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ABSTRACT

The ability to predict financial markets has tremendous potential to limit expo-
sure to risk and provide better assurances of annualized gains. In this thesis, a
model for predicting the future daily price of Bitcoin is proposed and evaluated
in comparison to that of a purely random model. Bitcoin is a novel digital cur-
rency that relies on cryptography instead of a central authority to verify trans-
actions. Without a central authority, Bitcoin requires a complete list of all trans-
actions to be made public so that they can be verified by all users. This unique
feature of Bitcoin, where all transactions are public, is exploited by the model
to predict the future price directions based on the actions of Bitcoin users. The
daily activity of themarkets, aggregate network features, and the actions ofmajor
network influencers are all used as features for the predictive model. Where ma-
jor network influencers are defined as users that accumulate a disproportionate
amount of wealth within the Bitcoin network compared to others. The informa-
tion about the actions of all Bitcoin users are extracted from the blockchain and
stored in a relational database for ease of use. Two metrics were created to iden-
tify the major network influencers based on the history of their actions recorded
on the blockchain. The first metric, based on the concept of an h-index, often
used in academia to rank authors by their citations, is used to rank users by the
amount of wealth they accumulate monthly. The second metric is based on the
optimization of multiple objectives, the maximum increase in wealth with the
least amount of activity using Pareto optimization. All of the major network in-
fluencers identified were then used as features, in combination with aggregate
network features, and market data, to test and evaluate several predictive mod-
els. The models created were based on non-linear equations, support vector ma-
chines, decision trees, and XGBoost; all evaluated and compared using the same
data. The XGBoost model consistently proved to be much more accurate than all
other models and was used for the final set of experiments. The XGBoost model
was compared to that of a purely random Monte Carlo model using the entire
history of data for the period of 2013–2016. The first set of experiments were con-
ducted using various sizes of training and testing data, in each case the XGBoost
model had an accuracy 20% greater than that of the Monte Carlo model. For
the final experiments, the model was tested in a realistic scenario, predicting the
price direction for each future day, while also being re-trained using the results
of each new day. The XGBoost model achieved a much better performance in
comparison to the Monte Carlo model, which had approximately 50% accuracy,
whereas the XGBoost model had 70%–79% accuracy.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially

because it produces objects of beauty.

—Donald E. Knuth [1]
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1
INTRODUCT ION

Bitcoin is a new and emerging digital currency that has revolutionized the way

we think about money. It is continuing to increase in adoption and as it gains

more widespread appeal; it is also attaining substantial real-world applications

and value. From its initial creation in 2008 to our present time of writing in 2016,

Bitcoin has gone from complete obscurity as a new digital currency to one that

has tens of millions of users, an average value of approximately $330 per bit-

coin, and real financial markets where bitcoins are exchange for fiat currencies

totalling billions of dollars monthly. With all of the attention that Bitcoin has

been receiving, in addition to its increasing real-world applications as a medium

of financial exchange, the possibility of understanding the market and even pre-

dicting the future market direction of the technology is alluring. Furthermore,

Bitcoin is unique in that all of the transactions that take place on the network are

recorded publicly, as such it makes it possible to track the precise activities of ev-

ery user (anonymously), but uniquely based on their addresses on the network.

With the increased adoption of Bitcoin and the availability of numerous finan-

cial services where bitcoins can be exchanged for fiat currencies, we see an ideal

opportunity for the creation of a predictive model that can be used to predict the

future price direction of the market. Given the high value of each bitcoin and the

public availability of every transaction made on the network, we have a level of

insight into the activities that are related to changes in price not available in other

financial markets such as the stockmarket.With all of the information pertaining

to transactions publicly accessible, we wish to use this knowledge to our advan-

tage to identify themajor userswithin the network that influence themarket, and

base our predictions of the future price direction on their actions.

2



1.1 introduction to bitcoin 3

1.1 introduction to bitcoin

Bitcoin is an innovative technology that has revolutionized the way we think

about money. While the concept of a digital currency is not unique, the appli-

cation of public key cryptography to make a digital cryptocurrency was first in-

troduced by Nakamoto in Bitcoin: A Peer-to-Peer Electronic Cash System, a self-

publishedpaper by the pseudonymous creator of Bitcoin,whose true identity has

never been confirmed. In the paper, Nakamoto describes a new form of electronic

currency calledBitcoin, where the fundamental features of this unique digital cur-

rency are its use of public key cryptography, a ledger of all transactions known

as a blockchain, and the ability for a decentralized authority to verify transactions

through a process known as mining. The most defining innovation of Bitcoin is

its ability to prevent double-spending, whereby a user can spend the same amount

twice, without the need for a centralized authority to verify all transactions.

Double-spending attacks are themost difficult challenge of any electronicmon-

etary system, whereby an attacker sends funds to two separate entities simul-

taneously, and each party receives the funds even though the attacker only has

enough to pay one of them [3, 4]. This is analogous towriting two cheques anony-

mously, where both recipients attempt to cash the cheques, and only the first to

cash the cheque is paid. In systems, such as Bitcoin,where all users remain anony-

mouswithout their real identities attached to transactions, this becomes a serious

threat that is challenging to resolve without centralization. Bitcoin manages to

solve this issue without any centralization through the use of a blockchain, a pub-

lic ledger that records all transactions so that for any transaction, the balance of

a user can be determined by looking at the entire history of all prior transactions.

However, as the blockchain is a public ledger where all transactions broadcast

on the network are added, there is still the issue of maintaining the integrity of

the transactions recorded on the ledger. Bitcoin introduces the concept ofmining,

whereby users validate the integrity of all transactions before adding them to

the blockchain; with a validation signature that is computed using an extremely

computationally expensive process known as mining. Lastly, after validating the
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integrity of all of the transactions and adding them to the blockchain, the user

that performed the mining, often referred to as a miner, is rewarded with the

currency (BTC) for their efforts, this is the only way that currency is created.

The blockchain acts as a public ledger of all transactions and replaces the need

for centralization through the process of mining. Bitcoin allows any user in the

network to participate inmining, which validates the transactions on the blockchain,

allowing the network to operate without any centralization. The network is often

referred to as operating in a decentralizedmanner,where all of the actions between

users within the network function similar to a Peer-to-Peer (P2P) network, with

the exception that there is no centralization required. All of the transactions that

take place are broadcast from each peer within the network to all other peers

that they are connected to, and further replicated until the transaction has spread

across the entire network. Furthermore, the blockchain does not require any cen-

tralization, and a copy of it is replicated across every peer on the network that

operates as a full node, storing all the records.

1.2 market opportunity

Bitcoin provides many new and unique opportunities, not only as a new revolu-

tion in digital finance, but also in terms of the intrinsic and often volatile value

it has. With each passing year, we see the amount of transactions recorded on

the blockchain increasing and a corresponding increase in the amount of vol-

ume of BTC being transacted between users and with Bitcoin related services.

This demonstrates a healthy market that is growing rather than shrinking, and

poses the possibility for future growth as adoption increases with each succeed-

ing year. We see in Figure 1 a clear demonstration of the increased adoption of

Bitcoin, as well as the growing number of transactions and corresponding vol-

ume of BTC transacted. The line in blue shows the daily volume of BTC trans-

acted between users within the network, which we see increasing dramatically

each year reaching a peak just prior to 2013. This period, just prior to 2013, is

when Bitcoin began to dramatically increase in value, making each bitcoin much
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more valuable. For the line in red, we see a continually increasing trend in the

number of transactions, dramatically increasing in 2012 as Bitcoin began to gain

real monetary value. We continue to see the number of transactions increasing

yearly to its current peak of between 100, 000–250, 000 transactions daily. The in-

creasing trend in daily volume, even given Bitcoin’s dramatic increase in value,

demonstrates a market that is growing with increased adoption and presenting

future opportunities for economic activity.

2010 2011 2012 2013 2014 2015 2016
102

103

104

105

106

107

108

Vo
lu

m
e 

(B
TC

)

0.0

0.5

1.0

1.5

2.0

2.5

Tr
an

sa
ct

io
ns

1e5

Figure 1: Daily Blockchain Transactions and Volume

With the increase in adoption and blockchain activity, we also see a similar

trend starting at the beginning of 2013, in the real-world monetary value of Bit-

coin. Prior to the widespread availability of exchanges, where users could ex-

change their bitcoins for fiat currencies such asUnited StatesDollar (USD), Chinese

Yuan (CNY), and Euro (EUR) Bitcoin had very littlemonetary value.With the avail-

ability and more widespread adoption of Bitcoin exchanges, the finite supply of

bitcoins available became a catalyst for further speculation of the price. We see

this trend in Figure 2, where there is a speculative bubble starting in Septem-

ber of 2013, leading to an inevitable crash where the price adjusted. Historically,

there has been a consistent trend over the past several years (2013–2016) of the

price fluctuating between $200–$400USD for a single bitcoin. This a dramatic in-

crease in the value of bitcoins as a medium of exchange, before the widespread

availability of exchange services, when bitcoins were practically worthless. For
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perspective, the first recorded Bitcoin transactions was in 2010 for two pizzas,

worth approximately $20 USD that were purchased for 10, 000 BTC, now worth

over 3 million USD today [5].
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Figure 2: Bitcoin Price in USD Markets

The consistent high value of Bitcoin, despite market fluctuations, gives more

confidence in the future support of themarket. Furthermore,with thewidespread

availability of exchanges for USD, CNY, and EUR, we see a healthy diversity in

the availability of overall market liquidity. The list of all major exchanges are

shown in Table 1, including their currency pairs, total volume traded (BTC), and

percentage of the entire market for the period of our research from 2013-01-01

– 2016-01-01. We see a dominant amount of the total volume of BTC traded on

exchanges heavily favouring the Chinese markets, with BTC China and OKCoin

combinedmaking up 69.25% of the total volume of BTC traded. TheUSDmarkets

combined make up 28.91% of the total volume of BTC traded, with the EURmar-

kets the smallest with the remaining 1.84%. In addition to the cumulative total

volume in BTC for each exchange, we also see in Figure 3 the aggregated cumu-

lative monthly volume in millions of USD for each market. In order to compare

each market equally, the daily trading volume of each currency has been normal-

ized to the end of day price in USD using the Foreign Exchange (FX) market data

provided by OANDA [6].

Despite the relative size of eachmarket, it is important to also consider that un-

like traditional stockmarkets such asNewYork Stock Exchange (NYSE) orNasdaq,
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Exchange Market Volume (BTC) Percent of Total

Bitfinex USD 19, 534, 023 11.63%
Bitstamp USD 15, 581, 657 9.27%
BTC-E USD 10, 515, 384 6.26%
Coinbase USD 2, 940, 149 1.75%
BTC China CNY 45, 627, 787 27.15%
OKCoin CNY 70, 736, 870 42.10%
bitcoin.de EUR 930, 244 0.55%
BTC-E EUR 175, 500 0.10%
Kraken EUR 1, 989, 286 1.19%

Table 1: Bitcoin Markets

Figure 3: Bitcoin Monthly Volume for USD, CNY, EUR Markets

which operate only for a portion of the day, the Bitcoin markets are all active 24

hours a day. Not only does each respective market run 24 hours a day, they also

run for all 365 days of the year, compared to the typical 252 trading days a year of

traditional markets. This provides a largewindow of opportunity for any trading

activity that could be made based on the prediction of a future price direction,

as there is no risk of the market being closed as the markets are always active.
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Figure 4: Bitcoin Volatility for USD, CNY, EUR Markets

While the continuous operation of the markets provides many opportunities

for trading activities, the Bitcoin markets also display a high tendency for volatil-

ity as shown in Figure 4. The volatility is calculated as the rolling standard de-

viation of the price percentage change using a window of the past month. We

see that there are numerous periods of very high volatility, with many periods

having a volatility over 0.10 (10%). While volatility can provide opportunities for

significant changes in price that can increase returns, it also provides an equal op-

portunity for risk. For our predictive model to take advantage of the high volatil-

ity of the market, it must have an accuracy significantly greater than that of a

purely random model. Our model must be able to maximize the earnings from

large upwards price changes and minimize losses from large downwards price

changes.

1.3 hypothesis

We establish our hypothesis on the concept of predicting Bitcoin based on the ac-

tions of network influencers. We define network influencers as users within the Bit-

coin network that have accumulated a disproportionate amount ofwealth respec-

tive to other users in the network through their actions using exchanges. While

there could be network influencers based on other criteria, such as the users that
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attract the most new users to the network, or interact with the greatest number

of users. For our purposes, we explicitly focus our attention on the influencers

that have accumulated a significant amount of wealth through their activities on

exchanges. Formally, we define our hypothesis as follows:

A predictive model can be created for the Bitcoin market that can

predict the price direction for each future day with better accuracy

than pure randomness, based on the historical market data, overall

Bitcoin network features, and specifically the activities of the major

influencers of the network. Where we define the major network influ-

encers as those that accumulate a disproportionate amount of wealth

within the Bitcoin network, compared to other users based on their

activities using Bitcoin exchanges.

Given our hypothesis, we must process the Bitcoin blockchain data to extract

the features of the network, establish a metric to quantify the influence of users

based on their wealth accumulation by using exchanges, and lastly develop a

predictive model that demonstrates better accuracy than pure randomness.

1.4 objectives

Based on our hypothesis we established several research objectives that are met

as part of our research process described in our methodology in Chapter 3. Each

of the objectives is important to the creation of a predictive model and the es-

tablishment of our experimental setup and evaluation. We have broken down

our objectives into three specific items: defining what we commonly refer to as

major network influencers; creating a metric to describe their influence and identi-

fying the network influencers; and lastly creating a model to predict future price

directions based on their actions.
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1.4.1 What is a Major Network Influencer?

The major network influencers are an important part of our research, and as such,

we have clearly defined them in our hypothesis and throughout our methodol-

ogy. This is to ensure that there is no confusion regarding their definition within

the context of our research. Formally, we define major network influencers within

the context of our research as follows:

A major network influencer is a user within the Bitcoin network that

accumulates a disproportionate amount ofwealthwithin the network

compared to other users based on their activities using Bitcoin ex-

changes.

We explicitly define a major network influencer as a user that accumulates a dis-

proportionate amount ofwealth, implying that they have a vast amount ofwealth

in comparison to the majority of Bitcoin users. Furthermore, we are explicitly in-

terested in users that acquired their wealth based on their activities using Bitcoin

exchanges. This criteria is intended to restrict our selection of users to those that

accumulate their wealth through the use of Bitcoin exchanges, rather than accu-

mulate it through selling illicit goods, operating gambling websites, or other Bit-

coin related services.We are focused on creating a predictivemodel based on the

activities of users recorded on the blockchain that frequently engage in activities

that may influence the Bitcoin market. Given this criteria we extract the activities

of all major network influencers from the blockchain and use these as features for

our predictive model.

1.4.2 Can Major Network Influencers be Identified?

As part of our hypothesis, we must identify the network influencers within the

Bitcoin network based on a metric that can accurately describe their influence.

Using this metric we then rank the users within the Bitcoin network so that we

can identify users that have a disproportionate amount of wealth relative to all
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other users, whom we refer to as the major network influencers. The activities of

these users that are recorded on the blockchain are then used as features for the

creation and evaluation of our predictive model.

The process of identifying network influencers based on our hypothesis and

objectives involves identifying users that are predominantly engaged in activities

that influence the Bitcoin market. In order to create a metric that optimally ranks

and identifies network influencers,we evaluated twometrics in ourmethodology

in Section 3.2. The first metric is based on the concept of calculating the most

accurate representation of the historical activity of the user. The second metric

is based on selecting the users that have the optimal outcome of three objectives:

maximum increase in wealth, minimum transactions, and minimum history of

activity. After applying both metrics to the Bitcoin users, we then choose the

best metric to use in Section 3.2.3, based on the descriptive statistics of the major

network influencers identified by each metric.

1.4.3 Can an Accurate Predictive Model be Created?

Our final research objective is to create a model that can predict the price direc-

tion (UP/DOWN) of the Bitcoin market for the following day with greater accuracy

than that of a purely random model. As part of testing our hypothesis, the pre-

dictive model will be trained and evaluated based on the features extracted from

the historical Bitcoin market data, aggregate blockchain activity, and most im-

portantly the activities of major network influencers. We outline our process of

extracting the features in Section 3.3.1 as well as the challenges inherent in the

structure of the data. Following the feature engineering,we then evaluate various

predictive models in Section 3.3.2, making our final selection for the experiments

based on the best performing model out of all evaluated. Lastly, we evaluate our

model extensively through a variety of experiments in Chapter 4 to compare its

accuracy to that of a purely random model.
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1.5 thesis outline

What follows is an outline of the thesis describing each of the sections and their

importance to testing the research hypothesis. Beginning with our current Chap-

ter 1, we give an introduction to Bitcoin to provide the reader with the necessary

background to understand the technology. Following our explanation, we then

demonstrate the opportunities for a model to predict the market price direction,

given the increasing adoption and activity of the Bitcoin network. The Bitcoin

market shows much potential for a predictive model, given the high value of

bitcoins, the continuous trading on exchanges, and high volatility of the market.

We then define our hypothesis in Section 1.3, which is to create a model that can

predict the price direction of the Bitcoin market with better accuracy than a ran-

dom model. The predictive model is based on the market data, entire network

features, and activities of users that accumulate vast amounts of wealth using

exchanges.

In the following Chapter 2, we provide a detailed background and literature

review of similar research. In the background review in Section 2.1, we provide

the reader with the knowledge necessary to understand our methodology and

experiments. The background review provides an explanation of the various pre-

dictive models used in our research, as well the metrics that are used to evaluate

and compare the performance of predictive models. In the literature review in

Section 2.2, we describe the body of prior research on analyses of the Bitcoin

network based on the public record of all transactions in the blockchain. Follow-

ing this, we also review prior research pertaining to predicting the Bitcoin mar-

ket based on sentiment analysis of social media, where sentiment analysis is a

metric to rank positive or negative emotions. Lastly, we provide a review of all

prior predictive models for the Bitcoin market in Section 2.2.3 and discuss the

performance of each, which achieve an accuracy between 50%–55%. The predic-

tivemodels used in previous researchwere a basis for the design of several of our

models, and their performance was used as a benchmark to refine and evaluate

our own models.
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For ourmethodology inChapter 3,wedescribe in detail our entire pre-processing

stage,which involves extracting the entire history of transactions from the Bitcoin

blockchain, and storing them in a database in Section 3.1. Based on the extracted

blockchain data, we then describe our method of clustering the addresses using

parallelization in Section 3.1.2, and a statistical analysis of the data and wealth

inequality in Section 3.1.4. Following the pre-processing, we describe ourmetrics

for identifying the major network influencers in Section 3.2, where we evaluate

two metrics. The first metrics is based on an optimal representation of histori-

cal activity of the user, and the second based on optimizing several objectives.

Based on the best metric chosen to select the major network influencers, we then

describe our methodology for creating the predictive model starting with the

feature engineering in Section 3.3.1. After feature engineering the data, we then

create several models in Section 3.3.2, with the model that has the best accuracy

chosen for our experiments based on a variety of tests in Section 3.3.3.

After selecting the best out of all of our predictivemodels, we then conduct our

final experiments in Chapter 4. Where we define our experimental setup in Sec-

tion 4.1, including the Monte Carlo model based on pure randomness, that our

model will be compared against. We then perform our holdout experiments in

Section 4.3, to evaluate the predictive performance and robustness of our model

when the amount of training data is increased, and the testing data is decreased.

Lastly, we evaluate the predictive performance of ourmodel in Section 4.4, where

we train the model and use it to predict the price direction of each future day, us-

ing the resultant outcome to then re-train the model daily.

Finally, in Section 5.1, we provide our concluding remarks on the results of

our experiments and the testing of our hypothesis. We then clearly define the

contributions of our research, and explain the benefits of our research work to

the academic community. Lastly, we explain the areas of future work that we

would like to pursue, and define the limitations of our current research that we

would like to expand upon in the future.
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BACKGROUND AND L ITERATURE REV IEW

2.1 background review

The following section provides a background review of the machine learning

concepts that are specific to the researchwork done.We discuss the three leading

predictivemodels used for our research: Support VectorMachine (SVM), decision

trees, andXGBoost. Aswell, for each predictivemodelweprovide an explanation

of their operation, aswell as the benefits and drawbacks of each predictivemodel.

Lastly, we provide a detailed summary of the machine learning metrics used to

evaluate the performance of ourmodels, including a comparison of the strengths

and weaknesses of each for binary classification problems.

2.1.1 Predictive Models

Predictive models can be described as classifiers that are used to predict the out-

come of future or withheld data based on the known classifications provided

during training. A classifier categorizes the data provided into one of [2, . . . ,N]

classes based on the features of the data; when the class labels are known and

provided, it is referred to as supervised learning [7]. The models that we explicitly

focus on as part of our research are those of supervised learning, as the outcome

(UP/DOWN) for predicting the price direction are known and provided.

2.1.1.1 Support Vector Machine

One of the most widely used predictive models for classification and regression

problems is a SVM. The SVM represents the data as a series of points within a

space, where the points are separated into two categories using a hyperplane,

15
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which attempts to make a gap between the two classes of points as wide as possi-

ble [8]. The concept of a SVM was first introduced in 1964 by Aizerman, Braver-

man, and Rozoner in “Theoretical foundations of the potential function method

in pattern recognition learning” [9], in which they first introduced the concept as

a learning machine that could be used to classify data with a very high number

of features, similar to the capabilities of the human mind. The main issue with

the initial publication of SVM is that it was not robust to non-linear classification

problems, and as such was not widely adopted until Boser, Guyon, and Vapnik

[10] introduced a kernel trick to transform the data from a non-linear classifica-

tion rule to that of a linear classification rule. Even with the introduction of a

kernel trick, SVMwas not widely adopted until the introduction of a soft margin,

by Cortes and Vapnik [8], in “Support-vector networks,” which allowed for SVM

to be extended to cases where the data is not linearly separable.

The SVMmodel works by creating a higher-dimensional model which assigns

each new data provided to one category or another. In the case of a linear model,

the data separation is achieved by constructing a hyperplane or set of hyper-

planes in higher dimensional space. The separation of the data on either side

of the hyperplane is the discriminator in assigning the data to a class, a set of

two parallel hyperplanes are used to separate the data so that the distance be-

tween the two nearest opposing data points is maximized.These data points are

known as the support vectors, which establish the hyperplanes for separating the

data [8, 11]. In the case of linearly separable data, a hard-margin is used, which

defines the support vectors as those that lie directly on the parallel hyperplanes.

However, when the data is non-linearly separable, instead a soft-margin is used

to establish themargin, this was the innovation introduced by Cortes andVapnik

[8] that allowed SVM to gain more widespread application.

The application of a soft-margin is frequently used due to its robustness and

application to non-linearly separable problems. In Figure 5, we see the applica-

tion of the soft-margin, where in the first figure a very small value of λ = 0.01 is

used making it behave nearly identical to the hard-margin SVM, where the mar-

gins are established directly along the support vectors. In the second figure, a
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(a) SVM Example C = 0.01 (b) SVM Example C = 1.0

Figure 5: SVM Hyperplane and Margin Example

much larger value of λ = 1.0 is used, thereby increasing the margin size to estab-

lish the support vectors based on the minimization of a hinge loss function [7, 8].

The calculation of the soft-margin for SVM involves minimizing the summation

of a hinge loss function as given in Equation 1. Where n is the number of vectors

and λ is the parameter controlling themargin-size, where if a small enough value

of λ is chosen, it operates similarly to a hard-margin as shown in Figure 5. For

the hinge loss, max (0, 1− yi(~w · ~xi + b)), it is at zero if the value of the constraint

(1) is satisfied when ~xi is on the correct side of the margin, otherwise the value

returned is proportional based on the distance it has from the margin.

[
1

n

n∑
i=1

max (0, 1− yi(~w · ~xi − b))

]
+ λ‖~w‖2 (1)

For many classifier applications in machine learning an SVM is often the first

model evaluated. They are still effective when the dimensions of the data are

greater than available samples, are relatively memory efficient, and have versa-

tility through the use of different kernels when mapping the data to the higher

dimensions [7]. However, the overall performance of SVM is highly dependent

on the correct choice of kernel and corresponding parameter C, which are spe-

cific to certain problems and difficult to generalize [12].While attempts have been

made to better understand the relation between the kernel and regularization pa-
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rameters, there is no established theory for choosing the appropriate parameters

based on the classification task [12, 13].

2.1.1.2 Decision Trees

Another category of predictivemodels are decision trees, which are a supervised

learning method that can be used as a classifier for a predictive model. Decision

trees are unique in that they are non-parametric, whereby the parameters for the

model are not fixed, but instead are determined based on the statistical prop-

erties of the data and the amount of training data available [14]. Rather than

performing complex higher-dimensional mapping and hyperplane segregation

as in SVM, decision trees generate a model dynamically based on the properties

and amount of training data. The decision tree creates decision rules that result

in an outcome at each level of the tree, where the rules are created based on the

properties of the data [14, 15].

petal length (cm) ≤ 2.45
gini = 0.6667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]
class = virginica

gini = 0.0408
samples = 48

value = [0, 47, 1]
class = versicolor

gini = 0.4444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.4444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

Figure 6: Decision Tree Example
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While the concept of a decision tree has been used in many other contexts, the

application of decision trees for classification and regression problems in ma-

chine learning was first introduced by Breiman et al. [16] in Classification and

regression trees. The seminal work introduced the concept of decision trees as

they are used in machine learning under the umbrella term Classification And

Regression Tree (CART). The predictive model for a decision tree is learned by

mapping the observations about the data represented in the form of branches

where decisions are made. The conclusions about the class of the data, are based

on the values represented in the leaves that form for each level of the tree [17].

The algorithms for building the tree operate in a top-down fashion by choosing

a variable at each step that best separates the data, until an appropriate height

is reached to separate the data into all available classes [17, 18]. An example of

this process is shown in Figure 6, where it is used to classify the flowers of the

commonly used Iris Data Set [19, 20]. At each step of the tree, a comparison is

made based on the petal length and width to classify the data. In the first step

if petal length (cm) 6 2.45 then it is classified as a setosa flower, otherwise the

process is repeated and the data is further separated into classes by performing

additional comparisons.

