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1.0 Abstract 

 

Cellulose is the most abundant polymer on earth. Despite this, relatively little is known 

about the proteins and biochemical mechanisms governing cellulose biosynthesis. Only 

in the past 10 years since the sequencing of the Arabidopsis thaliana genome have we 

begun to unravel the full complexity of this process in plants. A chemical genetics screen 

using the cellulose biosynthesis herbicide flupoxam was undertaken to identify 

potentially novel proteins involved in this process. Despite falling short of identifying 

these new players, six novel mutations were identified on Cellulose Synthase (CESA) 1 

and 3 leading to flupoxam resistance. Two of these mutations were positionally cloned 

using Next-Generation Mapping (NGM) technology, while the others were identified 

using sequencing. The mutations led to both decreased cellulose crystallinity as well as 

enhanced cellulose hydrolysis. Future research will fully characterize using additional 

enzymatic hydrolysis methods and gas chromatography. The second aspect of the project 

involved the development of a membrane yeast two hybrid (MbyTH) for use with 

primary cell wall cellulose synthases. Paired interaction studies determined that CESA1 

interacts strongly with itself. Also, CESA3 interacts strongly with itself. However, 

interaction between CESA1 and 3 was weak. It is possible that a tertiary protein is 

required in order for this interaction to occur. Also, a weak interaction between 

CTL1/Pom1 (Chitinase –like protein 1) was observed with CESA3.  An interaction trap 

using either CESA1 or 3 as bait may elucidate additional proteins involved in the process 

of cellulose synthesis. 
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2.0 Introduction 

 

2.1 Cellulose as an emerging prospect for bioethanol production 

Cellulose comprises approximately one third the biomass derived from plant matter. It is 

a !-1,4 linked polymer of glucose, with successive units inverted 180 degrees with 

respect to each other. The cellulose microfibril is composed of 36 hydrogen bonded 

chains containing approximately 500-14000 glucose molecules (Somerville, 2006). Many 

microfibrils in turn provide external resistance to internal turgor pressure, so as to allow a 

plant to maintain erect growth (Somerville, 2006). Cellulose has historically shown 

economic importance due to its integral role in the production of materials like textiles, 

paper and plastics (Li et al., 2008). Of particular importance is the role of cellulose as the 

major nutritional component of ruminant livestock (Li et al., 2008). An emerging 

industrial prospect for cellulose is its use as a feedstock for bioethanol production. 

Currently, bioethanol production is limited to the fermentation of starch from maize 

kernels (Sticklen, 2006). Given the abundance of glucose in plant tissue in the form of 

cellulose, it is plausible in theory to use this for fermentative ethanol production. 

However, access to this rich source of sugar is not trivial, given the recalcitrant nature of 

cellulose to hydrolysis.  This is a result of numerous inter and intra-chain hydrogen 

bonding (Nishiyama et al., 2002 and Nishiyama et al., 2003). It is also imbedded in a 

matrix of other polymers including lignin, which specifically impede access via 

hydrolyzing enzymes (Li et al., 2008). There are currently many avenues being pursued 

as far as improving cellulosic bioethanol for economies of scale. These include 

modifying the pretreatment processes to better improve the removal of lignin, finding and 

genetically modifying cellulases needed to break down cellulose, altering cell wall 
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composition and understanding pathways that govern cellulose production, cell wall 

integrity, expansion and growth etc. (Sticklin, 2006). Understanding the enzymes 

responsible for cellulose production is particularly salient since the process can then be 

manipulated to improve access to cellulose. 

2.2 The process of cellulose synthesis and the cellulose synthase (CESA) 

The plant cell wall is synthesized in two steps. The primary cell wall is first initiated 

during the cell division and growth, while the secondary cell wall is initiated after growth 

has ceased. The primary cell wall is composed primarily of cellulose, hemicellulose, 

pectin and protein, while the secondary cell wall is more lignin and cellulose rich. 

Cellulose is synthesized at the plasma membrane via localized cellulose synthase (CESA) 

proteins, which are part of the glycosyltransferase-2 family of inverting 

glycosyltransferases (Saxena et al., 2001). The CESA proteins contain a cysteine rich N-

terminal zinc finger binding domain implicated in protein- protein interaction through 

cysteine-cysteine oxidation, a large central domain containing the catalytic motifs 

D/D/DxD as well as the Q/RxxRW motif (Saxena and Brown, 1997). The QxxRW 

domain is characteristic of all processive glycosyltransferases and is speculated to be 

involved in holding the growing glucan chain in place (Saxena et al., 2001). The enzymes 

are termed “ inverting” due to the conversion of an "-linked UDP glucose to a !-linkage 

on the cellulose fibril. Cellulose synthases are believed to catalyze glycosidic linkages 

using an Sn2 reaction mechanism with the conserved aspartic acid residues coordinating 

the C4-hydroxyl on the !-1-4 Glucan for nucleophilic attack on the phosphodiester bond  

of incoming UDP-Glucose monomers (Saxena et al., 2001). Large hexameric complexes 

on the plasma membrane containing at least 36 CESA proteins are believed to catalyze 
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the cellulose microfibril (Kimura et al., 1999).  It is hypothesized that each individual 

CESA protein is responsible for secreting one cellulose chain with all 36 chains forming 

an elementary microfibril (Herth, 1983). Arabidopsis thaliana contains 10 paralogous 

CESA genes, which share 64% sequence identity (Richmond, 2000). Loss-of-function 

(LOF) mutations in CESA 4, 7 and 8 cause defects in secondary cell wall synthesis while 

LOF mutations in CESA 1, 3, and 6 lead to defects in the production of the primary cell 

walls (Turner and Somerville, 1997; Desprez et al., 2007). Pull down experiments have 

shown that CESA 1, 3 and 6 interact in-vivo and in-vitro, but their relative stoichiometry 

is unknown (Desperez et al., 2007 and Wang et al., 2008). Antisense knockouts of the 

CESAs involved in primary cell wall synthesis show that CESA 1 and 3 are absolutely 

required for growth (Somerville, 2006). Also, null mutations in either CESA 1 or 3 are 

gametophytic lethal, pointing to their relative individual importance in Arabidopsis 

(Persson et al., 2007). However, while over expression of CESA 1 is sufficient to rescue 

CESA 3 knockouts, the same is not true for over expression of CESA 3 in a CESA 1 

mutant background (Burn et al., 2002). The role of CESA 6 seems dispensable since 

CESA 2 and 5 cDNA expressed in frame with a CESA 6 promoter partially rescues CESA 

6 LOF (Desprez et al., 2007; Persson et al., 2007) LOF CESA 6 mutations such as prc1-1 

exhibit weak phenotypes with reduced length in hypocotyls, attributable to its redundancy 

with CESA 2, -5, and -9 (Desnos et al., 1996; Persson et al., 2005). Given these 

differences, it is likely that individual subunits have different roles in the complex.  
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2.3 The use of herbicides to probe molecular basis of cellulose synthesis 

Mutant screens have revealed a number of mutations pertinent to cellulose synthesis, 

including many which map to the CESAs with variation in severity (Somerville, 2006). 

For example, the rsw1 mutation in CESA 1 is a temperature sensitive allele which results 

in the production of amorphous glucan in place of cellulose (Arioli et al., 1998). The 

thanatos mutation is a dominant negative P(578)S substitution in the catalytic region of 

CESA 3, resulting in reduced growth and cellulose content with homozygote individuals 

failing to survive to adulthood (Daras et al., 2009) Another means of phenotypic analysis 

is through chemical genetics. Chemicals that disrupt some physiological process can 

either disrupt the protein responsible for synthesis or the reaction itself. In the context of 

cellulose synthesis, cellulose-biosynthesis inhibitors (CBIs) are a group of chemically 

diverse compounds which include: dichlorobenzonitrile, isoxaben, and flupoxam. These 

may associate with several proteins involved with the process of cellulose synthesis 

(Sabba and Vaughn, 1999). Isoxaben is an extremely potent herbicide with an IC50 of 4.5 

nM (Heim et al., 1989). When grown in the presence of isoxaben, plants fail- to 

incorporate C
14

-glucose into the insoluble fraction of Arabidopsis thaliana (see Fig. 3), 

and grow isodiametrically due to the lack of mechanical strength to withstand internal 

turgor pressure (Heim et al., 1989; Sheible et al., 2001). Heim et al. (1989) isolated two 

alleles, CESA3
ixr1-1

G(998)D and CESA3
ixr1-2

T(942)I, which confer extremely high 

resistance to isoxaben. CESA6
Ixr 2-1 

R(1064)W was identified later by Desprez et al. 

(2002). Given the presence of independent alleles on separate proteins, it was suggested 

that CESA 3 and 6 maybe part of the same complex (Desprez et al., 2002). Interestingly, 

isoxaben will compete for the binding site of CESA 3,6, 2 and 5 since knockouts in 
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CESA6
Ixr2-1 

background enhance resistance (Desprez et al., 2007). Flupoxam is another 

CBI that shows promise in the study of cellulose synthesis (see Fig. 2.). Flupoxam is a 

highly halogenated triazole linked aromatic compound originally developed as a 

herbicide (see Fig. 2.) The effects of flupoxam are similar to that of isoxaben (Vaughn 

and Turley, 2001). In cultured cotton fibers, isoxaben and flupoxam produce spherical 

cell protrusions, detachments of the plasma membrane from the cell wall, increased 

pectin accumulation, wall thinning and reduced cell division along with incipient vacuole 

formation (Vaughn and Turley, 2001). Growing plants in the presence of flupoxam 

results in reduced cellulose incorporation, decreased root elongation and induction of a 

clubbed root phenotype often seen growing seedlings treated with microtubule inhibitory 

drugs such as oryzalin (Hoffman et al., 1996; Hoffman and Vaughn, 1996). Interestingly, 

flupoxam does not destabilize microtubules like oryzalin (Hoffman and Vaughn, 1996). It 

was postulated that flupoxam may disrupt a similar mechanism but a separate binding site 

on the cellulose synthases, given that alleles resistant to isoxaben are sensitive to 

flupoxam (Vaughn and Turley, 2001). 

2.4 Potential candidates to which the cellulose synthases may interact 

There have been many mutations in a number of other proteins that certainly hinder the 

ability to produce cellulose but do not completely eliminate it (Somerville, 2006). The 

KORRIGAN (KOR) gene encodes a membrane !-1,4 glucanase which when knocked out 

exhibits reduced cellulose accumulation and altered pectin composition (Nicol et al., 

1998). It is plausible that KORRIGAN may have a role in removing non-crystalline 

glucan chains from the growing microfibril (Somerville, 2006). Another protein 

implicated in cellulose biosynthesis is COBRA (COB), a glycophosphatidylinositol (GPI) 
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anchored protein found in the cell wall (Roudier et al., 2005). Mutations in the COB gene 

leads to extremely dwarfed and cellulose deficient plants (Roudier et al., 2005). 

