (Baker, et al., 

2004).’ In 2003-04 over 3 million patients were admitted to critical care units in Canada. 

Over 40% of these patients were over 63 years of age and 15% were neonatal patients.  

It is important to note that the average stay for the neonatal patients was almost three 

times as long as that of those from other units. Intensive care units providing critical 

care are one of the most costly and accounted for 15.9% of inpatient direct expenses 

but only 8.1% of inpatient days in Canada between 1999-2000 and 2003-04 (Leeb, 

Jokovic, Sandhu, & Zinck, 2006) (McGregor & Smith, 2009). 
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These statistics demonstrate a need to eliminate such adverse events and improve and 

assist in the ability to care for critically ill patients.  The current challenges within 

healthcare, and in particular critical care, has motivated the proposed extensions to the 

STDMn
0 framework (McGregor C. P., July 2010), called STDMn+p

0 within this thesis. 

1.3 Research Aims and Objectives 
 

The aim of this research is to address an open research area, namely to enable 

multidimensional data mining based on patient characteristics that ultimately can assist 

in providing clinical support to caregivers as physiological thresholds are being 

breached.  The main research objective is to create a framework to support clinicians as 

they perform patient oriented clinical research to improve patient outcomes and 

morbidity via real-time anomaly detection in multidimensional physiological data 

streams. Four research hypotheses are presented here and addressed in this work: 

1. That a patient characteristic multidimensional data mining framework can be 

defined for clinical research to enable use of patient attributes when data mining 

patient physiological data streams.  

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multidimensional temporal 

data.  

3. The multidimensional algorithm framework can be applied in a neonatal context 

clustering patient characteristics by gender and gestational age.  
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4. The hypotheses generated by the patient characteristic framework can be used 

by a real-time event stream processor analysing the current condition of babies 

in a Neonatal Intensive Care Unit.  

1.4 Contribution to knowledge 
 

The contributions to knowledge within this thesis include; 

• Extensions to the previously designed STDMn
0 multi-agent framework for 

analysing time series data, to facilitate use of attributes such as gender and 

gestational age into a multidimensional approach capturing patient characteristic-

based temporal abstractions, complex abstractions and relative alignment of 

these abstractions.  

• Design of a framework to enable patient characteristic multidimensionality to 

temporally abstractive data mining. 

• Demonstrating the potential benefit and use of data mining from electronically 

stored physiological data for improved real-time clinical management and patient 

centric clinical decision support. 

• Demonstrate the potential for clinical research on stored physiological data 

streams to deduce new findings for condition onset prediction indicators in 

support of a current ethics approved clinical research study. 

1.5 Research method 
 

The design approach was based on a constructive research methodology. Constructive 

research is most commonly referred to as a computer science research method.  The 

term ‘construct’ infers a new contribution being developed such as a new theory, 
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algorithm, model or a framework.   This method is heuristic in nature in that it involves 

the evaluation of many trial and error methods to solving a problem or issue that has 

been identified in the domain. ‘To be considered constructive research, the research 

must combine problem solving and theoretical knowledge’, as illustrated in Figure 1-1 

Elements of Constructive Research (Kasanen, Lukka, & Siitonen, 1993). 

 

Throughout the data mining processes physiological data and pattern detections will 

constantly be analysed and re-evaluated in action research cycles towards the goal of 

developing clinically relevant algorithms.  Within the constructive methodology, 

proposed framework alterations were made to adapt to these re-evaluations.  Basing 

the framework design on constructive action research provides a flexible and adaptable 

approach for the research within this thesis.   

 

Figure 1-1 Elements of Constructive Research 

The authors (Kasanen, Lukka, & Siitonen, 1993) propose six phases of the constructive 

approach: 
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1. Find a practically relevant problem that also has research potential. This 

research proposes adding patient characteristic attributes to model the 

exponential growth and developmental changes of the preterm infant. 

2. Obtain a general and comprehensive understanding of the topic. Investigate for 

the purpose of gaining understanding of the NICU domain context from clinicians’ 

knowledge as well as published information. 

3. Innovate, i.e., construct a solution idea. The proposed research will build on to an 

existing framework to incorporate patient characteristic attributes into clinical 

rules. 

4. Demonstrate that the solution works. The research extensions proposed will be 

demonstrated in an apnoeic event case study utilized as an early indicator of 

nosocomial infection (NI).  

5. Show the theoretical connections and the research contribution of the solution     

concept.  The case study demonstration integrates the explored theoretical 

connection with the research contribution by offering a solution to further define 

clinical rules through the adoption of patient characteristics. 

6. Examine the scope of applicability of the solution. (Kasanen, Lukka, & Siitonen, 

1993). Once the research contribution has been demonstrated, discussion will 

follow regarding the scope of its application. 

The Practical Relevance and Practical Functioning portions of the above figure invoke 

the following steps in constructive research process; these include: Set objectives and 

tasks, Indentify process model, Select case execution, Prepare simulation, Run 

simulation, Interpret simulation results and Give feedback. The Theory Connections and 
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Theoretical Contribution portion of the above figure (Figure 1-1 Elements of 

Constructive Research) invoke the following steps in constructive research process, 

those include: Theory connection acquired from different information sources and 

training materials (processes, literature, articles, work experience etc.), Case research, 

Theory creating, Theory testing and Theoretical contribution gives new theoretical 

knowledge that needs scientific acceptance. 

 

1.6 Thesis overview 
 

Chapter 2 presents the literature review, focusing on current frameworks for enabling 

data mining and temporal abstractions and in particular, entities included within these 

temporal abstractions that further define temporal condition onset of illness based on 

patient characteristics such as gender and gestational age.  The application domain for 

this research is that of the NICU and is introduced in chapter 3.  This chapter discusses 

the neonate as a growing and developing physical being both dependant on gender and 

driven by gestational age that should be reflected in rules that assist in the diagnosis of 

conditions that may affect these infants. Chapter 4 fully describes the existing multi-

agent framework, STDMn
0, including integration of relevant aspects of the extended data 

mining model Cross Industry Standard Process for Data Mining (CRISP-TDM) to 

support temporal data mining and facilitate null hypothesis testing on real-time series 

physiological data streams. Chapter 5 details extensions made to the framework design 

to incorporate the patient characteristic attributes of gender and gestational age, 

resulting in an extended STDMn+p
0 framework.  The extensions made to each of the 

agents and their functions are described fully.  Chapter 5 also contains the design of the 
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extended tables to be stored in the STDMn+p
0 framework. Chapter 6 demonstrates the 

extended functionality of the STDMn+p
0 framework presented within the NICU context.  

This apnoea event research case study utilized multiple time series physiological data 

streams collected from preterm infants enrolled in a collaborative research project. 
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Chapter 2 – Literature Review 
 

2.1 Introduction 
 

The driving motivation behind this health informatics thesis is to determine whether 

current examples of physiological data stream based clinical research and associated 

research frameworks can support data exploration and clustering based on patient 

characteristics.  Within a NICU there is a vast range of available monitoring devices 

used to display physiological data, most of which have the ability to output this data 

through serial, USB or other ports. The rate at which these monitors produce data 

makes it humanly impossible to analyze manually.  

 

The case study context for this research is focused on the NICU environment, where 

recent research has shown that a change in a patient’s condition can be supported by 

the change across synchronous collected physiological time series data streams such 

as heart rate (HR) and blood oxygen saturation (SpO2) (Blount, et al., 2010).  Another 

aspect of this research is combining this synchronistic collected physiological data with 

asynchronistic clinical data attributes, such as gender and gestational age, to assist in a 

more accurate analysis of produced readings. Both synchronous and asynchronous 

data provides important information relating to the growth of the neonate, and need to 

be captured and embedded into clinical NICU algorithms.  

 

NICU and ICU nurses, doctors, and respiratory therapists are: ‘fast moving, hands-on, 

multitasking, time-pressured professionals. Clinical caregivers use streaming clinical 
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data generated by bedside devices and off-site laboratories to inform their rapid-fire 

bedside clinical decision making’ (Drummond, 2009). The goal of this research is to 

support clinical decision making based on patient characteristics; in addition, this would 

occur in real-time and on location, as opposed to off-site as discussed in Drummond’s 

work.  This can be achieved through the use of data mining tools to extract 

commonalities through high computational pattern recognition. The extracted patient 

characteristic information can then be used to generate patient characteristic clinical 

rules which are fed into clinical decision support systems (CDSSs). 

 

This chapter is divided into the following sections: first Knowledge Discovery in Data 

(KDD), data mining, and analysis of real-time physiological data streams in the NICU 

and ICU healthcare context and the use of intelligent data analysis (IDA) and CDSS on 

streaming data. The second portion of the literature review is based on current use of 

temporal abstractions and their adoption into CDSS (and IDA) practices and to 

investigate whether frameworks enable the integration of clinical and streamed data to 

create sub-classifications.  The second portion concludes with a current review of 

literature based on patient characteristics, such as gender and gestational age, and how 

these parameters have been adopted into temporal abstractions used in clinical rules 

and their inclusion into CDSS and IDA. 

 

2.2 Knowledge Discovery in Data 
 

Data mining, also referred to as knowledge discovery in data, is the process of 

analyzing data to extract useful information. The goal of knowledge discovery in data 
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mining is to search for knowledge contained within the data or databases, with the aim 

of making better use of the vast volumes of multidimensional physiological data 

generated and potentially stored within the healthcare domain.  

  

Data mining is fundamentally the union of three techniques: statistical analysis, artificial 

intelligence and machine learning. These techniques are then combined to study data 

and find previously hidden trends or patterns within.  For this reason, data mining is 

finding increasing acceptance in the healthcare domain as a way to analyze large 

amounts of data to discover previously undiscovered trends and patterns (Catley, 

Smith, McGregor, & Tracy, 2009). 

 

Data mining is the tool used to develop clinical algorithms based on multidimensional 

physiological data collected from a plethora of devices in the NICU environment. The 

proposed data mining framework used within this research supports the industry 

standard data mining approach called CRoss Industry Standard Process for Data 

Mining (CRISP-DM).  CRISP-DM was developed in 1996, with the goal of being 

industry, tool and application neutral; repeated references to the methodology by 

analysts have established it as the de facto standard for data mining. Previously 

published extensions made to CRISP-DM, resulting in CRISP-TDM (Catley, Smith, 

McGregor, & Tracy, 2009) enabled use of temporal abstractions, in turn, encouraging 

adaptability for clinical investigations on multidimensional time series data. That 

research extended the model by integrating Temporal Abstractions (TA) and allows for 

storage and the inclusion of Intelligent Data Analysis (IDA) based systems. 
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 2.3 Review method 
 

This Data Mining Internet-based systematic review is a focused exploration of peer 

reviewed literature published between January 2005 and January 2011. A retrospective, 

phenomenological combined with grounded theory method approach was adopted for 

the purposes of this review.  Publications were sourced from IEEE Xplore digital library, 

ACM (Portal) digital library, and PubMed databases. The review used keywords such as 

“physiological data”, “NICU”, “ICU”, “real-time stream data”, “NICU clinical decision 

support”, “intelligent data analysis”, “temporal abstraction”, “data mining”, “gender”, 

“gestational age”, “physiological parameters” and “NICU algorithm”.   These parameters 

resulted in a limited number of peer reviewed articles; thirteen articles were identified as 

being relevant to this research.  However, due to the close association that the first five 

articles have with the ongoing Artemis research (indentified in the first column, Ref #, by 

‘A’) and the STDMn
0 framework utilized within that research, the last eight papers will 

constitute the primary focus of discussion in this chapter. 

 

The review was not designed to represent a complete coverage of the topic of 

physiological monitoring as this research has a primary focus of research methods for 

collection and storage that will enable real-time data mining on physiological data 

streams. The overall objective was to expose structured formatting standards being 

used within the healthcare domain for the collection and storage of physiological data. 

Other review papers have been published addressing differing aspects of physiological 

monitoring and the collection of data, as well as different tools and methodologies of 

data mining which unavoidably may result in some small overlap. 
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The motivation for this research was to consider the ability of recent computing and IT 

research as applied to physiological monitoring to support real-time data mining. The 

following diagram (Figure 2-1) illustrates the areas of interest within this systematic 

review.  

 

Figure 2-1 Literature Review Design Approach 

  

Four key areas were identified based on the assessment of the relevant research 

papers regarding real-time physiological data.  These four domains were: 1) clinical 

environment; 2) real-time data mining and temporal abstraction use; 3) data format and 

method of collection and storage used; and 4) whether real-time processing enabled 

use of IDA and CDSS.   The information extracted from this portion of the literature 

review has been allocated to four subsections: 1) clinical context; 2) data management 

(data mining, temporal abstraction, real-time use and storage); 3) current CDSS (IDA) 
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practices, to investigate whether current frameworks enable the integration of clinical 

and streamed data to create sub-classifications and 4) patient characteristic 

multidimensional algorithms.   

 

The key words used by each of the sub sections of the review section 2.4 following are 

presented in Table 2-1. 

Table 2-1 Summary of key words used in review 
Section # Section Name Key words used in literature review process 

2.4.1 Clinical Context NICU, ICU, physiological data, and real-time stream data 
2.4.2 Data Management and 

Storage 
 NICU, ICU, real-time physiological data and 
physiological data storage 

2.4.3 Temporal Abstractions 
used in CDSS (IDA) 

NICU, ICU, IDA, CDSS, temporal abstraction and data 
mining  

2.4.4  Patient Characteristic 
Multidimensional 
Algorithms 

NICU, physiological parameters, gender, gestational age 
and NICU algorithms  

Table 2-1 Key words used in literature review process 

   

2.4 Review 

2.4.1 Clinical Context 
Within the clinical context the investigation of relevance was the critical care 

environment and whether the clinician and patient were located outside of the base 

intensive care unit of the given clinician. This information was captured and presented 

below in Table 2-2 data format, devices used to collect data, and dimensionality were 

also included.  For the purposes of the review, ‘clinical environment’ describes the 

source domain in which the research was conducted as well as where the patient(s) 

was located at time of monitoring. Dimensionality assessed whether the research 
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catered to multiple patients, monitoring devices, multiple physiological steams in unison, 

and/or multiple diagnosis/conditions of interest. Data format considered what type of 

data was discussed in the specific article, the formatting structure of data received from 

devices and/or databases. 

 

 Table 2-2. Clinical context 
Ref. # Author/year Clinical 

Environment 
Dimensionality 
Patients/devices 

Data Format 

A McGregor C, 
Kneale B, Tracy 
M. 2005 

Neonatal intensive 
care 

Multiple patients, 
multiple streams 
Philips component 
monitoring system 

An integrated 
XML-based 
healthcare 
framework 

A McGregor C, 
Stacey M. 
2007 

Neonatal intensive 
care 

Multiple patients 
Philips component 
monitoring system 

High frequency 
distributed data 
streams 

A Bjering H, 
McGregor C. 
2010 

Neonatal intensive 
care 

Multiple patients 
Philips component 
monitoring system 

Multiple real-time 
physiological data 
streams 

A Kamaleswaran R, 
McGregor C, 
Eklund M. 
2010 

Critical care 
environment 

Multiple patients 
Philips MP70 

Synchronous 
physiological and 
asynchronous 
clinical data 
streams 

A Sun J, Sow D, Hu 
J, Ebadollahi S. 
2010 

Clinical data obtained 
from ICU patients 

Multiple patients MIMIC II 
database, 
physiological 
waveforms 

1 Lyman J, Scully 
K, Harrison J. 
2008 

Laboratories, hospitals 
and clinics around the 
world 

Multiple patients 
Multiple types of 
data 

Many healthcare 
data types 
I.e. ECG, text 

2 Tong C, Sharma 
D, Shadabi F. 
2005 

Diabetes health study 
Database 

Multiple patients UCI Pima Indian 
dataset 

3 Zhang Y, 
Szolovits P. 2008 

Intensive critical care 
unit collected 
physiological data 

Multiple 
patients/readings. 
Bedside 
monitoring devices

Digitized 
waveforms and 
vital signs  

4 Zhang Y 
2007 

Critically ill patients 
ICU 

Multiple 
patients/readings. 
Bedside 
monitoring devices 
 

Digitized 
waveforms and 
vital signs  
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 Table 2-2. Clinical context continued 
Ref. # Author/year Clinical 

Environment 
Dimensionality 
Patients/devices 

Data Format 

5 Harrison J. 
2008 

Patient clinical  and 
laboratory data  

Many different 
data element i.e. 
patient, disease etc 

Medical data 

6 Galarraga M, 
Serrano L, 
Martinez I, de 
Toledo P, 
Reynolds M. 
2007 

Personal Health 
devices for 
telemonitoring of 
patients at home & 
mobile 

glucose meters, 
blood pressure & 
HR, pulse 
oximeters, ECG 
monitors, etc 

Digital scales 
ISO/IEEE 11073 
P-of-C med. 
Device com. Stds. 