At each leaf in Figure 6 a value is given called the Gini impurity, which is a

measurement used by CART for multi-class classifiers to measure the amount

of misclassification. The Gini impurity IG measures how frequently a randomly

chosen element from the set would have an incorrect class when classified at

random given the distribution of possible classes in the subset of data at each

leaf [15, 17]. It is calculated as the sum of probabilities fi of class i being chosen

multiplied by the probability of a mistake occurring 1− fi, an example is given

in Equation 2, where a dataset has N classes, and fi is the probability of being

classified with the class i in the dataset.

IG( f ) =
N∑
i=1

fi(1− fi) =
N∑
i=1

( fi − fi2) =
N∑
i=1

fi −
N∑
i=1

fi2 = 1−

N∑
i=1

fi2 (2)
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There are many benefits to using decision trees in comparison to other predic-

tive models as they provide a different approach to classification and predictive

modelling tasks. One of the main benefits of decision trees is that they produce

an explanation of how decisions are made when classifying data, as it is possi-

ble to generate a visual representation of the model similar to Figure 6. Further-

more, they can handle both numerical and categorical data and do not require

extensive data preparation in comparison to SVM; and are robust even in the

case where assumptions are violated by the true model [15]. However, there are

also numerous drawbacks to using decision trees, in particular, the task of gen-

erating the optimal decision tree is an NP-complete problem and often greedy

algorithms are used in selecting the optimal tree, which can lead to biases [15,

18]. Furthermore, decision trees have a tendency to create overly-complex trees,

which although explaining the decision process can be very hard to comprehend.

The overly-complex trees result in over-fitting as the decisions do not create suf-

ficient generalizations from the data [15]. A technique known as pruning can be

used to mitigate the effects of over-fitting, but still does not provide a solution to

selecting the optimal tree [21].

2.1.1.3 Extreme Gradient Boosting

A new predictive model based on the concept of decision trees, known as Ex-

treme Gradient Boosting or just XGBoost, has found widespread use due to its

robustness and strong performance by combining the outcome of multiple trees

into a single model. XGBoost is also a supervised learning model, and was cre-

ated by Chen while doing research on variations of existing tree boosting meth-

ods, to satisfy the need for boosted trees with conditional randomfields [22]. The

predictivemodel foundwidespread adoption after it was used to solve theHiggs

Boson Challenge held by Kaggle and won first place in the competition. Follow-

ing the conclusion of the competition, Chen and He proceeded to publish their

results and it has since gainedwidespread recognition [22, 23]. XGBoost has since

been implemented and provided as packages for a number of programming lan-
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guages including Python, R, Java, etc. and has been used to win a number of

leading machine learning competitions [24, 25].

Given the demonstrated strength of XGBoost in solving numerous machine

learning competitions, we also chose to consider it in our list of predictivemodels

evaluated for price direction prediction in Section 3.3.2. The XGBoostmodel is an

extension of several concepts including decision trees, in the form of the widely

used CART model, in addition to Gradient Boosting, whereby a predictive model

is generated as an ensemble of the outcome of numerous decision trees [26, 27].

In the CART model used to create the decision tree a score is associated with

the classification outcome of each of the leaves, such as the Gini impurity shown

previously. An ensemble of multiple trees are combined, where the classification

outcome given for each of the leaves is summed to generate a final score. In each

case, the trees are combined to try and complement each other, while providing

robustness to over-fitting [26].

The ensemble model used to combine trees to complement each other can be

expressed in Equation 3, whereN represents the number of trees in the ensemble

and f is a function of F the set of all possible CARTs. The following objective to

optimize based on themodel is given in Equation 4, where L refers to the training

loss function, which measures the predictive performance of the model on train-

ing data, and Ω is the regularization term [26]. The extreme aspect of XGBoost

comes from the enhancements made to the learning and ensemble methods as

well the focus of the library provided to push the computational limits to the

extreme by a performance-tuned, scalable, and robust model that gives accurate

results [26].

ŷi =

N∑
n=1

fn(xi), fn ∈ F (3)

obj(Θ) =
k∑

i=1

L(yi, ŷi) +
N∑

n=1

Ω( fn) (4)

One of the main benefits of XGBoost is that it provides a robust solution that

is more resilient to over-fitting than decision trees by using an ensemble of trees
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which are combined. Furthermore, it has also consistently demonstrated strong

performance inmachine learning competitions, often receiving first place in com-

parison to other predictive models used in the competitions [24, 25]. Lastly, the

authors have provided implementations for popular programming languages

and have emphasized performance and parallel computation, allowing XGBoost

to scale beyond billions of examples using fewer resources than existing systems

[26]. However, there are still issues with XGBoost, it is still a new model that is

in its infancy, with implementations that are very recent and may still contain

unexpected bugs or errors, and the final model can still be complex and not nec-

essarily comprehensible.

2.1.2 Model Evaluation

In binary classification problems a confusion matrix as shown in Table 2 is com-

monly used as it provides a summary of the four possible outcomes of any binary

classification problem: TP, FN, FP, or TN [7, 28]. In the case of TP, a True Positive,

it is the correct number of classifications of positive examples where the actual

outcomewas also positive, thus correctly predicting a positive outcomewhen the

actual outcome was also positive. Whereas FN, a False Negative, is the number of

incorrect classifications of positive examples, where the predicted outcome was

negative when the true outcome was actually positive. In the case of FP, a False

Positive, it is the number of incorrect classifications of negative examples, where

the predicted outcome was positive when the actual outcome was in fact nega-

tive. Lastly, the TN, a True Negative, is the number of correctly classified negative

examples, where the predicted outcome was negative and the actual outcome

was also negative.

Actual Outcome Classified Positive Classified Negative

Positive TP FN
Negative FP TN

Table 2: Confusion Matrix
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A hypothetical perfect binary classifier, would have a TP with the same number

of actual positive (1) outcomes, and a TN with the same number of actual nega-

tive (0) outcomes, thus both the FN and FPmeasures would be 0. In this scenario,

it could be said that the binary classifier can perfectly predict the actual outcome,

as both the TP and TN would match the number of positive and negative results

in the actual outcome.

2.1.2.1 Precision and Recall

The origins of the precision and recall metrics frequently used to evaluate the per-

formance of information retrieval and classification systems were first defined

in the publication, “Machine Literature Searching VIII. Operational Criteria for

Designing Information Retrieval Systems” in 1955 by Kent et al. At the time of

publication the metrics were specific to information retrieval contexts, and were

defined in terms of a set of retrieved documents (e. g. the list of all documents

retrieved that matched a search query). In addition to information retrieval sys-

tems, these metrics are now frequently used in machine learning applications

[30, 31], in particular binary classification systems as the metrics use the possible

outcomes shown in Table 2, which are based on either a positive (1) or negative

(0) outcome.

The following equations describe the precision and recall metrics in terms of

the context of the confusion matrix, which provide an evaluation of the classi-

fication performance of a classifier model. The precision, also be referred to as

Positive Predictive Value (PPV), as defined in Equation 5, describes the number of

positive examples correctly classified as positive (TP), divided by the total num-

ber of available examples that are classified as positive [7, 32]. Recall as defined

in Equation 6, describes the number of positive examples that are correctly clas-

sified as positive (TP), divided by the total number of actual positive examples

[7, 32]. For both the precision and recall metrics the outcome of possible values

lie between the range of [0, 1], where the best possible score is represented by 1

and the worst at 0. Intuitively, precision can be interpreted as the ability of the

classifier to not incorrectly predict an outcome as positive that is actually nega-
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tive, whereas recall is the ability of the classifier to accurately predict all actual

positive outcomes.

precision =
tp

tp + fp
(5)

recall = tp
tp + fn

(6)

2.1.2.2 F1-Score

Both the precision and recall metrics evaluate only one aspect of the classifier,

as such a third metric is commonly used, known as the F1 measure or F1-score.

This can be interpreted as the combination of both the precision and recall met-

rics using a harmonic mean, and is frequently used as a measure of a classifier’s

accuracy [28, 33]. The F1-score is defined in Equation 7 as the harmonic mean

of precision and recall, where the precision is multiplied by recall and then di-

vided by the sum of precision and recall. Similarly to the precision and recall

metrics, the outcome of possible values lie between the range of [0, 1], where the

best possible score is represented by 1 and the worst at 0. However, even with

the application of the harmonic mean applied to precision and recall for the F1

score, all three metrics can be considered biased as they ignore the effect of cor-

rectly handling negative examples, and thus can lead to underlying tendencies

and biases [28].

F1 = 2× precision× recall
precision+ recall (7)

2.1.2.3 Receiver Operating Characteristic

As such, in order to address the biased tendencies of precision, recall, and F1-

score, an additional metric is often used known as Receiver Operating Charac-

teristic (ROC). The ROC or ROC curve as it is also known, is a visualization that

has been adopted from signal processing to become a standard for evaluating

the performance of binary classifiers [28]. The ROC curve is a two-dimensional
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plot with the False Positive Rate (FPR) and True Positive Rate (TPR) plotted on the

x and y axes at various threshold settings. Where the TPR is the ratio of TP to the

total positive outcomes and the FPR is the ratio of FP to the total negatives [34,

35]. The benefits of using the ROC metric for applications in machine learning

has been highlighted by Flach [36], in particular that it gives a geometric insight

into the sensitivity of the classifiers being evaluated.
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Figure 7: Receiver Operating Characteristic Example

An example of a ROC plot is shown in Figure 7, where the red line represents

the relationship of the TPR to the FPR at various thresholds. An ideal prediction

would result in a point at the coordinate (0, 1) of the plot, representing no FN

nor FP, in which case the model would have 100% sensitivity and 100% speci-

ficity and is known as a perfect classification [35]. The diagonal line represents

the outcome of a perfectly random guess and is referred to as the line of no dis-

crimination and is drawn from the left bottom at coordinate (0, 0) to the top right

at coordinate (1, 1). The diagonal is used to divide the ROC space, as such that

points that lie to the northwest above the diagonal represent good classification

performance that is better than random. Whereas, points that lie below the diag-

onal line, to the south east, are considered poor and are worse than random [28,

35].

While the ROC plot provides a beneficial visualization to describe the perfor-

mance of a classifier, often a single numeric value is needed in order to quickly



2.1 background review 26

compare the performance of models based on the ROC metric without relying

solely on visualizations. The Area Under Curve (AUC) also referred to as Area

Under Receiver Operating Characteristic (AUROC) visually implies the area that

is contained under the curve given by the classifier in the ROC plot. The AUC

is equal to the probability of the classifier to rank positive instances higher than

negatives when selected uniformly random [35, 37].

TPR(T) =
∫∞
T

f1(x)dx (8)

FPR(T) =
∫∞
T

f0(x)dx (9)

AUC =

∫−∞
∞ TPR(T)FPR′(T)dT (10)

=

∫∞
−∞

∫∞
−∞ I(T ′ > T)f1(T

′)f0(T)dT ′ dT

= P(X1 > X0)

The calculation of the AUC can be described in terms of the TPR and FPR

in the case of a binary classifier. Each prediction outcome is described in terms

of a continuous random variable, X which is given compared to a threshold, T ,

normally a value of T = 0.5. In each instance the outcome is positive given X > T ,

and negative if X 6 T . The probability density of X is given as f1(x) for instances

that are positive and f0(x) for negative outcomes, giving the TPR and FPR as the

integrals in Equation 8 and Equation 9 [35, 37, 38]. Lastly, the AUC, which is the

probability of the classifier to rank positive instances higher than negatives, can

be described in Equation 10, where the area under the curve is represented by

the reversed integrals. Thus giving the probability P(X1 > X0) of the positive

instance, X1 ranked higher than a negative instance X0 [37, 38].
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2.2 literature review

In the following section we present a comprehensive literature review of the nu-

merous approaches that researchers have taken to better understand the Bitcoin

blockchain and markets. We provide a review of the leading research conducted

to analyze the Bitcoin blockchain and understand the actions of individual users,

the wealth inequality of the network, and conclusions about the future of Bitcoin.

Following this we then review the various approaches taken by researchers to

better understand and predict the Bitcoin markets based on the emotions shared

by users on social media. We find based on our review, that in nearly all cases

studying the emotions of Bitcoin users on social media does not predict the mar-

ket, but rather reflects the sentiment of the community towards market changes.

Lastly, we then review the leading machine learning predictive models that are

applied to Bitcoin in order to predict the future price direction, which we find

have between 50%–55% accuracy.

2.2.1 Bitcoin Network Analysis

There have been many questions surrounding the rise in popularity of Bitcoin

and themotive behind individuals adopting it in comparison to traditional finan-

cial instruments. In “Bitter to Better—How to Make Bitcoin a Better Currency,”

Barber et al. [39] conducted an in-depth investigation of the Bitcoin network to

better understand the reasons behind its success in comparison to previously

proposed solutions. These prior solutions, referred to as e-cash or electronic cash,

which had not succeeded after over three decades of research, and the authors

wished to understand the secret to Bitcoin’s success [40, 41]. The authors found

that while e-cash systems had repeatedly failed, Bitcoin achieved wide-spread

adoption without the use of fancy cryptography. Rather, Bitcoin relied on inge-

nuity and sophistication, in combination with the introduction of mining, to in-

centivizes user adoption [39]. In order to better comprehend the rise in the adop-
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tion of Bitcoin Barber et al. laid out a detailed analysis of the major factors to the

success of Bitcoin [39], which we have summarized as follows:

no central point of trust: Bitcoin is completely distributed in nature and is

able to operate entirely without any central authority, the blockchain and

mining process allow for a majority vote for dispute resolution.

incentives and economic system: The ingenuity behind Bitcoin’s adoption

is the incentive for users to become miners, allowing anyone to participate

in the transaction processing and be rewarded for doing so with bitcoins.

predictable supply: Bitcoin currency can only be added to the available sup-

ply as a reward for the mining process. The total supply is mathematically

defined and predictable.

divisibility and fungibility: The currency can be easily divisible up to the

minimal unit of 0.00000001 BTC, referred as a Satoshi, allowing users to

transact nearly any amount and combine any amount.

versatility and openness: The development of Bitcoin is completely open,

the source code is developed using an open-source license and has hun-

dreds of developers contributing to the software.

scripting: The Bitcoin blockchain allows for the inclusion of simple scripts,

which can be used to create complex transactions and financial services

such as escrow and dispute mediation.

transaction irreversibility: Transactions within the Bitcoin network are ir-

reversible once seen by other peers on the network, and once added to the

blockchain are practically impossible to reverse without a 51% attack.

low fees: The Bitcoin network has extremely low transaction fees with no ad-

ditional costs for international transfers, which in addition to transaction

irreversibility is appealing to merchants.
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numerous implementations: There are numerous implementations of Bitcoin,

supporting all major operating systems and devices, in addition to cloud

based services making access readily available.

Addressing the question of why individuals are adopting Bitcoin in compar-

ison to traditional financial instruments, Bohr and Bashir [42] conducted an ex-

ploratory analysis of Bitcoin users. Prior to the research by Bohr and Bashir very

little was known about the users of Bitcoin, their research used the data from a

publicly available survey given to the Bitcoin community in terms of wealth ac-

cumulation and optimism about the future. In total there were 1, 193 responses

collected from 2013-02-12 – 2013-04-04, the survey information was made public

online to a number of different Bitcoin communities, but due to the limitations

in the widespread adoption of Bitcoin, it was nearly impossible to guarantee a

random sample [42].

The analysis of the survey revealed many insights into the network of Bitcoin

users, the average respondent age was approximately 33 years old, and less than

half indicated their residence in the United States. The gender was disregarded

from the research as there was almost no variation, with 95% of all respondents

identifying as male [42]. The political orientation of users was also considered,

with nearly half of the sample identifying as Libertarian and many represented

as Progressives, with the remaining including socialists forming a minority. In

addition to political orientation, numerous features were assessed for their in-

fluence on the accumulation of wealth within the Bitcoin network, with age and

activities being a significant feature. The analysis of the survey showed 25 year

olds having approximately half as many bitcoins as 35 year olds, who had again

nearly half as many as 45 year olds, after which the trend declined [42]. Further-

more, the influence of mining and illicit activities (e. g. narcotics, gambling, etc.)

on wealth accumulation were also evaluated, with mining having no significant

impact since 2011, declining since the early days of Bitcoin and the participation

in illicit activities only having a marginal effect [42].

Themost important results from the research conducted by Bohr and Bashir to

our own research, was their final assessment of the leading factors contributing
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to wealth accumulation within the Bitcoin network. The results of their regres-

sion experiments showed that increasing age (up to a peak at 50), involvement

in investment activities, and participation in the online forum Bitcoin Talk [43],

the original forum used by Bitcoin’s creator, were all factors in explaining the

accumulation of wealth. These three factors were all statistically significant in

describing wealth accumulation, each having a p-value of p < 0.01, with the au-

thors finding that users whom identified as investors had accumulated approx-

imately four times as many bitcoins as those who had not [42]. The statistical

significance of investment activities and involvement in online forums to wealth

accumulation demonstrated by Bohr and Bashir were instrumental in the design

of our metrics to identify major network influencers.

Rather than focusing on the adoption of Bitcoin and individual users, other

researchers focused on analyzing the blockchain, a public record of all transac-

tions that take place on the network. In “Quantitative Analysis of the Full Bitcoin

Transaction Graph,” Ron and Shamir [44] downloaded the complete blockchain

data spanning a period of 2009-01-03 – 2012-05-13 and analyzed many of the

statistical properties of its associated transaction graphs. In addition to conduct-

ing a detailed analysis of the blockchain, they provided an algorithm based on a

variation ofUnion-Find [45], which made it possible to combine sets of addresses

expected to belong to the same user based on combining transactions containing

overlapping sets of addresses as the sender [44]. The algorithm was further ex-

panded by Reid and Harrigan [46] and Androulaki et al. [47] to also incorporate

shadow addresses, which were added by Bitcoin developers to increase security by

generating a new address after each transaction to receive the change [47].

Through the application of the Union-Find algorithm, Ron and Shamir were

able to combine 3, 120, 948 addresses, which had participated in sending at least

one transaction, out of a total of 3, 730, 218 addresses into 1, 851, 544 individual

users [44]. Out of the total 3, 730, 218 addresses there were 609, 270 sink addresses,

that had only received BTC but never sent any; these sink addresses combined (on

2012-05-13), held over 7, 019, 100 BTC, almost 78% of all BTC in existence [44].

Their analysis showed a consistent trend of huge variances in the statistics, for
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example, in terms of the number of addresses associated to a single user, they

had found a user with over 156, 722 addresses, all of which were active [44].

The statistical analysis provided byRon and Shamirwas instrumental in direct-

ing our own analysis of the blockchain outlined in Section 3.1.4. We generated

our descriptive statistics showing the number of addresses and wallets for each

range of balances, based on the tables they created to analyze thewealth distribu-

tion. From their descriptive statistics therewere a number of insightful outcomes,

the balance of 98% of all userswas< 10 BTC ($50USDon 2012-05-13), evenwhen

taking into consideration the maximum balance ever held by a user this amount

was only reduced to 91% [44]. Not only do the vast majority of Bitcoin users only

hold a relatively small amount, the vast majority (97%) of all users performed

fewer than 10 transactions each, while 75 users were heavily active performing

over 50, 000 transactions each [44]. Given the majority of users have very little

Bitcoin, perform very few transactions, and the fact that the majority (47%) of

transactions are very small (< 0.1 BTC each) [44]. The extreme variances in the

statistical analysis of the network and the extreme unbalance in the influence that

a minority of users have on the network becomes evident [44].

Following the detailed blockchain analysis provided byRon and Shamir,much

of future research focused on identifying the individual users and analyzing the

services they used. In “A Fistful of Bitcoins: Characterizing Payments Among

Men with No Names,” Meiklejohn et al. [48] expanded previous address cluster-

ing techniques [44, 46, 47] to also cluster based on shared authority using iden-

tification attacks to identify and categorize Bitcoin related services [48]. They

began by combining addresses into wallets owned by individual users using ex-

isting clustering techniques, following this the wallets were further combined

and labelled using an identification attack. Where their attacking involved using

a broad range of services, in order to discover the associated addresses belonging

to the wallets owned by these services. After labelling major services, they pro-

ceeded to identify individuals by crawling the popular services Bitcoin Talk [43]
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and Blockchain.info1, associating the addresses published by users with their ac-

tual identity.

After labelling and categorizing Bitcoin related services and identifying indi-

vidual Bitcoin users, they proceeded to analyze the activities of known services

and users. Their results corroborated with Ron and Shamir [44] that a significant

majority of bitcoins are in sink addresess, that have never been spent. They also

demonstrated how gambling services are putting a lot of stress on the network,

in particular the service Satoshi Dice. The gambling website has varying odds

with a 2% house advantage, does tens of thousands of transaction a day, and has

also spawned numerous clones, which all combined add an extra 30, 000 trans-

actions to the blockchain daily [48]. While contributing a significant amount of

transactions to the network, the gambling services had very little contribution to

an overall increase in user balance or accumulation of wealth, instead the major-

ity of active bitcoins were used with exchange services [48].

Building on the body of previous research Spagnuolo, Maggi, and Zanero [49]

published the creation of a public system in “BitIodine: Extracting Intelligence

from the Bitcoin Network.” The purpose of this system, was to make available to

the public the combined results of the known address clustering algorithms [44,

46, 47] and the labelling process used to identify services and users by Meikle-

john et al. [48]. The system that Spagnuolo, Maggi, and Zanero created was influ-

ential to the design of our own pre-processing system in Section 3.1.1. As well,

the author provided us with consultation regarding the blockchain processing

and address clustering methodology, which we expanded upon further to make

parallel for enhanced performance.

Thework of Kondor et al. [50] in “Do the Rich Get Richer? An Empirical Analy-

sis of the Bitcoin Transaction Network,” was very influential to our own research,

as it provided a measure of the wealth and transaction statistics of the network;

which were significant in the design of our own metrics for identifying network

influencers. Kondor et al. identified two phases in the Bitcoin network; the first

phase, referred to as the initial phase, which lasted until fall of 2010, was a point

1 Blockchain.info address self-identification service: https://blockchain.info/tags

https://blockchain.info/tags
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where the system had low activity and was experimental. The second phase, re-

ferred to as the trading phase, is when Bitcoin began to function as a real currency

and occurred when bitcoins gained monetary value through the introduction of

online exchanges [50]. Following the start of the trading phase, all of their network

measures began to converge to their now typical values and since mid 2011 did

not change significantly afterwards [50].

In order to better understand the distribution of connectedness and wealth

within the Bitcoin network Kondor et al. applied the Gini coefficient,

G =

(
2

n∑
i=1

i · xi
/
n

n∑
i=1

xi

)
−
n+ 1

n
, (11)

which is used in economics to characterize the amount inequality present in the

wealth distribution of a population [51]. In Equation 11, xi represents a sample

of size n, where the xi are orderedmonotonically such that xi 6 xi+1. A value of

G = 0 represents perfect wealth equality, where every individual has the same

wealth,G = 1 is complete inequality, where a single individual controls all of the

wealth [50–52].

Using the Gini coefficient it was found that during the initial phase of Bitcoin

that the in-degree distribution (the number of transactions fromunique addresses)

was close to G ≈ 1. This indicates, that prior to the trading phase, most users

hoarded their bitcoins, as there were few Bitcoin services available or exchanges

to convert their bitcoins to fiat currencies [50]. Following the trading phase, the

amount of in-degree and out-degree approached a steady value of Gin ≈ 0.629

andGout ≈ 0.521 [50], indicatingmore even distribution of transactions between

addresses. However, it is interesting to note that even with the increase in con-

nectedness, the Gini coefficient for wealth distribution went from Gwealth ≈

0.85 to Gwealth ≈ 0.985 [50]. Leading Kondor et al. to conclude that while it is

well-known that the wealth distribution of society follows the Pareto rule, where

the top 20% of the population control 80% of the total wealth [53, 54], the wealth

distribution of the Bitcoin network is highly heterogeneous with 6.28% of the

addresses possessing 94.72% of the total wealth [50]. Even more interestingly, of
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those that have a small amount of wealth, they also found that there are a signifi-

cant number of addresses that lose all of their wealth within a time frame of one

month, a phenomenon specific to Bitcoin [50].

The insightful research conducted by Kondor et al. further re-affirmed our

methodology for identifying major influencers based on wealth accumulation,

referred to as preferential attachment. Whereby the well-connected andwealthy in-

dividuals increase their wealth and influence faster than those with less [55, 56],

the “rich get richer” and continue to exert their influence on the network [50]. Fur-

thermore, the prior research on address clustering conducted by Ron and Shamir

et al. [44, 46, 47] and the detailed labelling of services and user identification re-

search of Meiklejohn et al. [48, 49], provided a detailed and constructive body of

research to build upon for conducting our methodology.

2.2.2 Bitcoin Sentiment Analysis

Previous research work has been conducted to better understand the effect that

external sentiment has on the Bitcoinmarket and price volatility. In “Nowcasting

the Bitcoin Market with Twitter Signals,” Kaminski and Gloor [57] were the first

to apply existing techniques of social media sentiment analysis to the Bitcoin

market, which operates 24 hours a day. Their work expanded upon the previ-

ous research of Bollen, Mao, and Zeng [58], which demonstrated an accuracy of

87.6% in predicting the daily direction changes of the Dow Jones Industrial Av-

erage (DJIA). As well as Zhang, Fuehres, and Gloor [59], which concluded that

tweets from Twitter have a high causality relation with stock market indices and

can be considered as predictors of financialmarketmovements. For their research

Kaminski and Gloor collected a total of 161, 200 tweets from 57, 727 unique Twit-

ter users within the time-frame of 2013-11-23 – 2014-03-07. In total the collected

tweets had a combined sum of 300 million impressions, where impressions are

the number of times that tweets have been viewed by Twitter users [57]. Mar-

ket data from the four leading Bitcoin exchanges: BitStamp, Bitfinex, BTC-E, and

BTC China was used to extract the following price metrics: Open High Low
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Close (OHLC), Volume (BTC), Volume (currency), intraday-spread (high− low),

intraday-return (open− close), and ∆ price
(
closeday+2 − closeday

)
[57].