Mutations in the CHITINASE LIKE 1 (CTL1) /POM1 gene result in reduced root cell 

expansion and decreased cellulose content (Hauser et al., 1995). While the proteins 

mentioned all clearly contribute to some extent to cellulose synthesis, the contribution of 

other proteins is somewhat more tentative. For example, there is conflicting evidence 

whether Sucrose Synthase (SuSY) is associated with the cellulose synthases. Specifically, 

it has been shown that SuSY is a major component of the catalytic unit of the cellulose 

synthase complex (Fujii et al., 2010). However, quadruple mutants of this gene result in 

no difference in cellulose content (Barratt et al., 2001) indicated that it is a non-essential 

component. Another example is the recently discovered CELLULOSE SYNTHASE 

INTERACTING1 (CSI1), which has been shown to interact in a yeast two hybrid with 

the catalytic domain of both CESA1 and CESA6, but its functional importance has yet to 

be shown (Gu et al., 2010). It was hypothesized that CSI1 may form a scaffold between 

CESA complexes, or mediate interaction with underlying microtubules (Gu et al., 2010).  

2.5 Cellulose synthase regulation at the protein level 

Apart from these accessory proteins, no plant gene or small molecule responsible for the 

regulation of cellulose biosynthesis has been identified (Somerville, 2006). It is 

theoretically possible that there is some phosphatase or kinase regulating the activity of 

the cellulose synthases in plants (Somerville, 2006). Nuhse et al., (2004) identified 

several phosphorylation sites in the CESAs particularly in the N-terminus through LC-

MS/MS analysis of plasma membrane fractions. Furthermore, CESA turnover in 

secondary cell walls was shown to be the result of phosphorylation and targeted 



 

12 

proteolysis of CESA7 via the proteosome (Taylor, 2007). Recent work in which known 

phosphorylated serines were mutated to alanine or glutamate to either disrupt 

phosphorylation or promote phosphorylation show that anisotropic expansion is at least 

in part due to the modulation of CESA1 sites (Chen et al., 2010). Similarly, Kaida et al., 

(2009) showed that over expression of purple acid phosphatase activates membrane 

bound cellulose/callose synthases in tobacco cell culture. It has yet to be determined 

whether or not the purple acid phosphatase interacts directly with the cellulose synthase 

machinery or via an unknown intermediate (Kaida et al., 2009).  

2.6 Protein – protein interaction tools to study CESA interaction 

Protein-protein interaction studies with potential CESA interactors are required in order 

to piece together the entire process of cellulose synthesis. Desprez et al., 2007 

demonstrated CESA-CESA interaction using BiMolecular Fluoresence (BIFC) 

complementation in tobacco leaves, but even with this method you cannot decipher 

whether or not additional proteins may be assisting in the interaction. Wang et al., 2008 

synthesized specific primary antibodies to the N-terminal regions of cellulose synthase 

1,3 and 6, and was successful in pulling down an intact 840 kDa complex that contained 

all three isoforms. However, the authors could not rule out the effect of additional 

proteins mediating the interaction between the primary cell wall CESAs. Timmer et al., 

2009 demonstrated that a Membrane yeast-two hybrid MbyTH (Dual systems) approach 

could be used to characterize interactions between secondary cell wall cellulose 

synthases. One aspect discussed in this paper involves the development of a similar 

approach for use with cellulose synthases in the primary cell wall, specifically to look for 

interaction between CESA 1 and 3 without the effect of other endogenous plant proteins. 
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This approach is advantageous because it allows the use of full length CESA proteins. 

Many yeast two hybrid approaches using the CESAs have focused only on the soluble 

regions (Xu and Joshi., 2010;  Gu et al., 2010).  This is because traditional Yeast 2 hybrid 

technology requires protein localization to the nucleus, and as such, proteins that go to 

the membrane cannot be studied (Bartel and Fields, 1995; Thaminy et al., 2006). A 

membrane Yeast 2 hybrid (MbyTH) takes advantage of the nature of ubiquitin to study 

membrane interactions. Specifically, ubiquitin is split into two halves (Nub and Cub) 

which are attached to two proteins of interest (Bait and prey). Reconstitution of the two 

halves of ubiquitin results in cleavage by ubiquitin specific proteases and translocation of 

an attached transcripton factor to the nucleus. This bypasses the need for nucleus 

localization but still utilizes auxotrophic selection, the details to which are discussed in 

the methodology. It is predicted that interaction results should recapitulate previous in-

vivo and in-vitro interaction studies (Desprez et al., 2007; Wang et al, 2008). 

2.7 Potential mechanisms of cellulose crystallization 

Another aspect of the CESAs that has yet to be shown is how the cellulose synthases 

produce crystalline cellulose and whether or not the CESAs themselves are self-sufficient 

in this process. Plant cellulose can be found in two forms called cellulose I" and I!, of 

which the latter is a triclinic symmetrical organization and the former being a monoclinic 

organization (Brown, 1996). Both forms are found in varying degrees of abundance 

between species (Brett, 2000). Nakashima et al. (2010) demonstrated that the tunicate 

chordate Oikopleura dioca developmentally controls whether it synthesizes I" or I! 

cellulose. In plants, it is also not yet known the mechanism of glucan crystallization, and 

whether this is enzyme facilitated or the CESAs themselves are sufficient to do so 
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(Somerville, 2006). Jarvis (2000) suggested that crystallization may occur as the fiber 

bends out of the complex, the inner face of the fiber will slip to displace tensile stress and 

help position the chains for proper hydrogen bonding. Further, it is hypothesized that 

depending on the degree of bending in the membrane, the ratio of I":I! will be altered 

(Jarvis, 2000). The I":I! ratio could be altered by specifically modifying the molecular 

environment with which the microfibril bends (Jarvis, 2000). Interestingly, recent 

crystallization work of the GAxCesD protein in Gluconoacetobacter xylinus, show a 

spiral octomer that may help spin glucan chains together and assemble the crystalline 

structure (Hu et al., 2010). A similar mechanism may take place in plants in which some 

tensile stress on the fiber via position of the complex in the membrane may actually help 

the process. Harris et al. (2009) demonstrated that CESA amino acid subsitutions, 

specifically CESA
Ixr1-2 

T(942)I which confer resistance to isoxaben (IXR), also alters the 

degree of cellulose crystallization, and this in turn leads to improved biochemical 

conversion to fermentable sugar. Given these findings, it seems plausible that genetic 

mutations chemically resistant to other cellulose biosynthesis inhibitors (CBIs) may also 

produce similar alleles to that of CESA3
Ixr1-2

.  

2.8 Genetic screens for flupoxam may identify further proteins involved in cellulose 

synthesis 

Given that cellulose biosynthesis inhibitors (CBIs) disrupt cellulose synthesis through a 

means mediated by the protein machinery involved. We could use a genetic screen to 

isolate mutants resistant to a CBI; and hence, potentially isolate a new protein. More 

specifically, I wanted to test the hypothesis if the mode of action of flupoxam is similar to 

that of isoxaben and/or if flupoxam could be used to identify new players involved in 
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cellulose biosynthesis (Vaugn and Turley, 2001). In addition, I also wanted to test the 

nature of interactions between known cellulose synthase components using a membrane 

two hybrid system. 

3.0 Methods 

 

 

3.1 Plant material and growth conditions 

 

All mutant Arabidopsis used were of the Landsberg (Ler) ecotype, except fpx 1-1 which 

is of the Columbia (Col-O) ecotype. Seedlings were germinated and grown under 

continuous light (200 !E/m
2
/s) or in the dark at 21°C on plates containing half-strength 

Murashige and Skoog (MS) mineral salts (Sigma-Aldrich, St. Louis, MO), 0.8% agar and 

supplemented with no more than 0.1% ethanol. Alternatively, plants were grown on a 

mixture of 70% sphagnum peat, 15% perlite and 15% vermiculite in chambers 

maintaining the following conditions: 21°C under long-day conditions (16 h light/8 h 

dark) at a light intensity of 200 !E/m
2
/s. Flupoxam was a kind gift from Kureha 

Chemical Industry Co., Iwaki City, Japan. Seeds were obtained from the Arabidopsis 

Biological Resource Center at Ohio State University.  

 

3.2 Forward genetics screen for flupoxam chemical resistance 

 

45 000 seeds were treated with 0.3 % EMS (M1) for 16 hours at room temperature. They 

were then extensively washed with water over the course of 10 hours and sewn onto soil 

to generate the M2 seeds. One million M2 EMS treated seeds were surface sterilized and 



 

16 

screened for resistance on 20 nM flupoxam. Resistant mutants were isolated and 

transferred to MS. Plants were propagated and re-selected to confirm that the flupoxam 

resistance was heritable.  

 

3.3 DNA purification using CTAB 

 

Leaf tissue was ground in 150 µl of CTAB using a drillpress with a homogenizing bit in a 

sterile eppendorf tube. CTAB buffer consisted 100 mM Tris HCL pH 8.0, 1.4 M NaCl, 

20 mM EDTA, and 2% w/v CTAB (cetyltrimethyl ammonium bromide). The 

homogenizing bit was then rinsed with another 150 µl of CTAB to clear left over tissue 

debris into the eppendorf tube. The tissue suspension was then incubated for one hour at 

65°C. Following incubation, an equal volume of chloroform was added and the solution 

was vortexed and centrifuged for 10 minutes at 13,000 rpm. The aqueous phase was 

removed and an equal volume of 2-propanol was added to precipitate DNA, and the 

solution was vortexed and centrifuged for 10 minutes at 13,000 rpm. The DNA pellet was 

washed with 70% ethanol, air dried and dissolved in sterile H20. 

 

3.4 Next-generation mapping 

 

fpx 2-2 and fpx 2-3 originally designated 45-1 and 43-1, respectively, were backcrossed 

to Columbia to generate an F2 mapping population. F2 seeds were selected on 20 nM 

flupoxam and grown to generate a pool of individuals all containing the mutant allele 

linked to the flupoxam resistance. Leaves from 50 individuals were pooled and ground 
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with a mortar and pestle in liquid nitrogen. DNA was extracted using the reagents and 

specifications of the Puregene DNA purification system (Qiagen; Valencia, CA). Purified 

DNA was sent to the University of Toronto for processing according to Next-generation 

mapping (NGM) protocols (Austin et al., 2011). Briefly, NGM takes advantage of a 

analysis used for Solexa/Illumina data processing; chastity belt statistic. The chastity-belt 

statistic measures the proportion of polymorphisms between the mutant and mapping 

parental lines and uses this to determine the regions in which there is exclusive 

segregation with the mutant parental line (Austin et al., 2011).  

