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Abstract

With the widespread use of smartphone devices, a surge in mobile sensing, progress in
wireless communication and networking techniques, as well as the development of the
Internet of Things (10T) and cloud computing, mobile-based community sensing has turned
into a leading paradigm for pervasive sensing. Smartphones with embedded sensors have
become ubiquitous devices carried by millions of people. Community sensing empowers
individuals to collectively sense, analyze and share local observations and mine data in
order to determine and map phenomena relating to real world conditions by using mobile
devices across many applications, including transportation and healthcare. While there are
currently many tools and frameworks that allow researchers and developers to collect and
analyze data at the individual user level, a parallel framework for data collection and
analysis at the community level does not yet exist. Such a framework would provide the
functionality to create various models for building smart city applications for urban

planning, sustainable communities, transportation, public health, and public security.

This thesis presents a review of current smart city network architectures, along with
their associated technologies, and proposes an architecture for the smart city and its services
while considering communities as the main part of the design. Of the different components
of the proposed architecture, two are vital for enabling a community structure for the smart
city. These two components are community detection and data aggregation. This thesis
proposes new methods for community detection and analysis using graphs and clustering
algorithms based on the sensor data collected from individuals’ smartphones and IoT
sensors. As far as can be ascertained, the proposed method is the first to transform the time

series data collected from individuals’ smartphones to correlation networks for community



detection. The proposed methods leverage not only the individuals’ groups but effectively
discover communities of common interest. Two different case studies were conducted in
this thesis in order to show the performance of the proposed methods. In these case studies,
the data collected from individuals’ smartphones and vehicles are used and communities of
individuals, based on their movement patterns and similarities, are detected. The
performance evaluation shows that the proposed methods effectively identify the

individuals’ communities with good accuracy.
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Chapter 1

1 Introduction

1.1 Overview

Today, more than half of the world's population spend their lives in cities (Figure 1), a
number which is expected to reach 85 percent by 2100 [1]. If considering only North
America, “more than 82 percent of the population already lives in urban areas” [1].
Increasing population density in urban environments demands adequate provision of
services and infrastructure [2]. This increase in urban populations will present major
challenges, including increased air pollution, traffic congestion, housing requirements,
health concerns, energy and waste management. Failure to plan and manage these projected
challenges could lead to increased urban crime rates, slums, and deteriorating quality of
life in the urban environment. Opportunities abound for these challenges to be addressed
through the integration of various Information and Communication Technologies (ICT)

into the fabric of the urban environment.

The smart city, as a new paradigm in the ICT domain, provides the infrastructure for
citizens to easily access many services, as well as for governing bodies to intelligently
manage and control the resources in a city [2]. Smart cities use ICT to sense, analyze and
integrate the information necessary for city administration[3]. As the population of cities
grows [1] and the boundaries expand, the concept of the smart city is gaining momentum
on the agenda of governments around the world, and can be seen as a key mechanism for

transforming traditional cities into becoming more efficient and viable [2, 4].
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Figure 1. Population, urban percent [5]

Two major developments that occurred in ICT have impacted how cities are managed:

the Internet of Things (1oT) and mobile telecommunication. The term 10T was introduced

in 1999 by Kevin Ashton while he was working at the Massachusetts Institute of

Technology (MIT) Auto-1D lab [6]. The concept of the 10T was then expanded by the MIT

Auto-ID Centre and linked to the Radio Frequency Identifier (RFID) and Electronic

Product Code (EPC) in 2001 [7]. The IoT was later expanded by the International

Telecommunication Union (ITU) in 2005 [8]. The premise behind this paradigm is the

ubiquity of different kinds of objects or things such as tags, RFIDs, sensors and mobile

phones [9] and the main goal of the loT is to connect these objects that can act

independently and intelligently connect with each other with minimum human intervention

[9]. It is predicted that the 10T will penetrate ordinary life by 2025 [9]. As Figure 2 shows,

the 10T is situated in the peak of Gartner's 2015 hype cycle for emerging technologies [10].
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In parallel to the developments in the 10T, mobile communication has expanded on a
global level over the last few years, so that today there are more than 6.8 billion mobile
phones in use worldwide [11], including 2 billion smartphones. Mobile devices,
particularly smartphones and tablets, have various built-in sensors, with many applications
that can use and share the data collected from these sensors. Each smartphone contributes

to the vast amount of sensor data generated every day.

With the rapid growth of the 10T, mobile communication and cloud computing [12],
there is high potential to develop real-time applications to monitor and mine data collected
from large environments. There exist many challenges, such as how to collect and analyze
the large amounts of data from various sources of information with different types of

technologies, and how to deliver that data to the different applications, while considering



the requirements of each application [2]. A more important challenge is how to use ICT to
understand how users consume resources in an urban setting as well as how to use ICT to
help users, individually and collectively as communities, to manage resource usage. Using
a community approach, where everyone has sensing and computing capability, can result
in collectively sharing and extracting data to measure common phenomena. This
integration of ICT into the fabric of the city forms what is commonly referred to as the

smart city.

While there are currently many tools and frameworks that allow researchers and
developers to collect and analyze data at the individual user level [13-19], a parallel
framework for data collection and analysis at the community level does not yet exist. Such
a framework would provide the functionality for creating various models to build smart
city applications for urban planning, sustainable communities, transportation, public health,
and public security. The major open question is how to sense beyond the single individual

and leverage individual data to build knowledge at the community level.

The focus of this thesis is to design a reference architecture for the smart city and its
services while considering communities as the main part of the design. This architecture
and the associated framework is scalable, interoperable, secure and homogeneous from
both the service provider and service consumer perspectives. Within this research, the
framework will be instantiated in a platform enabling community-based analytics. The

platform will be demonstrated within the context of similarity over trajectory case studies.



1.2 Problem Statement

The authors in [20] claimed that “Urban areas can provide many advantages, such as
better education, health services, entertainment, political participation and freedom from
traditional norms”. Such advantages of urban living cause continuous migration from rural
to urban environments, leading to larger cities. Growing populations in urban areas demand
more resources and better services [21]. The challenge is how to optimize the resources and
increase the quality of services while city populations are growing. Cities are becoming
increasingly complex as large networks of sensors are deployed across urban landscapes
[22]. Moreover, as cities have begun to integrate technology into their systems, it has
become apparent that sensor technology in particular has the potential to optimize, and even

enhance, the services that cities could provide to their residents [23].

Smart cities need to deal with many issues, ranging from traffic and waste management
to healthcare and security. To address all these problems, it is very important for smart city
developers and researchers to plan how to collect data from various sources of information
and distribute them among service providers. It is also necessary to plan how to deliver the
appropriate services with minimum cost to consumers. In addition to the above factors,

there is a need to have analyzing power to mine data and provide more services.

In the next decade, information and communication technology will pervade daily life.
Smartphones can play a significant role in this scenario because they have a variety of
sensing, computing and communication capacities as well as the capability to bridge to
other objects and devices. The emergence of the smartphone as a convenient sensing
platform has shifted the level of smart city sensing research. With the variety of sensors

possessed by each smartphone, it has become possible to easily build a sensing platform in
5



the smart city, hence coping with most of the sensing barriers to building a large-scale

sensing system.

The focus on smartphone sensing design is still on an individual level but collecting and
analyzing individual data ignores an important dimension of personal life, namely: how
others, such as friends and family, influence an individual’s life. In fact, individuals are
affected by the behaviour of others and are tightly connected via various communities.
Therefore, in collecting and analyzing community data, one can have a better understanding
of complex community dynamics as well as be able to more efficiently manage city
resources. Moreover, sensing large scale phenomena is sometimes beyond the scope of
individuals and needs to be collectively measured by a large group of individuals. Finally,
the aggregation of data from a group or community usually results in better decisions than
those made by individuals. It is important to also realize that citizens can be engaged in
different communities at different periods of their lives as well as concurrently at any given
time. Such communities can be formed according to people's interests, locations, and
common goals. These communities can be varied, from healthcare to transportation to even
same brand car owners. Therefore, the focus of this research is to use ICT to build
communities and to share information among community members. The goal is not just to
exchange the information among the parties but to involve the individual’s environment
and belongings. While current smart city research relies on individual sensing and
analyzing, the smart city can benefit from community and crowd sensing in various aspects,

including diversity of opinion and opinion aggregation.

Strong urban management and city development relies on adequate monitoring of

community dynamics for decision making. To reach this goal, one approach is to leverage
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distributed sensors, such as sensor networks, to obtain real world conditions [24]. However,
sensor networks and other traditional techniques have never successfully achieved this goal
because of limitations such as high installation and maintenance costs, inappropriate
coverage and fixed sensors [25]. Mobile-based community sensing uses the existing
sensing and communication infrastructure of smartphones, hence eliminating the cost of
deployment. The inherent mobility of smartphones and mobile devices also provides better

sensing coverage than traditional fixed sensor networks.

By using ICT, there is an opportunity to develop a community-aware smart city using
mobile phone platforms on any scale, but the major challenge is how to design a scalable
platform which would support the hundreds of thousands of user demands and integrate

these demands with modern technology in order to provide adequate services.

This research comprises the deeper integration and coupling of communities of people
and the sensing systems that serve them in a way that will improve the quality of life for

citizens and optimize resource consumption.

1.3 Research Challenges

Using ICT to build communities in smart cities holds several challenges, including but

not limited to the following:

= Architecture: Based on advancements in sensor and wireless networks, there is
potential to connect objects to each other. Each object can generate a large amount of
information and share this information with other objects. Together, these objects create
the 10T. The base of most 10T applications and services is dissemination and sharing of

information among the respective parties. The challenge is that most of the current 10T
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architectures were designed to handle host-centric communication and do not
effectively support data-centric communication [26]. The current Internet-similar
architecture is not efficient in terms of network resources and can also increase
communication overheads [23, 26] .

Heterogeneity: Different 10T devices will be created by different companies and
manufacturers. Each device can have distinct characteristics and different
functionalities. Having all the devices seamlessly work with each other is a major
challenge.

Varied Communities and Human Groupings: As people interact with each other and
collaborate in social activities in communities, grouping individuals and simplifying
the interactions among them can be a challenge [24]. Designing the mechanism for
community formation along with an automated method to identify the user communities
is another challenge in smart cities. Furthermore, while the emergence of smartphones
that are equipped with multiple sensors has shifted the sensing research, there are
numerous challenges regarding both how to analyze the sensor data and how to detect
the communities of individuals from their respective sensor data. Designing algorithms
that can identify the similarity of people according to the similarity of their sensor data
is an additional challenge.

Data Dissemination: A smart city will include diverse communities, from healthcare
to transportation, therefore a generalized framework to leverage the communities within
the sensing system is required. Common methods of data collection and dissemination
need to be developed in a way that facilitates community sensing.

Data Quality and Redundancy: In community sensing, most of the tasks are

performed by sensing the environment via mobile devices. Therefore, based on the
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dynamic conditions of mobile devices, the accuracy of sensing data is different from
one device to another. The quality of sensed data constantly changes due to mobility,
energy levels and communication channels. Moreover, because of human involvement,
individual preference can affect sensing and data quality. Equally important, more than
one participant can be involved in the sensing process which can cause data
redundancy. Redundancy can also lead to inconsistency due to the differences in
sensing capabilities.

Incentive Mechanisms: In community sensing, because humans are involved and
sensors are usually possessed by different individuals, participation in the sensing
process depends on individual incentive, carries a cost and incurs energy. Without
strong incentive mechanisms, participants may not be involved in the sensing process.
Therefore, finding a way to motivate individuals to be active in the sensing process is
an additional challenge. Furthermore, if money is part of the incentive mechanisms,
participants are more likely to deceive the system to gain more benefit from it.
Predictive Analytics: One of the major benefits of the smart city is providing a
platform to collect information from citizens in different ways. A smart city can benefit
by integrating the collected information. Such information can be varied from traffic
and health data, as well as environmental conditions, to the movement patterns of
citizens. As the volume of this data is expected to steadily increase, analytical tools are
required to combine knowledge from different and related sources to draw a picture of
a live city in motion. Analyzing the collected data makes it possible to predict the future.
Prediction data can be used to build models of the various city systems and their
interactions, which can be used for urban planning to improve both the quality of life

for citizens as well as the economic growth of the community. Developing and
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designing these analytical tools, which can precisely combine information and predict
the future, is one of the challenges of any smart city.
Big Data and Scalability: As the number of sensors in a city grows to the hundreds of
thousands, these sensors will generate massive datasets. If analyzed in real-time, this
data can be used to model movements, actions, and needs in a way that enables cities
to appropriately respond. This process of collecting and analyzing massive datasets is
commonly applied in Big Data systems [27]. Big Data makes use of powerful modern
processing capabilities to analyze large datasets which would be impossible to analyze
through use of efficient search algorithms. While many smart city systems that currently
operate do not require the implementation of Big Data schemes to interpret their results,
within the next few years the number of data streams will grow; as such, the need for
Big Data systems is inevitable [11].
= Cost of the Sensing Infrastructure: One of the major limiting factors for smart
cities is the cost of deploying sensors in a city. As an example, the sensors that
Chicago currently deploys to detect gunshots cost roughly $100,000 per 1.5 miles of
coverage [27]. Considering that these sensors only serve a single application, it is
difficult to imagine them being deployed across a large metropolitan city. While cost
is not the only issue, it is directly related to many subsequent issues. Because the
technologies used inside sensory technology is subject to Moore's law, as new
technologies emerge with improved processing capabilities and additional
functionality, older sensors may quickly become obsolete and will require
replacement.
= Privacy: The provision of privacy is one of the major challenges in developing the

smart city. As some sensors collect personally identifiable information such as
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location, time, and health information, providing privacy is very important for the
smart city. The issue of ubiquitous sensors has raised significant concerns among
privacy advocates as to how and by whom this large amount of data is used, how

long it will be kept, and who can access it [9].

1.4 Research Objectives

The main goal of this research is to design a smart city platform which will support
community services. One of the most important tasks to enable community services is to
identify communities of individuals and communities of common interest. Since a smart
city has the proper infrastructure to collect data from individuals and their belongings,
identifying the individuals’ communities can be performed by analyzing their data, which
is collected from their sensors. However, individually analyzing users’ data cannot reveal
the communities and will only give some information about the corresponding user.
Therefore, there is a need to design a proper framework and platform to aggregate data
from different users and collectively analyze them. Furthermore, the designed platform
should support different types of communities such as social, infrastructure and
environmental. Moreover, 10T can help in the smart city to more easily collect individual
data. Therefore, the designed platform should support IoT applications and their

requirements. The objectives to achieve this goal are outlined as follows:

e Developing New Community-Oriented Architecture and Framework for Smart

Cities

The primary objective of this research is to develop a new architecture for the smart city,

from the sensing layer to the application layer, by considering communities as the main

11



part of the design. This architecture enables city management, community service providers
and citizens to have access to real time and historic data that has been gathered using

various sensory mechanisms, in order to analyze and make decisions for future planning.

e Develop a Community Sub-layer

The second objective of this research is to develop a sub-layer which can enable virtual
communities. This sub-layer extracts the context and forms the communities. In addition,
it can automatically identify the communities of individuals and communities of common
interest based on users’ various activities or allow individuals to self identify within a given
community. Such a framework can benefit from various models in order to build smart city
applications for urban planning, sustainable communities, transportation, public health,

public security, and commerce.

e Aggregate Data Analysis

The individual data analysis only analyzes the data for a single person or a single device.
Community-based analytics can rely on analyzing data from a group of people or a
collection of devices. Community-oriented analytics can aggregate the data from each
individual and identify useful patterns. Therefore, the third objective of this research is to
perform multi-modal analysis of large datasets from a smart community and to visualize

and analyze this massive heterogeneous aggregate data.