The results of the research conducted by Kaminski and Gloor showed a cor-

relation with the amount of emotions and sentiments of uncertainty correlated

with high trading volumes in the previous 24 hours. Furthermore, they found

that high amounts of negative sentiment were a key influencer for the trading

volume of the past 24 hours [57]. In particular, the sum of negative and uncer-

tainty sentiments had a strong positive correlation with the trading volume of

BitStamp, and the sum of total emotions and uncertainty sentiment also corre-

lated to the intraday-spread on BitStamp. Lastly, they found that an increase in

negative and uncertainty sentiments on a given trading day were likely to result

in a lower close price, showing that there is a correlation between negative mar-

ket performance and sentiment [57].

In addition to the research of Kaminski and Gloor, others also pursued an-

alyzing correlations between social media sentiment and the Bitcoin market. In

“Bitcoin Spread Prediction Using Social AndWeb SearchMedia,”Matta, Lunesu,

and Marchesi [60] investigated the spread of Bitcoin’s price and its correlation

to the volume of social media sentiment and Google trend data for a period

of 2015-01-01 – 2015-03-01. Their research affirmed that of Kaminski and Gloor

and demonstrated a correlation between positive social media sentiment and in-

creased Google trends with positive price increase, however, their conclusions

drew assumptions that correlation implies causation. The work of Georgoula et

al. [61] in “Using Time-Series and Sentiment Analysis to Detect theDeterminants

of Bitcoin Prices,” further affirmed the correlation between social media senti-

ment and the Bitcoin market. Similarly to other researchers, they also assessed

the sentiment of Twitter, but also took into consideration the mining difficulty

and number of searches related to Bitcoin on Wikipedia. The data was captured

during a period of 2014-10-27 – 2015-01-12 and the type of sentiment contained

in the tweets was classified using SVM, a series of regressions were conducted to

evaluate the correlation. The results demonstrated a correlation between search
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interest on Wikipedia and mining difficulty to the price of Bitcoin, in addition to

positive Twitter sentiment having a short window of correlation to the price.

Rather than assess the correlation between Twitter social media sentiment and

price, Bukovina, Marticek, et al. [62] took a very different approach and focused

on the influence of sentiment on the overall volatility of the market. In Sentiment

and Bitcoin Volatility, they assessed the impact of less rational factors such as the

lucrative attractiveness of Bitcoin and speculation as influential factors of volatil-

ity, focusing particularly on the correlation between social media sentiment and

volatility. Bukovina, Marticek, et al. define the term sentiment within the context

of behavioral finance, where investor sentiment is a set of beliefs about the likeli-

hood of a return on the initial investment and the known risks based on available

facts [63]. They define the decomposition of the Bitcoin price as the following

given in Equation 12, where BTC represents one bitcoin, T is the average num-

ber of transactions, k is a coefficient relating to the block reward given to miners,

and R is the average revenue for each transaction [62]. Instead of using Twitter for

their sentiment analysis, the data was provided by a third party service Sentdex

[64], which collects social media sentiment from Reddit2. Their results indicated

only a minor correlation between sentiment and market volatility, however dur-

ing periods of high volatility, there was a much stronger correlation. The authors

attribute the weak correlation results compared to other researchers as the limi-

tation of only using Reddit for sentiment [62].

BTC =
T
k
×R (12)

Instead of focusing solely on establishing correlations, Kaminski and Gloor ex-

tended their analysis of social media sentiment and market performance to also

test the common anecdote of statistics, “correlation does not imply causation”.

Their research further evaluated the predictive possibilities of social media sen-

timent by applying Granger causality analysis [65, 66] to the time series market

data and Twitter sentiments. The Granger causality was applied to the two linear

2 An online social network similar to a bulletin board, where users post submissions that can be
voted up or down and commented on. http://reddit.com

http://reddit.com
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regression models in Equation 13 and Equation 14, where the first model uses

a lagged value p of the Bitcoin market data to predict Yt and the second model

uses a lagged value of Twitter sentiments, denoted by Xt−i [57].

Yt = ct +

p∑
i=1

βiYt−i + et (13)

Yt = ct +

p∑
i=1

αiYt−i +

p∑
i=1

βiXt−i + ut (14)

with H0 = β1 = β2 = · · · = βp = 0

The two linear regression models are then evaluated using Residual Sum of

Squares (RSS) as shown in Equation 15 to test the null hypothesis of the Granger

causality given in Equation 14. Where RSS0 and RSS1 are the RSS for the two

linear regression models given in Equation 13 and Equation 14. If the F statistic

is outside a critical value for an F distribution, then the null hypothesis H0 that

Y does not have Granger causality of X is rejected, implying that Y is the Granger

causality of X [65, 66].

f =
(n− 2p− 1) (RSS0 − RSS1)

p×RSS1
∼ Fp,n−2p−1 (15)

After applying Granger causality analysis to evaluate whether there was any

causality between Twitter sentiment and market outcome based on the correla-

tion assessed, Kaminski and Gloor found no statistical significance of Twitter

sentiment as a predictor of Bitcoin price, intraday-spread, or intraday-return [57].

They concluded that the Twitter platform is more akin to a virtual trading floor

that reflects the emotions of the movements that occur in the Bitcoin market,

rather than predicting it [57]. Their outcome was influential in our own method-

ology and decision to focus on identifying the major market influencers based

on wealth accumulation demonstrated by Kondor et al., rather than focusing on

market influence based on sentiment.
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2.2.3 Predictive Models for Bitcoin

There have been several instances where researchers have attempted to predict

the Bitcoin market using the application of machine learning methods. The first

attempt was published in “Bayesian regression and Bitcoin,” where Shah and

Zhang [67] applied the concept of Bayesian regression in the form of a “latent

source model” as introduced by Chen, Nikolov, and Shah [68] to function as a

binary classifier. In their paper they utilized the latent source model of Bayesian

regression to predict the numerical change in price of Bitcoin, following this pre-

dictive model they proceeded to devise a simple trading strategy and backtest it

again their withheld testing data. The data used for the experiments was taken

from a major Chinese exchange OKCoin for the time period of 2014-02-01 – 2014-

07-01, the combined total number of data points was over 10million as they used

the real-time trading events which were acquired at an interval of every two sec-

onds [68].

Based on the work of Chen, Nikolov, and Shah [68], the latent source model

was adapted for Bayesian regression of the Bitcoin market. When the problem is

applied to a latent source model it becomes a simplified Bayesian inference prob-

lem; first given n amount of data (xi,yi) , 1 6 i 6 n the empirical conditional

probability is given in Equation 16 [69]. From the empirical conditional probabil-

ity model Shah and Zhang then expanded it to the concept of a linear estimator

where X(x) ∈ Rn such that it satisfies the equation given in Equation 17. From

this point they were then able to derive the final predictive model where y ∈ Rn

with the value at index i being yi, where ŷ ≡ Eemp [y | x], following this equiv-

alence for the linear estimator gives the final model in Equation 18, which was

used as the predictive model for the time series data [67].

Pemp
(
y | x

)
=

∑n
i=1 1 (y = yi) exp

(
− 1

4‖x− xi‖
2
2

)
∑n

i=1 exp
(
− 1

4‖x− xi‖
2
2

) (16)

Eemp
[
y | x

]
=

∑n
i=1 yi exp

(
− 1

4‖x− xi‖
2
2

)
∑n

i=1 exp
(
− 1

4‖x− xi‖
2
2

) (17)
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ŷ = X(x)y (18)

The process of understanding how the information from the historical data for

Bitcoin can be applied to predict the future price, relies on the principles of quan-

titative financial strategies. These strategies assume that markets follow patterns

such that the past activities can be used to predict future prices to a certain extent

[70]. The purpose of the latent source strategy is to model the existence of these

underlying patterns that have an effect on price variations; rather than relying

on a human expert to identify patterns in the data. Thus, the Bayesian regression

model was applied by Shah and Zhang to utilize the presence of patterns for pre-

diction without explicitly defining them. A simple trading strategy was applied

where a position is maintained at either +1, 0,−1 bitcoin based on the average

price change ∆p predicted by the Bayesian regression model. When ∆p > t, a

threshold, then buy bitcoin and if ∆p < −t then sell, otherwise do nothing [67].

The core strategy of predicting the price change∆p is based on the application of

the Bayesian regression model in Equation 18 based on historical data x1, x2, x3

of intervals 30, 60, 120minutes. The final estimation of∆p is given in Equation 19,

wherew = (w0, . . . ,w4) are learnt parameters that provide the linear fit over all

three historical time periods selected [67].

∆p = w0 +

3∑
j=1

wj∆p
j +w4r (19)

The results of the Bayesian regression predictive model and trading strategy

produced an inverse relationship where the profit from each trade was reduced

given the number of trades [67]. This is intuitive due to the volatility of Bitcoin

demonstrated in Section 1.2. The best model created was applied to the testing

data and achieved an average investment return of 3, 362 CNY profit after exe-

cuting 2, 872 trades with an investment of 3, 781 CNY; giving a return of approxi-

mately 89% over the course of 50 days and a Sharpe ratio of 4.10 [67]. The Sharpe

ratio as given in Equation 20, where L is the number of trades during the time

interval and p1, . . . ,pL are the profits and losses; C is the modulus of difference
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between start and end price for the interval [67, 71]. The Sharpe ratio is frequently

used to compare how well a strategy consistently performs when compared to a

risk-free strategy [71].

S =

∑L
`=1 p` − C

L× 1
L

(∑L
`=1 (p` − p)

2
) (20)

While the return of 89% and Sharpe ratio of 4.10 demonstrated by Shah and

Zhang is significant, their strategy has numerous limitations. Their trading strat-

egy managed to generate a return of 89% over the course of 50 days, however

during this period the value of Bitcoin in CNY more than doubled. In addition,

their strategy executed 2, 872 trades without taking into consideration the associ-

ated trading fees, which can vary between 0.25%–0.50%. Furthermore, their strat-

egy has limitations in the amount of volume that can be traded, while they were

only trading with a single bitcoin it does not scale to larger amounts such as 50

bitcoins. This is primarily due to the limited size of order books and amount of

volume, which are still much less than normal financial markets. Lastly, their pro-

posed latent Bayesian regression model is computationally infeasible; in order to

consider all possible time series data for future predictions, rather than a small

window of previous history, would require computation at a massive scale [67].

Extending the work of Shah and Zhang, other researchers attempted to build

more robust predictive models, rather than focusing on the ∆price prediction,

the future direction (UP/DOWN) of the price was predicted instead. In Automated

Bitcoin Trading via Machine Learning Algorithms, Madan, Saluja, and Zhao [72] at-

tempted to predict the price direction over the course of a five year period using

daily data. Similarly to Shah and Zhang, they used OKCoin for the Chinese mar-

ket while also using market data from Coinbase for the US market. The authors

used a combined approach of a Generalized LinearModel (GLM) and random for-

est to predict the price direction within a time period of 10 minutes rather than

the 10 second window that Shah and Zhang used. Based on their strategy, the

outcome of their model demonstrated a prediction accuracy of 50%–55% [72].

Instead of focusing on price patterns, in “Using the Bitcoin Transaction Graph

to Predict the Price of Bitcoin,” Greaves and Au [73] evaluated the predictive
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power of the network features of the blockchain in predicting the future price di-

rection of Bitcoin. Their workwas inspired by the prior research of both Shah and

Zhang and Madan, Saluja, and Zhao, and they sought to provide a comprehen-

sive comparison of logistic regression, SVM, and neural networks. The dataset

used for the research consisted of all transactions from the Bitcoin blockchain

for the period of 2009-01-03 – 2013-04-07, market data was taken from Bitcoin

Charts [74], the same service used in our own research methodology. In total the

dataset contained approximately 37 million transactions between 6 million ad-

dresses, they applied the Union-Find algorithm introduced by Ron and Shamir

[44] to combine the addresses into just over 3 million users.

As part of the pre-processing, Greaves and Au represented the data as a di-

rected graph, where all of the nodes represented users, with each edge as a trans-

action between users. As well, any bitcoins acquired from mining were repre-

sented as a self-loop back to the user that received the mining reward. Follow-

ing the pre-processing, the feature engineering consisted of identifying features

based on the activity of the network at hourly intervals. The features included the

number of transactions, mean transaction value, number of new addresses, aver-

age node in and out degrees, and several others. Furthermore, their feature en-

gineering also consisted of identifying three network influencers based on their

total transaction volume, with over 10% of all bitcoins ever sent passing through

at least one of these users [73]. The users are labelled as A, B, and C, and each

proved to be influential to the market, where they found that the transaction

volume and closeness centrality of each were the most significant. Greaves and

Au also found the historical Bitcoin price and number of blockchain transactions

were also significant features in addition to the actions of users A, B, and C [73].

The significance of just the top three influential users as features for the predic-

tive model used by Greaves and Au was influential to own our methodology in

Section 3.2, where we created metrics to identify all major network influencers.

The datawas collected hourly, with the data from 2012-02-01 – 2013-02-01 used

for training and from 2013-02-01 – 2013-04-01 for testing, approximately a 10%

holdout. Their experimental setup is similar to one of several holdout experi-



2.2 literature review 42

ments that we conducted for our own experiments in Section 4.3. Each of the

predictive models evaluated by Greaves and Au used the training data (90% of

all data) to predict the remaining 10% holdout that was used to test the model;

the price direction (UP/DOWN) was predicted hourly and the accuracy of each

model was compared. For their experiments a linear regression of only the his-

torical price was used as a baseline, which was compared to logistic regression,

SVM, and a feed-forward neural network, each trained using feature-engineered

blockchain and market features [73]. The accuracy of each predictive model was

compared for the test data, the results of which are shown in Table 3. However,

solely comparing the accuracy is a poor metric that can lead to biases as shown

in Section 2.1.2, our own experimental setup as described in Section 4.1.2 com-

pared numerousmetrics to accurately evaluate the performance of our predictive

models.

Classification Model Accuracy

Baseline 53.4%
Logistic Regression 54.3%
SVM 53.7%
Neural Network 55.1%

Table 3: Experimental Results of Greaves and Au [73]

The experimental results of Greaves and Au were significant to the establish-

ment of our own research methodology and provided a clear reference in com-

paring the performance of several predictive models. Furthermore, their feature

engineering demonstrated the importance of network influencers in predicting

the price; but they limited their features to just tracking the three most influ-

ential users within the Bitcoin network. Based on their results we established a

set of metrics in Section 3.2 for ranking the influence of users within the Bitcoin

network, and then based on this metric extracted features for all major network

influencers. Given the outcome of our own results shown in Chapter 4, this strat-

egy proved to be beneficial in further improving the predictive accuracy of our

models in comparison to the existing body of published research.
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PROPOSED METHODOLOGY
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PROPOSED METHODOLOGY

Our methodology consists of three distinct sections, each depending on the data

and results from the previous section. The first section of our methodology, Pre-

Processing, involves the analysis and formatting of the data, this was required

in order to extract the necessary information from the Bitcoin blockchain, iden-

tify the groups of addresses belonging to each user, labelling known services,

and performing statistical analysis of the Bitcoin network. Following the pre-

processing, the next section, Identifying Major Influencers, describes the creation

of our metrics used to identify all major influencers within the Bitcoin network

based on their recorded activities on the blockchain. The metrics for identifying

all major influencers on the Bitcoin network are essential to supporting our hy-

pothesis that features extracted frommajor influencers can be used to predict the

price direction of Bitcoin markets. Lastly, following the creation and application

of the metrics to identify all major influencers we then describe our detailed pro-

cess in Predictive Model Creation, for creating the final predictive models used in

our experiments.

3.1 pre-processing

The pre-processing is essential to all of our research, as the data must be trans-

formed from its unstructured natural form into a format that can easily be ana-

lyzed and processed using Structured Query Language (SQL), which provides a

convenient method of extracting the features needed from the blockchain data.

For our pre-processing, we start by processing the Bitcoin blockchain and stor-

ing all of the information contained within the entire blockchain in a Relational

Database Management System (RDBMS), allowing us to extract any information

44
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or features needed using SQL. After storing the entire Bitcoin blockchain in a

database, we apply our parallel address clustering algorithm, which is an exten-

sion of prior research, in order to efficiently identify all of the addresses belong-

ing to each user within the network.We then gather external data that is publicly

available including the market data listing the historical price and volume for all

major exchanges, as well as labels to identify services and users. We rely on the

labels in order to identify all major Bitcoin services and related companies, as

well as known public figures and users. For the final pre-processing step, we

generated various descriptive statistics of the Bitcoin network, extending previ-

ous research from 2012 – 2014, in order to assess the network statistics as of the

current year, 2016.

3.1.1 Blockchain Processing and Database

There aremany challenges inherent in analyzing andprocessing the Bitcoin block-

chain. While the blockchain is intended to securely store information and keep

a public ledger of all transactions, it is not practical to process or analyze. The

blockchain was designed solely to record a ledger of all transactions, and pro-

vides no SQL support or similar querying capabilities, making it difficult to ana-

lyze unless the information is extracted and stored in different format.

For our research we required the creation of a RDBMS to store all of the infor-

mation containedwithin the blockchain in a format that could be easily analyzed

using SQL. We based our database schema off previous schema designs used

by other researchers and supported by existing open-source libraries for extract-

ing information from the blockchain [48, 49]. We designed the database schema

around existing open-source tools and extended it with tables to support more

detailed information pertaining to individual transactions and address cluster-

ing. As well, we added tables to keep historical aggregations for each address

while processing the blockchain, rather than needing to perform many expen-

sive queries after it had already been processed. For our RDBMS we used Post-



3.1 pre-processing 46

greSQL 9.51, an advanced open-source database, which has extensive support of

SQL standards in addition to the ability to write complex SQL functions.

Figure 8: Bitcoin Blockchain Schema

Thedatabase schemawe created for extracting information from the blockchain

is given in Figure 8. We based the design around a star schema, which is com-

monly used when creating an Online Analytical Processing (OLAP) design for

RDBMS. Our schema is centralized around the addresses table, which contains

all of the Bitcoin addresses in the blockchain, nearly every other table references

this table as addresses are central to the exchange of bitcoins in any transaction.

In addition, we also created many tables which stored aggregate results for each

1 PostgreSQL: The world’s most advanced open-source database. https://www.postgresql.org

https://www.postgresql.org
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address while processing the blockchain, the sent and received table record

the amounts sent and received by each address. Furthermore, the balances table

contains the final balances of each address, whereas the temporal_balances ta-

ble contains the historical balance and number of transactions sent and received

across each block in the blockchain. Lastly, we added two tables used to combine

addresses into wallets that belong to individual users, as well as label services.

The address_wallets table contains a mapping of each address to the wallet it

belongs to after being clustered, and the wallets table contains a list of known

services and public figures associated with each wallet.

We processed the Bitcoin blockchain and extracted the information using our

own blockchain parser created in Python, we based the design on the software

programs bitcointools2 and blockparser3, which are used by other researchers

[48, 49]. The complete Bitcoin blockchainwas processed and all transactions from

the period of 2009-01-03 – 2016-02-01 were extracted and stored in our RDBMS,

as well while processing the blockchain, all of the aggregations for each address

were calculated and stored in the associated tables.

3.1.2 Address Clustering

Addresses individually do not capture all of the activities of Bitcoin users within

the network, in order to properly assess major influencers we must determine all

of the addresses owned by each user. The majority of Bitcoin users own more

than a single address based on prior research [44, 47–49], and to effectively an-

alyze all of the activities of Bitcoin users we must know all of the addresses be-

longing to each user. The process of combining addresses is known as address

clustering, we also refer to the set containing all of the addresses belonging to a

particular user as a wallet. We use the term user and wallet at times interchange-

ably to refer to all of the addresses that belong to the same entity. While often a

collection of addresses belonging to a single entity is referred to as a wallet, we

2 Bitcoin tools library developed by Gavin Andresen. https://github.com/gavinandresen/
bitcointools

3 Blockchain parser developed by znort987. https://github.com/znort987/blockparser

https://github.com/gavinandresen/bitcointools
https://github.com/gavinandresen/bitcointools
https://github.com/znort987/blockparser
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are not concerned about the collection of addresses in terms of a wallet, as we

are interested in the user that is the owner of all the addresses. For all purposes

we use the terms user and wallet interchangeably to refer to a single entity which

has control over all of the addresses belonging to a set. The entity could be a Bit-

coin related company or service, an individual person, or even an autonomous

software service.

Themost common algorithm for clustering addresses into wallets is theUnion-

Find algorithm first applied by Ron and Shamir [44] to combine multiple ad-

dresses belonging to the same user. Their research has been frequently corrobo-

rated and appliedwith small variations by numerous other researchers to cluster

addresses [47–49, 73], and as such our own parallel algorithm is based on the ex-

isting techniques applied by others. The common strategy applied in clustering

addresses relies on tracking the sets of addresses used in transactions made by

each user, whereby the blockchain records every transaction as a set of inputs

from one user to a set of outputs to another user.

Clustering addresses involves the application of two heuristics, the first based

on the fact that any transaction has a set of addresses as inputs and all addresses

in that set belong to a single users. The secondheuristic is based on accounting for

shadow addresses, which were added to Bitcoin to make transactions more private

by generating a new address to receive the change from each transaction. The

change from each transaction is always sent to a new address created for the

user, rather than being sent to an existing address owned by the user.

heuristic i The first heuristic relies on clustering the addresses by combin-

ing the sets of addresses used to send Bitcoin in each transactions incremen-

tally over the entire history of the blockchain. Where A = {a1,a2, . . . ,an} rep-

resenting the set of all known addresses that have received a transaction, and

U = {u1,u2, . . . ,un} the set of all users. We use Si and Ri to represent the set

of sender and recipient addresses Si, Ri ∈ A = {a1,a2, . . . ,an}, where in each

transaction Ti = Si → Ri, the set of all input addresses are considered to be

owned by the user uk represented as uk = {ai | ∀ai ∈ Si}.
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heuristic ii The second heuristic relies on clustering the addresses based

on the creation of each new shadow address used to hold the change from each

Bitcoin transaction. In each transaction, unless the full amount held in the ad-

dress is spent, the remaining balance is then sent to a change address. The shadow

addresses are the new addresses created in each transaction to hold the remain-

ing unspent amount of bitcoins. Where Si and Ri represent the set of sender

and recipient addresses and each transaction Ti = Si → Ri; if the cardinality

|Si| = 2, then one of the addresses ai is a shadow address used to receive the

change. Given that for each transaction a new shadow address is created, we deter-

mine the shadow address as to be whichever address is not a known address in

A, given as as = {ai | ∀ai ∈ Si ∧ai /∈ A}, the shadow address is then considered

to be owned by the user uk.

The address from both heuristics can be clustered to the same user by combin-

ing the sets such that uk is the union of both heuristics given as the following

where uk = {ai | ∀ai ∈ Si} ∪ {ai | ∀ai ∈ Si ∧ ai /∈ A}. While the combina-

tion of both heuristics provides more coverage, the second heuristic has several

known limitations, it will only work in the case where the number of addresses

for recipient Ri is two. If both addresses have not been involved in any previous

transactions then it will incorrectly label both addresses as owned by the same

user, a mistake than can cause an avalanche effect of errors, making a single user

or service that frequently gets many new Bitcoin users owning many more ad-

dresses than in reality. Furthermore, the dependence on checking the existence of

each address ai /∈ A makes the algorithm non-parallelizable, as the blockchain

must be processed in sequential order.

For our parallel address clustering algorithmwe based it on heuristic I, as other

researchers have discovered issues using heuristic II [47] and due to the limita-

tions of the algorithm it cannot be parallelized without introducing more false

positive address clusterings. While heuristic II has the added benefit of cluster-

ing shadow addresses, which may not be possible to cluster otherwise if they are

sink addresses [44, 48], addresses that never perform a send transaction. The lim-

itations of heuristic II have restricted our implementation to parallelize heuristic
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I as it provides assurances of the accuracy of the clustering results and is eas-

ily parallelizable. The parallelization is based on the concept of a divide-and-

conquer algorithm, which allows for each portion of the data to be repeatedly

divided and conquered by clustering the addresses. The list of all blocks contain-

ing transactions are ordered sequentially from oldest to newest, the entire or-

dered history of blocks β containing each transactions {T1, T2, . . . , TN} are then

evenly divided into separate ordered portions (β1,β2, . . . ,βJ) based on the num-

ber J, {P1,P2, . . . ,PJ} of available threads or processing cores. For each portion

of the blockchain history β, the transactions within the block are then ordered

from oldest to newest transaction
(
Ti | ∀Ti ∈ βj

)
for the transactions in block

βj. The addresses are clustered into sets owned by users uk in parallel using

heuristic I, and after all of the transactions in the block have been processed the

sets of addresses belonging to each user uk are combined using Union-Find [44,

45]. After all parallel processes complete the address clustering for each portion

of the blockchain (β1,β2, . . . ,βJ) the sets of all addresses owned by all users

UJ = {uk | ∀uk ∈ {P1,P2, . . . ,PJ}} are combined a final time using Union-Find.

The resultant output reduces the number of users each time they are combined

based on the union of their owned addresses.

3.1.3 Gathering External Data

With all of the information extracted from the Bitcoin blockchain we needed

detailed historical Bitcoin market data in order to support training and testing

our predictive models. In order to satisfy our research goals we collected all of

the available historical price and volume data for all major USD, CNY, and EUR

Bitcoin markets. Based on our literature review, we used the services provided

by Bitcoin Charts [74], which was frequently used by other researchers. It is fre-

quently used by other researchers as it provides reliable and accurate historical

market data for all major Bitcoin exchanges [4, 57, 73].

Using the services provided by Bitcoin Charts, wewere able to download com-

pressed archives of the entire available market history for all major exchanges.



3.1 pre-processing 51

The exchange market and available period of historical data for each is given in

Table 4. Due to the limited early adoption of Bitcoin which resulted in a very low

volume and price, we restricted the period ofmarket data to 2013-01-01 – 2016-02-

01 for all of our experiments. Although we parsed the entire Bitcoin blockchain

for the period of 2009-01-03 – 2016-02-01, due to the limited market activity and

very low market volume and price of Bitcoin prior to 2013 we limited our exper-

imental period to the beginning of 2013-01-01 until the end of our blockchain

history. While all of our experiments were limited to 2013-01-01 or later, we still

needed the historical price of Bitcoin even with the limited market data available

prior to 2011-09-01. In order to gain access to the historical price data prior to

2011-09-01, we used the services provided by OANDA [6], a leading foreign ex-

change company, to extract an accurate daily closing price of Bitcoin for the entire

period of 2009-01-03 – 2016-02-01.