 

3.5 RNA isolation 

 

RNA was extracted using an RNeasy Mini Kit (Qiagen; Valencia, CA). RNA was 

immediately used for first strand synthesis and excess RNA stored at –80C for further 

use. 

 

3.6 First Strand Synthesis 

 

One half to 2 µg of RNA was added to a sterile eppendorf tube along with 1 µl of 50 µM 

Oligo d(T) (NEB; Ispwich, MA), 1 µL of 60 µM Random primer (NEB; Ispwich, MA) 

and 4 µl of dNTP mix (2.5 mM each titrated with TRIS-Cl ph 7.0) (NEB; Ispwich, MA) . 

Mixture was heated for 5 min at 65°C and quickly placed on ice. 2 µL of reverse 

transcriptase 10x Buffer (NEB; Ispwich, MA) was added along with 1 µL 200,000 U/mL 

of M-MulV Reverse Transcriptase (NEB; Ispwich, MA) and 1 µL of 40,000 U/mL 
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RNase inhibitor (NEB; Ispwich, MA). The mixture was titrated to a final volume of 20 

µL and incubated at 42°C for one hour. Reverse transcriptase was inactivated at 90°C for 

10 min and products stored at -20C for later use.  

 

3.7 Mutant Gene expression using qRT-PCR 

 

Five milligrams of seeds were weighed out for each mutant plus a wild type control 

(n=3). Plants were transferred to six well plates containing 0.5x liquid MS (Sigma-

Alrich; St.Louis, MO)/ 0.5% glucose and stratified for 4 days at 4°C. Plants were grown 

for 5 days at room temperature in the dark with gentle shaking. Tissue was ground in 

liquid nitrogen and then RNA was extracted using the RNeasy Mini Kit (Qiagen; 

Valencia, CA).  Primers were designed using oligo-perfect to ensure all primers were 20 

bp with a Tm of 60°C (http://tools.invitrogen.com/content.cfm?pageid=9716; Invitrogen; 

Carlsbad, CA). As well, amplicon size was standardized to around 100 bp for each of the 

experimental treatments and the ACTIN7 (At5g09810) control. cDNA was synthesized 

according to first strand synthesis protocol above and amplified with a C1000 thermal 

cycler CFX real-time system from Bio-Rad using iTaq SYBR Green Supermix (Bio-Rad; 

Hercules, CA), according to the manufacturers procedures. Optimal annealing conditions 

were determined as 55°C for CESA1 and CESA6 and 57.5°C for CESA3.  
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3.8 Gateway Cloning 

 

cDNA obtained in first strand synthesis was amplified using Phusion High Fidelity DNA 

polymerase (NEB; Ispwich, MA) to obtain full length cDNA, according to the 

manufactures specifications. Amplified products were gel cleaned using the BioBasic gel 

extraction kit (Biobasic; Markham, ON). Products were then cloned into pENTR/D-

TOPO (Invitrogen; Carlsbad, CA) using the enzyme topoisomerase (Invitrogen; 

Carlsbad, CA) which directionally clones PCR products containing a 5’ CACC 

recognition sequence included in the Table. 2 into the pENTR vector (Fig. 25.). Reaction 

conditions were according to the manufacturer’s specifications. Cloning reactions were 

transformed into DH5 alpha Max efficiency cells (Invitrogen; Carlsbad, CA), according 

to manufacture recommendations. All plasmids were subjected to both restriction enzyme 

digestion and sequencing to verify the validity of the clone. DNA sequencing was 

accomplished by capillary-based fluorescent sequencing on dual ABI 3730XL instrument 

at the Sick Kids TCAG DNA sequencing facility using the primers M13 forward and 

M13 Reverse for verification. 

 

3.9 Restriction enzyme cloning in MbyTH plasmids 

 

cDNA was amplified from pENTR/D-TOPO clones previously isolated. A list of primers 

is provided in Table 5. Cloning into MbyTH vectors was accomplished using SfiI 

overhangs with some exceptions. The stop codon was removed for all plasmids 

containing a C-terminal fusion and replaced with an in frame glycine (pBT3STE (Fig. 

26.), pPRESTE (Fig. 29.)). For pPRESTE (Fig. 29.), a leucine was added to maintain 

frame with the upstream SteII leader sequence. For all amplifications with CESA1, a 
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glycine linker was added to the 5’ sequence to prevent formation of a secondary SfiI cut 

site. SfiI overhangs were added for pBT3N (Fig. 31.) and pPR3N (Fig. 32.). Amplified 

products were gel cleaned using the BioBasic Gel extraction kit. Amplified products were 

subject to restriction enzyme digestion with SfiI (NEB; Ispwich, MA) and ligated using 

using T4 DNA Ligase (NEB; Ispwich, MA) according to Sambrook and Russel, (2001). 

At least three replicates of each clone were sent for plasmid sequencing. DNA 

sequencing primers can be found in Table 4. 

3.10 Midiprep plasmid isolation using the alkaline lysis method 

 

All reagents here were made according to Appendix 1 of the Molecular cloning manual 

(Sambrook and Russel, 2001). Transformed colonies were inoculated into 5 mL of Luria-

Bertani (LB) broth with 100 µg/mL ampicillan (Bioshop; Burlington, ON) or 50 µg/mL 

kanamycin (Bioshop; Burlington, ON) and incubated overnight in a 15 mL falcon tube at 

220 rpm and 37 degrees. Following this, 200 µl of cold alkaline lysis solution I was used 

to resuspend the pellet and transferred to a microcentrifuge tube. The tubes were then 

vortexed vigorously and 400 µl of fresh alkaline lysis II was added to the bacterial 

suspension and inverted approximately 5-10 times. 300 µl of alkaline lysis solution III 

was then added, inverted 5 times and stored on ice for 5 minutes. The solution was 

centrifuged at 13,000 rpm for 5 minutes and 600 µl of supernatent transferred to a new 

tube. An equal volume of phenol:chloroform was added and supernatent again transferred 

to a new tube. Plasmid DNA was precipitated with an equal volume of 2-propanol and 

centrifuged at maximum speed for 10 minutes. Plasmid pellets were washed with 70% 

ethanol, dried and dissolved in 100 µl of sterile H20. Five microgram of RNase was 

added to all plasmid solutions and subject to 50°C for one hour. 
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3.11 Processing tissue material 

 

All plants were harvested at maturity, at the same time and under the same conditions. 

Dry, senesced plant tissue desiccated in a 60°C oven for 24 hours. Plants were ground 

using a Wiley mill fitted with a 1mm screen. All replicates represent a pool of 6 

individual plants. The tissue was then subject to a washing protocol. To do this, 10 mL of 

water was added to the tissue and shaken gently at room temperature until the tissue was 

saturated. Tissue was then subject to an additional water wash at 80°C. Following 

aspiration, 10 mL of 70% ethanol was added and incubated again at 80°C. Lastly, 10 mL 

acetone was added and incubated at room temperature for one hour. Acetone was 

removed and tissue was then allowed to dry for 2 days at room temperature. 

 

3.12 Determination of cellulose crystallinity 

 

Dried and processed senesced material was loaded onto an aluminum sample holder with 

a glass background, into a PANalytical Phillips PW3170 X-ray diffractor at the 

Department of Geology, University of Toronto. Material was pressed by hand using a 

scuptula to generate an even surface. Protocols were run with start angle of 2# = 4.5° and 

an end angle of 30°. The scan speed was run at 0.008 °2"/s, an intensity of 40kV and 40 

mA. Data was calculated using the equation for Relative crystallinity index (RCI) used by 

Segal et al., (1959) where RCI=I002-Iam/I002 x 100. I002 is the maximal peak around 21.5-

22.5 representing the pure crystalline fraction as compared to an Avicel-cellulose control 

(Sigma-Alrich; St.Louis, MO). The Iam is the trough found around 2# 18-20°, this is a due 

to amorphous scattering (Segal et al., 1959). An average of 10 peaks was taken at the 
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amorphous trough and the crystalline peak areas. Results indicated are a product of n=3, 

with each replicate containing plant material pooled from 6 plants.  

3.13 In vivo C
14

-glucose incorporation studies 

 

Five milligrams of homozygous seeds were weighed out on a microbalance Mettler 

Toledo AB204-S scale. Seeds were surface sterilized in a chlorine gas chamber and 

transferred to six well plates containing 5 mL of 0.5x liquid MS (Sigma-Alrich; St.Louis, 

MO)/ 0.5% glucose. Seeds were then stratified at 4°C for 3-4 days. After this, plants were 

grown on an orbital shaker in the dark at medium speed. After five days of growth, 

seedlings were washed three times in 5 mL glucose free medium and resuspended in 2 

mL of 0.5x MS containing 0.5 µCi/mL C
14

-glucose (American Radiolabelled chemicals; 

St-Louis, MO). Seedlings were then incubated for 1 hour in the dark on an orbital shaker. 

Following treatment, seedlings were washed three times with 5 mL glucose free medium. 

These were then transferred to glass tubes and incubated in 5 mL ethanol in a 80°C 

waterbath for 20 min. This was repeated three times. Seedlings were then incubated in 3 

mL chloroform:methanol (1:1) for 20 min in a 45°C water bath. Finally, seedlings were 

incubated in 5 mL of acetone at room temperature for 15 min. The acetone was aspirated 

and the tissue was allowed to dry for two days before being weighed. Material was then 

treated according to Updegraff (1969) with minor modifications. One mL of updegraff 

solution (Nitric acid: Acetic acid: water 1:8:2) was used to hydrolyze the cell wall 

material by incubation in a boiling water bath for one hour. Soluble and insoluble 

fractions were separated using a 12 well suction filtration system. The insoluble fractions 

were retained on Watman 25 mm GF/A glass microfilters and tubes washed one time 

with 1 mL water. The flow through and 1 mL water wash represented the soluble 
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fraction. Both soluble and insoluble fractions were transferred to scintillation vials, and 5 

mL of Ultima gold high flash point scintillation liquid cocktail (Perkin Elmer; Waltham, 

MA) was added. Vials were counted using a Perkin Elmer Tri-carb 2800 liquid 

scintillation detector (Waltham, MA). Data was either expressed as raw counts per 

minute (cpm) of insoluble fraction (Fig. 3.) or as a percent incorporation 

([insoluble/(insoluble + Soluble)]*100) (Fig. 12.). Data presented in Fig. 12 is the 

combination of 5 separate experiments with varying replications over the course of one 

year. 