1.5 Research Contribution

This thesis proposes a new multi-layer architecture for smart cities by considering

communities as the main part of the design. This architecture enables city management,
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community service providers and citizens to have access to real time and historic data,
which has been gathered using various sensory mechanisms, in order to analyze and make
decisions for future planning. The architecture includes a layer which can enable
community analysis. This layer extracts the context and forms communities. In addition, it
can automatically identify the communities based on users' similar activities and common
interests. Such a framework can benefit from various models to build smart city
applications for urban planning, sustainable communities, transportation, public health,
public security, and commerce. This architecture and its associate framework has

tremendous potential to solve some of the challenges previously mentioned.

To sum up, the contribution in this thesis is as follows:

e A comprehensive study of 10T and its enabling technologies, the smart city, the context-
aware system and community sensing and mining is provided in Chapter 2.

e A community-oriented architecture and framework have been proposed for the smart
city in Chapter 3.

e New methods for community detection and analysis using graphs have been proposed,
developed and evaluated in Chapter 4.

e An additional method of community detection beyond the graph, that is by conducting
a case study on detecting communities of common interest that demonstrates an

infrastructure based community, is provided in Chapter 5.

1.6 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents a literature review on 10T,

the smart city, community sensing and various smart city enabling technologies. The
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proposed network architecture for a smart city and its associated framework is presented
and discussed in Chapter 3. Chapter 4 includes an explanation of the communities and
discusses the benefits of community detection in a network. The proposed method for
community detection using graphs is also presented along with a real case study and
experimental results. This chapter demonstrates how social communities can be framed in
the designed framework. Chapter 5 presents the proposed methods for community detection
using clustering algorithm Chapter 5 also includes a case study outlining how historical
GPS data on privately-owned vehicles in Changsha, China, were collected and used in an
algorithm developed to match riders with close temporal and spatial origin and destinations.
This chapter demonstrates how different methods other than graph analysis can be used to
detect communities. Chapter 6 concludes the work by summarizing the main findings and

suggesting future areas of exploration.
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Chapter 2

2 Literature Review

This chapter presents an extensive study of the previous work in two important topic
areas: (1) the loT and smart cities; and (2) community sensing and mining. The focus of
the first part of the chapter is more on the loT and smart city architectures, middleware and
enabling technologies. Consequently, existing loT architectures, along with middleware
technologies and content dissemination techniques, are reviewed. Because this thesis is
focused on information centric architecture, context-aware computing for the loT and
sensor networks is also reviewed. As the aim of the research of this present work is to
provide functionality to support community structure, previous studies on community

mining and sensing in the smart city are also reviewed.

To identify resources for the literature review, the IEEE, ACM, Science Direct,
ProQuest and Google Scholar databases were used. Approximately 1000 related papers
(journal and conference papers) were found by searching topic-related keywords such as:
smart city; Internet of Things; loT architecture and middleware; Big Data analysis;
community sensing; participatory sensing; remote healthcare platform; and wearable
technology. By just reviewing the titles, the list was narrowed down to 120 papers.
Furthermore, the abstract of each paper was reviewed and the 70 most relevant papers were
chosen. By following the citations in each paper, the list was expanded to approximately

90 papers.
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2.1 Background on the Internet of Things and Smart City

In recent years, there has been extensive research in the domain of the 1oT. These
research studies have tried to make the 10T feasible [28] but the success depends on
emerging 10T enabling technologies, expanding loT visions and developing new
applications for solving city management problems. A brief overview of the above-

mentioned conditions is provided in the following subsections.

2.1.1 10T Vision

The name “Internet of Things” is composed of two principal words, Internet and things,
which introduce the concepts of Internet-oriented vision and things-oriented vision [9].
The simple definition of the 10T comes from these two perspectives which consider things
as very simple items, such as RFID tags, which are able to connect and communicate with
each other [9]. Internet-oriented vision is more related to networking and communications,
and with how things and objects can use different network protocols to communicate with
each other, while thing-oriented vision is more focused on objects and how these objects
can be combined into a common framework [9, 29]. In the network-oriented vision of the
loT, many alliances and councils try to adapt the 10T to IP technology. As an example,
6LoOWPAN and InternetO have followed the approach of reducing the complexity of the IP
stack to achieve a protocol designed to route IP over everything. loT definitions can differ
according to the aspect selected by researchers, industries, and business alliances. The
combination of the Internet and things reveals a third vision known as semantic vision. 10T
semantically means a global network of objects connected together. The number of objects

in the future Internet will increase dramatically, therefore organizing this number of things
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is one of the challenging issues in 10T. Semantic vision plays an important role in solving

this challenge [9].

In this thesis, the definition that explores the 10T vision from both perspectives (Internet
and things) as defined in [30] is followed, namely: “The IoT allows people and things to be
connected Anytime, Anyplace, with Anything and Anyone, ideally using Any path/network
and Any service”. This definition effectively defines the all-encompassing vision of the

loT.

2.1.2 10T Enabling Technologies

Enabling technologies have a crucial effect on actualizing the 10T into the real world. In
this section, two important enabling technologies are reviewed in order to provide a
comprehensive survey of each technology. These two technologies have significant

influence in the accelerating adoption of the IoT.

2.1.2.1 Sensing and Identification

Wireless technologies play a crucial role in the sensing and identification of objects.
There is potential to install a wireless adapter on all objects around us and enable the IoT
concept. Sensor networks will also play a vital role in the 10T and will work side by side

with RFID to better track the status of things such as location, temperature and movement.

[9].
= Wireless Sensor Network

The Wireless Sensor Network (WSN) is one of the most crucial technologies for the
realization of the 1oT. The authors in [31] stated that “WSNs are made of distributed

autonomous sensors that control and check physical and environmental conditions” [31].
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These sensors are equipped with wireless transmitters to communicate with each other [31].
Advances in sensor technology and microprocessor design help to create smaller and more

durable sensors for WSNs, which can accelerate the 10T actualization.

= RFID

RFID tags are one of the important elements of the 10T. RFIDs are used by many things
such as merchandise in stores, maps, and posters. Even passports have RFID tags to prevent
forgery and to identify false documents. Since mobile phones are increasingly being
equipped with Near Field Communication (NFC) technology, they may be adapted to read

RFID tags and extract from them useful information such as location and price [6].

= Collaborative Sensing

Collaborative or participatory sensing is a new method for sharing sensory information
among individuals. Building on the recent growth in smartphones and mobile devices,
people around the world can easily sense their environment and share the information via
other persons or machines [24]. Collaborative sensing uses the cloud to aggregate and fuse

data for crowd intelligence extraction [32].

2.1.2.2 Advances in connectivity and network

The loT consists of a very large number of nodes, which could have been a problem in
IP availability if IPV4 had been used. The IPv6, which widely accepted the 128-bit Internet
scheme to provide the needs of the 10T, was created to solve this problem. Once the objects
are connected, all 10T devices need a network to communicate with other devices. Various
types of communication standards and network technologies are available, each with their
own strengths for certain applications. Some, such as Bluetooth and ZigBee, are useful for
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short-range communication while others, such as LTE and Wi-Fi, are useful for long-term

communication. All these technologies together bring the 10T concept into reality [29].

2.1.3 Smart City Applications

The smart city provides good infrastructure for developing many applications. These
applications can improve the quality of life of citizens and simplify the services that are
offered by cities. Smart city infrastructure as provided by the IoT has the potential capacity
for running many applications, including transportation, healthcare, the smart environment,
urban sensing, social recommendations and public safety. Smart city development can be
divided into three sections: infrastructure, platform development, and application
development. Application development is one of the important factors for smart city
development [33] while the development of Mobile Crowd Sensing (MCS) has resulted in
various innovative applications. In these applications, actuators and sensors, set up on a
vast scale throughout the network, will allow the collecting of real-time environmental
information. Table 1 lists the main smart city and MCS application categories, with an

example from each category.

Table 1. Smart city application categories

Application Category Subcategory (example) Related Work

Traffic monitoring, public transportation, = Conway-Beaulieu and Jalali [22]

VIEmEEET road conditions, mobile ticketing

DietSense [34]

Healthcare Public health, wellness, activity detection
Public safety Crime analysis and prediction Crime Prediction [35]
Smart urban sensing People behaviour/social monitoring UBhave [36]
SemarEndkiian Trip advisor, activity recom_mendatlon, Zheng and Xie [37]
place recommendation
Environment CommonsSense [38]

- Air pollution, noise monitoring
monitoring
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The following subsection provides a review of the top three useful application categories

which can run on top of the proposed smart city architecture.

»= Transportation

In recent years, many vehicles, such as cars, trains, and bicycles, have become equipped
with sensors. These types of sensors can collect information about the location, speed, and
status of vehicles. Such information allows for traffic management, route creation and
decreased air pollution in cities. As an example, many applications exist in the
transportation category, including assisted driving, mobile ticketing, environment
monitoring, individual travel planning, road conditions and augmented maps. As many
applications for single person purposes already exist, there is potential ability to develop
applications for community use. For example, by collecting an individual’s location in the
neighborhood community and aggregating this data, public transportation services can be

managed and improved [22].

= Public Safety

Cities with larger populations often have higher crime rates. However, large cities that
also suffer from poor education and high unemployment rates can create a breeding ground
for criminal activity [39]. One of the traditional ways to prevent and report crime activity
is the neighborhood watch program. This method needs a community association, involving
a group of residents who are assigned to monitor and report criminal activity to the
authorities. Due to issues of unavailability, distraction and limited perception, this method
is often inconsistent and of limited effectiveness [40]. In recent years, crime recording and

reporting has been carried out using technological methods which have enhanced efficiency
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of output. As well as creating a record of crime details, this data also provides any existing
relations between crime scenes and an offender's modus operandi [41]. Criminal analysis
involves a very careful evaluation of the location, time, and type of crime that has been
committed at a building or neighborhood, or within a city or country. Crime statistics, risks
and probabilities are very much the essence of criminal analysis. As an example, by
employing appropriate data collection, pre-processing and query techniques, and finding
patterns and trends in the language of tweets, it would be possible to reveal the relationship
between tweets and crimes in given locations to gain knowledge of a particular city’s crime

rate [35].

= Healthcare

In non-clinical environments, global developments in smart healthcare and health
monitoring are progressing at a rapid level. Wearable technology is one example of the
promising technologies that can help us conduct remote healthcare monitoring in a smarter
way. As a result of the current ability to decrease sensor size and design accurate sensors,
wearable sensors are becoming a growing trend [42].The data gathered from sensors is
important as it can then be processed into some form of useful information. Data mining is
one of the viable methods applicable to the processing of the significant volume of health
data, such as vital signs, that can be collected from wearable sensor networks. The issue is
whether working on integrated health data and mining is of benefit to the community, and
whether it is actually relevant [42]. At-home sensor monitoring systems and wearable
ubiquitous technology form an instrumental component of a smarter city. Patients are
becoming more active in taking care of their daily lives and improving their health

conditions. The importance of human health sensing technology has been speculated to
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address stress management, preventive attention to falls, chronic disease supervision, and
tele-monitoring rudimentary physiology in rural locations. Using intelligent sensor-based

technology to improve healthy living is a key aspect of the proposed research plan.

2.1.4 Architectures and Middleware for the Smart City and the loT

To design an architecture for the 10T and the smart environment, the characteristics and
limitations of objects in the 0T, such as sensing, energy, connectivity and computation,
should be carefully considered. Sensor networks are an important aspect of the 10T and
play a crucial role in 10T architectures. Therefore, sensor network architecture affects the
loT architecture, which consequently affects smart city architecture. Figure 3 shows the

relationship between sensor networks and the l1oT [43].

Services Applications

1t

\ 4

Internet of Things

Middleware + Framework+API

* *

Sensor Networks Other Technologies

Sensors || Actuators

Figure 3. Relationship between 10T and sensor networks
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Sensor networks follow three main architectures: flat architecture, two-layer architecture
and three-layer architecture [43]. In a flat architecture, sensors are connected to each other
by using multi-hop fashion and data transfers from the sensors to the sink node. In the two-
layer architecture, more than one mobile sink node exists to gather data and transfer it to
the upper layer. Finally, the three layer architecture uses the Internet or any other wide area
network to connect multiple sensor networks to each other [43]. The 10T follows a three-
layer architecture in the sensing layer to overcome most of its challenges, such as scalability

and heterogeneity.

Many research studies focus on designing the architecture, middleware, and framework
for smart cities and the 10T, including 1oT-A [44], COMPOSE [19], FIRE [45], FIND [14],
and BUTLER [13]. These studies deal with large interconnected objects and heterogeneous
networks. Some adopt layered architecture while others adopt Service Oriented
Architecture (SOA). While each of these projects tried to solve the challenges related to
loT, including interoperability, heterogeneity, security, scalability and platform portability,
none of them tackled all of the challenges. 10T-A [44] architecture mainly concentrates on
building an architecture model, along with addressing security, management and protocol-
level communication issues of the different components of the architecture. COMPOSE
[19] tries to enable new services and combine the virtual and physical world by converging
the internet of services with the IoT. Inside the COMPQOSE architecture, smart objects are
associated with services that can be merged, controlled, and federated in a standardised
way to simply and rapidly create novel applications [19]. “BUTLER is a European project

that aims at enabling the development of secure and smart life assistant applications” [13].
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Most of the research studies on the smart city focus on developing an architecture for a
specific purpose or application [46-51], from healthcare to traffic management. As an
example from healthcare, in [49] the authors proposed an architecture called KNOWME,
which is a 3-tier platform designed to monitor single user health status. The problem of
KNOWME is scalability; because most analytical jobs are performed on mobile phones,
based on mobile phone constraints such as computation power and memory, the
architecture is not scalable. In [50], health signals are collected via body sensors and
transmitted to caregivers via the Internet or a mobile gateway but the issue is that the design
framework is specified to user requirements. Artemis Cloud [51] is another Big Data
platform for online health analytics. However, Artemis does not analyze community data

but merely supports personalized online health analytics in a clinical environment.

Many researchers have proposed a layered based architecture for the 10T and smart
cities. For example, in [52] and [53], the authors suggested an architecture similar to OSI
architecture. In [54], the author suggested a layered based architecture but this failed to

support the community model.

DIAT [18] is an architecture for the 10T which solves scalability, heterogeneity,
interoperability and security. DIAT, which uses a distributed model to make a system
scalable, also uses a virtual object layer to tackle the heterogeneity problem. The main
purpose of DIAT is to use the layering model for its architecture as an 10T daemon (Figure
4). DIAT also uses the cross-layer security model to ensure security and privacy. Similar

to other architectures, DIAT suffers from a lack of community support.
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Figure 4. DIAT architecture [18]

Some research, such as the works in [55] and [56], focuses on the development of an

architecture for the smart city but fails to support scalability and interoperability.

From the loT perspective, all entities and objects can be seen as service providers [18].
In reality, some of the objects cannot provide a complete service for the consumer, therefore
need to integrate their services and compose new services. The SOA based approach is an
appropriate solution for such cases because objects and service providers can exchange
information with each other in a simple way and without human intervention. Hence, many
research studies [57-59] agree that service oriented architecture is an approach that is

applicable for smart cities and the loT.

Recently, the SOA approach has been applied to centralized loT middleware [58]. In
SOA based middleware, where services are presented as a web service, applications can

perform complex tasks by composing services provided by different objects or devices.

Generally speaking, a middleware is a software or set of sub-layers located between the

application layer and the object layer (Figure 5) and which helps to reduce the complexity
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of the heterogeneous nature of the objects. In addition, it simplifies the programmer’s job
of knowing the exact characteristics of various underlying objects for writing appropriate
applications. Because of the variety in protocols and data format provided by different
devices, middleware is used to provide a universal interface to application developers in

order to facilitate the development.

Middleware in the 10T connects heterogeneous application domains which communicate
over heterogeneous interfaces, and provides abstraction from the objects as well as offering
multiple services [60]. Because of limitations in device capabilities and resources, such as
computation power and memory, middleware for the 10T is often located outside of a

device’s firmware and manages the 10T in a centralized manner (Figure 5).