Exchange Market Active Period

Bitfinex USD 2013-03-31 – 2016-02-01
Bitstamp USD 2011-10-04 – 2016-02-01
BTC-E USD 2011-09-01 – 2016-02-01
Coinbase USD 2015-01-31 – 2016-02-01
BTC China CNY 2011-06-30 – 2016-02-01
OKCoin CNY 2013-06-30 – 2016-02-01
bitcoin.de EUR 2011-09-01 – 2016-02-01
BTC-E EUR 2013-01-01 – 2016-02-01
Kraken EUR 2014-01-31 – 2016-02-01

Table 4: Bitcoin Market Data from Bitcoin Charts

Following the collection of the historical market data, we created a separate

database to store the time series market data for all exchanges. The schema used

is given in Figure 9,where each of the exchanges are stored in a separate exchanges

table and given a unique identifier. As well for each exchange in the exchanges

table, we also list the currently trading pair to Bitcoin in the case where an ex-

change supports multiple currencies we list it as multiple rows in our table. The

history table contains the entire historical market data as time series data and

the time stamp contains the precise time of each summary of market data, stored
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in intervals of fifteen minutes. For each exchange at each fifteen minute interval

in the time series database,we record theOHLCof the price aswell as the volume

in Bitcoin and the currency pair. Lastly, we also calculate the weighted average

of the price during this period weighted based on the amount of volume.

Figure 9: Exchange History Schema

Following the collection of the historical market data we also needed to collect

a detailed set of labels in order to identify and name the Bitcoin services and influ-

ential players within the network. Initially we began collecting the known labels

for wallets and identifying Bitcoin services and related companies by crawling

the popular Bitcoin Talk [43] and Blockchain.info4 websites as done by previous

researchers [48, 49, 75]. While this strategy succeeded in labelling and identify-

ing the owners of many wallets, we ran into numerous issues when attempting

to identify the wallets owned by all of the major Bitcoin exchanges. We reached

out to the creators of BitIodine, Spagnuolo, Maggi, and Zanero [49], who had

used additional crawlers to collect even more labels. After contacting them, they

graciously shared with us their detailed collection of labels for services and com-

panies related to Bitcoin. Based on our own labels that we had collected, and the

combination of the labels they provided, we were able to accurately identify and

label all major Bitcoin exchanges and other related services.

4 Blockchain.info address self-identification service. https://blockchain.info/tags

https://blockchain.info/tags
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3.1.4 Statistical Analysis of the Blockchain

As part of our pre-processing, we also created descriptive statistics to further

analyze and understand the features of the Bitcoin network. We based our de-

scriptive statistics on thework of prior research, inwhichmany other researchers

analyzed the number of addresses, wallets, and distribution of wealth [39, 44, 48,

50]. The statistical analysis of the network was applied to the entire blockchain

history, spanning from the creation of the genesis block on 2009-01-03 – 2016-

02-01. By analyzing the entire blockchain up until the time of writing (2016), it

provided us with recent results compared to those published from several years

prior.

In all of our analyses,we take into consideration the individual addresses in ad-

dition to thewallets, which are comprised ofmultiple addresses owned by a user.

We began by analyzing the aggregate statistics for all of the features of each ad-

dress and wallet, consisting of the balance, volume, and number of transactions.

The results of our aggregate statistics for the entire Bitcoin network are given in

Table 5; it is important to note the large distance between the mean and standard

deviation from the median, this is indicative that the statistical distribution of

the data is not normally distributed. Based on our literature review these results

are corroborated with Kondor et al. [50], where they performed similar statisti-

cal analyses. They noted that nearly every feature follows a power-law statistical

distribution, whereby each measurement can be approximated by an exponen-

tial to a degree of the other measurement [76]. Furthermore, we also found that

the vast majority of addresses and wallets do not hold onto their wealth for a

long period of time, rather the vast majority have no bitcoins remaining, with

only 5.62% of addresses and 3.34% of all users having any bitcoins at all. This

is a result corroborated with Kondor et al. [50] and unique to Bitcoin, we found

that this feature greatly reduced the amount of users to analyze for our metrics,

as the vast majority of users have no bitcoins and therefore exert no influence on

the network.
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Metric
Address Wallet

Mean Median Std. Mean Median Std.

Total 123, 625, 104 35, 820, 710

Balance > 0 6, 944, 381 (5.62%) 1, 197, 847 (3.34%)

Balance 2.18 0.001 155.14 1.88 0.001 139.99

Volume Sent 22.91 0.13 3, 090.95 62.70 1.01 19, 417.20

Volume Recv 22.08 0.12 3, 026.65 62.76 1.01 19, 424.81

Sent Trans. 2.41 1.00 314.75 6.89 1.00 4, 278.25

Recv Trans. 2.58 1.00 311.02 7.34 1.00 4, 307.36

Table 5: Bitcoin Address and Wallet Statistics

In addition to analyzing the individual addresses and users of the network,

we also created descriptive statistics to describe the daily number of transactions

and the volume conducted by all users aggregated over several time periods. The

results are given in Table 6 where we see that for both the number of transac-

tions and volume that each follows a relatively normal distribution, without an

extreme difference between themean andmedian. The analysis of the daily activ-

ities of the entire network are important for our feature engineering as it implies

frequent daily activity in addition to still expecting statistically minimal outlier

events. We also plotted the distribution of the daily transactions and volume for

the duration of our experiments spanning from 2013-01-01 – 2016-02-01 in Fig-

ure 10. For each histogram, we can see that the data is more normally distributed

for the entire network when aggregated as a whole compared to the power-law

distribution when analyzing individual users. Furthermore, we can see that the

daily transactions fall between a range of 50, 000–250, 000 and the daily volume of

bitcoins transacted lies between 105.5–107. In each case, we see that there are no

periods of outages where activity on the network halts, or days of exceptionally

low network activity.

Following our assessment of the aggregate Bitcoin network statistics, we also

evaluated the distribution of wealth amongst users within the network using a

similar presentation to other researchers [44, 50]. In order to aid in in compre-

hending the real-world wealth accumulated by some of the wealthiest Bitcoin
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Period
Transactions Volume

Mean Median Std. Mean Median Std.

Day 4.0× 104 2.7× 104 4.6× 104 9.8× 105 6.0× 105 1.8× 106

Month 1.2× 106 9.2× 105 1.4× 106 3.0× 107 2.1× 107 4.3× 107

Year 1.4× 107 8.5× 106 1.6× 107 3.6× 108 3.0× 108 3.0× 108

Table 6: Bitcoin Transactions and Volume
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Figure 10: Histogram of Daily Transactions and Volume

users, we have provided the value in USD using an average of the price of Bit-

coin throughout the period of our research from 2013-01-01 – 2016-02-01, where

1BTC ≈ $330USD. We see in Table 7, the cumulative number of addresses and

wallets with a balance of bitcoins greater than or equal to each amount is given.

For each amount we see the number of addresses and wallets quickly decreasing

with the vast majority of Bitcoin users having less than 0.1 BTC, worth $33 USD.

In addition to the cumulative balance, we also evaluated the balance within a

specific range of balances, something not done previously by other researchers.

We found this analysis to be very beneficial as it highlights the amount of users

within each specified range of balances rather than a cumulative breakdown. For

each row of the table, we also show the number of addresses and wallets within

the range of balances as a percentage out of the total of 6, 944, 381 addresses

and 1, 197, 847 wallets. The results are given in Table 8, similarly to before we

also provide the range of balances in USD, where 1BTC ≈ $330USD. We see a
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Balance (BTC) Balance (USD) Addresses Wallets

> 0 0 6, 944, 381 1, 197, 847
0.1 33 1, 011, 135 152, 245
0.25 82.5 758, 208 108, 634
0.5 165 588, 965 83, 303
1 330 413, 603 60, 822
2 660 299, 024 42, 482
5 1, 650 188, 748 25, 175
10 3, 300 129, 501 15, 966
25 8, 250 84, 146 8, 093
50 16, 500 29, 308 4, 609
100 33, 000 12, 926 2, 538
250 82, 500 6, 085 1, 098
500 165, 000 3, 375 551

1, 000 330, 000 1, 583 281

2, 500 825, 000 455 84

5, 000 1.65M 212 37

10, 000 3.30M 108 19

25, 000 8.25M 45 8

50, 000 16.5M 16 2

> 100, 000 33M 2∗ 0

Table 7: Number of Addresses and Wallets by Cumulative Balance
∗ The two richest addresses are 3Kg7Cmooris7cLErTsijq6qR1FH3cTiK2G and

3Nxwenay9Z8Lc9JBiywExpnEFiLp6Afp8v, with 157, 996 and 162, 231 BTC; they have been ac-
tive since 2014 and 2015, respectively.

vast wealth disparity in the Bitcoin network, with the majority of all addresses

(85.44%) and when clustered into wallets (87.29%) having less than $33 USD

worth of bitcoins. Even for up to a single bitcoin, we see that out of the entire

network, 94.05% of all addresses do not have more than 1 BTC. When taking

into consideration the clustered addresses into wallets, we see this increase to

94.92% of all users having no more than a single bitcoin. This vast wealth dispar-

ity within the Bitcoin network further reinforces our hypothesis that the major

network influencers, the users with the vast majority of the wealth have an influ-

ence on the market price of Bitcoin.
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Balance (BTC) Balance (USD) Addresses Wallets

(0, 0.1] ($0, $33] 5, 933, 246 (85.44%) 1, 045, 602 (87.29%)

(0.1, 0.25] ($33, $82.5] 252, 927 (3.64%) 43, 611 (3.64%)

(0.25, 0.5] ($82.5, $165] 169, 243 (2.44%) 25, 331 (2.11%)

(0.5, 1] ($165, $330] 175, 362 (2.53%) 22, 481 (1.88%)

(1, 2] ($330, $660] 114, 579 (1.65%) 18, 340 (1.53%)

(2, 5] ($660, $1, 650] 110, 276 (1.59%) 17, 307 (1.44%)

(5, 10] ($1, 650, $3, 300] 59, 247 (0.85%) 9, 209 (0.77%)

(10, 25] ($3, 300, $8, 250] 45, 355 (0.65%) 7, 873 (0.65%)

(25, 50] ($8, 250, $16, 500] 54, 838 (0.79%) 3, 484 (0.29%)

(50, 100] ($16, 500, $33, 000] 16, 382 (0.24%) 2, 071 (0.17%)

(100, 250] ($33, 000, $82, 500] 6, 841 (0.10%) 1, 440 (0.12%)

(250, 500] ($82, 500, $165, 000] 2, 710 (0.04%) 547 (0.05%)

(500, 1, 000] ($165, 000, $330, 000] 1, 792 (0.03%) 270 (0.02%)

(1, 000, 2, 500] ($330, 000, $825, 000] 1, 128 (0.02%) 197 (0.02%)

(2, 500, 5, 000] ($825, 000, $1.65M] 243 (< 0.01%) 47 (< 0.01%)

(5, 000, 10, 000] ($1.65M, $3.3M] 104 (< 0.01%) 18 (< 0.01%)

(10, 000, 25, 000] ($3.3M, $8.25M] 63 (< 0.01%) 11 (< 0.01%)

(25, 000, 50, 000] ($8.25M, $16.5M] 29 (< 0.01%) 6 (< 0.01%)

(50, 000, 100, 000] ($16.5M, $33M] 14 (< 0.01%) 2 (< 0.01%)

> 100, 000 > $33M 2 (< 0.01%) 0 (0%)

Table 8: Number of Addresses and Wallets by Bounded Balance

After assessing the wealth distribution in the network we decided to track and

label the top 25 wallets based on the number of addresses in the wallet, as well

as the top 25 wallets based on the total combined balance of all addresses within

the wallet. The results of the assessment of the top 25 wallets based on number

of addresses and total balance can be found in Table 9 and Table 9. For each table

where the owner of the wallet is known the wallet is labelled, otherwise if the

owner is not known, we label the wallet as unknown. We see in Table 9 where

the top 25 wallets by number of addresses are shown, that the vast majority of

the wallets are labelled and belong to various services such as exchanges, where

Bitcon can be exchanged for fiat currencies, and other Bitcoin related services and

companies. In particular we also see the remaining balance of the Silk Road, one

of the largest online markets for illicit goods, with more than $214 million USD

in sales prior to its subsequent seizure by law enforcement in 2014 [77]. However,
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when we look at Table 10 we see a very different result, the vast majority of the

owners of each wallet are unknown, furthermore we see that there are numerous

wallets containing only a single address for large amount of bitcoins.

The statistical analysis conducted provided insight into the inner-workings of

the Bitcoin network and the individual users and services that make up the net-

work. We found that the descriptive statistics of individual users follow a power-

law distribution, results that corroborate with other research work [44, 50]. Fur-

thermore, we found that there is still a vast disparity of wealth within the net-

work, which has only gotten worse since prior analyses were published [44, 48,

50]. Lastly, after conducting an analysis of the top 25 wallets based on number

of addresses and balance, we found that while the top 25 wallets based on num-

ber of addresses belong to Bitcoin related services, the majority of the wealthiest

wallets likely belong to individual users, which we consider to be the network

influencers.
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Wallet Category Balance Size Active Period

Bitcoin-24.com Exchanges 46, 039.61 9, 252, 819 2010-08-19 – 2016-02-01
LocalBitcoins.com Exchanges 40.78 571, 994 2012-07-24 – 2016-02-01
AgoraMarket Darknet/Market 227.89 497, 995 2013-12-04 – 2016-02-01
EvolutionMarket Darknet/Market 56.19 420, 632 2014-01-16 – 2016-01-11
Unknown Unknown 9.96 386, 703 2012-06-06 – 2016-02-01
SilkRoad∗ Darknet/Market 97.85 372, 753 2012-06-17 – 2016-01-23
SilkRoad2 Darknet/Market 196.91 349, 874 2013-11-11 – 2016-01-11
BTC-e.com Exchanges 159.19 348, 438 2011-08-08 – 2016-02-01
Unknown Unknown 1.03 272, 998 2013-12-27 – 2016-02-01
Cryptsy.com-old Exchanges 1.92 259, 048 2013-05-20 – 2016-02-01
Unknown Unknown 51.25 223, 988 2013-09-17 – 2016-02-01
Unknown Unknown 1.02 220, 609 2014-09-16 – 2015-11-10
BitcoinFog Services/Others 0.00 187, 458 2011-11-10 – 2016-02-01
BitPay.com-old Services/Others 0.43 166, 055 2011-07-02 – 2016-02-01
BitPay.com Services/Others 1.75 155, 696 2015-02-26 – 2016-02-01
Unknown Unknown 126.10 148, 320 2014-01-13 – 2016-02-01
Bittrex.com Exchanges 510.11 143, 479 2014-02-13 – 2016-02-01
Bitstamp.net Exchanges 0.05 138, 167 2011-08-17 – 2016-02-01
Unknown Unknown 3.16 134, 379 2013-06-16 – 2015-07-17
Cryptsy.com Exchanges 5.81 126, 805 2014-07-29 – 2016-02-01
Unknown Unknown 1.21 112, 186 2014-07-20 – 2016-02-01
Instawallet.org Old/Historic 193.27 109, 151 2011-05-03 – 2016-01-30
Unknown Unknown 0.00 103, 313 2014-10-09 – 2016-01-26
AbraxasMarket Darknet/Market 292.85 102, 527 2014-12-22 – 2016-02-01
CoinGaming.io Gambling 0.00 100, 685 2013-12-05 – 2016-02-01

Table 9: Top Wallets by Wallet Size
∗ Silk Road was the largest online market for drugs and elicit goods, with more than $214 million
USD in sales. [77]



3.2 identifying major influencers 60

Wallet Category Balance Size Active Period

Unknown Unknown 87, 111.953 35 2011-06-13 – 2016-01-21
Unknown Unknown 69, 370.11 1 2013-04-09 – 2016-01-21
Bitcoin-24.com Exchanges 46, 039.61 9, 252, 819 2010-08-19 – 2016-02-01
Kraken.com Exchanges 39, 605.62 98, 614 2013-09-09 – 2016-02-03
Unknown Unknown 31, 000.05 7 2010-05-04 – 2016-01-21
Unknown Unknown 28, 198.53 15 2010-07-23 – 2016-01-21
Unknown Unknown 28, 050.00 8 2015-02-16 – 2016-02-01
Unknown Unknown 26, 040.58 56 2014-10-08 – 2016-02-01
Unknown Unknown 21, 744.01 1 2013-12-19 – 2016-01-21
BTCCPool Mining Pools 18, 195.120 10, 290 2013-11-16 – 2016-02-03
Unknown Unknown 12, 554.49 1 2012-12-24 – 2016-01-21
Unknown Unknown 12, 276.56 1 2015-08-06 – 2016-01-27
Unknown Unknown 12, 039.16 1 2013-02-26 – 2016-01-21
Unknown Unknown 11, 887.72 2 2013-03-27 – 2016-01-21
Unknown Unknown 11, 336.84 8 2014-11-24 – 2016-01-21
Unknown Unknown 11, 111.00 2 2011-10-17 – 2016-01-21
Unknown Unknown 10, 682.020 1 2013-02-28 – 2016-01-21
Unknown Unknown 10, 675.302 483 2011-08-28 – 2016-02-01
Huobi.com Exchanges 10, 379.675 10, 575 2014-09-04 – 2016-02-01
Unknown Unknown 9, 424.783 1 2010-09-28 – 2016-01-21
Unknown Unknown 9, 112.213 1 2015-04-02 – 2016-01-21
Unknown Unknown 8, 700.010 82 2010-10-22 – 2016-01-21
Unknown Unknown 8, 516.261 32 2013-04-01 – 2016-01-21
Unknown Unknown 8, 194.514 8 2010-07-03 – 2016-01-21
Unknown Unknown 7, 941.062 78 2010-04-09 – 2016-01-21

Table 10: Top Wallets by Balance

3.2 identifying major influencers

As part of our hypothesis and one of our main objectives in Section 1.4, identi-

fying the major influencers of the Bitcoin network is critical to the creation of

our predictive model. We evaluate two metrics created to identify the major net-

work influencers, the first referred to as the bit-index, the second as the Pareto

front, is based on the optimal selection of users given the trade-offs of several

parameters. The bit-index is a temporal filter that considers the activity of the
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user over the entire history of their transactions on the blockchain, and is based

on the concept of the h-index metric frequently used to measure the influence

of researchers. The second metric, the Pareto front based method, selects all of

the optimal users that lie on a front, given the relative trade-offs of each parame-

ter to optimize [76]. Lastly, we evaluate each method used to identify the major

influencers against criteria pertaining to our research hypothesis, and select the

best of the two metrics to use for our feature engineering and predictive model

creation.

3.2.1 Proposed Bit-index Metric

The bit-index is a method which operates based on the activities of wallets over

their entire history of transactions on the blockchain. We based our metric on

the concept of the h-index, which is commonly used in academia to rank the in-

fluence of researchers. In the following sections we outline our process for the

bit-index calculation, as well as providing an example of the application of the

metric to the Bittrex exchange wallet. Lastly, we apply the bit-index metric to the

entire transaction history of all users within the Bitcoin network and provide an

analysis of our results.

3.2.1.1 H-index: Background

The bit-index is a metric to accurately rank the influence of users within the Bit-

coin network based on the entire history of a user’s actions based on the attribute

beingmeasured. The bit-index is based on the rankingmetric, h-index, created by

Hirsch [78], which is usedwidely in academia to rank the influence of researchers

based on the citations their publications receive [78].

The h-indexprovided a goodbasis for ourmetric as it iswidely used in academia

and has even been applied to demonstrate its potential predictive power [79]. The

metric is described as the following shown in Equation 21, whereby the propor-

tionality constant defined as a, and the h-index, h, are used to describe an au-

thor’s total number of citations, Nc,tot. The relationship between Nc,tot and h



3.2 identifying major influencers 62

depend on the distribution properties of the academic field, and the proportion-

ality constant a is adjusted accordingly [78].

Nc,tot = ah
2 (21)

Generally, the hwill increase approximately linearly with time, as older publi-

cations continue to gain more citations and researchers continue to produce new

publications. This factor is unique to the h index and differs from our own appli-

cation of the metric, which does not consider the outcome of transactions in the

distant past as increasing the current influence of the user. However, in the case

of the h-index, a simplemodel describes the increase in citationswith time due to

older publications. As shown in Equation 22, where p papers are published each

year and each paper earns c new citations per year every subsequent year, and j

describes the number of citations per paper. The total number of citations after

n+ 1 years is represented as a summation over the entire history of publications

made by the author.

Nc,tot =

n∑
j=1

pcj =
pcn(n+ 1)

2
(22)

While these models are practical in most cases, and make assumptions about

the model being approximately linear with time, these over-simplifications do

not apply to our own application. The h-index calculation has numerous issues

as it relies heavily on the statistical distributions common to academia, which

follow a Gaussian distribution [78]. A Gaussian distribution is much different

than those typically found in the Bitcoin network, which are heavily skewed and

tend to follow a power-law distribution [50, 76]. Based on our own analysis of

the statistical properties of the Bitcoin network in Section 3.1.4, we found that

a non-linear approach would be required in order to accurately determine the

bit-index for each user.

The application of the linear assumptive h-index calculation follows the same

principles as our derived bit-index. For the h-index, in order to satisfy the param-

eters of the linear model as shown in equation Equation 21, an appropriate cor-
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responding value of a, typically between 3− 5must be selected so that the value

of h satisfies the equation. The optimal selection of h corresponds to a value that

evenly partitions the upper and lower portions of the area under the curve given

the number of citations per publication. This is demonstrated as an example in

Figure 11 given by Hirsch [78], where each publication is ordered descending

from most to least citations. The selection of the h-index is the point at which

the paper number is equal to or exceeds the number of citations pi > pj, this

coincidentally also corresponds to an equal partitioning of the left and right side

of the area under the curve, such that each partition has an equal area.

Figure 11: h-index Selection Based on Papers Ranked by Citations

Algorithm 1: h-index Calculation
input :A set of citations
output :The h-index
h-index({ci, ci+1, . . . , cn})

// Sort in descending order the set of citations
sorted← Sort({ci, ci+1, . . . , cn})

for i← 1 to n− 1 do
if sorted[i+ 1] == 6 i+ 1 then

index← sorted[i+ 1]
return (index)

end

end

end

As such, given the inherent relationship between Nc,tot and h as shown in

equation Equation 21, the following algorithm 1 is commonly used to calculate

the h-index, based on the number of citations c for each consecutive publication
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p. Our bit-index calculation follows a similar approach by first sorting the data

in descending order, however, as shown in the following section, we calculate

the optimal partitioning using a precise calculation of the area under the curve

rather than the linear assumptions made for the h-index.

3.2.1.2 Bit-index Calculation

The bit-index is based closely on the description of the h-index provided by

Hirsch [78], with the exception that the h-index makes assumptions about the

approximate linear nature of the models, whereas the bit-index is applied to a

non-linear model. Based on our prior analysis of the statistical properties of the

Bitcoin network, many of the features are inherently a power-law statistical dis-

tribution, with a significant population of outliers, those users with very large

amount of bitcoins relative to the other users. These extreme outliers and power-

law distribution are not applicable to the linearly assumptive h-index, and as

such, we had to modify our application of the h-index to account for the proper-

ties of our own data.

An accurate calculation of the h-index relies on an even partitioning of the up-

per and lower portions of the area under the curve captured by themetric number

of citations for each paper sorted in descending order. The optimal partitioning

as shown previously in Figure 11 is an equal area under the curve separated by

the line at the origin, and results in the optimal h-index value. The h-index is

the point at the intersection of the line with the curve, due to the linear nature of

the relationship, most often the simple algorithm as demonstrated in algorithm 1

can be used to calculate the h-index. However, in the case of the bit-index, due

to the nature of the power-law statistical distribution of our data, we used the

non-linear methods proposed by Hirsch [78] as the basis for our metric. In order

to accurately capture the bit-index for both outliers and values within the norm,

the area under the curve given the ordering of the measurements must be calcu-

lated using integration such that each section partitioned by the intersection of

the line for the bit-index has an approximately equal area.
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The method can be applied to any measurement metric, for the h-index the

preferred metric for measuring the performance of researchers is the number

of citations per publication [78]; whereas in the case of the Bitcoin network the

measurement can vary based on the feature of the network being studied. For

the purpose of our hypothesis, the feature being measured is the gain, G, which

represents the gain in wealth for a user within the Bitcoin network. The gain

is given in Equation 23 and is measured over the course of a specified period p,

typically (day,week,month, quarter). It is the sumof the transaction amounts±T ,

(positive for BTC received, negative for BTC sent) divided by the total number

of transactions n during that period. The gain metric describes the amount of

wealth being accumulated by auserwithin each timeperiod,we thenuse the gain

at each time period to determine the optimal gain measurement that describes

the user over the entire history of their transactions.

G(p) =
1

n

n∑
i=1

±Ti (23)

The bit-index is calculated given the measurement and the period, such that

the area partitioned by the line created by the intersection of the bit-index with

the curve to the origin are equivalent. As shown in Equation 24, the gainmeasure-

ments G for each period p over the history of the Bitcoin blockchain are sorted

in descending order. The resultant sorted gain measurements M are then used

to calculate the bit-index with respect to the change in each measurement until

a intersection point from the origin is found that evenly partitions the left and

right side of the area under the curve.

M ({p1, . . . ,pn}) = sorted ({G(p1), . . . ,G(pn)}) (24)

Given the measurements M from equation Equation 24, which are sorted in

descending order, the calculation of the bit-index represented as i, as shown in

Equation 25, is a value such that both side of the equation are approximately

equivalent. The Left Hand Side (LHS) of the equation represents the area under

the curve given by the ordered gain measurementsM(pj), where the area of the
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triangle from the intersection point is subtracted from the total area. The Right

Hand Side (RHS) represents the area under the curve for themeasurements to the

right of the intersection point, and it has the area that was subtracted from the

LHS added. As such, the closer the approximation of both sides of the equation,

the more accurate the value of the bit-index will be to describe the influence of

the user.