 

3.14 Reducing sugar determination via the anthrone photometric method 

 

Five mg of washed tissue (n=6) was carefully weighed using a Mettler Toledo AB204-S 

microbalance and placed in eppendorf tubes. Tissue was macerated in 800 µl of water for 

1 hour on an orbital shaker. Following thorough hydration, 200 µl of 1M H2SO4 was 

added to each sample and the mixture was vortexed and incubated at 50°C for 5 hours. At 

the first hour, solutions were removed from the waterbath, centrifuged at 13,000 rpm for 

10 minutes and 50 µl of sample was removed and added to a 96 well plate. 50 µl of water 

was added to each sample to return the total volume to 1 mL, and samples returned to the 

50°C waterbath. While samples incubated, one hour samples were processed using 

anthrone photometric method. A multichannel pipette was used to add 100 µl of cold 

0.2% anthrone (Sigma-Alrich; St.Louis, MO) in concentrated H2SO4. The solutions were 

mixed by pipetting repeatedly 10 times to ensure thorough reaction completion. The 96 

well plate was then incubated on a 100°C heat block for 5 minutes and cooled at 4°C for 
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5 minutes. Absorbance was read at A620 nM  using a Bio-Rad xMark microplate 

spectrophotometer (Hercules, CA) and absorbance was correlated according to standard 

glucose curve (Fig. 19.) This procedure was repeated each hour for 5 hours. 

 

3.15 Scanning Electron Microscropy 

 

Five day old seedlings were first immersed for 30 seconds in pure anhydrous methanol. 

They were then fixed for 24 hours in FAA (50% ethanol, 5% acetic acid, 3.7% 

formaldehyde). After this incubation, the tissue was dehydrated in an ethanol series 

(+5%/hour) and stored in 100% ethanol for 24 hours prior to being critically point dried 

using Autosamdri-815 drier and gold sputter coated using a Balzer Sputtering device. 

Samples were visualized using a Hitachi S2300 scanning electron microscope at the 

Department of Cell and Systems Biology, University of Toronto. 

 

3.16 Light Microscopy 

 

Light microscope pictures were taken using an AmScope dissecting microscope and 

visualized using an Amscope MD900E camera (Irvine, CA). 

 

3.17 Plasmid maintenance 

 

Plasmids were propagated in chemically competent E.Coli (NEB #C2925) and 

transformations carried out according to Sambrook and Russell (2001). 
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3.18 Yeast Plates 

 

All media plates were made according Finley and Brent (1995), using reagents from 

Bioshop (Burlington, ON).  

 

3.19 Membrane Yeast two hybrid 

 

Yeast two hybrid was carried out according to protocols provided by Dualsystems 

Biotech AG, Zurich Switzerland with modification using the NMY 51 yeast strain 

(MATa his3delta200 trp1-901 leu2-3,112 ade2 LYS2::(lexAop)4-HIS3 ura3::(lexAop)8-

lacZ (lexAop)8-ADE2 GAL4). This two hybrid system exploits the modular features of 

ubiquitin proteosome pathway. Briefly, ubiquitin is separated into its two halves Cub and 

Nub, which are cloned in frame with a “bait” and “prey”, respectively. Attached to Cub is 

the transcriptional binding domain of bacterial LexA and the transactivator VP16. Upon 

reconstitution of the two halves of the ubiquitin, cleavage of ubiquitin by ubiqtuitin 

specific proteases results in release and translocation of the transcriptional activator to the 

nucleus. Plasmid maintenance is accomplished by selection on medium lacking leucine 

and tryptophan, since presence of the plasmid code for LEU and TRP1 genes (Fig. 26., 

Fig. 29.). Further, protein constructs which strongly interact result in the cleavage of 

LexA-VP16, binding to LexA operators and activation of ADE2 and HIS3 genes, growth 

on media lacking adenine and histidine, respectively. Also, the inability to transcribe the 

ADE2 gene, results in the accumulation of a red intermediate. Also, LexA-VP16 will 

initiate transcription of LacZ !-galactosidase, which cleaves substituted galactose 

compounds such as Xgal (bromo-chloro-indolyl-galactopyranoside) (Bioshop; 
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Burlington, ON). It is important to note that ubiquitin will not reconstitute unless the two 

halves are attached to proteins which come into close proximity. This is due to a mutation 

in the Nub half of ubiqituitin from an isoleucine (NubI) to glycine (NubG). This mutation 

completely abolishes reconstitution, successful reconstitution only occurs if fused to an 

interacting pair of proteins. Any protein of interest fused to Cub if translated successfully 

and folded properly will exhibit strong interaction with NubI but not with nonspecific 

proteins fused to NubG. Therefore, these can be used as a functional test in the MbyTH. 

Specifically, if a functional protein is translated, there will be strong interaction with the 

test protein pOST1NubI but not pFe65NubG. Constructs were cloned as described 

previously and summarized in Table 1. Transformation into yeast was performed using a 

standard polyethylene glycol (PEG)/lithium acetate protocol (Gietz and Woods, 2001). 

The host strain, NMY 51 was grown in a 50 mL liquid YPAD (yeast extract-peptone-

adenine-dextrose) overnight to an OD 0.6-0.8 in a 30°C incubator at 145 rpm. In order to 

rule out any complications with plasmid functionality, three E. Coli independent plasmid 

clones for each construct were pooled and used for each transformation into the yeast 

strain. Bait and prey (Table 1.) were Co-transformed using the PEG/LiOac method 

(Gietz and Woods, 2001). Approximately 500 transformants were re-streaked, allowed to 

grow and re-inoculated into standard dropout media lacking tryptophan and leucine 

overnight. One milliliter of 1.0 x 10
8
 cells (OD 0.4) was used for subsequent experiments. 

Cells were diluted 0x, 10x, 100x, 1000x and plated using a multichannel pipette on media 

lacking tryptophan, leucine to maintain the plasmids as well as histidine and adenine to 

test the strength of interaction. Functionality of the construct was tested by activation 

with the positive control constitutive pOST1 -NubI (Fig. 28) mutant, and the absence of 
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self activation confirmed by lack of interaction with the negative control pFe65-NubG 

(Fig. 27.). Strong interactions were assayed supplemented with dropout media + 10 mM 

3-amino-1,2,4-triazole(3AT) (Bioshop; Burlington, ON), which is a competitive inhibitor 

of the HIS3 gene. Only when there is a strong interaction between two proteins can the 

yeast grow in the presence of 3AT, since strong expression of HIS3 is needed to 

overcome the HIS3 inhibition. 

 

3.20 Transmembrane Modelling 

 

Protein sequences for CESA 1 and CESA 3 were diagramed using the Residue based 

Diagram editor (RbDe) at http://icb.med.cornell.edu/crt/RbDe/RbDe.html. (Campagne 

and Weinstein, 2000). The algorithm and diagram layout was also designed and 

implemented by Campagne and Weistein, (1999). 

 

3.21 Sequencing alignment 

 

Sequencing alignment and plasmid construction was conducted using CLC DNA 

workbench (CLC Bio, Denmark). 

 

3.22 Statistical Analysis 

 

A one way analysis of Variance or paired T-Test was performed using SigmaPlot (San 

Jose, CA) in which the null hypothesis was rejected above the p=0.05 level. Chi-Squared 

values were calculated by hand and p values determined using a critical values of chi-

square distribution chart (Samuels and Witmer, 2003). 
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4.0 Results 

 

4.1 Flupoxam is a Cellulose Biosynthesis Inhibitor 

 

Flupoxam displays characteristics of a cellulose biosynthesis inhibitor (CBI). Landsberg 

plants grown in the presence of 5 nM flupoxam display blebbing cell structure 

particularly noticeable on the epidermis of cotyledons (Fig. 1.). Landsberg plants grown 

for 5 days prior to being incubated in C
14

 –glucose + 1 !M flupoxam displayed reduced 

incorporation into the insoluble cellulosic fraction following Updegraff treatment, in 

comparison to C
14

 –glucose incorporation in the absence of flupoxam (Fig. 3.). Also, 

flupoxam disrupted C
14

 –glucose incorporation into the cellulosic fraction at a similar 

level to that of seedlings incorporating C
14

 –glucose in the presence of isoxaben (Fig. 3.).   

4.2 Novel Genetic Mutations Exhibit a Range of Resistance to Flupoxam 

 

A chemical screen was performed on 1, 000,000 M2 seeds, 31 putative mutants were 

grown to adulthood (M3 population) and retested on flupoxam. Of these 31, 25 plants 

exhibited heritable flupoxam resistance. Of the M3 population, all flupoxam alleles were 

non-segregating, meaning the mutant screen had only isolated homozygous alleles which 

could be recessive or dominant. In order to determine inheritance, lines have to be 

backcrossed and re-selected on flupoxam. A summary of the putative mutants and 

identified mutant alleles can be found in Table 6. To further characterize putative 

mutations we endeavored to positionally clone the potential genes. For some of the alleles 

that were isolated this was accomplished using NGM techniques (Austin et al., 2011). 
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NGM revealed three novel mutations (fpx 2-2, fpx 2-3, fpx 2-4) in the long arm of 

chromosome 4 in the gene CESA 1 (At4G32410). The mutations all cause single amino 

acid substitutions fpx 2-2 leads to a P(1010)L, fpx 2-3 leads to a G(1009)D, and fpx 2-4 a 

S(307)L (Fig. 7., Fig. 34.). Fpx 2-4 S(307)L is discussed in the appendix. Given the 

evidence of mutations in CESA1, sequencing of the C-terminal ends of CESA1 and 

CESA3 (At5G05170) in the remaining putative mutants revealed 4 more novel mutations. 

Sequencing using primers from Table 4., revealed novel mutations corresponding to fpx 

2-1 G(1013)R on CESA 1, as well as fpx 1-1 S(1040)K, fpx 1-2 S(1037)F, and fpx 1-3 

S(983)F on CesA 3. The DNA chromatograms are shown in Fig. 6. and Fig. 7.. Also, 

their relative amino acid position of the substitutions (Fig. 8.). fpx 2-1, fpx 2-3, and fpx 1-

2 have the greatest relative resistance, while fpx 1-1, fpx 1-3, and fpx 2-2 are less resistant 

to flupoxam (Fig. 4..). Although there are clear differences between mutants at the level 

of resistance to the herbicide (Fig.4.), mature plants did not display any dwarfism in 

comparison to controls (Fig. 9. and Fig. 10.).  