Applications

Data Publishing

L ———

Netwrok of Things
(NoTs)

Figure 5. Centralized middleware for 10T

In order to design middleware for the loT, several important aspects should be
considered, the first of which being that centralized middleware needs to abstract the device
capability description in a standard way and present it as a universal interface. Secondly,

IoT middleware should be responsible for monitoring the state of the devices, managing
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data collection and providing security and privacy. The important functional components
of middleware are explained in [60-62] and [30]. These functional components include, but
are not limited to, interoperation, context awareness, device discovery and management,
security and privacy, scalability, and data volume management. Interoperation is the ability
to retrieve and share information among different application domains that use diverse
interfaces. Interoperation can be categorized as: network, syntactic and semantic. Network
interoperation, which deals with communication protocols, attempts to define these
protocols in order to exchange information. Syntactic interoperation deals with the structure
and format of information while semantic interoperation aims to understand the meaning
of information and context [60]. Context awareness is the ability to detect the context from
raw sensor data and analyze it in order to make decisions [43]. Device discovery and
management is the basic functionality for every middleware in order to connect sensors and
devices to each other, and discover the services and things capabilities. Managing data
volumes is a very important functional component of any IoT middleware. The IoT deals
with a large number of sensors and objects, hence the volume of data exchanged between

the devices and applications is significantly high.

In [60], the authors surveyed popular middleware solutions, and analyzed and compared
them based on characteristics and functionalities such as interoperation, platform
portability, context awareness, device management, and security and privacy. These
characteristics are typical functionalities of most middleware but, in order to design a
general middleware, other functionalities need to be supported, including: scalability;

community support; working in different application domains; and Big Data management.
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Table 2. Comparison of different 10T middleware (extended version of [60])
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Hyd ra Yes Yes Yes Yes Yes Yes No
ISMB No Yes No Yes No - No
ASPIRE No Yes No Yes No Yes No
UBIWARE No Yes Yes Yes No Yes No
UBISOAP partially Yes No Yes No No No
UBIROAD partially Yes Yes Yes Yes No No
GSN No Yes No Yes Yes No No
SMEPP No Yes Yes Yes Yes No No
SOCRADES No Yes No Yes Yes No No
SIRENA No Yes No Yes Yes No No
WHEREX Yes Yes No Yes No No No
COMPOSE [19]  Partially Yes Yes Yes Yes No No
BUTLER [13] No Yes Yes Yes Yes No No
DIAT [18] Yes Yes Yes Yes Yes Yes No
RIMWARE [63] Yes Yes No Yes Yes Yes No

Ability to work in different
application domains

Partially

No

No

No

No

No

No

No

Partially

Partially

No

Partially

No

Yes

Big Data Management

No

No

No

No

No

No

No

No

No

Table 2, an extended version of [60], shows a summary of comparisons in more detail

with the extensions in bold and shaded. Scalability is the ability of middleware to handle a

growing number of devices and sensors in the sensing layer. Community support, as a
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functionality of middleware, can collect data not only from individuals but from
communities, and can also analyze data at the community level. Smart cities work with
many application domains, such as healthcare, transport and public safety, thus the ability
to work in different application domains is an important functionality of middleware. Big
Data management is the ability to collect, deliver, store and analyze vast amounts of
structured and unstructured data. The goal is to ensure a high level of data quality and

accessibility.

As Table 2 shows, although the majority of middleware solutions do not support
interoperation and context awareness, all of the middleware can support device
management, which is essential for connecting sensors to each other and making the loT
feasible. Although some of the above middleware solutions support context awareness, they
did not completely fulfil IoT demand and still have some weaknesses. Furthermore, the
majority of the above middleware neither support Big Data management nor work in
different application domains. Finally, none of the above architecture supports the
community concept. As the objective of this present work is to design a general architecture
for the smart city, it is very important that the architecture proposed in this research supports
all these characteristics, otherwise it will not support diverse smart city applications. The
architecture should be scalable in order to handle a growing number of devices and sensors.
It should be interoperable to work in different application domains, and support
heterogeneous environments as well as Big Data management and context awareness in
order to manage the growing amount of data. Most importantly, it should efficiently
support communities by managing resources and decreasing the cost of sensing and

analyzing.
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The following section provides an in-depth review of the most famous platforms in a
specific domain, namely healthcare. The review shows that most of the platforms do not
support community structure, therefore future 10T platforms can benefit by enabling

community structure.

= |oT platforms designed for healthcare

Many large companies, such as Microsoft, Google and IBM, as well as many academic
institutes, have developed health care applications and platforms. HealthVault was
developed by Microsoft in 2007 to aid families and individuals to monitor their health [11].
This software analyzes a family’s healthcare, including health history as well as various
physiological measures, and accepts data from various sources, such as mobile phones and

desktop computers. It also has an open SDK for developers who wish to develop software.

Another example is Google Flu [64], which is based on Big Data analysis tools for
detecting and predicting flu in specific geographic areas. Google Flu tries to predict the
spread of flu according to Internet searches. If, in a specific location the number of searches
related to flu has significantly increased, there is potential that this area has been infected

with flu. Google Flu can also track a flu outbreak and predict the next infected area.

Artemis [51], a Big Data analysis framework for neonatal monitoring, employs IBM
InfoSphere to process health data in real time by applying temporal data mining techniques
patented by McGregor [65] in order to analyze streamed data. Artemis Cloud brings the
possibility of supporting and monitoring patients within Intensive Care Units (ICU) in rural

areas without the need to transfer them to urban centers.
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CHRONIQUS [16], a platform for monitoring and managing patients with chronic
diseases, uses a supervised classifier and rule based system to make decisions and

determine the severity of a patient’s health condition.

LiveNet [66] is a distributed mobile platform for a wearable health monitoring system
intended for long-term ambulatory health monitoring and real time processing. LiveNet
uses a variety of sensors, such as the Electrocardiogram (ECG), Electromyography (EMG),
accelerometer and gyroscope, to collect biomedical data from users. It follows a 3-layer
architecture to collect, disseminate and analyze data. LiveNet, which uses real time feature
extraction along with context classification, can be used to detect epilepsy seizures,

Parkinson’s and other chronic diseases.

AMON is an advanced Wearable Health Monitoring System (WHMS) aimed at
detecting high risk cardiac/respiratory patients who would be limited to hospital [67].
AMON developers designed this GSM-based secure communication to transfer data from
a user device, which is wrist-worn, to a telemedicine center. AMON then processes the data

and identifies high risk patients.

AUBADE [68], a platform developed at loannina University, Greece, aims to determine
the emotional state of an individual. It uses ECG, EMG, and respiration to establish and

classify an individual’s physiological condition.

Table 3 compares the selected WHMS projects according to cloud support, community
support, scalability, interoperability, context awareness and the ability to work on different

application domains.
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Table 3. Comparison of WHMS

Project

Cloud support

Community support
Ability to work on

different applications
Scalability
Interoperability
Context awareness

X

AN
AN
<

HealthVault v

<
X
AN
X
\

Google Flu 4

Artemis v X v v X v

CHRONIOUS X X X X X v

LiveNet v X X v X v
AMON X X X X X X

AUBADE X X X X X v

In addition to those previously mentioned in this chapter, there are many other platforms
available for WHMS, including WelchAllyn, HeartToGo, Human++ and WiMoCA [69],
all of which try to measure an individual’s physiological signals and analyze them in order
to find abnormality in sensed data. Furthermore, these platforms enable early detection of
different medical conditions as well as illness prevention and self-management of chronic
diseases. However, none of them work on integrated data sensed from different patients
and different communities nor combine health data with other useful information, such as
a user’s social activities. This ignores an important dimension of healthcare: how individual
health is affected by other people. If the system includes information about individual

interaction and social activities, it can offer a better perspective on personal health.
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2.1.5 Cloud computing and 10T Middleware

A cloud is a large computation and storage resource that is accessible over the Internet.
The main strategy behind the cloud is to provide on-demand access to resources and
services with the ability to scale usage from just one individual user to millions of users.
The cloud is categorized into three different taxonomies according to the services that it
can provide. These categories are: Infrastructure as a Service (laaS); Platform as a Service
(PaaS); and Software as a Service (SaaS) [70]. Cloud computing functionalities benefit the
development of loT middleware in several aspects, such as: device accessibility from
anywhere without downtime; the ability to collect and store a large amount of data; and

powerful computation capability.

The smart city deals with a high number of devices, from smartphones to sensors, which
are connected to the Internet. These devices provide various kinds of services and produce
a vast amount of data. “Cloud computing is a model for on-demand access to a shared pool
of configurable resources that can be easily provisioned as Infrastructure (laaS), software
and applications (SaaS)” [70]. Therefore, cloud computing is an ideal solution for 10T

middleware and smart city platforms.

2.1.6 Device Capability Abstraction

The primary goal of device capability abstraction is to provide a common interface to
access different objects and things in the loT. However, because of device diversity and
heterogeneity, it is very difficult or even impossible for objects and 10T devices to be
described in a universal manner. In order to solve this challenge, two different and opposite

methods, are available [63]: external descriptive and self-descriptive.
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= External Descriptive

The external descriptive solution for device capability abstraction uses an agent, such as
a middleware component, to provide a universal interface to access different types of
devices. This solution is often used in SOA based architecture with device description
exposed as web services. This solution has limitations since agents such as middleware
components require knowledge of a device’s capability. Also, the agent should be
reconfigured each time a new device attempts to connect to it. The weakness of an external

descriptive solution is that it suffers from lack of scalability and security.
= Self-descriptive

In a self-descriptive solution, no agent is needed to abstract the device capability.
Instead, the device itself provides the capability description so it can be directly accessible.
In this method, the device capability description is stored on the device and can be retrieved
through a communication protocol. The device can then directly share its capability with
others without assistance from an external entity such as middleware. The most important

benefits of this solution are interoperability and automatic configuration.

As this present work proposes to design an interoperable architecture to support different
application domains for smart cities, using the self-descriptive method for device capability

abstraction is one of the ideal solutions.

2.1.7 Context-aware Computing for the 10T

The concept of context-aware systems was introduced by Weiser [71] in 1991 for
ubiquitous computing and then, in 1994, Schilit and Theimer [72] used this same term in

their research paper. Subsequently, context and context awareness were used in many

34



research studies. There are many definitions for context, such as the definition by [73]
which considered context as the five Ws (Who, Where, What, When and Why) or the
definition by [74] who claimed that “the context is any kind of information that can be used
to characterise the situation”. Furthermore, as the term implies, the context awareness
system uses context in order to provide relevant information to its users [74]. Typical

context-aware systems can support acquisition, representation, delivery and reaction [75].

Due to the number of sensors and the large volume of information which is produced by
these sensors in the 10T, context awareness plays a crucial role in deciding what data should
be processed and in identifying the degree of awareness. Data that is collected from sensors
is worthless unless processed, analyzed and made understandable [43]. Therefore, context-
aware computing allows the context information linked to the sensors’ data to be saved,

thus enabling more straightforward analysis.

Traditional methods, such as directly connecting the sensors to the application, are not
feasible for the 10T because it works with billions of sensors which generate a vast amount
of information. In order to tackle this inefficiency, the context-aware middleware solution
was proposed in many research studies, including the work conducted by [76-78]. In
addition to the mentioned research studies, a review of relevant literature reveals surveys
which consider various aspects of context awareness. As an example, in [79], the author
reviewed context representation and context reasoning. In [80], the authors focused more
on context modeling and reasoning techniques. Context-aware architectures were also

surveyed in [81].
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The authors in [43] identified that the typical context management system has four
phases: context acquisition, context modeling, context reasoning and context dissemination
(Figure 6). In order to have a scalable, interoperable, secure and cost-effective architecture,
all these phases should be considered. Moreover, enabling the community structure for the
proposed architecture requires employing a context-aware system to convert raw

community data into meaningful information.

2.1.7.1 Context Acquisition

Context acquisition is the initial step for any context-aware system. Many techniques
are available for context acquisition; such techniques vary according to context source,
context type, frequency, responsibility and acquisition process [43]. Figure 7 shows these

general context acquisition techniques in more detail.
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Figure 7. Context acquisition techniques

Context acquisition can be performed by two methods: pull or push. If the pull method

2.1.7.2 Context Modeling

middleware or from context servers which store the context.

is used, the application is responsible for gathering data from sensors and communication.
In contrast, in the push method the sensors are responsible for sensing the environment and

sending data to the upper layers. The context can be directly acquired from sensor hardware,

Several modeling methods are presented in the literature. In [78] and [82], the authors
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introduced some popular methods, with their respective advantages and disadvantages, that
are used by many context-aware systems. Table 4 compares the available methods based
on validation, scalability, flexibility, and standardization and application independency [43,

82]. Ontology-based modeling seems a suitable candidate for this research study because




it is scalable, application independent, and interoperable, and has the ability to support

complex structures.

Table 4. Comparison between context modeling methods

g 3
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Validation X v v x X v
Scalability X X X X v v
Flexibility v v v x v x
Processing tools X v v 4 v v

Application
X X v v X v
independency

Standardization X X x x X v

2.1.7.3 Context Reasoning
Context reasoning is the means for changing data into knowledge in order to better
understand the data [83]. Context reasoning consists of three different steps: preprocessing,

data fusion and context inference (Figure 8)[43].
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Context reasoning is classified into six distinct categories, as depicted in Figure 9.
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Figure 9. Context reasoning techniques

Table 5 compares context reasoning techniques and highlights the main pros and cons

[43].
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Techniques

Supervised

Learning

Unsupervised

Learning

Rules

Fuzzy Logic

Ontology

Reasoning

Probabilistic

Reasoning

Pros

Is accurate
Has mathematical and
statistical foundation

No training data required
No need to know
possible outcome

Simple to define
Easy to extend

Simple to define
Easy to extend
Can handle uncertainty

Allows complex
reasoning

Allows complex
representation
Validation is possible

Allows evidence to be
combined

Can handle unseen
situations

Alternative models are
available

Can handle uncertainty
Provides moderately
meaningful results

Cons
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Table 5. Pros and cons of context reasoning techniques [43]

Requires significant amount of
data

Every data element needs to be
converted into numerical values
Selecting feature set could be
challenging

Can be more resource intensive
(processing, storage, time)

Less semantic, hence less
meaningful

Training data is required
Models can be complex

Models can be complex

Less semantic, hence less
meaningful

Difficult to validate

Outcome is not predictable
Can be more resource intensive

Needs to manually be defined
Can be error prone due to
manual work

No validation or quality
checking

Needs to manually defined
Can be error prone due to
manual work

No validation or quality
checking

Data needs to be modelled in a
compatible format (e.g. OWL,
RDF)

Limited numerical reasoning

Should know the probabilities
Analyzes numerical values only



2.1.7.4 Context Dissemination

Context dissemination is the way that consumers acquire data or context information.
There are two well-known methods available in the literature for context dissemination:
query and subscription [43]. In the query method, users ask for a specific context from the
context management system and their requested information will be provided by accessing
sensor hardware or by composing and integrating multiple contexts. In the subscription
method, users register themselves for an event or for specific sensor(s) data and the context

management system will update the user when the event occurs.

= Publish subscriber model:

The publish subscribe model [84] is broadly used in middleware, large scale information
dissemination and enterprise applications. The main goal of the publish/subscribe model is
to exchange information between publishers and subscribers. Messages are transmitted by
publishers and show subscriber interest in the status of the system. Subscribers also directly
submit their interest to the system and will receive notification regarding desired
publications. Neither publishers nor subscribers know about each other and only submit
their message or interest to the underlying system, known as the messaging fabric. Figure

10 shows the publish/subscribe communication paradigm for this model.

Both publishers and subscribers can communicate with only one entity, which is the
messaging fabric. The messaging fabric saves all subscriptions associated with respective
subscribers. Participants in this model do not need to know each other as the scale of the

system grows. Hence, the system is totally scalable.
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The publish/subscribe model is also known as the event filtering and matching approach.
The subscriber represents the filter and the publisher collects the events or observations,
while the message fabric makes an association between the events and subscribers, based

on their subscriptions.