7 Holmes J. 
2007 

Hospitals, research 
facilities and 
laboratories 

Multiple patients 
multiple types of 
data 

Medical data 

8 Verduijn M, 
Sacchi L, Peek N, 
Bellazzi R, de 
Jonge E, de Mol 
B.   2007 

ICU data 
Cardiac care 

Multiple readings 
BP, HR, TMP & 
glucose value 

Real-time data 
from ECG 
monitoring device 

Table 2-2 Clinical context 

 

The Clinical environment column indicates whether data collected is based on domain 

specific clinical and/or medical properties, which for the purposes of this survey mainly 

consisted of NICU and ICU. For most articles the clinical environment predominantly 

took place in ICUs with the exception of the article written by Tong (Tong C., 2008) 

which was a diabetes study and Galarraga et al. (Galarraga, Serrano, Martinez, de 

Toledo, & Reynolds, 2007) who analyzed patient care outside the hospital setting.    

 

The dimensionality category assessed the ability of the research to cater for multiple 

patients, multiple physiological steams in unison, and/or multiple diagnosis/conditions of 

interest. This is an area of significant potential and was mentioned by most authors of 

papers reviewed.   
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Data format or representation style considered the encoding given to the data when 

captured. While many, if not all, of the devices used in the NICU and ICUs have the 

ability to output the device readings via a serial port or more recently universal serial 

bus (USB) or network port, the data formats vary greatly from device to device and a 

general adoption of data format and structure was not mentioned. However, Galarraga 

(Galarraga, 2007) state that IEEE is developing ten telehealth device standards for 

controlling information exchange to and from personal telehealth devices and cell 

phones, personal computers, personal health appliances and other computer engines 

as a part of the ISO/IEEE 11073 family of standards although there was no formal 

mention of a healthcare domain wide adoption of such standards.   

2.4.2 Data Management and Storage 
This section covered a review of storage of data and data mining methodologies, as 

shown in Table 2-3. ‘Transmission/Storage’ assessed whether the data was stored 

persistently and if so, the structural approach used for storage, and whether data 

transmission was discussed. ‘Data Mining/Temporal Abstractions’ assessed what 

mining tool or approach was being applied and whether the use of temporal 

abstractions was adopted.  ‘Real- time’ assessed if the data was being mined in real-

time. 

 

Findings from this section based on the systematic literature review are listed in Table 

2-3, summarising physiological data management and storage.  
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Table 2-3. Data Management & Storage 
Ref. # Author/year Transmission/ 

Storage 
Data 
Mining/Temporal 
Abstractions 

Real-time 

A McGregor C, 
Kneale B, Tracy 
M. 2005 

Transmission of data  N/A  N/A 

A McGregor C, 
Stacey M. 
2007 

Framework to enable 
storage  

N/A Yes 

A Bjering H, 
McGregor C. 
2010 

Clinical and 
physiological stored 
data   

yes -  data mining 
and temporal 
abstractions 

Yes 

A Kamaleswaran 
R, McGregor C, 
Eklund M. 
2010 

Clinical and 
physiological stored 
data 

 N/A Yes 

A Sun J, Sow D, 
Hu J, Ebadollahi 
S. 
2010 

Clinical data stored 
in MIMIC II 
database obtained 
from ICU patients 

Mention of 
adaptability to 
data mine 

N/A 

1 Lyman J, Scully 
K, Harrison J. 
2008 

Database & Data 
warehouses.  
Star or Snowflake 
schema 

yes 
MOLAP, ROLAP 

yes 
HL7 messaging  
 

2 Tong C, Sharma 
D, Shadabi F. 
2005 

Large diabetic 
patient database 

yes - Multi-Agent 
System, C4.5 
algorithm 

Yes 

3 Zhang Y, 
Szolovits P. 
2008 

Although approval 
from review board 
Not clearly defined 
storage/database 

Neural Network 
and See5  

yes data collection 
and algorithm 
development 

4 Zhang Y 
2007 

Hosted on a laptop 
with 2.4 GHz Pent. 4 
Processor & 1 GB 
memory 

Neural Network 
and See5 

yes - learning in real-
time is a feasible 
approach to 
developing alarm 
algorithms 

5 Harrison J. 
2008 

Clinical databases Promotes data 
mining 

N/A 

6 Galarraga M, 
Serrano L, 
Martinez I, de 
Toledo P, 
Reynolds M. 
2007 

Collection discussed 
but no detail on 
storage 

N/A yes -, BAN, PAN and 
HAN 
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Table 2-3. Data Management & Storage  continued 
Ref. # Author/year Transmission/ 

Storage 
Data 
Mining/Temp. 
Abstractions 

Real-time 

7 Holmes J. 
2007 

Clinical databases KDD & IDA in  
biomedicine 

N/A 

8 Verduijn M, 
Sacchi L, Peek 
N, Bellazzi R, de 
Jonge E, de Mol 
B.  2007 

N/A Temporal 
abstractions 

N/A 

Table 2-3 Data Management & Storage 

  

It is apparent from the reviewed research papers that structured approaches to storage 

and related standards are an underdeveloped area where the potential for real-time 

medical data to support real-time critical care is significant (Zhang, 2007, Harrison, 

2008, & Holmes, 2007). Although there was no mention of a storage method in the 

article written by Verduijn et al. (Verduijin, 2007) one can assume that data was stored 

in order to enable temporal abstraction analysis. 

 

The potential benefit use of data mining from electronically stored physiological data, for 

improved real-time clinical management and clinical decision, support is significant. As 

is the potential for clinical research on stored physiological data streams to deduce new 

findings for condition onset prediction indicators.   

 

Zhang further emphasized the importance of real-time data mining by stating ‘Our 

expanded system of real-time data collection and algorithm development demonstrated 

that patient-specific learning in real time is a feasible approach to developing alarm 

algorithms for monitoring purposes in the ICU (Zhang, 2007)’. Although all reviewed 
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articles made mention of data mining with the exception of Galarraga (Galarraga, 2007), 

it became apparent that the healthcare domain has not adopted a standard 

methodology or tool to perform data mining processes on physiological data.  

 

2.4.3 Temporal Abstractions used in CDSS (IDA) 
In addition to collecting data for use in real-time by care providers, if data is stored it can 

be used for secondary analysis for other related clinical research. The potential for the 

secondary use of health data is significant. In an American Medical Informatics 

Association White Paper published in the Journal of the American Medical Informatics 

Association in 2007, entitled ‘Toward a National Framework for the Secondary Use of 

Health Data (Safran, et al., 2007)’, the urgency for infrastructures to support the 

secondary use of data in today’s data intensive healthcare environment is seen as 

pivotal to the US Health system. 

 

In support of this need, this section reviews recent health informatics research that 

applies computing and IT techniques to critical care within the domain of healthcare and 

medicine.  This section presents the findings, based on systematic review of literature 

published recently in the area of real-time IDA and CDSS used within NICUs and ICUs 

in table format.  Table 2-4 covered the clinical environment, the use of temporal 

abstraction in IDA/CDSS, real-time IDA/CDSS and if temporal abstractions (data 

mining) were sub-classification enabled.  In this context, sub-classification represents 

the ability to cluster within a population. For example, not just collecting HR readings for 

all patients, but also clustering based on a male or female population.  
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Table 2-4. IDA and CDSS  
Ref. 
# 

Author/year Clinical 
Environment 

Data 
Mining/Temp. 
Abstractions 

Real-
time 

Sub- 
classification 
enabled 

 Apiletti D, Baralis E, 
Bruno G, Cerquitelli 
T. 
2009 

Hospital intensive 
care units. 

yes, ‘sliding time 
window’ 
temporal 
context. 

yes No 

A Blount M, Ebling M, 
Eklund M, James A, 
McGregor C, 
Percival N, Smith K. 
Sow D. 
2010 

NICU yes, and yes yes No 

A Catley C, Smith K, 
McGregor C, Tracy 
M. 
2009 

NICU yes and yes yes No 

   Kunac D, Reith D. 
2005 

NICU medical 
safety issues 

CDSS  yes 
  
 

No 

A McGregor C. 
2010 

NICU yes to all  yes No 

Table 2-4 CDSS & IDA 

 

The ‘Clinical Environment’ column indicates the CDSS and/or IDA domain specific 

clinical properties, which for the purposes of this survey, mainly consisted of NICU and 

intensive care unit (ICU). For most articles reviewed, the clinical environment 

predominantly took place in ICUs with the exception of the article written by Apiletti, 

Baralis, Bruno, and Cerquitelli (Apiletti, Baralis, Bruno, & Cerquitelli, May 2009)  which  

presented a framework where after collection within the hospital setting, a patient’s 

physiological data was analyzed to establish a baseline parameter and real-time 

ubiquitous patient monitoring was enabled via PDA alert transmission outside the 

hospital setting; however, this framework was not ICU specific. 
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All articles employed clinical decision frameworks designed for real-time analysis with 

the exception of the framework proposed by Kunac and Reith (Kunac & Reith, 2005); 

their framework was designed for the NICU patient population to minimize medication-

related adverse events.  The framework proposed by Kunac and Reith does enable the 

intake of patient parameters; however, these parameters have not been utilized in the 

individual analysis of the patient. By all accounts none of the articles located within this 

search mention the use or consideration of adoption of patient characteristic attributes 

to enable sub-classification clustering. 

 

Of the reviewed articles only the STDMn
0 framework designed by McGregor (McGregor 

C. P., July 2010) offers an innovative tool that enables mining of multidimensional 

temporal data as well as incorporating null hypothesis testing to allow clinical research 

to be conducted on historical physiological data and clinical data.   

2.4.4 Patient Characteristic Multi-dimensional Algorithms 
Kruger, van Oostrom and Shuster  (Krueger, van Oostrom, & Shuster, 2010) published 

research results confirming that between 28 and 34 weeks postmenstrual age the 

female gender preterm infants demonstrated HRV indicative of a more mature 

autonomous nervous system than their male counter parts. Another article of interest 

entitled ‘Impacts of Age and Gender’ published interesting age and gender results, 

although the ‘Age’ defined within the article was not ‘gestational age’ Azhim and 

Kinouchi (Azhim & Kinouchi, 2009).  Their research concluded that there are significant 

gender related differences in the statistical results from their hemodynamic data in flow 

velocity and pressure when comparing females with their male peers. 
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Of the literature reviewed under the scope of neonatal care directed at their gestational 

age, very little was found, although within the last five years neonatal data including 

gestational age has been collected by the Canadian Neonatal Network (CNN). The 

CNN has collected extensive data and a particular focus in their 2008 report was data 

collected regarding gestational age and birth weight; this information is provided in 

chapter 3.  

 

During this research a neonatal algorithm was found with regards to neonatal 

resuscitation guidelines published in 2005 by the American Heart Association, shown in 

Figure 2-2. While this published,  Internet-based guideline (UIhealthcare, 2008) does 

offer a rare model of an openly available algorithm developed for neonates, it  treats all 

neonates with a ‘one size fits all’ approach and does not allow for adaptation to the 

growth stages that take place as gestational age increases.  Within this article, only 

once is there an indication of criteria aligning to gestational age and that is with the 

general statement ‘one study of preterm infants (<33 weeks of gestation) exposed to 

80% oxygen found lower cerebral blood flow when compared with those stabilized using 

21%’ (American Heart Association, 2006). Moreover, this statement was quickly 

dismissed and requested to be viewed with caution due to contradictions from studied 

animal data collected to date. The only other mention of adaptation to gestational age at 

birth in these published guidelines was that of ‘If a preterm delivery (<37 weeks of 

gestation) is expected, special preparations will be required’ (American Heart 

Association, 2006). 
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Figure 2-2 Neonatal flow algorithm 
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Consistently, in several articles, there are very general statements that suggest 

‘Preterm babies have immature lungs that may be more difficult to ventilate and are also 

more vulnerable to injury by positive-pressure ventilation. Preterm babies also have 

immature blood vessels in the brain that are prone to haemorrhage; thin skin and a 

large surface area, which contribute to rapid heat loss; increased susceptibility to 

infection; and increased risk of hypovolemic shock caused by small blood volume’ 

(American Heart Association, American Academy of Pediatrics, 2006).  What is not 

being defined is that as the fetus is growing and developing and gestational age 

increasing, the delicate nature and vulnerability is decreasing. 

 

In Figure 2-2  there is mention of an apnoeic occurrence or if HR < 100 but there is little 

detail as to treatment procedures that should follow. The algorithm does not provide 

patient characteristic defined parameters, such as whether the HR threshold should be 

adjusted dependant on neonate gender or gestational age. 

 

Compared with Figure 2-3, Mishra et. al, published a more detailed apnoea algorithm in 

2007 (Mishra, Agarwal, Jeevasankar, Aggarawal, Deorari, & Paul, 2007), as seen in 

Figure 2-3; however, patient characteristic detail was still not incorporated. 
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Figure 2-3 Algorithm for management of neonatal apnoea 

 

Although much investigation and research is in the hands of the CNN and their 

collaborative team members regarding GA and/or birth weight, studies tend to examine 

these attributes as isolated instances rather than developing algorithms or rules 

incorporating both. 
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2.5 Discussion 
 

The domain of healthcare and medicine has been noted as one that has been less 

receptive than other industry domains in the adoption of new computing and IT 

approaches (Wu, Wang, & Lin, 2005).   However, since 2005 this trend does show 

promising signs of changing. The real-time physiological data focused on in this 

literature review can be received at speeds of up to 1000 readings a second. Hence 

determining a format where this data can be processed in real-time but also stored for 

persistent storage is not a trivial problem.  As stated previously, the only research that 

provides a detailed mechanism for persistent storage was that of McGregor, but this did 

not detail the format of the data within the stored tables (McGregor C. P., July 2010).  

 

Opportunities abound to utilize this data for secondary use, yet this will require that the 

data be formatted and stored in a format accessible by statistical and other data mining 

approaches. As a result, opportunities exist to consider the input and output of 

physiological data from a database utilizing a framework to enable a flexible open 

environment to receive data from the medical devices and have this data utilized for 

secondary use.  

2.6 Conclusion 
  

This chapter has presented a health informatics literature review assessing the ability of 

recent computing and IT research as applied to physiological monitoring to support the 

service of critical care.  The literature review considered the service of care concept 

based on an architectural approach, with a focus on the collection, and storage of 
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physiological data to enable data mining, and temporal abstractions to assist in the 

creation of clinical rules through IDA to be adopted by CDSS.  