 

4.3 In-Vivo cellulose incorporation  

 

Given the relative importance of CESA1 and 3 in the enzymatic catalysis of #1-4 glucan, 

we wanted to test whether or not levels of in-vivo cellulose incorporation was at all 

affected. The level of C
14

 –glucose incorporation was assessed for each mutant and 

expressed as a percent of incorporation into the cellulosic fraction (%incorporation = 

(insoluble/(soluble + insoluble))*100. Only fpx 2-1 showed a small, albeit significant 

decrease in cellulose incorporation according to a Dunnett one-way anova (n=16, 

p=<0.001) (Fig. 11.). There was no significant difference between Ler  (n=28) and 
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Columbia (n=20) (p=0.088) (Fig. 11.). Mutants fpx 1-1 (n=22), fpx 1-2( n=18), fpx 1-

3(n=17), fpx 2-2 (n=20), and fpx 2-3(n=16) did not show significant decreases in % 

cellulose incorporation relative to control according to a Dunnett one-way anova in 

comparison to controls (p=0. 530, p=0.234, p=0.181, p=0.421, 0.997) (Fig. 11.). 

4.4 Determination of Cellulose Crystallinity 

 

Since the fpx mutations did not have any effect on the catabolic activity of the enzymes, 

we reasoned that the mutations may have alterations in the crystalline nature of cellulose. 

An X-ray diffraction method was pursued to test this hypothesis. Briefly, a pure 

crystalline material such as pure cellulose will deflect an incident x-ray beam at a specific 

angle of symmetry. Looking at a diffraction diagram of pure cellulose in Fig. 12., a 

crystalline peak is observed at a diffraction angle of 22.5° 2" The relative crystallinity 

index (RCI) of tissue was calculated according to standard method as discussed in the 

methodology. Replicates shown in Fig. 14. are the combination of triplicate runs 

containing the pooled tissue from 6 individual plants. Wild type crystallinity measured 

around 48.4% for landsberg and 49.2% for Col-O, the difference of which is not 

significant according to a dunnett one way anova (p>0.05). Certain mutations on CESA1, 

fpx  2-1, fpx 2-2 and fpx 2-3 show a significant 20% decrease in relative crystallinity 

(p<0.05)(Fig. 14.). The diffraction pattern for these mutants are shown in Fig. 13. All 

other mutants tested do no show significant changes in RCI in comparison to wild type 

(Fig. 14.). 

 

 



 

31 

4.5 Biochemical conversion of mutant biomass to reducing sugar equivalents 

 

Given the changes in the x-ray diffraction patterns of the various fpx mutations, it was 

hypothesized that changes in crystalline cellulose would improve acid digestion into 

fermentable sugar. This is because increases in interchain spacing should correlate to  

increases in surface area and hence improve acid catalyzed cleavage of glycosidic 

linkages. An anthrone photometric method was undertaken to look for changes in 

reducing sugar release. They were compared to standard glucose controls as a measure of 

relative glucose equivalents released over the course of 5 hours. Exposure of dried 

senesced tissue to acid hydrolysis resulted in significant increases in sugar release over 

time with CESA1 mutants fpx 2-1 fpx 2-2 and fpx 2-3 according to a Dunnett one way 

anova (n=6, p<0.05)(Fig. 20.). Acid hydrolysis of CESA3 mutant tissue resulted in 

significant increases glucose equivalents released by fpx 1-2 and fpx 1-3 (n=6, 

p<0.05)(Fig. 19.), whilst fpx 1-1 exhibited significant decreases in release of glucose 

equivalents compared to a Columbia control (n=6, p<0.05)(Fig. 18.).  

 

4.6 Mutant fpx cellulose synthase expression profile 

 

There is evidence that the CESAs are phosphorylated for anisotropic expansion, turnover, 

and that they are potentially regulated through a phosphatase or kinase (Nuhse et al., 

2004; Chen et al., 2010; Somerville, 2006). Given that cellulose biosynthesis is probably 

a tightly regulated process, any defect involving regulation at the protein level may 

reverberate at the expression level.  For example, it was hypothesized that if turnover was 

stagnant, expression levels would wane as the plant cell reaches equilibrium between 
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cellulose deposition and growth. The variation in CESA1,CESA3 and CESA6 transcript 

was assessed using qRT-PCR (Fig. 15., Fig. 16., Fig. 17.). The mutants do not display 

drastic changes in CESA3 and CESA6 transcript. However, it seems there is fluctuation in 

CESA1 expression amongst the mutants. Most notably, CESA1 expression is altered in 

fpx 1-2, fpx 2-1, and fpx 2-3.  

 

 

4.7 Membrane Yeast two Hybrid (MbyTH) 

 

A membrane yeast two hybrid (Y2H) seemed like a reasonable method that could be 

employed to study CESA interactions. In contrast to traditional Y2H, a membrane yeast 

two hybrid (MbyTH) would allow full length membrane protein interaction to be 

examined. Specifically, we wanted to test the efficacy of using MbyTH on the CESAs 

and hopefully be able to use this approach to search for additional interactors, as well as 

characterize changes in CESA-CESA interaction with mutant alleles. Further, it could 

also be used to determine if cellulose biosynthesis inhibitors disrupt protein interactions 

at the membrane. Recombinant CESA1 and CESA3 were assessed for functionality in the 

MbyTH with Cub-lexA-VP16 either on the C-terminus or N –terminus (Fig. 21.). pOST1 

- NubI is used to assess the relative strength of interaction since constitutive interaction 

will occur only in the presence of stable proteins (Fig. 28). It was determined that C-

Terminal fusions are more functional based on strong interaction on standard dropout 

media –TLH + 10 3AT as well as –THLA (Fig. 21.). C-Terminal fusions of CESA1-Cub-

LexA-VP16  (CESA1 pBT3STE) tested against a C-terminally fused Cesa 1 –HA-NubG 

(CESA1 pPRESTE) grew strongly in –TLH/-TLHA with 10 mM-3AT but did not grow 
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when tested with any other prey (Fig. 22.). Yeast containing the control plasmids 

pTSU2APP and pFe65-NubG showed strong growth as predicted(Fig. 22.) (Bresler et al., 

1996). In addition, yeast carrying pFe65-NubG did not grow when co-transformed with 

CESA1 pBT3STE indicating interaction with this bait is not non-specific (Fig. 22.). 

CESA1 pBT3STE interacted strongly with the positive control pOST1NubI indicating 

CESA1 pBT3STE is most likely functional (Fig. 22.). C terminally fused CESA3-Cub-

LexA-VP16 (CESA3 pBT3STE) did not interact nonspecifically with pFe65NubG and is 

functional based on strong interaction with pOST1NubI (Fig. 23.). CESA3 pBT3STE 

exhibits strong interaction with all CESA3 constructs even when fpx alleles are present 

(Fig. 23.). LacZ expression determined through the cleaveage of X-Gal is not as 

prominent as the positive control but still noticeable (Fig. 22., Fig. 23.).  

 CESA 1 and 3 combinations with C-terminal fusions were then assessed 

interaction with N-terminally fused preys of the same protein (Fig. 24.).  When CESA1 

pBTESTE was tested against an N-terminally fused CESA1 pPR3N (Fig. 24.), the result 

was the same as shown previously with CesA1 pPRESTE (Fig. 22.). There was also 

strong interaction with CESA 3 pBT3STE was transformed along with N-terminally 

fused CESA 3 pPR3N (Fig. 24.). When the prey protein has an N-terminal fusion 

(pPR3N) as opposed to C-terminal Fusions (pPRESTE) the interaction between CESA1 

and CESA3 is stronger (Fig. 24.)  then with C-terminal fusions (Fig. 22., Fig. 23.). This 

suggests a C-terminal fusion may be disrupting the inter-CESA interaction between 

CESA 1 and 3. 
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5.0 Discussion 

 

Plant cellulose synthases are a group of enzymes that form a large multimeric 

cellulose synthase complex on the membrane surface (Crowell et al., 2009). This higher 

order complexity in the membrane as well as the inability for biochemists to purify and 

track activity enzymatically, has resulted in slow and cumbersome field of research. 

Despite many obstacles, there have been significant advances (Somerville., 2006). Many 

approaches have been used to begin to piece together this process. These include the 

study of targeted knockouts to discern the relative importance of the 10 CesA genes in 

Arabidopsis (Turner and Somerville, 1997; Desprez et al., 2007; Richmond, 2000). The 

use of molecular fluorescence techniques to track the movement of CesA particles and 

how they move and distribute amongst a plant cell (Crowell et al., 2009; Desprez et al., 

2007) Mutagenesis studies have revealed numerous mutations on a wide range of proteins 

believed to be involved in cellulose synthesis (Somerville, 2006). We decided to employ 

a chemical genetics approach using the chemical herbicide flupoxam.  Flupoxam causes 

many similar effects to isoxaben including the spherical protrusion of cells as a result of 

reduced cellulose synthesis, detachments of the plasma membrane from the cell wall, 

increased pectin accumulation, wall thinning, reduced cell division along with incipient 

vacuole formation (Vaughn and Turley, 2001). Genetic evidence for the mode of action 

of isoxaben is identified on CESA3
Ixr1-1 

G(998)D; CESA3
Ixr 1-2 

T(942)I) and CesA 6 Ixr 

2-1 R(1064)W (Heim et al., 1989; Desprez et al., 2002; Vaughn and Turley 2001). Given 

that they are sensitive to flupoxam, it seemed plausible that flupoxam may disrupt the 

CESAs on a separate binding site (Vaughn and Turley, 2001) Surprisingly, a screen of 1 

million EMS treated seeds on 20 nM allowed us to isolate six new mutations on CESA1 
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and CESA3.  It is interesting to note, CESA1
fpx 2-1 

G(1013)R is in the exact same position 

as CESA3
Ixr 1-1 

G(998)D discovered by Heim et al. (1989), both exhibiting no cross 

resistance to isoxaben or flupoxam. The mutations discussed in this study show varying 

degrees of relative resistance to flupoxam (Fig. 4.) At least on CESA1, the change in 

polarity may be more important than the change in charge given that the change of a Pro 

to Leu (both hydrophobic) in fpx 2-2 is not as chemically resistant as those of polar 

subsitutions in fpx 2-1 (Gly to Arg) and fpx 2-3 (Gly to Asp)(Fig. 9.). All amino acid 

substitutions on CESA3 are hydrophobic serine substitutions to Phenylalanine (fpx 1-2 

and fpx 1-3) and Leucine (fpx 1-1) (Fig. 8). Further, resistance is favored by amino acid 

substitutions that are predicted to be at the cytosol-membrane border (Fig. 9). Flupoxam 

itself has both a relatively nonpolar aromatic triazole group and a highly halogenated 

aliphatic side chain (Fig. 2.). Given the nature of the molecule and the non-polar 

substitutions, it was hypothesized that flupoxam occupies both a membrane-cytosolic 

interface between CESA 1 and 3. This interface is predicted to occur in the last 

transmembrane region of CESA 3, representing the two adjacent serines in the last alpha 

helix (Fig. 8). The halogenated side chain of flupoxam may disrupt potential hydrogen 

bonding between these serines and some undetermined protein, or CESA1 itself (Fig. 8.). 