∫ i
0

M(pj) dj−
M(pi) · i

2
≈

∫n
i

M(pj) dj+
M(pi) · i

2
(25)

Due to the limited number ofmeasurementsM as a result of the short existence

of the Bitcoin network from the genesis block on 2009-01-03 [39] to time of writ-

ing; the area under themeasurement curvemust be calculated using a numerical

approximation. This is due to the fact that the measurements are not a continu-

ous series, but rather periodicmeasurements taken throughout the entire history

of the user’s transactions recorded on the blockchain. For its efficiency and sim-

plicity of implementation, the numerical quadrature method of trapezoidal rule is

used. The trapezoidal rule is widely used for numerical quadrature, and relies

on creating a series of trapezoids under the area of the curve to approximate the

resultant integral [80, 81]. This method provided consistent accuracy when cal-

culated across all of the users, giving a bit-index that was representative of the

influence of each user within the Bitcoin network.

3.2.1.3 Bit-index Calculation Example

In order to demonstrate the application of the bit-index metric, the following

is a comprehensive example of the bit-index applied to one of the top wallets

shown in Table 9. For our example, we have selected one of the Bitcoin exchange

services, Bittrex5, which was one of the top 25 wallets based on the number of

addresses clustered in its wallet. The service has been in operation for the entire

period of 2014-02-01 – 2016-02-01, we have calculated the monthly gain based on

Equation 23, which divides the sum of transaction amounts (BTC) by the number

5 Bittrex is an alternative currency exchange for trading Bitcoin against many other clones. https:
//bittrex.com

https://bittrex.com
https://bittrex.com
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of transactions.We see in Figure 12 that themonthly gain G never reaches beyond

amaximumof approximately 0.06, and at times is also negative. The gain for each

month is low, as there is a high churn in the average number of users sending

their bitcoins to the service to exchange, and then withdrawing their bitcoins

within the samemonth. The smallmonthly gain of the Bittrex service is indicative

of the small influence that it exerts on the network, providing a service that allows

others to exchange their bitcoins, while not accumulating significantwealth itself.

We even see during the period of May 2015 to August 2015 a sharp decline in

the monthly gain, that may be related to the dramatic price decrease of Bitcoin.

During this period the price of Bitcoin stagnated andwas at its lowest value since

gaining attraction [82], likely leadingmany users towithdraw their bitcoins from

the service and exit the market.
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Figure 12: Bittrex Historical Monthly Gain

After calculating the monthly gain for Bittrex, the bit-index is then calculated

as given in Equation 25 by sorting eachmonthly gain Gmeasurement in descend-

ing order, and then finding the partitioning such that the area under the curve for

both sides of the partition are approximately equivalent. We see in Figure 13 the

partitioning applied to the Bittrex gain measurements, where the solid dashed

line from the origin is the partitioning line. The point at which the line intersects

with the curve is the bit-index calculated for Bittrex, a value of approximately

0.054, which is relatively low due to the high rate of transactions. Furthermore,

the two areas highlighted in blue and red represent the LHS and RHS of Equa-
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tion 25, and are approximately equivalent, with the small dashed lines repre-

senting the triangular area subtracted from the LHS and added to the RHS of

the equation.

Figure 13: Bittrex bit-index Partitioning

A demonstration of the bit-index metric applied to several other users is given

in Section A.2, where we see examples applied to several of the top 25 wallets

based on number of addresses and balance. In Figure 37 we see the application

of the bit-index to the Silk Road service, the largest onlinemarket for illicit goods,

with a bit-index of 0.71. As well in Figure 39 we see a bit-index of 876.70 calcu-

lated for a user with 8, 700 BTC accumulated over a period of five years, and one

of the top wallets by balance listed in Table 10. Lastly, an example is given in Fig-

ure 41 of a user that is one of the top wallets by balance, that accumulated 21, 744

BTCwithin a very short period of time from 2013-11-16 – 2016-02-03.Where even

with only several monthly periods of gain measurements, the bit-index is accu-

rately calculated as a value of 3, 606.05 for the user.

3.2.1.4 Bit-index: Summary

Following the application of the bit-index metric to all of the users within the

Bitcoin network, we evaluated the distribution of the gain G measurements ag-

gregated for the entire network. As shown in Table 11, we see the descriptive

statistics of the monthly gain and transactions per user for the network aggre-
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gated yearly. The table is only for data prior to 2016, due to the limited amount

of data for that year. It is significant to note that during the early years of Bit-

coin’s existence the gain was on average above one, however with each passing

year since 2009 it has steadily decreased for each user, becoming negative after

2012. This result is insightful, and shows a similar trend of decreasing wealth per

user demonstrated by other researchers [50], where the negative gain is showing

that on average there is a tendency for a loss in wealth amongst the majority of

users within the Bitcoin network. While the gain is steadily decreasing each year,

the number of monthly transactions for each user is increasing yearly, reaching

a stable point after 2012. This shows a continued interest and activity within the

Bitcoin network, despite the overall trend of a loss in wealth for the majority of

users.

Transactions Gain

Period Mean Median Std. Mean Median Std.

2009 0.77 2.67 26.24 65.19 50.00 463.40

2010 4.67 2.00 111.66 11.47 0.00 302.96

2011 3.10 2.00 86.36 1.19 0.00 155.20

2012 5.48 2.00 675.89 0.45 0.00 57.07

2013 5.57 2.00 549.76 −0.03 0.00 34.17

2014 5.46 2.00 328.39 −0.01 0.00 24.37

2015 5.41 2.00 603.07 −0.04 0.00 10.37

Total 5.47 2.00 515.58 0.07 0.00 41.90

Table 11: Gain and Transaction Statistics

3.2.2 Pareto Front Clustering

The bit-index metric provides a way to quantitatively measure a representation

of the wealth accumulated by a user relative to their number of transactions over

their entire history of activity on the Bitcoin blockchain. However, the technique

is limited to only one measurement, even for example when using h-index, it is
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still applied to only the citations measurement [78, 79]. As such, we have evalu-

ated the application of a secondmetric for identifyingmajor network influencers

based on the concept of a Pareto front, which allows for the ability to rank and se-

lect the best outcomes based on multiple metrics. We apply the Pareto efficiency

technique on two different metrics of wealth accumulation, the first based on the

user’s balance of bitcoins, and the second Gnorm based on the cumulative gain

normalized to USD. After applying the Pareto efficiency technique to each user,

we then compare the results of each technique in identifying the major network

influencers.

3.2.2.1 Pareto Front: Background

A Pareto front or Pareto frontier is the inner or outer edge, depending if minimiza-

tion or maximization, formed by the location of the optimal results given the

relative trade-offs along the edge, where each of the optimal results is said to

non-dominated by any other competing points. The Pareto optimization strategy is

highly beneficial as it allows for the selection of the optimal choices based on the

relative trade-offs of each parameter beingminimized ormaximized. The general

convention is that either all objectives are being minimized, otherwise they are

all beingmaximized. The Pareto frontierPf(Y) is given in Equation 26 and can be

formally described as follows. Where Y is the entire set of all criterion vectors y,

consisting of the objectives x ∈ X, such that Y = {y ∈ Rm : y = f(x), x ∈ X } the

Pareto frontier is made up each vector (point) y′′ that is said to strictly dominate

another point y′ represented as y′′ � y′, such that there are no other points that

can be said to dominate y′′ [83]. The final Pareto frontier is made up the set of all

points y′′ such that there are no other set of points (an empty set ∅), that are said

to dominate y′′ [83].

Pf(Y) = {y′ ∈ Y : {y′′ ∈ Y : y′′ � y′,y′′ 6= y′ } = ∅}. (26)

The Pareto frontier can often be best explained with a visual representation,

we see in Figure 14 an example created to demonstrate the effectiveness of the

Pareto method. In the figure on the left are a set of randomly distributed points
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along x and y axes, each axis represents a measurement that is desired to bemax-

imized, however there is not one objective, but two that must be maximized. We

see by looking at the left that there are points which for both objectives are clearly

greater in at least one objective and equal or greater to all other points within

the other objective. We say that each of these points y′′ that dominates any of

the other equivalent points are the non-dominated points of our Pareto front. The

final Pareto front as shown on the right half of Figure 14 is the set of all such non-

dominated points as described in Equation 26. Given this visualization it is clear

to see the strategy of maximizing the trade-offs of each objective, such that the

final set of non-dominated points are presented as the frontier of the optimization

problem.
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Figure 14: Pareto Frontier Along Non-Dominated Points

For our purposes wemade one additional enhancement to the standard Pareto

frontier, due to the power-law statistical properties inherent in the Bitcoin net-

work, we have applied the concept of a delta, which considers points within the

same delta as equivalent.We apply this technique in our application of the Pareto

frontier, as there are many metrics where the difference between a fraction of a

bitcoin or a small number of transactions are considered equivalent, as our inten-

tion is to identify only the major network influencers. The application of a delta

produced much larger fronts consisting of many more users, rather than the pre-

cise separation of vectors used in the default application of Pareto optimization.
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3.2.2.2 Pareto Front Clustering Based on Balance

We began by first clustering the major influencers based on their current balance,

the number of days the wallet had been active, and the total number of transac-

tions sent and received. Based on our objective in Section 1.4.2 we wish to iden-

tify the influential users within the network, whereby we define their influence

as the amount of wealth that they have accumulated within the network. The

Pareto front is generated in three dimensions and the front is the three dimen-

sional surface alongwhich the non-dominated points lie. In order to collect more

users than just the first front alone, we repeat the process multiple times, each

time excluding all of the points from all of the previous fronts. This technique

we refer to as Pareto front clustering, whereby each front is considered a cluster of

equivalently optimal outcomes.

For the process of creating each front a delta value is used for each parameter

optimized, all values that are within the delta are considered equivalent, result-

ing in more values being selected for each front than would be otherwise. The

following table Table 12 lists each of the features used in performing the Pareto

front clustering in addition to the delta value used. As our primary concern is

only identifying the major network influencers, it is beneficial to have less pre-

cision in separating each of the features, as it will result in more users being

clustered in each front. As we are concerned with identifying the major network

inlfuencers, our optimization criteria is to find the user with the maximum bal-

ance that have the minimum number of transactions and days active. This is so

that we can identify any user that has accumulatedwealth quickly, whichwe con-

sider as having influence. We value the significance of minimizingDays Active to

negate the effect of users that have been using Bitcoin since the initial creation,

and have accumulated much wealth due to the currency having very low value

for the first several years.

The Pareto front clustering based on balance was applied to all users with a

balance > 0 BTC, in total we clustered 1, 197, 847 users and generated the first

100 fronts as shown in Figure 15. Along the axes we see the features Days Active,

Balance, and Total Transactions; where the balance is being maximized and the
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Feature Delta (∆) Maximize/Minimize

Balance 10 Maximize
Total Transactions 10 Minimize
Days Active 30 Minimize

Table 12: Pareto Front Clustering Parameters

remaining axes are being minimized. The figure shows the first 100 fronts, repre-

senting the 100 clusters of non-dominated users, transitioning from dark violet

(front 1) to yellow (Front 100) with each successive front. The dark violet points

are those that lie along the first initial fronts and are the most non-dominated.

After we identify the points along the front, the points are then removed from

the data and the Pareto optimization process is repeated on the remaining data

to determine each successive front. We can see a clear separation of the users

within the Pareto fronts and the remaining users plotted in blue, as each addi-

tional front is created the major influencers identified gradually moves closer

towards the remaining users. Based on our own test we found that discontinu-

ing the clustering process after 100 fronts produced the best results, where all of

the users within the first 100 fronts have a significant balance of 100 BTC or more

and demonstrating the accumulation of significant wealth.

Figure 15: Pareto Clustering by Balance, 100 Fronts
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3.2.2.3 Pareto Front Clustering Based on Normalized Gain

The Pareto fronts generated by maximizing balance and minimizing the trans-

actions days active, produced clearly separate clusters for the major influencers

from the remaining users within the Bitcoin network. However, while the days

active and transactions are accumulativemetrics across thewhole history of each

user on the blockchain, the balance is temporal and can vary depending on the

time that the Pareto front clustering is performed. While the bit-index is based

on themonthly balance and number of transactions performed by each user, and

accounts for changing balances, the Pareto front clustering based on the final

balance does not. Therefore, in order to assess this concern, we perform the clus-

tering using another measurement for wealth accumulation, the cumulative nor-

malized gain Gnorm, which is based on a user’s total cumulative gain normalized

to USD.

The wealth accumulation measurement for each user is defined as the cumu-

lative normalized gain Gnorm and is based on each user’s total cumulative gain

normalized to USD, and is given in Equation 27. We define their cumulative nor-

malized gain as the sumof the amount of bitcoins for every transaction converted

to the value in USD using the daily closing price provided by the CoinDesk Bit-

coin Price Index [84]. Any transaction where bitcoins are received is a positive

gain, and any transaction where bitcoins are sent is a negative gain; the cumula-

tive sum of every transaction performed gives the final gain in USD. Unlike the

gain measurements used for the bit-index, the Gnorm is the sum of all transac-

tions normalized to USD on the day the transaction occurred, and the results are

not divided by the number of transactions performed by the user.

Gnorm =

n∑
i=1

±Ti ×Daily Close Price (USD) (27)

Similarly to the Pareto front clustering based on balance, there are three fea-

tures being optimized, the cumulative normalized gain Gnorm, days active, and

the total number of transactions. As well, a delta value is used for each, all val-

ues that are within the delta are considered to be equivalent. The delta for each
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feature is given in Table 13, where we see that the delta for the normalized gain

is 1, 000, as the amount has been normalized to USD. This amount can be consid-

ered as a delta value of 1, 000 USD, where each user is considered as having the

same normalized gain in USD for their transactions.

Feature Delta (∆) Maximize/Minimize

Normalized Gain (Gnorm) 1, 000 Maximize
Total Transactions 10 Minimize
Days Active 30 Minimize

Table 13: Pareto Front Clustering Parameters

Figure 16: Pareto Clustering by Gain, 100 Fronts

For the Pareto front clustering,we used the cumulative normalized gainGnorm

feature instead of balance and applied the clustering to all users within the net-

work regardless of their current balance. Compared to the previous Pareto front

clustering based on balance, where only the users with a balance > 0 were se-

lected, we applied the Pareto front clustering to all 35, 820, 710 users regardless

of their balance. The results of the Pareto front clustering for the first 100 fronts

are shown in Figure 16. Again, we have three axes where the Gain (USD) is be-

ing maximized and the Days Active and Total Transactions are being minimized.

Similarly to the previous three dimensional plot, the dark violet points are those

that lie along the first initial fronts, and are the most non-dominated with each
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successive front transitioning from violet to yellow. We see in the plot that the

points are much more dense in comparison to Figure 15, due to the results of ev-

ery user within the Bitcoin network being plotted. Furthermore, we see less of a

clear separation between the first 100 fronts and the remaining data, instead see-

ing a more gradual transition with each successive front added. Lastly, we don’t

see any users withmore than 10 - 30 million USD in normalized cumulative gain,

likely due to the fact that in order to increase their wealth users had to similarly

spend their bitcoins possibly on exchanges or other services.

3.2.3 Major Influencers Selection Metric

With both the bit-index and the Pareto front clustering techniques used to iden-

tify the major network influencers, we needed to select the optimal metric to use

for our model creation. The metrics must identify the major network influencers

which not only have accumulated significant wealth, but also influence the Bit-

coin markets. We assess the users identified by each metric based on their in-

volvement in services which are directly related to having an influence on the

market. We found that while all metrics equally identified users that did have

influence within the network, they did not all identify network influencers that

were aligned with our hypothesis, that major influencers that use financial ser-

vices related to Bitcoin can be used to predict the market price direction.

The following tables provide descriptive statistics of the top 2, 000 users based

on their bit-index, as well as the users within the first 100 Pareto fronts for the

Pareto front clustering based on balance and cumulative normalized gain (≈

2, 000 each. We see in Table 14 and for the Pareto front clustering results for bal-

ance in Table 15 that they are similar. Where the descriptive statistics of each

shows a high balance and number of transactions, as well as a much longer pe-

riod of activity in comparison to the users identified using the cumulative nor-

malized gainmeasurement. The high number of transactions and the long period

of activity could be indicative that the metrics based on balance have a tendency

towards selecting Bitcoin related services, rather than our desired users, that are
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network influencers increasing their gain using exchanges. Furthermore, we see

in Table 16 that the number of transactions are significantly lower compared to

the users found based on balance. With a difference of 11, 200–14, 344 transac-

tions to just 28 for users identified based on the cumulative normalized gain.

The much lower number of transactions for users identified based on gain is in-

dicative that the users selected are likely more reflective of individuals within

the Bitcoin network rather than services.

Metric Summary

Mean Median Std.

Balance 8, 642 2, 323 18, 994
Transactions 14, 344 14 86, 313
Volume 142, 212 1, 965 533, 543
Days Active 341 132 423

Table 14: Bit-index Summary

Metric Summary

Mean Median Std.

Wallets in First Front 46

Balance 7, 442 768 17, 464
Transactions 11, 200 8 73, 099
Volume 103, 014 958 517, 725
Days Active 286 94 439

Table 15: Pareto Front Balance Summary

Metric Summary

Mean Median Std.

Wallets in First Front 83

Normalized Gain (USD) 3, 613, 620 9, 143, 080 244, 680
Balance 1, 199 0.000055 7, 945
Transactions 28 6 92

Volume 76, 954 5, 580 343, 589
Days Active 195 91 216

Table 16: Pareto Front Gain Summary
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For both of the Pareto front clustering methods we did not see any significant

change in the number of users for each front as the number of Pareto fronts in-

creased. For bothmethodswe see a similar trend that the number of users within

each front increased and decreased respectively according to the current front

generated. This outcome differed from our initial assumptions, that the number

of users in each front would increase with each consecutive front created.We see

the number of users in each front based on normalized gain in Figure 43 increase

from an initial 83 users in the first front a maximum of 200 users. For each front

based on the normalized gain the average number of users is nearly double that

of the Pareto fronts for users based on balance. For a comparison the complete

results can be found in Section A.4, where the number of users in each Pareto

front is given for both the balance and normalized gain.

1 10 20 30 40 50 60 70 80 90 100
Pareto Front

0

50

100

150

200
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Figure 17: Pareto Fronts by Balance Sizes

Service Type bit-index Pareto Front Balance Pareto Front Gain

Exchanges 24% 30% 76%
Gambling 32% 25% 0%
Services/others 20% 16% 12%
Old/historic 14% 16% 8%
Darknet/market 8% 10% 0%
Pools 2% 3% 4%

Table 17: Percentage of Users Using Services By Metric
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Our final decision on the appropriate metric to use for the feature engineering

necessary to create the predictive model was made based on which metric most

accurately identified individuals rather than services. Based on the results of Ta-

ble 14, there is a significant discrepancy between the descriptive statistics for the

bit-index and Pareto front clustering based on balance, compared to the Pareto

front clustering based on normalized gain. For the bit-index and balance results

the users on average have a much higher balance than those of gain, with the

number of transactions vastly higher ranging from 11, 200–14, 344 transactions

compared to just 28 for gain. A value of 28 for the number of transactions per-

formed by users is muchmore realistic than a value ranging from 11, 200–14, 344,

which is more indicative of Bitcoin related services that individuals. Lastly, as

shown in Table 17 we see a clear breakdown of the services used by the top

ranked 2, 000 individuals identified using each metric, for obvious reasons all

users that are already labelled as Bitcoin services are excluded. For those users

identified by the bit-index and Pareto front clustering by balance, we see a fairly

even distribution of use amongst the various types of Bitcoin related services.

However, for the users identified by the Pareto front clustering using gain, we see

a much higher usage (76%) of exchanges used amongst users in this front. Thus,

given the realistic balances and number of transactions, as well as the predomi-

nant tendency to use exchanges for users identified by themetric, we chose to use

the Pareto front clustering by cumulative normalized gain. This metric provides

the most accurate identification of network influencers that accumulate wealth

through the use of exchanges, and as such are the users whose features we wish

to extract given our hypothesis.

3.3 predictive model creation

The predictive model creation is the culmination of all of the prior steps out-

lined in the methodology, the pre-processing was essential in order to gather the

data and present it in a usable form for predictive modelling. The two metrics

for identifying major network influencers, the bit-index and Pareto front clus-
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tering are also essential to identifying the wallets owned by users which have

significant influence on the network. Where the Pareto front metric based on

normalized gain in particular identified those users whom frequently interact

with exchange services. Our predictive model creation process involves extract-

ing the pre-processed features from the database aggregated daily, including Bit-

coin network and market data, as well as the gain for each wallet within the first

100 Pareto fronts. We then feature engineer the data and use it to evaluate var-

ious models based on those researched in Section 2.1.1, and applied by other

researchers to predict the market in Section 2.2.3. After creating and evaluating

the potential of several models the final model selection is conducted using a set

of holdout experiments, where a portion of the data is used for training and the

rest is set aside for testing. The final model is selected based on the performance

of eachwhen applied to the holdout test data, eachmodel is compared using sev-

eral metrics which are selected based on our literature review in Section 2.1.2.

3.3.1 Feature Engineering

Prior to performing feature engineering the pre-processeddatawas first extracted

using queries on the database, each of the attributes pertaining to the Bitcoin net-

work and the gain calculated for each of the influencers was aggregated daily. In

addition to the network features, the market data was aggregated for all of the

major exchanges listed in Table 1; for each exchange the price and volume were

aggregated by the hour so that features could be engineered based on themarket

trends over the course of a 24 hour trading period each day.

The extracted data was then transformed from row based to columnar based,

row based format is the default used by database systems, whereby the results

of the queries returned the features for each wallet as additional rows. Therefore,

in order to be properly feature engineer the data it was transformed to columnar

based, where each wallet received a unique column and there was only a sin-

gle row for each date of data. Transforming the data from row based to colum-

nar required performing a transformation on the data, to facilitate this we used
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the software library pandas [85], which provides columnar data frames that are

stored in memory rather than disk for fast access. The process of transforming

the data from row based to columnar is demonstrated in an example in Table 18,

in row based format there are duplicate rows for each date anytime awallet has a

change in gain on that date. For the predictive models, the data must only have a

single row for each date, as such the process of converting to columnar based as

shown in Table 18 consisted of creating a column for each unique wallet found in

the data. After creating a column for each unique wallet, the data is transformed

so that for each date the change in gain for the wallets is set in the column rather

than by duplicating rows.

Date Wallet Gain
2012-01-01 1 100

2012-01-01 2 10

2012-01-02 3 25

2012-02-03 1 50

2012-02-03 3 15

Row Based

Date 1 2 3
2012-01-01 100 10 0

2012-01-02 0 0 25

2012-01-03 50 0 15

2012-01-04 0 0 0

. . .

Columnar Based

Table 18: Row Based to Columnar Based Transformation

Following the transformation of the data from row based to columnar the Bit-

coinmarket data was also feature engineered to extract details based on the daily

price trends, rather than just an aggregation for the entire day. Volatility is a valu-

able metric in understanding the risk in a financial market and was applied by

Bukovina, Marticek, et al. [62] to the Bitcoin market specifically. We calculate the

market price volatility based on a moving average of the normalized USD price

over the course of the 24 hour trading period each the day, starting at midnight

and ending at midnight on the start of the next day. The equation used for the

average daily price volatility calculation is given in Equation 28, where Vdaily is

calculated based on the average of a rolling standard deviation σi, rolling. For each

hour of the day the rolling-window standard deviation is calculated over the

previous 24 hours leading up to that hour. The final average daily price voalitily

is then calculated by taking the sum of all rolling-window standard deviations

divided by 24, the hours in each trading day.
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Vdaily =
1

24

24∑
i=1

σi, rolling ·
√
24 (28)

=
1

24

24∑
i=1

√√√√1

i

i∑
j=1

(xj−24 − µ)2

 · √24
In addition to the daily volatility, the closing change in price was considered

for each day, where the closing change in price is referred to as price close, which

is calculated as the difference in price at the end of the day compared to the

start, (priceend − pricestart). The remaining market features trading volume and aver-

age price are market aggregations representing the total trading volume each day

across all major exchanges, and the average normalized price of Bitcoin in USD

over the 24 hour daily trading period. Once we completed the market data fea-

ture engineering, it was then combinedwith the wallet gain features into a single

data frame, for reference the list of all features are shown in Table 19. All of the

features were used both for our training data, as well for the test data throughout

the creation, optimization, and evaluation of our predictive models.

Feature Description

Volatility The average daily Bitcoin market price volatility calculated
based on hourly price changes.

Trading Volume The total trading volume normalized to USD for all major
exchanges.

Price Close The change in price between the end and start of each day.
Average Price The average price normalized to USD over the 24 hour trad-

ing period each day.
Wallet Gain The daily gain metric calculated for each of the wallets

within the first 100 pareto fronts.

Table 19: Model Features

After combining all of the features into a single data frame we then assessed

the sparsity of the data, which poses a challenge for many predictive models

where the data is expected to have a value for every column in each row. The

sparsity of the data is due to the fact that on any given day only a small fraction

of the major influencers are performing any transaction, thus altering their gain.
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We find that the majority of the dates within our data, nearly all of the major

influencers had no change in gain as they had performed no transactions. We

calculate the sparsity of the data as the sum of the empty rows divided by the

total dimensions of the data, we calculated in total 2, 171, 918 empty data entries

out of a total for the dimensions of the data rows× columns = 2, 335, 144. Based

on our calculations the matrix has a sparsity of approximately 93%, which is

high, implying that only 7% of the entire data frame used in our models contains

features.

Normalization is a standard step when feature engineering data, however due

to the high sparsity of our data we had to use a specialized data normalization

method to ensure that the sparsity of the data is preserved after normalizing it.

Normalization is required prior to training and evaluating models to ensure that

all of the features are scaled appropriately and display properties of a standard

normal distribution with a mean, µ = 0 and standard deviation σ = 1 [7]. Per-

forming normalization is important to ensure that all features have an appropri-

ate influence regardless of the original numerical scale of their values compared

to other features. The process of data standardization, often referred to as Z-score

normalization, is given in Equation 29, where X represents the data entry, µ the

mean of the data, σ the standard deviation, andX ′ the scaled feature. The Z-score

normalization is applied to the data such that the resultant new features are cen-

tered around 0 with a standard deviation of 1 [7, 14]. For our data we used a

variation of the standardization method known as the max absolute scaler, which

is desiged to ensure that all zero entries in the sparse matrix remain as zero. The

equation for this normalization method is given in Equation 30, where the max-

imum of the absolute values of the maximum and minimum Xmax, Xmin are

used to scale the data [7, 14].