Publishers

Messaging Fabric

=
=
é

Subscribers

Figure 10. Publish/Subscribe model

Several subscription models are available in the literature [84, 85], and are characterized
by different expressive powers. However, the topic-based and content-based
publish/subscribe are the two best known models. As an event filter, the topic-based
approach filters publications according to topics associated with a message while the
content-based approach filters out publications based on their content. For both, topic and
content-based, the types of topics, or semantics of content, to publish or subscribe, are
either out of band information and must be known to clients, or are dynamically
discoverable by clients based on additional support provided by the systems. Publish
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subscriber is an ideal solution for increasing the scalability of the system, therefore it can

be used as the content dissemination technique for the desired architecture.

2.2 Community Sensing and Mining (CSM)

As a result of progress in ICT, individuals are engaging in and connecting via different
forms of communities, such as social networks and cyber physical networks. Involvement
in community is how people interact and share content with each other. Therefore,
monitoring urban and community dynamics leads to better city management and urban
planning [32] and provides information for decision making [24]. Since the last decade,
social networks and cyber-physical space have gained in popularity. Social networks allow
people to share digital content such as pictures, music, and videos, and to communicate
with each other. Cyber physical space uses opportunistic contacting and ad-hoc connection

among individuals as well as between pairs of devices, such as mobile phones and vehicles.

2.2.1 Community Definition

The word “community” has been widely used in different research studies. A
community is a group of people or objects with common characteristics or similar interests,
that are tightly connected via various social and physical processes. A review of the
available literature confirms that social studies was the first context to extensively use the
term community [86]. The Oxford English Dictionary defines community as “the people
of a district or country considered collectively, especially in the context of social values
and responsibilities”. The idea of community is tightly associated with the term “network”,
meaning connectivity and interactions. With recent progress in ICT, individuals are

engaging in and connecting via different forms of community, such as social networks and
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cyber physical networks. Involvement in community is how people interact and share
content with each other. Therefore, monitoring urban and community dynamics leads to
better city management and urban planning [32]. By building communities in the smart
city, the environment can be sensed beyond a single individual ability, life quality can be

increased and the cost of sensing can be reduced for all community members.

A community in ICT can be a form of online, offline or cross-space community [87]. In
an online community, people interact with each other by sharing content using ICT. Offline
communities are formed opportunistically by co-located people during their daily activities.
A cross-space community integrates both online and offline communities. Cross
community sensing and mining focuses on the interaction among different and
heterogeneous communities, and emphasizes the association and aggregation of
multimodal data, which is obtained from distinct communities. Communities can also be
formed by connecting objects that may have common interests and which can interact and

collaborate with each other.

2.2.2 Mobile-based Community and Crowd Sensing

Mobile-based Community and Crowd Sensing (MCCS) is a new method that collects
information from individual-companioned devices such as smartphones, smart vehicles and
wearable devices [24]. This method uses the power of the crowd to sense, analyze and share
local knowledge, which is obtained from individual mobile sensor devices [32]. The
obtained data can later be aggregated and fused in order to mine further knowledge or
crowd intelligence extraction. The aggregation of sensed data from a group of individuals

can result in better decisions compared to sensed data obtained from a single user.
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2.2.3 Community Sensing Characteristics

The following section lists the most important elements of community sensing, together

with a brief explanation.

Data: The data collected from communities is heterogeneous and multimodal. This data
is collected via virtual or physical communities. Different properties of individuals can
be extracted from raw data collected from the different communities. With the rapid
development of social networks, a vast amount of data is produced by individuals in
virtual communities, which can be linked to their mobile sensed data to monitor city
and community dynamics.

Sensing style: The data sensed for CSM is classified into two distinct categories:
explicit and implicit [88]. Explicit data collection is the data collected from mobile
devices, which is the main purpose of the applications and individuals who participate
in sensing tasks. In contrast, the data collected from social networks and virtual
communities is implicit data collection because the main goal of participants is social
interaction rather than data collection.

Technologies: The most important technologies in CSM are mobile sensing,
community analysis and data mining.

Applications: Applications in community sensing can be varied, from recommendation

systems to targeted advertising.

2.2.4 Community Analysis

Since the last decade, there has been tremendous growth in online social services. People

share content via email, instant messaging, and social networks. More recently, as the

Internet has expanded into the new era of the 0T, analyzing the data from the interaction
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of people and things in online or physical communities has many benefits. This analysis
can allow people to be more involved in communities and to benefit from each other, as

well as help communities to better manage resources and infrastructure.

2.2.5 Community sensing applications

Community sensing applications can be divided into three distinct categories:
environmental, social and infrastructure [88]. Environmental community sensing deals
with natural phenomena, such as disasters, pollution or the water level in creeks. An
example of an application in this category is CommonSense [38], which uses handheld
mobile devices to measure air pollution. These devices, when distributed among a large
population, can collectively measure pollutants in a large-scale area. Infrastructure
community sensing deals with city infrastructure, such as roads and traffic. An example of
an application in this category is CarTel [89], which uses installed sensors on cars to
measure speed, velocity and traffic. The final category of community sensing is social
community sensing, where individuals share sensed data and benefit from the collective
data. An example of an application in this category is DietSense [34], where individuals
take a picture of their food and send it to their chosen community in order to compare eating

habits.

2.2.6 Cross Community Mining

Cross community sensing and mining focuses on the interaction among different and
heterogeneous communities, and emphasizes the association and aggregation of the

multimodal data obtained from distinct communities.
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2.3 Implications for this Research

Progress toward a community aware sensing system requires a generalized architecture
and more community structure to sense and analyze data, at both individual and community
levels. The requirements of a general reference architecture, which supports most of the
above-mentioned characteristics such as scalability, interoperability, context awareness,
Big Data management and community awareness, is an open research area. This system
should also ensure security and citizen privacy. Community analytics should support

environmental, social and infrastructure perspectives.
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Chapter 3

3 Proposed Architecture for the Community-Oriented

Smart City

This chapter introduces the proposed community-oriented architecture for a smart city
together with its associated framework. The design of this architecture is the starting point
for community sensing and mining research, which are the key functional blocks of a smart
city. The designed architecture and its associated framework can solve some of the

challenges previously mentioned in Chapter 1.

3.1 Proposed Architecture

An architecture is an abstract design concept of an application that shows the relation
between different parts and how they are connected. Developing an architecture usually
depends on the applications that will use the platform, but designing a general architecture
that can fulfill the requirements for all the applications and services in a smart city is
challenging. Creating an architecture for a smart city, while considering community sensing
and loT, is a complicated task, mainly because of the exceedingly large diversity of objects
and devices, link layer technologies, and services that may be associated with such a
system. There is also a high degree of interdependency between the various infrastructures

of a smart city, which adds to the complexity of community data analysis [2].

The 10T consists of many “things” such as smartphones, tablets, cameras, and sensors.

The number of connected objects increases at a daily rate and the methods of collecting
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information among the objects change. Consequently, objects produce a vast amount of
data and information. Cloud computing is an ideal technique for storing and analyzing this
volume of information, as well as for running many services. In the proposed architecture
(Figure 11), cloud computing is used to solve some of the challenges mentioned in Chapter
1, including Big Data management. Cloud computing provides access, at any time, from

any location, to all resources, such as mobile devices, sensors, actuators, and tags.

The proposed architecture (Figure 11) consists of four layers: sensing, transmission,

storage and control, and application.
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3.1.1 Sensing Layer and Data Collection

This layer contains different data sources for community sensing, including
smartphones, sensors, and vehicles. Heterogeneity is one of the important characteristics
of the sensing layer, which often contains a variety of sub-networks that adopt different
communication technologies [90]. To overcome the difficulty of collecting data in
heterogeneous networks, a generalized framework for data collection is required. This
framework should retrieve data, either continuously or at random intervals. The objects in
this layer are small and most of them have a limitation on computation and energy.
Therefore, it is crucial that data collection algorithms and techniques are designed to

efficiently use energy.

There are three sensing resources in the proposed architecture: WSNs, mobile devices
and social networks. Since they enable the collection, processing and analysis of data in
any kind of environment, they play a crucial role in the sensing layer. Based on the
expansion of social networks and the increasing number of mobile devices, citizens share
their social activities in interactive environments [91]. With this participatory sensing,

service providers can collect data more easily than with other methods.

3.1.2 Transmission Layer

The transmission layer includes a communication infrastructure that delivers the data
from the sensing layer to the control layer, and vice versa. As most of the data sources in
the proposed architecture are mobile devices, depending on the data collection
environment, there may be no network infrastructure available to transmit the data to the
destination. In this case, it is the responsibility of the transmission layer to deliver the data

to its destination in an opportunistic manner. As the aim is to route the data through the
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Internet, the entire platform needs to adapt to IP. Many alliances and councils have tried to
adapt the 10T to IP technology. For instance, 6LOWPAN [92] and InternetO have followed
the approach of reducing the complexity of an IP stack to achieve a protocol designed to
route IP over everything [9]. In the proposed architecture, the focus is on how to connect
objects to each other for information exchange rather than enabling IP technology to things
and objects. For this purpose, using a gateway is considered as an interface between the
sensing layer and core transmission layer to translate the protocols used in the sensing layer

to IP.

3.1.3 Control Layer

This layer is responsible for: retrieving data from a data base; applying data mining
algorithms to find patterns in the data; registering and managing the services that are
provided by multiple service providers; managing communities; allocating tasks; and
processing crowd data. To achieve these goals, a powerful computational resource is
required, hence a cloud based analytical and computational module is considered in the
proposed architecture. All data that is collected from the sensing layer is processed on the
fly on its way to the database. The control center does not need to individually communicate

with each entity or sensor to obtain the data.

In the proposed architecture, a distinction is made between community services and
individual services, therefore this layer is separated into two control centers. To
communicate with other entities, such as remote users or the monitoring section, the web
interface may be considered as a general interface for control centers. Each control center
consists of database management, knowledge discovery and service management
components. The notable difference between a community control center and an individual
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control center is the type of knowledge discovery methods applied to the data. Furthermore,
service providers at the community level are more interested in providing a service for the

community than for individuals.

The proposed architecture allows developers, service providers and data miners to join

a network and offer their services.

e Community-Oriented Services

The main objective of this research is to design a community-oriented architecture for
smart cities to efficiently manage resources and improve the quality of life for citizens. In
smart cities, a large number of objects communicate over the Internet and many users tend
to access their data at the same time. Therefore, this interaction will result in a steady
increase in network traffic. The current Internet architecture, which is designed to handle
host-centric communication, does not support data-centric communication [23].This
difference between the current architecture and the new service model architecture causes
a waste of network resources and increases the communication overhead. Furthermore, it

dramatically decreases the performance of the whole network.

Categorizing smart city objects into groups based on their common characteristics is a
solution for the above problems. It is possible to create communities and group the users
and objects into the same community, according to their interests. This solution decreases
the communication overhead and ignores unnecessary communication to increase the total
performance. An additional advantage of this integration is better service performance and
resource discovery. Furthermore, it guarantees scalability and increases the level of

trustworthiness by interacting with more objects [93]. Considering the sets of objects in
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communities is also a kind of collective intelligence, which brings benefits for all

community members. Figure 12 shows the initial concept of community-based services.

Applications

Communities
Social Environmental Infrastructure
Communities Communities Communities

Control Layer

Transmission Layer

Sensir*g Layer

i iii  mEm mmm <8 oh, a8
IR AT i s ke " R R

Social Communities Environmental Communities Infrastructure Communities

Figure 12. Community-based Smart city architecture

With the concept of a community-based smart city, objects can be associated with the
service they can deliver. Therefore, how to publish the information and services as well as
how to find the appropriate service in the communities are key issues. By enabling

community structure for smart city objects, users can discover services by searching among
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the objects that have a common interest instead of relying on Internet discovery tools, which

are not scalable for a large number of devices.

The object relationship in the community-based smart city can be categorized into
multiple taxonomies, such as: (1) Objects that are co-located and co-operate for the
common goal that is associated with the location; (2) Co-work objects that collaborate with
each other in order to provide a common smart city application, such as wearable sensors
that work together to monitor health; and (3) Social objects that connect to each other
because the owners of the objects have a relationship with each other. Objects can also
belong to a community according to how willing the members are to either share the
information or subscribe in order to obtain the information in a specific title. For example,
all wearable sensors, which belong to one person and that work together to monitor the

user's health, can join with the city’s health community to share their information.

3.1.4 Application Layer

This layer includes different types of applications and services for individual and
community sensing and mining. This layer is also responsible for displaying and visualizing
the results that are collected and mined by lower layers. Another functionality of this layer

is to provide an interface for users to interact with the rest of the system.

3.2 Framework for Community-Oriented Smart City

A framework, which is an implementation of the selected architecture, indicates the
different components that need to be implemented in order to make the architecture
feasible. The proposed framework for community-based smart cities, which is derived from

the main architecture, has four different layers: sensing, network (data transmission),
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control and application. Figure 13 shows the four different layers included in the design of

the framework for a community-oriented smart city. The control layer consists of three sub-

layers: community analysis, data management and device management.

This section provides a more detailed analysis of all the components of the community

analysis, data management and device management sub-layers. These components are

presented below in Figure 13:
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- loT Gateway

The loT Gateway component provides a unified interface for the upper layers and
components to access sensor data and 10T objects without the problem of dealing with
various kinds of sensors and different sources of information [94]. The loT gateway solves
the heterogeneity problem mentioned earlier in Chapter 1 [94]. It also solves the scalability
problem because new devices and objects can be easily added to the system. An loT
gateway can use both external descriptive and self-descriptive solutions [63] to provide a
transparent view of the sensing layer to the upper layers. With the emergence of fog
computing [95], the 10T gateway can play an important role in extending the cloud
computing paradigm to the edge of the network. Each community can be associated with
separate 10T gateways and different tasks, including storage, and preprocessing can be

efficiently completed from the community perspective.

- Device Discovery

The device discovery component is responsible for identifying the appropriate devices
to accomplish the tasks assigned by the upper layers [96]. Since a vast number of devices
and sensors connect together [29], the existence of this component in the proposed
framework is vital. Once the appropriate device with proper characteristics for the sensing
task is found, a sensing task can be assigned to it. Several solutions have been proposed in
the literature to solve the device discovery problem [96-99]. Some of them are focused on
single characteristics such as service description and communication protocols while others
are focused on multiple specifications. As a smart city is expected to host millions of

devices, the two important factors for the device discovery service are the reliability of
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discovery and response time. Device discovery can also be performed in two different

ways: centralized or decentralized.

- Device Registration

The device registration component is responsible for automatically registering any
device that would like to join the network. This component can extract the device
capabilities and create an appropriate profile for each device [63]. Other components such
as device discovery can use registered device profiles in order to find appropriate devices

for sensing and task assigning.

- Data Acquisition

This component is responsible for acquiring data from the sensing layer by applying
different acquisition methods, such as the pull or push [43]. The data acquisition component
can automatically detect the method for context acquisition based on context type, context
source, frequency and responsibility. Different applications may require different data
acquisition techniques to acquire data, therefore this component is responsible for detecting
and applying proper techniques for data acquisition. This component can also acquire data
from different communities. To this purpose, the data acquisition component should work
directly with the community detection component in order to access different communities

and acquire data from them.

- Data Modeling and Representation

The data type in mobile community sensing can be categorized into two distinct groups:

(1) User personal/private data, such as health, location or social media and (2) Public data
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that is also available to other users to sense, such as traffic-related, environmental, and
weather data. Since time is one of the common dimensions in all sensor data, this present
work considers data as a multi-dimensional time series. If N is assumed as the number of
participants, K as the number of dimensions and T as the period of data collection in
community sensing, then data can be denoted by D(d,t, k) where d € [1,N],t €
[1,T] and k € [1,K]. To denote all of the data, a three dimensional (N * T * K) matrix is

used, where d; ;, is the data of user i in time j for sensor k.