 

While there have been several efforts to utilize computing and IT to create advances in 

the techniques used for the analysis of physiological monitoring data there has not been 

a focus on these techniques from the perspective of supporting the service of critical 

care. Further there has been an absence of research focused on supporting paradigm 

shifts in the service of critical care to support the use of this approach for storage of 

data, the data structures within that storage, and also its reuse to support clinical 

research. 

 

Potential opportunities exist within the NICU domain to adopt a standard when 

considering storage of data and algorithms not only as they are developed but also how 

they are developed through use of retrospective clinical data.  Once algorithms are 

developed with the inclusion of patient characteristics there is then the potential for 

deployment to provide clinical decision support based on real-time streaming of 

continuous data. 

 

The work presented in this chapter supports our continued research on next generation 

healthcare solutions to support the service of critical care, real-time clinical 

management and clinical research, by adopting patient characteristic attributes into 

diagnosing algorithm. The review demonstrated that such frameworks do not yet exist. 

These finding are also in support of hypothesis 1 and 2: 
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1. That a patient characteristic multidimensional data mining framework can be 

defined for clinical research to enable use of patient attributes when data mining 

patient physiological data streams.  

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multi-dimensional temporal 

data.  
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Chapter 3 – The NICU environment 

3.1 Introduction 
 

The accepted duration of human pregnancy is 40 weeks which is calculated from the 

last menstrual period and can be calculated as 280 days or approximately 266 days 

from conception to birth (CIHI, 2009).  A birth that takes place after 37 weeks of 

pregnancy is considered full term.   

 

Unfortunately, not all pregnancies last full term and some infants are brought into this 

world ‘preterm’.  According to the 2009 International Committee for Monitoring Assisted 

Reproductive Technology (ICMART) and World Health Organization (WHO) revised 

glossary defines a preterm birth as ‘a live birth (or stillbirth) that takes place after at least 

twenty but before thirty seven completed weeks of gestational age’ (Zegers-Hochschild, 

et al., November 2009). The term neonatal defines ‘the time interval that commences at 

birth and ends 28 days after birth’ (Zegers-Hochschild, et al., November 2009).  

 

There are two brilliant historical figures well known for their premature births. One is 

Johannes Kepler, a German mathematician, astronomer and astrologer who ‘was born 

on December 27, 1571, a premature child and according to his own records, the 

pregnancy lasted 224 days, 9 hours and 53 minutes’ (~32 week GA)  (Fowler, 1996).  

The other figure is, ‘one of the founders of classical physics, and one of the greatest 

known scientists of all time, Sir Isaac Newton’ whom was also born premature (Terry, 

2009).  Their contributions to mankind help to prove worthiness of the plight to improve 

medical attention to all preterm births for the best possible life outcomes. 
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Premature infants can be born up to seventeen weeks early and may only weigh 450 

grams; they can spend three or four months in intensive care and may develop several 

conditions before discharge. During their time in the NICU, large quantities of 

physiological data are collected that are for the most part, not being captured, stored or 

used for potentially obverting the onset of illnesses. Premature infants, by the time they 

are discharged, can increase in body mass by as much as six times, and have had 

several medical diagnoses and treatments (McGregor, Kneale, & Tracy, 2007), many of 

which may have long term implications for the future health of the individual. In addition, 

15% of neonatal intensive care admissions are transferred after delivery from smaller 

regional or remote hospitals without intensive care facilities to larger tertiary referral or 

Children’s Hospitals with NICUs. Similar conditions apply within Australia, New Zealand, 

Canada and the USA where small non-tertiary units are spread throughout the country 

(McGregor, Kneale, & Tracy, 2007) (McGregor, Stacey, 2007). 

  

A commonly used device that senses and displays physiological monitoring data within 

NICUs is the Philips IntelliVue series of monitors. These are monitoring devices that 

accept multiple sensor modules, and that enable data to be collected and displayed 

from multiple types of sensors attached to the patient. Data can be extracted from this 

device via an Ethernet or RS-232 serial port at the rear of the device and each module 

can produce multiple data streams of the types described below (Blount, et al., 2010):  

• numeric: one reading every 1024 milliseconds (ms). 

• fast wave: 4 sets of 256 values for every 1024 ms  
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These devices provide readings ranging between one a second to 1000 readings a 

second. This data stream format is not catered for within HL7 (McGregor & Smith, 

2009).  

 

Stravroudis, Miller and Lehmann refer to the NICU as ‘a clinical environment burdened 

with challenges that frequently lead to adverse outcomes (Stravroudis, Miller, & 

Lehmann, 2008). The survival of a preterm baby is dependent on assistance from 

multiple medical devices and clinician’s interpretation of data readings from such 

devices. The NICU is an extrauterine environment which is designed to simulate the 

intrauterine environment, with the main objective of achieving a healthy fully developed 

human being with minimal lifelong health complications:  ‘The severity and critical 

nature of illness, intricacy of treatment, immaturity of the newborn physiology, difficulty 

of multidisciplinary care, complexity of communication, and the changing technology 

that continues to shape and advance neonatal care make neonates a unique and 

vulnerable patient population’  (Stravroudis, Miller, & Lehmann, 2008). 

 

Preterm births are on the rise (March of Dimes Foundation, 2010) and with modern 

medical intervention neonates now have an increased chance at survival.   Preterm 

neonates born at >25 weeks gestation and >600 g have a survival rate of 60 %. As 

many as 50% of the survivors have no evidence of severe disability defined as non-

ambulatory cerebral palsy, mental retardation, severe visual or hearing deficit, or a 

combination of these neurodevelopmental impairments upon long term follow-up (Seri & 

Evans, 2008). 
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3.2 The Canadian Context 
 

A recently published article in the Globe and Mail revealed that although Canada was 

once able to boast about its high world ranking for low infant mortality, Canada has 

recently dropped to twenty fourth place from sixth  (Priest, 2010),(WHO, 2011). It was 

reported a year earlier by the Canadian Press in January of 2009 that ‘Preterm births in 

Canada have jumped a staggering 25 percent over the past 10 to 12 years’ and that this 

trend is not isolated to Canada and results of likeness are found in the U.S. and Europe  

(Branswell, 2009). Clearly, caring for premature infants is an important goal, both within 

Canada and internationally. 

 

There are many studied factors that can lead to preterm births, including maternal 

factors such as age, previous preterm birth, smoker, gestational diabetes, multiple 

births, as well as social, environmental, and economical factors; however, the focus of 

this research is of a clinical nature.  That being stated, how can we treat, predict and 

diagnosis illnesses following the occurrence of a preterm birth?  With the goal in mind of 

earlier diagnosis of ailments, possibly avoiding lifelong morbidity, the outcome can only 

prove to be less costly on the healthcare system.  The healthcare cost impact of a 

preterm birth is considerable. ‘For example, a baby born at 750 grams will need, on 

average $120,000 worth of healthcare before heading home from the hospital when 

comparing to a full term baby that will cost the system under $1000’ (Branswell, 2009). 

 

Across Canada the neonatal-perinatal care system is regionalized. Within each of these 

regions hospitals are separated into three different levels of care.  Patients are referred 
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or transferred to these different care level facilities depending on their conditions and 

care level needs.  There are three designations that describe the levels of care: level 1 

(normal newborn care), level 2 (high-dependency care) and level 3 (intensive care)  

(CPS, 2006). These levels were further defined as posted by CPS in June of 2006; 

Level 1: Basic neonatal care (normal newborn nursery) 

Level 1a           

• Evaluation and postnatal care of healthy newborn infants; and 

• Phototherapy 

Level 1b 

• Care for infants with corrected gestational age greater than 34 weeks or weight 

greater than 1800 gram who have mild illness expected to resolve quickly or who 

are convalescing after intensive care; 

• Ability to initiate and maintain intravenous access and medications; 

• Gavage feeding; and 

• Nasal oxygen with oxygen saturation monitoring (e.g., for infants with chronic 

lung disease needing long-term oxygen and monitoring). 

Level 2: High-dependency neonatal care (special care newborn nursery) 

Level 2a 
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• Care of infants with a corrected gestational age of 32 weeks or greater or a 

weight of 1500 gram or greater who are moderately ill with problems expected to 

resolve quickly or who are convalescing after intensive care; 

• Peripheral intravenous infusions and possibly parenteral nutrition for a limited 

duration; 

• Resuscitation and stabilization of ill infants before transfer to an appropriate care 

facility; and 

• Nasal oxygen with oxygen saturation monitoring (e.g., for infants with chronic 

lung disease needing long-term oxygen and monitoring). 

Level 2b 

• Mechanical ventilation for brief, usually less than 24 hour, durations or 

continuous positive airway pressure; and 

• Intravenous infusion, total parenteral nutrition, and possibly the use of umbilical 

central lines and percutaneous intravenous central lines. 

Level 3: Intensive neonatal care (neonatal intensive care nursery) 

Level 3a 

• Care of infants of all gestational ages and weights; 

• Mechanical ventilation support, and possibly inhaled nitric oxide, for as long as 

required; and 

• Immediate access to the full range of subspecialty consultants. 
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Level 3b 

• Comprehensive on-site access to subspecialty consultants; 

• Performance and interpretation of advanced imaging tests, including computed 

tomography, magnetic resonance imaging and cardiac echocardiography on an 

urgent basis; and 

• Performance of major surgery on site but not extracorporeal membrane 

oxygenation, hemofiltration and hemodialysis, or surgical repair of serious 

congenital cardiac malformations that require cardiopulmonary bypass. 

Level 3c 

• Extracorporeal membrane oxygenation, hemofiltration and hemodialysis, or 

surgical repair of serious congenital cardiac malformations that require a 

cardiopulmonary bypass (CPS, 2006). 

 

Within and across Canada there is an organization comprised of a group of 

researchers, consisting of 29 hospitals and 17 universities, who collaborate on research 

issues relating to neonatal care, known as the Canadian Neonatal Network (CNN.org).  

According to the CNN 2008 Annual report there were 13, 401 neonate admissions 

reported by 26 Canadian NICUs between January 1, 2008 and December 31, 2008.  Of 

those preterm births reported, 4221 were considered very preterm which, is less than 33 

weeks gestational age.  There were 2830 of the total admissions that were of very low 

birth weight (VLBW) which is less than 1500g at birth (CNN, 2008). 
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Data collected during this time period from the twenty six NICU’s is shown in tables and 

figures below: 

 

Table 3-1: Gestational age at birth        (CNN, 2008 , pp. 12-50) 

Gestational  age  in 
completed  weeks  at 
birth 

Frequency Percent 
Cumulative 
Percent 

<23  12  0.1  0.1 
23  51  0.4  0.5 
24  177  1.3  1.8 
25  257  1.9  3.7 
26  279  2.1  5.8 
27  355  2.7  8.4 
28  428  3.2  11.6 
29  498  3.7  15.4 
30  616  4.6  20.0 
31  685  5.1  25.1 
32  863  6.4  31.5 
33  888  6.6  38.1 
34  1219  9.1  47.2 
35  1099  8.2  55.4 
36  972  7.3  62.7 
37  889  6.6  69.3 
38  1190  8.9  78.2 
39  1100  8.2  86.4 
40  1208  9.0  95.4 
41  572  4.3  99.7 
>42  38  0.3  100.0 
Total included  13396  100.0    
Total # of missing (GA)  5     
Total # of infants  13401      
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Figure 3-1: Gestational age at birth and survival to discharge from participating NICU's 

 

 

 

  

Table 3-2: Birth weight and survival discharge from participating NICU's 

 

Birth  weight 
(grams) 

Number  of 
infants 

Number  of 
survivors 

 % survival 

<500  31  9.0  29 
500‐749  402  272.0  68 
750‐999  679  600.0  88 
1000‐1249  861  807.0  94 
1250‐1499  857  837.0  98 
1500‐2499  4522  4445.0  98 
2500‐4499  5790  5713.0  99 
>4499  219  217.0  99 
Total included  13361  12900.0  97 
Missing (BW)  40     
Total # of infants  13401     
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Figure 3-2: Birth weight and survival to discharge from participating NICU's 

 

  

 

The gestational age (GA) and birth weight of concern as unveiled in data provided 

above would lead one to believe that a birth prior to 30 week GA combined with a birth 

weight of less than 1000 grams has less chance of survival and increased morbidity.  

That being said much research is needed in these ranges to further dissect important 

developmental events occurring during this time and to minimize lifelong detrimental 

effects caused by illnesses and underdevelopment (CNN, 2008 ). 

 

Although there are advances being made in the neonatal mortality rates across Canada 

(Sankaran, et al., 2002), there remains research opportunity to improve critical care by 

the incorporation of gender and gestational to further refine condition onset detection 

remains a research area for apnoea of prematurity.    
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3.3 Medical Devices and NICU monitoring 
 

Physiological monitoring, through a diverse range of devices, is used extensively within 

intensive care units worldwide.  These devices provide an excellent example of high-

frequency, high-volume, highly dimensional real-time data which not only have the 

ability to display physiological data but are able to output this data via serial, ethernet, 

USB or other ports.  Depending on the settings of a multi-module device, for example 

the Phillips IntelliVue MP70, at the time of use each sensor has the ability to produce 

multiple data streams, such as numeric, wave, and fast wave (i.e., electrocardiogram, 

ECG). Figure 3-3 illustrates the myriad of medical devices used within a NICU. 

 

Figure 3-3 NICU medical monitoring devices 
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3.4 Gender and Gestational Age driven thresholds 
 
Stravroudis, Miller and Lehmann have stated that: ‘Neonates are at further risk for harm 

from medication errors because of rapidly changing body size parameters (over the 

course of a hospitalization an infant may double or triple their birth weight); off-label 

drug usage; inability to communicate with providers; and changing developmental 

systems affecting drug absorption, distribution, metabolism, and excretion ‘(Stravroudis, 

Miller, & Lehmann, 2008; Stravroudis, Miller, & Lehmann, 2008). In addition, recent 

literature states that gender plays a significant role in defining HR differences: newborn 

male infants have lower baseline HR than newborn females (Nagy & Orvos, 2000) 

(Krueger, van Oostrom, & Shuster, 2010). These findings suggest that the known 

gender-related HR differences that are apparent throughout life are also present at the 

very beginning of life.  At such an early stage in life a difference of eight beats per 

minute may seem like a small physiological value but significant enough that it should 

be considered when investigating physiological markers for conditions that affect the 

health and development of the newborn infant (Nagy & Orvos, 2000). The two patient 

identifiers this research proposes for inclusion are that of gestational age and gender to 

improve accuracy of diagnosis, treatment and critical care of neonates. 

 

When considering the adoption of gestational age into thresholds, accepted anecdotal 

evidence matches the mean arterial blood pressure (MBP) to be that of a neonate’s 

current gestational age (e.g., 24 mmHg for 24 weeks gestational age) (Blount, et al., 

2010). 
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Another physiological value that is related to the neonates’ gestational age is that of 

systolic blood pressure, as seen below in Table 3-3 (UIhealthcare, 2008). Current 

device thresholds do not incorporate the gestational age trajectory of development 

when creating alerts. 