X ′ =
X− µ

σ
(29)

X ′ =
X

Max (|Xmax|, |Xmin|)
(30)
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We applied themaximum aboslute scaler to our data in order to ensure that all of

the data was standardized, while at the same time preserving the sparsity of the

data.We used the implementation MaxAbsScaler provided by the scikit-learn

software library [86] to perform the standardization, resulting in the standard-

ized data still maintaining the original 93% sparsity. Combined the total feature

dimensions of the data are 2, 072, with 2, 068 of the feature columns belonging

to the gain features representing each of the wallets within the first 100 Pareto

fronts.

As part of our feature engineering processingwe attempted to reduce the num-

ber of features from 2, 072 to only those which describe the variances in the data.

The significance of the features are demonstrated in Figure 18, where each of the

numerical labels are the wallet identifiers correseponding to the gain metric for

that wallet. All of the wallets from the first Pareto front were significant depend-

ing on the day as the data was predominanly sparse, although in many cases

only a small subset of all wallets performed transactions on any given day. The

ranking on the left is out of a maximum score of 100, meaning the feature is sig-

nificant to the final outcome of the predictive model for 100% of the data. In the

case of price close, with a score of 42, it is still highly significant, as it implies that

the price trend (upwards or downwards) of the current day has an influence on

the price direction (UP/DOWN) of the following day.
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Figure 18: Features Ranked by Importance

While the top wallets repesented in Figure 18 have a significance of appoxi-

mately 5%–15%, and are significant to an extent in explaining a portion of the

data, they still do not describe the influence of all major network influencers.

Based on our evaluation, using the wallets from the first 100 Pareto fronts cap-

tures the majority of users within the network that have a possible influence on

the network. Any attempt we made to reduce the number of wallets used as fea-

tures had a negative impact during model evaluation as less of the variances of

the data could be explained. All of the features are needed due to the high spar-

sity of the data, because on any given day only a small fraction of the users that

have influence on the network are performing transactions, thus altering their

gain within the Bitcoin network.

After finalizing the features and applying themax absolute scaler normalization

to the data, we established the known predictive outcome to be used for training

and testing of the models. As stated previously in Section 1.3, our hypothesis

is to create a model that can predict the future daily price direction (UP/DOWN)

of Bitcoin based on the actions of major network influencers with greater ac-

curacy than random chance. We define the future price direction for each day by

calculating the average price of the future day over the 24 hour trading period



3.3 predictive model creation 86

and comparing it to the average price of the current day. An outcome where

pricefuture > pricecurrent would result in a binary value of 1 representing direction

UP, the opposite outcome is encoded as a binary value of 0, representing a direc-

tion DOWN. Lastly, it is important to consider that we had no instances where the

average price did not change, in all instances the average price for the following

day either went UP or DOWN relative to the average price of the current day.

3.3.2 Model Evaluation

The model evaluation process involves the creation of several predictive models

based on extensive literature review of predictive models used in binary clas-

sification problems discussed in Section 2.1.1. We created and evaluated four

models: non-linear, SVM, decision trees, and XGBoost; for each model we not

only evaluate the performance but also the challenges in hyper-parameter op-

timization, and the robustness to various train and test splits. After evaluating

each model, the final model for our experiments was selected based on its per-

formance and robustness relative to all of the other models created using a com-

bination of numerous metrics.

For each of the models we performed hyper-parameter optimization for the

three most significant parameters responsible for achieving the optimal results.

In each case the performance of the models greatly improved after selecting the

optimal parameter values, the non-linearmodel did not require hyper-paramater

optimization as there are no parameters. The detailed list of each parameter and

the relevance to the model are shown in Table 20, the detailed list of applicable

values optimized for each model are given in the associated sections for each

model. Every model was optimized using a similar range of values for each pa-

rameter, giving each a unbiased range of values to be exhaustively evaluated us-

ing the Grid Search algorithm.
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Model Parameter Description

SVM
C Penalty parameter of the error term
kernel Kernel used: linear, poly, sigmoid, or rbf
gamma Coefficient used for kernel functions

Decision Tree
splitter Strategy to choose the split at each node
max_features Number features when choosing best split
max_depth Maximum tree depth for base learners

XGBoost
learning_rate Learning rate for each boosting round
max_depth Maximum tree depth for base learners
subsample Fraction of observations randomly sampled

for each tree

Table 20: Model Parameters Optimized

3.3.2.1 Non-Linear Model

The non-linear model was developed using the proprietary software solution

Eureqa, which is advertised as an automated artifical intelligence powered mod-

elling engine, that uses evolutionary algorithms to automatically create accurate

predictive models [87, 88]. The Eureqa software can be described as a “robot sci-

entist”, an automated software solution that can create machine learning mod-

els using proprietary evolutionary strategies to derive models and equations for

describing the hidden mathematical relationships in the data [87]. We used the

Eureqa software to automatically build a non-linear predictive model using the

first half of the data (50%) to classify the future price direction. In total over a

week of CPU time was dedicated to discover the final non-linear model, we had

to make numerous adjustments to the data provided to the software in order to

produce modest results.

Initially we attempted to use the entire training data of 2, 072 features to create

themodel, but found that the software could not handle the high-dimensionality

of the datawithin a reasonable amount of CPU time. The academic version of the

software that we were provided was restricted to 1 CPU core and as such we had

to limit our training data to the 100 most significant features so that a model

could be discovered within a modest amount of CPU time. Even after reducing
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the number of features for the data, the software still took approximately 1 week

of CPU time to discover a model with better than 50% accuracy.

The following is the non-linear model discovered using Eureqa given in Equa-

tion 31, where Xwallet is the gain for a specific labelled wallet. As well, where

SMM(x, n) is the simple moving median of the feature x over the past n entries,

and SMA(x, n) is the simple moving average of the feature x over the past n

entries, and lastly Delay(x, n) is the feature x from n rows prior. Each of the vari-

ables in the non-linear equation are multipled by an arbitraty coefficient, with

the final parameter as a fraction involving the priceclose, Delay, SMA, and the gain

of a specific wallet. Given the solution Y to the non-linear equation, the final di-

rection is determined by applying a Logistic function, which produces a numeric

result between [0, 1]. Lastly each of the direction values from the logistic func-

tion are rounded to give a final value of 0 or 1, where any direction value > 0.5

is assigned 1 for UP and otherwise assigned 0 for DOWN.

Y = X15090019 + 13.7631919552486 ·X915804

+ 11.142939926681 · SMM(X9025801, 15)

+ 3.28683604376165 ·Delay(X16970637, 4)

+ 2.30360200999047 ·X13408047

+ 1.7563489850896 ·X13341271

+
priceclose − Delay(X25304929, 1)
SMA(volume, 18) −X7914913

Direction = Logistic (Y) (31)

While the finalmodel createdwith Eureqa performedwell on the training data

we used (50%), we noticed over-fitting when we performed simple tests with the

remaining 50% holdout test data. Due to the limitations of the academic version

of the software to only 1 CPU core it was not possible to easily create and exper-

iment with new models. The limitations of the academic version of the Eureqa

software made it impractical to experiment with and generate more robust mod-
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els. Furthermore, the time required to create moderately accurate models took

an order of magnitude longer than any of the other models.

3.3.2.2 Support Vector Machines

The second model we evaluated was SVM, based on our literature review in Sec-

tion 2.1.1.1. With a SVM the data is represented as a series of points within a

higher dimensional space, the points are then separated into categories by defin-

ing a hyperplane which attempts to maximize the gap between the two classes

of points to be as wide as possible. We performed hyper-parameter optimization

for the SVM parameters using exhaustive Grid Search, which evaluates all possi-

ble combinations of parameter values with cross-validation to select the optimal

values. The detailed list of values optimized using Grid Search are provided in

Table 21, where each of the parameters and values to test were selected for their

primary role in influencing the predictive performance of the model.

Parameter Significance Values

C Penalty parameter of the error
term

[0.001, 0.01, 0.1, 1, 10, 100, 1000]

kernel Kernel function for mapping
the data

[linear, poly, rbf, sigmoid]

gamma Kernel function coefficient [0.1, 0.01, 0.001, 0.0001, 0.00001

Table 21: SVM Parameter Values

We used exhaustive Grid Search to test all possible combinations of parame-

ter values, giving a total of 140 possible combinations, for each evaluation cross-

validation was performed using 5-fold validation. While we found that Grid

Search succeeded in finding the optimal parameters when using the training

data, we often found during our initial evaluations that the SVM would suffer

from over-fitting and perform poorly when applied to the test data that was

withheld (holdout). Furthermore, if the amount of available training data was

increased or decreased the model would require completely being re-calibrated,

each time with vastly different C and kernel parameter values, demonstrating

that themodel inherently is not robust.WeperformedGrid Search hyper-parameter
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optimization several times, reducing the amount of training data in each exper-

iment until we established a model that consistently performed better than ran-

dom.

Overall, the choice of SVM posed numerous issues during our model evalua-

tion, we also theorize that the sparsity of the data could have a negative impact

on the performance of the model. During our literature review in Section 2.1.1.1

we were unable to find examples of SVM being applied to highly sparse data,

however it has been consistently used as a predictive model for binary classifica-

tion tasks.

3.3.2.3 Decision Trees

Following our evaluation of SVM as a potential predictive model for the experi-

ments, we proceeded to evaluate the effectiveness of decision trees. Based on our

literature review in Section 2.1.1.2, we found that decision trees are consistently

used as predictivemodels in both binary andmulti-class classifier problems. Fur-

thermore, they have the added benefit of providing a visual representation of the

decision tree that is used to classify the data into each category. We found this as-

pect of decision trees extremely helpful, as it would demonstrate the logic behind

the decision process. In addition, decision trees are also non-parametric, whereby

the parameters and rules used in the model would be discovered based on the

statistical properties of the training data provided [14]. The complete list of pa-

rameter values optimized are provided in Table 22, each of which was selected

based on their importance in affecting the performance of the model.

Parameter Significance Values

splitter Strategywhen splitting each
node

[best, random]

max_features The number of features
when choosing best split

[2, 4, 6, 8, 10, auto, sqrt, None]

max_depth The maximum depth of the
tree for learners

[2, 4, 6, 8, 10, 12, 14, None]

Table 22: Decision Tree Parameter Values
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Similarly to with SVM, we performed exhaustive Grid Search and tested all

possible combinations of parameter values, in total evaluating 128 possible com-

binations. For each evaluation cross-validation was used with 5-folds for the val-

idation, while we noticed that the decision trees were more stable in the final

choice of parameter values, the greatest difficulty was that the resultant decision

trees often were extremely complex and large. While the decision trees captured

the majority of features, they often suffered from over-fitting when evaluated on

the test data. In each evaluation we determined that the resultant max_features

parameter value optimized using Grid Search was always None, which puts no

restrictions on the decision tree, allowing it to select all of the available features

when generating the tree.

trading_volume ≤ 0.0084
gini = 0.4852

samples = 563
value = [233, 330]

class = UP

7914913 ≤ 0.2996
gini = 0.417

samples = 162
value = [48, 114]

class = UP

True

39258917 ≤ 0.0466
gini = 0.497

samples = 401
value = [185, 216]

class = UP

False

22350218 ≤ 0.0017
gini = 0.3733

samples = 149
value = [37, 112]

class = UP

6638046 ≤ 0.0224
gini = 0.2604
samples = 13
value = [11, 2]
class = DOWN

gini = 0.3573
samples = 146

value = [34, 112]
class = UP

gini = 0.0
samples = 3
value = [3, 0]

class = DOWN

gini = 0.0
samples = 11
value = [11, 0]
class = DOWN

gini = 0.0
samples = 2
value = [0, 2]
class = UP

price_close ≤ -0.2176
gini = 0.4888

samples = 327
value = [139, 188]

class = UP

price_close ≤ 0.0537
gini = 0.4704
samples = 74

value = [46, 28]
class = DOWN

gini = 0.2659
samples = 19
value = [16, 3]
class = DOWN

gini = 0.4797
samples = 308

value = [123, 185]
class = UP

gini = 0.3436
samples = 59

value = [46, 13]
class = DOWN

gini = 0.0
samples = 15
value = [0, 15]

class = UP

Figure 19: Decision Tree Model

We were able to reduce the negative impact of over-fitting with the decision

trees by consequently applying our own choice of parameter value for max_depth.

The default value often found by Grid Search when applied to the training data

was None, making no restrictions on the height of the tree. While allowing for

the creation of large trees produced exceptional results on the training data, the

model was often over-fitted when evaluated against the test data that was with-

held (holdout).Wemanually optimized the list of parameter values for max_depth

and found the optimal tree height to be 4, allowing for good accuracy when ap-

plied to the training data, as well as reducing the effect of over-fitting when eval-

uated on the test data.
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Despite applying an optimal tree height parameter, we still had issues in the

non-deterministic tree generationused bydecision trees, the resultant tree shown

in Figure 19 represents one of the best performing models. However, in many fu-

ture evaluations when using the same parameters different decision trees would

be produced with inferior performance. The non-determininstic aspect of deci-

sion trees is inherent to their very nature, for each execution a random number

generator is used as part of the algorithm, which produces different resultant

trees. Thus, in order to make our results for the final model selection consistent

we specified a default seed value of 0 for the random number generator, which

resulted in a deterministic tree being generated each time.

3.3.2.4 XGBoost

The finalmodelwe evaluatedwas XGBoost, based on our literature review in Sec-

tion 2.1.1.3, XGBoost has consistently been one of the strongest performing ma-

chine learning models. It has been used to win several competitions in machine

learning, winning against many other competing models [23–25]. Naturally, we

decided that it would be beneficial to our own research to evaluate the effective-

ness of XGBoost as a predictive model for binary classification tasks. Similarly

to all other models, we chose the most important parameters and appropriate

values as shown in Table 23 to optimize for XGBoost. In all of our experiments

conducted we trained the model using only 50% of the data, with the remainder

being the holdout that was used for our preliminary evaluation of the model.

Parameter Significance Values

learning_rate Learning rate for each boosting round [0.1, 0.2. . . 1]
max_depth Maximum tree depth for base learners [4, 6, 8, 12]
subsample Fraction of observations randomly sam-

pled for each tree
[0.25, 0.5, 0.8, 1]

Table 23: XGBoost Parameter Values

Similarly to the previous models, we performed exhaustive Grid Search and

tested all of the possible combinations of parameter values. In total therewere 144

combinations of parameters evaluated, similar to the number of possible com-
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bination of parameters evaluated for the previous models. We used the same

method of cross-validation with 5-folds used for validation, immediately we no-

ticed that Grid Search produced a similar set of optimal parameter values when

executedwith varying sizes of training data. Furthermore, during our initial eval-

uations the issues of over-fitting that affected decision trees appeared to be miti-

gated as a result of the ensemblemethod applied inXGBoost. By default XGBoost

uses a combination of many estimators, providing more robustness than a single

model, while ensuring that any single tree does not become overly complex. For

our implementation we used the standard XGBoost Python package provided

by the creator Chen [22], which used a total of 100 estimators for the ensemble

when generating the model.

Overall, XGBoost during our preliminary evalulations proved to be a more ro-

bust solution and was not as susceptible to overfitting as the other models we

evaluated. Furthermore, it provided similar predictive performance when ap-

plied to holdout test data, which confirmed that our model was not over-fitted

to the training data. While XGBoost performed well in comparison to our pre-

liminary evaluation, the final model selection process will combine the results

of several metrics in order to determine the most accurate and robust predictive

model for the final set of experiments.

3.3.3 Model Selection

After creating and evaluating all of the proposed models we selected the final

model to use for our experiments using a combination of widely usedmetrics for

evaluating binary classifiers. As part of our literature review in Section 2.1.2 we

assessed each of the metrics and found that each had strengths and weaknesses,

thus in order to provide the best selection possible we evaluated and compared

each of the models against all of the metrics. The following are the metrics used

to assess the predictive performance of each model: precision, recall, f1-score, and

ROC. Each of these metrics provides a value between [0, 1], where 1 represents a

perfect score and 0 a completely incorrect score. For the final model selection we
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also assess the robustness of each model, where we are evaluating the predictive

performance of the model as the amount of training data increases and the test

data (holdout) is decreased. During our model evaluation we established that

over-fitting was a common issue for nearly every model, and setup the experi-

ments in order to assess the robustness of each model to over-fitting.

Every model was optimized using Grid Search, and in many cases the parame-

terswere further optimized by handduring ourmodel creation and evaluation to

ensure that the optimal parameters were chosen. For each model, all of the para-

mater values selecedwere chosen such that they give themodel strong predictive

performance, while not also succumbing to over-fitting. The optimal parameters

for each model can be found in Table 24.

Model Parameter Optimized Value

SVM
C 1.0
kernel linear

gamma 0.005

Decision Tree
splitter random

max_features None

max_depth 4.0

XGBoost
learning_rate 0.1
max_depth 5.0
subsample 1.0

Table 24: Optimal Model Parameters

A decreasing amount of test data was set aside as the holdout to evaluate the

performance and robustness of each model; we compared the performance of

each model using 50%, 30%, and 10% holdouts. For each holdout experiment

all four model were evaluated and compared against each other using the four

metrics. The performance of eachmodel in predicting either the UP or DOWN future

price direction was averaged, except for ROC AUC, which is a single numeric

valute representing the performance of the model in predicting both outcomes.

The range of the entire data used for experiments spans the period of 2013-01-01

– 2016-02-01 with a total of 2, 072 features as described in Section 3.3.1, in each of



3.3 predictive model creation 95

the experiments a percentage of the data was removed and withheld (holdout)

from training and used for evaluating the models.

For brevity, only the results of the 50% and 10% holdout experiments are listed

below, the complete details for all experiments used to assess each model can be

found in Section A.5. The results of the 50% holdout experiments are given in Ta-

ble 25, the training period for the models was from 2013-01-01 – 2014-07-17, with

the remaining data as holdout to be used for testing spanning from 2014-07-18

– 2016-02-01. The 50% holdout test data was used to evaluate the performance

of each of the models, we see that nearly all of the models evaluated performed

better than random,with the exception of SVM,which performed approximately

equivalent to random. As noted previously during our model evaluation we had

numerous challenges with the SVM model due to its sensitivity to parameter

changes when evaluated on varying amounts of training data. These same chal-

lenges with SVM are evident in the peformance for the experiments being equiv-

alent to a uniform random outcome. As well, it is significant to mention that all

of the other models performed better than random, with the non-linear model

created using Eureqa achieving a performance similar to that of other Bitcoin

price direction predictive models [72, 73]. While the Eureqa model achieved bet-

ter than random, both the decision trees and XGBoost models achieved a sig-

nificant margin better than random, with the decision trees model receiving a

score for each metric between 0.58–0.60, and XGBoost receiving between 0.64–

0.74. These results are consistentwith our initial evaluations,where after limiting

themaximumdepth of the decision trees therewas less over-fitting, resulting in a

lower score during training but a higher overall score during testing. XGBoost re-

ceived the highest score in every metric for the 50% holdout tests, demonstrating

the same level of performance and robustness as during our initial evaluations,

lendingmore credibility to it’s strong performance as a predictive model [23–25].

The 10%holdout experiments assessednot only the performance of eachmodel

but also the robustness of each model to over-fitting. For the 10% holdout ex-

periments, 90% of the available data was used for training, spanning the period

of 2013-01-01 – 2015-10-11, with the remaining 10% holdout data used for test-
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Model Prediction Precision Recall F1-Score AUC Support

Eureqa
0 0.56 0.40 0.47 295

1 0.50 0.65 0.56 269

Avg / Total 0.53 0.52 0.51 0.53 564

SVM
0 0.52 0.43 0.47 295

1 0.47 0.56 0.51 269

Avg / Total 0.50 0.49 0.49 0.50 564

Decision Tree
0 0.63 0.49 0.55 295

1 0.55 0.68 0.61 269

Avg / Total 0.59 0.58 0.58 0.60 564

XGBoost
0 0.70 0.54 0.61 295

1 0.60 0.75 0.66 269

Avg / Total 0.65 0.64 0.64 0.74 564

Table 25: 50% Holdout Model Evaluation Results

ing, spanning from 2015-10-12 – 2016-02-01. In comparison to the 50% holdout

experiments the 10% holdout experiments had significantly less days available

for testing. For the 50% holdout experiments there were 564 days to evaluate

the predictive performance of each model, whereas in the 10% holdout experi-

ments there were only 113. With less available data for testing and more data

used to train the models the negative effects of over-fitting becomemore evident,

we see in Table 26 the results of the 10% holdout experiments. The Eureqamodel

achieves varying performance of 0.47–0.62, however the two key metrics which

evaluate the overall performance, F1-score and AUC give it a score of 0.47 and

0.54, slightly better than random. The SVM achieved approximately the same

score across all holdout experiments, being almost equivalent to that of pure

random; the decision trees performed the worst out of all models with a score

between 0.44–0.53, affirming our challenges with over-fitting during the model

evaluation. Lastly, the performance of theXGBoostmodelwas significantly better

than all of the other models evaluated, receiving a score for each metric between

0.72–0.78, demonstrating an even greater level of performance and robustness

than in the 50% holdout experiments.
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Model Prediction Precision Recall F1-Score AUC Support

Eureqa
0 0.70 0.13 0.22 54

1 0.54 0.95 0.69 59

Avg / Total 0.62 0.56 0.47 0.54 113

SVM
0 0.49 0.44 0.47 54

1 0.53 0.58 0.55 59

Avg / Total 0.51 0.51 0.51 0.48 113

Decision Tree
0 0.47 0.15 0.23 54

1 0.52 0.85 0.65 59

Avg / Total 0.50 0.51 0.44 0.53 113

XGBoost
0 0.73 0.65 0.69 54

1 0.71 0.78 0.74 59

Avg / Total 0.72 0.72 0.72 0.78 113

Table 26: 10% Holdout Model Evaluation Results

The ROC plots and their associated AUC provide a comprehendable visual-

ization of the performance of binary classifier predictive models, and are fre-

quently used to compare the performance of models [28, 35]. We use the ROC

plot to provide a final visual assessment of the performance of each model in

addition to each of the metrics used in Table 25 and Table 26. In each of the plots

there is a dashed diagonal line, known as the line of no discrimination, dividing

the lower and upper portion of the plot, where any points that lie above the line

are considered better than perfectly random [35]. The ROC plot for the results

of the 50% holdout experiment are shown in Figure 20, here we clearly see the

XGBoost and decision trees above the line of no discrimination with the Eureqa

model only marginally above it. Furthermore, we can see that the SVM model

which performed approximately equivalent to random lies almost directly along

the line of no discrimination, reinforcing the previous observations wemade about

its performance. The widening gap in the performance and robustness of each

model becomes even more evident in the ROC plot for the final 10% holdout ex-

periment in Figure 21, in this visualization we see performance of the XGBoost

model increase even further, whereas the remaining models including decision

trees perform only marginally better than the line of no discrimination. The strong
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performance of the XGBoost model in both of the ROC plots is a testament to its

robustness as a predictive model in addition to it’s overall strong performance.
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Figure 20: 50% Holdout Model Evaluation ROC Results
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Figure 21: 10% Holdout Model Evaluation ROC Results

We made our final model selection for the experiments in Chapter 4 based on

the performance results of each model across the 50%, 30%, and 10% holdout ex-

periments. In each of the experiments theXGBoostmodel consistently performed

much better than all other models, and demonstrated a robustness against over-

fitting when the amount of training data was inceased. Over-fitting was a chal-

lenge that plagued all of the other models, and even after using Grid Search to
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find the optimal parameters we still could not completely avoid it. The detailed

experimental results for all of the holdout experiments conducted can be found

in Section A.5, in each of the experiments XGBoost performed consistently much

better than all of the other models. The exceptional performance of XGBoost as a

predictivemodel is consistent with our initial model evaluation in Section 3.3.2.4;

where the ensemble technique used by the model provides a much better predic-

tive outcome than a single model alone can provide.
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4
EXPER IMENTS AND RESULTS ANALYS I S

For the experiments we evaluated the robustness of the predictive model using a

combination of holdout experiments, which were used to select the final model

in Section 3.3.3, as well as streching and sliding window experiments, which test

the daily predictive accuracy of themodel as training data is continuously added.

Similarly to the model evaulation criteria used to select the final model, the out-

come of each experiment is evaluated using precision, recall, f1-score, and ROC.

Each of these evaluation criterion provide a reliable measurement of the predic-

tive performance of themodel as outlined in Section 2.1.2 and are frequently used

to corroborate the performance of binary classificationmodels as discussed in the

prior research Section 2.1.1.

4.1 experimental setup

The experimental setup was designed to assess the robustness of the predic-

tive model using a combination of holdout experiments, which test against over-

fitting, as well as strectching and sliding window experiments which evaluate

the capabilities of the model when given data daily after each prediction.

The holdout experiments are designed to assess the precitive capabilities of

the model with an increasing amount of training data and a decreasing amount

of available data for testing. Holdout experiments are frequently used to evalu-

ate the robustness of a model as demonstrated in Section 2.1.2. In each holdout

experiment a percentage of the data is used for training the model, while the

remaining data is completely withheld referred to as the holdout, having no influ-

ence on the model. The model is then evaluated against the testing data that was

withheld, in each of the experiments an increasing amount of the available data

101
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is used for training, while the remaining data is withheld as the holdout for test-

ing the model. In each scenario the training data is provided as a single whole

segment to train the model, with the prediction made on all of the remaining

holdout data as one evaluation, this is different from the stretching and sliding

window experiments where the model predicts the test data one day at a time.

The time periods for the data used in training and testing for each experiment

are given in Table 27.

While the holdout experiments evaluate the robustness of the model to over-

fitting, the stretching and sliding window experiments assess the predictive ca-

pabilites of the model in a realistic test environment where new information be-

comes available daily. With the stretching and sliding window experiments the

model is provided new information with each additional day, the current avail-

able data is then used to make a prediction for the outcome of the following

day. These experimental setups are closely modelled after the concept of back-

testing, which is frequently used evaluate Bitcoin market predictive models as

discussed in Section 2.2.3, and test against historical data with each new amount

of additional information. In both experiments a minimum training period of six

months is used, following the sixmonth period the price direction of each follow-

ing day is predicted based on the data added to the training set daily. The train-

ing and testing time periods for the stretching and sliding window experiments

are given in Table 28, for the sliding window experiments only the previous six

months of training data is used, whereas all of the available data is continually

added for the stretching window experiments.