= Spatio-temporal correlation

Data that is collected from citizens by mobile community sensing has a spatio-temporal
correlation, meaning that the data collected from the same user in different timeslots are
correlated if these timeslots are adjacent. Also, the data from different users is correlated if

collected at the same periods of time and if the users are physically correlated.

= False Data Detection

As previously mentioned in this chapter, collected data may contain missing and false
data. False data can be intentionally generated by malicious users or accidentally produced
as a result of hardware failure or a noisy sensing environment. One technique that can be
used for detecting false or missing data is to build a new data matrix from the original
collected database on a spatio-temporal correlation and then compare the new matrix with
the original. Figure 14 shows the proposed model and steps for false and missing data

detection.
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Figure 14. Proposed model for false and missing data detection

The important part of the above model is how to reconstruct the data to approximate, as
closely as possible, the real sensed values. In order to precisely reconstruct the original data
values, it is necessary to trust the collected data of participants and approximate the original
data values by interpolating their respective sensor value. The current literature offers
multiple techniques, such as Spatio-Temporal Compressive Sensing [100], Nearest

Neighbor and Delaunay Triangulation [101], that can be used to rebuild data matrices.

- Big Data Management

The Big Data management component is responsible for managing and storing the data
collected from communities. As the volume of collected data is large, processing and
storing it by using existing data management tools is inefficient [11]. Furthermore, because
of the variety and multi-modality of the collected data, traditional data management
techniques are insufficient [11]. To solve this problem, the Big Data management
component transforms and represents data in a uniform manner, based on the same

ontology.

- Service Composition

This component is also responsible for composing the different services and creating a

new service. A complex service may require mixing multiple services together and
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composing a new service. Service composition can be accomplished in two different ways:
Flow-based and Al-based [63]. In flow-based service composition, the sequence of services
that need to run in order to compose a new service is represented by a graph and manually
defined. Al-based service composition automatically determines the service needed for
composition and dynamically adapts itself by checking the service availability [63]. In a
community-oriented framework, services can be associated with communities and can be
combined in order to create a large inter-community service. Composition of services is
used when the current available services cannot fulfill a task. In such a case, the service
composition component is able to explore available services and combine them together to
fulfill a request. The service composition component in the community analysis sub-layer
needs to work alongside the community detection component to be aware of detected

communities and services associated with communities.

- Task Allocation

This component is responsible for taking the application layer requests and assigning
them to the appropriate sensors in order to fulfil the requests. The assignment should be
based on application or service requirements, such as sampling location, sampling time,
device capability, willingness, and given budget [102]. As many users participate in a
sensing task, an appropriate task allocation is required to determine which node is suitable

for the sensing task.

- Incentive Mechanism

This component is responsible for providing incentive mechanisms and controlling data

contributors [103]. In community sensing, as humans are involved and sensors are usually
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possessed by different individuals, participation in the sensing process depends on
individual incentive, and incurs both cost and energy. Without strong incentive
mechanisms, participants may not be involved in the sensing process. Therefore,
identifying a means by which to motivate individuals to be active in the sensing process is
another challenge. Furthermore, if money is used in the incentive mechanisms, participants

may be more likely to deceive the system in order to obtain more benefit from it.

- Data Quality

This component is responsible for controlling the quality of contributed data, while

ignoring low quality data.

Mobile crowd sensing [88], also known as community sensing, enables a vast data
collection from citizens while allowing a wide variety of sensors and data sources to
contribute data. However, collecting data from multiple sources and different users is often
loosely controlled, resulting in outliers, noise, and missing information. To increase the

quality of collected data, a data quality component is suggested in the architecture.

The data contributed by communities or a crowd is not always reliable. Users could
submit false data to deceive the system in order to obtain more rewards without performing
the appropriate sensing task. As examples, a renting agency might contribute fake data to
a noise monitoring system to promote a rental apartment in a specific region or an
individual involved in a crime may submit fake data to a crime monitoring system in order

to avoid police detection.

Low quality collected data is not always attributable to fake data. Other key factors
which decrease data quality include sensor hardware failure, communication errors,
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inappropriate sensing or false sensor readings. For example, in a location-based application,
a GPS sensor may submit incorrect location coordinates due to poor GPS signal quality, or
data may drop in a wireless communication network as a result of a low quality wireless

connection.

Different techniques for tackling data quality have been developed, such as the work
introduced in [104, 105]. However, none of them has been presented as a general approach.
Different sensors, applications and environments need different approaches in order to
resolve data quality. As an example, the technique used for resolving data quality in a GPS

sensor cannot be used for a temperature sensor.

- Community Detection

The community detection component is responsible for managing objects and people in
communities, recognizing the communities and for identifying the relationship between the
objects and people in communities. Furthermore, this component is responsible for
analyzing the community and crowd data, and for extracting patterns from raw sensory data
by leveraging community data mining techniques. Also, the community detection
component enables people to be placed in communities based on attributes that they have
as well as through community establishment. This component, together with the data
aggregation component, can determine similarities between people by leveraging the sensor
data collected from their smartphones or from their surrounding environment and aggregate
sensor data for community detection and extraction. The component, which is also able to
transform time-series data to similarity networks for community detection, will be

discussed in greater detail in Chapters 4 and 5.
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- Data Aggregation

In the proposed framework, data can be collected from social or physical communities.
The data aggregation component is responsible for cross space data association and fusion.
In community detection, data aggregation is one of the most important components.
Because different types of data have different characteristics and features, data aggregation

can fuse data from different sources of information [106].

- Privacy Management

Privacy management is designed to maintain the privacy of community sensing
participants. Data collected from communities usually contains personal data such as
locations and names [106]. This component tries to apply different techniques, such as
anonymizing data, to maintain user privacy. Simple anonymization is not always sufficient
to preserve privacy [107], especially for data that contains GPS information and locations
since the data itself can disclose the identity of the owner even if collected anonymously
[108]. Therefore, this component uses different type of techniques and mixes them together

to preserve privacy before the data is published.

- Trustworthiness Management
In community sensing, human involvement in the sensing task carries trust issues.
Due to multiple reasons, participants sometimes provide fake or incorrect data. In order
to increase data quality, this component ensures data source validity and preserves trust.
A few studies focus on trust management in 10T, including the work in [109] which
uses fuzzy reputation for trust management or the work in [110] which uses the

63



hierarchical trust management model. In community sensing, trust management can be
performed at two levels: at the community level and at the inter-community level. This

component can work alongside the community detection component to preserve trust.

3.3 Summary

In this chapter, an architecture and its associated framework for a community-oriented
smart city has been proposed. Different components of the proposed framework were
detailed. Demonstration of all the components via an implementation is beyond the scope
of this thesis. The primary contribution of this thesis is focused on implementing the
community detection and data aggregation components which are the key functional blocks
for a community-oriented smart city. Therefore, the next two chapters focus more on these
two components and their implementation. The design of the architecture and its associated
framework is expected to be the initial step for the community-oriented sensing research

area.
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Chapter 4

4 Community Detection and Analysis Using Graphs

4.1 Introduction

Since there is neither a general solution nor a unique algorithm for community
identification, detecting communities in networks is an ill-defined problem in computer
science [111]. Accordingly, there is no unique way to evaluate and compare the
performance of different algorithms. The drawback of this ambiguity has led to
considerable confusion and many misconceptions, and has also slowed down progress in
this research field. However, this very vagueness gives researchers the freedom and
flexibility to suggest a variety of approaches for different problems that often depend on a

specific application.

This chapter proposes an approach to detect and analyze communities of individuals
using graph analysis, based on assessing the similarity of patterns in sensor data over time.
This demonstrates the sensing and management of data within the proposed Community-
Level Sensing, Control and Management sub-layer. It further demonstrates the Community
Detection and data aggregation components of Figure 13 in Chapter 3. A case study is used
to demonstrate how social communities are formed based on similarity of the patterns in
the sensor data. This similarity is calculated based on the sensor data collected from the
smartphones of individuals. Contrary to other sensing platforms, smartphones, which are
kept close to us most of the time, are part of our daily lives. Therefore, detecting

communities of individuals according to data from their smart phones is more precise than
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other sensing platforms. As observed in the framework designed in Chapter 3, one of the
main components of community analysis is community detection. As a consequence, this

component forms the main focus of this chapter.

A further unique contribution of this chapter is that the proposed method transforms time
series data collected from individual smartphone sensors to correlation networks by
applying various similarity functions. The method then finds the communities of the
corresponding correlation network by applying different community detection algorithms.
In other words, the proposed method finds similar time series data and clusters them into
groups; each group contains the data of the users who have the most similarity. Based on a
review of the literature, this current study is the first to detect communities of individuals

from the time series data collected from their smartphone sensors.

The remainder of this chapter is organized as follows. An explanation of the
characteristics of communities based on reviewing the related literature is first presented
followed by a discussion of the benefits of community detection in a network. The proposed
method for community analysis is then described. The chapter concludes with a real case

study and experimental results.

4.2 Definition of Communities

. The concept of network is almost everywhere, from social science to computer science
[112]. Any network can be represented as a graph that includes edges and vertices, and
where each edge connects a pair of vertices [113]. If there is a network that can be
represented by graph G of which the vertices are objects or people while its edges show the

correlation or similarity between the vertices, then a community is a subgraph of graph G
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denoted by C, which is the number of internal edges inside the subgraph; i.e. the number
of edges connecting the vertices of the subgraph C to the vertices of C is more than the
number of external edges, which are the number of edges connecting subgraph C to the rest
of the graph [114, 115]. Expressed simply, community is a subgraph of a graph G where
the internal edges’ density (internal degree) is higher than the external edges’ density
(external degree). Suppose that C is a subgraph of a graph G and the number of edges and
the number of vertices are e, v for graph G and e, v, for subgraph C. If the adjacency matrix
for graph G is represented by A , then the internal and external degree for subgraph C can

be shown as:

Internal degree of the subgraph C = z Ajj (1)
i,jec

External degree of the subgraph C = Z Ajj @)
i€C,jec

where A;; is an element of the adjacency matrix A, which equals 1 if the vertices i and j

are connected, otherwise it equals 0.

Based on the above explanation, communities are groups of densely connected vertices
with a weak connection between groups. If the vertices are considered as people and the
edges are considered as similarity between people, then it can be concluded that the

community is a group of people who have a common interest or similar characteristics.

Community can also be defined by measuring the probability of node connectivity.
Therefore, community will be the groups of nodes that have the higher probability of being

connected to each other than to nodes in other groups [111]. Figure 15 (a) shows a sample
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network that has four communities and, as can be clearly observed, the density of edges

inside of each community is more than the density of edges outside of the community.

Figure 15. (a) Network with four separate communities. (b) Network with overlapping communities.

Communities are not always separated from each other and nodes can belong to multiple
communities. For example, in a social network, an individual can be a member of more
than one community at the same time, such as a family community, as well as a friend
community. Figure 15 (b) shows the overlapping communities when one node belongs to

more than one community.

4.3 Benefits of Detecting Communities

Most networks follow a community structure and their members are structured into
groups that are called communities. Facebook, for instance, is a social network that
connects people around the world according to their relationship. Twitter is another
example where users post and interact with messages. A further well-known example for

which the community concept can be used is the 10T where objects connect and interact
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together via the Internet. Detecting communities is one of the most important tasks when
analyzing networks. ldentifying communities helps us to discover groups as well as their
common interests and organizational basis in the networks. Identifying communities also
allows us to uncover the functionality and interactions between the network members, to
predict their relations and to infer missing attributes and features. Community detection is
not only limited to those networks mentioned above but has been applied to networks of
many kinds, such as biological, social, human, and academic. As an example, Figure 16
[116] shows the communities in the National Collegiate Athletic Association (NCAA)
football teams’ network which is detected by an AGM algorithm [117]. Each color
represents one NCAA team or community, the vertices represent members and the edges

show the connection between them.
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Figure 16. Communities in NCAA football team network. Figures reprinted from [116]
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4.4 Proposed Method

As a large amount of the differences between people will appear as differences in their
sensor data, analyzing the sensor data of various people and finding the similarity and
dissimilarity between their sensor data will reveal the similarity and dissimilarity between

them.

As presented in the proposed framework in Chapter 3, the main purpose of the
community analysis component is to check the possibility of identifying different
communities of people by leveraging their sensor data and performing a multi modal
analysis on their data. In order to determine communities, a five step method is proposed.
The main concept behind this method is illustrated by Figure 17 and presented in Algorithm
1. In this method, time series data is collected from users and used to construct different
types of graphs known as Sensor Correlation Networks (SCNs), such as GPS or EEG
correlation. Each sensor correlation network or graph is generated by inferring data from
sensors originating from multiple users by using different similarity functions where each
user’s sensor data is represented as a vertex and graph edges indicate the level of similarity
between a pair of user sensor data. In the next step, based on the application that uses the
platform, the SCNs can integrate and fuse together to create a unique graph, known as a
User Correlation Network (UCN), where graph vertices indicate the users and those that
are the most similar are connected. For example, if there is a transportation application that
needs to know the communities of users based on their movement pattern, and this
application use two different sensors data, GPS and accelerometer, then both the GPS
correlation network and the accelerometer correlation network can be used to generate the

movement correlation network. In another example, a health correlation network can be
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generated by mixing EEG, ECG and heartbeat sensor correlation networks. According to
the application’s needs, multiple UCNSs are possible in this step. The final step is to detect
the communities of users based on their UCN by applying a community detection
algorithm. The proposed method provides two distinct levels of similarity: sensor similarity
and user similarity. However, these two levels can be combined in one level or one of these
levels can be skipped based on the applications which are used on the top layer. Although
in the first level, a single SCN cannot precisely manifest the users’ similarities, it can be
used to reveal the communities of the users based on a particular sensor. The steps for the

proposed methods are presented below.

Algorithm 1-Community detection

Input: Sensor raw data

Begin
Data = Preprocess (Sensor Raw Data)
SimilarityMatrices = SimilarityMeasurement (Data)
SCNs = GraphCreation (SimilarityMatrices, k)
UCNSs = Integration(SCNs)
Communities = CommunityDetection(UCNSs)

End
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Figure 17. Community analysis component

4.4.1 Pre-processing

Pre-processing, which is the first step in the presented method, transforms the sensor
raw data into a format that is more effectively processed and then prepares this data for the
subsequent steps. Pre-processing is a very important step because it directly affects the
community detection result. This step includes noise filtering, data normalizing and

vectorization.

4.4.2 Similarity Measurement

The many differences between users will by reflected by the differences in their sensor
data. Therefore, measuring the similarity or correlation between their sensor data can reveal

their similarity.
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The second step in the proposed method is to measure the similarity or correlation
between users based on their sensor data and then create a similarity matrix S for each
sensor, where each element (s;;) in the matrix S is the similarity value between user
U; sensor data and user U; sensor data. This will result in the same number of similarity
matrices as the number of sensors. For instance, if a user has data for GPS, EEG and ECG
sensors, three different similarity matrices will then be created: one for each of the GPS
and EEG sensors and the third for the ECG sensor. Users’ social data, such as Twitter, can
also be considered as a virtual sensor and can also form a similarity matrix. Assuming there
is a similarity function to measure the similarity between the sensor data of two users, then:

sij = Similarity (U, Uj)SensorZ

3)

where s;; is an element of similarity matrix S and z specifies the sensor type. The similarity

function would be different from one sensor to another.

Because users’ sensor data are time-series so the similarity between two users can be

calculated by finding the similarity between two time-series.

In the proposed method, every SCN is created by using its corresponding similarity
matrix, which is created in the current step. Nodes in the SCN represent the users’ sensor
data and edge-weights represent how the users’ sensor data are similar. To express it in a
simple way, edge-weights are created based on similarity matrix S. The proposed

framework is designed to measure the similarity of multiple sensors in order to capture the
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various levels of dependency among users. Depending on the number of sensors with which

each user is equipped, there can be a variety of SCNs.