Table 3-3 Gestational Ages and Systolic Blood Pressure (UIhealthcare, 2008) 

  Gestational age, weeks                   

Body 
weight, kg 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

0.80 43 44 44 45 45 46 46 47 47 48 48 49 49 50 

0.90 44 45 45 46 46 47 47 48 48 49 49 50 50 51 

1.00 45 45 46 46 47 47 48 48 49 49 50 50 51 51 

1.10 46 46 47 47 48 48 49 49 50 50 51 51 52 52 

1.20 46 47 47 48 48 49 49 50 51 51 52 52 53 53 

1.30 47 48 48 49 49 50 50 51 51 52 52 53 53 54 

1.40 48 49 49 50 50 51 51 52 52 53 53 54 54 55 

1.50 49 49 50 51 52 52 53 53 54 54 55 55 56 56 

1.60 50 50 51 51 52 52 53 53 54 54 55 55 56 56 

1.70 51 51 52 52 53 53 54 54 55 55 56 56 57 57 

1.80 51 52 52 53 53 54 54 55 55 56 56 57 57 58 

1.90 52 53 53 54 54 55 55 56 56 57 57 58 58 59 

2.00 53 53 54 54 55 56 56 57 57 58 58 59 59 60 

2.10 54 54 55 55 56 56 57 57 58 58 59 59 60 60 

2.20 55 55 56 56 57 57 58 58 59 59 60 60 61 61 

2.30 55 56 56 57 57 58 58 59 59 60 60 61 61 62 

2.40 56 57 57 58 58 59 59 60 60 61 61 62 62 63 

               

               

Add for a post-natal age of:            

Hours 3to7 8to12 
13-
18 

19-
24 

25-
32 

33-
40 

41-
54 

55-
89 90-96     

mmHg 1 2 3 4 5 6 7 8 7           

* The thick contour includes values pertaining to the area of body/gestational age    

characteristics of the population in the study*         
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3.5 GA case study parameter based thresholds alerts case study 
introduction 
 
 

Benjamin and Stoll state that early-onset sepsis presents itself in the first 24 hours for 

over 90% of neonates in the NICU (Benjamin & Stoll, 2006). Some of the signs of 

sepsis (and nosocomial infection) are often ‘non specific and subtle’ and can include: 

temperature instability, lethargy, irritability, apnoea, respiratory distress syndrome, 

hypotension, bradycardia, tachycardia, cyanosis, abdominal distension, 

hyperglycaemia, jaundice and feeding intolerance (Benjamin & Stoll, 2006). 

 

Neonates are vulnerable to numerous clinical diagnoses that can have a lifelong state of 

morbidity; this can depend greatly on their gestational age at birth.  One such GA-

related illness is respiratory distress syndrome (RDS) that can have detrimental effects 

on a preterm infant (McMillan, Feigin, DeAngelis, & Jones, 2006). Although alveoli first 

appear at 28 weeks gestation, lung maturation is usually not adequate enough to 

sustain extrauterine life without some form of respiratory support until 32 to 34 weeks 

gestation (McMillan, Feigin, DeAngelis, & Jones, 2006).  Infants born prior to 28 weeks 

gestational age may have experienced more complications due to decreased 

development of the lung resulting in insufficient surfactant (McMillan, Feigin, DeAngelis, 

& Jones, 2006).  
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Periventricular leukomalacia (PVL) is a very common brain injury which occurs most 

commonly amongst neonate population younger than 32 weeks gestational age at birth. 

The diagnosis of PVL is concerning for clinicians as a ‘significant percentage of 

surviving premature infants with PVL develop cerebral palsy (CP), intellectual 

impairment, or visual disturbances’ (Zach, Brown, & Kaftan, 2010). 

 

Although there is considerable variation in the incidence and severity of apnoea of 

prematurity, both are inversely related to gestational age (Mayock, 2009). Any apnoea 

event in the term infant1 is considered abnormal. In addition to direct complications, 

apnoea is a multi-factorial problem and can be a clinical manifestation of conditions 

such as nosocomial infection.  

 3.5.1 Apnoeic Definition and background information for case study. 
Apnoea is a Greek based word meaning ‘without’ representing a ‘temporary absence or 

cessation of breathing’ (Oxford Dictionary, 2011). Apnoea describes an event of no 

breathing, which translates into intervals between breaths. Apnoea is very common in 

preterm infants born up to 35 weeks gestational age and is termed Apnoea of 

Prematurity (AOP) (Stanford_University, 2010).  Apnoeic spells can occur as a result of 

a number of developmentally immature organ functions resulting from manifestation of 

prematurity. Approximately 70% of babies born before 34 weeks of gestation have 

clinically significant apnoea, bradycardia, and/or oxygen desaturation during their 

hospitalization. 

                                                            
1 Term is defined as > 37 weeks gestational age. 
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Previous literature has shown a direct correlation between AOP and the infant’s stress 

level  (McMillan, Feigin, DeAngelis, & Jones, 2006). Apnoea is associated with and 

indicative of a multitude of other health concerns the preterm infant may be 

experiencing such as: infection (NI), anaemia, low oxygen levels, heart or lung 

problems, temperature problems, overstimulation and feeding problems (NIH, 2010). 

AOP can be classified into three groups: central, obstructive and mixed. 

• Central apnoea is defined as the cessation of both airflow and respiratory effort.  

• Obstructive apnea is the cessation of airflow in the presence of continued 

respiratory effort.  

• Mixed apnea contains elements of both central and obstructive apnea, either 

within the same apnoeic pause or at different times during a period of respiratory 

recording (Nimavat, Sherman, Santin, & Protat, 2009). 

Central apnoea occurs when the respiratory system does not fire for up to 15 seconds. 

Obstructive apnoea occurs when respiratory central system is firing but due to a 

blockage, air is does not flow into the lungs. When this occurs the infant is exerting 

more effort to breathe and the breathing rate may increase. During this time there will 

be breathing efforts but no air flow into the lungs and therefore blood oxygen saturation 

will decrease. Upon recovery, saturation levels will improve. Mixed apnoea begins with 

obstructive followed by central  (Nimavat, Sherman, Santin, & Protat, 2009). It has been 

shown that: ‘Mixed apnea accounts for about 50% of all cases of apnoea in premature 

neonates; about 40% are central apneas, and 10% are obstructive apneas’ (Nimavat, 

Sherman, Santin, & Protat, 2009). 
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In this work, three scenarios will be investigated (and demonstrated in chapter 6) for 

each of these different classifications of apnoea, listed as follows: 

1. Occurrence of respiration pause for 15 seconds; 

2. Respiration pause continues up to 20 seconds and is accompanied by a 

decrease in blood oxygen saturation but breathing recommences followed by 

return to accepted levels of oxygen saturation; 

3. Respiration pause continues up to 25 seconds and is accompanied by a 

decrease in oxygen saturation followed by a decrease in HR.  

 

3.6 Research relevance to NICU environment 
 

Based on the reviewed literature there is an opportunity for gender and gestational age 

to be incorporated in the creation of patient characteristic multidimensional algorithms to 

assist in individualizing data mining performed with the intent of early detection at the 

onset of conditions for each neonate in critical care. Apnoea is a significant clinical 

event that is seen as a precursor to nosocomial infection and warrants investigation as 

is demonstrated in the apnoea case study example presented in Chapter 6. 

There is clinical motivation that the missing patient characteristic functionality proposed 

is required within the clinical context. Neonates are susceptible to multiple complications 

and illnesses and are a population that could benefit from the proposed STDMn+p
0 

multidimensional data mining framework discussed and defined in Chapter 5. 
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This chapter has introduced the context for the case study to be demonstrated in 

chapter 6 and supported the motivation for hypothesis 3, which is: 

3. The multidimensional algorithm framework can be applied in a neonatal 

context clustering patient characteristics by gender and gestational age. 

 

Utilizing a previously developed framework and further extending it by defining 

physiological behaviours by gender and gestational age is the motivation and focus of 

this thesis.  This chapter has provided the context for the case study demonstration in 

chapter 6 of this thesis. 
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Chapter 4 – Design and Methodology of Existing Framework 

4.1 Introduction 
  

As mentioned in chapter 1, this research builds on the previous STDMn
0 framework 

(McGregor C. P., July 2010), described.  This chapter will describe in detail the existing 

Service based Temporal Abstraction Multi-Dimensional Data Mining STDMn
0 

framework.  

  

 4.2 Existing Temporal Abstractive Multi-Dimensional Data Mining STDMn
0 

framework  
 

The framework utilizes components based on research first demonstrated within 

Foster’s (Foster and McGregor 2005) multi-agent system, which in turn was then 

extended to facilitate the tasks needed in the STDMn
0 framework. Heath’s 2006 

research (Heath, 2006) then extended the CRISP-DM data mining model to facilitate 

null hypothesis testing. The extended CRISP-DM model was then integrated into the 

extended multi-agent framework based on Bjering’s thesis (Bjering H. , 2008) to 

complete the tasks of the of the STDMn
0 framework, as shown in Figure 4-1  following. 
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Figure 4-1 STDMn

0 Framework (McGregor, 2010) 

 

4.3 STDMn
0 Background 

 

The research intent behind the existing STDMn
0 framework was to bring together clinical 

management and clinical research in an environment that would enable the secondary 

use of data created by the myriad monitoring devices utilized within a NICU.  Three 

layers within this framework are the focus area of this research; the multi-agent layer, 

the extended CRISP-DM data mining layer which defines the data mining tasks, and 

STDMn
0 framework task layer. It is within these layers where further extensions are 

proposed by this research thesis. The following sections discuss the individual 

framework components in detail. 



    

53  
 

4.3.1 Processing Agent Background 
The Processing Agent performs such tasks as the preparation of data retrieved from 

and stored in physiological data and clinical data external databases. This data will later 

be processed by the Temporal Agent and the functional agent.  Both the Data 

Understanding and Data Preparation phases of the extended CRISP-DM version called 

CRISP-TDM model are supported within this agent (Bjering & McGregor, 2010). 

 

 

Figure 4-2 Processing Agent in Existing STDMn
0 framework 

 

4.3.2 Temporal Agent Background 
The Temporal Agent processes new physiological data entering the framework, creating 

temporal abstractions as defined by temporal rules in the system. The temporal 

abstraction process is a preprocessing method before data mining which allows the 
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temporal aspects and the context of the data to be preserved (McGregor C. P., July 

2010). 

The Temporal Agent has six main functions: 

 
1. Retrieve the physiological data from the physiological data store for each 

parameter for each patient 

2. Retrieve the relevant abstraction rules from the temporal rules table 

3. Apply the rules to the physiological data, creating simple abstractions for 

individual data streams for individual patients. 

4. Store the created abstractions in the STDMn
0 temporal data store. 

5. Create complex abstractions from the simple abstractions created in step 3, 

according to any rules found in the temporal rules table. 

6. Store any complex abstractions created in the STDMn
0’s temporal data store. 

(McGregor C. P., July 2010). 

Within the extended CRISP-TDM model the temporal agent performs tasks that are part 

of the preparation phase. 

4.3.3 Relative Agent Background 
The Relative Agent uses abstractions generated by clinical study investigations of 

individual patients created by the temporal agent. For instance, pre-diagnosis studies 

look for new trends and patterns that can be indicative of the onset of a condition within 

the patient’s physiological data streams. Within this agent, realigning the time of 

abstraction involves the crucial utilization of both start and end times relative to the 

particular point of interest. The point of interest is the time the patient was diagnosed 
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with a condition across multiple streams of physiological data in comparison with 

multiple patients with the same diagnosis. 

  

To enable the detection of particular patterns of these abstractions, at a particular time 

before diagnosis, realignment of the abstraction relative to the time of diagnosis is 

necessary.  As these abstractions are using absolute time for the start and finish time 

for each abstraction, it will usually be necessary to give these abstractions start and 

finish times relative to the particular event of interest.  This will enable the comparison 

and mining of the abstractions, allowing the distance from diagnosis, or other event, to 

be taken into account as shown in Figure 4-3. Within the extended CRISP-TDM model 

the Relative Agent performs tasks that are part of the evaluation phase. 

 

 

Figure 4-3 Realignment of Abstracted Parameters relative to diagnosis 
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4.3.4 Functional Agent Background 
The Functional Agent is used to facilitate the modeling tasks of the CRISP-TDM model, 

including rule set generation through exploratory data mining, selecting significant rule 

sets, null hypothesis formulation and running statistical processes to test the null 

hypothesis during confirmatory data mining (Bjering & McGregor, 2010). 

4.3.5 Rules Generating Agent background 
The motive behind searching through historical data is to detect patterns that might lead 

to new hypotheses that can then be defined as rules for the purpose of intelligent 

patient monitoring.  The function of the Rules Generating Agent is to adopt and translate 

discoveries through hypotheses created by exploratory data mining made by the 

functional agent into rules which are then stored within the rules database.    

  

At the completion of exploratory data mining, confirmatory data mining commences. 

Once the null hypothesis has been rejected, clinicians and researchers will assess 

whether or not to include the hypotheses into the rules database. Rules created and 

stored within the rules generating agent will be utilized by an event stream processor in 

physiological monitoring (Bjering & McGregor, 2010). 

4.4 Proposed Extension to Existing Framework 
 

 The existing STDMn
0 framework has been adopted and utilized to provide the 

knowledge extraction component in an ongoing research collaborative project called 

Artemis, which has adopted an IBM event stream processing platform called Infoshpere 

for real-time monitoring for all patients in the NICU.   
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Although the usefulness of this dynamic framework has proved its worthiness, there is 

potential to extend its functionality to enable research that can support the exploration 

and clustering based on patient characteristics.  The research focus of these proposed 

extensions within the existing framework are illustrated in Figure 4-4. 

 

Figure 4-4 Research focus area with existing STDMn
0 Framework 

By extending the existing framework there is potential to gain a better understanding of 

individual patients in the retrospective data that will lead to improvements in sensitivity 

and specificity through the use of patient characteristics to create sub-groupings of the 

physiological behaviours as well as temporal abstraction behaviours. 

Chapter 5 will discuss adaptions made to create the STDMn+p
0 framework by inclusion 

of attributes in the TA_Rule table within the EntityStream database table and to the 
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TA_Rule, TA_RelativeTime and Patient tables within the Patient physiological Static 

database. 
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Chapter 5 –Defining Extended Multi-Dimensional Framework 

5.1 Introduction 
As detailed in chapter 1 and chapter 4, this research builds upon the STDMn

0 

framework.  This chapter will describe in detail the STDMn+p
0 extended patient 

characteristic multidimensional framework that can be defined for clinical research to 

enable patient specific pre-diagnosing at the onset of illness conditions based on trends 

and patterns discovered.   The approach taken to extending the framework through the 

use of patient attributes is illustrated in Figure 5-1. One of the main challenges this 

framework endeavours to meet is diagnosis based on individual patient characteristic 

attributes. The STDMn+p
0 framework defines a structured methodology that adds patient 

attributes, hence the “+p”, to the multiple streams of physiological data collected (“n”), 

enabling individual patient characteristic analysis instead of an undefined patient ‘one 

size fits all’ approach. Another challenge the   STDMn+p
0 defined approach addresses is 

a structured method for creating sub-groupings of the physiological behaviours, as well 

as temporal abstraction behaviours.   

 

Once these abstractions have been processed by the relative agent they will then 

progress through to the functional agent. The functional agent will facilitate rule set 

generation through exploratory data mining, selecting significant rule sets, null 

hypothesis formulation and running statistical processes to test the null hypothesis 

during confirmatory data mining (Bjering & McGregor, 2010).  Null hypothesis testing is 

represented by “0” in STDMn+p
0.  By enabling defined patient characteristic rules this 

invokes a host of data mining studies to be conducted on not only different genders but 

at different gestational ages across multiple physiological data stream baseline 
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acceptable thresholds, providing further insight into accurately diagnosing individual 

preterm infants.  An example of sub-group clustering enabled by the STDMn+p
0 is as 

follows: allow the investigation through static clinical data linked with the physiological 

HR data of male preterm infants at 35 weeks gestation age or the HR of male neonates 

at 28 weeks GA. This could then be compared with investigations on female infants of 

both 35 and 28 weeks GA respectively.  The patient characteristic attributes considered 

and defined within this research are that of gender and gestational age. 