The potentiality for a role of serines in phosphorylation through a means that is mediated 

by CESA1 is less probable, given that phosphoproteomic studies did not identify these 

sites as phosphorylated (Nuhse et al., 2004). For now, we may pursue the approach that 

flupoxam disrupts a region shared by both CESAs and that flupoxam disrupts this 

interaction. Using the membrane yeast two hybrid (MbyTH) approach used in this study, 

interactions exhibited between CESA1/CESA1 and CESA3/CESA3 were tested for X-
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Gal cleavage in the presence of 1 uM flupoxam. However, the effect of flupoxam on 

these interaction cannot be judged using LacZ expression alone given the weakness of 

blue coloration on X-Gal containing media. 

In order to determine the effect of these mutations on enzymatic synthesis of #-

1,4-glucan, an in vivo C
14

-glucose approach was pursued. Even through many 

replications, only fpx 2-1 exhibited a small albeit significant decrease in the incorporation 

of radiolabelled glucose into the insoluble fraction (p<0.05) (Fig. 11.). Further, fpx 

mutants do not display indications of dwarfism as indicated by normal stature as adults 

(Fig. 9. and Fig. 10.). Since mutations did not display drastic reduction in enzymatic 

glucose incorporation in cellulose, it was hypothesized that some other aspect of the 

cellulose synthase must be perturbed. To this end, we assessed the mutant dry biomass 

for alterations in cellulose crystallinity. Given that previous findings have found 

CESA3
Ixr 1-2 

T(942)I not only has reduced crystallinity but also enhanced fermentable 

sugar release, it seemed reasonable that mutations identified here should have a similar 

effect to the cell wall. Relative crystallinity was standardized using a pure cellulose 

control and the relative crystallinity index (RCI) determined (Fig. 12.). RCI values for 

wild type agree with previous findings of whole plant ranging from a 47-50% RCI 

(Harris and Debolt, 2008). All mutations on CESA1
Fpx 2-1, Fpx 2-2, Fpx 2-3 

along with 

CESA3
Fpx 1-2 

indicate a 20% and 10% drop in crystalline cellulose, respectively (Fig. 14.) 

Looking at the X-ray diffractograms in Fig. 13., some mutants have relatively large 

increases in the amorphous scattering zone around 18° 2", as well as decreases in the 

crystalline peak around 22.5°". Using the anthrone photometric method as a crude 

assessment of total sugar release, it was determined that CESA1
Fpx 2-1, Fpx 2-2, Fpx 2-
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3
mutations (Fig. 20.)

 
are more susceptible to acid hydrolysis than mutations on CesA3

Fpx 

1-2, Fpx 1-3 
(Fig. 19.) CESA3

Fpx 1-1 
produced decreased susceptibility to acid hydolysis, while 

this is strange, it may be just a result of increased Columbia wild type sugar release (Fig. 

18.). While the changes in crystallinity and the effect on sugar release is hard to interpret 

with this data alone, Harris et al. (2009) hypothesized that amino acid changes close to 

site of cellulose extrusion may modify the angles required for proper cellulose 

crystallization. Based on the model proposed by Jarvis (2000), crystallization of glucan 

chains may occur as the fiber bends out of the complex, the inner face of the chain will 

slip in order to relieve tensile stress. Given the nature of the mutations on CESA1
Fpx 2-1, 

Fpx 2-2, Fpx 2-3 
where glycine, proline and glycine are replaced by arginine, leucine, aspartic 

acid, and that they are found at the bottom of an alpha helix, it is plausible that this region 

when mutated changes the bend of the alpha helix and therefore relieves some stress on 

the CESA complex required for crystalline cellulose (Fig., 8).  Furthermore, less stress 

may have partial effect on the crystallization of the glucan chain through incomplete inter 

and intrachain hydrogen bonding. Furthermore, the isoforms of cellulose I" and I! have 

been shown to contain different profiles of inter and intrachain hydrogen bonding, with 

I! being the more stable of the two due to more interchain bonding (Nishiyama et al., 

2002/2003). Given that even between species the proportion of I" can differ substantially 

between species (Brett, 2000), it must be possible that inter-intrachain hydrogren bonding 

can be tailored genetically. Certainly, evidence has shown the tunicate chordate 

Oikopleura dioca can control developmentally whether it synthesizes I" or I! cellulose 

(Nakashima et al., 2010). Therefore, it seems possible that the genetic mutations 

discussed here resulting in decreased crystallinity may be the result of differences in 



 

38 

inter-intrachain hydrogen bonding due to altered glucan slippage. In order to fully 

understand the nature of the chain dimensions, synchrotron x-ray diffraction and neutron 

diffraction similar to Nishiyama et al., 2002 must be undertaken to determine the extent 

of hydrogen bonding disruption.  

Expression analysis of primary CESA genes in the mutants was assessed to look 

for alterations in CESA expression as a result of some perturbed effect of fpx alleles. 

While there seems to be fluctuations in CESA1 transcript as determined by qRT-PCR, 

these cannot be correlated with any other phenotype described in this study. Given the 

importance of CESA1 in cellulose biosynthesis, alterations in expression could potentially 

be a homeostatic response to cell wall defects.  

One of the aspects of this project was the utilization of a membrane yeast two 

hybrid approach to delineate interactions with the cellulose synthases (Stagljar et al., 

1998). The downside to traditional yeast two hybrids is that interaction is targeted to the 

nucleus (Bartel and Fields, 1995). The split ubiquitin method occurs on the membrane 

and therefore can accommodate membrane proteins (Stagljar et al., 1998). Many yeast 

two hybrid approaches to study CESA interactions are forced to only study interaction 

with soluble regions of these proteins (Xu and Joshi., 2010;  Gu et al., 2010). A 

membrane yeast two hybrid approach will allow the study of full length primary cell wall 

CESAs. A similar approach has been used for secondary cell wall CESAs (Timmer et al., 

2009). N-terminal fusions with the CESAs were shown to be less functional as 

demonstrated by interaction with NubI in comparison to C-terminal fusions (Fig. 23). It 

is interesting that Timmer et al., 2009 conducted their entire experiments with N-terminal 

fusions, but one cannot rule out difference between the primary and secondary cell wall 
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CESAs. A screen was conducted in which C terminal fusions of CESA1/CESA3 

pBT3STE was paired against all potential cloned interactors (Fig. 22., Fig. 23., Table 1). 

It was found that CESA1 interacted strongly with itself but with no other prey (Fig. 22.). 

CESA3 was shown to interact strongly with itself as well, even with the CESA3 

replications containing the amino acid substitutions (Fig. 23.). Interactions with CESA3 

and the mutant CESA3 was only assessed qualitatively so any small change in interaction 

was not quantified. A more qualitative assay is required such as the ONPG assay (Miller, 

1972). There was also a slight interaction observed between POM1 and CESA3. POM1 

or CTL1 is a chitinase like protein despite not having any chitinase enzymatic activity in 

vitro (Hermans et al., 2010). Mutants in CTL1 show increased radial swelling in the root 

and decreased cell elongation. Interestingly, POM1/CTL has been shown to phenocopy 

CESA3 and CESA6 in response to environmental stress, and lignin deposition (Hermans 

et al., 2010). The interaction between POM1 and CESA3 in this MbyTH needs to be 

further pursued. Given the fact many others have show strong interactions between 

CESA1 and 3, it seemed troubling that similar interactions were not shown here 

(Desperez et al., 2007 and Wang and Elliot 2008). Based on this, it was proposed that the 

C-terminally fused CESAs may hinder interaction between CESA1 and CESA3. 

Therefore, we decided to examine whether the interaction between CESA 1/3 could be 

reconstituted using preys with N-terminal fusions. Interaction between CESA 1 

pBT3STE interacted strongly again with CESA1 pPRESTE, as well as CESA1 pPR3N 

N-terminal fusions (Fig. 24.). CESA3 pBT3STE interacted strongly again with CESA 3 

pPRESTE, as well with the N-terminally fused CESA 3 pPR3N. However, there was no 

strong interaction again between CESA1 and CESA3 if there was an N-terminal fusion. 
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This confirms previous results that at least in this yeast two hybrid, CESA1 and 3 do not 

strongly interact. Given the previous findings that CESA1 and 3 interact, it is possible 

that they require additional proteins for association, which is absent in a one to one 

membrane yeast two hybrid (Desperez et al., 2007 and Wang and Elliot 2008). Desprez 

et al., 2007 suggested on the basis of their Bimolecular fluorescence complementation in 

tobacco leaves that interaction with native tobacco proteins cannot be ruled out. Wang 

and elliot, 2008 were able to successfully pull down an intact 840 kDA cellulose synthase 

complex, but even they suggested that there may be additional proteins in that complex 

yet to be detected. Further yeast 2 hybrid screens using the cloned baits with CESA1 and 

3 described in this thesis will be required to find additional proteins. Additionally, further 

screens can be conducted using known genes required for cellulose synthesis.  It would 

be interesting to test the cellulose interacting protein (CSI1) recently discovered by Gu et 

al. (2010) which is believed to be a scaffolding protein between CESAs. Also, we need to 

assess the interaction of CESA6 with the other CESAs, I hypothesize that CESA6 may 

mediate the interaction between CESA1 and 3. 

6.0  Conclusions  

A forward genetics approach was undertaken to isolate alleles coding for resistance to the 

cellulose biosynthesis herbicide flupoxam. It was initially hypothesized that flupoxam 

may target a similar albeit separate site observed in isoxaben resistant mutations  

(Vaughn and Turley, 2001). Indeed, genetic evidence for the mode of action of flupoxam 

suggests interaction with CESA1 and CESA3. In literature, no mutation has been isolated 

on CESA1 that does not show severe morphological phenotypes (Arioli et al., 1998). 