Measuring the similarity between users’ raw sensor data is a complicated task because
most of the sensors create high dimensional data and computing the level of similarity
between them is complex. Thus, instead of measuring the similarity between raw sensor
data, it is possible to measure the similarity between the features extracted from the raw
data. To this purpose, the features for each user sensor data can be used to construct a
histogram to measure the similarity between them. Based on the type and number of
features, this histogram can be either one or two dimensional or, in some cases, even more
than two dimensional. For instance, for a GPS sensor that considers the features as latitude,
longitude and time, then the histogram can have three dimensions. Thus, if considering T;

and T; are the histograms of user U;and user U; then:
sij = Similarity (T;, Tj)Se"s°" @

One of the well-known similarity functions is Dynamic Time Wrapping (DTW) [118],
which aligns two time series (histograms in this case) by employing the shortest wrapping

path in their distance matrix and calculating the similarity between them.
sij = DTW (T, Tj) ®)

Given two time series Q and C of length n (K - dimensional), aligning these series using
DTW involves first having to build a n — by — n matrix where the d;; (i*", j**) element of

the matrix corresponds to the Euclidean distance of point i in Q and point j in C.
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k
di;(Q,C) = Z(qki - ij) * (qui — ij) (6)
k=1

The second step is to identify a path through the matrix that minimizes the total cumulative
distance between them or, in other words, that minimizes the wrapping cost. The DTW is

computed based on the following equation:

DTW(Q, C) = min (7

where P, is the zt" element of the wrapping path P, a set of distance matrix elements that

indicates a mapping between Q and C.

4.4.3 Graph Creation

By having a similarity matrix, an SCN for each sensor can be created. Each node in the
graph represents a user and the edges’ weights between nodes represent the similarity
among users. Thus, if two users are similar, there will be an edge between them; if they are
not similar, there will be no edge between their corresponding nodes. The two most popular
graph creation algorithms are K nearest neighbor (Kyy)and € nearest neighbor
(Enn) [119]. The first algorithm connects each node to the K most similar nodes and the
second algorithm considers a threshold € and connects each node to another if the similarity

between them is more than the defined threshold.
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4.4.4 Integration

After all the SCNs are constructed, they are fused together to create UCNs. This
integration will depend on the applications that are used on the top layer. Each application
will have a different weight for each sensor. The similarity matrix (U) of each UCN is

created by the following equation:

n
W = z W, * S (8)
z=1

where U;; is an element of the UCN similarity matrix(U), indicates the similarity between
user i and user j, W, is the given weight for the zt"* SCN, S{; is an element of the zt" SCN

indicates the similarity between user i and user j sensor data and z specifies the sensor’s

type that is used to create the UCN.

After building the similarity matrix for each UCN, the same graph creation methods that
were used in the previous step can be used to build the UCNs. The number of SCNs
involved in creating a single UCN depends on the type of UCN. For instance, a Lifestyle

UCN can be created by using GPS, EEG and ECG SCNs.

4.4.5 Community Detection

This is the final step for community analysis. In this step, the community detection
algorithms are applied to the UCN in order to identify some different communities within
it. Each community or cluster is an indication of the group of highly connected users who
share a similarity in different aspects, depending on the type of UCN. Many community

detection algorithms are available [114, 120-123]; the best result will depend on the

selection of the algorithm. The most common algorithms are Louvain [120], LeMartelot
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[121], Newman’s Greedy Algorithm (NGA) [122], and Danon. In this section, a brief

review of each algorithm is given.

The Louvain Algorithm [120]: Louvain is a heuristic method based on modularity
optimization. In clustering optimization, the goal is to maximize the function (objective
function) which indicates the quality of a clustering, over all possible clustering space. In
the Louvain algorithm, the quality of clustering is measured by modularity of the partitions
so the goal is to maximize the modularity. The modularity can be defined as a scalar value
between -1 and 1, which measures a density of edges inside clusters/communities to the
density of edges outside clusters/communities. Therefore, the algorithm tries to find the
optimized clusters by maximizing the density inside of communities and minimizing the
density between communities. The modularity function in Louvain algorithms is defined

as follows:

AQ = Zintkim <Zt0t +ki>2

2m 2m

B G| e

where Y;,, is the sum of the weights of the links inside community C, Y;,; is the sum
of the weights of the links incident to nodes in community C, k; is the sum of the weights
of the links incident to node i, }}; ;,, is the sum of the weights of the links from i to nodes

in community C and m is the sum of the weights of all the links in the network.

A Louvain algorithm is performed in two steps, repeated iteratively. In the first step,
each node (user in this thesis) is assigned to a separate community and then modularity

calculated if the nodes are removed from their own communities and assigned to their
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neighbour’s communities. In the second step, the Louvain algorithm assigns the node to
the community which maximizes the modularity. This step is repeated until no change

occurs in modularity value for all nodes.

LeMartelot [121]: LeMartelot is another community detection algorithm based on
greedy optimization and is similar to the Louvain algorithm. However, LeMartelot uses
the stability function along with the Markov process to measure the quality of communities

instead of modularity.

Newman’s Greedy Algorithm [122] : NGA is another community detection method
based on modularity optimization which identifies communities in a large scale network.
NGA algorithms work similar to Louvain algorithms but with a different modularity

function. The modularity value is defined as follows [120] :
1 kik;
Q=3 2.4 = ] 8 (10)
ij

where A;; is the similarity between user i and user j, k;is the sum of similarity value of
the nodes attached to node i, C; is the community to which that user or node i is attached,

m is the sum of all similarity values in the graph and § is a simple delta function.

4.5 Use Case Scenario and Experimental Results

This section provides an evaluation of the effectiveness of the proposed method and
presents the experimental results from the proposed community detection method. The
experiment shows that collecting the sensor data of individuals can effectively identify their

belonging communities and determine the similarities among them.
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4.5.1 Experiment Settings and Methodology

45.1.1 Obijective
The objective of this experiment is to establish the presence of communities of users
according to their mobility patterns and frequency of visiting locations, as well as to verify

the accuracy and performance of the selected methodology.

45.1.2 Datasets

This experiment uses location data which was collected over the course of a month
(November to December 2016) from 14 users who live in the Greater Toronto Area (GTA)
in Canada. The location data was collected from the GPS sensors of their smartphones by
using Google location history software, and transferring it to the cloud via a 3G/4G network
connection. It was then stored in an SQL server database on the cloud. The users are
undergraduate and graduate university students as well as non-students. The collected data
contains times, GPS coordinates (latitude, longitude, altitude). The mobility pattern is
considered as a time series of GPS coordinates. Figure 18 to Figure 32 show the users’
movement patterns in the total periods of data collection. In Figure 18 to Figure 31, a line
was drawn between each consecutive data point and overlaid on a Google map, but with no

timestamp. Figure 32 includes the timestamp as one of the figure dimensions.
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Figure 32. User movement patterns with time (user 1 to user 14)

45.1.3 Data Processing

For each user, the data (longitude, latitude and timestamp) is tessellated to three-

dimensional equal-sized tiles. Each tile is considered as a bin and a 3D histogram is created
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for each user. Figure 33 shows the users’ histograms. For simplicity, GPS coordinates are

converted to one feature, which is the distance from a known location (the campus of the

University of Ontario Institute of Technology, Oshawa). The values of the histogram vector

show the distribution of data for each user.
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The subsequent step involved identifying a similarity between users and constructing a
similarity graph based on similarity values. For this purpose, DTW was used as a distance
metric and a similarity matrix created by calculating the similarity between users’
histograms. After building the similarity matrix for all users, a well-known graph creation
algorithm, Ky, was employed in order to build a similarity graph. In Ky, each node is
connected to its K most similar nodes. The value of K has a direct effect on the community
detection algorithm. K can be considered as an average degree of the graph or network.

Figure 34 shows the different similarity graphs by changing the value of parameter
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K (average degree). As can be observed, when K is set to “0”, the graph is completely

disconnected and every node is placed in a different community. When K is set to “13”, the

result is a fully connected graph where every node belongs to one single community.
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Figure 34. Similarity graphs constructed with K-NN algorithm. K changes from 1 (totally disconnected

graph) to 14 (fully connected graph)

The next step is to apply a clustering algorithm to the previous step graphs and determine
users' communities. In order to identify the communities, four different algorithms are

employed: Louvain [120], LeMartelot [121], NGA [122], and Danon.

4.5.2 Experimental Evaluation

In order to validate the proposed method, it is necessary to check how accurately the
method identifies communities. One approach is to check the precision by using benchmark
networks whose community structures are known and determine how the applied method
recovers communities in these networks. Another approach involves measuring the
partition similarity, i.e., the similarity of the detected and actual communities. As there is
no unique definition for community in the literature, identifying a benchmark network is
difficult and may be arbitrary. As a result, this experiment uses partition similarity for

validation.

The objective of this experiment is to evaluate the performance of the proposed method

by checking the different combinations of algorithms used in each step. To compare the
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results with planted communities, three different partition similarity metrics are used: the
Rand Index (RI), the Jaccard Index (JI) and the Normalized Mutual Index (NMI). The RI,
which is a well-known pair matching similarity index, is the ratio of the correctly classified

vertices in communities to the total number of vertices.

A+B

oDz )

where A is the number of pairs of vertices truly classified into the same cluster, B is the
number of pairs of vertices truly classified in the different communities and n is the total
number of vertices. The RI for this experiment is computed by comparing its results to the
correct community labels provided manually before the experiment. The RI has a value
between [0, 1] where “0” indicates independent partitions and “1” indicates identical

partitions.

The JI [124]is another partition similarity index in which the number of pairs of vertices
are truly classified in the same cluster (A) by the number of pairs in the same community
in one partition and different communities in the other partition (C), plus the number of

pairs of vertices which are in the same community in both partitions (A):

Il = (12)

The NMI [125], another well-known partition similarity metric, is used for evaluating
community detection results. The NMI is the normalized version of the Mutual Information
(MI) used in information theory to scale results between [0,1] where “0” indicates no
mutual information or independent partitions and “1” indicates a perfect correlation or

identical partitions. NMI is computed as shown below:
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2MI(X,Y)

M) = G0+ Hn

(13)

where x and y are the two partitions whose similarity is measured, X andY are two random
variables with the joint probability distribution of P(X,Y) = n,, /n, Ml is the mutual

information which is calculated according to the Shannon entropy [125] of the variable X
and conditional entropy of X given Y and is equal to MI(X,Y) = H(X) — H(X|Y), H(X)

and H(Y) are the Shannon entropy of variables X and Y.

In order to calculate the Shannon entropy, the following equations [125] are used:
HOO = =) PN log P(X) (14)
where P(X) is the marginal probability distribution function of X.
HX|Y) = — Zx’yp(x, ¥ log P(X|Y) (15)

where P(X,Y) is the joint probability distribution function of X and Y.

45.2.1 Effect of graph creation on applied method

In the first scenario, the effect of the graph construction on the community detection
method is evaluated. The effect on the community detection process of the parameter K in
the K — NN algorithms is determined. An additional step changes the K from 1 to 13 and
the partition similarity is measured with three different metrics: NMI, Rl and JI. Table 6

indicates the first scenario set-up parameters.
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Table 6. Set-up parameters for the first scenario

Description Value

Similarity Function DTW

Graph Creation Algorithm K-NN

Average Degree of the similarity graph (K) 1-13

Community Detection algorithm Louvain, LeMartelot,
NGA, Danon

Number of Users 14

Figure 35 to Figure 38 show the effect of K on partition similarity when the Louvain,
NGA, LeMartelot and Danon algorithms are used. As can be observed in all cases, when K
is large or small, the partition similarity indices are low and the community detection
method cannot effectively discover communities but the method has its best partition
similarity when K is in the middle. This is because, when K is equal to 1, there are fewer
links between the nodes and the community detection algorithm detects a higher number
of communities. When K is large, the majority of vertices are connected and the
community detection method finds a smaller number of communities. All indices show that

setting the average degree to 6 achieves the best partition similarity.
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Figure 36. Effect of K on partition similarity when NGA algorithm is used
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Figure 37. Effect of K on partition similarity when LeMartelot algorithm is used
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Figure 38. Effect of K on partition similarity when Danon algorithm is used

Figure 39 shows the effect of K (average degree of vertices) on the number of
communities. Figure 40-43 show the different communities that are identified when the K

value is equal to 1, 6 and 13 when using different community detection algorithms.
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Figure 40. Communities detected when Louvain algorithm is used. Node color represents the communities

found in each graph and K represents average degree
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Figure 41. Communities detected when NGA algorithm is used. Node color represents the communities found

in each graph and K represents average degree
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Figure 42. Communities detected when LeMartelot algorithm is used. Node color represents the communities

found in each graph and K represents average degree
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Figure 43. Communities detected when Danon algorithm is used. Node color represents the communities

found in each graph and K represents average degree

Figure 40 to Figure 43 show an example of the influence of graph creation and
community detection algorithms on the clustering result on the collected data. As can be
observed in all cases, regardless of the community detection algorithm selected, for K equal
to 13, all the users cluster in one community. When K is equal to 6, the communities found
are different from one algorithm to another. Because of the low number of participants here,
it is possible to compare the detected communities with actual communities. For this
purpose, the actual communities of users are manually extracted, by looking to their
movement patterns and frequently visited locations, and then compared to detected

communities.

4.5.2.2 Effect of community detection algorithm on applied method
In the second scenario, in order to verify which algorithm will give the best result in
terms of partition similarity, the effect of the community detection algorithms on the

applied method is evaluated.
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Figure 44. The effect of community detection algorithms on partition similarity (R1, NMI and JI)

As shown in Figure 44, the LeMartelot algorithm obtained the best partition similarity

in both the Rl and NMI, but not in the JI.

4.6 Conclusion and Discussion

In this chapter, a new method to detect communities of individuals was proposed and
the advantages of applying community detection algorithm on time-series data is evaluated.
Four different community detection algorithms were used to detect the community of
individuals based on their collected sensor data. While only smart phone GPS sensor data
was used in this analysis and could be seen as a limitation, the technique is easily applied
within the context of an individual having more than one form of streaming sensor data. In
order to evaluate the accuracy of the method, three different partition similarity indices

were used to compare the detected communities with planted communities.
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Chapter 5

5 Community Detection and Analysis Using Clustering

Algorithms

This chapter demonstrates another method beyond graphs that can be used in the
Community Detection component to detect communities. In addition, the case study used
in this chapter provides a demonstration of an infrastructure based community as the sensor
data comes from cars. Within this chapter, the community detection component of the
proposed framework in Chapter 3 will be instantiated in a platform enabling community-
based analytics. This platform finds vehicles with similar trajectories and groups them into
communities. Vehicles which are grouped in the same communities may share rides with

each other and decrease the total number of kilometers driven.

5.1 Introduction

As urban populations grow, cities need new strategies to maintain a good standard of
living while enhancing services and infrastructure development [126]. A key area for
improving city operations and spatial layout is the transportation of people and goods.
While conventional transportation systems (i.e., fossil fuel-based) are struggling to serve
the mobility needs of growing populations, they also present serious environmental threats.
Alternative-fuel vehicles can reduce emissions that contribute to local air pollution and
greenhouse gases as mobility needs grow. However, even if alternative-powered vehicles
were widely employed, road congestion would still increase. This chapter investigates
ridesharing as a mobility option to accommodate growing transportation needs and reduce
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overall congestion as well as the number of kilometers driven. The potential of ridesharing
using personal vehicles in Changsha, China, is examined by reviewing mobility patterns of
vehicles over two months. Big Data analytics identify ridesharing potential among these
drivers by grouping vehicles according to their trajectory similarity in different
communities. The approach includes five steps: data preprocessing, trip recognition,
feature vector creation, similarity measurement and clustering. The potential reduction in
kilometers driven through ridesharing among a specific group of drivers is calculated and
discussed. Within the study area, ridesharing has the potential to reduce total kilometers
driven by about 24%, assuming a maximum distance between trips of less than 10
kilometers, and a schedule time of less than 60 minutes. For a more conservative maximum
trip distance of three kilometers and a passenger schedule time of less than 45 minutes, the

reduction in traveled kilometers is more than 15% of total kilometers.