Static clinical data

Static clinical data

Patient monitored

Patient monitored

Static Entity 
& Event data

Entity
Stream

data

Multiple
Patients 

Male

Female
Multiple physiological 

data streams (“n”)

Gender
Gestational age
Birth 

weight

linked

Multiple patient (“p”) 
characteristics/attributes

“n+p”

 

Figure 5-1 STDMn+p
0
 Approach 

 

This chapter addresses the following research hypothesis: 
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1. That a patient characteristic multidimensional data mining framework can be 

defined for clinical research to enable use of patient attributes when data mining 

patient physiological data streams.  

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multidimensional temporal 

data.  

3. The multidimensional algorithm framework can be applied in a neonatal context 

clustering patient characteristics by gender and gestational age.  

4. The hypotheses generated by the patient characteristic framework can be used 

by a real-time event stream processor analysing the current condition of babies 

in a Neonatal Intensive Care Unit.  

5.2 Proposed Research Framework 
 

This chapter details the extension made to create the STDMn+p
0 framework which 

further adds to the multidimensional nature of the existing STDMn
0 framework by 

extending the analysis of multiple streams of data from multiple patients with 

asynchronistic, static, patient-centric data. The areas of the STDMn
0 framework 

extended to form the STDMn+p
0 framework are presented as follows in Figure 5-2: 
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Figure 5-2 STDMn+p
0 Framework 

The Figure 5-1 STDMn+p
0
 Approach illustrates that the Static Entity and Event database 

interact through extended patient attribute use has now had an impact on other 

databases within the STDMn+p
0 framework. There are many different examples of 

patient-centric data available from the EHR and CIS, including attributes such as: 

gender, gestational age, birth weight, birth length and birth head circumference. 

Attributes listed can be seen in Figure 5-5 Patient attribute table from STDMn
0 NICU 

data model shown following in the Processing Agent section.  For the purpose of this 

thesis we have selected gestational age and gender as attributes that can impact 

results from clinical algorithms due to their relationship with patient maturity. 
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The following briefly describes extended tasks completed for the purposes of this 

research thesis within the layers of the multi-agent systems as they are utilized within 

the STDMn+p
0 framework.  Constructing of the STDMn+p

0 framework conceptualizes a 

method of solving research problem areas discovered and defined by research 

hypothesis 1.   

 

1. That a patient characteristic multidimensional data mining framework can be 

defined for clinical research to enable use of patient attributes when data mining 

patient physiological data streams.  

 

The tasks being extended for purposes of this research are within the Processing, 

Temporal and Relative Agents. 

5.3 Processing Agent within the STDMn+p
0 framework 

 

Within the STDMn+p
0 framework the Processing Agent performs the task of attaining and 

preparing physiological streamed data from sensors as well as retrieving static data 

from their respective tables with their respective databases such as clinical and 

physiological. Figure 5-3 illustrates all layers and tasks performed within the Processing 

Agent. 
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Figure 5-3 STDMn+p
0 Processing Agent 

The critical step involves the processing and integration of synchronistic collected 

physiological stream data with asynchronistic, static clinical data within the context of 

the neonatal intensive care environment.  Stream data would represent physiological 

stream data collected from medical monitoring devices such as RR, SpO2 and HR. 

While asynchronous, static or slow moving data within the NICU context would 
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represent clinical information such as patient ID, date of birth, gender, and gestational 

age.  Although in some rare cases there is a non or ‘ambiguous’ gender option that will 

develop into either male or female, this tends to occur in those neonates born within the 

range of 23-27 weeks  (Lehmann, Kim, & Johnson, 2009) . 

 

 To understand the static clinical data the STDMn
0 framework table structures of interest 

are highlighted in Figure 5-4. 

 

Figure 5-4 Exiting STDMn
0 table structures 

 

The Patient table contains the attributes of interest for STDMn+p
0
 research that is gender 

and gestational age at birth (BirthGestationalAge), as seen in Figure 5-5. 
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Figure 5-5 Patient attribute table from STDMn
0 NICU data model 

 

The existing STDMn
0 table created for the synchronous collected physiological stream 

data is structured as follows:  

 

Figure 5-6 Patient Physiological table from STDMn
0 NICU data model 

Table structure proposed in STDMn+p
0 is as follows to incorporate new attributes: 

 

Figure 5-7 STDMn+p
0 Patient Physiological table structure 

This table structure will improve results when running temporal abstraction queries in 

the temporal agent, as demonstrated in chapter 6.  
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These tables will be stored in the clinical knowledge database for future further 

refinement of clinical knowledge, first investigated by exploratory data mining and 

followed by confirmatory data mining. This table structure follows that of a relational 

database; however, looking to the future there may be clinical advantages in adopting a 

real-time database structure. 

5.4 Temporal Agent within the STDMn+p
0 framework 

 

Figure 5-8 STDMn+p
0 Temporal Agent 
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The arrows shown in Figure 5-8 STDMn+p
0 Temporal Agent are demonstrating the 

interaction of the Static Entity and Event Database with the Entity Stream database 

when creating temporal abstraction in that database.  Discoveries made from these 

temporal abstractions will help drive the temporal rules created. This agent within the 

STDMn+p
0 framework provides a method of solving the research problem areas 

discovered and defined by research hypothesis 2. 

 

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multi-dimensional temporal 

data.  

 

The Temporal Agent was designed to create new temporal encoded streams by 

abstracting, at time stamped intervals, behaviours or trends that represent anomalies 

within that defined stream.  Such anomalies, within for example an ECG physiological 

data stream, can be defined either as a trend such as increasing/decreasing, or as level 

shifts such as low/normal/high. All thresholds are dependent on the gender and 

gestational age of the infant the stream is being collected from.  Each reading or data 

point from the ECG stream has the potential to be included in several abstractions.  For 

example, this data point could have been collected while the heart rate was ‘increasing’ 

but was still within ‘normal’ limits.  Complex abstraction involves the comparison of 

abstracted parameters performed across multiple streams. Each abstraction performed 

is stored in table form within the temporal database.   
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The existing STDMn
0 table created for temporal abstractions is structured as follows in 

Figure 5-9: 

 

Figure 5-9 Temporal Abstraction table from STDMn
0 NICU data model 

The table structure proposed in STDMn+p
0 will look as follows in Figure 5-10 to 

incorporate new attributes: 

 

Figure 5-10 STDMn+p
0 Temporal Abstraction table 

The existing STDMn
0 temporal rule table is structured as follows in Figure 5-11: 

 

Figure 5-11 existing STDMn
0 TA_Rule table 
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The table structure proposed in TA_Rule in STDMn+p
0 will look as follows in Figure 5-12 

to incorporate new attributes: 

 

 

Figure 5-12 STDMn+p
0
 TA_Rule table 
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5.5 Relative Agent within the STDMn+p
0 framework 

 
Figure 5-13 STDMn+p

0 Relative Agent 

The arrows shown in Figure 5-13 STDMn+p
0 Relative Agent are demonstrating the 

interaction of the Temporal Database with the Relative Temporal, which will be driven 

by the research study of interest. Within the Relative Agent it is proposed that studies 

performed on temporal abstractions be based on clinical information from individual 

patients, such as gender and gestational age. 
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The existing STDMn
0 TA_RelativeTime table is structured as follows in Figure 5-14: 

 

Figure 5-14 existing STDMn
0 TA_RelativeTime table structure 

The table structure proposed in TA_RelativeTime in STDMn+p
0 will look as follows in 

Figure 5-15 to incorporate new attributes: 

 

Figure 5-15 STDMn+p
0 TA_RelativeTime table structure 

 

 

5.6 Functional agent 
 

This stage involved the constructing of the framework conceptualized as a method of 

solving research problem areas discovered and defined by research hypothesis 4 (listed 

below).   
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4. The hypotheses generated by the patient characteristic framework can be 

used by a real-time event stream processor analysing the current condition of 

babies in a Neonatal Intensive Care Unit.  

 

Within the Functional Agent the realigned temporal abstractions created in the Relative 

Agent are further processed.  The functional agent is where extended CRISP-TDM 

(Catley, Smith, McGregor, & Tracy, 2009) modeling tasks occur, which include rule set 

generation through exploratory data mining, selecting significant rule sets, null 

hypothesis formulation and running statistical processes to test the null hypothesis 

during confirmatory data mining.  This research has focused on data understanding 

phase, defining TA abstraction performed through further extending patient centric 

attributes within algorithms by gender and gestational age. 

5.7 Rules Generating Agent  
 

Successful processing within this agent will result in the creation of a new gender and 

gestational age defined clinical algorithm for the early prediction of disease based on 

retrospective clinical data, collected within the Processing Agent and stored in the Static 

Entity and Event database. The Rules Generating Agent involves utilizing the clinical 

algorithms developed in the Functional Agent to provide patient context-specific 

intelligent monitoring and alerting on real-time patient data streams. Co-mining, which 

enables the integration of data mining results with expert knowledge, is also possible, in 

that additional input may be received in the form of clinician-defined rules.  
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5.8 STDMn+p
0 Data Storage 

 

STDMn+p
0 tables will be structured as shown in figure 5-16 for data storage. 

 

 

Figure 5-16 STDMn+p
0 Data Storage 

 

Extensions made to the PatientPhysiological-x, TemporalAbstraction-x, TA_Rule-x and 

TA_RelativeTime-x tables from the STDMn
0 framework are discussed in detail above 

within their respective corresponding agents. 

5.9 Summary of Proposed STDMn+p
0 Methodology 

 

The STDMn+p
0 framework data collection and flow is demonstrated in Figure 5-17 

Summary of STDMn+p
0 Approach.  Within the Processing Agent, multiple streams of 
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physiological data collected within the Entity Stream database are now linked to the 

Static Entity and Event database through the utilization of patient attributes such  

M
ul

tip
le

 
ph

ys
io

lo
gi

ca
l 

st
re

am
s

M
ul

tip
le

 p
hy

si
ol

og
ic

al
 

st
re

am
s

P
at

ie
nt

 in
fo

rm
at

io
nP
at

ie
nt

 
in

fo
rm

at
io

n

 

Figure 5-17 Summary of STDMn+p
0 Approach 

  

as gender and gestational age. This enables a structured format for temporal 

abstraction queries to be run within the temporal agent once a research study of interest 

has been defined. In turn, this defined structured format is also carried out within the 

relative agent through the realignment of these abstractions at a point of interest 

relevant to the study defined. In terms of workflow ordering, the data is processed using 

techniques defined in the Functional Agent, and fed through a data mining system using 

the clinical algorithms developed in the Functional Agent. In the event that this process 

indicates the potential early onset of a condition of interest, the intelligent patient 
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monitoring system indicates this knowledge and the results are evaluated.  The 

knowledge gained of pattern detection in physiological data is then encoded to meet 

HL7 and SNOMED CT standards, and stored as part of the gold standard accepted 

within clinical databases.  

 

5. 10 Conclusion 
 

This chapter has presented the patient characteristic multi-dimensional adaptation to 

the STDMn
0 framework to enabling sub-classifications created by STDMn+p

0 framework. 

The chapter explained how the extended CRISP-DM model, CRISP-TDM, was 

incorporated into the framework while at the same time utilising a more patient centered 

approach.  

 

This chapter has addressed research hypotheses one, two and four by defining and 

demonstrating how the patient attributes of gender and gestational age further define 

the patient characteristic multidimensional data mining structured approach to clinical 

investigations within the STDMn+p
0
 framework. 
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Chapter 6 – Case Study within NICU context 

 6.1 Introduction 
 

 This chapter provides a demonstration of the STDMn+p
0 framework extensions 

proposed in chapter 5, through the use of a clinical research study example for neonatal 

apnoea spells. The extensions result in a multidimensional model incorporating gender 

and gestational age, to define patient characteristic thresholds for these attributes in 

relation to thresholds set for the detection of apnoea spells and thereby to assist in the 

support of clinical research within a NICU context. 

 

The demonstration within the NICU context will provide supporting evidence for the 

research hypothesis presented in Chapter 1.  These research hypotheses were: 

1. That a patient characteristic multidimensional data mining framework can be 

defined for clinical research to enable use of patient attributes when data mining 

patient physiological data streams.  

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multi-dimensional temporal 

data.  

3. The multidimensional algorithm framework can be applied in a neonatal context 

clustering patient characteristics by gender and gestational age.  

4. The hypotheses generated by the patient characteristic framework can be used 

by a real-time event stream processor analysing the current condition of babies 

in a Neonatal Intensive Care Unit.  
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The remainder of this chapter is structured as follows: 1) business understanding; 2) 

data understanding; 3) a description of all agents from the STDMn+p
0 framework. 

6.2 Business Understanding  
 

As introduced previously, the context of this case study is neonatal care. The objective 

of the case study is to support the analysis of apnoeic events in neonates. Apnoeic 

spells are associated with many conditions including late onset neonatal sepsis. Within 

this research demonstration the following rule for an apnoea spell utilised: “A lapse in 

breathing of a neonate for greater than 15 seconds is of clinical relevance (respiratory 

rate (RR) <25). At all neonatal gestational ages, a fall in peripheral oxygen saturation 

less than 85% for greater than 20 seconds combined with a HR of less than 108 bpm 

(100 bpm for male) is also of clinical relevance” (Hein, Ely, & Lofgren, April 1998)  

(Catley C. , Smith, McGregor, James, & Eklund, 2010). To date, as indicated in Chapter 

3, HR <100 is the threshold parameter applied (American Heart Association, 2006). 

 

Recent literature, as presented in Chapter 3, states that gender plays a significant role 

in defining HR differences: newborn male infants have lower baseline HR than newborn 

females (Nagy & Orvos, 2000) (Krueger, van Oostrom, & Shuster, 2010). These 

findings suggest that the known gender-related HR differences that are apparent 

throughout life are also present at the very beginning of life and should be considered 

when investigating physiological markers for conditions that affect the health and 

development of the newborn infant (Nagy & Orvos, 2000). The two patient identifiers 

(Stravroudis, Miller, & Lehmann, 2008) this research proposes for inclusions are that of 
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gestational age and gender to improve accuracy of diagnosis, treatment and critical 

care of neonates. The inclusion of gender and gestational age sets the stage for the 

motivation in choosing an apnoea case study to demonstrate the extended patient 

characteristic framework. 

 

As such, this retrospective research proposes that the physiological stream behaviour 

thresholds may be more accurate for an individual baby monitored in real-time if they 

are adjusted based on patient characteristics, such as gender and gestational age. The 

object of this demonstration is to extend the apnoea spell research to enable the 

analysis of apnoea spells in association with gender and gestational age. Specifically, 

through a demonstration of how the extended STDMn+p
0 framework enables inclusion of 

patient characteristics within the analysis of the temporal behaviours of the physiological 

data streams. 

6.3 Data Understanding 
 

Data used within this demonstration was collected and stored through research 

investment made by the Canada Research Chair program together with an IBM First-of-

a-Kind award and resulted in the implementation of the Artemis platform at The Hospital 

for Sick Children, Toronto, Ontario, Canada. Artemis is a framework to support real-time 

clinical decision support, together with retrospective clinical research. The goal of the 

Artemis research project is to provide a flexible platform for the real-time analysis of 

time series physiological data streams extracted from a range of monitors to detect 

clinically significant conditions that may adversely affect health outcomes.  Artemis 

supports data collected from multiple physical monitoring devices as well as from the 
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SickKids NICU’s Clinical Information Management System (CIMS) and information from 

the laboratory information system in the hospital. The Artemis platform supports the 

ingestion and storage of multiple real-time data streams from multiple patients, while 

analysing for multiple conditions for the purposes of real-time and retrospective 

analysis, and data-mining (Blount, Ebling, et al., 2010).   