Given the fact that alleles were isolated on separate genes, one can assume that flupoxam 
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disrupts a site shared by these two proteins. It was on this basis that a MbyTH was 

developed so as to possibly disrupt the interaction between CESA1 and CESA3 in-vivo 

using flupoxam. In doing so, it was shown that CESA1 and CESA3 interact exclusively 

with themselves and very weakly with each other. This is interesting given the abundance 

of literature suggesting otherwise (Desprez et al., 2007; Wang and Elliot, 2008). 

However, one cannot exclude the effect of endogenous proteins and membrane 

scaffolding that occur in-plant. Therefore, the MbyTH demonstrates a one-to-one 

recombinant approach to isolate new interacting proteins with the CESAs. Interestingly, a 

small screen using DET3, KORRIGAN and CTL1 demonstrated that CTL1 is a 

potentially weak interactor of CESA3. A larger scale approach could be employed using 

all potentially known cellulose deficient genes, and all possible combinations to piece 

together the entire cellulose synthase scaffold. More work needs to be done with respect 

to characterization of fpx mutants. For one, there are still remaining fpx mutants yet to be 

positionally cloned (Table. 6). Further characterization on the sugar profiles of fpx 

mutants needs to be pursued, as well as enzymatic hydrolysis to complement acid 

hydrolysis presented here. Much more work is needed with the MbyTH, including 

validation of all interactions through fractionation and western blotting. Finally, we need 

to test the interaction with CESA6 against CESA1 and 3.  
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8.0 List of Figures 

 

 

Figure 1. Effect of 5 nM flupoxam on Arabidopsis thaliana landberg ecotype. Light 

microscope picture of Landsberg Arabidopsis thaliana hypocotyl and cotyledon grown 

on MS (A, B) is compared to the same ecotype grown in the presence of 5 nM flupoxam 

(C, D, E, F). Blebbing cell structure is visualized better using a Scanning electron 

micrograph (E, F). White bar represents 1 mm. 
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Figure 2. Chemical Structure of flupoxam [ 1-[4-chloro-3-(2,2,3,3,3-

pentafluoropropoxymethyl)phenyl]-5-phenyl-1H-1,2,4-triazole-3-carboxamide].  
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Figure 3. C
14

 incorporation into 5 day old seedlings- Insoluble cellulosic 

measurements of seedlings expressed as counts per minute (cpm). Measurements are the 

result of 1hour C
14

-glucose incorporation seedlings after 5 days of dark growth on MS 

and then incubated in either in the presence/absence of herbicide.  ! - Ethanol control + 

C
14

-glucose, ! - 1 µM Flupoxam + C
14

-glucose .  ! - 1 µM Isoxaben + C
14

-glucose. 

Errors bars represent +/- SD. * represents significance in comparison to the control non-

treated according to  
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Figure 4. Chemical resistance to the herbicide flupoxam for cellulose synthase 1 and 

3 mutations. Root length measurements (cm) were assessed with increasing 

concentrations of flupoxam are shown (n=100) following 5 days of growth and measured 

using Macnification.  
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Figure 5. Next-generation mapping chastity belts for fpx 2-2, fpx 2-3 along 

chromosome 4. The chastity belts for CESA1
Fpx 2-3 

(A,B) and CESA1
Fpx 2-2 

(C,D) are 

shown. (A,C) represent the ratio of homozygousity (biphasic) compared to the 

heterozygousity (monophasic). (B,D) represent the refinement in the chastity statistic by 

decreasing kernal size, ie. The region of highest divergence in chastity statistic along 

chromosome 4. 
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Figure 6. DNA chromatograms for cellulose synthase  3 mutations.  Numbers at the 

top represent relative amino acid substitutions on CESA 3 (At5G05170). EMS generated 

polymorphism is indicated by the red highlighted base pair change as compared to wild-

type Columbia sequence. In the case of fpx 1-2, the third base of the codon change 

represents a landsberg silent polymorphism, while the second base change is the EMS 

generated mutation. 
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Figure 7. DNA chromatogram for cellulose synthase 1 mutations. Numbers at top 

represent respective amino acid subtitutions on CESA1 (At4G32410). EMS generated 

DNA polymorphisms pertaining to flupoxam resistance are indicated as the red highlight 

base pair change as compared to Columbia wild type sequence. 
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Figure 8. Relative CesA Protein position using Residue based diagram editor. 

General superimposition of cellulose synthase mutations is shown in (A). A residue based 

diagram editor (RbDe) shows the relative predicted location of transmembrane amino 

acids in CesA 3 (B) and CesA 1 (C). 
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Figure 9. Adult CESA3 Mutants. Mutations as indicated are compared to their 

respective backgrounds Columbia for CESA3
Fpx 1-1 

and Landsberg for CESA1
Fpx 1-2, Fpx 1-3

 

(n=~6). 
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Figure 10. Adult CESA 1 Mutants. Mutations as indicated are compared to wild type 

Landsberg (n=~6). 
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Figure 11. Percent C
14

 -glucose incorporation in mutants.  Incorporation of C
14

-

Glucose was examined to look at the effect mutations on glucose incorporation into the 

cellulosic fraction. (n=~20) Mutants were compared to wild type controls and were 

determined significant according to a Dunnett One-Way Anova (p<0.05).  
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Figure 12. X-Ray diffraction diagram of pure cellulose. X-ray diffraction of  pure 

cellulose (Sigma-Alrich; St.Louis, MO) show crystalline peak around 22.5°  and 

amorphous trough around 18° 2# as previously shown (Segal et al., 1959). 
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Figure 13. X-Ray Diffraction diagrams for cellulose synthase mutations. X-ray 

diffraction diagrams of wild type Arabidopsis thaliana tissue are compared to diffraction 

diagrams for amino acid substitutions. 

 



 

60 

          

Figure 14. Relative crystallinity index (RCI) of Dry tissue.  The relative crystallinity 

index (RCI) of wild type as well as mutants are compared (n=3). * determined significant 

via a Dunnett One-Way Anova. 
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Figure 15. CESA 6 expression. CESA 6 expression (n=3 biological replicates) for all the 

mutants compared to Landsberg was measured using qRT-PCR. 
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Figure 16. CESA3 Expression. CESA3 expression (n=3 biological replicates) for all the 

mutants compared to Landsberg was measured using qRT-PCR. 
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Figure 17. CESA1 Expression. CESA1 expression (n=3 biological replicates) for all the 

mutants compared to Landsberg was measured using qRT-PCR. 
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Figure 18. Anthrone Sugar Determination Fpx 1-1  

A time course acid hydrolysis and anthrone sugar determination on CESA 3
Fpx 1-1 

S(1040)L is compared to a Columbia control (n=6). * Determined significant in 

comparison to control (p<0.05) according to a dunnett one way anova.  
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Figure 19. Anthrone Sugar determination fpx 1-2 and fpx 1-3.  

A timecourse acid hydrolysis-anthrone sugar determination on CESA3
Fpx 1-2 

S(1037)F 

and CESA3
Fpx 1-3 

S(983)F is compared to a Landsberg control (n=6). * Determined 

significant in comparison to control (p<0.05) according to a dunnett one way anova.  
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Figure 20. Anthrone sugar determination fpx 2-1, fpx 2-2 and fpx 2-3.   

A time course acid hydrolysis and anthrone sugar determination on CESA 1
Fpx 2-1 

G(1013)R, CESA 1
Fpx 2-2 

P(1010)L, and CESA 1
Fpx 2-3 

G(1009)D is compared to a 

Landsberg control (n=6). * Determined significant in comparison to control  (p<0.05) 

according to a dunnett one way anova.  
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Figure 21. C-terminal vs N-terminal fusions in MbyTH. 

 N-terminal fusions of with CESA1 and 3 using plasmid pBT3-N are compared to C-

terminal fusions using plasmid pBT3STE with the same genes. Numbers represent clone 

replicates.  
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Figure 22. Membrane Yeast 2 Hybrid using CesA 1 pBT3STE. Co-transformations are indicated on the left. Relative strength of 

interaction was assessed on standard dropout media lacking –T(Tryptophan)-L(Leucine) to maintain plasmids, and –H(Histidine) and 

–A(Adenine) to test the relative strength of interaction. +3 AT represents the addition of 10 mM 3-Amino-Triazole. Expression of !-

Galactosidase is assessed by addition of X-Gal(blue=strong). 
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Figure 23. Membrane Yeast 2 Hybrid using CesA 3 pBT3STE. Co-transformations are indicated on the left. Strength of interaction 

was assessed as previously described. 
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Figure 24. CESA 1/3 pBT3STE tested against N-terminal Preys (pPR3N). Co-transformation are indicated on the left with relative strength 

of interaction assessed by method previously described. 
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Figure 25.  pENTR/D-TOPO Plasmid Map.  
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Figure 26. pBT3STE Plasmid Map. 
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Figure 27. pFe65 NubG Plasmid Map. 
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Figure 28. pOST1 NubI Plasmid Map. 
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Figure 29. pPRESTE Plasmid Map. 
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Figure 30. pTSU2APP Plasmid Map 
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Figure 31. pBT3N Plasmid Map.  
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Figure 32. pPR3N Plasmid Map 
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9.0 List of Tables 

 

 

Gene Cloned Vector Sequence Cloned Cloning 

sites 

Cesa 1 pENTR/D-Topo cDNA CACC  

Cesa 3 pENTR/D-Topo cDNA CACC 

Cesa 6 pENTR/D-Topo cDNA CACC 

Cesa 3 Fpx 1-1 

S(1040)L 

pENTR/D-Topo cDNA CACC 

Cesa 3 Fpx 1-2 

S(1037)F 

pENTR/D-Topo cDNA CACC 

Cesa 3 Fpx 1-3 

S(983)F 

pENTR/D-Topo cDNA CACC 

Cesa 1 Fpx 2-1 

G(1013)R 

pENTR/D-Topo cDNA CACC 

Cesa 1Fpx 2-2 

P(1010)L 

pENTR/D-Topo cDNA CACC 

Cesa 1 Fpx 2-3 

G(1009)D 

pENTR/D-Topo cDNA CACC 

Aquaporin PIP2 pENTR/D-Topo cDNA CACC 

Cesa 1 pPR3-N, pPR3-STE, 

pBT3-STE and 

pBT3-N 

cDNA N/C Terminal 

Fusions 

SfiI 

Cesa 3 pPR3-N, pPR3-STE, 

pBT3-STE and 

pBT3-N 

cDNA N/C Terminal 

Fusions 

SfiI 

Cesa 3 Fpx 1-1 

S(1040)L 

pPR3-STE cDNA C-terminal 

Fusion 

SfiI 

Cesa 3 Fpx 1-2 

S(1037)F 

pPR3-STE cDNA C terminal 

fusion 

SfiI 

Cesa 3 Fpx 1-3 

S(983)F 

pPR3-STE cDNA C terminal 

fusion 

SfiI 

Det3 pPR3-STE cDNA C terminal 

fusion 

SfiI 

Korrigan pPR3-STE cDNA C terminal 

fusion 

SfiI 

Pom1 pPR3-STE cDNA C terminal 

fusion 

SfiI 

 