5.2 Factors Affecting Evaluation of Ridesharing Potential

In the analysis of ridesharing potential using driver mobility data, it is crucial to define
what data is measured, how it is measured and how the data is analyzed. These parameters
can greatly impact the findings and are often the reason for varied results in various studies.

They are reviewed in the next two subsections.

5.2.1 Vehicle Trip Dataset

Large-scale data on vehicle mobility patterns in a city are needed in order to analyze
ridesharing potential for reducing the overall demand for personal vehicles. This could
include recorded location and time of day for all vehicles for a given time period (e.g., a

day). The datasets used in ridesharing models vary depending on the following factors:
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»  Granularity of data (spatial and temporal): This often depends on the tools used to
collect the data (e.g., cellphone, GPS systems, and social networking tools). In general,
cellphone datasets, often in the form of Call Detail Records (CDRs), have less granular
information in terms of user trajectories since they often record user information when users
make calls or send text messages. For the purpose of Big Data collection in user mobility
for ridesharing analysis, cellular data can be collected from network companies. Accuracy
of such cellular data, often not specifically designed to indicate accurate location by using
cellphone applications, is limited by the density of existing cellular towers in the area of
user movements. In some cases, cellular telephone towers could cover a large area (up to
several square kilometers) in rural areas, resulting in less accurate data. In contrast, GPS
data rely on satellites and provide more accurate descriptions of user movements. The
collection of cellular data from a larger number of users can provide data with acceptable
accuracy but comparable to GPS-collected data. Data from online networks are also unable
to reach high granularity, as they can only be collected when users post a geotagged

message in a social network.

« Dataset size: This corresponds to the number of recorded trips over a period of time
that affects the potential of ridesharing. In [127] the authors studied how the number of
shareable trips in a given day varies as a function of the total number of recorded trips. In
their study, in which the average number of daily-recorded trips in New York is
approximately 400,000, the authors showed that, at approximately 100,000 trips, taxi

ridesharing potential reaches its maximum theoretical value.
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5.2.2 Data Analysis to Model Ridesharing

Once data on user mobility patterns are collected, extraction of suitable information and
analysis to identify potential shared rides is a complex process consisting of several stages
and dependent on several factors. Potential ridesharing opportunities are often presented as
the fraction of individual trips that can be shared, sometimes referred to as shareability
[127]. Many of the optimization challenges highlighted in [128] that arise when developing
technology to support ridesharing and reviewed the relevant operations research models in

this area.

5.2.2.1 Spatial and Temporal Constraints

The findings of user trip compatibility analyses are directly affected by the maximum
allowed extra distance for each trip as a result of ridesharing as well as spatial (i.e., ride
potential within a certain distance) and temporal (e.g., pick up and drop off within a time

frame) constraints.

5.2.2.2 Number of Users Allowed to Share Rides

Some studies investigate the effect of the maximum number of rides to be shared in
ridesharing potential. The authors in [129] found that as the limit on the number of shared
rides increases, shareability potential also increases. It should be noted that an increase in
the number of allowed shared rides is expected to increase extra travel distance and number
of extra stops for each trip, two parameters that are often set to limited values in the models.
Increasing the number of allowed shared rides would likely be ineffective in increasing
shareability potential if these parameters are strictly kept at relatively low values. The
authors in [129] found that, for three shared trips, the total saving in the total distance
through ridesharing is 29% on average, with an average extra distance of 0.92 kilometers,
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while for two shared trips the saving is 18.2% with the average extra distance of 0.56

kilometers.

5.2.2.3 Trip Matching Algorithms: En-Route versus Origin-Destination Ridesharing
Another factor affecting the findings is the trip matching algorithms used in the analysis,

and the ability of the model to capture en-route ridesharing (i.e., ride potential along trips).

5.2.2.4 Dynamic versus Static Ridesharing

In some models, it is assumed that trips are known in advance, which makes them
suitable for carpooling applications but debatable for taxi ridesharing applications where
opportunities are computed in real time. Taxi ridesharing requests arrive in real time and
the algorithms used in evaluating such potential need to run large-scale studies that explore
a wide range of scenarios through parameter sweeps. This often takes considerable
computation time and, although many algorithms are capable of evaluating ridesharing
potential among users, some are not able to evaluate such potential under the time
constraints typically present in applications employed for connecting users. Thus, time
constraints affect the calculated potential by the algorithms. In order to model the time-
sensitivity of ridesharing potential, a time window is often used in the algorithms, outside
of which ridesharing potential is not considered practical in real-time situations. Therefore,
the potential for ridesharing is generally found to be lower in studies that account for this

factor.

5.2.2.5 Factors Affecting Adoption of Ridesharing
In analyses of ridesharing potential, indirect factors that affect its adoption, such as

passenger safety (i.e., riding with strangers) and privacy (i.e., disclosure of home and work
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addresses) are sometimes accounted for. Some studies focus on characterizing crowd
mobility and activity patterns using information from social networks ([130-132]). The
authors in [133] used online social network data to apply social constraints in their analysis
of data for matching drivers (e.g., ridesharing among people who know each other). They
found that, if users are willing to ride with friends of friends, the potential reduction is up
to 31%, but if they are willing to ride only with people they know, the potential for

ridesharing becomes negligible.

5.3 Objective: Estimation of Reductions in Driven Kilometers

as a Result of Ridesharing

In the current study, the potential of ridesharing to reduce the number of kilometers
driven is investigated. The trip GPS data of approximately 9,000 privately-owned vehicles
in Changsha, China, are used. Ridesharing potential is identified according to trip origin
and destination. The findings support the potential of ridesharing to improve congestion

and local air quality.

5.4 Methods

This section introduces a proposed data-driven model that enables the analysis of
historical location data to investigate the potential for ridesharing. There are several
challenges related to this research, including: removal of outliers, noise and false data;
investigation of the reliability of data; detection of misrepresented information in terms of
location; feature selection; and clustering the data which significantly affects the findings.

Figure 45 illustrates a data flow diagram for an analysis of ridesharing potential that
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consists of three steps of data processing: pre-processing, similarity detection and

ridesharing recommendations.
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Figure 45. Data flow diagram for ridesharing

In this study, the vehicles’ geographical locations (latitude and longitude) were collected
using GPS monitoring systems installed in vehicles in Changsha, China (population 7
million). The historical data is processed to determine possible similar rides that could be

shared. The potential number of kilometers saved by adopting ridesharing is calculated.

It should be noted that ridesharing in the current analysis is short-distance, static and on
a daily basis. It is also assumed that wherever matching trips exist, the car that corresponds
to the longest trip is selected as the one that provides the ride to others, and is the one setting
the origin and destination of the shared trip. Passengers of the cars corresponding to the
other trips (i.e., riders) are expected to walk the last part of their trip (also called the last

mile) from the driver’s destination to theirs.
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5.4.1 Pre-Processing

5.4.1.1 Trajectory Representation and Location History Modeling

As depicted in Figure 45, spatial-temporal trajectories are first built from GPS logs. The
data is retrieved from the database for each vehicle and transformed into a series of
chronologically ordered points: for example, P1—-P2—P3—...—Pn. Each trajectory point
consists of a timestamp, geospatial coordinates (latitude, longitude) and the speed of the

vehicle.

Data pre-processing is a crucial step as data collection is often loosely controlled,
resulting in outliers, noise, and missing information. Thus, to reduce the complexity of data
analysis and program execution time, the following data pre-processing and representation

steps were applied.

5.4.1.2 Noise Filtering and Outlier Detection

The first step in data pre-processing is noise filtering and outlier detection, which
searches for abnormalities in trajectories. Outliers in trajectories can be a point or series of
points that are significantly different from other points. For instance, an outlier can be a
point that is far from other points and out of possible vehicle reach within the regulated
speed and time. An outlier can also be a point of observation that does not conform to the
expected pattern. In this study, a mean filter [134] was used to detect the noise and outlier.
For point Pz in a vehicle’s trajectories, a true value is the mean of the position of Pz and
the n-1 predecessor, thus the mean filter can be a sliding window covering the n adjacent

values of Pz;
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P; (16)

i=(z—n+1)

where n is the size of the sliding window for the mean filter.

5.4.1.3 Compression

While vehicle locations can be constantly sampled and communicated, a high rate of
sampling can result in excessive communication overhead, computing and data storage. It
is also important to consider that when a vehicle is waiting at a traffic light, or delayed in
congestion, its location does not change for a while, but it is still continuously sampled. To
decrease the volume of data and improve the performance of data processing, the points

from trajectories for which there is no updated information are removed.

5.4.1.4 Stay Point Detection

An important part of the analysis is to detect stay points because they can be used in
trajectory segmentation and trip detection. Stay points denote locations, such as parking
lots, where vehicles stay for more than five minutes. There are two different types of stay
point: a single point location where a vehicle remains stationary; and when a vehicle
location is updated but there is no notable change in the location. In this study, both types

of stay point are detected.

5.4.1.5 Trip Detection

To group similar trips, a trajectory first needs to be divided into different trips.
Segmenting trajectories into trips helps to reduce computation cost and to facilitate deeper
study into vehicle trajectories as well as to identify more potential ridesharing options. In

this study, trips are detected according to time interval and stay points. For example, if the
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time interval between two consecutive points in a vehicle trajectory is larger than a defined
threshold, the vehicle trajectory can be divided into two trips. Furthermore, stay points can

divide a trajectory into two different segments or trips.

5.4.2 Similarity Detection

The main purpose of the present analysis is to detect similar rides and mark them for

potential ridesharing. In this step, clustering detects similar trips and groups them together.

5.4.2.1 Feature Selection

As different trips contain different properties such as length, number of points, and
sampling rate, it is difficult to use trip properties for clustering. To solve this issue, useful
features can be selected from each trip and uniformly presented. For the purposes of this
study, the start time, end time, origin, destination and length of each trip are used to describe

the trip features and are represented as a vector.

5.4.2.2 Clustering

Clustering in this analysis is the process of grouping similar trips. The trips inside a
group are share greater similarity than other trips that are placed in other groups or clusters.
The distance between the trips is measured by the distance between vectors. Clustering
attempts to minimize the distance between the trips inside of each cluster and to maximize

the distance between trips outside of each cluster.

One of the most commonly used algorithms for clustering is the k-means [135], which
is an iterative clustering algorithm that partitions n observations into a number of clusters
(K) that are selected before the algorithm starts. In this study, k-means is used for grouping

similar trips. It randomly chooses k initial cluster centers and calculates the distance of the
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centroid in each cluster to all the trips, then assigns each trip to the group with the closest
centroid. Subsequently, in order to find the new centroid, k-means calculates the average
distance between trips inside of each cluster and the cluster centroid. It repeats these steps

until the cluster members do not change.

For the purpose of measuring the similarity between trips and their centroids in this
study, multiple similarity functions, such as Euclidean, Cosine, City block and Correlation
[136], were used. For each of these functions, the distance was calculated based on the

following equations:

Euclidean: d(x, ¢) = \/Zf=1(xi - ¢;)?

7)
City block: d(x,¢) = XF_ lx; — ¢

(18)

R . _ _ xc’

Cosine: d(x,c) =1 Toes

(19)

. . (x=%)(c=¢)r

Correlation: d(x,c) = 1 NI DRI 0)

-1 p — - _ 1 P -
where ¥ = - (37, %) T, and € = (¥, )1,
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where p is the dimension, X is an observation or feature vector for a trip, ¢ is a centroid and

(1,) is a row vector of p ones.

5.4.3 Ridesharing Recommendations

While clustering partitions similar trips into groups, it does not guarantee that all the
trips inside each group have the potential for ridesharing. There still remain limitations for
ridesharing, such as: the maximum distance between the trip start and end points; the
maximum user schedule time; the maximum number of passengers who can share the ride;
and the minimum length for which two users opt to travel together. In this step, such
thresholds are considered for each cluster. The potential trips that could be shared are

estimated.

5.5 Experimental Analysis

In this section, the performance of the approach used in this study is demonstrated using
the GPS location records of 8,900 privately-owned vehicles in Changsha, China. In the
experiments, the effect of different similarity functions, along with a different number of
clusters on the clustering algorithm, are examined in order to determine the best option for
ridesharing. The effect of maximum schedule time and maximum distance between the trip
start and end points is also examined. The results show that a Euclidian similarity function
with 11,000 clusters achieves the best performance and that there is no notable change on
the total number of saved kilometers if the maximum schedule time is increased to more
than one hour and the maximum distance between the trip start points and endpoints is

increased to more than six kilometers.
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5.5.1 Experimental Setup

The historical data of every vehicle was sampled every 10 minutes and stored in a
database. Thus, the historical dataset that was included in this study was also sampled every
10 minutes, totaling 65,940,000 records spanning 89 days from February to April 2013. In
an ideal situation, each vehicle would create 144 records per day, resulting in 114,062,400
for 8,900 vehicles for 89 days. However, the applied monitoring system did not collect
data from vehicles that remained stationary for more than 12 hours. Moreover, there is
typical data loss which can be attributed to a variety of reasons. For example, monitoring
data was wirelessly communicated to the monitoring platform using cellular GPRS
networks, which is error-prone due to the nature of the wireless channel that introduces

data loss, delay, and retransmissions.

The experiments ran on a server with Intel 6 cores Xeon E5649 2.53GHz processor, 32
GB RAM and a Windows server 2016 operating system running MATLAB R2016b.
MATLAB was used as the programming environment for the experiments. A MATLAB
parallel computing toolbox was also used to gain maximum benefit from the multiple cores
inside the server processor. The toolbox enabled the use of the full power of the multicores

by executing the program on multiple threads.

5.5.2 Ridesharing in 24 Hours

To demonstrate the performance of the approach, the first day (24 hours) of the dataset,
which contains 1,080,224 records, was selected. This included travel typical of a weekday.
The total traveled distance on this day was 201,890 kilometers while the total number of
detected trips was 20,018, resulting in an average trip length of 10.53 kilometers. Figure 46

shows the total hourly travel distance driven by the vehicles for 24 hours on the first day of
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the dataset. Figure 47 indicates the trip start points for 24 hours on an actual map. When

rides

are shared, it is assumed that the maximum capacity of each vehicle, including the

driver, is four passengers. In addition, it is assumed that sharing rides that are shorter than

two kilometers results in excessive detouring and provides negligible benefits in terms of

reduction in overall trip kilometers. As a result, trip data corresponding to such trips were

excluded from the experiment.
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5.5.2.1 Effect of the Similarity Function on Ridesharing

55.2.1.1 Scenario 1

In the first scenario, the effect of different similarity functions and maximum schedule
time on ridesharing potential was evaluated. Table 7 shows the values assigned for the
simulation set-up parameters for this first scenario. It was assumed that the number of
clusters is constant and equal to 8,000 clusters. To match trips with ridesharing potential,
the maximum time that passengers can wait for a ride (here referred to as schedule time)
and the maximum allowable distance between trip origins and destinations (also here
referred to as trip distance) are set. In this scenario, the maximum schedule time varies
between 5 and 180 minutes, and the maximum distance between trips is set to two
kilometers. It is established that the Euclidean and City block similarity functions result in
the highest values of total saved kilometers (Figure 48 (a)) and the total number of saved
trips (Figure 48 (b)) if the maximum schedule time is less than an hour. If the maximum
schedule time is more than 60 minutes, the City block similarity function indicates higher
values in total saved kilometers and the saved number of trips compared to other functions.
Both the Euclidean and City block similarity functions have better results in terms of saved
kilometers because they act better on the data that can be represented as points in a
Euclidean space. The cosine similarity measures the angle between two vectors. While it
is a suitable candidate for multi-feature vectors, it did not perform well for the small number
of features’ vectors. The correlation similarity function is also only suitable for high-

dimensional data which is not the case in this study.
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Table 7. Simulation set-up parameters (scenario 1)

Description Value
Similarity Function Variable
Maximum distance between trips (Kilometers) 2
Number of clusters 8000
Maximum schedule time (Minutes) 5-180
Total trip length (Kilometer) 210,890
Total number of trips 20,018
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Figure 48. Effect of similarity function on (a) Saved kilometers (b) Number of saved trips

5.5.2.1.2 Scenario 2

In this scenario, the effect of the similarity function and the maximum distance between
trips on ridesharing potential is evaluated. Table 8 shows the values assigned for the set-up
parameters for the second scenario. The number of clusters is assumed to be a constant and
equal to 8,000 clusters. The maximum schedule time is set to 40 minutes, and the maximum
distance between trips is a variable between 1 and 20 kilometers. It is established that the
Euclidean and city block similarity functions result in higher values of total saved
kilometers (Figure 49 (a)) and the number of saved trips (Figure 49 (b)) compared to the
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cosine and correlation functions. As can be observed in Figure 36, there is no improvement

in ridesharing potential if the distance between the trips is more than six kilometers due to

the decrease in similarity among trips when the distance between them is increased.