 

The first implementation of Artemis has been utilizing the Philips Intellivue MP70 

Neonatal monitors. These devices produce multiple streams of physiological data 

collected from each patient at a rate of one reading every 1024ms. This case study 

demonstration will utilise a reduced data set containing three of these physiological data 

streams, specifically: electrocardiogram derived RR, SpO2 and HR (ECG-HR). 

  
This chapter will provide an in depth description on how the collected neonatal raw 

physiological and clinical data moves through the extended STDMn+p
0 framework, with 

particular attention paid to the Processing and Temporal Agents that will support 

defining the patient characteristic clinical temporal rules where new patient 

characteristic trends and patterns of apnoea will be unveiled. The STDMn+p
0 framework 

is presented in Figure 6-1. 
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Figure 6-1 Proposed Research STDMn+p
0
 Framework 

 

The study of interest, such as apnoea spells in this demonstration, will determine the 

parameters placed on the data that in turn produces the temporal abstractions collected. 

The thresholds applied to the different streams and used by this study are as follows: 

RR<25 for greater than 15 seconds, peripheral oxygen saturation (SpO2) < 85% for 

greater than 20 seconds combined with a HR of less than 108 bpm (100 bpm for male) 

for a female neonate of 35 weeks gestational age is all of clinical relevance.  These 

thresholds are applied to their respective streams to create the temporal abstractions 

that are then stored within the STDMn+p
0 data storage framework.  
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6.4 Processing Agent 
 

The role of the Processing Agent is to initiate access, as well as integration and 

collection of physiological and clinical data stored from multiple databases. Within this 

chapter, the mapping of the data from the different de-identified data stores acquired 

from the NICU will be described in detail and demonstrated. Tasks undertaken by the 

Processing Agent occur within the Data Acquisition component of the Artemis System 

Architecture shown in Figure 6-2.  

 

Artemis is a Research Ethic Board (REB) approved collaborative project between 

SickKids, IBM and UOIT.  While the Artemis framework contains components for Data 

Acquisition, Online Analysis, Data (stream) Persistence, Knowledge Extraction and 

Redeployment, the demonstration in this thesis has focused on the Data Persistence 

and Knowledge Extraction components only.  The data Persistence is implemented in 

DB2 V9.7. Some details will also be provided on knowledge extracted which then 

transferred and deployment occurs for real-time use.  The Artemis system diagram is 

illustrated in Figure 6-2. 
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Figure 6-2 Artemis System Architecture 

 

Within Artemis there are two copies of Data Persistence: one used to support the Online 

Analysis and an incremental replica version of the Data Persistence which receives new 

data each day from the Online Analysis Data Persistence copy. The Knowledge 

Extraction copy of the Data Persistence is represented by the Data Management layer 

of the STDMn+p
0 framework. 

 

From SickKids there are two main Database storage components within the Data 

Management layer that will be the focus of this research thesis, those being the Clinical 

Information Management System (CIMS) and physiological data information 

management (DIM). Both of these sources of data are stored by the ‘Static Entity and 

Event Data’ and the ‘Entity Stream Data’ Database found within the Data Management 

layer in the framework provided above. 
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The CIMS database contains all patient source data and is implemented at SickKids in 

Oracle. Of primary concern for the purposes of this research is the demographic details 

and physiological measurements at time of birth (gender and gestational age inclusive). 

 

 

Figure 6-3 Artemis CIMS table structure(s) 

As demonstrated in the above CIMS defined table structures, the Artemis project 

receives de-identifed patient characteristic information in the A_PATIENT table, where 

the attribute emtek_id has been substituted to attribute artemis_id to maintain 

anonymity of patients enrolled in the project. The table A_PATIENT is isolated below to 

show how and where patient information was transferred from SickKids into a mirrored 

research Artemis database.   
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Table 6-1 A_PATIENT table located within Artemis database 

Each preterm infant admitted is registered and clinical data entered into a table and 

stored within the CIMS database; an example of such a data is shown in Table 6-2. 

Under the GA column, the gestational age is broken down into weeks plus days. 

EMTEKID Gender
Age 
(days) 

GA 
(BIRTH) BW 

….1 M 0-3 38+4 3080 
….2 M 0-3 40+6 3400 
….3 M 0-3 32+6 1850 
….4 F 0-3 39+4 3240 
….5 M 8+ 25+2 770 
….6 M 8+ 25+5 820 
….7 F 8+ 36+6 2050 
….8 M 8+ 36+6 2770 
….9 M 8+ 25 535 
….10 F 0-3 37 +2 1934 
….11 M 0-3 31+2 810 
….12 F 0-3 34+4 780 

Table 6-2 CIMS Patient stored data table 
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The DIM database contains all enrolled patients’ physiological data, collected via 

medical attached devices such as the MP70.  The table structure for this database is 

presented as follows in Figure 6-4 Artemis DIM table structure(s) below: 

DEVICEID2PATIENTID

PK device_id
PK artemis_id

patient_id
dofb
patientnum

RAWDBP

PK timestamp
PK patient_id

DBP_value
FK1 device_id
FK1 artemis_id

RAWECG

PK timestamp
PK patient_id

ECG_value
FK1 device_id
FK1 artemis_id

RAWHR

PK timestamp
PK patient_id

HR_value
FK1 device_id
FK1 artemis_id

RAWSBP

PK timestamp
PK patient_id

SBP_value
FK1 device_id
FK1 artemis_id

RAWRR

PK timestamp
PK patient_id

RR_value
FK1 device_id
FK1 artemis_id

RAWSPO2

PK timestamp
PK patient_id

SP02_value
FK1 device_id
FK1 artemis_id

RAWMBP

PK timestamp
PK patient_id

MBP_value
FK1 device_id
FK1 artemis_id

 

 

Figure 6-4 Artemis DIM table structure(s) 

 

Each preterm infant enrolled in Artemis has multiple physiological data measurements 

collected. Each physiological data measurement has a timestamp to the millisecond for 

every data point collected. The physiological stored files contain the timestamp, 

patient_id, and the named physiological reading. Figure 6-4 corresponds to the patient’s 
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physiological_id table.  Artemis has implemented a horizontal split of the table such that 

each physiological data reading is on their own. 

 

DateTime  (Format: 
Yyyymmdd hh:mm:ss:000) 

Patient_ID Value     
(HR) 

20090807 11:04:09:021.299  12345  118 
20090807 11:04:09:022.323  12345  116 
20090807 11:04:09:023.347  12345  115 
20090807 11:04:09:024.371  12345  115 
20090807 11:04:09:025.395  12345  114 
…….  …..  …. 
…….  …..  …. 
        

Table 6-3 Stored HR physiological data 

To enable physiological thresholds to be driven by gender and gestational age, 

additional attributes will be included in TA tables that will be detailed further in the 

Temporal Agent section. 

 

The first ‘A_PATIENT’ table in the above CIMS structure demonstrates how information 

is drawn from and related to the NICU source data regarding the admitted patient. 

Primarily of interest in this research thesis is the physiological data initially collected 

such as dob, gender and gest_age shown above in table 6-1.   

6.4.1 Mapping Artemis CIMS tables from SickKids to Artemis DIM tables 
In order for the data to pass through to the processing agent the following table 

structures need to be mapped.  Mapping creates the links between the two different 

databases to enable ease of coupling data elements.  Mapping from the CIMS database 

tables to the DIM database table is shown below in Table 6-4 and Table 6-5. 
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Neonate  Artemis (CIMS)  
A_BEDDEVICE 

DIM tables 
DEVICEID2PATIENTID 

artemis_id artemis_id 
device_id device_id 
start_time  Value (datetimestamp) 
end_time Value (datetimestamp) 
Dob Dofb 
Table 6-4 Mapping Artemis (CIMS) to Artemis DIM table structures 

 

RAW data Physiological_ID 
RAWRR 1 
RAWHR 2 
RAWSPO2 3 
RAWMBP 4 
RAWSBP 5 

Table 6-5 Mapping RAW data collected at SickKids to Proposed Patient Characteristic 
database 

Once all mapping of valuable input data is finished, the Processing Agent has 

completed its tasks in preparation for the data to then be passed on to the Temporal 

Agent. 

6.5 Temporal Agent 
   

The Temporal Agent utilizes data detailing gender and gestational age from the patient 

table that has been placed in data stores by the Processing Agent.  The thresholds 

described in section 6.3 are applied to their respective streams to create the temporal 

abstractions that are then stored within the STDMn+p
0 data storage framework. The 

Temporal Agent uses the rules defined in the temporal rules table to create temporal 

abstractions from the physiological data that has been collected from the MP70 

neonatal monitoring equipment used by The Hospital for Sick Children. 
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As described in chapter 4, the temporal agent has six main functions: 

1) Retrieve the physiological data from the physiological data store for each 

parameter for each patient based on gender and gestational age 

2) Retrieve the relevant abstraction rules from the temporal rules table 

3) Apply the rules to the physiological data, creating simple abstractions for 

individual data streams for individual patients 

4) Store the created abstractions in the STDMn+p
0 temporal data store 

5) Create complex abstractions from the simple abstractions created in step 3, 

according to any rules found in the temporal rules table. 

6) Store any complex abstractions created in the STDMn+p
0 temporal data storage.  

 

6.5.1 Abstraction overview demonstration  
The TA rules are executed on data for a predefined time. The example used for this 

demonstration consists of 20 second sample with one reading every 1024 ms.   The 

data used for this demonstration has three main streams of time-stamped physiological 

readings which have been abstracted separately into simple temporal abstractions.   A 

particular time-stamped physiological reading for a particular patient can be part of 

several simple abstractions. The following abstractions are designed to demonstrate 

that minor adjustments made to abstraction threshold parameters produce significantly 

different result that may be causal to clinically significant outcomes. 

 

Gestational age based on anecdotal evidence suggests that a threshold parameter for 

mean blood pressure for example: “Given a hypothetical newborn baby born 5 weeks 

premature (35 weeks gestational age), a fall in mean blood pressure less than 35 mm 
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Hg is clinically relevant.” (Catley, Smith, McGregor, & Tracy, 2009).  To demonstrate the 

impact gestational age can have on this one stream, a 20 second sample from one 

patient is presented in Table 6-6. 

Patient_ID  DateTime  (Format: 
Yyyymmdd hh:mm:ss:0) 

Physiological_ID Value                        
(MBP mmHg) 

sample 1  20091201 10:59:21.033  4  32.6 

sample 1  20091201 10:59:22.057  4  32.7 
sample 1  20091201 10:59:23.081  4  32.8 
sample 1  20091201 10:59:24.105  4  32.8 
sample 1  20091201 10:59:25.129  4  32.7 
sample 1  20091201 10:59:26.153  4  33.2 
sample 1  20091201 10:59:27.177  4  33.7 
sample 1  20091201 10:59:28.201  4  34.5 
sample 1  20091201 10:59:29.225  4  35.1 
sample 1  20091201 10:59:30.249  4  35.3 
sample 1  20091201 10:59:31.273  4  35.7 
sample 1  20091201 10:59:32.297  4  36.1 
sample 1  20091201 10:59:33.321  4  37.4 
sample 1  20091201 10:59:34.345  4  38.2 
sample 1  20091201 10:59:35.369  4  39.1 
sample 1  20091201 10:59:36.393  4  40.3 
sample 1  20091201 10:59:37.417  4  40.5 
sample 1  20091201 10:59:38.441  4  42.1 
sample 1  20091201 10:59:39.465  4  42.9 
sample 1  20091201 10:59:40.489  4  43.1 

Table 6-6 MBP gestational age demonstration sample 

 

The abstraction rule applied to the MBP data is based on gestational age the first 

example will a 35 week old therefore using a threshold a follows: 

 

  Low = MBP < 35, and Normal = MBP > 35 would produce TA results as follows: 
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Patient
_ID 

Physiolog
ical_ID 

Abstractio
nType 

Abstractio
nValue 

ActualStartTime  ActualEndTime 

sample 
1  4  Level shift  Low  20071201 10:59:21.033  20091201 10:59:28.201 
sample 
1  4  Level shift  Normal  20071201 10:59:29.225  20091201 10:59:40.489 

Table 6-7 TA result on MBP of a GA 35 week old neonate 

However, if the same data was retrieved from a neonate with a gestational age of 39 

weeks, amending the threshold as follows: Low = MBP < 39, and Normal = MBP > 39 

would produce TA results as follows in Table 6-8:  

Patient_
ID 

Physiolog
ical_ID 

Abstraction
Type 

Abstraction
Value 

ActualStartTime  ActualEndTime 

sample 
1  4  Level shift  Low  20071201 10:59:21.033 20091201 10:59:34.345 
sample 
1  4  Level shift  Normal  20071201 10:59:35.369 20091201 10:59:40.489 

Table 6-8 TA results on MBP of a GA 39 week old neonate. 

The MBP TA results, as demonstrated, have shown significantly different TA outcomes 

with only the consideration of gestational age taken into account when defining the 

threshold rules. This research would like to demonstrate further significant outcomes by 

incorporating gender into generating the threshold rules defining the algorithms. 

6.5.2 Apnoeic Event case study temporal abstraction 
The case study is a demonstration of how data collected by the current Artemis pilot 

could be used through the secondary use of data for new knowledge creation. The 

following three tables contain a thirty second segment of raw physiological data 

readings collected every 1024 ms, specifically focusing on RR, SpO2 and HR, that will 

used throughout the duration of the case study. To assist in the readers’ ability to follow 

all graphs, tables and charts produced have been colour co-ordinated from this point 

forward. The colour of the table containing the physiological data will correspond to the 
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colour of the graphs demonstrating how thresholds are applied to the individual data 

streams. Values for the three streams are shown in Tables 6-9 through 6-11. 