Table 1. List of Clones 
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Primer Name Sequence 

PIP2 Fwrd 5-CACCATGGCAAAGGATGTGGAA-3  

PIP2 Rev 5-TTAGACGTTGGCAGCACTTC-3 

cesa 3 rev 5-TCAACAGTTGATTCCACATTC-3 

ZnCesa-F 5-CACCATGGAATCCGAAGGAGAA-3 

cesa1 frwd 5-CACCATGGAGGCCAGTGCCGGC-3 

cesa1 rev 5-CTAAAAGACACCTCCTTTGCC-3 

cesa 6 frwd 

5-CACCATGAACACCGGTGGTCGGTTA-

3 

cesa 6 rev2 5-TCACAAGCAGTCTAAACCACA-3 

 

Table 2. Primer List for pENTR/D-TOPO Cloning  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Primer list for qRT-PCR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Name Sequence 

RTactin71R 5-CCATGACACCAGTGTGCCTA-3  

RTactin71F  5-AATGGTGAAGGCTGGTTTTG-3  

RTCESA61R 5-GGACAAGCTTGATTGCCTTC-3  

RTCESA61F  5-GTGGCATGTAACGAATGTGC-3  

RTCESA31R  5-CTGGTTTTGCACTGAGGACA-3 

RTCESA31F  

5-GATCGTTTTGTGGCTTGTGA-3  

 

RTCESA11R  5-CCCCTGTGTCGTCTGAATCT-3  

RTCESA11F  5-GTCGCGTGTAATGAATGTGC-3 
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Primer Name Sequence 

cesa 3-6- 5-TGACACCAAGACAGAAGAACG-3 

cesa 3-6+ 5-TCCTCAGGTTTGACACCTCTC-3 

cesa 1-9- 5-TTGGGTCCACATCTTCTTCC-3 

cesa 1-9+ 5-CGCGAGTATTTGGTTCATTC-3 

cesa 1-3- 5-GAGTTCTTCGCCATTGGAAC-3 

cesa 1-3+ 5-AGCTAACAAGGCGAGACACC-3 

pPR3-STE Fwrd Verification 5-TTTCTGCACAATATTTCAAGC-3 

pPR3-STE Rev Verification 5-CTTGACGAAAATCTGCATGG-3 

pPR3-NVeriffrwrd  5-GTCGAAAATTCAAGACAAGG-3  

pPR3-NVerifRev  5-AAGCGTGACATAACTAATTAC-3  

pBT3-NVerfFwrd  5-CAGAAGGAGTCCACCTTAC-3  

pBT3-NVerifRev  5-AAGCGTGACATAACTAATTAC-3  

pBT3STEVerifFwrd  5-TGGCATGCATGTGCTCTG-3  

pBT3-STEVerifRev 5-GTAAGGTGGACTCCTTCT-3  

M13 fwrd Used by TCAG 

M13 rev Used by TCAG 

 

Table 4. Plasmid List for Sequencing 
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Primer Name Sequence 

pBT3/PR3-

N/STECesa1F

wrd 5-ATTAACAAGGCCATTACGGCCATGGAGGCCAGTGCCGGCTTG-3  

pBT3/PR3-

NCesa1Rev 5-AACTGATTGGCCGAGGCGGCCCTAAAAGACACCTCCTTTGCC-3  

pBT3/PR3-

NCesa3Fwrd  5-ATTAACAAGGCCATTACGGCCATGGAATCCGAAGGAGAAACC-3 

pBT3/PR3-

NCesa3Rev  5-AACTGATTGGCCGAGGCGGCCTCAACAGTTGATTCCACATTC-3  

pBT3-

STECesa1Rev 5-AACTGATTGGCCGAGGCGGCCCCAAAGACACCTCCTTTGCCATT-3  

pPR3-

Ncesa1glyadd  

5-ATTAACAAGGCCATTACGGCCGGTATGGAGGCCAGTGCCGGCTTG-

3  

Cesa1pPR3-

STEFrwd 5-ATTAACAAGGCCATTACGGCCTTATGGAGGCCAGTGCCGGCTTG -3 

Cesa3pPR3-

STEFwrd  5-ATTAACAAGGCCATTACGGCCTTATGGAATCCGAAGGAGAAAC-3  

Cesa3pBT3-

STE/pPR3-

STERev  5-AACTGATTGGCCGAGGCGGCCCCACAGTTGATTCCACATTCCAG-3  

Det3Fwrd 5-ATTAACAAGGCCATTACGGCCTTATGACTTCGAGATATTGG-3 

Det3 Rev 5-AACTGATTGGCCGAGGCGGCCCCAGCAAGGTTGATAGTGAAG-3 

Korrigan Fwrd 5-ATTAACAAGGCCATTACGGCCTTATGTACGGAAGAGATCCA-3 

Korrigan Rev 5-AACTGATTGGCCGAGGCGGCCCCAGGTTTCCATGGTGCTGG-3 

Pom1 Fwrd 5-ATTAACAAGGCCATTACGGCCTTATGGTGACAATCAGGAGTGG-3 

Pom1 Rev 

5-AACTGATTGGCCGAGGCGGCCCCCGAAGAGGAAGAGGAAGGTAC-

3 

Table 5. Plasmid List for MbyTH Cloning 
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Mutant 

(Pool 

number) 

Next Gen 

Mapping 

Sequencing 

C-terminal 

end of 

CESA1 and 

CESA3 

Segregation Ratio 

 

Designat

ion 

See figure 

R19**  S(1040)L N/A fpx 1-1 Fig. 7. 

32-1 

32-2-1 

50-2-1 

 S(983)F Dominant at 20 nM  fpx 1-3 Fig. 7. 

35-2 S(307)L - Dominant Epistatic 

1:3:12 

X
2
=36.2, df=2 

p<0.001 

fpx 2-4 Appendix 

Fig.36 

42-2 

45-1 

P(1010)L P(1010)L Recessive at all 

concentrations 

1:3 

X
2
=8.92, df=1 

0.001<p<0.01 

fpx 2-2 Fig. 8. 

45-2 

43-1 

 G(1013)R 1:3 

X
2
=5.95, df=1 

0.01<p<0.02 

fpx 2-1 Fig. 8. 

56-2  - N/A   

60-2  - N/A   

63  - N/A   

66-1  S(1037)F Dominant at 20 nM Fpx 1-2  

66-2  - N/A   

70-2-1 S(307)L S(307)L Recessive at all 

concentrations 

1:3 

X
2
=5.86, df=1 

0.01<p<0.02 

fpx 2-4 Appendix 

Fig.36 

70-3  - N/A   

73-1 G(1009)D G(1009)D Recessive at all 

concentrations 

1:3 

X
2
=6.23, df=1 

0.01<p<0.02 

fpx 2-3 Fig. 8. 

85-2  - N/A   

Table 6. Flupoxam screen summary. Mutant alleles either mapped through Next 

generation mapping or sequencing are shown, along with there designation. Segregation 

ratios of those available are provided with Chi-Squared values. 
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10.0 Appendix 

 

10.1 Next-Generation Mapping of 70-2-1 and 35-2. 

 

Two individuals fpx 70-2-1 and fpx 35-2 were backcrossed to Columbia to generate an F2 

population and plated on 20 nM flupoxam. DNA was isolated from 50 individuals of and 

sent for Next Generation Sequencing. Chastity belt mapping pinpointed both mutations to 

Cellulose synthase 1. Unlike the others in the C-terminus, this mutation is a S(307)F in 

the N-terminus and annotated as fpx 2-4 (Fig. 36.). 70-2-1 contained the S(307)F 

mutation alone while 35-2 appeared to have a secondary mutation that was difficult to 

locate. Segregation analysis show Fpx 35-2 displays a dominant epistatic relationship of 

12:3:1 (sensitive : semiresistant : resistant. (Fig. 35.). It was hypothesized that the 

original F2 population sent for sequencing contained a mix of heterozygotes for both 

potential genes, therefore obscuring the ability of the chastity statistic to locate the true 

mutations since a heterozygous individual would lower the discordant chastity statistic 

(the number of mutant alleles in the pool in comparison to the parental line). F2 

individuals were re-selected at a higher concentration of 10 uM as opposed to 20 nM. The 

new data again pinned the mutation to the right arm of chromosome 4 containing S(307)F 

with a background secondary mutation somewhere within the large arm of chromosome 

4. A short list of potential candidates are listed in Table 8. A membrane yeast two hybrid 

using CESA 1 as the bait and potential interactors may point to a potential CESA 1 

interacting protein. 
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Figure 33. Segregation of 35-2 F2 Population on 10 uM flupoxam. 

Segregation of 35-2 indicates the presence of two separate genes which display a 

dominant epistatic relationship (A) of 12:3:1 (sensitive (B) : semiresistant (C): resistant 

(D).  
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Figure 34. Residue Based Diagram Editor(RbDe) for N-Terminal Region of CESA1. 

Mutation Fpx 2-4 S(307)F is indicated in the N-terminal region of CesA 1 (At4G32410). 
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AT4G27870   Vacuolar iron transporter (VIT) family 

protein 

AT4G29250 HXXXD-type acyl-transferase family 

protein 

AT4G32040 A member of Class II KN1-like 

homeodomain transcription factors factors 

AT4G35240 

 

  Protein of unknown function (DUF630 

and DUF632); INVOLVED IN: N-terminal 

protein myristoylation 

AT4G35810   2-oxoglutarate (2OG) and Fe(II)-

dependent oxygenase superfamily protein 

AT4G36280 Histidine kinase-, DNA gyrase B-, and 

HSP90-like ATPase family protein; 

FUNCTIONS IN: ATP binding; 

INVOLVED IN: biological_process 

unknown 

AT4G36350 Purple acid phosphatase 25 (PAP25); 

FUNCTIONS IN: protein serine/threonine 

phosphatase activity, acid phosphatase 

activity; INVOLVED IN: 

biological_process unknown 

Table 7. A short list of potential gene candidates for 35-2 

 