Ultimately, when the distance is more than six kilometers, there is no similar trip available

for matching inside each cluster.

Table 8. Simulation set-up parameters (scenario 2)

Description Value
Similarity Function Variable
Maximum distance between trips (Kilometers) 1-20
Number of clusters 8,000
Maximum schedule time (Minutes) 40
Total trip length (Kilometer) 210,890
Total number of trips 20,018
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5.5.2.1.3 Scenario 3

In the third scenario, the effect on ridesharing potential of the similarity function and the
number of clusters was investigated. Table 3 shows the values assigned for the set-up
parameters for this scenario for which it is assumed that the number of clusters is a variable
between 1,000 and 15,000. The maximum schedule time is kept to 40 minutes, and the
maximum distance between trips is kept to three kilometers. The highest values of saved
kilometers and the total number of saved trips are achieved with the Euclidean similarity
function when the number of clusters is approximately 11,000 (Figure 50). As Figure 50
depicts, increasing the number of clusters to more than 11,000 does not increase the total
number of saved kilometers. This can be explained by the decrease in the number of similar

trips inside of each cluster as the number of clusters is increased.

Table 9. Simulation set-up parameters (scenario 3)

Description Value
Similarity Function Variable
Maximum distance between trips (Kilometers) 3

Number of clusters 1000-15,000
Maximum schedule time (Minutes) 40

Total trip length (Kilometer) 210,890
Total number of trips 20,018
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5.5.2.2 Scenario 4: Effect of the Number of Clusters and Schedule Time on

Ridesharing

This scenario explores the effect on ridesharing potential of changing the number of

clusters and schedule time. Table 10 shows the values assigned for the set-up parameters

for this scenario, for which it is assumed that the number of clusters is a variable between

1,000 and 15,000, that the maximum schedule time is a variable between 5 and 180 minutes,

and that the maximum distance between trips is a constant, equal to three kilometers. The

largest reduction in traveled kilometers is achieved with 11,000 clusters if the maximum

schedule time is less than an hour (Figure 51).

Table 10. Simulation set-up parameters (scenario 4)

Description Value
Similarity Function Euclidean
Maximum distance between trips (Kilometers) 3
Number of clusters 1,000-
15,000
Maximum schedule time (Minutes) 5-180
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Total trip length (Kilometer) 210,890

Total number of trips 20,018
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Figure 51. Effect of number of clusters on (a) saved kilometers (b) number of saved trips

5.5.2.3 Scenario 5: Effect of Maximum Trip Distance and Schedule Time on
Ridesharing

In scenario 5, the effect of trip distance and schedule time on ridesharing potential is
investigated. Table 11 shows the set-up parameters for this case. As determined in the
previous scenarios, the highest values of saved kilometers are achieved using the Euclidean
similarity function with 11,000 clusters. In this scenario, the number of clusters is
maintained at 11,000 and Euclidean distance is used for the similarity function. The results
show a saving of more than 15% on total travel distance (Figure 52 (a)) and more than 30%
on the number of trips (Figure 52 (b)) if the maximum distance between trips is three
kilometers and the maximum schedule time is 45 minutes. It is observed that if the

maximum schedule time is increased to more than 60 minutes, there is no significant change
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in the number of saved kilometers. As a consequence, the maximum time lag between the

trips inside any cluster is 60 minutes. Furthermore, by increasing the maximum distance

between the trips to more than six kilometers, there is no change in the total number of

saved kilometers.

Table 11. Simulation set-up parameters (scenario 5)

Description Value
Similarity Function Euclidean
Maximum distance between trips (Kilometers) 1-10
Number of clusters 11,000
Maximum schedule time (Minutes) 5-180
Total trip length (Kilometers) 210,890
Total number of trips 20,018

104 a

0600608 008600C08GOSCOD
@

»
ot

—%= 1km
%) —+ 2km
1 3km
—G- 4km
++++++++4—+++++—+—H»+ ~B-“BKTi H
s 6km
—*= 7km
e —= 8km
3 ‘?it#***%
0 20 40 60 80 100 120 140 160 180
Maximum schedule time (minutes)

Saved kilometers (km)

Saved trips (%)

50

45

40

©
@

w
=]

N
o

N
o

o

=]

o

i+
&
o Lt

++++H++H«H—++++J
3

—#* 1km
—+ 2km
3km

—G- 4km
&= 5km
6km
—*= 7km
—%= 8km
—4 9km

10km

¥

ok

0

20 40 60 80 100 120 140 160
Maximum schedule time (minutes)

Figure 52. Effect of trip distance on (a) saved kilometers (b) number of saved trips

5.6 Conclusion and Discussion

180

Adoption of ridesharing among passenger vehicles in Changsha, China, as a potential

strategy to reduce kilometers driven is investigated. Historical GPS data of privately-owned
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vehicles in Changsha, China, are collected and used in an algorithm that is developed to
match riders with close temporal and spatial origin and destinations. The developed
algorithm is capable of estimating the number of kilometers that are reduced among users

if ridesharing is adopted.

The results show the potential of ridesharing to reduce total traveled distance depends

on the users’ tolerance towards changes to their original trip route and departure time.

As shown in previous studies, the size of the dataset can affect the potential for
ridesharing among users. Therefore, the results of the current study are dependent on the
size of the dataset used to identify potential ridesharing opportunities among users. A larger
dataset (i.e., more participants) would match more riders with ridesharing. As a result, the
estimated traveled distance reduction from ridesharing adoption in Changsha, China, are

expected to be higher with a larger pool of participants.

While the quantitative results of this analysis are specific to the population under study,
they provide useful insights into the potential of ridesharing for improving air quality and
reducing emissions associated with climate change. Changsha, China, is one of several
cities around the world that use personal vehicles as a reliable mode of transportation. The
methods used in this study to evaluate ridesharing potential for reducing traveled kilometers
in Changsha can be used in future similar studies on other cities that partially or fully rely
on personal vehicle transportation. Analysis of the current demand for transportation and
projection of future trends is a key task in planning for sustainable transportation modes,

such as ridesharing, that are potentially able to meet future demand.
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Within the study area, ridesharing has the potential to reduce total kilometers driven
(210,890 kilometers) by about 24% (51,087 kilometers) and vehicle trips (20,018 trips) by
approximately 40% (8480). This maximum potential assumes a maximum distance
between trips of less than 10 kilometers, and a schedule time of less than 60 minutes (Figure
52). If a more conservative maximum distance of two kilometers between trips and a
schedule time of less than 40 minutes is selected, the total distance traveled reduces by 7%

and the total number of trips decreases by 14%.

While, in this study, only one day was selected for data analysis and for investigating
the potential of ridesharing, a future study could analyze the stability of data over a longer
timeframe in order to determine whether the communities detected for a specific day are
stable during a longer period. The new study could analyze the data for multiple weeks in
order to ascertain the presence of a stable pattern in the detected communities. Such a study
has the potential to prove that ridesharing has benefits not only for a specific day but over

a long period.

It must be noted that, although the findings of this study illustrate the potential of
ridesharing for reducing driven kilometers, its adoption by users still faces challenges such
as passenger safety, privacy and liability. Furthermore, the success of web-based
applications in connecting potential shared rides is dependent on the number of users. In
terms of regulations, they compete with existing regulated taxi companies. Such limitations

need to be further analyzed in order to determine solutions to overcome these challenges.
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Chapter 6

6 Conclusion and Future Work

Cities have changed considerably over the last century. As populations have increased,
cities are faced with a scarcity of resources that requires a re-evaluation of approaches to
management. Within the next 35 years, the world's cities will double in size, therefore smart
cities are needed in order to manage this sharp increase. This study has proposed a new
architecture and framework for smart cities which would enable community data collection
and analysis. Furthermore, this work has suggested a new method which takes real time
data from individual smartphone sensors and groups them according to their similarities
and common interests. Identifying communities of individuals and grouping people allows
for the establishment of functionality and interactions between the network members in
order to predict their relations and to infer missing attributes and features. Furthermore,
detecting a community of common interests allows to provide better services for those who
are interested in similar things. Finally, when their communities and common interests are
known, many applications in different domains can be developed to provide users with

better services.

This final chapter first concludes the research contribution of this study to community-
oriented analysis. Potential issues for future work which have not been included in this

study are then identified and discussed. Finally, concluding remarks are presented.
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6.1 Summary and contribution

Chapter 2 presents an extensive study of the IoT, the smart city and community sensing.
loT vision, 10T enabling technologies and smart city applications are reviewed in Sections
2.1.1to 2.1.3. Architecture and middleware for the smart city and the IoT are compared in
Section 2.14. More than 23 different middleware are reviewed and their functionalities
compared in Tables 2 and 3. Cloud computing, device capability abstraction and context-
aware computing for the 10T are reviewed and discussed in Sections 2.1.5 to 2.1.7.
Additionally, Section 2.2 focuses on community sensing and mining in order to show the

benefits of community analysis in smart cities.

A community-oriented architecture for the smart city is proposed in Chapter 3 together
with the design for a framework that enables community-analysis. A cloud-based general
architecture for smart cities, which allows community service providers, city management
and citizens to access real time data that has been gathered from the city through 10T in
order to ensure the provision of essential services and improved quality of life for city
residents, is suggested in Section 3.1. The community-oriented framework, as presented in
Chapter 3.2, suggests that community analysis for the smart city can solve issues such as
heterogeneity in data collection, data quality and Big Data management. A community
detection component detects the communities of people and groups them according to their
similarities and common interests. This framework can benefit from various models in
order to build smart city applications for urban planning, sustainable communities,

transportation, public health, public security, and commerce.

Chapter 4 provides a definition of community and discusses the benefits of detecting

communities. A method to detect and analyze communities of individuals using graphs,
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based on the sensor data collected from individual smartphones, is proposed in Section 4.4.
This method can be used as an implementation of community detection and the data
aggregation component of the proposed framework in Chapter 3. The proposed method
acquires time series data from multiple sensors and converts it to correlation graphs by
applying various similarity functions, then integrates the sensor correlation graphs and
creates a user correlation network. In the final stage, the method can identify the
communities of the corresponding correlation network by applying different community
detection algorithms. The performance of the proposed method has been evaluated in
Section 4.5 by running a case study that collected GPS data from multiple users and

determined the communities of those users according to their movement patterns.

A method for community detection by using a clustering algorithm is proposed in
Chapter 5. Although Chapter 4 used graphs to detect communities, this chapter used feature
clustering to identify the communities of common interest. The proposed method for
community detection was evaluated by running a case study that identified the potential for
ridesharing from personal vehicles in Changsha, China, by reviewing mobility patterns of
approximately 8,900 privately-owned vehicles over a two-month period. Big Data analytics
identified ridesharing potential among these drivers by grouping vehicles into different
communities according to their trajectory similarity. The results in Section 5.5 show that
the potential of ridesharing to reduce total traveled distance varies significantly by the
users’ tolerance towards changes to their original trip route and departure time. Within the
study area, ridesharing has the potential to reduce total kilometers driven by about 24% and

vehicle trips by approximately 40%.
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6.2 Future work

Several issues require further investigation, the most important of which include the

following:

e Community analysis can be considered as a service to the application layer. Any
application can use this service in order to detect communities of common interest.

e Different components of the proposed architecture, such as privacy management, data
quality and task assigning components, can be implemented.

e Classification methods and algorithms can be combined to the architecture and will be
used with clustering algorithms to analyze the communities of individuals.

e Overlapping communities can be detected and added to the proposed community
detection method.

o Different similarity functions and community detection can be studied and added to the
proposed method.

e Distinctive features of the communities can be investigated. The community detection

method can derive benefits from them.
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Appendices

Appendix 1: REB Application Approval

Date: September 19, 2016

To: Khalil EI-Khatib, Roozbeh Jalali

From: Shirley Van Nuland, REB Chair

Title: Community-Oriented Architecture for Smart Cities
Decision: APPROVED

Current Expiry: September 01, 2017

REB File#: 14059

The University of Ontario, Institute of Technology Research Ethics Board (REB) has reviewed and
approved the research proposal cited above. This application has been reviewed to ensure compliance
with the Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans (TCPS2
(2014)) and the UOIT Research Ethics Policy and Procedures. You are required to adhere to the protocol
as last reviewed and approved by the REB.

Continuing Review Requirements (forms can be found on the UOIT website):

¢ Renewal Request Form: All approved projects are subject to an annual renewal process.
Projects must be renewed or closed by the expiry date indicated above (“Current Expiry”).
Projects not renewed within 30 days of the expiry date will be automatically suspended by the
REB; projects not renewed within 60 days of the expiry date will be automatically closed by
the REB. Once your file has been formally closed, a new submission will be required to open
a new file.

e Change Request Form: Any changes or modifications (e.g. adding a Co-PI or a change in
methodology) must be approved by the REB through the completion of a change request form
before implemented.

e Adverse or Unexpected Events Form: Events must be reported to the REB within 72 hours
after the event occurred with an indication of how these events affect (in the view of the
Principal Investigator) the safety of the participants and the continuation of the protocol (i.e.
un-anticipated or un-mitigated physical, social or psychological harm to a participant).

e Research Project Completion Form: This form must be completed when the research study
is concluded.

Always quote your REB file number (/14059) on future correspondence. We wish you success with
your study.

REB Chair Ethics and Compliance Officer
Dr. Shirley Van Nuland researchethics@uoit.ca
shirley.vannuland@uoit.ca
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Appendix 2: Experiment’s Letter of Invitation

Hello

My name is Roozbeh Jalali and | am a PhD student working under the supervision of
Dr. Khalil EI-Khatib and Dr. Carolyn McGregor in the Faculty of Business and Information
Technology at UOIT. The reason that | am contacting you is that we are conducting a study
that automatically determines communities of individuals based on their physiological
information and trajectory. We are currently seeking volunteers from UOIT and outside of

the campus as participants in this study.

Participation in this study involves coming into the laboratory where you will be asked
to download and install a smart-phone application and be provided with a headband. We
will collect your location data from your smartphone sensor and physiological data from
the brain sensing headband for a month and you will be asked to return the headband after

the data collection period.
Participation in this study will take approximately one month.

As a token of appreciation for your time commitment, at the end of study your name
will be entered in a draw for a Fitbit. I would like to assure you that this study was approved
by the UOIT Research Ethics Board [REB # 14059] on [insert date]. However, the final

decision about participation is yours.

If you are interested in participating, please contact me at Roozbeh.jalali@uoit.ca and |
will then send a confirmation email indicating that you have been signed up, along with
further information concerning the time and location of the study.

Sincerely

Roozbeh Jalali
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