 

Table 6-9 -RR values  

Patient_ID  Gender  GA  DateTime (Format: Yyyymmdd 
hh:mm:ss:000) 

Physiological_ID  RR 
value 

testpatient  F  35  20090807 11:04:10.035  1  28

testpatient  F  35  20090807 11:04:11.059  1  28

testpatient  F  35  20090807 11:04:12.083  1  27

testpatient  F  35  20090807 11:04:13.107  1  25

testpatient  F  35  20090807 11:04:14.131  1  24
testpatient  F  35  20090807 11:04:15.155  1  24
testpatient  F  35  20090807 11:04:16.179  1  23
testpatient  F  35  20090807 11:04:17.203  1  23
testpatient  F  35  20090807 11:04:18.227  1  23
testpatient  F  35  20090807 11:04:19.251  1  22
testpatient  F  35  20090807 11:04:20.275  1  22
testpatient  F  35  20090807 11:04:21.299  1  22
testpatient  F  35  20090807 11:04:22.323  1  22
testpatient  F  35  20090807 11:04:23.347  1  22
testpatient  F  35  20090807 11:04:24.371  1  22
testpatient  F  35  20090807 11:04:25.395  1  21
testpatient  F  35  20090807 11:04:26.419  1  21
testpatient  F  35  20090807 11:04:27.443  1  21
testpatient  F  35  20090807 11:04:28.467  1  22
testpatient  F  35  20090807 11:04:29.491  1  21
testpatient  F  35  20090807 11:04:30.515  1  21
testpatient  F  35  20090807 11:04:31.539  1  21
testpatient  F  35  20090807 11:04:32.563  1  20
testpatient  F  35  20090807 11:04:33.587  1  20
testpatient  F  35  20090807 11:04:34.611  1  20
testpatient  F  35  20090807 11:04:35.635  1  19
testpatient  F  35  20090807 11:04:36.659  1  19
testpatient  F  35  20090807 11:04:37.683  1  19
testpatient  F  35  20090807 11:04:38.707  1  20
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Table 6-10: Raw SpO2 readings 

Patient_ID  Gender  GA  DateTime (Format: 
Yyyymmdd hh:mm:ss:0) 

Physiological_ID  Value                
(SpO2   %) 

testpatient  F  35  20090807 11:04:09.011  2  92

testpatient  F  35  20090807 11:04:10.035  2  89

testpatient  F  35  20090807 11:04:11.059  2  87

testpatient  F  35  20090807 11:04:12.083  2  86

testpatient  F  35  20090807 11:04:13.107  2  85

testpatient  F  35  20090807 11:04:14.131  2  84

testpatient  F  35  20090807 11:04:15.155  2  84

testpatient  F  35  20090807 11:04:16.179  2  84

testpatient  F  35  20090807 11:04:17.203  2  84

testpatient  F  35  20090807 11:04:18.227  2  83

testpatient  F  35  20090807 11:04:19.251  2  83

testpatient  F  35  20090807 11:04:20.275  2  83

testpatient  F  35  20090807 11:04:21.299  2  82

testpatient  F  35  20090807 11:04:22.323  2  82

testpatient  F  35  20090807 11:04:23.347  2  82

testpatient  F  35  20090807 11:04:24.371  2  83

testpatient  F  35  20090807 11:04:25.395  2  83

testpatient  F  35  20090807 11:04:26.419  2  83

testpatient  F  35  20090807 11:04:27.443  2  84

testpatient  F  35  20090807 11:04:28.467  2  82

testpatient  F  35  20090807 11:04:29.491  2  82

testpatient  F  35  20090807 11:04:30.515  2  81

testpatient  F  35  20090807 11:04:31.539  2  81

testpatient  F  35  20090807 11:04:32.563  2  81

testpatient  F  35  20090807 11:04:33.587  2  81

testpatient  F  35  20090807 11:04:34.611  2  82

testpatient  F  35  20090807 11:04:35.635  2  82

testpatient  F  35  20090807 11:04:36.659  2  81

testpatient  F  35  20090807 11:04:37.683  2  81

testpatient  F  35  20090807 11:04:38.707  2  81
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Table 6-11: HR readings  

Patient_ID  Gender  GA DateTime (Format: 
Yyyymmdd hh:mm:ss:0) 

Physiological
_ID 

Value    
(HR) 

testpatient  F  35 20090807 11:04:09.011  3  118 

testpatient  F  35 20090807 11:04:10.035  3  116 

testpatient  F  35 20090807 11:04:11.059  3  115 

testpatient  F  35 20090807 11:04:12.083  3  115 

testpatient  F  35 20090807 11:04:13.107  3  114 

testpatient  F  35 20090807 11:04:14.131  3  112 

testpatient  F  35 20090807 11:04:15.155  3  113 

testpatient  F  35 20090807 11:04:16.179  3  112 

testpatient  F  35 20090807 11:04:17.203  3  111 

testpatient  F  35 20090807 11:04:18.227  3  110 

testpatient  F  35 20090807 11:04:19.251  3  109 

testpatient  F  35 20090807 11:04:20.275  3  108 

testpatient  F  35 20090807 11:04:21.299  3  107 

testpatient  F  35 20090807 11:04:22.323  3  106 

testpatient  F  35 20090807 11:04:23.347  3  105 

testpatient  F  35 20090807 11:04:24.371  3  104 

testpatient  F  35 20090807 11:04:25.395  3  103 

testpatient  F  35 20090807 11:04:26.419  3  102 

testpatient  F  35 20090807 11:04:27.443  3  101 

testpatient  F  35 20090807 11:04:28.467  3  100 

testpatient  F  35 20090807 11:04:29.491  3  99 

testpatient  F  35 20090807 11:04:30.515  3  99 

testpatient  F  35 20090807 11:04:31.539  3  99 

testpatient  F  35 20090807 11:04:32.563  3  99 

testpatient  F  35 20090807 11:04:33.587  3  98 

testpatient  F  35 20090807 11:04:34.611  3  98 

testpatient  F  35 20090807 11:04:35.635  3  98 

testpatient  F  35 20090807 11:04:36.659  3  98 

testpatient  F  35 20090807 11:04:37.683  3  98 

testpatient  F  35 20090807 11:04:38.707  3  97 
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A graphical representation of the above three table has been produced to easily view 

TAs performed on the RR, SpO2 and HR values plotted above and below the threshold 

for each of the streams under investigation.  The threshold is gender dependant and 

invoked by the integration of the patient table containing the gestational age, which in 

turn constantly amends TAs created for the different data streams as determined by the 

rules for that particular data stream stored in the TA_Rule table. 

 

Abstractions were conducted on the RR readings from Table 6-9, where continuously 

monitored intervals of RR values at or above a reading of 25 are categorized into 

‘normal RR’ abstraction, and continuous intervals of RR values below 25 are made into 

a ‘low RR’ abstraction.  Figure 6-5 demonstrates that the values in the table can be 

reduced into normal and low abstractions: 

 

 

Figure 6-5 Graphing of Respiration Rate values 

The rule for this particular abstraction, as presented within this case study, will be: 
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 RR<25 

Patient_ID  Gend
er 

GA Physiolo
gical_ID 

Abstraction
Type 

AbstractionV
alue 

ActualStartTime  ActualEndTime

testpatient  F  35  1  Level shift normal RR 20090807 11:04:09.011  20090807 11:04:13.107 

testpatient  F  35  1  Level shift low RR 20090807 11:04:14.131  20090807 11:04:38.707 

Table 6-12: RR Temporal Abstraction 

 

Abstractions were conducted on the SpO2 readings in Table 6-10, where continuous 

intervals of SpO2 values at or above the 85% are categorized into ‘normal’ abstractions, 

and continuous intervals of SpO2 values below 85% are made into a ‘low’ abstraction.  

Figure 6-6 was created from the SpO2 values in Table 2 against the 85% threshold 

below. 

 

 

Figure 6-6 Graphing of SpO2 values against threshold of 85% 
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SpO2 threshold of 85% is indicated by the dotted line.   SpO2 readings of 85 and above 

are seen as normal, and readings below 85 can be problematic to the health and future 

of the neonate.  The rule for this particular abstraction, using 85 as a threshold as 

presented within this case study, will be: 

 Low = SpO2 < 85 

 Normal = SpO2 > 85 

Here we can see that the first 4 readings in Figure 6-6 are within the normal range, with 

a start time at 9.011 seconds and end time at 13.107 seconds, creating a ‘normal’ 

abstraction.  The next readings are below the 85% threshold and therefore would create 

a ‘low’ abstraction, starting at 14.131 seconds and finishing at 38.707 seconds.  

 

Table 6-13 represents the condensed data reading(s) outcome following the abstraction 

rules being applied to the original sample data:  

Patient_ID  Gende
r 

GA  Physiolo
gical_ID 

AbstractionT
ype 

Abstraction
Value 

ActualStartTime  ActualEndTime

testpatient  F  35 2  Level shift  Normal  20090807 11:04:09.011  20090807 11:04:13.107 

testpatient  F  35 2  Level shift  Low  20090807 11:04:14.131  20090807 11:04:38.707 

Table 6-13: Abstractions created from all SpO2 readings from Table 

 

6.5.3 Gender comparison HR temporal abstractions 
To demonstrate the significance that gender and gestational age can have on HR 

values present in Table 6-11, Figure 6-7 represents threshold parameters for a male 

neonate of 35 weeks GA against the threshold of 100 (which is gender and gestational 

age dependant, male and 35 weeks). 
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Figure 6-7 Graphing of HR values against a threshold of 100 bpm 

 

The rule used to abstract the HR for a male neonate of 35 weeks GA parameter is: 

 Low = HR<100 

 Normal = HR > 100 

Here we can see that the first 19 readings in Figure 6-7 are not within and below the 

normal range from the first value until values cross the threshold at time of 28.467 

seconds, creating a ‘low’ abstraction.  The readings that followed were all below the 100 

bpm threshold and therefore would create a ‘low’ abstraction, starting at time of 28.467 

seconds and finishing at 38.707 seconds.  

 

Table 6-14 represents the condensed results from applying abstraction rules to the 

original sample data from Table 6-11:  
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Patient_ID  Gend
er 

GA  Physiolo
gical_ID 

Abstraction
Type 

Abstraction
Value 

ActualStartTime  ActualEndTime 

testpatient 
M  35 

3  Level shift  Normal 
20090807 
11:04:09.011 

20090807 
11:04:27.443 

testpatient 
M  35 

3  Level shift  Low 
20090807 
11:04:28.467 

20090807 
11:04:38.707 

Table 6-14: Abstractions created from all HR readings with threshold set at 100 

These results differ significantly when compared to those obtained from the threshold 

that would be applied to a female neonate of 35 weeks gestational age. Figure 6-8 

presents the HR values from Table 6-11 against the threshold of 108 (which is gender 

and gestational age dependant, female and 35 wks). 

 

Figure 6-8 Graphing of HR values against a threshold of 108 bpm 

The rule used to abstract the HR for a female neonate of 35 weeks GA parameter is: 

 Low = HR<108 

 Normal = HR > 108 

 

Here we can see that the first 11 readings are not within and below the normal range 

from the first value until values cross the threshold at time of 19.251 seconds creating a 

‘low’ abstraction.  The readings that followed were all below the 108 bpm threshold and 
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therefore would create a ‘low’ abstraction, starting at time of 20.275 seconds and 

finishing at 38.707 seconds.  

 

Table 6-15 represents results from applying abstraction rules to the original sample data 

from table 6-11:  

 

Patient_ID  Gend
er 

GA  Physiolo
gical_ID 

Abstraction
Type 

Abstraction
Value 

ActualStartTime  ActualEndTime 

testpatient 
F  35 

3  Level shift  Normal 
20090807 
11:04:09.011 

20090807 
11:04:19.251 

testpatient 
F  35 

3  Level shift  Low 
20090807 
11:04:20.275 

20090807 
11:04:38.707 

Table 6-15 Abstractions created from all HR readings with threshold set at 108 

  

Temporal abstractions have been shown on three data streams for this case study in 

ongoing clinical investigation and patient centric research. TAs were created for the 

different data streams as determined by the temporal abstraction rules. 

 

6.5.4 Complex Abstractions 
The next step within the CRISP-TDM methodology is blending abstractions from 

different data streams to create complex abstractions.  Complex abstractions can be 

created from simple abstractions such as those created above for RR, SpO2 and HR 

readings.  For example, a complex abstraction can be specified when all streams being 

monitored are below their respective thresholds.  The rule that must hold true for this 

example is RR <25 for > 15 seconds & SpO2 <85 AND HR < 108, meaning only 

intervals where these conditions of interest are met will be included in this particular 

complex abstraction.  
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There is one time interval in this sample section of monitoring data that can be used for 

the complex abstractions where all three parameters have a low abstraction at the same 

time.  These points are t20- t30 inclusive and abstractions are summarized and presented 

as follows in Table 6-16: 

 

Patient_ID  Gend
er 

GA Physiolo
gical_ID 

Abstraction
Type 

AbstractionValue ActualStartTime  ActualEndTime

testpatient 
F  35

1,2,3  complex  CentralApneoaAlert 
20090807 

11:04:28.467 
20090807 

11:04:38.707 

Table 6-16: Complex Abstractions 

 

These complex abstractions are stored for referencing purposes in the data store. 

This complex abstraction is demonstrated in Figure 6-9. 
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Figure 6-9 Complex abstraction demonstration of 3 physiological data streams 

 

6.6 Relative Agent 
 

Every abstraction created from physiological data in the Temporal Agent can be a part 

of many different clinical research studies. Both simple and complex abstractions are 

stored until needed in future studies.  The Relative Agent in the STDMn+p
0 Framework 

does not commence until a particular study is completed. Once a point in time of 

interest in the study is discovered, it is advantageous to realign the time of abstractions 

relative to that particular time. The aim of this case study is to find new trends and 

patterns that can be indicative to the onset of a condition in the physiological 
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parameters of the patient pre diagnosis; therefore, the next phase of the CRISP-TDM 

framework is to realign the time of abstraction relative to the particular point of interest. 

The point of interest is the time when the patient was diagnosed with a condition across 

multiple streams of physiological data, in comparison with multiple patients with the 

same diagnosis.   

 

To enable the detection of particular pattern of these abstractions, at a particular time 

before diagnosis, realignment of the abstraction relative to the time of diagnosis is 

necessary.  As these abstractions are using absolute time for the start and finish time 

for each abstraction, it will usually be necessary to give these abstractions start and 

finish times relative to a particular event that is of interest, such as the time of diagnosis.  

This will enable the comparison and mining of the abstractions, allowing the distance 

from time of diagnosis, or another event, to be taken into account (McGregor C. P., July 

2010).    

 

Clinical researchers looking for cross correlated changes in the temporal physiological 

data of patients with a particular condition are interested in changes in this temporal 

data that may be able to indicate the onset of this condition.  They need to be able to 

identify similar patterns or changes in the data that occur at similar times before 

diagnosis for multiple patients.  Using absolute times for the start and end time of 

abstractions give absolutely no indication of what time this abstraction takes place in 

relation to the diagnosis (McGregor C. P., July 2010).  
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6.6.1 Revisiting Temporal Abstractions 
Table 6-10  showed abstractions from a patient’s SpO2 physiological data stream; it can 

be seen that the start and end times for each abstraction are absolute times recorded 

by the monitoring equipment in use.   The first abstraction has a start time of 20090807 

11:04:09.011 and a finish time of 20090807 11:04:13.107.  For the purpose of this case 

study demonstration, if the patient was diagnosed one hour after the start time of the 

first abstraction recorded, the relative start time for this abstraction would be 

00000000_01:00:00.000, exactly one hour before diagnosis. The relative times are 

created by calculating the difference between the actual times and the time of 

diagnosis. Trends and patterns in data of interest occur before diagnosis, and therefore 

data after the diagnosis or event should not be realigned.  Table 6-17 contains the 

relatively aligned temporal abstractions for this particular example. 

 

Table 6-17: Relative aligned temporal abstractions 

 

These patient characteristic physiological data parameters will be stored within tables 

found in the Temporal and Relative Temporal databases.  Although static in nature for 

the purposes of this demonstration, this is an iterative process that is continually 

deployed on all data as it is being continuously collected.  

Patient_ID  Gen
der 

GA  Physiolo
gical_ID 

Abstraction
Type 

Abstraction
Value 

ActualStartTime  ActualEndTime 

Testpatient  F  35  2  Level shift  Normal  00000000 01:00:00.000  00000000 00:59:55.904 

Testpatient  F  35  2  Level shift  Low  00000000 00:59:54.880  00000000 00:59:30.304 



    

105  
 

 

 6.7 Functional Agent  
 

The functional agent is the agent that performs the framework data mining tasks.  This 

is where exploratory data mining is used to detect new trends and patterns in multiple 

parameters to create hypotheses that can be tested via null hypothesis testing through 

confirmatory mining. This is demonstrated in the case study, where we are searching for 

trends and patterns in the temporal abstractions that indicate the onset of apnoea 

events based on gender and gestational age; such events are also possible cofounders 

for nosocomial infection. 

 

Considering the case study demonstrated above, further investigations could be placed 

on the relationship between the various streams of data such as blood oxygen 

saturation and whether the rule of SpO2 equaling GA holds true for both genders based 

on temporal abstractions stored from that study. First exploratory data mining will be 

exercised to find new hypotheses. An example of such a hypothesis is as follows: 

[Breathing pause and {SpO2<87 (Female) or <85 (Male)} and {HR<108 (Female) or 

<100(Male)}] > 15 seconds                Central Apnoea 

Once the hypothesis is formulated the null hypothesis can then be created and tested. A 

null hypothesis would state that there is no difference in the SpO2 readings between 

female and male infants. If confirmatory mining proves the null hypothesis to be correct, 

the process is discontinued. However, if confirmatory mining proves the SpO2 readings 

are in fact different for female and male neonates, the null hypothesis is disproven 

which warrants further investigations.  Clinicians’ input and judgment will decide if the 
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hypothesis is sound enough to be adopted as a rule for an intelligent monitoring system 

or whether further investigation is required.  If it is decided that the hypothesis is of 

sound nature then it is passed on to the rules generating agent. 