Experiment Training Period Test Period

50% Holdout 2013-01-01 – 2014-07-17 2014-07-18 – 2016-02-01
40% Holdout 2013-01-01 – 2014-11-07 2014-11-08 – 2016-02-01
30% Holdout 2013-01-01 – 2015-02-27 2015-02-28 – 2016-02-01
20% Holdout 2013-01-01 – 2015-06-20 2015-06-21 – 2016-02-01
10% Holdout 2013-01-01 – 2015-10-11 2015-10-12 – 2016-02-01

Table 27: Holdout Experimental Setup
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Parameter Stretching Window Sliding Window

Training Period 2013-01-01 – 2013-06-29 2013-01-01 – 2013-06-29
Test Period 2013-06-30 – 2016-02-01 2013-06-30 – 2016-02-01
Training Data Continually Added Previous 6 Months

Table 28: Stretching and Sliding Window Experimental Setup

4.1.1 Monte Carlo Model

In each experiment the performance of the predictive model is evaluated in com-

parison to the outcome of a Monte Carlo method random choice (UP/DOWN) in

predicting the future price direction. As clearly demonstrated in “Do Not Trust

All Simulation Studies Of Telecommunication Networks,” by Pawlikowski [89]

the selection of a good Pseudo-Random Number Generator (PRNG) is critical to

the accurate and reproducable results of any experiment that requires random-

ness.

For each experiment the PRNG used is Mersenne Twister, which is frequently

recommended for experiments requiring randomness, and provides uniformly

distributed pseudo-randomnumbers [89–91]. The implementation usedwas that

provided by the NumPy and SciPy open-source scientific libraries [92, 93]. The

PRNGwas seeded before each trial using the randomness provided by the Linux

kernel through /dev/urandom, as it provides adequate entropy based on system

events [94]. Lastly, each experiment is conducted with 30 trials using the pre-

dicted outcome provided by the Monte Carlo model, the results from each trial

are then combined to provide an averaged result for each experiment.

4.1.2 Experiment Evaluation

We evaluate the outcome of each experiment using a combination of fourmetrics,

each of which has a benefit in assessing the performance and robustness of a

binary predictive model. For each experiment the model is provided the training

data and then a prediction of the future price direction (UP/DOWN) is made on the
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test datawhich is completelywithheld (holdout) from themodel during training.

The predictive performance of the model in accurately determining if the price

will move UP or DOWN for each future day relative to the price of the previous day

is then compared to the known outcome.

A combination of four metrics are used to assess both the performance and

robustness of the binary prediction: precision, recall, f1-score, and ROC. For each

of the metrics the result is a value between [0, 1], a value of 1 represents a per-

fect result and a value of 0 represents a completely incorrect result. The detailed

explanation of each metric in addition to the application for evaluating binary

predictive models is described in Section 2.1.2, Table 29 provides a brief explana-

tion of the purpose of each metric used to assess the outcome of the experiments.

Metric Summary

Precision The ratio of the true positives to the true and false positives and de-
scribes the ability of the classifier to notmis-label a positive sample
that is negative.

Recall The ratio of the true positives to the true positives and false neg-
atives and describes the ability of the classifier to find all positive
samples.

F1-Score The weighted average of both the precision and recall and ac-
counts for the contribution of both precision and recall.

ROC A plot showing the fraction of true and false positives at various
thresholds. The area under the ROC curve is calculated providing
a single value summary of the performance.

Table 29: Summary of Metrics Used for Experiments

Every experiment is conducted to further support or refute the hypothesis de-

fined in Section 1.3, in each experiment the predictive model is tested against the

outcome of the Monte Carlo model using the test data. The performance of each

is compared to that of the known actual outcome of the test data using the four

metrics. Lastly, the performance of each model is compared for the outcome of

all experiments to test the hypothesis and draw conclusions from the results.
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4.2 model optimization

The final model parameters for each experiment are configured using a two step

hyper-parameter optimization process based on exhaustive Grid Search with

varying K-folds for cross-validation of the parameters dependent on the amount

of training data available. Grid Search was chosen for the hyper-parameter opti-

mization of the final model in comparison to other methods as it provides an

exhaustive search of all parameter values with cross-validation. Furthermore,

it is also the standard hyper-parameter optimization method provided by the

scikit-learn [86] software library andApplicationProgramming Interface (API)

used to create the model.

The first step of the hyper-parameter optimization determines the set of pa-

rameters for the model using exhaustive Grid Search with cross-validation. Af-

ter the parameters for the model are chosen the second step determines the op-

timal number of estimators for the XGBoost model based on the default cross-

validation provided by the XGBoost library. The number of estimators has a sig-

nificant impact on the outcome of the model [23] and as such is optimized each

time any of the parameters of the model are modified. Following the estimator

optimization, the model is then verified using cross-validation provided by Grid

Search, the two step process is repeated for every set of parameter combinations

exhaustively tested by Grid Search.

The complete list of parameters optimized for the final model used in each ex-

periment are shown in Table 30. In comparison to the initial model evaluation

and selection in Section 3.3.2 where appropriate defaults were used for the ma-

jority of parameters a much more detailed list of parameters were chosen for

the hyper-parameter optimization of the final model. The list of parameters and

possible values for each to evaluate were chosen based on recommendations pro-

vided by the XGBoost authors and independent researchers [23, 26, 95], in order

to maximize the performance of the final model.

The two step hyper-parameter optimization for the final model used in each

experiment resulted in identical parameter values except for the learning_rate
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Parameter Significance Values

learning_rate The learning rate for each boosting
round

[0.01, 0.1, 0.2 . . . 1]

max_depth Maximum tree depth for base learn-
ers

[2, 4, 6, 8, 12]

min_child_weight Minimum sum of weight in a child,
reduces over-fitting

[0.25, 0.5, 0.8, 1]

gamma Minimum loss reduction required
to make a split

[0, 0.1, 0.2, 0.3]

subsample Fraction of observations randomly
sampled for each tree

[0.25, 0.5, 0.8, 1]

colsample_bytree Fraction of columns randomly sam-
pled for each tree

[0.25, 0.5, 0.8, 1]

reg_alpha L1 regularization term on weights [0.001, 0.1, 1, 100]
scale_pos_weight Faster convergance when there is

class imbalance
[0.25, 0.5, 0.8, 1]

Table 30: XGBoost Model Hyper-Parameters

and number of estimators. The stability of the optimal parameters for each exper-

iment demonstrates the robustness of the model without the need for computa-

tionally expensive hyper-parameter optimization, in comparison to SVM, which

required vastly different parameter values for each experiment as highlighted in

Section 3.3.2.

4.3 holdout experiments

The holdout experiments were designed to test the robustness of the predictive

model by ensuring that it does not succumb to over-fitting when provided with

an increasing amount of training data. Prior to each experiment the parmaters

of the model were optimized using Grid Search to ensure that the best possible

parameters for each experiment were chosen, in all cases the initial optimized

model required very little tuning to achieve optimal results.

Prior to executing each experiment the model parameters were exhaustively

optimized, in all cases the only parameters that varied from those shown in Ta-

ble 30were the learning rate (η) and the optimal number of estimators. Given that



4.3 holdout experiments 107

the amount of training data increasedwith each holdout experiment the number

of K-folds used for the cross-validation were also increased. The optimal learn-

ing rate and number of estimators for the model used in each experiment are

shown in Table 31, furthermore the number of K-folds for cross-validation for

each holdout experiment are also provided.

Experiment Learning Rate (η) # Estimators K-folds

50% Holdout 0.3 6 5

40% Holdout 0.3 7 7

30% Holdout 0.25 17 7

20% Holdout 0.2 13 7

10% Holdout 0.1 12 9

Table 31: Holdout Experiment Parameters

In each of the holdout experiments the model is compared to the performance

of the Monte Carlo model, which is based on randomness for the binary predic-

tions. As outlined in Section 4.1.1, the outcome of 30 trials are used as an average

for the performance of the Monte Carlo model, whereas with the holdout ex-

periments only one trial is conducted as the resultant outcome of the model is

deterministic in each experiment.

For brevity, the outcome of the two experiments in which the Monte Carlo

model performed best are provided in Table 32 and Table 33, rather than all hold-

out experiments. The complete results for each of the holdout experiments are

provided in SectionA.6. In all of the holdout experiments conducted theXGBoost

model received a score for each metric between 0.65–0.69, with the exception of

the final 10% holdout experiment, where it received a score for each metric be-

tween 0.81–0.84. By contrast, the Monte Carlo model received a consistent score

below 0.50, ranging from 0.41–0.48 for allmetrics in each holdout experiment con-

ducted, performing significantly worse. An exact 50/50 coin toss model would

receive a score of 0.50 out of a range of [0, 1], for each of the metrics, however

the Monte Carlo model, even in the best performing experiment, only received

a score of 0.48. The reason for it performing less than 0.50 is due to the unbal-
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anced support for each actual predictive outcome, in addition to the statistical

variances of the uniform distribution.

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.51 0.57 0.53 295

1 0.45 0.39 0.42 269

Avg / Total 0.48 0.48 0.48 0.48 564

XGBoost
0 0.72 0.66 0.69 295

1 0.66 0.72 0.69 269

Avg / Total 0.69 0.69 0.69 0.73 564

Table 32: 50% Holdout Experiment Results

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.45 0.54 0.49 54

1 0.48 0.39 0.43 59

Avg / Total 0.46 0.46 0.46 0.45 113

XGBoost
0 0.79 0.83 0.81 54

1 0.84 0.80 0.82 59

Avg / Total 0.82 0.81 0.81 0.84 113

Table 33: 10% Holdout Experiment Results

The holdout experiments are critical to ensuring that the model is robust and

does not suffer from over-fitting as an increasing about of training data is made

available as time progresses. The holdout experiments provide a method to eval-

uate the robustness in addition to the predictive capabilities of the mode as an

increasing about of training data becomes available and is then used to predict a

decreasing amount of test data (holdout). In each of the holdout experiments

the strong performance of the XGBoost model compared to the Monte Carlo

model demonstrates its capabilities over prediction using pure randomness. For

all holdout experiments the XGBoost model achieved a minimum of 0.20 higher

score for all metrics than the Monte Carlo model, with a maximum performance

of 0.35 higher score in the case of the 10% holdout experiment.
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Figure 22: 50% Holdout Experiment ROC Results
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Figure 23: 10% Holdout Experiment ROC Results

For the AUC metric all of the holdout experiments conducted were also plot-

ted to display the ROC and associated AUC. For brevity the associated Figure 22

and Figure 23 for the 50% and 10% holdout experiments described previously

are provided, the remaineder can be found in the appendix Section A.6. Again

in each of the experiments the AUC was consistently a minumum of 0.20 higher

than that of the Monte Carlo model and a maximum of 0.39 higher in the case of

the 10% holdout experiment. The ROC plot and associated AUC are described

in detail in Section 2.1.2, and are metrics frequently used to evaluate the perfor-
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mance of binary predictive models. The benefit that these metrics provide is an

intuitive visualization of the fraction of true and false positives at various thresh-

olds.
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Figure 24: All XGBoost Holdout Experiments ROC Results

We can see in Figure 24 the ROC performance of the XGBoost model in com-

parison to that of the best performingMonte Carlo model (from the 50% holdout

experiment). The dashed black line dividing the upper-left and lower-right parts

of the figure is known as the line of no discrimination, and represents the perfor-

mance of a hypothetical model achieving a perfectly random predictive outcome

[35]. It is clearly visible that in all holdout experiments the XGBoost models re-

main far above the line of no discrimination, whereas the Monte Carlo model re-

mains slightly worse than an ideal perfectly random predictive outcome. The

deviation of our Monte Carlo model from the ideal random predictive outcome

represented by the line of no discrimination is due to the variances of the uniform

randomness of the model, in addition to the actual predictive outcome not being

perfectly balanced.
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4.4 daily prediction experiments

The daily prediction window experiments were designed to demonstrate the ro-

bustness of the model in making daily predictions, while simultaneously using

the actual outcome of each additional day to re-train themodel for predicting the

following day. This is a realistic representation of the performance of the model

in a real-world scenario, as the model is continually being re-trained based on

the additional data added for each new day.

We created two experimental scenarios to evaluate the daily prediction perfor-

mance of each model, the first being the application of a continually expanding

stretching window for training of the model, and the second approach a fixed slid-

ing window. For the stetching window experiments the results of each additional

day are added to the model and used for training, such that all of the data is

utilized when training the model. Whereas, for the sliding window experiments a

fixed window of historical data that can be used for training is used; each addi-

tional day is still added to train the model, however at most only the previous 6

months worth of data can be used for training. The intention behind the sliding

window is to reduce the possible effects of over-fitting by limiting the amount of

training data to a maximum of 6 months; this removes possible side-effects of

much older historical training data on the predictive model.

The experimental parameters for the daily prediction experiments are given in

Table 28, in both cases the stretching and sliding window models used the same

learning rate η = 0.01. The learning rate used for the daily prediction experi-

ments is significantly smaller than the minimum value 0.10 used in the holdout

experiments, likely due to the large amount of training data being used relative

to only predicting the following day. For each model the stabilized parameters

used for the holdout experiments in Section 4.3 were used, only the learning rate

and number of estimators were optimized using the two step hyper-parameter

Grid Search optimization. Due to the dynamically changing set of available train-

ing data, both models were re-optimized using Grid Search at the start of each

month to ensure that the learning rate and number of estimators were adjusted
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to reflect the new training data available. Over the course of the entire test pe-

riod the optimized learning rate for both models was always η = 0.01, with an

average number of estimators as 176 for the stretching windowmodel and 17 for

the sliding window model.

Parameter Stretching Window Sliding Window

Training Data Continually Added Previous 6 months
Model Re-Calibration Monthly Monthly
Learning Rate (η) 0.01 0.01
Average # Estimators 176 17

K-folds 5 3

Table 34: Daily Prediction Experiment Parameters

The realistic experimental setup for daily prediction demonstrated exceptional

results, the following Table 35 lists the results for the daily prediction stretching

window experiments. In each case the model was used to predict the price direc-

tion (UP/DOWN) for the following day, entire test period spanned from 2013-06-30 –

2016-02-01, with the initial first six months used as training data from 2013-01-01

– 2013-06-29. The actual results of each day were then added as additional train-

ing data, with the model re-trained before predicting the following day. Across

all of the metrics used to evaluate the performance of the predictive model for

the stretching window experimentswe see that the XGBoostmodel receives a score

between 0.69–0.73, nearly 0.20 higher than that of the Monte Carlo model, which

recevied a score of 0.50 for all of the metrics. We see that the Monte Carlo model

is approximates a perfect random prediction much better in comparison to the

previous holdout experiments due to the increased amount of test data (947 sam-

ples), allowing the random variances to becomemore perfectly uniform random.

The experimental results for the sliding windowmodel are given in Table 36, we

see that in the case of the sliding six month window that the performance of the

XGBoost model is nearly identical to that of the stretching window experiments.

For each of the metrics the XGBoost model receives a score between 0.69–0.72,

nearly identical to the score received for the sliding window model. Again for

each metric the XGBoost model receives a score approximately 0.20 higher than
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that of the Monte Carlo model, demonstrating that the model still performs well

even with a smaller window of available historical training data.

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.49 0.56 0.52 464

1 0.51 0.44 0.47 483

Avg / Total 0.50 0.50 0.50 0.49 947

XGBoost
0 0.65 0.77 0.70 464

1 0.73 0.60 0.66 483

Avg / Total 0.69 0.68 0.68 0.73 947

Table 35: Stretching Window Experimental Results

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.51 0.58 0.54 464

1 0.53 0.45 0.49 483

Avg / Total 0.52 0.52 0.51 0.52 947

XGBoost
0 0.65 0.80 0.72 464

1 0.75 0.58 0.66 483

Avg / Total 0.70 0.69 0.69 0.72 947

Table 36: Sliding Window Experimental Results

Similarly to the holdout experiments, we conducted a final comparison of the

performance of the stretching and sliding window models to the Monte Carlo

model using an ROC plot and the associated AUC. The ROC plot and associated

AUC are described in detail in Section 2.1.2, and are metrics frequently used to

evaluate the performance of binary predictivemodels. The benefit that thesemet-

rics provide is an intuitive visualization of the fraction of true and false positives

at various thresholds, as well they provide a simple way to visually compare

the performance of both the stretching and sliding windows to the Monte Carlo

model in one figure. The results of the stretchingwindow experiments are shown

in Figure 25, where we see that the Monte Carlo model lies approximately along

the line of no discrimination, close to the performance of a hypothetical perfect ran-

dom prediction. Furthermore, we see that the XGBoost model lies well above the

line, with an AUC of 0.73, that is 0.24 greater than that of theMonte CarloModel.
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The results of the sliding window experiments are nearly identical to that of

the stretchingwindow, in Figure 26we see that again the XGBoostmodel lieswell

above the line of no discrimination with the Monte Carlo model just marginally

above it due to the random variances of the uniform random distribution. Again

we see that the XGBoost model has an AUC of 0.72, nearly the same as that of the

stretching experiments, with a result that is 0.20 greater than that of the Monte

Carlo model. Lastly, we compare the performance of both the stretching and slid-

ing window models to the best Monte Carlo model, we see in Figure 27 that the

performance of both XGBoost models is nearly identical. In each model the ROC

curve is either slightly higher or lower at certain points, demonstrating the visible

trade-offs in each model. However the combined area under each curve is nearly

identical with the stretching window having an area of 0.73 and the sliding 6

month window having an area of 0.72.
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Figure 25: Stretching Window Experiment ROC Results
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Figure 26: Sliding Window Experiment ROC Results
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Figure 27: Sliding and Stretching Window Experiments ROC Results

Given the performance of the XGBoost model in the stretching and sliding

window experiments, we then demonstrated the actual price direction (UP/DOWN)

prediction accuracy of the model by plotting the prediction results overlaid on

the historical price of Bitcoin in USD. In Figure 28 the historical price of Bitcoin is

plotted as a faded dashed line for the final three months of the daily prediction

experiments from 2013-06-30 - 2016-02-01. All of the daily price direction predic-

tions where the model was correct are plotted as a blue point, the false predic-

tions are plotted as a red point. The results are self-evident, over the course of the
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final three months of the test period the XGBoost model correctly predicted the

future price direction for 73 out of a total of 93 days, only making a false predic-

tion for 20 out of the total of 93 days. The predictive performance of the model is

demonstratablymuch better than that of pure randomness, as themodelmakes a

correct prediction for the price direction 73 out of the total of 93 days, an accuracy

of 79%.

The same visualization was repeated for the sliding window model, in Fig-

ure 29we again see the historical price of Bitcoin in USD represented by a dashed

line and the false and correct predictions overlaid on top of the price. For the

sliding window model there were a total of 65 days where the price direction

was correctly predicted out of a total of 93 days, compared to 28 false predic-

tions. While the accuracy for the final three months is slightly lower (70%) than

that of the stretching window, the results are still much higher than that of pure

randomness. Furthermore as the time period is increased from three months to

six months the accuracy of the two models converge and are approximately the

same, the results can be found in Section A.7 for the final three and six months

of the experiments.

Figure 28: Stretching Window Prediction, Final 3 Months
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Figure 29: Sliding Window Prediction, Final 3 Months

The XGBoost model consistently performed strongly for both the stretching

and sliding window experiments, demonstrating a resilience to over-fitting even

when the predictive model was continually being provided additional training

data after each additional day. The strong performance of the XGBoost model

is a testament to it’s consistent strong performance demonstrated in other re-

search applications [23–25].When applied to a realistic scenario performing daily

predictions the model demonstrates similar performance to our holdout experi-

ments. Lastly, the visualizations shown in Figure 28 and Figure 29 give an intu-

itive assessment of the actual predictive accuracy of themodel relative to the high

volatility of the Bitcoin market during the final three months of the experiments.

4.5 conclusions

Through a multitude of experiments we tested our original hypothesis exten-

sively by comparing the predictive performance of a uniform random Monte

Carlo model against our own predictive XGBoost model based on the features

of network influencers. We evaluated each of the models using a combination of

multiple evaluationmetrics: precision, recall, F1-score, andROC, each designed for

evaluating the performance of binary classifiers. We established our selection of
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evaluation metrics based on a wide body of literature review and the evaluation

metrics used by other researchers to compare predictive models [7, 28, 30, 35].

For each of these metrics the range of possible values is between [0, 1], with a

value of 0.50 representing a perfectly random prediction, 0 a complete incorrect

prediction, and 1 a perfect prediction.

We evaluated each of the predictive models using a number of experiments

designed to compare both the performance and robustness of each model. We

designed a set of five holdout experiments (50%, 40%, 30%, 20%, 10%), each with

a decreasing amount of the data set aside to test the model, the remaining used

for training. The holdout experiments were created to evaluate not only the pre-

dictive performance of each model, but the robustness of our XGBoost model to

over-fitting, when the amount of training data is increased relative to a decreas-

ing amount of test data.

In each of the holdout experiments the XGBoost model exceeded the results of

the Monte Carlo model, achieving consistently a minumum of 0.20 higher than

that of theMonteCarlomodel for all experiments and allmetrics used. In the case

of the 10% holdout experiments the XGBoost model had a score 0.39 higher than

that of the Monte Carlo model, with a score of 0.84. The Monte Carlo model re-

ceived a score of approximately 0.50 over all the experiments and metrics, close

to that of a perfect random prediction. The Monte Carlo model in some cases

received a score slightly below or above 0.50 due to the imbalance in the num-

ber of preditive outcomes (UP/DOWN) for the test data. Compared to the Monte

Carlo model, the XGBoost model received a score for each metric between 0.65–

0.69, with the exception of the final 10% holdout experiment, where it received

a score for each metric between 0.81–0.84. The XGBoost model demonstrated a

consistent high level of accuracy and robustness in all cases, achieving a score

significantly higher than that of the purely random Monte Carlo model.

Following the results of the holdout experiments, we evaluated a more real-

istic application of each model, where the model was used to predict the price

direction for each following day based on the previous historical training data

available. After each prediction, the accuracy of the model was recorded, and
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the outcome of the following day was then used to train the model to predict

another future outcome. Consistent with our holdout experiments, the XGBoost

model achieved a minimum score of approximately 0.20 higher than the Monte

Carlo model, with the values for each metric ranging from 0.68–0.73. Lastly we

demonstrated what the actual outcome of the predictive model would look like

when plotted against the historical price of Bitcoin for the final three months of

the test data. Both the stretching and sliding window models achieved an accu-

racy exceeding 50%, with the stretching window predicting 73 out of a total of

93 days correctly (79% accuracy), and the sliding window model predicting 65

days correctly (70% accuracy).

The consistent strong performance of our XGBoost model supports our hy-

pothesis of a predictive model that can be used to predict the price direction

(UP/DOWN) of the Bitcoin market based on the action of network influencers with

better accuracy than that of random chance. The results of each experiment were

evaluated using the four leading metrics used for evaluting binary classifers

based on our literature review. In all of the experiments conducted our XGBoost

model achived apprximately 0.20 higher than that of the Monte Carlo model,

which achieved a score approximately equivalent to that of random chance. The

consistent performance of the XGBoost model in all experiments and the robust-

ness to over-fitting supports our hypothesis that a predictive model for the Bit-

coin market can be made based on the features extracted from the actions of

major network influencers.
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CONCLUDING REMARKS , CONTR IBUT IONS , AND FUTURE

WORK

5.1 concluding remarks

Throughout the entire research process we have closely modelled our methodol-

ogy and experiments around the basis of our hypothesis and objectives outlined

in Section 1.3 and Section 1.4. Where our hypothesis is that a predictive model

can be created to predict the daily price direction of the Bitcoinmarketwith better

accuracy than pure randomness based on themarket data, network features, and

activities of users that accumulate a disproporionate amount of wealth using ex-

changes. Given the hypothesis we defined three main objectives for our research:

defining major network influencers clearly as users that accumulate a dispropor-

tionate amount of wealth by using exchanges, creating metrics to identify said

users, and creating an accurate predictive model based on their actions.

We conducted a thorough background and literature review of the state of the

art in machine learning models that were used as a basis for our own predictive

model. As well, we also reviewed the approaches by other researchers to have

better insight into the Bitcoin network and predict the future outcome of the

markets based on analyzing the patterns of transactions on the blockchain and

the positive and negative sentiment of Bitcoin on social media.We then reviewed

specifically the state of the art in existing predictivemodels used to predict the fu-

ture price direction of the Bitcoinmarket in Section 2.2.3, and used the predictive

models created by researchers as a basis for our own models. Furethermore, we

also created our ownuniquemodel usingXGBoost, a recently publishedmachine

learning model that has demonstrated exceptionally good results for numerous

other researchers in prediction and classification problems [23–25]

121



5.1 concluding remarks 122

For our methodology we set out to meet all of the objectives defined based

on our hypothesis, we began first by performing the necessary pre-processing to

extract the information contained within the Bitcoin blockchain and store it in a

relational database. Following the extraction of the blockchain we then outlined

the creation of our own unique parallel address clustering method, based on the

Union-Find variants created by other researchers [44, 47–49], which allowed us to

identify all of the addresses belonging to each user. We then met our objective of

identifying the major network influencer by creating and evaluating several met-

rics we created in Section 3.2. Following the creation of our metrics, we created

several predictive models based on the features of the market, network trans-

actions, and actions of major network influencers identified by our metrics. We

created our predictive models based on the existing state of the art in addition to

creating a completely unique predictivemodel based onXGBoost. Lastly,we eval-

uated eachmodel, we found that ourmodels based on the existing state of the art

achieved similar performance, only slightly better than randomness with 50%–

55% accuracy, but that our new XGBoost model performed much better than all

the other models with a score of 0.10–0.20 higher for each metric.