6.8 Rules Generating Agent 
 

All rules generated through hypothesis that are created and tested within the Functional 

Agent and that are clinically approved and adopted by physicians are then stored in the 

Rule Generating Agent.  These rules are available to be used by intelligent monitoring 

and alerting system such as the one created by Stacey (Stacey, McGregor, & al., 2007) 

(McGregor C. P., July 2010). 

6.9 Future Research Application 
 

The STDMn+p
0 framework can be applied to the clinical research subject area of 

investigation for potential onset indicators for sepsis and other multivariable conditions 

such as apnoea.  

 

Once thresholds have been derived and hypotheses have been created, tested, and 

then transformed into rules within this framework, the next stage is enabling the 

distribution of the framework to interact with the other Artemis locations. 

  

The STDMn+p
0 framework will continue to be developed in the Artemis project with a 

more rich set of actual de-identified data sets from The Hospital for Sick Children, 

Toronto, Canada, Women and Infants Hospital, Providence, Rhode Island and 
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Westmead Hospital, Westmead, Australia and multiple other hospitals around the world 

as the project continues to gain researchers’ interest across the globe.  

 

6.10 Conclusion  
 
This research further extended the multi-dimensional STDMn

0 framework (McGregor C. 

P., July 2010) to enable the creation of patient characteristic defined rules to be adopted 

into clinical alerts with the intent of improving patient outcomes.  

 

This chapter was a demonstration of how the STDMn
0 framework was extended to 

incorporate gender and gestational age applied within the NICU to further define patient 

characteristic rules through the extension of the Processing and Temporal Agents’ 

functionality.  The extended framework illustrated the adoption of the two new attributes 

included in the temporal abstractions and relative alignments made to the raw 

physiological data collected from within a NICU.  Once the functional agent’s 

exploratory and confirmatory data mining tasks have been deployed and these newly 

developed patient characteristic hypothesis it is then up to clinicians’ judgment whether 

to adopt the patient characteristic rule(s) for intelligent monitoring systems (CDSS). 

 

When considering the development of clinical rules that will be adopted into CDSS it 

important not to adopt a ‘one size fits’ all approach.  This STDMn+p
0 framework as 

presented within this case study chapter has demonstrated a way of creating more 

individualize patient characteristic approach to neonatal treatment of care. 
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This framework will provide clinical research within the NICU with the flexibility to adjust 

physiological data thresholds to meet the changing needs of the developing patient 

being monitored.  These thresholds will be patient characteristic derived and based on 

trends and patterns discovered with the intent of improving patient outcomes. 
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Chapter 7 – Conclusion 

7.1 Summary 
  

The research covered in this thesis has presented extensions to the STDMn
0 framework 

(McGregor C. P., July 2010) to enable data collection and clustering based on patient 

characteristics resulting in the STDMn+p
0 framework.  This research was demonstrated 

within the context of a NICU in Chapter 6 through the utilization of multiple time series 

physiological data streams collected from newborn infants enrolled in a collaborative 

research project including UOIT, IBM and SickKids called Artemis.  The extensions 

demonstrated the inclusion of gender and gestational age into the multidimensional 

model to define patient characteristic thresholds for these attributes in relation to 

thresholds set for the detection of apnoea spells and thereby to assist in the support of 

clinical research within a neonatal intensive care. 

 

Based on recent literature, other than the STDMn
0 framework included as a basis for this 

research, there is an absence of architectures with a flexible multidimensional approach 

to data mining of time series data and integration of null hypothesis that has been 

adopted in healthcare domain let alone adopted into critical care.  However exposed by 

literature review was the absence of adoption of the gender and gestational age to keep 

pace with the exponential growth and development that takes place in as an infant 

matures from 26 to 40 week gestation.  Together with this there is an absence of 

support of the general need to incorporate characteristics of the entity in patient(s) to 

drive the knowledge discovery. 
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Gaps exposed by literature review resulted in the following research hypothesis for this 

thesis: 

 

1. That a patient characteristic multidimensional data mining framework can be 

defined for clinical research to enable use of patient attributes when data mining 

patient physiological data streams.  

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multi-dimensional temporal 

data.  

3. The multidimensional algorithm framework can be applied in a neonatal context 

clustering patient characteristics by gender and gestational age.  

4. The hypotheses generated by the patient characteristic framework can be used 

by a real-time event stream processor analysing the current condition of babies 

in a Neonatal Intensive Care Unit.  

 

The application domain for this research of the NICU was introduced in chapter 3.  This 

chapter discussed and exposed the neonate as a growing and developing physical 

being both dependant on gender and driven by gestational age which should be 

reflected in rules that assist in the diagnosis of conditions that may affect these infants. 

Chapter 4 described an existing multi-agent framework STDMn
0 that includes the 

integration of relevant aspects of the extended data mining model CRISP-TDM to 

support temporal data mining as well as facilitate null hypothesis testing on real time 
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series physiological data streams. Chapter 5 described the extensions made and design 

to incorporate the patient characteristic attributes of gender and gestational age into the 

STDMn+p
0 framework.  The extensions made to each of the agents and their functions 

were described fully.  Chapter 5 also contained the design of the extended tables to be 

stored in the STDMn+p
0 framework.    Chapter 6 demonstrated the extended functionality 

of the STDMn+p
0 framework presented within the NICU context.  This apnoea event 

research case study utilized multiple time series physiological data streams collected 

from newborn infants enrolled in a collaborative research project including UOIT, IBM 

and SickKids called Artemis to demonstrate patient characteristic temporal abstractions 

and the realignment of the temporally abstracted data. 

 

The research hypothesis generated within this thesis have addressed as follows: 

1. That a patient characteristic multidimensional algorithm framework can be 

defined for clinical research to enable pre-diagnosing at the onset of illness 

conditions based on trends and patterns discovered. Chapter 5 and 6 discuss the 

design elements to include gender and gestational within the STDMn+p
0 

framework to enable clustering of patient characteristic data mining on multiple 

physiological data streams for multiple patients. 

2. The abovementioned patient characteristic framework will include methods for 

applying temporal abstraction (TA) across multiple parameters for multiple 

patients to enable mining of patient characteristic multidimensional temporal 

data. This research focus fell predominantly on two agents of the existing 

framework, those being; Processing Agent and the Temporal Agents. Extensions 
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made to these agents were discussed in Chapter 5 and demonstrated in Chapter 

6. 

3. The multidimensional algorithm framework can be applied in a neonatal context 

clustering patient characteristics by gender and gestational age. Chapter 6 

demonstrated the extended STDMn
0 framework within the neonatal context on 

data currently collected by the Artemis project at The Hospital for Sick Children in 

Toronto with the support and under the supervision of neonatologist Dr. Andrew 

James. Physiological data streams used within this demonstration were RR, 

SpO2 and HR. Apnoea spells are part of an ongoing study as part of a precursor 

to nosocomial infection (NI).   

4. The hypotheses generated by the patient characteristic framework can be used 

by a real-time event stream processor analysing the current condition of babies 

in a Neonatal Intensive Care Unit. The real-time event stream processor is 

discussed in Chapter 3 NICU.  This adoption within the STDMn
0 framework is in 

Chapter 4 and Chapter 5 as well as demonstrated framework concept in Chapter 

6.  There is ongoing research at present investigating the stream processor 

within the Artemis project.  

 

7.2 Contributions 
 

The research area contributions to knowledge within this thesis are, specifically; 

• Extensions to a STDMn+p
0 designed multi agent framework for analysing time 

series data, facilitate use of attributes such as gender and gestational age into 
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multidimensional inclusion of gender and gestational age driven temporal 

abstraction and realignment of these abstractions.  

• Design of extensions to the STDMn+p
0 framework to enable patient characteristic 

multi-dimensionality to temporally abstractive data mining. 

• Demonstrating the potential benefit and use of data mining from electronically 

stored physiological data, for improved real-time clinical management and patient 

characteristic clinical decision support is significant.  

• Demonstrate the potential for clinical research on stored physiological data 

streams to deduce new findings for condition onset prediction indicators in 

support of a current ethics approved clinical research study. As is the potential 

for clinical research on stored physiological data streams to deduce new findings 

for condition onset prediction indicators and in support of a current ethics 

approved clinical research study. 

 

7.3 Future Research 
 

In the healthcare domain and in particular healthcare research there is an inherit 

ongoing limitation restricted by the lack of availability of data to be analysed as 

‘secondary use’ data for the purpose of developing clinically relevant algorithms for use 

in this domain (Clarke, 2003). 

  

As the electronic healthcare domain evolves, so too will the data mining software 

developers use to produce well designed analysis tool to pursue knowledge discovery in 

real-time physiological data streams (Lyman, 2008).  With the interest in healthcare 
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domain increasing and as issues related to receiving approval of use of data for 

secondary analysis of health data are resolved, there is optimism that the cost and effort 

barriers to data mining projects will decrease.  The STDMn
0 framework, as proven by 

the adoption of the Artemis project, is a leading edge architecture capturing all aspects 

from collection on through to applying newly adopted rules in real-time. The research 

contained within this document extends its processing capability to patient 

characteristically define these rules by gender and gestational age. 

 

Within this thesis the research has proposed that the newly defined Patient 

Characteristic rules are stored within a single physical database, however, as these 

findings become more defined and adopted as clinical rules there will be a need for 

multi-centre studies and multi-centre implementation where a distributed functionality 

option of the framework will be required. 

 

Based on the systematic literature review of this area it is evident that there is 

exploratory research going on in physiological data analysis area; however, with the 

onset of the electronic health era, there is still much work to be done in addressing 

standards for real-time data collection and storage as well as function of databases and 

data mining methodologies. 

The STDMn
0 framework is currently the foundation system behind the Knowledge 

Extraction component of the collaborative project Artemis that is currently established 

and collecting data from The Hospital for Sick Children in Toronto, IWK Health Centre in 

Halifax, Children’s Hospital of Eastern Ontario in Ottawa, Women and Infants Hospital 
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in Providence, Rhode Island, and soon beginning in Shanghai and Shenzhen China.  As 

this project gains momentum and is enabled in more NICU centres worldwide, so too is 

the ability to collect, analyse and mine more data.  Exploratory data mining to further 

refine and define patient characteristic rules can only prove to assist in the care of these 

infants being monitored.  

 

 7.4 Impact 
 

The intent of this research is to not only to explore data collected from medical devices 

but also justification for their usefulness in serving a valuable purpose for storing data 

collected to assist in the improving the provision of better care within the neonatal 

intensive care context.  As indicated by its absence in literature the exponential activity, 

by nature, of a growing organism in its early stages of life, for example, the preterm 

infant has not been captured.   

 

Every human by nature is created genetically different resulting in very different 

characteristics that start from conception and continue throughout life.  When caring for 

critically ill preterm infants it is important to incorporate individual characteristic to assist 

in shift towards individualized treatments of care when considering developing clinical 

rules that will be adopted by CDSS. 

 

The STDMn+p
0
 framework extensions presented within this research thesis enables 

multidimensional data mining to detect patterns of a patient characteristic predictive 

temperament within the NICU domain. The STDMn+p
0
 framework provided a structure 



    

116  
 

approach to the development of patient oriented trends to be captured, analyzed and 

finding(s) extracted and embedded into algorithms designed to assist in the predictive 

trends at the early onset of conditions such NI.  

 

 

7.5 Conclusion 
 

Unfortunately, even in this day and age, it is still quite common for the vast amounts of 

real-time physiological stream data to be unexplored and quite often unsaved.  This 

situation leaves little to opportunity for the data to unveil valuable information that could, 

in future, assist clinicians with earlier recognition and diagnosis leading to better 

prognosis for the life of the newborn infant.    

  

The extended framework has demonstrated the capturing of patient characteristic 

attributes in temporal abstractions and the realignment of the abstractions relative to an 

event in a particular study. The STDMn+p
0 framework will continue with its investigations 

into exploring and discovering different patient characteristic trends and patterns across 

multiple retrospective physiological data streams as part of a collaborative research 

project.  
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Appendix 

Glossary of terms 
 

Alveoli  

The alveoli are the final branchings of the respiratory tree and act as the primary gas 
exchange units of the lung. The gas-blood barrier between the alveolar space and the 
pulmonary capillaries is extremely thin, allowing for rapid gas exchange. To reach the 
blood, oxygen must diffuse through the alveolar epithelium, a thin interstitial space, and 
the capillary endothelium; CO2 follows the reverse course to reach the alveoli.  
[http://oac.med.jhmi.edu/res_phys/Encyclopedia/Alveoli/Alveoli.HTML].. 

Bradycardia 

Slowness of the heart rate, usually measured as fewer than 60 beats per minute in an 
adult human 

Diastolic Blood Pressure 

The diastolic pressure is the measurement of force as the heart relaxes to allow the 
blood to flow into the heart. High diastolic pressure is a strong predictor of heart attack 
and stroke in young adults. 

Explicit knowledge 

Is knowledge that has been or can be articulated, codified, and stored in certain media. 
It can be readily transmitted to others. The information contained in encyclopaedias are 
good examples of explicit knowledge. 

Extracorporeal  

Situated or happening outside the body 

Hemodialysis 

Dialysis of the blood 

Hemofiltration  

A technique similar to hemodialysis, used for removing waste products from the blood 
when the kidneys have failed 

 Hypovolemic  

http://oac.med.jhmi.edu/res_phys/Encyclopedia/Alveoli/Alveoli.HTML�
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Hypovolemic shock is an emergency condition in which severe blood and fluid loss 
makes the heart unable to pump enough blood to the body. This type of shock can 
cause many organs to stop working. 
(http://www.nlm.nih.gov/medlineplus/ency/article/000167.htm) 

Implicit knowledge 

Is knowledge that has not stated, but understood in what is expressed.   

Intraveneous  

Existing or occurring inside a vein, or administered into a vein - used in administering 
fluids or medicines into the veins 

Parenteral  

Injected, infused, or implanted - describes drug administration other than by the mouth 
or the rectum, e.g. by injection, infusion, or implantation 

Percutaneous - describes medication that is administered or absorbed through the skin  

Periventricular leukomalacia (PVL)  

Is the most common ischemic brain injury in premature infants. The ischemia occurs in 
the border zone at the end of arterial vascular distributions. The ischemia of PVL occurs 
in the white matter adjacent to the lateral ventricles. The diagnostic hallmarks of PVL 
are periventricular echodensities or cysts detected by cranial ultrasonography. 
Diagnosing PVL is important because a significant percentage of surviving premature 
infants with PVL develop cerebral palsy, intellectual impairment, or visual disturbances. 

Postnatal Age 

Gestational age is the ‘age at birth’.  After birth the term postnatal age is used and 
corrected gestational age (GA). Corrected GA = GA + PNA 

Systolic Blood Pressure  

The systolic pressure (the first and higher number) is the force that blood exerts on the 
artery walls as the heart contracts to pump out the blood. High systolic pressure is now 
known to be a greater risk factor than diastolic pressure for heart, kidney, and 
circulatory complications and for death, particularly in middle-aged and elderly adults.   

Tachycardia - an excessively rapid heartbeat, typically regarded as a heart rate 
exceeding 100 beats per minute in a resting adult 

http://www.nlm.nih.gov/medlineplus/ency/article/000167.htm�
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