In our final experiments we tested our hypothesis using the XGBoost model

fromour initialmodel evaluation,which had exceptional performance compared

to all of the other models evalulated. We assessed our XGBoost predictive model

compared to that of a purely random Monte Carlo model using four different

metrics with a score between [0, 1], each widely used in machine learning appli-

cations: precision, recall, F1-score, and ROC. With the metrics we then compared

the performance of our predictive model to the Monte Carlo model using a num-

ber of experiments designed to compare both the performance and robustness

of each model. We designed a set of five holdout experiments (50%, 40%, 30%,

20%, 10%), each with a decreasing amount of the data set aside to test the model,

the remaining used for training. The holdout experiments evaluate not only the

predictive performance but also the robustness of the model to over-fitting as

the training data is increased and testing data decreased. In each of the hold-

out expriments the XGBoost model greatly exceeded the accuracy of the Monte
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Carlo model achieving consistently a minumum of 0.20 higher than that of the

Monte Carlo model for all holdout experiments and all metrics used. For the last

10% holdout experiment the XGBoost scored significantly higher than that of the

Monte Carlo model, which was approximately 0.46, with a score of 0.81–0.84.

Following the holdout experimentswe then evaluated eachmodelwith amore

realistic application. Where the XGBoost model was used to predict the price di-

rection for each following day based on the previous historical training data,with

the actual outcome of each day then used to re-train the model for predicting the

next following day. Two experiments were created in this manner, the first con-

tinually adding the entire history of each day to be used for training the model,

the second using only a maximum of the past six months for training. Consistent

with our holdout experiments, the XGBoost model achieved a minimum score

of approximately 0.20 higher than the Monte Carlo model, with the values for

each metric between 0.68–0.73 compared to the Monte Carlo model with approx-

imately 0.49–0.52. For a final evaluation we plotted the outcome of the predictive

model for the final three months of market data. In terms of the number of pre-

dictions correct versus incorrect, the XGBoost model with the entire history used

for training, predicted 73 out of a total of 93 days correctly (79% accuracy), and

when using the past six months for training predicted 65 days correctly (70%

accuracy).

The consistent strong performance of our predictivemodel using XGBoost and

based on the feature engineering of the market history, blockchain activity, and

actions ofmajor network influencers is supportive of our hypothesis. Throughout

our research we met all of our objectives and created a predictive model which

uses the actions of major network influencers as features, when compared to a

purely random Monte Carlo model our model consistently performs much bet-

ter. We demonstrated in each of our holdout experiments, designed to test the ro-

bustness of themodel to overfitting, a consistent performance of 0.20 higher than

the Montel Carlo model, and in the 10% holdout experiment 0.46 higher with a

score of 0.81–0.84 out of a maximum of 1.0 for a perfect score. For our experi-

ments designed to test a more realistic application of our predictive model, we
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again see that ourmodel achieves aminimum score of approximately 0.20 higher

than the Monte Carlo model with the values for each metric between 0.68–0.73.

As well, we also demonstrated for the final threemonths of training data that our

model predicted 73 out of a total of 93 days correctly (79% accuracy), which is ap-

proximately 25% higher than the accuracy of all other existing predictive models

which achieve an accuracy between 50%–55% [67, 72, 73]. The consistent strong

performance of our predictive model, which performed significantly better than

the Monte Carlo model in all experiments conducted, strongly supports our hy-

pothesis. Furthermore, our predictive model emphasizes the importance of our

contribution as our experiments demonstrated an accuracy 25% higher than that

of all other existing predictive models for the Bitcoin market.

5.2 contributions

During the course of our research we made numerous contributions to the exist-

ing body of available research pertaining to Bitcoin. Much of our own research

was based on our extensive literature review in Chapter 2, where we extended

much of the prior research as necessary in order to meet our research objectives

and to test our hypothesis; we clearly outline each of our contributions as follows.

relational blockchain database: While many other researchers have

mentioned vaguely their methodology of extracting the Bitcoin blockchain and

storing the information in a relational database [44, 48, 57, 72], with the excep-

tion of the simple database schema published by Spagnuolo, Maggi, and Zanero

[49] no detailed RDBMS schema has been published for the Bitcoin blockchain.

We provide the complete and detailed schema diagram of our RDBMS in Sec-

tion 3.1.1, this schema is much more detailed than the simplified schemas avail-

able and provides not only a relational representation of every possible facet of

information stored in the blockchain, but also the consideration of aggregation

results. Our schema is a valuable contribution to any future researchers that need

to process the Bitcoin blockchain and perform analyses of it, as the blockchain
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is not in a format that is easy to analyze, it must be first processed and the infor-

mation extracted into another medium of storage such as an RDBMS. Future re-

searchers can use our detailed shema as a reference to design their own RDBMS,

which allows for the support of SQL to perform OLAP and extract information

for analyses easily on the entire blockchain data.

parallel address clustering: The process of clustering all of the addresses

owned by a single user is known as address clustering. While many researchers ap-

ply the same heuristics and clustering technique known asUnion-Find [44, 47–49],

a computationally expensive process, we have proposed a novel version that can

be executed in parallel. We were required to create a parallel address clustering

algorithm as the size of the Bitcoin blockchain and number of transactions had

increased significantly since the application of the algorithms by researchers sev-

eral years prior.We describe our parallel algorithm in Section 3.1.2, which greatly

expedited the process of clustering all of the addresses, and will be even more

beneficial to future research work as the blockchain continues to increase in size.

metrics to identify network influencers: As part of the fulfillment of

our objectives and to evaluate our hypothesis we createdmetrics that can be used

to identify the influencers within the Bitcoin network. Based on our hypothesis

our primary purpose was to identify users that had accumulated a dispropor-

tionate amount of wealth, however each of our metrics in Section 3.2 could be

used to identify influencers based on any other criteria. Our metrics are bene-

ficial as they extend widely-used methods of ranking individuals (h-index), as

well as optimizing multiple objectives (Pareto optimization), and can be applied

by researchers to identify influencers based on any criteria.

predictive model for the bitcoin market: Our most notable contribu-

tion, and the purpose of our hypothesis, was the creation of a predictive model

for the Bitcoinmarket. We have demonstrated that our model not only has a high

accuracy in comparison to a Monte Carlo model, but also is significantly more
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accurate by at least 25% than all other existing models. Furthermore, we selected

XGBoost, a very new and highly successful machine learning model, for the cre-

ation of our final model which is significanly different than all other previous

predictive models for the Bitcoin market. Our application of XGBoost and our

unique approach of using the actions ofmajor network influencers as features for

our predictive model is a unique contribution not even considered or discussed

by any other researchers.

5.3 future work

While our final predictivemodel demonstrated significantly higher accuracy com-

pared to a Monte Carlo model as well as the results of other researchers, there

are still several areas we would like to consider for future research. Based on our

own literature review as well as some of the limitations of our own research we

have identified the following areas of future research.

adding bitcoin sentiment as features: During our literature reviewwe

discussed the application of social media sentiment analysis related to Bitcoin by

other researchers. While the researchers could not conclusively conclude wether

or not the sentiment on social media could predict the direction of the Bitcoin

market, it would have also been beneficial to have considered social media senti-

ment as one of our features. We attempted to gain access to the historical tweets

pertaining to Bitcoin provided by a subsidiary of Twitter, GNIP1, but found the

costs of gaining access to the data prohibitively expensive2.

including more market features: While we included the historical mar-

ket features of market volatility, trading volume, price close, and average price

there are other features that we could have considered which may have further

improved the accuracy of our model. For future research we would like to con-

sider more market features such as the intraday-spread and intraday-return that

1 GNIP unleash the power of social data. https://www.gnip.com
2 We were invoiced at a cost of $50, 000USD for tweets with #bitcoin from 2013-01-01 – 2016-01-01

https://www.gnip.com
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were used by other researchers [57], as well as making the features specific to

the individual USD, CNY, and EUR markets rather than aggregated them as a

whole.

deep learning: While we had great success using XGBoost for our predic-

tive model we would also like to evaluate and consider the posibility of deep

learning models based on the concepts of neural networks. Initially we consid-

ered using deep learning after the results of Greaves and Au [73], which had the

best predicitve performance out of all other researchers using a simple neural

network. However, we were unable to effectively evaluate deep learning due to

the sheer magnitude and dimensions of our training data. During our research

we had only limited access to GPUs and any attempts to create even simple deep

learningmodel using CPUs resulted in extremely long training and testing times.

For future research, with access to powerful GPUs, we would like to re-evalaute

the model and compare the performance of XGBoost to that of a deep learning

predictive model.
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a.1 market opportunity
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Figure 30: Bitcoin Price in USD Markets
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Figure 31: Bitcoin Price in CNY Markets
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Figure 32: Bitcoin Price in EUR Markets

Figure 33: Bitcoin Weekly Volume for USD, CNY, EUR Markets
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Figure 34: Bitcoin Monthly Volume for USD, CNY, EUR Markets
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Figure 35: Bitcoin Volatility for USD, CNY, EUR Markets
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a.2 bit-index calculation examples
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Figure 36: Silk Road Historical Monthly Gain

Figure 37: Silk Road Historical Monthly Gain
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Figure 38: User with 8,700 BTC Historical Monthly Gain

Figure 39: User with 8,700 BTC Historical Monthly Gain
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Figure 40: User with 21,744 BTC Historical Monthly Gain

Figure 41: User with 21,744 BTC Historical Monthly Gain

a.3 pareto front clustering

Wallet ID Size Gain Balance Transactions Volume Active Period

967094 35 −10, 010, 510 87, 112 272 698, 050 2011-06-13 – 2016-01-21

29091650 1 15, 954, 569 69, 370 63 208, 312 2013-04-09 – 2016-01-21

36816796 98, 614 16, 731, 573 39, 606 501, 423 3, 503, 300 2013-09-09 – 2016-02-03

64546 7 −42 31, 000 58 75, 000 2010-05-04 – 2016-01-21

continued . . .
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continued . . .

Wallet ID Size Gain Balance Transactions Volume Active Period

26418861 8 9, 785, 598 28, 050 456 73, 252 2015-02-16 – 2016-02-03

12910452 1 15, 186, 848 21, 744 17 21, 746 2013-12-19 – 2016-01-21

35715895 1 3, 314, 492 12, 277 170 21, 102 2015-08-06 – 2016-01-27

28160350 1 2, 298, 647 9, 112 27 9, 114 2015-04-02 – 2016-01-21

37610306 1 1, 833, 219 5, 421 15 5, 433 2015-08-12 – 2016-01-30

35592877 109 1, 077, 230 5, 361 12, 161 18, 204 2015-08-10 – 2015-12-25

10479526 1 2, 344, 015 5, 297 4 30, 063 2013-10-24 – 2016-01-21

38299190 5 1, 604, 640 4, 352 22 5, 288 2015-10-04 – 2016-02-03

16475247 1 1, 612, 456 4, 343 3 19, 975 2014-05-07 – 2016-02-01

18936475 1 1, 595, 988 2, 720 8 2, 728 2014-08-04 – 2015-04-02

36268175 1 507, 228 2, 282 16 20, 717 2015-08-26 – 2016-01-14

34249409 1 387, 395 2, 001 6 4, 061 2015-06-04 – 2015-11-18

29369438 1 453, 508 1, 740 6 2, 122 2015-03-08 – 2015-04-29

35283989 1 205, 020 1, 650 8 1, 751 2013-04-13 – 2015-08-11

38549999 1 327, 146 1, 410 46 2, 547 2015-09-02 – 2015-10-14

36682013 1 809, 448 1, 173 7 2, 353 2014-08-11 – 2015-09-06

27018864 1 302, 603 1, 112 7 1, 154 2015-03-06 – 2015-04-02

33047611 1 242, 685 900 11 902 2015-07-07 – 2015-07-08

36331101 1 225, 141 800 3 830 2015-08-03 – 2015-08-31

38964574 1 212, 947 736 9 936 2014-08-21 – 2015-10-16

39144453 1 111, 471 400 8 2, 136 2015-03-16 – 2015-12-17

38362929 1 72, 911 303 10 403 2015-10-01 – 2015-10-08

36800682 1 71, 360 293 3 979 2015-09-08 – 2015-09-08

37322290 1 78, 913 285 9 492 2015-06-29 – 2015-09-18

continued . . .
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continued . . .

Wallet ID Size Gain Balance Transactions Volume Active Period

37096007 2 58, 377 253 5 760 2015-09-13 – 2015-09-13

39066167 1 66, 936 187 3 593 2015-10-08 – 2016-01-17

37486849 1 41, 338 150 7 352 2015-08-06 – 2015-10-24

38604839 5 29, 025 133 247 635 2015-09-20 – 2015-10-09

37118579 1 23, 024 100 4 100 2015-09-14 – 2015-09-14

39007630 1 42, 754 97 3 267 2015-10-15 – 2015-12-20

39060070 1 34, 670 80 7 278 2015-10-16 – 2016-01-10

39553907 1 15, 720 77 7 690 2015-10-07 – 2016-01-22

39123781 1 14, 476 66 5 358 2015-09-25 – 2015-11-05

38327901 1 14, 439 60 3 191 2015-10-04 – 2015-10-04

39462182 3 14, 920 54 9 104 2015-10-19 – 2015-10-23

39545076 1 13, 873 50 3 310 2015-10-23 – 2015-10-23

39575795 2 19, 995 50 5 162 2015-10-14 – 2015-12-29

39635330 1 14, 734 41 61 525 2015-10-24 – 2015-11-11

39548377 1 11, 098 40 5 240 2015-10-23 – 2015-10-23

39610940 1 5, 356 29 9 154 2015-08-06 – 2015-10-27

39654530 1 947 1 3 5 2014-03-08 – 2015-10-25

39654407 1 39 0 5 0 2015-10-23 – 2015-11-17

Table 37: Wallets Within First Pareto Front by Balance

Wallet ID Size Gain Balance Transactions Volume Active Period

12632046 2 57, 860, 572 0 193 891, 088 2013-12-04 – 2014-12-05

23321817 16 34, 274, 045 105 756 2, 997, 118 2014-11-06 – 2015-11-17

21793989 30 34, 061, 705 0 218 239, 948 2014-02-05 – 2014-12-09

continued . . .



A.3 pareto front clustering 137

continued . . .

Wallet ID Size Gain Balance Transactions Volume Active Period

23251293 1 31, 879, 280 0 63 288, 683 2014-06-12 – 2014-12-25

29091650 1 15, 954, 569 69, 370 63 208, 312 2013-04-09 – 2016-01-21

12910452 1 15, 186, 848 21, 744 17 21, 746 2013-12-19 – 2016-01-21

12632045 2 12, 789, 658 0 50 199, 757 2013-12-06 – 2014-11-28

14051017 13 11, 450, 484 0 76 96, 870 2013-11-13 – 2014-04-11

14292981 2 9, 891, 130 0 18 115, 472 2014-01-16 – 2014-11-28

14273647 1 9, 504, 826 0 94 81, 327 2013-11-22 – 2014-02-25

28105417 4 7, 505, 229 0 49 71, 120 2014-06-09 – 2015-04-02

12611704 1 6, 486, 948 0 24 281, 043 2013-12-11 – 2014-08-01

13871328 8 6, 074, 934 0 35 141, 311 2014-01-24 – 2014-08-25

32686848 1 5, 347, 658 0 9 29, 350 2014-07-21 – 2015-07-03

11854505 6 5, 226, 839 0 26 33, 391 2013-11-30 – 2013-12-06

14299632 5 4, 409, 110 0 14 98, 377 2014-02-04 – 2014-02-26

27121637 1 3, 621, 029 0 4 100, 001 2014-12-08 – 2015-03-09

38771589 1 3, 360, 968 1 9 15, 999 2013-12-24 – 2015-10-11

27122935 1 3, 211, 184 0 5 88, 682 2014-12-08 – 2015-03-09

15512173 1 3, 030, 484 0 3 47, 758 2014-03-22 – 2014-04-02

16002246 1 1, 795, 050 0 3 30, 000 2014-02-18 – 2014-04-19

21601885 1 1, 693, 860 0 3 14, 000 2014-08-09 – 2014-10-25

30553538 1 1, 554, 253 0 6 8, 994 2014-08-05 – 2015-05-25

30776201 1 1, 198, 340 0 8 13, 000 2014-09-18 – 2015-05-29

15772561 1 1, 036, 649 0 2 9, 706 2014-03-15 – 2014-04-11

35757394 1 972, 109 0 6 2, 400 2013-12-05 – 2015-08-21

21876719 1 862, 998 0 4 11, 387 2014-09-02 – 2014-11-02

continued . . .
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continued . . .

Wallet ID Size Gain Balance Transactions Volume Active Period

36682013 1 809, 448 1, 173 7 2, 353 2014-08-11 – 2015-09-06

25061929 1 752, 271 0 2 13, 775 2014-12-31 – 2015-01-20

26022846 1 707, 250 0 2 10, 000 2014-12-08 – 2015-02-11

25494950 1 672, 200 0 2 10, 000 2014-12-08 – 2015-01-30

37955477 1 608, 000 0 8 10, 000 2014-12-08 – 2015-11-13

28455135 1 566, 390 0 5 8, 464 2014-11-30 – 2015-04-09

29369438 1 453, 508 1, 740 6 2, 122 2015-03-08 – 2015-04-29

25204653 1 433, 370 0 2 14, 000 2015-01-07 – 2015-01-23

32873502 1 406, 140 0 7 4, 000 2014-09-09 – 2015-07-06

34249409 1 387, 395 2, 001 6 4, 061 2015-06-04 – 2015-11-18

27839289 1 355, 894 0 2 15, 400 2015-03-12 – 2015-03-26

27967890 1 319, 203 0 2 11, 864 2015-03-11 – 2015-03-29

35938206 2 310, 660 0 8 35, 178 2015-06-03 – 2015-08-24

35956759 1 291, 545 0 2 9, 772 2015-08-05 – 2015-08-25

37609883 1 244, 680 0 2 8, 000 2015-07-11 – 2015-09-22

36331101 1 225, 141 800 3 830 2015-08-03 – 2015-08-31

38964574 1 212, 947 736 9 936 2014-08-21 – 2015-10-16

39049032 1 200, 330 0 4 1, 000 2014-03-04 – 2015-10-16

38502045 1 153, 943 0 4 2, 834 2014-10-28 – 2015-10-07

36879198 1 135, 383 0 2 9, 900 2015-08-12 – 2015-09-09

38276819 1 128, 550 0 6 5, 000 2015-03-10 – 2015-10-13

39144453 1 111, 471 400 8 2, 136 2015-03-16 – 2015-12-17

39250814 2 95, 606 0 6 600 2014-08-05 – 2015-10-19

39413088 2 94, 734 0 8 600 2014-08-05 – 2015-11-02

continued . . .
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continued . . .

Wallet ID Size Gain Balance Transactions Volume Active Period

39541895 2 91, 694 0 8 600 2014-08-05 – 2015-11-02

38362929 1 72, 911 303 10 403 2015-10-01 – 2015-10-08

38318303 1 72, 212 0 2 6, 071 2015-06-30 – 2015-10-04

39066167 1 66, 936 187 3 593 2015-10-08 – 2016-01-17

36987668 1 61, 654 0 2 3, 375 2015-07-22 – 2015-09-11

37096007 2 58, 377 253 5 760 2015-09-13 – 2015-09-13

37102703 2 56, 009 0 6 15, 545 2015-09-10 – 2015-09-18

37369725 4 55, 869 0 8 2, 604 2015-07-23 – 2015-09-18

39007630 1 42, 754 97 3 267 2015-10-15 – 2015-12-20

39469331 1 40, 574 0 2 402 2014-09-11 – 2015-10-22

39513577 1 39, 550 0 3 2, 000 2014-12-19 – 2015-10-23

37890563 1 38, 070 0 2 2, 000 2015-08-11 – 2015-09-27

37129940 1 37, 132 0 2 5, 580 2015-09-08 – 2015-09-14

39060070 1 34, 670 80 7 278 2015-10-16 – 2016-01-10

38597192 1 33, 712 0 4 3, 040 2015-10-08 – 2015-11-25

38502046 1 32, 547 0 2 20, 665 2015-10-06 – 2015-10-07

38604839 5 29, 025 133 247 635 2015-09-20 – 2015-10-09

39566937 1 25, 956 0 4 68 2013-12-02 – 2015-10-23

39575795 2 19, 995 50 5 162 2015-10-14 – 2015-12-29

38835410 1 16, 031 50 12 354 2015-10-12 – 2015-10-30

39176363 1 15, 659 50 8 138 2015-10-18 – 2015-12-08

39462182 3 14, 920 54 9 104 2015-10-19 – 2015-10-23

39635330 1 14, 734 41 61 525 2015-10-24 – 2015-11-11

39545076 1 13, 873 50 3 310 2015-10-23 – 2015-10-23

continued . . .
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continued . . .

Wallet ID Size Gain Balance Transactions Volume Active Period

39548377 1 11, 098 40 5 240 2015-10-23 – 2015-10-23

39610940 1 5, 356 29 9 154 2015-08-06 – 2015-10-27

39651066 1 4, 271 0 2 40 2014-08-15 – 2015-10-25

39613779 1 2, 216 7 8 7 2015-10-10 – 2015-12-09

39559183 1 1, 699 5 6 14 2015-10-17 – 2015-11-03

39650786 1 1, 502 0 7 40 2014-10-17 – 2015-10-25

39629354 1 1, 502 0 2 549 2015-07-25 – 2015-10-24

39651071 1 1, 152 0 2 7 2013-12-22 – 2015-10-25

Table 38: Wallets Within First Pareto Front by Gain

a.4 major influencers selection
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Figure 42: Pareto Fronts by Balance Sizes
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Figure 43: Pareto Fronts by Gain Sizes

a.5 predictive model selection

Model Prediction Precision Recall F1-Score AUC Support

Eureqa
0 0.56 0.40 0.47 295

1 0.50 0.65 0.56 269

Avg / Total 0.53 0.52 0.51 0.53 564

SVM
0 0.52 0.43 0.47 295

1 0.47 0.56 0.51 269

Avg / Total 0.50 0.49 0.49 0.50 564

Decision Tree
0 0.63 0.49 0.55 295

1 0.55 0.68 0.61 269

Avg / Total 0.59 0.58 0.58 0.60 564

XGBoost
0 0.70 0.54 0.61 295

1 0.60 0.75 0.66 269

Avg / Total 0.65 0.64 0.64 0.74 564

Table 39: 50% Holdout Model Evaluation Results
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Model Prediction Precision Recall F1-Score AUC Support

Eureqa
0 0.51 0.32 0.40 167

1 0.52 0.70 0.59 172

Avg / Total 0.51 0.51 0.50 0.51 339

SVM
0 0.54 0.29 0.38 167

1 0.52 0.76 0.62 172

Avg / Total 0.53 0.53 0.50 0.53 339

Decision Tree
0 0.48 0.61 0.54 167

1 0.48 0.35 0.41 172

Avg / Total 0.48 0.48 0.47 0.49 339

XGBoost
0 0.66 0.57 0.61 167

1 0.63 0.71 0.67 172

Avg / Total 0.64 0.64 0.64 0.69 339

Table 40: 30% Holdout Model Evaluation Results

Model Prediction Precision Recall F1-Score AUC Support

Eureqa
0 0.70 0.13 0.22 54

1 0.54 0.95 0.69 59

Avg / Total 0.62 0.56 0.47 0.54 113

SVM
0 0.49 0.44 0.47 54

1 0.53 0.58 0.55 59

Avg / Total 0.51 0.51 0.51 0.48 113

Decision Tree
0 0.47 0.15 0.23 54

1 0.52 0.85 0.65 59

Avg / Total 0.50 0.51 0.44 0.53 113

XGBoost
0 0.73 0.65 0.69 54

1 0.71 0.78 0.74 59

Avg / Total 0.72 0.72 0.72 0.78 113

Table 41: 10% Holdout Model Evaluation Results
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Figure 44: 50% Holdout Model Evaluation ROC Results
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Figure 45: 30% Holdout Model Evaluation ROC Results



A.6 holdout experiments 144

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

XGBoost ROC (AUC = 0.78)
Decision Tree ROC (AUC = 0.53)
SVM ROC (AUC = 0.48)
Eureqa ROC (AUC = 0.54)

Figure 46: 10% Holdout Model Evaluation ROC Results

a.6 holdout experiments

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.51 0.57 0.53 295

1 0.45 0.39 0.42 269

Avg / Total 0.48 0.48 0.48 0.48 564

XGBoost
0 0.72 0.66 0.69 295

1 0.66 0.72 0.69 269

Avg / Total 0.69 0.69 0.69 0.73 564

Table 42: 50% Holdout Experiment Results

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.47 0.57 0.52 226

1 0.45 0.36 0.40 225

Avg / Total 0.46 0.46 0.46 0.45 451

XGBoost
0 0.66 0.72 0.69 226

1 0.69 0.64 0.66 225

Avg / Total 0.68 0.68 0.68 0.71 451

Table 43: 40% Holdout Experiment Results
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Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.46 0.50 0.48 167

1 0.46 0.42 0.44 172

Avg / Total 0.46 0.46 0.46 0.46 339

XGBoost
0 0.62 0.71 0.66 167

1 0.67 0.58 0.62 172

Avg / Total 0.65 0.64 0.64 0.71 339

Table 44: 30% Holdout Experiment Results

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.41 0.50 0.45 109

1 0.41 0.32 0.36 117

Avg / Total 0.41 0.41 0.41 0.43 226

XGBoost
0 0.65 0.69 0.67 109

1 0.69 0.66 0.68 117

Avg / Total 0.67 0.67 0.67 0.73 226

Table 45: 20% Holdout Experiment Results

Model Prediction Precision Recall F1-Score AUC Support

Monte Carlo
0 0.45 0.54 0.49 54

1 0.48 0.39 0.43 59

Avg / Total 0.46 0.46 0.46 0.45 113

XGBoost
0 0.79 0.83 0.81 54

1 0.84 0.80 0.82 59

Avg / Total 0.82 0.81 0.81 0.84 113

Table 46: 10% Holdout Experiment Results
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Figure 47: 50% Holdout Experiment ROC Results
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Figure 48: 40% Holdout Experiment ROC Results



A.6 holdout experiments 147

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

XGBoost ROC (AUC = 0.71)
Monte Carlo ROC (AUC = 0.44)

Figure 49: 30% Holdout Experiment ROC Results
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Figure 50: 20% Holdout Experiment ROC Results
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Figure 51: 10% Holdout Experiment ROC Results
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Figure 52: Stretching Window Prediction, Final 3 Months
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Figure 53: Sliding Window Prediction, Final 3 Months

Figure 54: Stretching Window Prediction, Final 6 Months
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Figure 55: Sliding Window Prediction, Final 6 Months
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